

Get Programming with Node.js

Jonathan Wexler

Copyright

For online information and ordering of this and other Manning books, please
visit www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

 Special Sales Department

 Manning Publications Co.

 20 Baldwin Road

 PO Box 761

 Shelter Island, NY 11964

 Email: orders@manning.com

©2019 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning Publications
was aware of a trademark claim, the designations have been printed in initial caps or all caps.

 Recognizing the importance of preserving what has been written, it is Manning’s policy to
have the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books are
printed on paper that is at least 15 percent recycled and processed without the use of elemental
chlorine.

Development editor: Toni Arritola

Technical development editor: John Guthrie

Review editor: Aleksandar Dragosavljević

Production editor: David Novak

Copyeditor: Kathy Simpson

Proofreader: Melody Dolab

Senior technical proofreader: Srihari Sriharan

Technical proofreader: German Frigerio

Typesetter: Dottie Marsico

Cover designer: Monica Kamsvaag

Manning Publications Co.

20 Baldwin Road

PO Box 761

Shelter Island, NY 11964

ISBN 9781617294747

Printed in the United States of America

1 2 3 4 5 6 7 8 9 10 – SP – 24 23 22 21 20 19

DEDICATION

To the ones who got me programming and to my parents (the two people I always know aren’t
reading my book), with love.

Foreword

I was fortunate enough to be among a crowd of about 250 folks who gathered at the first
JSConf.EU conference in Berlin in late 2009, when a relatively unknown-at-the-time speaker
stood up and introduced himself as Ryan Dahl. Over the next hour, he proceeded to deliver a
simple, no-frills talk with dry humor and little affect—not exactly the kind of talk you’d expect to
receive a rousing audience response.

But we all jumped to our feet and gave him a standing ovation, for multiple minutes. Why? Dahl
had just changed the game for all JavaScript developers, and we knew it. He officially launched
Node.js to the world. Nothing in JS would ever be the same again.

In the eight or so years since, Node.js has skyrocketed to practical ubiquity, not only within the
JavaScript world, but also far beyond. Node.js represents a powerful, respected, first-class,
enterprise server-side platform for global-scale web applications. It sparked an explosion of
interest in embedding JS in practically any computing or electronic device you can imagine,
from robots to television sets to light bulbs.

The Node.js ecosystem is built around hundreds of thousands of published module packages in
npm—the largest code repository ever for any programming language by more than 6 times.
That statistic doesn’t include the countless privately installed packages comprising billions of
lines of JavaScript.

With the enormous momentum around and attention to Node.js, it can be painfully daunting for
someone who wants to learn this ecosystem to figure out where to start.

I think that’s why I appreciate this book so much. From the first page, it lays out a refreshingly
down-to-earth, pragmatic, clear path that shows you how to navigate your way into Node.js. You
won’t find unnecessary historical or philosophical fluff here; the book jumps right into showing
you how to install and configure Node.js so that you can get to the code as quickly as possible.

The book is divided into short, digestible lessons. Each section is clearly organized, ensuring
that you won’t get lost in the weeds and lose sight of the bigger picture.

Reading this book is like having Jonathan sit next to you patiently while you dig into Node.js,
prompting you with enough challenges to get you to the next section review.

When you’re about 50 pages into the book, you’ll look up and realize that you’ve already written
a web server that responds to web requests. The feeling of having total control of your
application, with no off-limits black boxes, is so empowering that you may want to give yourself
a standing ovation, too!

As you progress through the book’s lessons (almost 40 in total), you methodically expand the
scope of your Node.js programming capabilities into API handling, databases, authentication,
and more. This book lays out a solid checklist of what you need to learn and master to solidify
Node.js as a vital tool in your programming toolbox.

That’s what Node.js always has been to me, from the moment I first heard Ryan talk about it to
the present. Node.js is a powerful tool that gives me, a JavaScript developer, the capability to
own my entire application. I think that you’ll find this book to be the guide you’ve been looking
for as you cross over from knowing about Node.js to knowing how to wield it effectively as your
favorite web application tool.

Jonathan’s ready for you to begin this journey with him in Lesson 0, so what are you waiting for?
Get programming with Node.js!

KYLE SIMPSON, GETIFY

OPEN WEB EVANGELIST

Preface

Nearly a quarter century after the internet became a public-facing tool for the world to use, the
tech job market has never been larger. From new startups to large corporations, nearly all
entities are looking for an online presence or, even better, sophisticated tools to push their
brand and products. Luckily, you don’t need a computer-science degree or a master’s degree in
data science to meet the needs of the market these days. Moreover, most of the skills you need to
build these tools, you can acquire at little to no cost through open-sourced technologies.

During my time at The New York Code + Design Academy, instructing intensive courses on web
development and building new curriculums, I recognized the strength of a full stack education.
I’ve taught students with a variety of backgrounds, most of them without development
experience, to realize their programming visions in as little as three months. So why not you?

I wrote this book to manifest the stages of learning web development in Node.js. Each unit
guides you through a core concept in web development, with instructions on how to apply code
and build your own application. I present the building blocks of a web server and show you how
to piece together the components that your favorite web applications use. Using the same boot-
camp learning strategy, I walk you through the development of a web application with dynamic
web pages, user accounts, a database, and a live chat feature. By the end of the book, you’ll have
a fully functioning application published on the internet. The work you produce from this book
could spark ideas for a new application, become the start of a product for your business, or
showcase your development skills as a personal portfolio piece. However you choose to use this
book, you can find everything here that you need to get programming with Node.js.

My goal is to make the learning process less intimidating and more exciting. The frustration that
many new engineers feel is twofold: resources are scattered, and they don’t always deliver the
complete picture. Node.js is a relatively new platform for development, and although the online
community can answer common questions, new web developers may struggle to find full
ingredient lists and recipes for building a complete application from scratch. This book covers
the surface aspects and a little extra.

Be ambitious while tackling the exercises in this book, and be patient while understanding the
core concepts. Ask questions where you get stuck, and communicate with other readers through
the book’s forum. (They’ll be hitting the same walls as you.) With a little practice and
determination, you’ll soon be demonstrating your Node.js talent to the sea of developer-hungry
organizations.

Acknowledgments

I’m grateful for all the support I received in making this book possible. First, I’d like to thank
Manning Publications for choosing me to curate and write its Get Programming book on
Node.js. In particular, I want to thank my development editors for guiding the book through its
many daunting phases. Dan Maharry, you were a great resource in preparing me for the task.
Toni Arritola, your push to fill the book’s gaps and help me meet important deadlines was the
driving force behind its completion. I thank Srihari Sriharan, the senior technical proofreader,
and German Frigerio, the technical proofreader, for making sure all the code examples were
properly formatted and ran as intended. Also, to those who volunteered to review my book and
offer the feedback that ultimately improved my final product, I’m appreciative for your time and
comments: Ahmed Chicktay, Aindriu Mac Giolla Eoin, Alberto Manuel Brandão Simões, Alper
Silistre, Barnaby Norman, Bryce Darling, Dan Posey, Daniela Zapata, David Pardo, Dermot
Doran, Edwin Boatswain, Filipe Freire, Foster Haines, Jeremy Lange, Joseph White,
Madhanmohan Savadamuthu, Michael Giambalvo, Michal Paszkiewicz, Patrick Regan, Rafael
Aiquel, Roger Sperberg, Ron Lease, Ronald Muwonge, Vincent Zhu, Vinicius Miana Bezerra,
and Vipul Gupta.

Thank you to everyone who helped propel my development and teaching career. Each of you
instilled the confidence I needed to focus on the vision of this book and deliver a product that
reflects the work ethic, teaching strategies, and development techniques we’ve evolved together
over the years.

Thank you to The New York Code + Design Academy (NYCDA) and my former students for
promoting this book and supporting me throughout its development. To all my students: I’m
proud of what you’ve accomplished, and only through your success have I been convinced that
this book can help others change careers and reach new development milestones.

Thank you, Zach Feldman, for initially hiring me, introducing me to the coding boot-camp
world, and also for continuing to be a great friend, resource, and collaborator. Thank you to
everyone on the NYCDA development team for trusting my leadership and providing a fun,
reliable work environment for me. Thank you, Sharon Kass, for your unconditional friendship
and inclusiveness starting from my first day at Bloomberg LP.

I want to thank my family for their support of my career choices and for inspiring ambition over
challenges big and small. Thank you, Dad and Eema, for supporting creative expression and
encouraging me to do what makes me happy. Thank you, Kimmy and Matt, for helping me
understand the legal side of this business, and Noa and Emmanuelle, for being my youngest
reviewers and future students. Thank you, Jessie, for not losing my ski poles.

Thank you to my fellow developers and to the Philadelphia and New York tech communities.
Thank you, Kevin Skogland, whose teaching style through his tutorial series influenced the way
that I answer technical questions; thank you also for your friendship and engagement in my
former classes. Thank you, Kyle Simpson, for your unique perspective on teaching and
understanding JavaScript and for your support and willingness to review my book’s draft.
Thank you to those who reviewed earlier drafts of this publication and to my friends Michael
“Sybles” Sklaroff, for checking in on me through development; Gurbakshish Singh, for your code

suggestions; and -Violeta Soued for persuading me to pursue a computer science degree in the
first place.

Last, thank you to everyone who purchases this book. I know that you can find a lot of resources
online and in print to learn to program with Node.js, and I thank you for showing interest in
learning through my teaching style. I hope that I get to hear from many of you, in compliments
or critiques, as well as learn how this book helped you reach new programming revelations and
career achievements. As you read, keep this sentiment in mind: we take on challenges not to tell
others that we did, but to remind our future selves that we can.

About this book

Before you get started, I’ll discuss Node.js and what you’ll learn in this book.

WHAT IS NODE.JS?

According to the Node.js website (https://nodejs.org/en/about/), Node.js is “an asynchronous event
driven JavaScript runtime.” Let me break down that definition. Node.js reads, or interprets,
your JavaScript code. You write code in JavaScript and then use your version of Node.js to run
the code. How does that process work, exactly?

The Node.js runtime uses a JavaScript engine, a program that reads JavaScript code and
executes its commands on the fly. Specifically, Node.js uses Google’s Chrome V8 Java-Script
engine, an open-source interpreter that converts JavaScript to machine code—code that your
computer can readily execute. This feature is useful because Google often updates and monitors
its JavaScript engine for use in its Chrome web browser, where JavaScript engines traditionally
run. Node.js adapts this engine to provide an environment for you to run JavaScript code that
doesn’t require a web browser. Now, instead of reserving JavaScript for scripting on web pages,
you can use it to build an entire application on the server (see unit 1).

Defining the terms asynchronous and event driven is important, as they’re fundamental
elements of how JavaScript is used nowadays. Understanding their impact on Node.js
applications is more important, however.

When a JavaScript application is launched, all the code in that application is loaded into
memory. Every variable, function, and block of code is made available to the application,
whether or not the code is executed right away. Why might certain code not run right away?
Although defining and assigning a global variable may give that variable a value as soon as the
application is launched, not all functions run unless they have a reason to do so. Some of these
functions come in the form of event listeners—function objects that run a corresponding
callback function when an event with a matching name is emitted. These functions sit around in
memory until event emitters—objects that fire event names—trigger the event listeners to run
their callback functions.

In this way, Node.js can run applications in a particularly fast, efficient manner. Whereas other
platforms may need to recompile or run all of their code every time a request to run a certain
command is made, Node.js loads JavaScript code only once, and it runs the functions and
corresponding callback functions only when triggered to do so by events. JavaScript as a
language supports event-driven development but doesn’t require it. Node.js takes advantage of
this architecture by promoting the use of events as a way for the server to execute most of an
application’s tasks, using the Node.js event-loop (see unit 1).

Last, why does it matter that Node.js is asynchronous? Well, JavaScript, by nature, is
asynchronous, which means that tasks don’t necessarily run sequentially. If I want to call a
function, log a comment, and change the background color of my web page, all these commands

could potentially run instantaneously, but they won’t necessarily run in order. In fact, it’s likely
that my comment will be logged before anything else happens.

The code in the listing that follows demonstrates this phenomenon. Although I call
my callMe function first, change the background color of my web page to green next, and log a
comment at the end, the order of events is reversed when I run this code in my web browser’s
console.

Listing Example of asynchronous flow

Having an asynchronous runtime environment is great for web applications. Think about every
time you’ve visited a website and the average time it took to load the page you requested.
Suppose that you placed an order on Amazon.com and that while the order was processing
(verifying your name, credit card information, shipping address, and other security measures),
no other visitors to Amazon.com could load their web pages. This system would imply that the
website used a single application process or thread (an operating-system resource dedicated to
running a series of commands, handling every single task, and blocking other tasks from
completion). Other web applications handle this scenario by creating new processes or threads,
building bigger and more powerful machines to handle an influx of task requests.

Node.js requires only one executing thread (used by the event-loop), which can use other
threads only when necessary for larger tasks. As a result, a Node.js application needs less
processing power for creating and running tasks to completion because computer resources
aren’t necessarily assigned and dedicated to each incoming task. In the Amazon example,
Node.js might use its main thread to handle your request to process an order, send your
information off to be verified, and continue to process other users’ requests to load web pages.
When your order is processed, an event is emitted, triggering the main thread to let you know
that your order was placed successfully. In other words, Node.js uses asynchrony to run parts of
tasks and continue to other tasks before the first task completes. Instead of waiting for an
operation from start to finish, Node.js registers event listeners, which are called when the task
that was sent off is complete.

Ultimately, Node.js offers you a way to write JavaScript code without a web browser, and you
can use this environment to design all types of applications. Most Node.js applications are web
applications that use its asynchronous, event-driven nature to offer fast-loading, responsive web
content.

In this book, you explore the architecture of a Node.js web application by evolving a basic
JavaScript web server, using only the built-in Node.js tools, into a fully dynamic web application
built with external open-source code libraries called Node.js packages (see unit 1).

GOALS OF THE BOOK

Node.js is only one of many platforms on which you can build an application. Because of its
design, Node.js is particularly useful for building web applications—applications that handle
requests over the internet and provide processed data and views in return. For many of you, the
concept of building an application purely in JavaScript is both new and your ultimate goal. For
others, this book is your introduction to web development. You’ve never built or fully
understood the inner workings of a web application, and you’ve come here to learn how
everything fits together.

Because the focus of this book is teaching web development through Node.js, I’m going to put a
lot of focus on how a web application is architected, including initial setup, the ways dynamic
pages are created, how a database is connected, and ways of preserving a user’s activity on your
application. The goal is to clearly explain these concepts through examples and code that you
can use and modify to create your own applications.

WHO SHOULD READ THIS BOOK

This book is intended, first and foremost, for anyone who’s interested in learning about Node.js
and the tools required to build a web application. If you have some familiarity with JavaScript
but little experience with web development, this book is for you.

Because this book is project-based, readers need to be proficient in navigating their computers,
typing, and working with a web browser. No experience in web-connected applications is
expected. Readers with a background in backend or service technologies are good candidates for
this book. New developers should have some familiarity with the following technologies:

• JavaScript
• HTML
• CSS
• Terminal/command line

Knowledge of JavaScript ES6 is beneficial but not required for this book.

HOW THIS BOOK IS ORGANIZED: A ROAD MAP

This book is divided into nine units. Each unit teaches a group of related concepts and builds on
the preceding unit toward a more-complete, robust application. Unit 0 guides you through the
Node.js installation and setup process, as well as the installation steps needed for other software
used in this book. You continue from there to learn about some fundamental tools used in the

Node.js core installation, including tools that come prepackaged with your installation of
Node.js. In lesson 1, you start writing your first lines of JavaScript, which are run in the Node.js
read-eval-print-loop (REPL), a window within your terminal window in which you can run
JavaScript code. You end the unit by completing a few more exercises in the REPL environment
and learning about Node.js modules.

Unit 1 jumps into building your first web server. The web server is the backbone of your web
application, as it handles incoming requests for data to be processed and outgoing responses.
Here, you learn how to initialize your Node.js application properly and load your first web
page. Lessons 5 and 6 demonstrate how to use your web server to load images and other file
types from your server. These lessons cover some of the fundamental concepts of interaction on
the web. The unit concludes with your first capstone exercise: an opportunity to tie together the
concepts you’ve learned by building your first web application.

The capstone exercise in unit 1 carries over into unit 2, where you learn about Express.js, a web
framework. In this unit, you learn how web frameworks help speed up the development process
by implementing much of the code you wrote in unit 1. Lessons 9 and 10 cover how to use
Express.js to architect a standard web application, and lesson 11 teaches you how to handle
errors that occur on your server. Unit 2 concludes with your second capstone exercise, in which
you re-create your web application by using the Express.js web framework.

Unit 3 shows you how to save application data through the minimum database theory needed to
connect a database and start persisting your application’s data. In this unit, you learn about
MongoDB, a leading database used in Node.js applications. You start by getting familiar with
the MongoDB environment, creating database collections and documents. Then you connect
your database to your application with the help of a Node.js package called Mongoose. Lessons

14 and 15 teach you how to organize your data in Mongoose models as one part of the model-
view-controller (MVC) architecture taught in this book. The unit ends with an opportunity to
add a database and models to your capstone project.

Unit 4 builds on the concept of models by discussing the standard functionality expected of your
models. In this unit, you learn about create, read, update, and delete (CRUD) functions and see
why they’re helpful to have for the major models in your application. At this point, you develop
the ability to create and modify data in your application from the web browser. This unit also
helps you complete some of the code needed in your application controllers and shows you how
to link web forms to your application’s server and models. The unit concludes with a capstone
exercise in which you build the CRUD functions for your user model.

Unit 5 introduces user authentication and the code you need to allow unique users to sign up for
and log in to your application. In lesson 22, you add sessions and cookies to your application to
allow information to be shared between the application server and your users’ computers. This
technique helps preserve a user’s state while they navigate your application. Next, you learn how
to encrypt your user passwords. This lesson guides you through the standard security practices
expected in protecting your application data. Last, you set up an authentication system to
analyze and approve user data and then apply these techniques to your capstone project. By the
end of this unit, you’ll have an application in which you can selectively display content to logged-
in users.

Unit 6 focuses on an often-under-taught element of application development: application
programming interfaces (APIs). In lesson 26, you’re introduced to some ways that you can
extend your application to serve data in other ways beyond a web page. These alternative data
avenues enable your application to connect with external services that might use your
application’s data. You might later build a mobile app or Amazon Alexa skill that needs to use
your application’s data but can’t read a normal web page’s contents, for example. A useful API
can deliver that data in multiple data formats. In lessons 27 and 28, you build out your
application’s API and use it within the application by creating a pop-out window with a list of
data accessed through an API endpoint. At the end of the unit, you secure your API by creating
an API token system and applying the same techniques to your capstone project.

When the core of your application is complete, you move to unit 7, where you learn about
building a live-chat feature in your application. In Node.js, you use Socket.io, a library that
connects to your application’s normal web server and enhances it to allow open streams of
communication among users. The lessons in this unit break down the steps you need to take to
set up Socket.io and (later) to associate messages with users and save those associations in
your database. By the end of the unit, you have a fully functioning chat system running in your
capstone project.

In unit 8, you configure your application to get deployed online. Up to this point, you’ve viewed
your work on your own machine, with no opportunity for external users to sign up for and use
your application. In lesson 34, you save your application code to Git and upload the first live
version of your application to Heroku. In this lesson, you’re provided a URL with which you can
share your application with family members, friends, and co-workers. Lessons

35 and 36 introduce some ways to clean your application code and monitor your application as it
begins its journey on the internet. In the final lesson, I introduced some ways in which you can
test your code. Testing is an important element in the development process; it may ensure that
your code continues to function as expected as you make changes and add features.

ABOUT THE CODE

This book contains many examples of source code, both in numbered listings and inline with
normal text. In both cases, source code is formatted in a fixed-width font like this to
separate it from ordinary text. Sometimes, code is also in bold to highlight code that it has
changed from previous steps in the chapter, such as when a new feature adds to an existing line
of code.

In many cases, the original source code has been reformatted; I’ve added line breaks and
reworked indentation to accommodate the available page space in the book. In rare cases, even
reformatting wasn’t enough, so some listings include line-continuation markers ().
Additionally, comments in the source code have often been removed from the listings when the
code is described in the text. Code annotations accompany many of the listings, highlighting
important concepts.

All code examples in this book are available for download from the Manning website
at https://www.manning.com/books/get-programming-with-node-js and from GitHub
at https://github.com/JonathanWexler/get-programming-with-nodejs. The code examples are

organized by lesson and unit. Within each lesson’s folder, you’ll find a start folder, containing
the code you can use and build on from the beginning of that lesson, and a finish folder, which
contains the final working code for that lesson. Any future updates to this book’s code will be
added to lesson-specific folders titled updated.

SOFTWARE REQUIREMENTS

For this book, you need a computer with at least 500 MB of RAM and 500 MB persistent
memory. Most modern computers come with plenty of space and the specifications needed to
run a Node.js application.

Node.js supports 32-bit and 64-bit Windows and Linux installations and the standard 64-bit
Mac OS installation, as specified at https://nodejs.org/en/download/.

You also need a text editor to write your code. I recommend installing the Atom text editor,
available for free at https://atom.io.

You need a web browser to test your web application. I recommend installing the Google
Chrome browser, which is available for free at https://www.google.com/chrome

You also need to install the Heroku command-line interface and Git on your machine
(instructions listed in unit 0).

LIVEBOOK DISCUSSION FORUM

Purchase of Get Programming with Node.js includes free access to a private web forum run by
Manning Publications, where you can make comments about the book, ask technical questions,
and receive help from the author and from other users. To access the forum, go
to https://livebook.manning.com/#!/book/get-programming-with-node-js/discussion. You can also learn
more about Manning’s forums and the rules of conduct
at https://livebook.manning.com/#!/discussion.

Manning’s commitment to our readers is to provide a venue where a meaningful dialogue
between individual readers and between readers and the author can take place. It isn’t a
commitment to any specific amount of participation on the part of the author, whose
contribution to the forum remains voluntary (and unpaid). We suggest that you try asking the
author some challenging questions lest his interest stray! The forum and the archives of
previous discussions will be accessible from the publisher’s website as long as the book is in
print.

About the author

Jonathan Wexler is a Philadelphia-native software engineer with degrees in neuroscience and
computer science from Brandeis University. With years of experience building applications and
teaching about web development, Jonathan has helped hundreds of clients and students unlock
their technical potentials. Jonathan has partnered with organizations in Philadelphia and New
York City to use technology to bridge social and economic gaps with organizations around the
world. From building computer games for schools in India to leading the development team at
The New York Code + Design Academy and software engineering for Bloomberg LP, Jonathan
hopes to continue to adapt the best practices in program design and share his impressions of the
path to development success.

Unit 0. Getting set up

Before I introduce you to working with Node.js as a web-development platform, you need to
prepare your environment (the computer on which you’ll be developing). In this unit, you’ll
install all the tools you need to get started with Node.js. These tools help you write the code to
get your applications working and eventually running on the internet. By the end of this unit,
you’ll have installed everything you need to get started coding and running a Node.js
application. Toward this goal, unit 0 covers the following topics:

• Lesson 0 discusses what you’re going to learn in this book and why it’s important. I
introduce you to Node.js, giving you a little background and discussing why it’s a good
platform for web development. This lesson also covers what you should expect to get out
of this book. I talk about some of the prerequisites and things to keep in mind as you
work toward a robust web application.

• Lesson 1 walks you through the installation process for each tool and library of code you’ll
be using to start the next unit. Although installing Node.js is the focus of this lesson,
setting up your computer as a development environment takes a few more steps.

• Lesson 2 introduces your first Node.js application and a few tests to ensure that you have
a compatible version of Node.js running on your computer.

I begin by talking about Node.js.

Lesson 0. Setting up Node.js and the JavaScript engine

In this lesson, you get an overview of what you’ll be learning in this book and why it’s important.
Whether you’re new to web development or a seasoned developer looking to build better
applications, this lesson acts as a starting guide for entering the world of Node.js.

This lesson covers

• Reviewing what you’re going to learn
• Understanding Node.js
• Learning why we develop in Node.js
• Preparing yourself for this book

0.1. WHAT YOU’RE GOING TO LEARN

The goal of this book is to teach you how to build web applications on a platform called Node.js,
using the JavaScript language. Starting with this lesson, each unit aims to build on the concepts
and development skills of the last.

As you work through each lesson, you pick up new web development concepts, terminology, and
coding skills that will help you build a web application. Although the book revolves around using
Node.js, many of the concepts taught in the following units apply to other leading platforms and
programming languages.

Note

Web development skills are different from typical software engineering or computer theory
knowledge. In addition to teaching coding concepts, this book helps explain how the internet
works beyond your project. I’ll explain as much as I can to make things easier.

Following is an overview of what you’ll learn in each unit:

• Unit 0 gives you the background knowledge you need to get started and walks you through
the installation of Node.js and development tools.

• Unit 1 covers some basic web development concepts and provides guiding steps toward
building your first web application in Node.js from scratch.

• Unit 2 introduces you to Express.js, a web framework that most Node.js developers use to
build applications. You learn what Express.js offers, how it works, and what you can do to
customize it. In this unit, you also learn about the model-view-controller (MVC)
application architecture pattern.

• Unit 3 guides you through connecting your application to a database. This unit also helps
you install a few new tools and structure your database with MongoDB.

• Unit 4 teaches you about building data models in your application, where CRUD
operations are performed to create, read, update, and delete data from the database.

• Unit 5 helps you build code to represent user accounts in an object-oriented structure. In
this unit, you learn about securing your data and building a login form for new users.

• Unit 6 introduces building an application programming interface (API). You learn what
constitutes an API, how to secure it, and how to design it by using the REST architecture.

• Unit 7 invites you to build a live chat system into your application. This unit introduces
polling, web sockets, and broadcasting data with Socket.io, a library that mainstream
applications use to get data to their users faster and more efficiently.

• Unit 8 guides you through the deployment process. This unit helps you set up the
necessary tools and accounts.

To start, let’s talk a bit about exactly what Node.js is.

0.2. UNDERSTANDING NODE.JS

Node.js is a platform for interpreting JavaScript code and running applications. Java-Script has
been around for a couple of decades; with every improvement, it has shifted further from being
a client-side scripting language to a full-fledged server-side programming language for
managing data.

Because Node.js is built with Google Chrome’s JavaScript engine (a tool used to interpret the
JavaScript language into meaningful computer commands), it’s considered to be powerful and
able to support JavaScript as a server-side language. JavaScript can be used to both assist in
web-page (client-side) interactions and handle incoming application data and database
communications. (The latter jobs have often been reserved for languages such as C, Java,
Python, and Ruby, among others). Developers can now commit to mastering JavaScript to build
a complete web application instead of having to master multiple languages to accomplish the
same task.

Client-side versus server-side

As a general overview, web development can largely be broken into two categories:

• Client-side—(front-end) refers to the code you write that results in something the user
sees in his web browser. Client-side code typically includes JavaScript used to animate
the user experience when a web page is loaded.

• Server-side—(back-end) refers to code used for application logic (how data is organized
and saved to the database). Server-side code is responsible for authenticating users on a
login page, running scheduled tasks, and even ensuring that the client-side code reaches
the client.

In the following figure, the client represents the browser on which a user may view your
application. The server is where your application runs and handles any data submitted by the user.
Also, the server often renders the user interface in many cases in which the client expects one.

Note

Application, as used throughout this book, refers to a computer program written in a programming
language and run on a computer. This book focuses on web applications written in JavaScript and
run with Node.js.

You’ll hear these two terms used a lot in application development, and because Java-Script has been
used for both types of development, the line separating these two worlds is disappearing. Full
stack development, using JavaScript, defines this new development in which JavaScript is used on
the server and client, as well as on devices, hardware, and architectures it didn’t exist on before.

Node.js operates on an event loop using a single thread. A thread is the bundle of computing
power and resources needed for the execution of a programmed task. Generally, a thread is
responsible for starting and completing a task; the more tasks needed to run simultaneously, the
more threads are needed. In most other software, multiple tasks are matched and handled by a
pool of threads that the computer can offer at the same time (concurrently). Node.js, however,
handles only one task at a time and uses more threads only for tasks that can’t be handled by the
main thread.

This process may sound counterintuitive, but in most applications that don’t require
computationally intensive tasks (tasks requiring a lot of processing power from your computer),
this single thread can quickly manage and execute all the tasks. See a simplified diagram of the
event loop in figure 0.1. As tasks are prepared to run, they enter a queue to be processed by
specific phases of the event loop.

Figure 0.1. Simplified model of the Node.js event loop

As its name implies, the Node.js event loop cycles forever in a loop, listening for JavaScript
events triggered by the server to notify of some new task or another task’s completion. As the
number of tasks increases, tasks line up in a queue to be incrementally processed by the event
loop. You don’t code with this fact in mind, though. You write your code by using asynchronous
conventions, and the Node.js architecture schedules task handling for you behind the scenes. As
a result, Node.js has become popular for creating real-time applications that persistently listen
for data being sent back and forth.

You can think of the event loop as being like an office manager. The office manager’s role is to
handle incoming messages, job assignments, and office-related tasks. The office manager could
have a long list of tasks to complete, from delegating the creation of complete financial reports
to answering the phone and putting up the office-party decorations. Because some tasks take
more time than others, the office manager isn’t obligated to complete any individual task before
handling a new one. If she’s setting up for a party and the phone rings, for example, she can stop
setting up to answer the call. Better yet, she can answer the call and transfer the caller to
another employee so that she can go back to decorating.

Similarly, the event loop handles a series of tasks, always working on one task at a time and
using the computer’s processing power to offload some larger tasks while the event loop
shortens the list of tasks. On most other platforms, incoming tasks are assigned to new
processes, creating a new event loop for each task. Increasing the number of tasks, however, is
like increasing the number of employees in a finite space. You start to run into new issues such
as cost, computing power, and shared resources. (What would you do if two employees need to
use the phone at the same time, for example?)

Processes and threads

It’s important to note that the Node.js event loop relies on a single thread to manage all its tasks,
but it doesn’t necessarily use that thread only to run each task to completion. In fact, Node.js is
designed to pass larger tasks to the host computer, and the computer may create new threads and
processes to operate those tasks.

A thread is an allocated bundle of computer resources used to run a series of instructions in a task.
Usually, the tasks handled by threads are simple and fast. For this reason, the Node.js event loop
needs only one thread to act as the manager of all other tasks. Threads are made available through
computer processes, and some more-intensive tasks require their own process to run.

A process is also a bundle of computing power and resources used for a task’s execution, though
usually for larger tasks than those handled by threads. A process must exist to create a thread,
which implies that each Node.js application runs on its own process.

Even though Node.js may be single-threaded, you can have multiple instances of processes running
in parallel and processing incoming requests and tasks. For this reason, Node.js scales well; it
schedules tasks asynchronously, using additional threads and processes only when necessary
instead of generating new processes for every task. As more processes are needed to handle your
task list, demand on your computer increases. Node.js works best to minimize the number of
concurrent processes.

You may hear the terms thread and process in conjunction. For this book, you only need to know
that Node.js depends on a single task handler at any given time. For more information on threads
and processes in Node.js, read the article on Node.js scalability
at https://medium.freecodecamp.org/node-js-child-processes-everything-you-need-to-knowe69498fe970a.

In this book, I further explore some Node.js strengths in building a web application. Before I
dive deeper, however, let’s talk about why Node.js is beneficial.

Quick check 0.1

Q1:

True or false: The Node.js event loop runs each task to completion before handling the next task.

QC 0.1 answer

1:

False. The Node.js event loop removes tasks from a queue sequentially, but it may offload the task
to be handled by the machine on which the application is running or wait for certain tasks to
complete while handling new tasks.

0.3. WHY LEARN TO DEVELOP IN NODE.JS?

It’s likely that you’ve picked up this book to become a better programmer and to build a web
application, which is also the main reason you’d use Node.js and get better at coding in
JavaScript.

Plenty of other options, such as Ruby on Rails and PHP, could help you build an application
that’s indistinguishable to a user from a Node.js application. Consider the following reasons to
learn Node.js instead:

• You can focus on JavaScript as the core language in development instead of balancing
multiple languages to keep your application afloat.

• If you want to stream data continuously or have some chat functionality, Node.js has
gained prominence over other platforms.

• Node.js is backed by Google’s V8 JavaScript interpreter, meaning that it’s widely
supported and expected to grow in performance and features, and won’t go away soon.
Visit http://node.green/ to see what features are supported by each version of Node.js.

• Node.js has gained a lot of popularity in the web development community. You’re likely
to meet and get support from other developers who may have been developing with
Node.js for up to five years. Additionally, more supportive, open-source tools are now
being built for Node.js than for other, older platforms.

• More jobs are available for developers who have concrete JavaScript skills. You can apply
for front-end or back-end development positions when you know Node.js.

If you’re trying to enter the web development world as a new programmer, or if you’ve
developed software before and are looking for the new thing that everyone’s talking about,
Node.js is your platform of choice, and this book is your book.

0.4. PREPARING YOURSELF FOR THIS BOOK

From the first unit in this book, you’re introduced to web development through the process of
building a basic web server in Node.js. As the book progresses, you’ll append code to your
application to complete a robust web application.

To prime yourself to learn these new topics, make sure that you go through each lesson carefully
and write all the code examples yourself. If you get into the habit of copying and pasting code
instead, you’ll likely run into some errors; more important, you won’t learn the concepts.

Because JavaScript is an important prerequisite for this book, research best practices and other
common solutions to your problems online if you struggle through a task. Throughout this book,
you’ll find exercises and “Quick check” questions to test your knowledge. (You completed your
first “Quick check” in section 2.) At the end of each lesson starting with lesson 3, expect a section

called “Try this,” where you can practice some of the coding concepts presented earlier in the
lesson.

The exercises and capstone projects at the end of each unit mark milestones on your way to
creating a web application with all the bells and whistles.

Treat each unit like a course topic and each lesson as a lecture. You may find that some lessons
take longer to comprehend or apply in code than others. Take your time, but also continually
build your development skills through repetition and practice.

The goal of the book is to make you comfortable building a web application like the one built
throughout the capstone lessons. In these capstones, you build a web application for a company
called Confetti Cuisine, which offers cooking classes and allows users to sign up, connect, and
chat with one another about recipes. Try to follow the guidelines of the capstone and redo part,
or all, of the project after your first pass.

Tip

Consider working through an exercise three times. The first time, follow the guide; the second
time, work with some reference from the guide; and the third time, work on your own without
any help. By the third time, you’ll have a concrete understanding of the concept involved.

Most of the exercises in this book ask you to use your computer’s terminal (command line).
Node.js is a cross-platform tool—meaning that it can run on Windows, Mac, and Linux
machines—but I teach it from a UNIX perspective in this book. Windows users can use their
built-in command line to run Node.js but may find some of the terminal commands to be
different. As a result, I recommend that Windows users install Git Bash, a terminal window
where you can use UNIX commands and follow all the examples in this book. You can
accomplish a lot, however, with the Node.js command-line environment that comes with your
Node.js installation. For information on installing Git Bash, visit https://git-scm.com/downloads.

After completing each unit, look back at the progress you’ve made since the last capstone
exercise. By the end of unit 7, you’ll have built a complete web application with Node.js.

I’ll remind you about the following items along the way, but you should keep them in mind as
you progress through this book:

• Source files are written in JavaScript and have a .js file extension.
• The main application file used in every example in the book is called main.js unless

otherwise specified.
• I recommend using an up-to-date Google Chrome browser for running book exercises

that require a web browser. You can download that browser
from https://www.google.com/chrome/browser/.

In the lessons I do my best to explain new terms and concepts tangential to the Node.js learning
experience. If you need more information on any topic mentioned in the book, however, you can
reference any of the following resources:

• HTML5 in Action by Rob Crowther, Joe Lennon, Ash Blue, and Greg Wanish (Manning,
2014)

• CSS in Depth by Keith J. Grant (Manning, 2018)
• You Don’t Know JS: Up & Going (https://github.com/getify/You-Dont-Know-JS), by Kyle

Simpson (O’Reilly Media, 2015)
• ES6 in Motion (https://www.manning.com/livevideo/es6-in-motion), by Wes -Higbee

SUMMARY

In this lesson, my objective was to teach you about the book’s structure, what Node.js is, and
why it’s important. I also talked about how you should approach this book. If you treat this book
as a course with subtopics and lectures, you’ll build your knowledge and skills incrementally
until you become a competent web developer. In the next lesson, you install the tools that you
need to get coding.

Lesson 1. Configuring your environment

In this lesson, you install all the tools you need to start building applications with Node.js. You
install a version of Node.js that’s compatible with the latest JavaScript ES6 updates. Next, you
install a text editor—software through which you’ll write your application’s code. Last, you give
Node.js a test drive from your computer’s command-line terminal by using a Node.js sandbox
environment known as REPL.

This lesson covers

• Installing Node.js
• Installing a text editor
• Setting up SCM and deployment tools
• Working with the Node.js REPL in terminal

1.1. INSTALLING NODE.JS

Node.js is growing in popularity and support. For this reason, new versions to download are
being deployed quite frequently, and it’s important to stay up to date with the latest versions to
see how they may benefit or otherwise affect the applications you’re building. At this writing, the
version of Node.js to download is 11.0.0 or later.

Note

The release of Node.js 8.8.1 comes with support for ES6 syntax. ES6 (ECMAScript 2015) is a
recent update to JavaScript, with syntax improvements for defining variables, functions, and
OOP code. To keep up with updates to JavaScript, download the latest stable version of Node.js
as your development progresses.

You have a couple of ways to download and install Node.js, all of which are listed on the Node.js
main site, https://nodejs.org.

Because Node.js is platform-independent, you can download and install it on your Mac,
Windows, or Linux computer and expect full functionality.

The simplest way to install Node.js is to go to the download link
at https://nodejs.org/en/download/ and follow the instructions and prompts to download the
installer for the latest version of Node.js (figure 1.1).

Figure 1.1. Node.js installer page

Node Version Manager

Alternatively, you may want to use the Node.js Version Manager (NVM) to handle your Node.js
installation and manage one version or multiple versions of Node.js on your computer. The benefit
of using a version manager is that you can test newer versions of Node.js as they’re released while
still having older, more stable, versions installed in case of compatibility issues. You can follow the
installation instructions at https://github.com/creationix/nvm or follow these steps on a UNIX
machine:

1. Run curl -o
https://raw.githubusercontent.com/creationix/nvm/v0.33.8/install.sh | bash in a
new terminal window. You may need to quit and relaunch terminal after this installation
completes.

2. Run nvm list in a terminal window to see whether any versions of Node.js are already
installed on your computer.

3. Run nvm ls-remote in terminal to check what versions of Node.js are available to install.
4. Run nvm install 11.0.0 in terminal to install the current Node.js version.
5. Run node -v in terminal to verify that you have version 9.3.0 installed.

If you’re comfortable with installing Node.js through NVM and without a graphical interface to walk
you through the process, this setup is right for you. When installation is complete, don’t install
Node.js again by using the other set of instructions in this lesson.

Note

NVM doesn’t support Windows. You may work with one of two alternative version
managers: nvm-windows and nodist, which you can install by following the instructions
at https://github.com/coreybutler/nvm-windowsandhttps://github.com/marcelklehr/nodist, respectively.

When you install Node.js, you also get npm, the Node.js ecosystem of external libraries
(multiple files of code other people wrote) that can be imported into your future projects. npm is
similar to pip in Python and gem in Ruby. You learn more about npm in unit 1.

When the installer file is downloaded, double-click the file in your browser’s download panel or
your computer’s download folder. The installer opens a new window that looks like figure

1.2 and writes all necessary files and core Node.js libraries to your system. You may be asked to
accept licensing agreements or give the installer permission to install Node.js on your computer.
Follow the prompts to click through the installation.

Figure 1.2. Node.js writing to your machine

Terminal and your PATH

You’ll be working mostly in your computer’s terminal, which is built-in software used to navigate
and run commands on your computer without a graphical interface. This book teaches using UNIX
terminal (Bash) commands. Those of you who are Windows users can follow along by using
Window’s CMD terminal window (but may need to look up command equivalents throughout the
book). You can reference the table at https://access.redhat.com/documentation/en-

US/Red_Hat_Enterprise_Linux/4/html/Step_by_Step_Guide/ap-doslinux.html, which compares
Windows and UNIX commands. To make things easier in Windows, you can download and install an
additional Bash terminal called Git Bash from http://git-scm.com/downloads.

Make a note of where your version of Node.js and npm are installed on your machine. That
information appears in the final window of the installer. The installer attempts to add these
directory locations to your system’s PATH variable.

PATH is an environmental variable—a variable that can be set to influence the behavior of operations
on your machine. Your computer’s PATH variable specifies where to find directories and executable
files needed to perform operations on your system.

This variable’s value is the first place terminal will look for resources used in development. Think of
the PATH variable as being like your computer’s index for quickly finding the tools you need. When
you add these tools’ original file paths or directory locations to the PATHvariable, terminal won’t
have any problems finding them.

The following figure shows how terminal refers to the PATH variable to identify directories of
certain programs and executable files, as these directories may be in different locations on different
computers. If you experience any problems starting Node.js in your terminal, follow the installation
steps at https://www.tutorialspoint.com/nodejs/nodejs_environment_setup.htm.

Now that you have Node.js installed, use terminal to make sure that everything is installed
correctly. Open terminal (or Git Bash), and type the following command at the prompt: node -v.

The output of this command should show you the version of Node.js you installed. Similarly, you
can check the version of npm that you installed by running the command npm -v at the
command prompt.

Note

If your terminal responds with an error or with nothing, it’s possible that your installation of
Node.js was unsuccessful. In the case of an error, try copying and pasting that error into a
search engine to look for common solutions. Otherwise, repeat the steps in this section.

Now that you have Node.js installed and your terminal running, you need somewhere to write
your code.

Tip

If you ever forget where you installed Node.js or npm, you can open a command window and
type which node or which npm at the prompt to see the corresponding location. From a Windows
command-line prompt, use where in place of which.

1.2. INSTALLING A TEXT EDITOR

A text editor is a software application you use to write your code while developing an
application. Although text editors come in many forms and can be used to make noncode files as
well, the text editors designed for developers often come prepackaged with helpful tools and
plugins.

For this book, I recommend downloading and installing the Atom text editor, a free open-source
software application for developing in many programming languages. Atom was developed by
GitHub and offers many additional plugins written in Node.js. Atom will help you write a
Node.js application with ease.

Install Atom by following these steps:

1. In your browser, go to https://atom.io.
2. Click the Download link.
3. Follow the prompts to install the software on a Mac, Windows, or Linux computer.

When the installation completes, open the folder on your computer where applications are
located. From there, you can launch the Atom editor by double-clicking the program file.

Tip

You may be interested in writing your code in an integrated development environment(IDE).
IDEs such as Visual Studio Code (https://code.visualstudio.com/) offer helpful tools like a terminal
window within the editor, code autocomplete, and debuggers for your project.

With your text editor in place, test some Node.js terminal commands.

1.3. SETTING UP SCM AND DEPLOYMENT TOOLS

In this section, you set up Git and the Heroku command-line interface (CLI), which you’ll use at
the end of the book to deploy your applications online. Deployment is a term used to describe
the migration of your application from your computer to a place where it can be accessed and
used publicly online. Software configuration management (SCM) is the process of managing
your application in its different environments as new features and changes are applied to the
code. You can use Git and the Heroku CLI together to deploy your code from development to
production and manage your application.

Git is a version-control tool used to separate layers of your application’s code evolution. It allows
you to save, or take a snapshot, of your code at different stages of development, making it easy
to return to a working state quickly if you find that your latest changes break your application’s
functionality. More important for this book, you need Git to send a version of your code to
Heroku so that people can start using your application on the internet.

If you have a Mac, Git should already be installed. If you’ve installed Git Bash on your Windows
machine, Git came packaged and installed too. If you aren’t sure whether you have Git, you can
enter git --version in a terminal window. Unless your window responds with a Git version
number, you should download it directly from https://git-scm.com/downloads. Select your
operating system, as shown in figure 1.3. The downloaded file opens a graphical interface
through which you can install Git on your machine.

Figure 1.3. Installing Git from the downloads page

When Git is installed, you use it by initializing your project with git init in terminal. Then you
can add individual project files to your new version by running git add followed by the relative
path to the file. You can also add all the files in your project by running git add. (including the
period in the command). To confirm these files, run git commit -m “some message”, where the
message in quotations describes the changes you made. If you’re familiar with Git, I recommend

using it as you run the code in this book. Otherwise, you won’t need it until unit 8. You learn
more about using Git through videos and documentation at https://git-scm.com/doc.

Tip

For a useful cheat sheet of Git commands,
visit https://services.github.com/ondemand/downloads/github-git-cheat-sheet.pdf.

Heroku is a service you’ll use to host your application online. To use Heroku, you need to create
a new account at https://signup.heroku.com. Enter your name and other information in the
required fields, and verify your email address. When your account is created, Heroku lets you
upload three applications for free. The best part is that you can do all the work directly from
terminal.

Next, you need to install the Heroku CLI. On a Mac you can install it with Homebrew. To install
Homebrew, run the command shown in listing 1.1 in a terminal window. This installation
process is described at https://brew.sh/.

Listing 1.1. Installing Homebrew on Unix computers in terminal

/usr/bin/ruby -e "$(curl -fsSL

 https://raw.githubusercontent.com/Homebrew/install/master/

 install)" 1

• 1 Run install command in terminal window

Run brew install heroku/brew/heroku or download the installer
at https://devcenter.heroku.com/articles/heroku-cli#macos. For Windows, you can find an installer
at https://devcenter.heroku.com/articles/heroku-cli#windows. Linux users can install the Heroku CLI
by running sudo wget -q0- https://toolbelt.heroku.com/install-ubuntu.sh | shin
terminal. If you use the graphical installer, you can step through the default settings and
prompts.

When the Heroku CLI is set up, you can use the heroku keyword in terminal. The last part of
this setup process is logging in to your Heroku account from terminal. Enter heroku loginand
then enter the email address and password you used to set up your Heroku account. You’re
prepared to deploy to Heroku.

1.4. WORKING WITH THE NODE.JS REPL IN TERMINAL

In this section, you begin using Node.js from terminal through the Node.js REPL environment.
The interactive Node.js shell is the Node.js version of Read-Evaluate-Print Loop (REPL). This
shell is a space in which you can write pure JavaScript and evaluate your code in the terminal
window in real time. Within the window, your written code is read and evaluated by Node.js,

with results printed back to your console. In this section, I look at a few things you can do in
REPL.

You’ve already used terminal to check whether Node.js was installed correctly. Another way to
see whether the installation was successful is to type node and press the Enter key. This action
places you in the interactive Node.js shell. You’ll know that this command is successful when
you see the terminal prompt change to >. To exit this prompt, type .exit or press Ctrl-C twice.

Several keywords specific to Node.js allow your terminal and REPL environment to understand
when you’re running a Node.js command. In appendix A, I discuss keywords in Node.js and how
they pertain to application development.

Note

If you need more practice with terminal commands, look at Part 2 of Learn Linux in a Month of
Lunches by Steven Ovadia (Manning, 2016).

You can get to REPL by entering the node keyword in your terminal window without any text to
follow. When you’re prompted by >, you can enter a command in JavaScript. Although this
environment is reserved for testing and sandbox code, the node shell can offer a lot of benefits in
development. You can enter and evaluate simple mathematical expressions, for example, or you
can execute full JavaScript statements. You can also store values in variables and instantiate
objects from your own custom class here. See listing 1.2 for some example REPL interactions.

In these code examples, I demonstrate some of the JavaScript ES6 syntax that appears
throughout the book. In addition to the basic arithmetic I run in the REPL shell, I set up a
variable with the let keyword. This keyword allows me to define a variable that’s scoped to a
code block. The blocks include function blocks, to which var-defined variables are scoped, as
well as conditional blocks and loops.

I also use the new class syntax to define an object. The syntax here resembles that of object-
oriented programming languages but mainly acts as a wrapper over the existing JavaScript
prototype structure.

Listing 1.2. REPL command examples

$ node 1

>

> 3 + 3 2

6

> 3 / 0

Infinity

> console.log("Hello, Universe!"); 3

Hello, Universe!

> let name = "Jon Wexler";

> console.log(name);

Jon Wexler

> class Goat { 4

 eat(foodType) {

 console.log(`I love eating ${foodType}`);

 }

}

> let billy = new Goat();

> billy.eat("tin cans");

I love eating tin cans

• 1 Enter REPL.
• 2 Perform basic commands and expressions.
• 3 Log messages to the console.
• 4 Create ES6 classes and instantiate objects.

In the REPL environment, you have access to all the core modules that come with Node.js. Core
modules are JavaScript files that come with your Node.js installation. I talk more about modules
in unit 1. You’ll soon see in your own custom applications that you need to import some modules
to use them in REPL. For a short list of commands to use in REPL, see table 1.1.

Table 1.1. REPL commands to remember

REPL command Description

.break (or

.clear)
Exits a block within the REPL session, which is useful if you get stuck in a block of code

.editor Opens an internal editor for you to write multiple lines of code. ctrl-d saves and quits the

editor

.exit Quits the REPL session

.help Lists other commands and useful tips to help you feel comfortable with this interactive

shell environment

.load Followed by a local filename; gives REPL access to that file’s code

.save Followed by a new filename of your choice; saves your REPL session’s code to a file

Explore REPL by running some JavaScript commands you know. In the next lesson, you learn
how to import previously written code into REPL.

SUMMARY

In this lesson, you installed the Atom text editor and Node.js. You also verified that your Node.js
environment is ready to evaluate JavaScript code by running some commands in REPL. In the
next lesson, you learn how to use Node.js and terminal to build and launch an application.

Lesson 2. Running a Node.js application

In this lesson, you write and run your first JavaScript file with Node.js. At the end, I show you
how to import JavaScript files into REPL so you can work with prewritten code.

This lesson covers

• Creating and saving a JavaScript file
• Running your JavaScript file with Node.js
• Loading files into REPL

Consider this

You’re testing some code that you’ve written in JavaScript. Suppose that this code is the function
shown in the following snippet, which accepts an array of numbers and prints them to the screen.

Note

In this code example, I use ES6 syntax to assign the variable printNumbers to a function defined
with a single arr parameter and an arrow symbol in place of the traditional function keyword. I
use another arrow function as the callback function within my forEachcall.

let printNumbers = arr => { 1

 arr.forEach(num => console.log(num));

};

• 1 Print array elements.

To test whether this code works, you could save it in a .js file, link it to an .html web page, and run
that file in a browser, viewing the results in your browser’s inspector window. With Node.js, you
get immediate satisfaction by running JavaScript files directly in terminal.

2.1. CREATING A JAVASCRIPT FILE

To get started with your first Node.js application, create a JavaScript file to print a message to
the terminal console. To do that, follow these steps:

1. Open your text editor to a new window.
2. Type the following code in that empty file: console.log(“Hello, Universe!”);
3. Save this file as hello.js on your desktop.

That’s all you need to do. You’ve created a JavaScript file that Node.js can execute. In the next
section, you run that file.

Strict mode

In JavaScript, you can opt to write code in strict mode—a mode in which casual Java-Script mistakes
are caught, even when the Node.js engine or web browsers you use let those mistakes pass.

To use strict mode, add “use strict”; to the top of every JavaScript file you write (before any other
statements). For strict mode to work, all files in a related project must be tagged as using strict
mode.

See strict mode’s documentation at https://developer.mozilla.org/en-

US/docs/Web/JavaScript/Reference/Strict_mode.

Note

Strict mode changes some previously-accepted mistakes into errors, so they’re discovered and
promptly fixed.

Some mistakes discovered by strict mode include

• Accidentally creating global variables—You won’t be able to create a variable without
the var, let, or const keywords.

• Assigning variables that can’t be assigned—You can’t use undefined as a variable name,
for example.

• Using non-unique function parameter names or property names in an object lit-eral—
You need to choose names that don’t repeat within the same scope when assigning
values.

Note

JavaScript has retained "use strict"; as a string for backward compatibility. Older JavaScript
engines see it as a string and ignore it.

JavaScript can be forgiving, but for learning purposes and in anticipation of the casual mistakes that
most developers make, I use strict mode in my code and recommend that you do the same.
Although I may not show "use strict"; in the book’s code examples, this line is present at the top
of every JavaScript file I write and run.

2.2. RUNNING YOUR JAVASCRIPT FILE WITH NODE.JS

The Node.js JavaScript engine can interpret your JavaScript code from the terminal when you
navigate to the location of a JavaScript file and preface the filename with the nodekeyword.

Complete the following steps to run your JavaScript file:

1. Open a new terminal window.
2. Navigate to your desktop by entering cd ~/Desktop.
3. Run your JavaScript file by entering the node keyword followed by the file’s name. You

can also run the same command without the file’s extension. Type node hello at the
prompt, for example, for a file named hello.js (figure 2.1).

Figure 2.1. Running a JavaScript file with Node.js

If your file was created and run correctly, you should see Hello, Universe! printed on the
screen. If you don’t see a response, make sure that hello.js has content in it and that your latest
changes are saved. Also, make sure that you run the command from that file’s directory.

Exactly what is happening here? The Node.js console.log function allows you to output the
result of any JavaScript command to the console window (or your terminal’s standard output
window). If you’ve debugged JavaScript in your browser before, you’ll notice the parallel
between using console.log in a Node.js console window and outputting to your debugging tool’s
console window.

Tip

For more information about console.log and other logging types, please reference appendix B.

Quick check 2.1

Q1:

If you have a file called hello.js, what will happen if you run node hello in terminal?

QC 2.1 answer

1:

Because Node.js is primed for executing JavaScript code, it doesn’t require adding the .js file
extension when running files. You could run a file as node hello.js or node hello; either will work.

2.3. RUNNING INDIVIDUAL JAVASCRIPT COMMANDS

Imagine that you’re working on an application to send positive messages to your users. Before
you fully incorporate your file of positive messages into the application, you want to test it in
your Node.js REPL. You create a .js file with your messages as an array by creating a JavaScript
file called messages.js with the code from the following listing.

Listing 2.1. Declaring a JavaScript variable in messages.js

let messages = [

 "A change of environment can be a good thing!",

 "You will make it!",

 "Just run with the code!"

]; 1

• 1 List an array of messages.

Instead of executing this file with Node.js (which currently wouldn’t offer anything), you initiate
the REPL environment with the node keyword and import this file by using .load messages.js,
as shown in listing 2.2. By importing the file, you give REPL access to the contents of that file.
After the file is imported, the window responds with the file’s contents. You also have access to
the messages variable in your REPL environment.

Note

Make sure that you start your REPL session from the same directory in which you saved the
messages.js file; otherwise, you’ll need to import the absolute path of the file instead of its
relative path. The absolute path to a file is its location on your computer, starting from your root
directory. On my computer, for example, /usr/local/bin/node is the absolute path to my
installation of Node.js. The relative path from the local directory would be /bin/node.

Listing 2.2. Loading a JavaScript file into REPL

> .load messages.js

"use strict";

let messages = [

 "A change of environment can be a good thing!",

 "You will make it!",

 "Just run with the code!"

]; 1

• 1 Loading an array with three strings

You plan to list each of the messages to your users through your Node.js application. To test this
list, loop through the array and broadcast each message by entering the code from the next
listing directly in the REPL window.

Listing 2.3. Use a file’s contents in REPL

> messages.forEach(message => console.log(message)); 1

• 1 Log each message by using a single-line arrow function.

The messages print in their array order in the terminal window, as shown in the following
listing.

Listing 2.4. Results from the console.log loop

A change of environment can be a good thing!

You will make it!

Just run with the code!

undefined 1

• 1 Printing messages and showing undefined as the return value

If you’re happy with the code you wrote in the REPL window, you can save the code to a file
called positiveMessages.js by typing .save positiveMessages.js in REPL. Doing so saves you
the trouble of retyping any work that you produce in the REPL environment.

Quick check 2.2

1

What are three ways in which you could exit the REPL environment?

2

How do you load a file that isn’t in your project folder into REPL?

3

What happens if you run .save with a filename that already exists?

QC 2.2 answer

1

To exit your Node.js REPL environment, you can type .exit, press Ctrl-C twice, or press Ctrl-D
twice.

2

For files that aren’t located within the directory you navigated to in terminal, you may need to use
that file’s absolute path.

3

Running .save saves your REPL session to a file and overwrites any files that have the same name.

Ease in navigating the Node.js REPL environment comes with practice. Remember to
access node in terminal for quick checking and testing of code that might take longer to modify
in a big application. Next, you’re off to start building web applications and setting them up the
right way from scratch.

SUMMARY

In this lesson, you learned that JavaScript files can be run with Node.js in your terminal. In your
first outing with Node.js, you created and ran your first application. Then you explored the
REPL environment by loading your JavaScript file and saving your REPL sandbox code. In the
next lesson, you create a Node.js module and install tools with npm.

Try this

console.log will soon become one of your best friends in web development, as log notes will help
you find bugs. Get to know your new friend with a little practice and variation. As mentioned earlier
in this lesson, console is a global object in Node.js, from the Console class. log is only one of many
instance methods you can run on this object.

Note

String interpolation means inserting a piece of text, represented by a variable, into another
piece of text.

Try printing the following to console:

• A message with an interpolated string variable with console.log(“Hello
%s”,“Universe”);

• A message with an interpolated integer variable with console.log(“Score: %d”, 100);

Try building a file called printer.js with the code in the next listing inside.

Listing 2.5. String interpolation example

let x = "Universe";

console.log(`Hello, ${x}`); 1

• 1 Log an interpolated string.

What do you expect to happen when you run node printer.js in terminal?

Unit 1. Getting started with Node.js

Now that you’ve gone through unit 0 and have Node.js installed and running, it’s time to see it
working. Unit 1 is about building from the get-go. You begin by building a small web application
in Node.js and gradually piece together the components that work behind the scenes. In this
unit, you learn all you need to get a web server running on Node.js that serves some simple
static content: HTML pages, pictures, and a stylesheet. Toward this goal, you look at the
following topics:

• Lesson 3 introduces npm and discusses how to configure a new Node.js application. In
this lesson, you build a Node.js module, and learn how packages and modules offer tools
and support to your application.

• Lesson 4 introduces the idea of a web server running on Node.js as a way to launch a
simple website. You learn how to set up the server and write code to get your website
content viewable.

• Lesson 5 builds on lesson 2 by giving the app enough information to load web content
based on different requests. In this lesson, you build your first application route—a
system for connecting content to URLs in your application.

• Lesson 6 teaches you how to serve different HTML files from your web server rather than
simple responses. This lesson adds support for application assets: CSS, JavaScript that
runs on the user’s device, and image loading. Together, these concepts enable you to
organize and structure your application to handle more requests to your website with less
code clutter.

• Finally, lesson 7 shows you how to put everything together by building a complete
multipage application. You start a new application from scratch; then you add three
views, routes for the views and assets, and a public client folder.

When you’re solid on how to build a static site from scratch, unit 2 takes you to the next step:
using a framework to build your application faster.

Lesson 3. Creating a Node.js module

In this lesson, you kick off Node.js application development by creating a Node.js module
(JavaScript file). Then you introduce npm to the development workflow and learn about some
common npm commands and tools for setting up a new application.

This lesson covers

• Creating a Node.js module
• Constructing a Node.js application with npm
• Installing a Node.js package with npm

Consider this

You want to build an application to help people share food recipes and learn from one another.
Through this application, users can subscribe, join online courses to practice cooking with the
application’s recipes, and connect with other users.

You plan to use Node.js to build this web application, and you want to start by verifying users’ ZIP
codes to determine the locations and demographics of your audience. Will you need to build a tool
for checking ZIP codes in addition to the application?

Luckily, you can use npm to install Node.js packages—libraries of code others have written that add
specific features to your application. In fact, a package for verifying locations based on ZIP codes is
available. You take a look at that package and how to install it in this lesson.

A Node.js application is made up of many JavaScript files. For your application to stay organized
and efficient, these files need to have access to one another’s contents when necessary. Each
JavaScript file or folder containing a code library is called a module.

Suppose that you’re working on a recipe application using the positive messages from unit 0. You
can create a file called messages.js with the following code: let messages = [“You are
great!”, “You can accomplish anything!”, “Success is in your future!”];.

Keeping these messages separate from the code you’ll write to display them makes your code
more organized. To manage these messages in another file, you need to change the letvariable
definition to use the exports object, like so: exports.messages = [“You are great!”, “You can
accomplish anything!”, “Success is in your future!”];. As with other JavaScript objects,
you’re adding a messages property to the Node.js exportsobject, and this property can be shared
among modules.

Note

The exports object is a property of the module object. module is both the name of the code files in
Node.js and one of its global objects. exports is shorthand for module .exports.

The module is ready to be required (imported) by another JavaScript file. You can test this
module by creating another file called printMessages.js, the purpose of which is to loop through
the messages and log them to your console with the code shown in the next listing. First, require
the local module by using the require object and the module’s filename (with or without the .js
extension). Then refer to the module’s array by the variable set up in printMessages.js, as shown
in the next listing.

Listing 3.1. Log messages to console in printMessages.js

const messageModule = require("./messages"); 1

messageModule.messages.forEach(m => console.log(m)); 2

• 1 Require the local messages.js module.
• 2 Refer to the module’s array through messageModule.messages.

require is another Node.js global object used to locally introduce methods and objects from
other modules. Node.js interprets require(“./messages”) to look for a module
called messages.js within your project directory and allows code within printMessages.js to
use any properties on the exports object in messages.js.

Using require

To load libraries of code and modules in Node.js, use require(). This require function, like exports,
comes from module.require, which means that the function lives on the global module object.

Node.js uses CommonJS, a tool that helps JavaScript run outside a browser by helping define how
modules are used. For module loading, CommonJS specifies the require function. For exporting
modules, CommonJS provides the exports object for each module. Much of the syntax and structure
you use in this book results from CommonJS module designs.

require is responsible for loading code into your module, and it does this by attaching the loaded
module to your module’s exports object. As a result, if the code you’re importing needs to be
reused in any way, it doesn’t need to be reloaded each time.

The Module class also performs some extra steps to cache and properly manage required libraries,
but the important thing to remember here is that once a module is required, the same instance of
that module is used throughout your application.

In the next section, you use npm, another tool for adding modules to your project.

Quick check 3.1

Q1:

What object is used to make functions or variables within one module available to others?

QC 3.1 answer

1:

exports is used to share module properties and functionality within an
application. module.exports can also be used in its place.

3.1. RUNNING NPM COMMANDS

With your installation of Node.js, you also got npm, a package manager for Node.js. npm is
responsible for managing the external packages (modules that others built and made available
online) in your application.

Throughout application development, you use npm to install, remove, and modify these
packages. Entering npm -l in your terminal brings up a list of npm commands with brief
explanations.

You’ll want to know about the few npm commands listed in table 3.1.

Table 3.1. npm commands to know

npm command Description

npm init Initializes a Node.js application and creates a package.json file

npm install

<package>

Installs a Node.js package

npm publish Saves and uploads a package you build to the npm package community

npm start Runs your Node.js application (provided that the package.json file is set up to use

this command)

npm stop Quits the running application

npm docs

<package>

Opens the likely documentation page (web page) for your specified package

When you use npm install <package>, appending --save to your command installs the package
as a dependency for your application. Appending --global installs the package globally on your
computer, to be used anywhere within terminal. These command extensions, called flags, have
the shorthand forms -S and -g, respectively. npm uninstall <package>reverses the install
action. In unit 2, you’ll use npm install express -S to install the Express.js framework for your
project and npm install express-generator -g to install the Express.js generator for use as a
command-line tool.

Note

By default, your package installations appear in your dependencies as production-ready
packages, which means that these packages will be used when your application goes live online.
To explicitly install packages for production, use the --save-prod flag. If the package is used
only for development purposes, use the --save-dev flag.

Later, when you prepare your application for production, making it available for the world to
use, you may distinguish packages by using the --production flag.

Modules, packages, and dependencies

Throughout your development with Node.js, you’ll hear the terms modules, packages,
and dependencies thrown around a lot. Here’s what you need to know:

• Modules are individual JavaScript files containing code that pertains to a single concept,
functionality, or library.

• Packages may contain multiple modules or a single module. They’re used to group files
offering relevant tools.

• Dependencies are Node.js modules used by an application or another module. If a
package is considered to be an application dependency, it must be installed (at the
version specified by the application) before the application is expected to run
successfully.

If you’d like to incorporate some functionality in your application, you can likely find a package
that performs this task at https://www.npmjs.com. To your recipe application, add the ability to
find where your users are located based on their ZIP codes. If you have this information, you can
determine whether users live close enough together to cook with one another.

To add this feature, you need to install the cities package (https://www.npmjs.com/package/cities),
which converts text addresses to location coordinates. But you still need one more thing for this
project before you can install the package successfully. In the next section, you properly
initialize a Node.js project and create a package.json file that npm will use to install cities.

Quick check 3.2

Q1:

What flag do you use if you want to install a package globally on your computer?

QC 3.2 answer

1:

The --global or -g flag installs a package for use as a command-line tool globally on your
computer. The package can be accessible to other projects, not exclusively to the one you’re
working on.

3.2. INITIALIZING A NODE.JS APPLICATION

Every Node.js application or module contains a package.json file to define the properties of that
project. This file lives at the root level of your project. Typically, this file is where you specify the
version of your current release, the name of your application, and the main application file. This
file is important for npm to save any packages to the node community online.

To get started, create a folder called recipe_connection, navigate to your project directory in
terminal, and use the npm init command to initialize your application. You’ll be prompted to fill
out the name of your project, the application’s version, a short description, the name of the file
from which you’ll start the app (entry point), test files, Git repositories, your name (author), and
a license code.

For now, be sure to enter your name, use main.js as the entry point, and press Enter to accept all
the default options. When you confirm all these changes, you should see a new package.json file
in your project directory. This file should resemble the contents of the next listing.

Listing 3.2. Result of package.json file in recipe_connection project in terminal

{

 "name": "recipe_connection",

 "version": "1.0.0",

 "description": "An app to share cooking recipes",

 "main": "main.js",

 "scripts": {

 "test": "echo \"Error: no test specified\" && exit 1"

 },

 "author": "Jon Wexler",

 "license": "ISC"

} 1

• 1 Display contents of package.json, containing a name, version, description,
starting file, custom scripts, author, and license.

Now your application has a starting point for saving and managing application configurations
and packages. You should be able to install cities by navigating to your project folder in
terminal and running the following command: npm install cities --save (figure 3.1).

Figure 3.1. Installing a package in terminal

After you run this command, your package.json gains a new dependencies section with a
reference to your cities package installation and its version, as shown in the following listing.

Listing 3.3. Result of your package.json file after package installation in terminal

{

 "name": "recipe_connection",

 "version": "1.0.0",

 "description": "An app to share cooking recipes",

 "main": "main.js",

 "scripts": {

 "test": "echo \"Error: no test specified\" && exit 1"

 },

 "author": "Jon Wexler",

 "license": "ISC",

 "dependencies": { 1

 "cities": "^2.0.0"

 }

}

• 1 Display dependencies section of package.json.

Also, with this installation, your project folder gains a new folder called node_modules. Within
this folder live the code contents of the cities package you installed (figure 3.2).

Figure 3.2. Node.js application structure with node_modules

Note

You also see a package-lock.json file created at the root level of your project directory. This file is
automatically created and used by npm to keep track of your package installations and to better
manage the state and history of your project’s dependencies. You shouldn’t alter the contents of
this file.

The --save flag saves the cities package as a dependency for this project. Check your
package.json file now to see how the package is listed under dependencies. Because your
node_modules folder will grow, I recommend that you don’t include it when you share the

project code online. Anyone who downloads the project, however, can enter npm install to
automatically install all the project dependencies listed in this file.

Test this new package by adding the lines in listing 3.4 to main.js. Start by requiring the locally
installed cities package, and make it available in this file. Then use the zip_lookupmethod
from the cities package to find a city by that ZIP code. The result is stored in a variable
called myCity.

Note

I’ll continue to use the var keyword for variable definitions where appropriate.
Because myCity is a variable that could change value, I use var here. The cities variable
represents a module, so I use const. I use the let variable when the scope of my code could
specifically benefit from its use.

Listing 3.4. Implementing the cities package in main.js

const cities = require("cities"); 1

var myCity = cities.zip_lookup("10016"); 2

console.log(myCity); 3

• 1 Require the cities package.
• 2 Assign the resulting city by using the zip_lookup method.
• 3 Log the results to your console.

The resulting data from that ZIP code is printed to console as shown in the following listing.
The zip_lookup method returns a JavaScript object with coordinates.

Listing 3.5. Sample result from running main.js in terminal

{

 zipcode: "10016",

 state_abbr: "NY",

 latitude: "40.746180",

 longitude: "-73.97759",

 city: "New York",

 state: "New York"

} 1

• 1 Display the results from the zip_lookup method.

Quick check 3.3

Q1:

What terminal command initializes a Node.js application with a package.json file?

QC 3.3 answer

1:

npm init initializes a Node.js app and prompts you to create a package.json file.

SUMMARY

In this lesson, you learned about npm and how to use its array of tools to create a new Node.js
application and install external packages. You built your own Node.js module and required it in
your main application file. Last, you installed an external package and got it working in your
sample app. The next step is integrating these tools into a web application. I discuss the first
steps of building a web server in lesson 4.

Try this

Create a couple of new modules, and practice adding simple JavaScript objects and functions to
the exports object.

You can add a function as shown in the following listing.

Listing 3.6. Exporting a function

exports.addNum = (x, y) => { 1

 return x + y;

};

• 1 Export a function.

See what happens when you require modules from within another directory in your project folder.

Lesson 4. Building a simple web server in Node.js

This lesson covers some basic functions of the http module, a Node.js library of code used for
handling requests over the internet. The tech community raves about Node.js and its use of
JavaScript as a server-side language. In this lesson, you build your first web server. In a few short
steps, you convert a couple of lines of JavaScript to an application with which you can communicate
on your web browser.

This lesson covers

• Generating a basic web server using Node.js and npm

• Writing code that processes requests from a browser and sends back a response

• Running a web server in your browser

Consider this

You’re on your way to building your first web application. Before you deliver a complete
application, the cooking community would like to see a simple site with the flexibility to improve
and add features in the future. How long do you think it will take you to build a prototype?

With Node.js, you can use the http module to get a web server with sufficient functionality built
within hours.

4.1. UNDERSTANDING WEB SERVERS

Web servers are the foundation of most Node.js web applications. They allow you to load images
and HTML web pages to users of your app. Before you get started, I’ll discuss some important web
server concepts. After all, the final product will look and feel a lot better if you have clear
expectations of the result.

Web servers and HTTP

A web server is software designed to respond to requests over the internet by loading or processing
data. Think of a web server like a bank teller, whose job is to process your request to deposit,
withdraw, or view money in your account. Just as the bank teller follows a protocol to ensure that
they process your request correctly, web servers follow Hypertext Transfer Protocol (HTTP), a
standardized system globally observed for the viewing of web pages and sending of data over the
internet.

One way that a client (your computer) and server communicate is through HTTP verbs. These verbs
indicate what type of request is being made, such as whether the user is trying to load a new web

page or updating information in their profile page. The context of a user’s interaction with an
application is an important part of the request-response cycle.

Here are the two most widely used HTTP methods you’ll encounter:

• GET—This method requests information from a server. Typically, a server responds with
content that you can view back on your browser (such as by clicking a link to see the home
page of a site).

• POST—This method sends information to the server. A server may respond with an HTML
page or redirect you to another page in the application after processing your data (such as
filling out and submitting a sign-up form).

I discuss a couple more methods in lesson 18.

Most web applications have made changes to adopt HTTP Secure (HTTPS), in which transmission of
data is encrypted. When your application is live on the internet, you’ll want to create a public key
certificate signed by a trusted issuer of digital certificates. This key resides on your server and
allows for encrypted communication with your client. Organizations such
as https://letsencrypt.org offer free certificates that must be renewed every 90 days. For more
information about HTTPS, read the article
at https://developers.google.com/web/fundamentals/security/encrypt-in-transit/why-https.

When you visit https://www.google.com, for example, behind the scenes you’re making a request to
Google’s servers, which in turn send a response back to you, rendering the famous Google Search
landing page. This request-response relationship allows for a channel of communication between
the user and the application. In figure 4.1, a bundle of data is sent to the application’s server in the
form of a request, and when the server processes the request, it issues a bundle of data back in the
form of a response. This process is how most of your interaction on the internet is facilitated.

Figure 4.1. A web server sends your browser web pages, images, and other resources on request.

When you enter the URL you want to see in your browser, an HTTP request is sent to a physical
computer elsewhere. This request contains some information indicating whether you want to load
a web page or send information to that computer.

You may build a fancy application with many bells and whistles, but at the core lies a web server to
handle its communication on the internet. (These concepts will make more sense to you as I discuss
them throughout the book.) In the next section, you start building your web server.

Quick check 4.1

Q1:

What does a web server receive from the client, and what does it send back?

QC 4.1 answer

1:

The web server receives requests from the client and sends back responses.

4.2. INITIALIZING THE APPLICATION WITH NPM

Before you get started with a Node.js web application, you need to initialize the project in your
project folder in terminal. Open a terminal window, and create a new directory called simple_server
with mkdir. You can initialize the project with npm init.

Note

npm is Node.js’ package manager. Your Node.js projects rely on this tool to install and build
applications. You can learn more about npm and how it’s used at https://docs.npmjs.com.

Running the npm init command initiates a prompt to create a package.json file. As the prompt
explains, you’ll walk through configuring the most basic settings of your Node.js application in this
file. For now, you can add main.js as the entry point, along with a short description and your name
as the author, and elect to use the default values offered by pressing the Enter key until you reach
the end of the prompt

Then you’re asked to confirm your settings with a preview of your package.json file. Press Enter to
confirm and return to the regular terminal prompt.

4.3. CODING THE APPLICATION

When you installed Node.js, the core library was installed too. Within that library is a module
called http. You’ll use this module to build your web server. In this section, you also use a package
called http-status-codes to provide constants for use where HTTP status codes are needed in
your application’s responses.

Note

Modules in Node.js are libraries of code that come packaged to offer specific functionality to your
application. Here, the http module helps you communicate across the web by using HTTP.

In your text editor, create a new file called main.js, and save it in the project folder called
simple_server containing the package.json file you created earlier. This file will serve as the core
application file, where your application will serve web pages to your users. Within this project’s
directory in terminal, run npm i http-status-codes -S to save the http-status-codes package as
an application dependency.

Before I analyze every aspect of what you’re about to build, take a look at all the code in listing 4.1.
The first line of code assigns the port number you’ll use for this application: 3000.

Note

Port 3000 is generally used for web servers in development. This number has no significance, and
you can customize it with a few exceptions. Ports 80 and 443 usually are reserved for HTTP and
HTTPS, respectively.

Then you use require to import a specific Node.js module called http and save it as a constant. This
module is saved as a constant because you don’t plan on reassigning the variable. You also require
the http-status-codes package to provide constants representing HTTP status codes.

Next, you use the http variable as a reference to the HTTP module to create a server, using that
module’s createServer function, and store the resulting server in a variable called app.

Note

Using ES6 syntax, you structure callback functions with parameters in parentheses, followed by ⇒
instead of the function keyword.

The createServer function generates a new instance of http.Server, a built-in Node.js class with
tools for evaluating HTTP communication. With this newly created server instance, your app is
prepared to receive HTTP requests and send HTTP responses.

Warning

These method names are case-sensitive. Using createserver, for example, will throw an error.

The argument in createServer is a callback function that’s invoked whenever some event occurs
within the server. When the server is running and your application’s root URL (home page) is
accessed, for example, an HTTP request event triggers this callback and allows you to run some
custom code. In this case, the server returns a simple HTML response.

You log that a request was received from the client and use the response parameter in the callback
function to send content back to the user, from whom you first received a request. The first line
uses a writeHead method to define some basic properties of the response’s HTTP header. HTTP
headers contain fields of information that describe the content being transferred in a request or
response. Header fields may contain dates, tokens, information about the origins of the request and
response, and data describing the type of connection.

In this case, you’re returning httpStatus.OK, which represents a 200 response code, and an
HTML content-type to indicate that the server received a request successfully and will return
content in the form of HTML. Following this block, you assign a local variable, responseMessage,
with your response message in HTML.

Note

200 is the HTTP status code for OK, used to indicate that no issue occurred in returning content in
an HTTP response header. To get a list of other HTTP status codes, enter http.STATUS_CODES in the
Node.js REPL shell. Use httpStatus.OK in place of the explicit number.

Right below that line, you’re writing a line of HTML in the response with write and closing the
response with end. You must end your response with end to tell the server that you’re no longer
writing content. Not doing so leaves the connection with the client open, preventing the client from
receiving the response. You also log your response at this point so you can see that a response was
sent from the server itself.

The last line of code takes the server instance, app, and runs the listen method to indicate that the
server is ready for incoming requests at port 3000.

Listing 4.1. Simple web application code in main.js

const port = 3000,

 http = require("http"), 1

 httpStatus = require("http-status-codes"),

 app = http.createServer((request, response) => { 2

 console.log("Received an incoming request!");

 response.writeHead(httpStatus.OK, {

 "Content-Type": "text/html"

 }); 3

 let responseMessage = "<h1>Hello, Universe!</h1>";

 response.write(responseMessage);

 response.end();

 console.log(`Sent a response : ${responseMessage}`);

 });

app.listen(port); 4

console.log(`The server has started and is listening on port number:

${port}`);

• 1 Require the http and http-status-codes modules.

• 2 Create the server with request and response parameters.

• 3 Write the response to the client.

• 4 Tell the application server to listen on port 3000.

Note

The response object is used by Node.js and carried throughout the application as a way to pass
information about the current client transaction from function to function. Some methods on
the response object allow you to add data to or remove data from the
object; writeHead and write are two such functions.

There your application is, in all its glory! Not so terrible. In only a few lines of code, you’ll also build
a web server this way.

Note

If you don’t specify a port number, your operating system will choose a port for you. This port
number is what you’ll soon use to confirm through your web browser that your web server is
running.

Callbacks in Node.js

Part of what makes Node.js so fast and efficient is its use of callbacks. Callbacks aren’t new to
JavaScript, but they’re overwhelmingly used throughout Node.js and worth mentioning here.

A callback is an anonymous function (a function without a name) that’s set up to be invoked as soon
as another function completes. The benefit of using callbacks is that you don’t have to wait for the
original function to complete processing before running other code.

Consider virtually depositing a check in your bank account by uploading a picture to your bank’s
mobile app. A callback is equivalent to receiving a notification a couple of days later that the check
was verified and deposited. In the meantime, you were able to go about your normal routine.

In the http web server example, incoming requests from the client are received on a rolling basis
and thereupon pass the request and response as JavaScript objects to a call-back function, as shown
in the following figure:

With this code in place, you’re ready to start your Node.js application from terminal.

Quick check 4.2

Q1:

Why should you use const instead of var to store the HTTP server in your application?

QC 4.2 answer

1:

Because your server will continue to listen for communication from clients, it’s important not to
reassign the variable representing the server. In ES6, it has become convention to mark these
objects as constants, not reassignable variables.

4.4. RUNNING THE APPLICATION

The last step is an easy one. Navigate to your project’s directory with terminal, and run node
main in your terminal window. Next, open any browser to the address localhost: 3000. You see a
message indicating that the server has started. Your terminal window should resemble figure 4.2.

Figure 4.2. Running the a basic Node.js server

The browser window should greet you and the universe with salutations, as shown in figure 4.3.
Congratulations! Your first Node.js web application is complete. It’s big, and it’s about to get bigger
and better.

Figure 4.3. Display of your first web page

To stop the application, press Ctrl-C in your terminal window. You can also close the terminal
window, but you may risk not shutting down the application properly, in which case the application
could continue to run behind the scenes (requiring more command-line magic to kill the process).

Quick check 4.3

Q1:

When you navigate to http://localhost:3000/ while your server is running, what type of HTTP
request are you making?

QC 4.3 answer

1:

Nearly every request you can expect to make at this stage in the application’s development,
including a request to http://localhost:300/, is an HTTP GET request.

SUMMARY

In this lesson, you learned that Node.js has built-in functionality for creating web servers via
the http module. You configured a new Node.js application via the package.json file. Using
the http module and createServer method, with minimal effort you created a web server, which is
a stepping stone to building robust applications with Node.js. Through terminal, you were able to
run a web-server application.

Complete the “Try this” exercise to check your understanding.

Try this

npm init interactively generates a package.json file, although you could create this file on your
own.

Create a new package.json from scratch for the project in this lesson. Don’t use npm init; see
whether you can construct a similar JSON-structured file.

Lesson 5. Handling incoming data

In lesson 4, I introduced you to the web server and showed how you can create one with Node.js.
Every time a user visits a URL that leads to your application, a request is made, and each request
must be processed by the code you write. In this lesson, you learn how to gather and process some
of the information in these requests. You also build application routes—code logic to match
requests with appropriate responses.

This lesson covers

• Collecting and processing request data

• Submitting a POST request with the curl command

• Building a web application with basic routes

Consider this

As you plan web pages for your recipe application, you realize that the basic web server you’ve built
knows how to respond only with single lines of HTML. What if you want to show a complete home
page and different HTML content for a contact page?

Every web application uses routes alongside its web server to ensure that users get to see what
they specifically requested. With Node.js, you can define these routes in as few steps as any
conditional block.

5.1. REWORKING YOUR SERVER CODE

To start this lesson, rearrange the code from lesson 4 to get a better idea of how the server is
behaving. Create a new project called second_server within its own project directory, and inside,
add a new main.js file.

Note

In this lesson and following lessons, I expect you to initialize your Node.js application with npm
init and to follow the guidance in lesson 4 to create a package.json file.

In your code, you have a server object that has a callback function, (req, res) ⇒ {}, which is run
every time a request is made to the server. With your server running, if you visit localhost:3000 in
your browser and refresh the page, that callback function is run twice—once on every refresh.

Note

req and res represent the HTTP request and response. You can use any variable names here. Keep
the order in mind; request always comes before response in this method.

In other words, upon receiving a request, the server passes a request and response object to a
function where you can run your code. Another way to write the code for this server is shown
in listing 5.1. The server fires the code in a callback function when a request event is triggered.
When a user visits your application’s web page, the code within the braces runs. Then the server
prepares a response by assigning a response code of 200 and defines the type of content in the
response as HTML. Last, the server sends the HTML content within the parentheses and
simultaneously closes the connection with the client.

Listing 5.1. A simple server with a request event listener in main.js

const port = 3000,

 http = require("http"),

 httpStatus = require("http-status-codes"),

 app = http.createServer();

app.on("request", (req, res) => { 1

 res.writeHead(httpStatus.OK, {

 "Content-Type": "text/html"

 }); 2

 let responseMessage = "<h1>This will show on the screen.</h1>";

 res.end(responseMessage); 3

});

app.listen(port);

console.log(`The server has started and is listening on port number:

 ${port}`);

• 1 Listen for requests.

• 2 Prepare a response.

• 3 Respond with HTML.

Run node main in terminal and visit http://localhost:3000/ in your web browser to view the
response containing one line of HTML on the screen.

Note

You may need to reinstall the http-status-codes package again for this new project by runinng npm i
http-status-codes -save-dev.

It’s great to have some content on the screen, but you want to modify the content based on the type
of request you get. If the user is visiting the contact page or submitting a form they filled out, for
example, they’ll want to see different content on the screen. The first step is determining which
HTTP method and URL were in the headers of the request. In the next section, you look at these
request attributes.

Quick check 5.1

Q1:

What is the name of the function your server calls every time a request is received?

QC 5.1 answer

1:

The function that’s called after each request is received is a callback function. Because the function
doesn’t have an identifying name, it’s also considered to be an anonymous function

5.2. ANALYZING REQUEST DATA

Routing is a way for your application to determine how to respond to a requesting client. Some
routes are designed by matching the URL in the request object. That method is how you’re going to
build your routes in this lesson.

Each request object has a url property. You can view which URL the client requested with req.url.
Test this property and two other properties by logging them to your console. Add the code in the
next listing to the app.on(“request”) code block.

Listing 5.2. Logging request data in main.js

console.log(req.method); 1

console.log(req.url); 2

console.log(req.headers); 3

• 1 Log the HTTP method used.

• 2 Log the request URL.

• 3 Log request headers.

Because some objects in the request can have within them other nested objects, convert the objects
to more-readable strings by using JSON.stringify within your own custom wrapper
function, getJSONString, as shown in listing 5.3. This function takes a JavaScript object as an
argument and returns a string. Now you can change your log statements to use this function. You
can print the request method, for example, by using console.log (`Method:
${getJSONString(req.method)}`);.

Listing 5.3. Logging request data in main.js

const getJSONString = obj => {

 return JSON.stringify(obj, null, 2); 1

};

• 1 Convert JavaScript object to string.

When you restart your server, run main.js again, and access http://localhost:3000 in your web
browser, you’ll notice in your terminal window information indicating that a GET request was made
to the / URL (the home page), followed by that request’s header data. Try entering a different URL,
such as http://localhost:3000/testing or http://localhost: 3000/contact. Notice that you still get
the same HTML text on the browser, but your console continues to log the URLs you type in the
browser.

The types of requests you’re largely dealing with are GET requests. If you were building an
application with forms for users to fill out, though, your server should be able to process that form
data and respond to the user to let them know that the data has been received.

The request object, like most objects in Node.js, can also listen for events, similarly to the server. If
someone makes a POST request to the server (trying to send data to the server), the content of
that POST lives in the request’s body. Because a server never knows how much data is being sent,
posted data comes into the http server via chunks.

Note

Data chunks allow information to stream into and out of a server. Instead of waiting for a large set
of information to arrive at the server, Node.js allows you to work with parts of that information as it
arrives via the ReadableStream library.

To collect all the posted data with a server, you need to listen for each piece of data received and
arrange the data yourself. Luckily, the request listens for a specific data event. req.on(“data”) is
triggered when data is received for a specific request. You need to define a new array, body, outside
this event handler and sequentially add the data chunks to it as they arrive at the server. Notice the
exchange of posted data in figure 5.1. When all the data chunks are received, they can be collected as
a single data item.

Figure 5.1. A web server collects posted data and arranges it.

Within the app.on(“request”) code block, add the new request event handlers in listing 5.4to read
incoming data. In this code example, every time a request is made to the server, you execute the
code in the callback function. An array is created and referred to as body, and every time data from
the request is received, you process it in another callback function. The received data is added to
the body array. When the transmission of data is complete, you execute code in a third callback
function. The body array is turned into a String of text, and the request’s contents are logged to
your console.

Listing 5.4. Handling posted request data in main.js

app.on("request", (req, res) => { 1

 var body = []; 2

 req.on("data", (bodyData) => { 3

 body.push(bodyData); 4

 });

 req.on("end", () => { 5

 body = Buffer.concat(body).toString(); 6

 console.log(`Request Body Contents: ${body}`);

 }); 7

 console.log(`Method: ${getJSONString(req.method)}`);

 console.log(`URL: ${getJSONString(req.url)}`);

 console.log(`Headers: ${getJSONString(req.headers)}`);

 res.writeHead(httpStatus.OK, {

 "Content-Type": "text/html"

 });

 let responseMessage = "<h1>This will show on the screen.</h1>";

 res.end(responseMessage);

});

app.listen(port);

console.log(`The server has started and is listening on port number:

 ${port}`);

• 1 Listen for requests.

• 2 Create an array to hold chunk contents.

• 3 Process it in another callback function.

• 4 Add received data to the body array.

• 5 Run code when data transmission ends.

• 6 Convert the body array to a String of text.

• 7 Log the request’s contents to your console.

With this added code, your application is prepared to receive posted data collected into an array
and converted back to String format. When an event is triggered, indicating that some chunk of
data reached the server, you handle that data by adding the chunk (represented as a Buffer object)
to an array. When the event indicating the request’s connected has ended, you follow up by taking
all the array’s contents and turn them into text you can read. To test this process, try sending
a POST request to your server from terminal.

Because you haven’t built a form yet, you can use a curl command. Follow these steps:

1. With your web server running in one terminal window, open a new terminal window.

2. In the new window. run the following command: curl --data "username=
Jon&password=secret" http://localhost:3000

Tip

curl is a simple way of mimicking a browser’s request to a server. Using the curl keyword, you can
use different flags, such as –data, to send information to a server via a POST request.

Note

If you’re a Windows user, before you install curl on your computer, install the software and
package manager called Chocolatey (https://chocolatey.org/install). Then you can run choco install
curl in your command line.

In the first terminal window, you should see the contents of the request’s body logged to the screen,
letting you know that a request was received and processed by your server (figure 5.2).

Figure 5.2. Results of running a curl command

Tip

For a more user-friendly interface for submitting data to your application, install Insomnia
(https://insomnia.rest/download/).

In lesson 8, you learn about simpler ways to handle request contents. For now, try to control what
type of response you write back to the client based on the URL and method in the request.

Quick check 5.2

Q1:

True or false: Every submitted form sends its full contents in a single chunk of data.

QC 5.2 answer

1:

False. Data is streamed to the server in chunks, which allows the server to respond based on part of
the received data or even the size of the collected data.

5.3. ADDING ROUTES TO A WEB APPLICATION

A route is a way of determining how an application should respond to a request made to a specific
URL. An application should route a request to the home page differently from a request to submit
login information.

You’ve established that a user can make a request to your web server; from there, you can evaluate
the type of request and prompt an appropriate response. Consider your simple HTTP web server
code, which so far has one response to any request. This example accepts any request made to the
server (localhost) at port 3000 and responds with a line of HTML on the screen.

Listing 5.5. Simple server example in main.js

const port = 3000,

 http = require("http"),

 httpStatus = require("http-status-codes"),

 app = http

 .createServer((req, res) => {

 res.writeHead(httpStatus.OK, {

 "Content-Type": "text/html"

 });

 let responseMessage = "<h1>Welcome!</h1>";

 res.end(responseMessage); 1

 })

 .listen(port);

• 1 Respond with HTML to every request.

As a first web application, this application is a great accomplishment, but you need to start building
an application with more functionality. If this project were a legitimate application live on the
internet, for example, you might want to show content based on what the user is looking for. If the
user wants to see an information page, you may want them to find that information at

the /info URL (http://localhost:3000/info). Right now, if users visit those URLs, they’ll be greeted
by the same HTML welcome line.

The next step is checking the client’s request and basing the response body on that request’s
contents. This structure is otherwise known as application routing. Routes identify specific URL
paths, which can be targeted in the application logic and which allow you to specify the information
to be sent to the client. Creating these routes is necessary for a fully integrated application
experience.

Duplicate the simple_server project folder with a new name: simple_routes. Then add a few routes
to the main.js file, as shown in listing 5.6.

You set up a mapping of routes to responses called routeResponseMap. When a request is made to
http://localhost:3000/info, you check whether the request’s URL has a match
in routeResponseMap and respond with an info page heading. When a request is made to
http://localhost:3000/contact, you respond with a contact page heading. To all other requests, you
respond with a generic greeting.

Listing 5.6. Simple routing in a web server in main.js

const routeResponseMap = { 1

 "/info": "<h1>Info Page</h1>",

 "/contact": "<h1>Contact Us</h1>",

 "/about": "<h1>Learn More About Us.</h1>",

 "/hello": "<h1>Say hello by emailing us here</h1>",

 "/error": "<h1>Sorry the page you are looking for is not here.</h1>"

};

const port = 3000,

 http = require("http"),

 httpStatus = require("http-status-codes"),

 app = http.createServer((req, res) => {

 res.writeHead(200, {

 "Content-Type": "text/html"

 });

 if (routeResponseMap[req.url]) { 2

 res.end(routeResponseMap[req.url]);

 } else {

 res.end("<h1>Welcome!</h1>"); 3

 }

 });

app.listen(port);

console.log(`The server has started and is listening on port number:

 ${port}`);

• 1 Define mapping of routes with responses.

• 2 Check whether a request route is defined in the map.

• 3 Respond with default HTML.

With the additions to your code, you can differentiate between a couple of URLs and offer different
content accordingly. You’re still not concerned with the HTTP method used in the request, but you
can check whether the user was searching for the/info route or the /contact route. Users can
more intuitively determine what URLs they need to type to get to that page’s expected content.

Give the code a try. Save the code in listing 5.6 in a project file called main.js, and run that file in
terminal. Then try accessing http://localhost:3000/info or http://localhost: 3000/contact in your
web browser. Any other URL should result in the original default welcome HTML line.

To mimic heavy processing or external calls made by your server, you can add the code in the
following listing to a route to manually delay your response to the client.

Listing 5.7. Route with a timer in main.js

setTimeout(() => res.end(routeResponseMap[req.url]), 2000); 1

• 1 Wrap a response with setTimeout to delay the response manually.

If you run this file again, you’ll notice that the page’s load time is approximately two seconds longer.
You have full control of what code is executed and what content is served to your user. Keep this
fact in mind: as your application grows, your web pages’ response times will naturally be longer.

Look at the browser screenshot for the /contact URL in figure 5.3.

Figure 5.3. Browser view for the /contact URL

Quick check 5.3

Q1:

With what URL do you route requests to the home page?

QC 5.3 answer

1:

The / route represents the home page of the application.

SUMMARY

In this lesson, you learned how to handle request content, respond with viewable HTML, and build
a server route. By identifying a request’s contents, you can process posted data from a request and
separate response content based on targeted URLs. The creation of routes shapes your application
logic. As a web application expands, its routes expand with it, and so do the types of content that it’s
able to deliver.

In the next lesson, I talk about serving individual HTML files, images, and web-page styles.

Try this

Your simple web application is handling two path requests with routes you created
for /infoand /contact. A normal application will likely have more pages to visit. Add three more
routes to the application for the following paths:

• /about—When users access http:/localhost:3000/about, respond with a line of HTML
stating Learn More About Us.

• /hello—When users access http:/localhost:3000/hello, respond with a line of HTML
stating Say hello by emailing us here. Include an anchor tag linked to your email around
the word here.

• /error—When users access http://localhost:3000/error, respond with a status code
of 404 (indicating that no page was found) and a line of plain text stating Sorry, the page
you are looking for is not here.

Note

Note

Open multiple web browsers (such as Apple’s Safari, Google Chrome, and Mozilla Firefox), and visit
different URLs in those browsers. Notice how the request headers change. You should see the same
host but a different user-agent.

Lesson 6. Writing better routes and serving external files

In lesson 5, you directed URL traffic with a routing system that matched request URLs to custom
responses. In this lesson, you learn how to serve whole HTML files and assets such as client-side
JavaScript, CSS, and images. Say goodbye to plain-text responses. At the end of the lesson, you
improve your route code and place your logic in its own module for cleaner organization.

This lesson covers

• Serving entire HTML files by using the fs module

• Serving static assets

• Creating a router module

Consider this

It’s time to build a basic recipe website. The site should have three static pages with some images
and styling. You quickly realize that all the applications you’ve built so far respond only with
individual lines of HTML. How do you respond with rich content for each page without cluttering
your main application file?

Using only the tools that came with your Node.js installation, you can serve HTML files from your
project directory. You can create three individual pages with pure HTML and no longer need to
place your HTML in main.js.

6.1. SERVING STATIC FILES WITH THE FS MODULE

With the goal of building a three-page static site, using these HTML snippets can get cumbersome
and clutter your main.js file. Instead, build an HTML file that you’ll use in future responses. This file
lives within the same project directory as your server. See the project file structure in figure 6.1. In
this application structure, all content you want to show the user goes in the views folder, and all the
code determining which content you show goes in the main.js file.

Figure 6.1. Application structure with views

The reason you’re adding your HTML files to the views folder is twofold: All your HTML pages will
be organized in one place. This convention is used by the web frameworks that you’ll learn about
in unit 2.

Follow these steps:

1. Create a new project folder called serve_html.

2. Within that folder, create a blank main.js file.

3. Create another folder called views within serve_html.

4. Within views, create an index.html file.

Add the HTML boilerplate code in the next listing to main.html.

Listing 6.1. Boilerplate HTML for the index.html page

<!DOCTYPE html>

<html> 1

 <head>

 <meta charset="utf-8">

 <title>Home Page</title>

 </head>

 <body>

 <h1>Welcome!</h1>

 </body>

</html>

• 1 Add a basic HTML structure to your views.

Note

This book isn’t about teaching HTML or CSS. For this example, I’ve provided some basic HTML to
use, but for future examples, I won’t provide the HTML so that I can get to the important stuff more
quickly.

The client can see this page rendered in a browser only with the help of another Node.js core
module: fs, which interacts with the filesystem on behalf of your application. Through
the fsmodule, your server can access and read your index.html. You’re going to call
the fs.readFile method within an http server in your project’s main.js file, as shown in listing 6.2.

First, require the fs module into a constant such as http. With the fs constant, you can specify a
particular file in the relative directory (in this case, a file called index.html within the views folder).
Then create a routeMap to pair routes with files on your server.

Next, locate and read the file contents of the file in your route mapping. fs.readFile returns any
potential errors that may have occurred and the file’s contents in two separate
parameters: error and data. Last, use that data value as the response body being returned to the
client.

Listing 6.2. Using the fs module in server responses in main.js

const port = 3000,

 http = require("http"),

 httpStatus = require("http-status-codes"),

 fs = require("fs"); 1

const routeMap = { 2

 "/": "views/index.html"

};

http

 .createServer((req, res) => {

 res.writeHead(httpStatus.OK, {

 "Content-Type": "text/html"

 });

 if (routeMap[req.url]) {

 fs.readFile(routeMap[req.url], (error, data) => { 3

 res.write(data); 4

 res.end();

 });

 } else {

 res.end("<h1>Sorry, not found.</h1>");

 }

 })

 .listen(port);

console.log(`The server has started and is listening

 on port number: ${port}`);

• 1 Require the fs module.

• 2 Set up route mapping for HTML files.

• 3 Read the contents of the mapped file.

• 4 Respond with file contents.

Note

When files on your computer are being read, the files could be corrupt, unreadable, or missing. Your
code doesn’t necessarily know any of this before it executes, so if something goes wrong, you
should expect an error as the first parameter in the callback function.

Run this file by entering this project’s directory on your command line and entering node main.js.
When you access http://localhost:3000, you should see your index.html page being rendered. Your
simple route guides the response of any other URL extension requested to the Sorry, not
found message.

Tip

If you don’t see the index.html file being rendered, make sure that all the files are in the correct
folders. Also, don’t forget to spell-check!

In the following example, you serve only the files specified in the URL of the request. If someone
visits http://localhost:3000/sample.html, your code grabs the request’s URL, /sample.html, and
appends it to views to create one string: views/sample.html. Routes designed this way can look for
files dynamically based on the user’s request. Try rewriting your server to look like the code
in listing 6.3. Create a new getViewUrl function to take the request’s URL and interpolate it into a
view’s file path. If someone visits the /index path, for
example, getViewUrl returns views/index.html. Next, replace the hardcoded filename
in fs.readFile with the results from the call to getViewUrl. If the file doesn’t exist in the views
folder, this command will fail, responding with an error message and httpStatus.NOT_FOUND code.
If there is no error, you pass the data from the read file to the client.

Listing 6.3. Using fs and routing to dynamically read and serve files in main.js

const getViewUrl = (url) => { 1

 return `views${url}.html`;

};

http.createServer((req, res) => {

 let viewUrl = getViewUrl(req.url); 2

 fs.readFile(viewUrl, (error, data) => { 3

 if (error) { 4

 res.writeHead(httpStatus.NOT_FOUND);

 res.write("<h1>FILE NOT FOUND</h1>");

 } else { 5

 res.writeHead(httpStatus.OK, {

 "Content-Type": "text/html"

 });

 res.write(data);

 }

 res.end();

 });

})

.listen(port);

console.log(`The server has started and is listening on port number:

 ${port}`);

• 1 Create a function to interpolate the URL into the file path.

• 2 Get the file-path string.

• 3 Interpolate the request URL into your fs file search.

• 4 Handle errors with a 404 response code.

• 5 Respond with file contents.

Note

String interpolation in ES6 allows you to insert some text, number, or function results by using
the ${} syntax. Through this new syntax, you can more easily concatenate strings and other data
types.

Now you should be able to access http://localhost:3000/index, and your server will look for the
URL at views/index.

Warning

You’ll need to handle any and all errors that may occur as requests come in, because there will
likely be requests made for files that don’t exist.

Add your new HTML files to your views folder, and try to access them by using their filenames as
the URL. The problem now is that the index.html file isn’t the only file you want to serve. Because
the response body depends heavily on the request, you also need better routing. By the end of this
lesson, you’ll implement the design pattern laid out in figure 6.2.

Figure 6.2. Server routing logic to render views

Quick check 6.1

Q1:

What happens if you try to read a file that doesn’t exist on your computer?

QC 6.1 answer

1:

If you try to read a file that doesn’t exist on your computer, the fs module passes an error in its
callback. How you handle that error is up to you. You can have it crash your application or simply
log it to your console.

6.2. SERVING ASSETS

Your application’s assets are the images, stylesheets, and JavaScript that work alongside your views
on the client side. Like your HTML files, these file types, such as .jpg and .css, need their own routes
to be served by your application.

To start this process, create a public folder at your project’s root directory, and move all your assets
there. Within the public folder, create a folder each for images, css, and js, and move each asset into
its respective folder. By this point, your file structure should look like figure 6.3.

Figure 6.3. Arranging your assets so they’re easier to separate and serve

Now that your application structure is organized, refine your routes to better match your goal
in listing 6.4. This code may appear to be overwhelming, but all you’re doing is moving the file-
reading logic into its own function and adding if statements to handle specific file-type requests.

Upon receiving a request, save the request’s URL in a variable url. With each condition,
check url to see whether it contains a file’s extension or mime type. Customize the response’s
content type to reflect the file being served. Call your own customReadFile function at the bottom
of main.js to reduce repeated code. The last function uses fs.readFile to look for a file by the name
requested, writes a response with that file’s data, and logs any messages to your console.

Notice that in the first route, you’re checking whether the URL contains .html; if it does, you try to
read a file with the same name as the URL. You further abstract your routes by moving the code to
read the file into its own readFile function. You need to check for specific file types, set the
response headers, and pass the file path and response object to this method. With only a handful of
dynamic routes, you’re now prepared to respond to multiple file types.

Listing 6.4. A web server with specific routes for each file in your project

const sendErrorResponse = res => { 1

 res.writeHead(httpStatus.NOT_FOUND, {

 "Content-Type": "text/html"

 });

 res.write("<h1>File Not Found!</h1>");

 res.end();

};

http

 .createServer((req, res) => {

 let url = req.url; 2

 if (url.indexOf(".html") !== -1) { 3

 res.writeHead(httpStatus.OK, {

 "Content-Type": "text/html"

 }); 4

 customReadFile(`./views${url}`, res); 5

 } else if (url.indexOf(".js") !== -1) {

 res.writeHead(httpStatus.OK, {

 "Content-Type": "text/javascript"

 });

 customReadFile(`./public/js${url}`, res);

 } else if (url.indexOf(".css") !== -1) {

 res.writeHead(httpStatus.OK, {

 "Content-Type": "text/css"

 });

 customReadFile(`./public/css${url}`, res);

 } else if (url.indexOf(".png") !== -1) {

 res.writeHead(httpStatus.OK, {

 "Content-Type": "image/png"

 });

 customReadFile(`./public/images${url}`, res);

 } else {

 sendErrorResponse(res);

 }

 })

 .listen(3000);

console.log(`The server is listening on port number: ${port}`);

const customReadFile = (file_path, res) => { 6

 if (fs.existsSync(file_path)) { 7

 fs.readFile(file_path, (error, data) => {

 if (error) {

 console.log(error);

 sendErrorResponse(res);

 return;

 }

 res.write(data);

 res.end();

 });

 } else {

 sendErrorResponse(res);

 }

};

• 1 Create an error-handling function.

• 2 Store the request’s URL in a variable url.

• 3 Check the URL to see whether it contains a file extension.

• 4 Customize the response’s content type.

• 5 Call readFile to read file contents.

• 6 Look for a file by the name requested.

• 7 Check whether the file exists.

Now your application can properly handle requests for files that don’t exist. You can visit
http://localhost:3000/test.js.html or even http://localhost:3000/test to see the error message! To
render the index page with these changes, append the file type to the URL:
http://localhost:3000/index.html.

The next section shows you how to further redefine your routing structure and give your routes
their own module.

Quick check 6.2

Q1:

What should be your default response if a route isn’t found?

QC 6.2 answer

1:

If your application can’t find a route for some request, you should send back a 404 HTTP status
code with a message indicating the page that the client was looking for can’t be found.

6.3. MOVING YOUR ROUTES TO ANOTHER FILE

The goal of this section is to make it easier to manage and edit your routes. If all your routes are in
an if-else block, when you decide to change or remove a route, that change might affect the others
in the block. Also, as your list of routes grows, you’ll find it easier to separate routes based on the
HTTP method used. If the /contact path can respond to POST and GETrequests, for example, your
code will route to the appropriate function as soon as the request’s method is identified.

As the main.js file grows, your ability to filter through all the code you’ve written gets more
complicated. You can easily find yourself with hundreds of lines of code representing routes alone!

To alleviate this problem, move your routes into a new file called router.js. Also restructure the way
you store and handle your routes. Add the code in listing 6.5 to router.js. In the source code
available at manning.com/books/get-programming-with-node-js, this code exists in a new project
folder called better_routes.

In this file, you define a routes object to store routes mapped to POST and GET requests. As routes
are created in your main.js, they’ll be added to this routes object according to their method type
(GET or POST). This object doesn’t need to be accessed outside this file.

Next, create a function called handle to process the route’s callback function. This function accesses
the routes object by the request’s HTTP method, using routes[req.method], and then finds the
corresponding callback function through the request’s target URL, using [req.url]. If you make
a GET request for the /index.html URL path, for example, routes["GET"]["/index.html"] gives
you the callback function predefined in your routesobject. Last, whatever callback function is found
in the routes object is called and passed the request and response so that you can properly respond
to the client. If no route is found, respond with httpStatus.NOT_FOUND.

The handle function checks whether an incoming request matches a route in the routesobject by
its HTTP method and URL; otherwise, it logs an error. Use try-catch to attempt to route the
incoming request and handle the error where the application would otherwise crash.

You also define get and post functions and add them to exports so that new routes can be
registered from main.js. This way, in main.js you can add new callback associations, such as a
/contact.html page, in the routes object by entering get("contact.html", <callback
function>).

Listing 6.5. Adding functions to the module’s exports object in router.js

const httpStatus = require("http-status-codes"),

 htmlContentType = {

 "Content-Type": "text/html"

 },

 routes = { 1

 "GET": {

 "/info": (req, res) => {

 res.writeHead(httpStatus.OK, {

 "Content-Type": "text/plain"

 })

 res.end("Welcome to the Info Page!")

 }

 },

 'POST': {}

 };

exports.handle = (req, res) => { 2

 try {

 if (routes[req.method][req.url]) {

 routes[req.method][req.url](req, res);

 } else {

 res.writeHead(httpStatus.NOT_FOUND, htmlContentType);

 res.end("<h1>No such file exists</h1>");

 }

 } catch (ex) {

 console.log("error: " + ex);

 }

};

exports.get = (url, action) => { 3

 routes["GET"][url] = action;

};

exports.post = (url, action) => {

 routes["POST"][url] = action;

};

• 1 Define a routes object to store routes mapped to POST and GET requests.

• 2 Create a function called handle to process route callback functions.

• 3 Build get and post functions to register routes from main.js.

Note

More HTTP methods could go here, but you don’t need to worry about those methods until unit 4.

When you call get or post, you need to pass the URL of the route and the function you want to
execute when that route is reached. These functions register your routes by adding them to
the routes object, where they can be reached and used by the handle function.

Notice that in figure 6.4, the routes object is used internally by the handle, get, and postfunctions,
which are made accessible to other project files through the module’s exportsobject.

Figure 6.4. The exports object gives other files access to specific functionality.

The last step involves importing router.js into main.js. You complete this the same way you import
other modules, with require("./router").

You need to prepend router to every function call you make in main.js, as those functions now
belong to the router. You can also import the fs module if you plan to serve assets and static HTML
files as before. The code for your server should look like the code in listing 6.6.

With the creation of your server, every request is processed by the handle function in
your router module, followed by a callback function. Now you can define your routes by
using router.get or router.post to indicate the HTTP method you expect from requests to that
route. The second argument is the callback you want to run when a request is received. Create a
custom readFile function, called customReadFile, to make your code more reusable. In this
function, you try to read the file passed in and respond with the file’s contents.

Listing 6.6. Handling and managing your routes in main.js

const port = 3000,

 http = require("http"),

 httpStatusCodes = require("http-status-codes"),

 router = require("./router"),

 fs = require("fs"),

 plainTextContentType = {

 "Content-Type": "text/plain"

 },

 htmlContentType = {

 "Content-Type": "text/html"

 },

 customReadFile = (file, res) => { 1

 fs.readFile(`./${file}`, (errors, data) => {

 if (errors) {

 console.log("Error reading the file...");

 }

 res.end(data);

 });

 };

router.get("/", (req, res) => { 2

 res.writeHead(httpStatusCodes.OK, plainTextContentType);

 res.end("INDEX");

});

router.get("/index.html", (req, res) => {

 res.writeHead(httpStatusCodes.OK, htmlContentType);

 customReadFile("views/index.html", res);

});

router.post("/", (req, res) => {

 res.writeHead(httpStatusCodes.OK, plainTextContentType);

 res.end("POSTED");

});

http.createServer(router.handle).listen(3000); 3

console.log(`The server is listening on port number:

 ${port}`);

• 1 Create a custom readFile function to reduce code repetition.

• 2 Register routes with get and post.

• 3 Handle all requests through router.js.

After adding these changes, restart your Node.js application, and try to access your home page or
/index.html route. This project structure follows some of the design patterns used by application
frameworks. In unit 2, you learn more about frameworks and see why this type of organization
makes your code more efficient and readable.

Quick check 6.3

Q1:

True or false: functions and objects that aren’t added to their module’s exports object are still
accessible by other files.

QC 6.3 answer

1:

False. The exports object is intended to allow modules to share functions and objects. If an object
isn’t added to a module’s exports object, it remains local to that module, as defined by CommonJS.

SUMMARY

In this lesson, you learned how to serve individual files. First, you added the fs module to your
application to look for HTML files in your views folder. Then you extended that functionality to
application assets. You also learned how to apply your routing system to its own module and
selectively register routes from your main application file. In unit 2, I talk about how you can use the
application structure provided by Express.js, a Node.js web framework.

Try this

You currently have one route set up to read an HTML file from this lesson’s examples. Try adding
new routes in the style introduced in this lesson to load assets.

Lesson 7. Capstone: Creating your first web application

When I first got into web development, I really wanted to build a website where people could go
to view interesting recipes. Luckily for me, a local cooking school, Confetti Cuisine, wants me to
build them a site with a landing page to reflect their course offerings, a page of recipes, and a
place where prospective students can sign up.

As a cooking enthusiast, I thought this project would be a good one that I could use daily. What’s
more, this site is going to be fun to build in Node.js. Piecing together all the preceding lessons
into a complete multipage application, these steps should sufficiently prepare me to build a
static site for Confetti Cuisine.

I’ll start a new application from scratch and add three views, routes for the views and assets, and
a public client folder. To start, I’ll build out the application logic with the goal of clean,
nonrepetitive code. Then I’ll add some of the public-facing views and custom styling. At the end
of this lesson, I’ll have a web server to handle requests to specific files and assets in the project.
The final product is one that I can gradually build on and connect to a database at my client’s
request.

To create this application, I use the following steps:

• Initialize the application package.json.
• Set up the project directory structure.
• Create application logic in main.js.
• Create three views, each of which should have a clickable image that can be served

independently:
• Index (home)
• Courses
• Contact
• Thanks
• Error

• Add custom assets.
• Build the application’s router.
• Handle application errors.
• Run the application.

I’m ready to get cracking.

7.1. INITIALIZING THE APPLICATION

To start, I use npm to create a package.json file with a summary of the application I’m
developing. I navigate to a directory on my computer where I’d like to save this project and then
create a new project folder, using the following commands in terminal: mkdir confetti_cuisine
&& cd confetti_cuisine and npm init.

I follow the command-line instructions and accept all default values except the following:

• Use main.js as the entry point.
• Change the description to “A site for booking classes for cooking.”
• Add my name as the author.

Next, I install the http-status-codes package by running npm install http-status-codes --
save in the project’s terminal window. Within my confetti_cuisine folder, my package .json file
should resemble the example in the next listing.

Listing 7.1. Project package.json file contents

{

 "name": "confetti_cuisine",

 "version": "1.0.0",

 "description": "A site for booking classes for cooking.",

 "main": "main.js",

 "scripts": {

 "test": "echo \"Error: no test specified\" && exit 1",

 },

 "author": "Jon Wexler",

 "license": "ISC",

 "dependencies": {

 "http-status-codes": "^1.3.0"

 }

} 1

• 1 Display my package.json in terminal.

From this point forward, I’ll be able to refer to this file as a summary of my application’s
configurations.

7.2. UNDERSTANDING APPLICATION DIRECTORY STRUCTURE

Before I continue with more code, I want to review the application’s directory structure. In the
project structure, I want my main.js, package.json, and router.js files to live at the root level of
my directory. Any HTML content will be represented as individual .html files, which will live in
a views folder within my project folder. My complete application project directory will look like
the structure in the following listing.

Listing 7.2. Project directory structure for confetti_cuisine

. 1

|____main.js

|____router.js

|____public

| |____css

| | |____confetti_cuisine.css

| | |____bootstrap.css

| |____images

| | |____product.jpg

| | |____graph.png

| | |____cat.jpg

| | |____people.jpg

| |____js

| | |____confettiCuisine.js

|____package-lock.json

|____package.json

|____contentTypes.js

|____utils.js

|____views

| |____index.html

| |____contact.html

| |____courses.html

| |____thanks.html

| |____error.html

• 1 Display of directory tree from root folder

My application server will respond with HTML files in my views folder. The assets on which
those files rely will live in a folder called public.

Note

HTML files will be viewed by the client, but they’re not considered to be assets and don’t go in
the public folder.

The public folder contains an images, js, and css folder to hold the application’s client-facing
assets. These files define the styles and JavaScript interactions between my application and its
user. To add some quick styling to my application, I download bootstrap .css
from http://getbootstrap.com/docs/4.0/getting-started/download/ and add it to my css folder in public.
I also create a confetti_cuisine.css file for any custom styling rules that I want to apply to this
project.

Next, I set up the application logic.

7.3. CREATING MAIN.JS AND ROUTER.JS

Now that I’ve set up my folder structure and initialized the project, I need to add the main
application logic to the site to get it serving files on port 3000. I’m going to keep the routes in a
separate file, so I’ll need to require that file along with the fs module so that I can serve static
files.

I create a new file called main.js. Within that file, I assign my application’s port number, require
the http and http-status-codes modules and the soon-to-be-built custom
modules router, contentTypes, and utils, as shown in listing 7.3.

Note

The contentTypes and utils modules simply help me organize my variables within main.js.

Listing 7.3. Contents of main.js with required modules

const port = 3000, 1

 http = require("http"),

 httpStatus = require("http-status-codes"),

 router = require("./router"),

 contentTypes = require("./contentTypes"),

 utils = require("./utils");

• 1 Import required modules.

The application won’t start until I create my local modules, so I’ll start by creating
contentTypes.js, using the code in the following listing. In this file, I’m exporting an object that
maps file types to their header values for use in my responses. Later, I’ll access the HTML
content type in main.js by using contentTypes.html.

Listing 7.4. Object mapping in contentTypes.js

module.exports = { 1

 html: {

 "Content-Type": "text/html"

 },

 text: {

 "Content-Type": "text/plain"

 },

 js: {

 "Content-Type": "text/js"

 },

 jpg: {

 "Content-Type": "image/jpg"

 },

 png: {

 "Content-Type": "image/png"

 },

 css: {

 "Content-Type": "text/css"

 }

};

• 1 Export content type mapping object.

Next, I set up the function that I’ll use to read file contents in a new utils module. Within
utils.js, I add the code in the next listing. In this module, I export an object containing
a getFile function. This function looks for a file at the provided path. If a file doesn’t exist, I
immediately return an error page.

Listing 7.5. Utility functions in utils.js

const fs = require("fs"),

 httpStatus = require("http-status-codes"),

 contentTypes = require("./contentTypes"); 1

module.exports = { 2

 getFile: (file, res) => {

 fs.readFile(`./${file}`, (error, data) => {

 if (error) {

 res.writeHead(httpStatus.INTERNAL_SERVER_ERROR,

 contentTypes.html);

 res.end("There was an error serving content!");

 }

 res.end(data);

 });

 }

};

• 1 Import modules for use in getFile.
• 2 Export a function to read files and return a response.

Last, in a new file, I add the code in listing 7.6. This router.js file requires the http-status-
codes and my two custom modules: contentTypes and utils.

The router module includes a routes object that holds key-value pairs mapped to GETrequests
through my get function and POST requests through my post function. The handlefunction is the
one referred to as the callback function to createServer in main.js. The getand post functions
take a URL and callback function and then map them to each other in the routes object. If no
route is found, I use my custom getFile function in the utils module to respond with an error
page.

Listing 7.6. Handling routes in router.js

const httpStatus = require("http-status-codes"),

 contentTypes = require("./contentTypes"),

 utils = require("./utils");

const routes = { 1

 "GET": {},

 "POST": {}

};

exports.handle = (req, res) => { 2

 try {

 routes[req.method][req.url](req, res);

 } catch (e) {

 res.writeHead(httpStatus.OK, contentTypes.html);

 utils.getFile("views/error.html", res);

 }

};

exports.get = (url, action) => { 3

 routes["GET"][url] = action;

};

exports.post = (url, action) => {

 routes["POST"][url] = action;

};

• 1 Create a routes object to hold route functions.
• 2 Create the handle function to handle requests.
• 3 Create the get and post functions to map route functions.

To get my application server to run, I need to set up the application’s routes and views.

7.4. CREATING VIEWS

The views are client-facing and could make or break my user’s experience with the application.
I’ll use a similar template for each page to reduce complexity in this application. The top of each
HTML page should have some HTML layout, a head, a link to my soon-to-be-built custom
stylesheet, and navigation. The home page for the Confetti Cuisine site will look like figure 7.1,
with links to my three views in the top-left corner.

Figure 7.1. Example home page for Confetti Cuisine

For the home page, I’ll create a new view called index.html in my views folder and add the
content specific to the index page. Because I’m using bootstrap.css, I need to link to that file
from my HTML pages by adding <link rel="stylesheet" href="/bootstrap.css"> to my
HTML head tag. I’ll do the same for my custom stylesheet, confetti_cuisine.css.

Next, I create a courses.html file to show off a list of available cooking classes and a contact.html
file with the following form. This form submits contact information via POST to the / route. The
form’s code should resemble the code in the next listing.

Listing 7.7. Example form that posts to the home-page route in contact.html

<form class="contact-form" action="/" method="post"> 1

 <input type="email" name="email" required>

 <input class="button" type="submit" value="submit">

</form>

• 1 Build a form to submit a name to the the home page.

My site’s contact page will look like figure 7.2.

Figure 7.2. Example contact page for Confetti Cuisine

Each page links to the others through a navigation bar. I need to make sure that all the assets
I’m using in these files are accounted for when I create my routes. If any assets are missing, my
application could crash when it tries to look for their corresponding files.

I’ll add these assets so that my pages will have resources for richer content.

7.5. ADDING ASSETS

For this application, I’ve created some custom styles to be used by each of the views. Any color,
dimension, or placement changes I want to make in elements of my site will go in
confetti_cuisine.css, which lives in public/css alongside bootstrap.css.

When this file is saved, my views will have colors and structure when loaded. If I decide to use
any client-side JavaScript, I’ll need to create a .js file, add it to my public/js folder, and link to it
within each file by using <script> tags. Last, I’ll add my images to public/ images. The names
of these images should match the names I use within my HTML views.

The only step left is registering and handling my routes for each view and asset in my project.

7.6. CREATING ROUTES

The last piece of the puzzle is an important one: routes. The routes of my application will
determine which URLs are accessible to the client and which files I’ll serve.

I’ve specifically created a router.js file to handle my routes, but I still need to register them.
Registering my routes essentially means passing a URL and callback function to
my router.get or router.post function, depending on which HTTP method I’m handling.

Those functions add my routes to router.routes, a JavaScript object that maps my URLs to the
callback functions to be invoked when that URL is accessed.

To recap, to register a route, I need to state the following:

• Whether the request is a GET or a POST request
• The URL’s path
• The name of the file to return
• An HTTP status code
• The type of the file being returned (as the content type)

In each callback function, I need to indicate the content type that will go in the response and use
the fs module to read the contents of my views and assets into the response. I add the routes
and code in the next listing below the require lines in main.js.

Listing 7.8. Registering individual routes with the router module in main.js

router.get("/", (req, res) => { 1

 res.writeHead(httpStatus.OK, contentTypes.htm);

 utils.getFile("views/index.html", res);

});

router.get("/courses.html", (req, res) => {

 res.writeHead(httpStatus.OK, contentTypes.html);

 utils.getFile("views/courses.html", res);

});

router.get("/contact.html", (req, res) => {

 res.writeHead(httpStatus.OK, contentTypes.html);

 utils.getFile("views/contact.html", res);

});

router.post("/", (req, res) => {

 res.writeHead(httpStatus.OK, contentTypes.html);

 utils.getFile("views/thanks.html", res);

});

router.get("/graph.png", (req, res) => {

 res.writeHead(httpStatus.OK, contentTypes.png);

 utils.getFile("public/images/graph.png", res);

});

router.get("/people.jpg", (req, res) => {

 res.writeHead(httpStatus.OK, contentTypes.jpg);

 utils.getFile("public/images/people.jpg", res);

});

router.get("/product.jpg", (req, res) => {

 res.writeHead(httpStatus.OK, contentTypes.jpg);

 utils.getFile("public/images/product.jpg", res);

});

router.get("/confetti_cuisine.css", (req, res) => {

 res.writeHead(httpStatus.OK, contentTypes.css);

 utils.getFile("public/css/confetti_cuisine.css", res);

});

router.get("/bootstrap.css", (req, res) => {

 res.writeHead(httpStatus.OK, contentTypes.css);

 utils.getFile("public/css/bootstrap.css", res);

});

router.get("/confetti_cuisine.js", (req, res) => {

 res.writeHead(httpStatus.OK, contentTypes.js);

 utils.getFile("public/js/confetti_cuisine.js", res);

});

http.createServer(router.handle).listen(port); 2

console.log(`The server is listening on

 port number: ${port}`);

• 1 Add a series of routes for web pages and assets.
• 2 Start the server.

Note

Notice the POST route, which will handle form submissions on the contact.html page. Instead of
responding with another HTML page, this route responds with an HTML “thank you for
supporting the product” page.

I should now be able to start my application with node main and navigate to http://localhost:
3000 to see my web application’s home page.

Note

I only create routes for the assets (images, js, and css) that I have represented as files within my
project.

SUMMARY

In this capstone exercise, I built a complete web application serving static web pages for Confetti
Cuisine. To accomplish this task, I required my own router module into the main application
file. Then I created a custom system for routing user requests to serve specific content. After
building custom functions to register routes in an organized and systematic way, I created views
and assets to be served from their respective directories.

A lot of code logic is going on here, and the code logic is on its way to a professional structure
used by Node.js applications around the world.

In unit 3, I explore web frameworks and show you how they use this application structure and
some scaffolding (prebuilt folders and structure) to accomplish the same application in fewer
steps and with fewer headaches.

Unit 2. Easier web development with Express.js

Unit 1 taught you how web servers work with Node.js and how to build meaningful content with
built-in modules. This unit is about taking your application to a more robust and professional
level by using a web framework and dynamic content. A web framework is a predefined
application structure and a library of development tools designed to make building a web
application easier and more consistent.

In this unit, you learn how to set up an application with Express.js and organize your application
file structure to optimize communication of data among your pages. You’re also introduced to
the model-view-controller (MVC) application architecture, which organizes your code into three
distinct responsibilities:

• Giving structure to your data
• Displaying that data
• Handling requests to interact with that data

With the goals of building on the lessons you learned in unit 1 and modifying your code to take
full advantage of Express.js, this unit covers the following topics:

• Lesson 8 introduces Express.js and shows how to configure a new Node.js application. In
this lesson, you get an overview of how a web framework helps you develop an
application.

• Lesson 9 covers routing with Express.js. You’ve already learned about writing routes from
scratch. This lesson introduces you to the style of routing you’ll use throughout the rest of
the book. You also learn about MVC and see how routes can behave like controllers in
that structure.

• Lesson 10 introduces the concepts of layouts and dynamically rendered views. So far,
you’ve worked only with static content, but in this lesson, you use Express.js to feed
content to your views on every page reload. This lesson also discusses templating in
Node.js. In Express.js, templating engines are at work to allow you to write placeholders
for dynamic content into your HTML pages.

• Lesson 11 builds on the preceding lessons to show how to handle application errors and
configure a start-up script with npm.

• Finally, lesson 12 shows how to rebuild your project from unit 1 by using Express.js. You
re-create the three front-facing views for the cooking school’s website and add
functionality to dynamically fill content from your application server.

This unit is your first step into web applications that may feel more familiar. Getting
comfortable with Express.js and external packages will make you a more skilled developer.
When your Node.js application is running successfully on Express.js, unit 3 talks about how to
connect your app to a database and save user information.

Lesson 8. Setting up an app with Express.js

Building a web application has become a simpler task with the addition of web frameworks. A web
framework in Node.js is a module that offers structure to your application. Through this structure,
you can easily build and customize the way your application feels without worrying about building
certain features from scratch, such as serving individual files. By the end of this lesson, you’ll know
where to begin with web frameworks and how the one used in this book, Express.js, can reduce the
time it takes you to get your application running.

This lesson covers

• Setting up a Node.js application with Express.js

• Navigating a web framework

Consider this

Your static web app from unit 1 is a success. The cooking community wants you to add more
functionality and serve more web pages. You realize that your application isn’t fully prepared to
handle more routes, let alone handling errors or serving other types of assets. Could there be an
easier way to start development with some structure already in place?

Luckily, you can install a web framework with your Node.js application. Express.js, the framework
you use in this book, handles a lot of the tasks most applications need right out of the box, such as
error handling and static-asset serving. The more familiar you get with this framework’s methods
and keywords, the faster you can build your applications.

8.1. INSTALLING THE EXPRESS.JS PACKAGE

Express.js increases development speed and provides a stable structure on which to build
applications. Like Node.js, Express.js offers tools that are open-source and managed by a large
online community.

First, I’ll talk about why Express.js is the web framework you should learn. With each passing year,
Node.js gains new frameworks, some of which provide convincing reasons to switch to its library.
Express.js came out in 2010, and since then, other reliable frameworks have grown in
popularity. Table 8.1 lays out some other frameworks you can look into.

Table 8.1. Node.js frameworks to know

Node.js
frameworks

Description

Koa.js Designed by developers who built Express.js with a focus on a library of methods not offered in

Express.js (http://koajs.com/)

Hapi.js Designed with a similar architecture to Express.js and a focus on writing less code

(https://hapijs.com/)

Sails.js Built on top of Express.js, offering more structure, as well as a larger library and less opportunity

for customization (https://sailsjs.com/)

Total.js Built on the core HTTP module and acclaimed for its high-performance request handling and

responses (https://www.totaljs.com/)

Note

For more information about Node.js web frameworks, you can view an updated list of GitHub
repositories at http://nodeframework.com/.

Ultimately, a framework is intended to help you overcome some common development challenges
in building a web application from scratch. Express.js is the most used framework in the Node.js
community, ensuring that you find the support you need compared with the support offered by
other, newer frameworks. Although I recommend using Total.js for its performance and scalability
ratings, it’s not necessarily the best framework to start with.

Because you’re working with Node.js to build a web application for the first time, you need some
tools to help you along the way. A web framework is designed to offer some of the common tools
used in web development. Express.js provides methods and modules to assist with handling
requests, serving static and dynamic content, connecting databases, and keeping track of user
activity, for example. You find out more about how Express.js provides this support in later lessons.

Express.js is used by new and professional Node.js developers alike, so if you feel overwhelmed at
any time, know that thousands of others can help you overcome your development obstacles.

Now you’re ready to jump into initializing an application with Express.js. To begin, you need to
initialize your application by creating a new project directory called first_express_project, entering
that directory within a new terminal window, and entering npm init. You can follow the prompt to
save main.js as the entry point and to save all the other default values.

Note

As discussed in lesson 1, initializing a new project creates a package.json file with which you can
define some attributes of your application, including the packages you download and depend on.

Because Express.js is an external package, it doesn’t come preinstalled with Node.js. You need to
download and install it by running the following command within your project directory in
terminal: npm install express --save.

Note

At this writing, the latest version of Express.js is 4.16.3. To ensure that your version of Express.js is
consistent with the one used in this book, install the package by running npm install
express@4.16.3 --save.

Warning

If you try to install Express.js in a specific project before you create package.json, you may see an
error complaining that there’s no directory or file with which the installation can complete.

Use the --save flag so that Express.js is listed as an application dependency. In other words, your
application depends on Express.js to work, so you need to ensure that it’s installed. Open
package.json to see this Express.js package installation under the dependencieslisting.

Tip

If you want to access the Express.js package documentation from your terminal window, type npm
docs express. This command opens your default web browser to http://expressjs.com.

In the next section, you create your first Express.js application.

Quick check 8.1

Q1:

What happens if you don’t use the --save flag when installing Express.js for your application?

QC 8.1 answer

1:

Without the --save flag, your Express.js installation won’t be marked as an application
dependency. Your application will still run locally, because Express.js will be downloaded to your

project’s node_modules folder, but if you upload your application code without that folder, there’s
no indication in your package.json file that the Express.js package is needed to run your application.

8.2. BUILDING YOUR FIRST EXPRESS.JS APPLICATION

To start using Express.js, you need to create a main application file and require the expressmodule.
Save the code in listing 8.1 to a file called main.js within your project.

You require Express.js by referring to the module name express and storing it as a
constant. express offers a library of methods and functionality, including a class with built-in web
server functionality. The express webserver application is instantiated and stored in a constant to
be referred to as app. Throughout the rest of the project, you’ll use app to access most of Express.js’
resources.

As in the first capstone project, Express.js offers a way to define a GET route and its callback
function without building out an extra module. If a request is made to the home page, Express.js
catches it and allows you to respond.

A response in plain text is sent to the browser. Notice the Express.js method send, which behaves
similarly to write from the http module. Express.js also supports http module methods.
Remember to use end to complete your response if you use write. Finally, you set up the
application to listen for requests on port 3000 of your local host and ask for a helpful message to be
logged to your console when the application is running successfully.

Listing 8.1. Simple Express.js web application in main.js

const port = 3000,

 express = require("express"), 1

 app = express(); 2

app.get("/", (req, res) => { 3

 res.send("Hello, Universe!"); 4

})

.listen(port, () => { 5

 console.log(`The Express.js server has started and is listening

 on port number: ${port}`);

});

• 1 Add the express module to your application.

• 2 Assign the express application to the app constant.

• 3 Set up a GET route for the home page.

• 4 Issue a response from the server to the client with res.send.

• 5 Set up the application to listen at port 3000.

Give it a shot. Make sure that you’re in your project directory on your command line. Run node
main, and go to http://localhost:3000. If you see Hello, Universe! on the screen, you’ve built your
first successful Express.js application.

Installing and using nodemon

To see your application server code changes in effect, you need to restart the server in terminal.
Close your existing server by pressing Command-D (Ctrl-C for Windows) and entering node
main.js again.

The more changes you apply to your application, the more tedious this task becomes. That’s why I
recommend installing the nodemon package. You can use this package to start your application the
first time and automatically restart it when application files change.

To install nodemon globally, enter npm i nodemon -g. You may need to prepend that command
with sudo or run it in terminal as an administrator.

Alternatively, you can install nodemon as a development dependency (devDependency) or a resource
that you use only during development of an application. Run npm i nodemon -- save-dev or npm i
nodemon -D. nodemon starts with your npm start script (discussed in lesson 11). The benefit of
installing as a devDependency is that each project has its own nodemon modules, reflecting the most
up-to-date version of the package at the time of development.

When nodemon is installed, it’s simple to use: nodemon picks up on the main property in your
package.json. Your package.json should also be modified to include the npm start script. Add
"start": "nodemon main.js", to the scripts section in package.json so that you may run your
application using nodemon with npm start. Go to your project directory in terminal, and
enter nodemon. This command launches your application, and any future changes you make
signal nodemon to restart without your needing to enter another command.

You can shut down the server by pressing the same key combination (Command-D or Ctrl-C for
Windows) in the nodemon window in terminal.

Note

The express constant is still used for some Express.js tools related to configuring your
application. app is used mainly for anything created for the application’s movement of data and user
interaction.

In the next section, I talk about some of the ways that Express.js offers support as a web framework.

Quick check 8.2

Q1:

What’s the difference between the express and app constants?

QC 8.2 answer

1:

app represents most of your application, the routes, and access to other
modules. express represents a wider range of methods that aren’t necessarily scoped to your
application. express could offer a method to analyze or parse some text on which your application
doesn’t necessarily depend.

8.3. WORKING YOUR WAY AROUND A WEB FRAMEWORK

A web framework is designed to do a lot of the tedious tasks for you and leave you with an intuitive
structure for customizing your app. Express.js provides a way to listen for requests to specific URLs
and respond by using a callback function.

A web framework like Express.js operates through functions considered to be middleware because
they sit between HTTP interaction on the web and the Node.js platform. Middlewareis a general
term applied to code that assists in listening for, analyzing, filtering, and handling HTTP
communication before data interacts with application logic.

You can think of middleware as being like a post office. Before your package can go into the delivery
network, a postal worker needs to inspect the size of your box and to ensure that it’s properly paid
for and adheres to delivery policies (nothing dangerous in your package). See the diagram on
middleware in figure 8.1.

Figure 8.1. Express.js stands between the HTTP requests and your application code.

Note

Middleware can come in smaller packages than Express.js. Some play a security role in checking
incoming requests before data passes through to the core application.

Because you’re still dealing with HTTP methods, the overall interaction between your application
and the browser doesn’t change much from your application that uses the httpmodule in unit 1. You
get the same request and response objects, containing a lot of rich information about the sender
and its contents. Express.js offers methods that make it easier for you to get that information.

In addition to the send method on the response object, Express.js provides simpler ways to pull and
log data from the request body. Add the code in the next listing to your GET route handler in main.js.

Listing 8.2. Request object methods in Express.js in main.js

console.log(req.params); 1

console.log(req.body);

console.log(req.url);

console.log(req.query);

• 1 Access request parameters.

From the request, you can pull the values in table 8.2.

Table 8.2. Request object data items

Request
data object

Description

params Allows you to extract IDs and tokens from the URL. When you learn about RESTful routes in unit 4,

this request attribute allows you to identify which items are being requested in an e-commerce site

or what user profile you should navigate to.

body Contains much of the contents of the request, which often includes data coming from a POST

request, such as a submitted form. From the request body, you can collect information quickly and

save it in a database.

url Provides information about the URL being visited (similar to req.url in unit 1’s basic web server).

query Like body, lets you pull data being submitted to the application server. This data isn’t necessarily from

a POST request, however, and is often requested in the URL as a query string.

Upon restarting your application and visiting http://localhost:3000, you see these values logged to
your server’s terminal window. You explore how to make better use of the request body when you
learn about Express.js routes in lesson 9.

Tip

A query string is text represented as key/value pairs in the URL following a question mark (?) after
the hostname. http://localhost:3000?name=jon, for example, is sending the name(key) paired
with jon (value). This data can be extracted and used in the route handler.

Quick check 8.3

Q1:

Why do most developers use web frameworks instead of building web applications from scratch?

QC 8.3 answer

1:

Web frameworks make development work a lot easier. Web development is fun, and the best parts
aren’t the tedious tasks that are most subject to errors. With web frameworks, developers and
businesses alike can focus on the more interesting parts of applications.

SUMMARY

In this lesson, you learned how to initialize an Express.js project and started a simple application
that said hello in your web browser. You also learned about Express.js as a web framework and saw
how you’ll benefit from its methods moving forward. In lesson 9, you apply some Express.js
methods in building a routing system.

Try this

Change the get method in your index.js file to post. Restart your application, and see how your
application behaves differently when you try to access the home page at http://localhost:3000. You
should see a default error message from Express, telling you that there’s no GET route for /.

The reason is that you changed the request method you’re listening for. If you make a
curl POST request to the home page, you see your original response content.

Lesson 9. Routing in Express.js

In lesson 8, I introduced Express.js as a framework for Node.js web applications. The rest of this unit
is dedicated to exploring Express.js functionality and using its convenient methods. This lesson
covers routing and how a few more Express.js methods allow you to send meaningful data to the
user before building a view. You also walk through the process of collecting a request’s query
string. The lesson ends by touching on the MVC design pattern.

This lesson covers

• Setting up routes for your application

• Responding with data from another module

• Collecting request URL parameters

• Moving route callbacks to controllers

Consider this

You want to build a home-page view for your recipe application that people can visit to see an
estimated date of completion for your application. With your new, clean Express.js setup, you’d like
to keep the date variable in a separate file that you can easily change without modifying your
main.js file.

After setting up your routes, you’ll be able to store some data in a separate module and respond
dynamically with that data. With the separate module, you’ll be able to modify that file’s contents
without needing to edit your main application file. This structure helps prevent you from making
mistakes in your code while constantly changing values.

9.1. BUILDING ROUTES WITH EXPRESS.JS

In lesson 8, you constructed your first Express.js application, consisting of a route
handling GET requests to your home-page URL. Another way to describe this route is as an
application endpoint that takes an HTTP method and path (URL). Routes in Express.js should look
familiar to you because you built the same routing structure at the end of unit 1. In Express.js, a
route definition starts with your app object, followed by a lowercase HTTP method and its
arguments: the route path and callback function.

A route handling POST requests to the /contact path should look like the following listing. This
example uses the post method provided by Express.js.

Listing 9.1. Express.js POST route in main.js

app.post("/contact", (req, res) => { 1

 res.send("Contact information submitted successfully.");

});

• 1 Handle requests with the Express.js post method.

You can use these HTTP methods on the app object because app is an instance of the main
Express.js framework class. By installing this package, you inherited routing methods without
needing to write any other code.

Express.js lets you write routes with parameters in the path. These parameters are a way of sending
data through the request. (Another way is with query strings, which I talk about at the end of this
lesson.) Route parameters have a colon (:) before the parameter and can exist anywhere in the
path. Listing 9.2 shows an example of a route with parameters. The route in this listing expects a
request made to /items/ plus some vegetable name or number. A request to "/items/lettuce", for
example, would trigger the route and its callback function. The response sends the item from the
URL back to the user through the params property of the request object.

Listing 9.2. Using route parameters to indicate vegetable type in main.js

app.get("/items/:vegetable", (req, res) => { 1

 res.send(req.params.vegetable);

});

• 1 Respond with path parameters.

Initialize a new project called express_routes, install Express.js, and add the code to require and
instantiate the Express.js module. Then create a route with parameters, and respond with that
parameter as shown in listing 9.2. At this point, your main.js should look like the code in the next
listing.

Listing 9.3. Complete Express.js example in main.js

const port = 3000,

 express = require("express"),

 app = express();

app.get("/items/:vegetable", (req, res) => { 1

 let veg = req.params.vegetable;

 res.send(`This is the page for ${veg}`);

});

app.listen(port, () => {

 console.log(`Server running on port: ${port}`);

});

• 1 Add a route to get URL parameters.

Route parameters are handy for specifying data objects in your application. When you start saving
user accounts and course listings in a database, for example, you might access a user’s profile or
specific course with the /users/:id and/course/:type paths, respectively. This structure is
necessary for developing a representational state transfer (REST) architecture, as you learn in unit

4.

One last note on Express.js routes: I talked about how Express.js is a type of middleware because it
adds a layer between a request being received and that request being processed. This feature is
great, but you may want to add your own custom middleware. You may want to log the path of
every request made to your application for your own records, for example. You can accomplish this
task by adding a log message to every route or by creating the middleware function in listing 9.4.
This listing defines a middleware function with an additional next argument, logs the request’s path
to your terminal console, and then calls the next function to continue the chain in the request-
response cycle.

next is provided as a way of calling the next function in your request-response execution flow.
From the time a request enters the server, it accesses a series of middleware functions. Depending
on where you add your own custom middleware function, you can use next to let Express.js know
that your function is complete and that you want to continue to whatever function is next in the
chain.

As with HTTP methods, you can create a route with app.use that runs on every request. The
difference is that you’re adding an additional argument in the callback: the next function. This
middleware function allows you to run custom code on the request before its URL path matches
with any other routes in your application. When your custom code completes, nextpoints the
request to the next route that matches its path.

Try adding this middleware function to your express_routes application. If a request is made
to /items/lettuce, the request is processed first by your middleware function and then by
the app.get("/items/:vegetable") route you created previously.

Listing 9.4. Express.js middleware function for logging request path in main.js

app.use((req, res, next) => { 1

 console.log(`request made to: ${req.url}`); 2

 next(); 3

});

• 1 Define a middleware function.

• 2 Log the request’s path to console.

• 3 Call the next function.

Warning

Calling next at the end of your function is necessary to alert Express.js that your code has
completed. Not doing so leaves your request hanging. Middleware runs sequentially, so by not
calling next, you’re blocking your code from continuing until completion.

You can also specify a path for which you’d like your middleware function to
run. app.use("/items", <callback>), for example, will run your custom callback function for
every request made to a path starting with items. Figure 9.1 shows how middleware functions can
interact with a request on the server.

Figure 9.1. The role of middleware functions

In the next section, I talk about handling data in your routes and responding with that data.

Quick check 9.1

Q1:

What does the Express.js use method do?

QC 9.1 answer

1:

The use method allows you to define the middleware functions you want to use with Express.js.

9.2. ANALYZING REQUEST DATA

Preparing fancy and dynamic responses is important in your application, but eventually, you’ll need
to demonstrate the application’s ability to capture data from the user’s request.

You have two main ways to get data from the user:

• Through the request body in a POST request

• Through the request’s query string in the URL

In the first capstone project, you successfully built a form that submits data to a POST route (a route
that listens for posted data to a specific URL). But http incoming data is represented as a Buffer
stream, which is not human-readable and adds an extra step to making that data accessible for
processing.

Express.js makes retrieving the request body easy with the body attribute. To assist in reading
the body contents (as of Express.js version 4.16.0), you
add express.json and express.urlencoded to your app instance to analyze incoming request
bodies. Notice the use of req.body to log posted data to the console in listing 9.5. Add that code to
your project’s main.js. With Express.js’ app.use, specify that you want to parse incoming requests
that are URL-encoded (usually, form post and utf-8 content) and in JSON format. Then create a new
route for posted data. This process is as simple as using the post method and specifying a URL.
Finally, print the contents of a posted form with the request object and its bodyattribute.

Listing 9.5. Capturing posted data from the request body in main.js

app.use(

 express.urlencoded({

 extended: false

 })

); 1

app.use(express.json());

app.post("/", (req, res) => { 2

 console.log(req.body); 3

 console.log(req.query);

 res.send("POST Successful!");

});

• 1 Tell your Express.js application to parse URL-encoded data.

• 2 Create a new post route for the home page.

• 3 Log the request’s body.

Test this code by submitting a POST request to http://localhost:3000, using the
following curl command: curl --data
"first_name=Jon&last_name=Wexler"http://localhost:3000.

You should see the body logged to your server’s console window like so: { first_name: "Jon",
last_name: “Wexler" }.

Now when you demo the backend code to your customers, you can show them, through a mocked
form submission, how data will be collected on the server.

Another way to collect data is through the URL parameters. Without the need for an additional
package, Express.js lets you collect values stored at the end of your URL’s path, following a question
mark (?). These values are called query strings, and they are often used for tracking user activity on
a site and storing temporary information about a user’s visited pages.

Examine the following sample URL:
http://localhost:3000?cart=3&pagesVisited=4&utmcode=837623. This URL might be passing
information about the number of items in a user’s shopping cart, the number of pages they’ve
visited, and a marketing code to let the site owners know how this user found your app in the first
place.

To see these query strings on the server, add console.log(req.query); to your middleware
function in main.js. Now try visiting the same URL. You should see { cart: "3", pagesVisited:
"4", utmcode: "837623" } logged to your server’s console window.

In the next section, I talk about MVC architecture and how Express.js routes fit into that structure.

Quick check 9.2

Q1:

What additional middleware functions are needed to parse incoming data in a request body with
Express.js?

QC 9.2 answer

1:

The express.json and express.urlencoded for parsing incoming data to the server. Other packages,
such as body-parser, act as middleware and perform similar tasks.

9.3. USING MVC

This lesson is about processing request data within your routes. Express.js opens the door to
custom modules and code to read, edit, and respond with data within the request-response cycle.
To organize this growing code base, you’re going to follow an application architecture known as
MVC.

MVC architecture focuses on three main parts of your application’s functionality: models, views,
and controllers. You used views in past applications to display HTML in the response. See the
breakdown and definitions in table 9.1.

Table 9.1. Model-view-controller parts

Views Rendered displays of data from your application. In unit 3, you learn about models and even create

your own.

Models Classes that represent object-oriented data in your application and database. In your recipe

application, you might create a model to represent a customer order. Within this model, you define

what data an order should contain and the types of functions you can run on that data.

Controllers The glue between views and models. Controllers perform most of the logic when a request is

received to determine how request body data should be processed and how to involve the models

and views. This process should sound familiar, because in an Express.js application, your route

callback functions act as controllers.

To follow the MVC design pattern, move your callback functions to separate modules that reflect
the purposes of those functions. Callback functions related to user account creation, deletion, or
changes, for example, go in a file called usersController.js within the controllers folder. Functions
for routes that render the home page or other informational pages can go in homeController.js by
convention. Figure 9.2 shows the file structure that your application will follow.

Figure 9.2. Express.js MVC file structure

Figure 9.3 shows Express.js as a layer over your application that handles requests but also feeds
your application’s controllers. The callbacks decide whether a view should be rendered or some
data should be sent back to the client.

Figure 9.3. Express.js can follow the MVC structure with routes feeding controllers

To restructure your express_routes application to adhere to this structure, follow these steps:

1. Create a controllers folder within your project folder.

2. Create a homeController.js file within controllers.

3. Require your home controller file into your application by adding the following to the top of

main.js:

const homeController = require("./controllers/homeController");

4. Move your route callback functions to the home controller, and add them to that

module’s exports object. Your route to respond with a vegetable parameter, for example, can

move to your home controller to look like listing 9.6. In homeController.js, you

assign exports.sendReqParam to the callback function. sendReqParam is a variable name, so

you can choose your own name that describes the function.

Listing 9.6. Moving a callback to homeController.js

exports.sendReqParam = (req, res) => { 1

 let veg = req.params.vegetable;

 res.send(`This is the page for ${veg}`);

};

1. 1 Create a function to handle route-specific requests.

5. Back in main.js, change the route to look like the next listing. When a request is made to this path,

the function assigned to sendReqParam in the home controller is run.

Listing 9.7. Replacing a callback with a controller function in main.js

app.get("/items/:vegetable", homeController.sendReqParam); 1

0. 1 Handle GET requests to “/items/:vegetable”.

6. Apply this structure to the rest of your routes, and continue to use the controller modules to store

the routes’ callback function. You can move your request-logging middleware to a function in the

home controller referenced as logRequestPaths, for example.

7. Restart your Node.js application, and see that the routes still work. With this setup, your

Express.js application is taking on a new form with MVC in mind.

In the next lesson, I discuss how to serve views and assets with Express.js.

Installing and using express-generator

As you continue to evolve your Express.js application, you adhere to a specific file structure. You
have many ways to construct your application, though, depending on its intended use. To jump-
start your application in the Express.js framework, you can use a package called express-
generator.

express-generator provides some boilerplate code for an application. This tool offers scaffolding
(prebuilt folders, modules, and configurations) that might have taken you a few hours to build from
scratch. To install this package, use the global flag with the npm installcommand. Enter the
following command in terminal: npm install express-generator -g. For UNIX machines, you
may need to prepend this command with sudo or run it as an administrator.

When this package is installed, you can create a new project by entering express and the project
name in a new terminal window. If your project is called Generation Generator, for example,
enter express generation_generator in terminal. The express keyword in this context
uses express-generator in terminal to construct the application with some views and routes.

Although this tool is great for constructing applications quickly, I don’t recommend using it while
running the exercises in this book. You should use a slightly different application structure from the
one provided by express-generator. For more information about this package,
visit https://expressjs.com/en/starter/generator.html.

Quick check 9.3

Q1:

What is the role of controllers in MVC?

QC 9.3 answer

1:

Controllers are responsible for processing data by communicating with models, performing code
logic, and calling for a view to be rendered in a server’s response.

SUMMARY

In this lesson, you learned how to build routes and middleware functions with Express.js. Then you
used middleware functions to work with Express.js in analyzing request body contents. At the end
of the lesson, you learned about MVC and saw how routes can be rewritten to use controllers in
your application. In lesson 10, you jump into views and a rich feature known as layouts. With these
tools, you can build your views faster.

Try this

You have the directory structure set up for an MVC Express.js application. Try creating a POST route
for the /sign_up path, using Express.js methods and controller functions for the route’s callback.

The function’s name in the controller can read something like userSignUpProcessor.

Lesson 10. Connecting views with templates

In lesson 9, you constructed a routing system for your Express.js application. In this lesson, you
learn about templating engines and see how to connect your routes to views. You learn how to
work with Embedded JavaScript (EJS), a syntax for applying Java-Script functions and
variables within your views, as well as how to pass data into those views from your controllers.
You start by setting up EJS with your application and seeing how templating engines work. By
the end of the lesson, you’ll understand the syntax needed to master EJS in your Express.js
applications. At the end of the lesson, you install the express-ejs-layoutspackage to use
dynamic layouts in your application.

This lesson covers

• Connecting a templating engine to your application
• Passing data from your controllers to your views
• Setting up Express.js layouts

Consider this

You have some wireframes laying out how your application pages will look, and you notice that
many of the pages share components. Your home page and contact page both use the same
navigation bar. Instead of rewriting the HTML representing the navigation bar for each view, you
want to write the code once and reuse it for each view.

With templating in a Node.js application, you can do just that. In fact, you’ll be able to render a
single layout for all your application pages or share view content in code snippets called partials.

10.1. CONNECTING A TEMPLATING ENGINE

In lesson 9, you reorganized your routes to serve responses with Express.js routing methods and
an MVC application structure. The next step is using your routes to respond with more than
single lines of text. As in unit 1, you’ll render separate files, but these files aren’t purely HTML,
and you won’t explicitly need the fs module to serve them.

Part of what makes Express.js so popular is its ability to work with other packages and tools.
One such tool is the templating engine. Templating allows you to code your views with the
ability to insert dynamic data. In this book, you’ll be writing your views in HTML with EJS—
data in the form of JavaScript objects embedded in the page with special syntax. These files have
the .ejs extension. There are many templating languages like EJS, but this book assumes that
you have moderate experience with HTML, and EJS proves to be the most effective and simplest
templating language to learn with that background. If you want to explore other templating
engines, consider some of the ones listed in table 10.1.

Table 10.1. Templating engines

Templating
engine

Description

Mustache.js Without the custom helpers offered by Handlebars.js, this templating engine is simple

and lightweight, and it compiles for many languages other than JavaScript

(https://mustache.github.io/).

Handlebars.js Functionally similar to EJS, this templating engine focuses on the use of curly brackets,

or handlebars, for inserting dynamic content into your views (http://handlebarsjs.com/).

Underscore.js In addition to other JavaScript functions and libraries, this engine offers templating with

customizable syntax and symbols (http://underscorejs.org/).

Pug.js This engine offers syntax similar to Jade in Ruby, abbreviating HTML tag names for

simplicity, and is indentation-sensitive (https://pugjs.org).

A templating engine is what Express.js uses to process your views and convert them to browser-
readable HTML pages. Any non-HTML lines are converted to HTML, with values rendered
where embedded variables once were. See figure 10.1 to understand the conversion process.

Figure 10.1. Converting EJS to HTML

In a new application project called express_templates, initialize your application,
install express as a dependency, and create your controllers folder with a home controller. In
your main.js file, require the normal Express.js module and app object, homeController.js, and
set your server to listen on port 3000. Next, install the ejs package with the following terminal
command: npm install ejs --save.

Note

You can also install express and ejs in one line by running npm install express ejs --save.

The set method

set is often used to assign values to predefined configuration variables used by your application.
Those variables, called application settings properties, are listed
at https://expressjs.com/en/api.html#app.set. Some variables are used by app itself to allow your
application to function on your computer. Assigning variables with set is another way toset the
application’s configurations.

You’ve been setting the port for your application to 3000. Although 3000 is a conventional port
number used in web development, the port number won’t stay the same when the application is
deployed online.

app.set lets you assign a value to some key that you plan to reuse in your application. The
following code will set port to the environment variable PORT value or 3000 if the former value is
undefined. You could use app.set("port", process.env.PORT || 3000);, forexample.

To use this set value, you need to replace your hardcoded 3000 at the end of the application main.js
file with app.get("port"). Similarly, you could run app.get("view engine"). Now you can even
replace your console.log with a more dynamic statement, such as console.log(`Server running
at http://localhost:${ app.get("port") }`);

Restart this application with the added code to make sure that it still runs correctly.

Now that the ejs package is installed, you need to let your Express.js application know that you
plan to use it for templating. To do so, add app.set("view engine", "ejs") below your require
lines in main.js. This line tells your Express.js application to set its view engineas ejs. This line
is how your application knows to expect EJS in your views folder in your main project directory.

Now that your application is ready to interpret EJS, create an index.ejs file in your views folder
with the code in listing 10.1. In this code, you use the EJS syntax <% %> to define and assign a
variable within your view. Everything within these characters runs as valid JavaScript. Each line
of HTML contains an embedded variable. By using <%= %>, you’re able to print that variable’s
value within the HTML tags.

Listing 10.1. Sample EJS content in your index.ejs view

<% let name = "Jon"; %> 1

<h1> Hello, <%= name %> </h1> 2

• 1 Define and assign a variable in EJS.

• 2 Embed a variable within HTML.

Last, create a route in main.js for the /name path. You can think of a name for the controller
function that relates to what the function will do. The following example calls the
function respondWithName: app.get("/name", homeController.respondWithName). This route
runs when a request is made to the /name path; then it calls the respondWithName function in the
home controller.

In homeController.js, add the respondWithName function as shown in the next listing. You use
the render method on the response object to respond with a view from your views folder.

Listing 10.2. Rendering a view from a controller action in homeController.js

exports.respondWithName = (req, res) => {

 res.render("index"); 1

};

• 1 Respond with a custom EJS view.

Note

Notice that you don’t need the .ejs extension for the index.ejs view, and you don’t need to specify
the folder that this view lives in. Express.js takes care of all that for you. As long as you continue
to add your views to the views folder and use EJS, your application will know what to do.

Restart your application, and visit http://localhost:3000/name in your browser. If you run into
any issues, try reinstalling the ejs and express packages, and make sure that your files are in the
correct folders.

In the next section, I talk about passing data from the controller to your EJS views.

Quick check 10.1

Q1:

What is a templating engine?

QC 10.1 answer

1:

A templating engine is the tool that Express.js uses in your application to process a template view.
Because template views contain a mix of HTML and JavaScript content, the engine’s job is to convert
this information to an HTML file that your browser can use.

10.2. PASSING DATA FROM YOUR CONTROLLERS

Now that your templates are rendering, the best way to use them is to pass data from your
controllers to your views instead of defining those variables directly in the view. To do so,
remove the line in index.ejs that defines and assigns the name variable, but keep the H1 tag and
its EJS contents.

Change your route to take a parameter in its path and then send that parameter to the view.
Your route should look like the following code: app.get("/name/:myName", home
Controller.respondWithName). Now the route takes a parameter at the end of the /namepath.

To use this parameter, you need to access it from your request params in the home -
Controller.respondWithName function. Then you can pass the name variable to your view in a
JavaScript object. Your function should look like the code in the following listing. In this code
block, you set the route parameter to a local variable; then you pass the name variable as a value
for the name key (which should match the variable name in your view).

Listing 10.3. Passing a route parameter to your view in homeController.js

exports.respondWithName = (req, res) => {

 let paramsName = req.params.myName; 1

 res.render("index", { name: paramsName }); 2

};

• 1 Assign a local variable to a request parameter.
• 2 Pass a local variable to a rendered view.

Restart your application, and visit http://localhost:3000/name/jon in your browser.

Warning

/name/jon is a different path from /name/. If you don’t add a name as a route parameter, your
application will complain that no route matches your request. You must add some text following
the second forward slash in the URL.

In the next section, I talk about layouts and partials, and discuss how they allow you to write less
code to get the same results in your views.

Quick check 10.2

Q1:

What is the format in which you send data from your controller to a view?

QC 10.2 answer

1:

To send data from your controller, you can pass a variable within a JavaScript object. The variable
that’s local to your controller’s context follows the key, whose name should match the variable
name in your view.

10.3. SETTING UP PARTIALS AND LAYOUTS

In the preceding two sections, you introduced dynamic data to your views. In this section, you
set up your views a little differently so that you can share view content across multiple pages.

To start, create an application layout. A layout is a shell in which your views are rendered. Think
of layouts as being the content that doesn’t change from page to page when you browse a
website. The bottom (footer) of the page or navigation bar might stay the same, for example.
Instead of re-creating the HTML for these components, add them to a layout.ejs file that other
views can share.

To do so, install the express-ejs-layouts package, and require it in your main.js file by layouts
= require("express-ejs-layouts"). Then let Express.js know to use this package as an
additional middleware layer by adding app.use(layouts) to your main.jsfile.

Next, create a layout.ejs file in your views folder. You can start with some simple HTML in the
layout file, as shown in the next listing. The body keyword is used by Express.js and the
layout express-ejs-layouts to fill your other views’ contents in its place.

Listing 10.4. EJS layout file contents in layout.ejs

<body>

 <div id="nav">NAVIGATION</div>

 <%- body %> 1

 <div id="footer">FOOTER</div>

</body>

• 1 Wrap body with boilerplate HTML.

When you visit a route that renders a view, you’ll notice the navigation and footer text with your
rendered view in between. This layout will continue to render along with your view on every
page load. To see, restart your application, and visit the /name/:myName path in your browser.

Partials work similarly to layouts. Partials are snippets of view content that can be included in
other views. In your recipe application, you may want to add a notification box on a few of the
pages. To do so, create a partial called notification.ejs, and add it to select EJS views by using
the include keyword. To create a partial for the navigation element, move your code for that div
to a new file called navigation.ejs. Place that file in a new folder called partials within your views
folder. Then include that file within your layout.ejs file by using the following code: <% include
partials/navigation %>. With a little styling, your view should resemble figure 10.2.

Figure 10.2. Example view of name page

Within the EJS carets, use the include keyword followed by a relative path to your partial.
Because the layout is already in the views folder, it needs to look in the partials folder on the
same directory level to find the navigation partial.

Restart your application, and visit the /name/:myName path again. If everything was set up
correctly, nothing in that view should have changed since the addition of a layout file. To prove
that the partial is working, try changing the text in the navigation partial or adding new tags to
see how content changes in your browser.

Note

When making changes in your views, you don’t need to restart your application.

Now you have an application using an EJS templating engine, a layout, and partials that accept
dynamic data. In lesson 11, you learn about handling errors and adding some configurations to
your package.json file.

Quick check 10.3

Q1:

What keyword do you use to share partials across multiple views?

QC 10.3 answer

1:

The include keyword looks for a partial in the relative path provided and renders it in place.

SUMMARY

In this lesson, you learned how to use templates in your application with EJS. You also learned
how to pass data from your controllers to application views. At the end of the lesson, you
learned how to create a layout with the express-ejs-layouts package and partials to share
content across your views. In lesson 11, you add a configuration to start your application with a
different command and handle errors with new middleware functions.

Try this

Now that you have templates, partials, and a layout in your application, you should use them to
create multiple views. Try creating a contact page for your recipe application that uses your
application layout and a partial that renders a notification box called notificationBox.ejs. Add
this partial to your index.ejs view as well.

Lesson 11. Configurations and error handling

In lesson 10, you added Embedded JavaScript (EJS) to your application views. In this lesson, you add
finishing touches to your application by modifying your package.json file to use a start script. This
script changes the way that you start your application from terminal. Then you add error handling
middleware functions to log errors and respond with error pages.

This lesson covers

• Changing your application start script

• Serving static pages with Express.js

• Creating middleware functions for error handling

Consider this

You’re in full swing developing your recipe application. As is common in programming, you run into
many errors, but you have no clear indication of those errors in your browser.

In this lesson, you explore ways to serve error pages to your browser window when appropriate.

11.1. MODIFYING YOUR START SCRIPT

To start this lesson, you modify a file that you haven’t touched in a while. The package .json file is
created every time you initialize a new Node.js application, but you’ve changed hardly any of its
values manually. In lesson 4, I talked about using the npm start command to start your application
when that script is configured in your project’s package.json.

Make a copy of your express_templates application folder from lesson 10. In your -package.json file,
locate the scripts property; you should see a placeholder for a test script. Add a comma to the end
of that test script, and add "start": "node main.js". This script allows you to run npm start to
start your application and abstracts the need to know the name of your main application file. That
part of your package.json file should look like the next listing. Within the scripts object, you can
use the key—start—to start your application by running npm start, npm run start, or npm run-
script start.

Listing 11.1. Add the npm start script to your package.json

"scripts": {

 "test": "echo \"Error: no test specified\" && exit 1",

 "start": "node main.js" 1

},

• 1 Add a start script to package.json.

Save your file, and run your application with npm start. Functionally, nothing else should change in
your application, which should start as usual.

Tip

If you experience any issues restarting your application, try reverting to node main to rule out any
accidental changes made in your main.js file.

In the next section, you improve the way that you handle errors in your application.

Quick check 11.1

Q1:

What’s the purpose of the scripts object in your package.json file?

QC 11.1 answer

1:

The scripts object allows you to define aliases for commands that you want to run with npm.

11.2. HANDLING ERRORS WITH EXPRESS.JS

So far, Express.js has been a great improvement on the development process. One perk is that the
application doesn’t hang forever when a request is made to a path for which no route exists. When
you make a request to the home page, however, if there’s no route to handle that request, you see
an unfriendly Cannot GET / in your browser.

You can take a few approaches to error handling with Express.js. The first approach is logging to
your console whenever an error occurs. You can log errors the same way that you logged the
requested path in lesson 10. Because I’m dealing with a topic that’s separate from serving normal
informational pages, I recommend that you create a new controller and install the http-status-
codes package by running npm install http-status-codes --save in the project’s terminal
window.

Create errorController.js in your controllers folder, and add the function shown in listing 11.2. This
function contains one more argument than the normal middleware function. If an error occurs in
the request-response cycle, it appears as the first argument. As with console.log, you can
use console.error to log the error object’s stack property, which tells you what went wrong. As in
the previous middleware functions, the next argument calls the next function or route in the chain,
this time passing the error object in case it needs to be processed further.

Note

You need to accept four arguments in this error handler, with the first argument always
representing the error object. Without all four arguments, the function will not be interpreted as
error handling middleware, but instead as a normal middleware function..

Listing 11.2. Adding a function to your error controller, errorController.js

exports.logErrors = (error, req, res, next) => { 1

 console.error(error.stack); 2

 next(error); 3

};

• 1 Add middleware to handle errors.

• 2 Log the error stack.

• 3 Pass the error to the next middleware function.

Tip

Using console.log is great for general debugging, but as your application gets more involved, you’ll
want to vary your log messages. Tools such as the Chrome browser’s console window can color-
coordinate these messages for you to distinguish between general log messages and error
messages.

Next, you need to tell Express.js to use this middleware function by requiring errorController.js and
adding app.use(errorController.logErrors) to your main.js file. You can invoke an error by
commenting out the line that defines the paramsName variable in the respondWithName function.
Then, when you visit http://localhost:3000/name/jon, your logErrors function will run.
Remember to uncomment that line when you’re done.

Warning

Make sure to add the middleware line in main.js after the rest of your normal route definitions.

By default, Express.js handles any errors at the end of processing a request. If you want to respond
with a custom message, however, you can add a catch-all route at the end of your routes to respond
with a 404 status code if the page is not found or a 500 status code if your application got an error in
the process. That code should look like listing 11.3 in errorController.js.

In errorController.js, the first function responds with a message to let the user know that the
request page wasn’t found in your routes. The second function notifies the user of an internal error
that prevented the request from being processed. Here, you use the http-status-codes module in
place of the code values themselves.

Listing 11.3. Handle missing routes and errors with custom messages in errorController.js

const httpStatus = require("http-status-codes");

exports.respondNoResourceFound = (req, res) => { 1

 let errorCode = httpStatus.NOT_FOUND;

 res.status(errorCode);

 res.send(`${errorCode} | The page does not exist!`);

};

exports.respondInternalError = (error, req, res, next) => { 2

 let errorCode = httpStatus.INTERNAL_SERVER_ERROR;

 console.log(`ERROR occurred: ${error.stack}`)

 res.status(errorCode);

 res.send(`${errorCode} | Sorry, our application is

experiencing a problem!`);

};

• 1 Respond with a 404 status code.

• 2 Catch all errors and respond with a 500 status code.

In main.js, order matters. respondNoResourceFound will catch requests made with no matching
routes, and respondInternalError will catch any requests where errors occurred. Add these
middleware functions to main.js, as shown in the following listing.

Listing 11.4. Handle missing routes and errors with custom messages: main.js

app.use(errorController.respondNoResourceFound); 1

app.use(errorController.respondInternalError);

• 1 Add error-handling middleware to main.js.

If you want to customize your error pages, you can add a 404.html and a 500.html page in your
public folder with basic HTML. Then, instead of responding with a plain-text message, you can
respond with this file. This file won’t use your templating engine to process the response.
Your respondNoResourceFound function in your error controller looks like the next listing. In this
code, res.sendFile allows you to specify an absolute path to your error page, which is helpful if
your normal templating renderer isn’t working.

Listing 11.5. Handle missing routes and errors with custom messages

exports.respondNoResourceFound = (req, res) => { 1

 let errorCode = httpStatus.NOT_FOUND;

 res.status(errorCode);

 res.sendFile(`./public/${errorCode}.html`, { 2

 root: "./"

 });

};

• 1 Respond with a custom error page.

• 2 Send content in 404.html.

Now that you have error messages being served to your users and logged to your terminal, you
should make sure that your application is set up for serving static files like your 404.html page.

Quick check 11.2

Q1:

Why does your middleware that handles missing routes go after your nor-mal application routes?

QC 11.2 answer

1:

The middleware function that responds with 404 status codes acts like an else inand if-else code
block. If no other route paths match the request, this function responds with the message to your
user.

11.3. SERVING STATIC FILES

This last section is a short one. In your application from unit 1, serving all different types of static
files and assets would require hundreds of lines of code. With Express.js, these file types are
accounted for automatically. The only thing you need to do is tell Express.js where to find these
static files.

Note

Static files include your assets and custom error pages, such as 404.html and 500.html. These HTML
pages don’t go through a templating engine because they don’t contain any EJS values.

To set up this task, you need to use the static method from the express module. This method
takes an absolute path to the folder containing your static files. Then, as with any other middleware
function, you need to tell the Express.js app instance to use this feature. To enable the serving of
static files, add app.use(express.static("public")) to main.js. This line of code tells your
application to use the corresponding public folder, at the same level in the project directory as
main.js, to serve static files.

With this code in place, you can visit http://localhost:3000/404.html directly. You can also place an
image or another static asset in your public folder and access it by filename after the main domain
in your URL. If you add an image, such as cat.jpg, within another subdirectory called images, you
can view that image alone by visiting http://localhost:3000/images/cat.jpg.

Quick check 11.3

Q1:

What important static files live in your public folder?

QC 11.3 answer

1:

Your public folder contains static HTML files for your error pages. If some-thing goes wrong in your
application, these files can be served back to the client.

SUMMARY

In this lesson, you learned how to change your application’s start script. You also learned how to log
and manage some of the errors that occur in your Express.js application. At the end of the lesson,
you set up Express.js to serve static assets from your public folder. Now you have quite a few tools
at your disposal to use in building your recipe application. In lesson 12, you put what you’ve learned
to the test by restructuring the Confetti Cuisine application.

Try this

Now that you have the ability to serve static files, build a creative HTML page for 404 and 500
errors in your application. These files don’t use the normal layout file that you use for templating,
so all your styling must live inside the HTML page.

Lesson 12. Capstone: Enhancing the Confetti Cuisine site with Express.js

After some consideration, I decided that it would be easier to rely on a web framework to assist
me in building a web application for Confetti Cuisine. Building custom routes and application
logic has become a tedious task, so I’m converting my application to use Express.js.

I still want the application to have home, courses, and sign-up pages. I need to convert the
routes to use keywords and syntax found in Express.js. I need to make sure that I serve my static
assets out of the public directory and have all necessary package.json configurations set up for
launching the application locally. When I feel ready to make this transformation, I’ll start by
initializing the project with npm init.

12.1. INITIALIZING THE APPLICATION

To begin this site redesign, I’m going to create a new project directory called confetti_cuisine
and enter that folder. Within the project folder in terminal, I’ll initialize the application
package.json with npm init.

Remembering the configurations that I previously set, I’ll keep the default settings for the
project name and use entry point main.js.

Now that my package.json is set up, I’m going to add a start script under "scripts", which will
allow me to run the application by using npm start instead of node <filename>. I add "start":
"node main.js" to my list of scripts.

Tip

Don’t forget to separate multiple script items with a comma.

The last step in the initialization process is adding the main Express.js web framework, EJS
templating, a layout, and http-status-codes packages to this project. To do so, I run npm
install express ejs express-ejs-layouts http-status-codes --save in the command line.

Note

The --save flag saves the express package as a dependency in this project’s package.json. This
way, any future work on this project will ensure that Express.js is installed before anything is
able to work.

My resulting package.json file looks like the following listing.

Listing 12.1. Project configurations in package.json

{

 "name": "confetti_cuisine",

 "version": "1.0.0",

 "description": "A site for booking classes for cooking.",

 "main": "main.js",

 "scripts": {

 "test": "echo \"Error: no test specified\" && exit 1",

 "start": "node main.js"

 },

 "author": "Jon Wexler",

 "license": "ISC",

 "dependencies": { 1

 "ejs": "^2.6.1",

 "express": "^4.16.4",

 "express-ejs-layouts": "^2.5.0",

 "http-status-codes": "^1.3.0"

 }

}

• 1 List dependencies installed for this project.

Before I add any new files, I’m going to set up my application’s directory structure. The final
project structure will look like listing 12.2. I’ll add the following:

• A views folder to hold my HTML pages
• A controllers folder to hold any routing functions
• A public folder with css, js, and images folders within to hold my client-side assets

Listing 12.2. Confetti Cuisine project file structure

. 1

|____main.js

|____public

| |____css

| | |____confetti_cuisine.css

| | |____bootstrap.css

| |____images

| | |____product.jpg

| | |____graph.png

| | |____cat.jpg

| | |____people.jpg

| |____js

| | |____confettiCuisine.js

|____package-lock.json

|____package.json

|____controllers

| |____homeController.js

| |____errorController.js

|____views

| |____index.ejs

| |____courses.ejs

| |____contact.ejs

| |____error.ejs

| |____thanks.ejs

| |____layout.ejs

• 1 List of project directory from root

Great. Now I’m ready to add application logic.

12.2. BUILDING THE APPLICATION

Now that the application is set up with Express.js installed, I’ll create my main.js application
file. Although this file will resemble my http module version, writing it from scratch will
eliminate a ton of headaches in converting line by line. My main.js will look like the code
in listing 12.3.

The first line of main.js requires the contents of the Express.js package, assigning them to a
constant called express. As with the app constant in the first version of this application, I’ll
instantiate the express object, representing this project’s main application framework as
another constant called app. The app constant will have the ability to set up a GET route, listening
for requests made to the root URL (/) and responding with the Express.js send function called

on the response. I can finally set up the server to listen on port 3000 and log a message to my
console when it’s up and running.

Listing 12.3. Setting up the main application logic in main.js

const express = require("express"), 1

 app = express(); 2

app.set("port", process.env.PORT || 3000);

app.get("/", (req, res) => { 3

 res.send("Welcome to Confetti Cuisine!");

});

app.listen(app.get("port"), () => { 4

 console.log(

 `Server running at http://localhost:${app.get(

 "port"

)}`

);

});

• 1 Require express.
• 2 Instantiate the express application.
• 3 Create a route for the home page.
• 4 Set the application up to listen on port 3000.

With this logic in place, I can start the application by running npm start in my command line.

The json and urlencoded Express.js middleware functions will be used as middleware that
interpret incoming request bodies for me. In main.js, I’ll add the code in the next listing.

Listing 12.4. Adding body parsing to the top of main.js

app.use(

 express.urlencoded({ 1

 extended: false

 })

);

app.use(express.json());

• 1 Tell the Express.js app to use body-parser for processing URL-encoded and
JSON parameters.

Now my application is ready to analyze data within incoming requests. Next, I need to create
routes to reach views in my application.

12.3. ADDING MORE ROUTES

Now that my application has a starting point, I’m going to create routes for the courses and sign-
up pages. Additionally, I’ll add a POST route to handle submissions made from the form on the
sign-up page.

First, I create a home controller in my controllers folder, which is where I’ll store the functions
my routes will use. I need to require this controller by adding const homeController =
require("./controllers/homeController") in main.js. I add the code in the next listing to my
home controller, below my application’s first route. All three of these functions respond with an
EJS page reflecting the requested route. I need to create the following
views: courses.ejs, contact.ejs, and thanks.ejs.

Listing 12.5. Adding route actions to my home controller in homeController.js

exports.showCourses = (req, res) => { 1

 res.render("courses");

};

exports.showSignUp = (req, res) => {

 res.render("contact");

};

exports.postedSignUpForm = (req, res) => {

 res.render("thanks");

};

• 1 Add callback functions for specific routes.

In my main.js, I add the following routes and modify my original home-page route to use my
home controller too, as shown in listing 12.6. The first route handles GET requests made to view
course listings. For the most part, this route behaves similarly to the home page. The route for
the contact page also listens for GET requests, as most people will be expecting a sign-up form on
this page when the /contact URL is requested. The last route is for POSTrequests targeting
the /contact URL. The GET route is used internally to view who submitted a request to get in
contact. The POST route is used by the sign-up form on the contact page.

Listing 12.6. Adding routes for each page and request type in main.js

app.get("/courses", homeController.showCourses); 1

app.get("/contact", homeController.showSignUp);

app.post("/contact", homeController.postedSignUpForm);

• 1 Add routes for the courses page, contact page, and contact form
submission.

Now that all the routes are defined, I’m still missing the bulk of the content. It’s time to add and
render some views.

12.4. ROUTING TO VIEWS

With Express.js, my views are going to be cleaner and easier to render. I need to create the views
listed in table 12.1.

Table 12.1. Confetti Cuisine views

Filename Purpose

layout.ejs Serves as the application’s main styling and navigation foundation

index.ejs Produces the home page’s content

courses.ejs Displays course content

contact.ejs Displays the contact form

thanks.ejs Displays a thank-you message upon form submission

error.ejs Displays an error message when a page isn’t found

I’ll start by generating my application’s layout view, which will handle what the navigation and
general site structure looks like from page to page.

For the layout to work, I need to include it in my main application file, right below my
initialization of the Express.js module, as shown in listing 12.7. First, I require the express-ejs-
layouts module to allow me to use the layout.ejs file. Then, I set the application server to use
the ejs rendering template. Last, I set the application server to use the recently
required layouts module. This way, when a new view is rendered, it goes through the layout.ejs
file.

Listing 12.7. Enable EJS layout rendering in main.js

const layouts = require("express-ejs-layouts"); 1

app.set("view engine", "ejs"); 2

app.use(layouts); 3

• 1 Require the express-ejs-layouts module.
• 2 Set the application to use ejs.
• 3 Set the application to use the layout module.

I’ll add this file, called layout.ejs, to my views folder. The key component of this file includes <%-
body %>, which will be replaced by my target route’s rendered content.

Each of the following views will use this layout to provide visual consistency (and to avoid
repetition of code between files). Within the views folder, I’m going to create index.ejs,
courses.ejs, contact.ejs, thanks.ejs, and error.ejs files. Like the layout file, these views render as
Embedded JavaScript, allowing me to dynamically feed content to the pages from the server file.
After creating index.ejs, I change my home-page route (/) to render the index page in place of
sending plain text.

The one view I need to focus on is contact.ejs, where I’ll have prospective students fill out a
form, submitting a POST request to my application’s /sign-up route. That form will look like the
HTML in the next listing. Notice that the form action is /contact and the form method is POST.
When the form is submitted, it will make a POST request to the /contact route.

Listing 12.8. Contact form in contact.ejs

<form action="/contact" method="post">

 <label for="name">Name</label>

 <input type="text" name="name">

 <label for="email">Email</label>

 <input type="email" name="email">

 <input type="submit" value="Submit">

</form> 1

• 1 Display example contact form.

I should be all set. If I named my routes to match and render their corresponding views, I
should be able to launch my app and see those views rendered within the layout I built. The only
thing missing is my app’s ability to serve images and other static files, which I cover next.

Note

The layout file is rendered on every page I visit. Try adding new HTML content above and below
the <%- body %>marker. Notice that these elements are applied to every page.

12.5. SERVING STATIC VIEWS

In my first take of this application using http, serving static assets became a big mess. With
every new asset I added to my project directory, I needed to create a new route and handle it
appropriately. Luckily, Express.js handles this task nicely, requiring virtually no effort on my
part to handle any and all static files I want my application to serve. To enable static assets, I’ll
use Express.js’ static function by adding app.use(express.static ("public"))below the
initialization of Express.js in my application file. This addition allows individual assets in the
application to be served directly.

The last major step in converting the app to an Express.js app is using dynamic content in the
views.

12.6. PASSING CONTENT TO THE VIEWS

Confetti Cuisine often modifies its course listings, so the application is better off not showing
those courses on a static web page. With Express.js, passing content from the server logic to the
view is a piece of cake.

For this app, I need to display an array of course offerings as a JavaScript object. Then I can
send the object to my rendered view. I add the code in listing 12.9 to homeController.js. By
assigning the courses variable to an array of JavaScript objects, I can use this list and target
specific keys in my view. The res.render method allows me to pass the courses object to the
view and refer to it as offeredCourses on that page.

Note

Within the view, I can access this array by using the variable name offeredCourses. Within the
home controller, that array goes by the name courses.

Listing 12.9. Set up content on server and pass into rendered view in homeController.js

var courses = [

 {

 title: "Event Driven Cakes",

 cost: 50

 },

 {

 title: "Asynchronous Artichoke",

 cost: 25

 },

 {

 title: "Object Oriented Orange Juice",

 cost: 10

 }

]; 1

exports.showCourses = (req, res) => {

 res.render("courses", {

 offeredCourses: courses 2

 });

};

• 1 Define an array of courses.
• 2 Pass the courses array to the view.

To benefit from this feature, I need to add some EJS and HTML to loop through the
offeredCourses list in courses.ejs and print the relevant content, as shown in listing 12.10.

Listing 12.10. Loop through and display dynamic content in view in courses.ejs

<h1>Our Courses</h1>

<% offeredCourses.forEach(course => { %> 1

 <h5> <%= course.title %> </h5>

 $ <%= course.cost %>

<% }); %>

• 1 Loop through the array of courses in the view.

Now the application is complete. My courses page looks like figure 12.1. Instead of modifying my
courses.ejs view every time a modification is made to the course offerings, I can change the array
in my main application file. Running the application is the easy part now.

Figure 12.1. View of courses page

I should anticipate that things won’t go exactly as planned, so it’s always smart to prepare for
certain errors and handle them accordingly. Soon, when this array of courses is replaced by
contents from a persistent database, I won’t need to make any code changes to update the
course listing.

12.7. HANDLING THE ERRORS

An application handling most expected outcomes ensures a fairly consistent and good
experience for its users. I know that my application may be missing some foolproof logic,
though, and I prefer to send my own custom error messages to my client’s audience when those
errors occur.

For error handling, I’ll create an error controller, errorController.js, to store my functions, as
shown in listing 12.11. The first function handles all requests not previously handled, which fits
the category of URLs visited without an active route and results in a 404 error, serving error.ejs.
The last function handles any internal server errors that occur. Instead of necessarily crashing
and scaring the audience away, I prefer a friendlier message.

Listing 12.11. Adding error handling routes in errorController.ejs

const httpStatus = require("http-status-codes");

exports.pageNotFoundError = (req, res) => { 1

 let errorCode = httpStatus.NOT_FOUND;

 res.status(errorCode);

 res.render("error");

};

exports.internalServerError = (error, req, res, next) => { 2

 let errorCode = httpStatus.INTERNAL_SERVER_ERROR;

 console.log(`ERROR occurred: ${error.stack}`)

 res.status(errorCode);

 res.send(`${errorCode} | Sorry, our application is taking a nap!`);

};

• 1 Handle all requests not previously handled.
• 2 Handle any internal server errors.

Then I add routes to correspond to these functions. I’ll add the routes in listing 12.12 to trigger
the functions in my error controller if no proceeding routes respond to a request.

Note

The order of routes matters. These routes must go below any preexisting routes, as they act as a
catch-all and override any routes below them.

Listing 12.12. Adding error handling routes in main.js

app.use(errorController.pageNotFoundError); 1

app.use(errorController.internalServerError);

• 1 Add error handlers as middleware functions.

I need to require this controller by adding const errorController = require("./
controllers/errorController") to the top of my main.js file. Now my application is ready to
handle errors and launch. When a URL is visited without a corresponding route, users see my
cat, Hendrix, relaxing on the error page (figure 12.2).

Figure 12.2. View of error page

SUMMARY

Through this project, I redefined the Node.js project file structure to fit a web framework. I used
npm to install three external packages. Then I rebuilt the main application file, using Express.js
syntax. To create a path for specific URLs, I set up new routes, using Express.js keywords. For a
consistent user interface, I used layouts with EJS. Using Express.js’ static library, I set up static
assets to be served to the client through my public folder. Last, I added content to the main
project application file and set up that content to be served dynamically to one of my views.

With consistent practice of these techniques and proper error handling, I can use Express.js to
build future applications in a few steps. With new features such as layouts and dynamic content,
I can try to send content to other views in my application or try modifying the layout as it’s used
throughout the app.

In unit 3, I discuss how to organize application code around persistent data with Express.js.

Unit 3. Connecting to a database

Unit 2 taught you how to set up a Node.js application with Express.js. By this point, you should
feel comfortable building a basic web application with Express.js routing and templating. This
unit is about taking the application you built in unit 2 and connecting it to a database.
A database is where values can be stored permanently, as opposed to the data in earlier lessons,
which was reset every time your application restarted.

In this book, you learn to use MongoDB, a popular database for Node.js. First, you download
and install Mongo on your computer. Then you explore the MongoDB shell, a database
environment similar to the Node.js REPL shell. Next, you learn some database theory behind
structuring your database and the data within it. You see how models fit into the model-view-
controller (MVC) architecture and how they interact with your application’s database via a
package called Mongoose. Last, you explore how a database schema—an outline of your
structured data—helps you relate data objects to one another.

With the goal of building a Node.js application that can store user information and display that
information back on your screen, this unit covers the following topics:

• Lesson 13 introduces MongoDB, a NoSQL database that stores data in a JSON structure.
In this lesson, you learn how MongoDB works with Express.js and install the database
program on your computer. You also create a database and insert some data by using the
MongoDB shell.

• Lesson 14 shows how to connect your MongoDB database to an Express.js application.
After initial setup, you learn how object-oriented programming (OOP) can help you build
reliable models for an MVC-structured Node.js application. For your models, you install
and use the Mongoose package, an object-document mapper (ODM).

• Lesson 15 discusses the types of query commands you can use with your MongoDB
database from within the Node.js application. You also implement JavaScript promises to
work with Mongoose to build a more streamlined, ES6-friendly application.

• Finally, lesson 16 shows how to put your skills to the test by implementing a MongoDB
database for the Confetti Cuisine cooking-school application. In this capstone exercise,
you save user data and newsletter emails.

Get ready to collect and store data in lesson 13.

Lesson 13. Setting up a MongoDB Database

In unit 2, you built web applications with Express.js. Structuring your applications to use the model-
view-controller (MVC) architecture, you can now handle requests through your controllers and
serve views. The third essential piece is models, with which you’ll organize data that you plan to
store permanently. In this lesson, you install MongoDB, the database system that you’ll use to store
persistent data. You also explore what makes document database structure in MongoDB
particularly convenient for Node.js applications. By the end of the lesson, you’ll have a database set
up and connected to your application.

This lesson covers

• Installing MongoDB

• Reading and entering data with in the MongoDB shell

• Connecting MongoDB to a Node.js application

Consider this

You want to start saving data from your application into a database, but you’re unsure which
database to use. With Node.js, you can work with practically any common database, such as MySQL,
PostgreSQL, Cassandra, Redis, and Neo4j. You can get a sense of the most supported and popular
database management systems by exploring their associated packages on npm.

MongoDB, however, offers a unique style of data storage that resembles JSON—a JavaScript-
friendly format that may make working with databases easier for you as you delve into saving data
with Node.js for the first time.

13.1. SETTING UP MONGODB

Storing data is arguably the most important part of application development. Without long-term
storage, you’re limited in the way you can interact with your users. The data in every application
you’ve built to this point disappeared each time you restarted the application. If data from a social
network were to disappear every time a user closed his browser or every time you restarted that
application, users would have to create new accounts and start from scratch.

A database is an organization of your data designed for easy access and efficient changes made by
your application. A database is like a warehouse: the more items you need to store, the happier
you’ll be with an organized system that helps you find those items. Like a web server, your
application connects to a MongoDB database and requests data.

Throughout this unit, I discuss how to save information to a database for long-term storage. Your
data will persist, even if the application is shut down.

MongoDB is an open-source database program that organizes data by using documents.
MongoDB documents store data in a JSON-like structure, allowing you to use key-value pairing to
associate data objects with properties.

This system of storage follows a familiar JavaScript syntax. Notice in figure 13.1 that a document’s
contents resemble JSON. In fact, MongoDB stores documents as BSON (a binary form of JSON).
Unlike relational databases used by the majority of applications, MongoDB’s nonrelational database
system leads the Node.js application community.

Figure 13.1. Example document

A look at relational databases

This book focuses on MongoDB and on how its documents complement a JavaScript-based
application platform like Node.js. It’s worth noting what MongoDB is not, however, as well as how
the rest of the programming world is working with databases.

Most databases used by software and web applications use a different model of data storage from
the document structure used in MongoDB. Most databases are relational, meaning that they
associate data via tables, like a standard spreadsheet. Within these tables, columns define the type
of data that should be stored, and rows store the values that correspond to the columns. In the
following figure, data representing people, courses, and which people are enrolled in certain
courses is displayed in separate tables.

Example relational database structure

In this example, two tables are associated by their ID values. To connect a person with their desired
cooking course, the IDs of the items from the people and courses tables are added to new rows in a
join table. The join table generally holds only IDs of associated items to define a relationship among
those items. This relationship designed through reference IDs is where the database system gets its
name. Databases that use this structure are often SQL-based, making MongoDB a NoSQL database
system.

You could set up a relational database with Node.js—in fact, many applications do—but to best
make use of a SQL database, it helps to know how to write in the SQL language. The MongoDB query
language is simpler to understand for people who have a Java-Script background.

For more information on relational databases, I recommend reading the overview by Oracle
at https://docs.oracle.com/javase/tutorial/jdbc/overview/database.html.

In this section, you install MongoDB and look at some data. The installation process is a bit different
for Windows and Macintosh. For the Mac, the recommended approach is a terminal command-line
tool called Homebrew. You can install Homebrew by entering the command shown in the next
listing.

Listing 13.1. Command to install Homebrew on a Mac in terminal

mkdir homebrew && curl -L

https://github.com/Homebrew/brew/tarball/master |

 tar xz --strip 1 -C homebrew 1

• 1 Run the command in terminal to install Homebrew on MacOS machines.

Note

Homebrew is a tool that helps you install software and other low-level tools such as database
management systems. For more information, visit https://brew.sh.

When Homebrew is installed, you should be able to enter brew in any new terminal window and see
a list of available Homebrew commands, one of which is brew install. Install MongoDB by
running brew install mongodb.

Tip

If your computer throws an error or complains about permissions issues at any point in the
installation, you may need to run the command as a superuser by appending sudo to the command.
Then you’ll be prompted to enter your computer’s login password.

Next, create a folder called db within another folder called data at your computer’s root level (as far
back as you can cd .. in a terminal window). You can create this folder by entering mkdir -p
/data/db in a terminal window.

You may need to give permissions to your user account to use this folder. To do so, run sudo chown
<your_username> /data/db, and enter your computer’s password. For Windows, the steps are as
follows:

• Go to https://www.mongodb.com/download-center#community in your browser.

• Download MongoDB for Windows (.msi).

• When the download is complete, open the file, and click through the default installation steps.

• When the installer completes, go to your C:\ drive, and create a new folder called data and a folder

within it called db.

Note

In Windows, you may need to add the MongoDB folder path to your environment’s PATH variable.
To add it, right-click Computer, choose Properties Advanced system settings Environment variables
Edit environment variables PATH, and add your MongoDB executable path to this string. Your

MongoDB path might look something like C:\Program
Files\MongoDB\Server\3.6.2\bin\mongod.exe.

For more installation instructions, including those for Ubuntu Linux machines, go
to https://docs.mongodb.com/v3.0/tutorial/install-mongodb-on-ubuntu.

So far, you’ve gotten MongoDB installed on your computer. Like a web server, Mongo-DB needs to
be started to create new databases for your applications. You can start MongoDB by
running mongod in a terminal window. This command assigns MongoDB a port and establishes the
location of its databases at data/db.

Note

To start and stop MongoDB with Homebrew on a Mac, run brew services start mongodbor brew
services stop mongodb. Homebrew runs the database server in the background, so
if mongod doesn’t work, you may have started MongoDB with Homebrew elsewhere.

You can test whether Mongo was installed successfully by typing mongo in a new terminal window.
This command brings up the MongoDB shell, an environment within which you can run MongoDB
commands and view data. This shell environment is similar to REPL because it isolates your
terminal window to allow you to interact purely with MongoDB syntax. When you have some data
to work with, you can further explore this environment.

Quick check 13.1

Q1:

What data structure does MongoDB use to store data?

QC 13.1 answer

1:

MongoDB uses documents to store data.

13.2. RUNNING COMMANDS IN THE MONGODB SHELL

Now that MongoDB is running, it’s ready to receive commands to add, view, delete, or otherwise
change data. Before you connect MongoDB to your application, you can test some commands in the
MongoDB shell.

Warning

Commands that you run in the MongoDB shell are permanent. If you delete data (or an entire
database), there’s no going back.

Run mongo in a new terminal window. This command should prompt the shell to start. You’ll be
greeted by your MongoDB version number, potentially a few warnings (which you can ignore for
now), and the familiar > to indicate that the shell is active and ready for commands.

MongoDB can store multiple databases; it’s a management system for all your applications’
databases. To start, the MongoDB shell places you in the test database. You can see this test
database by entering db, to list your current database, after the prompt (figure 13.2).

Figure 13.2. MongoDB shell viewing current test database

To view all available databases, run show dbs. With a clean install of MongoDB, your shell’s
response should look like the next listing. Your test database is one of three that comes
prepackaged with MongoDB. To the right of the database name is the size of the database. Because
you haven’t stored any data yet, the databases are understandably empty.

Listing 13.2. Show all databases in terminal

admin 0.000GB

local 0.000GB

test 0.000GB 1

• 1 View local databases.

You can create a new database and simultaneously switch into it by entering use
<new_database_name>. Try switching to a new database for the recipe application by entering use
recipe_db. Then run db again to see that you’re within the recipe_dbdatabase.

Note

You won’t see your new database in the list of databases until data is added.

To add data to your database, you need to specify a collection name with which that data is
associated. A MongoDB collection is representative of your data model, storing all documents
related to that model within the same grouping. If you want to create a contact list for the recipe
application, for example, create a new collection and add a data item with the command shown in
the following listing. The insert method runs on a MongoDB collection to add elements of a
JavaScript object to a new document.

Listing 13.3. Add data to a new collection in terminal

db.contacts.insert({

 name: "Jon Wexler",

 email: "jon@jonwexler.com",

 note: "Decent guy."

}) 1

• 1 Insert new data into the database.

At this point, there’s no strict collection structure; you can add any values to new documents
without needing to follow previous data patterns. Insert another item into the contactscollection
with these properties: {first_name: “Jon”, favoriteSeason: “spring”, countries_visited:
42}. MongoDB lets you add these seemingly conflicting data elements.

Note

Just because MongoDB lets you store inconsistent data doesn’t mean that you should. In lesson 14, I
discuss ways of organizing data around your application’s models.

To list the collection’s contents, you can enter db.conntacts.find(). You should see a response
that looks like the next listing. Both inserted items are present, with an extra property added by
MongoDB. The id property stores a unique value that you can use to differentiate and locate
specific items in your database.

Listing 13.4. Find all data response in terminal

{"_id": ObjectId("5941fce5cda203f026856a5d"), "name": "Jon

Wexler", "email": "jon@jonwexler.com", "note":

"Nice guy."} 1

{"_id": ObjectId("5941fe7acda203f026856a5e"), "first_name":

"Jon", "favoriteSeason": "spring", "countries_visited": 42}

• 1 Display results of database documents.

ObjectId

To keep your data organized and unique, MongoDB uses an ObjectId class to record some
meaningful information about its database documents. ObjectId("5941fe7acda203f026856a5e"),
for example, constructs a new ObjectIdrepresenting a document in your database. The
hexadecimal value passed into the ObjectIdconstructor references the document, a timestamp of
the record’s creation, and some information about your database system.

The resulting ObjectId instance provides many useful methods that you can use to sort and
organize data in your database. As a result, the _id property becomes a more useful feature in
MongoDB than a string representation of the document ID.

Try searching for a specific item in the contacts collection by entering db.contacts .find({_id:
ObjectId("5941fce5cda203f026856a5d")}).

Note

Replace the ObjectId in this example with one from your own database results.

MongoDB Compass

As you become familiar with MongoDB, you may want a more user-friendly window into your
MongoDB databases than the MongoDB shell in terminal. The people at MongoDB agreed and have
produced a MongoDB graphical user interface called MongoDB Compass for all major operating
systems.

MongoDB Compass is straightforward to use. To view the database that you set up for your recipe
application, follow these steps:

1. Download the software from https://www.mongodb.com/download-center#compass.
2. Follow the installation steps to add MongoDB Compass to your applications folder.
3. Run MongoDB Compass and accept the default connection settings to your existing

MongoDB setup.

4. See your databases (including recipe_db) listed with options to view the collections and
documents within them, as in figure 13.3.

Figure 13.3. Database view in MongoDB Compass

Database view in MongoDB Compass

I recommend using MongoDB Compass as a supplemental tool while you work with MongoDB in
your application.

You can use many MongoDB commands. Table 13.1 lists a few that you should know about.

Table 13.1. MongoDB Shell Commands

Command Description

show collections Displays all the collections in your database. Later, these collections

should match your models.

db.contacts.findOne Returns a single item from your database at random or a single item

matching the criteria passed in as a parameter, which could look like

findOne({name: ‘Jon’}).

db.contacts.update({name: “Jon”},

{name: “Jon Wexler”})

Updates any matching documents with the second parameter’s property

values.

db.contacts.delete({name: “Jon

Wexler”})

Removes any matching documents in the collection.

db.contacts.deleteMany({}) Removes all the documents in that collection. These commands can’t be

undone.

For more practice, view the command cheat sheet
at https://docs.mongodb.com/manual/reference/mongo-shell/.

In the next section, you see how to add MongoDB to your Node.js application.

Quick check 13.2

Q1:

What MongoDB command can you use to view existing collections within a database?

QC 13.2 answer

1:

show collections lists the collections within the active database in your MongoDB shell.

13.3. CONNECTING MONGODB TO YOUR APPLICATION

To add MongoDB to your Node.js recipe application, enter your project folder (or create a newly
initialized project) in terminal, and install the mongodb package by running npm i mongodb -S. This
command saves the mongodb package to your project’s package.json dependencies.

Note

In the corresponding code repository for this lesson, some views and styling rules have been added
from the last capstone project.

At the top of your main.js file, add the code shown in listing 13.5. Require the MongoDB module to
use the MongoClient class. MongoClient sets up a connection to your local database at its default
port. The callback function returns your connection to the MongoDB server. Then get the database
called recipe_db from your connection to the server. If there’s no database by the name provided,
MongoDB creates one for use in the app.

Note

Remember to run mongod to ensure that your MongoDB server is running before you try to connect
to it.

Next, ask the database to find all records in the contacts collection and return them in an array.
The resulting data is returned in the callback function. Then you can log the results to the console.

Listing 13.5. Add MongoDB connection to Express.js in main.js

const MongoDB = require("mongodb").MongoClient, 1

 dbURL = "mongodb://localhost:27017",

 dbName = "recipe_db";

MongoDB.connect(dbURL, (error, client) => { 2

 if (error) throw error;

 let db = client.db(dbName); 3

 db.collection("contacts")

 .find()

 .toArray((error, data) => { 4

 if (error) throw error;

 console.log(data); 5

 });

});

• 1 Require the MongoDB module.

• 2 Set up a connection to your local database server.

• 3 Get the recipe_db database from your connection to the MongoDB server.

• 4 Find all records in the contacts collection.

• 5 Print the results to the console.

Note

The find query method here works differently from a find query in a traditional functional
programming language. If you get no match when you use find in MongoDB, you get an empty
array.

You can use the same commands within your Node.js application that you did in the MongoDB shell.
To add a new item to the database, for example, you can add the code in listing 13.6 within your
MongoDB connection callback function.

As when you query all the items in the database, you connect to the contacts collection and insert
an item. If the new data was inserted successfully, you log that database message to the console.

Listing 13.6. Insert data from your Node.js application into terminal

db.collection("contacts")

 .insert({

 name: "Freddie Mercury",

 email: "fred@queen.com"

 }, (error, db) => { 1

 if (error) throw error;

 console.log(db); 2

 });

• 1 Insert a new contact into the database.

• 2 Log the resulting errors or saved item.

In lesson 14, you explore a package called Mongoose, which works with MongoDB to provide a bit
more organization to your application’s storage.

Quick check 13.3

Q1:

True or false: If you try to connect to a database that doesn’t exist, MongoDB throws an error.

QC 13.3 answer

1:

False. MongoDB creates a new database by the name you provided instead of throwing an error.

SUMMARY

In this lesson, you learned how to set up MongoDB and how to use certain commands to manage
databases on your computer. At the end of the lesson, you inserted collections and documents into
your own database and connected that database to your Node.js application. In lesson 14, you build
models to represent the types of data that you want to store in your application.

Try this

Imagine that you’re creating an application to track ice-cream-truck statistics. Create an
appropriately named database with a collection called ice_cream_flavors. Try inserting some
flavors and include fields that would help with your statistics analysis.

Lesson 14. Building models with Mongoose

In lesson 13, you got up and running with MongoDB. With a database connected to your Node.js
application, you’re ready to save and load data. In this lesson, you apply a more object-oriented
approach to your data. First, you install the Mongoose package, a tool that provides a syntactic
layer between your application logic and your database. Mongoose allows you to convert your
application data to fit a model structure. Later in the lesson, you build your first model and
schema to represent newsletter subscribers to your recipe application.

This lesson covers

• Installing and connecting Mongoose to your Node.js application
• Creating a schema
• Building and instantiating Mongoose data models
• Loading and saving data with custom methods

Consider this

You finally have a database connected to your application, but data can change over time. One day,
you may want to require all recipes to follow the same format. How can you determine such a
structure and make sure that all saved data follows that structure’s rules?

In this lesson, you explore Mongoose, a library used to create model schema. When you use these
schemas, your data begins to follow strict rules that only you can customize.

14.1. SETTING UP MONGOOSE WITH YOUR NODE.JS APPLICATION

You’ve already experienced Express.js and seen how it helps you handle HTTP requests and
responses. Similarly, other packages are available to assist with the communication between
your Node.js application and its database. The tool you’re going to use is called
Mongoose. Mongoose is an object-document mapper (ODM) that allows you to run Mongo-DB
commands in a way that preserves the object-oriented structure of your application. With
MongoDB alone, for example, it’s difficult to keep one saved document consistent with the next.
Mongoose changes that situation by offering tools to build models with schemas defining what
type of data can be saved.

I discussed model-view-controller (MVC) architecture in unit 2 and described how controllers
communicate with both views and models to ensure that the correct data flows through the
application. A model is like a class for a JavaScript object that Mongoose uses to organize your
database queries. In this section, you install Mongoose and see what a model looks like in your
application (figure 14.1).

Figure 14.1. Models created with Mongoose map to documents in MongoDB.

To install Mongoose, run npm i mongoose -S within your project folder in terminal. With
Mongoose, you no longer need to require mongodb at the top of main.js or use any of the
MongoDB code from lesson 13. Add the code in listing 14.1 to main.js. Require mongoose into the
application file. Set up the application’s connection to your MongoDB database. (The same rules
apply here as in a normal MongoDB connection.) Then assign the database connection to
the db variable, which you can use later in the file for data changes or database state changes.

Listing 14.1. Configuring Mongoose with your Node.js application in main.js

const mongoose = require("mongoose"); 1

mongoose.connect(

 "mongodb://localhost:27017/recipe_db", 2

 {useNewUrlParser: true}

);

const db = mongoose.connection; 3

• 1 Require mongoose.
• 2 Set up the connection to your database.
• 3 Assign the database to the db variable.

Note

Remember to have the MongoDB server running in the background. To run Mongo-DB,
enter mongod in a terminal window.

That’s all you need to do to set up Mongoose. You can log a message as soon as the database is
connected by adding the code in the next listing to main.js. The database connection runs the

code in the callback function (the log message) only once upon receiving an “open” event from
the database.

Listing 14.2. Log a message when the database is connected in main.js

db.once("open", () => { 1

 console.log("Successfully connected to MongoDB using Mongoose!");

});

• 1 Log a message when the application connects to the database.

In the next section, you explore how to model your data to make best use of Mongoose.

Quick check 14.1

Q1:

What is an ODM?

QC 14.1 answer

1:

ODM is an object-document mapper, which is the role of Mongoose in your application
development. ODM (like an object-relational mapper) makes it easier to think purely in terms of
objects in your application and not worry about how your data is structured in the database.

14.2. CREATING A SCHEMA

A schema is like a class definition in some languages or, more broadly, a blueprint for how you
want data to be organized for specific objects in your application. To avoid inconsistent data,
where some documents have an email field and others don’t, for example, you can create a
schema stating that all contact objects need to have an email field to get saved to the database.

Because you want to add a newsletter subscription form to the recipe application, create a
schema for the subscriber. Add the code from listing 14.3 to main.js. mongoose.Schema offers a
constructor that allows you to build a schema object with the given parameters. Then add object
properties to state the name of the object’s field and its data type. Someone’s name can’t be a
number, for example.

Listing 14.3. Subscriber schema in main.js

const subscriberSchema = mongoose.Schema({ 1

 name: String, 2

 email: String,

 zipCode: Number

});

• 1 Create a new schema with mongoose.Schema.
• 2 Add schema properties.

Note

MongoDB isn’t enforcing your schema; Mongoose is. For more information about Mongoose
schema data types, visit http://mongoosejs.com/docs/schematypes.html.

Now that the schema is defined, you need to apply it to a model by using const Subscriber =
mongoose.model(“Subscriber”, subscriberSchema). The model is what you’ll use to instantiate
new Subscriber objects, and the schema you created can be used for that model.
The model method takes a model name of your choosing and a previously defined schema (in
this case, the subscriberSchema).

You can instantiate new objects from this model by referring to Subscriber. You have two ways
to generate new objects, as shown in listing 14.4. You can construct a new instance of
the Subscriber model by using the new keyword and by passing properties that abide by
the subscriberSchema earlier in the section. To get this newly created Subscriber object into the
database, you can call save on it and handle any errors or returned data through a callback
function.

An error may have to do with data that doesn’t match the schema types you defined earlier. The
saved item returns data that you can use elsewhere in the application. You may want to thank
the subscriber by name for signing up, for example. create does what new and save do in one
step. If you know that you want to create and save the object right away, use this Mongoose
method.

Note

Instantiating objects from your Mongoose models is similar to instantiating Java-Script objects.
The new keyword can be used with JavaScript Array and other data types.

Listing 14.4. Statements to create and save models in main.js

var subscriber1 = new Subscriber({

 name: "Jon Wexler",

 email: "jon@jonwexler.com"

}); 1

subscriber1.save((error, savedDocument) => { 2

 if (error) console.log(error); 3

 console.log(savedDocument); 4

});

Subscriber.create(

 {

 name: "Jon Wexler",

 email: "jon@jonwexler.com"

 },

 function (error, savedDocument) { 5

 if (error) console.log(error);

 console.log(savedDocument);

 }

);

• 1 Instantiate a new subscriber.
• 2 Save a subscriber to the database.
• 3 Pass potential errors to the next middleware function.
• 4 Log saved data document.
• 5 Create and save a subscriber in a single step.

Add the code from the listings in this section to your main.js file. As soon as you start the
application with node main.js, you should see your MongoDB recipe_db database populate
with a new subscriber.

Quick check 14.2

Q1:

True or false: Using new Subscriber({ name: “Jon”, email:“jon@jonwexler.com”}) saves a new
record to your database.

QC 14.2 answer

1:

False. This code only creates a new virtual object. If you store the value of this line to a variable and
call save on that variable, the new subscriber is stored in the database.

14.3. ORGANIZING YOUR MODELS

Now that you have a way of saving data in the form of Mongoose models, you’ll want to organize
your models so that they don’t clutter your main.js file. As you do for your views and controllers,
create a models folder at the root level of your application. Within that folder, create a new file
called subscriber.js.

This file is where you’ll move your model’s code. Move all the schema and model definition code
to this file and the model to the file’s exports object. (See the following listing.) Any module that
requires subscriber.js will have access to the Subscriber model. The schema doesn’t need to be
made accessible outside the file.

Listing 14.5. Moving the schema and model to a separate module

const mongoose = require("mongoose"),

 subscriberSchema = mongoose.Schema({

 name: String,

 email: String,

 zipCode: Number

 });

module.exports = mongoose.model("Subscriber", subscriberSchema); 1

• 1 Export the Subscriber model as the only module export.

Note

You need to require mongoose in this module because both the schema and model use Mongoose
methods to work. Node.js loads a module into the project only once, so requiring it here
shouldn’t slow your application; you’re telling Node.js that you want to use an already-loaded
module.

Next, require this model in your main.js by adding const Subscriber =
require(“./models/subscriber”) below your other required modules. Now you should be able
to use the model the same way as before.

In main.js, find documents in your database by using Mongoose’s findOne and where query
methods. As an example, you can use Subscriber.findOne({ name: “Jon Wexler” })
.where(“email”, /wexler/) to find and return one document that matches the criteria name
where the email contains the string “wexler”.

This example custom query shows how flexible your queries can be to get the data you need.
Mongoose lets you chain parts of a query and even store queries in a variable. You could create a
variable var findWexlers and assign it to the code querying for emails with the word wexler.
Then you could run the query later by using findWexlers.exec(). (For more on exec, see lesson

15.)

If you plan to run a query immediately without the exec method, you need a callback function
with two arguments. The first argument represents any errors that occur, and the second
argument represents any data returned by the database, as shown in the following listing. Try
creating your own queries by following some of the example queries
at http://mongoosejs.com/docs/queries.html.

Listing 14.6. Example query to run in main.js

var myQuery = Subscriber.findOne({

 name: "Jon Wexler"

 })

 .where("email", /wexler/);

myQuery.exec((error, data) => {

 if (data) console.log(data.name);

}); 1

• 1 Run a query with a callback function to handle errors and data.

Note

For queries indicating that multiple items will be returned from the database, you should expect
an array. If no documents are found, you get an empty array.

Now you have the freedom to create more modules and save them by using their names instead
of the MongoDB collection names.

In unit 4, you learn how to make a more-robust model whose values can be created, read,
updated, and deleted—the four core model functions in a CRUD application. I discuss this
approach in detail in that unit.

Quick check 14.3

Q1:

What two components are required for each field specified in a Mongoose schema?

QC 14.3 answer

1:

The schema requires a property name and data type.

SUMMARY

In this lesson, you learned how to set up Mongoose and use your MongoDB connection to map
data to your database. You also learned about some Mongoose syntax and methods. Through the
steps in this lesson, you learned how to create a schema and model for storing persistent data.
Last, you organized your models, clearing your main.js for new tools to come. In lesson 15, you
clean up some of the functionality that you built in this lesson by implementing JavaScript
promises in your database queries.

Try this

Eventually, you’ll create more models for your recipe application. Start to think about what those
models will look like. You may need a model to represent the different types of courses offered
through the program, for example. Try creating a schema and model for a recipe item.

Lesson 15. Connecting Controllers and Models

So far, you’ve set up your Node.js application to handle data and store that data in a MongoDB
database. With the help of Mongoose, you’ve structured your data with a model and schema. In this
lesson, you connect your routes to your controllers and to these models so that you can start to
save meaningful data based on your user’s URL requests. First, you build a new controller for
subscriber routes. Then you will convert those routes to use JavaScript ES6-enabled promises.
Adding promises gives more flexibility to your database calls now and as your application grows.
Finally, you wrap up this lesson with new views and a form where subscribers can post their
information.

This lesson covers

• Connecting controllers to models

• Saving data through a controller action

• Implementing database queries with promises

• Handling posted form data

Consider this

Your recipe application is taking shape with Mongoose models to represent data in your database.
JavaScript, however, is asynchronous in your application, so database calls require callbacks to run
upon completion. Callbacks can be messy, though, especially with complicated queries.

Luckily, you can use multiple other types of syntax to wrap your callbacks and handle returned data
or errors in a more elegant way. Promises are a way to do that, and Mongoose offers support for
using the promise syntax within your application.

15.1. CREATING A CONTROLLER FOR SUBSCRIBERS

Recall that controllers are the glue between your models (the data) and your views (the web page).
Now that you have a model set up, you need a controller that handles external requests specifically
looking for data related to your model. If someone requests the home path /, you can return a view
following logic in the home controller. Now that someone may request to register as a subscriber,
you need to implement a subscriber controller. Create a new file in your controllers folder called
subscribersController.js.

Note

Conventionally, controllers are named in the plural version of your model. There’s no strict rule,
and as you can see, you already have a homeController.js, but this controller doesn’t represent a
model in the application.

This file needs access to mongoose and your Subscriber model, both of which can be required at the
top of the file. Next, you can create a controller action for when a request is made to view all
subscribers in your database. The code would look like listing 15.1. You require mongoose so that
you have access to the tools needed to save your model to the database. Next, require
the Subscriber model from your subscriber module so that you can integrate the model into your
code logic; you no longer need any reference to the Subscriber model in
main.js. getAllSubscribers will be accessible to any file that requires this module. You can use this
exported callback function to return data from the database.

In this controller action, you use the Mongoose find method on the Subscriber model to tell
MongoDB that you want an array of all the subscribers in your database.

Note

Using the find query method without any arguments is the same as an empty object ({}). Here, you
using the empty object to make it clear that you want to get all subscribers with no conditions
attached.

If an error occurs while reading from the database, send it to the next middleware function.
Otherwise, set the data that comes back from MongoDB to the request object. Then this object can
be accessed by the next function in the middleware chain.

Listing 15.1. Building your subscribers controller in subscribersController.js

const Subscriber = require("../models/subscriber"); 1

exports.getAllSubscribers = (req, res, next) => { 2

 Subscriber.find({}, (error, subscribers) => { 3

 if (error) next(error); 4

 req.data = subscribers; 5

 next(); 6

 });

};

• 1 Require the subscriber module.

• 2 Export getAllSubscribers to pass data from the database to the next middleware function.

• 3 Query with find on the Subscriber model.

• 4 Pass an error to the next middleware function.

• 5 Set data that comes back from MongoDB on request object.

• 6 Continue to the next middleware function.

Note

Because the model is in a different folder, you need to use .. to indicate stepping out of your
current folder before entering the models folder and requiring it.

Make sure that you still have Express.js installed and working properly. The next step is setting up
the route in main.js. First, make sure to require the subscribers controller in main.js by using const
subscribersController = require("./controllers/subscribers -Controller"). The route you
use looks like the code in listing 15.2.

In this code, you’re looking for GET requests made to the /subscribers path. Upon getting a
request, pass the request to your getAllSubscribers function in subscribersController.js. Because
you aren’t doing anything with the data in that function, attach the results of your query to the
request object, and pass it to the next middleware function. In this case, that function is a custom
callback created to render the data in the browser.

Listing 15.2. Using the subscribers controller in main.js

app.get("/subscribers", subscribersController.getAllSubscribers, 1

 (req, res, next) => {

 console.log(req.data); 2

 res.send(req.data); 3

});

• 1 Pass the request to the getAllSubscribers function.

• 2 Log data from the request object.

• 3 Render the data on the browser window.

Test this code by running npm start to relaunch your application. If everything worked as planned,
you can visit http://localhost:3000/subscribers and see a list of all the subscribers in your database
by name and email (figure 15.1).

Figure 15.1. Example browser response with subscriber data

You could immediately improve this action by responding with the data in a view instead of
returning the data. Modify the action’s return statements and replace them with res.renderfrom
Express.js. The line to render a view called subscribers.ejs could look
like res.render(“subscribers”;, {subscribers: req.data}). The response makes a call to

render a view called subscribers.ejs and passes the subscribers from the database to that view in
a variable called subscribers. Now you need to build the view to display these subscribers.

Note

Ultimately, this page will be used by administrators of the application to see who has signed up for
the recipe application. But right now, this page is public to anyone who visits its associated route.

Create a file in your views folder called subscribers.ejs, and add the code in listing 15.3. Using the
EJS template syntax, loop through the subscribers array passed in from the action you just created.
For each subscriber, s, you can print some information. You print the name and email address of
the subscriber in a paragraph tag.

Listing 15.3. Looping and printing subscribers in a subscribers.ejs

<%subscribers.forEach(s => { %> 1

 <p><%= s.name %></p> 2

 <p><%= s.email %></p>

<% }); %>

• 1 Loop through subscribers.

• 2 Insert subscriber data into the view.

Your view at http://localhost:3000/subscribers should list your subscribers, as shown in figure

15.2.

Figure 15.2. Example browser view with listed subscriber data

In the next section, you add two more routes to handle information posted with a form.

Quick check 15.1

Q1:

From what module do you pass data to the view?

QC 15.1 answer

1:

You can pass data to the view from your controller. Within subscribersController.js, you pass an
array of subscribers within the rendered subscribers.ejs.

15.2. SAVING POSTED DATA TO A MODEL

So far, you should have data flowing in one direction when a request is made to your application’s
web server. The next step is saving user-submitted data in the form of a subscriber object. Figure

15.3 shows the flow of information from a form to your database.

Figure 15.3. Flow from a web page form to your database

Recall that according to its schema, a subscriber object must contain name, email, and zipCode
fields, so you should have a view with a form that contains these input fields. Change the form in
contact.ejs to use the form shown in the next listing. The form will submit data to
the /subscribe path via an HTTP POST request. The inputs of the form match the fields of the
subscriber model.

Listing 15.4. Form to post subscriber data in contact.ejs

<form action="/subscribe" method="post"> 1

 <input type="text" name="name" placeholder="Name">

 <input type="text" name="email" placeholder="Email">

 <input type="text" name="zipCode" placeholder="Zip Code"

pattern="[0-9]{5}">

 <input type="submit" name="submit">

</form>

• 1 Add a subscription form.

Because this form will display when contact.ejs is rendered, create a route to render this view
when requests are made to the /contact path from the subscribers controller. You need to build

a GET route for the /subscribe path and modify the existing POST route for the /contact path.
These routes look like the code in listing 15.5.

The first route listens for requests made to /subscribe and uses the getSubscriptionPagecallback
in the subscribersController. The second route uses the saveSubscribercallback function only
for requests made with the POST method.

Note

After these changes, you no longer need the contact form route handlers in homeController.js or
their routes in main.js.

Listing 15.5. Routes for the subscriptions in main.js

app.get("/contact", subscribersController.getSubscriptionPage); 1

app.post("/subscribe", subscribersController.saveSubscriber); 2

• 1 Add a GET route for the subscription page.

• 2 Add a POST route to handle subscription data.

To complete your work here, create the getSubscriptionPage and saveSubscriberfunctions.
Within subscribersController.js, add the code in listing 15.6. The first action renders an EJS page
from the views folder. saveSubscriber collects data from the request and allows the body-
parser package (installed in unit 2) to read the request body’s contents. A new model instance is
created, mapping the subscriber’s fields to the request body parameters. As a final step, try to save
the subscriber. If it fails, respond with the error that occurred. If it succeeds, respond
with thanks.ejs.

Listing 15.6. Controller actions for subscription routes in subscribersController.js

exports.getSubscriptionPage = (req, res) => { 1

 res.render("contact");

};

exports.saveSubscriber = (req, res) => { 2

 let newSubscriber = new Subscriber({

 name: req.body.name,

 email: req.body.email,

 zipCode: req.body.zipCode

 }); 3

 newSubscriber.save((error, result) => { 4

 if (error) res.send(error);

 res.render("thanks");

 });

};

• 1 Add an action to render the contact page.

• 2 Add an action to save subscribers.

• 3 Create a new subscriber.

• 4 Save a new subscriber.

Note

MongoDB returns the _id of the newly created subscriber. The result variable in the example
contains this information.

You can try this code by filling out your own form at http://localhost/contact. Then visit
http://localhost:3000/subscribers to see the list of subscribers, including your new post. In the
next section, you add one more touch to your database queries by using JavaScript promises.

Quick check 15.2

Q1:

What middleware is needed in addition to Express.js to process data from a form?

QC 15.2 answer

1:

To easily parse the body of a request, you need the help of
the express.json and express.urlencoded middleware function. These modules act as
middleware between your request being received and processed fully with Express.js.

15.3. USING PROMISES WITH MONGOOSE

ES6 made popular the idea of using promises to facilitate a chain of functions, usually callback
functions, in asynchronous queries. A promise is a JavaScript object that contains information about
the state of a function call and what the next call in the chain needs to see. Similar to middleware,
promises can allow a function to start and patiently wait for it to complete before passing it off to
the next callback function. Ultimately, promises offer a cleaner way of representing nested
callbacks, and with database queries now introduced to your applications, your callback functions
can get long.

Luckily, Mongoose is built to work with promises. All you need to do to get set up is let Mongoose
know that you want to use native ES6 promises by adding mongoose.Promise =
global.Promise near the top of main.js. Now with each query made, you can choose to return the
normal database response or a promise containing that response. In listing 15.7, for example, a
query to get all subscribers from the database returns a new promise with the database’s response.

Rewriting this action with a promise still allows querying of all subscribers in the database. Within
the query, instead of rendering a view immediately, return a promise that contains data on whether
to resolve by rendering a view or reject by logging an error. By using the exec call following find,
you’re invoking your query to return a promise.

Note

Without using exec, you’re still able to use then and catch to handle follow-up commands.
Without exec, however, you won’t have an authentic promise—only Mongoose’s version of a
promise query. Some Mongoose methods, however, such as save, return a promise and won’t work
with exec. You can read more about the distinctions at http://mongoosejs.com/docs/promises.html.

If an error occurs in the process, the error propagates down the promise chain to the catchblock.
Otherwise, data returned from the query passes on to the next then block. This promise-chain
procedure follows the promise convention of rejecting or resolving code in a promise block to
determine what code should be run next (figure 15.4).

Figure 15.4. Promise chain in Mongoose.js

When the promise is complete, it calls next to use any following middleware in Express.js. You
chain on a then method to tell the promise to perform this task immediately after the database
responds. This then block is where you render your view. Next, the catch method is chained to
handle any errors rejected in the promise.

Note

then is used only in the context of promises. next is used in a middleware function. If both are used,
as in listing 15.7, you’re waiting for a promise to resolve with then and later calling next to go to
another middleware function.

You can add as many then chains as you like, ultimately telling your promise to run the code within
that block when everything else is complete. The final then block logs a message to your console to
let you know that the promise completed.

Listing 15.7. Using promises to get all subscribers in subscribersController.js

exports.getAllSubscribers = (req, res) => { 1

 Subscriber.find({})

 .exec() 2

 .then((subscribers) => { 3

 res.render("subscribers", {

 subscribers: subscribers

 }); 4

 })

 .catch((error) => { 5

 console.log(error.message);

 return [];

 })

 .then(() => { 6

 console.log("promise complete");

 });

};

• 1 Rewrite the getAllSubscribers action.

• 2 Return a promise from the find query.

• 3 Send saved data to the next then code block.

• 4 Serve results from the database.

• 5 Catch errors that are rejected in the promise.

• 6 End the promise chain with a log message.

You may also modify your save command in saveSubscriber to use promises as shown in the
following listing. In this example, exec isn’t needed.

Listing 15.8. Modifying saveSubscriber to use promises in subscribers-Controller.js

newSubscriber.save()

 .then(result => { 1

 res.render("thanks");

 })

 .catch(error => {

 if (error) res.send(error);

 });

• 1 Save a new subscriber with a promise return.

Last, if you want to add data in bulk to your application in development instead of tediously
entering new subscribers through the contact form, you can create a module for that purpose.
Create seed.js in your project directory, and add the code in listing 15.9. This file makes a connection
to your local database and loops through an array of subscribers to create. First, clear the existing
subscriber database with remove. Then the promise library’s Promise.allwaits for all new
subscriber documents to be created before printing log messages.

Listing 15.9. Creating new data in seed.js

const mongoose = require("mongoose"),

 Subscriber = require("./models/subscriber");

mongoose.connect(1

 "mongodb://localhost:27017/recipe_db",

 { useNewUrlParser: true }

);

mongoose.connection;

var contacts = [

 {

 name: "Jon Wexler",

 email: "jon@jonwexler.com",

 zipCode: 10016

 },

 {

 name: "Chef Eggplant",

 email: "eggplant@recipeapp.com",

 zipCode: 20331

 },

 {

 name: "Professor Souffle",

 email: "souffle@recipeapp.com",

 zipCode: 19103

 }

];

Subscriber.deleteMany()

 .exec() 2

 .then(() => {

 console.log("Subscriber data is empty!");

 });

var commands = [];

contacts.forEach((c) => { 3

 commands.push(Subscriber.create({

 name: c.name,

 email: c.email

 }));

});

Promise.all(commands) 4

 .then(r => {

 console.log(JSON.stringify(r));

 mongoose.connection.close();

 })

 .catch(error => {

 console.log(`ERROR: ${error}`);

 });

• 1 Set up the connection to the database.

• 2 Remove all existing data.

• 3 Loop through subscriber objects to create promises.

• 4 Log confirmation after promises resolve.

You can run this file by entering node seed.js in terminal in each subsequent lesson to avoid
having an empty or inconsistent database. I talk more about how to use seed data in unit 8.

Quick check 15.3

Q1:

True or false: using exec on a Mongoose query is the same as running a query that returns a new
promise.

QC 15.3 answer

1:

True. exec is designed to run a query and return a promise if promises are configured with your
Mongoose setup.

SUMMARY

In this lesson, you learned how to connect your models with controller actions. You also made a
complete connection between models, views, and controllers by loading a list of subscribers from
your database. At the end of the lesson, you were introduced to promises used with Mongoose and
Node.js. In lesson 16, you take everything you learned in this unit and build a database for an
application in the capstone exercise. In unit 4, you’ll take these steps further by building more-
robust models and actions for doing more than saving and viewing data.

Try this

Try converting your other controller actions to use promises. You can also chain other Mongoose
query methods, such as where and order. Each method passes a promise to the next command.

Lesson 16. Capstone: Saving user subscriptions

I presented the Express.js application to Confetti Cuisine, and they love it. They tell me that
they’re ready to start promoting their cooking courses and want people who visit the site to
subscribe to the school’s newsletter. The subscribers to this newsletter are potential customers,
so Confetti Cuisine wants me to save each subscriber’s name, email address, and ZIP code.

When I have a database in place, Confetti Cuisine is comfortable with moving to the next stages
of building user accounts. To accomplish this task, I need to build an application with

• A MongoDB database
• The Mongoose package
• A data schema with three fields
• A form for subscribing on the site
• A route to handle POST requests and save the subscriber data model

16.1. SETTING UP THE DATABASE

Now that Confetti Cuisine is ready to save user data, I need to install MongoDB and Mongoose
for this project. First, I install MongoDB with Homebrew on my Mac by running brew install
mongodb. Then I start the MongoDB server locally by running mongod.

In a new terminal window, in my project directory, I install the mongoose package by
entering npm i mongoose -S in a new terminal window within my project folder.

Next, I open the project’s main.js file and require mongoose along with my database
configuration by using the code in listing 16.1. I require mongoose in this project to use the
module’s methods for building a connection to my MongoDB database. Then I set up a
connection to the confetti_cuisine database on my local computer. If this database doesn’t
exist yet, it’s created when I first run this application.

Listing 16.1. Setting up Mongoose in the Node.js application in main.js

const mongoose = require("mongoose"); 1

mongoose.connect(

 "mongodb://localhost:27017/confetti_cuisine", 2

 {useNewUrlParser: true}

);

• 1 Require mongoose.
• 2 Set up the database connection.

Next, I need to build out how my data should look before it goes into the database.

16.2. MODELING DATA

Because Confetti Cuisine wants me to store three fields for new subscribers, I’ll create a
Mongoose schema defining those fields. First, I create a new models folder and a new
subscriber.js file with the schema from listing 16.2.

I need to require mongoose into this file so that I have access to that module’s tools and methods.
This Mongoose schema defines what a subscriber model should contain. In this case, every
subscriber object should have name and email fields that are both Strings and a zipCode field
that’s a Number.

Listing 16.2. Defining a subscriber schema in subscriber.js

const mongoose = require("mongoose"), 1

 subscriberSchema = mongoose.Schema({

 name: String,

 email: String,

 zipCode: Number

 }); 2

• 1 Require mongoose.
• 2 Define schema properties.

Now that the schema is defined, I need to define a model to use this schema. In other words, I’ve
defined a set of rules, and now I need to create a model to use those rules.

The subscriber model also lives in the subscriber.js file, but unlike the schema, the model should
be accessible by other modules in the application. For that reason, I add the model to the
module’s exports object, as shown in listing 16.3.

I assign my subscriber model to the module.exports object. Other modules will need to require
this file to access the Subscriber model.

Listing 16.3. Creating an exported subscriber model in subscriber.js

module.exports = mongoose.model("Subscriber",

 subscriberSchema); 1

• 1 Export the model.

Because I know that I’ll need to save subscribers who submit a form on the site, I’ll prepare a
route and some logic to create and save new subscribers to the database. All my code is related
to subscribers, so I’ll create a new subscribersController.js file within the controllers folder
where my actions will exist to respond to a POST route. The code in that controller appears
in listing 16.4.

First, I require the subscriber.js module. Because the module lives within another local folder,
the require line looks for the models folder relative to the controllers folder. Node.js
looks for the subscriber.js file within the models folder and assigns that
module’s exports content to a local constant called Subscriber. Right now, this module is the
only one in which I need to use the Subscriber model. Now I can create instances of
the Subscriber module or make calls on that model within the main application file.

The first action uses find to run a query finding all subscribers in the database and returning a
promise. I use then to continue the query chain and render a view upon successfully receiving
data or catching an error with catch. The second action doesn’t require a promise; it renders a
view. The third action creates an instance of Subscriber and saves to the database. This
behavior automatically returns a promise through Mongoose and allows me to chain more
functionality or catch errors. I add mongoose.Promise = global.Promise to main.js so that
Mongoose will support my promise chains.

Listing 16.4. Controller actions for subscribers in subscribersController.js

const Subscriber = require("../models/subscriber"); 1

exports.getAllSubscribers = (req, res) => { 2

 Subscriber.find({})

 .exec()

 .then((subscribers) => {

 res.render("subscribers", {

 subscribers: subscribers

 });

 })

 .catch((error) => {

 console.log(error.message);

 return [];

 })

 .then(() => {

 console.log("promise complete");

 });

};

exports.getSubscriptionPage = (req, res) => { 3

 res.render("contact");

};

exports.saveSubscriber = (req, res) => { 4

 let newSubscriber = new Subscriber({

 name: req.body.name,

 email: req.body.email,

 zipCode: req.body.zipCode

 });

 newSubscriber.save()

 .then(() => {

 res.render("thanks");

 })

 .catch(error => {

 res.send(error);

 });

};

• 1 Require the subscriber model.
• 2 Retrieve all subscribers.
• 3 Render the contact page.
• 4 Save subscribers.

At this point, my application can launch normally with npm start, but I haven’t created the
routes to connect to my new controller actions. First, I create a form to correspond with
my getSubscriptionPage function.

16.3. ADDING SUBSCRIBER VIEWS AND ROUTES

The last piece of the puzzle is adding my views and a form that visitors can use to submit their
information. The subscribers.ejs view contains a loop within the HTML tags to display all the
subscribers in the database, as shown in listing 16.5. EJS allows basic JavaScript to run side by
side with HTML content. Here, I’m looping through the subscribers I got from
the getAllSubscribers action in the subscribers controller.

Listing 16.5. Looping through subscribers in subscribers.ejs

<% subscribers.forEach(s => {%> 1

 <p>< s.name %></p>

 <p><%= s.email%></p>

<% })%>

• 1 Loop through the subscribers array.

The other view I need is for the subscription form, which replaces my form in contact .ejs. The
form posts to the /subscribe route and looks like listing 16.6. This form contains input fields
with names that match the fields in the Subscriber schema. When the form is submitted, data
can easily be extracted by the model’s field names and saved within a new Subscriber instance.

Note

I’m deprecating my postedContactForm in the home controller. The old route and action can be
removed.

Listing 16.6. For new subscribers in contact.ejs

<form action="/subscribe" method="post"> 1

 <label for="name">Name</label>

 <input type="text" name="name" placeholder="Name">

 <label for="email">Email</label>

 <input type="email" name="email" placeholder="Email">

 <label for="zipCode">Zip Code</label>

 <input type="text" pattern="[0-9]{5}" name="zipCode"

 placeholder="Zip Code">

 <input type="submit" name="submit">

</form>

• 1 Add a subscription form.

To get these views to display, I need to add and modify some routes in main.js, as shown
in listing 16.7. First, I require subscribersController.js to the top of the file. Then I add a new
route to view all subscribers; this route uses the getAllSubscribers function
in subscribersController.js (figure 16.1).

Figure 16.1. Listing subscriber data on the subscribers page

Instead of creating a new route for the subscription view, I modify the /contact route to use
my getSubscriptionPage function. When users click the contact button in the site’s navigation,
they see my subscription form. Last, I add a POST route to let my save-Subscriber function
handle submissions from the subscription form.

Listing 16.7. Adding subscriber routes in main.js

const subscribersController = require(

 "./controllers/subscribersController"); 1

app.get("/subscribers", subscribersController.getAllSubscribers); 2

app.get("/contact", subscribersController.getSubscriptionPage); 3

app.post("/subscribe", subscribersController.saveSubscriber); 4

• 1 Require the subscribers controller.
• 2 Add a route to view all subscribers.
• 3 Add a route to view the contact page.
• 4 Add a route to handle posted form data.

The result is a form accessible from the contact page where new visitors can send me their
information (figure 16.2).

Figure 16.2. Listing subscription form on the contact page

The pieces are in place, and the application is ready to launch. I’m going to show this application
to Confetti Cuisine. I relaunch my application with npm start and demonstrate the subscription
process to see whether the company is interested. This addition could be a good way to gauge
interest among subscribers to the newsletter.

SUMMARY

In this project, I took a largely static Express.js application and modified it to start saving and
displaying dynamic data. With these changes and the help of a templating engine and
middleware in Express.js, this application is taking shape.

I started by connecting the application with Mongoose and using the schema and modeling tools
that come with Mongoose to structure application data. Next, I connected those models with
new controllers and routes that handle specific requests to view and save subscriber data. Last, I
incorporated a form where users can finally interact with and pass along their information to be
processed and reviewed by the Confetti Cuisine team. With the help of promises, the code is
clean and ready for errors that may occur.

In unit 4, you learn how to use Mongoose on another level by building a user model. Through
this model, you learn about validation and security steps taken when creating, reading,
updating, and deleting (CRUD) data.

Unit 4. Building a user model

In unit 3, you learned how to connect your application to a database. You also constructed your
first schema and model. This unit builds on those lessons by introducing more functionality to
your models. First, you learn more about how Mongoose schemas and methods can be used to
interact more reliably with your models. You build a model to represent user data and
connectivity. Every user needs to create an account, edit, and delete their account. In this unit, I
discuss create, read, update, and delete (CRUD) functions in application development and show
what you need to create a robust model. By the end of this unit, you’ll have an application that
supports three models, each associated with one another and manageable from views in your
browser.

This unit covers the following topics:

• Lesson 17 dives deeper into Mongoose schemas and models. In this lesson, you add
database validations to ensure that data is saved only if it meets the requirements you set.
You also learn how to associate models with one another. You start by applying certain
techniques to the Subscriber model and then move to the application’s other models.

• Lesson 18 shows how to construct a user model. This lesson teaches about the core CRUD
controller actions to manage model data. You start by building a users-index page.

• Lesson 19 guides you through constructing the create and read routes, actions, and views
for your user model. In this lesson, you create everything needed to save user data from
browser views.

• Lesson 20 guides you through constructing the update and delete routes, actions, and
views for your user model. By the end of this lesson, your CRUD functionality will be
complete.

• Lesson 21 wraps up the unit by guiding you through the construction of a user model and
the necessary model- associations needed for the Confetti Cuisine application.

Get ready to collect, store, and associate data in unit 4.

Lesson 17. Improving Your Data Models

In this lesson, you take advantage of Mongoose’s schema- and model-creation tools. To start,
you improve on your simple model and add properties to the models to restrict what data can be
saved to the database. Next, you see how to associate data in a NoSQL database such as
MongoDB. At the end, you build out static and instance methods for the model. You can run
these methods directly on Mongoose model objects, and create the necessary controller actions
for them to work with the application.

This lesson covers

• Adding validations to your models
• Creating static and instance methods for your models
• Testing your models in REPL
• Implementing data associations on multiple models

Consider this

You’ve set up a form for people visiting your recipe application to subscribe to a newsletter. Now
you want to populate your application with courses in which users will be able to enroll and learn
to cook.

With the help of Mongoose, you’ll be able to set up your models so that subscribers can show
interest in a particular program before signing up as users.

17.1. ADDING VALIDATIONS ON THE MODEL

So far, you’ve built a model with Mongoose. The model you created is an abstraction from the
data, represented as a document, in your MongoDB database. Because of this abstraction, you
can create a blueprint of how you want your data to look and behave using Mongoose schemas.

Take a look at the subscriber data model for your recipe application in listing 17.1. The
subscriber’s schema lets your application know that it’s looking for three properties of a certain
data type. It doesn’t specify, however, whether the properties can be duplicates, if a size limit
exist (the ZIP code could be saved as 15 digits, for example), or whether the properties are even
required for saving to the database. It won’t be any help to have subscriber records in your
database if they’re mostly blank. Next, you add some ways to validate that your properties
ensure that your data is consistent.

Listing 17.1. Defining a subscriber schema in subscriber.js

const mongoose = require("mongoose"); 1

const subscriberSchema = mongoose.Schema({

 name: String,

 email: String,

 zipCode: Number

});

module.exports = mongoose.model("Subscriber", subscriberSchema);

• 1 Define a subscriberSchema to contain name, email, and zipCode
properties.

The schema defined so far works, but it also allows you to save an instance of
the Subscribermodel without any meaningful data.

SchemaTypes

Mongoose provides a set of data types that you can specify in your schema; these data types are
appropriately called SchemaTypes. The types resemble data types in JavaScript, though they have a
particular relationship with the Mongoose library that normal Java-Script data types don’t have.
Here are some SchemaTypes you should know about:

• String—This type, like Boolean and Number, is straightforward. Specifying a schema
property of type String means that this property will save data presented as a
JavaScript String (not null or undefined).

• Date—Dates are useful in data documents, as they can tell you when data was saved or
modified, or when anything involving that model occurred. This type accepts a JavaScript
Date object.

• Array—The Array type allows a property to store a list of items. When specifying
the Array type, use the array literal, enclosing square brackets [] instead of its name.

• Mixed—This type is most similar to a JavaScript object, as it stores key-value pairs on a
model. To use the Mixed type, you need to specify mongoose.Schema.Types.Mixed.

• ObjectId—Like the ObjectId value for each document in your MongoDB database, this
type references that object. This type is particularly important when associating models
with one another. To use this type, specify mongoose.Schema.Types.ObjectId.

To start improving your model, add some Mongoose validators. Validators are rules that you
apply to model properties, preventing them from saving to your database unless those rules are
met. See the amended schema in listing 17.2. Notice that each model property can have a type
assigned directly or a bunch of options passed as a JavaScript object.

You want to require the name property and make it type String. The email property should be
required because no two records can have the same email, and it’s also of type String.

Note

In this example, require means that data must exist for the model instance before it can be
saved to the database. It’s not the same way I’ve been using the term to require modules.

You also add the lowercase property set to true to indicate that all emails saved to the database
are not case-sensitive. Last, the ZIP code property won’t be required, but it has a minimum and
maximum number of digits. If a number less than 10000 is entered, the error message "Zip
Code too Short" is used. If the number exceeds 99999, or 5 digits in length, you get a generic
error from Mongoose, and the data won’t save.

Listing 17.2. Adding validators to the subscriber schema in subscriber.js

const mongoose = require("mongoose");

const subscriberSchema = new mongoose.Schema({

 name: { 1

 type: String,

 required: true

 },

 email: { 2

 type: String,

 required: true,

 lowercase: true,

 unique: true

 },

 zipCode: { 3

 type: Number,

 min: [10000, "Zip code too short"],

 max: 99999

 }

});

• 1 Require the name property.
• 2 Require the email property, and add the lowercase property.
• 3 Set up the zipCode property with a custom error message.

Note

The unique option used on the email property isn’t a validator, but rather a Mongoose schema
helper. Helpers are like methods that perform tasks that behave like a validator in this case.

Because the subscriber’s schema defines how instances of the Subscriber model behave, you can
also add instance and static methods to the schema. As in traditional objectoriented
programming, instance methods operate on an instance (a Mongoose document) of
the Subscriber model and are defined by subscriberSchema.methods. Static methods are used
for general queries that may relate to many Subscriber instances and are defined
with subscriberSchema.statics.

Next, you add two instance methods from listing 17.3 to your recipe application.

getInfo can be called on a Subscriber instance to return the subscriber’s information in one
line, which could be useful to get a quick read of the subscribers in your
database. findLocalSubscribers works the same way but returns an array of subscribers. This
instance method involves a Mongoose query where this refers to the instance of Subscriberon
which the method is called. Here, you’re asking for all subscribers with the same ZIP
code. exec ensures that you get a promise back instead of needing to add an asynchronous
callback here.

Listing 17.3. Adding instance methods to the schema in subscriber.js

subscriberSchema.methods.getInfo = function() { 1

 return `Name: ${this.name} Email: ${this.email} Zip Code:

 ${this.zipCode}`;

};

subscriberSchema.methods.findLocalSubscribers = function() { 2

 return this.model("Subscriber")

 .find({zipCode: this.zipCode})

 .exec(); 3

};

• 1 Add an instance method to get the full name of a subscriber.
• 2 Add an instance method to find subscribers with the same ZIP code.
• 3 Access the Subscriber model to use the find method.

Warning

As of the writing of this book, when using methods with Mongoose, you won’t be able to use ES6
arrow functions without drawbacks. Mongoose makes use of binding this, which is removed
with arrow functions. Inside the function, you can use ES6 again.

Note

Recall that you need to export the Subscriber model by using module.exports =
mongoose.model("Subscriber", subscriberSchema) after setting up these methods. This line
allows you to require the Subscriber model directly by importing this module in another file.

Mongoose provides dozens of other query methods. You could add more methods and
validations in subscriber.js, but Mongoose already offers many methods for you to query
documents. Table 17.1 lists a few query methods that you may find useful.

Table 17.1. Mongoose queries

Query Description

find Returns an array of records that match the query parameters. You can search for all subscribers

with the name "Jon" by running Subscriber.find({name: "Jon"}).

findOne Returns a single record when you don’t want an array of values. Running

Subscriber.findOne({name: "Jon"}) results in one returned document.

findById Allows you to query the database by an ObjectId. This query is your most useful tool for

modifying existing records in your database. Assuming that you know a subscriber’s ObjectId,

you can run Subscriber.findById("598695b29ff27740c5715265").

remove Allows you to delete documents in your database by running Subscriber.remove({}) to remove

all documents. Be careful with this query. You can also remove specific instances such as

subscriber.remove({}).

Note

Each of these queries returns a promise, so you need to use then and catch to handle the
resulting data or errors.

For more information about Mongoose queries, visit http://mongoosejs.com/docs/-queries.html.

Before you get to programming the routes and user interface to interact with your new models,
try another way to test whether everything is working: REPL. In the next section, you apply the
code from earlier in this lesson to a new REPL session.

Quick check 17.1

Q1:

When you use promises with Mongoose queries, what should a query always return?

QC 17.1 answer

1:

When using promises with Mongoose, you should expect to get a promise as a result of a database
query. Getting back a promise ensures that a result or error can be handled appropriately without
having to worry about timing issues with asynchronous queries.

17.2. TESTING MODELS IN REPL

To start interacting with your database by using the Subscriber model, you need to go into
REPL by typing the node keyword in a new terminal window and adding the lines in listing 17.4.
Set up the environment by requiring Mongoose. (You need to be in your project’s directory in
terminal for this procedure to work.) Next, set up the connection to MongoDB. Enter the name
of your database—in this case, recipe_db.

Listing 17.4. Set up subscriber model in REPL in terminal

const mongoose = require("mongoose"), 1

 Subscriber = require("./models/subscriber"); 2

mongoose.connect(3

 "mongodb://localhost:27017/recipe_db",

 {useNewUrlParser: true}

);

mongoose.Promise = global.Promise; 4

• 1 Require Mongoose in REPL.
• 2 Assign the Subscriber model to a variable, using the model name and local

project file.
• 3 Set up a database connection, using recipe_db.
• 4 Tell Mongoose to use native promises as you did in main.js.

Now you’re all set to test whether your model and its methods work. In REPL, run the
commands and queries in listing 17.5 to see whether you’ve set up your model correctly.

Create a new subscriber document with the name "Jon" and email "jon@jonwexler.com". Try
running this line twice. The first time, you should see the saved document logged back to the
console. The second time, you should see an error message saying the email already exists in the
database, which means that your email validator is working.

Next, set up a variable to which you can assign the following results of your query. Using
Mongoose’s findOne query, you’re searching for the document you just created. Then assign the
resulting record to your subscriber variable. You can test that this code works by logging
the subscriber record or, better, the results of your custom getInfo method on this instance.

The resulting text should read: Name: Jon Email: jon@jonwexler.com Zip Code: 12345.

Note

Because emails must be unique, you may run into a duplicate key error when saving new records
with the same information. In that case, you can run Subscriber .remove({}) to clear all
subscriber data from your database.

Listing 17.5. Testing model methods and Mongoose queries in REPL in terminal

Subscriber.create({

 name: "Jon",

 email: "jon@jonwexler.com",

 zipCode: "12345"

})

 .then(subscriber => console.log(subscriber))

 .catch(error => console.log(error.message)); 1

var subscriber; 2

Subscriber.findOne({

 name: "Jon"

}).then(result => {

 subscriber = result; 3

 console.log(subscriber.getInfo()); 4

});

• 1 Create a new subscriber document.

• 2 Set up a variable to hold query results.
• 3 Search for the document you just created.
• 4 Log the subscriber record.

Your terminal console window should resemble the one in figure 17.1.

Figure 17.1. Example response for Mongoose REPL commands

Try to create new records with different content. Check that your validators for
the zipCodeproperty are working by creating a new Subscriber with ZIP code 890876 or 123.
Then try to delete one or all of your subscriber records directly from REPL.

Next, I show you how to associate this new model with other new models.

Tip

The code in this section can be saved and reused. Add your REPL code to a file called repl.js in
your project directory. The next time you open REPL, you can load the contents of this file into
the environment. Remember: Node.js runs asynchronously, so if you try to create a record in
one command and query for that record immediately afterward, those two commands run
virtually at the same time. To avoid any errors, run the commands individually, or nest queries
within each other’s then blocks.

Quick check 17.2

Q1:

Why do you need to require the database connection and Mongoose models into REPL to test your
code?

QC 17.2 answer

1:

Until you build views to interact with your database, REPL is a great tool to run CRUD operations on
your models. But you need to require the modules with which you’d like to test so that your REPL
environment will know which database to save to and which Subscriber model you’re creating.

17.3. CREATING MODEL ASSOCIATIONS

In unit 3, I discussed how data is structured with MongoDB and how Mongoose acts as a layer
over the database to map documents to JavaScript objects. The Mongoose package saves you a
lot of time in development by offering methods that make it easy to query the database and
generate results quickly in an object-oriented way.

If your background is relational databases, you may be familiar with the ways you can associate
data in your applications, as shown in figure 17.2.

Figure 17.2. Relational database associations

Because you’re working with a document-based database, you have no tables—and definitely no
join tables. But you do have fairly simple ways to use Mongoose to set up the data relationships
laid out in table 17.2.

Table 17.2. Data relationships

Relationship Description

One-to-one When one model can have an association to another model. This association could be a User

with one Profile; that profile belongs only to the user.

One-to-

many

When one model can have many associations to another model, but the other model can

have only a single association back to the first model. This association could be a Company

with many instances of Employee. In this example, the employees work for only one

company, and that company has many employees.

Many-to-

many

When many instances of one model can have multiple associations to another model, and

vice versa. Many Theatre instances could show the same Movie instances, and each Movie

can be traced to many Theatre instances. Typically, a join table is used to map records to one

another in a relational database.

If two models are associated in some way—a user has many pictures, an order has a single
payment, many classes share multiple enrolled students—you add a property with the associated
model’s name, where the type is Schema.Types.ObjectId, the ref attribute is set to the
associated model’s name, and Schema is mongoose.Schema. The following code might represent a
schema property for users with many pictures: pictures: [{type: Schema.Types .ObjectId,
ref: "Picture"}].

Add another model to this recipe application called Course, and associate it with Subscriber.
This course model represents recipe courses to choose from in the application. Each course has
different food offerings in different locations. Add the code from listing 17.6to a new model file
called course.js in your models folder.

Courses have titles that are required and must not match another course’s title. Courses have
a description property to inform users of the site of what the course offers. They also have
an items property, which is an array of strings to reflect items and ingredients they include.
The zipCode property makes it easier for people to choose the courses that are nearest them.

Listing 17.6. Creating a new schema and model in course.js

const mongoose = require("mongoose");

const courseSchema = new mongoose.Schema({

 title: { 1

 type: String,

 required: true,

 unique: true

 },

 description: {

 type: String,

 required: true

 },

 items: [],

 zipCode: {

 type: Number,

 min: [10000, "Zip code too short"],

 max: 99999

 }

});

module.exports = mongoose.model("Course", courseSchema);

• 1 Add properties to the course schema.

You could add a subscribers property to the Course model that stores a reference to the
subscribers by each subscriber’s ObjectId, which comes from MongoDB. Then you’d reference
the Mongoose model name, Subscriber, like so: subscribers: [{type: mongoose
.Schema.Types.ObjectId, ref: "Subscriber"}]. Technically, though, you don’t need the
models to reference each other; one model referencing the other is enough. Therefore, add the
association on the Subscriber model.

Head back over to subscriber.js, and add the following property to
the subscriberSchema: courses: [{type: mongoose.Schema.Types.ObjectId, ref: "Course"}]

Add a courses property to subscribers that stores a reference to each associated course by that
course’s ObjectId. The ID comes from MongoDB. Then reference the Mongoose model
name, Course.

Note

Notice how the property’s name is plural to reflect the potential to have many associations
between subscribers and courses.

If you wanted to restrict subscribers to one course at a time, you could remove the brackets
around the property. The brackets signify an array of multiple referenced objects. If a subscriber
could sign up for only a single course, the course property would look like the following: course:
{type: mongoose.Schema.Types.ObjectId, ref: "Course"}.

In this case, each subscriber could be associated with only a single course. You can think of this
as allowing subscribers to sign up for only one course at a time. In a way, this database

limitation can also behave like a feature, preventing subscribers from signing up for multiple
courses at a time. Nothing prevents different subscribers from signing up for the same course,
however, as long as each subscriber has one course association.

To associate two instances of separate models in practice, rely on JavaScript assignment
operators. Suppose that you have a subscriber assigned to the variable subscriber1 and a course
instance represented as course1. To associate these two instances, assuming the subscriber
model can have many course associations, you need to
run subscriber1.courses.push(course1). Because subscriber1.courses is an array, use
the push method to add the new course.

Alternatively, you can push the ObjectId into subscriber.courses instead of using the whole
course object. If course1 has ObjectID "5c23mdsnn3k43k2kuu", for example, your code would
look like the following: subscriber1.courses.push("5c23mdsnn3k43k2kuu").

To retrieve course data from a subscriber, you can use the course’s ObjectID and query on
the Course model or use the populate method to query the subscriber along with the contents of
its associated courses. Your subscriber1 MongoDB document would come with
the course1 document nested within it. As a result, you get the ObjectIDs of associated models
only.

In the next section, you explore the populate method a little further.

Quick check 17.3

Q1:

How do you distinguish between a model that’s associated to one instance of another model versus
many instances?

QC 17.3 answer

1:

When defining a model’s schema, you can specify that model’s relationship as one-to-many by
wrapping the associated model in brackets. The brackets indicate an array of associated records.
Without the brackets, the association is one-to-one.

17.4. POPULATING DATA FROM ASSOCIATED MODELS

Population is a method in Mongoose that allows you to get all the documents associated with
your model and add them to your query results. When you populate query results, you’re
replacing the ObjectIds of associated documents with the documents’ contents. To accomplish
this task, you need to chain the populate method to your model
queries. Subscriber.populate(subscriber, "courses"), for example, takes all the courses
associated with the subscriber object and replaces their ObjectIds with the
full Coursedocument in the subscriber’s courses array.

Note

You can find some useful examples at http://mongoosejs.com/docs/populate.html.

With these two models set up, go back to REPL, and test the model associations. See the
commands in listing 17.7. First, require the Course model for use in the REPL environment. Set
up two variables outside the promise chain scope so that you can assign and use them later.
Create a new course instance with values that meet the Course schema requirements. Upon
creation, you’re assigning the saved course object to testCourse. Alternatively, if you’ve already
created a course, you can get it from the database
with Course.findOne({}).then(course => testCourse = course);.

Assuming that you created a subscriber earlier in the lesson, this line pulls a single subscriber
from the database and assigns it to testSubscriber. You push the testCourse course into
the testSubscriber array of courses. You need to make sure to save the model instance again so
that changes take effect in the database. Last, use populate on the Subscribermodel to locate all
the subscriber’s courses and fill in their data in the subscriber’s courses array.

Listing 17.7. Testing model associations using REPL in terminal

const Course = require("./models/course"); 1

var testCourse, testSubscriber; 2

Course.create({

 title: "Tomato Land",

 description: "Locally farmed tomatoes only",

 zipCode: 12345,

 items: ["cherry", "heirloom"]

}).then(course => testCourse = course); 3

Subscriber.findOne({}).then(

 subscriber => testSubscriber = subscriber 4

);

testSubscriber.courses.push(testCourse); 5

testSubscriber.save(); 6

Subscriber.populate(testSubscriber, "courses").then(subscriber =>

 console.log(subscriber) 7

);

• 1 Require the Course model.
• 2 Set up two variables outside the promise chain.
• 3 Create a new course instance.
• 4 Find a subscriber.
• 5 Push the testCourse course into the courses array of testSubscriber.
• 6 Save the model instance again.
• 7 Use populate on the model.

Note

For these examples, you’re not handling potential errors with catch to keep the code short,
though you’ll want to add some error handling while you test. Even a
simple catch(error=> console.log(error.message)) can help you debug if some error occurs
in the promise pipeline.

After running these commands, you should see the results in listing 17.8. Notice that
the testSubscriber’s courses array is now populated with the Tomato Land course’s data. To
reveal that course’s items, you can log subscriber.courses[0].items in the last
REPL populate command you ran.

Listing 17.8. Resulting console log from REPL in terminal

{ _id: 5986b16782180c46c9126287,

 name: "Jon",

 email: "jon@jonwexler.com",

 zipCode: 12345,

 __v: 1,

 courses:

 [{ _id: 5986b8aad7f31c479a983b42,

 title: "Tomato Land",

 description: "Locally farmed tomatoes only",

 zipCode: 12345,

 __v: 0,

 subscribers: [],

 items: [Array]}]} 1

• 1 Display results for a populated object.

Now that you have access to associated model data, your queries have become more useful.
Interested in creating a page to show all subscribers subscribed for the Tomato Land course
with ObjectId 5986b8aad7f31c479a983b42? The query you need is Subscriber .find({courses:
mongoose.Types.ObjectId("5986b8aad7f31c479a983b42")}).

If you want to run all the examples from this lesson in sequence, you can add the code in listing

17.9 to repl.js, restart your REPL environment by entering node, and load this file by
running .load repl.js.

The code in repl.js clears your database of courses and subscribers. Then, in an organized
promise chain, a new subscriber is created and saved to an external variable
called testSubscriber. The same is done for a course, which is saved to testCourse. At the end,
these two model instances are associated, and their association is populated and logged. The
commands, in order, demonstrate how powerful REPL can be for testing code.

Listing 17.9. Series of commands in REPL.js

const mongoose = require("mongoose"),

 Subscriber = require("./models/subscriber"),

 Course = require("./models/course");

var testCourse,

 testSubscriber;

mongoose.connect(

 "mongodb://localhost:27017/recipe_db",

 {useNewUrlParser: true}

);

mongoose.Promise = global.Promise;

Subscriber.remove({}) 1

 .then((items) => console.log(`Removed ${items.n} records!`))

 .then(() => {

 return Course.remove({});

 })

 .then((items) => console.log(`Removed ${items.n} records!`))

 .then(() => { 2

 return Subscriber.create({

 name: "Jon",

 email: "jon@jonwexler.com",

 zipCode: "12345"

 });

 })

 .then(subscriber => {

 console.log(`Created Subscriber: ${subscriber.getInfo()}`);

 })

 .then(() => {

 return Subscriber.findOne({

 name: "Jon"

 });

 })

 .then(subscriber => {

 testSubscriber = subscriber;

 console.log(`Found one subscriber: ${ subscriber.getInfo()}`);

 })

 .then(() => { 3

 return Course.create({

 title: "Tomato Land",

 description: "Locally farmed tomatoes only",

 zipCode: 12345,

 items: ["cherry", "heirloom"]

 });

 })

 .then(course => {

 testCourse = course;

 console.log(`Created course: ${course.title}`);

 })

 .then(() => { 4

 testSubscriber.courses.push(testCourse);

 testSubscriber.save();

 })

 .then(() => { 5

 return Subscriber.populate(testSubscriber, "courses");

 })

 .then(subscriber => console.log(subscriber))

 .then(() => { 6

 return Subscriber.find({ courses: mongoose.Types.ObjectId(

 testCourse._id) });

 })

 .then(subscriber => console.log(subscriber));

• 1 Remove all subscribers and courses.
• 2 Create a new subscriber.
• 3 Create a new course.
• 4 Associate the course with subscriber.
• 5 Populate course document in subscriber.
• 6 Query subscribers where ObjectId is same as course.

Tip

Querying with Mongoose and MongoDB can get complicated. I recommend exploring the
sample queries for Mongoose and practicing some of the integrated MongoDB query syntax.
You’ll discover the queries that make the most sense to you as you need them in the
development process.

In lesson 18, you expand on these associations. You add some controller actions to manage how
you interact with your data.

Quick check 17.4

Q1:

Why wouldn’t you want to populate every associated model on every query?

QC 17.4 answer

1:

The populate method is useful for collecting all associated data for a record, but if it’s misused, it
can increase the overhead time and space needed to make a query for a record. Generally, if you
don’t need to access the specific details of associated records, you don’t need to use populate.

SUMMARY

In this lesson, you learned how to create more-robust Mongoose models. You also created
instance methods for your models that can be run from elsewhere in your application on specific
model instances. Later, you tested your models for the first time in REPL and created a
new Course model with a many-to-many association to your existing Subscriber model. This
relationship allows subscribers on the site to show interest in specific recipe courses, allowing
you to target your users better by location and interest. In lesson 18, you build a user model
along with the CRUD methods that any application needs to manage its data.

Try this

Now that you have two models set up, it’s time to step up your Mongoose methods game. First,
practice creating a dozen subscribers and half a dozen courses. Then run a line of code to randomly
associate each subscriber in your database to a course. Remember to save your changes after
pushing courses into your subscribers’ courses array.

When you’re done, log each subscriber to your console in REPL, using populate to see which
courses you’ve associated each subscriber with.

Lesson 18. Building the user model

In lesson 17, you improved your models by adding validators and instance methods. You also
made your first model associations and populated data from referenced models. In this lesson,
you apply some of those techniques to the user model. In doing so, you also interact with these
models through their respective controllers and routes. Last, you build some forms and tables to
make it easier to visualize all the data in the application.

This lesson covers

• Creating model associations with a user model
• Using virtual attributes
• Implementing a CRUD structure on the user model
• Building an index page to view all users in your database

Consider this

You have two models working with your recipe application: Subscriber and Course. You’d still like
visitors to create accounts and start signing up for recipe programs. The user model is in nearly
every modern application, along with a system to create, read, update, and delete (CRUD) data from
the database. With the help of Mongoose, Express.js, and CRUD, your users will soon have a way to
sign in to your application.

18.1. BUILDING THE USER MODEL

Now that you have models that protect against unwanted data in your database, you need to do
the same for the most important model in the application: user. Your recipe application
currently has a subscriber model and a course model to allow prospective users to show interest
in certain recipe programs. The next step is allowing users to sign up for and enroll in these
courses.

Like the subscriber model, the user model needs some basic information about each person who
signs up. The model also needs an association with the course and subscriber models. (If a
former subscriber decides to sign up as a user, for example, you want to connect the two
accounts.) Then you want to track all the courses in which the user decides to participate.

To create the user model, add the code in listing 18.1 to a new file in your models folder called
user.js. The user schema contains many overlapping properties from the subscriber schema.
Instead of a name property that’s one String, here, the name is an object
containing firstand last. This separation can help if you want to address the user by first name
or last name only. Notice that the trim property is set to true to make sure that no extra
whitespace is saved to the database with this property. Email and zipCode are the same as in the
subscriber schema. The password property currently stores the user’s password as a string and is
required before an account is created.

Warning

For this unit only, you’ll be saving passwords to the database in plain text. This approach isn’t
secure or recommended, however, as you’ll learn in unit 5.

As in the subscriber schema, you associate the user to many courses. The user may also be
connected to a single subscriber’s account. You can name the property subscribed-Accountand
remove brackets to signify that only one object is associated. A new set of
properties, createdAt and updatedAt, populates with dates upon the creation of a user instance
and any time you change values in the model. The timestamps property lets Mongoose know to
include the createdAt and updatedAt values, which are useful for keeping records on how and
when data changes. Add the timestamps property to the subscriber and course models, too.

Note

Notice the use of object destructuring for the Mongoose Schema object. {Schema} assigns
the Schema object in mongoose to a constant by the same name. Later, you’ll apply this new
format to other models.

Listing 18.1. Creating a User model in user.js

const mongoose = require("mongoose"),

 {Schema} = mongoose,

 userSchema = new Schema({ 1

 name: { 2

 first: {

 type: String,

 trim: true

 },

 last: {

 type: String,

 trim: true

 }

 },

 email: {

 type: String,

 required: true,

 lowercase: true,

 unique: true

 },

 zipCode: {

 type: Number,

 min: [1000, "Zip code too short"],

 max: 99999

 },

 password: {

 type: String,

 required: true

 }, 3

 courses: [{type: Schema.Types.ObjectId, ref: "Course"}], 4

 subscribedAccount: {type: Schema.Types.ObjectId, ref:

 "Subscriber"} 5

}, {

 timestamps: true 6

});

• 1 Create the user schema.
• 2 Add first and last name properties.
• 3 Add a password property.
• 4 Add a courses property to connect users to courses.
• 5 Add a subscribedAccount to connect users to subscribers.
• 6 Add a timestamps property to record createdAt and updatedAt dates.

Given that the first and last name may occasionally be useful in one line, you can use a
Mongoose virtual attribute to store that data for each instance. A virtual attribute (also known
as a computed attribute) is similar to a regular schema property but isn’t saved in the database.
To create one, use the virtual method on your schema, and pass the property and new virtual
attribute name you’d like to use. A virtual attribute for the user’s full name resembles the code
in listing 18.2. This virtual attribute won’t be saved to the database, but it will behave like any
other property on the user model, such as user.zipCode. You can retrieve this value
with user.fullName. Below that is a line to create the user model.

Listing 18.2. Adding a virtual attribute to the user model in user.js

userSchema.virtual("fullName")

 .get(function() {

 return `${this.name.first} ${this.name.last}`;

 }); 1

module.exports = mongoose.model("User", userSchema);

• 1 Add a virtual attribute to get the user’s full name.

Note

As of the writing of this book, you won’t be able to use arrow functions here because Mongoose
methods use lexical this, on which ES6 arrow functions no longer depend.

Test this model right away in REPL. Remember to require Mongoose and everything needed for
this environment to work with your new model. With a new REPL session, you need to require
Mongoose again, specify Mongoose to use native promises, and connect to your database by
typing mongoose.connect("mongodb://localhost:27017/recipe_db", {useNewUrlParser:
true}). Then require the new user model with const User = require ("./models/user").

Create a new user instance in REPL, and log the returned user or error to see whether the model
was set up correctly. Listing 18.3 shows a working line to create a sample user. In this example, a
user is created and saved to the database with all the required properties. Notice the extra space
in the last field, which should be trimmed through Mongoose before saving to the database.

Tip

You can add the REPL commands in these examples to your REPL.js file for future use.

Listing 18.3. Creating a new user in REPL in terminal

var testUser;

User.create({

 name: {

 first: "Jon",

 last: "Wexler"

 },

 email: "jon@jonwexler.com",

 password: "pass123"

})

 .then(user => testUser = user)

 .catch(error => console.log(error.message)); 1

• 1 Create a new user.

Note

If you get an error complaining about unique email addresses, it probably means that you’re
trying to create a user with the same information as one in your database (which isn’t permitted,
due to the rules you set in the user schema). To get around this restriction, create a user with a
different email address or use the find() method instead of create, like
so: User.findOne({email: "jon@jonwexler.com"}).then(u=> testUser = u)
.catch(e=> console.log(e.message));.

The user variable should now contain the document object shown in the next listing. Notice that
the courses property for this user is an empty array. Later, when you associate this user with
courses, that property will populate with ObjectIds.

Listing 18.4. Showing the results of a saved user object in terminal

{ _id: 598a3d85e1225d0bbe8d88ae,

 email: "jon@jonwexler.com",

 password: "pass123",

 __v: 0,

 courses: [],

 name: { first: "Jon", last: "Wexler" } } 1

• 1 Display of query response

Now you can use the information from this user to link any subscribers in the system with the
same email. To link a subscriber, see the code in listing 18.5. You’re setting up
a targetSubscriber variable scoped outside of the query and assigning it the results of the query
on the subscriber model. This way, you can use your targetSubscriber variable after the query
completes. In this query, you’re using the user’s email from the create command earlier to
search over subscribers.

Listing 18.5. Connecting a subscriber to the user in REPL in terminal

var targetSubscriber;

Subscriber.findOne({

 email: testUser.email

 })

 .then(subscriber => targetSubscriber = subscriber); 1

• 1 Set the targetSubscriber variable to a subscriber found with the user’s
email address.

After you run these commands, your targetSubscriber variable should contain the value of the
subscriber object that shares the user’s email address. You can console.log(target
Subscriber); to see that content in your REPL environment.

With promises, you can condense these two operations into one, as shown in listing 18.6. By
nesting the call to find associated subscribers, you get a promise chain that can be moved as a
whole into a controller action. First, create the new user. You get back the new user whose email
you use to search for subscribers with the same email. The second query returns any subscribers
that exist. When you find the subscriber with the same email, you can link it with the user by its
attribute name on the user model, subscribedAccount. Finally, save the change.

Listing 18.6. Connecting a subscriber to the user in REPL in terminal

var testUser;

User.create({

 name: {

 first: "Jon",

 last: "Wexler "

 },

 email: "jon@jonwexler.com",

 password: "pass123"

})

 .then(user => {

 testUser = user;

 return Subscriber.findOne({

 email: user.email

 }); 1

 })

 .then(subscriber => {

 testUser.subscribedAccount = subscriber; 2

 testUser.save().then(user => console.log("user updated"));

 })

 .catch(error => console.log(error.message));

• 1 Find a subscriber with the user’s email.
• 2 Connect a subscriber and user.

Now that you can create a user and connect it to another model in REPL, the next step is moving
this interaction to the controllers and views.

Note

You’ve moved to REPL to test your database queries, so you can remove the
required subscriber module from main.js, where it’s no longer needed.

Quick check 18.1

Q1:

How are virtual attributes different from normal model attributes?

QC 18.1 answer

1:

Virtual attributes aren’t saved in the database. These attributes, unlike normal schema attributes,
exist only while the application is running; they can’t be extracted from the database or found
directly through MongoDB.

18.2. ADDING CRUD METHODS TO YOUR MODELS

In this section, I discuss the next steps you need to take with the user, subscriber, and group
models. All three models have schemas and associations that work in REPL, but you’re going to
want to use them in the browser. More specifically, you want to manage the data for each model
as an admin of the site and allow users to create their own user accounts. First, I’ll talk about the
four major functions in database operations: create, read, update, and delete (CRUD). Figure

18.1 illustrates these functions.

Figure 18.1. Views for each CRUD action

In web development, a CRUD application lays the groundwork for any larger or more evolved
application, because at the root and in some way, you always need to perform the actions listed
in table 18.1 on each model.

Table 18.1. CRUD actions

Action Description

Create The create function has two parts: new and create. new represents the route and action taken to

view the form with which you’ll create a new instance of your model. To create a new user, for

example, you might visit http://localhost:3000/users/ new to view a user-creation form located

in new.ejs. The create route and action handle any POST requests from that form.

Read The read function has only one route, action, and view. In this book, their names are show to

reflect that you’re showing that model’s information, most likely as a profile page. Although

you’re still reading from the database, the show action and show.ejs view are more conventional

names used for this operation.

Update The update function has two parts: edit and update. edit, like new, handles GET requests to the

edit route and edit.ejs view, where you’ll find a form to change a model’s attribute values. When

you modify the values and submit the form by using a PUT request, the update route and action

handle that request. These functions depend on some instance of the model preexisting in your

database.

Delete The delete function can be the simplest of the functions. Although you can create a view to ask a

user whether he’s sure that he wants to delete a record, this function is usually implemented with

a button that sends a DELETE request to a route with a user’s ID. Then the delete route and

action remove the record from your database.

For the new.ejs and edit.ejs forms, you need to route the form submissions
to create and update routes, respectively. When you submit a form to create a new user, for
example, the form data should be posted to the user/create route. The following examples walk
you through the creation of CRUD actions and views for the user model, but you should apply
the same technique to the course and subscriber models.

CRUD HTTP methods

Earlier in this book, you learned about the GET and POST HTTP methods, which account for most of
the requests made across the internet. Many other HTTP methods are used in specific cases, and
with the update and delete functions, you can introduce two more, as shown in table 18.2.

Table 18.2. PUT and DELETE HTTP methods

HTTP
method

Description

PUT The method used to indicate that you’re submitting data to the application server with the intention of

modifying or updating an existing record. PUT usually replaces the existing record with a new set of

attributes, even if some haven’t changed. Although PUT is the leading method for updating records,

some people prefer the PATCH method, which is intended to modify only the attributes that have

changed. To handle update routes in Express.js, you can use app.put.

DELETE The method used to indicate that you’re removing a record from your database. To handle delete routes

in Express.js, you can use app.delete.

Although you can get away with using GET and POST to update and delete records, it’s best to follow
these best practices when using HTTP methods. With consistency, your application will run with
fewer problems and better transparency when problems arise. I discuss these methods further
in lesson 19.

Before you get started, take a look at your controllers, and prepare them for a renovation. So far,
you’ve created new controller actions by adding them to the module’s exports object. The more
actions you create, the more you repeat that exports object, which isn’t particularly pretty in the
controller module. You can clean up your controller actions by exporting them all together
with module.exports in an object literal. Modify your home controller to the code in listing 18.7.

In this example, your actions are now comma-delimited, which makes the names of the actions
much easier to identify. After you apply this change in the controller, you don’t need to change
any other code for the application to function as it did before.

Listing 18.7. Modifying your actions in homeController.js

var courses = [

 {

 title: "Event Driven Cakes",

 cost: 50

},

 {

 title: "Asynchronous Artichoke",

 cost: 25

},

 {

 title: "Object Oriented Orange Juice",

 cost:10

}];

module.exports = { 1

 showCourses: (req, res) => {

 res.render("courses", {

 offeredCourses: courses

 });

 }

};

• 1 Export object literal with all controller actions.

Apply this structure to your other controllers (errorController.js and subscribers-
Controller.js) and to all controllers moving forward. These modifications will start to become
important as you build out your CRUD actions and structure your middleware within your
routes.

Note

Also create coursesController.js and usersController.js in your controllers folder so that
you can create the same actions for the course and user models over the next few lessons.

In the next section, you build the forms you need for the user model. First, though, create an
often-overlooked view for the application: index.ejs. Also create this index page for each
application model. The purpose of the index route, action, and view is to fetch all records and
display them on a single page. You build the index page in the next section.

Quick check 18.2

Q1:

What CRUD functions don’t necessarily need a view?

QC 18.2 answer

1:

Although every CRUD function can have its own view, some functions could live in modals or be
accessed through a basic link request. The delete function doesn’t necessarily need its own view
because you’re sending a command to delete a record.

18.3. BUILDING THE INDEX PAGE

To start, create the index.ejs view by creating a new users folder inside the views folder and
adding the code in listing 18.8.

In this view, you’re looping through a users variable and creating a new table row listing each
user’s attributes. The same type of table can be used for subscribers and courses. You need to
populate the users variable with an array of users at the controller level.

Note

You should apply the same approach to other models in your application. The subscriber model
views will now go in the subscribers folder within the views folder, for example.

Listing 18.8. Listing all users in index.js

<h2>Users Table</h2>

 <table class="table">

 <thead>

 <tr>

 <th>Name</th>

 <th>Email</th>

 <th>Zip Code</th>

 </tr>

 </thead>

 <tbody>

 <% users.forEach(user => { %> 1

 <tr>

 <td><%= user.fullName%></td>

 <td><%= user.email %></td>

 <td><%= user.zipCode%></td>

 </tr>

 <% }); %>

 </tbody>

 </table>

• 1 Loop through an array of users in the view.

To test this code, you need a route and controller action that will load this view. Create
a usersController.js in the controllers folder with the code in listing 18.9.

You need to require the user model in usersController.js to have access to it in this controller.
First, you receive a response from the database with your users. Then you render your list of
users in your index.ejs view. If an error occurs, log the message to the console and redirect the
response to the home page.

Listing 18.9. Creating the index action in usersController.js

const User = require("../models/user"); 1

module.exports = {

 index: (req, res) => {

 User.find({})

 .then(users => { 2

 res.render("users/index", {

 users: users

 })

 })

 .catch(error => { 3

 console.log(`Error fetching users: ${error.message}`)

 res.redirect("/");

 });

 }

};

• 1 Require the user model.
• 2 Render the index page with an array of users.

• 3 Log error messages and redirect to the home page.

Note

In the subscribers controller, the index action replaces your getAllSubscribers action.
Remember to modify the action’s corresponding route in main.js to point to index and to change
the subscribers.ejs file to index.ejs. This view should now live in a subscribers folder within
views.

The last step is introducing the usersController to main.js and adding the index route by
adding the code in listing 18.10 to main.js.

First, require the usersController into main.js. Add this line below where your subscribers-
Controller is defined. Creating your first user route, take incoming requests to /users, and use
the index action in usersController.

Listing 18.10. Adding usersController and a route to main.js

const usersController = require("./controllers/usersController"); 1

app.get("/users", usersController.index); 2

• 1 Require usersController.
• 2 Create the index route.

Fire up your application in terminal, and visit http://localhost:3000/users. Your screen should
resemble figure 18.2.

Figure 18.2. Example of users index page in your browser

This list is your window into the database without revealing any sensitive data to the public.
Before you continue, though, make one more modification to your routes and actions.

Quick check 18.3

Q1:

What is the purpose of the index view?

QC 18.3 answer

1:

The index view displays all documents for a particular model. This view can be used internally by a
company to see the names and email addresses of everyone who subscribed. It can also be visible to
all users so that everyone can see who signed up.

18.4. CLEANING UP YOUR ACTIONS

Right now, your index action is designed to serve only an EJS template view with data from your
database. You may not always want to serve your data in a view, however, as you learn in unit 6.
To make better use of your actions, break them into an action to run your query and an action to
serve results through your view.

Modify the users controller to the code shown in listing 18.11. In this revised code, you have
the index action, which calls the find query on the user model. If you successfully produce
results, add those results to the res.locals object—a unique object on the response that lets you
define a variable to which you’ll have access in your view. By assigning the results
to res.locals.users, you won’t need to change your view; the variable name users matches
locally in the view. Then call the next middleware function. If an error occurs in the query, log
the error, and pass it to the next middleware function that will handle the error. In this case,
that function is the internalServerError action in the errors controller. The indexViewaction
renders the index view.

Listing 18.11. Revisiting the index action in usersController.js

const User = require("../models/user");

module.exports = {

 index: (req, res, next) => {

 User.find() 1

 .then(users => {

 res.locals.users = users; 2

 next();

 })

 .catch(error => {

 console.log(`Error fetching users: ${error.message}`);

 next(error); 3

 });

 },

 indexView: (req, res) => {

 res.render("users/index"); 4

 }

};

• 1 Run query in index action only.
• 2 Store the user data on the response and call the next middleware function.
• 3 Catch errors, and pass to the next middleware.
• 4 Render view in separate action.

To get your application to load your users on the index page as before, add the indexViewaction
as the middleware function that follows the index action in your route. To do so, change
the /users route in main.js to the following code: app.get("/users", usersController.index,
usersController.indexView). When usersController.index completes your query and adds
your data to the response object, usersController.indexView is called to render the view. With
this change, you could later decide to call a different middleware function after the index action
in another route, which is exactly what you’ll do in unit 6.

Now you have a way, other than REPL and the MongoDB shell, to view the users, courses, and
subscribers in your database. In lesson 19, you pull more functionality into the views.

Quick check 18.4

Q1:

Why do you need to log error messages to the console if you’re working mainly in the browser?

QC 18.4 answer

1:

Although you’re moving more data and functionality into the views, your terminal is still the heart
of your application. Your console window is where you should expect to see application errors,
requests made, and custom error messages you create so that you’ll know where to look to fix the
problem.

SUMMARY

In this lesson, you learned how to create a user model and where to get started with CRUD
functions. You also learned about two new HTTP methods and saw how to create an index page
to display all your users. With this index page, you started to interact with your application from
the browser. Finally, you modified your controller and routes to make better use of middleware
functions and interactivity among your actions. In lesson 19, you apply
the create and read functions to your three models.

Try this

With your index page set up, try to think about how an administrator of your application might use
this page. You created the table to display user data, but you may want other columns in this table.
Create new user instance methods to give you the number of characters in each user’s name and
then create a new column in this table to show that number for each user.

Try creating a new virtual attribute for the user model.

Lesson 19. Creating and reading your models

In lesson 18, you constructed your user model and built an index page to display users on the
same page. In this lesson, you add more functionality to your application by focusing on the
create and read functions of CRUD. You start by creating an EJS form that handles a user’s
attributes as inputs. Then you create the routes and actions to handle that form data. Last, you
build a show page to act as the user’s profile page.

This lesson covers

• Constructing a model creation form
• Saving users to your database from the browser
• Displaying associated models in a view

Consider this

With a new way to create courses for your recipe application, you’re finding it tedious to add
individual documents to your database on REPL. You decided to create dedicated routes to create
new model instances, edit them, and display their data. These routes are the foundations of CRUD
methods that allow interaction with your data to flow through your application views.

19.1. BUILDING THE NEW USER FORM

To create a new user instance in your database, you need some way of retrieving that user’s data.
So far, you’ve been entering that data directly in REPL. Because you’re moving all your data
interactions to the browser, you need a form through which new users can create their accounts.
In CRUD terms, that form lives in a view called new.ejs.

To start, build that form by adding the code in listing 19.1 to new.js in the views/users folder.
The resulting form looks like figure 19.1. This form makes a POST request to
the /users/create route upon submission. You need to make sure to create that route before
you try to submit anything; otherwise, your application will crash.

Figure 19.1. Example of user-creation form in your browser

The form is embellished with bootstrap, but the major takeaways are that each user attribute is
represented as a form input and that the attribute’s name is set to that input’s nameproperty—in
the case of the first name, name="first". You’ll use these name attributes later to identify values
in the controller. Notice that the password, email, and zipCode fields have some unique
properties. These HTML validations are some ways that you can prevent invalid or insecure
information from entering your application from the web page.

Listing 19.1. Building a user creation form in new.ejs

<div class ="data-form">

 <form action="/users/create" method="POST"> 1

 <h2>Create a new user:</h2>

 <label for="inputFirstName">First Name</label> 2

 <input type ="text" name="first" id="inputFirstName"

 placeholder ="First" autofocus>

 <label for="inputLastName">First Name</label>

 <input type ="text" name="last" id="inputLastName"

 placeholder ="Last">

 <label for="inputPassword">Password</label> 3

 <input type="password" name="password" id="inputPassword"

 placeholder="Password" required>

 <label for="inputEmail">Email address</label>

 <input type="email" name="email" id="inputEmail"

 placeholder="Email address" required>

 <label for="inputZipCode">Zip Code</label>

 <input type="text" name="zipCode" id="inputZipCode" pattern="\d*"

 placeholder="Zip Code" required>

 <button type="submit">Sign in</button>

 </form>

</div>

• 1 Build a form to create user accounts.
• 2 Add user properties as inputs to the form.
• 3 Apply HTML attributes to protect password and email fields.

Now that you have a new view, you need a route and controller actions to serve that view. You
also add the create routes and actions to handle data from that view in the next section.

Quick check 19.1

Q1:

Which form input attribute must have a value for controller actions to identify form data?

QC 19.1 answer

1:

The name attribute must be filled in on the form to create a new record. Whatever value is mapped
to the name attribute is what the controller uses to compare against the model schema.

19.2. CREATING NEW USERS FROM A VIEW

The form for new users collects data as it pertains to the user schema. Next, you need to create
actions for this form. To get your form to render and process data, add the code for the user
actions in listing 19.2 to usersController.js.

The new action takes incoming requests to create a new user and render the form in new.ejs.
The create action receives incoming posted data from the form in new.ejs and passes the
resulting created user to the next middleware function through the response object. The next
middleware function, redirectView, determines which view to show based on the redirect path
it receives as part of the response object. If a user is created successfully, redirect to the index
page.

In the create action, assign a userParams variable to the collected incoming data. Then
call User.create and pass those parameters, redirecting the user to the /users index page upon
success and to the error page in case of a failure.

Note

For the subscribers controller, the new and create actions effectively replace
the getSubscriptionPage and saveSubscriber actions you created earlier in the book. After
swapping in these new actions, you need to change the action names in the main.js routes to
match.

Listing 19.2. Adding a create action to usersController.js

new: (req, res) => { 1

 res.render("users/new");

},

create: (req, res, next) => { 2

 let userParams = {

 name: {

 first: req.body.first,

 last: req.body.last

 },

 email: req.body.email,

 password: req.body.password,

 zipCode: req.body.zipCode

 }; 3

 User.create(userParams)

 .then(user => {

 res.locals.redirect = "/users";

 res.locals.user = user;

 next();

 })

 .catch(error => {

 console.log(`Error saving user: ${error.message}`);

 next(error);

 });

},

redirectView: (req, res, next) => { 4

 letredirectPath =res.locals.redirect;

 if (redirectPath)res.redirect(redirectPath);

 else next();

}

• 1 Add the new action to render a form.
• 2 Add the create action to save the user to the database.
• 3 Create users with form parameters.
• 4 Render the view in a separate redirectView action.

To see this code work, add the new and create routes to main.js, as shown in listing 19.3. The first
route takes incoming GET requests to /users/new and renders new.ejs in the usersController.
The second route accepts POST requests to /users/create and passes that incoming request body
to the create action, followed by the view redirect with the redirectView action
in usersController.js. These routes can go below your user’s index route.

Note

The addition of the new and create actions to the subscribers controller means that you can
remove the getAllSubscribers and saveSubscriber actions in favor of the new CRUD actions.
Likewise, the only action you need in the home controller is to serve the home page: index.ejs.

Now that you’re starting to accumulate the number of routes you’re using in main.js, you can
use the Router module in Express.js by adding const router = express .Router() to your
main.js file. This line creates a Router object that offers its own middleware and routing
alongside the Express.js app object. Soon, you’ll use this router object to organize your routes.
For now, modify your routes to use router instead of app. Then add app.use("/", router) to
the top of your routes in main.js. This code tells your Express.js application to use the router
object as a system for middleware and routing.

Listing 19.3. Adding new and create routes to main.js

router.get("/users/new", usersController.new); 1

router.post("/users/create", usersController.create,

 usersController.redirectView); 2

• 1 Handle requests to view the creation form.
• 2 Handle requests to submit data from the creation form, and display a view.

Restart your application, fill out the form on http://localhost:3000/users/new, and submit the
form. If you were successful, you should see your newly created user on the index page.

When you have users successfully saving to your database, add a finishing touch. You’ve already
designed the User schema with an association to the Subscriber model. Ideally, whenever a new
user is created, you’d like to check for an existing subscriber with the same email address and
associate the two. You do so with a Mongoose pre("save") hook.

Mongoose offers some methods, called hooks, that allow you to perform an operation before a
database change, such as save, is run. You can add this hook to user.js by adding the code
in listing 19.4 after the schema is defined and before the model is registered. You need to require
the Subscriber model into user.js for this hook to work. Use const Subscriber =
require("./subscriber").

This hook runs right before a user is created or saved. It takes the next middleware function as a
parameter so that when this step is complete, it can call the next middleware function. Because
you can’t use arrow functions here, you need to define the user variable outside the promise
chain.

Note

As of the writing of this book, arrow functions don’t work with Mongoose hooks.

You perform this function only if the user doesn’t already have an associated subscriber, which
saves an unneeded database operation. Search for one subscriber account, using the user’s email
address. If a subscriber is found with a matching email address, assign that subscriber to the
user’s subscribedAccount attribute. Unless an error occurs, continue saving the user in the next
middleware function. You also need to add a reference to the subscriber model in user.js by
adding const Subscriber = require("./subscriber") to the top.

Listing 19.4. Adding a pre(‘save’) hook to user.js

userSchema.pre("save", function (next) { 1

 let user = this; 2

 if (user.subscribedAccount === undefined) { 3

 Subscriber.findOne({

 email: user.email

 }) 4

 .then(subscriber => {

 user.subscribedAccount = subscriber; 5

 next();

 })

 .catch(error => {

 console.log(`Error in connecting subscriber:

 ${error.message}`);

 next(error); 6

 });

 } else {

 next(); 7

 }

});

• 1 Set up the pre(‘save’) hook.
• 2 Use the function keyword in the callback.
• 3 Add a quick conditional check for existing subscriber connections.
• 4 Query for a single subscriber.
• 5 Connect the user with a subscriber account.
• 6 Pass any errors to the next middleware function.
• 7 Call next function if user already has an association.

Give this new code a shot by creating a new subscriber in REPL (or through the
subscriber’s new page, if you’ve created that already) and then creating a new user in your
browser with the same email address. Going back to REPL, you can check whether that
user’s subscribedAccount has a value reflecting the associated subscriber’s ObjectId. This value
will come in handy in the next section, when you build the user’s show page.

Quick check 19.2

Q1:

Why does the Mongoose pre("save") hook take next as a parameter?

QC 19.2 answer

1:

The pre("save") hook is Mongoose middleware, and as with other middleware, when the function
completes, it moves on to the next middleware function. next here indicates the next function in the
middleware chain to be called.

19.3. READING USER DATA WITH SHOW

Now that you can create users, you want a way to display a user’s information on dedicated
pages (such as the user’s profile page). The only operation you need to perform on the database
is to read data, finding a user by a specific ID and displaying its contents in the browser.

Start by creating a new view called show.ejs. Call the view and action show, making it clear that
your intention is to show user data. In show.ejs, create a table similar to the one in index.ejs,
except that you won’t need the loop. You want to show all the user’s attributes. Add the code
in listing 19.5 to show.ejs within the views/users folder.

This form uses the user variable’s attributes to populate each table data box. At the end, check
whether that user has a subscribedAccount. If not, nothing is displayed. If a subscriber is
associated, display some text and link to the subscriber’s show page.

Listing 19.5. User show table in show.ejs

<h1>User Data for <%= user.fullName %></h1>

<table class="table"> 1

 <tr>

 <th>Name</th>

 <td><%= user.fullName %></td>

 </tr>

 <tr>

 <th>Email</th>

 <td><%= user.email %></td>

 </tr>

 <tr>

 <th>Zip Code</th>

 <td><%= user.zipCode %></td>

 </tr>

 <tr>

 <th>Password</th>

 <td><%= user.password %></td>

 </tr>

</table>

<% if (user.subscribedAccount) {%> 2

 <h4 class="center"> This user has a

 <a href="<%=`/subscribers/${user.subscribedAccount}` %>">

 subscribed account.

 </h4>

<% } %>

• 1 Add a table to display user data.
• 2 Check for linked subscriber accounts.

Note

You will need to follow the same steps in creating CRUD functions and views for the subscriber
simultaneously for this linked page to work. The anchor tag href path
is /subscribers/${user.subscribedAccount}, which represents the subscriber’s showroute.

To make it easier to get to a user’s show page, in index.ejs, wrap the user’s name in an anchor tag
that links to users/ plus the user’s ID. The table data there should look like the next listing. You
embed JavaScript in the anchor tag’s href as well as in the table data content.

Listing 19.6. Updated name data in index.ejs

<td>

 <a href="<%= `/users/${user._id}` %>"> 1

 <%= user.fullName %>

</td>

• 1 Embed the user’s name and ID in HTML.

If you refresh the users index page, you’ll notice that the names have turned into links (figure

19.2). If you click one of those links now, though, you’ll get an error because there isn’t a route to
handle the request yet.

Figure 19.2. Users’ index page with linked names in your browser

Next, add the show action to usersController.js, as shown in listing 19.7. First, collect the user’s
ID from the URL parameters; you can get that information from req.params.id. This code
works only if you define your route by using :id (see listing 19.7).

Use the findById query, and pass the user’s ID. Because each ID is unique, you should expect a
single user in return. If a user is found, add it as a local variable on the response object, and call
the next middleware. Soon, you’ll set up the next function to be showView, where you render the
show page and pass the user object to display that user’s information. If an error occurs, log the
message, and pass the error to the next middleware function.

Listing 19.7. Show action for a specific user in usersController.js

show: (req, res, next) => {

 let userId = req.params.id; 1

 User.findById(userId) 2

 .then(user => {

 res.locals.user = user; 3

 next();

 })

 .catch(error => {

 console.log(`Error fetching user by ID: ${error.message}`);

 next(error); 4

 });

 },

showView: (req, res) => {

 res.render("users/show"); 5

}

• 1 Collect the user ID from the request params.
• 2 Find a user by its ID.
• 3 Pass the user through the response object to the next middleware function.
• 4 Log and pass errors to next function.
• 5 Render show view.

Last, add the show route for users in main.js with the following code: router.get
("/users/:id", usersController.show, usersController.showView). This show route uses
the /users path along with an :id parameter. This parameter will be filled with the user’s ID
passing in from the index page when you click the user’s name in the table.

Note

You can group routes that are related to the same model in main.js for better organization.

Restart your application, and click a user’s name. You should be directed to that user’s show
page, as shown in figure 19.3.

Figure 19.3. Users show page in your browser

You now have the ability to create data in your application and view it on a few web pages.
In lesson 20, you explore ways of updating and deleting that data.

Quick check 19.3

Q1:

True or false: the URL parameter representing the user’s ID must be called :id.

QC 19.3 answer

1:

False. The :id parameter is essential for getting the ID of the user you’re trying to display, but this
parameter can be referenced by any name you choose. If you decide to use :userId, make sure that
you use that name consistently throughout your code.

SUMMARY

In this lesson, you learned how to create index, new, and show pages for your models. You also
created routes and actions to process user data and create new accounts. Finally, you
customized the user show page to show user data and an indicator for linked subscriber
accounts. You have two of the four CRUD building blocks in place. In lesson 20, you apply
the update and delete functions to your three models.

Try this

Your user-account creation form is ready to create new accounts, but you’ve implemented certain
validations on the user model that may allow a form to be submitted with no data saved. Try to test
some of your validations to ensure that they’re working correctly, as follows:

1. What happens when you enter an email address with capital letters?
2. What happens when a required field is missing?

It’s good that you get redirected to the new page again, but you have improvements to make in the
error messages shown on the screen.

Lesson 20. Updating and Deleting your Models

In lesson 19, you built create and read functionality for your models. Now it’s time to complete the
CRUD methods. In this lesson, you add the routes, actions, and views for
the update and delete functions. First, you create a form to edit the attributes of existing users.
Then you manage the modified data in an update action. At the end of the lesson, you implement a
quick way to delete users from your users index page. To start, make sure that your MongoDB
server is running by entering mongod in a terminal window.

This lesson covers

• Constructing a model edit form

• Updating user records in your database

• Deleting user records

Consider this

Your recipe application is ready to accept new users, but you’re getting complaints that multiple
unnecessary accounts were made and that some users accidentally typed the wrong email address.
With the update and delete CRUD functions, you’ll be able to clear unwanted records and modify
existing ones to persist in your application.

20.1. BUILDING THE EDIT USER FORM

To update a user’s information, you use some Mongoose methods in a specific update action. First,
though, you create a form to edit user information. The form looks like the one in create.js, but the
form’s action points to users/:id/update instead of users/createbecause you want your route to
indicate that the form’s contents are updating an existing user, not creating a new one.

You also want to replace the values in each form input with the user’s existing information. The
input for the user’s first name might look like the next listing, for example. The valueattribute here
uses the existing user’s first name. This code works only if a user object is being passed into this
page.

Listing 20.1. Input example with user’s data in edit.ejs

<input type="text" name="first" id="inputFirstName" value="<%=

 user.name.first %>" placeholder="First" autofocus> 1

• 1 Apply the existing user’s attribute values in edit form.

To ensure that an existing user’s data populates this form, add another column to the table in the
users index page. Your index page should resemble figure 20.1.

Figure 20.1. Users index page with edit links in your browser

This column has a link for editing each specific user. You can add an anchor tag, as shown in the
next listing. The href value for the edit link tag makes a GET request to the /users plus the
user’s Id plus /edit route.

Listing 20.2. Modified table with link to edit users in index.ejs

<td>

 <a href="<%=`/users/${user._id}/edit` %>">

 Edit

</td> 1

• 1 Embed the user’s ID in the edit tag link.

Next, you want to modify the form in edit.ejs to submit a PUT request with modified user data, but
your HTML form element supports only GET and POST requests. It’s important to begin using the
intended HTTP methods with your CRUD functions so that there’s no future confusion about
whether a request is adding new data or modifying existing data.

One problem you need to address is how Express.js will receive this request. Express.js receives
your HTML form submissions as POST requests, so you need some way to interpret the request with
the HTTP method you intended. Several solutions to this problem exist. The solution you use in this
lesson is the method-override package.

method-override is middleware that interprets requests according to a specific query parameter
and HTTP method. With the _method=PUT query parameter, you can interpret POST requests

as PUT requests. Install this package by running npm i method-override -Sin your project’s
terminal window, and add the lines in listing 20.3 to main.js.

First, require the method-override module into your project. Tell the application to
use methodOverride as middleware. Specifically, you’re telling this module to look for
the _method query parameter in the URL and to interpret the request by using the method specified
as the value of that parameter. A POST request that you want processed as a PUTrequest, for
example, will have ?_method=PUT appended to the form’s action path.

Listing 20.3. Adding method-override to your application in main.js

const methodOverride = require("method-override"); 1

router.use(methodOverride("_method", {

 methods: ["POST", "GET"]

})); 2

• 1 Require the method-override module.

• 2 Configure the application router to use methodOverride as middleware.

You want to modify the form in edit.ejs to submit the form with a POST method to
the /users/:id/update?_method=PUT route. The opening form tag will look like listing 20.4.

The action is dynamic, depending on the user’s ID, and points to the /users/:id/updateroute.
Your method-override module interprets the query parameter and helps Express.js match the
request’s method with the appropriate route.

Listing 20.4. Pointing the edit form to the update route in edit.ejs

<form method="POST" action="<%=`/users/${user._id}/update

 ?_metho d=PUT`%>"> 1

• 1 Add a form to update user data.

You can reference the complete user edit form in the next listing, which should look like figure

20.2 in your browser for an existing user.

Figure 20.2. User edit page in your browser

Listing 20.5. Complete user edit form in edit.ejs

<div class="data-form" > 1

 <form method="POST" action="<%=`/users/${user._id}/update

 ?_method=PUT`%>">

 <h2>Edit user:</h2>

 <label for="inputFirstName">First Name</label>

 <input type="text" name="first" id="inputFirstName" value="<%=

 user.name.first %>" placeholder="First" autofocus>

 <label for="inputLastName">Last Name</label>

 <input type="text" name="last" id="inputLastName" value="<%=

 user.name.last %>" placeholder="Last">

 <label for="inputPassword">Password</label>

 <input type="password" name="password" id="inputPassword"

 value="<%= user.password %>" placeholder="Password" required>

 <label for="inputEmail">Email address</label>

 <input type="email" name="email" id="inputEmail" value="<%=

 user.email %>" placeholder="Email address" required>

 <label for="inputZipCode">Zip Code</label>

 <input type="text" name="zipCode" id="inputZipCode"

 pattern="\d*" value="<%= user.zipCode %>" placeholder="Zip

 Code" required>

 <button type="submit">Update</button>

 </form>

</div>

• 1 Display the user edit form.

In the next section, you add the routes and actions that get this form to work, as well as the data
from the form processed.

Quick check 20.1

Q1:

Why do you use the PUT method for the edit form and POST for the new form?

QC 20.1 answer

1:

The edit form is updating data for an existing record. By convention, the request to submit data to
your server should use an HTTP PUT method. To create new records, use POST.

20.2. UPDATING USERS FROM A VIEW

Now that the user edit form is in its own view, add the controller action and route to complement
the form. The edit route and action send users to view edit.ejs. The updateroute and action are
used internally to make changes to the user in the database. Then the redirectView action acts as
the action following update, redirecting you to a view that you specify. Add the actions in listing

20.6 to usersController.js.

The edit action, like the show action, gets a user from the database by the user’s ID and loads a view
to //edit the user. Notice that if a user isn’t found by the ID parameter, you pass an error to the
error-handling middleware function. The update action is called when the edit form is submitted;

like the create action, it identifies the user’s ID and userParams, and passes those values into the
Mongoose findByIdAndUpdate method. This method takes an ID followed by parameters you’d like
to replace for that document by using the $setcommand. If the user updates successfully, redirect
to the user’s show path in the next middleware function; otherwise, let the error-handling
middleware catch any errors.

Listing 20.6. Adding edit and update actions to usersController.js

edit: (req, res, next) => { 1

 let userId = req.params.id;

 User.findById(userId) 2

 .then(user => {

 res.render("users/edit", {

 user: user

 }); 3

 })

 .catch(error => {

 console.log(`Error fetching user by ID: ${error.message}`);

 next(error);

 });

},

update: (req, res, next) => { 4

 let userId = req.params.id,

 userParams = {

 name: {

 first: req.body.first,

 last: req.body.last

 },

 email: req.body.email,

 password: req.body.password,

 zipCode: req.body.zipCode

 }; 5

 User.findByIdAndUpdate(userId, {

 $set: userParams

 }) 6

 .then(user => {

 res.locals.redirect = `/users/${userId}`;

 res.locals.user = user;

 next(); 7

 })

 .catch(error => {

 console.log(`Error updating user by ID: ${error.message}`);

 next(error);

 });

}

• 1 Add the edit action.

• 2 Use findById to locate a user in the database by their ID.

• 3 Render the user edit page for a specific user in the database.

• 4 Add the update action.

• 5 Collect user parameters from request.

• 6 Use findByIdAndUpdate to locate a user by ID and update the document record in one

command.

• 7 Add user to response as a local variable, and call the next middleware function.

Last, you need to add the routes in listing 20.7 to main.js. The path to edit a user is a straightforward
route with an id parameter. The POST route to update the user from the edit form follows the same
path structure but uses the update action. You’re also going to reuse the redirectView action to
display the view specified in your response’s locals object.

Listing 20.7. Adding edit and update routes to main.js

router.get("/users/:id/edit", usersController.edit); 1

router.put("/users/:id/update", usersController.update,

 usersController.redirectView); 2

• 1 Add routes to handle viewing.

• 2 Process data from the edit form, and display the user show page.

Relaunch your application, visit the users index page, and click the edit link for a user. Try to update
some values, and save.

With the ability to create, read, and update user data, you’re missing only a way to remove records
that you don’t want anymore. The next section covers the delete function.

Quick check 20.2

Q1:

True or false: findByIdAndUpdate is a Mongoose method.

QC 20.2 answer

1:

True. findByIdAndUpdate is a Mongoose method used to make your query more succinct and
readable in your server’s code. The method can’t be used unless the Mongoose package is installed.

20.3. DELETING USERS WITH THE DELETE ACTION

To delete a user, you need only one route and a modification to your users index page. In index.ejs,
add a column titled delete. As you did with the edit column, link each user to
a users/:id/delete route (figure 20.3).

Figure 20.3. Users index page with delete links in your browser

Note

You can add some basic security with an HTML onclick="return confirm('Are you sure you
want to delete this record?')"

Recall that you need to use the _method=DELETE query parameter so that your application can
interpret GET requests as DELETE requests. Add the code for the delete column in the users index
page, as shown in listing 20.8. With the appended query parameter to send a DELETE request, this
link passes the user’s ID in search of an Express.js route handling DELETE requests. The
confirmation script displays a modal to confirm that you want to submit the link and delete the
record.

Listing 20.8. Delete link in users index.ejs

<td>

 <a href="<%= `users/${user._id}/delete?_method=DELETE` %>"

 onclick="return confirm('Are you sure you want to delete

 this record?')">Delete 1

</td>

• 1 Add a link to the delete action on the index page.

Next, add the controller action to delete the user record by its ID. Add the code in listing

20.9to usersController.js.

You’re using the Mongoose findByIdAndRemove method to locate the record you clicked and
remove it from your database. If you’re successful in locating and removing the document, log that
deleted user to the console and redirect in the next middleware function to the users index page.
Otherwise, log the error as usual, and let your error handler catch the error you pass it.

Listing 20.9. Adding the delete action to usersController.js

delete: (req, res, next) => {

 let userId = req.params.id;

 User.findByIdAndRemove(userId) 1

 .then(() => {

 res.locals.redirect = "/users";

 next();

 })

 .catch(error => {

 console.log(`Error deleting user by ID: ${error.message}`);

 next();

 });

}

• 1 Deleting a user with the findByIdAndRemove method

The only missing piece is the following route, which you add to main.js: router.delete
("/users/:id/delete", usersController.delete, usersController.redirectView). This route
handles DELETE requests that match the path users/ plus the user’s ID plus /delete. Then the route
redirects to your specified redirect path when the record is deleted.

Try this new code by running the application again and visiting the users index page. Click the
delete link next to one of the users, and watch it disappear from your page.

Last, to make it easier to use your new CRUD actions from a user’s profile page, add the links in the
following listing to the bottom of show.ejs.

Listing 20.10. Adding links for user CRUD actions to show.ejs

<div>

 View all users

</div>

<div>

 <a href="<%=`/users/${user._id}/edit`%>">

 Edit User Details

</div>

<div>

 <a href="<%= `/users/${user._id}/delete?_method=DELETE` %>"

 onclick="return confirm('Are you sure you want to delete

 this record?')">Delete

</div> 1

• 1 Add links to edit and delete a user’s account from their profile page.

The user’s show page should resemble figure 20.4.

Figure 20.4. User’s show page with links to edit and delete

Quick check 20.3

Q1:

Why is ?_method=DELETE needed at the end of your link’s path?

QC 20.3 answer

1:

method-override looks for the _method query parameter and its mapped method. Because you’re
using this package to filter incoming GET and POST requests as alternative methods, you need to
append this parameter and value.

SUMMARY

In this lesson, you learned how to edit records and delete records from your database. You also saw
how to use the method-override package to assist with HTML limitations in submitting certain
request methods. With your CRUD functionality complete, it’s time to build an application with
associated models and a user interface to save meaningful data to your database. In the next
capstone exercise (lesson 21), try to apply everything you’ve learned in this unit to build the
Confetti Cuisine application.

Try this

Now that you have each CRUD function working for user accounts, make sure that the same setup is
in place for groups and subscribers. Before you move on to the capstone exercise (lesson 21), make
sure that all three models have working index, new, edit, and show pages. Then, as in lesson 19, try
to incorporate associated models into each record’s show page.

Lesson 21. Capstone: Adding CRUD Models to Confetti Cuisine

Confetti Cuisine is satisfied with the progress I made connecting their application to a database
and setting it up to process subscriber information. They’ve sent me a list of cooking courses
that they’d like to begin to advertise on their site. Essentially, they want subscribers to pick the
courses they’re most interested in attending. Then, if a subscriber later creates a user account,
the business wants those two accounts to be linked.

To accomplish this task, I need to improve the Subscriber model and build
the User and Course models. I need to keep the relationships between these models in mind and
populate data from associated models when necessary. Last, I need to generate all the
functionality needed to allow the creation, reading, updating, and deletion (CRUD) of model
records. In this capstone, I’m going to create a user login form that allows a user to create an
account and then edit, update, and delete the account. I’ll repeat most of the process for courses
and subscribers to Confetti Cuisine’s newsletter.

When I’m done, I’ll have an application to show the team at Confetti Cuisine that allows them to
sign up new users and monitor their courses before officially launching the program.

For this purpose, I need the following:

• Schemas for the user, subscriber, and course models
• CRUD actions for all models in the application
• Views showing links between models

21.1. GETTING SET UP

Picking up where I left off, I have a MongoDB database connected to my application, with the
Mongoose package driving communication between my Subscriber model and raw documents.
I’ll need the same core and external packages moving forward. Additionally, I need to install
the method-override package to assist with HTTP methods not currently supported by HTML
links and forms. I can install this package by running the following code in my project directory
in a new terminal window: npm i method-override -S. Then I require the method-
override module into main.js by adding const method Override = require("method-
override") to the top of the file. I configure the application to use method-override to
identify GET and POST requests as other methods by adding the following
line: app.use(methodOverride("_method", {methods: ["POST", "GET"]})).

Next, I need to think about how this project’s directory structure will look by the time I’m done.
Because I’m adding CRUD functionality to three models, I’m going to create three new
controllers, three new folders within views, and three model modules. The structure
resembles figure 21.1.

Figure 21.1. Capstone file structure

Notice that I’m creating only four views: index, new, show, and edit. Although delete can have
its own view as a deletion confirmation page, I’ll handle deletion through a link on
the index page for each model.

Next, I start by improving the Subscriber model and simultaneously build out
my User and Course models.

21.2. BUILDING THE MODELS

My Subscriber model collected meaningful data for Confetti Cuisine, but they want more
security on the data layer. I need to add some validators on the Subscriber schema to ensure
that subscriber data meets the client’s expectations before entering the database. My new
schema looks like listing 21.1.

I start by requiring Mongoose into this module and pulling the Mongoose Schema object into its
own constant. I create my subscriber schema by using the Schema constructor and passing some
properties for the subscriber. Each subscriber is required to enter a name and an email address
that doesn’t already exist in the database. Each subscriber can opt to enter a five-digit ZIP code.
The timestamps property is an add-on provided by Mongoose to record
the createdAt and updatedAt attributes for this model.

Each subscriber may subscribe to show interest in multiple courses, so this association allows
subscribers to associate with an array of referenced courses. I need to create the Course model
for this feature to work. getInfo is an instance method added to the subscriber schema to
quickly pull any subscriber’s name, email, and zipCode in one line. Exporting the Subscriber
model with this new schema makes it accessible to other modules in the application.

Listing 21.1. Improved Subscriber schema in subscriber.js

const mongoose = require("mongoose"),

 { Schema } = mongoose, 1

 subscriberSchema = new Schema({

 name: { 2

 type: String,

 required: true

 },

 email: {

 type: String,

 required: true,

 lowercase: true,

 unique: true

 },

 zipCode: {

 type: Number,

 min: [10000, "Zip code too short"],

 max: 99999

 },

 courses: [{type: Schema.Types.ObjectId, ref: "Course"}] 3

}, {

 timestamps: true

});

subscriberSchema.methods.getInfo = function () { 4

 return `Name: ${this.name} Email: ${this.email}

 Zip Code: ${this.zipCode}`;

};

module.exports = mongoose.model("Subscriber",

 subscriberSchema); 5

• 1 Require mongoose.
• 2 Add schema properties.
• 3 Associate multiple courses.
• 4 Add a getInfo instance method.
• 5 Export the Subscriber model.

This model looks good, so I’ll apply some of the same techniques to the Course and Usermodel in
course.js and user.js, respectively. Every course is required to have a title and description with
no initial limitations. A course has maxStudents and cost attributes that default to 0 and can’t be
saved as a negative number; otherwise, my custom error messages appear.

The Course schema contains the properties in the following listing.

Listing 21.2. Properties for the Course schema in course.js

const mongoose = require("mongoose"),

 { Schema } = require("mongoose"),

 courseSchema = new Schema(

 {

 title: { 1

 type: String,

 required: true,

 unique: true

 },

 description: {

 type: String,

 required: true

 },

 maxStudents: { 2

 type: Number,

 default: 0,

 min: [0, "Course cannot have a negative number of students"]

 },

 cost: {

 type: Number,

 default: 0,

 min: [0, "Course cannot have a negative cost"]

 }

 },

 {

 timestamps: true

 }

);

module.exports = mongoose.model("Course", courseSchema);

• 1 Require title and description.
• 2 Default maxStudents and cost to 0, and disallow negative numbers.

The User model contains the most fields and validations because I want to prevent a new user
from entering invalid data. This model needs to link to both the Course and Subscribermodels.
The User schema is shown in listing 21.3.

Each user’s name is saved as a first and last name attribute. The email and zipCodeproperties
behave the same way as in Subscriber. Each user is required to have a password. As for
subscribers, users are linked to multiple courses. Because subscribers may eventually create
user accounts, I need to link those two accounts here. I also add the timestampsproperty to keep
track of changes to user records in the database.

Listing 21.3. Creating the User model in user.js

const mongoose = require("mongoose"),

 { Schema } = require("mongoose"),

 Subscriber = require("./subscriber"),

 userSchema = new Schema(

 {

 name: { 1

 first: {

 type: String,

 trim: true

 },

 last: {

 type: String,

 trim: true

 }

 },

 email: {

 type: String,

 required: true,

 unique: true

 },

 zipCode: {

 type: Number,

 min: [10000, "Zip code too short"],

 max: 99999

 },

 password: {

 type: String,

 required: true

 }, 2

 courses: [

 {

 type: Schema.Types.ObjectId,

 ref: "Course"

 } 3

],

 subscribedAccount: {

 type: Schema.Types.ObjectId,

 ref: "Subscriber"

 } 4

 },

 {

 timestamps: true 5

 }

);

module.exports = mongoose.model("User", userSchema);

• 1 Add first and last name attributes.
• 2 Require password.
• 3 Associate users with multiple courses.
• 4 Associate users with subscribers.
• 5 Add timestamps property.

Two more additions I make to the user model are a virtual attribute to return the user’s full
name and a Mongoose pre("save") hook to link subscribers and users with the same email
address. Those additions can be added directly below the schema definition in user.js and are
shown in listing 21.4.

This first virtual attribute allows me to call fullName on a user to get the
user’s first and last names as one value. The pre("save") hook runs right before a user is
saved to the database. I’m passing the next parameter so that when this function is complete, I
can call the next step in the middleware chain. To link to the current user, I save the user to a
new variable outside the scope of my next query. I run the query only if the user doesn’t already
have a linked subscribedAccount. I search the Subscriber model for documents that contain that
user’s email address. If a subscriber exists, I set the returned subscriber to the
user’s subscribedAccount attribute before saving the record and calling the next function in the
middleware chain.

Listing 21.4. Adding a virtual attribute and pre(“save”) hook in user.js

userSchema.virtual("fullName").get(function() { 1

 return `${this.name.first} ${this.name.last}`;

});

userSchema.pre("save", function (next) { 2

 let user = this;

 if (user.subscribedAccount === undefined) { 3

 Subscriber.findOne({

 email: user.email

 }) 4

 .then(subscriber => {

 user.subscribedAccount = subscriber;

 next(); 5

 })

 .catch(error => {

 console.log(`Error in connecting subscriber:

 ${error.message}`);

 next(error);

 });

 } else {

 next();

 }

});

• 1 Add the fullName virtual attribute.
• 2 Add a pre(‘save’) hook to link a subscriber.
• 3 Check for a linked subscribedAccount.
• 4 Search the Subscriber model for documents that contain that user’s email.
• 5 Call the next middleware function.

With this model set up, I need to build the CRUD functionality. I start by creating the views:
index.ejs, new.ejs, show.ejs, and edit.ejs.

21.3. CREATING THE VIEWS

For the Subscriber model, index.ejs lists all the subscribers in the database through an HTML
table like the one shown in listing 21.5. This view is a table with five columns. The first three
columns display subscriber data, and the last two columns link to edit and delete pages for
individual subscribers. For my subscribers index page, I added some new styling (figure 21.2).

Figure 21.2. Subscribers index page in the browser

Note

Because these views have the same names across different models, I need to organize them
within separate folders by model name. The views/users folder has its own index.ejs, for
example.

To generate a new row for each subscriber, I loop through the subscribers variable, an array of
Subscriber objects, and access each subscriber’s attributes. The subscriber’s name is wrapped in
an anchor tag that links to that subscriber’s show page by using the user’s _id. The delete link
requires the ?_method=DELETE query parameter appended to the path so that my method-
override middleware can process this request as a DELETE request. I must remember to close my
code block in EJS.

Listing 21.5. Listing subscribers in index.ejs

<h2 class="center">Subscribers Table</h2>

 <table class="table"> 1

 <thead>

 <tr>

 <th>Name</th>

 <th>Email</th>

 <th>Edit</th>

 <th>Delete</th>

 </tr>

 </thead>

 <tbody>

 <% subscribers.forEach(subscriber => { %>

 <tr> 2

 <td>

 <a href="<%= `/subscribers/${subscriber._id}` %>">

 <%= subscriber.name %> 3

 </td>

 <td><%= subscriber.email %></td>

 <td>

 <a href="<%=`subscribers/${subscriber._id}/edit` %>">

 Edit

 </td>

 <td>

 <a href="<%=`subscribers/${subscriber._id}/delete?_method=DELETE` %>"

 onclick="return confirm('Are you sure you want to delete this

 record?')">Delete 4

 </td>

 </tr>

 <% }); %>

 </tbody>

 </table>

• 1 Add a table to the index page.
• 2 Generate a new row for each subscriber.
• 3 Wrap the subscriber’s name in an anchor tag.
• 4 Add a delete link.

I’ll follow this exact same structure for the course and user index pages, making sure to swap out
the variable names and attributes to match their respective models.

With this index page in place, I need a way to create new records. I start with the subscriber’s
new.ejs form in listing 21.6. This form will submit data to the /subscribers/- create path, from
which I’ll create new subscriber records in the subscriber’s controller. Notice that the form
submits data via POST request. Each input reflects the model’s attributes. The nameattribute of

each form input is important, as I’ll use it in the controller to collect the data I need to save new
records. At the end of the form is a submit button.

Listing 21.6. Creating the new subscriber form in new.ejs

<div class="data-form">

 <form action="/subscribers/create" method="POST"> 1

 <h2>Create a new subscriber:</h2>

 <label for="inputName">Name</label>

 <input type="text" name="name" id="inputName" placeholder="Name"

 autofocus>

 <label for="inputEmail">Email address</label>

 <input type="email" name="email" id="inputEmail"

 placeholder="Email address" required>

 <label for="inputZipCode">Zip Code</label>

 <input type="text" name="zipCode" id="inputZipCode"

 pattern="[0-9]{5}" placeholder="Zip Code" required>

 <button type="submit">Create</button>

 </form>

</div>

• 1 Add a form to create new subscribers.

I re-create this form for users and courses, making sure to replace the form’s action and inputs
to reflect the model I’m creating. My subscriber edit form looks like the one in figure 21.3.

Figure 21.3. Subscriber edit page in the browser

While I’m working on forms, I create the edit.ejs view, whose form resembles the one in new.ejs.
The only changes to keep in mind are the following:

• The edit form—This form needs access to the record I’m editing. In this case,
a subscriber comes from the subscriber’s controller.

• The form action—This action points to /subscribers/${subscriber._id}/
update?_method=PUT instead of the create action.

• Attributes—Each input’s value attribute is set to the subscriber variable’s attributes, as
in <input type="text" name="name" value="<%= subscriber.name %>">.

These same points apply to the edit.ejs forms for users and courses. The next listing shows my
complete subscriber edit page.

Listing 21.7. The edit page for a subscriber in edit.ejs

<form action="<%=`/subscribers/${subscriber._id}/update

 ?_method=PUT` %>" method="POST"> 1

 <h2>Create a new subscriber:</h2>

 <label for="inputName">Name</label>

 <input type="text" name="name" id="inputName" value="<%=

 subscriber.name %>" placeholder="Name" autofocus>

 <label for="inputEmail">Email address</label>

 <input type="email" name="email" id="inputEmail" value="<%=

 subscriber.email %>" placeholder="Email address" required>

 <label for="inputZipCode">Zip Code</label>

 <input type="text" name="zipCode" id="inputZipCode"

 pattern="[0-9]{5}" value="<%= subscriber.zipCode %>"

 placeholder="Zip Code" required>

 <button type="submit">Save</button>

</form>

• 1 Display the edit form for a subscriber.

Last, I build the show page for each model. For subscribers, this page acts like a profile page,
detailing each subscriber’s information in their row on the index page. This page is fairly
straightforward: I show enough data to summarize a single subscriber record. The
subscribers show page has a table, created with the EJS template elements shown in the
following listing. This page uses attributes from a subscriber variable to display the name, email,
and zipCode.

Listing 21.8. The show page for a subscriber in show.ejs

<h1>Subscriber Data for <%= subscriber.name %></h1> 1

<table>

 <tr>

 <th>Name</th>

 <td><%= subscriber.name %></td>

 </tr>

 <tr>

 <th>Email</th>

 <td><%= subscriber.email %></td>

 </tr>

 <tr>

 <th>Zip Code</th>

 <td><%= subscriber.zipCode %></td>

 </tr>

</table>

• 1 Display subscriber attributes.

Note

For some of these views, I’ll add links to navigate to other relevant pages for that model.

Something else I want to add to the show page is code that shows whether the record is
associated with any other records in the database. For a user, that code showing an associated
record could display using an additional tag at the bottom of the page to show whether the user
has a subscribedAccount or associated courses. For subscribers, I’ll add a line to show the
number of subscribed courses, as shown in listing 21.9.

This one line gives Confetti Cuisine insight into the number of courses to which people are
subscribing. I could take this line a step further by using the Mongoose populate method on this
subscriber to show the associated course details.

Listing 21.9. Show the number of subscribed courses in show.ejs

<p>This subscriber has <%= subscriber.courses.length %> associated

 course(s)</p> 1

• 1 Display the number of associated courses.

The last step is bringing the models and views together with the controller actions and routes.

21.4. STRUCTURING ROUTES

The forms and links for Confetti Cuisine are ready to be displayed, but there’s still no way to
reach them via a browser. In main.js, I’m going to add the necessary CRUD routes and require
the controllers needed to get everything working.

First, I add the routes for subscribers from listing 21.10 to main.js. To make sure that
the subscribersController is required near the top of the file alongside my other controllers, I
add const subscribersController = require("./controllers/subscribersController"). I
also introduce the Express.js Router to my project to help distinguish application routes from
other configurations in main.js by adding const router = express.Router(). With
this router object in place, I change every route and middleware handled by my app object to
use the router object. Then I tell my application to use this router object by
adding app.use("/", router) to main.js.

GET requests to the /subscribers path lead me to the index action on the subscribers-
Controller. Then I render the index.ejs page through another action called indexView. The same
strategy applies to the other GET routes. The first POST route is for create. This route handles
requests from forms to save new subscriber data. l need to create the logic to save new
subscribers in the create action. Then I use an action called redirectView that will redirect to
one of my views after I successfully create a subscriber record.

The show route is the first case in which I need to get the subscriber’s ID from the path. In this
case, :id represents the subscriber’s ObjectId, allowing me to search for that specific subscriber
in the database in the show action. Then I use a showView to display the subscriber’s data in a
view. The update route works like the create route, but I’m specifying the router to accept
only PUT requests, indicating that a request is being made specifically to update an existing
record. Similarly, I use the redirectView action after this to display a view. The last
route, delete, accepts only DELETE requests. Requests will be made from the link on index.ejs
and use the redirectView to link back to the index page.

Listing 21.10. Adding subscriber CRUD routes to main.js

router.get("/subscribers", subscribersController.index,

 subscribersController.indexView); 1

router.get("/subscribers/new", subscribersController.new);

router.post("/subscribers/create", subscribersController.create,

 subscribersController.redirectView); 2

router.get("/subscribers/:id", subscribersController.show,

 subscribersController.showView); 3

router.get("/subscribers/:id/edit", subscribersController.edit);

router.put("/subscribers/:id/update", subscribersController.update,

 subscribersController.redirectView); 4

router.delete("/subscribers/:id/delete",

 subscribersController.delete,

 subscribersController.redirectView); 5

• 1 Add GET routes to show views.
• 2 Add the first POST route for create.
• 3 Add a route to show a subscriber based on ObjectId.
• 4 Add a route to update subscribers.
• 5 Add a route to delete subscribers.

The same seven routes need to be made for users and courses. I’ll also update the navigation
links: the contact link will point to the subscribers’ new view, and the courselistings link will
point to the courses’ index view.

Note

At this point, I can remove some of my deprecated routes, such as the ones that point
to getAllSubscribers, getSubscriptionPage, and saveSubscriber in the subscribers controller,
as well as showCourses in the home controller. I can also move my home-page route to the home
controller’s index action. Finally, I want to make sure that I update my navigation links to point
to /subscribers/new instead of /contact.

All I have left to do is create the corresponding controllers.

21.5. CREATING CONTROLLERS

The routes I created in main.js require a subscribersController, coursesController,
and usersController. I start by creating those files in the controllers folder.

Note

I’ve also cleaned up my error controller to use http-status-codes and an error.ejs view, as in
previous application examples.

Next, for the subscriber’s controller, I add the actions shown in listing 21.11 to handle requests
made to my existing routes. After requiring the Subscriber model into this file, I create
the index action to find all subscriber documents in my database and pass them through
the subscribers variable into index.ejs via the indexView action. The new and editactions also
render a view to subscribe and edit subscriber data.

The create action collects request body parameters in my
custom getSubscriberParamsfunction, listed as the second constant in the code listing, to create
a new subscriber record. If I’m successful, I’ll pass the user object through the locals variables
object in my response. Then I’ll specify to redirect to the index page in the redirectView action.

The show action pulls the subscriber’s ID from the URL with req.params.id. This value is used
to search the database for one matching record and then pass that record to the next
middleware function through the response object. In showView, the show page displays the
contents of this subscriber variable. The update action behaves like create and uses
the findByIdAndUpdate Mongoose method to set new values for an existing subscriber
document. Here, I also pass the updated user object through the response object and specify a
view to redirect to in the redirectView action.

The delete action uses the subscriber’s ID in the request parameters to findByIdAndRemovea
matching document from the database. The getSubscriberParams function is designed to have
less repetition in my code. Because the create and update actions use form parameters, they can
call this function instead. The redirectView action is also intended to reduce code repetition by
allowing multiple actions, including the delete action, to specify what view to render when the
main function is complete.

Listing 21.11. Adding subscriber controller actions in subscribersController.js

const Subscriber = require("../models/subscriber"),

 getSubscriberParams = (body) => { 1

 return {

 name: body.name,

 email: body.email,

 zipCode: parseInt(body.zipCode)

 };

 };

module.exports = {

 index: (req, res, next) => { 2

 Subscriber.find()

 .then(subscribers => {

 res.locals.subscribers = subscribers;

 next();

 })

 .catch(error => {

 console.log(`Error fetching subscribers: ${error.message}`);

 next(error);

 });

 },

 indexView: (req, res) => {

 res.render("subscribers/index");

 },

 new: (req, res) => {

 res.render("subscribers/new");

 },

 create: (req, res, next) => { 3

 let subscriberParams = getSubscriberParams(req.body);

 Subscriber.create(subscriberParams)

 .then(subscriber => {

 res.locals.redirect = "/subscribers";

 res.locals.subscriber = subscriber;

 next();

 })

 .catch(error => {

 console.log(`Error saving subscriber:${error.message}`);

 next(error);

 });

 },

 redirectView: (req, res, next) => {

 let redirectPath = res.locals.redirect;

 if (redirectPath) res.redirect(redirectPath);

 else next();

 },

 show: (req, res, next) => { 4

 var subscriberId = req.params.id;

 Subscriber.findById(subscriberId)

 .then(subscriber => {

 res.locals.subscriber = subscriber;

 next();

 })

 .catch(error => {

 console.log(`Error fetching subscriber by ID:

 ${error.message}`)

 next(error);

 });

 },

 showView: (req, res) => {

 res.render("subscribers/show");

 },

 edit: (req, res, next) => {

 var subscriberId = req.params.id;

 Subscriber.findById(subscriberId)

 .then(subscriber => {

 res.render("subscribers/edit", {

 subscriber: subscriber

 });

 })

 .catch(error => {

 console.log(`Error fetching subscriber by ID:

 ${error.message}`);

 next(error);

 });

 },

 update: (req, res, next) => { 5

 let subscriberId = req.params.id,

 subscriberParams = getSubscriberParams(req.body);

 Subscriber.findByIdAndUpdate(subscriberId, {

 $set: subscriberParams

 })

 .then(subscriber => {

 res.locals.redirect = `/subscribers/${subscriberId}`;

 res.locals.subscriber = subscriber;

 next();

 })

 .catch(error => {

 console.log(`Error updating subscriber by ID:

 ${error.message}`);

 next(error);

 });

 },

 delete: (req, res, next) => { 6

 let subscriberId = req.params.id;

 Subscriber.findByIdAndRemove(subscriberId)

 .then(() => {

 res.locals.redirect = "/subscribers";

 next();

 })

 .catch(error => {

 console.log(`Error deleting subscriber by ID:

 ${error.message}`);

 next();

 });

 }

};

• 1 Create a custom function to pull subscriber data from the request.
• 2 Create the index action to find all subscriber documents.
• 3 Create the create action to create a new subscriber.
• 4 Create the show action to display subscriber data.
• 5 Create the update action to set new values for an existing subscriber

document.
• 6 Create the delete action to remove a subscriber document.

With these controller actions in place for each model, the application is ready to boot and
manage records. I load the views for each model and then create new subscribers, courses, and
users. In unit 5, I improve Confetti Cuisine’s site by adding user authentication and a login form.

SUMMARY

In this capstone exercise, I improved Confetti Cuisine’s application by adding CRUD
functionality to three new models. These models allow subscribers to sign up for Confetti
Cuisine’s upcoming course offerings and create user accounts to get involved with the cooking
class product. In unit 5, I clean up these views by adding flash messaging, password security, and
user authentication with the passport module.

Unit 5. Authenticating user accounts

In unit 4, you built CRUD functions for the models in your application. You also learned how
Mongoose and some external packages can help you define associations between your models
and display data from referenced models in your browser.

In this unit, you learn about flash messaging with sessions and cookies, data encryption, and
user authentication. You start by implementing basic session storage to handle small messages
called flash messages between requests. Then you modify your User model to handle password
encryption with the bcrypt package. After setting up your first login form, you use bcrypt to
authenticate users by comparing their login data with their encrypted passwords in your
database. In the last lesson, you reimplement user authentication—the process of confirming
that an account is valid before allowing users access to the application. You explore methods of
authenticating accounts, encrypting passwords for security, and offering tools for normal users
to move around in your application with tools provided by Passport.js. By the end of the unit,
you’ll be able to sign up new users and even begin building logic based on user data in your
database.

This unit covers the following topics:

• Lesson 22 discusses sessions and shows how to preserve your users’ login status by storing
information on the client side. You learn how to apply flash messages; these short
messages, passed between pages, let you know whether some server operation was
successful.

• Lesson 23 guides you through the process of building a sign-up form. You’ve built forms
before in this book, but this form handles a user’s email and password, so you need to
take a slightly different approach to ensure that your data is safe and consistent. With the
help of the bcrypt package, an encryption algorithm makes sure that no plain-text
passwords are saved to your database. At the end of the lesson, you apply additional
validation middleware with express-validator.

• Lesson 24 teaches you how to add application authentication for your users. With the help
of the Passport.js middleware and some helpful npm packages, this lesson adds a layer of
security to your application and the User model. You also modify your view layout to
access your login form quickly, display any currently logged-in users, and provide a way
to log out quickly.

• Lesson 25 wraps up the unit by guiding you through the construction of necessary user
encryption and authentication for the Confetti Cuisine application. You apply flash
messages, validation middleware, encryption, and a robust authentication process.

Start cooking in lesson 22 by adding cookies to your application.

Lesson 22. Adding sessions and flash messages

In this lesson, you clean up the flow between CRUD functions by passing messages between pages
to find out whether the server operations were successful or certain types of errors occurred.
Currently, error messages are logged to the console, and users of the application have no way to
know what they could do differently. You use sessions and cookies alongside the connect-
flash package to deliver these messages to your views. By the end of the lesson, you’ll have an
application that gives you a visual description of the success or failure of operations.

This lesson covers

• Setting up sessions and cookies

• Creating flash messages in your controller actions

• Setting up validation middleware on incoming data

Consider this

Your recipe application is starting to collect data through the view forms you created in unit 4.
Users are beginning to get frustrated, though, because they don’t know what validations you have
in place, and if they fail to meet your validator expectations, they’re redirected to a different page
without notice.

With some helpful packages, you can incorporate flash messaging into your application to inform
your users of specific errors that occur in your application.

22.1. SETTING UP FLASH MESSAGE MODULES

Flash messages are semipermanent data used to display information to users of an application.
These messages originate in your application server and travel to your users’ browsers as part of a
session. Sessions contain data about the most recent interaction between a user and the application,
such as the current logged-in user, length of time before a page times out, or messages intended to
be displayed once.

You have many ways to incorporate flash messages into your application. In this lesson, you use
the connect-flash middleware module by typing npm i connect-flash -S in terminal to install its
package to your application as a dependency.

Note

Sessions used to be a dependency of Express.js, but because not everyone uses every Express.js
dependency and because it’s difficult to keep dependencies up to date with the main package,
independent packages cookie-parser and express-session must be installed.

Now you need to install two more packages by running npm i cookie-parser express-session -
S in terminal. Then require these three modules—connect-flash, cookie-parser, and express-
session—in your main.js file, along with some code to use the modules (listing 22.1).

You need the express-session module to pass messages between your application and the client.
These messages persist on the user’s browser but are ultimately stored in the server. express-
session allows you to store your messages in a few ways on the user’s browser. Cookies are one
form of session storage, so you need the cookie-parser package to indicate that you want to use
cookies and that you want your sessions to be able to parse (or decode) cookie data sent back to the
server from the browser.

Use the connect-flash package to create your flash messages. This package is dependent on
sessions and cookies to pass flash messages between requests. You tell your Express.js application
to use cookie-parser as middleware and to use some secret passcode you choose. cookie-
parser uses this code to encrypt your data in cookies sent to the browser, so choose something
that’s hard to guess. Next, you have your application use sessions by telling express-session to
use cookie-parser as its storage method and to expire cookies after about an hour.

You also need to provide a secret key to encrypt your session data. Specify that you don’t want to
send a cookie to the user if no messages are added to the session by setting saveUninitialized to
false. Also specify that you don’t want to update existing session data on the server if nothing has
changed in the existing session. Last, have the application use connect-flash as middleware.

Note

In this example, the secret key is shown in plain text in your application server file. I don’t
recommend displaying your secret key here, however, because it opens your application to security
vulnerabilities. Instead, store your secret key in an environment variable, and access that variable
with process.env. I discuss this topic further in unit 8.

Listing 22.1. Requiring flash messaging in main.js

const expressSession = require("express-session"), 1

 cookieParser = require("cookie-parser"),

 connectFlash = require("connect-flash");

router.use(cookieParser("secret_passcode")); 2

router.use(expressSession({

 secret: "secret_passcode",

 cookie: {

 maxAge: 4000000

 },

 resave: false,

 saveUninitialized: false

})); 3

router.use(connectFlash()); 4

• 1 Require the three modules.

• 2 Configure your Express.js application to use cookie-parser as middleware.

• 3 Configure express-session to use cookie-parser.

• 4 Configure your application to use connect-flash as middleware.

All together, these three packages provide middleware to help you process incoming requests and
outgoing responses with necessary cookie data.

Cookie parsing

With each request and response made between the server and client, an HTTP header is bundled
with the data sent across the internet. This header contains a lot of useful information about the
data being transferred, such as the size of the data, the type of data, and the browser the data is
being sent from.

Another important element in the request header is the cookies. Cookies are small files of data sent
from the server to the user’s browser, containing information about the interaction between the
user and the application. A cookie might indicate which user accessed the application last, whether
the user logged in successfully, and even what requests the user made, such as whether he
successfully, created an account or made multiple failed attempts.

In this application, you use encrypted cookies with a secret passcode encryption key to store
information about each user’s activity on the application and whether the user is still logged in, as
well as short messages to display in the user’s browser to let them know if any errors occurred on
their most recent request.

Note

Because requests are independent of one another, if one request to create a new user fails and
you’re redirected to the home page, that redirect is another request, and nothing is sent in the
response to the user to let them know that their attempt to create an account failed. Cookies prove
to be helpful in this case.

As you create your custom secret keys, remember to make them a bit more difficult for someone
else to guess. Next, you use these added modules by setting up flash messaging on your controller
actions.

Quick check 22.1

Q1:

How does a cookie’s secret key change the way that data is sent and stored on a browser?

QC 22.1 answer

1:

The secret key used with cookies allows data to have some encryption. Encryption is important for
securing the data sent over the internet and for making sure that the data living in the user’s
browser isn’t exposed to modifications.

22.2. ADDING FLASH MESSAGES TO CONTROLLER ACTIONS

To get flash messages working, you need to attach them to the request made before you render a
view to the user. Generally, when a user makes a GET request for a page—say, to load the home
page—you don’t need to send a flash message.

Flash messages are most useful when you want to notify the user of a successful or failed request,
usually involving the database. On these requests, such as for user creation, you’re typically
redirecting to another page, depending on the outcome. If a user is created, you redirect to
the /users route; otherwise, you can redirect to /user/new. A flash message is no different from a
local variable being made available to the view. For that reason, you need to set up another
middleware configuration for express to treat your connectFlash messages like a local variable on
the response, as shown in listing 22.2.

By adding this middleware function, you’re telling Express to pass a local object
called flashMessages to the view. The value of that object is equal to the flash messages you create
with the connect-flash module. In this process, you’re transferring the messages from the request
object to the response.

Listing 22.2. Middleware to associate connectFlash to flashes on response

router.use((req, res, next) => {

 res.locals.flashMessages = req.flash(); 1

 next();

});

• 1 Assign flash messages to the local flashMessages variable on the response object.

With this middleware in place, you can add messages to req.flash at the controller level and
access the messages in the view through flashMessages. Next, add a flash message to
the create action in your usersController by changing the action’s code to match listing 22.3.

In this action, you’re modifying the way that you handle errors in the catch block. Instead of
passing the error to the error-handler action, set the error flash message, and allow
the redirectView action to display the user’s new.ejs page again. The first flash message is of
type success and delivers the message that the user’s account was created. The flash message
delivered when the account isn’t created is of type error.

Note

getUserParams has been borrowed from the last capstone exercise (lesson 21). This function is
reused throughout the controller to organize user attributes in one object. You should create the
same functions for your other model controllers.

Listing 22.3. Adding flash messages to the create action in usersController.js

create: (req, res, next) => {

 let userParams = getUserParams(req.body);

 User.create(userParams)

 .then(user => {

 req.flash("success", `${user.fullName}'s account created

 successfully!`); 1

 res.locals.redirect = "/users";

 res.locals.user = user;

 next();

 })

 .catch(error => {

 console.log(`Error saving user: ${error.message}`);

 res.locals.redirect = "/users/new";

 req.flash(

 "error",

 `Failed to create user account because: ${error.message}.` 2

);

 next();

 });

},

• 1 Respond with a success flash message.

• 2 Respond with a failure flash message.

Note

Although you use the request object here to store the flash messages temporarily, because you
connected these messages to a local variable on the response, the messages ultimately make it to
the response object.

As soon as the page is redirected to /users or /users/new, your flash message is available to the
view.

Note

error and success are two flash-message types that I made up. You can customize these types
however you like. If you want a flash message of type superUrgent, you can
use req.flash("superUrgent", "Read this message ASAP!"). Then superUrgent will be the key
used to get whatever message you attach.

The last step in getting flash messages working is adding some code to the view to receive and
display the messages. Because you want every view to show potential success or failures, add the
code in listing 22.4 to layout.ejs. You may also want to add custom styles in your public/css folder so
that the messages can be differentiated from normal view content.

First, check whether any flashMessages exist. If success messages exist, display the success
messages in a div. If error messages exist, display those messages with a differently styled class.

Listing 22.4. Adding flash messages in layout.ejs

<div class="flashes">

 <% if (flashMessages) { %> 1

 <% if (flashMessages.success) { %>

 <div class="flash success"><%= flashMessages.success %></div> 2

 <% } else if (flashMessages.error) { %>

 <div class="flash error"><%= flashMessages.error %></div> 3

 <% } %>

 <% } %>

</div>

• 1 Check whether flashMessages exist.

• 2 Display success messages.

• 3 Display error messages.

Tip

If you don’t see any messages on the screen at first, try removing all styling surrounding the
message to get the plain-text message in the view.

Test the new code to display flash messages by starting the Node.js application, visiting /users/new,
and filling out the form to create a new user. If you create a new user successfully, your page on
redirect should look like figure 22.1.

Figure 22.1. Successful flash message shown on the /users page

If you try to create a new user with an existing email address, your redirect screen should
resemble figure 22.2.

Figure 22.2. Error flash message shown on the home page

When you refresh the page or create any new request, this message disappears. Because you may
choose to send multiple success or error messages, you may find it useful to loop through the
messages on the view instead of displaying everything mapped to the error and success keys.

If you need to show a flash message on a view you’re rendering, pass the message directly as a local
variable. The next listing shows how to add a success message to the user’s index page. When you
pass the flashMessages object directly to the view, you don’t need to wait for a redirect or
use connect-flash.

Listing 22.5. Adding a flash message to the rendered index view

res.render("users/index", {

 flashMessages: {

 success: "Loaded all users!"

 }

}); 1

• 1 Pass the flash messages with a rendered view.

Quick check 22.2

Q1:

What two arguments are needed for the req.flash method?

QC 22.2 answer

1:

req.flash needs a flash-message type and a message.

SUMMARY

In this lesson, you learned about sessions and cookies, and saw why they’re integral parts of how
data is transferred between the server and client. You also set up connect-flash to use cookies and
temporarily show success and failure messages on certain views. In lesson 23, you see how to
encrypt more than cookie data by implementing encryption on user passwords.

Try this

Now that you have flash messaging set up, it’s time to add it to all your CRUD actions. You want
your users to see whether their attempt to subscribe, create an account, delete an account, or
update user information was successful. Add flash messages for each action involving your
database for all three models.

Lesson 23. Building a user login and hashing passwords

In lesson 22, you added flash messages to your controller actions and views. In this lesson, you
dive deeper into the User model by creating a sign-up and login form. Then you add a layer of
security to your application by hashing users’ passwords and saving your users’ login state. Next,
you add some more validations at the controller level with the help of the express-
validator package. By the end of this lesson, a user should be able to create an account, have
their password saved securely in your database, and log in or log out as they like.

This lesson covers

• Creating a user log-in form
• Hashing data in your database with bcrypt

Consider this

You deliver a prototype of your recipe application in which users can create accounts and store
their unencrypted passwords in your database. You’re reasonably concerned that your database
might get hacked or (even more embarrassing) that you might show user passwords in plain text to
all users. Luckily, security is a big concern in the programming world, and tools and security
techniques are available to protect sensitive data from being exposed. bcrypt is one such tool you’ll
use to mask passwords in your database so that they can’t be hacked easily in the future.

23.1. IMPLEMENTING THE USER LOGIN FORM

Before you dive into the logic that will handle users logging into the recipe application, establish
what their sign-up and login forms will look like.

The sign-up form will look and behave like the form in new.ejs. Because most users will create
their own accounts through a sign-up form, you’ll refer to the create view and createaction for
new user registrations. The form you need but don’t have yet is the user login form. This form
takes two inputs: email and password.

First, create a basic user login view, and connect it with a new route and controller actions. Then
create a new login.ejs view in the users folder with the code from the next listing. Notice the
important addition here: the /users/login action in the form tag. You need to create a route to
handle POST requests to that path.

Listing 23.1. Creating a user login form in login.ejs

<form action="/users/login" method="POST"> 1

 <h2>Login:</h2>

 <label for="inputEmail">Email address</label>

 <input type="email" name="email" id="inputEmail"

 placeholder="Email address" required>

 <label for="inputPassword">Password</label>

 <input type="password" name="password" id="inputPassword"

 placeholder="Password" required>

 <button type="submit">Login</button>

</form>

• 1 Add a form for user login.

Next, add the login route by adding the code in listing 23.2 to main.js. The first route allows you
to see the login form when a GET request is made to the /users/login path. The second route
handles POST requests to the same path. In this case, you route the request to
the authenticate action, followed by the redirectView action to load a page.

Note

You’ll want to add these routes above the lines where you have your show and edit routes;
otherwise, Express.js will mistake the word login in the path for a user ID and try to find that
user. When you add the route above those lines, your application will identify the full path as
the login route before looking for a user ID in the URL.

Listing 23.2. Adding the login route to main.js

router.get("/users/login", usersController.login); 1

router.post("/users/login", usersController.authenticate,

 usersController.redirectView); 2

• 1 Add a route to handle GET requests made to the /users/login path.
• 2 Add a route to handle POST requests to the same path.

Create the necessary controller actions in your users controller to get the login form working.
Add the code from listing 23.3 to usersController.js.

The login action renders the login view for user login. The authenticate action finds one user
with the matching email address. Because this attribute is unique in the database, it should find
that single user or no user at all. Then the form password is compared with the database
password and redirected to that user’s show page if the passwords match. As in previous actions,
set the res.locals.redirect variable to a path that the redirectViewaction will handle for you.
Also set a flash message to let the user know they’ve logged in successfully, and pass
the user object as a local variable to that user’s show page. By calling next here, you invoke the
next middleware function, which is redirectView. If no user is found, but no error occurred in

the search for a user, set an error flash message, and set the redirect path to take the user back
to the login form to try again.

If an error occurs, log it to the console, and pass the error to the next middleware function that
handles errors (in your errors controller).

Listing 23.3. Adding login and authenticate actions to usersController.js

login: (req, res) => { 1

 res.render("users/login");

},

authenticate: (req, res, next) => { 2

 User.findOne({

 email: req.body.email

 }) 3

 .then(user => {

 if (user && user.password === req.body.password){

 res.locals.redirect = `/users/${user._id}`;

 req.flash("success", `${user.fullName}'s logged in successfully!`);

 res.locals.user = user;

 next();

 } else {

 req.flash("error", "Your account or password is incorrect.

 Please try again or contact your system administrator!");

 res.locals.redirect = "/users/login";

 next();

 }

 })

 .catch(error => { 4

 console.log(`Error logging in user: ${error.message}`);

 next(error);

 });

}

• 1 Add the login action.
• 2 Add the authenticate action.
• 3 Compare the form password with the database password.
• 4 Log errors to the console, and redirect.

At this point, you should be able to relaunch your Node.js application and visit
the users/login URL to see the form in figure 23.1. Try logging in with the email address and
password of a user in your database.

Figure 23.1. Example of user login page in your browser

If you type an incorrect email or password, you’re redirected to the login screen with a flash
message like the one in figure 23.2. If you log in successfully, your screen will look like figure 23.3.

Figure 23.2. Failed user login page in your browser

Figure 23.3. Successful user login page in your browser

You have a problem, though: the passwords are still being saved in plain text. In the next
section, I talk about ways to hash that information.

Quick check 23.1

Q1:

Why does the placement of the /users/login route matter in main.js?

QC 23.1 answer

1:

Because you have routes that handle parameters in the URL, if those routes (such as /users/:id)
come first, Express.js will treat a request to /users/login as a request to the user’s show page,
where login is the :id. Order matters: if the /users/login route comes first, Express.js will match
that route before checking the routes that handle parameters.

23.2. HASHING PASSWORDS

Encryption is the process of combining some unique key or passphrase with sensitive data to
produce a value that represents the original data but is otherwise useless. The process includes

hashing data, the original value of which can be retrieved with a private key used for the hashing
function. This hashed value is stored in the database instead of the sensitive data. When you
want to encrypt new data, pass that data through the encryption algorithm. When you want to
retrieve that data or compare it with, say, a user’s input password, the application can use the
same unique key and algorithm to decrypt the data.

bcrypt is a sophisticated hashing function that allows you to combine certain unique keys in
your application to store data such as passwords in your database. Fortunately, you can use a
few Node.js packages to implement bcrypt hashing. First, install the bcrypt package by
typing npm i bcrypt@3.0.0 -S in a new terminal window. Next, require bcrypt into the module
where you’ll perform the hashing. Hashing can occur in the usersController, but a better
approach is to create a Mongoose pre-save hook in the User model. Require bcrypt in user.js
with const bcrypt = require("bcrypt"). Then add the code in listing 23.4 to your User model,
above the module.exports line but after your schema definition.

Note

You’ll only be hashing passwords, not encrypting them, because you technically don’t want to
retrieve the original value of a password. In fact, your application should have no knowledge of a
user’s password. The application should be able only to hash a password. Later, hash password
attempts, and compare the hashed values. I talk more about this topic later in this section.

The Mongoose pre and post hooks are great ways to run some code on the User instance before
and after the user is saved to the database. Attach the hook to the userSchema, which (like other
middleware) takes next as a parameter. The bcrypt.hash method takes a password and a
number. The number represents the level of complexity against which you’d like to hash your
password, and 10 is generally accepted as a reliable number. When the hashing of the password
is complete, the next part of the promise chain accepts the resulting hash (your hashed
password).

Assign the user’s password to this hash, and call next, which saves the user to the database. If
any errors occur, they’ll be logged and passed to the next middleware.

Note

Because you lose context within this pre-hook when you run bcrypt.hash, I suggest
preserving this in a variable that can be accessed within the hashing function.

passwordComparison is your custom method on the userSchema, allowing you to compare
passwords from a form’s input with the user’s stored and hashed password. To perform this
check asynchronously, use the promise library with bcrypt. bcrypt.compare returns a Boolean
value comparing the user’s password with the inputPassword. Then return the promise to
whoever called the passwordComparison method.

Listing 23.4. Adding a hashing pre hook in user.js

userSchema.pre("save", function(next) { 1

 let user = this;

 bcrypt.hash(user.password, 10).then(hash => { 2

 user.password = hash;

 next();

 })

 .catch(error => {

 console.log(`Error in hashing password: ${error.message}`);

 next(error);

 });

});

userSchema.methods.passwordComparison = function(inputPassword){ 3

 let user = this;

 return bcrypt.compare(inputPassword, user.password); 4

};

• 1 Add a pre hook to the user schema.
• 2 Hash the user’s password.
• 3 Add a function to compare hashed passwords.
• 4 Compare the user password with the stored password.

Note

A pre hook on save is run any time the user is saved: on creation and after an update via the
Mongoose save method.

The final step is rewriting the authenticate action in usersController.js to compare passwords
with bcrypt.compare. Replace the code block for the authenticate action with the code in listing

23.5.

First, explicitly query for one user by email. If a user is found, assign the result to user. Then
check whether a user was found or null is returned. If a user with the specified email address is
found, call your custom passwordComparison method on the user instance, passing the form’s
input password as an argument.

Because passwordComparison returns a promise that resolves with true or false, nest
another then to wait for a result. If passwordsMatch is true, redirect to the user’s show page. If a
user with the specified email doesn’t exist or the input password is incorrect, return to the login
screen. Otherwise, throw an error, and pass it in your next object. Any errors thrown or
occurring during this process are caught and logged.

Listing 23.5. Modifying the authenticate action in usersController.js

authenticate: (req, res, next) => {

 User.findOne({email: req.body.email}) 1

 .then(user => {

 if (user) { 2

 user.passwordComparison(req.body.password) 3

 .then(passwordsMatch => {

 if (passwordsMatch) { 4

 res.locals.redirect = `/users/${user._id}`;

 req.flash("success", `${user.fullName}'s logged in

 successfully!`);

 res.locals.user = user;

 } else {

 req.flash("error", "Failed to log in user account:

 Incorrect Password.");

 res.locals.redirect = "/users/login";

 }

 next(); 5

 });

 } else {

 req.flash("error", "Failed to log in user account: User

 account not found.");

 res.locals.redirect = "/users/login";

 next();

 }

 })

 .catch(error => { 6

 console.log(`Error logging in user: ${error.message}`);

 next(error);

 });

}

• 1 Query for one user by email.
• 2 Check whether a user is found.
• 3 Call the password comparison method on the User model.
• 4 Check whether the passwords match.
• 5 Call the next middleware function with redirect path and flash message set.
• 6 Log errors to console and pass to the next middleware error handler.

Relaunch your Node.js application, and create a new user. You’ll need to create new accounts
moving forward because previous account passwords weren’t securely hashed with bcrypt. If
you don’t, bcrypt will try to hash and compare your input password with a plain-text password.
After the account is created, try logging in again with the same password at /users/login. Then
change the password field in the user’s show page to display the password on the screen. Visit a
user’s show page to see the new hashed password in place of the old plain-text one (figure 23.4).

Figure 23.4. Show hashed password in user’s show page in browser

Note

You can also verify that passwords are hashed at the database level by entering the MongoDB
shell with mongo in a new terminal window and then typing use
recipe_db and db.users.find({}). Alternatively, you can use the MongoDB Compass software
to see the new records in this database.

Now when you log in for a user with a hashed password, you should be redirected to that
user’s show page upon successful authentication. If you type an incorrect password, you get a
screen like figure 23.5.

Figure 23.5. Incorrect password screen in browser

In the next section, you add some more security to the create and update actions by adding
validation middleware before those actions are called.

Quick check 23.2

Q1:

True or false: bcrypt’s compare method compares the plain-text password in your database with
the plain-text value from the user’s input.

QC 23.2 answer

1:

False. The only password value in the database is a hashed password, so there’s no plain-text value
to compare against. The comparison works by hashing the user’s new input and comparing the
newly created hashed value with the stored hash value in the database. This way, the application
still won’t know your actual password, but if two hashed passwords match, you can safely say that
your input matched the original password you set up.

23.3. ADDING VALIDATION MIDDLEWARE WITH EXPRESS-VALIDATOR

So far, your application offers validation at the view and model levels. If you try to create a user
account without an email address, your HTML forms should prevent you from doing so. If you
get around the forms, or if someone tries to create an account via your application programming
interface (API), as you see in unit 6, your model schema restrictions should prevent invalid data
from entering your databases—though more validation can’t hurt. In fact, if you could add more
validation before your models are reached in the application, you could save a lot of computing
time and machine energy spent making Mongoose queries and redirecting pages.

For those reasons, you’ll validate middleware, and as is true of most common needs in Node.js,
some packages are available to help you build those middleware functions. The package you’ll
install is express-validator, which provides a library of methods you can use to check whether
incoming data follows a certain format and methods that modify that data to remove unwanted
characters. You can use express-validator to check whether some input data is entered in the
format of a U.S. phone number, for example.

You can install this package by typing npm i express-validator -S in your project folder in
terminal. When this package is installed, require it with const expressValidator =
require("express-validator") in main.js, and tell your Express.js app to use it by
adding router.use(expressValidator()). You need to add this line after the line
where express.json() and express.urlencoded() middleware is introduced, because the
request body must be parsed before you can validate it.

Then you can add this middleware to run directly before the call to the create action in
the usersController. To accomplish this task, you need to create a validate action between the
path and create action in the POST route to /users/create in main.js, as shown in listing 23.6.
Between the path, /users/create, and the usersController.create action, you introduce a
middleware function called validate. Through this validate action, you’ll determine whether
data meets your requirements to continue to the create action.

Listing 23.6. Adding the validate middleware to the users create route in main.js

router.post("/users/create", usersController.validate,

 usersController.create, usersController.redirectView); 1

• 1 Add the validate middleware to the users create route.

Finally, create the validate action in usersController.js to handle requests before they reach
the create action. In this action, you add the following:

• Validators—Check whether incoming data meets certain criteria.
• Sanitizers—Modify incoming data by removing unwanted elements or casting the data

type before it enters the database.

Add the code in listing 23.7 to your usersController.js.

The first validation function uses the request and response, and it may pass on to the next
function in the middleware chain, so you need the next parameter. Start with a sanitization of
the email field, using express-validator's normalizeEmail method to convert all email
addresses to lowercase and then trim whitespace away. Follow with the validation of email to
make sure that it follows the email-format requirements set by express-validator.

The zipCode validation ensures that the value isn’t empty and is an integer, and that the length
is exactly five digits. The last validation checks that the password field isn’t
empty. req.getValidationResult collects the results of the previous validations and returns a
promise with those error results.

If errors occur, you can collect their error messages and add them to your request’s flash
messages. Here, you’re joining the series of messages with " and " in one long String. If errors
have occurred in the validations, set req.skip = true. Here, set is the new custom property
you’re adding to the request object. This value tells your next middleware function, create, not
to process your user data because of validation errors and instead to skip to
your redirectView action. For this code to work, you need to add if (req.skip) next() as the
first line in the create action. This way, when req.skip is true, you continue to the next
middleware immediately.

In the event of validation errors, render the new view again. Your flashMessages also indicate to
the user what errors occurred with her input data.

Listing 23.7. Creating a validate controller in usersController.js

validate: (req, res, next) => { 1

 req.sanitizeBody("email").normalizeEmail({

 all_lowercase: true

 }).trim(); 2

 req.check("email", "Email is invalid").isEmail();

 req.check("zipCode", "Zip code is invalid")

.notEmpty().isInt().isLength({

 min: 5,

 max: 5

 }).equals(req.body.zipCode); 3

 req.check("password", "Password cannot be empty").notEmpty(); 4

 req.getValidationResult().then((error) => { 5

 if (!error.isEmpty()) {

 let messages = error.array().map(e => e.msg);

 req.skip = true; 6

 req.flash("error", messages.join(" and ")); 7

 res.locals.redirect = "/users/new"; 8

 next();

 } else {

 next(); 9

 }

 });

}

• 1 Add the validate function.
• 2 Remove whitespace with the trim method.
• 3 Validate the zipCode field.
• 4 Validate the password field.
• 5 Collect the results of previous validations.
• 6 Set skip property to true.
• 7 Add error messages as flash messages.
• 8 Set redirect path for the new view.
• 9 Call the next middleware function.

Note

You can take many creative approaches to repopulating form data. You may find that some
packages are helpful in assisting with this task. When you find the technique that works best for
you, change all the forms in your application to handle repopulating data.

You’re ready to give these validations a shot. Launch your application, and create a new user in
ways that should fail your validations. You may need to remove the required tags from your
HTML forms first if you want to test the notEmpty validations. Your
failed passwordand zipCode validations should send you to a screen resembling figure 23.6.

Figure 23.6. Failed express-validator validation messages

Because express-validator uses the validator package, you can get more information about
the sanitizers to use at https://github.com/chriso/validator.js#sanitizers.

Quick check 23.3

Q1:

What’s the difference between a sanitizer and a validator?

QC 23.3 answer

1:

A sanitizer cleans data by trimming whitespace, changing the case, or removing unwanted
characters. A validator tests data quality to ensure that the way it was entered meets your database
requirements.

SUMMARY

In this lesson, you implemented a hashing function for your users’ passwords. Then you created
a login form and action by using the bcrypt.compare method to match hashed passwords

against user input on login. At the end, you added more validations on input data through an
additional middleware function to sanitize data before it’s saved to your database. In lesson 24,
you take another look at encryption and authentication through Passport.js tools, which make
setting up secure user accounts much easier.

Try this

Hashing user passwords is probably the leading scenario for using hashing functions, but you can
use hashing functions on other fields on your models. You might hash a user’s email address to
prevent that data from getting into the wrong hands, for example. After all, getting access to a user’s
email is getting halfway to hacking that user’s account. Try adding hashing to user emails in
addition to passwords.

Note

Note

When you hash a user’s email address, you won’t be able to display it in any views. Although you
may choose to keep user emails in plain text, this practice is good to follow when other sensitive
data enters your application.

Lesson 24. Adding User Authentication

In lesson 23, you learned about manual hashing of passwords and the importance of securing user
data. In this lesson, you explore some popular and useful tools that make the hashing process less
messy. You modify your hashing methods to use the passport-local-mongoosepackage, which
uses passport and mongoose together to perform hashing for you behind the scenes. Next, you learn
how to use Passport.js to authenticate user accounts on your application. This process involves
session cookies, similar to the way that flash messages use them. By the end of this lesson, you’ll
have a sign-up and login form that permits only true users of your application to have access.

This lesson covers

• Using the passport package to authenticate users throughout your application

• Implementing the passport-local-mongoose plugin on your user model

• Creating authentication actions before user login

Consider this

You’ve added a popular hashing method to your application, but you’d like to simplify the code or,
better, put it behind the scenes. It’s great to know how hashing works, and tools are available to
perform the hashing you want without the need to manually set up your own criteria for hashing.
Packages such as passport.js hash and authenticate user interactions without your needing to
specify a password field in the schema. In this lesson, you look at the quickest and most efficient
implementations of the passport package.

24.1. IMPLEMENTING PASSPORT.JS

Passport.js is middleware used by Node.js to hash new user passwords and authenticate their
activity on an application. Passport.js uses different methods to create and log in user accounts,
ranging from basic login with username and password to login with third-party services such as
Facebook. These login methods are called strategies, and the strategy you’ll use for your recipe
application is a local strategy because you aren’t using external services.

These strategies check whether incoming data is authentic by managing hashing and comparison of
passwords and data relating to the user’s login state. For more information about the Passport.js
strategies, visit www.passportjs.org.

To start, install the necessary packages for your application. You need to install
the passportpackage along with the passport-local-mongoose packages by running npm i
passport passport-local-mongoose -S in your project’s terminal window. The modules from
these packages work together to provide hashing and authentication methods and support to
communicate directly with your Mongoose schemas. After you install these packages as

dependencies, require them where needed in the application. Add the following lines from listing

24.1 to main.js.

Start by requiring the passport module. Passport.js uses methods called strategies for users to log
in. The local strategy refers to the username and password login method. You initialize the
passport module and have your Express.js app use it. Now you have passport ready as middleware
in your application. passport.session tells passport to use whatever sessions you’ve already set
up with your application. In this case, before this line, you have express-session set up for flash
messaging.

Listing 24.1. Requiring and initializing passport in main.js

const passport = require("passport"); 1

router.use(passport.initialize()); 2

router.use(passport.session()); 3

• 1 Require the passport module.

• 2 Initialize passport.

• 3 Configure passport to use sessions in Express.js.

Next, you need to set up your login strategy on the user model and tell passport to handle the
hashing of user data in sessions for you. passport-local-mongoose makes this process simple and
pretty much automatic. Add the lines in listing 24.2 to main.js.

Note

passport.session tells passport to use any previously used Express.js sessions defined. Sessions
must be defined before this line.

You need to make sure that your user model is made available in main.js before you continue to
connect it with passport. Normally, you’d need to set up some configurations to create a login
strategy for a model, but because you’re using the default local login strategy, you only need to
tell passport to use the strategy created for the user model. The next two lines tell passport to
serialize and deserialize your users through the User model. These lines direct the process of
encrypting and decrypting user data stored in sessions.

Listing 24.2. Setting up passport serializing in main.js

const User = require("./models/user"); 1

passport.use(User.createStrategy()); 2

passport.serializeUser(User.serializeUser()); 3

passport.deserializeUser(User.deserializeUser());

• 1 Require the User model.

• 2 Configure the user’s login strategy.

• 3 Set up passport to serialize and deserialize your user data.

Passport serializes and deserializes user data to pass into a session. The session stores this
serialized data—a condensed form of user information, which is sent back to the server to verify
the user as the last one logged in from the client. Deserializing extracts the user data from its
condensed version so that you can verify the user’s information.

Serializing data

When working with objects in an application, you want to preserve the data structure that allows
you to access and modify properties easily. Your user objects, for example, allow you to retrieve
information such as email or even to use the User model’s virtual attribute fullName. Although the
model is particularly useful within your application, you have no straightforward way to send this
user object, along with its methods and Mongoose object-document mapper (ODM) tools, to a
client. As a result, you need to serialize the user data.

Serialization is the process of converting data from some data structure to a compact readable
format. This data can take on many formats, such as JSON, YAML, and XML. The user data is
flattened, often into strings, so that it can be sent within an HTTP transaction.

Passport.js performs the serialization process and encrypts your user’s data so that it can be stored
as part of the session cookie on the client’s browser. Because this cookie contains information
about the user, it lets your application server know, the next time a request occurs, that this user
has logged in before, which is your way of validating some-one’s state in your application.

When the same user makes another request to your application, Passport.js deserializes the data to
restore the user to its original model object form. When that process completes and you verify that
the user is valid, you can use the user object again as before, applying model methods and using
Mongoose queries.

The last step before building the authentication action to log users into your application is to
connect your user model to the passport-local-mongoose module. Add const
passportLocalMongoose = require("passport-local-mongoose") to the top of user.js, which is
where you’ll add a Passport.js plugin to the user schema, as shown in listing 24.3. Using the
Mongoose plugin method, you’re telling your userSchema to use passportLocalMongoose for
password hashing and storage. You’re also telling passportLocalMongoose to use the email field as
the user’s login parameter instead of a username because username is the default field for this
module.

Note

This line must appear before you register your User model.

Listing 24.3. Adding the passport-local-mongoose plugin to the user schema

userSchema.plugin(passportLocalMongoose, {

 usernameField: "email"

}); 1

• 1 Apply the passport-local-mongoose module as a plugin to the user schema.

When this line is in place, Passport.js automatically takes care of password storage, so you can
remove the password property from userSchema. This plugin modifies your schema behind the
scenes to add hash and salt fields to your User model in place of the normal password field.

Hash and salt

You learned about hashing in lesson 24, but you let bcrypt perform the hashing process through an
algorithm that you didn’t need to understand. Exactly how do bcrypt and Passport.js hash user
passwords?

Modern hashing takes the user’s input password and converts it into an undecipherable hash. This
hash is a jumble of characters and numbers, making it safer to store in a database than the plain-
text password. If anyone hacks the database, he has only the hashed passwords. The best he can do
at that point is enter his own guesses at a password into his own hashing function to see whether
the resulting hash matches yours. That task is a tedious one, but it’s not impossible for hackers to
find a way to crack your hashed passwords. Salts were introduced to battle this vulnerability.

Salts are short strings of random characters that are added to a plain-text password before the
password is hashed. This way, if someone maliciously guessed your password, they would also
need to know the salt associated with it and where to place it in the original password. Hacking has
become a lot more difficult.

Passport.js stores both the hashed password and salt in your database so that you can perform
hashing consistently within your application. When you register your first users with Passport.js,
take a look at their data in MongoDB to see those values by following these steps:

• In a new terminal window, run mongo.
• Run use recipe_db to load your recipe database.
• Run db.users.find({}, { password: 1}) to view all user passwords.
• Compare the hashed and nonhashed passwords.

Note

Make sure that any reference to the password attribute in your application is removed.
Because passport-local-mongoose adds new password fields to the User model, you won’t be
using it anymore.

In the next section, you use the passport package to simplify the authentication process even more.

Quick check 24.1

Q1:

True or false: A salt is needed to hash passwords.

QC 24.1 answer

1:

False. Salts help make the hashing of passwords stronger by mixing random text with plain-text
passwords before they’re hashed, but salts aren’t required.

24.2. MODIFYING THE CREATE ACTION TO USE PASSPORT REGISTRATION

Using Passport.js has already simplified your code and made it easier to specify which models you’d
like to hash and authenticate. The next step is modifying your create action, so instead of using
your bcrypt hashing function before creating a user account, you’ll use Passport.js. By
incorporating the Passport.js modules, you have access to a library of methods to streamline the
account registration process. Change the create action in usersController.js to use
the register method, as shown in listing 24.4.

Note

You must comment out or remove
the userSchema.methods.passwordComparison and pre("save") hook for bcrypt in the User
model. If you don’t remove these hooks, bcryptwill still try to hash user passwords
before passport is able to, which also results in an unhandled promise error.

The register method comes with Passport.js. Because you’re using passport-local-mongoose as a
plugin for the User model, you can use this method to register users. If you successfully save a new
user, create a flash message and redirect to the /users route. Otherwise, handle any errors that
occur by redirecting to the users/new route so that another attempt to create a user account can be
made.

Listing 24.4. Registering new users in the create action in main.js

create: (req, res, next) => {

 if (req.skip) next();

 let newUser = new User(getUserParams(req.body));

 User.register(newUser, req.body.password, (error, user) => { 1

 if (user) {

 req.flash("success", `${user.fullName}'s account created

 successfully!`);

 res.locals.redirect = "/users";

 next(); 2

 } else {

 req.flash("error", `Failed to create user account because:

 ${error.message}.`);

 res.locals.redirect = "/users/new";

 next(); 3

 }

 });

}

• 1 Register new users.

• 2 Set redirect for successful user creation.

• 3 Set redirect and log errors in flash messages.

With this action in place, you can use the form in /users/new.ejs to create user accounts through
Passport.js. Try launching your application and creating a new user. You shouldn’t notice a change
in behavior; your user account will be created, and you’ll see the successflash message.

If you look at the raw documents in MongoDB by typing mongo in a new terminal window, then
type use recipe_db and db.users.find({}) to see the users in your database. Any users saved
with bcrypt still have their password field with a hashed password saved. Your latest user has two
properties added by Passport.js: salt and hash.

Tip

Update your seed.js file to register user accounts with passport instead of the
Mongoose create method. This practice makes it easier to repopulate your database as your
application grows in development.

Update your seed.js file to register user accounts with Passport instead of the
Mongoose create method, which will make it easier to repopulate your database as your
application grows in development.

Your users are still secure, but you still need a way to log them in. In the next section, you modify
the login form to use Passport.js.

Quick check 24.2

Q1:

Why does Passport.js need you to save the hash and the salt in your database?

QC 24.2 answer

1:

Passport.js saves the salt and the hash so that each user can have their own unique hashing
factors. It’s possible to use the same salt for every user account and only store the hash in the
database, but this approach is less secure.

24.3. AUTHENTICATING USERS AT LOGIN

The final step in allowing users to log in to the application is replacing the bcryptauthentication
method with passport middleware. Modify your authenticate action in usersController.js with the
new action, as shown in listing 24.5. You also need to require passport into the users controller by
adding const passport = require("passport") to the top of the file.

This authenticate action is set to call passport.authenticate method directly
with passport redirect and flash-message options. When you call usersController.authenticate,
you’re calling passport.authenticate. In this function, passport attempts to compare the

incoming request data, describing a user, with the database records. If a user account is found and
the input password aligns with the hashed password, you redirect from this action.

Listing 24.5. Adding passport authentication middleware in usersController.js

authenticate: passport.authenticate("local", { 1

 failureRedirect: "/users/login", 2

 failureFlash: "Failed to login.",

 successRedirect: "/",

 successFlash: "Logged in!"

}),

• 1 Call on passport to authenticate a user via the local strategy.

• 2 Set up success and failure flash messages and redirect paths based on the user’s

authentication status.

The login route no longer needs your usersController.redirectView action as a follow-up
function. With your router.post("/users/login", usersController.authenticate);route set
up from lesson 23, your application is ready to authenticate existing users. Restart your application,
and log in with a user account you’ve created at /users/login. If you’re successful, you should see
the success flash message.

It would be nice to have a visual indication that you’re logged in and maybe a way to log out. Add
the code from listing 24.6 to your navigation bar in layout.ejs. You’re checking whether the local
variable loggedIn is set to true. If so, display the text Signed in as followed by the
user’s fullName, which you get from the currentUser local variable. This list item is wrapped in an
anchor tag that, when clicked, takes you to the currently logged-in user’s showpage. If
the loggedIn status is false, show a link to Sign In, taking you to the /users/login route.

Listing 24.6. Adding login status to navigation bar in layout.ejs

<% if (loggedIn) { %> 1

 Logged in as <a href="<%=`/users/${currentUser._id}`%>">

 <%= currentUser.fullName %>

<%} else {%> 2

 Log In

<% } %>

• 1 Check whether a user is logged in.

• 2 Display a link to log in.

If you refresh your application, you may not see anything change in the navigation bar yet. You
need to create the loggedIn and currentUser variables so that they appear locally in each view. To
do so, add some custom middleware so that on every new request, you add these variables to the

response. Because you’ve already created a middleware function to set up flashMessages as a local
object, you can add the code in listing 24.7 within that middleware function in main.js.

isAuthenticated is a method provided by Passport.js, which you can call on the incoming request
to see whether an existing user is stored in the request’s cookies. loggedIn is either true or false.
If a user is in the request, you can pull it out and assign it to your own currentUser variable. After
adding this code, you gain access to both of these variables, along with flashMessages, on every
page.

Listing 24.7. Adding local variables to custom middleware

res.locals.loggedIn = req.isAuthenticated(); 1

res.locals.currentUser = req.user; 2

• 1 Set up the loggedIn variable to reflect passport login status.

• 2 Set up the currentUser to reflect a logged-in user.

Restart your application to see whether your name appears in the navigation bar. Your screen may
look like figure 24.1.

Figure 24.1. Example of a successful login in the browser

This figure includes a logout link in the navigation bar. To create this link, add Log out below the line where the name of the currentUserappears.
To get this link working, you need to create a route and action for logging out. First,
add router.get("/users/logout", usersController.logout, usersController.redirect-
View) to main.js next to where your login routes are located. Then add the logout action
from listing 24.8 to usersController.js.

This action uses the logout method provided by Passport.js on the request to clear the user’s
session. During the next pass through your custom middleware, isAuthenticated returns false,
and there’ll no longer be a current user. Follow this operation with a flash message to indicate that
the user has been logged out and a redirect to the home page through the redirectView action.

Listing 24.8. Adding a logout action in usersController.js

logout: (req, res, next) => { 1

 req.logout();

 req.flash("success", "You have been logged out!");

 res.locals.redirect = "/";

 next();

}

• 1 Add an action to log users out.

With this action in place, it’s time to test the full login process. Restart your application, log in, and
then click the logout link in the navigation bar (figure 24.2). Your session should be cleared and
your account successfully logged out.

Figure 24.2. Example of a successful user logout in the browser

In lesson 25, you apply user authentication to the capstone project.

Quick check 24.3

Q1:

How do you have access to Passport.js methods on the request throughout the application?

QC 24.3 answer

1:

Because you added the passport module as middleware within Express.js, you have access to the
library of methods provided by Passport.js. These methods are extended to the request as it enters
the application. As that request is passed through the middleware chain, you can call
these passport methods on it anywhere you like.

SUMMARY

In this lesson, you added a few Passport.js packages to assist in the encryption and authentication
of user data. By connecting an additional validation action to your user-login middleware chain, you
can ensure that user passwords are secure and the login experience is consistent. In the next
capstone lesson (lesson 25), you apply these validation, hashing, encryption, and authentication
techniques to improve the Confetti Cuisine application experience.

Try this

You’ve successfully implemented Passport.js to work with your User model and Mongoose ODM.
Because Passport.js does a lot of the heavy lifting for you, it may seem that there isn’t much else to
add to the login process, but you always have room for more middleware. Add a middleware
function, called logEmail, between validation and encryption. This middleware should log to
console the user’s email address domain (such as gmail, yahoo, or live) and pass to the next
middleware function.

Lesson 25. Capstone: Adding User Authentication to Confetti Cuisine

My contacts at Confetti Cuisine are delighted with the progress on their application. They’ve
already started to add new course offerings, manage new subscribers, and spread the word
about creating new user accounts. I warn them that although user accounts can be created, the
application isn’t ready to handle users securely.

The client and I agree that data encryption and proper user authentication are the way forward,
so for my next improvements to the application, I’m going to add a couple of packages that use
Passport.js to assist in setting up a secure user-login process. I’ll also add flash messaging so
that users can tell after a redirect or page render whether their last operation was successful.
Then I’ll add some additional validations with the help of the express-validator middleware
package.

By the end of this stage of development, I can comfortably encourage Confetti Cuisine to sign
users up for their application. Because the application isn’t yet live online, though, the client will
have to run it locally on their machines when users sign up.

For this capstone exercise, I’ll need to do the following:

• Add sessions and cookies between page requests
• Add new custom middleware for validations and setting up local variables in the views
• Create a login form
• Add passport authentication and encryption for the User model
• Add a visual indicator to show which user is logged in

25.1. GETTING SET UP

Working off the code I wrote in the last capstone exercise (lesson 21), I currently have three
models implemented with CRUD actions for each. To move forward with the improvements to
Confetti Cuisine’s application, I need to install a few more packages:

• express-session allows me to store temporary data about the user interaction with the
application. The resulting sessions let me know whether a user has logged in recently.

• cookie-parser allows me to store session data on the client. The resulting cookies are
sent with each request and response, carrying within them messages and data reflecting
the user who last used that client.

• connect-flash allows me to use sessions and cookies to generate flash messages in the
user’s browser.

• express-validator allows me to add a layer of validations to incoming user data through
a middleware function.

• passport allows me to set up a painless encryption and authentication process for
the User model.

• passport-local-mongoose allows me to integrate passport even further by simplifying
the code I need to write through a plugin I can use on the User model.

To install these packages, I’ll run npm i express-session cookie-parser connect-flash
express-validator passport passport-local-mongoose -S in my projects terminal window.
I’ve already set up the create action and new form for users. I need to modify those soon, but
first, I’ll create the login form needed for users to log in to the application.

25.2. CREATING A LOGIN FORM

I want this form to contain two straightforward inputs: email and password. I’ll create a new
login.ejs view in the users folder and add the code in the next listing. This form will submit
a POST request to the /users/login route. The inputs of this form will handle the
user’s emailand password.

Listing 25.1. Adding a login form to users/login.ejs

<form class="form-signin" action="/users/login" method="POST"> 1

 <h2 class="form-signin-heading">Login:</h2>

 <label for="inputEmail" class="sr-only">Email</label>

 <input type="text" name="email" id="inputEmail" class="form-

 control" placeholder="Email" autofocus required>

 <label for="inputPassword" class="sr-only">Password</label>

 <input type="password" name="password" id="inputPassword"

 class="form-control" placeholder="Password" required>

 <button class="btn btn-lg btn-primary btn-block" type="submit">

 Login</button>

</form>

• 1 Create a login form.

Before this form can work or be viewed, I’ll add the login routes and actions. The login will
accept GET and POST requests, as shown in the following listing.

Note

I add all routing-specific code on the router object.

Listing 25.2. Adding a login route to main.js

router.get("/users/login", usersController.login); 1

router.post("/users/login", usersController.authenticate); 2

router.get("/users/logout", usersController.logout,

 usersController.redirectView); 3

• 1 Route to the login action.
• 2 Send posted data to an authenticate action.
• 3 Add a route to logout and redirect to a view.

With these routes in place, I need to create their corresponding actions before my form is
viewable at /users/login. First, I’ll add the login action from the next listing to users-
Controller.js.

Listing 25.3. Adding the login action to usersController.js

login: (req, res) => {

 res.render("users/login"); 1

}

• 1 Add an action to render my form for browser viewing.

In the next section, I use the passport package to start encrypting user data so that this login
form will have a purpose.

25.3. ADDING ENCRYPTION WITH PASSPORT.JS

To start using Passport.js, I need to require the passport module in main.js and in users-
Controller.js by adding const passport = require("passport") to the top of both files. These
files are ones within which I’ll set up hashing and authentication. Next, I need to initialize and
use passport within Express.js as middleware. Because passport uses sessions and cookies, I
also need to require express-session and cookie-parser to main.js, adding the lines in listing

25.4 to that file.

To start using passport, I need to configure cookieParser with a secret key to encrypt the
cookies stored on the client. Then I’ll have Express.js use sessions as well. This stage in the setup
process is where passport starts to store information about active users of the
application. passport officially becomes middleware by telling Express.js to initialize and use it
on this line. Because sessions were set up before this line, I instruct Express.js to
have passport use those preexisting sessions for its user data storage.

I set up the default login strategy, provided through the passport-local-mongoose module that
I’ll soon add to the User model, to enable authentication for users with passport. The last two
lines allow passport to compact, encrypt, and decrypt user data as it’s sent between the server
and client.

Listing 25.4. Adding passport with Express.js in main.js

const passport = require("passport"),

 cookieParser = require("cookie-parser"),

 expressSession = require("express-session"),

 User = require("./models/user");

router.use(cookieParser("secretCuisine123")); 1

router.use(expressSession({

 secret: "secretCuisine123",

 cookie: {

 maxAge: 4000000

 },

 resave: false,

 saveUninitialized: false

})); 2

router.use(passport.initialize()); 3

router.use(passport.session()); 4

passport.use(User.createStrategy()); 5

passport.serializeUser(User.serializeUser()); 6

passport.deserializeUser(User.deserializeUser());

• 1 Configure cookieParser with a secret key.
• 2 Configure Express.js to use sessions.
• 3 Configure Express.js to initialize and use passport.
• 4 Instruct passport to use sessions.
• 5 Set up the default login strategy.
• 6 Set up passport to compact, encrypt, and decrypt user data.

Note

I need to make sure that the User model is required in main.js before I can use
the createStrategy method. This method works only after I set up the User model
with passport-local-mongoose.

With this configuration set up, I can move to the User model in user.js to add passport-local-
mongoose. I need to require passport-local-mongoose in my User model by adding const
passportLocalMongoose = require("passport-local-mongoose") to the top of user.js.

In this file, I attach the module as a plugin to userSchema, as shown in listing 25.5. This line sets
up passportLocalMongoose to create salt and hash fields for the User model in my database. It

also treats the email attribute as a valid field for logging in an authenticating. This code should
be placed just above the module.exports line.

Listing 25.5. Adding passport-local-mongoose as a plugin to the User model

userSchema.plugin(passportLocalMongoose, {

 usernameField: "email"

}); 1

• 1 Add the passport-local-mongoose module as a user schema plugin.

Note

With this addition to my User model, I no longer need the plain-text password property in the
user schema. I’ll remove that property now, as well as the password table row on the
user show page.

In the next section, I modify the create action in usersController.js to use passport for
registering new users, and I set up flash messaging so that the user will know whether account
creation is successful.

25.4. ADDING FLASH MESSAGING

With sessions and cookies ready to attach data to the request and respond to the user, I’m ready
to integrate flash messaging by using connect-flash. To configure connect-flash, I need to
require it in main.js as a constant, called connectFlash, by adding the following line: const
connectFlash = require("connect-flash"). Then I tell my Express.js app to use it as
middleware by adding router.use(connectFlash()) to main.js.

Now that the middleware is installed, I can call flash on any request in my application, which
allows me to attach messages to the request. To get these request flash messages to my response,
I add some custom middleware in main.js, as shown in listing 25.6. By telling the Express.js app
to use this custom middleware, I’m able to assign a local variable called flashMessages to
objects containing flash messages created in my controller actions. From here, I’ll be able to
access the flashMessages object in my views.

Listing 25.6. Adding custom middleware to use flash messaging in main.js

router.use((req, res, next) => {

 res.locals.flashMessages = req.flash(); 1

 next();

});

• 1 Assign flash messages to a local variable.

Because I want flash messages to appear on every page, I’ll add some code to my layout .ejs file
to look for flashMessages and display them if they exist. I’ll add the code in listing 25.7 to
layout.ejs above the <%- body %>.

I intend to show only success and error messages. First, l check whether flashMessages is
defined; then I display success messages or error messages that are attached to the object.

Listing 25.7. Adding logic to use flash messaging in layout.ejs

<div class="flashes">

<% if (flashMessages) { %> 1

 <% if (flashMessages.success) { %>

 <div class="flash success"><%= flashMessages.success %></div>

 <% } else if (flashMessages.error) { %>

 <div class="flash error"><%= flashMessages.error %></div> <% } %>

<% } %>

</div>

• 1 Display flash messages in the view.

Finally, I test this newly added code by modifying my user’s create action to use -passportand
flash messaging by adding the code in listing 25.8 to usersController.js. The create action uses
the register method provided by Passport.js to create a new user account. The result is a user
document in my database with a hashed password and salt. If the user is saved successfully, I
add a success flash message to be displayed in the index view. Otherwise, I show
an error message on the user creation page.

Listing 25.8. Adding passport registration and flash messaging in the create action

create: (req, res, next) => { 1

 if (req.skip) next();

 let newUser = new User(getUserParams(req.body));

 User.register(newUser, req.body.password, (e, user) => {

 if (user) {

 req.flash("success", `${user.fullName}'s account

 created successfully!`); 2

 res.locals.redirect = "/users";

 next();

 } else {

 req.flash("error", `Failed to create user account

 because: ${e.message}.`);

 res.locals.redirect = "/users/new";

 next();

 }

 });

}

• 1 Add the create action to register users.
• 2 Respond with flash messages.

With this action in place, I’m ready to demo my new Passport.js registration process with flash
messaging. Next, I add some custom validations before users are created.

25.5. ADDING VALIDATION MIDDLEWARE WITH EXPRESS-VALIDATOR

The express-validator module provides useful methods for sanitizing and validating data as it
enters this application. I start by requiring the module in main.js by adding const
expressValidator = require("express-validator") and telling my Express.js application to
use this module as middleware by adding router.use(expressValidator())to the same file.

I know that I want data to pass through some middleware validation function before it reaches
the create action in the usersController, so I change my /users/create route to take that
requirement into consideration, as shown in listing 25.9. This validate action lives
in usersController and runs before the create action, which ensures that my custom validation
middleware filters bad data before it gets a chance to reach my User model.

Listing 25.9. Adding a validation action before create in main.js

router.post("/users/create", usersController.validate,

 usersController.create, usersController.redirectView); 1

• 1 Add validation middleware to the user create route.

Then I create the validate action in usersController.js by using the code in listing 25.10.
This validate action parses incoming requests and cleans the data in the request body. In this
case, I’m trimming whitespace from the first and last name fields.

I use some other methods provided by express-validator to keep the emails in my database
consistent and the ZIP codes at the required length. I’ll also check to make sure that users
entered some password when they signed up. I collect any errors that may have occurred during
the validation steps. Then I concatenate the error messages into a single string. I set a property
on the request object, req.skip = true, so that I skip the createaction and go directly back to
the view. All flash messages display in the users/new view. If there are no errors, I call next to
move to the create action.

Listing 25.10. Adding a validate action in usersController.js

validate: (req, res, next) => { 1

 req

 .sanitizeBody("email")

 .normalizeEmail({

 all_lowercase: true

 })

 .trim();

 req.check("email", "Email is invalid").isEmail();

 req

 .check("zipCode", "Zip code is invalid")

 .notEmpty()

 .isInt()

 .isLength({

 min: 5,

 max: 5

 })

 .equals(req.body.zipCode); 2

 req.check("password", "Password cannot be empty").notEmpty();

 req.getValidationResult().then((error) => {

 if (!error.isEmpty()) {

 let messages = error.array().map(e => e.msg);

 req.skip = true;

 req.flash("error", messages.join(" and "));

 res.locals.redirect = '/users/new'; 3

 next();

 } else {

 next();

 }

 });

}

• 1 Add the validate action.
• 2 Sanitize and check input field data.
• 3 Collect errors, and respond with flash messages.

The application is ready to validate data for user creation. The last step is connecting my login
form to an authentication action I set up earlier.

25.6. ADDING AUTHENTICATION WITH PASSPORT.JS

Passport.js makes my life easier by providing some default methods to use as middleware on
requests. When I added passport-local-mongoose, my User model inherited even more useful
methods than passport offered alone. Because the passport-local-mongoosemodule was added
as a plugin on the User model, a lot of the authentication setup was taken care of behind the
scenes.

The register method is one of the most powerful and intuitive methods provided by passport.
To use it, I need to call passport.register and pass the login strategy that I plan to use. Because
I’m using the default local strategy, I can create my authenticate action in usersController.js to
use the passport.authenticate method as shown in listing 25.11.

Note

I need to make sure that const passport = require("passport") is at the top of my users
controller.

This action points directly to the passport.register method. I’ve already created a local
strategy for my User model in main.js and told passport to serialize and deserialize user data
upon successful authentication. The options I add here determine which path to take if
authentication succeeds or fails, with flash messages to go along.

Listing 25.11. Adding an authenticate action in usersController.js

authenticate: passport.authenticate("local", { 1

 failureRedirect: "/users/login",

 failureFlash: "Failed to login.",

 successRedirect: "/",

 successFlash: "Logged in!"

})

• 1 Add authentication middleware with redirect and flash-message options.

I’m ready to test authentication with my login form at /users/login. Everything should be
working at this point to log an existing user into the application. I need only to put some
finishing touches on my layout file and add a logout link.

25.7. LOGGING IN AND OUT

I’ve already gotten the login process working. Now I’d like to add some visual indication that a
user is logged in. First, I set up some variables that help me know whether there’s an unexpired
session for a logged-in user. To do so, I add the code in listing 25.12 to my custom middleware,
where I added the flashMessages local variable, in main.js.

With this middleware function, I have access to loggedIn to determine whether an account is
logged in via the client from which the request was sent. isAuthenticated tells me whether
there’s an active session for a user. currentUser is set to the user who’s logged in if that user
exists.

Listing 25.12. Adding local variables to the response through middleware

res.locals.loggedIn = req.isAuthenticated(); 1

res.locals.currentUser = req.user; 2

• 1 Set up the loggedIn variable to reflect passport login status.
• 2 Set up the currentUser variable to reflect a logged-in user.

Now I can use these variables by adding the code in listing 25.13 to the navigation bar in my
layout. I check to see whether loggedIn is true, telling me that a user is logged in. If so, I display
the fullName of the currentUser linked to that user’s show page and a logout link. Otherwise, I
display a sign-in link.

Listing 25.13. Adding a login status to my navigation bar in layout.ejs

<div class="login">

 <% if (loggedIn) { %> 1

 <p>Logged in as

 <a href="<%=`/users/${currentUser._id}`%>">

 <%= currentUser.fullName %>

 Log out

 </p> 2

 <%} else {%>

 Log In

 <% } %>

</div>

• 1 Check whether a user is logged in.
• 2 Display the current user’s name and logout link.

Finally, with my /users/logout route already in place, I need to add the logout action to
my usersController, as shown in listing 25.14. This action uses the logout method on the
incoming request. This method, provided by passport, clears the active user’s session. When I
redirect to the home page, no currentUser exists, and the existing user is successfully logged
out. Then I call the next middleware function to display the home page.

Listing 25.14. Adding a logout action to usersController.js

logout: (req, res, next) => {

 req.logout(); 1

 req.flash("success", "You have been logged out!");

 res.locals.redirect = "/";

 next();

}

• 1 Add an action to log users out.

With this last piece working, I can tell my contacts at Confetti Cuisine to advertise user accounts.
When they log in successfully, the screen will look like figure 25.1. I’m confident that the
registration and login process is safer, more reliable, and more intuitive than it was before.

Figure 25.1. Successful login on Confetti Cuisine

SUMMARY

In this capstone exercise, I improved the Confetti Cuisine application by adding a few packages
to make incoming data secure and more transparent to the user. With sessions and cookies
installed, I’m able to use packages like passport and connect-flash to share information
between the server and client about a user’s interaction with the Confetti Cuisine application. I
added encryption to user passwords and two new user attributes set up by the passport-local-
mongoose plugin on the User model. With stricter validations, my custom validate action serves
as middleware to filter unwanted data and make sure form data meets my schema requirements.
Last, with authentication in place, passport offers a way to track which users are logged in to my
application, allowing me to cater specific content to registered users who are actively involved.
In the next unit, I’ll add a few features to search content within the application, and in doing so,
build an API on the server.

Unit 6. Building an API

In unit 5, you added some new features to allow users to log in to your application securely. This
addition allows you to start distinguishing content that you’d like to show only to logged-in
users, not the general public. After all, you probably want users to be able to delete only their
own content, not that of others. These improvements increase the possibilities of browser
interaction by your users. Internet browsers, however, are only one of many types of clients that
may want to interact with your data.

In this lesson, I discuss how to make better use of your application programming interfaces
(APIs). An API is the method through which clients can interact with your application data.
Currently, that interaction is through rendered HTML pages, available to only web clients,
though you may want to modify your controller actions to respond to different types of requests
with various formats of the same data. You can use other data formats through XML or JSON.
You may want to access the course listings from within a user’s edit page without switching
views, for example. Maybe you have unsaved content in the edit form, and you’d like to look
quickly at the list of courses without having to update your user data.

In the first lesson, you set up a basic API with RESTful routes to respond with course listings in
JSON format. Then you use client-side JavaScript to display the data on the screen. At the end
of the unit, you’ll apply some security barriers to your API to prevent unwanted requests from
getting access to your database.

This unit covers the following topics:

• Lesson 26 introduces you to the way APIs are used in the tech industry and ways of
responding with different data formats. In this lesson, you organize your routes for a
more maintainable API and use query params to determine the type of data with which
you respond.

• Lesson 27 shows how to use AJAX through the client-side JavaScript to load data in a
view without refreshing the page. In this lesson, you create a new route and handle
incoming requests to a /api namespace.

• Lesson 28 guides you through basic approaches you can take to secure your API when
there’s no way to sign in users visually.

Lesson 29 wraps up the unit by providing the steps you need to make AJAX requests to load
Confetti Cuisine course data from the user’s profile page. Then you can enroll a user without
leaving the profile page.

Lesson 26. Adding an API to Your Application

In this lesson, you take a first look at reorganizing your routing structure and responding with
data. First, you create new folders to house the routes you’ve built in main.js. The new structure
follows some of the application programming interface (API) conventions you set up in earlier
lessons. Next, you modify some controller actions to respond with Embedded JavaScript (EJS)
and JSON, depending on the query parameters. Last, you test your new API connection by
creating an Ajax GET request from your client-side JavaScript.

This lesson covers

• Organizing your routes with namespacing
• Creating API endpoints to respond with JSON
• Making Ajax requests from your views

Consider this

Your recipe application renders many pages and offers specific functionality on each page. To make
the user experience less complicated, you’d like to allow users to view available programs from
their profile pages. To do so, you decide to conditionally serve data in JSON format and display that
data through JavaScript and HTML on the client. When you modify your controller actions, your
application can offer an API that goes beyond serving web pages.

26.1. ORGANIZING YOUR ROUTES

As your application grows, the routes in your main.js file start to overwhelm other middleware
and configurations. Routes are important parts of your application, and keeping your routes
organized in a way that multiple developers can manage and understand is arguably as
important.

To start this lesson, you break down the routing structure you’ve set up in an easy-to-follow
directory structure. In units 4 and 5, you created routes to reflect CRUD functionality in what’s
called a REST architecture. Representational state transfer (REST) is a way of programming
your application to represent the involvement of its resources across the web. Your application’s
resources are the users, subscribers, and courses stored in the database and displayed in the
views. You implemented a RESTful structure by constructing your routes to contain the model
name, HTTP method, action being performed, and model ID if
necessary. router.get("users/:id/edit", usersController .edit) tells you that an
HTTP GET request was made to the users/:id/edit path, for example.

These routes make it easy for users to know exactly what information is needed to get the data
they want to see—in this case, an edit form for an existing user. From the path alone, you know
that you’re trying to edit a specific user record. From there, you can connect to the appropriate
action and redirect to another RESTful route.

Note

Redirecting is often a secondary action when you’re creating or updating information in the
database. After arriving at the initial controller action to modify data, you redirect to another
route to send the user to another page to view.

In this section, you reorganize your routes into individual modules to reflect the models that
they use. This structure will be useful when you decide to expand the types of routes and
response data you use in the application.

Start by creating a new folder called routes at the root level of your project and create the
following new modules within that folder:

• userRoutes.js
• courseRoutes.js
• subscriberRoutes.js
• errorRoutes.js
• homeRoutes.js
• index.js

These six modules will divide the routes that are currently in main.js. For now, focus on the user
routes.

Start by requiring the Express.js Router and the usersController at the top of the module. Then
import the login routes and CRUD routes, and add them to the local router object. Doing so
allows these routes to be handled by the same router. With all the working routes attached to
the router, you can export the router object. Notice in this example that you’re leaving users out
of the path. You’ll define that part of the path in index.js later.

Copy all the routes in main.js that pertain to the user (CRUD operations, login, and
authentication), and move them into userRoutes.js, as shown in the next listing.

Listing 26.1. Moving user routes to userRoutes.js

const router = require("express").Router(),

 usersController = require("../controllers/usersController"); 1

router.get("/", usersController.index,

 usersController.indexView); 2

router.get("/new", usersController.new);

router.post("/create", usersController.validate,

 usersController.create, usersController.redirectView);

router.get("/login", usersController.login); 3

router.post("/login", usersController.authenticate);

router.get("/logout", usersController.logout,

 usersController.redirectView);

router.get("/:id/edit", usersController.edit);

router.put("/:id/update", usersController.update,

 usersController.redirectView);

router.get("/:id", usersController.show,

 usersController.showView);

router.delete("/:id/delete", usersController.delete,

 usersController.redirectView);

module.exports = router; 4

• 1 Require Express.js Router and users controller.
• 2 Add CRUD routes.
• 3 Add login and authentication routes.
• 4 Export the module router.

Namespaces

Namespacing is a way of defining routes, paths, and other application items under the umbrella of a
specific string or path. Instead of defining dozens of routes with the same path prefix, /users, you
can make that prefix a namespace for those routes.

Namespacing is particularly helpful in separating routes in your API based on the format of the
content returned. If an iOS application wants to access the data in your recipe application, for
example, you might create specific routes with the namespace /ios. Then you could define paths
such as /ios/courses and /ios/subscribers. Through the routes defined under this namespace,
the iOS application can access data.

Follow the same strategy for the other route files. Subscriber routes go in subscriberRoutes.js,
and error routes go in errorRoutes.js.

The index.js module requires all route modules to be in one place. This convention makes it
easier to identify all the route types in one file and requires only a single file into main.js. As
with the route modules, you require the Express.js Router in index.js. Next, require each relative
route module. With those modules added, tell the local router object to use those routes with
specific namespaces.

For the home and error routes, no namespace is necessary. By adding the /users namespace for
the user routes defined in listing 26.1, you return to the original functionality of your routes. The
last step is requiring this index.js module in main.js. Add const router =
require("./routes/index") to the top of main.js and app.use("/", router) after your
middleware functions.

To tie all these routes to the same router used by your application, add the code in the next
listing to index.js.

Listing 26.2. Importing all routes into index.js

const router = require("express").Router(), 1

 userRoutes = require("./userRoutes"), 2

 subscriberRoutes = require("./subscriberRoutes"),

 courseRoutes = require("./courseRoutes"),

 errorRoutes = require("./errorRoutes"),

 homeRoutes = require("./homeRoutes");

router.use("/users", userRoutes); 3

router.use("/subscribers", subscriberRoutes);

router.use("/courses", courseRoutes);

router.use("/", homeRoutes);

router.use("/", errorRoutes);

module.exports = router; 4

• 1 Require the Express.js Router.
• 2 Require all the route modules within the same directory.
• 3 Use the routes from the relative route modules with namespaces.
• 4 Export the router from index.js.

Note

Order matters. Make sure to have the more-detailed routes closer to the top of index.js.
Otherwise, the error routes will handle all incoming requests before they can reach the routes
you intended.

The Express.js router object operates through middleware. Within it, you can define specific
tasks that you want to perform on incoming requests. In this case, you’re using router to load
routes under different namespaces. As with other middleware, if you want the router

middleware to be part of the main application’s middleware flow, you need to add it
with app.use. In main.js, remove all the controllers’ require statements, as well as the require
statement for express.Router(). The rest of the middleware in main.js is used by the appobject.

Note

It’s important to change all remaining middleware in main.js to be used by app instead
of router because you’ll want the app to parse requests and use your templating engine before
the request reaches your router at the bottom of the file. Order of middleware matters!

Restart your application, and confirm the original functionality of your application is intact. If
you get any errors or if some routes aren’t found, make sure that all the route namespaces are
defined correctly and that the resource name prefixes are stripped from the original paths.
Under the new namespace, your user index route, for example, should read router.get("/",
usersController.index, usersController.indexView) instead of router.get("/users",
usersController.index, usersController.indexView).

In the next section, you learn how to use your existing routes to return two types of data
formats.

Quick check 26.1

Q1:

Why do you add app.use("/", router) in main.js?

QC 26.1 answer

1:

When the router is defined in main.js, you need to tell the Express.js application to use it as
middleware.

26.2. CREATING AN API

An API is a structure set up within your application to allow external sources to access your
application data. In effect, you’ve already built an API by creating your Express.js web server. By
serving HTML and EJS, you’ve provided an avenue through which users of your application can
access your data: the web browser. Not every user, however, will want to see your application

data exclusively through the browser on a web page with the styling and formatting you’ve
applied.

Think of your current Express.js application as being like a restaurant menu. It’s likely that most
people will refer to the printed menu to find out what food items a restaurant offers. Getting
access to the hard-copy menu requires traveling to the restaurant itself. By providing a phone
number to call to inquire about menu items and a website to display the restaurant’s menu, you
give customers more options to get the information they need. Similarly, a robust API provides
application data in different formats that you access in different ways.

In this section, you reconstruct some of your application routes and actions to respond with data
in JSON format in addition to rendered EJS views. Responding with JSON is simple in
Express.js. Change the res.render("courses/index") line in the indexView action of
coursesController.js to res.json(res.locals.courses). When you restart your application and
visit http://locatlhost:3000/courses, your browser should display all the courses in your
database in JSON format (figure 26.1).

Figure 26.1. Display of JSON course results in browser

This output should resemble the output from your MongoDB server when you run mongo in a
new terminal window: use recipe_db and db.courses.find({}), as shown in figure 26.2.
Running these commands starts your MongoDB environment and lists all the courses in your
recipe database. In the application, you’re essentially showing the full database documents in
the browser.

Figure 26.2. Display of courses in MongoDB

You can further improve the index action by responding with JSON only when requested. You
can accomplish this task in many ways. One way is to use query params. In this code, you
perform a check for the format query param. If it exists and equals json, respond with the
course data in JSON format. Otherwise, respond with a rendered EJS view as usual. Change
the courses indexView action to the code in the next listing.

Listing 26.3. Responding with JSON when query param exists in usersController.js

indexView: (req, res) => {

 if (req.query.format === "json") {

 res.json(res.locals.courses); 1

 } else {

 res.render("courses/index"); 2

 }

}

• 1 Respond with JSON if the format query param equals json.
• 2 Respond with an EJS view if the format query param doesn’t equal json.

Restart your application, and visit http://localhost:3000/courses to ensure that your original
EJS index view is still rendering. To display JSON data instead of the normal view,
append ?format=json to the end of your URL: visit http://localhost:3000/courses?
format=json. This additional query parameter tells your courses controller to render data in
JSON format instead of EJS.

With this change in place, if an external application wants to access the list of courses, it can
make a request to the URL with the query parameter. External applications are only one group
of consumers that can benefit from this implementation, though. You can use this data endpoint
from within your own application in many ways. (An API endpoint is a reference to one or more
application paths whose routes accept web requests.)

Quick check 26.2

Q1:

What method do you use on the response to send data as JSON back to the client?

QC 26.2 answer

1:

In Express.js, you can use res.json followed by the parameters you’d like to send in JSON format.

26.3. CALLING YOUR API FROM THE CLIENT

In the restaurant analogy, a menu’s items could be made available through different media:
print, phone, or web. This variety makes it easier for customers to learn more about the food
served in the restaurant and also could make it easier for restaurant staff to access the menu
items more quickly. After all, pulling up a web page is a convenient alternative to finding a menu
on a busy night.

In many places within your application, you could benefit from application routes that return
JSON data. Primarily, you could benefit by making Ajax requests from the client to access data
from pages you don’t want to refresh. What if you want users to be able to view the course
listings without having to change their current page, for example?

Implement a solution by populating a modal (a window that overlays the main browser screen
with some instruction or content) with course data via an Ajax request. To start, create a partial
view called _coursesModal.ejs in the views/courses folder. Use a simple bootstrap modal, as
shown in the next listing.

In this modal, you have a button that triggers a modal to appear. The modal has a tag with
the modal-body class. Target this class to populate course data.

Listing 26.4. Simple bootstrap modal in _coursesModel.ejs

<button id="modal-button" type="button" data-toggle="modal"

 data-target="#myModal">Latest Courses</button>

<div id="myModal" class="modal fade" role="dialog">

 <div class="modal-dialog">

 <div class="modal-body"> 1

 </div>

 <div class="modal-footer">

 <button type="button" data-dismiss="modal">Close</button>

 </div>

 </div>

</div>

• 1 Add a modal where you’ll populate modal-body.

Include this partial view in your layout.ejs file so that you can access it from anywhere in your
application by adding <%- include courses/_coursesModal %> as an item in your
layout’s navigation. To get this modal to work, you also need to have the bootstrap client-side
JavaScript as well as jQuery. You can get the minified code for jQuery.min.js
at https://ajax.googleapis.com/ajax/libs/jquery/3.2.1/jquery.min.js and bootstrap.min.js
at https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/js/bootstrap.min.js.

Note

I recommend copying the code from this content delivery network and saving the code locally to
files with the same name in public/js.

Then, in layout.ejs, link to these JavaScript files, as shown in the following listing.

Listing 26.5. Import jquery and bootstrap into layout.ejs

<script type="text/javascript" src="/js/jquery.min.js"></script>

<script type="text/javascript" src="/js/bootstrap.min.js"></script> 1

• 1 Add local JavaScript files from public/js.

With a few styling changes, you can restart your application. You should see a button in your top
navigation bar that opens a modal, as shown in figure 26.3.

Figure 26.3. Simple modal button in navigation bar

To give this modal some data, create recipeApp.js in your public folder’s js folder. This
JavaScript file will run on the client side. Make sure that this file is linked in your layout .ejs file
below bootstrap and jQuery by adding <script type="text/javascript"
src="/js/recipeApp.js"></script>.

Within recipeApp.js, add the code in listing 26.6. You wrap the code block in $(document)
.ready to ensure that no JavaScript is run until the DOM is loaded and ready. Then you add a
click listener on the modal-button ID. When that button is clicked in the navigation bar, perform
an Ajax GET request, using $.get to the /courses?format=json path. With the added query
param, you expect the response to include data as an array in JSON. Then you loop through that
array to access individual course records and use $(".modal-body").append to add some HTML
with each course’s title and description.

Listing 26.6. Ajax function to load data in modal in recipeApp.js

$(document).ready(() => { 1

 $("#modal-button").click(() => { 2

 $(".modal-body").html(''); 3

 $.get("/courses?format=json", (data) => { 4

 data.forEach((course) => { 5

 $(".modal-body").append(

 `<div>

 ${course.title}

 <div class="course-description">

 ${course.description}

 </div>

 </div>` 6

);

 });

 });

 });

});

• 1 Wait for DOM to load.
• 2 Listen for a click event on the modal button.
• 3 Clear the modal from any previous content.
• 4 Request data from /courses?format=json asynchronously.
• 5 Loop through array of data in the response.
• 6 Append each course to the modal.

With this Ajax request in place, restart the application and load course data into the modal.
Clicking the modal button fetches new data from the server, as shown in figure 26.4.

Figure 26.4. Populating course data within modal

Now users can view the list of courses from any page. Even if new courses are added to the
database, clicking the modal button fetches that new list.

Ajax

Asynchronous JavaScript and XML (Ajax) is a technology that allows client-side requests to be made
asynchronously without interfering with any behavior or display of the application page. Ajax uses
JSON and XML to format data and requests to be sent to a server. By managing only the data layer of
an application on your browser, Ajax allows you to make a request asynchronously and handle data
in the resulting response through a callback function.

Because of the way that Ajax interacts with a backend server without the need to reload your web
page, it’s widely used to update content dynamically in real time. Through multiple Ajax requests, a
web page theoretically might never have to reload.

Quick check 26.3

Q1:

What do you expect will happen if there are no courses in the database when you make an Ajax
request?

QC 26.3 answer

1:

The Ajax request returns an array of items from the database. If there are no records, the response
contains an empty array.

SUMMARY

In this lesson, you learned about modifying your application route structure to make room for
an extensive API. First, you reorganized your routes into individual modules. Next, you added a
way to respond with JSON data from your controller action. Last, you added client-side
JavaScript to make asynchronous requests to your server from within a view. In lesson 27, you
explore namespacing further and see ways in which you can enroll users in courses from the
modal itself.

Try this

With one action modified to respond with JSON data, try applying the same technique to other
actions. Start by adding the query param condition to the other model index actions; then
implement it for the show actions.

Keep in mind that the show actions return individual records, not arrays.

Lesson 27. Accessing Your API from Your Application

In this lesson, you change the way that you access JSON-formatted data by adding an API
namespace. Then you modify your AJAX function to allow users to join courses directly from a
modal. Last, you create the action to link users and courses through a new route.

This lesson covers

• Creating an API namespace

• Building a UI modal to fetch data asynchronously

• Connecting models with MongoDB methods

Consider this

Users can now view course listings from any page on your application, but they want to do more
than view that list. With AJAX requests, you can not only pull data asynchronously into the page, but
also perform other actions, such as creating new records and editing existing records.

In this lesson, you explore ways in which you can make better use of your API and how AJAX can
help.

27.1. APPLYING AN API NAMESPACE

I discussed namespacing in lesson 26. Now you’re going to implement a namespace for API
endpoints that return JSON data or perform actions asynchronously. To get started, create a new
route module called apiRoutes.js in your routes folder. This module will contain all the API routes
with JSON response bodies. Require this new module in index.js by adding const apiRoutes =
require("./apiRoutes"). Then tell your router to use this module under the api namespace
with router.use("/api", apiRoutes).

Note

You must add this new route above the home and error routes. Those routes are namespaced for /,
meaning that any URL entered that doesn’t match a route name before reaching the error or home
routes defaults to an error page.

Create your first route, and have it point to your coursesController.js. Add the code in listing 27.1 to
apiRoutes.js. Require the Express.js router along with your courses controller
at ../controllers/coursesController. Then point GET requests to the /courses path to the index
action of coursesController.js and export the router, followed by respondJSON. As with your other

error-handling middleware, tell this router to use errorJSON in case actions run earlier don’t return
a response.

Note

If an action doesn’t explicitly respond to the client, the connection is still open, and the request
continues to flow through the chain of middleware functions. Typically, this situation means that an
error has occurred, and that error will propagate through until error-handling middleware catches
it.

Listing 27.1. Adding a route to show all courses in apiRoutes.js

const router = require("express").Router(),

 coursesController =

 require("../controllers/coursesController"); 1

router.get("/courses", coursesController.index,

 coursesController.respondJSON); 2

router.use(coursesController.errorJSON); 3

module.exports = router;

• 1 Require courses controller.

• 2 Add the API route to the Express.js Router.

• 3 Add API error-handling middleware.

To get this code to work, create the respondJSON and errorJSON actions in courses-Controller.js.
Add the code in listing 27.2 to the courses controller for this action.

The index action in coursesController.js already attaches courses to the response’s localsobject.
Take that locals object and display it in JSON format instead of rendering the data in EJS. If an
error occurs in the courses query, pass the error to your errorJSON action. Your normal errors
controller actions respond only with browser views. If an error occurs, instead of redirecting to
another page, respond with a status code of 500, indicating that an internal error has occurred.

Listing 27.2. Adding JSON responses for courses in coursesController.js

respondJSON: (req, res) => { 1

 res.json({

 status: httpStatus.OK,

 data: res.locals

 }); 2

},

errorJSON: (error, req, res, next) => { 3

 let errorObject;

 if (error) {

 errorObject = {

 status: httpStatus.INTERNAL_SERVER_ERROR,

 message: error.message

 };

 } else {

 errorObject = {

 status: httpStatus.INTERNAL_SERVER_ERROR,

 message: "Unknown Error."

 };

 }

 res.json(errorObject);

},

• 1 Handle the request from previous middleware, and submit response.

• 2 Respond with the response’s local data in JSON format.

• 3 Respond with a 500 status code and error message in JSON format.

Note

You will also need to add const httpStatus = require("http-status-codes") to the top of
coursesController.js.

Restart your application, and visit http://localhost:3000/api/courses in your browser to see course
data in JSON. Having these routes and controllers separate from your web application routes and
controllers prevents you from making mistakes in the future. As things stand now, you always want
to render EJS or redirect if you visit /courses, and you always expect a JSON response
from/api/courses.

With this new API namespace, route, and controller action in place, change the AJAX GETrequest in
recipeApp.js to call /api/courses instead of /courses?format=json. Then remove the conditional
block checking for the format query param in your courses indexView action. Restart your
application, and check whether you can still load the course data in the modal.

Also, because you’re now returning your data wrapped in another JavaScript object containing your
status code, you need to modify your AJAX call to handle returned data properly. Change the AJAX
call in recipeApp.js as shown in the next listing.

Listing 27.3. Modifying AJAX call in recipeApp.js

$.get("/api/courses", (results = {}) => {

 let data = results.data; 1

 if (!data || !data.courses) return; 2

 data.courses.forEach((course) => { 3

 $(".modal-body").append(

 `<div>

 ${course.title}

 <div class='course-description'>

 ${course.description}

 </div>

 </div>`

);

 });

});

• 1 Set up a local variable to represent data.

• 2 Check that the data object contains course information.

• 3 Loop through course data, and add elements to modal.

Restart your application, and click the modal button to see that functionality hasn’t changed from
the last section.

In the next section, you add more functionality to the modal to allow users to join courses.

Quick check 27.1

Q1:

Why do you create a new folder for API controllers?

QC 27.1 answer

1:

Having a separate folder for API controllers and actions makes it easier to split the application in
two. One part of the application serves data with a visual aspect, and the other serves data to
sources looking for the raw data.

27.2. JOINING COURSES VIA MODAL

Listing the courses in a modal is a great accomplishment. In this section, you improve the modal
even more by allowing users to join a course asynchronously through the modal. Add a button that
allows users to join the course. Through AJAX, you submit a request to an API endpoint where a
controller action attempts to add the user to the course and responds with a success or failure
message in JSON.

First, add the link to join the course by adding the HTML code in listing 27.4 to the bottom of the
HTML rendered from the original AJAX call in recipeApp.js. This button needs a custom class join-
button and can be placed next to the course title in the modal. It also needs the data-id set
to ${course._id}, which allows you to know which course listing you selected.

Note

The data attribute in HTML is helpful in situations like these. You can mark each button with
a data-id attribute so that each button’s unique ID matches some corresponding course ID.

Listing 27.4. Adding a button to join a course in recipeApp.js

<button class="join-button" data-id="${course._id}">

 Join

</button> 1

• 1 Add a button with target-class join-button to join a course.

If you restart the application now, you should see a button next to each course item, as shown
in figure 27.1. These buttons don’t have any functionality yet, though.

Figure 27.1. Adding a join button

To get these buttons to work, change the code in recipeApp.js to use the code in listing 27.5. In this
example, you create a function called addJoinButtonListener that sets up a click-event listener for
each button with the class join-button. You need to call this function right after the AJAX request
completes because you want to attach the listener to the buttons after they’re created on the page.
To do this, append a then block to the AJAX request.

Note

AJAX functions use promises, so you can chain then and catch blocks to the end of requests to run
code after you get a response. The success block behaves the same way.

In addJoinButtonListener, you grab the target of the click—the button—and then pull the data ID
you set earlier with the course’s ID. With this information, you can make a new AJAX GET request to
the /api/courses/:id/join endpoint. For this request to work, you need to make sure that the
user is logged in. This route allows you to target specific courses to join by using the course ID.

The route and action that handle that request return the JSON value success: true if you’re able to
add the user to the course. If you’re successful, change the text and color of the button to indicate
that the user has joined by adding a new joined-button class and removing the old join-
button class. This swapping of classes allows you to style each button with different style rules in
recipe_app.css and also prevents the click event from triggering another request. If you don’t see
the color of the button change, make sure that you’re targeting the correct button class. If joining
the course results in an error, change the button’s text to tell the user to try again.

Note

The variable $button has only the $ in front to indicate that it represents a jQuery object. This
syntax is stylistic and conventional but not required to get your code to work.

Listing 27.5. Adding an event listener to each button in recipeApp.js

$(document).ready(() => {

 $("#modal-button").click(() => {

 $(".modal-body").html("");

 $.get("/api/courses", (results = {}) => {

 let data = results.data;

 if (!data || !data.courses) return;

 data.courses.forEach((course) => {

 $(".modal-body").append(

 `<div>

 ${course.title}

 <button class="join-button" data-id="${course._id}">

 Join

 </button>

 <div class="course-description">

 ${course.description}

 </div>

 </div>`

);

 });

 }).then(() => {

 addJoinButtonListener(); 1

 });

 });

});

let addJoinButtonListener = () => { 2

 $(".join-button").click((event) => {

 let $button = $(event.target),

 courseId = $button.data("id"); 3

 $.get(`/api/courses/${courseId}/join`, (results = {}) => { 4

 let data = results.data;

 if (data && data.success) { 5

 $button

 .text("Joined")

 .addClass("joined-button")

 .removeClass("join-button");

 } else {

 $button.text("Try again");

 }

 });

 });

}

• 1 Call addJoinButtonListener to add an event listener on your buttons after the AJAX

request completes.

• 2 Create the event listener for the modal button.

• 3 Grab the button and button ID data.

• 4 Make an AJAX request with the course’s ID to join.

• 5 Check whether the join action was successful, and modify the button.

Now your application is prepared to send an AJAX request and handle its response when the join
button is clicked. In the next section, you create the API endpoint to handle this request.

Quick check 27.2

Q1:

Why do you need to call the addJoinButtonListener function after the modal contents are created?

QC 27.2 answer

1:

addJoinButtonListener sets an event listener for a specific class within the modal contents. To set
the listener, you must first create the content in the modal.

27.3. CREATING AN API ENDPOINT TO CONNECT MODELS

To complete the course modal, you need to create a route to handle requests made for the current
user to join a course. To do so, add router.get("/courses/:id/join", courses-
Controller.join, coursesController.respondJSON) to apiRoutes.js. This route
allows get requests to go through a join action and feed results to your respondJSON action, which
returns to the client. At the top of coursesController.js, require the User model with const User =
require("../models/user"). Then, in coursesController.js, add the join action in listing 27.6.

In this join action, you get the current logged-in user and the course’s ID from the URL params. If
a currentUser exists, use the Mongoose findByIdAndUpdate to locate the userobject and update its
courses array to contain the target course ID. Here, you use the MongoDB $addToSet method, which
ensures that the array has no duplicate IDs. If you’re successful, add a success property to the
response’s locals object, which in turn is passed to respondJSON and passed back to the client. In
case the user isn’t logged in or an error occurs while updating the user’s association, pass
an error to be handled by your error-handling middleware.

Listing 27.6. Creating an action to join a course in coursesController.js

join: (req, res, next) => { 1

 let courseId = req.params.id,

 currentUser = req.user; 2

 if (currentUser) { 3

 User.findByIdAndUpdate(currentUser, {

 $addToSet: {

 courses: courseId 4

 }

 })

 .then(() => {

 res.locals.success = true; 5

 next();

 })

 .catch(error => {

 next(error); 6

 });

 } else {

 next(new Error("User must log in.")); 7

 }

}

• 1 Add the join action to let users join a course.

• 2 Get the course id and current user from the request.

• 3 Check whether a current user is logged in.

• 4 Update the user’s courses field to contain the targeted course.

• 5 Respond with a JSON object with a success indicator.

• 6 Respond with a JSON object with an error indicator.

• 7 Pass an error through to the next middleware function.

With this action in place, restart your application, and try joining courses in the modal. If you’re not
signed in, you may see the Try Again text appear over the button. Otherwise, depending on your
custom styling, your button should turn green and change text for every button you click, as shown
in figure 27.2.

Figure 27.2. Example modal after a course has been joined

You can improve the user experience by letting users know whether they’re already part of one or
more courses in the modal.

Given your application structure and model schemas, you can filter your results by adding the
middleware function filterUserCourses to coursesController.js, as shown in listing 27.7. In this
code, you’re checking whether a user is logged in before you continue. If a user is logged in, use

the map function on your array of courses. Within this function, look at each course and check
whether its _id is found in your logged-in user’s array of courses. The somefunction returns a
Boolean value to let you know if a match occurs. If a user has joined a course with
ID 5a98eee50e424815f0517ad1, for example, that ID should exist in currentUser.courses, and
the userJoined value for that course is true. Last, convert the courses Mongoose document object
to JSON so that you can append an additional property by using Object.assign. This
property, joined, lets you know in the user interface whether the user previously joined the course.
If no user is logged in, call next to pass along the unmodified course results.

Listing 27.7. Adding an action to filter courses in coursesController.js

filterUserCourses: (req, res, next) => {

 let currentUser = res.locals.currentUser;

 if (currentUser) { 1

 let mappedCourses = res.locals.courses.map((course) => { 2

 let userJoined = currentUser.courses.some((userCourse) => {

 return userCourse.equals(course._id); 3

 });

 return Object.assign(course.toObject(), {joined: userJoined});

 });

 res.locals.courses = mappedCourses;

 next();

 } else {

 next();

 }

}

• 1 Check whether a user is logged in.

• 2 Modify course data to add a flag indicating user association.

• 3 Check whether the course exists in the user’s courses array.

To use this middleware function, you need to add it to your APU route for /courses before you
return the JSON response. The route will look like router.get("/courses",
coursesController.index, coursesController.filterUserCourses, coursesController

.respondJSON), where coursesController.filterUserCoursessits after your query for courses
in coursesController.index.

The last step is changing the client-side JavaScript in recipeApp.js to check whether the current user
has already joined the course and modifying the button in the course listing modal. In listing 27.8,
you use a ternary operator in the button’s class attribute and main text content. These operators
check whether the course data’s joined property is true or false. If the property is true, create the

button to indicate that the user has already joined. Otherwise, display a button inviting users to
join.

Listing 27.8. Adding dynamic button styling in recipeApp.js

<button class='${course.joined ? "joined-button" : "join-button"}'

 data-id="${course._id}"> 1

 ${course.joined ? "Joined" : "Join"} 2

</button>

• 1 Add the appropriate class to reflect join status.

• 2 Add the button’s text to reflect join status.

After applying these changes, relaunch your application and log in. The color and text of your
course-listing buttons will correctly reflect the status of your associations in the database.

Note

If you experience problems maintaining a logged-in account, make sure to use sessions and cookies
prior to initializing passport and your custom middleware.

Quick check 27.3

Q1:

Why do you need to use the findByIdAndUpdate method?

QC 27.3 answer

1:

The findByIdAndUpdate Mongoose method combines the find and update methods, so you can
conveniently perform a single step to update a user document.

SUMMARY

In this lesson, you learned how to modify your namespacing structure to accommodate an API for
JSON data responses. You also improved your courses modal by allowing users to join specific

courses without needing to change pages. Through the AJAX requests and API endpoints you
created, more of your application’s functionality can move to a single page and away from
individual views for each action. In lesson 28, I discuss some ways in which you can secure your API.

Try this

With this new API in place, you’ll want to create endpoints for every route that might return data.
You may want to add every index and show action to the controllers in the apidirectory, for
example.

Create those actions and one additional action to create a user, and return JSON with a confirmation
of success or failure instead of a rendered view.

Lesson 28. Adding API Security

In this lesson, you apply a few security strategies to your API routes. Without a browser to store
cookies, some external applications may find it difficult to use your API without a way to verify the
user’s identity. First, you implement some basic security by providing an API token that must be
appended to each request. Then you improve that strategy by generating a unique API key for each
user upon account creation. Last, you explore JSON Web Tokens (JWT), a system of hashing user
data and exchanging tokens to authenticate user accounts without a browser.

This lesson covers

• Adding security-token-verification middleware

• Creating a pre("save") hook to generate API keys

• Implementing JWT header authentication

Consider this

You built a robust API for the recipe application. Your endpoints include routes to create new users
and update existing users. Because an API endpoint can be accessed from any device that can make
an HTTP request, there’s no telling who might make a request to your API without first creating an
account and storing session data on the server.

Having some form of security on your API routes ensures that your data doesn’t fall into the wrong
hands.

28.1. IMPLEMENTING SIMPLE SECURITY

Unit 5 guided you through user-account creation and authentication. With the help of a few
packages, you created a thorough process of validating and encrypting user data and of ensuring
that those users were authenticated before getting access to certain pages.

Even without the help of external packages, you can take some simple steps to protect your API.
The first method you’ll use in this lesson is generating an API token that must be used by users
accessing your API. Users need to have a token because they may not be using a browser to access
the API, so your current implementation with Passport.js, cookies, and sessions may not work with
the client. An additional token reduces this risk, ensuring that only users who make requests with a
valid token can see data. You could add app.set("token", process.env.TOKEN ||
"recipeT0k3n") to main.js, for example. Then this application variable would be set to whatever
you use as the TOKEN environment variable or default to recipeT0k3n. The token could be retrieved
by using app.get("token").

Because you want to monitor incoming requests to the API in the apiRoutes module, set the token
as a constant in usersController.js in the api folder, using const token = process.env.TOKEN ||
"recipeT0k3n". This token will be used by middleware within usersController.js to verify incoming
API requests. Create that middleware function by adding the code in listing 28.1 to
usersController.js.

This middleware function, verifyToken, checks for a query param called apiToken that matches the
token you set earlier. If the tokens match, call next to continue the middleware chain; otherwise,
pass an error with a custom message. This error reaches your error-handling middleware and
displays the message as JSON.

Listing 28.1. Adding middleware function to verify API token in usersController.js

verifyToken: (req, res, next) => { 1

 if (req.query.apiToken === token) next(); 2

 else next(new Error("Invalid API token.")); 3

}

• 1 Create the verifyToken middleware function with the next parameter.

• 2 Call the next middleware function if tokens match.

• 3 Respond with error message if tokens don’t match.

To add the usersController.verifyToken middleware so that it runs before every API request is
handled, you can add router.use(usersController.verifyToken), as the first function in
apiRoutes.js. You also need to require the users controller by adding const usersController =
require("../controllers/usersController") to apiRoutes.js.

Restart your application, and when you visit http://localhost:3000/api/courses, notice the
following error message: {"status":500, "message":"Invalid API token."}. This message is a
good sign. It means that your API validation is working because you didn’t make a request by using
a valid API token.

To bypass this message, add the apiToken query parameter. Visiting http://localhost:
3000/api/courses?apiToken=recipeT0k3n should result in a display of the original course data in
JSON format. If you choose to implement your API security this way, you need to share this token
with your trusted users. To get your AJAX requests to work, add the ?apiToken=recipeT0k3n query
parameter to those URLs as well in recipeApp.js.

This simple security barrier is definitely a start, but you can imagine that it quickly becomes an
unreliable system as more users require the token to access your API. The more users who have
access to the same token, the more likely it is for that token to fall into the hands of nonusers. When
you’re quickly building an application that requires a thin layer of security, this approach may be
sufficient. When the application is live online, however, you’ll want to modify the API security to
treat each user request uniquely.

In the next section, you explore ways to keep the token unique for each user.

Quick check 28.1

Q1:

Why might you store a secret token in process.env.TOKEN?

QC 28.1 answer

1:

You can store sensitive or secret data in process.env as environmental variables. These variables
are normally stored on the server but don’t need to appear in the code. This practice makes it easier
to change the token directly on the server (you don’t have to change the code each time), and it’s a
more-secure convention.

28.2. ADDING API TOKENS

You just constructed a middleware function to verify API tokens passed as query parameters in the
URL. This method is effective at securing your API, but it doesn’t prevent nonusers from getting
their hands on the one and only token.

To improve this system, add a custom token to each user account. Do this by adding a
new apiToken field to the user schema that’s of type String. Next, build a pre("save") hook on
the User model to generate an API token that’s unique to that user upon account creation. Before
you get to the code, use a Node.js package to help with the token generation.

The rand-token package provides some simple tools for creating new alphanumeric tokens of your
desired length. Run npm install rand-token -S to install the rand-tokenpackage in this project,
and require it in user.js by adding const randToken = require ("rand-token").

Add the code in the next listing to user.js. This code first checks whether the user’s -apiTokenfield is
set. If it isn’t, generate a new unique 16-character token with rand-Token.generate.

Listing 28.2. Creating a pre(“save”) hook to generate an API token in user.js

userSchema.pre("save", function(next) {

 let user = this;

 if (!user.apiToken) user.apiToken =

 randToken.generate(16); 1

 next();

});

• 1 Check for an existing API token and generate a new one with randToken.generate.

Note

You can improve the functionality here by comparing the generated token with other users’ tokens
to ensure that no duplicity occurs.

Next, add the apiToken field as an item in the table on the user’s show page. This way, when a new
user visits their profile page, they’ll have access to their API token. In figure 28.1, for example, my
user account has the token 2plMh5yZMFULOzpx.

Figure 28.1. Displaying the API token on the user’s show page

To use this token, you need to modify the verifyToken middleware to check the apiTokenquery
param against the tokens in your database. Change verifyToken in /api/users-Controller.js to use
the code in listing 28.3.

In this modified middleware function, you grab the token as the query parameter. If a token
appears in the URL, search the user database for a single user who has that API token. If such a user
exists, continue to the next middleware function. If no user with that token exists, if an error occurs
in the query, or if no query parameter was used, pass an error.

Listing 28.3. Improving the token verification action in usersController.js

verifyToken: (req, res, next) => {

 let token = req.query.apiToken;

 if (token) { 1

 User.findOne({ apiToken: token }) 2

 .then(user => {

 if (user) next(); 3

 else next(new Error("Invalid API token."));

 })

 .catch(error => { 4

 next(new Error(error.message));

 });

 } else {

 next(new Error("Invalid API token."));

 }

}

• 1 Check whether a token exists as the query parameter.

• 2 Search for a user with the provided API token.

• 3 Call next if a user with the API token exists.

• 4 Pass an error to error handler.

Restart your application, and create a new user account. Visit that new user’s show page, and locate
the apiToken value. Then visit http://localhost:3000/api/courses? api-Token= followed by the API
token for that user. The jon@jonwexler.com user, for example, would use the following URL:
http://localhost:3000/api/courses?apiToken= 2plMh5yZMFULOzpx. You should see the list of
courses in JSON as before.

This new system reduces the vulnerability of having a single API token for all users. With the API
token connected to a user account, you could also verify the user’s information in your database
and keep metrics on the number or quality of that user’s API requests. To get your client-side
JavaScript to use this token in your API calls, you can add a hidden element to layout.ejs with the
current user’s token. You could add <div id="apiToken" data-token="<%=
currentUser.apiToken %>" style="display: none;"> within the block to check whether a user is
logged in, for example. Then, when the document is ready in recipeApp.js, you can locate the token,
use it with let apiToken = $("#apiToken").data ("token"), and call your Ajax request
on /api/courses?apiToken=${apiToken}.

Still, you can take a more-secure approach to building API authentication in which a web browser
isn’t necessarily involved. That method uses JSON web tokens (JWT).

Quick check 28.2

Q1:

What does randToken.generate(16) do?

QC 28.2 answer

1:

This method generates a random 16-character alphanumeric token.

28.3. USING JSON WEB TOKENS

You can build a secure API by using cookies, but the API’s functionality still depends on its clients to
support and store those cookies. Consider someone who writes a script to run requests against
your API solely from their terminal window, for example. In this case, if you want to apply user
authentication on incoming requests, you need some way to keep track of which users are
requesting and whether they’ve recently logged in. Without a visual login page, that task can be
difficult. You can try some alternative solutions, one of which is using JSON web tokens.

JSON web tokens (JWT) are signed or encrypted data passed between the server and client as a
means of representing an authenticated user request. Ultimately, JWTs are like sessions in a
different format and used differently in web communication. You can think of JWTs as being like
API tokens that are regenerated on every login. JWTs contain three parts, as defined in table 28.1.

Table 28.1. Parts of JWTs

JWT part Description

Header A JSON object detailing how the data in the JWT is prepared and hashed.

Payload The data stored in the JWT, used to verify the user who previously authenticated. The payload normally

includes the user’s ID.

Signature A hashed code using the header and payload values.

Tip

The smaller the payload, the smaller the JWT and the faster it’s sent with each response.

These three values together offer a unique arrangement of data indicating the recent login status
for a specific user. First, the user makes a request and passes their email and password. The server
responds with an encoded JWT verifying the user’s correct login information. For each subsequent
user request, that same JWT must be sent back to the server. Then the server verifies the JWT by
decoding its values and locating the user specified in the payload. Unlike in password encryption
with Passport.js and bcrypt, JWTs aren’t encrypted through hashing and salting. JWTs are encoded,
which means that the server can decode the JWT to reveal its contents without needing to know
some secret value set by the user.

In this section, you apply JWT API security with the help of the jsonwebtoken package. Install
the jsonwebtoken package by running npm i jsonwebtoken -S in terminal. Because you’re going to
use JWTs for user verification in the API, require jsonwebtoken in users-Controller.js with const
jsonWebToken = require("jsonwebtoken").

To use JWTs, you need to allow the user to log in without a browser. Create a new API login action
by adding the code in listing 28.4 to usersController.js.

Note

You can find more information on the jsonwebtoken package at https://github.com/auth0/node-

jsonwebtoken.

This action uses the Passport.js local strategy that you set up in lesson 24. Through the
authenticate method, verify that the user email address and password match that of a user in the
database. Then, through a callback function, if a user is found with the matching email and
password, use jsonWebToken.sign to create a token with the user’s ID and an expiration date set to
one day from the time of signing. Finally, respond with a JSON object with a success tag and the
signed token; otherwise, respond with the error message.

Listing 28.4. Creating a login action for the API in usersController.js

apiAuthenticate: (req, res, next) => { 1

 passport.authenticate("local",(errors, user) => {

 if (user) {

 let signedToken = jsonWebToken.sign(2

 {

 data: user._id,

 exp: new Date().setDate(new Date().getDate() + 1)

 },

 "secret_encoding_passphrase"

);

 res.json({

 success: true,

 token: signedToken 3

 });

 } else

 res.json({

 success: false,

 message: "Could not authenticate user." 4

 });

 })(req, res, next);

}

• 1 Authenticate with the passport.authenticate method.

• 2 Sign the JWT if a user exists with matching email and password.

• 3 Respond with the JWT.

• 4 Respond with an error message.

Now this token can be used for 24 hours to make requests to secured API endpoints.

Next, add the following POST route
to apiRoutes.js: router.post(“/login”, usersController.apiAuthenticate). You can generate
the token without a browser by making a POST request to the /api/login route with your email and
password in the body. To do so, run a curl command in terminal, such as curl -d
"email=jon@jonwexler.com&password=12345" http://localhost:3000/api/login. In this
example, the -d flag indicates that the user is posting their email and password as data to the
provided URL. After running this command, you should expect a response similar to the response in
the next listing.

Listing 28.5. Example response for a successful JWT authentication in terminal

{"success":true,"token":"eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9

 .eyJkYXRhIjoiNTljOWNkN2VmNjU5YjMwMjk4YzkzMjY4IiwiZXhwIjox

 NTA2NDk2NDMyODc5LCJpYXQiOjE1MDY0MTAwMzJ9.Gr7gPyodobTAXh1p

 VuycIDxMEf9LyPsbrR4baorAbw0"} 1

• 1 Display of a successful response with a JWT after authentication.

To secure all the API endpoints, add an action to verify incoming JWTs and add that middleware for
every API route. Add the code in listing 28.6 to usersController.js.

First, pull the incoming token from the request header. Then, if a token exists,
use jsonWebToken.verify along with the token and secret passphrase to decode the token and
verify its authenticity. The following callback provides any errors that may have occurred, as well
as the decoded payload. You can check whether the payload has a value. If so, pull the user’s ID
from payload.data, and query the database for a user with that ID. If no such user exists, that user’s
account may have been deleted, or the JWT may have been tampered with, so return an error
message. If the user ID matches, call next and move on to the API endpoint. This method of
communication continues until the token expires and the user creates a new JWT.

Listing 28.6. Creating a verification action for the API in usersController.js

verifyJWT: (req, res, next) => {

 let token = req.headers.token; 1

 if (token) {

 jsonWebToken.verify(2

 token,

 "secret_encoding_passphrase",

 (errors, payload) => {

 if (payload) {

 User.findById(payload.data).then(user => { 3

 if (user) {

 next(); 4

 } else {

 res.status(httpStatus.FORBIDDEN).json({

 error: true,

 message: "No User account found."

 });

 }

 });

 } else {

 res.status(httpStatus.UNAUTHORIZED).json({

 error: true,

 message: "Cannot verify API token." 5

 });

 next();

 }

 }

);

 } else {

 res.status(httpStatus.UNAUTHORIZED).json({

 error: true,

 message: "Provide Token" 6

 });

 }

}

• 1 Retrieve the JWT from request headers.

• 2 Verify the JWT, and decode its payload.

• 3 Check for a user with the decoded user ID from the JWT payload.

• 4 Call the next middleware function if a user is found with the JWT ID.

• 5 Respond with an error message if the token can’t be verified.

• 6 Respond with an error message if no token is found in the request headers.

The final step is placing this verifyJWT middleware function before any API request is processed.
Add router.use(usersController.verifyJWT) to apiRoute.js below the loginroute and above all
other routes. This step ensures that every route needs to use the verifyJWT middleware except for
the login route, which is used to generate your JWT.

Note

At this point, you no longer need your token generator hook on the User model or any remnants of
the past two API security techniques to use JWTs. You may want to keep these recently
implemented API security techniques in place, however, as a fallback to access your API. More work
is needed to get these security approaches to work together.

You can test your JWT by running another curl command in terminal and identifying the token in
the request headers. With the token from listing 28.5, that command looks like listing 28.7.

In this command, you use the -H flag to indicate a header key-value pair for your JWT in quotation
marks. By making a request and passing a valid JWT, you should gain access to the application’s
data.

Note

You need to remove the usersController.verifyToken action to make this new approach work.
Otherwise, your application will look for both a JWT header and an apiToken.

Listing 28.7. Creating a verification action for the API in usersController.js

curl -H "token: eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJkY

 XRhIjoiNTljOWNkN2VmNjU5YjMwMjk4YzkzMjY4IiwiZXhwIjoxNT

 A2NDk2NDMyODc5LCJpYXQiOjE1MDY0MTAwMzJ9.Gr7gPyodobTAX

 h1pVuycIDxMEf9LyPsbrR4baorAbw0" http://localhost:3000

 /api/courses 1

• 1 Make a request with JWT in the headers.

Warning

The way you’re building your API to use JWTs will interfere with the work you’ve already done in
your client-side Ajax request. Consider this section to be an introduction to using JWTs, not
necessarily a replacement for the security you’ve implemented in the recipe application so far.

If your request is successful, you should expect to see the same list of courses as the JSON from the
first section of this lesson. If you plan to use JWTs for securing your API, you need to specify to the
users of your API exactly how you expect them to authenticate and verify their tokens. One way is
to create a view with an additional login form where a user can post their email and password to
get an API token in response. That token can be stored temporarily on the User model like the
random token in the preceding section.

Note

Using JWTs requires the client to store the token in some way. Not being able to store the JWT
temporarily makes it impossible to create future requests after the token is created on login.

JWTs can help prevent attacks on your application’s data and secure access through your API, but
this requires more steps to implement. Ultimately, you may find that it makes more sense to start
with a simpler approach, such as generating random tokens for each user.

Quick check 28.3

Q1:

Why do you pass the JWT in the header of the request?

QC 28.3 answer

1:

You could pass the JWT in the body of the request, but because not all requests will be POST, the
headers offer a more convenient place.

SUMMARY

In this lesson, you learned how to implement three security tokens on your API. The first strategy is
a simple security token that can be used by all clients. The second strategy requires generating a
new random token for each user upon creation. In the third approach, you use JWTs to provide the
most-secure option for authenticating users to access your API. In lesson 29 (this unit’s capstone
exercise), you have an opportunity to build an API with some of the functionality introduced in this
unit.

Try this

Now that you have some basic security options to choose among, try creating more API routes that
require JWTs. You can also exclude certain routes from requiring a token, such as the login route.
Pick two routes to exclude from your API security.

Lesson 29. Capstone: Implementing an API

Confetti Cuisine raves about the user interaction with the application. To encourage more users
to enroll in their courses, however, they’d like me to add more data on individual pages. More
specifically, they want me to include a modal on every page that lists the offered courses and a
link to enroll in each one.

To accomplish this task, I’m going to make requests to my application server by using Ajax on
the client side. By making an asynchronous call to my server behind the scenes, I won’t need to
load the course data until the user clicks a button to enroll. This change to use Ajax should help
with the initial page-load time and ensure that course data is up to date when the user views it.

First, I’m going to need to modify my application layout view to include a partial containing the
Embedded JavaScript (EJS) for my modal. Next, I’m going to create the client-side JavaScript
code to request for course data. To get this data to appear, I need to create an API endpoint to
respond with course data as JSON. When I have that endpoint working, I’ll add an action to
handle enrolling users in courses and respond with JSON upon completion. This endpoint will
allow users to enroll in classes from any page without needing to leave or refresh the page
they’re on.

Before I begin, I’m going to restructure my routes to pave the way for my new API endpoints.

29.1. RESTRUCTURING ROUTES

To start with the application’s improvements, I’ll move my routes into their own modules to
clean up my main application file. As this application grows, the routes will increase as well. I’d
like future developers on this project to be able to locate the routes they need easily. Because my
routes for each model resource are already RESTful—meaning that the route paths take my
application’s models and CRUD functions into consideration—the restructuring process is much
simpler. My new application structure will separate my routes based on controller name, as
shown in figure 29.1.

Figure 29.1. Application structure with routes folder

First, I create a new routes folder at the root level of my application directory. Within that
folder, I create three modules to hold my models’ respective routes:

• userRoutes.js
• courseRoutes.js
• subscriberRoutes.js

Next, I move all the user routes out of main.js and into userRoutes.js. This new routes file
resembles the code in listing 29.1.

Note

I’ll also move my home and error routes into their own home: Routes.js and errorRoutes.js,
respectively.

At the top of this file, I require the Express.js Router and usersController.js. These two modules
allow me to attach my routes to the same object across my application and link those routes to
actions in the users controller. Then I apply the get, post, put, and delete routes for users,
which include the routes for CRUD actions as well as the routes to sign in and log in. Before I
continue, I remove all occurrences of the text users in the route path. Instead, I’ll apply these
routes under the users namespace later. These routes are bound to the routerobject, which I
export with this module to make it available to other modules in the project.

Listing 29.1. User routes in userRoutes.js

const router = require("express").Router(), 1

 usersController = require("../controllers/usersController");

router.get("/", usersController.index,

 usersController.indexView); 2

router.get("/new", usersController.new);

router.post("/create", usersController.validate,

 usersController.create, usersController.redirectView);

router.get("/login", usersController.login);

router.post("/login", usersController.authenticate);

router.get("/logout", usersController.logout,

 usersController.redirectView);

router.get("/:id/edit", usersController.edit);

router.put("/:id/update", usersController.update,

 usersController.redirectView);

router.get("/:id", usersController.show,

 usersController.showView);

router.delete("/:id/delete", usersController.delete,

 usersController.redirectView);

module.exports = router; 3

• 1 Require the Express.js Router and usersController.
• 2 Define user routes on the router object.
• 3 Export the router object from the module.

Then I apply the same strategy to the other model routes and export the router object in each
module. Exporting the router object allows any other module to require these routes. My routes

are better organized, with each module requiring only the controllers it needs to use. To get
these routes accessible in main.js, I create a new file called index.js in the routes folder. This file
requires all relevant routes so that they can be accessed in one place. Then I’ll require index.js in
main.js.

Note

All remaining middleware in main.js should be applied to app.use and should no longer
use router.

I start by requiring the Express.js Router along with all my route modules. In this example, I
include model routes and routes for errors and my home controller. router.use tells my router
to use the first parameter as the namespace and the second parameter as the routes module
specific to that namespace. At the end of the file, I export my router object, which now contains
all the previously defined routes. The code in index.js is shown in the next listing.

Listing 29.2. All routes in index.js

const router = require("express").Router(), 1

 userRoutes = require("./userRoutes"),

 subscriberRoutes = require("./subscriberRoutes"),

 courseRoutes = require("./courseRoutes"),

 errorRoutes = require("./errorRoutes"),

 homeRoutes = require("./homeRoutes");

router.use("/users", userRoutes); 2

router.use("/subscribers", subscriberRoutes);

router.use("/courses", courseRoutes);

router.use("/", homeRoutes);

router.use("/", errorRoutes);

module.exports = router; 3

• 1 Require the Express.js Router and route modules.
• 2 Define namespaces for each route module.
• 3 Export the complete router object.

With these routes reorganized, I’ll still be able to access my index of courses and individual
courses at the /courses and /courses/:id paths, respectively. Because my routes are more
organized, I have room to introduce new route modules without complicating my code

structure. To import these routes into the application, I need to require index.js at the top of
main.js by using const router = require("./routes/index"). This router object replaces the
one I had before. Then I tell my Express.js app to use this router in the same way that I told the
router to use previously defined routes by making sure that app.use("/", router) is in main.js.

Note

I also need to remove my require lines for all controllers in main.js, as they’re no longer
referenced in that module.

With this new routing structure in place, my application continues to function as before. I can
start implementing my API modifications by creating the modal that will display courses.

29.2. ADDING THE COURSES PARTIAL

To create a modal, I use the default bootstrap modal HTML, which provides the code for a
button that displays a simple modal in the center of the screen. I add that code to a new file
called _coursesModal.ejs in my courses folder. The underscore distinguishes the names of
partials from regular views.

This partial, which contains only the modal code shown in the next listing, needs to be included
in my layout.ejs file. I include the partial as a list item in my navigation bar, with <%- include
courses/_coursesModal %>.

Listing 29.3. Code for modal in _coursesModal.ejs

<button id="modal-button" type="button"

 data-toggle="modal"

 data-target="#myModal"> Latest Courses</button> 1

<div id="myModal" class="modal fade" role="dialog"> 2

 <div class="modal-dialog">

 <h4 class="modal-title">Latest Courses</h4>

 <div class="modal-body">

 </div>

 <div class="modal-footer">

 <button type="button" data-dismiss="modal">Close</button>

 </div>

 </div>

</div>

• 1 Add the button to open modal.
• 2 Add code for the modal window.

Note

I also need to make sure that the JavaScript files for bootstrap and jQuery are added to my
public/js folder and imported into my layout.ejs through script tags. Otherwise, my modal won’t
animate on the screen. I can download the latest jQuery code from https://code.jquery.com and
bootstrap code from https://www.bootstrapcdn.com.

When I restart my application, I see a button in my navigation bar, which opens an empty modal
when clicked (figure 29.2).

Figure 29.2. Modal button in layout navigation

The next step is populating this modal by using course data with AJAX and a new API endpoint.

29.3. CREATING THE AJAX FUNCTION

One way to access application data without needing to refresh my web page is to make an
asynchronous Ajax request to my server. This request occurs behind the scenes on the browser
used by the application’s clients and originates from the client’s JavaScript file in the public
folder.

To get this Ajax function to work, I need to ensure that jQuery is added to my project and linked
from the layout file, because I’ll use some of its methods to populate my modal. Then, through
my custom confettiCuisine.js file in my public/js folder, I can add the code in listing 29.4. I can

reference this file in layout.ejs using the following script tag: <script
type="text/javascript" src="js/confettiCuisine.js"></script>.

This Ajax function runs only when the Document Object Model (DOM) is loaded and the modal
button is clicked. I handle the click event by making a GET request to my API endpoint
at /api/courses. This request is equivalent to making a GET request to
http://localhost:3000/api/courses in my web browser and receiving a page of JSON data. I’ll
create this route soon.

Next, I handle the results in the response through the results object. Within this object, I
expect to see a data object. If there’s no data or course object, I return to exit the function. I
parse the data object for JSON and loop through its array of contents to populate my modal. For
each item in my data object, I display the title, cost, and description within HTML tags.

To the side of each course listing, I link a button to an enrollment route for that course. I create
a function called addJoinButtonListener to add an event listener on each course listing after its
elements are added to the DOM. That function listens for a click event on the join button,
marked with the .join-button class. When that button is clicked, I make another AJAX request
through my API namespace to /api/courses/${courseId}/join for the specific course listing I
selected. If my server returns a response saying that I was successfully added to the course, I
change the color and text of the button. Using the ternary operator ${course.joined ?
"joined-button" : "join-button" }, I determine the class of the button’s styling, depending
on the value of course.joined. I’ll create this property on each course object to let my user
interface know whether the currently logged-in user has already joined the course.

Listing 29.4. Creating an Ajax function to retrieve course data in confettiCuisine.js

$(document).ready(() => { 1

 $("#modal-button").click(() => { 2

 $(".modal-body").html(""); 3

 $.get(`/api/courses`, (results = {}) => { 4

 let data = results.data;

 if (!data || !data.courses) return;

 data.courses.forEach((course) => { 5

 $(".modal-body").append(

 `<div>

 $${course.cost}

 ${course.title}

 <button class="${course.joined ? "joined-button" :

 "join-button"} btn btn-info btn-sm" data-id="${course._id}">

 ${course.joined ? "Joined" : "Join"}

 </button>

 <div class="course-description">

 ${course.description}

 </div>

 </div>`

); 6

 });

 }).then(() => {

 addJoinButtonListener(); 7

 });

 });

});

let addJoinButtonListener = () => {

 $(".join-button").click((event) => {

 let $button = $(event.target),

 courseId = $button.data("id");

 $.get(`/api/courses/${courseId}/join`, (results = {}) => { 8

 let data = results.data;

 if (data && data.success) {

 $button

 .text("Joined")

 .addClass("joined-button")

 .removeClass("join-button");

 } else {

 $button.text("Try again");

 }

 });

 });

}

• 1 Wait for the DOM to load.
• 2 Handle a click event on the modal button.
• 3 Reset the modal body’s contents to an empty string.
• 4 Fetch course data via an AJAX GET request.
• 5 Loop through each course, and append to the modal body.
• 6 Link to enroll the current user.
• 7 Call addJoinButtonListener to add an event listener on the course listing.
• 8 Make an API call to join the selected course.

To get this code to work, I need to create two new API endpoints. One endpoint retrieves course
data as JSON; the other handles my requests to enroll users at /api/course/${courseId}/join.
I’ll add these endpoints in the next section.

29.4. ADDING AN API ENDPOINT

Now that my Confetti Cuisine application is configured to communicate with two new API
endpoints, I need to create the routes to handle these requests. The first step is adding the
routes to my index.js file in the routes folder. For the AJAX request, I need a specific route
under an api namespace because I want requests to go to /api/courses, not only /courses. To
accomplish this task, I create apiRoutes.js within the routes folder with the code in listing 29.5.

This file requires the Express.js Router and my coursesController. Then I have that router
object handle GET requests made to the /courses path. This route gets the course listing from the
index action in the courses controller. Then the course listing goes through
a filterUserCourses middleware function to mark the courses that the current user has already
joined, and results are sent back through the respondJSON function. Under the apinamespace,
this path is /api/courses. The second route handles GET requests to a new action called join. I
have one more piece of middleware for this API. I make reference to the errorJSON action, which
handles all errors resulting from any of the routes in this API. Last, I export the router.

Listing 29.5. Creating an API route in apiRoutes

const router = require("express").Router(), 1

 coursesController = require("../controllers/

 coursesController");

router.get("/courses", coursesController.index,

 coursesController.filterUserCourses,

 coursesController.respondJSON); 2

router.get("/courses/:id/join", coursesController.join,

 coursesController.respondJSON); 3

router.use(coursesController.errorJSON); 4

module.exports = router;

• 1 Require the Express.js Router and coursesController.
• 2 Create a route for the courses data endpoint.
• 3 Create a route to join a course by ID.
• 4 Handle all API errors.

Next, I need to add this router to the router defined in index.js. I require apiRoutes.js into
index.js by adding const apiRoutes = require("./apiRoutes"). I add router.use ("/api",
apiRoutes) to index.js to use the routes defined in apiRoutes.js under the /apinamespace. I’ve
already created the index action to fetch the courses from my database. Now I need to create
the filterUserCourses, respondJSON, and errorJSON actions in my courses controller so that I
can return my data in JSON format. To do so, I add the code in the following listing to
coursesController.js.

Listing 29.6. Creating an action to enroll users in courses in coursesController.js

respondJSON: (req, res) => { 1

 res.json({

 status: httpStatus.OK,

 data: res.locals

 });

},

errorJSON: (error, req, res, next) => { 2

 let errorObject;

 if (error) {

 errorObject = {

 status: httpStatus.INTERNAL_SERVER_ERROR,

 message: error.message

 };

 } else {

 errorObject = {

 status: httpStatus.OK,

 message: "Unknown Error."

 };

 }

 res.json(errorObject);

},

filterUserCourses: (req, res, next) => { 3

 let currentUser = res.locals.currentUser;

 if (currentUser) {

 let mappedCourses = res.locals.courses.map((course) => {

 let userJoined = currentUser.courses.some((userCourse) => {

 return userCourse.equals(course._id);

 });

 return Object.assign(course.toObject(), {joined: userJoined});

 });

 res.locals.courses = mappedCourses;

 next();

 } else {

 next();

 }

}

• 1 Return a courses array through the data property.
• 2 Return an error message and status code of 500 if an error occurs.
• 3 Check whether the user is logged in and return an array of courses with

joined property reflecting user association.

With these new endpoints in place, I can restart my application and see the course listings
populate my modal when the navigation button is clicked (figure 29.3).

Figure 29.3. Showing course listing through modal in browser

Note

While testing that this API endpoint works, I need to comment out my route to join until the
action is added to my courses controller. Otherwise, my application will complain that it’s
looking for a callback that doesn’t exist.

The last phase is creating a route and action to handle users who are looking to enroll in a class
and filter the course listing to reflect those users who have already joined.

29.5. CREATING AN ACTION TO ENROLL USERS

To enroll a user in a cooking class, I need the current user’s ID and the selected course’s ID. I
can get the user’s ID from the user object on the request, provided by passport. I need to
use req.user._id or the currentUser variable I created the last time I worked on this project
(lesson 25). I also have easy access to the course ID through the RESTful route. The course ID is
the second element in the route’s path. My second route, '/courses/:id/join' in apiRoutes.js,
points to the join action in my courses controller.

The last step is adding a controller action to enroll the user in the selected course. I start by
creating a new action called join and defining local variables for the course and user IDs.
Because I’m referencing the User model in this controller, I need to require that model in
coursesController.js by adding const User = require("../models/user"). Then I check
whether a user is signed in. If not, I return an error message in JSON format.

Note

You will also need to add const httpStatus = require("http-status-codes") and const User
= require("../models/user") to the top of coursesController.js.

If the user is logged in, I use the Mongoose findByIdAndUpdate query method to search for the
user by the user object, the currentUser, and the MongoDB array update operator $addToSet to
insert the selected course into the user’s courses list. This association signifies an enrollment. I
accomplish all these tasks by using the code in listing 29.7.

Note

$addToSet ensures that no duplicate values appear in the courses array. I could have used the
MongoDB $push operator to add the course ID to the user’s courses array, but this operator may
have allowed users to enroll in the same course multiple times by accident.

Listing 29.7. Creating an action to enroll users in courses in coursesController.js

join: (req, res, next) => {

 let courseId = req.params.id,

 currentUser = req.user; 1

 if (currentUser) { 2

 User.findByIdAndUpdate(currentUser, { 3

 $addToSet: {

 courses: courseId

 }

 })

 .then(() => {

 res.locals.success = true;

 next(); 4

 })

 .catch(error => {

 next(error); 5

 });

 } else {

 next(new Error("User must log in."));

 }

}

• 1 Define local variables for course and user IDs.
• 2 Check whether the user is logged in.
• 3 Find and update the user to connect the selected course.
• 4 Continue to next middleware.
• 5 Continue to error middleware with an error message if the user failed to

enroll.

With this action in place, I can restart the application. When I try to enroll in a course before
logging in, I see the message in figure 29.4.

Figure 29.4. Trying to enroll before logging in

After I successfully log in and click the button to join a course, the screen resembles figure 29.5.
Also, after joining a course, I can refresh my window and still see my joined status preserved in
the modal.

Figure 29.5. Successfully enrolling in a course

With a new API namespace, I can open this application to more Ajax requests and other
applications that want to access Confetti Cuisine’s raw JSON data. I could secure the API, but
doing so isn’t required for this small change.

Now that I’ve implemented a new feature to allow users to enroll in courses, I’ll work on
improving other parts of the application that may benefit from single-page asynchronous calls to
my API.

SUMMARY

In this capstone exercise, I improved the Confetti Cuisine application experience by introducing
an Ajax request to a new API endpoint. I started by reorganizing my application’s routes and
separating the web routes from the API routes. Then I created an Ajax function on the client-
side JavaScript to populate a modal with course-listing results from a custom API endpoint.
Last, I created a route and action to allow users to enroll in courses from any page in the
application. With this new improvement in place, Confetti Cuisine’s marketing team feels better
about informing users and encouraging them to join their classes.

Unit 7. Adding chat functionality

By this point, the main structure of your application is complete. It’s time to think about new
features that could improve the overall interaction on your application but aren’t necessary for
the fundamental functionalities. In earlier lessons, I discussed how particularly useful Node.js is
for handling streams of data. If you want to send a big batch of data across the internet, Node.js
makes the process simpler by supporting data chunking. Chunks of data are connected as they
arrive at the server and processed when there’s enough data to do something meaningful with
them. This approach is useful in various types of data streams, and it’s made possible through
the event-emitting and event-handling features of Node.js.

In this unit, you explore how to use Node.js to facilitate a real-time chat application through
event-driven communication over web sockets. I discuss how chat applications can be built with
the simplest of HTML tools and how web sockets and socket.io are more-efficient,
sophisticated options than historic client-server communication. You apply the chat
functionality to your existing application to allow existing users to communicate in a group
setting. Then you take things a step further by creating a data model for your chat messages and
loading messages from the database when you open the application’s chat page. Last, you
implement an icon in the navigation bar that acts as an indicator when the chat page is active,
even when the user is on a different page.

This unit covers the following topics:

• Lesson 30 introduces web sockets and shows how the socket.io package can help you
connect users of your application through a real-time chat application. In this lesson, you
learn how to create a simple chat page on your existing recipe application.

• Lesson 31 shows you how to take your chat application to the next level by saving the
messages to your MongoDB database. In this lesson, you create a message model and
connect the message to the sender. This way, you’ll be able to identify which messages
belong to the user who’s logged in.

• Lesson 32 guides you through the implementation of an active chat indicator in the
navigation bar. This icon animates as messages are shared on the chat page.

In lesson 33 (the capstone lesson), you use the concepts learned in this unit to build a chat
feature for the Confetti Cuisine application.

Lesson 30. Working with Socket.Io

Building a web application in Node.js can be exciting. Often, you’ll find that the most
challenging aspects stem primarily from architecting the application from a web-development
perspective. It’s easy to forget what Node.js is capable of outside the normal request-response
cycle. In this lesson, you explore communication between the client and server via an open TCP
connection. This connection is made available by means of the socket.io package, which runs
on web sockets and long polling, using normal HTTP requests held for longer periods on the
server before responses are returned to facilitate a live-stream of data between client and server.
You start by learning how to implementsocket.io with Express.js. Then you create a chat box in
a new application view. Last, you connect the client-side JavaScript and server code through
custom events triggered and handled by socket.io.

This lesson covers

• Implementing socket.io in a Node.js application
• Structuring your socket.io listeners within a controller
• Creating a simple chat feature

Consider this

You built a perfectly functional application with tons of users flocking to sign up. Unfortunately,
these users have no way of communicating with one another. Given that you’re building an
application that’s community-driven, communication among members is important. The user data
is already in the database. All you need to do is associate that data through a tool that supports real-
time communication.

With a little help from socket.io, you’ll soon be able to connect users so that they can chat with
one another.

30.1. USING SOCKET.IO

You’ve built Node.js web applications that feature client-to-server communication. When the
client wants to view a web page or post data, your application generates an HTTP request to the
server. This method of communication over the internet has been around for a long time,
celebrating its 20th birthday in 2017. In technology years, that’s old. Although developers still
heavily rely on the request-response cycle, it isn’t the most effective method of communication
for every use case.

What if you want to view the scores of an NBA basketball game in real time, for example? You
can load the page containing scores and statistics, but you’d need to reload the page every time
you wanted to see an update in information. For a basketball game, these changes can come as
rapidly as every second. Repeatedly creating GET requests to the server is a lot of work to expect
from the client. Polling is used to generate repeated requests from the client to the server in

anticipation of updated server data. Polling uses the standard techniques you’ve used so far to
transfer data between the client and server, but it sends requests so frequently that it creates an
illusion of an open channel of communication between both participants (figure 30.1).

Figure 30.1. Polling between a client and server

To further improve on this technique, long polling was developed to reduce the number of
requests needed to get updated data. Long polling behaves similarly to polling, in that the client
makes repeated requests to the server for updated data, but fewer requests are made. Instead of
making hundreds of requests when only dozens of them receive updated data, long polling
allows requests to stay open as long as HTTP allows before the requests time out. Within that
time—say, 10 seconds—the server can hold on to the request and either respond with updated
data when the server receives it or respond with no changes before the request times out. This
more-efficient approach has allowed web browsers and devices to experience a sense of real-
time informational exchange over a protocol that hasn’t changed much for decades.

Although these two methods are widely used, a recent new addition has allowed platforms like
Node.js to thrive. Web sockets were introduced in 2011 to allow an open stream of
communication between clients and server, creating a true open channel that allows information
to flow in either direction as long as the server or clients are available. Web sockets use a
different internet protocol from HTTP but are supported in use with a normal HTTP server. In
most cases, a server running with web sockets enabled allows its open channels to be reached
over the same application ports you’d use for a typical request-response exchange (figure 30.2).

Figure 30.2. Opening a web socket connection between a client and server

Although web sockets are a preferred method for live communication, they’re not supported by
many older browsers and clients. This relatively new technology allows developers to build
applications that stream data in real time, and you can incorporate it into your existing Node.js
application: socket.io, a JavaScript library that uses web sockets when it can and polling where
web sockets are unsupported.

socket.io is also a package that can be installed within a Node.js application, providing library
support for web sockets. It uses the event-driven communication in Node.js and web sockets to
allow the client and server to send data by triggering events. As a client looking for updated
basketball-game statistics, for example, you might have client-side JavaScript listening for
an updated data event triggered by the server. Then your browser would handle the updated
data event along with any data passed with it to modify the contents of your web page. These
events can come in a continuous stream or hours apart, if needed. If you wanted to signal to the
server to send a message to all other listening clients, you could trigger an event that the server
knows how to handle. Luckily, you have control of both the client-side and server-side code, so
you can implement the firing and handling of any events you want.

To start, install socket.io in your recipe application by running npm i socket.io -S in your
project’s terminal window. You’ll use this library in the following sections to build a live-chat
feature for users to communicate.

Quick check 30.1

Q1:

How is long polling different from polling?

QC 30.1 answer

1:

Long polling works by sending the server requests that are sustained longer than typical requests.
Polling depends on many individual GET requests. Long polling is more efficient because it keeps a
single GET request alive for a longer period, allowing the server to receive updates and respond
before the client makes another request.

30.2. CREATING A CHAT BOX

To get started with a chat feature, you need to build a basic view with a chat box and submit
button. As you build the code to allow the client to handle server events, this chat box will
populate with data.

Create a new view called chat.ejs in your views folder. Within this view, add the code in listing

30.1. In this code, you have a form that takes an input and a submit button. Below the form code
is the tag created for the chat box. With some simple CSS styling, you can add a border and size
dimensions to the chat box, prompting users to type the form input and submit it to add the
content to the chat window below.

Listing 30.1. Creating a chat box in chat.ejs

<div class="container">

 <h1>Chat</h1>

 <form id="chatForm"> 1

 <input id="chat-input" type="text"> 2

 <input type="submit" value="Send">

 </form>

 <div id="chat"></div> 3

</div>

• 1 Add an HTML form for chat input.
• 2 Add a custom input element for chat content.
• 3 Create a tag for the chat box.

To load this view, add a new route and action. Add router.get("/chat", homeController
.chat) to homeRoutes.js in your routes folder. This new route will be absorbed by the index.js
route file and used by main.js. Now you need to create the chat action in homeController.js, as
shown in the next listing. In this action, you simply render the chat.ejs view.

Listing 30.2. Adding a chat action in homeController.js

chat: (req, res) => {

 res.render("chat"); 1

}

• 1 Render a chat view.

Relaunch your application, and visit http://localhost:3000/chat to see the chat box shown
in figure 30.3.

Figure 30.3. Displaying chat view

Note

Your chat page will not look exactly like figure 30.3 unless you add custom styling to it.

With this chat page set up, you need to remember the tag IDs that you used in the HTML. In the
next section, you target the #chat box with chat messages and send new messages found
in #chat-input to the server.

Quick check 30.2

Q1:

Why does the HTML element with ID chat not have any content?

QC 30.2 answer

1:

The #chat element starts empty on each page load. You’ll use client-side Java-Script to populate the
element with content as it’s received by the server.

30.3. CONNECTING THE SERVER AND CLIENT

Now that you have a chat page, you need the guts to get it working. With socket.ioinstalled, you
need to require it into your project. Because you want your socket server to run on your existing
Express.js HTTP server, require socket.io, and pass it to your Express.js server. Add the
require line to main.js below the line where you tell your app to listen on a specified port, as
shown in listing 30.3. In this code, you save the running server instance into a constant server so
that you can pass the same Express.js HTTP server to socket.io. This process
allows socket.io (which I’ll refer to as io) to attach to your application server.

Listing 30.3. Adding the server io object in main.js

const server = app.listen(app.get("port"), () => {

 console.log(`Server running at http://localhost:

 ${ app.get("port") }`);

 }), 1

 io = require("socket.io")(server); 2

• 1 Save the server instance to server.
• 2 Pass the server instance to socket.io.

Now you can start using io to build out your socket logic. As with your other code, though,
compartmentalize this code into its own controller. Create a new chatController .js in your
controllers folder, and require it below where you required socket.io. To require the controller,
add require("./controllers/chatController")(io) to main.js. In this line, you’re passing
the io object to your chat controller so that you can manage your socket connections from there.
You don’t need to store this module in a constant because you won’t be using it further in
main.js, so you can require it.

Note

It’s important that you require chatController.js after defining the io object. Otherwise, you
won’t have socket.io configured for use in your controller.

Within chatController.js, add the code in listing 30.4. In this code block, you’re exporting all the
controller’s contents and taking a single parameter: the io object from main.js. In this file, you
use io to listen for certain events. To start, io listens for the connection event, indicating that a
client has connected to the socket channel. In handling this event, you can use the specific client
socket to listen for when the user disconnects or for custom events, such as the message event
you created. If the server receives a message event, it uses io to send a string of data to all
connected clients, using its emit method.

Listing 30.4. Handling chat socket connections in chatController.js

module.exports = io => { 1

 io.on("connection", client => { 2

 console.log("new connection");

 client.on("disconnect", () => { 3

 console.log("user disconnected");

 });

 client.on("message", () => { 4

 io.emit("message", {

 content: "Hello"

 }); 5

 });

 });

};

• 1 Export the chat controller contents.
• 2 Listen for new user connections.
• 3 Listen for when the user disconnects.
• 4 Listen for a custom message event.
• 5 Broadcast a message to all connected users.

Note

Notice that you’re using the argument name client because this code will run with each new
client connect. client represents the connected entity on the other side of the socket with the
server. Client listeners run only if an initial io connection is made.

With this code in place, you need to set up the client-side code to handle data from and send
events to the server. To accomplish this task, add some code to your recipeApp.js JavaScript
code in your public folder.

In this code, initialize socket.io on the client side, allowing your server to detect that a new user
has connected. Then, using jQuery, handle the form submission by emitting a messageevent to
the server, and prevent the form from submitting naturally with return
false. socket.emit takes a string argument as the event name and emits the event back to the
server. Using socket.on, you listen for the message from the server, along with a string message.
You display that message by appending it as a list item in your #chat element. On the server,
you’ve already set up a handler in chatController.js for the message event to send back the
message content "Hello" to the client.

Listing 30.5. Adding client-side JavaScript for socket.io in recipeApp.js

const socket = io(); 1

$("#chatForm").submit(() => { 2

 socket.emit("message");

 $("#chat-input").val("");

 return false;

});

socket.on("message", (message) => { 3

 displayMessage(message.content);

});

let displayMessage = (message) => { 4

 $("#chat").prepend($("").html(message));

};

• 1 Initialize socket.io on the client.
• 2 Emit an event when the form is submitted.
• 3 Listen for an event, and populate the chat box.
• 4 Display messages from the server in the chat box.

The last step is loading the socket.io library on the client by adding a script tag to the view on
which the chat is generated. To simplify this task, add the tag to your layout file. In layout.ejs,
add <script src="/socket.io/socket.io.js"></script> below your other script and link tags.
This tag tells your Node.js application to find the socket.io library in your node_modules
folder.

Relaunch your application, visit http://localhost:3000/chat, enter some text in the input box,
and click Send. You should see "Hello" in your chat box (figure 30.4). A new line should appear
with each new text submission.

Figure 30.4. Displaying text in the chat box

In lesson 31, you improve this chat to allow the application to save these messages to your
database.

Quick check 30.3

Q1:

What does io.emit do?

QC 30.3 answer

1:

The io object controls much of the communication between the server and the
client. emit allows io to send some specific data by triggering an event and notifying all connected
client sockets.

SUMMARY

In this lesson, you learned about socket.io and saw how to install it in a Node.js application.
Then you created your first chat application by using web sockets over your Express.js server to
facilitate event and data exchange between client and server. When this chat feature is installed,
users can communicate with one another in real time. When a client refreshes the web page,
however, the chat history is erased. What’s more, you have no indication of which user sent
which message. In lesson 31, you create a new data model and associate user accounts so that
message authors can be identified and chats can persist across user sessions.

Try this

With a chat feature implemented, try sending more meaningful data between the client and server.
The message content allows all clients to see the same messages at the same time, but maybe you
want to see more than the message itself. Try sending the date stamp showing when the message
was sent to the server. Then, with client-side Java-Script, collect that date stamp and display it next
to the message in the chat box.

Lesson 31. Saving Chat Messages

Your chat feature is coming together, and you can take it in many directions to improve it. Though
the chat feature allows for real-time communication, when you refresh your page, all messages
disappear. The next step is persisting these messages in your database. In this lesson, you
implement a simple model to represent each chat message. Then you connect that model to the
user model, allowing senders to associate with their own messages. Last, you query the database
for the most recent messages whenever a page is reloaded. When you complete these steps, the
chat will start to resemble ones that you’ve used on familiar websites and in familiar applications.

This lesson covers

• Creating a message model

• Saving messages in a socket.io event handler

• Querying messages upon new socket connections

Consider this

You have a chat page working, finally allowing users to talk to one another. As soon as a user
refreshes their page, their chat history is gone. Although this feature could be marketed as a
security implementation, it’s impractical. You want to save the message and do so without
interrupting the fast-paced, event-driven system on which your chat application functions. In this
lesson, you use Mongoose and your existing application structure to support saving and loading
chat messages.

31.1. CONNECTING MESSAGES TO USERS

In lesson 30, you created a chat feature for your application, allowing users to trigger
a message event, prompting the server to respond with the same "Hello" text-message content.
You can improve this feature by sending the actual content you type in the chat input box to the
server. To do so, modify your client-side code so that your event handler on form submission looks
like listing 31.1.

This small change allows you to grab the text the user typed right after he clicks the submit button.
Then you send the text within an object as you emit the message event to the server.

Listing 31.1. Emitting an event from the client in recipeApp.js

$("#chatForm").submit(() => {

 let text = $("#chat_input").val(); 1

 socket.emit("message", {

 content: text

 }); 2

 $("#chat_input").val("");

 return false;

});

• 1 Grab text from the view input field.

• 2 Emit form data to the server.

In response, have the server emit this form data to all listening clients. You can do so by modifying
the message event handler in the chat controller to emit the data back to all clients. Change the code
around the io.emit line in chatController.js to the code in listing 31.2. Here, you grab the data from
the client and emit it back. If you relaunch your application and try to type a new chat message, that
specific message appears in the chat box. You can also open a second browser window to mimic
two users, and these two browsers allow for multiple socket connections to submit data and display
new messages in the other browser’s chat box in real time (figure 31.1).

Figure 31.1. Displaying chats with two sockets

Listing 31.2. Change emit message to data in chatController.js

client.on("message", data => { 1

 io.emit("message", { content: data.content }); 2

});

• 1 Collect data as a parameter.

• 2 Return data in the message event as content.

The next thing you want to do is add some information about the user who posted the chat
message. Currently, you’re sending only the message content to the server, but you can send the
user’s name and ID as well. Modify your chat form to include two pieces of hidden data, as shown
in listing 31.3. In this example, you check whether a currentUser is logged in, using data on the
response provided by passport. If there’s a user, use that user’s _id attribute in the form as a
hidden field. Then this value can be passed to the server when you submit your message.

Listing 31.3. Adding hidden fields in chat form in chat.ejs

<% if (currentUser) { %> 1

 <h1>Chat</h1>

 <form id="chatForm">

 <input id="chat-input" type="text">

 <input id="chat-user-name" type="hidden"

 value="<%= currentUser.fullName %>">

 <input id="chat-user-id" type="hidden"

 value="<%= currentUser._id %>"> 2

 <input type="submit" value="Send">

 </form>

 <div id="chat"></div>

<% } %>

• 1 Check for a logged-in user.

• 2 Add a hidden field contain user data.

Now that you’ve included a user field in your chat form, you’ll display the chat box only if a user is
signed in. Try loading /chat before logging in. Then try again after logging in with one of your local
user accounts. The second try yields the chat-page contents.

Next, modify your custom client-side JavaScript to pull these values when the form is submitted.
Replace your form-submission event listener with the code in the next listing. In this modified code,
you grab the user’s ID and pass the value to the server, using the same local variable name.

Listing 31.4. Pulling hidden field values from chat form in recipeApp.js

$("#chatForm").submit(() => {

 let text = $("#chat-input").val(),

 userId = $("#chat-user-id").val(); 1

 socket.emit("message", {

 content: text,

 userId: userId

 }); 2

 $("#chat-input").val("");

 return false;

});

• 1 Pull hidden field data from the form.

• 2 Emit an event with message content and user data.

Now you can handle this data on the server side by changing your code in the message event
handler in chatController.js to collect all the individual attributes passed to the server (listing 31.5).
By saving these values to a new object, you can filter out any unwanted values outside what you
specify in the messageAttributes object. Then emit those values containing the message contents
and user information to the other clients.

Note

This code must exist within the io.on("connection"... block. You can listen for specific events
only from client sockets that are connected.

Listing 31.5. Receiving socket data in chatController.js

client.on("message", (data) => {

 let messageAttributes = {

 content: data.content,

 userName: data.userName,

 user: data.userId

 }; 1

 io.emit("message", messageAttributes); 2

});

• 1 Collect all incoming data.

• 2 Emit the message with user data.

Last, you need to arrange this data and display it appropriately in the view. Back in recipeApp.js,
change the code in displayMessage to match the code in listing 31.6. This function adds an HTML
class attribute to the messages associated with the logged-in user. By comparing the ID of the user
in the form with the ID associated with the chat message, you can filter out the logged-in user’s
messages.

To accomplish this task, add getCurrentUserClass to determine whether the message in the chat
belongs to the user who’s currently logged in. If so, add a current-user class, which you can use to
distinguish the messages for that user visually. After this change, each message identified as
belonging to the current signed-in user will have this style class associated. Because you’re using
the user’s ID and message content in this function, you need to pass the entire message object, not
only the message content as you did before, to displayMessage.

Note

Change your call displayMessage(message.content) to displayMessage (message) so that you
can use all properties of the message object.

Listing 31.6. Pulling hidden field values from chat form in recipeApp.js

let displayMessage = (message) => {

 $("#chat").prepend(

 $("").html(`

<div class="message ${getCurrentUserClass(message.user)}">

${message.content} 1

</div>`)

);

};

let getCurrentUserClass = (id) => {

 let userId = $("#chat-user-id").val();

 return userId === id ? "current-user": ""; 2

};

• 1 Display the message contents along with the user name in chat box.

• 2 Check whether the message’s user ID matches the form’s user ID.

Now add some styling to the current-user class elements and distinguish chat messages from one
another. With two browser windows side by side, and two users logged in, the chat can look
like figure 31.2.

Figure 31.2. Styling user messages with two sockets

You’ve implemented the logic to associate messages with users and distinguish those messages on
the view. This chat still seems to lack a few points, however. Although the logged-in user can
identify their own messages, they don’t know the identity of the other users. In the next section, you
add user names to the chat messages.

Quick check 31.1

Q1:

Why do you need to compare the chat message’s user ID with the user ID on the chat form in the
client-side JavaScript?

QC 31.1 answer

1:

The form’s user ID reflects that of the logged-in user. If the user ID in the chat’s message matches
the one in the form, you can safely mark that message as belonging to the logged-in user and apply
styling to indicate that fact.

31.2. DISPLAYING USER NAMES IN CHAT

The closer you get to coupling messages with the user accounts that created them, the easier it will
be for users to communicate with one another. To eliminate confusion, you want to use the user’s

name as an identifier on the chat message. To do so, implement a few small changes in your code
from section 1.

You’ve already added a hidden input field on the chat form to submit the user’s fullName. When the
logged-in user submits their chat message, their name is sent along too.

Next, grab this field value in recipeApp.js by pulling the value from the #chat_user_nameinput on
form submission, and save it to a variable. The new submit event handler looks like the code in the
next listing. Then emit that value within the same object paired with the userName key. You’ll use
this key in the server later.

Listing 31.7. Pulling an additional hidden field value from chat form in recipeApp.js

$("#chatForm").submit(() => {

 let text = $("#chat-input").val(),

 userName = $("#chat-user-name").val(), 1

 userId = $("#chat-user-id").val();

 socket.emit("message", {

 content: text,

 userName: userName,

 userId: userId

 }); 2

 $("#chat_input").val("");

 return false;

});

• 1 Pull the user’s name.

• 2 Emit a custom event with message contents to the server.

On the server, you need to include this user name in the message attributes you collect so that they
can be emitted to other client sockets. You could use the user’s ID to retrieve their name, but this
approach saves you from communicating with the database. In the message event handler in
chatController.js, your message attributes variable assignment should read let
messageAttributes = {content: data.content, userName: data.userName, user:

data.userId}.

Last, arrange this data, and display it appropriately in the view. Back in recipeApp.js, change the
code in the displayMessage function to the code in listing 31.8. This change displays the name of the
user associated with the posted message. You can still use the getCurrentUserClass function to
determine whether the message in the chat belongs to the currently logged-in user.

Listing 31.8. Displaying the user name in the chat in recipeApp.js

$("#chat").prepend($("").html(`

<strong class="message ${getCurrentUserClass(

 message.user)}">

${message.userName}

: ${message.content} 1

`));

• 1 Display the user name in bold and stylize if currentUser.

After implementing these changes, you can see the names of the users posting in the chat (figure

31.3).

Figure 31.3. Showing user names with two sockets

With this improvement, users can identify the author of specific chat messages by that sender’s
name. This feature is great, as it reduces the anonymity of chat and allows registered users to
connect with one another. You still have the problem of chat messages disappearing with each page
load, however. You need to connect these chat messages to your database, and the best way to do so
is through a Mongoose data model. In the next section, you explore the model schema needed for a
chat message.

Quick check 31.2

Q1:

Why do you pass the user’s name to the server instead of using the user’s ID to find the name in
your database?

QC 31.2 answer

1:

Using the user’s ID to look up their name can work, but it adds another layer of work involving the
database. With no immediate need to use your database for this chat, you can pass the extra string
values.

31.3. CREATING A MESSAGE MODEL

To make this chat page worth revisiting, you need to save the messages being shared. To do so, you
need to save the messages to your database, and you have a few ways to save them:

• You can modify your user schema to save an array of messages. With each new message that any

user submits, that message is added to the user’s messages array. This approach can work, but

you’ll quickly end up with long lists that aren’t efficient or necessary to store in the user model.

• You could also create a new model to represent the chat and its messages. This approach requires

a new model module but ultimately saves you some work and makes it easier to understand

exactly what data you’re working with and saving.

In this section, you build a Message model to contain the values you’ve been working with in this
lesson. Create a new message.js file in your project’s models folder, and add the code in listing

31.9 to that file.

In this code, you’re defining a message schema that contains content, userName,
and userproperties. The content of the chat message is required, as are the user’s name and ID. In
essence, every message needs some text and an author. If someone tries to save a message
somehow without logging in and authenticating, your database won’t allow the data to save. You
also set timestamps to true so that you can keep track of when the chat message was added to your
database. This feature allows you to show the timestamp in the chat box, if you want.

Listing 31.9. Creating the message schema in message.js

const mongoose = require("mongoose"),

 { Schema } = require("mongoose");

const messageSchema = new Schema({

 content: {

 type: String,

 required: true

 }, 1

 userName: {

 type: String,

 required: true

 }, 2

 user: {

 type: Schema.Types.ObjectId,

 ref: "User",

 required: true

 } 3

}, { timestamps: true }); 4

module.exports = mongoose.model("Message", messageSchema);

• 1 Require content in each message.

• 2 Require the user’s name with each message.

• 3 Require a user ID with each message.

• 4 Save the timestamp with each message.

Next, require this new model in chatController.js by adding const Message = require
("../models/message") to the top of the file.

Note

../models/message means you’re stepping out of the controllers folder and into the models folder
to find message.js.

To start saving incoming data to message models, you need to use your messageAttributesas the
properties of a new message object. Then try to save that message to your MongoDB database, and
emit the message if you’re successful. Modify your code with the code in the next listing to change
the client.on("message") block in chatController.js.

Listing 31.10. Saving a message in chatController.js

client.on("message", (data) => { 1

 let messageAttributes = {

 content: data.content,

 userName: data.userName,

 user: data.userId

 },

 m = new Message(messageAttributes);

 m.save() 2

 .then(() => {

 io.emit("message", messageAttributes); 3

 })

 .catch(error => console.log(`error: ${error.message}`));

});

• 1 Create a new message object with messageAttributes.

• 2 Save the message.

• 3 Emit the message values if the save is successful, or log any errors.

That’s all it takes to start saving your messages. You can relaunch your application, log in, and send
messages to have them save behind the scenes. You won’t notice any changes, because as soon as
you refresh the chat page, you still wipe the chat history, even though messages are saved in your
database. To correct this problem, you need to load some recent chat messages whenever a user
reconnects to the chat socket. Within chatController.js, add the code in listing 31.11 to find the ten
most recent chat messages and emit them with a new custom event. Use sort({createdAt: -1}) to
sort your database results in descending order. Then chain limit(10) to limit those results to the
ten most recent. When you emit your custom "load all messages" events on the client socket,
only newly connected users’ chat boxes will refresh with the latest chat messages. Reverse the list
of messages with messages.reverse() so that you can prepend them in the view.

Listing 31.11. Loading most recent messages in chatController.js

Message.find({})

 .sort({ createdAt: -1 })

 .limit(10)

 .then(messages => { 1

 client.emit("load all messages", messages.reverse()); 2

 });

• 1 Query the ten most recent messages.

• 2 Emit a custom event with ten messages to the new socket only.

The last step is handling this new custom event in your client-side JavaScript. In recipeApp.js, add
the event handler in listing 31.12. This code listens for the "load all messages" event emitted to
this specific socket. Any data received here is handled by sending each message in the data array to
your displayMessage function to prepend the message contents to your chat box.

Listing 31.12. Displaying most recent messages in recipeApp.js

socket.on("load all messages", (data) => { 1

 data.forEach(message => {

 displayMessage(message); 2

 });

});

• 1 Handle ‘load all messages’ by parsing incoming data.

• 2 Send each message to displayMessage to display in the chat box.

Try comparing views of two adjacent sockets before and after one of the sockets refreshes its
connection. A user’s new connection refreshes the chat box with messages from the database. Now
it’s much easier for users to participate in the chat with a preserved history of messages shared.

Quick check 31.3

Q1:

What is the purpose of the “load all messages” event?

QC 31.3 answer

1:

“load all messages” is a custom event you created to communicate with your client socket to load
database messages to the chat box as soon as they connect. You can use any custom event name.
This unique name is descriptive and can be handled however you like in the client-side JavaScript.

SUMMARY

In this lesson, you learned how to curate messages in your chat box to display information about
the message’s author. You also displayed the names of users alongside their messages to increase
transparency in the chat page. At the end of the lesson, you created a Message model and started
saving messages to your application’s database. This implementation allows messages to persist
across multiple socket connections. By loading the most recent messages on every new socket
connection, you immediately involve users in the conversation. In lesson 32, you look at one way to
use socket.io events to notify users of new messages even when they aren’t actively on the chat
page.

Try this

Now that you have messages saving to your database and associated with user accounts, add
another layer of security at the controller layer. Although you’re saving user IDs to the message,
you aren’t making sure that the user ID is valid in your database. Add some code within the promise
chain where the message is saved in chat-Controller.js to check the database for a user by the same
ID and verify it before you officially save the message. For this task, you need to require the user
model in this controller.

Lesson 32. Adding a Chat Notification Indicator

Your chat page is coming together. Now users can log in and view the most recent chat messages,
whether they were sent moments or weeks ago. The chat page currently facilitates all the visual
aspects of your application’s chat functionality. The nice thing about socket.iois that it doesn’t
need to exist on one page. Because your chat works by emitting and handling events, you can use
those events in other ways. In this lesson, you build a custom event emitter to notify all active users
when chat messages are being submitted. Then you build a small visual indicator in the navigation
bar that animates when new messages are being shared. Through this small feat, users get a visual
indication of an active chat room even when they’re browsing a different page.

This lesson covers

• Broadcasting a custom event

• Animating an icon in response to an event

Consider this

Users are enjoying the chat page in your application, but they’d like to browse other pages in your
application instead of waiting for new messages to arrive on the chat page. They don’t want to miss
out when the chat is active again, however. In this lesson, you rely on a custom event emitted by the
server to animate a navigation-bar icon. When this icon is animated, users on any page of the
application know that a chat is active.

32.1. BROADCASTING TO ALL OTHER SOCKETS

One thing to know about socket.io is that it can be configured to work over multiple specific chat
rooms and different namespaces. It can even allow users to be added and removed from specific
groups. In addition to these features, messages don’t always need to be emitted to every client. In
fact, it doesn’t always make sense to emit a message to everyone if, for example, the client emitting
the message is disconnecting.

In this section, you implement a new feature to notify all other users in the chat when a user’s
socket disconnects. To do so, add the code in listing 32.1 to chatController.js within
the io.on("connect") block.

In this code, you’re listening for when a certain client disconnects. You used this code block before
to log a message to your console. In addition to logging this information,
use client.broadcast.emit("user disconnected") to send a message to every socket aside from
the one emitting the message. client.broadcast sends a custom event called 'user
disconnected' to the connected chat users.

The reason you’re broadcasting the message instead of emitting it is because the client that’s
emitting the message is disconnected and can no longer handle that custom event. You can
use broadcast to emit to all other sockets even when the emitting socket isn’t disconnected,
though.

Listing 32.1. Broadcasting event to all other users in chatController.js

client.on("disconnect", () => {

 client.broadcast.emit("user disconnected"); 1

 console.log("user disconnected");

});

• 1 Broadcast a message to all otherconnected sockets.

With this new event being emitted, you need to handle it on the client side. As with your other
events, listen for the "user disconnected" event, and print some indication in the chat box. Add
the event handler in listing 32.2 to recipeApp.js. In this code, you reuse your displayMessage to post
a hardcoded message to let other users know that someone disconnected.

Listing 32.2. Displaying a message when a user disconnects in recipeApp.js

socket.on("user disconnected", () => { 1

 displayMessage({

 userName: "Notice",

 content: "User left the chat"

 });

});

• 1 Listen for the ‘user disconnected’ event, and display a custom message.

Now relaunch your application, and log into multiple accounts by logging in on two different
browsers or by using your browser’s incognito mode to log in with a new session. With two chat
windows open side by side, you should see when one of the users is connected in the other chat
box. In figure 32.1, the left chat window shows that a user disconnected when the right window is
refreshed. In this case, a page refresh results in an immediate connection thereafter.

Figure 32.1. Displaying user disconnects in chat

Quick check 32.1

Q1:

What’s the difference between client.broadcast.emit and client.emit?

QC 32.1 answer

1:

client.broadcast.emit emits an event to all sockets except for itself, and client.emit emits an
event to all sockets including itself.

32.2. CREATING A CHAT INDICATOR IN NAVIGATION

The last addition you’ll make to your chat application is a feature to let users on other pages in the
application know when there’s activity on the chat page. This feature could be helpful to users who
are viewing their profiles or recipes, or hanging out on the home page; they might like to know that
other users are awake and talking to one another in the chat room. To add this feature, add an icon
to the navigation bar. When a message is submitted in the chat room, you animate the chat icon in
the navigation bar to let users elsewhere know of chat activity.

First, add the icon to your navigation bar by adding <a href="/chat" class="chat-
icon"> @ in layout.ejs. With this icon in place, you should see @ in your navigation bar the next
time you relaunch your application. If you click this icon, it takes you to the /chatroute.

Next, animate the icon by having it flash twice when any user sends a message. To accomplish this
task, use jQuery’s fadeOut and fadeIn methods on the chat icon whenever a "message" event is
received. Modify your socket.on("message") handler in recipe-App.js to look like the code in the
next listing. In this example, you still use the displayMessagefunction to post the message to your
chat view; then, with a simple for loop, you animate the chat icon to flash twice.

Listing 32.3. Animating chat icon when messages are sent in recipeApp.js

socket.on("message", (message) => {

 displayMessage(message);

 for (let i = 0; i < 2; i++) {

 $(".chat-icon").fadeOut(200).fadeIn(200); 1

 }

});

• 1 Animate the chat icon to flash when a message is sent.

Relaunch your application, and log in to two browsers under two different accounts. Notice that
now when one user sends a message, the other user sees the chat icon flash twice in the navigation
bar, no matter where in the application they are (figure 32.2).

Figure 32.2. Animating the chat icon in the navigation bar

In lesson 33, you apply these steps and fully implement a chat feature in your capstone project.

Quick check 32.2

Q1:

True or false: You can handle socket.io events on any page in your application.

QC 32.2 answer

1:

True. For the example in this lesson, you imported the socket.io library in the layout.ejs file, which
is used in every view. Similarly, your client-side JavaScript lives in files also imported to your layout
file. If you were to import socket.io client only on a specific view, you’d be able to handle events
only on that specific page.

SUMMARY

In this lesson, you learned how to customize your socket.io events for use outside the normal chat
feature. Because events can be used in any part of the application that has a socket.io client, you
can create events for many types of data transfer over an open connection. First, you created a new
event to notify other users when a user disconnects. Then you used an existing event to trigger a
nonchat feature in your layout’s navigation. With this chat feature functioning, it’s time to apply the
same tools to your capstone project (lesson 33). Then it’s time to deploy!

Try this

Now that your chat application has a feature that lets users know when a user has disconnected, it
would be useful to know when a user connects. Use io.on("connection")to trigger a new event to
your client to let them know that a new user has joined the chat.

When you’re done, see whether you can add the user’s name in the connection message, as
in Notice: Jon Wexler has joined the chat.

Lesson 33. Capstone: Adding a Chat Feature to Confetti Cuisinex

At this stage, my application’s foundation is complete. I can continue to improve existing
functionality or build new features. Before the application is released to production and made
available for everyone to use, Confetti Cuisine asked me to add an interesting feature to engage
users. Without hesitation, I tell them that this is a perfect opportunity to build a chat feature
within their Node.js application. Because I don’t want to complicate the application too much
before deployment, I’ll keep the chat simple.

The chat will allow only users with accounts to communicate with one another. Every time a
message is sent, I’ll save the message and associate it with the sender behind the scenes. Also,
I’ll take advantage of socket.io to maintain an open connection between connected clients and
the server for real-time communication. Through this library’s event-driven tools, I can emit
events from the server to individual clients or all clients and from the client to the server. I could
also emit events to a select group of clients, but I won’t need to implement that feature for this
application.

Later, I’ll connect a chat icon in the navigation bar to animate whenever a chat message is sent.
All users see this icon animate whenever a message is emitted. This icon doubles as a link to the
chat page. It’s time to put the finishing touches on the Confetti Cuisine application.

33.1. INSTALLING SOCKET.IO

First, I need to install the socket.io package. socket.io offers a JavaScript library that helps me
build a real-time communication portal through its use of web sockets and long polling to
maintain open connections between the client and the server. To install this package as a
dependency, I run npm i socket.io -S in my project’s terminal window.

With this package installed, I need to require it in my main application file and on the client
side.

33.2. SETTING UP SOCKET.IO ON THE SERVER

Before I require socket.io, I need to save the server instance I’m creating with Express.js by
assigning my app.listen line in main.js to a constant called server. Below this line, I’ll
require socket.io in my project by adding const io = require("socket.io")(server). In this
line, I’m simultaneously requiring the socket.io module and passing it the instance of my
HTTP server used by Express.js. This way, the connection used by socket.io will share the same
HTTP server as my main application. With my socket.io instance stored in the io constant, I
can start using io to build out my chat functionality.

First, I set up a new controller for chat functionality. Though all the socket.io code can exist in
main.js, it’s easier to read and maintain in its own controller. I start by requiring a new
controller in main.js and passing it the io object by adding const chatController =

require("./controllers/chatController")(io) to the bottom of main.js. Next, I create
chatController.js in my controllers folder. In this file, I add the code from listing 33.1.

I use the same io object created in main.js to listen for specific socket events. io.on
("connection") reacts when a new client connects to my socket server. client.on
("disconnect") reacts when a connected client disconnects. client.on("message") reacts when
a client socket sends a custom message event to the server. I can name this event whatever I
want. Because I’m working with chat messages, this event name seems to be appropriate. Within
that last block, I use io.emit to send a message event back to all connected clients with the same
data I received from an individual client. This way, everyone gets the same message that a single
user submits.

Listing 33.1. Adding a chat action in chatController.js

module.exports = io => { 1

 io.on("connection", client => { 2

 console.log("new connection");

 client.on("disconnect", () => { 3

 console.log("user disconnected");

 });

 client.on("message", (data) => { 4

 let messageAttributes = {

 content: data.content,

 userName: data.userName,

 user: data.userId

 };

 io.emit("message"); 5

 });

 });

};

• 1 Export the chat controller contents.
• 2 Listen for new user connections.
• 3 Listen for when the user disconnects.
• 4 Listen for a custom message event.
• 5 Broadcast a message to all connected users.

The last line of code sends a specific set of message attributes that I expect to receive from the
client. That is, I expect the client to emit a message event along with content, user name, and
user ID. I need to send those three attributes from the view.

33.3. SETTING UP SOCKET.IO ON THE CLIENT

To build a successful chat connection, I need a view that facilitates the socket connection from
the client side. I want to build my chat box in a view called chat.ejs that’s reachable at
the /chat URL path. I create a new route for this path in my homeRoutes.js by
adding router.get("/chat", homeController.chat).

Then I add the controller action to match this route by adding the code in the next listing to
homeController.js. This code renders my chat.ejs view.

Listing 33.2. Adding a chat action in homeController.js

chat: (req, res) => {

 res.render("chat"); 1

}

• 1 Render a chat view.

To render my chat view, I need to build the view. I create a new file in my views folder called
chat.ejs and add the code in listing 33.3. In this Embedded JavaScript (EJS) code, I first check for
a currentUser in the view. Earlier, I set up the currentUser as a local variable to reflect an active
user session through Passport.js. If a user is logged in, I display the chat form. The form
contains three inputs. Two of the inputs are hidden but carry the user’s name and ID. I’ll use
these inputs later to send the identity of the message author to the server. The first input is for
the actual message content. Later, I’ll grab the value of this input as the content that I submit to
the server.

Listing 33.3. Adding hidden fields in chat form in chat.ejs

<% if (currentUser) { %> 1

 <h1>Chat</h1>

 <form id="chatForm">

 <input id="chat-input" type="text">

 <input id="chat-user-id" type="hidden" value="<%=

 currentUser._id %>">

 <input id="chat-user-name" type="hidden" value="<%=

 currentUser.fullName %>"> 2

 <input type="submit" value="Send">

 </form>

 <div id="chat"></div>

<% } %>

• 1 Check for a logged-in user.
• 2 Add hidden fields containing user data.

The last pieces of this puzzle are adding some client-side JavaScript to monitor user interaction
on this chat page and submitting the socket.io events needed to notify the server of new
messages. In my public folder, I locate confettiCuisine.js and add to it the code in listing 33.4. In
this code, I import socket.io for the client and add logic to interact over web sockets with my
server. In the first code block, I use jQuery to handle my form’s submission and grab all the
values from my form’s three inputs. I expect to receive these same three attributes in my
server’s client.on("message") event handler.

The second block of code uses the socket object to represent the specific client on which this
code will run. socket.on("message") sets up the client to listen for the message event, which
emits from the server. When that event is emitted, each client takes the message delivered with
that event and passes it to a custom displayMessage function that I created. This function
locates my chat box in the view and prepends the message to the screen.

Listing 33.4. Adding socket.io on the client in confettiCuisine.js

const socket = io(); 1

$("#chatForm").submit(() => { 2

 let text = $("#chat-input").val(),

 userName = $("#chat-user-name").val(),

 userId = $("#chat-user-id").val();

 socket.emit("message", {

 content: text,

 userName: userName,

 userId: userId

 }); 3

 $("#chat-input").val("");

 return false;

});

socket.on("message", (message) => { 4

 displayMessage(message);

});

let displayMessage = (message) => { 5

 $("#chat").prepend($("").html(message.content));

};

• 1 Initialize socket.io on the client.
• 2 Listen for a submit event in the chat form.
• 3 Emit an event when the form is submitted.
• 4 Listen for an event, and populate the chat box.
• 5 Display messages in the chat box.

Before my application can use the io object in this file, I need to require it within my layout.ejs
by adding the following script tag above my confettiCuisine.js import line: <script
src="/socket.io/socket.io.js"></script>. This line loads socket.io for the client from my
node_modules folder.

I’m ready to launch my application and see chat messages stream from one user to the next.
With some styling, I can make it easier for users to distinguish their messages from others. I can
also use the user’s name in the chat box so the sender’s name and message appear side by side.
To do so, I modify my displayMessage function to print the user’s name, as shown in the next
listing. I check whether the message being displayed belongs to that user by comparing the
current user’s ID with the ID in the message object.

Listing 33.5. Pulling hidden field values from chat form in confettiCuisine.js

let displayMessage = (message) => {

 $("#chat").prepend($("").html(`

 <div class='message ${getCurrentUserClass(message.user)}'>

 ${message.userName}:

 ${message.content}

 </div>

 `)); 1

};

let getCurrentUserClass = (id) => {

 let userId = $("#chat-user-id").val();

 if (userId === id) return "current-user"; 2

 else return "";

};

• 1 Display the user’s name along with the message.
• 2 Check whether the message belongs to the current user.

Next, I need to preserve these messages in my database by creating a Message model.

33.4. CREATING A MESSAGE MODEL

To ensure that my chat feature is worth using and a practical tool for users on the Confetti
Cuisine application, the messages can’t disappear every time a user refreshes the page. To fix
this problem, I’ll build a Message model to contain the message attributes in the chat form. I
create a new message.js file in my project’s models folder and add the code in listing 33.6 to that
file.

In this code, I’m defining a message schema that contains content, userName,
and userproperties. The content of the chat message is required, as are the user’s name and ID.
In essence, every message needs some text and an author. If someone tries to save a message
somehow without logging in and authenticating, the database won’t allow the data to save. I also
set timestamps to true so that I can keep track of when the chat message was added to the
database. This feature allows me to show the timestamp in the chat box, if I want.

Listing 33.6. Creating the message schema in message.js

const mongoose = require("mongoose"),

 { Schema } = require("mongoose");

const messageSchema = new Schema({

 content: {

 type: String,

 required: true

 }, 1

 userName: {

 type: String,

 required: true

 }, 2

 user: {

 type: Schema.Types.ObjectId,

 ref: "User",

 required: true

 } 3

}, { timestamps: true }); 4

module.exports = mongoose.model("Message", messageSchema);

• 1 Require content in each message.
• 2 Require the user’s name with each message.
• 3 Require a user ID with each message.
• 4 Save the timestamp with each message.

This Mongoose model is ready for use in my chat controller. Effectively, when a new message
arrives in my chat controller, I attempt to save it and then emit it to other users’ chats. I require
this new model in chatController.js by adding const Message = require
("../models/message") to the top of the file. The code in my chatController.js
block for client.on("message") is shown in listing 33.7. I start by using the same message-
Attributes from earlier in the controller to create a new Message instance. Then I try to save
that message. If the message saves successfully, I emit it to all connected sockets; otherwise, I
log the error, and the message never gets sent out from the server.

Listing 33.7. Saving a message in chatController.js

client.on("message", (data) => {

 let messageAttributes = {

 content: data.content,

 userName: data.userName,

 user: data.userId

 },

 m = new Message(messageAttributes); 1

 m.save() 2

 .then(() => {

 io.emit("message",

 messageAttributes); 3

 })

 .catch(error => console.log(`error: ${error.message}`));

});

• 1 Create a new message object with messageAttributes.
• 2 Save the message.

• 3 Emit the message values if save is successful, and log any errors.

This code allows messages to save to my database, but chat message history still doesn’t appear
for users who are connecting for the first time. I’ll correct that problem by loading older
messages into my database.

33.5. LOADING MESSAGES ON CONNECTION

The second task in preserving messages in the chat box is maintaining a consistent number of
messages from the chat’s history in the chat box. I decide to allow the chat box to contain the ten
most recent chats at any given moment. To do so, I need to load those ten most recent chats
from my database and emit them to every client as soon as they connect to the chat.

Within chatController.js, I add the code in listing 33.8 to find the ten most recent chat messages
and emit them with a new custom event. I use sort({createdAt: -1}) to sort my database
results in descending order. Then I append limit(10) to limit those results to the ten most
recent. By emitting the custom "load all messages" event on the client socket, only newly
connected users will have their chat boxes refresh with the latest chat messages. Then, I reverse
the list of messages with messages.reverse() so that I can prepend them in the view.

Listing 33.8. Loading most recent messages in chatController.js

Message.find({})

 .sort({

 createdAt: -1

 })

 .limit(10)

 .then(messages => { 1

 client.emit("load all messages",

 messages.reverse()); 2

 });

• 1 Query the ten most recent messages.
• 2 Emit a custom event with ten messages to the new socket only.

To handle the "load all messages" event on the client side, I add the event handler in the next
listing to confettiCuisine.js. In this block of code, I listen for the "load all messages"event to
occur. When it does emit, I cycle through the messages received on the client and individually
display them in the chat box through the displayMessage function.

Listing 33.9. Displaying most recent messages in confettiCuisine.js

socket.on("load all messages", (data) => { 1

 data.forEach(message => {

 displayMessage(message); 2

 });

});

• 1 Handle ‘load all messages’ by parsing incoming data.
• 2 Send each message to displayMessage to display in the chat box.

The chat is finally complete and ready to test locally. To mimic two separate users
communicating, I relaunch my application and log in on two separate web browsers. I navigate
to the chat page and see that my chats are being sent in real time over my Node.js application
with socket.io.

33.6. SETTING UP THE CHAT ICON

I want to make one final addition to this application: an icon that lets users elsewhere in the
application know when the chat is active. I can easily add this feature with the
existing socket.io event set up. All I need to do is add an icon to the navigation bar in my
application by adding @ to layout.ejs. With this line
alone, I have an icon in my navigation bar that links to the /chat route.

Next, I animate the icon by having it flash twice whenever a chat message is sent. Because I’m
already emitting the message event from the server every time a new message is submitted, I can
add the icon animation to the client’s handler for that event.

In confettiCuisine.js, I modify the socket.on("message") code block to look like the code in the
following listing. In this code, I display the message in the chat box as usual and additionally
target an element with the chat-icon class. This element represents my chat icon in the
navigation bar. Then I rapidly fade the icon out and back in, twice.

Listing 33.10. Animating chat icon when messages are sent in confettiCuisine.js

socket.on("message", (message) => {

 displayMessage(message);

 for (let i = 0; i < 2; i++) {

 $(".chat-icon").fadeOut(200).fadeIn(200); 1

 }

});

• 1 Animate the chat icon to flash when a message is sent.

With this extra feature, users have some indication that conversations are taking place on the
chat page.

I could add to this chat feature in plenty of ways. I could create separate chats for each Confetti
Cuisine class, for example, or use socket.io events to notify users when they’ve been tagged in a
chat. I’ll consider implementing these features in the future.

SUMMARY

In this capstone exercise, I added a real-time chat feature to my Confetti Cuisine application. I
used socket.io to simplify connections between the server and multiple clients. I used some
built-in and custom events to transfer data between open sockets. At the end, I added a feature
to notify users who aren’t in the chat room that others are actively communicating. With this
feature added, I’m ready to deploy the application.

Unit 8. Deploying and managing code in production

At just about any stage of your application development, you likely wonder when people can
start using what you’ve built. The eagerness is justified. Luckily, you have many ways to get your
application online. Deploying an application is one of the most daunting tasks for new
developers building web applications. Part of the struggle is understanding the resources and
services that assist with deployment. The deployment process is much more than uploading
your application code somewhere, at least during your first attempt. If done correctly, making
changes in a production application can be simple. Some problems with making changes in your
production application include running into restrictions that limit the database content that you
can modify, accidentally removing code used to verify incoming data, and making changes in
your local environment that don’t work in your production environment, such as configuration
changes.

In this unit, you set up your application to deploy on Heroku, a cloud service that hosts and runs
your application for you. First, you prepare your application’s configuration files to ensure that
functionality will work locally and in production. Then you follow a few steps to launch your
application on Heroku and set up your MongoDB database. After a short lesson, you’ll have your
recipe application running under a URL that you can share with family and friends. In a
subsequent lesson, you explore ways to improve your code for future refinement. I talk
about linting your code, a process used to identify inefficient code with the help of an external
package. At the end of the unit, you’ll get a chance to apply unit and integration testing to your
code. These tests provide fundamental protection against accidentally breaking your code in the
future. You install the mocha and chai packages to help set up tests for Express.js actions and
routes.

This unit covers the following topics:

• Lesson 34 guides you through the preparation steps to complete before your application is
production-ready. In this lesson, you set up your application to deploy to Heroku along
with a new MongoDB database provided as a plugin on Heroku’s services.

• Lesson 35 shows how to catch small bugs in your code through the linting process and
how to correct those bugs with the help of a debugging tool. By the end of this lesson,
you’ll have a set of tricks to pull out of your back pocket whenever you need to clean up
your code.

• Lesson 36 introduces testing concepts in Node.js. This lesson touches the surface of test
code you can write to ensure that functionality in your application doesn’t break over
time.

Lesson 37 (the capstone lesson) walks through using the deployment steps you learned in this
unit to deploy the Confetti Cuisine application.

Lesson 34. Deploying your application

At this stage, you’ve completed a few iterations of your application, and it’s time to make it
available to the World Wide Web. This lesson introduces application deployment with Heroku.
First, you set up your application to work with Heroku’s services and plugins. In a few easy
steps, you’ll have your application live, with a unique URL that you can share with your friends.
Next, you see how to set up your MongoDB database and populate your application with
content. Last, you learn about tools you can use with Heroku to monitor your application in
production, as well as guidelines for making future changes in your production code and Heroku
plugins worth exploring further.

This lesson covers

• Configuring a Node.js application for Heroku
• Deploying a Node.js application
• Setting up a remote MongoDB database

Consider this

You’ve spent countless hours adding features and functionality to your application, only to have it
run locally on your personal computer. It’s about time that you expose your work on the recipe
application to the public. The final step in the development process is deployment. In this lesson, I
discuss the necessary steps to get your application ready for production.

34.1. PREPARING FOR DEPLOYMENT

Deployment is the process of taking your application code from your development environment
and publishing and running it on the internet to make it accessible to the public. Until this
point, you’ve been developing your application in a local environment. Developers would refer
to the application running at http://localhost:3000 as running in your development
environment.

One option is to set up a new environment. You need to re-create the system settings and
resources that made it possible to run your application on your own machine: a physical
computer with Node.js installed, the ability to install any external packages, and a JavaScript
engine to run the application. There’s no escaping the fact that your application depends on
physical hardware to function. For this reason, deploying your application to a production
environment, somewhere accessible to others online, requires some machine or service to run
your application.

You could set up your own computer to run your application and configure your home network
to permit users to reach your application via your home’s external IP address. The configuration
steps are a bit involved, though; they might pose security threats to your home internet network;

and they’re beyond the scope of this book. Also, if your computer shut down, your application
would be unreachable.

The popular alternative is to use one of many cloud services to host and run your application.
These services often come at a cost, but for demonstration purposes, you can deploy your
application through Heroku’s free account services. Heroku is a cloud-based platform that offers
servers—the physical processing computers and memory—to run your application. What’s more,
these computers often come prepackaged with the installation of Node.js that you need and
require very little setup on the developer’s part.

To get started with deployment, ensure that you have the Heroku command-line interface
installed by running heroku --version in terminal (heroku version in the Windows command
line). Also make sure that you have Git installed by running git --version. If you see some
version of these tools printed on the screen, you can continue to the deployment steps.

Note

If you haven’t yet created your Heroku account, set up the command-line interface (CLI), or
installed Git, please follow the instructions in lesson 2.

Before you can deploy to Heroku, you need to make a couple of changes to your application to
make it compatible with the services that Heroku provides. Heroku will run your application by
using the application’s PORT environment variable, so you need to have your application ready to
listen at both ports, as shown in the next listing. In this code, you create a constant, port, and
assign it to the PORT environmental variable, if it exists. Otherwise, the port defaults to 3000.
This port number should remain the same as in previous lessons.

Listing 34.1. Changing the application’s port in main.js

app.set("port", process.env.PORT || 3000); 1

const server = app.listen(app.get("port"), () => { 2

 console.log(`Server running at http://localhost:

${app.get("port")}`);

});

• 1 Assign the port constant.
• 2 Listen at the port assigned to port.

Similar to the way that Heroku specifies the application’s port, the database you’ll use also can
be defined in an environmental variable. In main.js, change the database connection line
to mongoose.connect(process.env.MONGODB_URI || "mongodb://localhost:27017/recipe_db",
{useNewUrlParser: true}). This line tells Mongoose to connect to the database defined
in MONGODB_URI or to default to your local recipe_db database location. (See section 3 for details
on why this environmental variable exists.)

Last, create a new file called Procfile at the application’s root. This file has no extensions or
suffix, and its name is case-sensitive. Heroku uses this file to find out how to launch your
application. Add web: node main.js to this file. This single line tells Heroku to create a new
server, called a dyno, intended for web interaction, and to use node main.js to start the
application.

With these three changes in place, you can finally deploy the application.

Quick check 34.1

Q1:

Why do you need the Procfile in your project folder?

QC 34.1 answer

1:

Heroku uses the Procfile as a configuration file to start your application.

34.2. DEPLOYING YOUR APPLICATION

With the appropriate configurations in place, you can use Git and the Heroku CLI to deploy your
application. Throughout this book, you haven’t used Git for version control. Although versioning
your code isn’t necessary in your development environment, it’s good practice, and in the case of
deployment, it’s required to get your application to its production environment on Heroku. If
you’re using Git for the first time, go to your project’s root directory in terminal, and initialize
the project with Git by running git init. In the next step, you add the files that you want in
your Git repo, but you don’t want some files in this repo.

You may recall that the node_modules folder gets created when you run npm install. This folder
can get pretty large, and adding it to your Git repo isn’t recommended. To ignore this folder,
create a new file called .gitignore at the root of your application directory. Add /node_modules to
that file in your text editor, and save. That’s all you need to do for Git to know not to add those
files within this folder.

To bundle your application code into a specific version, add the rest of the application’s files to
Git’s staging level by running git add . (including the period). Then run the command git
commit -m "Initial application commit" to save and commit this version of your code and
receive a feedback message.

Note

Any other changes you make that aren’t added and committed following the same process won’t
appear in your production environment.

With your code in version control, you can use the heroku keyword in terminal to initiate a new
application for deployment. Run the command heroku create in your project directory in
terminal to generate a new URL for your project. The response detailing the name of your
Heroku application, its URL, and Git repository should resemble the following listing. This
command also creates a connection to Heroku’s remote Git repository for your code. You can
run the command git remote -v to reveal the URL to that repository.

Listing 34.2. Creating a new Heroku app

Creating app... done, crazy-lion-1990 1

https://crazy-lion-1990.herokuapp.com/ |

https://git.heroku.com/crazy-lion-1990.git

• 1 Display the results of creating a new Heroku app.

Next, push your latest versioned code from your computer to the Heroku repository you set up.
Publishing your code is the same as uploading your code to a server that will host your
application on the internet. You can publish by running the command git push heroku master.
This step is the most important part of the process because it’s where all your code gets
uploaded and published on Heroku’s services. This step is also when Heroku runs npm
install to download all your application’s package dependencies.

This process may take about a minute, depending on your internet connection. If you experience
any issue or notice an error in the process, make sure that you can still run your application
locally before trying again.

If your application didn’t depend on a database, you could go directly to the URL provided after
the heroku create command in your browser. If you try visiting your
application’s /courses URL, you may see an error page (figure 34.1). Because your home page
doesn’t depend on any persistent data, however, that page should load without any errors.

Figure 34.1. Displaying the Heroku error page

Note

If you still have remnants of the bcrypt package in your project, you might run into issues with
deployment to heroku depending on your version of Node.js. Try unninstalling bcryptand
replacing it with bcrypt-nodejs in usersController.js. In terminal you’ll need to run npm
uninstall bcrypt && npm i bcrypt-nodejs -S.

This error likely has to do with the fact that you haven’t set up your database yet. You can verify,
though, by running the command heroku logs --tail in your project’s terminal window. This
command provides a live feed of logs from the application online. You’ll find a lot of messages
here, and it’s the first place I recommend checking if you experience any issue with your
application in the future. Suppose that you see an error for a missing database. You can fix the
problem by connecting to a MongoDB database.

Note

If you need some assistance with your Heroku CLI commands, run the command -heroku
help in terminal or visit https://devcenter.heroku.com/articles/heroku-cli--commands.

Quick check 34.2

Q1:

What does the heroku create command do?

QC 34.2 answer

1:

heroku create registers a new application name and code repository for your application on
Heroku’s services. It also links your local Git repository to the remote repository by the name
of heroku.

34.3. SETTING UP YOUR DATABASE IN PRODUCTION

Because you don’t have direct access to the server on which your production application is
running, you can’t download, install, and run a MongoDB database on the same server, as you
do in development. Heroku provides a free plugin, however, that you can use to set up a small
MongoDB database. To add this plugin from terminal, run the command heroku addons:create
mongolab:sandbox. This line provisions a sandbox database from MongoLab (mLab).

With the help of other cloud services such as Amazon and Google, mLab provides databases and
MongoDB servers that can be accessed remotely via a URL. The URL you get is added to your
application as the environmental variable MONGODB_URI. This variable means that your
application can use the variable MONGODB_URI to get the URL of the database.

Warning

The URL provided by mLab is a direct link to your application’s data. Only your application on
Heroku should use this URL; otherwise, you risk database-security vulnerabilities.

You previously set up your application to use this variable. You can verify that it exists in your
application by running the heroku config command in terminal. The result of running this
command is a list of configuration variables used by the application. You should see only one
variable for your database at this time.

Note

You can add new environmental variables by running the command heroku config:set
NAME=VALUE, where Name is the name of the variable you want to set and VALUE is its value. I might
set heroku config:set AUTHOR_EMAIL=jon@jonwexler.com.

After a few minutes, your application should be ready to view. In your web browser, visit the
URL provided earlier by Heroku, and add the /courses path to see an empty table, as shown
in figure 34.2. You should see the home page of your application. Try creating new user accounts,
subscribers, and groups through the forms you created in past lessons.

Figure 34.2. Displaying the Heroku courses page

You may be wondering whether there’s an easier way to populate your new database online with
data than manually entering information in the browser forms. There is! I show you that
technique, and some other tools and tips, in lesson 35.

Quick check 34.3

Q1:

How do you view and set environmental variables on your Heroku application?

QC 34.3 answer

1:

To view environmental variables on your Heroku application, run heroku config in your project’s
terminal window. You can set new variables by using heroku config:set.

SUMMARY

In this lesson, you learned about preparing your application for production and deploying it to
Heroku. First, you changed some application configurations to help your Heroku dyno handle
and run your application. Next, you deployed the application through your terminal Heroku
CLI. Last, you set up a remote MongoDB database by using the mLab plugin through Heroku.
In lesson 35, you discover how to manage your application in production, add data, and debug
problems.

Try this

With your application on Heroku, test all the functionality to make sure that it works. Everything
may seem to work as intended at first, but keep in mind that the environment is different, and
sometimes your code may not work as expected. Try opening one terminal window with heroku
logs --tail running alongside a browser window with your production application, and watch the
log messages that Heroku prints.

Lesson 35. Managing in production

Your application is finally online, and you want to ensure that it stays there, fully functional. In
this lesson, I discuss ways of getting data into your application even before any forms are used.
You may want to add some of the course data you used in development so that your application
has a fresh start online with data to view. Adding course data to your live application will reduce
the time it takes to make the pages of your site presentable. Then I discuss some ways to
improve your code quality and make sure that you don’t make mistakes that could cause your
application to crash in production. Last, I talk about ways to log, debug, and monitor your
application in production to help you investigate when things begin to break.

This lesson covers

• Loading seed data into your production application
• Setting up linting for you code
• Debugging your application

Consider this

Your application is finally online, and it’s a proud moment, except that your client quickly discovers
bugs that went undetected in development. What protocol do you follow to fix your code locally and
upload to production?

In this lesson, you learn how to maintain your application in production with a few tools.

35.1. LOADING SEED DATA

In lesson 34, you got your database set up, but you may be wondering whether there’s a simple
way to populate your production application with data. You can upload data into your
application on Heroku in a few ways.

Seed data is the database records you feed into your application when you first set it up in a new
environment. Other languages and platforms have conventions for loading a file with seed data
in different environments. In Node.js, you can create a JavaScript file containing the data you’d
like to load. You may want to populate your application with recipe courses before any users
even sign up, for example. To do so, you can use an existing seed file or create a new file in your
application directory called seed.js. This file defines and creates new records that communicate
with your Mongoose plugin. For that reason, you need to require Mongoose and the models you
intend to use, as shown in listing 35.1.

To avoid conflict with a preexisting seed file, create courseSeed.js. In this example, you include
the necessary modules needed for creating new data objects with Mongoose. Then you create
multiple records with values that you’d like to see in your production application. When this file

contains the data that you want to use, run the code in this file, using the Heroku command-line
interface (CLI).

Listing 35.1. Adding content through seed data in courseSeed.js

const mongoose = require("mongoose"),

 Course = require("./models/course"); 1

mongoose.Promise = global.Promise;

mongoose.connect(

 process.env.MONGODB_URI || "mongodb://localhost:27017/recipe_db",

 { useNewUrlParser: true }

);

Course.remove({}) 2

 .then(() => { 3

 return Course.create({

 title: "Beets sitting at home",

 description: "Seasonal beets from the guy down

the street.",

 zipCode: 12323,

 items: ["beets"]

 });

 })

 .then(course => console.log(course.title))

 .then(() => {

 return Course.create({

 title: "Barley even listening",

 description: "Organic wheats and barleys for bread,

soup, and fun!",

 zipCode: 20325,

 items: ["barley", "rye", "wheat"]

 });

 })

 .then(course => console.log(course.title))

 .then(() => {

 return Course.create({

 title: "Peaching to the choir",

 description: "Get fresh peaches from the local farm.",

 zipCode: 10065,

 items: ["peaches", "plums"]

 });

 })

 .then(course => console.log(course.title))

 .catch(error => console.log(error.message))

 .then(() => {

 console.log("DONE");

 mongoose.connection.close();

});

• 1 Require models for seeding data.
• 2 Remove all existing documents.
• 3 Run code to create new database documents.

Tip

As an alternative, you could use the mLab URL to load seed data directly into your production
database. Although this approach is quick, I don’t recommend it because it exposes your
production database to security risks.

Two other alternatives are using Heroku CLI tools to launch your production application’s REPL
or terminal environment. You may recall that REPL has access to the files and folders in your
projects directory, so it’s a great way to insert data from terminal. Launch REPL by running the
command heroku run node in your project’s terminal window. With this REPL-like
environment for your production application, you can simply copy and paste the contents of
courseSeed.js into terminal. The other approach is to run heroku run bash in your project’s
terminal window. This command brings up a prompt where you can run node courseSeed to
load all the contents directly. First, you’ll need to commit your courseSeed.js file to git and push
to heroku.

If you’re successful, you should see the log outputs of each course created, which also appear
immediately on the /courses route in your application online (figure 35.1).

Figure 35.1. Display of the populated courses page

Note

To upload new changes to your project, run git add . followed by git commit -m “some commit
message” and git push heroku master.

In the next section, I discuss ways to maintain the integrity of your code and ensure that new
errors don’t pop up.

Quick check 35.1

Q1:

What happens when you run heroku run node?

QC 35.1 answer

1:

heroku run node opens a new REPL window for you within the context of your production
application. From there, you can run JavaScript commands and load application-specific modules as
you would locally, with access to your production database.

35.2. LINTING

Bugs and coding mistakes are part of the development process. What can you do to prevent the
inevitable mistakes that halt production? Along with code quality, the process of linting to hold
your code to a particular standard is a way to reduce errors. Linting involves running a program
to read through your code and notify you of bugs or errors that you may not have caught. You
also might miss (and some browsers might ignore) syntax errors during development that could
break your application in a different environment. To lint your code, globally install a package
called eslint by running npm install -g eslint. ESLint is an open-source tool used in
terminal to run static analysis on your code. Through this analysis, you can identify code style
and structure problems. Other linting libraries that you can use include JSLint and JSHint. You
can learn more about ESLint at https://eslint.org/.

Note

You could also install the package for this project by running npm install eslint --save-
dev within your project directory in terminal. The --save-dev flag signifies that this package
doesn’t need to be installed in your production environment; it will be marked that way in your
application’s package.json. To use eslint after installing it as a development dependency, you
need to access it from ./node_modules/.bin/eslint.

As you initialized a new package.json file with npm init, initialize a .eslintrc.js file by
running eslint --init in your project’s terminal window. Choose to set up your file by
answering the questions in terminal, as shown in listing 35.2. You need to let the linter know to
look for ES6 syntax and methods because you use them throughout your application. You also
tell the linter to analyze your code on the server and client because you’ve written JavaScript for
both.

Listing 35.2. Setting up your .eslintrc.js file in terminal

? How would you like to configure ESLint? Answer questions about

your style 1

? Are you using ECMAScript 6 features? Yes

? Are you using ES6 modules? Yes

? Where will your code run? Browser, Node

? Do you use CommonJS? No

? Do you use JSX? No

? What style of indentation do you use? Tabs

? What quotes do you use for strings? Double

? What line endings do you use? Unix

? Do you require semicolons? Yes

? What format do you want your config file to be in? JavaScript

• 1 Answers to questions to set up your linter

Take a look at the .eslintrc.js file that’s produced at the end of this prompt in listing 35.3. Notice
that you’re formatting the linter’s configurations in JavaScript, not JSON, like your package.json
file. As in your other JavaScript modules, these configurations are assigned to module.exports.
Most of the configurations that follow are fairly straightforward. Your environments are
specified to include node, web browsers, and ES6 syntax. Then there are eslint rules, which
define when to warn you of inconsistencies. In this case, you throw a linter error when spaces
are used instead of tabs, semicolons are missing at the end of statements, or single quotation
marks are used around text. You can change these configurations to suit your preferences.

Listing 35.3. Example .eslintrc.js configuration file

module.exports = {

 "env": { 1

 "browser": true,

 "es6": true,

 "node": true

 },

 "extends": "eslint:recommended",

 "parserOptions": {

 "sourceType": "module"

 },

 "rules": { 2

 "indent": [

 "error",

 "tab"

],

 "linebreak-style": [

 "error",

 "unix"

],

 "quotes": [

 "error",

 "double"

],

 "semi": [

 "error",

 "always"

]

 }

};

• 1 Specify the environments to analyze.
• 2 Define eslint rules.

Test your linter on the main.js file by running eslint main.js. I hope that you don’t see any
errors up front. Try deleting a semicolon or defining a variable that you don’t use later. Notice
how eslint outputs errors with line numbers so that you can correct your code easily. Clean
code helps ensure the integrity and readability of your application.

Note

Keep in mind that some linter rules are stricter than others. The rules are intended to maintain
consistency in your code. If you see errors referring to spaces versus tabs, those errors don’t
mean that your code is bad—only that it could use a cleanup.

The output of errors in your terminal window details which files and line numbers you need to
visit to correct your syntax or code structure.

Quick check 35.2

Q1:

What does .eslintrc.js do?

QC 35.2 answer

1:

Like package.json, .eslintrc.js stores the configuration settings for eslint that you set up in the
initialization process in terminal. This file contains rules by which the linter determines whether
your code needs to be fixed.

35.3. DEBUGGING YOUR APPLICATION

You looked at a few ways to debug your application earlier in the book. You used console.log to
print custom messages, error messages, and request/response-specific data in your Express.js
middleware functions. Then you used the logs in your terminal window to determine where to
fix certain problems. If an error occurred while saving a user to the database, for example, you
caught the error in your promise chain and logged it to the console.

Logging is helpful when it’s used correctly. Logs provide a recorded history of transactions and
interaction with your application. Even if your application is running smoothly, you want your
development logs to tell you more about the application’s performance, and you want your
production logs to inform you of suspicious activity.

Locally, you can get more information about the request-response cycle by starting your
application in debug mode. In your project’s terminal window, type the command DEBUG=* node
main to set the DEBUG environment variable to logging from all elements of your application as it
runs.

Note

On Windows machines, first set the environment variable and then run the application by
running the command set DEBUG=* & node main.

You’ll notice right away that the number of log lines in your terminal window reflects the
operations Express.js performs to register your routes, along with some configurations it makes
before your web server launches (listing 35.4). Now when you visit any page in your application
locally, the debug logs stream down your terminal window. Conveniently, Express.js also tells
you how much time each operation takes in its log messages. During development, this
information can help you determine whether some parts of the application aren’t performing
well so that you can investigate further.

Listing 35.4. Example of log messages through Express.js in terminal

express:router:route new "/new" +0ms 1

express:router:layer new "/new" +0ms

express:router:route get "/new" +0ms

express:router:layer new "/" +0ms

express:router:route new "/create" +0ms

express:router:layer new "/create" +0ms

• 1 Log Express.js route registration in debug mode.

If you find it helpful to run your application with debug logs, you can add a start script in your
package.json file to avoid writing the whole command each time. Add "debug": "DEBUG=* node

main" after your start script. Then, whenever you want to see these logs, run the npm run
debug command.

These logs can be valuable in production as well, though you don’t want to run your production
application in debug mode. Instead, install another package to handle logging the important
data that you want to see in production. Install a package called morgan to provide your Node.js
application better console log messages.

Install the morgan package by running the command npm i morgan -S. Then, in main.js, require
the morgan module by adding const morgan = require("morgan"). Then the process is as simple
as telling your Express.js application to use morgan and passing in some formatting options. You
can add app.use(morgan(":method :url :status * :response-time ms")) to log the request
method, URL, status code, and time taken to process a response, for example.

This output should immediately resemble the logs that Express.js generated in debug mode.
Launch your application with npm start, and notice the logs for each request made, as shown in
the next listing. I recommend using the morgan("combined") format, in which the combined
formatting options provides a lot of the information you’ll need to monitor the request-response
cycle in your production application.

Listing 35.5. Example of log messages with morgan

GET / 200 * 20.887 ms 1

GET /js/jquery.min.js 304 * 2.504 ms

GET /js/bootstrap.min.js 304 * 1.402 ms

GET /js/recipeApp.js 304 * 0.893 ms

GET /css/recipeApp.css 304 * 1.432 ms

• 1 Log custom messages with morgan.

With logging set up, the best approach to debugging problems is to pause your application
where issues occur and analyze the code surrounding those issues. This practice is easier said
than done, but tools are available to help you identify the troubled code. Built into Node.js is a
debug tool that lets you step through your code one line at a time. After each line of code, you
can evaluate the variables and data to determine whether their values are what you expect.

To run the built-in debugger, run the node inspect main.js command in your project’s
terminal window. After running this command, you’ll immediately see the first lines of your
main.js file display in your terminal window. The tool pauses as soon as your application starts,
stating Break on start in main.js:1. You can start evaluating your code by typing n to go to
the next line, incrementally jumping over a single line at a time, or typing c to continue running
your application. If you type c, your application runs as usual. The debugger becomes
particularly useful when you have an idea of where your code isn’t working properly. If you think
that your code isn’t finding users correctly on the user’s show page, for example, you may want
to pause the code within that controller action. To pause in specific locations, add debugger; at
that location in your code, as shown in listing 35.6.

By adding this line, running the debugger again in terminal, and typing c to let your application
run, you’re setting the application up to stop for you when it queries the database for a user in
the show action before the view is rendered.

Listing 35.6. Debugging the show action in usersController.js

User.findById(userId)

 .then(user => {

 debugger; 1

 res.render("users/show", {

 user: user

 });

});

• 1 Add a debugger breakpoint when a user is found in the database.

As soon as you visit a user’s show page in your browser, the page pauses, and your terminal
window displays the code where you placed your debugger;. From there, you can investigate the
variables within this code by entering the REPL environment. By typing repl in the debugger
window in terminal, you can run normal REPL commands within the context of the code that’s
being debugged. In this example, you’re checking whether the user being retrieved from the
database has a valid email address, so run the following statement: console.log(user.email). If
you get undefined or some value other than the user’s email address, you know that the issue
has to do with the email, and you can investigate further. When you’re done debugging, type c to
continue and press Ctrl-D to exit. For more information about this debugger,
visit https://nodejs.org/api/debugger.html.

The built-in debugging tool can be a helpful way to analyze the data in your application as it
runs. Fully debugging your code this way involves a few steps, however, so I recommend
exploring other debugging tools, such as node-inspector, which lets you use the console in
Google Chrome to debug. You can also use Node.js with an integrated development
environment like TernJS in Atom, which offers debugging tools while you edit your code.

Quick check 35.3

Q1:

What happens when you add debugger to your application code?

QC 35.3 answer

1:

Adding debugger to your code allows the debugging tool in Node.js to pause at that specific location
as your application runs. Outside the debug tool, this addition won’t prevent your application from
running normally.

SUMMARY

In this lesson, you learned how to add data to your production application through the Heroku
console. Then you installed eslint to lint your application for errors or syntactic inconsistencies
in your code. Last, I introduced some debugging tips to help you identify production errors and
know immediately where to go to fix them.

Try this

Try using the debugger in Node.js to evaluate the values of different variables in your application.
Try running your application in debug mode and breaking within the user’s create action to
evaluate the incoming request parameters.

Lesson 36. Testing your application

Continual maintenance of your application in production requires fixing bugs. Fixing bugs means
writing new code. Writing new code has the unforgiving tendency to break existing functionality. In
this lesson, you take some steps to prevent the breaking of working code by implementing tests on
your Node.js application. Writing tests in Node.js is similar to testing in other platforms and
languages. First, you learn how to write simple tests for a function in your application. Then you
implement tests for the controller actions and models to cover the bulk of your application’s code.
By the end of this lesson, you’ll have the fundamental skills you need to get started testing your
Node.js application.

This lesson covers

• Using core modules to write assertion tests

• Writing a Node.js test with mocha and chai

• Building and running tests for controller actions with chai-http

• Implementing tests for your API

Consider this

Your recipe application is looking great in production, and you’ve gained development support
from some local developers. Your application code is being worked on by multiple people, and the
new developers don’t necessarily know how their implementation of new features will affect the
features you’ve already built.

A new developer adds a new index action on the users controller. This new action doesn’t respond
with all the user data you originally planned for, which affects your API and views. If you write tests
for your index action specifying what data you expect it to return, new developers will have a point
of reference regarding what functionality is allowed to change with their modifications.

36.1. BASIC TESTING WITH CORE MODULES

In the tech industry, application testing is a standard practice. When you write some code with
explicit functionality, you want to make sure that functionality doesn’t change unless it’s intended
to change. To help ensure that your code isn’t accidentally affected by changes and new features
that you implement (or that another developer implements), you can write tests. Tests contain
three components:

• Test data representing sample data that you’d expect to receive in your application

• Expectations detailing what a function or series of operations should output, given your test data

and application code

• A testing framework to run your tests and determine whether your defined expectations were met

Before learning about some external tools that you can use to test your application, you can use a
core module that comes with Node.js. The assert module offers some basic functions that you can
use to confirm the equality of two values. You can think of these functions as being conditional
statements wrapped in testing language.

You can use this module by navigating to a new project folder called simple_test and creating a new
file called test.js with the code shown in listing 36.1. In this example, you require the assert module.
Then you write an assertion test by using assert.equal to determine whether the first value, the
result of a call to your custom add function, equals the second argument, 0. Last, you write
the add function to take two values and return their sum. In this example, you expect the addition of
5 and 4 to equal 0. As you’d expect, this test should fail, and when it fails, the message in the final
argument should appear in terminal.

Run this file to see the assertion error in terminal by entering node test within
the simple_test project directory. That error should read AssertionError [ERR_ASSERTION]: 5
plus 4 should equal 9.

Listing 36.1. Simple assertion test in test.js

const assert = require("assert"); 1

assert.equal(add(5, 4), 0, "5 plus 4 should equal 9"); 2

let add = (x, y) => { 3

 return x + y;

};

• 1 Require the assert module.

• 2 Write the assertion test.

• 3 Implement the function specified in your test.

To correct this test, you need to change 0 to 9. You could also add another assertion test here to
specify what your add function shouldn’t return. You could write assert.notEqual (add(5, 4),
0), for example. If this test ever fails, you’ll know that something is wrong with your add function
that needs modification.

The assert module is a great way to start writing tests for Node.js. For your application, however,
you’ll benefit from external packages that test more-complicated functionality. For more
information about the assert module, visit https://nodejs.org/api/assert.html.

Test-driven development

Test-driven development (TDD) is an application development strategy in which tests specifying the
expectations of your code are written first, followed by the feature implementation designed to
pass your initial tests.

You want to make sure that your tests comprehensively cover your application’s functionality,
which means writing tests that specify how your application should work when it’s provided valid
and invalid data. Sometimes, when you write your tests after you’ve already implemented the
application code, it’s easy to miss edge cases that aren’t accounted for in your test suite. For this
reason, TDD can offer a more wholesome development experience.

TDD involves the following steps:

1. Write your tests with sample data and expectations of the results, using that sample data
through some method or function that you’ll build later.

2. Run your tests. At this point, all your tests should fail.
3. Implement code for your testing to behave according to the expectations you defined in your

tests.
4. Run your tests again. At this point, all your tests should pass.

If your tests don’t pass after you’ve written your application’s code, it could mean that your
application code isn’t perfected yet.

If you were using TDD to implement a function called reverse that takes a string as a parameter and
reverses it, for example, you might follow these steps:

1. Write a test for the reverse function, using a test string, var s = "Hello", such that when
you run reverse(s), you expect the result to be "olleH".

2. Run the tests, and expect them to fail.
3. Write the code to reverse strings.
4. Rerun the tests until all of them pass.

Quick check 36.1

Q1:

What is an assertion test?

QC 36.1 answer

1:

An assertion test is code that you write to express your expectations of how some sample data
might change, equal, or otherwise relate to another value. This test could be a comparison of two
pieces of raw data or a comparison of data resulting from a function call or series of operations.

36.2. TESTING WITH MOCHA AND CHAI

To start testing your application, install the mocha and chai packages in your recipe-application
terminal window by running the command npm i mocha -g and npm i chai -S. mocha is a testing
framework. Much like Express.js, mocha offers a structure and methods that can be used in
conjunction to test your application code. You install mocha globally because you need to use
the mocha keyword in terminal, and you’ll likely test other projects. chai should be installed as a
development dependency because you’ll be testing your code only locally; you don’t need this
package to be installed in your production environment.

To use the mocha module, run mocha in your project’s directory in terminal. Running this command
directs mocha to look for a test folder within your project folder. As with any framework, a
conventional directory structure is used to keep your tests organized and separate from your other
code files, so you need to create that test folder at the root of your application directory.

Note

Visit https://mochajs.org for more information about the mocha framework, from installation to use in
terminal.

mocha helps you describe and run tests, but it doesn’t provide the tools you need to determine
whether the outcomes of your code are what you expected. For that purpose, you need an assertion
engine to run assertions, which describe how code should output a specified value.

chai is the assertion engine that you’ll use in this lesson. To use chai, require it in each test file you
plan to run. Then, like the assert method from your core module, you can use expect, should,
or assert as function verbs to check whether your code returns the intended results in your tests.
For the following examples, use the expect function. chai also has descriptive functions to help you
explain your tests before the assertions themselves. You’ll use the describe function to specify the
module and function you’re testing.

Note

describe functions can be nested.

For the actual tests, use the it function to explain what you expect to happen in the test.
Semantically, this function allows your test to read this way: In a specific module, for a specific

function, your code (it) should behave in a certain way when it’s provided with some specific data.
You take a closer look at this semantic structure in the next example.

The last steps in using these packages are creating the test file, requiring any custom modules with
methods you want to test, and providing sample data within your tests. Write a simple test for your
recipe application, using mocha and chai. Create a new file called usersControllerSpec.js in the test
folder within your project’s directory. Per development convention, Spec is used in filenames to
indicate a test suite.

Within this file, test the getUserParams function used in your user’s controller from the capstone
exercise in lesson 25. For testing purposes, add the getUserParams function to usersController.js, as
shown in listing 36.2.

Note

You can make use of this function in the create action by creating a new User instance with the
following line: let newUser = new User(module.exports.getUserParams(req.body)). You can
reference the getUserParamsthrough module.exports.

Unless you export this function, there’s no way for any other module to access the function.

Listing 36.2. Exporting the getUserParams function

getUserParams: (body) => { 1

 return {

 name: {

 first: body.first,

 last: body.last

 },

 email: body.email,

 password: body.password,

 zipCode: body.zipCode

 };

}

• 1 Export getUserParams in usersController.js.

In usersControllerSpec.js, require chai along with usersController.js. The code for your test file
resembles the code in listing 36.3. Because you use the expect assertion function, you can require it
directly from the chai module; you won’t need chai for anything else. Then define your

first describe block by stating the module you’re testing. The following describe block specifies
the function you’re testing. Within that nested describe, you can run multiple tests that pertain
to getUserParams. In this case, you’re testing whether getUserParams returns data that includes
your name properties when provided a sample request body. The second test ensures that a blank
request body results in an empty object. You use deep.include to compare the contents of one
JavaScript object with another. For more information about chai assertion methods,
visit http://chaijs.com/api/bdd/.

Listing 36.3. Exporting the getUserParams function in usersControllerSpec.js

const chai = require("chai"),

 { expect } = chai, 1

 usersController = require("../controllers/usersController");

describe("usersController", () => { 2

 describe("getUserParams", () => {

 it("should convert request body to contain

 the name attributes of the user object", () => { 3

 var body = {

 first: "Jon",

 last: "Wexler",

 email: "jon@jonwexler.com",

 password: 12345,

 zipCode: 10016

 }; 4

 expect(usersController.getUserParams(body))

 .to.deep.include({

 name: {

 first: "Jon",

 last: "Wexler"

 }

 }); 5

 });

 it("should return an empty object with empty request

 body input", () => {

 var emptyBody = {};

 expect(usersController.getUserParams(emptyBody))

 .to.deep.include({});

 });

 });

});

• 1 Require the expect function.

• 2 Define the focus of your test in a describe block.

• 3 Detail your test expectations.

• 4 Provide sample input data.

• 5 Expect some object to be included in the results.

To run this test, enter the mocha command in your project’s terminal window. You should see an
indication that both tests passed (figure 36.1). If you get an error or if a test fails, make sure that
your modules are accessible from each other and that your code matches the code listings.

Figure 36.1. Displaying passing tests in terminal

Note

To exit your mocha test in terminal, press Ctrl-D.

In the next section, you implement a test that covers more than a single function.

Quick check 36.2

Q1:

What’s the difference between describe and it?

QC 36.2 answer

1:

describe wraps the tests that relate to a particular module or function, which makes it easier to
categorize your test results as they appear in terminal. it blocks contain the actual assertion tests
that you write.

36.3. TESTING WITH A DATABASE AND SERVER

To test a web framework, you need more than some sample data and access to the modules you’re
testing. Ideally, you want to re-create the environment in which your application normally runs,
which means providing a functioning web server, database, and all the packages your application
uses.

You aim to set up an environment in addition to your development environment. You can define a
test environment through the process.env.NODE_ENV environment variable. At the top of any test
file, add process.env.NODE_ENV = "test" to let Node.js know that you’re running your application
in a testing environment. This distinction can help you differentiate between databases and server
ports. If you’re running your application in the test environment, you can tell the application to use
a recipe_test_db database and run on port 3001, for example. This way, you can test saving and
retrieving data from a database without interfering with your development data or development
server.

Now indicate to your application to use the recipe_test_db test database in the test environment
and to otherwise default to the production and development databases, as shown in the next listing.
In this example, you define a db variable earlier in the code and assign it to a local database. If the
environmental variable, process.env.NODE_ENV, tells you that you’re in the test environment,
the db variable points to your test database URL.

Listing 36.4. Separating environment databases in main.js

if (process.env.NODE_ENV === "test") "mongoose.

 connect(mongodb://localhost:27017/recipe_test_db", { 1

 useNewUrlParser: true});

else mongoose.connect(process.env.MONGODB_URI ||

 "mongodb://localhost:27017/recipe_db",{ useNewUrlParser: true }); 2

• 1 Assign to your test database while in the test environment.

• 2 Default to the production and development databases.

Note

MongoDB creates this test database for you if it doesn’t exist.

You apply the same logic to your server port, as shown in the following listing. Here, you use port
3001 if you’re in the test environment. Otherwise, you use the normal ports that you’ve used so far.

Listing 36.5. Setting up a test server port in main.js

if (process.env.NODE_ENV === "test")

 app.set("port", 3001); 1

else app.set("port", process.env.PORT || 3000);

• 1 Assign the port to 3001 (test), default to port 3000 (production).

Last, you need to export your application contained in app by adding module.exports = app to the
bottom of main.js. Exporting your application allows you to access it from the test files you write.
Also, in your controller tests, you need the help of another package to make requests to your server.
Install the chai-http package by running the npm i chai-http -Scommand to save this package
as a development dependency.

With these changes in place, you’re ready to write a comprehensive test on your models and
controllers. In the following examples, you test the user’s controller actions and User model. First,
test the User model by creating a file called userSpec.js in your test folder with the code in listing

36.6.

In this file, you can create multiple tests on the User model. The first tests you write are to ensure
that users can be created and saved to your database. You need to require the User
module, mongoose, and chai. From chai, pull the expect function into its own constant so that your
tests are more readable.

Next, implement the beforeEach function provided by mocha to remove any and all users from your
test database before you run each test. This function ensures that the results of previous tests don’t
affect other tests in this file. Your describe block indicates that you’re testing the save functionality
on the User model. Your it block contains two expectations to determine whether you can
successfully save a single user to the database. First, provide some sample data that your
application might naturally receive as input data. Then set up two promises to save the user and
find all users in the database. The inner nested promise is where you run your expectations.

Last, create two assertions where you expect the results of your promises to yield an array, where
the second item contains all the users in your database. Because you created a single user, you

expect the size of the array of users to be 1. Similarly, you expect the only user in that array to have
an _id property, indicating that it has been saved to your MongoDB database. When your test is
complete, call done to indicate that the tests are complete and promises are resolved.

Listing 36.6. Testing saving a Mongoose user in userSpec.js

process.env.NODE_ENV = "test"; 1

const User = require("../models/user"),

 { expect } = require("chai"); 2

require("../main");

beforeEach(done => { 3

 User.remove({})

 .then(() => {

 done();

 });

});

describe("SAVE user", () => { 4

 it("it should save one user", (done) => { 5

 let testUser = new User({

 name: {

 first: "Jon",

 last: "Wexler"

 },

 email: "Jon@jonwexler.com",

 password: 12345,

 zipCode: 10016

 }); 6

 testUser.save()

 .then(() => {

 User.find({})

 .then(result => {

 expect(result.length)

 .to.eq(1); 7

 expect(result[0])

 .to.have.property("_id");

 done(); 8

 });

 });

 });

});

• 1 Require necessary modules and set the environment as test.

• 2 Assign a variable to the chai.expect function.

• 3 Remove all users from the database before each test.

• 4 Describe a series of tests for saving users.

• 5 Define a test for saving a single user.

• 6 Set up promises to save a user with sample data, and fetch all users from the database

thereafter.

• 7 Expect one user with an ID to exist in the database.

• 8 Call done to complete the test with promises.

Run your tests by running the mocha command in your project’s terminal window. This command
starts your MongoDB test database and saves a test user. If your test doesn’t pass, make sure that
your modules are connected correctly and that users are saving in your application in the browser.
It’s helpful to know that the user model works correctly, and you can add more tests to this file. You
can use sample data that shouldn’t save or try saving two users with the same email address, for
example. Your validations should prevent both users from saving.

Next, test a controller action. After all, the controller action connects your models and views,
providing a lot more of the experience you’d like to preserve in your application. In the following
example, you test the user index action, which fetches all the users in the database and sends those
users to your view in the response body.

For this test file, you need to require chai-http by adding const chaiHTTP = require ("chai-
http") and your main app module by adding const app = require("../main"). Then tell chai to
use chaiHTTP by adding chai.use(chaiHTTP), and you’re ready to make server requests. In the
following example, you use chai.request(app) to communicate with the server. To test the index
action specifically, add the code in listing 36.7 to users-ControllerSpec.js in your test folder.

You can wrap your tests with a describe block indicating that the tests are for users-Controller.
Another describe block specifies that the tests are for GET requests to /users.

Note

The first argument in describe is any string of your choice that explains what the tests are testing.
You don’t need to follow the text shown in this example.

Your test to show all users in the database uses chai.request to communicate with your
application, which in turn sets up a web server running at port 3001. Then you chain a getrequest
with a chai helper method to reach the /users route. In your application, this should take you to
the users index action in the users controller. You end your request with end and write your
expectations on the response that’s returned from the server. You expect the response to have a
status code of 200 and no errors.

Listing 36.7. Testing the users index action

describe("/users GET", () => { 1

 it("it should GET all the users", (done) => {

 chai.request(app) 2

 .get("/users")

 .end((errors, res) => { 3

 expect(res).to.have.status(200); 4

 expect(errors).to.be.equal(null);

 done(); 5

 });

 });

});

• 1 Describe your test block for the users index action.

• 2 Make a GET request to your test server.

• 3 End the request with a callback to run your expectations.

• 4 Expect your application’s response status to be 200.

• 5 Call done to complete the server interaction in your test.

Run this test by entering mocha in your project’s terminal window to see two tests pass. Your test
suite contains all the tests contained in files in the test folder. If you want to test only
usersControllerSpec, you can run mocha test/usersControllerSpec.

Quick check 36.3

Q1:

What does chai.request do?

QC 36.3 answer

1:

chai.request takes a Node.js web server and allows your test environment to make requests.
These requests mimic the ones in your production application, allowing for a more integrated,
comprehensive test of your code.

SUMMARY

In this lesson, you learned about testing your Node.js application. You started with the assert core
module and quickly jumped into testing your models and controllers with chai, mocha, and chai-
http. With these tools and others, you’ll be able to re-create most of the actual experiences that
users have with your application. If you can stay ahead by predicting user experiences and edge
cases, and testing them before they go to production, you’ll face far fewer production crashes.

Try this

Writing a test suite isn’t a simple task, because you can write an endless number of tests. You want
to make sure that you cover most scenarios in your application, using a variety of sample data.

Create a test module for each controller and model in your application. Then try to
build describe blocks and tests for each action.

Lesson 37. Capstone: Deploying Confetti Cuisine

It’s time to move my application to production. I’ve coordinated with Confetti Cuisine on
original expectations and feature changes along the way. The result is a Node.js application
running with Express.js, MongoDB, and a variety of packages to connect users with the Confetti
Cuisine cooking school. I’ve had multiple opportunities to deploy this application without a
database or the ability to save meaningful data. Now that I’ve cleaned up my code and written a
few tests, I turn to Heroku to demo the effect of my application on the world.

Although the steps are short and don’t involve much more coding, I want to be careful not to
make any mistakes in the deployment process. Troubleshooting in development is a lot simpler
than in production.

I’ll start by preparing my application for Heroku. Then I’ll create a new Heroku application
through the Heroku command-line interface (CLI) in terminal. After using Git to save and
version my changes locally, I’ll push my code up to Heroku.

Next, I’ll set up my application’s MongoDB database, and add some seed data to start. When
those tasks are complete, I’ll use a couple of production tools to monitor my application’s logs
and prepare for meaningful user data and interaction with my application to roll in.

37.1. LINTING AND LOGGING

Before I deploy my application, I want to ensure that I’m not submitting code with any bugs or
inefficiencies. Although I’ve made a point to code consciously, there’s always the possibility that
a mistake could affect my application in production. To prevent potential issues in the
deployment process, I install eslint globally to lint my code by running npm install -g
eslint.

Linting my code provides me a list of lines in my application code that could be fixed, which
range from removing unused variables to not properly handling promises and asynchronous
functions. I initialize eslint by running the command eslint --init in my project’s terminal
window. Following the prompts in terminal, I choose to lint for ES6 syntax and both server-side
and client-side JavaScript. Running eslint in terminal creates a .eslintrc.js configuration file
that eslint uses to evaluate my code. I run the global eslint keyword in my project’s terminal
window to see where my code can be improved.

I’d also like to have better logging in my application before it goes to production. I decide to
use morgan to log request and response information. First, I install the package locally by
running npm i morgan -S to save it as an application dependency. Then I require morgan in
main.js by adding const morgan = require("morgan"). Last, I want to use a specific
configuration of morgan that combines meaningful data from the request in the logs. I
add app.use(morgan("combined")) to main.js to let my Express.js application know to
use morgan with the combined logging format.

With my code cleaned up, I run my application one last time in development to make sure that
no persistent errors prevent my application from launching. Then I move on to prepare my
application for deployment.

37.2. PREPARING FOR PRODUCTION

Confetti Cuisine has given me the choice of production platform to use. Because I’m comfortable
with Heroku, I decide to begin preparing my application to live on Heroku’s servers.

Note

The following steps allow me to work with Heroku, but they don’t prevent my application from
working with other services.

I start by verifying that Heroku CLI and Git are installed on my machine. Running heroku --
version and git --version in terminal should let me know whether they’re installed and what
versions they are. I need Heroku to allow the server’s port to use an environmental variable in
production, not just port 3000. I’ll make sure in main.js that my port is set byapp.set("port",
process.env.PORT || 3000). The port number will initially be assigned to the port number
at process.env.PORT if such a value exists. Otherwise, the port will default to 3000.

Next, I modify my database connect to use the MONGO_URI environmental variable if it’s present. I
add mongoose.connect(process.env.MONGODB_URI ||
"mongodb://localhost:27017/confetti_cuisine",{ useNewUrlParser: true }) to main.js.
Later, when I provision a database for my production application, MONGODB_URIappears as one of
the application’s configuration variable set to the database’s external URL.

The last step is creating a Procfile, a file that Heroku uses as a starting point to launch my
application. Heroku can work with a few internet protocols. I’ll be setting this application to
work over HTTP, so I add web: node main.js to the Procfile. This line of code tells Heroku to
run my application as a web server that should expect requests and responses over HTTP.
Additionally, I’m telling Heroku to use main.js to start the application.

My code is almost ready to deploy. I need to save my changes and follow a few more steps to
send my code to production.

37.3. DEPLOYING TO HEROKU

Now that I’m happy with the state of my code, I’ll add and commit my changes to Git. First, I
want to run git init to initialize my project with Git. If I’ve already performed this line, Git
harmlessly reinitializes the project; none of my previous changes are affected. Git bundles all my
code together, so I want to make sure that nothing gets bundled that I don’t want to send across
the internet, including passwords, sensitive data of any kind, and my node_modules folder. I’ve

kept sensitive data out of my application, so I want to keep my node_modules folder from going
to production; the folder can get pretty large, slowing my deployment process. Also, Heroku
runs npm install for me, once deployed. I create a file called .gitignore and add node_modules
to that file.

Next, I run git add . to add all my files to a staging area, ready to be committed. I run git
status to confirm the files that will be committed and run git commit -m "first production
deployment" to indicate this version of my code before going to production. With my code saved,
I use the heroku keyword in terminal to register my application with Heroku. From my project’s
directory in terminal, I run heroku create confetti-cuisine.

Warning

If the name confetti-cuisine isn’t already used by another application on Heroku, this
command generates a URL through which I’ll be able to access my application. Anyone
following my steps will need to choose a different name for their heroku app in this command.

That URL is https://confetti-cuisine.herokuapp.com. This command also creates a remote Git
repository on Heroku for me. This configuration allows me to submit my local Git repository to
that address; from there, Heroku will install and run my application. I can verify the URL of the
remote repository by running git remote -v. I see that my remote repository is referenced by
the name heroku, so when I’m ready, I can use the name heroku to push my code to production.

Making sure that I have a reliable internet connection, I run git push heroku master.master is
the name of the container holding my code within Git, and I’m uploading the code in that
container to a similarly named container at the URL associated with heroku. Running this
command initiates a series of operations that Heroku uses to set up the application and install
its package dependencies. The whole process takes less than a minute for my application. When
it’s complete, I can run heroku open to launch my production URL in a web browser.

Right away, I notice that the application isn’t working (figure 37.1) because my database isn’t set
up yet, and my application depends on a database for any page to load.

Figure 37.1. Application not loading on Heroku

In the next section, I set up a MongoDB database for my production application.

37.4. SETTING UP THE DATABASE

I chose to use MongoDB as my application’s database for a few reasons. One reason is that it’s so
simple to set up in production. Setting up a development and test database is an effortless task.
Now I need to add a Heroku plugin to associate a database service, and in a single step, my
application will start working.

I run heroku addons:create mongolab:sandbox in my project’s terminal window to create an
mLab MongoDB database for my application. Because I’ve associated my local project with my
registered Heroku application, I can continue to use the Heroku CLI in terminal to manage my
production application. This command provides a free-tier database hosted by mLab. This
sandbox database isn’t recommended for use in production, however, because of its size and
availability limitations.

Note

If Confetti Cuisine likes the way that my application looks and behaves on Heroku, I can
increase my mLab plan at a cost by running heroku addons:create mongolab: shared-cluster-
1.

Warning

I don’t want to upgrade my database account until I’m sure that I need the extra space.
Upgrading from terminal may incur fees in my Heroku account.

Alternatively, I can set up my MongoDB database at any external location and set
the MONGODB_URI variable to that external database’s URL.

I verify the database URL setup with Heroku by running heroku config:get MONGODB_URI. This
command responds with my mLab database URL, along with the security credentials I need to
use to access the database. If I want to view the contents of my database on a web browser, I can
run heroku addons:open mongolab to open a new web page pointing to my database on mLab’s
site through Heroku (figure 37.2).

Figure 37.2. Displaying contents of mLab database

Now when I visit https://confetti-cuisine.herokuapp.com/, I finally see my home page load (figure

37.3).

Figure 37.3. Loading the home page

With my application in production, I’d like to make it more presentable by preloading it with
some data. I have a few ways to load seed data into my application, including linking directly to
my mLab database and pushing data into my database. Instead, I’m going to run heroku run
node in my project’s terminal window to enter the production REPL environment. As with REPL
in development, I can interact with my Node.js application here and even save to my database.
I’ve prepared some courses that I want to save, so I copy the lines of code where those courses
are created and paste them into this REPL shell. First, I need to copy the lines requiring the
modules I need, such as mongoose and the Course model itself. I enter the code in listing 37.1 into

my terminal window and watch as courses are populated into my application. I can click my
Ajax courses modal to see those new listings.

Note

It may help to first format the code into your text editor before pasting into your terminal
window.

Listing 37.1. Adding seed data to my production application

const mongoose = require("mongoose"),

 Course = require("./models/course"); 1

mongoose.Promise = global.Promise;

mongoose.connect(

process.env.MONGODB_URI ||

 "mongodb://localhost:27017/confetti_cuisine",

 { useNewUrlParser: true }

);

Course.remove({}) 2

 .then(() => {

 return Course.create({

 title: "Chocolate World",

 description: "Dive into the divine world of sweet

 and bitter chocolate making.",

 cost: 22,

 maxStudents: 14

 });

 })

 .then(course => console.log(course.title))

 .then(() => {

 return Course.create({

 title: "Pasta Boat",

 description: "Swim through original recipes and

 paddle your way through linguine",

 cost: 43,

 maxStudents: 8

 });

 })

 .then(course => console.log(course.title))

 .then(() => {

 return Course.create({

 title: "Hot Potato",

 description: "Potatoes are back and they are hot!

 Learn 7 different ways you can make potatoes

 relevant again.",

 cost: 12,

 maxStudents: 28

 });

 })

 .then(course => console.log(course.title))

 .catch(error => console.log(error.message))

 .then(() => {

 console.log("DONE");

 mongoose.connection.close();

 });

• 1 Require the necessary modules and database connection for REPL.
• 2 Create new courses for my production database.

With this data loaded, I can finally show the finished application to Confetti Cuisine. I need to
keep an eye on the logs, though, in case any new users experience an issue with the live
application.

37.5. DEBUGGING IN PRODUCTION

My role has transitioned from developer to bug-fixer and maintainer. I need to make sure that
the code I’ve written preserves the functionality I’ve promised, and I’ll quickly repair the code
that doesn’t uphold that promise.

Because my code isn’t running from my personal computer, I need to access the logs from
Heroku by running heroku logs --tail in my project’s terminal window. This command
communicates with Heroku to provide a live stream of logs. The logs tell me when an error
occurs, whether my application crashes, and everything I need to know about the incoming
requests and outgoing responses.

As I make sense of the log messages, if I come across an issue, I can try to reproduce it locally on
my computer. I can run heroku local web in my project’s terminal window to launch my
application code that’s in production locally. This command runs my application at
http://localhost:5000/. If I see the error occur while testing here, I can get a better sense of
what needs to be fixed. Last, I can use the Node.js debug tool by adding a breakpoint on the line
of code that I suspect is causing the error. By adding debugger to my code, I can step through my
running application, pause, and analyze the values in specific functions.

I’m confident that this application will experience few issues and offer Confetti Cuisine a great
new way to interact with its audience. Meanwhile, I’ll be around in case the company needs my
help. I’m only a git add ., git commit -m "<some message>", and git push heroku
master away from deploying an update.

SUMMARY

In this final capstone exercise, I deployed my application to be accessible to the public. With the
right configurations in place and a working Node.js application, I was able to upload my
application to a production server. From this server, incoming requests will be handled and
queries made to an external database. My application now depends on a variety of resources
that may incur fees as my application collects more data and popularity. As traffic and demand
increase on my application, more resources will be required, and I’ll need to consider the costs
of hosting my Node.js application somewhere that can support its growing database and
popularity. Scalability, high availability, and performance improvements are all topics of my
next iteration with this application, and I hope that Confetti Cuisine will be happy to collaborate
as I implement future improvements.

Appendix A. JavaScript syntax introduced in ES6

In this appendix, I cover JavaScript syntax introduced in ES6 as it applies to Node.js. I start with
variable definitions and the new style of String interpolation. Then I talk about arrow functions.

A.1. NEW IN ES6

Since 2015, ECMAScript 6 has offered new syntax and conventions for developing with
JavaScript. For that reason, this book covers some of the ES6 keywords and formats you’ll
use. Keywords are terms that have a reserved meaning in JavaScript and are used to provide the
syntax and interpretability of your code.

A.1.1. The let keyword

You’re probably used to declaring variables with the var keyword. With ES6, it’s more
appropriate to use the let keyword to define variables as they apply to a specific scoped block.
Until a variable is defined within a particular block of code, you can’t access it.

A let variable defined in an if block can’t be accessed outside the block, for example, whereas
a var variable is scoped to the function within which it’s defined, as shown in the next listing.

Listing A.1. Example use of the let keyword

function sample() {

 var num = 60;

 if (num > 50){

 let num = 0;

 }

 console.log(num);

}

Because let variables are scoped to code blocks beyond functions, they could be global variables
to a module or an entire application. As a result, let gives variable definition more security and
is preferred to var.

Note

When using "use strict"; you can’t redefine the same let variable, whereas you can with var.

A.1.2. The const variable

A const variable can’t be reassigned. Typically, you should use this keyword in place of letfor
variables whose values you don’t expect to manipulate in your code. This guideline can also
apply to loading libraries or modules in Node.js, as you see in unit 1. If you try to reassign
a const variable, you get a Duplicate Declaration Error.

The code in the next listing crashes because a new let variable is being declared with the name
of an existing constant.

Listing A.2. Example use of the const variable

function applyDiscount(discountPrice) {

 const basePrice = 1000;

 let basePrice = basePrice - discountPrice;

 console.log(basePrice);

}

A.1.3. String interpolation

Until ES6, to print or log a variable’s value within a string, you had to append the string around
the variable, as shown in the following listing.

Listing A.3. Example of string concatenation

var x = 45;

console.log("It is " + x + " degrees outside!");

With ES6, you can use backticks (`) and ${} to interpolate variables into a string, as shown in
the next listing.

Listing A.4. Interpolating strings with backticks

var x = 45;

console.log(`It is ${x} degrees outside!`);

The resulting code is cleaner, easier to read, and easier to edit.

A.1.4. Arrow functions

Arrow functions are one way that ES6 is making code more succinct and easier to read. With the
=> arrow symbol and a change in the conventional function syntax, you can turn a multiline
function into one line. Take the example in the following listing.

Listing A.5. Defining a function with the function keyword

function printName(name) {

 console.log(`My name is ${name}`);

}

You can rewrite this code as shown in the next listing.

Listing A.6. Defining an arrow function

let printName = name => console.log(`My name is ${name}`);

More important, arrow functions in ES6 preserve the this variable from its outer scope, as
shown in the following listing.

Listing A.7. Example use of the this keyword within functions

let dog = {

 name: "Sparky",

 printNameAfterTime: function() {

 setTimeout(function() {

 console.log(`My name is ${this.name}`);

 }, 1000);

 }

}

In this example, dog.printNameAfterTime() prints My name is undefined because this .name is
out of the setTimeout function scope despite the assumption that this refers to the dog object.
With arrow functions, however, this persists within the setTimeout function, as shown in the
next listing.

Listing A.8. Example use of the this keyword with arrow functions

let dog = {

 name: "Sparky",

 printNameAfterTime() {

 setTimeout(() => {

 console.log(`My name is ${this.name}`);

 }, 1000);

 }

}

Now you can print My name is Sparky, and the code is more compact!

To succeed with Node.js, you need to succeed with JavaScript in general. Because Node.js
requires sufficient knowledge of some core JavaScript and programming concepts, this lesson
reviews what you need to know to get started. If you haven’t had much experience with
JavaScript, I recommend reading Secrets of the JavaScript Ninja, Second Edition by John Resig
and Bear Bibeault (Manning, 2016).

A.2. REPL

When you have Node.js installed, your first stop in running your code is in the Read-Evaluate-
Print Loop (REPL). This interactive environment is similar to the console window in a Chrome
web browser. In REPL, you’re able to run any JavaScript code. You can al so require Node.js
modules to test aspects of your application.

A.2.1. Running JavaScript in REPL

To start REPL, navigate to any terminal window on your computer and enter node. This
command immediately returns a prompt (>), after which you may enter any JavaScript
statements. You can think of REPL as a running Node.js application that responds to your
commands instantaneously. That is, you don’t need to write your JavaScript code in a separate
file and then run it; you can type that JavaScript code directly in the REPL window. Try defining
a couple of variables, as shown in the next listing. You’ll notice that with each JavaScript
statement you run, REPL outputs the return value of that statement. For variable assignment,
the return value is undefined.

Listing A.9. Defining variables in REPL

> let x = 42;

undefined

> let sentence = "The meaning of life is ";

undefined

Now perform some operation on these variables. You can concatenate the two values, for
example, as shown in the following listing.

Listing A.10. Concatenating variables in REPL

> sentence + x;

The meaning of life is 42

There’s no limit to the ways you can use the REPL environment to behave like any Node.js
application you’ve used or seen before. You can also use the tab key to autocomplete variable or
function names and list object properties. If you defined a string by the variable name sentence,
for example, but you’re unsure what functions you can call on that string, you can add a dot (.)

to the end of the variable name and press Tab to list that variable’s available functions and
properties, as shown in the next listing.

Listing A.11. Listing variable properties in REPL

> sentence.

sentence.anchor sentence.big

sentence.blink sentence.bold

sentence.charAt sentence.charCodeAt

sentence.codePointAt sentence.concat

sentence.endsWith sentence.fixed

sentence.fontcolor sentence.fontsize

sentence.includes sentence.indexOf

sentence.italics sentence.lastIndexOf

You can find additional REPL commands in lesson 1.

A.2.2. Using REPL in application development

One other useful way to use REPL is through the repl module within your Node.js application
code. As you build more custom modules in your project, you’ll notice that it’s tedious to load all
those files into REPL to test the functionality of the code you’ve written. If you wrote a module
called multiply.js (listing A.12) that contains a function to multiply two numbers, you’d need to
require that module into REPL by entering require("./multiply")along with every other
module you created. What’s more, you’d need to enter these lines for every new REPL session.

Listing A.12. Creating a single-function module in multiply.js

module.exports = {

 multiply: (x, y) => {

 return x * y;

 }

};

Instead of requiring your modules into each REPL session, you could bring REPL into your
modules. Listing A.13 shows how you could use the repl module within your project. You can
create a module within your project directory called customRepl.js that requires all the modules
you want to test at the same time. This file shows the repl module being required and then a
REPL server starting. Like a Node.js HTTP server, this REPL server has a context within which
you can load custom variables. After the REPL server is started, add a namevariable and
your multiply module.

Listing A.13. Using the repl module in customRepl.js

const repl = require("repl"),

 replServer = repl.start({

 prompt: "> ",

});

replServer.context.name = "Jon Wexler";

replServer.context.multiply = require("./multiply").multiply;

All you need to do now is navigate to your project directory in terminal and enter node
customRepl. You’ll see the REPL prompt, only this time, the context of your REPL session
contains all the modules you want to test. This technique comes in handy when you want to test
creating or modifying records in your database without having to copy and paste the code to
require your database configurations.

SUMMARY

This appendix provided an overview of the JavaScript keywords and syntax you should be aware
of in this book. With ES6 now widely used in the development community, it’s important to
start writing code that reflects the latest and greatest JavaScript changes. The more familiar you
get with using REPL and JavaScript commands, the easier it will be to develop your applications
quickly.

Appendix B. Logging and using Node.js global objects

B.1. LOGGING

Logging helps you understand what functions and middleware are being run, shows you what
errors your application is producing, and provides better insight into what’s going on in your
application.

The console module is a core Node.js module and a global object, which means that you can
access the console keyword anywhere in your application code. When you run console.log(),
passing some message as a string of text, the output typically is printed in a terminal window or
a file. For the purposes of this book, the console module offers the right logging tools for
dissecting your application code. Aside from the logging tips in lesson 2, a few logging commands
are important to keep in mind.

The console module has two outputs: standard and error. Although both of these outputs show
text in your terminal window, they behave differently in a browser console. The next listing
shows some of the other logging functions you can use with console.

Listing B.1. Using logging functions

console.log("Standard output log message"); 1

console.error("Error output log message"); 2

console.info("Standard output log message"); 3

console.warn("Error output log message"); 4

• 1 Prints a log message to your console
• 2 Prints a log message using the error output
• 3 Prints a log message as an alias for console.log
• 4 Prints a log message as an alias for console.error

In a Node.js application, these four functions behave similarly on the server. When you use
these logging functions in client-side JavaScript, you’ll notice that your browser’s console
window prints your log messages in formats that correspond to the message type. Warning
messages have an orange background, for example, and error messages appear in red.

Two other functions that you may find useful are console.time and console.timeEnd. These two
functions can be used in tandem to log the time it takes between the beginning and end of
certain operations in your code. The text within these functions needs to match for the timer to
work. In the next listing, function xyz takes one second and then logs a message. The resulting
time for this operation logs slightly more than one second.

Listing B.2. Logging time of an operation

console.time("function xyz"); 1

(function xyz() {

 setTimeout(function() {

 console.log("prints first"); 2

 console.timeEnd("function xyz"); 3

 }, 1000);

})();

• 1 Starts the console timer
• 2 Prints the console.log message as part of the function operation
• 3 Records time at the end

console.log will become one of your best friends in web development, as log notes help you find
bugs. Get to know your new friend with a little practice and variation.

B.2. GLOBAL OBJECTS

In Node.js, global objects are accessible throughout any application. You can use these objects at
any point in a Node.js application. These objects can contain information about the application
or filesystem. The following global objects are used most often in Node.js applications:

• console prints to the console or standard output wherever your application is running.
• __dirname returns the absolute path to the directory location on your machine, as follows:

• console.log(__dirname);

>> /Users/Jon/Desktop

• __filename provides the absolute path to the application directory on your machine, as
follows:

• console.log(__filename);

>> /Users/Jon/Desktop/filename_example.js

• process references the process (thread) on which your application is running. This object
is the main source of your application’s resources and connections to the filesystem.

Some objects appear to be similar to the Node.js global objects but come from other libraries
required into your project. These objects are available in most Node.js applications. As you learn
to work with the following objects, their use cases will make more sense:

• module references the current module (JavaScript file) in which you’re working and
allows you to access other variables within that file.

• exports references a key/value pairing object to store a module’s functions or objects so
they can be shared across other modules. Using this object is mostly the same as

using module.exports. In the following example, accessibleFunction is exported for use
in other modules:

• exports.accessibleFunction = () => {

• console.log("hello!");

}

• require allows you to import other modules’ code into a current module and gives you
access to code written outside the current working file. The require keyword is used as
follows:

const http = require("http");

	Get Programming with Node.js
	Jonathan Wexler
	Copyright
	DEDICATION

	Foreword
	Preface
	Acknowledgments
	About this book
	WHAT IS NODE.JS?
	Listing Example of asynchronous flow

	GOALS OF THE BOOK
	WHO SHOULD READ THIS BOOK
	HOW THIS BOOK IS ORGANIZED: A ROAD MAP
	ABOUT THE CODE
	SOFTWARE REQUIREMENTS
	LIVEBOOK DISCUSSION FORUM

	About the author
	Unit 0. Getting set up
	Lesson 0. Setting up Node.js and the JavaScript engine
	0.1. WHAT YOU’RE GOING TO LEARN
	Note

	0.2. UNDERSTANDING NODE.JS
	Note
	Figure 0.1. Simplified model of the Node.js event loop

	0.3. WHY LEARN TO DEVELOP IN NODE.JS?
	0.4. PREPARING YOURSELF FOR THIS BOOK
	Tip

	SUMMARY

	Lesson 1. Configuring your environment
	1.1. INSTALLING NODE.JS
	Note
	Figure 1.1. Node.js installer page
	Note
	Figure 1.2. Node.js writing to your machine
	Note
	Tip

	1.2. INSTALLING A TEXT EDITOR
	Tip

	1.3. SETTING UP SCM AND DEPLOYMENT TOOLS
	Figure 1.3. Installing Git from the downloads page
	Tip
	Listing 1.1. Installing Homebrew on Unix computers in terminal

	1.4. WORKING WITH THE NODE.JS REPL IN TERMINAL
	Note
	Listing 1.2. REPL command examples
	Table 1.1. REPL commands to remember

	SUMMARY

	Lesson 2. Running a Node.js application
	Note
	2.1. CREATING A JAVASCRIPT FILE
	Note
	Note

	2.2. RUNNING YOUR JAVASCRIPT FILE WITH NODE.JS
	Figure 2.1. Running a JavaScript file with Node.js
	Tip

	2.3. RUNNING INDIVIDUAL JAVASCRIPT COMMANDS
	Listing 2.1. Declaring a JavaScript variable in messages.js
	Note
	Listing 2.2. Loading a JavaScript file into REPL
	Listing 2.3. Use a file’s contents in REPL
	Listing 2.4. Results from the console.log loop

	SUMMARY
	Note
	Listing 2.5. String interpolation example

	Unit 1. Getting started with Node.js
	Lesson 3. Creating a Node.js module
	Note
	Listing 3.1. Log messages to console in printMessages.js
	3.1. RUNNING NPM COMMANDS
	Table 3.1. npm commands to know
	Note

	3.2. INITIALIZING A NODE.JS APPLICATION
	Listing 3.2. Result of package.json file in recipe_connection project in terminal
	Figure 3.1. Installing a package in terminal
	Listing 3.3. Result of your package.json file after package installation in terminal
	Figure 3.2. Node.js application structure with node_modules
	Note
	Note
	Listing 3.4. Implementing the cities package in main.js
	Listing 3.5. Sample result from running main.js in terminal

	SUMMARY
	Listing 3.6. Exporting a function

	Lesson 4. Building a simple web server in Node.js
	4.1. UNDERSTANDING WEB SERVERS
	Figure 4.1. A web server sends your browser web pages, images, and other resources on request.

	4.2. INITIALIZING THE APPLICATION WITH NPM
	Note

	4.3. CODING THE APPLICATION
	Note
	Note
	Note
	Warning
	Note
	Listing 4.1. Simple web application code in main.js
	Note
	Note

	4.4. RUNNING THE APPLICATION
	Figure 4.2. Running the a basic Node.js server
	Figure 4.3. Display of your first web page

	SUMMARY

	Lesson 5. Handling incoming data
	5.1. REWORKING YOUR SERVER CODE
	Note
	Note
	Listing 5.1. A simple server with a request event listener in main.js
	Note

	5.2. ANALYZING REQUEST DATA
	Listing 5.2. Logging request data in main.js
	Listing 5.3. Logging request data in main.js
	Note
	Figure 5.1. A web server collects posted data and arranges it.
	Listing 5.4. Handling posted request data in main.js
	Tip
	Note
	Figure 5.2. Results of running a curl command
	Tip

	5.3. ADDING ROUTES TO A WEB APPLICATION
	Listing 5.5. Simple server example in main.js
	Listing 5.6. Simple routing in a web server in main.js
	Listing 5.7. Route with a timer in main.js
	Figure 5.3. Browser view for the /contact URL

	SUMMARY
	Note
	Note

	Lesson 6. Writing better routes and serving external files
	6.1. SERVING STATIC FILES WITH THE FS MODULE
	Figure 6.1. Application structure with views
	Listing 6.1. Boilerplate HTML for the index.html page
	Note
	Listing 6.2. Using the fs module in server responses in main.js
	Note
	Tip
	Listing 6.3. Using fs and routing to dynamically read and serve files in main.js
	Note
	Warning
	Figure 6.2. Server routing logic to render views

	6.2. SERVING ASSETS
	Figure 6.3. Arranging your assets so they’re easier to separate and serve
	Listing 6.4. A web server with specific routes for each file in your project

	6.3. MOVING YOUR ROUTES TO ANOTHER FILE
	Listing 6.5. Adding functions to the module’s exports object in router.js
	Note
	Figure 6.4. The exports object gives other files access to specific functionality.
	Listing 6.6. Handling and managing your routes in main.js

	SUMMARY

	Lesson 7. Capstone: Creating your first web application
	7.1. INITIALIZING THE APPLICATION
	Listing 7.1. Project package.json file contents

	7.2. UNDERSTANDING APPLICATION DIRECTORY STRUCTURE
	Listing 7.2. Project directory structure for confetti_cuisine
	Note

	7.3. CREATING MAIN.JS AND ROUTER.JS
	Note
	Listing 7.3. Contents of main.js with required modules
	Listing 7.4. Object mapping in contentTypes.js
	Listing 7.5. Utility functions in utils.js
	Listing 7.6. Handling routes in router.js

	7.4. CREATING VIEWS
	Figure 7.1. Example home page for Confetti Cuisine
	Listing 7.7. Example form that posts to the home-page route in contact.html
	Figure 7.2. Example contact page for Confetti Cuisine

	7.5. ADDING ASSETS
	7.6. CREATING ROUTES
	Listing 7.8. Registering individual routes with the router module in main.js
	Note
	Note

	SUMMARY

	Unit 2. Easier web development with Express.js
	Lesson 8. Setting up an app with Express.js
	8.1. INSTALLING THE EXPRESS.JS PACKAGE
	Table 8.1. Node.js frameworks to know
	Note
	Note
	Note
	Warning
	Tip

	8.2. BUILDING YOUR FIRST EXPRESS.JS APPLICATION
	Listing 8.1. Simple Express.js web application in main.js
	Note

	8.3. WORKING YOUR WAY AROUND A WEB FRAMEWORK
	Figure 8.1. Express.js stands between the HTTP requests and your application code.
	Note
	Listing 8.2. Request object methods in Express.js in main.js
	Table 8.2. Request object data items
	Tip

	SUMMARY

	Lesson 9. Routing in Express.js
	9.1. BUILDING ROUTES WITH EXPRESS.JS
	Listing 9.1. Express.js POST route in main.js
	Listing 9.2. Using route parameters to indicate vegetable type in main.js
	Listing 9.3. Complete Express.js example in main.js
	Listing 9.4. Express.js middleware function for logging request path in main.js
	Warning
	Figure 9.1. The role of middleware functions

	9.2. ANALYZING REQUEST DATA
	Listing 9.5. Capturing posted data from the request body in main.js

	9.3. USING MVC
	Table 9.1. Model-view-controller parts
	Figure 9.2. Express.js MVC file structure
	Figure 9.3. Express.js can follow the MVC structure with routes feeding controllers
	Listing 9.6. Moving a callback to homeController.js
	Listing 9.7. Replacing a callback with a controller function in main.js

	SUMMARY

	Lesson 10. Connecting views with templates
	10.1. CONNECTING A TEMPLATING ENGINE
	Table 10.1. Templating engines
	Figure 10.1. Converting EJS to HTML
	Note
	Listing 10.1. Sample EJS content in your index.ejs view
	Listing 10.2. Rendering a view from a controller action in homeController.js
	Note

	10.2. PASSING DATA FROM YOUR CONTROLLERS
	Listing 10.3. Passing a route parameter to your view in homeController.js
	Warning

	10.3. SETTING UP PARTIALS AND LAYOUTS
	Listing 10.4. EJS layout file contents in layout.ejs
	Figure 10.2. Example view of name page
	Note

	SUMMARY

	Lesson 11. Configurations and error handling
	11.1. MODIFYING YOUR START SCRIPT
	Listing 11.1. Add the npm start script to your package.json
	Tip

	11.2. HANDLING ERRORS WITH EXPRESS.JS
	Note
	Listing 11.2. Adding a function to your error controller, errorController.js
	Tip
	Warning
	Listing 11.3. Handle missing routes and errors with custom messages in errorController.js
	Listing 11.4. Handle missing routes and errors with custom messages: main.js
	Listing 11.5. Handle missing routes and errors with custom messages

	11.3. SERVING STATIC FILES
	Note

	SUMMARY

	Lesson 12. Capstone: Enhancing the Confetti Cuisine site with Express.js
	12.1. INITIALIZING THE APPLICATION
	Tip
	Note
	Listing 12.1. Project configurations in package.json
	Listing 12.2. Confetti Cuisine project file structure

	12.2. BUILDING THE APPLICATION
	Listing 12.3. Setting up the main application logic in main.js
	Listing 12.4. Adding body parsing to the top of main.js

	12.3. ADDING MORE ROUTES
	Listing 12.5. Adding route actions to my home controller in homeController.js
	Listing 12.6. Adding routes for each page and request type in main.js

	12.4. ROUTING TO VIEWS
	Table 12.1. Confetti Cuisine views
	Listing 12.7. Enable EJS layout rendering in main.js
	Listing 12.8. Contact form in contact.ejs
	Note

	12.5. SERVING STATIC VIEWS
	12.6. PASSING CONTENT TO THE VIEWS
	Note
	Listing 12.9. Set up content on server and pass into rendered view in homeController.js
	Listing 12.10. Loop through and display dynamic content in view in courses.ejs
	Figure 12.1. View of courses page

	12.7. HANDLING THE ERRORS
	Listing 12.11. Adding error handling routes in errorController.ejs
	Note
	Listing 12.12. Adding error handling routes in main.js
	Figure 12.2. View of error page

	SUMMARY

	Unit 3. Connecting to a database
	Lesson 13. Setting up a MongoDB Database
	13.1. SETTING UP MONGODB
	Figure 13.1. Example document
	Listing 13.1. Command to install Homebrew on a Mac in terminal
	Note
	Tip
	Note
	Note

	13.2. RUNNING COMMANDS IN THE MONGODB SHELL
	Warning
	Figure 13.2. MongoDB shell viewing current test database
	Listing 13.2. Show all databases in terminal
	Note
	Listing 13.3. Add data to a new collection in terminal
	Note
	Listing 13.4. Find all data response in terminal
	Note
	Figure 13.3. Database view in MongoDB Compass
	Table 13.1. MongoDB Shell Commands

	13.3. CONNECTING MONGODB TO YOUR APPLICATION
	Note
	Note
	Listing 13.5. Add MongoDB connection to Express.js in main.js
	Note
	Listing 13.6. Insert data from your Node.js application into terminal

	SUMMARY

	Lesson 14. Building models with Mongoose
	14.1. SETTING UP MONGOOSE WITH YOUR NODE.JS APPLICATION
	Figure 14.1. Models created with Mongoose map to documents in MongoDB.
	Listing 14.1. Configuring Mongoose with your Node.js application in main.js
	Note
	Listing 14.2. Log a message when the database is connected in main.js

	14.2. CREATING A SCHEMA
	Listing 14.3. Subscriber schema in main.js
	Note
	Note
	Listing 14.4. Statements to create and save models in main.js

	14.3. ORGANIZING YOUR MODELS
	Listing 14.5. Moving the schema and model to a separate module
	Note
	Listing 14.6. Example query to run in main.js
	Note

	SUMMARY

	Lesson 15. Connecting Controllers and Models
	15.1. CREATING A CONTROLLER FOR SUBSCRIBERS
	Note
	Note
	Listing 15.1. Building your subscribers controller in subscribersController.js
	Note
	Listing 15.2. Using the subscribers controller in main.js
	Figure 15.1. Example browser response with subscriber data
	Note
	Listing 15.3. Looping and printing subscribers in a subscribers.ejs
	Figure 15.2. Example browser view with listed subscriber data

	15.2. SAVING POSTED DATA TO A MODEL
	Figure 15.3. Flow from a web page form to your database
	Listing 15.4. Form to post subscriber data in contact.ejs
	Note
	Listing 15.5. Routes for the subscriptions in main.js
	Listing 15.6. Controller actions for subscription routes in subscribersController.js
	Note

	15.3. USING PROMISES WITH MONGOOSE
	Note
	Figure 15.4. Promise chain in Mongoose.js
	Note
	Listing 15.7. Using promises to get all subscribers in subscribersController.js
	Listing 15.8. Modifying saveSubscriber to use promises in subscribers-Controller.js
	Listing 15.9. Creating new data in seed.js

	SUMMARY

	Lesson 16. Capstone: Saving user subscriptions
	16.1. SETTING UP THE DATABASE
	Listing 16.1. Setting up Mongoose in the Node.js application in main.js

	16.2. MODELING DATA
	Listing 16.2. Defining a subscriber schema in subscriber.js
	Listing 16.3. Creating an exported subscriber model in subscriber.js
	Listing 16.4. Controller actions for subscribers in subscribersController.js

	16.3. ADDING SUBSCRIBER VIEWS AND ROUTES
	Listing 16.5. Looping through subscribers in subscribers.ejs
	Note
	Listing 16.6. For new subscribers in contact.ejs
	Figure 16.1. Listing subscriber data on the subscribers page
	Listing 16.7. Adding subscriber routes in main.js
	Figure 16.2. Listing subscription form on the contact page

	SUMMARY

	Unit 4. Building a user model
	Lesson 17. Improving Your Data Models
	17.1. ADDING VALIDATIONS ON THE MODEL
	Listing 17.1. Defining a subscriber schema in subscriber.js
	Note
	Listing 17.2. Adding validators to the subscriber schema in subscriber.js
	Note
	Listing 17.3. Adding instance methods to the schema in subscriber.js
	Warning
	Note
	Table 17.1. Mongoose queries
	Note

	17.2. TESTING MODELS IN REPL
	Listing 17.4. Set up subscriber model in REPL in terminal
	Note
	Listing 17.5. Testing model methods and Mongoose queries in REPL in terminal
	Figure 17.1. Example response for Mongoose REPL commands
	Tip

	17.3. CREATING MODEL ASSOCIATIONS
	Figure 17.2. Relational database associations
	Table 17.2. Data relationships
	Listing 17.6. Creating a new schema and model in course.js
	Note

	17.4. POPULATING DATA FROM ASSOCIATED MODELS
	Note
	Listing 17.7. Testing model associations using REPL in terminal
	Note
	Listing 17.8. Resulting console log from REPL in terminal
	Listing 17.9. Series of commands in REPL.js
	Tip

	SUMMARY

	Lesson 18. Building the user model
	18.1. BUILDING THE USER MODEL
	Warning
	Note
	Listing 18.1. Creating a User model in user.js
	Listing 18.2. Adding a virtual attribute to the user model in user.js
	Note
	Tip
	Listing 18.3. Creating a new user in REPL in terminal
	Note
	Listing 18.4. Showing the results of a saved user object in terminal
	Listing 18.5. Connecting a subscriber to the user in REPL in terminal
	Listing 18.6. Connecting a subscriber to the user in REPL in terminal
	Note

	18.2. ADDING CRUD METHODS TO YOUR MODELS
	Figure 18.1. Views for each CRUD action
	Table 18.1. CRUD actions
	Table 18.2. PUT and DELETE HTTP methods
	Listing 18.7. Modifying your actions in homeController.js
	Note

	18.3. BUILDING THE INDEX PAGE
	Note
	Listing 18.8. Listing all users in index.js
	Listing 18.9. Creating the index action in usersController.js
	Note
	Listing 18.10. Adding usersController and a route to main.js
	Figure 18.2. Example of users index page in your browser

	18.4. CLEANING UP YOUR ACTIONS
	Listing 18.11. Revisiting the index action in usersController.js

	SUMMARY

	Lesson 19. Creating and reading your models
	19.1. BUILDING THE NEW USER FORM
	Figure 19.1. Example of user-creation form in your browser
	Listing 19.1. Building a user creation form in new.ejs

	19.2. CREATING NEW USERS FROM A VIEW
	Note
	Listing 19.2. Adding a create action to usersController.js
	Note
	Listing 19.3. Adding new and create routes to main.js
	Note
	Listing 19.4. Adding a pre(‘save’) hook to user.js

	19.3. READING USER DATA WITH SHOW
	Listing 19.5. User show table in show.ejs
	Note
	Listing 19.6. Updated name data in index.ejs
	Figure 19.2. Users’ index page with linked names in your browser
	Listing 19.7. Show action for a specific user in usersController.js
	Note
	Figure 19.3. Users show page in your browser

	SUMMARY

	Lesson 20. Updating and Deleting your Models
	20.1. BUILDING THE EDIT USER FORM
	Listing 20.1. Input example with user’s data in edit.ejs
	Figure 20.1. Users index page with edit links in your browser
	Listing 20.2. Modified table with link to edit users in index.ejs
	Listing 20.3. Adding method-override to your application in main.js
	Listing 20.4. Pointing the edit form to the update route in edit.ejs
	Figure 20.2. User edit page in your browser
	Listing 20.5. Complete user edit form in edit.ejs

	20.2. UPDATING USERS FROM A VIEW
	Listing 20.6. Adding edit and update actions to usersController.js
	Listing 20.7. Adding edit and update routes to main.js

	20.3. DELETING USERS WITH THE DELETE ACTION
	Figure 20.3. Users index page with delete links in your browser
	Note
	Listing 20.8. Delete link in users index.ejs
	Listing 20.9. Adding the delete action to usersController.js
	Listing 20.10. Adding links for user CRUD actions to show.ejs
	Figure 20.4. User’s show page with links to edit and delete

	SUMMARY

	Lesson 21. Capstone: Adding CRUD Models to Confetti Cuisine
	21.1. GETTING SET UP
	Figure 21.1. Capstone file structure

	21.2. BUILDING THE MODELS
	Listing 21.1. Improved Subscriber schema in subscriber.js
	Listing 21.2. Properties for the Course schema in course.js
	Listing 21.3. Creating the User model in user.js
	Listing 21.4. Adding a virtual attribute and pre(“save”) hook in user.js

	21.3. CREATING THE VIEWS
	Figure 21.2. Subscribers index page in the browser
	Note
	Listing 21.5. Listing subscribers in index.ejs
	Listing 21.6. Creating the new subscriber form in new.ejs
	Figure 21.3. Subscriber edit page in the browser
	Listing 21.7. The edit page for a subscriber in edit.ejs
	Listing 21.8. The show page for a subscriber in show.ejs
	Note
	Listing 21.9. Show the number of subscribed courses in show.ejs

	21.4. STRUCTURING ROUTES
	Listing 21.10. Adding subscriber CRUD routes to main.js
	Note

	21.5. CREATING CONTROLLERS
	Note
	Listing 21.11. Adding subscriber controller actions in subscribersController.js

	SUMMARY

	Unit 5. Authenticating user accounts
	Lesson 22. Adding sessions and flash messages
	22.1. SETTING UP FLASH MESSAGE MODULES
	Note
	Note
	Listing 22.1. Requiring flash messaging in main.js
	Note

	22.2. ADDING FLASH MESSAGES TO CONTROLLER ACTIONS
	Listing 22.2. Middleware to associate connectFlash to flashes on response
	Note
	Listing 22.3. Adding flash messages to the create action in usersController.js
	Note
	Note
	Listing 22.4. Adding flash messages in layout.ejs
	Tip
	Figure 22.1. Successful flash message shown on the /users page
	Figure 22.2. Error flash message shown on the home page
	Listing 22.5. Adding a flash message to the rendered index view

	SUMMARY

	Lesson 23. Building a user login and hashing passwords
	23.1. IMPLEMENTING THE USER LOGIN FORM
	Listing 23.1. Creating a user login form in login.ejs
	Note
	Listing 23.2. Adding the login route to main.js
	Listing 23.3. Adding login and authenticate actions to usersController.js
	Figure 23.1. Example of user login page in your browser
	Figure 23.2. Failed user login page in your browser
	Figure 23.3. Successful user login page in your browser

	23.2. HASHING PASSWORDS
	Note
	Note
	Listing 23.4. Adding a hashing pre hook in user.js
	Note
	Listing 23.5. Modifying the authenticate action in usersController.js
	Figure 23.4. Show hashed password in user’s show page in browser
	Note
	Figure 23.5. Incorrect password screen in browser

	23.3. ADDING VALIDATION MIDDLEWARE WITH EXPRESS-VALIDATOR
	Listing 23.6. Adding the validate middleware to the users create route in main.js
	Listing 23.7. Creating a validate controller in usersController.js
	Note
	Figure 23.6. Failed express-validator validation messages

	SUMMARY
	Note
	Note

	Lesson 24. Adding User Authentication
	24.1. IMPLEMENTING PASSPORT.JS
	Listing 24.1. Requiring and initializing passport in main.js
	Note
	Listing 24.2. Setting up passport serializing in main.js
	Note
	Listing 24.3. Adding the passport-local-mongoose plugin to the user schema
	Note

	24.2. MODIFYING THE CREATE ACTION TO USE PASSPORT REGISTRATION
	Note
	Listing 24.4. Registering new users in the create action in main.js
	Tip

	24.3. AUTHENTICATING USERS AT LOGIN
	Listing 24.5. Adding passport authentication middleware in usersController.js
	Listing 24.6. Adding login status to navigation bar in layout.ejs
	Listing 24.7. Adding local variables to custom middleware
	Figure 24.1. Example of a successful login in the browser
	Listing 24.8. Adding a logout action in usersController.js
	Figure 24.2. Example of a successful user logout in the browser

	SUMMARY

	Lesson 25. Capstone: Adding User Authentication to Confetti Cuisine
	25.1. GETTING SET UP
	25.2. CREATING A LOGIN FORM
	Listing 25.1. Adding a login form to users/login.ejs
	Note
	Listing 25.2. Adding a login route to main.js
	Listing 25.3. Adding the login action to usersController.js

	25.3. ADDING ENCRYPTION WITH PASSPORT.JS
	Listing 25.4. Adding passport with Express.js in main.js
	Note
	Listing 25.5. Adding passport-local-mongoose as a plugin to the User model
	Note

	25.4. ADDING FLASH MESSAGING
	Listing 25.6. Adding custom middleware to use flash messaging in main.js
	Listing 25.7. Adding logic to use flash messaging in layout.ejs
	Listing 25.8. Adding passport registration and flash messaging in the create action

	25.5. ADDING VALIDATION MIDDLEWARE WITH EXPRESS-VALIDATOR
	Listing 25.9. Adding a validation action before create in main.js
	Listing 25.10. Adding a validate action in usersController.js

	25.6. ADDING AUTHENTICATION WITH PASSPORT.JS
	Note
	Listing 25.11. Adding an authenticate action in usersController.js

	25.7. LOGGING IN AND OUT
	Listing 25.12. Adding local variables to the response through middleware
	Listing 25.13. Adding a login status to my navigation bar in layout.ejs
	Listing 25.14. Adding a logout action to usersController.js
	Figure 25.1. Successful login on Confetti Cuisine

	SUMMARY

	Unit 6. Building an API
	Lesson 26. Adding an API to Your Application
	26.1. ORGANIZING YOUR ROUTES
	Note
	Listing 26.1. Moving user routes to userRoutes.js
	Listing 26.2. Importing all routes into index.js
	Note
	Note

	26.2. CREATING AN API
	Figure 26.1. Display of JSON course results in browser
	Figure 26.2. Display of courses in MongoDB
	Listing 26.3. Responding with JSON when query param exists in usersController.js

	26.3. CALLING YOUR API FROM THE CLIENT
	Listing 26.4. Simple bootstrap modal in _coursesModel.ejs
	Note
	Listing 26.5. Import jquery and bootstrap into layout.ejs
	Figure 26.3. Simple modal button in navigation bar
	Listing 26.6. Ajax function to load data in modal in recipeApp.js
	Figure 26.4. Populating course data within modal

	SUMMARY

	Lesson 27. Accessing Your API from Your Application
	27.1. APPLYING AN API NAMESPACE
	Note
	Note
	Listing 27.1. Adding a route to show all courses in apiRoutes.js
	Listing 27.2. Adding JSON responses for courses in coursesController.js
	Note
	Listing 27.3. Modifying AJAX call in recipeApp.js

	27.2. JOINING COURSES VIA MODAL
	Note
	Listing 27.4. Adding a button to join a course in recipeApp.js
	Figure 27.1. Adding a join button
	Note
	Note
	Listing 27.5. Adding an event listener to each button in recipeApp.js

	27.3. CREATING AN API ENDPOINT TO CONNECT MODELS
	Listing 27.6. Creating an action to join a course in coursesController.js
	Figure 27.2. Example modal after a course has been joined
	Listing 27.7. Adding an action to filter courses in coursesController.js
	Listing 27.8. Adding dynamic button styling in recipeApp.js
	Note

	SUMMARY

	Lesson 28. Adding API Security
	28.1. IMPLEMENTING SIMPLE SECURITY
	Listing 28.1. Adding middleware function to verify API token in usersController.js

	28.2. ADDING API TOKENS
	Listing 28.2. Creating a pre(“save”) hook to generate an API token in user.js
	Note
	Figure 28.1. Displaying the API token on the user’s show page
	Listing 28.3. Improving the token verification action in usersController.js

	28.3. USING JSON WEB TOKENS
	Table 28.1. Parts of JWTs
	Tip
	Note
	Listing 28.4. Creating a login action for the API in usersController.js
	Listing 28.5. Example response for a successful JWT authentication in terminal
	Listing 28.6. Creating a verification action for the API in usersController.js
	Note
	Note
	Listing 28.7. Creating a verification action for the API in usersController.js
	Warning
	Note

	SUMMARY

	Lesson 29. Capstone: Implementing an API
	29.1. RESTRUCTURING ROUTES
	Figure 29.1. Application structure with routes folder
	Note
	Listing 29.1. User routes in userRoutes.js
	Note
	Listing 29.2. All routes in index.js
	Note

	29.2. ADDING THE COURSES PARTIAL
	Listing 29.3. Code for modal in _coursesModal.ejs
	Note
	Figure 29.2. Modal button in layout navigation

	29.3. CREATING THE AJAX FUNCTION
	Listing 29.4. Creating an Ajax function to retrieve course data in confettiCuisine.js

	29.4. ADDING AN API ENDPOINT
	Listing 29.5. Creating an API route in apiRoutes
	Listing 29.6. Creating an action to enroll users in courses in coursesController.js
	Figure 29.3. Showing course listing through modal in browser
	Note

	29.5. CREATING AN ACTION TO ENROLL USERS
	Note
	Note
	Listing 29.7. Creating an action to enroll users in courses in coursesController.js
	Figure 29.4. Trying to enroll before logging in
	Figure 29.5. Successfully enrolling in a course

	SUMMARY

	Unit 7. Adding chat functionality
	Lesson 30. Working with Socket.Io
	30.1. USING SOCKET.IO
	Figure 30.1. Polling between a client and server
	Figure 30.2. Opening a web socket connection between a client and server

	30.2. CREATING A CHAT BOX
	Listing 30.1. Creating a chat box in chat.ejs
	Listing 30.2. Adding a chat action in homeController.js
	Figure 30.3. Displaying chat view
	Note

	30.3. CONNECTING THE SERVER AND CLIENT
	Listing 30.3. Adding the server io object in main.js
	Note
	Listing 30.4. Handling chat socket connections in chatController.js
	Note
	Listing 30.5. Adding client-side JavaScript for socket.io in recipeApp.js
	Figure 30.4. Displaying text in the chat box

	SUMMARY

	Lesson 31. Saving Chat Messages
	31.1. CONNECTING MESSAGES TO USERS
	Listing 31.1. Emitting an event from the client in recipeApp.js
	Figure 31.1. Displaying chats with two sockets
	Listing 31.2. Change emit message to data in chatController.js
	Listing 31.3. Adding hidden fields in chat form in chat.ejs
	Listing 31.4. Pulling hidden field values from chat form in recipeApp.js
	Note
	Listing 31.5. Receiving socket data in chatController.js
	Note
	Listing 31.6. Pulling hidden field values from chat form in recipeApp.js
	Figure 31.2. Styling user messages with two sockets

	31.2. DISPLAYING USER NAMES IN CHAT
	Listing 31.7. Pulling an additional hidden field value from chat form in recipeApp.js
	Listing 31.8. Displaying the user name in the chat in recipeApp.js
	Figure 31.3. Showing user names with two sockets

	31.3. CREATING A MESSAGE MODEL
	Listing 31.9. Creating the message schema in message.js
	Note
	Listing 31.10. Saving a message in chatController.js
	Listing 31.11. Loading most recent messages in chatController.js
	Listing 31.12. Displaying most recent messages in recipeApp.js

	SUMMARY

	Lesson 32. Adding a Chat Notification Indicator
	32.1. BROADCASTING TO ALL OTHER SOCKETS
	Listing 32.1. Broadcasting event to all other users in chatController.js
	Listing 32.2. Displaying a message when a user disconnects in recipeApp.js
	Figure 32.1. Displaying user disconnects in chat

	32.2. CREATING A CHAT INDICATOR IN NAVIGATION
	Listing 32.3. Animating chat icon when messages are sent in recipeApp.js
	Figure 32.2. Animating the chat icon in the navigation bar

	SUMMARY

	Lesson 33. Capstone: Adding a Chat Feature to Confetti Cuisinex
	33.1. INSTALLING SOCKET.IO
	33.2. SETTING UP SOCKET.IO ON THE SERVER
	Listing 33.1. Adding a chat action in chatController.js

	33.3. SETTING UP SOCKET.IO ON THE CLIENT
	Listing 33.2. Adding a chat action in homeController.js
	Listing 33.3. Adding hidden fields in chat form in chat.ejs
	Listing 33.4. Adding socket.io on the client in confettiCuisine.js
	Listing 33.5. Pulling hidden field values from chat form in confettiCuisine.js

	33.4. CREATING A MESSAGE MODEL
	Listing 33.6. Creating the message schema in message.js
	Listing 33.7. Saving a message in chatController.js

	33.5. LOADING MESSAGES ON CONNECTION
	Listing 33.8. Loading most recent messages in chatController.js
	Listing 33.9. Displaying most recent messages in confettiCuisine.js

	33.6. SETTING UP THE CHAT ICON
	Listing 33.10. Animating chat icon when messages are sent in confettiCuisine.js

	SUMMARY

	Unit 8. Deploying and managing code in production
	Lesson 34. Deploying your application
	34.1. PREPARING FOR DEPLOYMENT
	Note
	Listing 34.1. Changing the application’s port in main.js

	34.2. DEPLOYING YOUR APPLICATION
	Note
	Listing 34.2. Creating a new Heroku app
	Figure 34.1. Displaying the Heroku error page
	Note
	Note

	34.3. SETTING UP YOUR DATABASE IN PRODUCTION
	Warning
	Note
	Figure 34.2. Displaying the Heroku courses page

	SUMMARY

	Lesson 35. Managing in production
	35.1. LOADING SEED DATA
	Listing 35.1. Adding content through seed data in courseSeed.js
	Tip
	Figure 35.1. Display of the populated courses page
	Note

	35.2. LINTING
	Note
	Listing 35.2. Setting up your .eslintrc.js file in terminal
	Listing 35.3. Example .eslintrc.js configuration file
	Note

	35.3. DEBUGGING YOUR APPLICATION
	Note
	Listing 35.4. Example of log messages through Express.js in terminal
	Listing 35.5. Example of log messages with morgan
	Listing 35.6. Debugging the show action in usersController.js

	SUMMARY

	Lesson 36. Testing your application
	36.1. BASIC TESTING WITH CORE MODULES
	Listing 36.1. Simple assertion test in test.js

	36.2. TESTING WITH MOCHA AND CHAI
	Note
	Note
	Note
	Listing 36.2. Exporting the getUserParams function
	Listing 36.3. Exporting the getUserParams function in usersControllerSpec.js
	Figure 36.1. Displaying passing tests in terminal
	Note

	36.3. TESTING WITH A DATABASE AND SERVER
	Listing 36.4. Separating environment databases in main.js
	Note
	Listing 36.5. Setting up a test server port in main.js
	Listing 36.6. Testing saving a Mongoose user in userSpec.js
	Note
	Listing 36.7. Testing the users index action

	SUMMARY

	Lesson 37. Capstone: Deploying Confetti Cuisine
	37.1. LINTING AND LOGGING
	37.2. PREPARING FOR PRODUCTION
	Note

	37.3. DEPLOYING TO HEROKU
	Warning
	Figure 37.1. Application not loading on Heroku

	37.4. SETTING UP THE DATABASE
	Note
	Warning
	Figure 37.2. Displaying contents of mLab database
	Figure 37.3. Loading the home page
	Note
	Listing 37.1. Adding seed data to my production application

	37.5. DEBUGGING IN PRODUCTION
	SUMMARY

	Appendix A. JavaScript syntax introduced in ES6
	A.1. NEW IN ES6
	A.1.1. The let keyword
	Listing A.1. Example use of the let keyword
	Note

	A.1.2. The const variable
	Listing A.2. Example use of the const variable

	A.1.3. String interpolation
	Listing A.3. Example of string concatenation
	Listing A.4. Interpolating strings with backticks

	A.1.4. Arrow functions
	Listing A.5. Defining a function with the function keyword
	Listing A.6. Defining an arrow function
	Listing A.7. Example use of the this keyword within functions
	Listing A.8. Example use of the this keyword with arrow functions

	A.2. REPL
	A.2.1. Running JavaScript in REPL
	Listing A.9. Defining variables in REPL
	Listing A.10. Concatenating variables in REPL
	Listing A.11. Listing variable properties in REPL

	A.2.2. Using REPL in application development
	Listing A.12. Creating a single-function module in multiply.js
	Listing A.13. Using the repl module in customRepl.js

	SUMMARY

	Appendix B. Logging and using Node.js global objects
	B.1. LOGGING
	Listing B.1. Using logging functions
	Listing B.2. Logging time of an operation

	B.2. GLOBAL OBJECTS

