
M A N N I N G

Dave Bechberger
Josh Perryman

Examples in Gremlin

Database engine types ordered by data complexity

Data Complexity

DocumentWide-columnKey-value Relational Graph

Key Value 1

1 1

1 1

1 1 1

{"menu":
"id": "file",
"value": "File",

“Payload”: data
}

{"menu":
"id": "file",
"value": "File",

“Payload”: data
}

{"menu":
"id": "file",
"value": "File",

“Payload”: data
}

Simple Complex

Examples:

Redis

Riak

DynamoDB

Aerospike

Examples:

Cassandra

Apache HBase

Google BigTable

Examples:

MongoDB

DocumentDB

CouchBase

Examples:

Oracle

MySQL

Postgres

SQL Server

Examples:

Dgraph

Neo4j

TigerGraph

CosmosDB

Graph Databases
in Action

EXAMPLES IN GREMLIN

DAVE BECHBERGER

JOSH PERRYMAN

FOREWORD BY TED WILMES

M A N N I N G
SHELTER ISLAND

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2020 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning Publications
was aware of a trademark claim, the designations have been printed in initial caps or all caps.

Gremlin characters and diagrams are trademarked by the Apache Software Foundation/Apache
TinkerPop.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Development editor: Frances Lefkowitz
Technical development editor: Nick Watts

Manning Publications Co. Review editor: Aleks Dragosavljevič
20 Baldwin Road Production editor: Lori Weidert
PO Box 761 Copy editor: Frances Buran
Shelter Island, NY 11964 Proofreader: Melody Dolab

Technical proofreader: Alex Ott
Typesetter: Dennis Dalinnik

Cover designer: Marija Tudor

ISBN: 9781617296376
Printed in the United States of America

www.manning.com

contents
foreword ix
preface xi
acknowledgments xii
about this book xiii
about the authors xviii
about the cover illustration xix

PART 1 GETTING STARTED WITH GRAPH DATABASES1

1 Introduction to graphs 3
1.1 What is a graph? 4

What is a graph database? 6 ■ Comparison with other types
of databases 7 ■ Why can’t I use SQL? 9

1.2 Is my problem a graph problem? 16
Explore the questions 16 ■ I’m still confused. . . . Is this
a graph problem? 19

2 Graph data modeling 24
2.1 The data modeling process 25

Data modeling terms 25 ■ Four-step process for data
modeling 27
iii

CONTENTSiv
2.2 Understand the problem 29
Domain and scope questions 30 ■ Business entity questions 31
Functionality questions 32

2.3 Developing the whiteboard model 33
Identifying and grouping entities 33 ■ Identifying relationships
between entities 34

2.4 Constructing the logical data model 37
Translating entities to vertices 38 ■ Translating relationships
to edges 41 ■ Finding and assigning properties 49

2.5 Checking our model 51

3 Running basic and recursive traversals 54

3.1 Setting up your environment 55
Starting the Gremlin Server 55 ■ Starting the Gremlin Console,
connecting to the Gremlin Server, and loading the data 56

3.2 Traversing a graph 57
Using a logical data model (schema) to plan traversals 58
Planning the steps through the graph data 59 ■ Fundamental
concepts of traversing a graph 61 ■ Writing traversals in
Gremlin 63 ■ Retrieving properties with values steps 68

3.3 Recursive traversals 68
Using recursive logic 68 ■ Writing recursive traversals
in Gremlin 72

4 Pathfinding traversals and mutating graphs 80

4.1 Mutating a graph 81
Creating vertices and edges 82 ■ Removing data from our
graph 86 ■ Updating a graph 88 ■ Extending our graph 95

4.2 Paths 98
Cycles in graphs 100 ■ Finding the simple path 101

4.3 Traversing and filtering edges 103
Introducing the E and V steps for traversing edges 103
Filtering with edge properties 108 ■ Include edges in
path results 109 ■ Performant edge counts and
denormalization 110

CONTENTS v
5 Formatting results 112
5.1 Review of values steps 113
5.2 Constructing our result payload 118

Applying aliases in Gremlin 120 ■ Projecting results instead of
aliasing 127

5.3 Organizing our results 131
Ordering results returned from a graph traversal 131
Grouping results returned from a graph traversal 133
Limiting results 135

5.4 Combining steps into complex traversals 137

6 Developing an application 142
6.1 Starting the project 143

Selecting our tools 144 ■ Setting up the project 145
Obtaining a driver 145 ■ Preparing the database server
Instance 146

6.2 Connecting to our database 147
Building the cluster configuration 147 ■ Setting up the
GraphTraversalSource 148

6.3 Retrieving data 151
Retrieving a vertex 151 ■ Using Gremlin language variants
(GLVs) 153 ■ Adding terminal steps 154 ■ Creating the
Java method in our application 155

6.4 Adding, modifying, and deleting data 156
Adding vertices 156 ■ Adding edges 158 ■ Updating
properties 160 ■ Deleting elements 160

6.5 Translating our list and path traversals 163
Getting a list of results 163 ■ Implementing recursive
traversals 164 ■ Implementing paths 166

PART 2 BUILDING ON GRAPH DATABASES169

7 Advanced data modeling techniques 171
7.1 Reviewing our current data models 172
7.2 Extending our logical data model 173
7.3 Translating entities to vertices 176

Using generic labels 177 ■ Denormalizing graph data 183
Translating relationships to edges 188 ■ Finding and assigning

CONTENTSvi
properties 190 ■ Moving properties to edges 191 ■ Checking our
model 194

7.4 Extending our data model for personalization 194
7.5 Comparing the results 196

8 Building traversals using known walks 198

8.1 Preparing to develop our traversals 199
Identifying the required elements 199 ■ Selecting a starting
place 204 ■ Setting up test data 205

8.2 Writing our first traversal 206
Designing our traversal 206 ■ Developing the traversal code 210

8.3 Pagination and graph databases 214
8.4 Recommending the highest-rated restaurants 218

Designing our traversal 218 ■ Developing the traversal code 220

8.5 Writing the last recommendation engine traversal 230
Designing our traversal 232 ■ Adding this traversal to our
application 234

9 Working with subgraphs 237

9.1 Working with subgraphs 238
Extracting a subgraph 238 ■ Traversing a subgraph 244

9.2 Building a subgraph for personalization 246
9.3 Building the traversal 252

Reversing the traversing direction 253 ■ Evaluating the
individualized results of the subgraph 255

9.4 Implementing a subgraph with a remote connection 256
Connecting with TinkerPop’s Client class 257 ■ Adding this
traversal to our application 258

PART 3 MOVING BEYOND THE BASICS..........................261

10 Performance, pitfalls, and anti-patterns 263
10.1 Slow-performing traversals 264

Explaining our traversal 264 ■ Profiling our traversal 266
Indexes 268

CONTENTS vii
10.2 Dealing with supernodes 269
It’s about instance data 270 ■ It’s about the database 270
What makes a supernode? 270 ■ Monitoring for supernodes 271
What to do if you have a supernode 273

10.3 Application anti-patterns 277
Using graphs for non-graph use cases 277 ■ Dirty data 278
Lack of adequate testing 280

10.4 Traversal anti-patterns 280
Not using parameterized traversals 280 ■ Using unlabeled
filtering steps 283

11 What’s next: Graph analytics, machine learning, and
resources 286

11.1 Graph analytics 287
Pathfinding 287 ■ Centrality 290 ■ Community
detection 292 ■ Graphs and machine learning 296
Additional resources 297

11.2 Final thoughts 299

appendix Apache TinkerPop installation and overview 301

index 311

foreword
At the dawn of a new decade, developers are confronted with a myriad of database
options when beginning a new project. The stalwart relational database still rules the
roost, maintaining popularity in both legacy and greenfield projects. This is for good
reason; flexibility and forty plus years of cumulative engineering history are hard to
argue with. Despite the success of relational databases, the last decade saw an explo-
sion of new commercial and open-source database systems that were designed around
alternative models and query languages. Some tackle traditional RDBMS workloads
with a new twist, perhaps focusing horizontal scale out or high performance via the
embrace of in-memory optimization that have become available due to decreases in
RAM prices. Many other systems diverged from the relational model altogether. Out
of this set, we find a variety of focus areas and modeling paradigms. This book focuses
on one of the more expressive and powerful developments, the graph model, and the
property graph in particular.

 Graph databases aren’t a new thing. Hierarchical and navigational databases have
existed since the 60s, but these have recently experienced an increase in developer popu-
larity. I think this is largely due to the intuitiveness of the property graph data model.
People are already wired to think in graphs. If you draw a graph on a whiteboard, techni-
cal and non-technical folks get it. Consequently, after you overlay the graph model onto
your software tasks at hand, everything starts to look like a graph problem.

 With all that said, we’re still dealing with technology, and the available property
graph databases are the newer technology at that, so there isn’t any magic. This is
where Dave and Josh come in. I can’t imagine a better pair to help lay out the signposts
ix

FOREWORDx
and guide you on the journey to graph understanding. Both are accomplished graph
architects and developers that have been involved in this junior space since before its
recent uptick in popularity. Having worked in graph-based product development and
consulting, they’ve racked up years of real-world experience.

 This experience has influenced their pragmatic approach to the problems of graph
application development, and though both proponents of graphs, they’re proponents
with a healthy dose of skepticism and are not overly fascinated with the technology.
After all, as mentioned, one of the first and most important questions new developers
have is, “Is this a graph problem?” As you make your way through this book, you’ll hone
an intuition for translating real world problems into graph data models and build up
your Gremlin query chops, a popular and powerful property graph query language. The
rubber meets the road in chapter 6 where you use this knowledge to build your first
graph application. By the time you’ve finished, you’ll have the knowledge to evaluate if a
graph database is a good fit for your next project, and if so, to execute on that vision
having already built an example graph database application.

 TED WILMES

Data Architect & JanusGraph Technical Steering Committee Member
Expero Inc.

preface
Two complementary trends started in the mid to late 2000s. First, companies began
using and collecting more data on their customers, competition, and users than ever
before. Second, the information companies wanted from this data became more com-
plex, often containing hidden connections. These two trends drove the need for an eas-
ier exploration of expansive, yet highly connected data. Graph databases met that need.

 Both the authors have gotten an up-close and personal view of this market as the
technology, usage, and adoption of graph technology has matured. We both started
using graph databases in the mid 2010s while working for a niche software consulting
company. Independently, we each worked on projects that used graph databases to
solve specific types of complex data problems. At that time, graph databases were new
and very rough. Despite the challenges of working with new technologies, we both
recognized the power of this tool and were hooked.

 Since then, we have spent countless hours banging our heads against a proverbial
wall to understand all the intricacies and nuances of building graph-backed applica-
tions. This book is the distillation of those countless hours of struggle. It is our hope
that the hands-on nature of this book will provide a solid, foundational understanding
of the skills needed to build graph-backed applications and, in the process, help you
to avoid some of the pitfalls that we encountered.
xi

acknowledgments
This book has been a labor of love, and sometimes frustration, so we first and fore-
most need to thank our wives (Melody and Meredith), and then acknowledge family
and friends for their endless patience and for indulging us as we shared our latest eso-
teric discoveries while working with graph databases. Without their support we never
could have made it through the countless hours it took to create this book.

 A big thank you goes out to Dr. Denise Gosnell, Kelly Mondor, Ted Wilmes, and
Daniel Farrell for all the specific insights, interviews, and support you provided, which
helped us immensely in creating this book.

 We would also like to thank the team at Manning Publications for allowing us the
time and opportunity to publish this book. We would like to thank the entire Manning
staff and specifically our publishers Marjan Bace and Michael Stephens, as well as our
editors Frances Lefkowitz, Nick Watts, Alex Ott, Lori Weidert, and Frances Buran for
all the amazing feedback and endless patience you have shown. Our appreciation also
goes out to all the reviewers whose comments and reviews were invaluable in solidifying
the organization and in clarifying the focus of this book: Scott Bartram, Andrew Blair,
Alain Couniot, Douglas Duncan, Mike Erickson, John Guthrie, Mike Haller, Milorad
Imbra, Ramaninder Singh Jhajj, Mike Jensen, Nicholas Robert Keers, Mladen Knežić,
Miguel Montalvo, Luis Moux, Nick Rakochy, Ron Sher, Deshuang Tang, Richard
Vaughan, and Matthew Welke.

 We would also like to thank the team at Expero Inc., without whom Josh and Dave
would never have met, nor would have ever started their exploration of graph data-
bases. Our many years of working side by side with the exceptionally talented Expero-
nauts were a fruitful starting point that eventually led to writing this book.
xii

about this book
This book is written for anyone building applications using graph databases. It is
designed to provide a foundational understanding of graphs and graph databases, as
well as to provide a framework for building applications using common graph data-
base patterns. To teach this framework, this book follows the development lifecycle of
a fictitious application called DiningByFriends. We use this application throughout
the book to provide a realistic grounding of graph principles and examples of the
concepts and content we teach. In many areas throughout this book, we compare and
contrast the differences between building a graph-backed application and using the
more traditional relational database model. By the end of this book, you will not only
have the skills needed to build your own graph-backed application, but you will have
built your first application, DiningByFriends.

Who should read this book
This book is for application developers, data engineers, and database developers who
want to use graph databases as the backing data store for their applications. Through-
out this book, we do not expect the reader to have any prior experience using graph
databases, but you should be familiar with data modeling concepts, specifically with
relational database development, as these are used heavily throughout as a common
point of reference. Although all the application code is written in Java, any developer
with object-oriented application development experience should be able to follow
along with the concepts and content.
xiii

ABOUT THIS BOOKxiv
How this book is organized: A roadmap
This book is organized into 3 parts, comprising of 11 chapters. In part 1, “Getting
started with graph databases,” we establish the foundation for our DiningByFriends
application:

■ Chapter 1 begins with an introduction to graphs and graph terminology. We
discuss how graph databases differ from relational databases and how you can
use graph databases to solve highly connected data problems. We finish this
chapter by discussing what makes a problem a good candidate for using a
graph database.

■ Chapter 2 is where we hit the ground running by building an initial data model
for our DiningByFriends application. We start with the types of information
needed to begin the data modeling process. We then show how to turn this
information into a conceptual data model. Finally, we walk through a frame-
work for taking our business needs and our conceptual data model and turn
that into our initial data model using the elements of a graph database: vertices,
edges, and properties.

■ Chapter 3 begins a set of three chapters focused on learning the process of que-
rying a graph database, known as traversing. We begin by teaching you how to
retrieve and filter data from our graph. We follow this with learning how to nav-
igate the structure of our graph and how that differs from working with a rela-
tional database. Then we finish up this chapter by demonstrating the ease with
which you can recursively traverse through a graph to retrieve complex, inter-
connected data.

■ Chapter 4 continues our exploration of graph traversals with data mutation use
cases. We then show how you can traverse the graph to find the entities and
relationships that connect two items, known as the path. Finally, we look at how
to leverage properties on relationships to filter the traversals and increase their
performance.

■ Chapter 5 finishes our initial focus on graph traversals with a discussion of ways
to format the results of our traversal into a desired output. Additionally, you
learn how to perform common operations such as sorting, filtering, and limit-
ing the results returned.

■ Chapter 6 begins the process of building our DiningByFriends application by
taking the traversals we developed in chapters 3, 4, and 5 and walking through
incorporating these into a Java application. Then we’ll process the results to
complete this first part.

In part 2, “Building an application with graph databases,” we extend the concepts
introduced in part 1:

■ Chapter 7 uses the foundations of data modeling from chapter 2, as well as what
you learned about traversing a graph, to extend the data model for more com-
plex use cases, such as recommendation engines and personalization.

ABOUT THIS BOOK xv
■ Chapter 8 leverages a recommendation engine use case to demonstrate the
power of using a known-walk pattern to create a robust recommendation appli-
cation pattern.

■ Chapter 9 uses our personalization use case to demonstrate how to use a sub-
graph access pattern within a graph-backed application.

In part 3, “Beyond the basics,” we move past the DiningByFriends application to dis-
cuss our next steps in the application development process.

■ Chapter 10 discusses how to debug and troubleshoot common performance
problems with traversals. We then investigate exactly what supernodes are and
why they cause issues in graph-backed applications. We follow up these com-
mon performance problems with common application and traversal pitfalls and
anti-patterns, as well as how to recognize and avoid them.

■ Chapter 11 takes a forward-looking view and discusses some of the next steps
you might want to take with your graph-backed application. We also discuss
some of the most common graph analytics algorithms and how you can apply
these to solve a specific problem. Finally, we wrap up this chapter with a brief
overview of how to leverage graphs in machine learning (ML) application.

About the code
This book contains many examples of source code, both in numbered listings and in
line with normal text. In both cases, source code is formatted in a fixed-width font
like this to separate it from ordinary text.

 In many cases, the original source code has been reformatted; we’ve added line
breaks and reworked indentation to accommodate the available page size in the book.
In rare cases, even this was not enough and code listings include line-continuation
markers (➥). Additionally, code annotations accompany many of the listings, high-
lighting important concepts.

 The code for the examples in this book is available for download from the Man-
ning website at https://www.manning.com/books/graph-databases-in-action, and from
GitHub at https://github.com/bechbd/graph-databases-in-action.

About the technologies

Our goal throughout this book is to equip the reader with the conceptual knowledge
needed to build graph-backed applications. However, in order to provide practical
examples of these concepts, we had to make decisions regarding the technologies
used for demonstration.

 Our first decision was to pick the type of database. We decided to use a labeled
property graph database, instead of, for example, an RDF store or triplestore data-
base. Labeled property graph databases are the most common type we have seen in
production use and seem to be the ones with the most momentum behind them.
Additionally, these are the closest to the familiar concepts of relational databases, so
labeled property graph databases are quite effective for comparisons.

https://www.manning.com/books/graph-databases-in-action
https://github.com/bechbd/graph-databases-in-action

ABOUT THIS BOOKxvi
 This lead us to our next decision: the traversal language to use, openCypher
or Gremlin.

 While there’s a strong case for using openCypher, the goal of this book is to remain
as vendor-agnostic as possible. It is important to us that these concepts and techniques
are easily transferable to many popular databases when you start to build your applica-
tions. In the end, we decided to use the Apache TinkerPop version 3.4.x framework
because it currently has the most database vendors with compatible implementations.

 We have been questioned multiple times during the proposal and review processes
as to why we chose this stack over a Neo4j/Cypher stack. Given the popularity of the
Neo4j ecosystem this is a fair question which deserves fuller comment. There are three
reasons we chose TinkerPop’s Gremlin for the illustrations throughout this book:

■ Gremlin is a better tool for teaching how a traversal works.
■ Gremlin is a common language of choice for enterprise applications.
■ Gremlin is the most portable language between property graph databases.

As for the first reason, we believe that the imperative design of Gremlin provides a bet-
ter teaching tool for learning how a graph traversal works compared to the declarative
approach of Cypher/openCypher. The syntax of Gremlin requires that we think
about how we are moving through our graph in order to determine where we will
move next. While we do appreciate the simplicity of Cypher/openCypher, it can also
obfuscate critical technical matters, especially when dealing with issues of perfor-
mance or scale. So while Cypher/openCypher is a great starting point for learning
how to work with connected data, we feel that Gremlin is better suited for building
high performing, scalable data applications.

 Because Gremlin is the common language of choice for enterprise applications,
many of these applications were built using TinkerPop-enabled databases. This means
that Gremlin is the query language of choice. Some organizations have both Cypher/
openCypher and Gremlin applications. But in our experience, the bigger, more com-
plex enterprise-level projects seem to have chosen one of the many TinkerPop-enabled
databases or cloud services.

 As for our third choice, at this time, it is easy to say that Gremlin is the most widely
available query language across graph database engines. Nearly all of the major cloud
vendors (Amazon Web Services, Microsoft Azure, IBM, Huawei, and so forth) offer
graph databases or services compatible with Gremlin. The lone exception is the Google
Cloud Platform, which offers Neo4j as a service.

 Our goal is not to advocate for one database or language over another. We seek
to provide you with a solid foundation for how to use a graph database when build-
ing applications with highly connected data and to illustrate how graph databases
work under the cover. We think that Gremlin provides the best path to accomplish
this.

 With the decision to use TinkerPop’s Gremlin made, we had to pick a specific
TinkerPop-enabled database to use. In the spirit of remaining vendor agnostic, we’ve

ABOUT THIS BOOK xvii
decided to use TinkerGraph for the examples. TinkerGraph is the graph implementa-
tion used in the Gremlin Server and Gremlin Console, the reference software pro-
vided as part of the Apache Software Foundation’s TinkerPop project.

 Finally, we had to decide on an application programming language to build our
example application, DiningByFriends. As Java is the most common language we have
used with graph databases, we chose that as our application language. We should note
that it is possible to build the same application with other languages such as C#, Java-
Script and Python. Not only is it possible, we have done so ourselves. But all the tra-
versals provided in this book are written in Gremlin and any application code is
written in Java.

 While almost all the concepts presented throughout this book are not specific to
TinkerPop-enabled databases, there are a few we discuss that are unique to Tinker-
Pop. When this is the case, we'll note where a TinkerPop-specific feature is used so
that you’re aware that a particular feature might not be available in your graph data-
base of choice. If no such note is given, it is safe to assume that the concept we discuss
is applicable to other labeled property graph databases as well.

liveBook discussion forum
Purchase of Graph Databases in Action includes free access to a private web forum run
by Manning Publications where you can make comments about the book, ask technical
questions, and receive help from the authors and from other users. To access the forum,
go to https://livebook.manning.com/#!/book/graph-databases-in-action/discussion.
You can also learn more about Manning’s forums and the rules of conduct at https://
livebook.manning.com/#!/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the authors can take
place. It is not a commitment to any specific amount of participation on the part of
the authors, whose contribution to the forum remains voluntary (and unpaid). We
suggest you try asking the authors some challenging questions lest their interest stray!
The forum and the archives of previous discussions will be accessible from the pub-
lisher’s website as long as the book is in print.

https://livebook.manning.com/#!/book/graph-databases-in-action/discussion
https://livebook.manning.com/#!/discussion
https://livebook.manning.com/#!/discussion

about the authors
DAVE BECHBERGER is a data architect and developer with over two decades of experi-
ence. He uses his extensive knowledge of graph and other big data technologies to
build highly performant and scalable data platforms in complex data domains such as
bioinformatics, oil and gas, and supply chain management. Since the mid-2010s, Dave
has worked with graph databases as a consultant, consumer, and vendor. He is an
active member of the graph community and has presented on a wide range of graph-
related topics at national and international conferences.

JOSH PERRYMAN also has over two decades of experience building and maintaining
complex systems. Since 2014, he has focused on graph databases, especially in distrib-
uted or big data environments, and he regularly blogs and speaks at conferences
about graph databases. Josh has worked with a variety of industries, including enter-
prise software, financial services, consumer products, and government intelligence
agencies. In addition to consulting and product work, he has designed Gremlin train-
ing courses that have been delivered all over the world.
xviii

about the cover illustration
The figure on the cover of Graph Databases in Action is captioned “Femme de la Foret
Noire,” or a woman from the Black Forest, in Southwest Germany. The illustration is
taken from a collection of dress costumes from various countries by Jacques Grasset
de Saint-Sauveur (1757–1810), titled Costumes civils actuels de tous les peoples connus, pub-
lished in France in 1788. Each illustration is finely drawn and colored by hand. The
rich variety of Grasset de Saint-Sauveur’s collection reminds us vividly of how cultur-
ally apart the world’s towns and regions were just 200 years ago. Isolated from each
other, people spoke different dialects and languages. In the streets or in the country-
side, it was easy to identify where they lived and what their trade or station in life was
just by their dress.

 The way we dress has changed since then and the diversity by region, so rich at the
time, has faded away. It is now hard to tell apart the inhabitants of different conti-
nents, let alone different towns, regions, or countries. Perhaps we have traded cultural
diversity for a more varied personal life—certainly for a more varied and fast-paced
technological life.

 At a time when it is hard to tell one computer book from another, Manning cele-
brates the inventiveness and initiative of the computer business with book covers
based on the rich diversity of regional life of two centuries ago, brought back to life by
Grasset de Saint-Sauveur’s pictures.
xix

Part 1

Getting started
with graph databases

Journeys into new technologies take work, and in this book, our journey will
 extend your current knowledge of building relational database applications

to demonstrate how you can solve complex data problems by building graph
databases and graph-backed applications. In this first part, we ease into your
journey by establishing concepts, terms, and processes, while highlighting the
critical differences required when approaching a problem with a graph mindset.

 Chapter 1 introduces the core concepts of graphs and discusses the types of
problems that are well suited for these models. In chapter 2, we establish a data
modeling methodology and build a simple data model for a social network that
we’ll use in our example application, DiningByFriends. The next three chapters
introduce the most common operations that you’ll use to find and manipulate
data in graph databases. We approach these operations in three stages, starting
with the basics of moving around a graph in chapter 3. Chapter 4 then covers
how to perform basic CRUD (Create/Read/Update/Delete) operations before
extending the work we did in chapter 3 to perform more complex recursive and
pathfinding traversals. In chapter 5, we close our introduction by using simple
graph operations to examine ways to organize your results. Chapter 6 completes
this part by synthesizing the work from chapters 2 through 5 into our working
Java application, DiningByFriends.

Introduction to graphs
Modern applications are built on data—data that is ever increasing in both size and
complexity. Even as the complexity of our data grows, so do our expectations of
what insight our applications can derive from that data. If you are old enough, you
likely remember when applications took a long time to load data and had limited
features. Today’s reality is different; applications provide powerful, flexible, and
immediate insight into data. But for every 100 questions modern applications
answer, the most common data tool these use (namely, a relational database) han-
dles only about 88 of those questions well. That leaves 12 types of questions where
relational databases struggle. These remaining questions deal with the links and
connections within the data, those aspects of the data that can generate powerful

This chapter covers
 An introduction to graphs and graph terminology

 How graph databases help solve highly connected
data problems

 The advantages of graph databases over
relational databases

 Identifying problems that make good candidates
for using a graph database
3

4 CHAPTER 1 Introduction to graphs
and unique insights. This puts us at a crossroad: we can use the relational database
“hammer” to pound away at those questions and make this work well enough, or we
can take a step back and look at what other tools can answer these questions better,
faster, and with less effort.

 By reading this book, you decided to take a step back from your relational database
hammer and investigate a road less traveled: graph databases. This book is written for
developers, engineers, and architects who are interested in other ways to solve prob-
lems specific to working with highly connected data. We assume you are already famil-
iar with relational databases but are interested in learning when, where, and how
graph databases are a better tool.

 Our goal with this book is to equip you with the techniques needed to add graph
databases as another tool in your toolbelt. We like to think of this book as the guide
that we wish we had when we started building graph-backed applications. Throughout
this book, we’ll demonstrate common graph patterns that highlight how graph data-
bases enable navigation and exploration of data in ways not easily accomplished with a
traditional relational database.

 Our primary approach is through an example of building a fictitious restaurant
review and recommendation application we call “DiningByFriends.” As we move
through the software development life cycle from planning, to analysis, to design,
and on to implementation, this application demonstrates how to think about and
work with graph data. Each chapter builds on the previous chapter, and by the end of
this book, we’ll have created a functioning application on a graph database. We
believe that putting the concepts immediately to work by solving a realistic set of
problems, even if they are somewhat simplistic, is the best way to get comfortable
using a new technology. Let’s begin our journey with an introduction to what graphs
and graph databases are and how they compare with traditional tools such as rela-
tional databases.

1.1 What is a graph?
When you look at a road map, examine an organizational chart, or use social networks
such as Facebook, LinkedIn, or Twitter, you use a graph. Graphs are a nearly ubiqui-
tous way to think about real-world scenarios as these abstract out the items and the
relationships being represented, and this abstraction allows for quick and efficient
processing of the connections within the data.

 Let’s demonstrate with a common task: going to the supermarket. Take out a piece
of paper and draw out a plan for getting from your house to your supermarket.
Chances are it looks something like figure 1.1.

 Figure 1.1 shows a graph where the key items and relationships are represented by
abstractions. First, we abstracted key locations, like intersections, and represented
these as circles. We then designated the connections between these key intersections
as lines, showing how the key intersections are related. This is just one example of how
we naturally represent real-world problems as graphs.

5What is a graph?
It is human nature to abstract real-world entities and their relationships, and the mathe-
matical name for this abstract construct is a graph. When thinking about a set of data
that contains a vast array of highly interconnected items, we might also describe this
data set as a web of interconnected things, which is just another way of saying a graph.

 On maps, cities are frequently represented by circles, and the roads that connect
these are represented by lines. On an organizational chart (org chart), a circle usually
represents a person, normally with an associated title, and lines that connect these
people together show the employer-employee relationship. In a social network, peo-
ple connect to one another via friending or following. This process of generalizing
entities and the connections between them is the fundamental basis for graphs and
graph theory. Because graphs have been defined and studied by mathematicians for
centuries, we can offer these definitions used in graph theory as our starting terms:

 Graph—A set of vertices (singular, vertex) and edges
 Vertex—A point in a graph where zero or more edges meet, also referred to as a

node or an entity
 Edge—A relationship between two vertices within a graph, sometimes called a

relationship, link, or connection

Euler and origins of graph theory
The origins of graph theory are generally attributed to a paper published by Leonhard
Euler (pronounced “OI-ler”) in 1736, concerning the Seven Bridges of Königsberg.
Königsberg (now known as Kaliningrad) was a Prussian city located on the Pregel
river. The river contained two islands and was traversed, or connected, by seven
bridges. The experiment was to devise a path that would allow citizens of the town to
cross all seven bridges exactly once. Euler approached this problem by creating an
abstract representation of the land masses (as the vertices) and the bridges (as the
connections or edges) between these. Based on this abstraction, Euler stated that it
was not the items specifically that mattered, but the topology of how these items
were connected that played the most significant role.

House 14th Street 14/Main

Main/Pine Pine/Smith

Supermarket

Pine

Smith StMain St

Figure 1.1 A graph representing directions to the supermarket

6 CHAPTER 1 Introduction to graphs
While definitions are nice, graphs have the advantage of being simple to illustrate.
When working with graphs, diagrams usually consist of circles representing vertices
and lines representing edges, as figure 1.2 shows.

NOTE We use the terms vertex and edge throughout this book. Some graph
databases use the term node instead of vertex and relationship instead of edge,
but these are conceptually the same.

Graphs are not new concepts to software developers. These are the basis of many com-
mon data structures that we use in software development all the time, likely without
even realizing it. Common data structures such as linked lists and trees are simply
types of graphs with specific rules applied to them. While these data structures are
well known to developers, the actual implementation details specific to graphs are
usually abstracted away.

1.1.1 What is a graph database?

A graph database is a data-storage engine that combines the basic graph structures of
vertices and edges with a persistence technology and a traversal (query) language to
create a database optimized for storage and fast retrieval of highly connected data.
Unlike other database technologies, graph databases are built on the concept that
the relationships between entities are as or more important than the entities within

(continued)

In his “Seven Bridges of Königsberg” paper, Euler stated that for the problem to be
resolved, the graph needed either zero or two nodes with an odd number of connec-
tions. Nowadays, any graph meeting this condition is known as an Eulerian graph. If
the path visits each edge exactly once, then it contains an Eulerian path. If the start
and end vertex are the same, then it has an Eulerian circuit, which is also known as
an Eulerian cycle. We share this as an interesting bit of historical context, but in our
combined experience, we have never used these academic facts or Eulerian defini-
tions in any real-world problems.

Vertex Edge

Figure 1.2 A graph is easily illustrated
with circles for the vertices and lines for
the edges.

7What is a graph?
the data. Because entities and relationships are treated with equal importance in a
graph database, we can represent and reason over real-world relationships more
accurately and easily, especially when compared to other database technologies. As
we’ll show in this book, graph databases are better tools for both representing the
rich and varied relationships between things, and recognizing patterns based on
these relationships.

 Let’s briefly look at some of the challenges of representing multiple varying types
of relationships with relational databases. Relational databases (in a fit of naming
irony) are rather poor at representing rich relationships. The relationships in rela-
tional databases are foreign keys, which are pointers to primary keys in other tables.
These pointers are not things we can observe and manipulate easily. Instead, the for-
eign keys are followed (at query time) from one row to another row. (Though possi-
ble, it is often expensive to follow these in the reverse direction.) Lookup or linking
tables move away from the query-time-only-pointer construct to allow for storing attri-
butes about the relationship, similar to the edge-construct in graph databases.

 On the other hand, graph databases provide excellent tools for moving through
relationships in our data. By making the connections (edges) as important as the
items, the edges connect to (vertices), graph databases represent these associations as
full-fledged constructs of the database that can be easily observed and manipulated.
This ability to store rich relationships is one of the main reasons that graph databases
are better suited to handling complex linked-data use cases. In developer parlance, we
might say that edges are “first-class citizens” just like the vertices. That is, the relation-
ships are as critical and useful in the data model as the things or entities.

 As a final point, graph databases enhance developer productivity for certain prob-
lems in ways that other technologies cannot. Storing data in a manner that better rep-
resents its real-world counterpart can make it easier for developers to reason over and
understand the domain in which they are working. This allows new team members to
get up to speed more quickly on the domain. They learn the domain and its database
representation simultaneously.

1.1.2 Comparison with other types of databases

Though this book is focused on graph databases, and it uses relational databases as
the primary foil for comparison, we should note that the database world is not limited
to these two types of data stores. In the broadest of terms, a database can be catego-
rized as an engine type in one of the five following ways. Figure 1.3 summarizes the
relationships between these types of engines:

 Key-value—Represents all data by a unique identifier (a key) and an associated
data object (the value). Examples include Berkeley DB, RocksDB, Redis, and
Memcached.

 Wide-column (or column-oriented)—Stores data in rows with a potentially large num-
ber or possibly varying numbers of columns in each row. Examples include Apache
HBase, Azure Table Storage, Apache Cassandra, and Google Cloud Bigtable.

8 CHAPTER 1 Introduction to graphs
 Document—Stores data in a uniquely keyed document that can have varying
schema and that can contain nested data. Examples include MongoDB and
Apache CouchDB.

 Relational—Stores data in tables containing rows with strict schema. Relation-
ships can be established between tables allowing the joining of rows. Examples
include PostgreSQL, Oracle Database, and Microsoft SQL Server.

 Graph—Stores data as vertices (nodes, components) and edges (relationships).
Examples include Neo4j, Apache TinkerPop’s Gremlin Server, JanusGraph,
and TigerGraph.

As you can see from these examples, only the relational databases and graph data-
bases, by default, include the ability to relate entities within the data. It may be possi-
ble to do that with specific implementations of key-value, wide column, or document
databases, but this is usually an enhancement added by a vendor’s specific implemen-
tation. Because our focus is on graph databases and only relational databases offer a
comparable functionality, the rest of our discussions are exclusive to these two types
of engines.

Data Complexity

DocumentWide-columnKey-value Relational Graph

Key Value 1

1 1

1 1

1 1 1

{"menu":
"id": "file",
"value": "File",

“Payload”: data
}

{"menu":
"id": "file",
"value": "File",

“Payload”: data
}

{"menu":
"id": "file",
"value": "File",

“Payload”: data
}

Simple Complex

Examples:

Redis

Riak

DynamoDB

Aerospike

Examples:

Cassandra

Apache HBase

Google BigTable

Examples:

MongoDB

DocumentDB

CouchBase

Examples:

Oracle

MySQL

Postgres

SQL Server

Examples:

Dgraph

Neo4j

TigerGraph

CosmosDB

Figure 1.3 Database engine types ordered by data complexity

9What is a graph?
1.1.3 Why can’t I use SQL?

As developers, we often choose a familiar tool over an optimal one, especially when
dealing with databases. Most development teams have an in-depth knowledge of the
ins and outs of relational databases, but few have expertise in other types of databases.
Therefore, we often default to the relational database either through convenience or
ignorance, while there are better tools in the toolbox to solve certain problems.

 We are not trying to say that relational databases are a poor tool. In fact, it’s usually
the first one that we reach for when working on our own applications. But relational
databases have their limitations. While it is possible to use relational databases with
highly connected data, in many cases the work can be simplified by using a tool designed
for these types of use cases. In this section, we look at three areas where graph databases
provide a simpler, more elegant solution than using a relational database:

 Recursive queries (for example, an organization’s employee reporting hierar-
chy, or org chart)

 Different result types (for example, an orders and products reporting example)
 Paths (for example, a river-crossing puzzle)

For this chapter, we chose three different examples to represent these three unique
graph database capabilities. Starting with the next chapter, we’ll introduce the Dining-
ByFriends problem domain and start the formal data modeling process. At that point,
most of the examples will follow with the development of this sample domain. But
until then, we’ll use a variety of ways to introduce you to the basic concepts of graphs
and graph databases.

RECURSIVE QUERIES

Recursive queries are executed multiple times in succession, repeatedly calling them-
selves until they reach some escape or terminating condition. Relational databases do
not handle recursive operations (especially unbounded ones) well, struggling both
with syntax and performance. This usually leads to writing and maintaining complex
queries, excessive denormalization of our data, or both, all in an effort to return
results in a timely fashion.

 On the other hand, graph databases use their rich relationship representations to
handle these unbounded recursive queries cleanly and efficiently. To see what we’re
talking about, let’s take a look at what a recursive query looks like in both SQL and in
a graph database. Given a list of employees and managers in a company, as shown in
figure 1.4, let’s examine how we determine a person’s reporting hierarchy.

 To model this hierarchy in a relational database, the following query shows how we
would define a table. Then we take this table schema and lay out the data (table 1.1):

CREATE TABLE org_chart (
 employee_id SMALLINT NOT NULL,
 manager_employee_id SMALLINT NULL,
 employee_name VARCHAR(20) NOT NULL
);

10 CHAPTER 1 Introduction to graphs
We then use a recursive function to query this data to find a user’s management hier-
archy. The following code snippet show the query:

WITH RECURSIVE org AS (
 SELECT employee_id,
 manager_employee_id,
 employee_name,
 1 AS level
 FROM org_chart
 UNION
 SELECT e.employee_id,
 e.manager_employee_id,
 e.employee_name,
 m.level + 1 AS level
 FROM org_chart AS e
 INNER JOIN org AS m ON e.manager_employee_id = m.employee_id
)

Table 1.1 Example of a company’s management hierarchy in a relational database

employee_id Manager_employee_id employee_name

1 3 You

2 3 Co-worker

3 4 Team Lead

4 5 Manager #2

5 8 VP

6 5 Manager #1

7 5 Manager #3

8 NULL President/CEO

Co-worker You

Team Lead

Manager #1 Manager #2 Manager #3

VP

President/CEO

Figure 1.4 Management hierarchy
in a company, demonstrating
recursive queries

11What is a graph?
SELECT employee_id, manager_employee_id, employee_name
FROM org
ORDER BY level ASC;

If you’ve ever written common table expressions (CTEs) in SQL like our management
hierarchy query, then you know that these can be complex to write and debug, and are
notorious for poor performance. On the other hand, nested and recursive queries like
the previous hierarchy example are the types of questions that graph databases are opti-
mized to answer. For example, figure 1.5 shows what the same data looks like as a graph.

 To find our user’s management chain in our graph, we need to write a query anal-
ogous to our SQL query, which in graphs is known as a traversal. For our hierarchy
example, we would get a traversal like the following one:

g.V().
 repeat(
 out('works_for')
).path().next()

Co-worker

Team

Lead

Manager

#2

Manager

#1

Manager

#3

VP

President/

CEO

You

works_for

works_for

works_for

works_for works_for

works_forworks_for

Figure 1.5 Graph representation
of organizational hierarchy with the
circles as vertices and the arrows
as edges

12 CHAPTER 1 Introduction to graphs
NOTE The traversal is in a graph query language called Gremlin, which we’ll
use throughout this book. At this point, it isn’t necessary to understand pre-
cisely how it works. We’ll delve into details starting in chapter 3. For now, just
notice the relative simplicity of this query compared to the previous SQL
query.

This example demonstrates the straightforward nature with which you can recursively
ask questions of a graph. If we compare this to figure 1.5, we can see how this traversal
naturally maps to our instinct to visually navigate the hierarchy of the data.

DIFFERENT RESULT TYPES

Have you ever needed to return several different data types from a database, all within
a single result set? While it is possible to achieve this with a union of all the columns in
all of the tables, it tends to yield less than ideal results. One of the strengths of a graph
database is the ability to return differing data types in the results. Let’s look at how
relational and graph databases compare when returning different types.

 For instance, let’s say that we have an order-processing system and we want to
return not only the order information but also the product information. Figure 1.6
represents a traditional implementation with tables in a relational database.

The following code snippet shows how to write a query to retrieve an order with the
associated product information. Table 1.2 shows the result set for this query.

SELECT id,
 name,
 address,
 null AS product_name,
 null AS cost,
 'Order' AS object_type
FROM Orders
UNION
SELECT id,
 null AS name,
 null AS address,
 product_name,
 cost,
 'Product' AS object_type
FROM Products;

Orders

id name address

1

2

John Smith

Jane Right

123 Main. St

643 Park St.

id product_name cost

123

234

widget 1

widget 2

5.95

10.76

Products

Figure 1.6 Orders and Products tables in a relational database; note
the differences in column names.

13What is a graph?
From the results, we see that the union of these two disparate data types dictates that
our answer contains a large number of null values (commonly known as sparse data
or sparse matrix). This abundance of null data is caused by the columns between the
two tables being inconsistent. A relational database specifies that the returned result
set must contain a consistent set of columns. In cases of sparse data, this not only
inflates the amount of data returned, but it also reduces the descriptive nature of
the data structure. Let’s take a look at how that same data appears in a graph data-
base (figure 1.7).

Using this graph, we can write a graph traversal to return both product and order
data. In this example, a graph database returns these results:

gremlin> g.V().valueMap(true)
==>[label:order, address:[123 Main St], name:[John Smith], id:1]
==>[label:order, address:[234 Park St], name:[Jane Right], id:2]
==>[label:product, cost:[10.76], id:234, product_name:[widget 2]]
==>[label:product, cost:[5.95], id:123, product_name:[widget 1]]

Table 1.2 Results from the SELECT query that retrieves the order and associated product information

id Name Address product_name cost object_type

1 John Smith 123 Main St <null> <null> Order

2 Jane Right 234 Park St <null> <null> Order

123 <null> <null> widget 1 5.95 Product

234 <null> <null> widget 2 10.76 Product

Order

id

name

address

1

John Smith

123 Main St

Product

id

product_name

cost

123

widget 1

5.95

Product

id

product_name

cost

234

widget 2

10.76

Order

id

name

address

2

Jane Right

643 Park St.

Figure 1.7 Our order product
information example shown as
vertices in a graph (edges are
not modeled)

14 CHAPTER 1 Introduction to graphs
Compared to the earlier SQL results, the data returned from the graph retains the
semantic meaning of what the object is and what it represents, without the extraneous
null data. Because graph databases provide the flexibility to return disparate data, we
can create much cleaner code when working with highly varied data types.

PATHS

A path is the sequence of vertices and edges that describe how the traversal moved
through the graph; for example, in Google or Apple Maps, a set of directions between
two locations. The ability to return how two objects are connected to each other from
within the database is a feature unique to graph databases.

 Let’s look at a classic puzzle known as the “river crossing puzzle” to illustrate how
paths can help solve problems in a novel fashion. In our river crossing puzzle, we have
a fox, a goose, and a bag of barley that must be transported across a river by a farmer
on a boat. However, this movement is bound by the following constraints:

 The boat can only carry one item in addition to the farmer on each trip.
 The farmer must go on each trip.
 The fox cannot be left alone with the goose or it will eat it.
 The goose cannot be left alone with the barley or it will eat it.

Using a relational database, we can’t find a way to solve this riddle without using a
brute force method to calculate all possible combinations. However, with a little clever
data modeling and the power of a pathfinding algorithm, it’s rather straightforward to
answer this riddle with a graph.

 Let’s start by modeling the initial state of our system as a vertex in our graph. We’ll
call our vertex TGFB_, where each character represents part of the problem:

 T (the boat and the farmer)
 G (the goose)
 F (the fox)
 B (the barley)
 _ (the river)

This TGFB_ vertex encodes the state of the puzzle by telling us that the boat (T), the
goose (G), the fox (F), and the barley (B) are all on one side of the river (_). Our goal
is to achieve a state where these are all on the other side of the river.

 With the vertices representing possible states, we use edges to show how we tran-
sition from one state to the next. For example, figure 1.8 shows how we can repre-
sent the state change of the farmer taking the goose to the other side of the river,
leaving the fox and the barley on the initial side. And figure 1.9 shows the result of

TFGB_ FB_TGtake goose Figure 1.8 Graph representation of the farmer using
the boat (T) to take the goose (G) across the river (_),
leaving the fox (F) with the barley (B).

15What is a graph?
modeling all the potential options as a representation of these states (vertices) and
state changes (edges).

 Figure 1.10 illustrates what happens if we simplify our graph by removing any state
(vertex) that violates a constraint and the adjoining relationships (edges). We can fur-
ther simplify our graph by removing any edge that connects back to a previous state
because this leads us to a previous state (known as a cycle in graphs).

By analyzing figure 1.10, we see two separate paths to get to our desired state. To
query the graph to return these paths, we simply leverage the pathfinding capabilities
of graph databases to return the two appropriate paths as shown by this traversal:

TFGB_

FG_TB

FB_TG

GB_TF

take fox

return empty

take barley

take barley

return goose

take fox

_TGFB

B_TGF

take fox

return goose

take barley

F_TGB

B_TFG

return barley

return fox

return goose

take goose

take goose

return fox

return barley

KEY

F=fox

T=Boat

G=Goose

B=Barley

Underscore (_) represents the river

Each letter shown on which side of

the river it's currently on

return empty TFB_G

F_TGB TFG_B

take goose

TGB_F

G_TBF TG_FB take goose

Figure 1.9 The full graph of the river crossing puzzle using a pathfinding algorithm. Notice the clear depiction
of the possible solutions with any state that violates the highlighted constraints.

TFGB_ FB_TG return empty

take barley

take barley

return goose

take fox

_TGFB

take fox

B_TFG return goose

take goose

KEY

F=fox

T=Boat

G=Goose

B=Barley

Underscore (_) represents the river

Each letter shown on which side of

the river it's currently on

return empty TFB_G

F_TGB TFG_B

TGB_F

G_TBF TG_FB take goose

Figure 1.10 The river crossing puzzle using our pathfinding algorithm with only the valid states

16 CHAPTER 1 Introduction to graphs
g.V('TFGB_').
 repeat(
 out()
).until(hasId('_TGFB')).
 path().next()

When we run this traversal, it returns not only the first and last vertex visited, but also
the entire set of vertices and edges that were visited along the way. The two lists repre-
sent two different paths to the solution:

TFGB_ -take goose-> FB_TG -take empty-> TFB_G -take barley-> F_TGB -return
goose-> TFG_B -take fox-> G_TBF -return empty-> TG_FB -take goose-> _TGFB

TFGB_ -take goose-> FB_TG -take empty-> TFB_G -take fox-> B_TFG -return goose->
TGB_F -take barley-> G_TBF -return empty-> TG_FB -take fox-> _TGFB

Although this example is a riddle, it represents the same fundamental problems
found in many real-world applications, such as finding a route on a map, finding opti-
mal resource usage in a logistics system, or locating connections between people in a
social network. Each of these cases is fundamentally about determining the optimal
set of steps to get from one entity to another. The graph data structure allows us to
leverage these pathfinding capabilities, which are not a native construct in other data-
base types.

1.2 Is my problem a graph problem?
From social network analysis, recommendation engines, dependency analysis, fraud
detection, and master data management, to search problems and research on the
internet, you’ll quickly encounter a listing of good use cases for graph databases. The
difficulty with many of these lists is that unless your problem is one of those specified,
it’s hard to know how or if it’s a good fit for a graph database.

 In this section, instead of focusing on specific use cases, we’ll look at problems in a
more generic way. This is somewhat conceptual, but we find that it can be difficult to
generalize from an example to a specific problem domain. We’ll start with defining a
general problem and then providing some examples to illustrate. We’ll then close this
section with a general framework for evaluating problems and with a decision tree
(which is a form of graph!) to use as a tool for deciding whether to use a graph data-
base or not.

1.2.1 Explore the questions

While reading through the vast array of information on graph databases available on
the internet, you might come across the statement that says, “. . . everything is a graph
problem.” We agree that the real world is easily described in graph terms, but saying
that everything is solved by one type of database is a drastic oversimplification. Just
because a problem can be represented as a graph doesn’t necessarily mean that a
graph database is the best technology to choose to solve that problem.

17Is my problem a graph problem?
 Our process starts with one simple question: “What problem are we trying to
solve?” Answering this question provides crucial details about what questions we are
going to ask, and this governs the types of data we need to store and how we need to
retrieve it. We break down our answers into the following categories of problems:

 Selection/search
 Related or recursive data
 Aggregation
 Pattern matching
 Centrality, clustering, and influence

Let’s examine each of these in turn and discuss what makes each a good or bad candi-
date for using a graph database.

SELECTION/SEARCH

We classify the following types of questions as search or selection problems. These
questions narrowly focus on finding a small set of entities that all share a common
attribute such as name, location, or employer:

 Give me everyone who works at X?
 Who in my system has a first name like John?
 Locate all stores within X miles?

These sorts of questions do not require rich relationships within the data. In most
databases, answering these questions requires using a single filtering criterion or,
potentially, an index. While you can answer these with a graph database, these prob-
lems do not use or require graph-specific functionality. Instead, it is advisable to use a
relational database such as PostgreSQL (https://www.postgresql.org) or a search tech-
nology such as Apache Solr (http://lucene.apache.org/solr) or Elasticsearch (https://
www.elastic.co). These databases or tools are either more mature (e.g., RDBMS) or
better optimized (e.g., search tools) to answer these sorts of questions. Because these
problems don’t leverage the relationships in our data, in our experience, it’s unlikely
that taking on the additional complexities of graph databases is worthwhile.

VERDICT For these types of questions, use an RDBMS or search technology.

RELATED OR RECURSIVE DATA

Questions that explore the relationships between entities add meaning and provide
topological value to data, providing a strong use case for a graph database. Some
examples of these types of questions include

 What’s the easiest way for me to be introduced to an executive at X?
 How do John and Paula know each other?
 How’s company X related to company Y?

Graph databases leverage this information better than any other type of data engine,
and their query languages are better suited to reasoning over the relationships within

https://www.postgresql.org
http://lucene.apache.org/solr
https://www.elastic.co
https://www.elastic.co
https://www.elastic.co

18 CHAPTER 1 Introduction to graphs
the data. Although not impossible in relational databases, these sorts of friends-of-
friends queries require complex and difficult to maintain or reason over recursive
CTEs or complex joins across many different tables.

VERDICT For these types of questions, use a graph database.

AGGREGATION

Data aggregation queries constitute an excellent use case for a relational database.
Relational databases are optimized to perform complex aggregation queries quickly
and with a minimal amount of overhead. Example questions might include

 How many companies are in my system?
 What are my average sales for each day over the past month?
 What’s the number of transactions processed by my system each day?

These same sorts of queries can be performed in graph databases, but the nature of
graph traversals requires that much more of the data is touched. But this causes
higher query latency and resource utilization.

VERDICT For these types of questions, use an RDBMS.

PATTERN MATCHING

Pattern matching based on how entities are related is a prime example of how to
leverage the power of graph databases. Typical use cases for this sort of query involve
things like recommendation engines, fraud detection, or intrusion detection. Some
questions might include

 Who in my system has a similar profile to me?
 Does this transaction look like other known fraudulent transactions?
 Is the user J. Smith the same as Johan S.?

Pattern-matching use cases are so commonly done in graph databases that graph query
languages have specific, built-in features to handle precisely these sorts of queries.

VERDICT For these types of questions, use a graph database.

CENTRALITY, CLUSTERING, AND INFLUENCE

The relative influence or importance of one entity compared to another is a typical
graph database use case. Some example questions might include

 Who’s the most influential person I am connected with on LinkedIn?
 What equipment in my network has the most substantial impact if it breaks?
 What parts tend to fail at the same time?

Examples of other problems of this type include finding the most influential person
in a Twitter network, identifying critical pieces of infrastructure, or locating groups of
entities within your data. Calculating the answers to these sorts of problems requires
looking at entities, their relationships, and the incident relationships and adjacent

19Is my problem a graph problem?
entities. As with pattern-matching use cases, these types of problems often have spe-
cific, built-in graph query languages features.

VERDICT For these types of questions, use a graph database.

1.2.2 I’m still confused. . . . Is this a graph problem?

The types of problems discussed so far provide a significant first step in deciding if
your problem is a good candidate for using a graph, but what if your problem doesn’t
neatly fit into one of these predefined types? In this section, we use the friends-of-
friends problem with a decision framework to help us decide if we have a good prob-
lem for a graph.

 To illustrate, we use a small social graph that includes Alice, Bob, Ted, and Josh as
vertices connected by follows edges, as shown in figure 1.11. The question we want
to answer is, “Given a person in the graph, of the people that they follow, who do
those people follow that the first person might also want to follow?” This question
is the same as that answered by sites such as LinkedIn, Twitter, or Facebook to rec-
ommend connections to users on a daily basis. Let’s break this down into its four
basic parts:

 Given a person in the graph . . .
 . . . of the people that they follow . . .
 . . . who do those people follow . . .
 . . . that the first person might also want to follow?

Let’s take Bob as a place to start (first point). Bob follows Alice (second point). Alice
follows both Ted and Josh (third point). Therefore, Bob might want to follow both
Ted and Josh (final point).

 Take look at the decision tree in figure 1.12, which is designed to answer the ques-
tion, “Should I use a graph database?” Then we examine each of the questions and
analyze why these lead you to using or not using a graph database in your work. We
should note at the outset that here we focus on transactional (as in online transactional
processing or OLTP) use cases. The decision matrix could be different for analytical use
cases (as in online analytical processing or OLAP). We focus almost exclusively on the
transactional processing use cases through chapter 10, but in the final chapter, we give
some guidance for whole-graph (or graph analytics) processing.

Ted

Josh

Bob Alicefollows

follows

follows

follows
Figure 1.11 A simple social graph illustrates
the common friends-of-friends pattern.

20 CHAPTER 1 Introduction to graphs
DO WE CARE ABOUT THE RELATIONSHIPS BETWEEN ENTITIES AS MUCH OR MORE THAN THE ENTITIES

THEMSELVES?
This question is perhaps the most critical clue, which is why we put it first. It speaks to
the heart of one of the most powerful features of graph databases: relationships are as
meaningful as entities. If our answer to this question is yes, then we probably need a
data model that allows for sophisticated representations of the relationships—an
excellent candidate for using a graph database. But if our answer is no, then perhaps
another data engine would be a better choice.

Do I care

about how

things are related

as much as

the things?

Is this because

of a bad

RDBMS model?

Yes

Yes

Yes

Yes

Yes

Does my SQL

query perform many

joins on the same table

or require a

recursive

CTE?

How often does

my data structure

evolve?

Is my domain a

natural fit for a

graph?

No

No

No

No

No

Maybe

Rarely

Frequently

Figure 1.12 “Should I use a graph database?” decision tree. Start at the top and work down
to a Yes, No, or Maybe.

21Is my problem a graph problem?
 In the case of our friends-of-friends problem, the answer to this question is yes.
After the starting step of our question (Given a person in the graph) each of the
remaining steps requires the use of relationships between people to answer.

DOES MY SQL QUERY PERFORM MULTIPLE JOINS ON THE SAME TABLE OR REQUIRE A RECURSIVE CTE?
While a large number of joins in a SQL query can indicate that a graph database
might be a good fit, it doesn’t make that possibility certain. Large numbers of joins in
a SQL query are often a sign of a well-normalized data model. But when those joins
are not being used to retrieve reference data (as is done with a third normal form in a
relational database) and, instead, are used to link items together (as with a parent-
child relationship), then we may want to consider a graph database. Also, recursive
query patterns benefit from graph databases when we do not know the number of
joins that will be performed.

 Taking our friends-of-friends example, let’s say that we want to answer the ques-
tion, “What are the connections to get from Bob to Ted?” Attempting to perform this
query in a relational database requires an unknown number of joins, and it might not
complete, indicating that no path exists between the two. However, graph databases
can recurse efficiently over unbounded hierarchical data such as this. If a recursive
approach helps to solve the problem, then a graph database is often preferable.

IS THE STRUCTURE OF MY DATA CONTINUOUSLY EVOLVING?
We won’t go so far as to call graph databases schemaless, a term indicating that the data-
base engine does not enforce schema on write operations; we know several graph
databases that do enforce schema. But we can say that you can design graph databases
to be more tolerant of evolving data. Relational databases, on the other hand, have a
well-deserved reputation for the strictness of their schema and the complexity associ-
ated when making schema changes.

 If your problem requires taking in data with different data schemas, such as depen-
dency management, then a graph database may be worth investigating. Flexibility with
data schema alone should not be a sufficient reason to choose a graph database, how-
ever, but combined with other features, it might be enough to tip the scales in favor of
using a graph database.

IS MY DOMAIN A NATURAL FIT FOR A GRAPH?
If you’re doing something such as routing, dependency management, social network
analysis, or cluster analysis, then your problem revolves around highly interconnected
data, so your domain may be well suited for using a graph. A word of caution: although
your domain models naturally in a graph, if your questions aren’t relying on the rela-
tionships in the graph for the answers, then you should consider other options.

 In fact, our initial work with graph databases, back in 2014, revealed how the cli-
ent’s data fit very naturally in a graph.1 We even tried it in three different graph

1 The analysis was redone with a public data set at the “Graph Database Shootout 2.0” talk presented at Graph-
Day Seattle in July, 2016 (http://mng.bz/9A7r).

http://mng.bz/9A7r

22 CHAPTER 1 Introduction to graphs
databases. The model presented had built-in inheritance functionality, multi-hop tra-
versals, and a natural requirement for dependency analysis. The two primary data con-
structs in the customer’s application were even called components (an alias for
vertices) and relationships (an alias for edges). The fact that it should’ve been built in
a graph database instead of a relational database seemed obvious to all who gave even
a cursory look at the data and the domain.

 In the end, the right answer for that particular customer wasn’t to use one of the
three graph engines we evaluated, but to better use their relational database (or
rather, use it in a way congruent with their primary access patterns). We then added a
read-optimized relational projection, basically a full copy of the legacy model, into the
relational database schema designed for performant querying. This is sometimes
known as a command query responsibility segregation (CQRS) pattern. With this new “fast-
read” model in place, we demonstrated a 100-fold performance improvement for
some of their most demanding queries.

 At first, we were all shocked that the graph databases didn’t provide the necessary
performance improvement because the data modeling was so naturally a graph. Then
we looked more closely at the five queries used to evaluate the performance of each
database. Aside from the inheritance modeling, none of the queries required a graph-
style access pattern. Because a graph was not required, we used aggressive denormal-
ization to address the inheritance use cases. In fact, the required access patterns were
well-suited for relational databases; hence, the outstanding performance improve-
ment when the data was modeled to take advantage of the RDBMS query optimizers’
strengths.

 Back to the graph database decision tree (figure 1.12); if you can answer yes to one
or more of those questions, then it’s likely that you may have a graph problem. If you
are still uncertain—if there is still a perception of risk around the use of a graph data-
base—then execute a small project (between two days and two weeks) to evaluate the
graph as a part of a solution. Also, switching to using a graph database does not have
to be an all-or-nothing situation. Don’t be afraid to experiment with graph databases
for solving only a portion of a problem. Multi-model approaches with graph databases
are common and, in our experience, tend to be very successful.

 As we mentioned at the beginning of this chapter, relational databases solve 88 out
of 100 application issues well, so feel free to use them for those problems. The remain-
ing 12 are really the ones where you might want to begin experimenting with graph
databases. The rest of this book introduces you to the hows and the whys of building
software with a graph database, starting with data modeling in chapter 2.

Summary
 Graph databases are based on the graph theory part of discrete mathematics,

which has been around for hundreds of years. This means that mathematicians
had centuries of creating nomenclature, not all of which can be considered use-
ful or relevant to building software with graph databases.

23Summary
 A graph is made up of vertices (also known as nodes and entities) and edges (also
called relationships, links, or connections). Edges connect or meet at vertices.

 The five general types of databases are key-value, wide column, document, rela-
tional, and graph. Of these five, only relational and graph databases are able to
model relationships with any level of sophistication.

 Graph databases are designed with relationships as first-class citizens, making it
easier to build software that relies on working with these relationships. When
answering questions that heavily rely on the relationships between data, graph
databases tend to perform better compared to other types of databases.

 Use cases that require features like recursive queries, returning different result
types, or returning paths between things, are easier to code and are better per-
forming in graph databases.

 Due to the power and flexibility of graph databases, a large variety of good and
bad graph use cases are cited on the internet. The most important factor in
deciding if a use case is good or bad is the knowledge of the desired questions
and outcomes from whatever system you choose.

Graph data modeling
Let’s say you want to build a fire pit in your backyard. How would you approach this
problem? Would you just start building something and hope that it comes out all
right, or would you sit back and draw a picture of what you want to accomplish?
When building anything, be it software or a backyard fire pit, it’s crucial that you
start with a good mental picture of the end result. This picture needs to include the
scope that the solution addresses and the requirements to complete the solution.
The more details this picture provides, the easier it is to build the solution.

This chapter covers
 Defining project goals and terminology with

business or end users

 Building a conceptual data model for the entities
and their relationships

 Translating a conceptual data model into a graph
data model

 Comparing graph data modeling concepts to
relational data modeling concepts

 Constructing the graph data model for our social
network use case
24

25The data modeling process
 In software, a significant part of the mental picture is the data model. A well-thought-
out data model with a helpful level of abstraction and consistent naming conventions is
intuitive to work with, maybe even a joy to use. This is as true with graph databases as it is
with any other type of database. But graphs add a twist—modeling relationships with
greater sophistication. And therein lies our challenge: we need to create a data model
that succinctly expresses these relationships, yet with a high level of detail.

 This chapter follows a four-step process to graph data modeling. First, we’ll start by
defining the problem to ensure we understand the details and requirements. Then we’ll
move on to creating a conceptual data model (a whiteboard model) of our problem
from a business point of view, expressing the entities and relationships between these.
Third, we’ll translate this conceptual data model to a logical data model consisting of
vertices, edges, and properties to express the developer’s view of the entities and rela-
tionships between those. Finally, we’ll test our logical data model against our business
understanding to ensure that our model is capable of satisfying all the requirements of
the problem we need to solve. We’ll then conclude the chapter by building a graph data
model for the social network use case, DiningByFriends, to learn by doing.

2.1 The data modeling process
Data modeling is the process of translating real-world entities and relationships into
equivalent software representations. The extent to which we achieve accurate soft-
ware representations of these real-world items dictates how well we address the
intended problem.

 In relational database applications, the process of data modeling is about translat-
ing certain real-world problems, understandings, and questions into software, usually
focusing on creating a technical implementation involving a database. This includes
identifying and understanding the problem, determining the entities and relation-
ships in that problem, and then creating a representation of that problem in the data-
base. The graph data modeling process is largely the same. The main difference is
that we must shift from an “entity first” mindset (or perhaps more accurately, an
“entity-only” mindset) to an “entity and relationship” mindset.

 In this section, we’ll demonstrate how to make that mindset shift by executing this
process with our DiningByFriends app. Along the way, we’ll call attention to specific
details that are particular to graph data modeling and show how they differ from other
types of data modeling. To start this process, we first go through some terminology.

2.1.1 Data modeling terms

As data modeling is about translating real-world problems, let’s begin by defining some
generic data terms that we use when discussing the business view of the problem. These
will later be translated to graph-specific terms for the technical implementation.

 When describing the business view of the problem, we use the following terms. You
might not be familiar with these terms as defined here, so we want to be clear about
how we use these throughout this process:

26 CHAPTER 2 Graph data modeling
 Entity—Commonly represented by nouns, entities describe the things or the
type of things in the domain (for example, vehicles, users, or geographic loca-
tions). As we move from problem definition and conceptual modeling, entities
often become vertices in the logical model and technical implementation.

 Relationship—Often represented by verbs (or verbal phrases), relationships
describe how entities interact with one another. It could be something like
moves as in “a vehicle moves to a location,” or friends as in the Facebook sense of
this word as a verb (for example, “a person friends another person”). As we
move from problem definition and conceptual modeling, relationships often
become edges in the logical model and technical implementation.

 Attribute—Like entities, also represented by a noun, but always in the context of
an entity or relationship. Attributes describe a quality about the entity or rela-
tionship. We limit our use of attributes as we feel that these can distract from
the more critical parts of the model development process.

 Access pattern—Describes either questions or methods of interaction in the
domain. Examples can be questions like, Where is this vehicle going? or Who
are this person’s friends? As we move from problem definition and conceptual
modeling, access patterns often become queries in the logical model and tech-
nical implementation.

You’ll find some obvious correlations between these data modeling terms (entity, rela-
tionship) and the graph elements (vertex, edge) that we introduced in the first chap-
ter. In fact, in some graph database engines, edges are called relationships. This begs
the question, why use separate terms when these all mean the same thing?

 But these are not the same things. Though there is often a strong correlation
between the conceptual model described with entities and relationships and the logi-
cal model described with vertices and edges, these are not guaranteed to have a one-
to-one correlation. To take an example, it is perfectly normal to have an entity in the
conceptual model implemented as a property on a vertex in the logical model.

 Let’s illustrate this distinction with a preview of an implementation decision we
need to make in our DiningByFriends model, as shown in figure 2.1. Consider that
restaurants are generally categorized by their type of cuisine. We can implement this
as a cuisine_type property on the restaurant vertex or as a separate cuisine

cuisine:

tacos
restaurant

restaurant

tacos

restaurant

cuisine_type

Graph implemention of
cuisine as a property

Graph implemention of
cuisine as another vertex

Figure 2.1 Two possible
graph implementations for
a restaurant’s cuisine

27The data modeling process
vertex that restaurants connect to by an edge. Either could work and both give valid
results, but in the end, we usually make our choice based on the predominant access
patterns.

 Put another way, the physical data model is largely a result of the queries we write.
We know that, for some, this feels like putting the cart before the horse. Don’t you
usually create the data model and then write the queries? Yes, we have done that many
times and have painted ourselves into a corner with design mistakes more often than
we would like to admit. The approach we take is designed to reduce that risk and to
minimize the pain of data model changes.

 Going back to the use of different terms for different parts of the process, the
other reason for this goes back to our main point as stated at beginning of this sec-
tion: we translate a real-world problem into a technical domain. We use the technical
terms vertex and edge when working with a specific type of data engine, a graph data-
base in this case. If we use a relational database, the technical terms become table and
column. But data modeling starts with engagement with the business, with the users
and their perspectives. The business and end users do not think in terms of vertices
and edges, nor do they use these terms in their normal day-to-day tasks, and they
shouldn’t. The process we describe here uses different terms, like entity and relation-
ship, to remind us that the conceptual model is a tool for communicating require-
ments between the end users and the developers.

2.1.2 Four-step process for data modeling

Having defined our data modeling terms, this leads us to the data modeling process
itself. The process uses the following four steps, and each step is covered in detail in
its own section:

1 Understand the problem. We start in section 2.2 with a focus on the business or
domain terms and language to ensure a clear understanding of the end user’s
perspective. We’ll explore project goals to make certain that the domain and
scope of the problem is clear. At the end of this step, we’ll have specified the
common terms and the core access patterns of users.

2 Create a whiteboard or conceptual model. After understanding the problem and the
language used to describe it, in section 2.3, we’ll move from text to a picture,
focusing on drawing a diagram that makes sense to the business users and one
that’s useful to the technical developers. We’ll define the conceptual model,
which includes codifying the main entities and relationships between those
entities. After completing this step, we’ll have a high-level picture of the prob-
lem domain from the business perspective.

3 Create a logical data model. In this step, covered in section 2.4, the technical
implementers (that’s you!) combine the domain defined in the first step with
the conceptual model from the second step to create the physical description of
the graph data model. This includes defining the vertices and the edges, as well
as specifying the properties on those.

28 CHAPTER 2 Graph data modeling
Most graph databases are schemaless, so once we define this logical model,
we’re ready to begin working on our queries. If your chosen graph database
requires explicit schema definitions (similar to defining tables and keys in an
RDBMS), we’ll also look at those at this time. In either scenario, once we fin-
ish this section, we’ll have completed the data model for our social network
use case.

4 Test the model. In section 2.5, we’ll verify that our developed model satisfies the
defined problem, that the entities and relationships needed to answer our
user’s questions exist, and that these are properly named. This step focuses on
validating coherence in the three previous steps, where we moved from a tex-
tual description of the domain to a simple picture of the entities and relation-
ships and, finally, constructed our model with vertices and edges. This is largely
a matter of asking, “Does this make sense given the other steps?” and “Did we
leave anything out which we established before?”

The first two steps in this process are a partnership between the business users and the
technical development staff, first defining a common set of terms and then illustrating
how those terms relate to one another in a simple diagram. For the last two steps, a
technical team member takes the diagram and builds and tests the logical model that
becomes the basis for implementation, as shown in table 2.1.

For some of us with a highly structured mindset, we know that providing a four-step
process to guide both this chapter and all future data development deeply resonates
with our desire for a well-ordered world (and development process). But we also know
that some “code-first cowboys” out there feel that four enumerated steps are three
steps too many. Sure, we know that in many cases “code wins,” and that an 80%
implementation is often preferable to a 100% design. But this book is not targeted at
building toys. Instead, we aim to build production-level applications with highly con-
nected data in complex domains.

 We are not suggesting spending endless hours/days/weeks agonizing over the per-
fect data design before writing any code. Designs change just as quickly as the business

Table 2.1 Summary of the design process for developing a logical data model

Data modeling step Participants Tools Output

1. Problem definition Business, Developers Domain, scope, business
entities, functionality

Textual description of
problem

2. Conceptual data
model

Business, Developers Entities, relationships,
access patterns

Picture of entities and
their relationships

3. Logical data model Developers only Vertices, edges, proper-
ties

Diagram of graph
elements

4. Test the model Developers only Preceding steps Coherence of the out-
puts of prior steps

29Understand the problem
can create new requirements, so yesterday’s perfection is tomorrow’s functionally
incomplete application.

 We know from experience that mistakes in the data design phase cause problems
during implementation, and that these problems are significantly harder to fix at that
stage. Don’t be deceived by the apparent simplicity of a graph or by the schema-
lite/schemaless nature of some graph databases. Any implementation implies some
level of written and tested code, and data that is loaded. As with any relational data-
base project, design changes usually mean schema changes, which leads to code
change and, likely, a data migration of some sort. All of these additional downstream
effects have to be dealt with, and often with less mature tooling.

2.2 Understand the problem
Whether working in a large enterprise, a small company, or just on a side project, the
first step in data modeling is understanding the problem, the domain, and the scope
of the work we are addressing. In a large enterprise, this work may have already been
done for us through some requirements document. In a small company or with per-
sonal projects, that is unlikely to be the case. In the end, it doesn’t matter if our project
has a requirements document or not; it is up to us to have a sufficient understanding
of the problem before beginning work on our data model.

 In this section, we examine several types of questions we need to answer before we
can develop our data model. Ideally, these sorts of questions are already identified in
functional and business requirements before beginning the project. The goal of these
questions is to define how users interact with the system so we can develop a logical
data model that supports the users’ preferred access patterns.

NOTE If you already have a strong background in data modeling, feel free to
skip this section and move on to the next. If not, then read on and learn
about what you need to know to ensure that you understand the problem.

We’ve found that users are very clever. Even if your model doesn’t directly support
their preferred access patterns, they find a way to make it work. But if they can’t find a
workaround, then they stop using the tool. Think about that! Fail here and your appli-
cation is abandoned. Now isn’t that a cheery thought?

 While the questions vary by project, there are different categories of questions that
help us gain a clear view of the problem. These categories include the following:

 Domain and scope
 Business entity
 Functionality

In the next few sections, we explore each of these types of questions, discuss why these
are important, and provide some examples from our DiningByFriends application.

30 CHAPTER 2 Graph data modeling
2.2.1 Domain and scope questions

Every problem can expand in infinite directions, so the more precisely we define the
scope, the more likely we are to succeed. Domain and scope questions define the bound-
aries of the problem. If we make the domain too broad, then we risk not understand-
ing its boundaries and may never complete the application. If we make the domain
too narrow, then we may miss out on critical features and not provide sufficient func-
tionality to our users. Properly defining the domain and scope of the problem you work
on is therefore crucial to building a complete and functional application. The follow-
ing sections provide example questions and answers to narrow the scope of the prob-
lem for our DiningByFriends app.

WHAT WILL DININGBYFRIENDS DO FOR ITS USERS?
DiningByFriends provides users with personalized restaurant recommendations. When
using DiningByFriends, users have three main needs that the application must satisfy:

 Social network—Users want to connect with friends who are also using the appli-
cation. This functionality is similar to the way people connect with friends on
any social network such as Twitter, LinkedIn, or Facebook.

 Restaurant recommendations—Users want to create and look at reviews of restau-
rants and then get recommendations for a restaurant based on these reviews.
This is the central service the app provides.

 Personalization—Users want to rate the reviews of restaurants to indicate
whether the review was helpful or not. Then they want to combine these reviews
with their friends’ ratings to receive personalized recommendations based on
the restaurants their friends also like.

WHAT TYPES OF INFORMATION DOES THE APPLICATION NEED TO RECORD TO PERFORM THESE TASKS?
To answer this question, DiningByFriends should include at least the following
information:

 All the basic identifying information about users, such as a name and a unique
ID, so people can find and connect with them on the social network. (In a real-
world scenario, this would likely include many additional attributes, but we
keep it limited for this example application.)

 Restaurant identifiers and details, such as the name, address, and cuisine, to
provide location-specific recommendations.

 The text of the review, along with the rating and a timestamp of the rating in
order to get personalized recommendations.

 Reviews need to include ratings of its helpfulness (for example, up/down
thumbs) so that friends know if a user agreed or disagreed with those reviews.

31Understand the problem
WHO ARE THE USERS OF OUR APPLICATION?
We have one type of user for our application. This includes users of the application
who connect with friends, enter reviews, and receive recommendations.

NOTE We know that nearly all complex applications have internal or system
users of some sort. These can include system administrators, customer service
personnel, and others responsible for the maintenance and operation of a
complex technical solution. We have elected to ignore such requirements in
an effort to streamline the design of the use case. We therefore only focus on
the traditionally understood end user.

From the questions in this section, we now have a fairly clear picture of the problem
domain and its scope, as well as a set of terms that make sense to the business or end
users we want to serve. And we now know the critical items needed to construct a per-
sonalized restaurant recommendation: people (users), restaurants, restaurant reviews,
and ratings of those reviews.

2.2.2 Business entity questions

This type of question identifies the business entities and relationships within our
problem domain. Looking at artifacts such as a relational database schema, entity rela-
tionship diagrams (ERDs), or other architectural documentation often helps us
obtain a sense of the structure, language, and terminology already in use. Our goal is
to identify the fundamental building blocks of our application and how these are
related to one another. The following sections provide a few examples of the business
entity questions we might ask.

WHAT SORT OF ITEMS OR THINGS DOES THE APPLICATION UTILIZE?
The application works with people, reviews, and restaurants.

HOW DO THESE ITEMS INTERACT WITH ONE ANOTHER?

 People write reviews.
 Reviews discuss restaurants.
 Restaurants serve one or more types of food.
 A person is friends with another person.
 People rate reviews.

WHAT ARE THE CRITICAL PIECES OF DATA YOU NEED TO KNOW ABOUT EACH ENTITY?
While not an exhaustive list, here are some items we need to store:

 User data—First and last name to help identify users
 Restaurant data—Details such as names, addresses, and types of foods served
 Reviews—Descriptions of the users’ experiences.
 Ratings—Rankings of a review so that friends know if it is helpful or not

Graphs and graph data models derive much of their power from having well-defined
relationships between entities, which is a change for those of us used to relational data

32 CHAPTER 2 Graph data modeling
modeling. A well-defined relationship in a graph requires not only a name for the
relationship but also an understanding of how that relationship connects entities, as
well as any potential attributes required to define the relationship. Therefore, it is crit-
ical to spend extra time exploring the relationships between entities, looking for
potentially important interactions that are not immediately obvious. Looking at the
answers, we often find a relationship and entity not called out specifically but hidden
in the replies.

EXERCISE Do you see any hidden entities or relationships in the previous
lists of questions about the business entities for our DiningByFriends app?

As we examine the list, we see a hidden relationship between a restaurant and the type
or types of food served. In our restaurant recommendations application, it is highly
likely that a user wants to search a specific type of food or cuisine to get recommenda-
tions. This desire means that it’s likely beneficial to make cuisine (Pizza, Chinese,
Indian, etc.) an entity itself and to add a corresponding relationship between a restau-
rant and its cuisine.

2.2.3 Functionality questions

Questions concerning functionality reveal how our business entities interact, which
represents the relationships between these entities. These questions start by exploring
what the user might ask of the system or what problems users have that they want the
system to solve for them. These problems determine both the questions that the user
asks and, sometimes, the order in which they ask those.

 When we get to the conceptual model in the next phase (section 2.3), we codify
the functionality as access patterns. Later, we test our logical model (section 2.5) to
see if it can provide the described functionality, or put another way, support the iden-
tified access patterns. The final use of functionality is in the actual implementation,
when we build the queries for the system in chapter 5. The definition work we do in
this step becomes the bedrock on which we build our application. In slightly more
practical and graph-oriented terms, functionality definitions lead directly to the edges
we define in our logical model and, likely, some of the properties for the edges as well.
Let’s look at a few functionality questions for our use case.

HOW ARE PEOPLE GOING TO USE THE SYSTEM?
Users create friendships with people they know, provide reviews, rate restaurants, and
read and rate reviews submitted by their friends.

WHAT QUESTIONS DOES DININGBYFRIENDS NEED TO ANSWER FOR THE USER?
These questions about functionality fill in the details of how a user is going to interact
with the system:

 Who are my friends?
 Who are the friends of my friends?
 How is user X associated with user Y?

33Developing the whiteboard model
 What restaurant near me with a specific cuisine is the highest rated?
 Which restaurants are the ten highest-rated restaurants near me?
 What are the newest reviews for this restaurant?
 What restaurants do my friends recommend?
 Based on my friends’ review ratings, what are the best restaurants for me?
 What restaurants have my friends reviewed or rated in the past X days?

We now know what our users are going to do with the app and also what they are
going to ask of it. In other words, this is a first pass at our queries using natural lan-
guage. (Remember that this process is done with the business or end user and should
be completely understandable by them.) As we mentioned at the top of this section,
gaining this understanding of this information ensures that we model our data in a
way that matches the users’ desired access patterns.

2.3 Developing the whiteboard model
The second step in our modeling process is to develop the conceptual or whiteboard
model. We need to get a high-level diagram of what the schema for DiningByFriends
looks like from a business perspective. This is our first tangible picture of the system,
and it must be driven by the business view of the problem.

 As builders, it is in our nature to solve problems, usually right away. But it is vital to
take time to understand and define the business perspective of a domain. This accel-
erates our development process in the long run. Isolating what is most important to
the business is crucial to making informed decisions and preventing unnecessary com-
plexity and excessive rework.

2.3.1 Identifying and grouping entities

We develop our conceptual data model by first extracting the entities in our
domain. As you’ll recall, entities refer to the things in our application domain and
represent either physical items, such as people and places, or logical items, such as
reviews and ratings.

TIP Start by looking for the nouns.

Once we locate the entities, we need to identify items that can be easily grouped into a
single entity. When making these groupings, it pays to listen to the way business and
other non-technical users discuss the problem. These users live this problem almost
daily; if they use nouns interchangeably, signaling that the nouns are synonyms, then
it is likely these can be combined into a single entity. For example, if we are working
on an internal application and the business users mention user, employee, or client
interchangeably, then we could probably group these nouns into a single entity within
our conceptual model.

 As a best practice, we should make all the names of our entities singular because
each entity represents a single instance of that item. We know that there are those who

34 CHAPTER 2 Graph data modeling
prefer to use plural nouns for their entity-naming schemes, but we have found that
singular names tend to be a better fit for graph data modeling.

EXERCISE Looking back at the answers in section 2.2, identify what you think
the entities for DiningByFriends should be.

Looking at the answers, we find four entities for DiningByFriends:

 Restaurant—Represents a restaurant, which includes name and location.
 Cuisine—Describes the type of food served. This entity was not explicitly

defined as one of the nouns but was found by listening to how the business
described its needs.

 Person—Represents a system user, which includes the first and last name.
 Review—Actual review content, which includes the full review text and rating.

How does this compare to your list? If you have more, less, or a different set of entities,
don’t worry. There is no one correct answer, and different people often come up with
different solutions. We chose the entities in the list because we thought these were the
highest-level items that could be derived from the information available, while still
providing context to our problem.

 Now that we have our entities, let’s put that “whiteboard” to use. We start our dia-
gram with a box for each identified entity, as shown in figure 2.2.

2.3.2 Identifying relationships between entities

The entities we just identified represent the what in our data model. The next step is
to determine the relationships or the how. Extracting relationships is similar to locat-
ing the entities, except instead of looking for the nouns in our answers to the func-
tionality questions, we look for the verbs. The verbs describe how any two of our
entities interact. Once we have identified the verbs, we need to provide names to
describe the relationships. To name these, we take each verb and combine it with the
entity names in the form noun–verb–noun or entity–relationship–entity to form a
short, understandable phrase (Restaurant Serves Cuisine, for example).

Restaurant Person

Cuisine Review
Figure 2.2 Conceptual whiteboard diagram
with our entities for DiningByFriends

35Developing the whiteboard model
EXERCISE Look for the verbs in our functionality questions and locate what
you think the relationships in DiningByFriends should be.

Were you able to generate a list of relationships? It is a bit harder than finding the
entities, isn’t it? Then again, this step is complicated by not having a user to interview.
Here is our list along with the functional questions each relationship addresses (ques-
tions can appear more than once):

 Person–Friends–Person—This relationship helps construct the social network com-
ponent of our app by allowing the application to answer user questions such as
– Who are my friends?
– Who are the friends of my friends?
– How is user X associated with user Y?

 Person–Writes–Review—This relationship enables us to construct the recommen-
dation engine for DiningByFriends as the reviews serve as the underlying data
to provide recommendations. This relationship allows the app to answer user
questions such as
– Which restaurant near me with a specific cuisine is the highest rated?
– Which restaurants are the ten highest-rated restaurants near me?
– What are the newest reviews for this restaurant?
– What restaurants do my friends recommend?
– Based on my friends review ratings, what are the best restaurants for me?
– What restaurants have my friends reviewed or rated in the past X days?

 Reviews–Are About–Restaurant—This relationship allows our application to for-
mulate our recommendation engine as these reviews need to be associated with
a restaurant that the app recommends. Here’s a list of questions to consider:
– Which restaurant near me with a specific cuisine is the highest rated?
– Which restaurants are the ten highest-rated restaurants near me?
– What are the newest reviews for this restaurant?
– What restaurants do my friends recommend?
– Based on my friends review ratings, what are the best restaurants for me?
– What restaurants have my friends reviewed or rated in the past X days?

 Restaurant–Serves–Cuisine—This relationship allows us to provide some of the fil-
tering capabilities for the recommendation engine, especially the ability to rec-
ommend a restaurant based on cuisine:
– Which restaurant near me with a specific cuisine is the highest rated?

 Person–Rates–Reviews—This relationship enables our app’s personalization com-
ponent by providing the information needed to tailor a recommendation to a
specific user based on their friends’ reviews:
– Based on my friends review ratings, what are the best restaurants for me?
– What restaurants have my friends reviewed or rated in the past X days?

36 CHAPTER 2 Graph data modeling
How does our relationship list compare to yours? As with entities, there is not one cor-
rect list. Many people go a step further and describe the attributes, or properties, of
the entities and relationships. We shy away from this whenever we can because defin-
ing attributes this soon devolves into an exercise in bikeshedding (focusing on the
comparatively trivial aspects of a problem instead of targeting the goal, which is to
develop a high-level understanding of our application).

 Although there is certainly a danger of “tyranny of the trivial” by spending too
much time on properties, there is also the potential that useful details can come up in
such a discussion. To mitigate the risk of losing those helpful details—details that can
be used later, particularly in building the filtering and search components—we time-
box the exercise by limiting ourselves to 10 or 15 minutes of discussion. During this
time, we capture key points on Post-It notes, on a dry-erase board, or in a Google doc-
ument, and drop these as a task in the backlog for later review and action.

TIP Don’t underestimate the power of a virtual “idea parking lot” for staying
focused on the primary tasks at hand.

When it is time to put pen to paper to the conceptual model, we prefer a much sim-
pler whiteboard—a box-and-arrow conceptual data model built with flowchart soft-
ware such as Microsoft Visio or Lucidchart, or even with simple presentation tools
such as PowerPoint or Google Slides—to a more defined methodology, such as Uni-
fied Modeling Language (UML). We build these flowchart models by representing
the entities as labeled boxes and the relationships as labeled arrows. Doing this for
DiningByFriends, we get the chart depicted in figure 2.3.

We’ve found that both technical and non-technical users easily understand white-
board models, which are intuitive. At this point, the target audience for this model is a
business user, not a developer, so we want to stay away from thinking about the physi-
cal implementation. That will come soon enough.

Restaurant Person

Cuisine Review

Are About Writes Rates

Friends

Serves

Figure 2.3 Our conceptual data
model shows the entities (boxes)
and relationships (arrows) for
DiningByFriends.

37Constructing the logical data model
2.4 Constructing the logical data model
Now we are ready to build our logical data model and translate those entities and rela-
tionships to the graph concepts of vertices, edges, and properties. The outcome of
this process is another diagram, but this one contains sufficient detail to provide the
necessary schema information for a developer to begin coding an implementation. In
this section, we only work on the first use case in our application: the social network
functionality. Later in the book we extend our data model for the other features. We
start with social networking for several reasons:

 Our social network is the basis for how we eventually extend DiningByFriends
for our recommendation engine and personalization features.

 The number of questions the social network answers is small enough to allow us
to acquaint ourselves with the patterns and processes of graph data modeling.

 This network is the most straightforward, but it still retains several features,
such as recursion and self-referencing edges, that enable us to highlight some
of the unique abilities of graph databases.

To refresh our memory, the requirements for our social network provide the ability to
connect with friends to see what they are reviewing. It addresses these questions for
the Person–Friends–Person relationship:

 Who are my friends?
 Who are the friends of my friends?
 How is user X associated with user Y?

Figure 2.4 shows the portion of our conceptual data model that we work on in this sec-
tion. Because we use this part of the model throughout the rest of the chapter, we
repeat this same diagram so that it is always readily accessible for you.

We start by showing the completed data model and work backward to show the pat-
terns and processes we used to come up with this model. To begin, let’s examine the
final graph data model for our social network, as shown in figure 2.5.

PersonRestaurant

Cuisine Review

Are About Writes RatesServes

Friends

Figure 2.4 Conceptual data model
for DiningByFriends with the relevant
parts required for the social network
highlighted

38 CHAPTER 2 Graph data modeling
As figure 2.5 shows, the graph data model for this use case is one vertex with the label
person, one edge with the label friends, and three vertex properties with the keys
person_id, first_name, and last_name.

NOTE In some environments, keys and key-value pairs are called property
names and name-value pairs.

Now that we know our end state, let’s see how we got there. There are four steps to
building a graph data model from a conceptual model:

1 Translate entities to vertices.
2 Translate relationships to edges.
3 Find and assign properties to vertices and edges.
4 Check your model.

Wait…what does that say... “properties to vertices and edges?” Yes, you read that cor-
rectly. This ability for both vertices and edges to have properties highlights another
fundamental difference between a relational database and a graph database. Because
relationships are first-class citizens in a graph data model, both vertices and edges can
have properties associated with those. While this addition might seem trivial, it is one
of the more powerful aspects of a graph database because it opens up several useful
data modeling options that we explore throughout this book.

2.4.1 Translating entities to vertices

The first step in creating our graph model is to identify all our vertices. Much of this
work was done when we developed our conceptual model because the entities in a
conceptual data model map almost directly to the vertices in a logical graph model.
The creation of the vertices in our graph model requires two things:

 Identify all the relevant entities from our conceptual model
 Give the vertex a name in the form of a label to uniquely identify that type of

entity in our graph model

To begin these two tasks, let’s glance at the social network section of the conceptual data
model. Figure 2.6 presents this section, and then we examine each point in more detail.

friends

person

person

person_id

first_name

last_name

Figure 2.5 The logical graph data
model for the social network for
DiningByFriends

39Constructing the logical data model
FINDING THE CONCEPTUAL ENTITIES

In our conceptual model, we located the entities Person, Restaurant, Review, and Cui-
sine. Now we need to narrow those down to only the entities required to answer the
questions from section 2.3 for our social network functionality:

 Who are my friends?
 Who are the friends of my friends?
 How is user X associated with user Y?

In this case, the questions refer to only one entity, Person, because “my friends” and
“the friends” are both people. While there are other logical entities in the model
(Review, Restaurant, Cuisine), these are not required for the app’s social networking,
so we can ignore these for now. Although this is a simple example, this step will be
more involved when we get to more-complex use cases in chapter 7.

 As a general rule, we look for the entities in our application by looking for the
nouns in our list of functionality questions. Because nouns represent physical or logi-
cal items, these frequently are the best indicator of which entities are required to solve
the questions in the application.

NAMING THE VERTEX LABELS

Now that we have identified our entities, we need to assign each a label. A label in a
property model graph categorizes or groups vertices that represent similar concepts.
As has been observed by many prominent coders, there are only two hard things in
computer science: cache invalidation, naming things, and off-by-one errors.1

 Deciding on label names is not a trivial undertaking. A good label name is short,
descriptive, and precise. As with properly naming variables in an application, if you do
it well, the names add significant clarity and provide additive value when reading and
working in the code. If you do it poorly, names can obfuscate their purpose and can

1 The exact source for this bit of developer humor errors is not available, but it’s generally attributed to Tim
Bray, Phil Karlton, and Leon Bambrick.

PersonRestaurant

Cuisine Review

Are About Writes RatesServes

Friends

Figure 2.6 The conceptual data model
with the relevant parts required for the
social network highlighted

40 CHAPTER 2 Graph data modeling
be misleading. In software development terms, a label in a graph database is analo-
gous to a class in object-oriented languages such as C++, C#, or Java: both contain a
definition to explain how an object is structured and both can be used to classify like
items together.

 For the Person entity, the conceptual model also uses the entity name Person.
Going back to our problem definition, let’s pretend that we often talk with the busi-
ness and end users and find that there is an existing implementation using a rela-
tional database. In this feature-discovery fantasy, we see that the business users refer to
that entity as both people and users. With different terms being used for the same
entity, we decide that Person is the most descriptive name for this entity.

IMPORTANT It is a best practice to make vertex labels singular because each
vertex only refers to a single instance of an item.

We could have gone with the name User, but this is specific to one type of potential
person within the application. While we currently do not have this requirement, we
might need to represent other types of people, such as employees or owners, in the
future. By choosing the more generic label of person, we can represent these potential
future entities more easily without losing the type information in our current system.

IMPORTANT It is also a best practice to make labels as generic as practical.
While we will go into this in greater detail in chapter 7, a rule of thumb is that
if we expect that we might need to represent other, similar concepts in the
future, then it’s worthwhile to use a more generic term.

As with other databases, a consistent naming convention for label and property names
is critical to the maintainability of an application. Consistency provides predictable
behavior for developers and administrators. As developers, we find nothing more frus-
trating than inconsistent naming conventions in databases, and graph databases are
no exception to this rule. For this book, we use lower_snake_case names and make all
label names singular. Applying these best practices, we settle on the label person, as
shown in figure 2.7.

NOTE It is generally a safe bet that each vertex in a graph database can only
be associated with a single label. That is the approach of Apache TinkerPop,
and it is the approach we take in this book. There are situations, such as mod-
eling inheritance, where having multiple labels per vertex is appropriate. And
some graph databases, such as Neo4j and Amazon Neptune, do support mul-
tiple labels per vertex. Be sure to understand your vendor’s capabilities before
starting the data modeling process.

person

Figure 2.7 Example vertex with the label person

41Constructing the logical data model
2.4.2 Translating relationships to edges

Now that we have identified and labeled our person vertex, it is time to define our
edges. Edges are based on the relationships from our conceptual model. Defining
edges takes a little more effort than finding the vertices. The edges in graph databases
include features like directionality and uniqueness, which do not have direct counter-
parts in relational databases. Therefore, defining these relationships is more involved
than just applying a name as you would do in a relational database. The four steps to
defining an edge are

1 Identifying the relevant relationships from the conceptual data model
2 Naming the edge in the form of a label to uniquely identify that relationship in

our graph data model
3 Assigning a direction to the edge by defining the start and end vertex types
4 Specifying the uniqueness of the edge by deciding on the number of times this

edge can exist between two specific instance vertices

FINDING THE RELATIONSHIPS

Recall from the conceptual model that the social network component includes a sin-
gle entity, Person, but this particular entity has three relationships associated with it:
Friends, Rates, and Writes. (Friends here is a verb.) Let’s look again at the functionality
questions for the social networking we discovered while building our conceptual model:

 Who are my friends?
 Who are the friends of my friends?
 How is user X associated with user Y?

All the questions revolve around how one person is connected to another as a friend.
The Friends relationship is the only link from a person to a person vertex that’s
required for our social network. The Rates and Writes relationships are not required
because these reference an entity (Review) that is not required for this use case.
Let’s see what our conceptual model looks like with the relevant sections highlighted
in figure 2.8.

PersonRestaurant

Cuisine Review

Are About Writes RatesServes

Friends

Figure 2.8 Conceptual data model
with the relevant parts required for
the social network highlighted

42 CHAPTER 2 Graph data modeling
Because we were thorough when creating the conceptual model, this part of the trans-
lation to the logical model is almost trivial. If we missed a relationship and a corre-
sponding edge, then that begins to surface as we evaluate the access patterns against
the logical model in our test phase (more on testing in section 2.5).

NAMING THE EDGE LABELS

Now that we know that we need to represent the Friends relationship as an edge in
our model, it is time to name it (step 2), just like we did with vertices. To decide on the
edge label for our data model, we apply the same best practice naming rules: be con-
cise, descriptive, and generic. By applying these rules, we get an edge with a friends
label that starts at a person vertex and ends at a person vertex, as shown in figure 2.9.

Don’t be alarmed that the edge is connecting back to the same vertex type. It is accept-
able, even common in some models, for an edge to have the same vertex type at both
ends. This is known as a loop. A loop edge is similar to a foreign key referencing the
same table or a linking table that connects back to the original table, as in figure 2.10.

GIVING THE EDGE A DIRECTION

Once we have a label for our edge, the next step is to give the edge a direction. By
convention, the direction of an edge is described as being from one vertex, the out
vertex, to another vertex, the in vertex. In figure 2.11, we see that the Bill vertex is
the out vertex and the Ted vertex is the in vertex.

friends

person
Figure 2.9 Adding a friends label connecting a
person vertex to a person vertex in a loop

person

person_id

first_name

last_name

PK

person_friends

friend_id

person_id

friend_person_id

PK

FK

FK

Figure 2.10 A loop in a
graph data model is similar to
a linking table in a relational
data model. It references
back to the original table.

friendsperson:
Bill

person:
Ted

The vertexout vertex The in
Figure 2.11 Example of data in a graph with an
out vertex for Bill and an in vertex for Ted

43Constructing the logical data model
In a good graph model, the vertex–edge-vertex combinations read as a sentence. In
figure 2.11, we read the vertex–edge-vertex as Bill friends Ted. When looking at your
label names and edge directions, don’t be afraid to reword the label or switch the
direction of the edge to make the data model more understandable. The direction of
an edge should complement the edge label to make a sentence that sounds natural
(or mostly natural) and that fits the functional needs of the use case.

 Consider the example of a simple graph, shown in figure 2.12. It tracks the cities
people live in. There are two vertex labels, person and city, and one edge label,
lives_in, between the vertices.

In figure 2.12, we see both the schema of our graph and the instance data (the graph
of the data stored). Looking at the instance data graph, we see that Jane lives in Chi-
cago. Looking at this data, it makes logical sense and reads fluently. If we reverse the
direction of the edge so that the in vertex is a person and the out vertex is a city, then
the instance would read as Chicago lives in Jane. As cities don’t live in people, this sen-
tence no longer makes sense. So, what can we do to make this sentence make sense?
The simplest solution is to reword the edge label to something that makes the sen-
tence more understandable, such as is_residence_of, as shown in figure 2.13.

 Now if we read the instance of the reworded graph, we see that the sentence, “Chi-
cago is residence of Jane,” makes sense. Returning back to our DiningByFriends model,

lives_in

lives_in

person

Schema

Instance Data

Jane Chicago

city

Figure 2.12 A sample graph with the schema,
person–lives_in-city, and the instance
data, Jane–lives_in–Chicago

is_residence_of

is_residence_of

person

Reworded Schema

Reworded Instance Data

Jane Chicago

city

Figure 2.13 Reworded graph with the
edges is_residence_of for both
schema and instance data

44 CHAPTER 2 Graph data modeling
because our friends edge connects a person vertex to a person vertex, the direction is
irrelevant. Figure 2.14 shows that the start and end vertex labels are identical.

It certainly simplifies things in social networking queries when the edge direction,
while specified, is not consequential, but don’t expect to see this often! This situation
is very uncommon.

DETERMINING EDGE UNIQUENESS

The final step to address when defining edges is uniqueness. Edge uniqueness describes
the number of times an instance of a vertex is related to another instance of a vertex
with an edge having the same label. Whew, that definition is a mouthful, so here’s
another way to define this concept: uniqueness describes what is an allowable number
of edges of a given label between two vertices. That is still a bit abstract, so let’s take a
look at an example that demonstrates what we mean by edge uniqueness.

 In figure 2.15, vertex A is connected to vertex B by edge Y more than once, so edge
Y is a multiple uniqueness edge. Vertex A is also connected to vertex C by edge X, but it
is only connected one time; thus, edge X is a single uniqueness edge.

Why uniqueness and not cardinality or multiplicity?
If you come from a relational database background, you are likely wondering why we
use the term uniqueness. This was actually a topic of quite a lively discussion among
the authors and several of our peers.

friends

person
Figure 2.14 The friends edge, now with
an added direction pointing from a person
vertex to a person vertex

A B

C

Multiple
uniqueness
edge

Multiple
uniqueness
edge

Single
uniqueness
edge

X

Y

Y Figure 2.15 Entities A and C have one single
uniqueness edge or relationship with each
other. Entities A and B are connected more
than once, having multiple uniqueness edges.

45Constructing the logical data model
Why does edge uniqueness matter? Let’s use a simple movie example as shown in
figure 2.16 to see why. This graph consists of three people (entities)—Bob, Joe Dante,
and Phoebe Cates—and shows the relationships (edges) to the movie Gremlins (also
an entity).

 In our Gremlins graph in figure 2.16, we have four vertices (three person’s and one
movie) and three edges (watched, acted_in, and directed). Each person in the

The term cardinality is often used (wrongly) to refer to a many-to-many or a one-to-
many relationship. As Martin Fowler explained, these descriptions show multiplicity,
not cardinality (http://mng.bz/QxY4). We fully agree with Fowler’s definition of cardi-
nality and multiplicity as

 Cardinality—The number of elements in a set (for example, figure 2.15 has
two Y edges between A and B).

 Multiplicity—A specification of the minimum and maximum cardinality that set
can have (for example, one-to-many, zero-to-many, many-to-many).

With these definitions, why don’t we use these terms to describe our edge schema?
Because we are not describing the characteristics of a single edge; instead, we are
describing the characteristics of a group of edges.

Because cardinality describes a quantifiable number, it can be used to define the
number of edges in the instance data of our graph (the cardinality of Y edges between
A and B in figure 2.15 is two). However, because cardinality represents a single
number, it cannot describe the range of potential options needed by the schema
for the same reasons Martin Fowler points to with relational databases. So why not
use multiplicity?

Using the term multiplicity to describe the characteristics of a group of edges causes
a problem. In traditional UML®/ERD terminology, multiplicity constrains the number
of related entities. Based on that understanding, the multiplicity of a graph database
would always be many-to many because, by design, graphs connect vertices (the sim-
plest analog to entity) to multiple other vertices. Because, traditionally, we would only
ever have one multiplicity, this term isn’t suitable for graph databases as it does not
add any descriptive value to our data model. We could alter the definition of multiplic-
ity for the context of graph databases, but this would only cause additional confusion
to those familiar with the traditional usage.

This led us to describe the edge schema with a different term—uniqueness. Data
uniqueness describes the measure of duplication of identified data items within a
data set. In this case, we define uniqueness as the allowable number of edges of a
given label between two vertices. So single uniqueness refers to zero or one edge,
and multiple uniqueness means more than one possible edge. This is much the
same as how a unique constraint on a SQL column represents single uniqueness.

In data structure terms, single uniqueness is a set of edges: there can be only one
of a given edge label between two instance vertices. Multiple uniqueness is like a
collection: there can be one or more of the given edge label between two instance
vertices.

http://mng.bz/QxY4

46 CHAPTER 2 Graph data modeling
graph is connected to the movie vertex using one of the three edges. In this example,
the following relationships exist:

 Bob watched Gremlins.
 Phoebe Cates acted in Gremlins.
 Joe Dante directed Gremlins.

Let’s begin by examining the directed edge in our graph. Remember, we are looking
for what is the allowable number of edges of a given label between two vertices.

 We can all agree that a person (Joe Dante) can only direct a movie (Gremlins) once,
so the directed edge has single uniqueness. This does not preclude Joe Dante from
having multiple directed edges because he also directed Gremlins 2, or mean that
Gremlins could not have multiple directed edges going into it. It merely enforces that
there can be only a single directed edge from Joe Dante to Gremlins.

 Single uniqueness is, in fact, significantly more common than multiple unique-
ness. As a rule, assume single uniqueness and think about multiple uniqueness only
when there is a specific requirement dictating multiple instances of the same edge
between two vertex instances.

 When does an edge require multiple uniqueness? Take the example of the
watched edge; we can all agree that it is possible, and certainly likely, that a person
would watch the movie more than once. As a result, there would be multiple watched
edges between Bob and Gremlins as shown in figure 2.17.

 Multiple uniqueness is less common than single uniqueness. But it is useful when
the same relationship can exist between the same two distinct items multiple times,
such as tracking the times a person has ordered a product or documenting connec-
tions between items on the internet.

 Now, let’s review the last edge in our movie graph, the acted_in edge, and see
what its uniqueness should be. Based on the definition of uniqueness (What is the
allowable number of edges of a given label between two vertices?), what do you think
its uniqueness should be?

directed

movie:

Gremlins

acted_in

person:

Phoebe

Cates
person:

Bob

person:

Joe

Dante

watched

Figure 2.16 A simple graph
with four entities, or vertices,
and three edges

47Constructing the logical data model
We would probably only ever have a single acted_in edge between a person and a
movie, so it would have single uniqueness. But if we think about people acting in mov-
ies, it is possible that a user acts in the same movie multiple times in different roles.
Examples with Eddie Murphy or Tyler Perry come readily to mind. How would we go
about modeling the requirement to store the fact that a person was in a movie in
more than one role?

 In figure 2.16, we could allow for multiple acted_in edges between a person and a
movie, but there is no way to distinguish the role associated with that acted_in edge
from the role associated with another acted_in edge. If we were to change the acted
_in edge to have a role property, then we could see that Eddie Murphy acted_in The
Nutty Professor in two separate roles, Sherman Klump and Buddy Love. We would also be
able to identify the role that is associated with each edge, as shown in figure 2.18.

If we add the role property as shown in figure 2.18, then the acted_in edge would be
considered a multiple uniqueness edge. This is just one example of how you can use
the uniqueness of your edges to represent information in your domain.

 Returning to our graph data model for DiningByFriends, what would the correct
uniqueness of the friends edge be? We could say that it is a single uniqueness edge

movie:

Gremlins

person:

Bob

watched

watched

watched

Figure 2.17 Multiple uniqueness
demonstrated with multiple watched
edges between Bob and Gremlins.

person:

Eddie

Murphy

movie:

Nutty

Professor

acted_in

role: Buddy Love

acted_in

role: Sherman Klump

Figure 2.18 Adding a role property to the
acted_in edge creates a mutiple uniqueness
edge to express the fact that Eddie Murphy acted
in multiple roles in the movie Nutty Professor.

48 CHAPTER 2 Graph data modeling
because a person can only be friends with a person once. How do we know if we have
the right edge uniqueness? To answer this question, let’s first look at how incorrect
uniqueness can affect an application. Improper uniqueness usually appears in one of
three ways:

 Too little data returned
 Duplicated data returned
 Poor query performance

IMPORTANT Incorrect edge uniqueness is one of the most common problems
in graph data modeling, and it is frequently a root cause of query issues.

The first symptom of incorrect uniqueness is that too little data is returned from a
query. This occurs when we have an edge with single uniqueness that really should be
multiple. In this scenario, the query returns only the first edge saved or the last edge
saved. The exact response returned depends on how the database handles data con-
currency. But either way, it’s incomplete.

 The second symptom, having duplicated data returned, occurs when we have mul-
tiple uniqueness edges but we should only have one. In this scenario, our application
incorrectly retrieves data for multiple edges on each query because multiple edges
exist between two instance vertices. Because we can have multiple edges with the same
label between any two vertices, each time our application saves an edge between ver-
tex A and vertex B, for example, a new edge is created. Over time, this means that we
end up with a collection of many edges when we might have intended for only a single
edge between vertex A and B to ever exist.

 The third symptom of incorrect edge uniqueness is harder to diagnose because it
appears as poor query performance. This can, of course, be caused by many things.
But most often having a multiple uniqueness edge instead of a single uniqueness edge
is what causes poor query performance, because the database has to do more work to
return the data for a query with multiple edges. We discuss more about debugging
and troubleshooting query performance in chapter 10, but let’s quickly look at why
incorrect uniqueness causes a problem.

 In the earlier Gremlins movie example, if the directed edge had multiple unique-
ness, it would be possible that an incorrect traversal could create five directed edges
between Joe Dante and Gremlins. If we run a query to return all the movies that
Joe Dante has directed, which it does using all of the directed edges connected to Joe
Dante, it requires the database to do five times the work because there are five times
the edges to traverse between the two vertices shown in figure 2.19. And this can cause
a noticeable performance impact to both your application and the database!

 If we continue with the extra edges example and imagine that we move out further
in our graph, from the movies to the actors which Joe Dante directed, we can quickly
see how this seemingly simple oversight exponentially increases the number of verti-
ces and edges we traverse. The error in the directed edges would result both in
repeated movies and in repeated actors. The good news is that there are a few ways to

49Constructing the logical data model
mitigate this problem at query time, which we cover when we start writing queries in
chapter 3. But the best way to prevent this problem is to properly design the data
model to reflect the correct uniqueness of the edges.

 Some graph databases, such as DataStax Enterprise Graph and JanusGraph, set the
uniqueness of an edge explicitly as part of a schema definition. But many other graph
databases do not define schema explicitly, so there is no way for the database to enforce
a uniqueness constraint. This schemaless approach of some graph databases means that
we must write application logic to enforce this uniqueness within the application.

2.4.3 Finding and assigning properties

Now that we’ve created the structure of our graph model, composed of the vertices
and edges, it is time to define the properties and assign these to the vertices and
edges. Properties in a graph data model are key-value pairs that describe a specific
attribute of a vertex or edge.

Default and null values in graph databases?
Properties in a graph database are similar to the columns in a row in a database table:
these store the relevant data about a specific entity. Unlike columns, an application
does not insert default values or null values into properties in graph databases.

Multiple uniqueness Single uniqueness

movie:

Gremlins

person:

Joe

Dante

directed

directed

directed

directed

directed
movie:

Gremlins

person:

Joe

Dante

directed

Figure 2.19 The comparative amount of work required for multiple uniqueness edges versus single
uniqueness edges

50 CHAPTER 2 Graph data modeling
Before we can assign the properties to edges and vertices, we first have to decide

 What properties are required?
 How we are going to name them?
 What is their data type?

To answer these questions, we need to consider what we know about the domain as
well as our conceptual data model to decide what information needs to be stored.

NOTE When migrating an existing system, it is beneficial to reference the
data model for that system as a blueprint. Data models have matured over the
years and so provide a rich perspective on the necessary data requirements for
an application. If you are developing a greenfield application unconstrained by
parameters set by prior work (such as we are with DiningByFriends), then now
is the time to sit with the technical and non-technical people to determine what
the specific data fields, names, and data types should be.

The first place we look for the properties is, once again, in our list of functionality
questions for our social networking use case. If you remember, these are

 Who are my friends?
 Who are the friends of my friends?
 How is user X associated with user Y?

Based on these questions, we can see that we need to store the first_name and last
_name for a person to identify who our friend is. We can also assume that we are going
to need a unique identifier of each person (person_id) to differentiate between peo-
ple with the same name. Without this additional attribute, we are unable to discern
one John Smith from another John Smith. Adding our properties to our current data
model, we get the model in figure 2.20.

 In this case, we did not add properties to an edge because all the required attri-
butes (person_id, first_name, last_name) describe the person, not the friends rela-
tionships between people. However, adding properties to edges is common, and we
will have a chance to do so in our DiningByFriends model in chapter 7.

 At this point in the process, if you chose to use any of the schemaless graph data-
bases that exist on the market, then you are complete. But if you are using a database

(continued)

Due to their rigid structure, relational databases require that data appears in every
column for every row. However, graph databases store data similar to the way a key-
value database stores its data, where the data either exists or does not. This means
that storing null values or populating properties with default values is not needed,
saving space and reducing the payload sent to the client. But it also means that it is
possible that some of the properties on a vertex simply might not exist, requiring
more defensive coding in the application.

51Checking our model
that requires the schema to be explicitly specified, then you have one additional step:
translating your logical data model into the physical data model required by your cho-
sen database. The actual mechanics for how this is done are specific to each database
as each tool has its own unique definition language to describe the physical graph
data model. Due to this lack of standardization across graph database vendors, we rec-
ommend reading the documentation for your chosen tool to complete this step.

2.5 Checking our model
The last step in creating our logical data model is to validate that we can answer the
questions for our social network use case and that the model we built, shown in fig-
ure 2.21, follows best practices for graph data modeling.

Looking at our questions, can we answer these using our graph data model?

 Who are my friends? We can answer this question by starting at a specific person
found by person_id and traversing the friends edge to see all of their friends.

 Who are the friends of my friends? We can answer this question by starting at a spe-
cific person found by person_id and traversing the friends edge, and then tra-
versing the friends edge again to see all of the friends of my friends.

 How is user X associated with user Y? We can answer this question by starting at a
specific person found by person_id and traversing the friends edge until we

friends

person

person

person_id

first_name

last_name

Figure 2.20 Our social network graph
data model with the properties added
(shown in the box)

friends

person

person

person_id

first_name

last_name Figure 2.21 The final logical graph data model
for the social network DiningByFriends use case

52 CHAPTER 2 Graph data modeling
either have no more friends edges to traverse or we traverse to the destina-
tion person.

Later in this book, we discuss precisely how to achieve this sort of query, but
be aware that this sort of unbounded recursive query is one of the most compel-
ling use cases for graph databases.

Now that we have a validated model, there are a few additional best practice checks to
make sure that our data model provides a solid graph model:

 Do the vertices and edges read like a sentence? Yes. While this is not an absolute
requirement, it is an excellent general check to verify that vertex labels repre-
sent the nouns in your model and the edge labels describe the actions or verbs
in your model.

 Do I have different vertex or edge labels with the same properties? No. In this case we
only have a single vertex and a single edge label. In a more complex model, as
we see later in this book, this check is a helpful way to validate that you have
made your labels generic enough.

 Does my model make sense? Yes. While this step can seem like an obvious check, it
does pay to take time to step back and double-check that your graph data
model has not strayed too far from your conceptual data model and that it
makes sense for the problem that you are solving.

In this chapter, we built our data model for our social networking use case and vali-
dated that it makes sense for our problem. In the next chapter, we are going to start
querying our database to answer the questions for our social network use case.

Summary
 Strong, early investment in understanding the problem, use cases, and com-

mon domain terminology are the foundation of building a good data model.
This also reduces the risk that you’ll need to radically change the design later.

 A conceptual data model provides an overarching view of the scope, entities,
and application functionality from the point of view of a business user.

 Translating a conceptual data model to a logical data model requires four steps:
translate entities to vertices, translate relationships to edges, assign properties,
and check the model.

 Translating entities to vertices involves identifying the required conceptual enti-
ties, creating corresponding vertices, and providing those vertices with a label
that is concise, descriptive, and generic.

 Translating relationships to edges consists of identifying the required concep-
tual relationships, creating corresponding edges, labeling each edge, assigning
a direction to each edge, and determining the edge uniqueness.

 Edge uniqueness defines the number of times an instance of a vertex can relate
to another instance of a vertex with an edge with the same label. Incorrectly

53Summary
identifying edge uniqueness is a common problem in graph data modeling,
which causes data and performance issues.

 To validate a graph data model, verify it against the requirements and concep-
tual model, check that the vertex and edge labels read like a sentence, and
ensure that the model does not have duplicated edge or vertex types. Finally,
perform a “gut-check” to see that the model makes sense.

Running basic
and recursive traversals
With our graph data model in hand, the next three chapters focus on how to navi-
gate through our graph and how to return data. In this chapter, we’ll start by filter-
ing and navigating edges, the fundamental building blocks of graph traversals. We
then extend these concepts to cover a powerful feature of graphs: the ability to eas-
ily write recursive queries. Additionally, we examine how to leverage these tech-
niques to answer common graph questions, such as how people are connected in
social networks.

 Throughout these next three chapters, we’ll use the social network use case
defined in chapter 2. As we move through this process, we’ll use Gremlin as our
query language and introduce its syntax, known as steps. Don’t worry if you don’t
know Gremlin or are using a different language; we’ll thoroughly explain each
step as we encounter it. Although we cover quite a few Gremlin steps throughout
this chapter, you can refer to the Apache TinkerPop official documentation on
Gremlin for a more thorough explanation (http://tinkerpop.apache.org/docs/
current/reference/).

This chapter covers
 Navigating the structure of a graph

 Performing filtering operations with traversals

 Using recursive traversals
54

http://tinkerpop.apache.org/docs/current/reference/
http://tinkerpop.apache.org/docs/current/reference/
http://tinkerpop.apache.org/docs/current/reference/

55Setting up your environment
NOTE Source code for this chapter is available here https://github.com/
bechbd/graph-databases-in-action. For simplicity’s sake, we use an environ-
ment variable named $BASE_DIR, which should be set to the local path where
you placed the source code you downloaded. We use this environment vari-
able throughout this and later chapters to simplify our script commands.

3.1 Setting up your environment
Now is the time to set up your local environment for development. This section dis-
cusses the minimum steps to get Gremlin up and running. There’s a more detailed
treatment of the TinkerPop project, associated artifacts, and how to set up Gremlin
(including a manual launch) in appendix A. In this section, we show you how to do
three things to get you started:

 Get a Gremlin Server running and available to receive connections
 Connect a Gremlin Console to your Gremlin Server with a session
 Load test data into the server

If you already have a Gremlin Console running locally, and it’s connected to a Grem-
lin Server, then you can skip this section. If you need to download the Gremlin Con-
sole and Server, you can do that at http://tinkerpop.apache.org/.

3.1.1 Starting the Gremlin Server

Using a terminal window, navigate to the directory where you have unzipped the
Gremlin Server download. On MacOS or Linux systems, start the Gremlin Server with
bin/gremlin-server.sh start (on Windows, use bin\gremlin-server.bat). Here’s
the syntax for MacOS or Linux:

$ cd apache-tinkerpop-gremlin-server-3.4.6
$ bin/gremlin-server.sh start
Server started 10066.

Running this command yields the process ID of the server that was started, which is a
helpful indication that everything worked as expected. To stop the server on a MacOS
or Linux system, use

bin/gremlin-server.sh stop

On a Windows system, use

bin/gremlin-server.bat stop

WARNING When you stop the server, you lose all the data stored in the data-
base because the Gremlin Server is in-memory only.

To restart the server on MacOS or Linux systems, use

bin\gremlin-server.sh restart

https://github.com/bechbd/graph-databases-in-action
https://github.com/bechbd/graph-databases-in-action
https://github.com/bechbd/graph-databases-in-action
http://tinkerpop.apache.org/

56 CHAPTER 3 Running basic and recursive traversals
On Windows systems, use

bin\gremlin-server.bat restart

This performs a stop and then a restart on the server. Now that we have an instance of
the Gremlin Server running, let’s move on to our next task.

3.1.2 Starting the Gremlin Console, connecting to the Gremlin Server,
and loading the data

In this section, we launch Gremlin Console, connect it to our server, and load some
data. Because we want to get up and running as quickly as possible, we provide the
scripts to accomplish these tasks.

 Using a terminal window, navigate to the directory where you have the unzipped
version of the Gremlin Console download. On MacOS or Linux systems, run the
Gremlin Console with this script argument:

bin/gremlin.sh -i $BASE_DIR/chapter03/scripts/3.1-simple-social-network.groovy

On Windows, use this command:

bin\gremlin.bat -i $BASE_DIR\chapter03\scripts\3.1-simple-social-network.groovy

Running this command or script first launches the Gremlin Console and then con-
nects it to the Gremlin Server. Finally, it loads a small data set into our database.

IMPORTANT These commands return your database to this known state, over-
writing any data that you may have added.

You can verify that all of this was successful by entering the single character g in the
Gremlin Console. Your terminal screen should display an output like the following:

$ bin/gremlin.sh -i $BASE_DIR/chapter03/scripts/3.1-simple-social-network.groovy

 \,,,/
 (o o)
-----oOOo-(3)-oOOo-----
plugin activated: tinkerpop.server
plugin activated: tinkerpop.utilities
plugin activated: tinkerpop.tinkergraph
gremlin> g
==>graphtraversalsource[tinkergraph[vertices:4 edges:5], standard]
gremlin>

If you don’t see output like that, then close your terminal and start again with these
instructions or with the instructions in appendix A. Now you are connected to a graph
database with four vertices and five edges. This is the social network data as shown in
figure 3.1. We use this data for all examples throughout this chapter.

57Traversing a graph
3.2 Traversing a graph
Now that we’ve added data for our graph, let’s begin by writing our first graph tra-
versal. Let’s say we want to look at our social network to answer the question, “Who are
Ted’s friends?” In a relational database, we would use a query to answer this question,
but in a graph, we perform a traversal. This process of moving through the graph is
known as traversing. The definition of the set of steps and actions we perform to
retrieve this data is known as the traversal, analogous to our SQL query.

Traverse, traversal, traversal source, and traverser
Throughout this book, we use several similar sounding terms to describe the process
of moving through a graph. To avoid any misunderstandings, here is a summary of
these terms, all in one place:

 Traverse—The process of moving from vertex to edge or edge to vertex as we
navigate through a graph. Traversing a graph is analogous to the act of query-
ing in a relational database.

 Traversal—A specification of one or more steps or actions to perform on a
graph, which either returns data or makes changes, or in some cases, does
both. In a relational world, this would be the actual SQL query. In the graph
world, this is the set of operations, called steps, that are sent to the server
to be executed.

 Traversal source—The traversal source is a concept specific to TinkerPop. It
represents the base or starting point from which steps traverse the graph. By
convention, this is usually represented with the variable g and is required to
begin any traversal.

person

person

person

first_name Hank

person

person

person

person

Josh

person

first_name first_name

first_name

TedDave

friends

friends

friends
friends friends

Figure 3.1 The social network graph. Setting up the environment as detailed in
section 3.1 loads the data for this use case, which we use throughout the chapter.

58 CHAPTER 3 Running basic and recursive traversals
3.2.1 Using a logical data model (schema) to plan traversals

Traversing a graph database focuses on how to traverse from one element to another. To
do this effectively, we leverage our logical data model to understand what the relevant
schema elements are for each element in the graph. Let’s look at what elements are in
the graph and what is most relevant to think about when writing a traversal, as shown
in table 3.1.

NOTE Notice that edges in our data model are part of each row in table 3.1.
This demonstrates the importance of relationships in graph databases and
their value when working with highly connected data.

We have included as figure 3.2 the final logical data model from chapter 2. Let’s deter-
mine the most relevant schema elements for each of our graph elements, starting with
our vertices. From our model, we can see that we only have one vertex label, person,
to consider. The person vertices contain person_id, first_name, and last_name
properties, representing attributes of people in the data. The final portion to consider

(continued)

 Traverser—The computing process associated with a specific branch of a tra-
versal’s execution. A traverser maintains all the metadata about the current
branch of the graph it’s moving through (e.g., current object, loop information,
historical path data, etc.). A unique traverser represents each branch through
the data.

Another way to think about these terms is that a traversal begins at a traversal source
by sending one traverser per branch to traverse a graph. The traverser can either be
removed or returned with the results.

Table 3.1 Summary of graph elements and relevant schema elements

Graph element Relevant schema elements

Vertices Vertex label, vertex properties, and the connected edge labels

Edges Edge label, edge properties, edge direction, and connected vertex labels

friends

person

person

person_id

first_name

last_name

Figure 3.2 The final logical graph data
model from chapter 2 for the social
network DiningByFriends use case

59Traversing a graph
is the edge labels that are connected (i.e., incident) to the person vertex. In this
model, there is only one label, friends.

 Next, we’ll determine the edge direction, which helps us know how to move
through our directed graph. Although this is important in most scenarios, because
edges go from one label to a different label, in this example, the direction is not rele-
vant. That’s because the friends edge goes from a person vertex to person vertex (a
loop edge).

 These are the relevant schema elements that we’ll use throughout this chapter to
help us plan and write our traversals. We’ll use these identified schema elements to guide
our work, but when demonstrating the concepts, we’ll use instance data.

 All of our work at this stage is built on the foundation of our data modeling pro-
cess. When we clearly state the business questions and thoroughly understand the use
cases, we should find that our logical model and identified relevant schema elements
aid in writing traversals. If we find that it is difficult to write traversals to address the
use cases, then we likely missed something in our data modeling process.

3.2.2 Planning the steps through the graph data

Having walked through the logical data model, let’s leave the abstract behind and
take a look at our social network graph data from figure 3.1. Let’s decide what we
need to do to answer the question, “Who are Ted’s friends?” The first step in answer-
ing this question is to establish a starting point in the graph. For this question, we
need to find the Ted vertex, as shown in figure 3.3.

With the Ted vertex as the starting point of our traversal, our next step is to find
Ted’s friends. Looking at our graph, we notice a descriptively named friends edge

person

person

person

first_name Hank

person

person

person

person

Josh

person

first_name first_name

first_name

TedDave

friends

friends

friends
friends friends

Figure 3.3 Our social network graph highlighting our starting location, Ted

60 CHAPTER 3 Running basic and recursive traversals
connected to our Ted vertex. Let’s traverse the edge between Ted and Josh as depicted
in figure 3.4.

Examining this graph, it’s reasonable to wonder why we didn’t follow the other friends
edge (from Ted to Dave). This is where the directed nature of edges in a graph comes
into play.

 Remember that our data model is similar to Twitter when making friends. In Twitter,
when you follow someone that does not mean they follow you. In DiningByFriends, we
have also chosen a model where a person can friend someone who doesn’t connect
back as a friend. This isn’t the style of reciprocated friending found on Facebook.

 By “Who are Ted’s friends,” we mean who are the people that Ted friended, not
the people who friended Ted. This means we only follow the friends edges that begin
at the Ted vertex, not those that end at Ted. To find people that friended Ted, we need
to locate edges that end at the Ted vertex, not those that begin at his vertex. This
directed nature of edges is a key distinguishing capability in graph databases and is
useful for filtering or deciding which edges to traverse.

NOTE In a graph, edges are represented by lines where the start or source of
the edge from the vertex is represented without an arrowhead, and the desti-
nation or target to the vertex is represented with the arrowhead. See figure 3.4
for an example.

For simplicity’s sake, we only traverse a single edge in this example. However, if there
were multiple outgoing friends edges, such as if we were to start at the Dave vertex,
then multiple parallel processes would be traversing around our graph. Each of these
parallel processes is called a traverser. Now that we’re located on the friends edge for

person

person

person

first_name Hank

person

person

person

person

Josh

person

first_name first_name

first_name

TedDave

friends

friends

friends
friends friends

Figure 3.4 The social network graph highlighting our location after we traverse
the outgoing friends edge

61Traversing a graph
Ted, the last step is to complete the traversing of the edge to the person vertex at the
other end, as shown in figure 3.5.

As figure 3.5 shows, we reached the conclusion that Ted is friends with Josh. This sim-
plified example demonstrates how traversals use the structure of the graph data
model to move from one vertex or edge to another.

3.2.3 Fundamental concepts of traversing a graph

The process of traversing a graph can be broken down into these basic operations:
find a starting vertex, identify an edge to traverse, traverse that edge, and finally, com-
plete the traversal by arriving at the destination vertex. We’ll use this same series of
steps when we traverse through graph data in all of the graph traversals both in this
book and in our own applications; although for this book, we won’t usually break it
down to this level of detail. With that in mind, let’s flesh out our understanding of tra-
versing by examining the four critical characteristics of the process.

TRAVERSING IS A SERIES OF STEPS

Traversing a graph entails defining the series of steps for moving through the graph.
These steps can also include various operations for manipulating the graph data, such
as filtering data, as well as the traversing of edges. Our example traversal only con-
sisted of three individual steps, but the number of steps can grow quite drastically as
our traversals become increasingly complex. The important tip to remember is that
each step in a traversal starts at one location and (almost always) ends at a different
location. This leads us to the second fundamental concept of graph traversals.

person

person

person

first_name Hank

person

person

person

person

Josh

person

first_name first_name

first_name

TedDave

friends

friends

friends
friends friends

Figure 3.5 The social network graph highlighting our location after we traverse
to the adjacent Josh vertex

62 CHAPTER 3 Running basic and recursive traversals
TRAVERSING REQUIRES KNOWING WHERE WE ARE

Traversals require knowing our location in a graph. This concept is foreign for those
of us coming from a relational database background. In a relational database, our
SQL queries are capable of joining any two tables at any point in the query. In a graph,
we’re limited to using the edges or vertices next to our current location in a graph. To
navigate efficiently throughout the graph, we have to keep track of where we are
within the structure of our graph data model. In our experience, this is the most diffi-
cult skill to master for people new to graphs.

EDGE DIRECTION MATTERS

As we saw in our example, the direction of an edge matters. In this case, even though
Ted has two incident friends edges, only one of those represents a person he friended,
while the other one signifies someone who friended him. Again, these friends edges
work more like Twitter’s “follows” relationships than real-life friendships.

 This directionality of a relationship is different than in a relational database, where
all relationships are bidirectional. In a graph, it is up to us to determine not only the
direction of the edge but also how we want to traverse that edge. This ability to control
whether we traverse only incoming, outgoing, or both edge directions provides us
with a powerful tool to customize our traversals.

TRAVERSALS DON’T HAVE HISTORY

As we traverse the graph, we only have knowledge of where we currently are, not where
we’ve previously been. (Remember the graph escape room mental model.) This is a
fundamental difference from the way a relational database works and another common
frustration for new graph developers as this concept catches them by surprise. In a

A graph “escape room” with drawers and doors
One technique we use to help people conceptualize how to work with a graph is the
metaphor of a graph as a series of rooms connected by hallways. Imagine that you’re
a little Gremlin, sitting on a vertex. What we actually see through the eyes of the
Gremlin is a closed room. Our perception is limited to what’s visible within the room.
(Our room is always a plain white, but you can pick any color you like.) As we look
around the room, we observe the following:

 A chest of drawers with a label on each drawer. Each drawer is a vertex prop-
erty, and the label is the property name.

 A series of doors, also with labels and with IN and OUT plaques. Each door is
an incident edge, and the plaques represent the edge direction.

 The doors themselves also have drawers. These drawers are the edge properties.

We have immediate access to everything visible in the room (vertex properties, edges,
and edge properties). But access to anything beyond the drawers and the doors
requires additional effort; in the case of our traversal, this means an additional step.
That’s right—our mental model of a graph’s vertex is basically an “escape room.”

63Traversing a graph
relational database, if we write a query similar to the graph traversal depicted in fig-
ures 3.3 and 3.4, it might be something like this:

SELECT *
FROM person AS Ted
 JOIN friends ON friends.person_id = Ted.id
 JOIN person AS Friend ON Friend.id = friends.friend_id
WHERE Ted.first_name = 'Ted';

For this query, we expect to get back all the columns joined together from the person
AS Ted, friends, and person AS Friend tables. By contrast, in a graph, the only value
returned from the traversal is the ending vertex (or room). While there are ways to
retrieve data from the other steps in our traversal, or even to bring the full history of
our traversal along with us at each step, these require that we explicitly ask for that
data or use specific steps to indicate that the history must be retained.

3.2.4 Writing traversals in Gremlin

Now that we have covered the core operations involved in traversing a single edge,
let’s write the code for our first traversal, or series of steps, by finding all of Ted’s
friends. We start by outlining the steps we need to take through the graph:

 Given all the vertices in my graph
 Find all the person vertices with a first_name of Ted
 Walk the outgoing friends edges to the incident vertex
 Return the first_name

Next, we map these plain English steps to the corresponding steps in Gremlin. Fig-
ure 3.6 shows the mapping.

Now we take this traversal and run it in our Gremlin Console. We see that we get the
correct answer, Josh, back from our database:

g.V().has('person', 'first_name', 'Ted').
 out('friends').values('first_name')
==>Josh

Given all the vertices
in the graph

Walk the outgoing friends

edges to their incident vertices.

Find the verticesperson

with a offirst_name Ted.

Return the
first_name.

g.V().has('person', 'first_name', 'Ted').
out('friends').values('first_name')

Figure 3.6 Mapping the plain text
steps to the corresponding Gremlin
steps for the question, “Who are
Ted’s friends?”

64 CHAPTER 3 Running basic and recursive traversals
We realize that we haven’t yet introduced even the most basic Gremlin syntax before
showing the entire answer. We did this on purpose. Our experience is that people new
to Gremlin tend to understand it better if they first see the answer, and then we break
down what each step does. This approach provides a better mental model of how to
move through our graph.

TRAVERSAL SOURCE

The g step in figure 3.6 is always the first step in every Gremlin traversal. The g rep-
resents the traversal source for our graph and is the base on which all traversals are
written. This variable could be called anything, but the convention with a TinkerPop
graph in transactional mode is to use g.

GLOBAL STEPS

The second step in our traversals is the V() step (figure 3.6). The V() step returns an
iterator that contains every vertex in the graph. It’s one of two global graph steps. The
other global graph step is E(), which returns an iterator that contains every edge in

Gremlin key concepts: g != graph
Throughout this chapter, we refer to g as the traversal source and not as a graph.
This is another important, and potentially confusing, aspect of TinkerPop: there are
two APIs!

The predominant API is the Traversal API that starts, by convention, with a variable
defined by g = graph.traversal(). This is the API used throughout this book. It’s
a process that knows how to efficiently navigate its associated graph structure.

The other API is an internal API designed for use by developers creating graph data-
base engines. It’s (confusingly) called the Graph API. It’s an interface that defines a
container object for the collection of Vertex, Edge, VertexProperty, and Property
objects. It’s also a data structure, and it doesn’t provide an efficient means for nav-
igation or for anything beyond the most basic ability to locate individual data ele-
ments in the graph.

Those with a strong relational database background might think, “Two APIs—that
must be like DDL (data definition language) and DML (data manipulation language)
in SQL.” But that would be wrong. DDL focuses on schema, and there is no corre-
sponding set of language features in TinkerPop. The TinkerPop project does not spec-
ify how vendors should declare schema in their graph, so different vendors have
different APIs for the graph schema definition. TinkerPop itself avoids the question of
schema definition altogether by allowing any schema if it is used in the Gremlin code.

Instead, the Graph API is like a relational database publishing an API in C/C++, C#,
or Java for directly manipulating database files below the SQL language abstractions.
Imagine handling data operations at the file level, including changes in the transac-
tion logs and other low-level files. This is what using the Graph API is like.

We only mention the Graph API here and in a few other places, such as in chapter 10
when covering anti-patterns. Throughout the book, all examples use the Traversal API.

65Traversing a graph
the graph. With few exceptions, one of these two steps is always the second step of our
traversals. Our specific choice depends on whether we want to start our traversal on an
edge or on a vertex.

 Using V() to start on a vertex is by far the most common. In fact, except for some
very exceptional operations, usually for maintenance or data integrity, we rarely use
an E() step. Although we work with highly connected data and traverse or reason over
the edges, we still operate in an entity-focused world, and we almost exclusively start
and end with vertices.

 Consider our “Find Ted’s friends” example. The natural starting place is the Ted
vertex. In fact, we venture to say that nearly every traversal you write for transactional
operations starts on a vertex or set of vertices. Even in the DiningByFriends domain,
we always start with a vertex of some sort, be it a person, restaurant, city, or review.
This is both normal and good, and so in our traversals, we’ll pretty much always start
with V().

FILTERING STEPS

The next step in our traversal is the has() step (figure 3.6), the first filtering step we
introduce in this book. This is one of the most common Gremlin steps because it only
passes through any vertex or edge that

 Matches the label specified, if a label is specified
 Has a key-value pair that matches the specified key-value pair

This filter step is the primary one for filtering traversals in Gremlin. Check the Tinker-
Pop documentation for all forms of the has() step. The most commonly used forms
include

 hasLabel(label)—Yields all vertices or edges of the specified label type
 has(key, value)—Yields all vertices and edges with a property matching the

specified key and value
 has(label, key, value)—Yields all vertices and edges with both the specified

label and with a property matching the specified key and value. This performs
the same function as this combination:

g.V().hasLabel('person').has('first_name', 'Ted')

The has() step, as with most of the Gremlin steps, can be chained together to per-
form more complex filtering operations. This is much like using the AND in a WHERE
clause in SQL. For example, we could find all people named Ted who are 40 years old
simply by adding on an additional has() step to the previous traversal like this:

g.V().hasLabel('person').has('first_name', 'Ted').has('age', 40)

Our sample graph doesn’t include an age property, however, so you can’t test that tra-
versal without first updating the data. As written, it doesn’t return any results because no
vertex can match the second has() step and Ted isn’t 40. Not that there’s a real Ted.

66 CHAPTER 3 Running basic and recursive traversals
 When working with a transactional graph, it’s vital to narrow down the number of
starting traversers as quickly as possible. This is done for reasons of load and perfor-
mance. Fewer starting places usually means less work overall in traversing the graph.
Therefore, it’s quite common for the first step in any traversal to filter the possible ver-
tices to a small subset with one or more has() steps. This is similar to filtering the base
table in a SQL join.

TRAVERSAL STEPS

The out(label) step (figure 3.6) traverses all outgoing edges to the incident vertex
with the specified label, if a label is provided. If a label isn’t provided, then it just tra-
verses all outgoing edges. This is one of the two most common traversal steps we use to
navigate from one vertex to another. The other common traversal step is in(label),
which traverses all incoming edges to the incident vertex with the specified label, if a
label is provided.

NOTE Remember, an outgoing vertex is the vertex where an edge starts, and
an incoming vertex is a vertex where an edge ends.

The out(label)traverses from a vertex (the Ted vertex, in our example), to the adja-
cent vertex along outgoing edges. We specified the label friends so our traversal only
traverses friends edges. Figure 3.7 illustrates traversing from the Ted vertex to the
adjacent Josh vertex on the single outgoing friends edge.

Let’s say we want to do the opposite and find people who have friended Ted instead of
people whom Ted has friended. This is essentially the same query we described in fig-
ure 3.7 except we traverse the incoming friends edges instead of the outgoing ones.
We switch our query to use the in() step, as shown in figure 3.8.

 With this simple change, we can now traverse in the opposite direction. This flexi-
bility to traverse relationships in either direction is a fundamental capability of graph

g.V().
has('person', 'first_name' , 'Ted').
out('friends').
values('first_name')

==>Josh

friends friendsDave Ted Josh

out()

Figure 3.7 Traversing the outbound friends edge from Ted to Josh

67Traversing a graph
databases. But it can be a double-edged sword (pun unintended). This directionality
filters our traversals, which aids in both readability and performance, but it carries
limitations as well. We might not know the direction of the edges we want to traverse,
or we might not care in what direction we traverse. Whether we suffer from direc-
tional ignorance or directional apathy, Gremlin has a step to help us with that.

 What if we want to find two sets of people at the same time? To answer this, we tra-
verse the friends edge in both the incoming and outgoing directions simultaneously.
Let’s introduce another Gremlin step: both(label). This step traverses from a vertex
to the adjacent vertex along edges with the given label. Using this step, we write our
traversal to find everyone who has friended Ted, as well as everyone whom he has
friended, as shown in figure 3.9.

g.V().
has('person', 'first_name' , 'Ted').
in('friends').
values('first_name')

==>Dave

friends friendsDave Ted Josh

in()

Figure 3.8 Traversing the inbound friends edge from Ted to Dave

g.V().
has('person', 'first_name' , 'Ted').
both('friends').
values('first_name')

==>Dave
==>Josh

friends friendsDave Ted Josh

both() both()

Figure 3.9 Traversing both the inbound and outbound friends edge
from Ted

68 CHAPTER 3 Running basic and recursive traversals
3.2.5 Retrieving properties with values steps

The final step in our traversal (figure 3.6) is the values(keys...) step, which returns
the values of the element’s properties. A separate line displays each resulting value. If
the element has N properties, then the output contains N lines. If one or more keys
are specified, then only properties with that key or keys are returned.

 This is one of several different ways to return the property values of an element
in our graph. The other commonly used step is valueMap(keys...), in which both
the keys and values for the properties matching those keys are returned. We’ll go
into much more depth on how to use these and other methods to format results in
chapter 5.

 Using this relatively simple query (figure 3.6), we begin to see how the syntax of
Gremlin requires us to think about how we move around our graph in order to
retrieve data. While we demonstrate this with Gremlin, the need to understand filter-
ing and edge directionality to move around a graph is common to all graph query lan-
guages. We need to understand the direction we’re walking an edge in order to
understand what data we’re getting. Once we make this mind shift to thinking about
our traversals in terms of where in the graph we are currently located, we have the
necessary mindset to leverage the relationships in the data.

3.3 Recursive traversals
Up to now we have found a specific vertex or traversed to adjacent vertices, but this is
only scratching the surface. Stopping here would be like buying a sports car only to
drive it around the neighborhood. It’s time we put the pedal to the metal and see what
we can do on the proverbial open road. In this section, we’ll start writing and running
one of a graph database’s most powerful features: recursive traversals, which are also
sometimes known as looping traversals.

3.3.1 Using recursive logic

We use recursive traversals for problems where some portion of the traversal needs to be
executed multiple times in succession. There are many problems that require recur-
sive traversals. Here are a few examples:

 Bill of materials—A standard bill of materials is made up of pieces, each of which
is made up of more pieces, each of which is made up of still more pieces, and so
on for an unknown number of levels.

Example query: given the ID of a piece of equipment, walk the bill of materi-
als to find all of the individual items required to build the equipment.

 Map directions—This is one that’s familiar to many of us and that most of us use
frequently, if not daily. Given two locations on the map, provide a listing of
streets and turns to get from a starting location to an ending location. Though

69Recursive traversals
two locations are connected, we cannot predict ahead of time the number of
turns required.

Example query: given two locations, provide turn-by-turn directions to get
from point A to point B.

 Task dependency—Let’s say we’re building a software application. Because we’re
all good developers, we begin by listing the different work items required for
completion. For each of these items, we can link these to any dependent work
items, which are then connected to their dependent items, and so on.

Example query: provide an ordered list of items needed to remove the
dependency to another item.

Each of these problems requires traversing an unknown number of links. In the case
of the bill of materials, the links represent the hierarchy of pieces. For the map direc-
tions, the links serve as the connections between intersections. For the task dependen-
cies, the links serve as correlations on the dependency tree.

 When we have a problem that requires traversing an unknown number of edges to
find the answer, we use a recursive traversal. In a relational database, this is likely han-
dled by a recursive common table expression (CTE), which can be difficult to code
and to maintain. However, because graph databases are optimized to handle highly
interconnected data, their query languages and underlying data structures are also
optimized for quickly executing recursive queries.

 Let’s extend the traversal from the last section to see recursive queries in action.
Instead of trying to find Ted’s friends, let’s locate all of the friends of Ted’s friends.
This friends-of-friends-type question is a common pattern in social networks and is
similar to what Facebook, Twitter, or LinkedIn do to recommend potential connec-
tions. If we want to accomplish this in our social network graph, we would need to exe-
cute the following steps. (Note: because every traversal starts in the context of all
vertices in the graph, we don’t explicitly state that when planning our traversing
through the graph.)

1 Find all the Ted vertices.
2 Traverse the outgoing friends edges to the incident edge.
3 Traverse to the incoming vertex (at this point, we’re at Ted’s friends).
4 Traverse the outgoing friends edges to the incident edge.
5 Traverse to the incoming vertex (at this point, we’re at the friends of Ted’s

friends).
6 Return the first_name property value.

To refresh our memories of what the process looks like for steps 1–3, covered in sec-
tion 3.2.2, let’s look at figures 3.10, 3.11, and 3.12.

70 CHAPTER 3 Running basic and recursive traversals
person

person

person

first_name Hank

person

person

person

person

Josh

person

first_name first_name

first_name

TedDave

friends

friends

friends
friends friends

Figure 3.10 Step 1: Locating the Ted vertex

person

person

person

first_name Hank

person

person

person

person

Josh

person

first_name first_name

first_name

TedDave

friends

friends

friends
friends friends

Figure 3.11 Step 2: Traversing from the Ted vertex to the incident outgoing friends edges

person

person

person

first_name Hank

person

person

person

person

Josh

person

first_name first_name

first_name

TedDave

friends

friends

friends
friends friends

Figure 3.12 Step 3: Moving from the incident friends edges to the adjacent vertex

71Recursive traversals
Now that we are located at Ted’s friend Josh in our graph, let’s examine how these two
additional steps take shape. Figures 3.13 and 3.14 show this transformation.

Examining both the text and the diagrams, we see that steps 4 and 5 are just repeats of
steps 2 and 3. This repetition of actions is what we’re referring to when we talk about
recursive queries. In this example, our actions only repeat one time, but many real-
world use cases require that a section of a query be repeated many times, sometimes
until a specific condition is reached, leading to an indeterminate number of repetitions.

person

person

person

first_name Hank

person

person

person

person

Josh

person

first_name first_name

first_name

TedDave

friends

friends

friends
friends friends

Figure 3.13 Step 4: Continuing from the vertex of Ted’s friend Josh and
traversing out Josh’s outgoing friends edge

person

person

person

first_name Hank

person

person

person

person

Josh

person

first_name first_name

first_name

TedDave

friends

friends

friends
friends friends

Figure 3.14 Step 5: Continuing from the vertex of Ted’s friend Josh, traversing
Josh’s outgoing friends edge, and then moving to Josh’s friends

72 CHAPTER 3 Running basic and recursive traversals
3.3.2 Writing recursive traversals in Gremlin

Now that we have a picture in our mind of how recursive traversals operate, let’s take a
look at how to use Gremlin to find the friends of Ted’s friends. Looking back at the
steps we need to do to find the friends-of-friends for Ted, we noticed that we need to
repeatedly go out the friends edge. We could extend our traversal from before by
adding another out('friends') step like the following:

g.V().has('person', 'first_name', 'Ted').
 out('friends').
 out('friends').
 values('first_name')
==>Hank

This works and provides the correct answer, but it only works because we knew that we
needed two repetitions. In many cases, we don’t know how many repetitions we’ll
need. We need a way to loop through a defined series of Gremlin steps until a condi-
tion is met and the loop exits. In our case, we want to loop two times through the
out('friends') step from our earlier traversal. To accomplish this in Gremlin, we
need to introduce a few new steps:

 repeat(traversal)—Repeatedly loops thorough the steps until instructed to
stop. The traversal parameter represents the set of Gremlin steps to be repeated
within the loop.

 times(integer)—A modifier for a repeat() loop. The integer parameter rep-
resents the number of operations for the loop to execute.

 until(traversal)—A modifier for a repeat() loop. The traversal parame-
ter represents the set of Gremlin steps that evaluate for each loop. When the
traversal evaluates to true, the repeat() step exits.

Gremlin traversal parameters
One important difference to note about the repeat() and until() steps is that unlike
the previous steps, which took a label, a string, or an integer, these steps expect a
traversal as a parameter. What does it mean to take a traversal as a parameter?

While the repeat() and until() steps are our first introduction to the traversal
parameter type, this is a common pattern that we’ll see again and again as we add
Gremlin steps to our toolbelt. When we see traversal as a parameter, what we pass
into the step is one or more steps that are performed in the context of the step. In
the case of the repeat() step, the traversal parameter is a set of steps to repeat in
a loop. For the until() step, the traversal parameter is the stopping condition of the
repeat() step.

Traversal parameters are similar to lambda expressions in Java. A Java lambda expres-
sion allows us to provide method arguments to perform complex tasks in the context
of that function. A traversal argument in Gremlin enables us to provide a series of
Gremlin steps that can execute complex movements within our graph in the context of
the step it was passed. For example, if we want to continuously traverse friends edges

73Recursive traversals
With these new steps, let’s explore what our traversal looks like to find the friends-of-
friends for Ted:

g.V().has('person', 'first_name', 'Ted').
 repeat(
 out('friends')
).times(2).
 values('first_name')
==>Hank

Written in English, the traversal reads as

 Given all the vertices in the graph
 Find all the person vertices with a first_name of Ted.
 Repeat the following step or steps.
 (Repeated block) Walk the outgoing friends edges to the adjacent vertex.
 Execute the repeated step(s) two times.
 Return the first_name.

Review figure 3.15 to see how these text steps correlate with the corresponding steps
in Gremlin.

until we come to a person with the first_name of Dave, we could do this by passing in
a traversal has('person', 'first_name', 'Dave') to the until() step as shown:

g.V().has('person','first_name','Ted').
 repeat(
 out()
).until(has('person','first_name','Dave')).
 values('first_name')

Note that the example traversal from Ted to Dave is for illustration only. It does not
return a result with the sample data used in this chapter. The curious reader can look
at the previous diagrams of the data to see why; as for the lazy ones, well, we’ll just
point out that it had to do with the directions of the edges in the graph.

Given all the vertices
in the graph

Repeat the step or steps
contained in this block.

Walk all the outgoing friends

edges to their adjacent vertex.

Execute the repeat
two times.

Find all the verticesperson

with a of .first_name Ted

Return the .first_name

g.V().has('person', 'first_name', 'Ted').
repeat(
out('friends')

).times(2).values('first_name')

Figure 3.15 Mapping of the plain text steps to the corresponding Gremlin steps for our
friends-of-friends query

74 CHAPTER 3 Running basic and recursive traversals
Let’s walk through each step of our traversal on our data model and see how we
arrived at our answer of Hank. The first step of our traversal filters our query to just a
single traverser on the Ted vertex, as seen in figure 3.16.

In the second step of our traversal, we enter the repeat() loop and process the inte-
rior traversal for the first time; in this case, out('friends'). Examining our graph
shows us that there’s only a single outgoing friends edge that, when we traverse,
brings us to the Josh vertex, as shown in figure 3.17.

person

person

person

first_name Hank

person

person

person

person

Josh

person

first_name first_name

first_name

TedDave

friends

friends

friends
friends friends

g.V().has('person', 'first_name', 'Ted').
repeat(
out('friends')

).times(2).values('first_name')

Figure 3.16 The first steps of our Gremlin traversal for our friends-of-friends query for Ted

person

person

person

first_name Hank

person

person

person

person

Josh

person

first_name first_name

first_name

TedDave

friends

friends

friends
friends friends

per

First time through loop (times=1)

g.V().has('person', 'first_name', 'Ted').
repeat(
out('friends')

).times(2).values('first_name')

Figure 3.17 The second step of our Gremlin traversal for our friends-of-friends query for Ted

75Recursive traversals
In third step in our traversal, we remain in the repeat() loop once again. We know
that we need to repeat this loop because we specified, using the times(2) step, that we
want to repeat the loop twice. We again traverse all outgoing friends edges to the
adjacent vertex, of which there is only one, to arrive at the Hank vertex, as shown in fig-
ure 3.18.

In our traversal, we specified to perform two iterations through our repeat() loop.
After we iterate through the interior traversal twice, we exit the loop. The last portion
of our traversal specifies that we return the first_name value of any vertex that we’re
on; in this case, Hank.

 What if we don’t know how many times we need to repeat our traversal to find
Hank from Ted? Imagine we want to continue looping until we find an element that
matches a specific set of criteria. For the situations where we don’t know the number
of times we need to recurse, we use the until() step. The until() step allows us to
loop continuously until a specified condition is met.

IMPORTANT Queries that use the until() step can create performance issues
because the traversal runs until the condition is met. If the condition is never
met, then it continues until it exhausts every potential path in the graph. This
scenario is known as an unbounded traversal. When using the until() step, we
recommend providing a maximum number of iterations using the times()
step or using a time limit with the timeLimit() step.

If the until() step comes before the repeat()step, then the loop operates as a while-do
loop. If it appears after the repeat(), then it functions as a do-while loop.

person

person

person

first_name Hank

person

person

person

person

Josh

person

first_name first_name

first_name

TedDave

friends

friends

friends
friends friends

per

Second time through loop (times=2)

g.V().has('person', 'first_name', 'Ted').
repeat(
out('friends')

).times(2) values(. 'first_name')

Figure 3.18 The third step of our Gremlin traversal for our friends-of-friends query for Ted

76 CHAPTER 3 Running basic and recursive traversals
If we want to write a traversal to find a Hank vertex from the Ted vertex, and we don’t
know the number of loops it takes to get there, we can do this using the until() step
as shown here:

g.V().has('person', 'first_name', 'Ted').
 until(has('person', 'first_name', 'Hank')).
 repeat(
 out('friends')
).
 values('first_name')
==>Hank

Although this traversal returns the data we expected, it only provides information
about Hank, not how we traversed from Ted to Hank. It only reveals that the two are
connected. What if we want to see how Ted and Hank are connected?

 To determine the intermediate steps, we need to introduce a modifier step to the
repeat() step, known as emit(). The emit() step informs the repeat() step to emit
the value at the current location in the loop. Let’s add emit() to our traversal and
examine our results:

g.V().has('person', 'first_name', 'Ted').
 until(has('person', 'first_name', 'Hank')).
 repeat(
 out('friends')
).emit().
 values('first_name')

Do-while versus while-do loops
Both do-while and while-do (or while) loops are programming constructs used in many
programming languages. Both options execute a block of statements continuously
while the specified expression is true. In Java, do-while loops look like this:

do {
 //Execute some statements
} while (expression)

And while loops look like this:

while(expression) {
 //Execute some statements
}

The fundamental difference is that a do-while loop checks the expression at the end
of the loop, but a while-do loop verifies the expression at the beginning. This means
that if the expression evaluates to false, a do-while only executes one time, but a
while-do loop won’t execute. In other words, a do-while loop always executes at least
once, whereas a while loop may not execute at all.

77Recursive traversals
==>Josh
==>Hank
==>Hank

Interestingly, we got two Hank responses in the results. Remember that when we use
the until() step before the repeat, it’s a while-do approach. When we execute this
traversal, the following occurs:

 Given all the vertices in our graph
 Finds the person vertex where the first_name is Ted
 Evaluates the until() statement to see if we’re on a person vertex with a

first_name of Hank (in this iteration, it is false)
 Traverses the outgoing friends edges to the adjacent vertex
 Emits the current vertex (in this iteration, it’s Josh)
 Evaluates the until() statement to see if we’re on a person vertex with a

first_name of Hank (again, in this iteration, it is false)
 Traverses the outgoing friends edges to the adjacent vertex
 Emits the current vertex (in this iteration, it’s Hank)
 Evaluates the until() statement to see if we’re on a person vertex with a

first_name of Hank (in this iteration, it is true)
 Emits the first_name property of the current vertex (Hank)

By emitting the vertices as we traverse through our graph, we end up with three verti-
ces, one of which is a duplicate. This duplicated vertex, once from being emitted in
the loop and once for being the current vertex at the end, is why the results contain a
duplicate Hank. But what if we want to see Ted as part of the results? And maybe also
get rid of that extra Hank?

NOTE The emit() step is similar to the until() step, whether it’s placed
before or after the repeat() step, that impacts how it behaves. If the emit() is
placed before the repeat(), it includes the starting vertex. If it’s placed after
the repeat(), it only emits the vertices traversed as part of the loop.

To ensure that Ted is part of our results, we need to move the emit()step before the
repeat() step as illustrated here:

g.V().has('person', 'first_name', 'Ted').
 until(has('person', 'first_name', 'Hank')).
 emit().
 repeat(
 out('friends')
).
 values('first_name')
==>Ted
==>Josh
==>Hank

78 CHAPTER 3 Running basic and recursive traversals
Why does this traversal add Ted and remove the duplicated Hank? Let’s take a closer
look at how this works and see if we can spot why moving the emit() fixes both
problems:

 Given all the vertices in our graph
 Finds the person vertex where the first_name is Ted
 Evaluates the until() statement to examine if we’re on a person vertex with a

first_name of Hank (in this iteration, it is false)
 Emits the current vertex (in this case, it’s Ted)
 Traverses the outgoing friends edges to the adjacent vertex
 Evaluates the until() statement to see if we’re on a person with a first_name

of Hank (again, in this iteration, it is false)
 Emits the current vertex (in this case, it’s Josh)
 Traverses the outgoing friends edges to the adjacent vertex
 Evaluates the until() statement to determine if we’re on a person with a

first_name of Hank (in this iteration, it is true)
 Emits the first_name property of the current vertex (Hank) and all previously

emitted vertices

By placing emit() before we repeat(), our traversal yields not only our initial vertex
(Ted) but also avoids duplicating our final vertex (Hank). This ability to combine the
do-while and while-do capabilities based on the location of the emit() step provides
us tremendous flexibility for defining the results returned from our recursive queries.
However, this flexibility comes at the cost of added complexity. As we saw in this exam-
ple, simply changing the location of the emit() step also modifies the results of this
recursive loop.

 The graph traversal languages, and Gremlin in particular, provide a rich set of
tools for traversing and looping through the structure of our graph within a single tra-
versal. If we compare the simplicity of writing recursive queries in a graph to the com-
plexity of answering the same types of questions in SQL, you’ll start to notice why
graph databases excel at answering these sorts of problems.

 In this chapter, we learned many of the basic building blocks of how traversals
work. In the next chapter, we’ll extend these building blocks with another powerful
tool available to us in graphs—paths. Paths allow us to return a result that includes not
just the end location of our traversal, but also the route traversed through a graph to
get there.

Summary
 The process of moving through a graph is known as traversing a graph. The set

of steps and actions that define how we traverse a graph is called a traversal.
 Traversing a graph is done via a series of steps. Each step continues from the

location where the last step ended.

79Summary
 Traversing a graph requires that we understand the structure of the graph,
where we’re located in the graph at any time, and what the incident edges, adja-
cent vertices, and available properties are at each location.

 Knowing the direction of the edges we want to traverse from a specific location
is crucial because it’s required when writing a traversal.

 Graph traversal languages are optimized to process recursive traversals with
either a known or an unknown number of loops.

Pathfinding traversals
and mutating graphs
Getting lost has itself become a “lost art” since the advent of GPS devices and smart-
phones. Long gone are the days of stopping at a local service station to ask for
directions. But while we may fear that our direction-finding skills are atrophying in
the real world, in the data domain, graph’s pathfinding algorithms come to the res-
cue—or maybe these precipitated the digitization of this real-world skill.

 We emphasized in the last chapter how critical it is to know your location in the
graph at all times in the traversal-writing process. In this chapter, we take that con-
cept a step further with pathfinding algorithms. A path is a listing of the vertices
and edges visited from the beginning vertex to the ending vertex of a traversal.
Paths tell us not only that two vertices are connected, but also show us all of the
intermediate elements in between. Paths are the turn-by-turn directions between
two points in a graph. But because there aren’t a lot of pathfinding options in a

This chapter covers
 Writing traversals to add, modify, and delete

vertices, edges, and properties

 Finding the paths that connect two vertices

 Refining pathfinding traversals using edges and
edge properties
80

81Mutating a graph
graph with four vertices, we’ll begin by mutating our graph to add some more data.
Mutating simply means changing the graph by adding, modifying, or deleting vertices,
edges, and/or properties.

 After we enlarge our graph in this chapter, we’ll extend our recursive traversal
knowledge from the last chapter using pathfinding algorithms. We’ll close by refining
our pathfinding traversals through filtering on edges. By the end of this chapter,
you’ll know how to add, edit, and delete elements within the graph, how to extend
recursive traversals with pathfinding algorithms, and how to refine these algorithms
by filtering on edges.

 If you haven’t done so already, download the corresponding source code for this
chapter: https://github.com/bechbd/graph-databases-in-action. The code for this
chapter is located in the chapter04 folder. All examples begin with the assumption
that our simple social network data set is loaded. This is effectively the same data we
used in chapter 3, but we’ll add more vertices and edges to it as we work through this
chapter.

 Using a terminal window, navigate to the directory where you have the unzipped
version of the Gremlin Console download. On MacOS or Linux systems, run the
Gremlin Console with this script argument:

bin/gremlin.sh -i $BASE_DIR/chapter04/scripts/4.1-simple-social-network.groovy

On Windows, use

bin\gremlin.bat -i $BASE_DIR\chapter04\scripts\4.1-simple-social-network.groovy

4.1 Mutating a graph
Until now, we’ve worked with a small prepared set of data. Figure 4.1 shows our cur-
rent social network data.

person

person

person

first_name Hank

person

person

person

person

Josh

person

first_name first_name

first_name

TedDave

friends

friends

friends
friends friends

Figure 4.1 Our graph containing the small social network data set that we used
in chapter 3

https://github.com/bechbd/graph-databases-in-action

82 CHAPTER 4 Pathfinding traversals and mutating graphs
While this simple graph worked fine for the basic traversals in the last chapter, its data
set is quite small. To demonstrate pathfinding algorithms, we need a graph with more
data, so let’s make it look more like figure 4.2.

Now that’s really starting to look like a graph! But we have a new problem: How do we
add this data to our graph?

4.1.1 Creating vertices and edges

The fundamental concept of creating entities in graph databases isn’t all that dif-
ferent from the relational database world. Creating new vertex entities involves
adding the appropriate elements and properties. However, creating new edges is a
bit more complicated because we need to specify the vertex that belongs at each
end of the edge.

friends

friends

friends
friends

friends

friends

friends

friends friends

friends

friends

friends

person

person person person

person person

personperson

first_name

first_name first_name first_name

first_name

first_name first_name

first_name

Denise

Kelly Jim

Dave Ted

Hank Josh

Paras

person

person person person

person person

person person

Figure 4.2 Our graph containing our larger social network to use for finding paths

83Mutating a graph
ADDING VERTICES

Let’s say we want to add a new person named Dave to our graph. Extending what
we’ve learned in the last chapter about how graph traversals work, we can think of the
process for adding a vertex as

 Given a traversal source g
 Add a new vertex of type person.
 Add a property to that vertex with the key first_name and the value Dave.

Well, that seems pretty straightforward, and it really is that easy. The query in terms of
SQL is

INSERT INTO person (first_name) VALUES ('Dave');

The process in a graph database is nearly the same. If we look at figure 4.3, we see the
corresponding process as a Gremlin traversal.

From these steps, we can see the similarities in the process of adding a vertex and
inserting a row in a relational database. This traversal also introduces you to the first
two steps for mutating our graph:

 addV(label)—Adds a new vertex to the graph of the type label and returns a
reference to the newly added vertex.

 property(key, value)—Adds a property to a vertex or an edge. The property
includes the specified key and value. This step then returns a reference to the
vertex or edge that entered the step, thus operating as a side effect.

If we take this traversal and run it in the Gremlin Console, we get

g.addV('person').property('first_name', 'Dave')
==>v[13]

Add a new vertex
of type .person

Graph traversal source Add a property with the key of
first_name Daveand a value of

g.addV('person').property('first_name', 'Dave')

Figure 4.3 Mapping the plain text description for adding a vertex
Dave to the corresponding Gremlin steps

84 CHAPTER 4 Pathfinding traversals and mutating graphs
Yippee! We can see that we get back the unique identifier for the vertex. In our exam-
ple, it returned v[13].

NOTE If you ran this traversal and didn’t get back the same vertex ID, don’t
worry. The ID values are internally generated based on the current state of
the database. As long as you get back a value, it worked correctly.

Now that we have our Dave vertex, let’s check to see that the vertex was added as
expected. Let’s verify this by running a traversal to find all the person vertices with the
first_name of Dave:

g.V().has('person', 'first_name', 'Dave')
==>v[0]
==>v[13]

Wait, why did two vertices return? At the beginning of this chapter, we already had a
vertex in our database with the first_name property of Dave (see figure 4.1). Running
the addV() traversal added a second vertex with the first_name property of Dave.
This is akin to adding the same row to a relational database with an auto-incrementing
primary key column.

Concerning mutations and graph steps
In the last chapter, we mentioned two graph steps, V() and E(), which we used in fil-
tering traversals. We haven’t utilized these when mutating traversals. Let’s discuss why.

A mutating traversal, or mutation, is an operation that changes the graph’s content
or structure in some way. The first part of this chapter is focused on such operations,
starting with the addV(), addE(), and property() steps.

The V()step not only represents the full set of vertices in the graph, but also returns
the full set of vertices. The next step is then executed for each element output by the
previous step. If we erroneously tried g.V().addV('person') in a graph, we’d get a
person vertex added for every existing vertex in the graph.

This may be a desired outcome in some cases, but we suspect that those cases are
rare. Most often, we just want to add a single vertex for each addV() step, so we
don’t include the V() graph step.

Vertex ID values: Generation and usage
In the previous example, we added a vertex to our graph, and it was automatically
assigned the number 13: g.V(13). This ID value is automatically generated by the
database. Different databases handle this generation in different ways. Some data-
bases, such as Gremlin Server, use a simple integer (32-bit) for vertices and a long
integer (64-bit) for edges. Other graph database engines might use a UUID/GUID, an
encoded string, or a hash of some sort. While it is possible to use these values in
code, it is a best practice to not use these at all.

85Mutating a graph
Now that we know how to add vertices, let’s see how to connect vertices with the edges.

ADDING EDGES

Connecting vertices to edges is venturing into new territory, as there isn’t a corre-
sponding concept in the relational world. In the relational world, the connections
between entities are implicitly made when we populate a column containing a foreign
key. In the graph world, these connections need to be explicitly added via edges. Let’s
say that we want to add a friends edge between the Ted and Hank vertices. The pro-
cess for adding this edge is

 Given a traversal source g
 Add a new edge with a label friends.
 Assign the outbound vertex of the edge to the vertex with the key of first_name

and the value of Ted.
 Assign the inbound vertex of the edge to the vertex with the key of first_name

and the value of Hank.

As we can see, the main difference between adding a vertex and adding an edge is that
when adding an edge, we need to specify the inbound and the outbound vertex for
the edge. We’ll leverage the approach we learned in the last chapter to filter and
locate these vertices. Taking a look at figure 4.4, we see how this is coded in a Gremlin
traversal.

The ID of a vertex should be considered “internal” to the graph database engine, and
you should be extremely cautious when working with internals of a tool like a data-
base engine. The internals are maintained by the engine in a manner seen as best
by the engine’s developers. Using these in application code for the application’s own
purposes is extremely dangerous!

g.addE('friends').
from(V().has('person', 'first_name', 'Ted')).
to(V().has('person', 'first_name', 'Hank'))

Graph traversal
source

Add a new edge
of type .person

Set the edge’s starting point
to the person vertex with a
first_name Tedof .

Set the edge’s ending point to the person
vertex with a of .first_name Hank

Figure 4.4 The Gremlin steps for adding an edge from the Ted vertex to the Hank vertex

86 CHAPTER 4 Pathfinding traversals and mutating graphs
As seen in figure 4.4, adding an edge requires our traversal to first insert the edge and
then to specify the inbound and outbound vertices to connect with that edge. To
accomplish this in Gremlin, we’ll use a new step and a couple of step modulators:

 addE(label)—Adds a new edge with a label of label
 from(vertex)—Modulator that specifies the vertex where the edge will start;

the source for the new edge
 to(vertex)—Modulator that specifies the vertex where the edge will end; the

destination for the new edge

Step modulators like from() and to() cannot be used independently. We use these to
provide some configuration to an associated step (in this case, the addE() step). While
the term modulator may be specific to TinkerPop, the need to provide source and des-
tination vertex details is not. Regardless of the engine or language used, creating
edges requires knowing the starting and ending vertices.

 Keen observers will also notice that we used a V() step in the middle of our tra-
versal (figure 4.4). This ability to start another graph traversal from within a traversal
is quite similar to performing a SELECT inside a SELECT in SQL like this:

SELECT * FROM table1 WHERE id = (SELECT id1 FROM table2);

Let’s see what happens when we run the code in figure 4.4 in the Gremlin Console. In
the following example, we added some arbitrary line breaks within the from() and
to() modulators to highlight the sub-traversals:

g.addE('friends').
 from(
 V().has('person', 'first_name', 'Ted')
).
 to(
 V().has('person', 'first_name', 'Hank')
)
==>e[15][4-friends->6]

Once again, it’s time to do our happy dance because we added an edge to our graph.
This is great! We now have the building blocks to add data. Now, let’s see how to
remove it.

4.1.2 Removing data from our graph

Just as with adding data, removing data from a graph isn’t that different from deleting
data in a relational database. Let’s examine how to remove a vertex and an edge from
a graph.

87Mutating a graph
REMOVING A VERTEX

Removing a vertex is similar to deleting a row in a relational database. The process for
removing a vertex is

 Given a traversal source g
 Find the vertex with an ID of 13.
 Remove (or drop) that vertex.

In a relational database, we do this using SQL. For example

DELETE FROM person WHERE person_id = 13;

Looking at figure 4.5, we see how to perform the same process with Gremlin code.

Examining this traversal, we notice two new Gremlin steps:

 V(id)—Returns the vertex with the specified id. This id is an internal ID prop-
erty assigned and maintained by the Gremlin Server (or the selected database).

 drop()—Deletes any vertex, edge, or property that’s passed to it.

Let’s run the code in figure 4.5 in the Gremlin Console to see what happens:

g.V(13).drop()

Nothing was returned. Are we sure it did anything? Let’s check to see if the vertex still
exists:

g.V().has('person', 'first_name', 'Dave')
==>v[0]

The drop command must have worked because we didn’t get an error and we now
have only a single Dave vertex (remember we had two previously), but why didn’t the
drop() step return anything? The drop() step is different from the other Gremlin
steps we have learned so far. When it works, it doesn’t return anything to the client.
This is a bit unexpected as results go, but it did accomplish the removal of the vertex.
In chapter 6, we build a traversal that also reports the number of vertices affected by
the drop() step.

g.V(13).drop()

Find the vertex with the ID of 3.1

Graph traversal
source

Remove the
vertex.

Figure 4.5 Mapping the plain text
steps to the corresponding Gremlin
steps for removing a vertex

88 CHAPTER 4 Pathfinding traversals and mutating graphs
REMOVING AN EDGE

We can remove an edge from a graph in one of two ways. First, if we delete the starting
or ending vertex, any edge associated with that vertex is also deleted; it’s the graph
database version of referential integrity. This is similar to a relational database because
relationships are not explicitly created or destroyed; instead these are implicitly repre-
sented by the presence of foreign keys. The second way to remove edges from a graph
is to explicitly remove or drop these, leaving the start and end vertices. To drop an
edge via this method we would

 Given a traversal source g
 Find the edge with an ID of 15
 Remove (or drop) that edge

In a graph, we map this process to the corresponding Gremlin traversal as shown in
figure 4.6.

NOTE The default implementation of g.E() in TinkerPop requires a Long,
not an int, and Java’s funny about these things.

Upon examining this traversal, we notice that it looks almost exactly the same as the
one we used to drop a vertex. The similar syntax shows that vertices and edges are of
equal importance inside a graph database.

 There are other approaches to removing vertices and edges that don’t require
knowing their internal ID values, such as filtering vertices and dropping them. We’ll
cover those when we get to the implementation details in chapter 6. For now, we
wanted to illustrate the basic use of the drop() step.

4.1.3 Updating a graph

Up until now, we’ve worked on how to add and remove vertices and edges to our
graph. This leaves us with one major mutation operation left: updating properties in
our graph. If you followed along and typed everything in perfectly, you’re doing
well. However, what if you accidently misspelled “Dave” as “Dav” when adding a ver-
tex? How do we fix this mistake? If we think about how to perform this sort of
update, we would

g.E(15L).drop()

Find the edge with the ID of 5.1

Graph traversal
source

Remove
the vertex.

Figure 4.6 Mapping the plain text steps
to their corresponding Gremlin steps for
removing an edge

89Mutating a graph
 Given a traversal source g
 Find the vertex with the key of first_name and the value of Dav.
 Update the property to that vertex with the key of first_name and the value

of Dave.

In SQL, this would be similar to

UPDATE person SET first_name = 'Dave' WHERE first_name = 'Dav';

Fortune is with us because we already learned the steps to set a property value. We
know how to find a vertex with a specific property using has(), and we know how to
set the value of a property using property().

EXERCISE Take a minute and see if you can write the traversal to change a
property value.

Hopefully, you were able to write this traversal on your own. It should look like this:

g.V().has('person', 'first_name', 'Dav').
 property('first_name', 'Dave')
==>v[18]

If this traversal makes sense, you are starting to see how we combine the basic opera-
tions of graph query languages into more complex operations. At the beginning of
this chapter, we ran a script that added data to a graph. Let’s examine each of the
operations in that script. We reproduce it here with just the basic Gremlin operations,
without the connection logic or code comments:

g.V().drop().iterate()

dave = g.addV('person').property('first_name', 'Dave').next()
josh = g.addV('person').property('first_name', 'Josh').next()
ted = g.addV('person').property('first_name', 'Ted').next()
hank = g.addV('person').property('first_name', 'Hank').next()

g.addE('friends').from(dave).to(ted).next()
g.addE('friends').from(dave).to(josh).next()
g.addE('friends').from(dave).to(hank).next()
g.addE('friends').from(josh).to(hank).next()
g.addE('friends').from(ted).to(josh).next()

SCRIPTING MUTATIONS

It’s good to know how to add vertices and edges one by one, but what if we wanted to
be a bit more efficient and add these together as part of a script or as a bulk action?
Well, that’s actually what we did at the beginning this chapter when we ran the script
4.1-simple-social-network.groovy as we started Gremlin Console. This script ran
several mutation operations together to load data into our graph. Let’s take a look at
that script and see how to chain together multiple mutations. We will skip over the

90 CHAPTER 4 Pathfinding traversals and mutating graphs
first five lines with the :remote statements that configure the Gremlin Console con-
nection to Gremlin Server, the details of which are covered in appendix A.

 The first line of Gremlin code is g.V().drop().iterate(), which is used to
clear out all the data in our graph. This statement allows the script to be rerunnable
because it always starts by removing all existing data. This should look familiar,
except for the iterate() step. The iterate() step and the similar next() step both
cause the traversal to execute. The key difference between these is that the iterate()
step does not return a result, while the next() step returns the result of the tra-
versal. We can think of this line as, “For each vertex in my graph, drop it and don’t
return anything.”

 In a few pages, we’ll look in more detail at the next() step and these types of ter-
minal steps in general. Because the drop() step doesn’t return a value, the iterate()
step is a better fit than the next() step. Now we can get to the meat of the script where
we add data. Let’s look at the line

dave = g.addV('person').property('first_name', 'Dave').next()

This is different from the mutation traversals we just wrote; specifically, what’s this
dave value and why include the next() step? Well, this is a script that creates some ele-
ments, some of which we want to reuse. Namely, we want to later use the vertices that
were added at the start when adding edges between these. We need the dave value
and the next() step for this reuse requirement. We explain this shortly, but first, if we
were to write this traversal in English, we would write something like the following
(figure 4.7 demonstrates how these steps are coded as Gremlin steps):

 Declare a variable dave that holds the result of the traversal.
 Given a traversal source g
 Add a new vertex with the label person.
 Add a property to that vertex with the key name and the value Dave.
 Execute the steps and return the first (next) item in the iterable as the result.

dave = g.addV('person').property('first_name', 'Dave').next()

Variable to
save the result

Add a new vertex
with label .person

Execute the steps and output the first
(i.e.,) item in the iterable.next

Graph traversal source Add a property with the key
first_name Daveand a value of .

Figure 4.7 Mapping the plain text steps to their corresponding Gremlin steps to add a person
vertex with a first_name of Dave

91Mutating a graph
First, dave is a variable to which we’re assigning the output of the traversal. In this
case, it’s a reference to the vertex that can be used later in the script.

Variables are another source of variance within the graph world. Other query lan-
guages, such as Cypher, don’t support these across requests, and even TinkerPop-
enabled graph databases have varying levels of support. For example, neither Azure’s
CosmosDB nor Amazon Neptune has this functionality, while JanusGraph and Data-
Stax Enterprise Graph fully support it. If the query language and database support
variables, then we recommend using these because variables can simplify some opera-
tions quite a bit, such as chaining together units of work like adding vertices and
edges, as we do in this chapter.

 The second difference with our script in figure 4.7 is the next() step. This is a ter-
minal step like iterate(). We can think of it as a step that forces evaluation of the tra-
versal, so another step we can add to our tool belt is

 next()—A terminal step that takes the iterable traversal source composed
from the previous steps, iterates it once, and returns the first or next item in
the iterable.

Because Gremlin is lazily evaluated, we need to iterate our traversal in order to get a
result. Otherwise, all we have is an iterable that contains the desired result but isn’t of
any use until it iterates.

Gremlin Console and Groovy
One of the features of the Gremlin Console is that it can work with Groovy constructs.
Groovy (http://www.groovy-lang.org/) is a superset of the Java programming language.
Technically, the Gremlin Console is a Groovy REPL (read–eval–print loop). As a Groovy
REPL, it has the ability to assign the output of statements to variables without having
to declare the type of those variables. Isn’t that groovy?

The Gremlin Console and terminal steps
The Gremlin Console, provided by the Apache TinkerPop project, is a nifty tool for
using Gremlin and for interacting with an in-memory graph (e.g., TinkerGraph) or with
a server (e.g., Gremlin Server). In fact, it’s so helpful that it automatically iterates the
results.

Each step in Gremlin takes a traversal source and returns a traversal source, which
is a type of iterable. Think of an iterable as a package that contains results. What we
want are just the results, but what we get is a package containing the results. Gremlin
Console is like an elf that cheerfully unwraps that package by giving just the results.
In other words, Gremlin Console automatically iterates the results for us. This is so
critical that we’re going to repeat it again with emphasis: the Gremlin Console auto-
matically iterates the results!

http://www.groovy-lang.org/

92 CHAPTER 4 Pathfinding traversals and mutating graphs
The script runs this traversal after starting the Gremlin Console, and there are two
results. First, the graph has a newly added vertex. Second, the Gremlin Console now
has the variable dave assigned to the output of the traversal; in this case, a reference to
the added vertex. The full traversal can be rerun, but it creates another vertex and
assigns it to the existing dave variable (this is not an idempotent operation):

dave = g.addV('person').property('first_name', 'Dave').next()
==>v[16]

We can check to see what the dave variable contains. Simply enter it at the prompt:

dave
==>v[16]

We now have a reference to the newly added vertex stored in a variable. Looking at
the next three lines of the script, we see the same pattern for additional vertices:

josh = g.addV('person').property('first_name', 'Josh').next()
ted = g.addV('person').property('first_name', 'Ted').next()
hank = g.addV('person').property('first_name', 'Hank').next()

Running the script up to this point results in a graph with four vertices and no edges,
as shown in figure 4.8.

 Let’s take a look at the next line to see how to use the variables when adding edges:

g.addE('friends').from(dave).to(ted)

Written in English, the traversal is

 Given a traversal source g
 Add a new edge with the label friends
 From the vertex referenced by the dave variable
 To the vertex referenced by the ted variable

As figure 4.9 depicts, we can see how the plain text steps map to the code in Gremlin.

(continued)

This is all well and good until we work with Gremlin without the use of a Gremlin Con-
sole (such as in chapter 6, when we write our application). In that case, we need to
unwrap the package ourselves in order to get the results. We use terminal steps such
as next() for that unwrapping.

Throughout this and the next couple of chapters, we’ll omit the terminal steps to
enhance readability, and because the Gremlin Console automatically iterates the
results for us. However, when we assign the results to a variable, we have to include
a terminal step. Otherwise, the iterable gets assigned to the variable, not the result.

93Mutating a graph
This looks similar to the earlier addE() traversal we wrote, except that instead of hav-
ing to find the Ted and Hank vertices as we did previously, we reference the variables
we assigned earlier in the script. This ability to reference vertices more clearly later in
the script is why we create the variables in the first place. Also, with larger graphs, it
can be more performant to have the variable in memory than to do repeated lookups
or searches. Finally, the remainder of the script adds the last of the edges required to
get the graph in figure 4.10.

 We are able to write scripts that add larger amounts of data, all at the same time.
However, this only works if our database allows for variables. How do we accomplish
the same thing if it does not support variables?

CHAINING MUTATIONS

In graph databases, mutations can be chained together to perform multiple changes
simultaneously. In the last section, we saw how to script multiple individual mutation
traversals to create a graph. We chose this approach to simplify the script for teaching

person

person

person

first_name Hank

person

person

person

person

Josh

person

first_name first_name

first_name

TedDave

Figure 4.8 The graph our script creates if we stop it after adding the four vertices

g.addE('friends').from(dave).to(ted)

Add a new edge with
the label .friends

To the vertex referenced
by the variable ted

Graph traversal source From the vertex referenced
by the variable dave

Figure 4.9 Mapping the
plain text description to the
corresponding Gremlin steps
for adding an edge between
the variables dave and ted

94 CHAPTER 4 Pathfinding traversals and mutating graphs
purposes. While sufficient, it is also possible to add all of the edges with a single tra-
versal by chaining together multiple mutations.

 Whether across databases, and even within TinkerPop-enabled databases, the way
a mutation traversal performs depends on the vendor’s implementation. In some
databases, chaining multiple mutations allows these to act atomically; that is, as a sin-
gle logical operation. This is similar to a transaction in a relational database, where
either all or none of the mutations can be made. In other databases, each mutation is
handled independently even though chained together in a single traversal. Check
with the database vendor to understand how this works with their specific implemen-
tation. Let’s see how the mutations to add the remaining edges look if, instead, we
chained these together in one traversal:

g.addE('friends').from(dave).to(josh).
 addE('friends').from(dave).to(hank).
 addE('friends').from(josh).to(hank).
 addE('friends').from(ted).to(josh).iterate()

Written in English, the traversal is

 Given a traversal source g
 Add a new edge with the label friends from dave to josh.
 Add a new edge with the label friends from dave to hank.
 Add a new edge with the label friends from josh to hank.
 Add a new edge with the label friends from ted to josh.
 Now apply all of these changes and don’t return anything.

Take a look at figure 4.11. There we see code in a single traversal with the steps
annotated.

person

person

person

first_name Hank

person

person

person

person

Josh

person

first_name first_name

first_name

TedDave

friends

friends

friends
friends friends

Figure 4.10 The graph generated by the 4.1-simple-social-
network.groovy script

95Mutating a graph
In figure 4.11, notice how each line (except the last line) ends with a period. Each of
these addE() steps was chained together. All of this was executed within a single tra-
versal starting from one traversal source.

IMPORTANT For composing complex operations into a single statement,
chaining steps is a fundamental strategy in Gremlin, as well as with other
query languages. The concept is that each step takes in data passed to it from
the previous step, performs work on the data, and passes it on to the next
step. Gremlin is able to do this because every step takes as input an iterable
GraphTraversal, and nearly every step emits as its output a GraphTraversal.
For those with functional programming experience, this should all be quite
familiar.

This ability to chain multiple statements together into a single query isn’t something
that’s possible, as far as these authors are aware, in SQL or other graph query lan-
guages such as Cypher. In a relational database, this would be equivalent to running
multiple INSERT statements in a single statement or using multiple common table
expressions (CTEs) to combine several complex operations together. In SQL when
you submit multiple statements at the same time, separated by a semicolon, this is exe-
cuted as multiple independent queries that run in sequence. On the other hand, the
Gremlin shown in figure 4.11 is a single traversal: it contains multiple mutations, all of
which are executed at the same time.

4.1.4 Extending our graph

Remember that back at the beginning of this chapter, we mentioned that we needed
to extend our graph to add additional data before we begin our work with paths. So
far, we’ve learned to create vertices, edges, and properties; however, we only added the
same four vertices and five edges that we used in chapter 3. Because we now have all
the tools to add data to a graph, let’s put those to use. In figure 4.12, we highlighted the
data that still needs to be added before we can move on to understanding paths.

EXERCISE Write the necessary Gremlin traversals to add the highlighted data
in figure 4.12 to the graph.

We hope you took the time to try and work this out for yourself before taking a look at
our answer. Either way, the following shows the set of traversals we wrote to add the

g.addE('friends').from(dave).to(josh).

addE('friends').from(dave).to(hank).

addE('friends').from(josh).to(hank).

addE('friends').from(ted).to(josh).iterate()

Adds an edge from todave ted

Adds an edge from todave hank

Adds an edge from tojosh hank

Adds an edge from to andted josh

iterate the full traversal

Figure 4.11 Mapping the chaining together of multiple mutations with Gremlin

96 CHAPTER 4 Pathfinding traversals and mutating graphs
essential elements to our graph. We can add this data to our graph by restarting the
Gremlin Console with the script

chapter04/scripts/4.2-complex-social-network.groovy

or by using the following commands:

//Adds a person vertex with a name of Kelly and saves it to a variable
kelly = g.addV('person').property('first_name', 'Kelly').next()

//Adds a person vertex with a name of Jim and saves it to a variable
jim = g.addV('person').property('first_name', 'Jim').next()

//Adds a person vertex with a name of Paras and saves it to a variable
paras = g.addV('person').property('first_name', 'Paras').next()

//Adds a person vertex with a name of Denise and saves it to a variable
denise = g.addV('person').property('first_name', 'Denise').next()

friends

friends

friends
friends

friends

friends

friends

friends friends

friends

friends

friends

person

person person person

person person

personperson

first_name

first_name first_name first_name

first_name

first_name first_name

first_name

Denise

Kelly Jim

Dave Ted

Hank Josh

Paras

person

person person person

person person

person person

Figure 4.12 The vertices and edges that need to be added to our social network graph

97Mutating a graph
//Adds additional friends edges
g.addE('friends').from(dave).to(jim).
 addE('friends').from(dave).to(kelly).
 addE('friends').from(kelly).to(jim).
 addE('friends').from(kelly).to(denise).
 addE('friends').from(jim).to(denise).
 addE('friends').from(jim).to(paras).
 addE('friends').from(paras).to(denise).iterate()

Figure 4.13 shows the graph after running these traversals.

Whew, it took a while to get all the necessary data added to our graph! Now that we
have enough data in our graph, let’s extend what we learned in the last chapter about
navigating around a graph to work with paths.

friends

friends

friends
friends

friends

friends

friends

friends friends

friends

friends

friends

person

person person person

person person

personperson

first_name

first_name first_name first_name

first_name

first_name first_name

first_name

Denise

Kelly Jim

Dave Ted

Hank Josh

Paras

person

person person person

person person

person person

Figure 4.13 Our social network graph with the additional information added (a total of 8 vertices
and 12 edges)

98 CHAPTER 4 Pathfinding traversals and mutating graphs
 In the next section, we’ll use the graph in figure 4.13, so we need to make sure it is
loaded into database. If you have followed along and typed in everything correctly,
then you’re already there. If not, or if you want to ensure that your graph is correct,
quit the Gremlin Console with a :q and run this command:

bin/gremlin.sh -i $BASE_DIR/chapter04/scripts/4.2-complex-social-network.groovy

4.2 Paths
In this section, we cover paths in depth. Paths offer a description of the series of
steps that a traverser takes to get from the start vertex to the end vertex. This
means that not only can we find out which two vertices are connected, as shown in
chapter 3, but we can also determine exactly how to get from the start to the end.
It’s reasonable to think of a path in a graph in much the same way as we consider
GPS driving directions in a mapping application. We enter a starting location and
an ending location, and we get back the series of turns required to move from start
to finish.

 When working with path algorithms, we begin by specifying a start vertex, an end
vertex, and which edges to traverse between the two. The traversal returns all possible
sets of directions that go from the start vertex to the end vertex. Figure 4.14 is an
example of paths inside a simple graph.

Let’s say that we wanted to find which set of friends Ted needs to go through to get
introduced to Denise. To accomplish this task, we need to

1 Find the Ted vertex.
2 Traverse across each incoming and outgoing friends edge.
3 Check to see if the vertex we’re on is the Denise vertex.

Paths from Vertex A to Vertex D

A – 1 → B – 2 → D

A – 3 → C – 4 → D

B

D

C

A

1 2

3 4

Figure 4.14 A simple example of all the paths from our start vertex A to the end vertex D
in a graph

99Paths
4 Repeat steps 2 and 3 until we reach the Denise vertex.
5 Return the path—the series of vertices and edges we traversed to get from Ted

to Denise.

This looks much like the recursive looping traversals we wrote in the last chapter.
Using that knowledge, let’s write a recursive looping traversal to move from Ted to
Denise in our graph, which appears to solve steps 1–4, but which introduces some
other problems.

 This is where most of us go with our first recursive loop through highly connected
data, and we often discover that the data has more connections than we anticipated.
This next traversal generates an error. We’ll explain the error after addressing another
one of its deficiencies:

g.V().has('person', 'first_name', 'Ted').
 until(has('person', 'first_name', 'Denise')).
 repeat(
 both('friends')
)

What this traversal doesn’t provide is the list of vertices and edges, or path, from Ted to
Denise. To retrieve this information, we need to introduce another step:

 path()—Returns the history of the vertices (and optionally the edges) a spe-
cific traverser visits as the traversal runs

NOTE Using the path() step in Gremlin requires additional resource over-
head on the server because each traverser needs to maintain the entire his-
tory of the steps it visits. For performance reasons, only use path() when you
desire the full path data.

Adding the path() step to the end of our traversal makes it look like this:

g.V().has('person', 'first_name', 'Ted').
 until(has('person', 'first_name', 'Denise')).
 repeat(
 both('friends')
).path()

And running this traversal in the Gremlin Console returns this:

Script evaluation exceeded the configured 'scriptEvaluationTimeout' threshold
of 30000 ms or evaluation was otherwise cancelled directly for request
[g.V().has('person', 'first_name', 'Ted').

 until(has('person', 'first_name', 'Denise')).
 repeat(
 both('friends')
).path()]
Type ':help' or ':h' for help.

Well, that’s not good. We see that our traversal timed out, but why? What we just acci-
dently tripped over is a cycle in our graph. Not only that, there’s a fair chance we got

100 CHAPTER 4 Pathfinding traversals and mutating graphs
the fan spinning in our laptop, and it’s even possible that Gremlin Console died (or
was killed? Wow, this got morbid really quickly).

4.2.1 Cycles in graphs

The root cause of all of this death and destruction (or minor inconvenience of elec-
trons and excessive use of fans) is a concept in graph theory known as a cycle. A cycle is
a path of vertices and edges in a graph that contains one or more vertices that are
reachable from themselves, as figure 4.15 illustrates.

In the example graph shown in figure 4.15, we see that by traversing the edges, each
vertex (A, B, C) can be reached from itself. Vertex A could be reached by traversing
[A → 1 → B → 2 → C → 3 → A] or by [A → 3 → C → 2 → B → 1 → A]. Vertex B and vertex C
can also be accessed from themselves using similar traversal patterns. By applying this

Stuck in Gremlin Console
If we forget a parenthesis or somehow get stuck in a Gremlin Console at a prompt,
try using the :clear command to clear the buffer and start over on the traversal.

If you lost your Gremlin Console, we’re sorry. But we’d like to point out that because
your Gremlin Server is still running, you haven’t lost any data. Just restart your Gremlin
Console and then reconnect to the Gremlin Server. You can use these two :remote
commands in a Gremlin Console. To connect to the running server, type

:remote connect tinkerpop.server conf/remote.yaml session

To connect to the Gremlin Server and send your commands to the server, type

:remote console

If you look at this chapter’s scripts, you will notice that these always start with those
commands. Now let’s get back to the material at hand—paths.

B C

A

1
3

2 Figure 4.15 A simple graph that
has a cycle from A back to itself

101Paths
knowledge of cycles to our previous graph, we see that there are multiple cycles within
our graph, one of which is highlighted in figure 4.16.

From this image, we see that there’s a cycle running between Ted, Dave, and Josh.
This isn’t unusual; cycles in a graph are common. However, as demonstrated, cycles
cause problems when running traversals if we don’t account for these. Some traversers
can get caught up in an endless loop, which lead to a timeout. So how do we write a
traversal without getting stuck in an endless loop?

4.2.2 Finding the simple path

In graph theory, there’s a concept known as the simple path. A simple path is a path
that doesn’t repeat any vertices, meaning that we only get results that are not cyclical.
When looking for the simple path between two vertices, each traverser maintains a

friends

friends

friends
friends

friends

friends

friends

friends friends

friends

friends

friends

person

person person person

person person

personperson

first_name

first_name first_name first_name

first_name

first_name first_name

first_name

Denise

Kelly Jim

Dave Ted

Hank Josh

Paras

person

person person person

person person

person person

Figure 4.16 Our social network graph with one cycle highlighted between Ted, Dave, and Josh

102 CHAPTER 4 Pathfinding traversals and mutating graphs
history of all the items it visits. If it comes across an item it has already visited, it knows
it’s in a cycle and removes itself. Only traversers pursuing paths devoid of cycles con-
tinue to completion.

 This sounds exactly like what we need in order to find our path from Ted to Denise
without blowing up our CPUs. To update our traversal to find the simple path, we
introduce another Gremlin step:

 simplePath()—Filters out traversers that visit the same vertex more than once

Using this step, we can update our traversal to find the simple path between Ted and
Denise. We do this by adding the simplePath() step within our repeat() step and run-
ning it in Gremlin Console:

g.V().has('person', 'first_name', 'Ted').
 until(has('person', 'first_name', 'Denise')).
 repeat(
 both('friends').simplePath()
).path()

==>path[v[4], v[0], v[15], v[19]]
==>path[v[4], v[0], v[13], v[19]]
==>path[v[4], v[2], v[0], v[15], v[19]]
==>path[v[4], v[2], v[0], v[13], v[19]]
==>path[v[4], v[0], v[15], v[17], v[19]]
==>path[v[4], v[0], v[15], v[13], v[19]]
==>path[v[4], v[0], v[13], v[15], v[19]]
==>path[v[4], v[2], v[6], v[0], v[15], v[19]]
==>path[v[4], v[2], v[6], v[0], v[13], v[19]]
==>path[v[4], v[2], v[0], v[15], v[17], v[19]]
==>path[v[4], v[2], v[0], v[15], v[13], v[19]]
==>path[v[4], v[2], v[0], v[13], v[15], v[19]]
==>path[v[4], v[0], v[13], v[15], v[17], v[19]]
==>path[v[4], v[2], v[6], v[0], v[15], v[17], v[19]]
==>path[v[4], v[2], v[6], v[0], v[15], v[13], v[19]]
==>path[v[4], v[2], v[6], v[0], v[13], v[15], v[19]]
==>path[v[4], v[2], v[0], v[13], v[15], v[17], v[19]]
==>path[v[4], v[2], v[6], v[0], v[13], v[15], v[17], v[19]]

Why do we add the simplePath() within the repeat() step instead of at the end? To
see if we’re in a cycle, we evaluate both our current position in the graph as well as our
historical path through the graph at the end of each loop’s iteration. If we put
simplePath() at the end of the traversal, which is outside of the looping logic, then
we have traversers that are stuck in cycles with no way to break out. This is analogous
to creating a for loop in Java that iterates the counter variable outside of the for loop.
With this addition, we now see all the different simple paths from Ted to Denise.

 Note that we only see the vertices that connect the start and end vertex. We stated
earlier that paths return the vertices and edges between the start and end vertex. In the
next section, we show how to include edges in the results, but first we must introduce
some additional capabilities for traversing edges, capabilities that also open up new

103Traversing and filtering edges
ways to filter edges. For those of you interested in the details (e.g., the names) of the
returned vertices in the paths, we’ll cover that and other formatting functionality in
chapter 5.

4.3 Traversing and filtering edges
To get the edge information as part of the path, we go from vertex to edge to vertex.
We must be explicit about stepping onto the edge and then stepping off of the edge.
These operations are rolled up in the traversing steps we introduced in the last chap-
ter: in(), out(), and both(). Now we introduce additional steps to break these out.

 Our simple social graph has only modeled friendships, but our social circle often
includes our professional connections as well. In this section, we take a small detour
from the DiningByFriends model to discuss how to traverse and filter edges. We tem-
porarily extend our graph with some additional edges to demonstrate these concepts.
At end of this section, we include the edge information in the returned paths.

 For this section only, we’ll use a specific graph, as illustrated in figure 4.17. To set
your local graph up with the correct data, exit the Gremlin Console with :q and
restart it with this command:

bin/gremlin.sh -i $BASE_DIR/chapter04/scripts/4.3.1-complex-social-network-
with-works-with-edges.groovy

This loads the graph with the same eight vertices and the friends edges, but also with
additional works_with edges.

4.3.1 Introducing the E and V steps for traversing edges

Hypothetically, let us say that many of the people in our graph also worked together
at one time or another. One way to model this is to add a new relationship between
people called works_with and give it properties to track the start and end year of
those relationships. By including these edges in our graph, we get a graph like fig-
ure 4.17.

 Let’s say that we want to answer a question like, “Who did Dave work with before
the job he started in 2018?” Based on the new version of the graph, how would we go
about finding this information?

 Given a traversal source g
 Find the vertex with the key of first_name and the value of Dave.
 Traverse the works_with edges that have a start_year that’s less than or equal

to 2018.
 Traverse to the adjacent vertex.
 Return the first_name.

We already know how to do some of these steps, specifically steps 1, 2, and 5. What
we’re missing is how to traverse from a vertex stop on the edge, filter based on a

104 CHAPTER 4 Pathfinding traversals and mutating graphs
property on that edge, and then go to the adjacent vertex. The key is to traverse not
from a vertex to the incident vertex, but to stop on the edge itself, look around a bit,
then traverse to the next vertex. Figure 4.18 shows how to map these steps to the cor-
responding steps in Gremlin.

friends

friends

friends

friends friends
friends

person

person

person

person

person

person person

person

works_with

person

works_with

personperson

works_with
works_with

person person

works_with

works_with

person

person

works_with

person

first_name

first_name

first_name

start_year

end_year

2016

2017

2016

2018

2018

2016

2017

2016

2019

Hank

Josh

TedDave

start_year

end_year

start_year

end_year

start_year

end_year

start_year

first_name first_name Parasfirst_name Jim

first_name

first_year

first_name

start_year 2018

Denise

2018

Kelly

friends friends

friends

friends

friends friends

Figure 4.17 An extended version of our social network graph with the works_with edges
highlighted

105Traversing and filtering edges
In the traversal in figure 4.18, we see one of several Gremlin steps specifically created
for working with edges, and these steps all end with an E. The three E steps are

 inE(label)—Traverses from the current vertex onto the incoming incident
edges. If a label is specified, then filters to only traverse to edges of that type.

 outE(label)—Traverses from the current vertex onto the outgoing incident
edges. If a label is specified, then filters to only traverse to edges of that type.

 bothE(label)—Traverses from the current vertex onto the incident edges,
regardless of direction. If a label is specified, then filters to only traverse to edges
of that type.

These steps each start on a vertex, traverse to an edge, and stop on the edge. This is a
bit different than the in(), out(), and both() traversal steps we learned in chapter 3
because these steps end with us located on the edge instead of on the adjacent vertex
as demonstrated in figure 4.19.

 The location at the end of the step is the crucial difference between out() and
outE(). This leaves us with another question: “How do we get back to the vertex?” To
do that, Gremlin provides companion V steps to accompany the E steps:

 inV()—Traverses from the current edge to the incoming vertex. It’s commonly
paired with the outE() step.

 outV()—Traverses from the current edge to the outgoing vertex. It’s commonly
paired with the inE() step.

 otherV()—Traverses to the vertex that isn’t the vertex that’s used to traverse
onto the edge (e.g., the other vertex). It’s commonly paired with the bothE()
step.

 bothV()—Traverses from the current edge to both of the incident vertices.
Rarely used.

g.V().has('person' ,'first_name', 'Dave').
bothE('works_with').has('end_year',lte(2018)).
otherV().
values('first_name')

Leave the edge to
the other vertex,
not the one we
entered from.

Enter any works_with

edge, regardless of
direction, and filter on
end_year <= 2018.

Find all the verticesperson

with a of .first_name Dave

Return the .first_name

Figure 4.18 Mapping the plain text description to the coded Gremlin steps for filtering and
traversing our edges

106 CHAPTER 4 Pathfinding traversals and mutating graphs
In each of these V steps, we notice that there’s no input or modification. That’s
because these are designed to be paired with an E step, usually the opposite one. For
example, inE()combines with an outV() or outE() combines with inV() to complete
the traversal to the adjacent vertex.

 In the case of bothE(), we might be tempted to use bothV(), but that would be a
mistake. If we used a bothV(), we would end up with two traversers: one on the start
vertex and one on the end vertex, as shown in figure 4.20.

 With bothE(), the best choice is otherV(), which simply takes us to “the other
vertex,” which isn’t the one we came from when traversing the edge, as shown in fig-
ure 4.21.

NOTE The use of otherV(), while common, does incur some performance
overhead as each traverser needs to retain state that contains the originating
vertex. If performance is critical for a specific traversal, then it’s best to avoid
the use of otherV(), assuming that the traversal can be written another way.

g.V().has('person', 'first_name', 'Dave').out()

g.V().has('person', 'first_name', 'Dave').outE()

person

person

person

person

person

person person

person

first_name

first_namefirst_name

first_name Ted

Ted

Dave

Dave

friends

friends

Figure 4.19 Comparing the behavior of the out() step, which ends on a vertex,
to the outE() step, which ends on the edge

107Traversing and filtering edges
Now let’s put this into practice and obtain the names of all of Dave’s co-workers in the
graph. To do that, we use the following traversal:

g.V().has('person','first_name','Dave').
 bothE('works_with').otherV().values('first_name')
==>Ted
==>Josh
==>Hank
==>Kelly
==>Denise

Note that because we didn’t perform any actions on the edge, it’s more succinct to use
the following instead:

g.V().
has('person', 'first_name', 'Ted').
bothE().
bothV()

friends friendsDave Ted Josh

bothV()

bothV()
bothV()

bothV()
bothE() bothE()

Figure 4.20 Demonstrating that the bothE() and bothV() combination ends
on both the start and end vertex of the edge

g.V().
has('person', 'first_name', 'Ted').
bothE().
otherV()

friends friendsDave Ted Josh

otherV() bothE() bothE()
otherV()

Figure 4.21 Demonstrating that the bothE() and otherV() combination ends
on the opposite vertex of the edge

108 CHAPTER 4 Pathfinding traversals and mutating graphs
g.V().has('person', 'first_name','Dave').
 both('works_with').values('first_name')
==>Ted
==>Josh
==>Hank
==>Kelly
==>Denise

Why would we ever use the E and V steps (that Apache TinkerPop calls vertex steps) if
can we do everything with the in(), out(), and both() steps? We find that there are
three common use cases for the E and V steps, and we’ll discuss each of these cases in
the following sections:

 Filtering on edge properties using the has() filtering method from chapter 3
 Including edges in path() results
 Performant edge counts and denormalization

4.3.2 Filtering with edge properties

Filtering with edge properties usually comes in two flavors: time-based filters or
weight-based filters. With the addition of the works_with edges, we create a simple
time-versioned graph that allows us to traverse edges based on a provided time input.
Weight-based filtering is another common pattern used in performing analytics and
algorithms for full-graph processing.

 For our purposes, let’s used time-based filtering to find out who Dave worked with
before the job he started in 2019. Looking at our graph in figure 4.17, it looks like
Dave changed jobs in 2018, but not after that, so we look for cases where the end_year
is less than or equal to 2018. Let’s break this traversal down into steps:

1 Find the Dave vertex.
2 Traverse onto the works_with edge ignoring direction.
3 Filter on where the end_year property is less than or equal to 2018.
4 Complete the traversal of the edge with the otherV() step to the adjacent vertex.
5 On the adjacent vertex, return the value of the first_name property.

Let’s code these in a traversal. Figure 4.22 shows how to transform these steps into a
language that Gremlin understands.

 When we run this traversal, we get the following results:

g.V().has('person','first_name','Dave').
 bothE('works_with').has('end_year',lte(2018)).
 otherV().
 values('first_name')
==>Josh
==>Ted
==>Hank

Not only have we filtered based on a property on the edge, but we also slipped in a
sweet little predicate step: lte(), which stands for “less than or equal to.” Predicate

109Traversing and filtering edges
steps are handy tools for managing flow control with more sophistication than the
simple value matching we’ve used up to this point. You can find a complete list of
predicate steps on the Apache TinkerPop reference site (http://mng.bz/mNgn).

4.3.3 Include edges in path results

Returning to our unanswered question from section 4.2.2, “When using the path()
step, how do we also include the edges traversed?” We need to use the bothE().otherV()
traversal pattern to explicitly traverse on to the edge. Let’s find the paths from Ted to
Denise, but limit the path to only use the works_with edge:

g.V().has('person', 'first_name', 'Ted').
 until(has('person', 'first_name', 'Denise')).
 repeat(
 bothE('works_with').otherV().simplePath()
).path()

==>path[v[4], e[29][0-works_with->4], v[0], e[33][0-works_with->19], v[19]]
==>path[v[4], e[29][0-works_with->4], v[0], e[32][0-works_with->13], v[13],

e[34][19-works_with->13], v[19]]
==>path[v[4], e[30][2-works_with->4], v[2], e[28][0-works_with->2], v[0],

e[33][0-works_with->19], v[19]]
==>path[v[4], e[30][2-works_with->4], v[2], e[28][0-works_with->2], v[0],

e[32][0-works_with->13], v[13], e[34][19-works_with->13], v[19]]

As expected, the previous code and results show four paths to get from Ted to Denise,
and each of the results includes the edges traversed as well as the vertices. This use of
the path() step is common when the edges contain important domain details. A good
example for this is air traffic routes, where the vertices signify airports and the edges
represent the flights between them. In such cases, it’s vital to return flight details such
as airline name, flight number, departure time, and arrival time.

g.V().has('person','first_name','Dave').
bothE('works_with').has('end_year',lte(2018)).
otherV().
values('first_name')

Walk to the
vertex we did
not come in on.

Walk all works_with
edges and filter on
end_year <= 2018.

Find all the verticesperson

with a of .first_name Dave

Returns the first_name

Figure 4.22 Adding the edge filtering steps to the code of the Gremlin traversal

http://mng.bz/mNgn

110 CHAPTER 4 Pathfinding traversals and mutating graphs
4.3.4 Performant edge counts and denormalization

We think that performance optimizations should only be applied after core function-
ality is established. We consider established to mean that the functionality is working,
with good test coverage, and deployed with a production-similar data set. For that rea-
son, we’ll only discuss these points briefly because we’ll cover performance optimiza-
tion in chapter 10.

 Recall how in the previous chapter we described the conceptual perspective of a
Gremlin sitting on a vertex as being in an escape room with

 A chest of drawers with labels on them—These are the vertex properties.
 A series of doors also with labels—These are the incident edges.
 Each door has sets of drawers with labels—These are the edge properties.

We use this analogy to emphasize that vertex properties, edges, and edge properties
are essentially local to a vertex, so the cost to use these is basically free. But everything
outside of this room can only be accessed by traversing an edge (walking through a
door in our mental model) to get to another vertex. Depending on the implementa-
tion, accessing anything outside the room could involve a cache hit, a disk operation,
or possibly a network call.

 Due to this additional cost, when possible, don’t traverse an edge to the other ver-
tex. This means is that if we stay in the current room (e.g., remain on the current ver-
tex), we avoid those additional cache hits, disk operations, and network calls. The E
steps allow us to do this. Using an E step is akin to looking at the doors without actu-
ally opening them. That’s the approach of the following traversal:

g.V().bothE().count()

But counting with the both() step is usually a more expensive operation:

g.V().both().count()

In the first case, we count the edge doors that we see from our vertex room. In the
second case, we go through each door and count the rooms (vertices) on the other
side. Because there’s a one-to-one correspondence between the doors (edges) and
the other rooms (vertices), counting the doors returns the same value as counting
the rooms.

 We’ll cover denormalization more thoroughly in chapter 7, but for the purpose of
this discussion, denormalization in the graph is a matter of copying an often-accessed
vertex property onto an adjacent edge. Denormalization avoids taking the cost of a
full traversal when reading that property; it can be helpful for certain types of read-
intensive activity. Yes, there’s overhead in maintaining two copies of a property value.
But maintaining multiple copies of data is denormalization, which always comes with
additional maintenance overhead regardless of whether we use a relational database
or a graph database. That’s a quick look at a couple of performance optimizations

111Summary
that we employ using the V and E steps. And remember, we’ll cover performance opti-
mizations in more detail in chapter 10.

 In this chapter, we first discussed how to return paths from a graph, as well as how
to avoid infinite queries caused by cycles in our graph. Finally, we reviewed the E and V
steps and how to do filtering of edge properties. Now that we know how to perform
necessary traversals on our graph, the next chapter will explore how to manipulate
the results and types of data that these traversals return.

Summary
 Adding vertices to a graph is similar to adding entities to a relational database.
 Adding edges to a graph requires that we not only add the edge but also add or

identify the vertex on each end.
 Mutation operations in graph traversals allow for chaining together multiple

mutation operations into a single operation, unlike SQL.
 Paths in a graph represent the series of vertices and edges that connect two

elements.
 Cycles in a graph refer to a path that has repeated vertices and are a common

cause of long-running recursive and pathfinding queries in graph traversals.
 A simple path is a path in a graph that does not repeat any vertices.
 Edges can be traversed to and filtered on directly, without having to traverse to

the adjacent vertex.

Formatting results
Finding data within the graph is one skill, but returning it efficiently presents a
whole new set of challenges. While it’s entirely possible to send raw, unorganized
data to the client, in most cases, it’s best to do as much data processing at the data-
base layer as possible. Client applications are quite busy handling user interactions.

 In this chapter, we’ll focus on the different methods of collecting, formatting,
and outputting traversal results at the database level. We’ll review the value steps
introduced in chapter 3 and illustrate why these are required. Then we’ll discuss
how to return values from elements that are located in the middle of a traversal,
as well as crafting custom objects. Finally, we’ll wrap up this chapter by demon-
strating how to sort, group, and limit results for efficient communication with cli-
ent applications.

This chapter covers
 Retrieving values from our vertices and edges

 Aliasing vertices and edges for later use in the
traversal

 Crafting custom result objects by combining static
and computed values

 Sorting, grouping, and limiting our results
112

113Review of values steps
 If you haven’t done so already, download the corresponding source code for this
chapter: https://github.com/bechbd/graph-databases-in-action. The code relevant to
this chapter is located in the chapter05 folder. All examples begin with the assump-
tion that our social network data set is loaded. To accomplish this, run this command:

bin/gremlin.sh -i $BASE_DIR/chapter05/scripts/5.1-complex-social-network.groovy

5.1 Review of values steps
We start with the most common of formatting tools: the values() and valueMap()
steps, which we introduced in chapter 3. But before we get to these, we look at the
default behavior in TinkerPop. Most of the traversal examples return the ID of the ele-
ments. Looking at the following traversal, the ID value of 4 is returned as part of a
toString() construct:

g.V().has('person', 'first_name', 'Ted')
==>v[4]

In relational database terms, this is the equivalent of running this SQL query:

SELECT ROWID FROM person WHERE first_name = 'Ted';

We rarely want to return just the ID. In most cases, we aim to return all or a subset of
the properties. So, if the normal use case is to retrieve the attribute values, then why
not return all the attributes by default?

 The reason is quite practical. If a database returns all the attributes by default, we
transmit a lot of unrequired data. Generally, we want to transmit only the data we need,
so most databases require that we specify the particular attributes to return. We know
it is an (unfortunately) common practice in SQL to use a wildcard (*) in the SELECT
clause as seen here:

SELECT * FROM person WHERE first_name = 'Ted';

But the preferred method is to specify the column names like this:

SELECT first_name FROM person WHERE first_name = 'Ted';

So, what’s the graph equivalent of this SQL? Let’s say that we want to return all the
properties for the Hank vertex in our graph. We already know the basic steps for this:

1 Given a traversal source g
2 Find vertex of type person with a first_name of Hank.
3 Return the properties of that vertex (in this case, there is only one, first_name).

At this stage, we are already old pros at handling the first two steps. Back in chapter 3,
we also used the values() step and discussed the valueMap() step, often at the end
of the traversal, to retrieve the properties of a vertex. Both the valueMap() and
values() steps return the property values of a vertex or an edge. As you’ll remember,

https://github.com/bechbd/graph-databases-in-action

114 CHAPTER 5 Formatting results
the values() step returns only the values of the properties. The valueMap() step
returns a map, which is a collection of key-value pairs of the specified properties.
(In some programming languages, a map is known as a dictionary. This is the same
concept here.)

Let’s take a look at the difference between the two values steps by returning all the
attributes for Hank in our graph. First, using values()

g.V().has('person', 'first_name', 'Hank').values()
==> Hank

and then employing valueMap():

g.V().has('person', 'first_name', 'Hank').valueMap()
==>{first_name=[Hank]}

As shown, while we receive the same basic data back for each of these, it’s returned
with slightly different formats. The valueMap() step differs from the values() step
because it returns the data as a key-value pair (or map) instead of just the value. Gen-
erally, we find that having the keys for the property values makes it much easier to
work with the results. Additionally, the valueMap() step returns one row per traverser
while the values() step returns one row per property per traverser. In our work, we
usually prefer the valueMap() step.

Why is values() plural?
Although plural, values() is most often used to return scalars; specifically, the value
of a single property. Because it returns only the value portion of the property without
a key or label, the requesting code must know which property is called for. It’s plural
because values() is designed to work on one or more properties and to distinguish
it from the rarely used value() step.

Empty values() steps
In our sample traversals, note that we don’t specify the properties to return in our
values() step. For example

g.V().has('person', 'first_name', 'Hank').values()

Having an empty values() step is generally a bad idea. It’s the equivalent of running
a SQL SELECT query with a wildcard like this:

SELECT * FROM person WHERE first_name = 'Hank';

As with SQL, although this is allowed in graph traversals, it has potentially significant
drawbacks:

115Review of values steps
Now that we’ve reviewed the values() and valueMap() steps, why are these needed at
all? In SQL we don’t do anything extra to get the values, so why do we need to do that
with graph databases? It’s necessary because of a crucial difference between how SQL
engines process queries and how graph database engines process traversals:

 In a graph database, only the values of the current vertices or edges are
retrieved.

 In a relational database, all the values from all the joined tables can be included
in the results.

This difference arises from the disparity in how the engines process queries. Under-
standing this difference is critical for creating effective and efficient graph queries. To
demonstrate, let’s look at how a relational database handles a query and compare that
to how a graph traversal works.

 Let’s use an example of an order-processing system, consisting of orders and prod-
ucts. It’s likely that we’re familiar with this sort of simple hierarchical relationship in a
relational model. If we model a simplified version of this system for a relational data-
base, we’d design two tables: Orders, containing the orders, and Products, containing
the products. These two tables are connected with a linking table, ProductsInOrder.
Figure 5.1 shows this relationship.

Populating these tables with some sample data, we get something like figure 5.2.

 The values we receive can change over time. When a new property is added
to these vertices, it automatically gets included in the results.

 There’s no guarantee of ordering the properties with graph databases.
 We can end up getting significantly more data than required, slowing down

the application.

For these reasons, as in SQL, it’s a best practice to always specify the properties to
return with a comma-separated list of property keys as illustrated here:

g.V().has('person', 'first_name', 'Hank').values('first_name')

Orders

order_id

order_number

product_idorder_id

product_id

quantity

name

ProductsProductsInOrder

Figure 5.1 A sample Entity Relationship Diagram (ERD) for our order-processing system,
which contains two tables, Orders and Products, linked together with a foreign key.

116 CHAPTER 5 Formatting results
A common question to answer with our relational database system is, “What are all the
orders and the products that were ordered?” To answer this, we join the Orders table
and the Products table with the ProductsInOrder table as in this SQL query:

SELECT *
FROM Orders
 JOIN ProductsInOrder ON ProductsInOrder.order_id = Orders.order_id
 JOIN Products ON Products.product_id = ProductsInOrder.product_id;

When we run this query, the SQL engine generates tabular output by combining the
rows from the Orders, ProductsInOrder, and Products tables, where both the order_id
values and the product_id values match. The following table provides the output.

The critical point to notice is that our result set contains the data from both tables
involved in the join operation. If our SQL query contained additional join clauses,
then the columns from the additional tables are also included in the result set by
default because of the use of the wildcard.

 Now let’s look at how we represent the same order-processing system in a graph.
Taking what we learned in chapter 2, we create a schema as represented in figure 5.3.
It consists of two vertices, order and product, and one edge, contains.

 If we then populate our graph with the data used in our SQL tables, we get the
graph presented in figure 5.4.

 Applying what we learned about how graph traversals work, we know that our first
step is to find all order vertices in the graph. Figure 5.5 illustrates this step.

order_id order_number order_id product_id qty product_id name

1 ABC123 1 1 5 1 widget 1

1 ABC123 1 2 10 2 widget 2

2 DEF234 2 2 4 2 widget 2

2 DEF234 2 3 6 3 widget 3

Orders

1

2

ABC123

DEF234

order_id order_number

Products

1

2

3

widget 1

widget 2

widget 3

product_id name

ProductsInOrder

1

1

2

2

1

2

2

3

5

10

4

6

order_id product_id qty

Figure 5.2 Our example order-processing system, which contains sample data for a relational
database model

117Review of values steps
order

order productcontains

order_id

order_number

product

product_id

name

Figure 5.3 A graph schema for our order-processing system with two vertices, order
and product, and one edge, contains

order

order order

order

product product product

contains

contains

contains

contains

name widget 1

number ABC123 number DEF234

name widget 2 name widget 3

product product product

Figure 5.4 Our order-processing graph populated with the same data used in our SQL example.

order

order order

order

product product product

contains

contains

contains

contains

name widget 1

number ABC123 number DEF234

name widget 2 name widget 3

product product product

Figure 5.5 Our traversal finds all the order vertices in our order-processing graph.

118 CHAPTER 5 Formatting results
Our next step is to traverse out all the contains edges to the adjacent product verti-
ces. Figure 5.6 shows this step.

In Gremlin, we’d write a traversal like the following:

g.V().hasLabel('order').out('contains')

If we compare the final location of our graph traversal to the final result set of our
SQL query, we’ll notice that although the SQL results have information about both
the orders and the products, the graph results only have the properties of the products
vertices. This represents a fundamental difference between querying a relational data-
base and traversing a graph. Further, in a relational database, the output of a join
operation is the combination of all of the joined tables. In a graph database, the out-
put of any step of a traversal is the current set of vertices or edges. How do we return
both the order and product information for a graph?

5.2 Constructing our result payload
To return both the order and product vertices, we use an alias on the order vertices.
An alias in a graph database is a labeled reference to a specific output of a step, either
a vertex or an edge, that can be referenced by later steps. In our order-processing
graph, the steps to get a combined order/product result are as follows:

1 Find all the order vertices in the graph.
2 Give these an alias labeled O.
3 Traverse out the contains edge to the product vertices.

order

order order

order

product product product

contains

contains

contains

contains

name widget 1

number ABC123 number DEF234

name widget 2 name widget 3

product product product

Figure 5.6 Traversing out the contains edges from all order vertices to the product vertices

119Constructing our result payload
4 Give these an alias labeled P.
5 Return all the properties from the elements labeled O as well all the properties

from the elements labeled P.

It might appear strange to also alias the product vertices, not just the order vertices.
When returning the aliased elements, all these elements must have an alias, not just
the mid-traversal elements. If we look at our order-processing graph after we com-
plete steps 1 and 2 (shown in figure 5.7), we have a graph with all our order vertices
labeled as O.

Now we can traverse the contains edge and alias the adjacent product vertices (steps 3
and 4). This provides a graph where all our order vertices aliased as O and all our
product vertices aliased as P. Figure 5.8 exhibits this part of the traversal.

 So far, it looks like we’re on the right track. We have references to both the order
and product vertices (step 5). Next, we’ll select our O and P vertices and return their
properties. To retrieve these values, we’ll refer to the alias and the properties we want
to return for each desired attribute. While this makes sense conceptually, let’s dive
into a concrete example from our social network and see how this all works using our
social network graph.

order

order order

order

product product product

contains

contains

contains

contains

name widget 1

number ABC123 number DEF234

name widget 2 name widget 3

product product product

O O

Alias Order

Element

Alias Order

Element

The order
vertices have
O as an alias.

Figure 5.7 Our order-processing graph with all the order elements labeled O

120 CHAPTER 5 Formatting results
5.2.1 Applying aliases in Gremlin

Having covered the concept of aliases, let’s apply this to our friends-of-friends tra-
versal we created in chapter 3. In section 3.3, we crafted the traversal:

g.V().has('person', 'first_name', 'Ted').
 repeat(
 out('friends')
).times(2).
 values('first_name')

The Ted vertex has just a couple of connections in our sample graph, so it does not
have many results as is. Let’s move to the middle of the graph and search for Dave’s
friends-of-friends instead of Ted’s. Also, instead of just returning the friends-of-
friends name, let’s also return the friend’s name. Our results should be a list of
objects, each with a friend’s name and with a friends-of-friends name. Let’s start this
exercise by first reminding ourselves what our social network graph looks like, illus-
trated in figure 5.9.

NOTE In figure 5.9, the vertices are labeled using only the first_name prop-
erty to simplify the visual presentation.

order

order order O

P P P

O

order

product product product

contains

contains

contains

contains

name widget 1

number ABC123 number DEF234

name widget 2 name widget 3

product product product

Alias Product

Element

Alias Product

Element

Alias Product

Element

The order vertices
have O as an alias
and the product
vertices have P
as an alias.

Figure 5.8 Our order-processing graph with the order vertices labeled O and the product vertices labeled P

121Constructing our result payload
Applying what we learned, we come up with the following steps for answering this
friends-of-friends question for Dave:

1 Find the Dave vertex.
2 Traverse out the friends edges.
3 These are Dave’s friends, so alias them with the label 'f'.
4 Traverse out the friends edge again.
5 These are Dave’s friends-of-friends, so alias them with the label 'foff' (for

friends-of-friends).
6 For each result, return the first_name property of the element labeled 'f' and

the first_name property of the element labeled 'foff'.

Figure 5.10 shows what this looks like in our social network graph. In this figure, we
recognize Dave’s friends shown by the end vertices with the solid lines (representing
steps 1–3), and his friends-of-friends denoted by the end vertices with the dashed lines
(representing steps 4 and 5).

Denise

Kelly Jim

Dave

Paras

Ted

JoshHank

friends
friendsfriends

friends friends

friends

friends

friends friendsfriends

friends

friends

Figure 5.9 Our simplified social network with person vertices labeled with the
person’s name

122 CHAPTER 5 Formatting results
Traversing our graph in this manner returns one result for each of the six solid
arrows in figure 5.10 and includes a value for each result based on the solid arrow
traversed. Because there are five solid arrows, some of the friends vertices, namely
Jim and Kelly, end up being duplicated in our results. Note also that there’s an
solid arrow to Hank but no solid arrow from Hank. We shouldn’t expect to find
Hank in the friends category, only in the friends-of-friends, owing to the solid
arrow from Josh.

 Because there isn’t an outgoing friends edge from the Hank vertex, we don’t get a
friends-of-friends result for Dave’s friend Hank. Put another way, there is no vertex
that satisfies the pattern: Dave -> Hank -> ???. This is a good example of how the edge
directions can influence results in sometimes unexpected ways. Let’s write our tra-
versal starting with the friends-of-friends traversal from section 3.3 but replacing Ted
with Dave.

Denise

Kelly Jim

Dave

Paras

Ted

JoshHank

friends
friendsfriends

friends friends

friends

friends

friends

Finding Dave’s friends

friendsfriends

friends

friends

Finding the friends of

Dave’s friends

Figure 5.10 Finding Dave’s friends, shown as the endpoints with the solid lines, and their
friends, depicted as the endpoints with the dashed lines, within our social network graph

123Constructing our result payload
TIP It’s best to write code in small chunks and test early and often.

g.V().has('person', 'first_name', 'Dave').
 out().
 out().
 values('first_name')
==>Denise
==>Denise
==>Paras
==>Jim
==>Josh
==>Hank

Comparing the outcome of this traversal with what we expected from our graph, we
confirm that the results match. However, this graph just returns the name of the
friends-of-friends. We want the combination of the friend and friends-of-friends verti-
ces. To get the missing pieces, two new pieces are required: first, aliasing an element
in the middle of a traversal, and second, using aliased elements later in the traversal to
choose properties.

ALIASING ELEMENTS MID-TRAVERSAL USING AS()
The first concept, aliasing elements mid-traversal, is what enables us to retrieve the
friend’s name. We use a new Gremlin step, the as() modulator:

 as()—Assigns a label (or labels) to the output of the previous step, which can
be accessed later in the same traversal.

Think of as()in Gremlin as similar to assigning an alias to a table in SQL. For exam-
ple, with SQL

SELECT alias_name.* FROM table AS alias_name;

would be represented in Gremlin as

g.V().hasLabel('table').as('alias_name')

Both approaches use the keyword as and alias a specific portion of the data (in SQL, it’s
a table; in a graph, it’s a reference to an element) to use a simple reference later. Let’s
add the as() step to alias our vertices after each of the out() steps. Then, in figure 5.11,
we isolate and describe the portions of the traversal where we alias the vertices:

g.V().has('person', 'first_name', 'Dave').
 out().as('f').
 out().as('foff')

As figure 5.12 illustrates, each vertex is aliased with the assigned name after we traverse
each friends edge.

124 CHAPTER 5 Formatting results
For each vertex we traverse,
label the current vertex as f.

out().as('f').

out().as('foff')

For each vertex we traverse,
label the current vertex as foff.

Figure 5.11 Portions of the traversal
where we alias the vertices at each
step away from the starting vertex

Denise

Kelly Jim

Dave

Paras

Ted

JoshHank

friends
friendsfriends

foff

foff

foff

foff

foff

foff f
f

f

f

f

friends friends

friends

friends

friends

Finding Dave’s friends

friendsfriends

friends

friends

Finding the friends of

Dave’s friends

Vertices are associated
with the aliases f or foff,
or both aliases.

Figure 5.12 Our social network graph depicting each vertex being aliased as f or foff for
each step in our traversal

125Constructing our result payload
While it might be tempting to assign an as() at each step in a traversal, its use comes
at a cost. As each traverser moves through the graph, it carries a reference to each ele-
ment that’s aliased. The more aliases we create, the more the traverser has to keep
track of with each additional step. Therefore, it’s best practice to only alias steps that
we plan to retrieve later in the traversal. Now that we’ve wrapped our heads around
how to alias elements mid-traversal, let’s examine the second new concept: retrieving
the aliased elements.

RETURNING ALIASED ELEMENTS
Retrieving the aliased elements in our traversal requires two different steps. First, we
need to specify what aliased elements to retrieve, and second, what properties of each
to return. In the case of our friends-of-friends traversal, we

1 Return all elements labeled 'f'.
2 Return all elements labeled 'foff'.
3 For each of the returned elements, return the first_name property.

To return aliased elements, let’s turn to a new Gremlin step:

 select(string[])—Selects aliased elements from earlier in the traversal. This
step always looks back to previous steps in the traversal to find the aliases.

The select() step takes an array of strings, which are the aliases to retrieve. In our
example, we specify select('f', 'foff') to use both sets of vertices in our results. To
specify what properties to return, we introduce another new Gremlin step, or more
accurately, another modulator, by(). Like the from(), to(), and as() modulators,
the by() modulator only works in the context of another step; in this case it will be
working with the select() step (although it can work with others, as we will see later):

 by(key)—Specifies the key of the property to return the value from the corre-
sponding aliased element

 by(traversal)—Specifies the traversal to perform on the corresponding
aliased element

There are two forms of by(). The first form takes the property key and returns the cor-
responding property value from the labeled element. This is a bit of Gremlin syntax
sugar because by(key) is equivalent to by(values(key)). The second form takes a tra-
versal that allows us to perform additional steps on the labeled element, such as a val-
ueMap() or out().valueMap('key'). It’s also possible to use complex traversals within a
by() modulator to format results. We demonstrate more complex uses in later chapters.

 The by() modulator specifies what to do with the corresponding aliased elements
from a step like the select() step. In our case, we apply the first form to specify that we
want the first_name property from each of the aliases referenced in our select() step.
Putting the select() and by() steps on our previous friends-of-friends traversal, we get

g.V().has('person', 'first_name', 'Dave').
 out().as('f').
 out().as('foff').

126 CHAPTER 5 Formatting results
 select('f', 'foff').
 by('first_name').
 by('first_name')
==>{f=Jim, foff=Denise}
==>{f=Jim, foff=Paras}
==>{f=Kelly, foff=Jim}
==>{f=Kelly, foff=Denise}
==>{f=Ted, foff=Josh}
==>{f=Josh, foff=Hank}

With these two concepts, we can create complex results by combining elements from
different points in our traversal. In this scenario, it means including not only the
name of the friends-of-friends of Dave, but also which of Dave’s friends they’re con-
nected to as well. Our traversal yields the six results we expected with the Jim and
Kelly vertices referenced twice as friends. Also, the Hank vertex was not included as a
one of the friends because there was no corresponding friends-of-friends returned.
This is awesome, but why are there two by() steps?

 One confusing aspect of using by() statements is that each aliased element we
specify in a select() statement should have a corresponding by() statement to indi-
cate the operations to perform on it. Additionally, the order of the by() step corre-
sponds to the order of the aliases specified.

 In our example, select('f', 'foff'), our traversal must have two by() state-
ments. The first by() performs actions on the elements labeled as 'f'; the second
by() performs actions on the elements labeled as 'foff'. Figure 5.13 demonstrates
how the by() steps correlate in our example.

NOTE Strictly speaking, it is possible to have greater or fewer by() statements
than referenced elements. In these scenarios, the by() statements are used in
a round-robin fashion. This can lead to confusion, so we always match the
number of by() statements to the number of aliased elements to be clear
about what should happen for each alias.

Upon examination, in figure 5.13, we notice that the first by() statement returns the
first_name property from our vertices labeled as 'f', and the second by() statement
yields the first_name property from our vertices labeled as 'foff'.

Reach back and get all of
the f and foff aliased vertices.

For the foff vertex return
the value.first_name

For the f vertex return
the value.first_name

select ('f','foff').

by(values('first_name')).

by(values('first_name'))

Figure 5.13 Diagram showing the portions of the traversal where we select the labeled vertices

127Constructing our result payload
5.2.2 Projecting results instead of aliasing

Sometimes, instead of looking back in the traversal for earlier results, it is preferable
to project results forward from the current elements. Projecting results differs from
retrieving the previous results in a simple, but somewhat subtle way. When we retrieve
(or select) data, we can only get information that we already traversed and aliased.
When we project results, we create new results, possibly branching to items not yet tra-
versed. Let’s start by looking at projection in contrast to selection:

 Selection is the process of working with vertices, properties, or additional traversal expres-
sions to return results from previously labeled steps. Selection always looks back to ear-
lier parts of the traversal.

 Projection is the process of working with vertices, properties, or additional traversal expres-
sions to create results from the input to the current step. Projection always moves for-
ward, taking the incoming data as the starting point.

Understanding the difference between these two items is crucial. Selection is gener-
ally used to combine results from elements traversed earlier in the traversal. Projec-
tion is generally used to group or aggregate data starting from the current location in
the graph (for example, finding the degree property of each member of a set of verti-
ces, which we do later in this section).

 Let’s return to our order-processing graph for an illustration. For this example,
let’s answer the question, “For each of the products in order ABC123, how many times
has that product been ordered?” Using what we already know from the previous sec-
tion about selecting results, let’s use the following process:

1 Find the order vertex ABC123.
2 Traverse the contains edge to each of the product vertices, aliased as p.
3 Traverse out all the contains edges, aliased as c.
4 Return a selection of the name of p with the count of c.

Completing step 1 has our traverser located on the order vertex. Figure 5.14 illus-
trates this step.

 Moving along, completing step 2 of the process has two traversers, one located on
each adjacent product vertex. Figure 5.15 shows this step.

 With our next to last step (step 3), the traversers are located on the contains
edges. Figure 5.16 shows this step.

 With everything we’ve learned about using aliases and returning results, this is
the correct way to think about the problem. However, if you count the gremlins in
figure 5.16, you see there are three. Each of these returns its own results, based on
what it knows. What they each know is the widget they came from and how many
edges these occupy. This approach yields the following:

{name: widget 1, count: 1}
{name: widget 2, count: 1}
{name: widget 2, count: 1}

128 CHAPTER 5 Formatting results
order

order order

order

product product product

contains

contains

contains

contains

name widget 1

number ABC123 number DEF234

name widget 2 name widget 3

product product product

Figure 5.14 Our order-processing graph after step 1 with our traversers sitting on the order vertices

order

order order

order

product product product

contains

contains

contains

contains

name widget 1

number ABC123 number DEF234

name widget 2 name widget 3

product product product

Figure 5.15 Our order-processing graph after step 2 with our traversers sitting on the product vertices

order

order order

order

product product product

contains

contains

contains

contains

name widget 1

number ABC123 number DEF234

name widget 2 name widget 3

product product product

Figure 5.16 Our order-processing graph after step 3 with our traversers sitting on our contains edges

129Constructing our result payload
That is one result for each of the three gremlins. What we want instead is a result
like this:

{name: widget 1, count: 1}
{name: widget 2, count: 2}

Why didn’t the traversal return the expected results? Why did we end up with three
gremlins and three results each with a count of 1? Previously, the return values from
our traversals were generated by selecting the values of previously traversed and
labeled elements. In the case of the previous order-processing traversal, we end up
with three traversers. So, what do we do instead? The steps shown are mostly valid, but
require a few tweaks:

1 Find the order vertex ABC123.
2 Traverse the contains edge to each of the product vertices.
3 Traverse out all the contains edges.
4 Return a projection of the product name with a count of the incident contains

edges.

Studying the difference between the two processes, we’ll notice a few specifics:

 We’re no longer aliasing elements as we traverse these.
 We don’t have to traverse back out to the contains edge a second time.

In the example traversal, we use projection to end up with the count of contains edges
for a specific product because we want to branch our logic at the product vertex.

 Whew, we know this is a lot to take in, so let’s see what this looks like in a practical
example from our social network graph. Let’s say we applied the same concepts to this
question: “Find the degree property for every person vertex in my graph.” To answer
this question, we need to do the following:

1 Find all the person vertices in the graph.
2 Create a new result object with the name and degree keys.
3 For the name key, return the first_name of the person.
4 For the degree key, count all the edges for the person.

We also need a new step, the project() step:

 project(string[])—Projects the current object into a new object or objects as
specified by the criteria in the by() modulators

Let’s apply what we learned about the by() modulators and projection. Figure 5.17
shows the traversal we should get from this.

 As we did with select(), we’ll use the by() modulators to instruct the project()
step on how to return its results.

130 CHAPTER 5 Formatting results
IMPORTANT In this traversal, instead of specifying a property name in the sec-
ond by() statement, we specify additional traversal steps. This takes the
incoming element (in this case, the product vertex) and then performs addi-
tional traversal steps from that point in the graph. This ability to specify addi-
tional traversal steps within a by() step isn’t unique to project(). We can
specify these sub-traversals with either a select() or other Gremlin steps.
This is quite powerful—the ability to do complex operations within a traversal
or steps within steps.

When we run this traversal on the complex social network graph, we get the follow-
ing results:

g.V().hasLabel('person').
 project('name', 'degree').
 by('first_name').
 by(bothE().count())
==>{name=Dave, degree=5}
==>{name=Paras, degree=2}
==>{name=Josh, degree=3}
==>{name=Denise, degree=3}
==>{name=Ted, degree=2}
==>{name=Hank, degree=2}
==>{name=Kelly, degree=3}
==>{name=Jim, degree=4}

To review, let’s summarize the differences between the two methods: selection versus
projection. Then we’ll compare these side by side in figure 5.18 before we move on:

 Selection uses the select() step to create a result set based on previously traversed ele-
ments of a graph. To use the select() step, we alias each of the elements with the
as() step for later use.

 Projection uses the project() step to branch from the current location within the graph
and creates new objects. In our present example, we had one element remain

Find all person
vertices in the graph.

For the key,degree

resolve the traversal
to count the edges
in both directions.

For the key, returnname

the value.first_name

Create a new object with
name degreeand keys.

g.V().hasLabel('person').

project('name', 'degree').

by('first_name').

by(bothE().count())

Figure 5.17 Diagram showing the portions of the traversal describing the project() step

131Organizing our results
static, the person’s name, but we needed the other elements to be calculated
through further traversing of the graph to return the number of friends.

Don’t worry if you don’t feel comfortable with how to manipulate results right away.
Our experience tells us that, as with many powerful software concepts, it takes some
practice to know which technique produces the desired result. It does become more
natural with regular practice, and by regular practice, we mean trial and error until you
get the desired results. Now that we know how to construct complex result structures,
how do we go about returning these in a predictable way?

5.3 Organizing our results
In this section we investigate two other mechanisms to manipulate results: ordering
and grouping. Most clients want nice, clean, ordered data. However, as in most rela-
tional databases, graph databases don’t guarantee the order of the results by default.
This leads us to the three most common requirements for organizing our result data:

 Ordering the results
 Grouping the results
 Limiting the size of the results

5.3.1 Ordering results returned from a graph traversal

Clients often expect the returned data to be sorted by one or more properties. For
example, when displaying everyone in the graph by name, people usually expect to
see the results in alphabetical order. This leaves us with a couple of options.

 The first option is to return all the names and sort these client-side, in memory,
within the application. While this works, it’s undesirable. For example, let’s say our
application only shows the first 10 names of a possible 100. Sorting all the data client-
side means that we return all 100 values, sort these, and then choose the top 10. This
is inefficient and adds load not only on the client, but also on the database and the

select() always looks back to
earlier parts of the traversal.

g.V().has('person', 'first_name', 'Dave').

out().as('f').

out().as('foff').

select('f', 'foff').

by('first_name').

by('first_name').

project() always goes forward
with the incoming data.

g.V().hasLabel('person').

project('name', 'degree').

by('first_name').

by(bothE().count())

Figure 5.18 The select() step looks back to previously aliased steps, and the
project() step takes the incoming data and moves forward with it.

132 CHAPTER 5 Formatting results
network. While there are scenarios where this might make sense, such as if we were
caching all the names in the application for repeated reuse, we normally want to reduce
unneeded work.

 This leaves us with the second option: sorting the names first on the server-side.
This is the method frequently taken in a relational database and is also common in a
graph database. In SQL, we use the ORDER BY clause like this:

SELECT *
FROM person
ORDER BY first_name;

The syntax in a graph database is similar. In fact, to order results in Gremlin, we use
the following step:

 order()—Collects all objects up to this point of the traversal into a list, which is
ordered according to the accompanying by() modulator

This new step, used in conjunction with the by() modulator, specifies how to arrange
our data and which property to use to sort the results. For example, to order the
names of every person vertex in the graph by first_name, we use this traversal:

g.V().hasLabel('person').values('first_name').
 order().
 by()
==>Dave
==>Denise
==>Hank
==>Jim
==>Josh
==>Kelly
==>Paras
==>Ted

The order() step defaults to sorting in ascending order. To sort by descending order,
specify the decr parameter in the by() step as shown:

g.V().hasLabel('person').values('first_name').
 order().
 by(decr)

==>Ted
==>Paras
==>Kelly
==>Josh
==>Jim
==>Hank
==>Denise
==>Dave

While sorting in either ascending or descending order is common, there are times
when we want to order data randomly, such as when sampling. For this, we use the
shuffle parameter in the by() step:

133Organizing our results
g.V().hasLabel('person').values('first_name').
 order().
 by(shuffle)
==>Dave
==>Jim
==>Ted
==>Paras
==>Kelly
==>Hank
==>Denise
==>Josh

Ordering is probably the most frequent requirement for formatting data. Another typ-
ical need is to group or count the number of items in a group.

5.3.2 Grouping results returned from a graph traversal

If we return to our previous friends-of-friends traversal, the client might want to
return that list grouped by which of Ted’s friends they’re friends with. In this scenario,
we’re left with the same choices as with ordering data: either perform the work on the
client-side in the application or on the server-side in the database.

 There’s a natural desire, and one which we encourage, to push as much of this
work as close to the data as possible. In SQL, we accomplish this by using the GROUP
BY clause:

SELECT f.person_id, count(foff.*)
FROM person
 INNER JOIN friends AS f ON f.person_id = person. id
 INNER JOIN friends AS foff ON foff.person_id = f.friend_id
WHERE person.first_name = 'Ted'
GROUP BY f.person_id;

Similar to ordering data, the syntax in a graph database for grouping is comparable
when using Gremlin. To perform these grouping operations, we can use either of the
following steps:

 group()—Groups the results based on the specified by() modulator. Data is
grouped by using either one or two by() modulators. The first one specifies the
keys for the grouping. The second one, if present, specifies the values. If not
present, the incoming data is collected as a list of the values associated with the
grouping key.

 groupCount()—Groups and counts the results based on the specified by() mod-
ulator. It takes one by() modulator to specify the keys. The values are always
aggregated by the count() step.

In the following, we apply these steps to group all of the friends-of-friends of Dave by
his friends:

134 CHAPTER 5 Formatting results
g.V().has('person', 'first_name', 'Dave').
 both().
 both().
 group().
 by('first_name')

==>{Denise=[v[19], v[19]], Ted=[v[4]], Hank=[v[6]], Paras=[v[17]], Josh=[v[2],
v[2]], Dave=[v[0], v[0], v[0], v[0], v[0]], Kelly=[v[13]], Jim=[v[15]]}

We can see that our traversal returns a Map containing arrays of vertices for each name.
Because we didn’t specify a second by() modulator, it simply collected the references
to the vertexes into a list. To make this a bit easier to read, let’s use the unfold() step:

 unfold()—Unrolls an interable or map into its individual components

Applying the unfold() step to our results unwinds those into individual records for
each name. For example

g.V().has('person', 'first_name', 'Dave').
 both().
 both().
 group().
 by('first_name').
 unfold()
==>Denise=[v[19], v[19]]
==>Ted=[v[4]]
==>Hank=[v[6]]
==>Paras=[v[17]]
==>Josh=[v[2], v[2]]
==>Dave=[v[0], v[0], v[0], v[0], v[0]]
==>Kelly=[v[13]]
==>Jim=[v[15]]

Instead of returning the actual vertices for each name, what if we were more inter-
ested in discovering which of Dave’s friends is the most popular? To do aggregated
grouping, we need the count for a group by name, so we use the groupCount() step:

g.V().has('person', 'first_name', 'Dave').
 both().
 both().
 groupCount().
 by('first_name').
 unfold()

==>Denise=2
==>Ted=1
==>Hank=1
==>Paras=1
==>Josh=2
==>Dave=5
==>Kelly=1
==>Jim=1

135Organizing our results
The groupCount() step is just a little syntax sugar for the most common use of the
group() step—aggregating counts of things. As a quick point of comparison, and a
nice demonstration of how we can use a traversal in a by() modulator, the group()
version of the groupCount() step is

g.V().has('person', 'first_name', 'Dave').
 both().
 both().
 group().
 by('first_name').
 by(count()).
 unfold()
==>Denise=2
==>Ted=1
==>Hank=1
==>Paras=1
==>Josh=2
==>Dave=5
==>Kelly=1
==>Jim=1

Note how we were able to use a traversal of one step (the count() step) in our sec-
ond by() modulator. The group() step applied by() to all of the incoming vertices
that shared the same first_name value. As these examples demonstrate, grouping
and ordering results in a graph database is similar to the process used in a relational
database.

5.3.3 Limiting results

The final topic in organizing results is returning a subset of the data. This is commonly
used to minimize the result size or for pagination functionality. For example, let’s say
that we want to return all the names for people in our graph, but our graph contains
one million people. Can any application display all at the same time? Usually we want to
limit the initial results and then allow the user to move through the data set in groups of
records. This approach is standard in a number of types of applications.

 As with grouping or ordering, the question remains: Do it on the client-side or do
it on the server-side? In this case, it’s almost always better to limit data on the server
before returning it to the client. That provides a drastic reduction in resources across
the whole stack, from the database to the network to the application. In SQL, we use
the LIMIT clause for this:

SELECT *
FROM person
LIMIT 10;

As before, the approach in a graph database is similar. Gremlin, however, has several
steps depending on the desired outcome: first X results, last X results, or X results
from within the data set:

136 CHAPTER 5 Formatting results
 limit(number)—Returns the first number of results
 tail(number)—Returns the last number of results
 range(startNumber, endNumber)—Returns the results from startNumber (inclu-

sive, zero-based) to endNumber (not inclusive)

These three steps are usually paired with an ordering step because graph traversals
don’t guarantee the order of the data returned. Let’s say that we want to return only
the top three names from our graph, ordered by first_name. If we extend the tra-
versal we built in the ordering section to add the limit() step, we get a traversal that
looks like this:

g.V().hasLabel('person').values('first_name').
 order().
 by().
 limit(3)
==>Dave
==>Denise
==>Hank

What if we want to do the reverse and return the last three names? How would we
accomplish this task?

EXERCISE Take a minute and think about what you’ve learned about manip-
ulating our results. What would you do to answer the question?

We see two ways to do this. The first is to use the previous traversal, but arrange names
in descending order instead of ascending order; then limit our results to the top
three. The second way is to use the tail() step instead of the limit() step like this:

g.V().hasLabel('person').values('first_name').
 order().
 by().
 tail(3)
==>Kelly
==>Paras
==>Ted

Both methods accomplish the same goal. It’s therefore up to your discretion to decide
which one you want to choose.

 The last requirement to discuss is pagination of results. Let’s say we want everyone
ordered by first name, but only three at a time. We use the range() step and specify
the first and last result number to return:

g.V().hasLabel('person').values('first_name').
 order().
 by().
 range(0, 3)
==>Dave
==>Denise
==>Hank

137Combining steps into complex traversals
By manipulating the startNumber and endNumber values, we can page through our
results. For example, if we wanted to move to a second page of results, we could
accomplish this by incrementing the values in our range step to range(3, 6).

5.4 Combining steps into complex traversals
Given all these different ways of manipulating our data, we’ll share one last example
that combines these concepts together to answer the question, “What three friends-
of-friends of Dave have the most connections?” We’ll start with the answer and then
break it down into its component parts. First, the traversal to answer this question
follows:

g.V().has('person', 'first_name', 'Dave').
 both().
 both().
 groupCount().
 by('first_name').
 unfold().
 order().
 by(values, desc).
 by(keys).
 project('name', 'count').
 by(keys).
 by(values).
 limit(3)

==>{name=Dave, count=5}
==>{name=Denise, count=2}
==>{name=Josh, count=2}

That’s a lot to take in when you are used to traversals with at most five steps. This one
has nine steps plus five modulators. In chapter 8, we introduce a methodology for devel-
oping more involved traversals such as this one. In this final example for this chapter, we
walk through our approach to understand the traversal that is already written.

 The first step is to ascertain the traversal writer’s intent. Here, we know that the tra-
versal is supposed to answer a specific question: “What three friends-of-friends of Dave
have the most connections?” We may not always know the intent when looking at
someone else’s traversals. Out of consideration for the developers who might someday
need to support the traversal you write, we recommend either having descriptive
method names (e.g., getTop3FriendOfFriendsByEdgeCount) or including a helpful
comment in the code. We discuss adding comments a bit later in this section.

 Next, determine the traversal’s starting point. It is a single vertex or a type of verti-
ces. We do this by looking at all of the filtering steps at the start. Remember that filter-
ing steps such as has() can be chained together efficiently. In this example, the
traversal starts at a single vertex, the Dave vertex, before it traverses to other parts of
the graph:

g.V().has('person', 'first_name', 'Dave')

138 CHAPTER 5 Formatting results
Next, we want to take each step, or collection of steps, in their order. While reading
through the steps, we want to develop our mental view of our position within the
graph at each point. Sometimes, we find it helpful to add comments to the code as a
way of taking notes. For example, with the first few steps, we might add comments like
the following:

g.V().has('person', 'first_name', 'Dave'). // single person: Dave
 both(). // friends
 both() // friends of friends

This helps us to keep track of the output at each step. The only problem with this is
that not all traversal processors support inline comments like this. For example, while
our IDE recognizes this as valid Groovy code, the Gremlin Console gives us an error if
we attempt to run it. To be able to run the code in Gremlin Console, we need to
change the comment to something like this:

// single person: Dave
g.V().has('person', 'first_name', 'Dave').
 // friends
 both().
 // friends of friends
 both()

But that makes the traversal verbose in ways that are almost unhelpful. In these situa-
tions, we are tempted to keep two versions of the traversal in our IDE or editor, one
with comments and the other for testing. Either way, we can see that the first three
lines get us to the friends of Dave’s friends. Testing in the Gremlin Console gives us

g.V().has('person', 'first_name', 'Dave').
 both().
 both()
==>v[19]
==>v[17]
==>v[0]
...

Let’s look at the next set of steps, the groupCount() step, it’s by() modulator, and the
unfold() step. We can run just those steps through the Gremlin Console and review
the results:

g.V().has('person', 'first_name', 'Dave').
 both().
 both().
 groupCount().
 by('first_name').
 unfold()
==>Denise=2
==>Ted=1
==>Hank=1
==>Paras=1

139Combining steps into complex traversals
==>Josh=2
==>Dave=5
==>Kelly=1
==>Jim=1

From this, we can see that we get a series of key-value pairs, where the key is the
first_name of the friends-of-friends vertex, and the value is the number of times that
it appears in the results. Referring back to our starting question, this covers the
friends-of-friends of Dave and their number of connections. The groupCount() step
handled both the needed grouping (by friends-of-friends’ first names) and the count
aggregation. An unfold() step is tacked on to simplify the ordering, which is next:

g.V().has('person', 'first_name', 'Dave').
 both().
 both().
 groupCount().
 by('first_name').
 unfold().
 order().
 by(values, desc).
 by(keys)
==>Dave=5
==>Denise=2
==>Josh=2
==>Hank=1
==>Jim=1
==>Kelly=1
==>Paras=1
==>Ted=1

The ordering statement gets interesting. First, it orders by the values in descending
order and then by the keys. The ordering by the keys is a nice little tie breaker to
ensure somewhat deterministic results. We’re not sure that an alphabetical bias by first
name is the best approach, but it certainly works for ensuring consistency. Now let’s
reformat these results so that it’s easier to parse with a client program:

g.V().has('person', 'first_name', 'Dave').
 both().
 both().
 groupCount().
 by('first_name').
 unfold().
 order().
 by(values, desc).
 by(keys).
 project('name', 'count').
 by(keys).
 by(values)
==>{name=Dave, count=5}
==>{name=Denise, count=2}
==>{name=Josh, count=2}

140 CHAPTER 5 Formatting results
==>{name=Hank, count=1}
==>{name=Jim, count=1}
==>{name=Kelly, count=1}
==>{name=Paras, count=1}
==>{name=Ted, count=1}

Here, we use a project() step so that we have objects with clear labels on the proper-
ties. This probably isn’t necessary if working with data within a single traversal, but it is
a great practice when returning results to another program. Now, the only operation
that remains is to limit the results:

g.V().has('person', 'first_name', 'Dave').
 both().
 both().
 groupCount().
 by('first_name').
 unfold().
 order().
 by(values, desc).
 by(keys).
 project('name', 'count').
 by(keys).
 by(values).
 limit(3)

==>{name=Dave, count=5}
==>{name=Denise, count=2}
==>{name=Josh, count=2}

This example demonstrates how we brought together the concepts and constructs in
this chapter to format results for client software. And, as a bonus, we walked through
how to examine a traversal piece by piece to understand its operations. In the next
chapter, we’ll bring the skills from the last few chapters together to build a working
application.

Summary
 By default, properties aren’t returned from graph elements, so we must explic-

itly ask for those. In Gremlin, we use steps such as values() and valueMap() to
retrieve the values in the desired form.

 Aliases in the traversal allow for referencing results from earlier steps in later
steps, supporting composition of powerful traversals.

 Selecting and projecting steps create complex results from multiple vertices or
edges, allowing for the composition of intricate result structures.

 Selection creates a result set based on previously traversed elements of a graph. To
use the select() step, we alias with the as() step elements for use in later steps.

 Projection operates from the current location within the graph and creates new
objects with either static or calculated properties.

141Summary
 Ordering, grouping, or counting by group are common ways to transform results
using the order(), group(), and groupCount() steps.

 The limit() step limits the number of results, the tail() step returns the last
X records, and the range() step allows for result pagination.

 Combining different steps performs complex manipulation and transformation
of traversal results in the database prior to returning the results to a client. Used
appropriately, this improves performance in the database, across the network,
and in the application itself.

Developing an application
In chapters 3, 4, and 5, we covered the process of writing traversals. But writing tra-
versals is only part of what is required to create an application. Applications also
require handling tasks, such as connecting to a database, managing user input, and
processing the traversal results into a usable form. While the process for doing
these is similar to how we work with relational databases, there are a few critical dif-
ferences, so let’s find out how to approach these tasks when working with graph
databases.

 In this chapter, we’ll use the traversals we built in the earlier chapters to demon-
strate the process for translating these into a console application written in Java.
We’ll start by setting up our project, including selecting the proper graph database
driver. Next, we’ll walk through how to connect to our graph database. Finally, we’ll

This chapter covers
 Setting up a project

 Choosing the database driver and connecting to
the database

 Translating recursive and pathfinding traversals
into Java methods

 Processing traversal results within an application
142

143Starting the project
show how to translate our Gremlin traversals into the equivalent Java code and pro-
cess the results. By the end of this chapter, we’ll have a fully functioning application
based on our DiningByFriends social network.

NOTE If you haven’t done so already, download the corresponding source
code for this chapter available in the repository https://github.com/bechbd/
graph-databases-in-action. The code relevant to this chapter is located in the
chapter06 folder.

All examples begin with the assumption that our complex social network data set is
loaded. To accomplish this on MacOS/Linux, run this command:

bin/gremlin.sh -i $BASE_DIR/chapter06/scripts/6.1-complex-social-network.groovy

Or on Windows, run

bin\gremlin.bat -i $BASE_DIR\chapter06\scripts\6.1-complex-social-network.groovy

The chapter06/java directory contains three different versions of the application.
Each is contained in a separate folder:

 skeleton—A skeleton of the application without any code, only stubs for meth-
ods. This option is the right choice for anyone who wants to write the code
themselves.

 commented—All necessary application code for this project is included but com-
mented out. This option is the right choice for one who follows along in the
code but doesn’t want to do all the typing.

 completed—A complete, functional version of the application. This option is the
right choice for those readers who just want to examine the finished product.

We recommend reading the README.md file located within each version’s folder
because it contains the details on any prerequisites, as well as the specific steps to build
and run the application. To follow along throughout this chapter, the best approach is
to have two projects set up in your preferred IDE, likely each in its own instance or
window. For example, you can display your completed project on the left side of the
screen as a reference, and then your own code repository, perhaps started as a copy of
the skeleton version, on the right side of the screen where you do your own typing.

6.1 Starting the project
When we start a data-backed software development project, we must address a near-
universal set of fundamental needs. No matter if we are building for a relational data-
base or a graph database, each project needs to work through the following concerns:

 Select our tools: development language and database.
 Set up the software project.

https://github.com/bechbd/graph-databases-in-action
https://github.com/bechbd/graph-databases-in-action
https://github.com/bechbd/graph-databases-in-action

144 CHAPTER 6 Developing an application
 Obtain the appropriate driver for the database.
 Prepare the database server instance.

Each of these is required to get a framework in place to write and test code. Because
our end goal is to build a functioning application for our DiningByFriends social net-
work, this section discusses the decisions we made for our graph database project.
While this process is similar to that of relational databases, there are a few key differ-
ences we highlight along the way.

 If you have a lot of experience with setting up this type of work, then feel free to
skip to section 6.2 and look at the skeleton version of the code. An experienced Java
developer should be able to skim through this version and complete their own setup
within a few minutes. Developers familiar with other languages might have to read this
section a little more closely to see how the Java ecosystem compares to other software
language environments.

6.1.1 Selecting our tools

When selecting the tools for any data-backed application, there are two major deci-
sions to make: what language to use and what database to build on. This section looks
at each.

USING JAVA FOR OUR DEVELOPMENT LANGUAGE

Due to its popularity, we chose the pairing of Java (version 8), a perennial top pro-
gramming language, and Maven (version 3.5), a commonly used build tool. This is
also the combination we encounter most often when working with graph databases.

NOTE If you are not a Java developer, don’t despair. Most graph databases
support a variety of popular development languages, and the concepts and
constructs discussed in this chapter transfer to different languages, albeit with
some language-specific tweaks.

USING THE GREMLIN SERVER FOR OUR DATABASE IMPLEMENTATION

There are a number of commercial graph databases on the market, and many provide
an Apache TinkerPop-compatible interface. In the interest of simplicity and ease of
local development, we decided to use the Apache TinkerPop reference implementa-
tion, called Gremlin Server. You can find the installation and configuration instruc-
tions in appendix A. Although this may not be your chosen database, we are confident
that the code and examples port easily to any Apache TinkerPop-compatible graph
database.

 If you chose to use a graph database that isn’t directly compatible with Apache
TinkerPop, then it might be a bit more difficult to make use of the provided code
samples. While the concepts discussed in this chapter are nearly universal, other data-
bases have their own methods for accomplishing tasks, such as connecting to a
database, running traversals, and processing results.

145Starting the project
6.1.2 Setting up the project

The particulars of setting up a project for development are specific to the programing
language. In our case, we chose Java and Maven, so we expect to find a folder for the
project containing a pom.xml file for dependency and build instructions and an
App.java file for the source code. As a matter of good development hygiene, we like to
include both a README.md with the specific build instructions and a .gitignore file
to keep the source control system clean.

6.1.3 Obtaining a driver

One of the first items we need for our application is an appropriate driver to connect
to our database. This isn’t a unique requirement; a driver is needed for any applica-
tion that uses a database, whether relational or graph. In our case, we use the Apache
TinkerPop Gremlin Driver to connect to the Gremlin Server. As we’ve opted to build a
Java application with Maven, we need to add a reference to the Apache TinkerPop
Gremlin Driver in our pom.xml file, including these lines:

<dependency>
 <groupId>org.apache.tinkerpop</groupId>
 <artifactId>gremlin-driver</artifactId>
 <version>3.4.6</version>
</dependency>

NOTE You can find the Gremlin Driver at this site: http://mng.bz/Nne2.

If this were a C# project, we’d use a tool like NuGet to add a dependency for the
Apache TinkerPop Gremlin.Net driver. This process depends on the “norms” of your
selected language and build tools. Let’s ensure that a basic build of our project works.
We accomplish this by using the following command in a terminal window in the
directory of your application:

mvn clean compile

The build results should show a BUILD SUCCESS as its output:

[INFO] Scanning for projects...
[INFO]
[INFO] ----------------< com.diningbyfriends:diningbyfriends >-------------
[INFO] Building diningbyfriends 1.0
[INFO] --------------------------------[jar]-----------------------------
[INFO]
[INFO] --- maven-clean-plugin:2.5:clean (default-clean) @ diningbyfriends -
[INFO]
[INFO] --- maven-resources-plugin:2.6:resources (default-resources) @ ga --
[INFO] Using 'UTF-8' encoding to copy filtered resources.
[INFO]
[INFO] --- maven-compiler-plugin:3.8.1:compile (default-compile) @ ga ---
[INFO] Changes detected - recompiling the module!

https://shortener.manning.com/Nne2

146 CHAPTER 6 Developing an application
[INFO] Compiling 1 source file to chapter06/skeleton/target/classes
[INFO] --
[INFO] BUILD SUCCESS
[INFO] --
[INFO] Total time: 2.962 s
[INFO] Finished at: 2019-12-07T15:18:39-06:00
[INFO] ---

If you don’t get a BUILD SUCCESS result, review your setup or compare it with the skel-
eton code version.

6.1.4 Preparing the database server Instance

The final step before we’re ready to start our application is to configure the database
that our application uses. With an RDBMS, we create a new database and explicitly
define the schema, or data model elements (e.g., tables, columns, views, keys, indexes
and so forth) prior to writing code. The Apache TinkerPop Gremlin Server doesn’t
require a predefined schema to be applied to the graph, although the implementa-
tions of other graph database vendors might.

 Because we use Gremlin Server, we can start writing code without having to first
apply a schema or data model to our graph; that is, of course, if you loaded the data-
base as mentioned earlier in this chapter. If you want to check to see if your server is
up and running correctly, you can do this using the command g within the Gremlin
Console as shown here:

 \,,,/
 (o o)
-----oOOo-(3)-oOOo-----
plugin activated: tinkerpop.server
plugin activated: tinkerpop.utilities
plugin activated: tinkerpop.tinkergraph
gremlin> g
==>graphtraversalsource[tinkergraph[vertices:8 edges:12], standard]

Recall that g is our GraphTraversalSource. The data loading script uses the g that is
preconfigured on the Gremlin Server. The response shows us that the server’s graph
has 8 vertices and 12 edges.

 For the rest of this chapter, all of our interactions with the server use the applica-
tion code. You can leave the Gremlin Console up and running if you like; we often do
this while writing code, as it’s helpful for investigating the data in a more interactive
manner. This is similar to running Toad®, Microsoft’s SQL Server Management Stu-
dio, or Oracle’s Developer Tools along with your IDE to aid in investigating the state
of the data or in debugging an application. With all this in place, we’re ready to start
building our application.

A successful build’s output text

147Connecting to our database
6.2 Connecting to our database
Now that our project is set up with the appropriate driver and a server is waiting for us
to connect to it, our next step is to write the code to connect to our graph database.
For this application, as with most, we connect to our graph database through a network-
accessible endpoint, similar to how a JDBC driver connects to a relational database.
Connecting to our graph database requires two steps:

 Setting up the database configuration object, called the Cluster
 Setting up the GraphTraversalSource

6.2.1 Building the cluster configuration

The first step in connecting to our graph database is to build the equivalent of a JDBC
connection string for a relational database. In a TinkerPop-enabled graph database,
this is known as the cluster configuration. This configuration specifies the server and
port that our application uses to communicate with our graph database server.

 To create the cluster configuration, let’s look at it line by line. For those following
along in the code, this section demonstrates the construction of the connectTo-
Database() method. Let’s begin by examining the required import to create a cluster
configuration:

import org.apache.tinkerpop.gremlin.driver.Cluster;

This line should be quite familiar to any Java developer as it imports the required
Cluster class from the Gremlin driver library. Similar to the JDBC Connection object,
we use the Cluster object to send our traversals to the database. Examining the first
line of the connectToDatabase() method, we see that it creates a Cluster.Builder
instance:

Cluster.Builder builder = Cluster.build();

A Cluster.Builder instance is where we set the configuration parameters to connect
to our database. The Cluster object uses the builder design pattern to allow for step-
by-step construction of complex configurations. The next two lines show how to use
the builder pattern to add the server address and port:

builder.addContactPoint("localhost");
builder.port(8182);

The first line specifies that we are going to connect to a server listening on everyone’s
favorite host, localhost. The second line defines the connection port as 8182, which is
the default port for the Gremlin Server. As with any database, there are numerous
other configuration options available for the cluster builder, such as specifying a user-
name and password for authentication. However, to keep things simple, we only
defined the two essential ones required for a connection.

148 CHAPTER 6 Developing an application

S

lo
Our code now has a properly configured Cluster object, but we haven’t yet con-
nected to our server. Connecting to our server is performed by calling the create()
method on our builder instance as shown here:

builder.create();

Putting this code together gives us this method:

import org.apache.tinkerpop.gremlin.driver.Cluster;

public static Cluster connectToDatabase() {
 Cluster.Builder builder = Cluster.build();
 builder.addContactPoint("localhost");
 builder.port(8182);

 return builder.create();
}

Woo-hoo, this is great! We’re now able to connect to our server, which is a massive step
in the right direction.

6.2.2 Setting up the GraphTraversalSource

With our configuration complete and our server connection created, the last step
before we start running traversals is to create the traversal source we’ll use to run
those traversals. As discussed in chapter 3, a traversal source is an object upon which
all our traversals operate, and a GraphTraversalSource object is how we represent the
traversal source in Java. In other words, the GraphTraversalSource is the g in our
g.V() and g.E().

 In previous chapters, we used a traversal source that came preconfigured on the
Gremlin Console as part of our startup script. To achieve this same functionality in
Java, we create a GraphTraversalSource object in our application. This section demon-
strates the construction of that object using the getGraphTraversalSource method.

Specifying a graph to connect with?
It may surprise you that we don’t need to specify the name of a database (or a graph)
in the connection configuration. It is common in relational databases to specify the
name of the database because relational servers often host more than one data-
base. However, most graph database servers only support a single graph per
instance. With only a single graph, we don’t need to specify which one to use.

There are several graph databases that do provide for more than one graph per
server. In these databases, you must use the vendor-provided drivers. These include
additional configuration parameters, like the graph name.

Imports the
required classes

Creates our Cluster
builder instanceets the

server
cation Specifies the port

to connect to on
the database

Connects to our database

149Connecting to our database
 The first step to instantiating our GraphTraversalSource is to create a Traversal
object. In Java, this uses a static function of the traversal.AnonymousTraversalSource
class, traversal(). When called, traversal() returns a GraphTraversalSource object.

 Because we connect across a network, we need to use the withRemote() method of
our Traversal object to specify that we are making a remote connection. To accom-
plish this we pass in the cluster object from the previous section to the static Driver-
Remote-Connection.using() method as shown here:

traversal().withRemote(DriverRemoteConnection.using(cluster));

Putting this all together, we get the following:

public static GraphTraversalSource getGraphTraversalSource(Cluster cluster) {
 return traversal().
 withRemote(
 DriverRemoteConnection.using(
 cluster)
);
}

Excellent! This method returns a GraphTraversalSource object that we can use as the
starting point for all of our traversals. We know that this seems a bit archaic. There are
actually a few different ways to build and configure a remote connection to a traversal
source, and sometimes a vendor provides specifics for use with their implementation.

The GraphTraversalSource modes: Remote/detached or embedded/API
The GraphTraversalSource’s toString output is a little perplexing. What we need
to keep in mind is that we configured this GraphTraversalSource for a remote con-
nection. In the TinkerPop world, this is sometimes referred to as “being detached.”
What is meant by “detached” is that the graph database isn’t located in the same
processing/memory space as the driver and application. With that in mind, TinkerPop
can run in two different modes:

 Embedded mode—The graph operates in the application's memory and pro-
cess space instead of being accessed as an external resource. This configu-
ration requires that we add some additional libraries to our project. We don’t
take this approach in this book.

 Network mode—The graph database operates as an external resource com-
municating via a network. This mode is how we most often think of working
with other databases. It’s the method we use when working with all popular
graph database offerings on the market.

We use the network mode throughout this book because it is portable across most
graph database vendors, as long as these support the Apache TinkerPop APIs.

Creates an instance of the
static Traversal object

Specifies that we want to
create a remote connection

Specifies that we want to use
the hostname and port number

Passes in the
previously created

cluster object

150 CHAPTER 6 Developing an application
Putting these two methods (connectToDatabase and getGraphTraversalSource)
together, we can make the following simple program that configures and connects to
our network-enabled graph database and that prints some basic information:

public static void main(String[] args) {
 Cluster cluster = connectToDatabase();
 System.out.println("Using cluster connection: " + cluster.toString());
 GraphTraversalSource g = getGraphTraversalSource(cluster);
 System.out.println("Using traversal source: " + g.toString());
 cluster.close();
}

Remember that, by convention, we use the variable g to represent our GraphTraversal-
Source, but that’s an arbitrary designation. The terms gts, traversal, or graphSource are
just as suitable. We’re a couple of conventional guys, so we stick with g. Running our
program yields the following:

$ mvn -q clean compile exec:java -Dexec.mainClass="com.diningbyfriends.App"
Using cluster connection: localhost/127.0.0.1:8182
Using traversal source: graphtraversalsource[emptygraph[empty], standard]

Yay! Based on these results we see that we can connect to our database.

More details about GraphTraversalSource and TinkerPop’s strategies
One aspect you might have noticed when looking at the previous results is that our
traversal source is empty and that it had a second parameter standard. What’s
that about?

We mentioned that a GraphTraversalSource is a process that knows how to navi-
gate the data store (e.g., the graph). There are several ways to find data within our
graph, with two of the most common approaches of traversing a graph being depth-
first and breadth-first. Additionally, many other optimizations can be applied, depend-
ing on the specifics of the graph database implementation.

Apache TinkerPop calls these different approaches strategies and has developed sev-
eral of these as part of TinkerPop. When a GraphTraversalSource is created, two
things happen:

 It’s associated with a specific instance of a graph database.
 It sets up a collection of strategies optimized for finding data within the asso-

ciated graph.

For the second part, by default, the GraphTraversalSource applies a standard set
of strategies. There’s a lot more that could be said about strategies, but that mate-
rial is beyond the scope of this book (see http://mng.bz/DzN9 for details). All that’s
important to understand is that each vendor provides their own strategies, which allow
them to optimize how you traverse through the graphs in their implementations.

https://shortener.manning.com/DzN9

151Retrieving data
Now that we can communicate with our database, let’s start running some traversals
on our DiningByFriends social network graph. Before we do that, however, here’s one
last tip about the GraphTraversalSource: setting it up is an expensive process in
much the same way as creating an ODBC/JDBC connection to a database. Therefore,
the best practice is to create one GraphTraversalSource object and reuse it for each
traversal for the lifespan of the application.

6.3 Retrieving data
Now that we’re set up, it’s time to write Java code to traverse the graph. In many devel-
opment scenarios, developing traversals and adding these to an application would be
done simultaneously with the traversal building. However, to ease the learning pro-
cess, we decided to separate these into three steps to break down the process into its
component parts: data modeling (done in chapter 2), traversal writing (done in chap-
ters 3–5), and now application development.

6.3.1 Retrieving a vertex

As we did in chapter 3, let’s start with the least complicated traversal, which is retriev-
ing a single vertex. Because you’re already old pros at building this type of traversal,
using this as a starting place allows us to focus on demonstrating the aspects unique to
doing this in code; namely, how to traverse our graph from code and how to process
the data we receive from our graph. To begin, in order to find Ted in our application,
we need to take the following steps:

1 Connect to our database.
2 Create our GraphTraversalSource.

General implementation process
Although the focus in this chapter is implementing the Gremlin traversals in Java
code, this requires some basic plumbing for each traversal. Here, we briefly outline
the changes needed in the implementation of each feature of the application; then
we cover these in detail with the first example. After that, we only focus on the Grem-
lin implementations for the remaining cases in the chapter because these details are
basic application development concerns and not specific to working with graph data-
bases. Each feature implementation requires the following set of changes:

 Add a menu entry in showMenu().
 Insert a switch case in displayMenu().
 Add a method to make the graph traversal and return the results.

If you’re using the skeleton version of the code, then you need to develop the relevant
portions of the code as we move through this chapter. If you’re using the commented
version of the code for this chapter, you need to uncomment the relevant portions as
we work through this chapter. And finally, if you’re using the completed version of the
code, then everything exists, so you only need to follow along. Now that we know our
general approach, let's work through our examples.

152 CHAPTER 6 Developing an application
3 Run our traversal to find Ted.
4 Process the results.

Luckily for us, we accomplished the first two steps in the last section. We already have
code that connects to our database and creates our GraphTraversalSource, so the
next question is how we run our traversal to find Ted. Fortunately, we already know
how to write the traversal:

g.V().has('person', 'first_name', 'Ted').valueMap()

But how do we go about actually running this from our Java code? If we were to write
this for a relational database application, our code would look like this:

Statement stmt = conn.createStatement();
ResultSet rs = stmt.executeQuery("SELECT * FROM person WHERE first_name='Ted'");
while(rs.next()) {
 //Process results
}

How does this look like for a graph-backed application? Actually, running this tra-
versal in code closely resembles the Gremlin statement. The Java equivalent of the
traversal is

//This returns a list of the properties
List properties = g.V().
 has("person", "first_name", name).
 valueMap().toList();

That’s right; just a single line of Java replaces the entire code block for a relational
database application. Our Java equivalent not only performs the traversal, but it also
returns our results. In this case, the result is a list of objects, each containing all of the
key-value pairs of each property. That’s surprising, isn’t it? It’s probably the first time
in this entire book that doing something with a graph database is less work and more
straightforward than its relational counterpart. Comparing the two code examples, we
notice two major differences:

 The traversal is built with Java functions instead of strings.
 The traversal ends with a toList() step instead of a ResultSet.

That’s right! We built our traversal using Java functions from the TinkerPop driver.
This is instead of manipulating strings and submitting the strings as is common with
an SQL query in JDBC or ODBC. This use of functions instead of strings is a feature
unique to Gremlin and is known as the Gremlin Language Variant (GLV). For more
details, see http://mng.bz/nz2v.

NOTE The next section discusses the GLVs that are a Gremlin-specific con-
struct. This construct does not have a comparable alternative in other query
languages such as Cypher. If you are not using a TinkerPop-enabled database,
feel free to skip over this section if this concept does not apply to your database.

https://shortener.manning.com/nz2v

153Retrieving data
6.3.2 Using Gremlin language variants (GLVs)

A GLV is a TinkerPop-only feature that provides language-specific implementations of
the TinkerPop interfaces. Gremlin was built to be embedded into multiple program-
ming languages and uses the constructs of that language to represent the traversal.
This allows the user to compose a traversal by using functions rather than string
manipulations as is standard in other graph and relational databases. The fact that
GLVs are language-specific means that we can leverage our IDE’s code-completion
functionality, as well as gain the ability to have typed objects both as part of our tra-
versals and in the results.

 If you’re familiar with .NET, GLV seems similar to the LINQ (Language Integrated
Query) component that’s prevalent in that ecosystem. At the time of this writing,
there are GLVs for Java, Groovy, JavaScript, Python, and .NET. In practical terms, this
means that our traversals in our graph application are a series of functions strung
together instead of the all-too-familiar paradigm of concatenating strings to build an
SQL query.

 Note that it is possible to take the string concatenation approach with Gremlin.
Instead of establishing our own GraphTraversalSource, we simply create a string of the
traversal and use a client object to submit it to the cluster, as in the following example:

Cluster cluster = Cluster.open();
Client client = cluster.connect();
ResultSet results = client.submit("g.V().hasLabel('person')");

This approach goes by several names: string submission, Groovy script, or script sub-
mission. It can be parameterized, and the submit()method is overloaded to handle
various request options. However, this approach is discouraged for several reasons:

 Serializing and deserializing of strings incurs additional overhead, which can be
significant, which is why prepared statements are recommended for use in SQL.

 The use of string concatenation opens your code up to SQL injection (“Grem-
lin injection?”) types of attacks, unless there’s a consistent use of parameteriza-
tion. We all know what havoc little Bobby Tables or his cousin Jimmy G dot V
Drop Iterate can wreak with his last name’s legal spelling of ; g.V().drop()
.iterate().(This is a little joke based on the ideas of the XKCD comic about
Bobby Tables: https://xkcd.com/327/.) This code deletes all the data in the
graph!

 There’s no ability to use the code validation and completion capabilities of
modern IDEs.

 ResultSet results must still be coerced into a type of object, but with GLVs, the
response is automatically strongly typed.

We find that using a GLV provides significant advantages that greatly simplify the
development process. It does require that we translate each of the traversals we write
to be handled in the programming language of choice, such as Gremlin Console, for

https://xkcd.com/327/

154 CHAPTER 6 Developing an application
example. This translation is the most simple with Java because it usually means adding
a terminal step like next() or toList() and then handling the strongly-typed response
appropriately.

 We believe that the advantages of using GLV outweigh the additional work required
to translate the strings to a native language. Additionally, the future of support for
string-based traversals in TinkerPop is unclear at this time. Because of this, we strongly
encourage you to use GLV-style traversals whenever possible. However, at the time of
writing this book, not all TinkerPop-enabled databases support GLV-based traversals.
Some only support string-based ones, which is why we provide an example for that
approach as well.

6.3.3 Adding terminal steps

Returning back to the other difference from our example in section 6.3.1, in the
application implementation, we added the toList() step. This step is another of the
terminal steps we discussed in chapter 4.

NOTE When writing traversals in an application, we must end our traversal
with a terminal step (http://mng.bz/v9ex). We can’t emphasize this require-
ment enough. Gremlin is a lazily-evaluated language, so if you don’t end your
traversal with a terminal step, the traversal won’t return a result.

When we use Gremlin Console, it automatically adds terminal steps to force the evalu-
ation. When constructing an application, however, the impetus is on us to add termi-
nal steps. If we don’t, we get a GraphTraversal object, which isn’t helpful when we
want our data.

IMPORTANT Forgetting to force the evaluation of a traversal is one of the
most common problems we encounter when debugging applications. This
oversight bites even the most experienced of us from time to time.

This "always take a GraphTraversal as input, always return a GraphTraversal as out-
put” feature of Gremlin steps allows for great flexibility with the composition of com-
plex statements. However, it does require that we take the extra step to tell it we’re
done and want our results. For example, the following two code snippets perform the
same steps and produce the same outcome:

return g.V().count().next();

and

GraphTraversal t = g.V();
t = t.count();
return (Long)t.next();

In the second snippet, the first line creates a GraphTraversal, called t, and defines it
with the vertex step, V(). Then t is reassigned to itself, followed by a count() step.

https://shortener.manning.com/v9ex

155Retrieving data
Finally, the code returns the result, iterated with the next() step, which is coerced to a
Long value.

 This ability to chain together various GraphTraversal objects with multiple state-
ments can be useful. We could utilize this approach to include a filter step under cer-
tain conditions in the middle of a Gremlin traversal. But we find it’s more natural to
handle certain types of branching and flow control as part of Java logic to compose a
simple traversal for a complex use case than it is to write the corresponding Gremlin
to handle each possible permutation required by our application. We make this judge-
ment call regularly with relational databases as well, choosing to write some business
logic in the application and maybe other logic with SQL, depending on the specific
use-case requirements.

 There are several other terminal steps to be aware of as these provide convenient
mechanisms for returning data from your traversal in easily consumable ways. Some of
the other terminal steps include

 hasNext()—Returns a boolean value: true if there are available results, false
if there are no results.

 tryNext()—A convenience method that is a combination of the hasNext()
and next() steps to execute the traversal if there are available results. It returns
a Java Optional and is only available in JVM languages like Java and Groovy.

 toList()—Returns the results of the traversal as a Java List.
 toSet()—Returns the results of the traversal as a Java Set.

NOTE Not all of these terminal steps are available in the non-Java GLV.

6.3.4 Creating the Java method in our application

Now that we have looked at the pieces required to create a Java method for our tra-
versals, let’s see what it takes to create a method in our application to find Ted. To
demonstrate this method creation process, we create a method named getPerson(),
which finds a vertex by a person’s first name (e.g., Ted). This method needs to take
the following steps:

1 Pass in our GraphTraversalSource
2 Get the name of the person we want to find (Ted)
3 Run our traversal to find Ted
4 Process the results

As we can see from these steps, to create this Java method, we want to pass in the
GraphTraversalSource because we want to reuse it for the lifetime of the applica-
tion. We then require some necessary boilerplate code to read the name of the per-
son we want to find from the command line, because it won’t always be Ted. We then
take this input and run our traversal to give us the list of properties. Finally, we
return the properties to the calling method (in your code sample, this is the get-
Person() method):

156 CHAPTER 6 Developing an application

Boil

r
p

public static String getPerson(GraphTraversalSource g) {
 Scanner keyboard = new Scanner(System.in);
 System.out.println("Enter the first name for the person to find:");
 String name = keyboard.nextLine();

 //This returns a list of the properties
 List properties = g.V().
 has("person", "first_name", name).
 valueMap("first_name").toList();

 return properties.toString();
}

NOTE While we went into detail on how we implemented this method for
this example, we won’t do so for each of the additional methods we add. For
each method, we point out the name and call attention to any critical por-
tions that are relevant, but we leave it as an exercise for the reader to take a
look at any details of the boilerplate code one might be curious about.

Now that our application can retrieve data from our graph database, let’s revisit our
traversals from the last chapter and see how we add, modify, and delete vertices and
edges from the graph.

6.4 Adding, modifying, and deleting data
Among the most common tasks applications perform are adding, updating, and delet-
ing data. In chapter 4, we went through the process of creating these traversals, and in
this section, we walk through each option and show some of the unique aspects of
how to process these within a graph application.

6.4.1 Adding vertices

In chapter 4, we went through how to mutate our graph to add data. Let’s look at add-
ing a new vertex to our graph. Remembering back, we wrote a traversal to add a per-
son to our graph:

g.addV('person').property('first_name', 'Dave')

Now, how do we go about taking that traversal and turning it into code? In the last sec-
tion, we showed how simple it was to use the GLV in our code compared to the JDBC
approach or to a Groovy script. What we didn’t discuss was precisely how we translated
the Gremlin script we used in the Gremlin Console to the Java code, so we’re going to
rectify that now.

TRANSLATING YOUR GREMLIN TRAVERSAL INTO THE GLV
To translate the string-based traversal to a GLV-type traversal, we take each step in the
string traversal and replace it with an identically named Java method. Yes, seriously,
that’s it! It’s a bit anticlimactic, isn’t it? The good news is we really aren’t kidding.

Passes in our
GraphTraversalSource

erplate
code to
ead the
erson’s

name
Runs our traversal
and returns a list

Returns the list of
first_name properties

157Adding, modifying, and deleting data
Because Gremlin is built on the JVM, the syntax is the same, at least in Java. The other
piece that we do need to add is the common imports (http://mng.bz/4BMB). While
we haven’t needed to include any of these so far, the imports are required to write
more complex traversals.

 We know we said that it’s as easy as copying and pasting our script to translate from
the Gremlin Console to an application, right? Well, in Java, that’s also the case, but the
same isn’t always true for other languages.

 Each GLV is built to provide a native experience in the target language. This native
experience also means that we inherit the native casing, reserved words, and other
features of each language. So, for example, if we build our application in .NET, we
need to capitalize the first letter of each method instead of using camel case (e.g.,
HasNext(), not hasNext()). Or, if we use Python, we must postfix an underscore (_)
to functions such as and(), as(), from(), and so forth because these are reserved
words in Python (e.g., from_()).

MOVING FROM GLV TO JAVA

In our opinion, the ability to quickly build and maintain our traversals consistently
with native language standards far outweighs the minor inconsistencies across target
languages. Using this methodology, let’s take the Gremlin traversal we used in the
console:

g.addV('person').property('first_name', 'Dave')

Translating that into a Java statement, this becomes

g.addV("person").property("first_name", name).next();

A keen observer will notice that we changed from single quotes to double quotes.
Gremlin, owing to its Groovy roots, accepts either double or single quotes for strings.
But we’re using the Java GLV, and Java has stronger opinions, leading to the double
quotes for strings.

 Well, that was pretty easy, but what does our statement return? Remembering back
to when we ran this in the Gremlin Console, we get a reference to a vertex:

g.addV('person').property('first_name', 'Dave')
==>v[13]

How’s this vertex reference returned in Java? It’s returned as a Vertex object. Inside
the TinkerPop framework, there are objects to represent many of the graph-specific
structures (e.g., Vertex, Edge, Path, etc.) that we’ve discussed so far. This inheritance
is one of the main benefits of using GLVs: results aren’t generic objects that require a
lot of additional coding to handle correctly. As a Vertex object, our vertex comes with
several built-in properties and methods that simplify common operations. Putting this
all together, we get the following method (for those following along in the code, it’s
called addPerson):

https://shortener.manning.com/4BMB

158 CHAPTER 6 Developing an application
public static String addPerson(GraphTraversalSource g){
 Scanner keyboard = new Scanner(System.in);
 System.out.println("Enter the name for the person to add:");
 String name = keyboard.nextLine();

 //returns a Vertex type
 Vertex newVertex = g.addV("person").
 property("first_name", name).next();

 return newVertex.toString();
}

In our case, we decided to use a toString() method to return the value. If this were a
real application, we’d likely want to massage our Vertex object result in an appropri-
ate form to return our customers. But because we have a strongly-typed object to work
with, we’re in familiar territory for Java developers.

6.4.2 Adding edges

Now that we know how to add vertices to our graph application, let’s look at how to
add edges. Looking back to section 4.1, we wrote this traversal to add edges:

g.addE('friends').
 from(
 V().has('person', 'first_name', 'Dave')
).
 to(
 V().has('person', 'first_name', 'Josh')
)

Let’s take this traversal and translate it into Java code using the process discussed in
the last section. Doing that, we get this Java code (assuming that from and to names
are read into the variables; for example, fromName and toName):

Edge newEdge = g.addE("friends").
 from(V().has("person", "first_name", fromName)).
 to(V().has("person", "first_name", toName)).
 next();

This code is great, except that our editor is full of red squiggly lines, telling us some-
thing is wrong. When we hover over the lines, we see an error message that says some-
thing like “Cannot resolve method V().” Wait. That doesn’t make sense. We used V()
earlier in this traversal. So how is it not a valid method?

 OK, you caught us; we didn’t exactly lie when we said that translating from Grem-
lin Console to Java code was as easy as just replacing the string value with the identi-
cal Java method, but we did omit a few details. One of those details is that in some
cases, such as this one, we need to add some code in as well. In this case, we must
add a double underscore in front of the mid-traversal V()’s so that our Java code
now looks like this:

Adds a vertex and returns
a strongly-typed object

159Adding, modifying, and deleting data
Edge newEdge = g.addE("friends").
 from(__.V().has("person", "first_name", fromName)).
 to(__.V().has("person", "first_name", toName)).
 next();

Whew, that removes those red squiggles! But the more obvious question is, why are the
squiggles gone?

Now let’s return to our construction of addFriendsEdge() method. To do that, we put
this all together and take a look at how we add a friends edge in our application:

public static String addFriendsEdge(GraphTraversalSource g){
 Scanner keyboard = new Scanner(System.in);
 System.out.println("Enter the name for the person at the edge start:");
 String fromName = keyboard.nextLine();
 System.out.println("Enter the name for the person at the edge end:");
 String toName = keyboard.nextLine();

 //This returns an Edge type
 Edge newEdge = g.addE("friends").
 from(
 __.V().has("person", "first_name", fromName)
).
 to(
 __.V().has("person", "first_name", toName)
).
 next();

 return newEdge.toString();
}

The anonymous traversal
The double underscore element is called an anonymous traversal. It’s a feature of the
Gremlin language and, as far as we know, doesn’t have a direct counterpart in other
graph languages. It’s like an anonymous function in languages such as Java or Java-
Script. We use an anonymous traversal when we need to start another traversal
within an existing one.

There are two common places where we use an anonymous traversal. The first is in
the example in this section. The to() step is a modulator that can take either a string
(usually referring to a previous as() step) or a traversal itself. In our case, we start
a new traversal with the to() step and cannot reuse the g, so we instead start with
the anonymous traversal.

The other case where we use the anonymous traversal is when a traverser must start
with a step that is also a keyword in Groovy, such as the as(), in(), and not()
steps. We don’t have any examples like this at present, but we’ll note the need for
the anonymous traversal when we encounter these.

Uses an anonymous
traversal for fromName

Uses an anonymous
traversal for toName

160 CHAPTER 6 Developing an application
In the code, we introduce a new object, the Edge object. As we’ve said throughout, edges
are first-class citizens in graph databases, so our addE() step returns an Edge object,
just as in the last section, the addV() step returned a Vertex object.

6.4.3 Updating properties

Our next task, updating a property on a vertex, is a good opportunity for you to try to
translate one of these traversals on your own. In this case, let’s take the traversal we
created to update a person’s name and translate it into Java.

EXERCISE Translate the following Gremlin traversal into the appropriate Java
code:

g.V().has('person', 'first_name', 'Dav').property('first_name', 'Dave')

Trust us. We promise you there are no hidden surprises. Go ahead, create an update-
Person method and debug it like you would any other method. Take your time and
work through it. We’ll wait

 Great, you’re back! Now that you’ve successfully written your Java function, com-
pare it to our version:

public static String updatePerson(GraphTraversalSource g){
 Scanner keyboard = new Scanner(System.in);
 System.out.println("Enter the name for the person to update:");
 String name = keyboard.nextLine();
 System.out.println("Enter the new name for the person:");
 String newName = keyboard.nextLine();

 //This returns a Vertex type
 Vertex vertex = g.V().
 has("person", "first_name", name).
 property("first_name", newName).
 next();

 return vertex.toString();
}

How did your solution compare to ours? Hopefully, it’s similar. But just like everything
else with coding, there’s more than one correct way to solve a problem. In the end, as
long as we both get it working correctly, we’re both right!

6.4.4 Deleting elements

So far, we’ve dealt with how to perform the addition of vertices and edges within our
application, and you were adventurous enough to create a method to update proper-
ties by yourself! We worked through three of the four everyday mutation actions. Now
it’s time to introduce the last one—deleting elements from our graph.

 Let’s say that in addition to finding, adding, and updating people, our application
also needs to remove people. This means that we want to delete a person vertex from

Finds a person
by first_name

Sets their newName

Remembers the
terminal step

161Adding, modifying, and deleting data
our graph by first_name. Applying what we learned in chapter 4, we come up with a
Gremlin traversal like this:

g.V().has('person', 'first_name', 'Dave').drop().iterate()

Translating that traversal gives us the following Java code:

g.V().has("person","first_name", "Dave").drop().iterate()

Running this in our application, we get the result null. As we discussed in chapter 4,
this is because drop() steps in Gremlin don’t return a value. However, a user will likely
want to receive some sort of feedback from the application—probably something that
tells them the delete operation completed and made the change to the graph. While
this seems like a typical pattern for an application, it requires a little extra work to
accomplish.

 So how do we go about returning the count from a step that does not provide it to
us? This is an excellent question, and the answer ends up being more complicated
than you might expect. To return the count of deleted vertices, we need to discuss a
new concept: side effects. For that, we need a few additional steps.

Side-effect steps are different. These take in a GraphTraversal, perform some set of
operation based on that input, and then return the input as the output. The practi-
cal result is that no matter what occurs inside the side effect, the original input data
is output precisely as it was input. We can take an action on data without altering the
original inputs. We’re sure this is a bit confusing, so let’s look at a specific example

TinkerPop’s official documentation and picking Gremlin steps
We approach this side-effect example as we commonly see others do who are new
to Gremlin. This approach may even bear a striking resemblance to the path we took
the first time we had to build this type of functionality.

The starting place for figuring out all of this is, of course, this book. But because,
sadly, not everyone has a copy of this book (we certainly didn’t have a copy when we
started), new Gremlinistas turn to the Apache TinkerPop reference web site, http://
tinkerpop.apache.org/docs/current/reference/.

TinkerPop’s reference site is excellent because it’s the authoritative source of
documentation and is replete with examples for each Gremlin step. However, we
find that the site is sometimes confusing, as it starts with a fanciful summary of
TinkerPop's history. This can leave you wondering if you’re in the right place for
technical documentation. It also organizes the steps in alphabetical order. This
order is perfect for a reference, but it’s all too easy to find a step that “appears”
to do something like what’s needed and to miss a step that’s more appropriate
for our needs.

http://tinkerpop.apache.org/docs/current/reference/
http://tinkerpop.apache.org/docs/current/reference/
http://tinkerpop.apache.org/docs/current/reference/

162 CHAPTER 6 Developing an application

R
the
using side effects to get a count of deleted vertices. We’ll look at a few steps that
appear to be good candidates for counting the number of vertices dropped:

 sideEffect(traversal)—Processes the provided traversal as an additional
process without effecting the results passed to the next step.

 store(alias)—Stores the results of the traversal collection specified by the
alias.

 cap(alias)—Emits the results collection specified by the alias.

Our first attempt to get the count of dropped vertices likely involves using the store()
step to obtain the count of vertices removed:

Object vertexCount = g.V().
 has("person","first_name", name).
 sideEffect(__.count().store("x")).
 drop().iterate().
 cap("x").next();

When we run this code we get an error! The traversal strategies are complete, and the
traversal can no longer be modulated. Why the error? What this error is stating is that
we try to call a step (in this case, cap()) after the traversal has already hit a terminal
step, iterate(). There are two key aspects to terminal steps we haven’t discussed yet:

 A traversal can only have one terminal step.
 No further steps can be called after a terminal step.

Looking at our traversal, we see that our traversal contains two terminal steps: iterate()
and next(). Our traversal also processes several steps (cap("x").next()) after our
iterate() step. We violated both of these rules! Because this doesn’t work, let’s take a
moment and consider how to approach this differently.

 Think about what we know about graph traversals and see if you can think of a dif-
ferent approach to this problem. Were you able to come up with some ideas? What do
you think would happen if we switched the steps in our traversal to include the drop()
step in the sideEffect() step and the count() step in the main traversal?

Long vertexCount = g.V().
 has("person","first_name", name).
 sideEffect(__.drop()).
 count().
 next();

 return vertexCount.toString();

Try it out and see if this code works. Well, the good news is that it works; the bad news
is that this is a strange way to make this work. If you’re confused as to why this second
one works when the first one doesn’t, don’t despair. This confusion is something that

Finds a person by first_name
Stores the number
of people with this
name as "x"

Deletes everyone
with this name

Returns the count stored in "x"

Finds a person by
first_name

Deletes everyone
with this first_name

eturns
 count

Runs a
terminal step

163Translating our list and path traversals
happens in Gremlin from time to time as you’re learning to think about these prob-
lems from a traversal perspective. Let’s take a moment to remember what we’re doing
in terms of traversing our graph:

1 Find all the person vertices with a given name.
2 For each of those vertices, drop() it from our graph.
3 For all of the original vertices, return the count().

When we think about what this traversal is doing, we can see why this new approach
works. Because we are now using a side effect to perform the deletion, we are able to
retrieve the original count. Coming from a relational background, though, it seems
confusing and backward.

 When you run into this sort of frustration or confusion, we recommend taking a step
back and thinking about what you’re trying to accomplish and how you would approach
this problem by traversing through the graph structure. We find that this approach
frequently allows us to break our learned bias for handling issues from the relational
perspective.

6.5 Translating our list and path traversals
Whew, that took some work! We now have a framework and some of the basic func-
tionality of our social network. Now let’s circle back to the requirements of the Dining-
ByFriends social network from chapter 2 and write some methods to retrieve this data.
As you may recall, the social network use case for DiningByFriends had three ques-
tions that need to be answered:

 Who are my friends?
 Who are the friends of my friends?
 How is person X connected to person Y?

In this section, let’s take the traversals we previously wrote and turn these into meth-
ods in our application. We aren’t going to go into this in depth, however, but we’ll
highlight a few key items as we move through each question.

 When we have a series of traversals to implement, we like to see if there’s a natural
order in which to approach those, building on one another in progression and
enabling some copy and pasting of the code. Looking at these questions, it seems like
the second question—“Who are the friends of my friends?”—is likely an extension of
“Who are my friends?” As a result, it looks like implementing “Who are my friends?”
would be an excellent place to begin.

6.5.1 Getting a list of results

We start by answering the question, “Who are my friends?” Let’s review our process of
building a method in our application:

1 Write our traversal.
2 Translate our traversal into the Java equivalent.
3 Process the results.

164 CHAPTER 6 Developing an application
Back in chapter 3, we wrote the traversal to retrieve all the friends of Ted:

g.V().has('person', 'first_name', 'Ted').
 out('friends').dedup().
 values('first_name').next()

Using this traversal as a starting point, we obtain a Java equivalent of

List<Object> friends = g.V().has("person", "first_name", name).
 out("friends").dedup().
 values("first_name").
 toList();

Happily, this completes the first two steps, leaving us with processing the results. As we
see, the traversal only requires changing the terminal step to toList() instead of
next() for our traversal to work in the application. One question remains: Why are we
are returning a List<Object> instead of some stronger typed class?

 We return a more ambiguous class because, unlike a SQL query, a graph traversal
isn’t required to return properties of the same data type. This ability to return differ-
ent data types provides quite a bit of flexibility for the traversal, but has the downside
of ambiguity in the nature of data returned. Taking this traversal and combining what
we’ve learned about how to run traversals and return results in Java yields this get-
Friends() method:

public static String getFriends(GraphTraversalSource g){
 Scanner keyboard = new Scanner(System.in);
 System.out.println("Enter the name for the person " +
 "to find the friends of:");
 String name = keyboard.nextLine();

 //Returns a list of objects representing
 //the friend person vertex properties
 List<Object> friends = g.V().
 has("person", "first_name", name).
 out("friends").dedup().
 values("first_name").
 toList();

 return StringUtils.join(friends, System.lineSeparator());
}

6.5.2 Implementing recursive traversals

You’ve learned a lot so far in this chapter, so we think it’s time for you, once again, to
practice what you’ve learned and tackle another exercise on your own. In this case,
let’s extend the getFriends() method we built in the last section to answer, “Who are
the friends of my friends?” To solve this, you may want to refer to the traversal we
wrote to answer this question for Ted:

Expects a list
of objects

Returns a list from
our traversal

165Translating our list and path traversals
g.V().has('person', 'first_name', 'Ted').
 repeat(
 out('friends')
).times(2).dedup().values().next()

EXERCISE Create a getFriendsOfFriends() method that returns the answer
for, “Who are the friends of my friends?” How does your code look? Does it
return the expected results?

Let’s look at our answer:

public static String getFriendsOfFriends(GraphTraversalSource g){
 Scanner keyboard = new Scanner(System.in);
 System.out.println("Enter the name for the person " +
 "to find the friends of:");
 String name = keyboard.nextLine();

 // Returns a list of objects representing the vertex properties
 // of the friend of a friend person
 List<Object> foff = g.V().
 has("person", "first_name", name).
 repeat(
 out("friends")
).times(2).dedup().
 values("first_name").
 toList();

 return StringUtils.join(foff, System.lineSeparator());
}

If you came up with something similar, then it’s also likely that your IDE prompted
you to add an import for the out() method:

import static org.apache.tinkerpop.gremlin.process.traversal.dsl.graph.__.out;

This is because the out() method requires a starting traversal source. If we didn’t
want to include the import statement, we‘d use an anonymous traversal like this:

 List<Object> foff = g.V().has("person", "first_name", name).
 repeat(
 __.out("friends")
).times(2).dedup().
 values("first_name").
 toList();

The choice of which one you use is up to you. Both provide the expected results.

Expects a list
of objects

This requires an
additional import.

Returns only the
first_name property

Returns
a list from

our traversal

Requires an anonymous
traversal when not adding
a static import for out()

166 CHAPTER 6 Developing an application
6.5.3 Implementing paths

For the final section of this chapter, we look at how to implement the last question of
our social network use case, “How is person X connected to person Y?” To do that, this
section demonstrates the construction of the findPathBetweenPeople() method.
Let’s start by taking a look at where we ended with this traversal in chapter 4:

g.V().has('person', 'first_name', 'Ted').
 until(has('person', 'first_name', 'Denise')).
 repeat(
 both('friends').simplePath()
).path().next()

Using what we learned, we can translate this into the following Java code:

List<Path> friends = g.V().has("person", "first_name", fromName).
 until(has("person", "first_name", toName)).
 repeat(
 both("friends").simplePath()
).path().toList();

This code looks similar to what we’ve done to date, with the exception that we return a
list of Path objects instead of the more generic Object type used previously. We could
also point out that we use both() instead of out() like we did for getFriends() and
get-FriendsOfFriends(). This is a simple illustration of how we can use the direction
of the edges in one context (friend-finding) and ignore it in another (pathfinding
between two people), all with the same data set within the same set of use cases.

 Remember, path() returns not just a single vertex or edge, but all the intermediate
steps. Because we know what the return type from our traversal is, we can use
List<Path> instead of the more generic List<Object>. The Path class is a particular
class within the TinkerPop Java driver that contains an ordered list of objects; each
object represents an individual vertex or edge in the path. With this understood, we
finalize our method to get one that returns the paths between people as shown here:

public static String findPathBetweenPeople(GraphTraversalSource g){
 Scanner keyboard = new Scanner(System.in);
 System.out.println("Enter the name for the person " +
 "to start the edge at:");
 String fromName = keyboard.nextLine();
 System.out.println("Enter the name for the person " +
 "to end the edge at:");
 String toName = keyboard.nextLine();

 // Returns a List of Path objects which represent
 // the path between the two person vertices
 List<Path> friends = g.V().
 has("person", "first_name", fromName).
 until(has("person", "first_name", toName)).
 repeat(

Expects a
list of paths

167Summary

Ret
a

from
trave
 both("friends").simplePath()
).path().
toList();

 return StringUtils.join(friends, System.lineSeparator());
}

Congratulations! You’ve reached a milestone: you now have a fully functioning console-
based application for the DiningByFriends social networking use case, all backed by a
graph database. You know how to add, edit, and remove users and edges, as well as
how to answer the three requirements for the social networking part of the app.

 In the next chapter, we’ll start adding more features to our model to handle both
our restaurant recommendation and the personalization of our recommendation
results. Along the way, you’ll learn how to manage some of the more complicated
graph data modeling scenarios that we didn’t cover previously.

Summary
 Setting up a graph-backed application is similar to any data-backed application

and entails selecting our tools, setting up our project, obtaining the correct
driver, and preparing our database server.

 Connecting to a graph database involves configuring the appropriate network
client and setting the GraphTraversalSource for TinkerPop databases only.

 Apache TinkerPop provides several Gremlin Language Variants (GLVs). These
enable us to translate our previously written Gremlin traversals into native lan-
guage functional calls. This means that we are able to use functions in Java, .NET,
Python, or JavaScript to write our traversals instead of using string manipulations.

 Using GLV leverages the IDE’s code completion functionality and also utilizes
strongly-typed results.

 Terminal steps are required when writing application code. Unlike Gremlin
Console, application drivers do not automatically add these.

 Translating traversals for use in our application is usually as easy as replacing
each Gremlin step with a method call of the same name.

 Solving problems in a graph requires a mind shift to approach these from a per-
spective of how to traverse the graph to answer the problems.

Only finds
simple pathsYields the Path

objectsurns
 list
 the
rsal

Part 2

Building on Graph
Databases

In part 2 of this book, we continue our journey into working with connected
data and graph databases. Having become familiar with the basics of graph data
modeling and building graph-backed applications, we’re going to stretch your
new-found skills by tackling two common graph data patterns—known walks and
subgraphs. Along the way, you’ll learn how to construct more complex data
models and traversals.

 As in part 1, we start by creating a data modeling problem to demonstrate
these graph patterns. In chapter 7, we extend our existing data model to intro-
duce the challenge of working with multiple types of vertices and edges. This
new challenge requires us to learn and apply several additional data modeling
concepts to graphs. In chapter 8, we introduce the known-walk traversing pat-
tern, which we apply to construct the recommendation functionality of our
graph-backed DiningByFriends application. We then wrap up this part in chap-
ter 9, where we introduce the concept of subgraphs as we address the personal-
ization use case for DiningByFriends.

Advanced data
modeling techniques
So far, we’ve walked through the entire process of building a simple graph applica-
tion. We went from data modeling to traversal construction to coding a Java appli-
cation for the recursive and pathfinding traversals that we used in our social
network. Although the model for our social network was simplistic, it allowed us to
demonstrate the patterns and processes required to build graph-backed applica-
tions, while showing some of the powerful tools, such as recursive and pathfinding
traversals, that graphs bring to the table.

 These basic modeling steps provided us with a strong foundation and worked
well on the relatively simple social network data model. But as the complexity of
our data model increases, these basic steps need to be combined with additional
techniques in order to create a logical data model capable of handling any scale of

This chapter covers
 Applying the data modeling process to more

complex use cases

 Improving performance by using generic labels

 Denormalizing data for more efficient graph
traversals

 Moving properties to edges to simplify traversals
171

172 CHAPTER 7 Advanced data modeling techniques
data. Most real-life applications, like recommendation engines or personalization appli-
cations, are more complicated than the one-vertex, one-edge data model required by
our social network. In this chapter, we’ll construct the data models for the recommen-
dation and personalization use cases of DiningByFriends to explore three advanced
data modeling techniques frequently used in more complex models:

 Increasing performance with generic data labels
 Simplifying traversals by moving properties to edges
 Creating more efficient traversals with data denormalization

We’ll show you not only how to apply each of these techniques, but when to apply
them and how they help to improve your model. We’ll then demonstrate these tech-
niques by applying them to the process of extending our existing model with the verti-
ces, edges, and properties required for our restaurant recommendation engine.
Finally, we’ll wrap up this chapter with a challenge, and ask you to take on the task of
extending the data model for the personalization use case.

 By the end of this chapter, we’ll complete the working data model for DiningBy-
Friends, and you’ll learn additional skills for building better, more scalable data mod-
els. However, before we jump into the recommendations and personalization use
cases, let’s take a moment to review the current state of our conceptual and logical
data models.

7.1 Reviewing our current data models
Our focus this chapter is on demonstrating advanced data modeling techniques, but
we won’t start from scratch. We start with our current data model as defined in chap-
ter 2, and then extend it for the recommendation and personalization use cases. The
logical place to begin is to take stock of our current data model before making
changes. Remember, we built this data model with a four-step process:

1 Defining the problem
2 Creating the conceptual data model
3 Creating the logical data model
4 Testing the model

Looking back to the work we did in chapter 2, we see that we completed the first two
steps for the social network use case and also started on the recommendation engine and
personalization use cases. This resulted in the conceptual model shown in figure 7.1.

 We also completed the third step, creating the logical data model, but only for our
social network use case. Figure 7.2 shows the resulting logical data model thus far.

 This logical data model was the basis for all of the traversals written in chapters 3
through 5 and the implementation we completed in chapter 6. We got a lot of code
out of that one little picture, and we hope you appreciate how helpful it is to think
through the essential design points up front. However, that is as far as this data model
can take us by itself. In order to model more complex scenarios, we’ll need to extend

173Extending our logical data model
this logical model to include the different entities required for the recommendation
and personalization use cases.

7.2 Extending our logical data model
A model with one vertex and one edge isn’t sufficient for complex work. So the ques-
tion is how we go about extending this model. To remind you, the process of turning a
conceptual model into a logical model involves four operations:

1 Translating entities to vertices
2 Translating relationships to edges
3 Assigning properties to those vertices and edges
4 Testing the model

These basic modeling steps provide a strong foundation and work well on the rela-
tively simple social network data model. But as the complexity of our data model
increases, these basic steps need to be combined with additional techniques to create
a logical data model designed to handle any scale of data. Let’s begin extending our
data model by reviewing our recommendation engine use case requirements.

 If you remember, the recommendation engine provides restaurant recommen-
dations based on reviews, location, and cuisine type. For the initial version of the

Restaurant Person

Cuisine Review

Are About Writes Rates

Friends

Serves

Figure 7.1 Conceptual data model
showing the entities (boxes) and
relationships (arrows) for the
DiningByFriends app

friends

person

person

person_id

first_name

last_name

Figure 7.2 Logical data model for
the DiningByFriends social network
from chapter 2

174 CHAPTER 7 Advanced data modeling techniques
recommendation engine, the application needs to support answering the following
questions for a user:

 What restaurant near me with a specific cuisine is the highest rated?
 What are the ten highest-rated restaurants near me?
 What are the newest reviews for this restaurant?

Just as we did for our social network in section 2.4, let’s start by identifing the portions
of our conceptual model required for the recommendation engine. Figure 7.3 shows
the entities and relationships for this use case.

While our recommendation engine will focus only on these three questions for its initial
version, the requirements are noticeably more complicated than the social networking
use case. Although our social networking use case also needed to answer three ques-
tions, it only required one entity, Person, and one relationship, Friends, to answer those
questions. For our recommendation use case, we require four entities (Person, Review,
Cuisine, and Restaurant) and three relationships among those (Writes, Are About, and
Serves). This more closely represents our real-life scenario.

 It’s rather rare that any application or use case of an application only traverses a
single entity and relationship. More often than not, we are required to traverse multi-
ple vertices and edges to arrive at the desired result. The pathfinding and recursive
traversals developed for our social network did not require traversing different entity
types, but this is actually quite rare in complex domains. Most common graph pat-
terns rely heavily on the connections between data that involve multiple types of ver-
tex and edge labels. This is true of recursive and pathfinding traversals as well as
another common graph pattern, called a known walk.

 To see how these questions apply in a real scenario, let’s look at each question
for our restaurant recommendation engine. Then we can determine what makes it a
known walk.

PersonRestaurant

Cuisine Review

Are About Writes RatesServes

Friends

Figure 7.3 Conceptual data model
with the relevant portions highlighted
for the recommendation use case of
DiningByFriends

175Extending our logical data model
“What restaurant near me with a specific cuisine is the highest rated?” Do we know the exact
definition of the steps we need to traverse to get from the starting vertex to the ending
vertex? Yes. Looking at our conceptual model, we know we need to use the following
entities:

 Restaurant—Entity being returned
 Review—Contains the rating for this restaurant
 Cuisine—Needed to filter on a specific cuisine

Each of these entities is connected to the others via a single relationship, meaning
that we have a clearly defined path to traverse between these. If there were multiple

Known walk
In graph theory, a walk is a sequence of edges and vertices. If this sounds like the
definition for a path, then you’re correct. A path is a specific type of walk, which
only contains distinct vertices. A known walk is a pattern in graph applications
where we have prior knowledge of the exact series of vertices and edges to traverse
to get our answer.

You might think that this is like the pathfinding algorithms we did for our social net-
work, and you’re correct except for one crucial difference. In pathfinding problems,
we know the series of vertices and edges to traverse, but we do not know the number
of times we must traverse these. For example, in our social network, when we were
trying to find how person X is connected to person Y, we knew that we needed to tra-
verse the friends edge, but we did not know if these were connected or how many
hops it would take to traverse them.

In known-walk problems, on the other hand, we know the series of vertices and edges
to traverse and the number of times we need to traverse them. For example, in our
social network, when we wanted to find the friends-of-friends, we knew that we
needed to traverse the friends edge to the person vertex and then traverse the
friends edge to the person vertex a second time. The fact that we knew both
the path and number of repetitions for that path allowed us to optimize both our data
model and traversal.

Prior knowledge about the depth of the traversal is one of the factors differentiating
between the two patterns, pathfinding and known walks. To decide if a traversal is a
known walk, we use the following two questions:

 Do we know the exact definition of the steps (e.g., entities and relationships)
needed to traverse from the starting vertex to the ending vertex?

 Do we know the number of times we need to traverse these steps to get our
result?

If we are able to answer Yes to both questions, then this traversal is a known walk.
Generally, known walk traversals are preferred over recursive traversals because the
number of steps required to traverse the graph is well known. This often results in
more consistent traversal execution times than in recursive traversals with their
unknown number of iterations.

176 CHAPTER 7 Advanced data modeling techniques
relationships among them, we would need additional criteria to define which of the
relationships to use in the traversals.

 Do we know the number of times we need to traverse between the entities to get
our result? Yes, we know that we need to traverse the Serves and Are About relation-
ships once to retrieve the entities associated with the restaurant. This is unlike our
pathfinding and recursive traversals because we would not know how many times to
traverse some edges until executing the traversal.

 “What are the ten highest-rated restaurants near me?” Are the required entities and rela-
tionships between these entities well defined? Yes. Examining our conceptual model,
we see that answering this question requires the following entities:

 Restaurant—Entity being returned
 Review—Contains the rating for this restaurant

And because Restaurant and Review only contain a single relationship between them,
the path is defined. Continuing with our known-walk assessment, do we know the
number of times we need to traverse between entities to get our result? Yes. For each
Restaurant, we know that this requires one iteration of the Are About relationship to
get the Review that’s needed to calculate the highest rating.

 “What are the newest reviews for this restaurant?” Are the required entities and relation-
ships between these entities well defined? Yes. As with the last question, answering this
requires the following entities:

 Restaurant—Entity being reviewed
 Review—Entity being returned

Restaurant and Review only contain a single relationship between them, so the path is
defined. Do we know the number of times we need to traverse between entities to get
our result? Yes. This question only requires one iteration over the Are About relation-
ship to get the Review entities for a Restaurant.

 As we can see, applying these two selection criteria helps us not only determine
that we have a known walk traversal pattern, but also gives us a jump start on our
data modeling by forcing us to think about the entities and relationships required
to answer each question. Now that we have reviewed the requirements of our rec-
ommendation engine use case, let’s return to the process of creating our logical
data model.

7.3 Translating entities to vertices
Let’s begin extending our logical data model by translating entities in our conceptual
model into vertex labels. Remember that to translate our entities into vertices, we
need to

 Find the entities required in our conceptual data model.
 Create corresponding vertex types in our data model.
 Assign descriptive label names to those vertex types.

177Translating entities to vertices
This time, we ask first that you complete the steps on your own. Then we’ll walk you
through them. (If you need a refresher, refer to section 2.3.1.)

EXERCISE Write down what you think are the appropriate vertex types and
label names for the entities in our system. In the review of our conceptual
data model, we identified four entities: Person, Review, Restaurant, and Cui-
sine. What label did you give to each?

In chapter 2, we stated that it was a best practice to use generic labels for vertices and
edges, but we did not discuss why. Before transitioning to the next step, let’s investi-
gate the reasoning behind this recommendation.

7.3.1 Using generic labels

The primary goal of a label on a vertex or edge is to provide a name for a category of
similar items. As we previously mentioned, it is generally best practice to use more
general terms, such as user or person, instead of specific terms, such as reviewer or
restaurant_patron. When we made this recommendation, we didn’t go into why this
is the case. Let’s examine why we recommend generic over specific label types.

 Generic labels allow us to group related items together, which simplifies both
the model and the writing of traversals by having fewer entity types. This frequently
creates more performant traversals as well. Generic labels also allow us to group
similar entities into the broadest categories, while still being able to differentiate
between them.

 While this sounds easy in concept, the devil is in the details: if we make the label
too generic, such as grouping all entities under a single label—item or entity, for
example—then these labels no longer provide insight about the entity represented. If
we make it too specific, such as a vertex label for each entity, we no longer gain the
advantage that grouping entities provides. What we want to find is the “Goldilocks
Zone,” the perfect balance of labels generic enough to simplify our traversals but spe-
cific enough to provide insight about its represented entity. Now for the million-dollar
question: “How do we decide the right level of specificity for label names?”

LABELING WITH CONTACT TYPES

Let’s walk through an example graph for tracking a person’s contact information and
take a look at what makes an ideal specificity of a label. In this system, we define a
person, an email, a phone, and a fax vertice, illustrated in figure 7.4.

NOTE Code examples are provided in this section to illustrate how data
model decisions impact the code we write. All of the traversals are functional,
but no data initialization is provided, aside from the figures of the example
graphs. We leave it as an exercise for enterprising readers to apply the skills
gained from chapter 4, if they so desire, to create these graphs and try out the
example code.

178 CHAPTER 7 Advanced data modeling techniques
Because categorizing our entities to simplify and optimize our traversals is one of the
major reasons we recommend using generic labels, let’s examine what a few traversals
would look like using this label per entity model:

 What is the phone number for Ted?

g.V().has('person', 'name', 'Ted').
 out('has_phone').
 values('number')

 What are all the contact methods for Ted?

g.V().has('person', 'name', 'Ted').
 union(
 out('has_phone').values('number'),
 out('has_email').values('address'),
 out('has_fax').values('number')
)

 What is all the contact information for people in the system?

g.V().
 union(
 out('has_phone').values('number'),
 out('has_email').values('address'),
 out('has_fax').values('number')
)

To make these traversals work, we introduce a new step here, the union() step:

 union(traversal, traversal, ...)—Processes each traversal separately and
outputs the combined results as a single result set.

It is an oversimplification to say that because a traversal is easier to read that it is also
better-performing; however, this rule of thumb generally applies.

name Ted

person

person

emailfax

address fake@fake.comnumber 555-1213

phone

number 555-1212

has_phone
has_email

has_fax

Figure 7.4 Contact graph showing each entity with a specific vertex label

A single edge
to traverse

A union of three
edge traversals

A union of three
edge traversals

179Translating entities to vertices
NOTE In the context of this chapter, we use the readability of a traversal as a
proxy for the relative performance of that traversal. In chapter 10, we’ll dive
into several other factors affecting traversal performance and how to quantify
them.

Examining our traversals, the first one (“What is the phone number for Ted?”)
appears reasonably concise. It starts by filtering to a single vertex (person) and then
traversing a single edge (has_phone). However, the other two traversals are not as
pretty because these require a union() step to join the results. Though this may seem
reasonably straightforward, the union() step creates some complexity that we can
improve on.

 A union() step is a branching step that requires that the current traverser be cop-
ied to each branch of the union() step in order to run. This means our final two tra-
versals require three copies of the traverser in order to continue processing. While
not a tremendous burden on our small sample graph, this becomes a large amount of
additional overhead in larger graphs.

 The first adjustment is to combine the email, phone, and fax labels into a generic
label, contact, as each represents the same logical construct: a contact method. This
introduces a new complication—we just lost the type of contact. Loss of information
defining a subtype of an entity is a common side effect of changing from specific to
generic labels, but it can be quickly remedied by adding a type property to the contact
vertex, highlighted in figure 7.5.

Let’s reexamine our traversals after this first adjustment and see how they’ve changed:

 What is the phone number for Ted?

g.V().has('person', 'name', 'Ted').
 out('has_phone').
 values('number')

name Ted

person

person

contactcontact

type email

address fake@fake.com

type fax

number 555-1213

contact

type phone

number 555-1212

has_phone
has_email

has_fax

Figure 7.5 Contact graph with the vertex labels and a type property
(changes highlighted)

Same; a single
edge to traverse

180 CHAPTER 7 Advanced data modeling techniques
 What are all the contact methods for Ted?

g.V().has('person', 'name', 'Ted').
 union(
 out('has_phone').values('number'),
 out('has_email').values('address'),
 out('has_fax').values('number')
)

 What is all the contact information for people in the system?

g.V().
 hasLabel('contact').
 values('number', 'address', 'type')

Looking at our first two traversals, we see that there was no change. However, in our
third traversal, we see that changing to a generic vertex label contact makes the tra-
versal shorter and removes the need to copy the traversers in union(). Are there any
other locations where we can apply generic labels to simplify our traversal?

 Looking at the traversals as they are now written, both the first and third tra-
versal seem rather straightforward and tidy. As written, the second traversal seems a
bit lengthy and complex, and requires copying the current traversal state three
times to fulfill the union() step. Because we use readability and length as a proxy for
performance, let’s see if we can simplify that. What if we replaced the has_fax, has_
email, and has_phone edge labels with a generic contact_by edge. How does this
affect our model? Let’s investigate figure 7.6 and see what our model looks like with
this adjustment.

NOTE While it might be tempting to create a simple edge label called has or
has_a to simplify our model, the reality is that labels such as these are too
generic to provide any useful information. When we review data models, this
is one of the first things we look for as a code smell.

Same; a union of three
edge traversals

Now only a single
step to traverse

name Ted

person

person

contactcontact

type email

address fake@fake.com

type fax

number 555-1213

contact

type phone

number 555-1212

contact_by
contact_by

contact_by

Figure 7.6 Contact graph with generic edge labels highlighted

181Translating entities to vertices
We see that even with these two changes, from specific to generic labels, we are still
able to easily understand what this graph is showing us. Let’s see how this adjustment
impacts our traversals:

 What is the phone number for Ted?

g.V().has('person', 'name', 'Ted').
 out('contact_by').
 has('contact', 'type', 'phone').
 values('number', 'type')

 What are all the contact methods for Ted?

g.V().has('person', 'name', 'Ted').
 out('contact_by').
 values('number', 'address', 'type')

 What is all the contact information for people in the system?

g.V().hasLabel('contact').
 values('number', 'address', 'type')

With this adjustment to the model, we see that our first traversal becomes a little more
complex, while the other two are simplified:

 The first traversal added a filter on the contact vertices to find the vertices that
have a type of phone.

 The second traversal was simplified to traverse out the contact_by edge instead
of the has_fax, has_email, and has_phone edges.

 The third traversal is unaffected by the change.

Commonly, changing your data model positively affects some traversals while nega-
tively impacting others. Although this might seem like a step backward, we believe that
the tradeoff in making the first traversal a bit more complex is outweighed by the sim-
plification achieved with the second traversal. Data model optimization, as with most
things in life, is about tradeoffs. Understanding these tradeoffs and balancing them is
necessary when building a data model that preferentially optimizes for the most com-
mon traversal patterns.

LABELING FOR RECOMMENDATION ENGINE VERTICES

Returning to the data model for our recommendation use case, let’s examine how we
can apply these principles to creating generic labels for our recommendation engine.
Looking at our first entity, Person, we see that our data model has a person vertex
from our social network. Because these vertices represent the same conceptual entity,
we can reuse this vertex label for our recommendation engine. The ability to reuse
vertices is one of the key benefits of generic labels. If we had made a specific vertex
label for our friends—say, a friend vertex—we could not have reused it. Let’s look at
how to add the three new entities (Review, Restaurant, and Cuisine) to our model.

Same; a single edge

Adds an additional filter

Changed to a
single edge

Same; a single
step to traverse

182 CHAPTER 7 Advanced data modeling techniques
 Applying our process from chapter 2, we convert each entity into a unique vertex.
Grouping these entities doesn’t make sense because they represent fundamentally dif-
ferent concepts in the domain. We can validate that these represent different con-
cepts by looking at their properties. Because there is no overlap of properties among
these three vertices, they all have different relationships.

 Now that we have our entity types, our next task is to determine a descriptive label
for each type. Utilizing best practices, we label our entities review, restaurant, and
cuisine. Figure 7.7 shows the changes to our data model resulting from adding these
entities.

Now that we’ve added the vertices from our conceptual data model, let’s look once
again at the recommendation engine requirements. That helps us to ensure that we
include all the necessary entities:

 What restaurant near me with a specific cuisine is the highest rated?
To answer this question, we have the essential entities: restaurant, cuisine,

and review vertex types. Aside from the address on restaurant, we do not have
any location elements in our data model, elements required for the “near me”
part of the question. This means that our model is incomplete, so we should
evaluate our need to add the missing piece.

 What are the ten highest-rated restaurants near me?
To answer this question, we have the restaurant and review entities. But

as with the last question, we can’t handle the “near me” geographical aspect
of the question.

friends

person

restaurant

cuisine review

person

person_id

first_name

last_name

Figure 7.7 The logical graph model with the highlighted restaurant,
cuisine, and review labels added to the schema

183Translating entities to vertices
 What are the newest reviews for this restaurant?
The restaurant and review entities do answer this question.

We answered the third question confidently, but the first two have an unresolved issue;
namely, how do we handle the restaurant’s geographical location? In data modeling,
graph or otherwise, we have several options for modeling geography. The two most
common approaches are either as separate entities (such as city and state) or
denormalized as a property (such as an address property for restaurant).

 We should also mention that for more functionality (e.g., rendering on street
maps) and complexity, geospatial coordinates are often used. That level of com-
plexity isn’t required for DiningByFriends, so we’ll tackle denormalization instead
of geospatial data. What do we mean when we talk about denormalizing data in
a graph?

7.3.2 Denormalizing graph data

Denormalization in a graph data model is similar to denormalization in a relational
data model; both involve copying data into multiple locations at write time to increase
performance at read time. As with relational systems, data denormalization presents
several downsides:

 Increased disk usage—Because the data is written to more than one location, the
data size increases. While the cost of disk space is rarely an issue anymore, these
costs are something to consider, especially for large or cost-sensitive projects.

 Data synchronization issues—As we write data to multiple locations, each location
must be updated every time a change is made. If any of these locations are out-
of-sync, different traversals can return different results.

 Reduced write performance— Because we must update the value in multiple locations,
more write operations are required. This is commonly called write amplification.

With these downsides, when should we use data denormalization? We should denor-
malize data when a normalized data model is unable to retrieve (read) data fast
enough. Poor read performance is most often due to the number of operations
required to retrieve the information. This is especially problematic in any sort of dis-
tributed system where data access can also require additional network access, in
addition to memory and disk access. In a graph database, denormalization is all
about reducing the length of the traversal required to get from our starting point to
the ending data.

 Because of the downsides, denormalization should not be the first technique you
choose to solve a performance problem. Rather, it should be considered after proper
data modeling and traversal optimization fail to achieve the desired performance.

NOTE The discerning reader will recognize that indexing is a form of denor-
malization, though we don't always think of it as such. Regardless of which
data engine you use, if you add an index, you utilize a form of denormalization.

184 CHAPTER 7 Advanced data modeling techniques
The engine's simple syntax for doing so does not change the fact that it is a
duplication of existing data for read performance purposes.

While there are many different forms of data denormalization, we’ll only discuss the two
most common ones: precalculated fields and duplicated data. Let’s look at those next.

USING PRECALCULATED FIELDS

If a traversal performs an aggregation (e.g., sum, average, count), and the traversal is
executed significantly more often than we update the vertices, then it is a strong can-
didate for adding precalculated fields into a vertex or edge. Precalculated fields are
properties of a vertex or edge that store the result of performing a calculation at write
time to allow quick retrieval of the data at read time. To examine how precalculation
works, let’s return to our Gremlins movie example graph from chapter 2, which is
shown in figure 7.8.

Let’s say we want to know, “How many people have watched Gremlins?” With the current
model, we count the number of watched edges incident to the Gremlins movie vertex:

g.V().has('movie', 'name', 'Gremlins').
 bothE('watched').
 count()

This traversal returns the correct count of watched edges but has a lurking issue:
the number of incident edges is directly proportional to the time it takes to return the
count. This means that the performance degrades as more watched edges are added to
the Gremlins movie vertex, so popular movies take longer to retrieve than unpopular
ones. This is especially detrimental as popular movies are viewed more frequently than

person

personmovie

name

name

Bob

Gremlins

directed

watchedwatched

watched

person

movie

name Joe Dante

movie

Figure 7.8 Our Gremlins movie graph from chapter 2

185Translating entities to vertices
unpopular ones. This type of performance problem is common in graphs because the
vertices with the most connections are usually the vertices that are touched most often
in traversals.

 To alleviate the issue, we precalculate this value by placing a watched_count prop-
erty on the movie vertex, illustrated in figure 7.9. Then we update the count when
adding, updating, or deleting a watched edge.

With the watched_count property, the question—“How many people have watched
Gremlins?”—only requires retrieving the Gremlins movie vertex to access the watched_
count property. Precalculated fields do not suffer the same read-performance degra-
dation over time. Performance does not degrade because retrieving the watched_count
requires getting a single vertex instead of accessing an unknown number of edges. By
precalculating this value, we now have a constant time lookup for the watched_count,
regardless of how popular it is.

USING DUPLICATE DATA

The second use of data denormalization involves duplicating properties from one ver-
tex or edge to another vertex or edge. Copying properties into more than one loca-
tion in our graph allows us to optimize for multiple, different traversal paths at the
expense of keeping data in sync.

 Like precalculated values, duplicating data is another example where write perfor-
mance suffers, due to writing data to multiple places, to optimize read performance.
Returning to our order-processing system from chapter 5, shown in figure 7.10, let’s see
how we might apply data duplication to answer those questions more efficiently.

person

personmovie

name

name

Bob

Gremlins

watched_count 3

watchedwatched

watched

person

movie

name Joe Dante

movie

directed

Figure 7.9 Gremlins movie graph with a precalculated
watched_count property highlighted on the movie vertex

186 CHAPTER 7 Advanced data modeling techniques
To answer, “What date did I place order 123?”, our traversal needs to take two steps;
first, it needs to find the order vertex for order_id 123, and then traverse out to the
placed edge to get the order_date:

g.V().has('order', 'order_id', '123').
 outE('placed').
 values('order_date')

If we expect to retrieve orders by ID frequently, and we probably do, this additional
overhead is a potential bottleneck. To alleviate this overhead, we can copy the order_
date onto both the placed edge and the order vertex as figure 7.11 illustrates.

With this change, we can answer, “What is the date I placed order 123?” in a single
step. And we don’t need to traverse to any unnecessary vertices or edges.

 With these different types of data denormalization available to us, how do we know
which one to choose? Well, the answer depends on a few specific factors. Precalculat-
ing fields is a great choice when you have an aggregation (sum, average, count) value,
and the traversal is executed significantly more often than the vertices are updated.
Duplicating data into multiple places in your graph is an excellent choice when you
have multiple traversal patterns, each of which needs to be optimized by moving the
desired data earlier in the traversal steps.

placedperson

person placed order

person_id order_date
order_id 123

1/1/2019

name

1

Bob

order

Figure 7.10 Order-processing system graph from chapter 5 with only the
order_date on the placed edge

person

person placed order

person_id order_date
order_id 123

order_date 1/1/2019

1/1/2019

name

1

Bob

orderplaced

Figure 7.11 Order-processing system with order_date duplicated on the
placed edge and order vertex

187Translating entities to vertices
EVALUATING THE DININGBYFRIENDS LOGICAL MODEL FOR DENORMALIZATION

Now that we know a bit about what it means to denormalize data in a graph, let’s
decide if this approach is right for our restaurant recommendation use case. Let’s
start by reminding ourselves which questions require geographical information:

 What restaurant near me with a specific cuisine is the highest rated?
 What are the ten highest-rated restaurants near me?

Now, let’s compare our two potential approaches, adding separate vertices for city and
state or adding these as properties on the restaurant vertex. First, let’s discuss what
happens if we make separate vertex types for city and state as figure 7.12 shows.

If we assume that both the person and restaurant vertices are connected to the
city vertex, then this model allows us to use the city vertex to quickly traverse from
a person to all the restaurants “near me.” Because knowing which restaurants are
“near me” is a crucial piece of the puzzle for both restaurant questions, this seems
like a good fit. The downside we see is that answering a question such as “What is
the location of this restaurant?” requires an additional traversal from a restaurant
to the city and state vertices.

 The second approach is to denormalize the city and state information onto both
the restaurant and the person vertices. By adding these properties, we are able to
answer, “What is the location of this restaurant?” by returning the restaurant vertex.

state

person_id

first_name

last_name

city

restaurant

cuisine

person

friends

person

review

Figure 7.12 Logical graph data model with the city and state vertex types added

188 CHAPTER 7 Advanced data modeling techniques
The tradeoff is that “What restaurants are near me?” requires us to find the person
vertex of the user and then scan all of the restaurant vertices to find the restau-
rants in that location. While different databases have some optimizations to help
with this (such as geospatial data indexes), the availability and functionality of these
are implementation-specific.

 Comparing these two methods with what is required, we do not see any advantages
to denormalizing the city and state data in on our model. In fact, it is likely that this
would make our model much worse. However, if at some point in the future we want
to answer questions like, “What is the location of this restaurant?”, we need to revisit
this decision. The good news is that denormalizing data is an easy change to make
after we quantify the performance of the application. Now that we’ve added city and
state vertices to our logical data model, let’s revisit the questions requiring geo-
graphic information, and decide if all the necessary information exists:

 What restaurant near me with a specific cuisine is the highest rated?
 What are the ten highest-rated restaurants near me?

Yes, with the addition of the city and state vertex types, we are now able to answer
the “near me” aspect of these questions. Our logical data model now contains all the
required vertex types, so our next step is to define the edges.

7.3.3 Translating relationships to edges

To define edges for our recomendation engine use case, we begin by identifying the
relationships in our conceptual model. Figure 7.13 shows these relationships.

In our conceptual data model, we observe the following relationships:

 Person–Writes–Review
 Review(s)-Are About–Restaurant
 Restaurant–Serves–Cuisine

PersonRestaurant

Cuisine Review

Are About Writes RatesServes

Friends

Figure 7.13 The conceptual data model
for the recommendation engine use case
of DiningByFriends with the required
portions highlighted

189Translating entities to vertices
In our logical data model, we also added the city and state vertex types, so we need
to consider the relationship between restaurant and city as well as city and state.
But one requirement that we’ve not touched on is how to determine a user’s location,
which is needed to decide which restaurants are “near me.”

 To represent this relationship, we add a relationship from the person vertex to the
city vertex to denote the city and state where a person lives. Based on this informa-
tion, we compile a list of required relationships:

 Person–Writes–Review
 Person–Lives In–City
 Review–Are About–Restaurant
 Restaurant–Serves–Cuisine
 Restaurant–Within–City
 City–Within–State

After reviewing the list, we can see that the last two relationships share the same name,
yet another example of generic labels. Let’s add these six relationships to our model,
illustrated in figure 7.14.

NOTE We drop the prepositions from our relationship descriptions when we
translate these into edge labels to keep the graph data model simple.

state

person_id

first_name

last_name

city

restaurant

cuisine

person

friends

within

within

lives

wrote

about

serves

person

review

Figure 7.14 DiningByFriends graph data model with the edges added for the recommendation engine

190 CHAPTER 7 Advanced data modeling techniques
With our edges identified and labeled, we need to decide on the uniqueness of each
edge. The following list describes each edge:

 wrote—It is reasonable to expect that a specific person can only write a particu-
lar review once, so the edge uniqueness is single.

 about—A specific review is about a single restaurant, so the edge uniqueness
is single.

 serves—While a restaurant can serve many types of cuisine, the expectation is
that a specific restaurant is only associated with a particular cuisine once, so the
edge uniqueness is single. (Remember, this designation does not exclude a restau-
rant from being associated with more than one cuisine. The designation of sin-
gle means that you can only have an edge from a specific restaurant to a specific
cuisine once (e.g., El Rey Taqueria restaurant can only have one edge to Mexi-
can cuisine.)

 lives—A person lives in a single city, so the edge uniqueness would be single.
 within—A particular restaurant can only exist in a single city, and a city can

exist in a single state, so the edge uniqueness would be single.

All of the edge labels have a uniqueness of single, and that shouldn’t surprise us. This
uniqueness specification is the most common and the safest starting point.

7.3.4 Finding and assigning properties

With the structural elements of our model in place, it is time to start adding properties.

EXERCISE Referring to the conceptual model in figure 7.13, what properties
do we need to add to the model to answer the three questions for the recom-
mendation engine? (What restaurant near me with a specific cuisine is the
highest rated? What are the ten highest rated restaurants near me? What are
the newest reviews for this restaurant?).

Once you have decided the properties you believe are required, take a look at the
properties we chose. Table 7.1 shows the vertex properties; no properties are required
on the edge labels.

How did your choices compare with ours? Hopefully they are close, but if not, that’s
fine. There’s more than one way to construct a data model. If we do not match, that

Table 7.1 Properties for each vertex label

Person Review Restaurant Cuisine City State

person_id rating restaurant_id name name name

first_name body name

last_name created_date address

191Translating entities to vertices
does not mean either is right or wrong. The important outcome is that the logical
data model answers the questions.

 Before we finalize these properties in our model, we need to check the location of
the properties. As we discussed when talking about data denormalization, it is some-
times possible to improve the performance of traversals by moving data so that it is
reached in the fewest number of steps. One common way to do this is to move proper-
ties from a vertex to the incident edge.

7.3.5 Moving properties to edges

The concept behind this optimization is straightforward. Move a property from a ver-
tex to the incident edge to reduce the number of steps your traversal needs to process.
However, in practice this process is more nuanced.

 Let’s return to the example of a simple order-processing system for a retail website.
In this retail site, a person can place one or more orders, and each order has a date.
Coming from a relational world, our instinct is to build a model with a person vertex, an
order vertex, and an edge named placed between the vertices. We also need to add
properties for person_id and the name of a person to the person vertex, as well as the
order_id and order_date to the order vertex. Figure 7.15 demonstrates this.

Using this model to answer the question, “Show me all my orders in the last three
months?” requires traversing from the person vertex to the order vertex. When we
use a single out() step to do this, we think of it as a single operation. But in reality, the
out() step is effectively an alias for the outE().inV() combination of steps. This
means that there are always two operations (memory reads, cache hits, disk reads, or
even network access in distributed systems) that happen to traverse an edge: moving
onto the edge and moving from the edge to the destination vertex. Figure 7.16 illus-
trates this two-step traversal.

 There is nothing wrong with this model. Overall, it works well, but to answer our ques-
tion, it is less than ideal because it requires a second read operation before we filter on
order_date. As we’ve learned, the sooner we filter our traversal, the better that traversal
performs. In the relational world, the model is analogous to filtering a table after per-
forming a join, instead of before the join operation. To help mitigate this concern, let’s
move the order_date from the order vertex to the placed edge, as figure 7.17 shows.

person

person

person_id

name

order

order_id

order_date

orderplaced

Figure 7.15 An order-processing
system showing properties on
vertices only

192 CHAPTER 7 Advanced data modeling techniques
Why make this change? This rearrangement of the property location enables us to
filter our traversal after only a single operation from the person vertex to the placed
edge, reducing the computation required and increasing the traversal speed. (This is
not true in all databases. Some databases, such as Neo4j and AWS Neptune, have
optimized their underlying data model to collocate the edge information on the
associated vertices in their on-disk representations. This means that moving prop-
erties to edges is not an optimization in these systems.) Figure 7.18 demonstrates
this change.

 While this sort of single-operation optimization can seem insignificant on a single
traverser, it becomes a huge performance gain when running multiple traversers. In
fact, it is one of the best ways to increase overall traversal performance, just as with
relational databases where, if we filter the data before the join operations, then perfor-
mance improves.

placed

placed

Traversal step #1 - person

vertex to placed edge

Traversal step #2 - placed

edge to order vertex Filtering by date

can occur here.

person

person_id:1

name: Ted

order_id: 234

order_date:

10/1/2018

order

person

person_id:1

name: Ted

order_id: 234

order_date:

10/1/2018

order Figure 7.16 The traversal
operations to find the
order_date property from
the person vertex in our
order-processing system

person

person placed order

person_id order_date
order_id

name

orderplaced

Figure 7.17 Moving the
order_date property from the
order vertex to the placed
edge to reduce traversals

193Translating entities to vertices
Looking at our model and the requirements for our recommendation engine, we do
not see a need for moving any property to an edge. Still, this technique is an excellent
tool to keep in mind later when we look more at performance optimizations. Figure 7.19
shows the result of adding the properties to our data model.

Traversal step #1 - person

vertex to placed edge

Filtering by date

can occur here.

person

person_id:1

name: Ted

order_date:

10/1/2018

order_id: 234

orderplaced

Figure 7.18 The traversal steps
in our order-processing system to
find the order_date property
now that it has moved to the
placed edge

state

restaurant_id

name

address

person_id

first_name

last_name

rating

body

created_date

name

city

restaurant

cuisine

name

restaurant

cuisine

person

review

city

state

name

friends

within

within

lives

wrote

about

serves

person

review

Figure 7.19 The recommendation engine logical data model for DiningByFriends with the added properties

194 CHAPTER 7 Advanced data modeling techniques
7.3.6 Checking our model

The last step for completing our model is to validate its construction. We let you do
this in the form of an exercise.

EXERCISE Reflect on the following questions and check the validity of our
model:

 Do the vertices and relations read like a sentence?
 Do we have different vertex or edge labels with the same properties?
 Does the model make sense?

Do you think we have a valid model? Reviewing these questions, we feel confident that
our model works for our use case.

7.4 Extending our data model for personalization
Now, it is time to add the personalization use cases. Looking at our conceptual model,
we highlight the relevant portions in figure 7.20.

For the last two feature sets, we demonstrated the process step by step. For this use
case, we perform the four-step process independently. The personalization use case
provides a mechanism to individualize recommendations based on the circle of friends
and how the friends rate other reviews. As a reminder, the questions for the personal-
ization use case follow:

 What restaurants do my friends recommend?
 Based on the review ratings from my friends, what are the best restaurants for me?
 What restaurants have my friends reviewed or rated a review for in the past X days?

EXERCISE Run through the graph data modeling process yourself, following
the process we completed for the recommendation engine. Once you finish,
compare your results with ours.

Restaurant Person

Cuisine Review

Is About Writes Rates

Friends

Serves

Figure 7.20 The relevant portions of
our conceptual data model highlighted
for the personalization use case of
DiningByFriends.

195Extending our data model for personalization
Now that you have (hopefully) taken the time to walk through the process inde-
pendently, it is time to see what we developed. Figure 7.21 shows our model.

Compare what you designed with what we produced. Are these similar? Where do these
differ? Specifically, did you add a single vertex like we did? What did you name your
edges? And, finally, how did your model handle the review date and review rating?

 In our model, we added a single new vertex labeled review_rating and two edges,
wrote and about, to represent the entities and relationships for this use case. To arrive
at this model, we followed the same process we used previously, but we applied one
technique that we discussed but had not put into practice yet: edge properties.

 We chose to denormalize the review_date property to both the review vertex and
the wrote edge. Denormalizing this property allows us to efficiently answer, “What
restaurants have my friends reviewed or rated a review for in the past X days?” It enables
us to filter on the edge as well as returning the review_date with the review_rating
vertex. While filtering on edges may not seem like it has a significant impact, when we
think about this optimization being hit hundreds or thousands of times in a single

state

restaurant_id

name

address

person_id

first_name

last_name

rating

body

created_date

name

cities

restaurant

cuisine

cuisine_name

restaurant

cuisine

person

review

city

state

name

friends

within

within

lives

wrote

about

serves

person

wrote

review_rating

review_date

rating

review_date

wrote

about

review
_rating

review

Figure 7.21 The logical data model we developed for our personalization use case in DiningByFriends

196 CHAPTER 7 Advanced data modeling techniques
traversal, the summation of these micro-optimizations adds up to significant perfor-
mance gains.

7.5 Comparing the results
Now that we’ve completed our graph data model for DiningByFriends, let’s see what
our final logical data model looks. Figure 7.22 shows this data model.

Reviewing the logical data model, we notice it’s similar to our conceptual data model.
The vertex and edge names form human-readable sentences, and the relationships
between the entities are understandable. This is one of the great benefits of graph
data modeling. Unlike relational data models, both technical and non-technical users
can understand graph data models.

 We’ll use this logical data model throughout the remainder of this book, although
it will likely change a bit as we work through the remaining chapters. As we said
before, no data model survives first contact with code or with actual data. But this
model provides a solid foundation to begin work.

state

restaurant_id

name

address

person_id

first_name

last_name

rating

body

created_date

name

cities

restaurant

cuisine

cuisine_name

restaurant

cuisine

person

review

city

state

name

friends

within

within

lives

wrote

about

serves

person

wrote

review_rating

review_date

rating

review_date

wrote

about

review
_rating

review

Figure 7.22 The final graph showing the logical data model for DiningByFriends

197Summary
Summary
 Generic data labels allow us to reuse labels to simplify our traversals by enabling us

to group similar entities so that we create more performant and scalable traversals.
 Denormalizing data through precalculating fields or duplicating data reduces the

complexity of our traversals by making the data available earlier in our traversal.
 Precalculating fields is a great choice when the field to be calculated is read

much more frequently than written.
 Data duplication involves copying properties into multiple locations in our

graph to optimize for multiple different traversal paths at the expense of keep-
ing data in sync.

 Moving properties from vertices to edges can reduce the complexity of our tra-
versals by reducing the number of steps our traversal has to perform.

 Applying these advanced modeling techniques allows us to create complex data
models for real-world situations, such as recommendation and personalization
use cases.

Building traversals
using known walks
Denise is one of the users of DiningByFriends. She recently traveled to Cincinnati,
Ohio, for work and is looking for a recommendation for an excellent restaurant for
dinner. From the work we did in the last chapter, we know that our data model con-
tains all the necessary information to answer this type of question. We also know
that to answer this question, we need to develop traversals that

 Traverse a specified set of vertices and edges
 Traverse those elements in a set order
 Traverse those elements a specific number of times

In the last chapter, we learned that traversing a graph with the attributes from this
list is a pattern described as a known walk. Although we introduced the concept of
known walks in chapter 7, this chapter dives into how we develop traversals for this

This chapter covers
 Creating known-walk traversals

 Translating business questions into graph
traversals

 Prioritizing strategies for traversal development

 Paginating results in a graph traversal
198

199Preparing to develop our traversals
pattern. To demonstrate this, we use the tangible target of our recommendation engine
use case. We start by revisiting the requirements of the restaurant recommendation
engine. We then identify the vertices and edges needed for our known-walk traversals.
We follow that with developing the traversals for the use case. Finally, we incorporate
the traversals into our application.

 In previous chapters, we developed our traversals separately from the Java code
and then added these to our application. This separated traversal drafting and testing
and application development into two distinct steps. We did this to avoid intermin-
gling developing traversals with that of constructing an application. The reality is that
most developers do both at the same time, regardless of database engine.

 In this chapter, we’ll follow a more standard developer workflow and combine the
creation of traversals with adding these to our application. Along the way, we’ll pro-
vide a variety of tips and best practices to aid in our process of developing graph-
backed applications. By the end of this chapter, you’ll have a simple recommendation
engine for our DiningByFriends app. You’ll also learn how to develop applications
using known walks to solve substantive business problems. Let’s get started.

8.1 Preparing to develop our traversals
Before we begin our development process, we need to gather two critical pieces of
information. First, we need the requirements of our use case. Second, we need our
graph data model. Revisiting the requirements and data model for our recommenda-
tion engine, these questions make up the requirements for our recommendation
engine use case:

 What restaurant near me with a specific cuisine is the highest rated?
 What are the ten highest-rated restaurants near me?
 What are the newest reviews for this restaurant?

To develop the traversals that answers these questions, we’ll use our logical data
model. Figure 8.1 shows this model.

8.1.1 Identifying the required elements

With the questions and logical data model, we can begin writing our traversals by
identifying the necessary vertex labels and edge labels for this use case as we did in
chapters 3, 4, and 5. One addition to our process is that, because we are working with
a more complex logical model, one with multiple vertices and edges, we need to per-
form a few steps in preparation for writing our traversals. We go through these steps
for each of the three questions in our use case:

1 Examine each requirement and break it into the components needed to answer
the question.

2 Identify the required vertex labels.
3 Identify the required edge labels.

200 CHAPTER 8 Building traversals using known walks
Although these steps seem logical and straightforward, the devil is in the details. In
our experience, we find that this process is better understood by working through a
few examples. Let’s use our restaurant recommendation engine requirements to show
how the preparation is different when working with a more involved model.

 Our first question in the use case is, “What restaurant near me with a specific cui-
sine is the highest rated?” Breaking this question into the required actions, we see
three pieces are needed:

 What restaurant near me . . . (locates the restaurants in a geographic area
“near me”)

 . . . with a specific cuisine . . . (filters by cuisine to find a specific cuisine)
 . . . is the highest rated? (calculates the average rating for each restaurant to

find the highest rated)

Looking at our data model, let’s see which vertex labels provide the information
needed to satisfy these requirements. When looking for the required vertex labels, a
good place to start is by looking for the nouns in the requirements. After we find the

state

review
_rating

restaurant_id

restaurant_name

address

person_id

first_name

last_name

rating

body

created_date

name

city

restaurant

cuisine

cuisine_name

restaurant

cuisine

person

review

city

state

name

friends

within

within

lives

wrote

about

serves

person

wrote

review_rating

review_date

rating

review_date

wrote

about

review

Figure 8.1 The DiningByFriends logical data model with the relevant portions highlighted for the
recommendation engine use case

201Preparing to develop our traversals
nouns, we look in the data model for the corresponding vertex labels for those nouns.
While finding the corresponding labels can be a straightforward lookup, it frequently
involves synonyms or additional concepts. We already did much of this work during
our data modeling process, so we are able to leverage that work to quickly identify the
required elements.

 Applying this process to our requirements, we can identify the following required
vertex labels. Note that the order of these doesn’t matter. We are in a design phase
and simply want to make sure that we have what we need to answer the overall
question:

 restaurant—This is the core piece of information we need to return.
 city—We need to find restaurants “near me,” so we use city to represent the

geographical location of a restaurant as we explained in section 7.2.1.
 cuisine—This allows us to filter by cuisine.
 review—We need to calculate the average rating of a restaurant, and rating is

a property of this entity.

What do you think? Have we listed all of the key vertices to return an answer for this
traversal?

 After reviewing, we find a subtle element missing. Did you notice that we need a
person vertex? Because we need to find a restaurant “near me,” we need to know what
city to search. This is contingent on where the person lives. From our data model, we
know that the current user’s location is represented by the lives edge from the person
vertex, so we need to include the person vertex.

IMPORTANT Pronouns are easily overlooked when translating business ques-
tions into technical requirements and implementation. These tend to hide
additional and more subtle requirements. Pay attention to pronouns when
identifying required elements. In the current example, note how we called
out the phrase “near me” (with an emphasis on “me” as an example of a
potentially hidden element).

Now that we’ve identified the vertex labels, our next step is to look for the required
edges. In our current model, this step is simplified because, for our four vertex labels
(restaurant, city, cuisine, and review), we are limited in the edges we can use. We
could just use the edge labels connecting those vertex labels and then proceed with a
fair chance of success. But sometimes, there are multiple edge labels between vertices,
or we might have missed an important part of the use case by only looking at the
nouns. We should also remember to look for edge labels by examining the require-
ments of the use case and looking at the verbs (actions) in the questions.

 Once we identify the verbs in our requirements, we can look for the corresponding
edge names in our data model, much as we did with our nouns. As with that step, we
are able to reuse much of the work we did while data modeling to quickly identify the

202 CHAPTER 8 Building traversals using known walks
required edge labels. Analyzing our requirements, we find the corresponding edges in
our data model:

 restaurant within city—Determines the location of a restaurant to use as
a filter

 restaurant serves cuisine—Categorizes the cuisine a restaurant serves to fil-
ter on it

 review about restaurant—Provides all the reviews for a restaurant to calculate
the average rating for that restaurant

 person lives city—Provides a person’s location to find restaurants “near me.”
(This is one of the more subtle or hidden requirements from our data model.)

NOTE Two of these edges contain a preposition (within, about) implying a
verb, rather than a verb itself. For the grammarians among our readers, in
these cases in our data model, we decided to omit the verb is for simplicity;
within is simpler to write than is_within. As we mentioned, naming things is
hard, and naming the edges is no different.

Turns out that these are the only options for connecting the four vertex labels, so
these are the edges we use, given our schema. It is possible that we missed some-
thing in our modeling work in chapter 7. If so, we would discover that at this point
because there would be a disconnect between our use case requirements and the
schema. Alternatively, if we skip the modeling work altogether, we must do that now
so that the design satisfies the requirements. But because these edges from the logi-
cal model align nicely with the use case requirements, our efforts in chapter 7 were
sufficient.

 In our example, we found nine total elements for the first question: five vertex
labels and four edges. Let’s move on to see what’s required for the other two questions
that make up the recommendation engine. For each question, we follow the same
process: extract the information needed to answer the question into a series of steps,
find the nouns (or pronouns) in these steps to locate the corresponding vertex labels,
and then find the verbs in our actions to identify the required edges. Let’s see how
this looks for our second question, “What are the ten highest-rated restaurants near
me?” We start by extracting the requirements needed to answer the question:

 Locate restaurants in a geographic area.
 Determine a user’s location to filter on restaurants in that area.
 Calculate the average restaurant rating in order to sort the restaurants and

return only the top 10.

As with the previous example, we find the vertices by looking for the nouns or their
synonyms, which provide the corresponding vertex labels in our data model:

 restaurant—This is the core piece of information we need to return.
 person—Locates a user, which is needed to satisfy the “near me” requirements

of our question.

203Preparing to develop our traversals
 city—Defines the location of both the user and the restaurant.
 review—Required to calculate the average rating for a restaurant because rating

is a property.

Moving on to our next step, reviewing the logical data model to locate the verbs, we
need the following edge labels:

 restaurant within city—Defines the location of a restaurant “near me” to
filter on

 person lives city—Defines where the user lives
 review about restaurant—Provides all the reviews for a restaurant needed to

calculate the average rating

Following this process, we identify seven required elements for this question: four ver-
tex labels and three edges. While this is fewer than the previous question, that’s not a
problem. Because we follow the same process, we have a high degree of confidence
that we did not miss anything. We can also compare the two questions. Doing so, we
see that the main difference is that this question does not include a reference to cui-
sine. Otherwise, these questions are quite similar. This gives us the confidence that
we’re on the right track.

EXERCISE For the third question—“What are the newest reviews for this
restaurant?”—go through the process on your own and compile a list of verti-
ces and edges that you think are required.

How many elements did you come up with? When we looked at that question, we
found three. Our two vertex labels include

 restaurant—Required to find appropriate reviews for the current restaurant
 review—This is the core information being returned. For this question, we also

assume that “newest” refers to the date the review was written, so we also need
the created_date property, which allows us to find the newest reviews.

And our sole edge label is

 about (connecting review and restaurant)—Required to associate a set of reviews
to the appropriate restaurant. This is also where our created_date property
lives, which allows us to find the newest reviews.

In the three questions for our restaurant recommendation engine, identifying some
of the required elements, such as restaurant, was fairly straightforward. However, iden-
tifying other elements, such the elements required for “near me,” are less obvious and
require us to leverage our experience when creating the logical data model to answer
these. We are also aided in that our logical model has only a single edge label among
vertex labels in all cases. We are now ready to get started writing our traversals, but
where do we begin?

204 CHAPTER 8 Building traversals using known walks
8.1.2 Selecting a starting place

Before writing our traversals, we need to make a crucial decision: Where do we begin
our development work? We can’t build three traversals all at the same time, so which
use case should we address first? For this, we see two reasonable approaches.

 One approach is to pick what we think is the most challenging problem and start
there. This approach works well when there are compelling unknowns or project
risks, such as introducing new technologies or processes into the development ecosys-
tem. This approach allows us to fail fast and is the right choice when a quick decision
of some sort is needed—perhaps to make a “go/no-go” decision or to determine
whether the technology is the right choice for the problem.

 Another approach is to start with the most straightforward or the least complicated
question and use it as a building block for the rest of our work. This path allows for
the progressive development of the code base and provides an excellent way to avoid
biting off more than you can chew. The idea here is to get a quick win or success with
a smaller, simpler problem before tackling more complex issues.

 Let’s look at the questions for our recommendation use case. Then we can decide
which approach and questions look like the best place to start.

The questions seem to become progressively simpler, with the last question having the
fewest required elements. Which of the approaches would you choose?

 If we were to choose the first approach, starting with the most challenging, we’d
want to start with the first or second question. These questions are more complicated
and involved than the last one. If we wanted to prove our graph technologies, choos-
ing one of these questions would provide us with the most knowledge about the prob-
lem with a single effort. On the other hand, we could choose the second approach,
starting with least complicated, which allows us to get a win or success with a smaller,
simpler problem before tackling more complex issues.

 For our present work, let’s choose the second approach: start with the simplest
problem and use that as a building block for the harder questions. For this project, we

Question Vertex Labels Edge Labels

What restaurant near me
with a specific cuisine is the
highest rated?

person
restaurant
city
cuisine
review

lives (connecting person → city)
within (connecting restaurant → city)
serves (connecting restaurant → cuisine)
about (connecting review → restaurant)

What are the ten highest-
rated restaurants near me?

restaurant
city
review
person

lives (connecting person → city)
within (connecting restaurant → city)
about (connectingreview → restaurant)

What are the newest reviews
for this restaurant?

restaurant
review

about (connecting review → restaurant)

205Preparing to develop our traversals
don’t have a go/no-go point, and we don’t have significant budget constraints. With-
out these constraints, we’d rather start small and get a quick win. However, before we
begin developing in earnest, there’s one more task to accomplish: setting up some test
data for our work.

8.1.3 Setting up test data

Before we begin writing our traversals, the last step in our preparation is to load some
test data. As with any database development, work goes much faster with data, prefera-
bly real data. Thus, a useful test data set should cover our core use cases at a minimum
and, ideally, the known edge cases. As we work with the code and with the data, we
expect to uncover additional edge cases. These make excellent candidates for adding
to our test data set, as well as using these additional edge cases for unit and integra-
tion tests.

 For this book, we included a set of test data with the code for this chapter, which
may be found here: https://github.com/bechbd/graph-databases-in-action. Note that
this script works a bit differently than the previous scripts. Instead of using individual
commands to independently create vertices and edges, this script loads data from a
JSON file. To see the details of how this works, see http://mng.bz/jVV9 to look at the
io() step in Gremlin. The downside of this approach is that we need to update the ref-
erence location of the data file in the loading script, 8.1-restaurant-review-network-
io.groovy. To update the script, open it in a text editor of your choice and edit the line
shown here to point to the full path and file location of chapter08/scripts/restaurant-
review-network.json:

full_path_and_filename = "/path/to/restaurant-review-network.json"

Once that is done, if you set up the Gremlin Console according to the instructions in
appendix A, then you can start the Gremlin Console and load the data for this chapter
with this single command on MacOS or Linux:

bin/gremlin.sh -i $BASE_DIR/chapter08/scripts/8.1-restaurant-review-network-
io.groovy

Or use this command on Windows:

bin\gremlin.bat -i $BASE_DIR\chapter08\scripts\8.1-restaurant-review-network-
io.groovy

Once this script completes, our graph now contains test data we will use throughout
the remainder of this chapter for testing during our traversal writing process. We can
quickly verify that the data set is loaded correctly in the Gremlin Console by typing g
and pressing Enter:

 \,,,/
 (o o)
-----oOOo-(3)-oOOo-----

https://github.com/bechbd/graph-databases-in-action
http://mng.bz/jVV9

206 CHAPTER 8 Building traversals using known walks
plugin activated: tinkerpop.server
plugin activated: tinkerpop.utilities
plugin activated: tinkerpop.tinkergraph
gremlin> g
==>graphtraversalsource[tinkergraph[vertices:185 edges:318], standard]
gremlin>

8.2 Writing our first traversal
Now that we’ve decided where to start and have loaded our test data, it’s time to begin
writing the first traversal. At this point, we like to break down the question into parts
and progressively build out the code in a sequential, or at a least systematic way, using
these steps:

1 Identify the vertex labels and edge labels required to answer the question.
2 Find the starting location for the traversal.
3 Find the end location for the traversal.
4 Write out the steps in plain English (or in your preferred language). The first

step is your input step; the last step is the output or return step.
5 Code each step, one at a time, with Gremlin and verify the results against the

test data after each step.

As you probably noticed, this sounds like the process we went through to develop the
traversals for our social network. This similarity is not an accident. Although we fol-
lowed this process, we did not formalize it.

 In chapters 3, 4, and 5, we chose to focus on the basics of writing a traversal instead
of getting bogged down in the process. These were also (by design) much simpler tra-
versals than what we build in this chapter. Now that you’ve learned the basics and are
familiar with both thinking about and traversing a graph, as well as the Gremlin syn-
tax, it is time to formalize our process as we take on more involved traversals. For the
next section, we’ll employ this process consistently. However, for section 8.2.2, we’ll
streamline the instructions and focus on how the execution looks when we are in the
flow of writing code.

8.2.1 Designing our traversal

Now we are ready to begin designing our traversal to answer, “What are the newest
reviews for this restaurant?” We start this process by identifying the required portions
of the schema, based on the work from section 8.1.1. Figure 8.2 highlights the part of
the logical data model (schema) that we’ll use to answer this question.

 We use this part of the schema to choose a starting point for our traversal. As we
learned in chapter 3, choosing a starting point is about looking for the criteria that
quickly narrows down the number of starting vertices. This minimizes the number of
traversers required and results in faster performance overall.

 Looking at the question, we see that it revolves around, “this restaurant,” so that is
a great place to start our traversal. Because we are looking for a single starting vertex

207Writing our first traversal
(“this restaurant”), we start by filtering our traversal. This leads to a dilemma: Which
property do we use to identify a restaurant, restaurant_id, name, or address?

 name—This is problematic as restaurants can belong to chains, all of which have
the same name. Using this as a filter could potentially return many restaurants.

 address—Works well for standalone buildings, but a user might be in a food
court, multi-tenant building, or at a mobile food truck. In any case, the address
might not be apparent or readily available.

 restaurant_id—This property more precisely describes a particular restau-
rant, so we can use this unique identifier to ensure that we get the single start-
ing vertex.

Given these factors, let’s make a simplifying assumption that our traversal takes a
restaurant_id as an input. Because the restaurant_id is a unique identifier of the
restaurant, using this ID ensures that we get the single starting vertex we desire. With
our starting vertex and filtering criteria identified, let’s move on to the next step of
our process: determining the end point. We find the end point by looking for the
nouns and qualifiers that describe what the traversal needs to return; what type of
thing will the answer be?

 Examining the question, we see that we want to return “the reviews” for the restau-
rant. This means that our traversal needs to traverse from our starting point, the
restaurant vertex, to the review vertex to retrieve the reviews. This is the only addi-
tional information the question asks for, so this makes the review vertex our tra-
versal’s endpoint. However, we don’t want to return the entire vertex. Users don’t
want to get vertices back. An end user wants the text of the review, so we need to

restaurant_id

name

address

rating

body

created_date

restaurant

review

restaurant

review

about

Figure 8.2 The logical data model showing the information required to
answer the question, “What are the newest reviews for this restaurant?”

208 CHAPTER 8 Building traversals using known walks
return the body property. Because we want the “newest” reviews, we also need to order
by when a review was made. For that, we return the created_date property as well.

 Now that we know that we start with the restaurant identified by its restaurant
_id and return the created_date and body properties of the review vertices, our pro-
cess gives us the following steps that our traversal must perform (we sort for newest
later in this process):

 Get the restaurant based on the restaurant_id.
 . . .

 Return the created_date and body properties of the review vertices.

In between these two steps is one or more steps that we’ll fill in as we complete this
section. We have denoted these middle steps with an ellipsis (. . .) because we don’t
know exactly how many steps there will be to get from our starting point to the final
response. But we do know that we have some steps in between the starting point and
the return data because we are not simply returning the starting vertex.

 As a point of comparison, in a relational database these starting and ending objects
would be two tables, and we need to determine the join conditions necessary to return
the correct rows, which may require additional tables. In our graph database, we have
identified two vertex labels, and we must construct the appropriate traversal steps to
craft the desired response data. Some of this involves traversing through the graph
with the steps we first introduced in chapter 3. Other parts of this involve formatting
the response using the steps introduced in chapter 5.

 Having identified our starting point and return data, let’s examine our schema
(figure 8.3). This allows us to find the appropriate vertices and edges we need to tra-
verse from one to another.

restaurant_id

name

address

rating

body

created_date

restaurant

review

restaurant

review

about

Figure 8.3 The graph schema shows that the starting point
(restaurant_id) and ending point (created_date and body
properties of the review vertices) are directly connected.

209Writing our first traversal
Because the starting and ending points are directly connected, this keeps things sim-
ple. Now we know we need to

 Get the restaurant based on the restaurant_id.
 Traverse the about edges to the review vertices.

 . . .

 Return the created_date and body properties of the review vertices.

That’s closer, but the output needs to be ordered a specific way, namely, by the most
recent reviews. Our review vertex has a created_date property that is well-suited
for this purpose. Because we want the newest reviews, we sort the review vertices by
created_date in descending order. Using properties such as a created date or an
updated date is a widespread pattern in graph databases, as with other databases.
That allows us to sort items chronologically. With this, we have a total of four steps
in our path:

 Get the restaurant based on the restaurant_id.
 Traverse the about edges to the review vertices.
 Sort review vertices by created_date in descending order.
 Return the created_date and body properties of the review vertices.

Upon first glance, we might think that we’re done, but there’s another factor we
should consider. There could be hundreds or thousands of reviews going back years
for restaurants in the system. There’s a chance that the result set could be extensive,
so let’s limit the results. At the end of this section, we throw in some bonus material on
how to handle pagination, but for now let’s only return the top three. This wasn’t
directly specified in the use case, but as experienced developers, we know that this is
a reasonable implementation approach, one that we can later validate with user test-
ing. Bringing everything all together, we now see that our traversal needs to perform
the following actions:

 Get the restaurant based on the restaurant_id .
 Traverse the about edges to the review vertices.
 Sort review vertices by created_date in descending order.
 Limit the results to the first three returned.
 Return the created_date and body properties of the review vertices.

Comparing these steps against the requirements of our question, we see that we’ve
defined the traversal in sufficient detail to get started writing. The old saying, “The
proof of the pudding is in the eating of it,” applies here too. We won’t know for cer-
tain that we have covered the requirements of the use case until we code the traversal.
But now we have a clear set of steps that should make short work of writing the code.

 The set of steps needed for this traversal looks similar, though not exactly identi-
cal, to the recursive and path-based traversals we developed for our social network.
When we developed our recursive traversals, we had a known series of vertices and

210 CHAPTER 8 Building traversals using known walks
edges to traverse but an unknown number of times with which to traverse these. With
those path-based traversals, we were interested in how our start and end points were
connected (the path). In contrast, the known-walk or known-path traversals we work
with now have a defined set of vertices and edges to traverse and a known number of
times we must traverse these. We use known-path traversals when we are interested in
finding out if our starting and ending points are related, not in how these are related.

 In our present example, we need to traverse a single type of edge label. The vari-
able won’t be in the number of edges labels traversed (there’s only the single about
label), but in the number of instances of about edges. In relational databases, this is
akin to the difference between the number of joins we have to use verses the number
of rows actually returned.

8.2.2 Developing the traversal code

Now that we’ve designed our traversal approach, we’re ready to start developing it
using our test data. This is the process of taking the bulleted points we designed in the
previous section and writing the corresponding code. Looking at the actions we need
to accomplish, we notice that we’ve already performed each of these steps in previous
chapters when building pathfinding traversals. Because we already know the steps
required, let’s develop this traversal to learn an iterative approach to constructing
complex traversals.

 This process is straightforward. We begin by writing the code for the first step and
progressively adding code for each additional step, one step at a time. Then we verify
that we are returning the expected results after each one.

 Looking at our test data, let’s use that great greasy eatery, that hopping Houston
mainstay, Dave’s Big Deluxe, as our example, which has a restaurant_id = 31. We
should probably mention that this restaurant, as with all of the people and other
restaurants in the examples, is entirely fictitious.

 To allow us to easily test against multiple restaurants, let’s create a variable named
rid and assign the restaurant_id of Dave’s Big Deluxe, 31. We add the variable using
the following command in the Gremlin Console:

rid = 31

NOTE As previously mentioned, the Gremlin Console allows for creating vari-
ables using Groovy syntax. In this case, we create a variable simply to ease the
development of the traversal, so it’s not required. But using a variable makes
it easy to test our traversal on multiple restaurants by merely changing the
variable value instead of the traversal.

We already know how to create the traversals to find our starting point. Let’s filter on
restaurants that match the rid variable:

g.V().has('restaurant','restaurant_id',rid)

==>v[288]

Gets the restaurant based
on the restaurant_id = rid

211Writing our first traversal
It returned a result! That’s great, but it’d be nice to know if it’s the correct result, so
let’s check our results. While not specifically required to construct our traversal, we
find it helpful to add values steps to traversals while constructing these for immediate
validation. In this case, we add the valueMap() step:

g.V().has('restaurant','restaurant_id',rid).
 valueMap(true)

==> {id=288, label=restaurant, address=[490 Ivan Cape],

➥ restaurant_id=[31], name=[Dave's Big Deluxe]}

Perfect! We got back Dave’s Big Deluxe, so we confirmed that we have the right
restaurant vertex. Let’s move on to the next step: traversing the about edges.

 Examining the schema, we see it is an inbound edge, meaning we use an in() step.
(Don’t worry that the body of a review looks like gibberish. The data set we loaded con-
tained some autogenerated text values, so these are not meant to be understandable.)

g.V().has('restaurant','restaurant_id',rid).
 in('about').
 valueMap(true)

==>{id=894, label=review, rating=[5], created_date=[Wed Sep 26 18:30:16 CDT

➥ 2018], body=[Soluta velit quasi explicabo ut atque ratione nisi. ...]}
...
==>{id=666, label=review, rating=[5], created_date=[Wed May 01 07:37:44 CDT

➥ 2019], body=[Quo et non aut ipsam qui autem aut. Voluptatem id. ...]}

Whoa! Perhaps that valueMap() step is too helpful. If you’re following along, you
should have returned a wall of text for the eight review results. We need a way to see
those results, but perhaps without all of the noise. Referring back to our plan for this
traversal, we know we want to return the created_date and body properties, so let’s
update our traversal to only return those properties:

g.V().has('restaurant','restaurant_id',rid).
 in('about').
 valueMap('created_date', 'body')

==>{created_date=[Sun Jul 19 01:43:31 CDT 2015],

➥ body=[Dolorem ...
==>{created_date=[Wed Sep 26 18:30:16 CDT 2018],

➥ body=[Soluta ...
==>{created_date=[Wed Jul 27 07:30:46 CDT 2016],

➥ body=[Officiis ...
...

NOTE Within Gremlin Server, dates are stored in Coordinated Universal
Time (UTC) formats; but for display purposes, Gremlin Console automati-
cally translates dates to the local time zone.

Returns all properties

Traverses the about edges
to the review vertices

Results truncated to improve readability.

Returns only the created_date
and body properties

Results
returned
unsorted

212 CHAPTER 8 Building traversals using known walks
That’s better; at least we only have a pair of properties. Looking back at our plan, the
next step is to add logic to sort the results by the created_date value:

g.V().has('restaurant','restaurant_id',rid).
 in('about').
 order().by('created_date').
 valueMap('created_date', 'body')

==>{created_date=[Sun Jul 19 01:43:31 CDT 2015],

➥ body=[Dolorem ...
==>{created_date=[Wed Jul 27 07:30:46 CDT 2016],

➥ body=[Officiis ...
==>{created_date=[Thu Mar 09 03:37:52 CST 2017],

➥ body=[Rerum omnis ...
...

We’re almost there. The results are sorted by date, but the wrong way! Recall that the
order() step defaults to ascending order, so let’s use descending order:

g.V().has('restaurant','restaurant_id',rid).
 in('about').
 order().by('created_date', desc).
 valueMap('created_date', 'body')

==>{created_date=[Wed May 01 07:37:44 CDT 2019],

➥ body=[Quo et ...
==>{created_date=[Tue Mar 12 20:33:43 CDT 2019],

➥ body=[Ducimus ...
==>{created_date=[Wed Sep 26 18:30:16 CDT 2018],

➥ body=[Soluta ...
...

We accomplished all the actions our traversal requires except for limiting the results.
Let’s add that functionality now:

g.V().has('restaurant','restaurant_id',rid).
 in('about').
 order().by('created_date', desc).
 limit(3).
 valueMap('created_date', 'body')

==>{created_date=[Wed May 01 07:37:44 CDT 2019],

➥ body=[Quo et ...
==>{created_date=[Tue Mar 12 20:33:43 CDT 2019],

➥ body=[Ducimus ...
==>{created_date=[Wed Sep 26 18:30:16 CDT 2018],

➥ body=[Soluta ...

That’s great! It looks like we’re done. We have the right data, returned in the proper
order, and limited to the correct result size. What’s next?

Orders reviews by
the created_date

Results ordered in
ascending order by
created_date

Adds desc for descending
order so the ordering is in
the expected direction

Results sorted in
descending order
by created_date

Limits results
to three

Only receive
three results.

213Writing our first traversal
EXTENDING OUR TRAVERSAL WITH THE ID
While the previous traversal handles all the requirements of our question, our applica-
tion is likely going to need more than just the body of the review text. Most applica-
tions work from domain objects, so we probably want to create a review object for
our application, with a unique identifier tying our domain object back to the under-
lying database.

 As discussed in section 4.1.1, we discourage the use of a database engine’s internal
ID values for any business logic; however, due to the ease of using that ID, it’s common
practice, which is why we discuss it here. Using the internal ID results in a leaky
abstraction that tightly couples your application logic to the underlying database
implementation. The best practice is to use either a natural key from your data or an
application-generated synthetic key. Now that we’ve restated our “use ID’s wisely” mes-
sage, let’s update our traversal to return the ID of the review vertex, along with the
created_date and body properties:

g.V().has('restaurant','restaurant_id',rid).
 in('about').
 order().by('created_date', decr).
 limit(3).
 valueMap('created_date', 'body').
 with(WithOptions.tokens)

==>{id=666, label=review,

➥ created_date=[Wed May 01 07:37:44 CDT 2019],

➥ body=[Quo et non aut ipsam qui autem aut...
==>{id=564, label=review,

➥ created_date=[Tue Mar 12 20:33:43 CDT 2019],

➥ body=[Ducimus maxime corrupti et aut...
==>{id=894, label=review,

➥ created_date=[Wed Sep 26 18:30:16 CDT 2018],

➥ body=[Soluta velit quasi explicabo ut...

valueMap() and the with() step
As of TinkerPop version 3.4, the valueMap() step takes an optional with() step for
modifying the output, so it is a fairly recent addition to TinkerPop. Not all vendors may
support it. Prior to TinkerPop version 3.4, the valueMap() step, including the IDs and
labels, uses a Boolean parameter like valueMap(true), or, more specific to our
present case, valueMap(true, 'created_date', 'body'). That form should still
work, at least up to TinkerPop version 3.5.

TinkerPop is striving for more consistency in its implementation and now uses a
with() step to provide configuration information for the valueMap() step. By spec-
ifying with(WithOptions.tokens), we can include both Gremlin’s internal ID value
as well as the label of the vertex in our responses.

Returns the ID and label
metadata of the vertex

Results now
include id and
label properties.

214 CHAPTER 8 Building traversals using known walks
ADDING THIS TRAVERSAL TO OUR APPLICATION

Whew, it certainly took more work to develop this known-walk traversal than the social
network ones, but the hard work is over. Luckily, the process of adding it to our actual
application is the same as the one we used for adding our social network traversals
in chapter 6. We won’t go over the details again, but you can find the full Java code in
the chapter08/java folder in a new method called newestRestaurantReviews(). We
share the relevant parts of the method here with some call-outs for the minor differ-
ences from the Gremlin code we drafted. The following shows the newestRestaurant-
Reviews() method:

private static String newestRestaurantReviews(GraphTraversalSource g) {
 Scanner keyboard = new Scanner(System.in);
 System.out.println("Enter the id for the restaurant:");
 Integer restaurantId = Integer.valueOf(keyboard.nextLine());

 List<Map<Object, Object>> reviews = g.V().
 has("restaurant",

➥ "restaurant_id", restaurantId).
 in("about").
 order().
 by("created_date", Order.desc).
 limit(3).
 valueMap("rating", "created_date", "body").
 with(WithOptions.tokens).
 toList();

 return StringUtils.join(reviews, System.lineSeparator());
}

Congratulations, you built your first known-walk traversal and you now know the pro-
cess of iteratively constructing a traversal! You can repeat this process of starting with a
specification of steps, adding each Gremlin step one at a time, and testing the tra-
versal against the test data to make sure you get the expected results until you’ve satis-
fied all the identified parts.

8.3 Pagination and graph databases
This traversal is also a great way to illustrate one of the more challenging patterns with
graph databases—pagination.1 As we noted, it’s possible that our traversal can return
more results than the requesting software wants or can handle. We addressed that
concern in the last section by limiting our results to just the newest three reviews.
What if the requesting software wanted access to all the results, just not all of those at
the same time?

1 We want to give a shout-out to Jason, an early MEAP reader that requested we address the subject of pagi-
nation. Jason, thanks for being an early reader of our work and for reminding us to discuss this everyday
use case.

All strings in Java must
use double quotes.

Uses TinkerPop’s
Order enumeration

All traversals require a terminal step; here we
use toList() when not using the Gremlin Console.

215Pagination and graph databases
 Before we investigate how graph databases handle pagination, let’s take a quick
look at how relational databases handle pagination to use that as a comparison. Wait—
we can’t take a quick look because it seems that every relational database engine does it
slightly differently, each with its own semantics. What is common is that most pagina-
tion implementations take two inputs:

 offset—The number of records to skip. To start at the beginning of the
data set is to have offset = 0. Offset values are multiples of the page size.
With a page size of 10, possible offset values would include 0, 10, 20, 30, and
so forth.

 limit—The page size or the maximum number of items to return. We stress
that the limit is the maximum number of items because result sets won’t always
return the page size (e.g., the final page can contain fewer objects than the
specified page size).

The general pattern for dealing with pagination in a relational database, and in a
graph database it is the same:

1 Retrieve the values of the traversal.
2 Start with the record at the offset index.
3 Return the limit number of values.
4 Repeat the process with a new offset value equal to offset + limit.

To handle this in Gremlin, we use the range() step. Although we briefly introduced
the range() step in chapter 5, here we expand the definition slightly:

 range(startNumber, endNumber)—Passes through the objects, starting with and
including those indexed at the startNumber, continuing up to but not includ-
ing those indexed with endNumber. So startNumber is inclusive, and endNumber
is exclusive.

A keen observer will notice that while startNumber is the same as the offset, endNumber
isn’t the same as the limit used in relational databases. Instead, endNumber = start-
Number + limit. A pagination function that take the usual inputs of offset and limit
must compute the endNumber.

 The startNumber and endNumber values apply to an element index returned by the
traversal. This element index value is somewhat analogous to the results of a SQL
ROW_NUMBER() function. This value is a zero-based element index number assigned to
each of the elements based on the order those are passed to the range() step.

IMPORTANCE OF ORDERING THE INPUTS BEFORE CALLING RANGE()
For pagination to work as expected, the order of objects passed to the range() step
matters. This means we need to order elements prior to paginating them. Without
ordering, the results can arrive at the range() step in any sequence, and subsequent
calls to the same traversal can result in a different ordering of the objects as these
enter that step. Not sure what we mean by this? Well, let’s take a look.

216 CHAPTER 8 Building traversals using known walks
 For example, assume that a graph has five vertices: ([v[0], v[1], v[2], v[3],
v[4]]). Then let’s assume that we request vertices two at a time, and that we make that
request three times. This looks like the three following calls:

g.V().range(0,2)
g.V().range(2,4)
g.V().range(4,6)

Running this, we expect to obtain the following output:

v[0], v[1]
v[2], v[3]
v[4]

This output is only true if g.V() returns the same order of vertices each time. What
would happen if it changed the ordering each time?

 In theory, if a database provides a randomized return order, then we get back a seem-
ingly random pair of vertices for each call. Because our call returns the values based on
an index, if the element in that index changes between runs, so does the value that is
returned. TinkerPop guarantees that it returns elements in the order these enter a step,
but it is up to the actual underlying engine to specify that order. In other words, there’s
no guarantee about the order unless we specify an order.

 This is no different than relational databases: the database engine determines the
order of the results according to its own internal logic. This means that to provide a con-
sistent experience to our users, we must sort things before calling the range() step.

ORDERING IS AN EXPENSIVE OPERATION

We must note that ordering results is an expensive operation in any database, particu-
larly with large data sets. To order the results of a traversal, the database must first
return all the results and then sort them. This cost is the same in both relational and
graph databases.

 In TinkerPop, the order() step is categorized as a “collecting barrier step.” Unlike
most TinkerPop steps, which are lazy, meaning that the data is processed opportunisti-
cally as new values enter the step, the order() step (and other collecting barrier steps)
first collect all incoming values before ordering these and then send the results to the
following steps. Yet again, this is no different than any relational database, because to
provide a sorted set of values, we must first know all the values we need to sort.

 Let’s take a look at what our traversal from the last section looks like when we
update it to include pagination. To reduce the output text, we use the rating prop-
erty instead of the body property. When adding pagination, we need to make the fol-
lowing changes:

1 Replace the limit() step with a range() step.
2 Define a limit variable with a value of 3.
3 Define an offset variable and increment it by the limit value for each call.

217Pagination and graph databases

Sets
in
o

NOTE Because the Gremlin Console converts timestamps to local time zones
and we can update our sample data after publication, your results might not
match our results exactly.

Implementing these changes, our traversal now looks like this:

limit = 3
==>3
offset = 0
==>0
g.V().has('restaurant','restaurant_id',rid).
 in('about').
 order().by('created_date', decr).
 range(offset, offset + limit).
 valueMap('rating','created_date')
==>{rating=[2],

➥ created_date=[Sun May 26 00:53:56 AKDT 2019]}
==>{rating=[1],

➥ created_date=[Thu Mar 28 21:56:30 AKDT 2019]}
==>{rating=[5],

➥ created_date=[Fri Nov 09 20:09:49 AKST 2018]}

We see from this code example that the newest three reviews are returned. Let’s see
what happens if we try to get the next page of results:

offset = offset + limit
==>3
g.V().has('restaurant','restaurant_id',rid).
 in('about').
 order().by('created_date', decr).
 range(offset, offset + limit).
 valueMap('rating','created_date')
==>{rating=[5],

➥ created_date=[Tue Sep 11 14:39:05 AKDT 2018]}
==>{rating=[3],

➥ created_date=[Tue Oct 24 07:38:21 AKDT 2017]}
==>{rating=[2],

➥ created_date=[Tue Mar 28 18:10:00 AKDT 2017]}

We retrieve three results, but these are older than the results from the previous run of
this traversal. To continue paging our results, we only need to update the offset each
time by calculating a new endNumber using the offset + limit calculation. Let’s
update our offset again and do this one more time:

offset = offset + limit
==>6
g.V().has('restaurant','restaurant_id',rid).
 in('about').
 order().by('created_date', decr).
 range(offset, offset + limit).
 valueMap('rating','created_date')

Sets the number of
results to return

 our
itial
ffset

Replaces the limit() step
with the range() step

Newest
three results
returned

Updates our offset to get
the next page of results

Returns the
next three
results

Updates our
offset to 6

218 CHAPTER 8 Building traversals using known walks
==>{rating=[2],

➥ created_date=[Thu Jun 09 08:58:35 AKDT 2016]}
==>{rating=[2],

➥ created_date=[Sun Sep 27 10:21:17 AKDT 2015]}

Well, that is a bit strange. Why did we only get two results back instead of three? This is
because we only had eight reviews for this restaurant. This leads us to one final ques-
tion to address: How do we know when to stop paging?

 One approach is to keep running the traversal and incrementing the offset until it
returns an empty result set. This approach is useful when we expect a large number of
results and don’t need to know the total number, or when we want to avoid the cost
of counting all of the results up front. A second approach is to initialize a count of the
possible results and then use that as an upper bound to the offset + limit value. This
latter approach is particularly useful when the application needs to know the total
number of possible results it is required to display.

8.4 Recommending the highest-rated restaurants
We’ve finished writing the first known-walk traversal for our recommendation engine.
Let’s move on to answering our second question, “What are the ten highest-rated
restaurants near me?” For this question, we follow the same methodology as we did in
the last section:

1 Identify the vertex labels and edge labels required to answer the question.
2 Find the starting location for the traversal.
3 Find the end location for the traversal.
4 Write out the steps in plain English (or in your preferred language). The first

step is your input step; the last step is the output or return step.
5 Code each step with Gremlin, one at a time, verifying the results against the test

data after each step.

8.4.1 Designing our traversal

Now that we know the process for constructing a traversal run through, let’s repeat
the process for this traversal. However, unlike the detailed walk-through we did in the
last section, we progress through the steps quickly, only stopping to dive into the
details where they differ from the previous process. In section 8.1, we specified that we
need the following elements to answer this question.

Question Vertex Labels Edge Labels

What are the ten highest-rated
restaurants near me?

restaurant
city
review
person

lives (connecting person → city)
within (connecting restaurant → city)
about (connecting review → restaurant)

Returns only
two results
instead of three

219Recommending the highest-rated restaurants
Let’s highlight the relevant elements of the schema. Figure 8.4 shows the data model
for this use case.

 Because we’ve identified the relevant schema elements for our use case, we can
move on to the first step in finding our starting step. Remember that locating the
starting point is all about finding the portion of the question that narrows down our
traversal to the minimum number of starting vertices. Looking at the question, “What
are the ten highest-rated restaurants near me?”, we see that a user wants all the restau-
rants located “near me.” This means that the person vertex filtered by person_id
needs to narrow down our starting vertex to a single instance, “me.”

 Next, we move to the second step in our process—finding the end point. Examin-
ing the question tells us that what the user wants is a list of nearby restaurants, mean-
ing our endpoint should be the restaurant vertex. While not explicit, it seems likely
that a user wants to get back several properties of the restaurant, such as the name,
address, and the average rating for that restaurant. With these two pieces of infor-
mation, we can start our step specification as

 Start with the current person, identified by their person_id.
. . .

 Return the name, address, and average rating for the restaurant vertices.

restaurant_id

name

address

person_id

first_name

last_name

rating

body

created_date

name

city

restaurant

review

restaurant

person

review

city

within

lives

about

person

Figure 8.4 Logical data model elements required for the question, “What are the ten
highest-rated restaurants near me?”

220 CHAPTER 8 Building traversals using known walks
Next, we move on to figuring out the series of vertices and edges needed to traverse
from our starting and ending points. As we did in the last question, we are going to
assume that “near me” means the city in which the user lives. To get the city for that
person, we traverse from the person to the lives edge to find the city. Now that we
are on the correct city vertex, we need the restaurant vertices in the same city.
Examining our schema, we see that the within edge connects the two.

 As with our last traversal, we need to do some ordering and limit the results; in this
case, 10 is specified before we return the restaurant vertices. This leaves us with the
following set of actions that our traversal needs to accomplish:

 Start with the current person, identified by their person_id.
 Traverse the lives edge to get their city.
 Traverse the within edge to get the restaurant vertices of the city.
 Calculate and perform a descending sort by average_rating.
 Limit to the first 10 results.
 Return the name, address, and average rating for the restaurant vertices.

With these actions identified, let’s go on to the next step. This step is where we itera-
tively develop our traversal.

8.4.2 Developing the traversal code

Just as we did in the last section, we’ll develop this traversal in an iterative fashion. In
this section, we’ll write the code one step at a time, testing our traversal after each step
to ensure that we get the results we expect. Along the way, we’ll revisit some of the
concepts we learned in previous sections and show how these can be applied to more
complex, real-world scenarios.

 Before we begin, as with the last example, let’s make it easy to test multiple people
by using a variable to represent the person_id we use for filtering. Let’s use Denise in
Cincinnati this time and set pid = 8:

pid = 8
==>8

As always, we start our traversal filtering on the starting point (in this case, Denise).
We learned in chapter 3 how to use Gremlin to filter the person vertex based on a
person_id value, so let’s apply that here and add a valueMap() step to return the prop-
erties so we can verify our results

g.V().has('person','person_id',pid).
 valueMap().with(WithOptions.tokens)

==>{id=45, label=person, last_name=[Mande],

➥ first_name=[Denise], person_id=[8]}

Gets the person where
person_id = pid

Returns all the properties
and metadata

The test data returns the
Denise vertex as expected.

221Recommending the highest-rated restaurants
We’re off to a good start! Let’s now traverse out from the Denise vertex to find the
city. From the schema, we see this is an outbound edge, so we use an out() step:

g.V().has('person','person_id',pid).
 out('lives').
 valueMap().with(WithOptions.tokens)

==>{id=7, label=city, name=[Cincinnati]}

Because Denise lives in Cincinnati, our next action is to traverse the within edge,
which is an inbound edge. With this traversal, we can find the nearby restaurants in
that fair urban conclave:

g.V().has('person','person_id',pid).
 out('lives').
 in('within').
 valueMap().with(WithOptions.tokens)

==>{id=60, label=restaurant, address=[600 Bergnaum Locks],

➥ restaurant_id=[1], name=[Rare Bull]}
==>{id=192, label=restaurant, address=[102 Kuhlman Point],

➥ restaurant_id=[18], name=[Without Heat]}
...

We’ve truncated the results to only a subset, but it’s clear that we’re dealing with test
data. How else can we explain the complete lack of chili restaurants in Cincinnati?
(Although what they call “chili” in Cincinnati would never be considered authentic
chili in other parts of the world.)

 Now that we’ve successfully returned the restaurants in the city of our user, Denise,
we’re ready to order this list of restaurants by their average ratings. Here is where it
gets a little bit trickier. In the previous examples, all the values we needed to answer
our question resided on the end point vertex. For this example, this is not the case.
The rating value we need to use is located on the review vertex, so we need to tra-
verse to the review vertices for a restaurant and compute the average rating.

 Recall section 5.3, where we discussed ordering and grouping? There, we stated
that not only can we pass a property into the order() step’s by() modulator, but we
can also pass in a traversal. In this case, we want to pass in a traversal, which traverses
to the review vertex, and average the rating values for a restaurant. While we know
how to traverse to the review vertex, we need a new step to calculate the average:

 mean()—Aggregation to compute the mean or average of a set of values; used
most commonly in the group().by().by() step pattern

Let’s combine this step with what we know about traversing and give this a try:

g.V().has('person','person_id',pid).
 out('lives').
 in('within').

Traverses the lives
edge to get the city

The test data returns
Cincinnati as expected.

Traverses the within edge
to get the restaurants in
Cincinnati

222 CHAPTER 8 Building traversals using known walks
 order().
 by(__.in('about').values('rating').mean()).
 valueMap().with(WithOptions.tokens)

The provided traverser does not map to a value:

➥ v[232]->[VertexStep(IN,[about],vertex),

➥ PropertiesStep([rating],value), MeanGlobalStep]

➥ Type ':help' or ':h' for help.

➥ Display stack trace? [yN].

Uh-oh. Whoops! Something certainly didn’t go as expected there. Let’s see if we can
parse this unexpected response and sort out the problem.

TROUBLESHOOTING ERRORS WHILE DEVELOPING A TRAVERSAL

We’ll start by saying that we rarely look at the stack trace for an error. We find that if
we are following the development process of adding one action at a time to the tra-
verser, then we already know where to begin debugging. Combining that with the
details in the error and our knowledge of how graph traversals work is usually suffi-
cient to troubleshoot. Now, about the actual troubleshooting. Because we iteratively
add steps to our traversal, we know that the issue is likely with the last step:

order().
 by(__.in('about').values('rating').mean())

Let’s take a look at the error message to see what details it might give us about the
problem:

The provided traverser does not map to a value.

Just as with any debugging problem, we need to combine the information in this error
message with what we know about how graph traversals work to postulate a likely rea-
son for the error. Recall that a traverser is a process that performs a specific task. The
traversal, which is the whole string of steps, is broken down into multiple traversers
along the way. In this case, we can see that one of these traversers ran into a problem:
it didn’t return a result. The question is, what was the traverser trying to do when it
failed to get a result? Because we know that the issue was with our ordering step, we
already know the problematic step, but how do we check our suspicion?

 How exactly we check for this information is different for each database. Luckily,
for those using Gremlin, this is easy because the next part of the error statement
tells us:

v[232]->[VertexStep(IN,[about],vertex), PropertiesStep([rating],value),
MeanGlobalStep]

The information you are looking at is Gremlin bytecode. Generally, as application
developers, we don’t worry about the bytecode. It is an implementation detail within
the Gremlin Server and in the TinkerPop drivers. However, it is usually what is displayed

Orders results by the
average rating

Standard Gremlin
Server error statement

223Recommending the highest-rated restaurants
when there is an error and points out a problem. While there is not a one-to-one map-
ping of bytecode steps to Gremlin steps, it is usually easy enough to map between the
two (more on this in chapter 10). In this case, we see that one vertex (v[232]) gener-
ated the error. Which traversal step caused the error can be inferred from knowing
which steps were added last; in this case

order().
 by(__.in('about').values('rating').mean())

More specifically, we see that the bytecode identifies the MeanGlobalStep, so we can
infer that our issue is with the in('about').values('rating').mean() part of the
traversal. This is an important feature of our step-by-step approach to traversal devel-
opment (or any complex software, for that matter). By testing after each incremental
change, when we run into an error, we know exactly what caused it!

 Because vertex v[232] didn’t like that part of the traversal, let’s investigate why. To
answer these types of questions about a specific vertex, we start by looking at the data
for that vertex:

g.V(232).valueMap().with(WithOptions.tokens)

==>{id=232, label=restaurant, address=[212 Lorraine Court],

➥ restaurant_id=[23], name=[With Sauce]}

Nothing looks out of order with the details about the vertex. But then again, that
wasn’t where there was a problem. The vertex made it through the traversal just fine,
up to the point where we sorted these by the average ratings. Because the ratings are
located on the review vertex and not the restaurant vertex, let’s look at the about
edges that take us to the review vertices for this restaurant:

g.V(232).inE('about')
==>

Well, that’s it! There are no reviews for this restaurant. By combining our iterative devel-
opment process with what we know about traversing a graph, as well as the details of our
error message, we quickly pinpointed the issue with our traversal.

 In locating the source of the problem in this example, we found that we had made
an incorrect assumption about the data. But we could just as easily have made a typo
in our script, or there could have been a problem with the logic. We can fix this prob-
lem by adding a review, but the problem wasn’t that the data was wrong. The real
problem is that we had an incorrect assumption about the data. We were fortunate
enough to discover that in our development process, not in production, and so we’re
able to write the necessary defensive code to handle a valid state of the data.

Traversal gets the full details about
the vertex with the ID 232

Response with full details about
the vertex with the ID 232

Traversal displays the about edges
for the vertex with the ID 232

Response listing a within
edge and a serves edge

224 CHAPTER 8 Building traversals using known walks
 In other situations with incorrect assumptions about the data, adding to the sam-
ple data might be the best approach. Depending on your specific circumstances, you
might want to investigate whether there is some validation process in place with pro-
duction data that isn’t reflected in a test data set. Or perhaps the test data isn’t crafted
well enough to fit the actual shape and scope of the real-world data. Maybe the solu-
tion is to add a validation process and clean the data before this traversal runs on it.
There are multiple possibilities governed by your environment and the nature of the
software you develop. There are, however, some approaches to troubleshooting that
can be generally helpful.

 In our example, we knew with certainty that the traversal was working as expected
before we added the order() step. Additionally, we were able to parse the error state-
ment and get helpful clues. We could then investigate the problem vertex, its proper-
ties, and its edges. And we were able to lay out all of that information and reason back
to the true cause of the error.

 Finally, when troubleshooting these types of errors, there are other resources at
your disposal. Sometimes just talking about the problem with a colleague can help
you get to a solution. Another possible approach is to attempt to duplicate the
conditions in a more controlled way, perhaps with a smaller set of data. Last but not
least, there are also online resources like the Gremlin Users email group and the
Stack Overflow website, or a vendor’s support team, or even consulting services for
researching, asking questions, or getting paid support. The final point is that you
are not alone.

MID-TRAVERSAL FILTERING

Returning to our traversal, we have now pinpointed our issue as being the lack of
reviews for restaurant v[232]. The question is, what are we going to do about it?

 We could say that a lack of reviews is a problem with the data, and as authors, we
were sorely tempted to just add one more review to the sample data and avoid the lit-
tle trouble-shooting digression in the last section. But we felt that the teachable
moment was too good to pass up. A lot of times, we make assumptions about the data
that are later exposed in our traversal development. In our recommendation use case,
we assumed that all the restaurants had ratings. However, this was a bad assumption.
Having a restaurant without a rating is actually a reasonable expectation and should
be handled. So how do we handle this?

 In this example, we filter out restaurants that don’t have ratings, which is to say,
do not have any about edges. For this filtering, we introduce a new step, the where()
step:

 where(traversal)—Filters incoming objects based on a traversal, and only
passes through objects when the traversal returns a result

The has() step, however, is the primary go-to filtering step and is best for filtering logic
based on properties. The where() step is generally for all other filtering use cases,
where we filter based on a more complex set of logic beyond simple property matching.

225Recommending the highest-rated restaurants
In SQL terms, using a where() step is similar to writing a subquery in the WHERE
clause such as this:

SELECT
 FirstName,
 LastName
FROM
 Person.Person
WHERE
 BusinessEntityID =
 (
 SELECT BusinessEntityID
 FROM HumanResources.Employee
 WHERE ID_Number = 123
);

For our traversal, we want to traverse only from restaurants that have reviews, so we fil-
ter based on the existence of an about edge. To accomplish this, let’s insert a where()
step that checks the presence of an about edge before our order() step:

g.V().has('person','person_id',pid).
 out('lives').
 in('within').
 where(__.inE('about')).
 order().
 by(__.in('about').values('rating').mean()).
 valueMap().with(WithOptions.tokens)

==>{id=224, label=restaurant, address=[3134 Keenan Stravenue],

➥ restaurant_id=[22], name=[With Shell]}
==>{id=108, label=restaurant, address=[2419 Pouros Garden],

➥ restaurant_id=[7], name=[Eastern Winds]}
...

Well, that gives us a result, but not exactly the one we are looking for. We got back a
list of ordered vertices, but the ratings aren’t visible, so we aren’t sure if these were
ordered correctly. To get this list with the computed averages, we need to switch our
approach. Before we order the data, we need to compute the mean rating for each
restaurant and associate it with the restaurant vertex. Let’s group vertices into key-
value pairs with the restaurant vertex as the key and the mean of the rating values as
the value.

 In section 5.3.2, we showed you how to use a group().by().by() series of steps to
produce a collection of key-value pairs. The first by() modulator specifies the keys;
the second by() modulator specifies the values. To create key-value pairs for this use
case, we use the group() step, but how do we return the restaurant vertex as the key?
To return this key, we need another Gremlin step:

 identity()—Takes the element entering the step and returns that same ele-
ment unaltered

Adds a where() step to
filter out vertices without
an inbound about edge

Lists the
restaurants

226 CHAPTER 8 Building traversals using known walks
Now that we know how to calculate both the key and value parts of our key-value pair,
we can add these steps with the group().by().by()like this:

g.V().has('person','person_id',pid).
 out('lives').
 in('within').
 where(__.inE('about')).
 group().
 by(__.identity()).
 by(__.in('about').values('rating').mean())

==>{v[192]=1.5, v[324]=4.0, v[262]=3.3333333333333335,

➥ v[200]=3.25, v[330]=2.25, v[270]=2.0, v[208]=4.0,

➥ v[336]=4.0, v[146]=3.5, v[84]=1.75, v[276]=2.0,

➥ v[342]=5.0, v[216]=3.6666666666666665, v[154]=3.5,

➥ v[282]=3.5, v[92]=2.5, v[224]=1.0,

➥ v[162]=3.6666666666666665, v[100]=4.0, v[294]=4.5,

➥ v[108]=1.3333333333333333, v[176]=2.5, v[306]=4.0,

➥ [246]=3.0, v[60]=4.333333333333333

Whoo-hoo! The group().by().by() gave us the key-value pairs we wanted, with the
key being the restaurant vertex and the value being the average rating for all reviews
of that restaurant. Key-value pairs are convenient to work with, as long as we get these
ordered by their values. Let’s add our order() step back in and look at our results:

g.V().has('person','person_id',pid).
 out('lives').
 in('within').
 where(__.inE('about')).
 group().
 by(identity()).
 by(__.in('about').values('rating').mean()).
 order().
 by(values, desc)

==>{v[193]=3.0, v[289]=2.75, v[163]=4.0,

➥ v[69]=3.3333333333333335, v[133]=1.3333333333333333,

➥ v[139]=3.0, v[331]=4.0, v[109]=2.25, v[301]=4.0,

➥ v[177]=4.0, v[209]=2.6666666666666665,

➥ v[147]=2.6666666666666665, v[307]=3.0, v[117]=3.0,

➥ [277]=3.0, v[247]=3.0, v[185]=3.0, v[313]=5.0,

➥ v[155]=3.0, v[61]=4.333333333333333, v[125]=2.5}

Wait a minute. If we look at the results, these don’t appear to be ordered correctly.
What is going on? Looking at the results before we added our order() step, we might
see the answer:

==>{v[193]=3.0, v[289]=2.75, v[163]=4.0,

➥ v[69]=3.3333333333333335, v[133]=1.333333333333333,

➥ v[139]=3.0, v[331]=4.0, v[109]=2.25, v[301]=4.0,

➥ v[177]=4.0, v[209]=2.6666666666666665,

Groups vertices to create
our key-value pair

Assigns the current
element as the key

Traverses the about edge
and returns the average
rating as the value

Results now contain
key-value pairs.

Adds the order step

Orders results in
descending order by the
values of our key-value pair

Results are not
ordered as expected.

227Recommending the highest-rated restaurants
➥ v[147]=2.6666666666666665, v[307]=3.0, v[117]=3.0,

➥ v[277]=3.0, v[247]=3.0, v[185]=3.0, v[313]=5.0,

➥ v[155]=3.0, v[61]=4.333333333333333, v[125]=2.5}

Examining this code snippet closely, we see that what we are getting back is not a col-
lection of key-value pairs as one might expect, but a single object. Note the starting
and ending braces: { and }. This is an unexpected result, but one that we know how to
remedy. Back in section 5.3.2, we dealt with this same issue with our grouped results.
There, we used a step to explode an object into its individual properties using the
unfold() step. Let’s add this step before our order() step and see if we get a properly
ordered set of results:

g.V().has('person','person_id',pid).
 out('lives').
 in('within').
 where(__.inE('about')).
 group().
 by(identity()).
 by(__.in('about').values('rating').mean()).
 unfold().
 order().
 by(values, desc)
==> v[342]=5.0
==> v[294]=4.5
...
==> v[224]=1.0

While the results are truncated, it is pretty clear that we are getting back the results in
descending order by average rating as expected. Whew, that was a lot of work, but it
looks much better. We returned our aggregation, associated it with the vertex, and got
our ordering. That only leaves limiting our results:

g.V().has('person','person_id',pid).
 out('lives').
 in('within').
 where(__.inE('about')).
 group().
 by(identity()).
 by(__.in('about').values('rating').mean()).
 unfold().
 order().
 by(values, desc).
 limit(10)

==> v[342]=5.0
==> v[294]=4.5
...
==> v[162]=3.6666666666666665

Now that we have the right number of results in the correct order, and we have all of
the data we need, we’re almost at the end of our process. All that is left is to format

Unwinds the incoming
object into individual
key-value pairs

Results are
ordered as
expected.

Limits results
to 10

Top 10 results ordered
by descending average
rating

228 CHAPTER 8 Building traversals using known walks
our results to return the name, address, and average rating for each restaurant. This
task is more complicated than the previous examples because it requires that we com-
bine both the project() and the select() steps to create our object.

PROJECTING KEY-VALUE PAIRS

Our traversal returns key-value pairs containing the restaurant vertex and the average
rating. But what we really want to return is a map of properties containing the name,
address, and average rating. To generate this new object from the current key-value
pairs, we need to revisit what we learned in section 5.2.1 about formatting results.

 We know that we have two options for formatting results: selection and projec-
tion. Because we want to create our result object from the our current location
(instead of selecting data from earlier in our traversal), we use a project() step. We
start by creating three property names for the returned object and add a by() mod-
ulator for each one:

project('name', 'address', 'rating_average')
 by().
 by().
 by()

Before we jump into projecting our traversal, we need to take a minute and talk about
how to use the project() step with key-value pair data. Using the project() step with
a key-value pair instead of a graph element is more complicated. We need to pull data
from either the key or the value portion of the incoming key-value pair.

 Remember, at this point in the traversal, we are working a collection of key-value
pairs, the first of which looks like this: v[313]=5.0. The key part is the v[313], which
represents a vertex with an ID value of 313. The value part is 5.0, which is the average
rating we computed in the group() step.

 When working with key-value pairs, we choose the key part or value part using a
special overload of the Gremlin select() step. This overload takes a token, either
keys or values, to specify whether we want to choose the key (select(keys)) or the
value (select(values)) portion of the key-value pair.

IMPORTANT The token values is different from the values() step. The token
values refers to the value portion of a key-value pair, while the values() step
specifies the properties to return from an element. We wanted to call this to
your attention because we use both in the same traversal. We know this is con-
fusing, but we didn’t name this, so please don’t shoot the messenger.

Returning from that brief aside, let’s apply our knowledge to this traversal. We know
that we want the name and address properties from the key, containing the restaurant
vertex, and the rating_average from the value of our key-value pair. Combining this

The three property names
of our return object

The by() modulator for the
name key in the project() step

The by() modulator for the
address key in the project() step

The by() modulator for the rating_average
key in the project() step

229Recommending the highest-rated restaurants
with our knowledge of how to select portions of our key-value pair, we get the follow-
ing traversal:

project('name', 'address', 'rating_average')
 by(select(keys).values('name')).
 by(select(keys).values('address')).
 by(select(values))

Applying this to the end of our earlier traversal, we get

g.V().has('person','person_id',pid).
 out('lives').
 in('within').
 where(__.inE('about')).
 group().
 by(identity()).
 by(__.in('about').values('rating').mean()).
 unfold().
 order().
 by(values, desc).
 limit(10).
 unfold().
 project('name', 'address', 'rating_average').
 by(select(keys).values('name')).
 by(select(keys).values('address')).
 by(select(values))

==>{name=Lonely Grape, address=09418 Torphy Cape,

➥ rating_average=5.0}
==>{name=Perryman's, address=644 Reta Stream,

➥ rating_average=4.5}
...

That’s all, folks. We’ve successfully written a traversal to answer, “What are the ten
highest-rated restaurants near me?” While this wasn’t as straightforward as we might have
hoped, it denotes the complexity we can encounter when writing graph traversals. It also
allowed us to demonstrate some common graph concepts, such as how to deal with key-
value pairs and how to construct complex result objects, not to mention our little excur-
sion into mid-traversal development troubleshooting. Now that the hard work of finishing
this use case is complete, the only thing left to do is to add it into our application.

ADDING THE TRAVERSAL TO OUR APPLICATION

As in the last section, in this section, we’ll follow the same process as we did in chap-
ter 6. In our example app, we’ll add a new method called highestRatedRestaurants.
In Java, the traversal code looks like this:

List<Map<String, Object>> restaurants = g.V().
 has("person", "person_id", personId).

Selects the name from the
restaurant vertex in the key

Selects the address from the
restaurant vertex in the key

Selects the rating_average
from the value

Adds project() step to
return results with all
needed properties

Results with all properties
are ordered as expected.

Results truncated for brevity.

230 CHAPTER 8 Building traversals using known walks
 out("lives").
 in("within").
 where(inE("about")).
 group().
 by(identity()).
 by(in("about").values("rating").mean()).
 unfold().
 order().
 by(values, Order.desc).
 limit(10).
 project("name", "address", "rating_average").
 by(select(keys).values("name")).
 by(select(keys).values("address")).
 by(select(values)).
 toList();

8.5 Writing the last recommendation engine traversal
We’ve worked our way back to the first question, “What restaurant near me with a spe-
cific cuisine is the highest rated?” Let’s make this section a little more concrete. Let’s
choose a random person from our test data.

 Say we’re Kelly Gorman. Because we are Kelly, and because Kelly is a social catalyst,
we’re out with our friends. As everyone knows, everywhere Kelly goes, there’s always a
group of people eating and hanging out. The group is getting a little unruly because
they’re hungry and thirsty, but they can’t decide where to go, debating between a
diner or just going to a bar. Naturally, Kelly pulls up DiningByFriends and gets every-
one to agree that they’ll go to the top local diner or bar as returned by the app. Your
job now is to use what you have learned to build the traversal and return that restau-
rant. Doing so saves Kelly from her hangry friends.2

 We’ll give you a couple of hints to get started, provide a quick review of the process
used in the two previous sections, and then offer some space to sort out the answer on
your own. Then we’ll close the chapter by revealing our traversal and walking through
our thinking. To start, as Kelly Gorman, we assume that we’re logged into DiningBy-
Friends with

pid = 5
==>5

We need to enter two cuisines for our search. To do so, we create a list variable in the
Gremlin Console like this:

cuisine_list = ['diner','bar']
==>diner
==>bar

2 The word hangry is an English portmanteau of “hungry” and “angry.”

An anonymous traversal
is not required due to
imports.

Enum values (Column.keys,
Column.values) included in
imports

231Writing the last recommendation engine traversal
Finally, the answer we expect to display from DiningByFriends is this:

{name=Without Chaser, address=01511 Casper Fall,
rating_average=3.5, cuisine=bar}

We invite you to go through the process we used with the first two questions:

1 Identify the vertex labels and edge labels required to answer the question. Per-
haps make a small schema drawing to help you process what to use in the graph.

2 Find the starting location for the traversal.
3 Find the ending location for the traversal.
4 Write out the steps in plain English (or in your preferred language). The first

step is your input step, and the last step is the output step.
5 Code each step with Gremlin, one at a time, verifying the results against the test

data after each step.

We broke down the relevant question for you to answer at the start of the chapter, but
we repeat that in the following table for your convenience. To help with the first step,
figure 8.5 provides a picture of the schema.

Now take a few minutes and record the steps the traversal requires to answer the ques-
tion. We think you’ll need eight or nine steps, including the initial one with the start-
ing and the ending return steps. Hint: many of the steps are identical to the traversal
used in the previous section. Given all of that, feel free to plan out your approach with
the following bullet list:

 (Starting Point)
 (Listing of steps to traverse)

. . .

 (Ending Point)

We encourage you to refer back to the two previous examples in this chapter, as well as
the last chapter’s content as you work through this exercise on your own. When you
have outlined your approach with bulleted points, go ahead and code it and test it
with the data. We also suggest that you look at the within() predicate to help you fil-
ter by cuisine (see http://mng.bz/wpp7). Aside from that, the other parts of our solu-
tion have been discussed previously in this book, many in this chapter. When you’re
ready, take a look at our solution in the next section.

Question Vertex Labels Edge Labels

What restaurant near me with a
specific cuisine is the highest
rated?

person
city
restaurant
cuisine
review

lives (connecting person → city)
within (connecting restaurant → city)
serves (connecting restaurant → cuisine)
about (connecting review → restaurant)

http://mng.bz/wpp7

232 CHAPTER 8 Building traversals using known walks
8.5.1 Designing our traversal

Our first thought is that this traversal is similar to the traversal from the last section.
Much like that one, we look for restaurants near the current user, so the best starting
point here is a person vertex filtered by the person_id. The ending point is also going
to be a list of restaurant vertices with the restaurant‘s name, address, average rating,
and type of cuisine served. Here is the list of actions we came up with:

1 Get the person based on the person_id input with the pid variable.
2 Traverse the lives edge to get their city.
3 Traverse the within edge to get the restaurant vertices for the city.
4 Filter the restaurant vertices based on the adjacent cuisine vertex to show

only those that offer one of the cuisines specified in the cuisine_list variable.
5 Group the vertices with computed rating_average, including a filter to ensure

each restaurant vertex has a review.
6 Order by average_rating, descending.
7 Limit to one result.
8 Return name, address, and average rating for the restaurant vertex.

restaurant_id

name

address

person_id

first_name

last_name

rating

body

created_date

name

city

restaurant

cuisine

name

restaurant

cuisine

person

review

city

within

lives

wrote

about

serves

person

review

Figure 8.5 Logical data model elements required for the question, “What restaurant near
me with a specific cuisine is the highest rated?”

233Writing the last recommendation engine traversal
With those parts laid out, we know the steps we need to accomplish this traversal. With
the exception of the number of items returned and filtering on the cuisine, we can
reuse much of the traversal we constructed in section 8.3. Let’s start by copying that
traversal here and limiting our results to one:

g.V().has('person','person_id',pid).
 out('lives').
 in('within').
 where(inE('about')).
 group().
 by(identity()).
 by(__.in('about').values('rating').mean()).
 unfold().
 order().
 by(values, desc).
 limit(1).
 project('name', 'address', 'rating_average').
 by(select(keys).values('name')).
 by(select(keys).values('address')).
 by(select(values))
==>{name=Dave's Big Deluxe, address=490 Ivan Cape, rating_average=4.0}

The next missing piece of this traversal is to filter for the input cuisine(s). For this, we
want to add a simple filter using has():

 has('cuisine',within(cuisine_list))

However, we can’t. That’s not how the schema is designed. In our model, cuisine is a
separate vertex, so we need to filter on a traversal instead of directly on a property. That
traversal needs to reach out to the cuisine vertex in order to filter by the cuisine type.

 In Gremlin, this can’t be accomplished using a has() step because it filters just on
properties, not on the presence of an edge. Recalling our work with the previous tra-
versal, the where() step does what we need. This step takes a traversal as a parameter and
filters any traversers that do not return a result. We do this by creating this statement:

 where(out('serves').has('name',within(cuisine_list)))

For each restaurant, this statement traverses out to its incident cuisine vertex to
check if its name is in our cuisine list. We have a filter within a filter. The outer filter is
the where() step, which only passes through results if the inner traversal completes.
The inner filter is at the end of the traversal and uses a has() step to filter on the name
property of the cuisine vertex.

Refactoring your model
This use of cuisine is a candidate for refactoring. Do you recall what we said about
escape rooms back in chapter 3? We used this analogy to show that being on a vertex
in a graph is like being in a room for that vertex.

Limits results to
just one element

234 CHAPTER 8 Building traversals using known walks
Plugging this into our traversal and making a minor update to our project() step to
include the cuisine, we get

g.V().has('person','person_id',pid).
 out('lives').
 in('within').
 where(out('serves').has('name',

➥ within(cuisine_list))).
 where(inE('about')).
 group().
 by(identity()).
 by(__.in('about').values('rating').mean()).
 unfold().
 order().
 by(values, desc).
 limit(1).
 project('name', 'address',

➥ 'rating_average', 'cuisine').
 by(select(keys).values('name')).
 by(select(keys).values('address'
 by(select(values)).
 by(select(keys).out('serves').values('name'))
==> {name=Without Chaser, address=01511 Casper Fall,

➥ rating_average=3.5, cuisine=bar}

This result is precisely the response we expected. If you got the same answer, then
your approach was successful as well. If you didn’t, compare your steps with ours and
find where in your traversal the results start to vary from our approach.

8.5.2 Adding this traversal to our application

We finish by adding a new method called highestRatedByCuisine to our application.
In Java, the traversal code is as follows:

List<Map<String, Object>> restaurants = g.V().
 has("person", "person_id", personId).
 out("lives").
 in("within").
 where(out("serves").has("name",

(continued)

Within our immediate access are a series of drawers that represent the properties
on the vertex and a series of doors that lead to other vertices. There's little to no cost
to look in a drawer for the value of a property, because we already incurred the
expense of loading the vertex with its properties into memory. There’s also no addi-
tional cost to look at the edges to note their values. But checking the cuisine requires
traversing to the cuisine vertex, or walking down the hall to the room representing
that vertex in our analogy. We’ll discuss refactoring in chapter 10 when we cover per-
formance issues.

Adds a where() step
to filter by cuisine

Updates the project()
step to include the cuisine
value in the result

Returns our result for the
highest rated bar or diner
near Kelly Gorman

235Summary
➥ P.within(cuisineList))).
 where(inE("about")).
 group().
 by(identity()).
 by(in("about").values("rating").mean()).
 unfold().
 order().
 by(values, Order.desc).
 limit(1).
 project("restaurant_name", "address",

➥ "rating_average", "cuisine").
 by(select(keys).values("name")).
 by(select(keys).values("address")).
 by(select(values)).
 by(select(keys).out("serves").values("name")).
 toList();

Whew, we did it! We built the traversals for our three recommendation engine use cases!
We started by determining the required graph elements (vertices and edges) for each
question. Identifying this information helped us to organize our thinking and prioritize
our work. We decided to start with the simplest of the traversals and work our way
through to the more involved ones. This order worked to our benefit because we were
able to reuse much of the code from the traversal for our use case (number two) in sec-
tion 8.3 to write the traversal for our use case (number one) in section 8.4.

 We also practiced using some of the more practical aspects of software develop-
ment with graph databases throughout this chapter, such as always having a good pic-
ture of the schema available. We drafted our traversals, first in plain English and then
with Gremlin steps. And as we went through the process of implementing the Gremlin
steps, we encountered a number of the usual challenges of building software: incor-
rect assumptions about the data, unexpected bugs, steps missing from the original
plan, and new uses for familiar steps.

 Throughout this process, our iterative “one-step-and-test” approach served us well
in completing the work. In the next chapter, we’ll use subgraphs to allow users to per-
sonalize the recommendations they receive.

Summary
 Start developing traversals for a use case by identifying the vertices and edges

required to answer the business question.
 Developing known-walk traversals starts with identifying the relevant portions of

the schema, finding the starting and ending points for the traversal, identifying
the series of vertices and edges needed to traverse from the starting to the end-
ing points, and finally, composing the traversal by iteratively adding steps while
validating the results against test data as we build each step.

 A good starting point for a traversal minimizes the number of starting vertices,
ideally to a single vertex. To do this, apply all possible filtering at the start of the
traversal.

Predicates use P.within or
a static import statement.

236 CHAPTER 8 Building traversals using known walks
 Prioritization of which use case questions to start on can be done by either choos-
ing the hardest question if we want to de-risk the use of graph technology, or the
simplest question if we want an early win as a building block for future success.

 Using a systematic, step-by-step approach to building traversals makes it easier to
identify the source of a problem if an error is encountered. Troubleshooting any
errors can involve multiple steps, including investigating the data, changing the
approach to the traversal, and consulting with other staff or online resources.

 Paging results in a graph traversal requires an ordered result set and the use of
limits and offsets to specify the desired subset of results.

 Grouping and ordering traversals create results that are key-value pairs. Further
processing key-value pairs uses special overloads of the select() step to work
with the key and value portions of the pair.

Working with subgraphs
Let’s say we have two users who both use DiningByFriends to find great restaurants
in Houston, TX. Nancy lives north of Houston, and Sam lives to the south.
Although each is friends with many people in the app, they have never connected
to one another. We are making two reasonable assumptions here: Nancy and Sam
have distinct friend groups because they live in different parts of town and have
never met, and they want to visit local restaurants that their friends rate highly.
What happens when they pose this question: “Based on how my friends rate
restaurants, what are the best local restaurants for me?” They each expect to get
recommendations for restaurants in their local area (North Houston for Nancy;
South Houston for Sam) based on their friends’ ratings. How can we deliver results
that are the most relevant to each of them?

This chapter covers
 Defining subgraphs using traversals

 Extracting subgraphs for future use

 Working with previously extracted
subgraphs

 Using subgraphs to create modular,
reusable code
237

238 CHAPTER 9 Working with subgraphs
 Personalization is a process of filtering data based on the connections in the data in
order to serve the most relevant content. In DiningByFriends, we can personalize the
recommendations a user receives based on that person’s social network. For example,
to answer the question for Nancy more appropriately, we can intentionally limit the
data to the restaurants and reviews created by her friends. In other words, we create a
way to focus on one subset of the data, her friends’ recommendations, and ignore
another subset, all of the other restaurants in Houston.

 Because we ask our question on only a well-defined subset of the data in our graph,
we want to work exclusively with that data set. The most efficient way to do this is to
extract that subset of data from the global graph. This is a common operation, and
this subset of data is known as a subgraph. Conceptually, a subgraph is a fairly simple
thing: it’s a subset of vertices and edges, usually closely connected, according to some
rule or an understanding of the business domain.

 In this chapter, you’ll learn when and how to use a subgraph to filter results. Sub-
graphs are a natural fit for personalization problems, so we’ll use a personalization
question like “Based on the review ratings from my friends, what are the best restau-
rants for me?” to demonstrate the basic operations of creating and using subgraphs.
Then, we’ll walk through the process of developing a traversal to answer this question
and use it to demonstrate how subgraphs enable personalized results for different
users. Finally, we’ll look at some of the differences in approach required when using
subgraphs from within our application.

9.1 Working with subgraphs
Before we get too deep into the personalization use cases, let’s use the social network
graph we’ve used throughout this book to demonstrate the basics of subgraphs. If
you’ll recall, a subgraph is a graph in which all the vertices and edges are a subset of a
larger graph. An example of a subgraph in a social network is a graph that contains
you and all the people you are connected to via a friends edge. The fact that a sub-
graph is a graph itself is one of the things that makes subgraphs so useful: they work
just like the larger graph, but with a smaller memory footprint.

9.1.1 Extracting a subgraph

Returning to our social network, let’s say we want to retrieve a subgraph of Josh and
his friends. In this case, we need to include his friends as well as those that have
friended him. Figure 9.1 highlights this section for our subgraph.

 To create this subgraph, we need to develop a traversal that defines the vertices
and edges. We already know how to create a traversal to find someone’s friends (see
section 3.2), so the unknown part here is how we specify these friends as part of a sub-
graph. Depending on our choice of database engine, we can create subgraphs using
one of two techniques: vertex-induced and edge-induced.

239Working with subgraphs
VERTEX-INDUCED VERSUS EDGE-INDUCED SUBGRAPHS

A vertex-induced subgraph is defined by a set of vertices and any shared edges. For
example, we can create a vertex-induced subgraph by specifying that we include only
the even vertices in figure 9.2. Because this is a vertex-induced subgraph, it also
includes any edges the vertices have in common, such as edges H, I, J, K, and L as high-
lighted in figure 9.2.

 An edge-induced subgraph is also defined by a set of edges but includes the incident
vertices. Figure 9.3 shows what this looks like, based on the edges connected to vertex
6. In this case, we start with the edges I, K, and L and include the incident vertices 2, 4,
6, and 8.

 Even though our subgraphs have the same vertices, these do not have identical
edges. Comparing our two subgraphs, we can see that the vertex-induced subgraph

friends friends

friends

friends

friends

friends

friends
friends friends

friends

friends
friends

Kelly Jim Paras

Denise

Dave

Hank Josh

Ted

Figure 9.1 A social network subgraph showing Josh and his friends, Dave, Ted, and Hank.

240 CHAPTER 9 Working with subgraphs
also contains the H and J edges, which are not included in the edge-induced subgraph.
The difference is because vertex-induced subgraphs include all shared edges, while
edge-induced subgraphs include only a defined set of edges. These two approaches do
not always achieve different results. Composition of the subgraph depends on which of
these approaches you use and on which rules you use in the selection process.

 Unfortunately, our approach is normally defined by the database vendor, and not
all graph databases have explicit subgraph support. Defining boundaries using edges
can seem counter-intuitive because, historically, we think about data with an entity-first
if not entity-only mindset. However, the entity relationship of graphs allows us to use
edges as first-class citizens to define the limits of a subgraph. This ends up being both
safe and easy to properly delineate our subgraphs. TinkerPop’s reference implemen-
tation of the Gremlin Server supports edge-induced subgraphs, so that is what we
focus on for our personalization use case.

DEFINING OUR SUBGRAPH

Now that we understand the approaches used to define a subgraph, let’s extend the
actions required to find Josh’s friends by returning the subgraph containing the Josh
vertex, his friends’ vertices, and the edges between those.

NOTE This section demonstrates how to create edge-induced subgraphs using
Gremlin. Different databases handle the creation of subgraphs using different

A

B

H

C

J LI

D

F

E G

5

1

2 8

4 6

73

K

Figure 9.2 A vertex-induced subgraph based on
choosing vertices 2, 4, 6, and 8 also includes the
shared edges H, I, J, K, and L.

A

B

H

C

J

K

LI

D

F

E G

5

1

2 8

4 6

73

Figure 9.3 An edge-induced subgraph based on
choosing the edges connected to vertex 6 includes
the edges I, K, and L and the incident vertices 2, 4,
6, and 8.

241Working with subgraphs
processes, but for TinkerPop-enabled databases, the process described here is
standardized.

Using Gremlin, we create an edge-induced subgraph with the following approach:

1 Get the Josh vertex (person_id =2).
2 Traverse the friends edges in either direction.
3 Define a subgraph based on the edges traversed.
4 Extract the edges and vertices in the subgraph.
5 Return the results.

Examining these actions, we already know how to do the first two steps, as well as the
last one. The novel actions are the middle two, where we define and extract the sub-
graph. Figure 9.4 shows how these actions map to the corresponding steps in Gremlin.

Setting up your local environment
Before you run traversals to retrieve a subgraph, you first need to set up your local
graph with the appropriate data. As with previous chapters, we have provided a script
(http://mng.bz/nz2g) to load a set of test data that we’ll use throughout this chapter.
And, as with the last chapter, we’ll need to update our script to reference to location
of the data file before running it.

To update this script, download it, then open it in a text editor of your choice and edit
the following line to point to the file location from the downloaded source code, spec-
ifying the full path for chapter09/scripts/restaurant-review-network.json:

full_path_and_filename = "/path/to/restaurant-review-network.json"

If you set up the Gremlin Console according to the instructions in appendix A, you can
start the Gremlin Console and load the data for this chapter with a single command.
On MacOS and Linux systems, use

bin/gremlin.sh -i $BASE_DIR/chapter09/scripts/9.1-restaurant-review-
network-io.groovy

For Windows, use

bin\gremlin.bat -i $BASE_DIR\chapter09\scripts\9.1-restaurant-review-
network-io.groovy

Once this script completes, our graph contains the test data we’ll reference through-
out the chapter.

Get the vertex.Josh

Traverse both directions on
the edge.friends

Gather together the vertices
and edges in the subgraph.

Create a subgraph
from the edges.

Return the results.

g.V().has('person','person_id',2).
bothE('friends').
subgraph('sg').
cap('sg').

next()

Figure 9.4 Mapping the plain text steps to the corresponding Gremlin steps to create a subgraph

http://mng.bz/nz2g

242 CHAPTER 9 Working with subgraphs
This traversal primarily uses steps that are familiar, with the exception of the two steps
required to define and extract the subgraph. These steps include

 subgraph(sideEffectKey)—Defines an edge-induced subgraph within a larger
set of graph data. The sideEffectKey is a reference to the full results of the
side effect.

 cap(sideEffectKey)—Iterates the traversal up to itself and emits the results of
the side effect referenced by the sideEffectKey.

Side effects and Gremlin’s rarely used general steps
By way of introduction to these steps, subgraph() and cap(), let’s take a break to
talk about side effects. Early in the TinkerPop documentation, we find a list of steps:
map, flatMap, filter, branch, and sideEffect. Then, for the most part, the rest
of the documentation proceeds to use every step but these five general steps.

Those familiar with functional programming should recognize some if not all of the
steps as the staples of coding data transformations. All of the Gremlin steps, except
for the ones that modulate or configure other steps, are essentially optimized ver-
sions of one of these five general steps, which are core concepts in programming.
Side effects, however, may not be as obvious as the others. Let’s boil it down to
state: side effects are the way we change state.

We used several side effects in chapter 4 to mutate our graph by adding, removing,
and updating elements. All of these mutations are a form of side-effect steps. When
we call an addV() step and it returns a Vertex object, it changes the graph by adding
that Vertex to the graph. The primary result of the addV() call returns a Vertex
object, but the side effect changes what happens to the state of the graph: a new
vertex is added in the data.

We tend to think about this as a single operation, which returns the vertex that was
added to the graph, but there are two distinct parts. First, the data is added to the
graph (the side-effect part of the operation). Second, a reference to the recently
added data is retrieved and returned as the result of the operation.

The same is true with the subgraph() step. The primary effect of the subgraph()
step is to return the edge that was its input. But, as a secondary operation, it adds
those same edges and their incident vertices to an internal collection identified by
a label.

There’s a lot more that can be said about side effects and the other four steps
mentioned earlier. We find this interesting in a fun, highly theoretical, but slightly
impractical way. It’s impractical because nearly every operation one would want to
do in Gremlin can be done with the steps we’ve introduced throughout this book.
In fact, all of those other steps are both better-performing and easier to read than
the five general steps: map, flatMap, filter, branch, and sideEffect. This is
why we’ve avoided the use of these general steps up to this point.

243Working with subgraphs
Let’s look at running the traversal from figure 9.4 in the Gremlin Console:

subgraph = g.V().has('person','person_id',2).
 bothE('friends').
 subgraph('sg').
 cap('sg').next()
==>tinkergraph[vertices:4 edges:3]

Well, that is interesting. We see that our result is not a list or a map as before, but a
graph: we returned a graph that contains four vertices and three edges. Let’s break
down how that graph, our subgraph, was created. To begin, we start on the Josh ver-
tex, as figure 9.5 shows.

Next, we traverse each of the friends edges adjacent to the Josh vertex with the
bothE() step. Figure 9.6 shows this traversal.

 With those three edges added to our subgraph, we call the cap() step to return the
subgraph. Figure 9.7 shows this step.

 Now we have a subgraph for Josh and his friends! This subgraph has all of the
same graph capabilities as the larger graph it was taken from, although with slightly
less data.

Defines a variable called subgraph, which
is equal to the result of this traversal

Traverses the friends
edge in either direction

Assigns a subgraph
with the key 'sg'

Iterates the traversal
and emits the subgraph
with key 'sg'Returns a TinkerGraph object with

four vertices and three edges

Kelly Jim

Dave Ted

Hank Josh

g.V().has('person','person_id',2).
bothE('friends').subgraph('sg').

cap('sg').next()

Figure 9.5 Our subgraph traverser begins on the Josh vertex.

244 CHAPTER 9 Working with subgraphs
9.1.2 Traversing a subgraph

Now that we’ve defined and isolated a subgraph, let’s learn how to traverse it. In the
last section, we assigned our subgraph variable a TinkerGraph object containing four
vertices and three edges. Because our subgraph variable contains a TinkerGraph
object, we can’t continue working with or traversing through our subgraph until we

Kelly Jim

Hank Josh

subgraph sg includes:
Dave–friends Josh→

Ted–friends Josh→

Josh–friends Hank→

g.V().has('person','person_id',2.)
bothE('friends').subgraph('sg').

cap('sg').next()

Dave Ted

Figure 9.6 Our traverser branches onto the three friends edges and adds these and their
corresponding vertices to our subgraph, sg.

Hank Josh

subgraph sg includes:
Dave–friends Josh→

Ted–friends Josh→

Josh–friends Hank→

g.V().has('person','person_id',2.)
bothE('friends').subgraph('sg'.)

cap('sg').next()

Dave Ted

Figure 9.7 Returning the subgraph that our traversal extracted

245Working with subgraphs
create a GraphTraversalSource for this graph. In chapter 3, we introduced the differ-
ence between a Graph and a GraphTraversalSource. As a reminder

 Graph is a data store. It is simply a place to hold the data with no ability to access
the data aside from the simplest of lookup operations.

 GraphTraversalSource is the base from which all traversals are written (the g
in our traversals).

Having a Graph object without a GraphTraversalSource is akin to having a file system
and its files without having any sort of file manager; that is, without any sort of tool for
navigating the file system, reading the files and their attributes, or for moving the files
around. This means that before we can work with our subgraph, we need to get a tra-
versal source. In Gremlin, we do this by calling the traversal() method on the Graph
object (in this case, our subgraph variable, sg):

sg = subgraph.traversal()
==> graphtraversalsource[tinkergraph[vertices:4 edges:3], standard]

Excellent. We now have our GraphTraversalSource in the sg variable and are ready
to begin traversing our subgraph.

 In relational database terms, extracting a subset of data and later reusing this data
is akin to separating out a set of tables using a join, which then becomes a database of
its own. This is like the concept of a view, sort of. Or maybe like a common table
expression (CTE), kind of. Perhaps a set of temporary tables is a better analogy,
although not really. The closest relational database equivalent might be to connect to
the database with serializable isolation and run your operation without committing
any changes back to the original database.

 Sadly, there is no perfect analogy in the relational database world for this capabil-
ity. Dynamically defining a functionally complete subset of the data in this manner is a
skill somewhat unique to graphs.

Subgraphs for serial isolation
A subgraph can be thought of as a poor man’s way of instituting serializable isolation
in a graph database. Or, in other words, it can be deemed as the way to interact with
graph data with a serializable isolation pattern. Once defined, the subgraph does not
change even if the original data changes, although this functionality is dependent
both on the vendor supporting the subgraph() step and on implementing in agree-
ment with the TinkerPop behavior.

This feature can be a powerful capability, especially when you need to do some ana-
lytical operations on a transactional system. But it should be used with caution! In
many systems, the subgraph is an in-memory construct with no disk-caching capabil-
ity, so creating a subgraph of the entire source graph could create memory pressure
or even spur out-of-memory errors.

246 CHAPTER 9 Working with subgraphs

s

e
Now we have our traversal source defined for our subgraph. Because of that, we can
traverse our graph as we have been doing since chapter 3:

sg.V().has('person','person_id',2).valueMap()
==>{person_id=[2], last_name=[Perry], first_name=[Josh]}

sg.V().has('person','person_id',2).both().valueMap()
==>{person_id=[3], last_name=[Erin], first_name=[Hank]}
==>{person_id=[1], last_name=[Bech], first_name=[Dave]}
==>{person_id=[4], last_name=[Wilson], first_name=[Ted]}

This ability to store and run additional processing on a subgraph, just as we can with
any graph, is one of the things that makes subgraphs so useful. Now that we’ve cov-
ered how to create, extract, and work with a subgraph, let’s use our personalization
use case for DiningByFriends to show how we can use a subgraph.

9.2 Building a subgraph for personalization
For our personalization use case for DiningByFriends, we need to answer the ques-
tion, “Based on my friends review ratings, what are the best restaurants for me?” How-
ever, it’s doubtful we want restaurant recommendations for restaurants hundreds of
miles away. For the sake of this example, let’s assume that we are only looking for
restaurants in the same area. Following the process for developing a traversal from
section 8.1, we’ll start by breaking the question down into its required parts. For this
question, we find the following actions:

1 Locate the person vertex, who is the subject of the subgraph.
2 Traverse to the friends vertices of the subject person.
3 Determine the review vertices for each friend.
4 Find the review_ratings.
5 Find the restaurants with the most highly-rated reviews.

In our next step, we find the relevant vertex and edge labels in our schema based on
the previous actions. Figure 9.8 highlights the parts of our schema we’re interested in.

 Great! We’ve identified the relevant schema elements . The next step in the pro-
cess is to select our starting place. Looking at the previous required actions, we think
the logical place to start is with the current person, because this narrows our starting

(continued)

Also, in line with the definition of serializable isolation, any mutations that happen in
the subgraph are not reflected in the original graph, and vice versa. Coordinating
mutations between the two is up to the application developers.

All of this current functionality has been verified with the Apache TinkerPop 3.4 refer-
ence implementation. But when we work with subgraphs, we should check exactly
what functionality our chosen vendor supports.

Finds the person_id = 2
vertex and displays the
property keys and value

Finds the connections to
person_id 2 and displays th
property keys and values

247Building a subgraph for personalization
vertices to a single vertex. Next, we need to find the end point for our traversal; in this
case, we use the restaurant because that is what the question wants to have returned.

 The third step in our process is to list the actions we need to take in the schema to
get from our starting point to our ending point. Doing that for the required steps, we
need to

1 Get the current person.
2 Add the friends edges to get the person’s immediate group of friends.
3 For all of the friends, get their review and the review_rating vertices.
4 Add the restaurant vertices.
5 Include the city vertex for each restaurant.

Now we know the steps that our traversal needs to accomplish. Let’s start developing
our subgraph in an iterative manner.

 First, we need the person, Josh, and his friends. For this example, we decided that
the subgraph used for Josh’s personalized results should include people Josh friended
as well as people that friended Josh. Remember, we are using an edge-induced sub-
graph, so what we’re really doing is collecting edges and using those edges to generate
our subgraph.

within

state

restaurant_id

name

address

person_id

first_name

last_name

rating

body

created_date

name

city

restaurant

cuisine review

name

restaurant

cuisine

person

review

city

state

name

friends

within

lives

wrote

about

serves

person

wrote

review_rating

review_date

rating

wrote

about

review
_rating

Figure 9.8 The relevant logical data model elements required for the subgraph for our personalization
use case for DiningByFriends

248 CHAPTER 9 Working with subgraphs
NOTE There is no requirement that you must create subgraphs by traversing
edges in both directions. We could have limited the direction of the edges tra-
versed, but chose not to.

subgraph = g.V().has('person','person_id',2).
 bothE('friends').subgraph('sg').
 cap('sg').next()

Next, we need to include the review and review_rating vertices as we traverse to the
restaurant vertices. Finally, we tack on the within edges to identify the city vertices
for some localization functionality. Visually, going through the data looks something
like figure 9.9.

Before we show the traversal, we want to take a minute to discuss a new wrinkle in our
traversal—the need to optionally traverse graph elements. Looking at figure 9.9, we
notice that sometimes we need to go from a person to a review_rating vertex via a
wrote edge, and sometimes we go from a person to a review via a wrote edge. In the
scenario, when we go to a review_rating vertex, we need to perform an extra step to
take the about edge to a review. This means that we need to traverse our graph differ-
ently, depending on the vertex type that we are on. To handle this, we use the follow-
ing Gremlin step:

 optional(traversal)—Attempts the traversal and, if it returns a result, then
emits the result; otherwise, it issues the incoming element as with the iden-
tity() step

If we were to draw an example of what this additional step looks like as we move
through our data, it would resemble figure 9.10.

 The tricky part is that the wrote edge connects a person to either a review or a
review_rating vertex type. This bifurcation means that if we are on a review_rating

Starts with the given
person_id, which is the
signed-in user

Traverses the friends
edges to get all the friends

review
_rating

person person review restaurant cityfriends about

about

wrote

wrote

within

Figure 9.9 We create our subgraph by following this known-walk path through the logical data model.

249Building a subgraph for personalization

Trave
the w

edg
get to
city ve
vertex, we need to take an additional traversal step to get to our review vertex.
After this additional step, all our traversers will be located on review vertices. From
there, we can traverse through the rest of the graph. Extending our traversal with
the additional steps we saw in figure 9.9, we construct a traversal to create our sub-
graph like this:

subgraph = g.V().has('person','person_id',2).
 bothE('friends').subgraph('sg').otherV().
 outE('wrote').subgraph('sg').inV().
 optional(
 hasLabel('review_rating').outE('about').
 subgraph('sg').inV()
).
 outE('about').subgraph('sg').inV().
 outE('within').subgraph('sg').
 cap('sg').next()
==> tinkergraph[vertices:80 edges:121]

person

person

person

person

person

review

review

review

review

review

review

review

restaurant

restaurant

restaurant

restaurant

restaurant

restaurant

restaurant

city

city

y

iew

iew

iew

iew

ranttttttttttttttttttttttttttttttttt

ranttttttttttttttttttttttttttttttttt

rantt

rantt

ranttttttttttttttttttttttttttttttttt

rantttttttttttttttttttttttttttttttttttt

ranttt

y

review
_rating

review
_rating

review
_rating

Figure 9.10 Our known-walk path from person to city, including optional steps for
review_rating vertices through the instance data in our graph

Starts with the given person_id,
which is the signed-in user Traverses the friends edges

to get all of the friends

Traverses the wrote edges
to the review and the
review_rating vertices

If on a review_rating vertex,
then traverses the about edge
to get to a review vertex

Traverses the about edge to
get to the restaurant vertex

rses
ithin
e to
 the
rtex

250 CHAPTER 9 Working with subgraphs
We don’t know about you, but handling the same edge type (wrote) differently, based
on the incident edge type (review or review_rating), feels a little awkward. We might
not go so far as to call it a code smell; maybe it’s more of a “code irksome whiff.” Never-
theless, it would be nice if we could handle that case a little better. So, let’s give it a try.

 In attempting to rewrite this traversal, the main challenge we run into is the dual-
purpose wrote edge. As we mentioned during our data modeling, we like to try to apply
generic labels to vertices and edges; however, this comes with some tradeoffs, and this is
one of those tradeoffs. After all, maybe wrote isn’t the best term to use for connecting a
person to a review_rating. What’s really going on is that the user assigns a rating to a
review. Maybe a better approach is to have different edge labels like this:

 person wrote review
 person assigned review_rating about review

Figure 9.11 shows how the schema looks after adding these edges. That change also
changes the traversal steps. Figure 9.12 shows this change.

We can see that the walk has the same basic shape because the fundamental connec-
tions haven’t changed. All we changed is the name of one edge, from wrote to
assigned. Let’s see what our traversal looks like with this data model change.

within

state

review
_rating

restaurant_id

name

address

person_id

first_name

last_name

rating

body

created_date

name

city

restaurant

cuisine

name

restaurant

cuisine

person

review

city

state

name

friends

within

lives

wrote

about

serves

person

assigned

review_rating

review_date

rating

assigned

about

review

Figure 9.11 Alternate logical data model with person assigned review_rating

251Building a subgraph for personalization
One difference that we notice is that in our new model, we have two different paths to
take, from person to restaurant, using two different edge labels, wrote and assigned.
In other words, we need to create a union of these two traversal paths, similar to how we
perform a UNION on two queries in SQL. To handle this, we'll bring back the union()
step introduced in chapter 7.

 Modifying our previous traversal with this new step yields the following:

subgraph = g.V().has('person','person_id',2).
 bothE('friends').subgraph('sg').otherV().
 union(
 outE('wrote').subgraph('sg').inV(),
 outE('assigned').subgraph('sg').inV()
).
 outE('about').subgraph('sg').inV().
 outE('within').subgraph('sg').
 cap('sg').next()

This might be one of those “six of one, half a dozen of the other” situations. In our
first iteration, we had to use an optional() step; in the second iteration, we needed a
union() step.

 One thing to credit the new approach with is that it makes better semantic sense.
That is, it establishes an important distinction between the wrote edge, which only
gets us to a review, and the assigned edge, which takes us to a review_rating. This
distinction reminds us of one of the most challenging points of data modeling—naming
things. Should we use a single edge label for this use case, or two labels?

 For this question, there is no “always correct” answer. In this case, we lean toward
the second approach: using different labels if we think that we’ll rarely traverse both
to review and to review_rating in the same traversal. But the first approach does
have its merits in reducing the number of labels we need to potentially traverse.

 We started with that approach and that wasn’t wrong. However, we don’t see a com-
pelling reason to make this change to the data model, so we’ll stick with a single label

person person review restaurant cityfriends about

about

wrote

assigned

within

review
_rating

about

Figure 9.12 Known-walk pattern to create our subgraph for the alternate logical data model using
the assigned edge

Union combining the results
of the inside traversals

Traverses the wrote edge
to yield review vertices

Traverses the assigned edge
to yield review vertices

Emits the combined
results of both traversals

252 CHAPTER 9 Working with subgraphs
for the two edges, our first approach. We’re generally reluctant to change schema
when there is already working code in place.

9.3 Building the traversal
Now that we have our subgraph, let’s complete our work by constructing the traversal
for our personalization use case. Remember, the question we want to answer is, “Based
on my friends review ratings, what are the best restaurants for me in this area?” This
use case is similar to some of the recommendation engine use cases. In particular, this
question: “What are the ten highest-rated restaurants near me?” It is essentially the
same question, except we chose to restrict it to reviews by our friends, instead of every
possible review.

 Given that we already solved a similar problem in the previous chapter, we can use
the work we did there. However, in this case, instead of starting with the whole graph,
we use our subgraph. Because our subgraph is already limited to that part of the
graph personalized to the user, we can start with the reviews and proceed from there.
In this case, the steps for our traversal look like this (remember each step is only being
executed on the data in our subgraph):

1 Find all of the review vertices.
2 Traverse to the restaurant vertices.
3 Filter the restaurant vertices based on the city_name input.
4 Group the restaurant vertices by the average review_rating.
5 Sort in descending order by the average rating.

Did you notice that this traversal is another example of the known-walk traversal pat-
tern? We know both the series of vertices and edges we need to traverse, and the num-
ber of times we must traverse these. The known-walk path we follow within the subgraph
is quite simple, as figure 9.13 shows.

To develop our traversal, we need to provide one input, some geographic reference
for “in this area.” For this example, we take the name of a city as input, and for testing
purposes, we start with Houston, one of the two cities represented in our sample data.
Before we start our work, let’s define the city input as a variable in the Gremlin Con-
sole and create the GraphTraversalSource for our subgraph:

city_name = 'Houston'
sg = subgraph.traversal()

review restaurant cityabout within

Figure 9.13 Known walk that
traverses the subgraph to collect
restaurants and ratings within a
given city

253Building the traversal
With that established, we can traverse our subgraph. Looking at the steps we need to
accomplish, shown in figure 9.13, we get the following traversal:

sg.V().
 hasLabel('review').
 out('about').
 where(out('within').has('city','name',city_name))
==>v[254]
...
==>v[184]

NOTE We start with sg, the GraphTraversalSource for our subgraph, instead
of the usual g variable in the traversals.

The following traversal answers the question, “Based on my friends review ratings,
what are the best restaurants for me in this area?” All we need to do is format our
results into a logical output. Luckily, we did this in section 8.3.1, so we can reuse that
code here. Combining that projection code with our traversal yields this code:

sg.V().hasLabel('review').
 out('about').
 where(out('within').has('city','name',city_name)).
 where(__.in('about')).
 group().
 by(identity()).
 by(__.in('about').values('rating').mean()).
 unfold().
 order().
 by(values, desc).
 limit(3).
 project('restaurant_id','restaurant_name','address','rating_average').
 by(select(keys).values('restaurant_id')).
 by(select(keys).values('name')).
 by(select(keys).values('address')).
 by(select(values))
==>{restaurant_id=35, restaurant_name=Pick & Go, address=4881 Upton Falls,

rating_average=5.0}
==>{restaurant_id=33, restaurant_name=Spicy Heat, address=4137 Hills Roads,

rating_average=5.0}
==>{restaurant_id=9, restaurant_name=Northern Quench, address=04603

Cartwright Stream, rating_average=4.0}

That looks great! We got three restaurants listed in descending order by their rating aver-
age. Before we move on, we want to show you another way to think about this traversal.

9.3.1 Reversing the traversing direction

What if we started with the geographic location, city, as our input instead of starting
with all of the review vertices? Figure 9.14 illustrates how the known walk would look
if we use the same vertices but start with the city vertex instead.

Traversal starts
with sg instead of g Finds all review vertices

Traverses the about edge
to the restaurant

Traverses the within
edge and filers on
city_name

Traversal starts with sg instead of g
because we are traversing the subgraph.

Where step filters
the restaurants by the
connected city vertex.

An anonymous traversal
(__) is always required
before a subtraversal that
starts with the in() step.

254 CHAPTER 9 Working with subgraphs
This known walk may look a little odd because it goes against the directions of the
edges, but that isn’t a problem for a graph database. Edges are designed to be tra-
versed in either (or both!) directions. This particular example highlights an advan-
tage of graph databases over relational ones: links can be used in either direction
quite easily.

 In most relational database modeling, particularly with third normal form, the
foreign keys are designed to be used in only one direction. Joining in the opposite
direction, if the schema supports, it is usually expensive. For most graph databases,
there is no additional performance cost to go in the other direction. Simply chang-
ing directions of a relationship in the relational world is practically unheard of, but
for a graph, it is a nearly trivial change. Using this approach, how do our traversal
steps change?

1 Find the city based on the city_name input.
2 Traverse the located edges to the restaurant vertices.
3 Group the restaurant by average rating.
4 Sort in descending order by the average ratings.

Those steps seem pretty clear and we now have one less step than before. Let’s look at
the traversal for this approach:

sg.V().has('city','name',city_name).
 in('within').
 where(__.in('about')).
 group().
 by(identity()).
 by(__.in('about').values('rating').mean()).
 unfold().
 order().
 by(values, desc).
 limit(3).
 project('restaurant_id','restaurant_name','address','rating_average').
 by(select(keys).values('restaurant_id')).
 by(select(keys).values('name')).
 by(select(keys).values('address')).
 by(select(values))
==>{restaurant_id=35, restaurant_name=Pick & Go,

➥ address=4881 Upton Falls, rating_average=5.0}
==>{restaurant_id=33, restaurant_name=Spicy Heat,

➥ address=4137 Hills Roads, rating_average=5.0}
==>{restaurant_id=9, restaurant_name=Northern Quench,

➥ address=04603 Cartwright Stream, rating_average=4.0}

city restaurant reviewaboutwithin

Figure 9.14 Known walk that
traverses the subgraph starting
with the city and then collecting
restaurants and reviews

Traversal starts with
the city vertex.

Only other change in traversal
is here, where we traverse a
different edge and in the
opposite direction.

255Building the traversal
We get the same results with this as we did with the original traversal, so we think it is
quite good, and it’s (arguably) a bit more readable. When we compare the execution
times, a detail we’ll cover in chapter 10, the second version is about three times faster
than the first version.

 This increase in speed can be attributed to the fact that we filtered our traversal in
the second approach earlier than we did in the first. Filtering earlier in the traversal
means there are fewer traversers moving through our graph; therefore, we do less
overall work. The performance of a graph traversal is directly tied to how much of the
graph it must interact with. The earlier we can filter out unneeded traversers, the less
work to be done, and, correspondingly, the less time the traversal will take. As we said,
we’ll cover performance testing in chapter 10. For now, we’ll take the three-times speed
improvement and go with the second version of the traversal.

 This example also demonstrates that you can write many traversals differently. More
than a few times, we were stuck on a certain traversal, but when we took a step back and
approached it from a different starting point, the traversal came together quickly.

9.3.2 Evaluating the individualized results of the subgraph

Before we move on, let’s take a quick peek at how personal our personalization approach
is. Let’s take a user from the other side of the graph—say, Denise—and compare her
recommendations.

 First, we need to create a subgraph for Denise (person_id = 8), using the same tra-
versal we first developed in section 9.1. Note how all we change is the number used in
the first has() step:

subgraph8 = g.V().has('person','person_id',8).
 bothE('friends').subgraph('sg').otherV().
 union(
 outE('wrote').subgraph('sg').inV(),
 outE('assigned').subgraph('sg').inV()
).
 outE('about').subgraph('sg').inV().
 outE('within').subgraph('sg').
 cap('sg').next()
==> tinkergraph[vertices:72 edges:107]

Then, we create our GraphTraversalSource for this new subgraph:

sg8 = subgraph8.traversal()
==> graphtraversalsource[tinkergraph[vertices:72 edges:107], standard]

Finally, we run our personalization traversal. Note that this is the same traversal that
we used before, except here we use a different GraphTraversalSource, sg8, to reflect
that we’re traversing a different subgraph:

sg8.V().has('city','name',city_name).
 in('within').
 where(__.in('about')).

Changes the input of the
has() step to 8 for Denise

The subgraph has a different
number of vertices and edges.

Only change: uses the
sg8 traversal source

256 CHAPTER 9 Working with subgraphs
 group().
 by(identity()).
 by(__.in('about').values('rating').mean()).
 order(local).
 by(values, desc).
 limit(local,3).
 unfold().
 project('restaurant_id','restaurant_name','address','rating_average').
 by(select(keys).values('restaurant_id')).
 by(select(keys).values('name')).
 by(select(keys).values('address')).
 by(select(values))

==>{restaurant_id=17, restaurant_name=With Noodles,

➥ address=50586 Keebler View, rating_average=5.0}
==>{restaurant_id=31,

➥ restaurant_name=Dave's Big Deluxe,

➥ address=490 Ivan Cape,

➥ rating_average=4.666666666666667}
==>{restaurant_id=35, restaurant_name=Pick & Go,

➥ address=4881 Upton Falls, rating_average=4.0}

Even in our little test data set, we can use this method of creating subgraphs to pro-
vide a truly personalized experience. When we consider the limited (and expensive)
options available with relational databases, we can see how powerful the ability to
define and traverse subgraphs is for the graph database engines that support this func-
tionality. Now, having established their value, let’s look at how we incorporate sub-
graphs in our DiningByFriends application.

9.4 Implementing a subgraph with a remote connection
There’s one critical limitation with the subgraph() step in TinkerPop: it’s not sup-
ported by the Gremlin Language Variants (GLVs), at least not as of the time of this
writing. Recall that we use TinkerPop’s GLV for Java, which allows us to include our
Gremlin code in line with our Java code. This saves us from using string concatena-
tions to create our traversals and then coercing the generic results into Java types such
as String or long.

 The issue with using the subgraph() step in a GLV revolves around the fact that it
returns a TinkerGraph object. GLVs do not include the concept of a local graph, which
means that we cannot return a subgraph and then use it for further traversing. This
presents a challenge. We have a valid use case for employing the subgraph() step, but
the Java GLV does not support it. We must switch our approach from using the GLV to
using a parameterized string-based approach, similar to executing queries via JDBC.

 As a result (pun not intended), our Java implementation needs to change a bit in
order to submit a script to the server instead of using the GLV. To submit script-based
requests, we need to take the following steps:

1 Create a Client object.
2 Create a string representing our traversal.

Returns different
results for Denise
compared to Josh

257Implementing a subgraph with a remote connection
3 Submit the traversal string along with any appropriate parameters.
4 Process the results.

We’ll talk about the main points for using the string-based traversal approach with the
client object. But for now, see the chapter 9 source code for the findTop3Friends-
RestaurantsForCity method in the book’s GitHub repository for the full set of code.

9.4.1 Connecting with TinkerPop’s Client class

We begin by connecting to our cluster. We discussed this back in chapter 6, but to
refresh your memory, in order to connect to a cluster to submit a script, we need to
create a Client object using the connect() method. For that, we include a string in
the connect() method that tells the client to establish a session with the cluster. We
chose sgSession for our string, but any string will do:

Client client = cluster.connect("sgSession");

Now that we have our connection to the database, we can concatenate a string that
represents our traversal. This is exactly the same traversal for creating the subgraph
that we developed earlier:

String defineSubgraph = "subgraph = g.V()." +
 "has('person','first_name', name)." +
 "bothE().subgraph('sg').otherV()." +
 "outE('wrote').subgraph('sg').inV()." +
 "optional(outE('about').subgraph('sg').inV())." +
 "outE('within').subgraph('sg')." +
 "cap('sg').next(); null";

We broke the traversal up into multiple strings, split by lines, to aid in readability. It
could all be done as a single string, however, and that might make testing easier in
some cases. Note that by using single quotes in our traversal, we don’t have to escape
the quotes within the defineSubgraph string. We see that name is not quoted, and that
is intentional. This parameter is an input of our script and corresponds to a name key
in a map of parameters that we’ll submit when we send this to the server.

 Also, we included the text ; null at the end of the traversal. The semicolon (;) ter-
minates the first statement, the assignment of the subgraph variable, and the null
gives the whole operation something to return to the client. Technically, it gives the
script a null to return to the calling client, and as we all know, “null ain’t nuthin.”
But in this case, null is sufficient. (For those with aversions to null, an empty list
(e.g., []) can suffice too.) With our traversal string defined, we need to submit it to
the server using the submit() method on the client object for processing:

client.submit(defineSubgraph, params);

Here, we add a params object, which is a map of all the parameters included in our
traversal (in this case, the name key and its associated value). This process likely

Inputs like name
are not quoted.

Terminates statement
with semicolon and null

258 CHAPTER 9 Working with subgraphs
feels familiar because this is quite similar to how many SQL queries are executed
with JDBC.

 By default, client.submit()returns a ResultSet, which is an iterable containing
one or more Result objects. These Result objects are streamed back from the server.
That means that there might be a point in time where the ResultSet contains some
but not all of the final set of Result objects. In this specific example, we only receive a
null back because that is what our string-based traversal returned when we created
the subgraph.

 It is important to note that the subgraph variable we just defined does not exist in
the context of our client application. The subgraph variable only exists on the server
within our session. We can use it as much as we want, as long as we are connected to
the same session. When the session goes away, the variable goes away.

 When we use the server-side subgraph variable in a traversal, we want to handle
the results. This puts us squarely in the territory of Java’s CompletableFuture API, the
details of which are beyond the scope of this book. But we can show you a quick code
sample sufficient to illustrate how to process the results:

String findTopRests = "g.V().hasLabel('review').order()." +
 "by('rating', desc).limit(3). " +
 "out('about').values('name')";
List<Result> results = client.submit(findTopRests,

➥ param).all().get();
results.forEach(r -> System.out.println(

➥ r.getObject().toString()));

In this example, the all().get() method ensures that all of our results are streamed
back before we start the processing. Then, we use the Java List’s forEach() method.
Within the forEach() call, we use getObject() to cast each individual result to a Java
object, finishing with a toString() method. TinkerPop’s Result class has the usual
get methods for casting results into various types of Java objects, much like the get
methods in JDBC’s own Result class.

 Those are all the steps we need to follow to submit string-based traversals, like sub-
graph traversals, to our database. We did not go through the details of how we imple-
mented this in our sample application, but for those interested, a working version of
this code is available in the code repository.

9.4.2 Adding this traversal to our application

Now that the hard work of finishing this use case is complete, the only thing left to do
is to add it to our application. As in the last section, we’ll follow the same process as we
did in chapter 6, so you can use that as a guide.

 In our example app, there is a new method called findTop3Friends-

RestaurantsForCity. Look for it in the project’s source code for chapter 9 to see the
Java implementation of the subgraph functionality. If you want to test this out, we

The traversal
string

Streams back all
the results

Casts to a Java object

259Summary
recommend running this method for Dave, Josh, and Denise in the city of Houston to
see how their results are personalized.

 In this chapter, we introduced the idea of a subgraph and used it to create the indi-
vidualized results required for the personalization use case of DiningByFriends. Con-
gratulations! This brings us to the end of part 2 of this book, where we extended the
basic concepts and constructs we learned in the first part of the book with more com-
plex graph traversal patterns to solve more complex use cases. In the next chapter, we’ll
address profiling our traversals and how to work through performance optimizations.

Summary
 Subgraphs are a subset of graph data that contain vertices and edges repre-

sented as a graph. Subgraphs are themselves graphs. This means that we can
run traversals on these, but because these are constrained to a small subset of
vertices and edges, subgraphs require less memory and computation power to
process.

 Subgraphs can be defined in one of two ways: vertex-induced or edge-induced.
Vertex-induced subgraphs are defined by specifying a set of vertices and include
the incident edges. Edge-induced subgraphs are defined by specifying a set of
edges and include the adjacent vertices. The database you choose determines
which option is available.

 Because subgraphs return as graphs, we can traverse these and perform all the
other operations you’ve learned to do with graphs once you’ve created a graph
traversal source for the subgraph.

 Subgraphs can be reused and even modified, but any changes you make are
done in isolation from the original graph. This means that any changes are not
propagated back to the original graph data.

 When building an application that use subgraphs in Gremlin, we need to use
the string-based Client API instead of the Gremlin Language Variants (GLVs).
GLVs do not have subgraph support, so we must use a script submission method
where we parameterize and concatenate strings to write our traversals.

Part 3

Moving Beyond the Basics

As we near the end of our journey through the world of graph-backed
applications, our path divides. (Pun totally intended.) In one direction is the
frontier of graph analytics. In the other is the familiar territory of debugging
and performance-tuning when the application doesn’t work quite right.

 Chapter 10 explains how to troubleshoot performance and application prob-
lems via common graph database-tuning tools. We also discuss common applica-
tion anti-patterns, the dreaded supernode, as well as how to alleviate or mitigate
these problems. Chapter 11 closes the book with a brief look at graph analytics
(complete with examples) before sharing several of our favorite resources as you
look to continue your journey working with graph databases.

Performance, pitfalls,
and anti-patterns
Our application is built, tested, and delivered to production. We spent a lot of
effort designing a system to run in a resilient and scalable manner. However,
entropy is not on our side. Everything is humming along perfectly, until one day,
we receive that dreaded bug ticket, “Application is slow.” Knowing what’s likely
inside, we hesitantly click on the message, and as expected, we’re presented with a
vague description that says the application is slow, but otherwise gives little detail.

 This chapter examines some common performance issues and techniques for
mitigating those performance issues that you are likely to encounter while develop-
ing graph applications. We’ll start by looking at how to diagnose common perfor-
mance problems in graph traversals, including the dreaded, “Application is slow.”
For this, we look at a few of the most common tools available to help diagnose and
debug traversal issues. Next, we will introduce you to supernodes, a common source

This chapter covers
 Diagnosing and debugging common performance

problems with traversals

 Understanding, locating, and mitigating
supernodes

 Identifying common application anti-patterns
263

264 CHAPTER 10 Performance, pitfalls, and anti-patterns
of performance problems in graph applications. Here, we discuss what supernodes
are, why these are a problem, and what to do to mitigate their effects. Finally, we’ll
focus on some specific pitfalls and anti-patterns that can come with building graph
applications, some of which are common across databases and some are unique to
graph databases. By the end of this chapter, you’ll possess a solid understanding of the
most common graph anti-patterns, how to detect these early on in the project, and
how to prevent graph projects from going astray.

10.1 Slow-performing traversals
We have a user who’s experiencing performance problems with our application and
who submitted the “Application is slow” ticket. Lucky for us, the user at least told us
what they were trying to do when the application slowed, which gives us a place to
start looking. The ticket leads us to the problem being with this request: “Find the
three friends-of-friends of Dave that have the most connections.” (We know that
wasn’t a use case that we listed in chapters 2 or 7, but just work with us as we illustrate
by example.) Digging into our application code, we locate the problematic traversal:

g.V().has('person', 'first_name', 'Dave').
 both('friends').
 both('friends').
 groupCount().
 by('first_name').
 unfold().
 order().
 by(values, desc).
 by(keys).
 project('name', 'count').
 by(keys).
 by(values).
 limit(3)

Great, we know where the problem is, but how do we diagnose this slow-performing
traversal? Graph databases, like relational databases, are no stranger to slow-perform-
ing operations. And like relational databases, graphs also have tools to aid in diagnos-
ing problems. These tools take two forms: explaining what a traversal will do or profiling
what a traversal did.

10.1.1 Explaining our traversal

We should say up front that the explain() step is rarely our first step in troubleshoot-
ing. We usually use the profiling tool we discuss in the next section. We find that using
the explain() step to locate issues with poor-performing traversals requires a deep
knowledge of the inner workings of the databases. However, the explain() step is a
commonly available tool across different database instances, and some people find
both useful in debugging, so we’ll give explain() a little attention.

 Let’s say we want to know how our traversal runs, but we do not want to execute it.
Most graph databases perform this type of debugging step via the use of an explain()

265Slow-performing traversals

Ou
remo

for bre
step. This is similar to an estimated execution plan in a relational database, in as much
as the database optimizer shows the output after it rearranges and optimizes the tra-
versal, but before it actually runs the traversal on the data. (Gremlin does this through
the use of strategies; see http://mng.bz/ggoR). The important part to focus on is the
final traversal plan. This represents the optimized plan to be executed on the graph
data. The output of the explain() step lists the various options that were applied in
order to reach the final internal form of the traversal, the one designed to run on the
physical data.

 The best way to illustrate this is to run an explain() step and then examine the
output. In the following example, the Final Traversal is highlighted in bold and
the non-optimized options are removed for brevity. Let’s run an explain() step on
our slow traversal and see if we can draw any conclusions from the output:

g.V().has('person', 'first_name', 'Dave').
 both('friends').
 both('friends').
 groupCount().
 by('first_name').unfold().
 order().
 by(values, desc).
 by(keys).
 project('name', 'count').
 by(keys).
 by(values).
 limit(3).
 explain()
==>Traversal Explanation
===
...
Final Traversal[TinkerGraphStep(vertex,[~label.eq(person),

➥ first_name.eq(Dave)]),
VertexStep(BOTH,[friends],vertex),
VertexStep(BOTH,[friends],vertex),
GroupCountStep(value(first_name)),
UnfoldStep,
OrderGlobalStep([[values, desc], [keys, asc]]),
RangeGlobalStep(0,3),
ProjectStep([name, count],[keys, values]),

➥ ReferenceElementStep]

As we mentioned, the important part is the line starting with Final Traversal. This is
the optimized plan that’s executed on the graph. In this example, the optimized code
performed against our graph is

[TinkerGraphStep(vertex,[~label.eq(person),
 ➥ first_name.eq(Dave)]),
VertexStep(BOTH,[friends],vertex),
VertexStep(BOTH,[friends],vertex),

Performs the
explain command

tput
ved
vity

The final traversal is
what matters most.

Maps to V().has('person',
'first_name', 'Dave') Maps to the first

both('friends') step

Maps to the second
both('friends') step

http://mng.bz/ggoR

266 CHAPTER 10 Performance, pitfalls, and anti-patterns

Map
unfo
GroupCountStep(value(first_name)),
UnfoldStep,
OrderGlobalStep([[values, desc], [keys, asc]]),
RangeGlobalStep(0,3),
ProjectStep([name, count],[keys, values]),
 ➥ ReferenceElementStep]

Although it is nice to see the traversal written in optimized steps, it doesn’t explicitly
point out why our traversal is slow or what we can do to improve its performance.
What it does do, however, is show us how this traversal will be executed. With enough
practice and knowledge of a particular database, you can understand what needs to
be done to further optimize the execution plan. But we find that simply knowing
how a traversal will execute tends to lack the insight we need to fix performance
problems.

 This lack of insight is one reason why we rarely use the explain() step. Another
reason is that this optimized plan is always the same, no matter what your starting ver-
tex is. In many scenarios, we have a traversal that works well starting in one location of
the graph but performs poorly for other starting points. In these scenarios, the
explain() step won’t help to diagnose performance issues.

 More often than not, we want to see the actual execution of a traversal, not just the
way the engine thinks it will run it. This leads us to the most commonly used perfor-
mance debugging tool—profiling.

10.1.2 Profiling our traversal

Let’s say our slow traversal works perfectly fine for some users, but horribly for others.
Instead of looking at the planned execution, we need to profile the actual operations.
This allows us to compare good runs to the bad ones and to see the differences.

 In most graph databases, this type of debugging is done via the use of the profile()
step. The profile() step runs the traversal and collects statistics on the performance
characteristics during its execution. These statistics include details about the execu-
tion, similar to an actual execution plan in a relational database.

 As with the explain() step, the easiest way to understand a profile() step is to
run one and then examine the output. Let’s profile our slow-performing traversal and
investigate the output (shown in the table following the code input). We are looking
for where the traversal spends the most time and for which step uses the most travers-
ers. In the table, we highlighted the duration (%Dur) in bold within the output dis-
played in figure 10.1.

 Upon examining the figure 10.1 output, we notice a couple of things. First, we
see that the lines in the output match the bytecode from the explain() step shown
in the previous section. This correlation makes sense because the explain() step
tells us how a traversal executes, and the profile() step informs us what happens
when it runs.

Maps to groupCount().by('first_name')
s to
ld() Maps to order().by(values,

desc).by(keys)

Maps to limit(3)

Maps to project('name','count').by(keys).by(values)

267Slow-performing traversals
Second, each line in the traversal maps to one step in our optimized traversal (shown
in the output). Usually, it’s straightforward to determine which step in the traversal
refers to which line in the output. Unfortunately, there’s no definitive documentation
on how these map because they are specific to your vendor’s implementation. Differ-
ent vendors have different implementations, each of which has a different engine and
approach toward optimization strategies. Finally, for each line of output we see

 The count of the represented traversers (Count)
 The count of the actual traverser (Ts or Traversers)
 The time spent on that step (Time)
 The percentage of the traversal’s total duration spent on that step (%Dur)

The Count and Traversers (the Ts column) values won’t always match; for example,
when the same element is visited multiple times. In this instance, the traversers can be
merged in a process in Gremlin known as bulking, which causes the Count value to be
larger than the Traversers value.

NOTE One cautionary note is that profiling traversals requires extra resources,
so the represented times may not match a non-profiled traversal. However,
the proportion of time spent is the same between profiled and non-profiled
traversals.

The critical questions are, where is the traversal spending most of its time and what is
the count of traversers on that step? Based on the previous output, we see that more
than 48% of our traversal’s time is spent on the has('person', 'first_name', 'Dave')

Figure 10.1 The output of a profile() step showing associations back to the original traversal steps

268 CHAPTER 10 Performance, pitfalls, and anti-patterns
step. This leads us to one of two common fixes, the details of which are covered in the
following section.

 If we find that the longest duration steps have many traversers, we should add
additional filtering criteria prior to that step to reduce the number of traversers
required. In our example, however, this isn’t the case. Instead, we identify that the
longest duration step doesn’t have many traversers associated with it; it only has one
traverser. Because we know that we only have a single traverser and that our step is a
filtering step, this leads us to think that we should add an index (our second com-
mon fix).

10.1.3 Indexes

Similar to relational databases, an index in a graph database provides a method to effi-
ciently find data based on predefined criteria. Indexes work by allowing us to quickly
and directly access the data that we’re seeking, instead of scanning the entire graph to
find it. Avoiding a scan of the entire graph creates massive performance improvements.

 Let’s say we want to search a graph to find a vertex where the first_name is Dave.
Without an index, this requires us to look at every vertex to see if it has a property
named first_name and, if it does, is the value of that property is Dave. While this
might not be a noticeable issue in small graphs, in graphs with thousands, millions, or
billions of nodes, this creates a huge performance impact.

 Let’s take a look at how this same scenario works if we add an index on the
first_name property. With this option, instead of having to look at every vertex, we
alternatively look at the index. The index already knows which vertices have a first_
name property and can, with a single lookup, find the ones with the values of Dave. It is
reasonable to expect that performing a single lookup inside an index will be signifi-
cantly faster than looking at all of the thousands, millions, or billions of vertices. Here
are three areas where indexes can provide the most performance improvement:

 Properties frequently used for filtering on values or ranges. Indexes quickly reduce the
number of traversers required to execute a particular task, thereby reducing
the work required of the database. This is especially helpful early on in a tra-
versal where a minimal number of traversers is desired.

 Properties requiring a full-text search, such as finding words that start with, end with, or
contain a specific phrase. Many databases require a particular type of index to per-
form a full-text search on a property because these warrant special handling to
be indexed efficiently.

 Spatial features needing to be searched if the database supports geospatial data. Spatial
properties also fall into the category of requiring special indexes to perform the
appropriate queries such as, “Find all restaurants within ten miles of here.”

The increased efficiency that indexes bring comes at the cost of additional storage
and additional writes behind the scenes. An index makes a redundant copy of data, or
at least pointers to data, optimized for retrieval by specific criteria. For these reasons,

269Dealing with supernodes
we should be prudent when adding indexes to our graph and only use these when
needed to achieve the desired performance.

 Every vendor’s implementation has different indexing capabilities and character-
istics. Some implementations, such as TinkerGraph, only offer global single value
indexes. Others, like Neo4j, DataStax Graph, and JanusGraph (among many others)
enable a full range of single value-based, composite value-based, range-based, and
even geospatial indexes. Still others, such as Azure CosmosDB and Amazon Neptune,
have no concept of user-defined indexes, preferring that the indexing details be left
to the service provider to manage. We highly recommend consulting the documenta-
tion of your chosen database for the indexing capabilities, as well as the best practices
for use of those indexes.

 In this section, we looked at some of the diagnostic tools we can use when a partic-
ular traversal is slow. However, traversals are only one part of the application that
causes performance issues. Sometimes the issue is not with the traversal, but with the
data itself. Many of these data-related performance problems can be traced back to a
single source—supernodes.

10.2 Dealing with supernodes
Supernodes are one of the most common data-related performance problems in
graph databases. These are also particularly difficult to deal with because supernodes
can’t be removed. And because they are part of the data, we can only try to mitigate
the problems caused by supernodes. This leads us to our first question: What is a
supernode?

 A supernode is a vertex in a graph with a disproportionally high number of incident
edges. We find that supernodes are hard to define but easy to understand with an
example, so let’s take a look at one instance using Twitter.

 When writing this book, the most followed person on Twitter is Katy Perry with
107.8 million followers (https://twitter.com/katyperry). Based on research performed
in 2016, by the social media marketing company KickFactory (http://mng.bz/em5J),
the average Twitter user has 707 followers. This means Katy Perry has ~152,475 times
as many followers as the average Twitter user. Let’s assume we stored this data using
the data model in figure 10.2.

Based on this model and current research, Katy Perry has 107.8 million follows edges
incident to her user vertex, and the average user has 707 follows edges. What hap-
pens when we notify all followers about a new tweet?

persontweet posted_by

follows

Figure 10.2 An example logical
data model for Twitter

https://twitter.com/katyperry
http://mng.bz/em5J

270 CHAPTER 10 Performance, pitfalls, and anti-patterns
 When an average user posts a tweet, we need to notify all their followers, meaning
our traversal will have 707 traversers, one for each follows edge. In Katy Perry’s case,
when she posts a tweet, our traversal will have 107.8 million traversers. With this sort
of follower differential, it’s safe to assume that Katy Perry’s tweets are more computa-
tionally intensive than the average user’s post. While an extreme example, it is this
sort of disparity that leads to supernodes.

 The natural next question is, “What number is disproportionately high?” We wish
we could give you a precise number where a vertex becomes a supernode, but it’s not
that easy. We need to understand two main concepts when discussing a supernode:
instance data and underlying data structures. Let’s look at these.

10.2.1 It’s about instance data

The first concept is that a supernode is a specific vertex of a specific label in the
instance data. One common misunderstanding is that a supernode refers to a vertex
label, but this isn’t the case. Instead, it refers to an instance of a vertex with a dispro-
portionate number of edges compared to the other instances with the same label.
Think back to our Twitter example where, because the average user and Katy Perry are
both people, they have the same vertex label. In other words, it’s the Katy Perry instance
of the user vertex that is a supernode, not the generic user label.

10.2.2 It’s about the database

The second concept to understand is that what performs like a supernode in one tra-
versal on one database can work fine on a different database or within a different tra-
versal in the same database. Underlying data structures and storage algorithms differ
between database vendors. These differences, along with other database-specific opti-
mizations, make it impossible to provide a generalized answer. But we do recommend
that you review the documentation for your chosen database, understand the distribu-
tion of relationships in your data, and thoroughly test the chosen system based on
these expected distributions.

10.2.3 What makes a supernode?

While our Twitter model is useful to demonstrate the concept of a supernode, most of
us will never work with data at that scale. Instead, let’s use our DiningByFriends data
model, shown in figure 10.3, as a more realistic example and see if we find any poten-
tial supernodes.

EXERCISE Apply what you just learned about Katy Perry and the Twitter exam-
ple to our DiningByFriends model. Can you identify any potential supernodes?

When we look at our DiningByFriends data model, we see two potential opportunities for
supernodes: the city and the state vertices. Why these two vertex labels? To demon-
strate why city and state might potentially cause supernodes, let’s use the example of
two cities in the United States: New York City, New York, and Anchorage, Alaska.

271Dealing with supernodes
If we do a simple Google search, we find that the New York City is home to around
26,000 restaurants, while Anchorage has approximately 750 restaurants. This means
that the city vertex for New York City has almost 35 times the number of incident
within edges as the vertex for Anchorage, so any traversals from New York City
require 35 times the work as those from Anchorage. While not quite as dramatic a dif-
ference as our Twitter example, we’d like to think that a 35-times spread in values rep-
resents a disproportionately distributed data set.

 This same logic applies to our state vertex as well. The state of New York has
approximately 1,000 cities and towns, while Alaska has around 130. This disparity rep-
resents a nearly eight times difference between the two.

 While none of this disparity automatically means that we have a supernode, we’ll
learn how to determine that in the next section. These are but two likely supernode
candidates we see in our model.

10.2.4 Monitoring for supernodes

If we can’t give specific numbers of what constitutes a supernode, how do we find them?
We generally employ two strategies, frequently in parallel, to detect supernodes: mon-
itoring for growth and monitoring for outliers.

state

restaurant_id

name

address

person_id

first_name

last_name

rating

body

created_date

name

city

restaurant

cuisine

name

restaurant

cuisine

person

review

city

state

name

friends

within

within

lives

wrote

about

serves

person

wrote

review_rating

review_date

rating

review_date

wrote

about

review
_rating

review

Figure 10.3 The logical data model for our DiningByFriends application

272 CHAPTER 10 Performance, pitfalls, and anti-patterns
MONITORING FOR GROWTH

The first strategy is to periodically monitor the degree (number) of all the vertices in
our graph and look for the top outliers. Monitoring is important because supernodes
rarely exist at the beginning; these grow over time. In other words, supernodes are
rarely created during the initial loading of data; instead, they tend to grow as more
and more data is added to a graph. This is because many real-world networks are scale-
free networks. Scale-free networks have many vertices with a low degree of incident
edges and only a few vertices with a high degree.

 Think back to our Twitter example. The majority of users have a low number of
connections. There’s also a small minority with a high number of connections. The
same is true if you look at other networks, such as airline companies. While most air-
ports will likely only have a few flights, there are a small number of airports, namely
the hubs, that have a larger number of flights. This type of distribution of data is
known as a power-law distribution, as figure 10.4 shows.

The long tail of the distribution is where supernodes exist in scale-free networks. If we
have a scale-free network and these cause supernodes, how do we check the growth of
the degree of vertices? We need to monitor our data periodically to find the vertices
with the highest degree. In brief, we need a traversal to take the following steps (illus-
trated in figure 10.5):

1 Find all vertices.
2 Calculate the degree of each vertex.
3 Order the results, descending by degree.
4 Return only the top N results.

Running this or similar traversals at regular intervals and tracking the results monitors
the growth of potential supernodes proactively and catches these before a problem
arises. While this strategy is an effective tool to find and monitor supernodes, it has a
few significant drawbacks.

 First, it requires us to remember to run this traversal and monitor the output on
a regular basis. We’re all busy, and this sort of housekeeping task is easy to delay,

Supernodes are
found down here.

N
u
m

b
e
r

o
f

U
s
e
rs

Power Law Distribution

Number of Connections

Power Law Distribution

Figure 10.4 Power-law
distribution with the power
law having a long tail

273Dealing with supernodes
meaning that supernodes can creep in without proper warning. Second, the traversal
in figure 10.5 is long-running because it requires visiting every vertex in the graph
once (for each incident vertex) and every edge twice. As our graph grows, this tra-
versal will take longer and longer to run and will consume increasingly more
resources. But we have another possible approach for monitoring supernodes in our
toolbelt. Let’s look at that additional process next.

MONITORING FOR OUTLIERS

The second commonly used approach to monitoring for supernodes is to reactively
monitor the performance of traversals and look for outliers. This is usually done with
one of the many different application monitoring tools available on the market. When
monitoring for supernodes, we look for traversals that are taking a significantly longer
time to execute for one vertex than for another. Although supernodes aren’t the only
cause of slow performance, these are one of the common reasons why a generally well-
performing traversal exhibits performance differences on specific vertices.

 Although these two methods for identifying supernodes in our graph are useful, as
we said, both these approaches have downsides. Due to the amount of the graph
touched, each of the specified approaches tends to result in a long running query and
places significant additional load on the graph database. There’s no magic bullet for
detecting supernodes. Still, domain knowledge, proper data modeling, and continu-
ous monitoring are the best tools available to prevent and identify supernodes.

10.2.5 What to do if you have a supernode

If you determine that you have a supernode in your graph, the first thing to do is
decide whether the supernode is actually a problem. If it is a problem, the best step is
to look at ways to mitigate the supernode.

IS THE SUPERNODE A PROBLEM?
We need to consider how our traversals are traversing a supernode to determine if it
causes a problem. For example, let’s look at a subsection of our DiningByFriends schema
containing only the city, state, and restaurant vertices, as figure 10.6 illustrates.

g.V().
project('vertex','degree').

by(identity()).
by(bothE().count()).

order().

by(select('degree'),desc).

limit(10)

Calculate the
degree of each
vertex.

Find all vertices.

Order the results by
degree descending. Return the top

10 results.

Figure 10.5 An example traversal to find the top 10 vertices with the highest degree

274 CHAPTER 10 Performance, pitfalls, and anti-patterns
As we previously mentioned, both city and state vertices are likely candidates to
become supernodes within our graph. However, because these are only likely super-
nodes, we need to examin the specific traversals we run on our graph to decide if
these potential supernodes will become problematic.

 Let’s say that the only traversal our application makes is to answer the request, “Get
me the city and state for restaurant X.” In this traversal, we only ever have one city
and one state vertex associated with a specific restaurant vertex. This means that
there is only ever a single within edge traversed when moving from a restaurant to a
city, and only a single within edge traversed when moving from a city to a state.
While both an instance of a city, such as New York City, and a state, such as New
York, are likely to be supernodes, we traverse these in a way that minimizes the num-
ber of edges traversed, so these vertices won’t cause the performance problems associ-
ated with supernodes. That is, our chosen access patterns will not encounter the worst
possible branching factor, the number of successors of a given vertex, when traversing
through either city or state vertices.

 On the other hand, if we were to slightly change our request to, “Give me all the
restaurants in New York City,” we would then encounter the opposite problem. To
answer this traversal, we need to traverse the roughly 26,000 within edges associated
with New York City to find all the restaurants. This will likely cause significant perfor-
mance problems because 26,000 individual traversers are required. This traversal can
inflict long wait times while our database churns through these requests.

 As these examples demonstrate, a change in the question can flip the same vertex
from performing normally in one scenario to acting as a supernode in another. This
behavior is one of the exacerbating complexities of supernodes. Not only are these
highly dependent on the situation, but the negative impact is conditioned by specifics
of the vendor’s implementation, the hardware configuration, and the indexes config-
ured for the graph in some cases.

 In addition to the direction we traverse our supernode, there are some scenarios,
especially when running analytical algorithms, that require supernodes to get the

restaurant

restaurant

restaurant_id

name

address

city

city

state

name

state

name

within

within

Figure 10.6 The portion of the DiningByFriends
logical data model relating to restaurants,
cities, and states.

275Dealing with supernodes
correct answer. Some algorithms rely on the connectedness of a graph as all or part of
the calculation; for example, when we’re in a domain such as social networking, peer-
to-peer file sharing, or network asset monitoring, and we want to answer, “Who is the
most connected person in my graph?” This question requires an accurate count of the
degree of all the vertices in our network. With this sort of calculation, having vertices
with disproportionately high edge counts is what we’re after. Here, a supernode in our
graph is a meaningful construct.

 However, because we’re traversing through the entire graph (or a large portion of
it), these calculations should be treated as analytical instead of transactional. Transac-
tional operations typically have a time allotment measured in seconds or milliseconds,
but analytical operations can have a time allocation of minutes, hours, or longer.

 Say that we look at our data and decide that we have a supernode. Then, we assess
our questions and conclude that we need to traverse through these supernodes in a
manner that’s likely to cause problems. What can we do to alleviate this?

MITIGATING SUPERNODES

The most common and universally applicable approach to handling supernodes is to
refactor the model to remove or minimize the impact of the supernode. This means
going back to our schema and investigating potential changes to our data model to
remove the need to traverse through any supernodes. To do that, we’ll need to employ
one or more of the data modeling strategies we have learned thus far, including

 Duplicating vertex properties on edges
 Making vertices into properties or properties into vertices
 Moving property locations
 Precalculating data
 Adding indexes

The goal of this refactoring is to minimize the number of edges that our graphs tra-
verse. Wait! Isn’t the point of a graph database to traverse edges? Isn’t it better at that
than any other data engine? Yes, that’s true. Graph databases are optimized for this
access pattern of traversing edges. However, just because graph databases are better
with this operation than other engines doesn’t mean that we want graphs to perform
more work than required.

 In the last section, we identified that the traversal, “Give me all the restaurants in
New York City” is a problematic traversal. Let’s figure out how to change our data
model to answer this question, without touching all 26,000 within edges associated
with New York City.

EXERCISE Use the traversing techniques you learned in chapters 3, 7, and 10
to see if you can change our DiningByFriends data model to reduce the num-
ber of edges that need to be traversed.

Examining our DiningByFriends data model, we realize that what we need to do is to
get the city and state properties of an address co-located to the restaurant vertex. If

276 CHAPTER 10 Performance, pitfalls, and anti-patterns
we collocate this data, then there is no need to traverse to the city vertex to retrieve
that information.

 We know how to apply data denormalization techniques to create new properties on
the restaurant vertex for the city and state name properties. Because we cannot have
both the city name and state name attributes on the restaurant vertex with the same key,
name, we can rename these as city and state. Figure 10.7 shows this depiction.

Denormalizing the properties removes the need to traverse any edges to answer the
request, “Find all the restaurants in New York City.” However, it has introduced a new
problem. Now we must scan every restaurant vertex in our system to handle this issue.
To reduce the impact of scanning the entire set of restaurant vertices to retrieve this
data, we add an index for these properties. Combining these two techniques, indexing
and denormalizing, allows us to quickly and efficiently retrieve data for both requests:
“Give me all the restaurants in New York City” and “Get me the city and state for restau-
rant X.” We can do this because the data is now co-located on the restaurant vertex.

 As one last method of cleanup, we can remove the city and state vertices from our
data model because these are no longer being used. Figure 10.8 shows this depiction.

restaurant

restaurant

restaurant_id

name

address

city

state

city

state

name

state

name

city

within

within

Figure 10.7 The portion of the DiningByFriends
logical data model relating to restaurants, cities,
and states with the city_name and state_name
attributes denormalized to the restaurant vertex

restaurant

restaurant

restaurant_id

name

address

city

state

Figure 10.8 Our updated DiningByFriends logical
data model with the city and state attributes
stored on the restaurant vertex and with the
city and state vertices removed

277Application anti-patterns
10.3 Application anti-patterns
While supernodes can become problematic as the data grows, there are other anti-
patterns that you might encounter when creating graph-backed applications. In this
section, we discuss

1 Using graphs for non-graph use cases
2 “Dirty” data
3 Lack of adequate testing

Each of these anti-patterns commonly appears in the design, architecture, and prepa-
ration for building an application.

10.3.1 Using graphs for non-graph use cases

“I want to use a graph database, so let’s find a use case for one.”

—Undisclosed graph database client

As we learned in chapter 1, while graph databases are good at several specific types of
complex problems, they aren’t a universal solution to all problems. It’s crucial to
remember both the benefits and the limitations of how graphs provide insight into
our data and transform businesses in the process. A graph cannot answer a question
we don’t ask. Before we build a graph solution, we need a strong-enough understand-
ing of the information to be able to model and traverse our graph.

 It’s also important not to overplay the flexibility of graphs. While graphs do have
an amazing agility, that doesn’t mean that any graph data model can answer any ques-
tion or do so in an efficient manner. As we’ve already shown in this chapter, seemingly
obvious graph implementations can hide problems, such as poor performance from a
lack of indexes or unexpected highly connected parts of the data called supernodes.
We think that the simplicity of graphs, their seemingly sensible way of expressing
design, lulls many into believing that because graphs can do anything regarding data,
they should do everything.

Vertex-centric and edge indexes
Because supernodes are a common problem within graph databases, some data-
base vendors include specific index types to help address this issue. These index
types are often referred to as edge indexes or vertex-centric indexes. We apply these
types of indexes to specific Vertex-Edge-Vertex combinations; these help to index and
sort the combinations to prevent the linear scan of edges, which should provide a
faster graph traversal.

Not all databases support these types of indexes, however, and the details on how
each vendor implements these vary. If the database you select supports features like
this, we highly recommend investigating vertex-centric and edge indexes as potential
solutions to supernodes.

278 CHAPTER 10 Performance, pitfalls, and anti-patterns
 The answer to this problem, using graphs for non-graph use cases, is straightfor-
ward: don’t let the excitement of getting to use a new technology overwhelm good
software development fundamentals. Want to test if you completely understand a
problem? Explain it to someone else. When we understand a problem well enough to
explain it to someone, then we typically comprehend it well enough to begin working
on it. If you aren’t able to explain it, then spend some time refining your understand-
ing of exactly what you want to accomplish.

10.3.2 Dirty data

The second anti-pattern involves adding dirty data to our graph. The dirty data we’re
referring to is data that contains errors, duplicate records, incomplete or outdated
information, or missing data fields.

 Dirty data, just like the other anti-patterns, isn’t a problem unique to graph data-
bases, but it does cause some unique issues. Although graph databases rely heavily on
the connectedness between data, these also require an accurate representation of
those entities to work effectively. The cleaner the data, the fewer the duplicates, the
more accurately the connectedness will be represented within our graph. Consider an
example of these three dirty data records in an RDBMS system representing people
and their associated addresses, as this table shows.

From examining this data, we can infer that both John Smith and J Smith are likely
the same person and that all three people likely live at the same address. However, if
we add this dirty data to a graph, what we see is three pairs of vertices not connected to
the same address as we would expect. Figure 10.9 shows this output.

 Let’s say we want to use this graph to try and determine if anyone in our graph lives
at the same address. As each of the entities is represented as its own vertex, we won’t
find any matches. This is a problem because this sort of related link or connectedness
is the basis for many graph use cases.

 Thinking back to our social network, if we had multiple person vertices represent-
ing the same physical person, then even something as straightforward as finding a
friends-of-friends link with dirty data would, at best, be hard to use. At worst, it would
provide inaccurate results. What’s the solution to dirty data?

 The answer is simple: clean our data before we import it using a process known as
entity resolution. Entity resolution is the process of de-duplicating, linking, or grouping
records that are believed to represent the same entity together into a single canonical
representation. This data cleaning process is crucial for most data sets and becomes a

ID Name Address

1 John Smith 123 Main St.

2 J Smith 123 Main Street

3 Bob Diaz 123 Main

279Application anti-patterns
greater challenge as the volume and velocity of data grows. Entity resolution is a com-
plex process, but the crucial takeaway is that the data-cleaning process is an important
part of any graph database application.

 Returning to our address example, look at figure 10.10 to see what our graph looks
like when we clean the name and address data to find matches before adding these to
our graph. Using this graph, we can determine that Bob Diaz and John Smith share
the same address, 123 Main St.

person

person

name

person

person

person

J Smith

person

Bob Diaz

address

123 Main Streetaddress

address

address

address

address 123 Main St.

address

address

address 123 Main name

name

John Smith

lives_at

lives_at

lives_at

Figure 10.9 Our model showing three pairs of data not connected to the same address

address

address

123 Main St.

person

person

name

person

person

name

address John Smith

Bob Diaz

lives_at

lives_at

Figure 10.10 Address data graph containing our clean data connected to the same address vertex

280 CHAPTER 10 Performance, pitfalls, and anti-patterns
10.3.3 Lack of adequate testing

The last application anti-pattern is a lack of adequate testing, which usually falls into
one of two categories: non-representative test data or insufficient scale when testing.

NON-REPRESENTATIVE TEST DATA

Because of the connected nature of graphs and how we traverse these, ensuring that
we test against representative samples of data is more important than with relational
databases. A representative sample is especially vital when dealing with the branching
factor (http://mng.bz/pzVP), the number of successive vertices in recursive queries.
Unlike other database technologies, the performance of graph traversals is less depen-
dent on the quantity of data in the graph. Instead, it’s more dependent on the con-
nectedness of the data in the graph. Testing against a representative set of data,
including realistic edge cases and particularly potential supernodes, is crucial.

LACK OF SCALE

Testing at an adequate scale means using sufficiently deep and sufficiently connected
data, not just sufficiently large data. Testing at scale is especially paramount with
highly recursive applications or those using a distributed database. For example, if the
application we build involves an unbounded recursive traversal that performs accept-
ably on our test graph with a depth (number of iterations) of 5, it might function hor-
ribly on a production graph with a depth of 10.

 It’s extremely complex to effectively simulate graph data. The scale-free nature of
most graph domains represents a unique challenge. In our experience, the best
approach to creating test data isn’t to create it at all but, instead, to use real data
whenever possible, sometimes in combination with data-masking approaches in order
to protect personally identifying information in the data. But more often than not,
this isn’t possible. If you do have to simulate data, take extra care that the data’s shape
matches the expected production data.

10.4 Traversal anti-patterns
In this last section, we look at some of the architectural anti-patterns when building
graph-backed applications. These patterns include

 Not using parameterized traversals
 Using unlabeled filtering steps

Both of these represent either a security or performance risk. Understanding how to
identify and remedying these patterns is therefore essential for secure, performant,
and maintainable production applications.

10.4.1 Not using parameterized traversals

According to the latest report (2017) on the top application security risks released by
the Open Web Application Security Project (OWASP), the number one most common
vulnerability in applications is injection-type attacks (http://mng.bz/gg).

http://mng.bz/pzVP
http://mng.bz/gg

281Traversal anti-patterns
 Injection flaws, such as SQL, NoSQL, OS, and LDAP injection, occur when untrusted
data is sent to an interpreter as part of a command or query. The attacker’s hostile
data can trick the interpreter into executing unintended commands or accessing data
without proper authorization.

 For those familiar with SQL, both the concept of injection attacks and the use of
parameterization to defend against these should be well understood. What’s new is
that as hackers become increasingly sophisticated, they’re applying the same tech-
niques used on RDBMS databases to graph and other NoSQL databases. But what
works in relational databases, parameterization, also applies to graph databases as
well. Let’s see what injection attacks are and then show how parameterization defends
against these.

IMPORTANT We’ve used best practices throughout this book and parameter-
ized all the traversals we built. Gremlin Language Variant (GLV) traversals
are automatically parameterized. For the subgraph traversals where we used
the string API, we built those to be parameterized.

WHAT IS AN INJECTION ATTACK?
Hackers use injection attacks when they find openings in an application that allow
them to add their own malicious code to the application. This malicious code then
can delete records, add users, or view unauthorized data. Missing validation logic on
user input and then using that input directly in a database query is what allows this
type of access. For example, let’s take an application that has a REST endpoint that
generates a query (shown in SQL and Gremlin) to find all of a user’s friends where
the userid is passed in from a URL.

In a normal scenario where no one is attacking the system, the URL and resulting
query would look something like this.

In the SQL query, values passed from the user are directly concatenated into the
query. While this concatenation seems like a convenient and simple way to build an
application, it poses one of the most severe types of security vulnerabilities. If a clever

URL http://diningbyfriends.com/friends?userid=?

SQL query "SELECT * FROM friends WHERE userid = " + userid

Gremlin "g.V().has('friend', 'user', " + userid + ")"

URL http://diningbyfriends.com/friends?userid=1

SQL query "SELECT * FROM friends WHERE userid = 1"

Gremlin "g.V().has('friend', 'user', 1)"

http://diningbyfriends.com/friends?userid=?
http://diningbyfriends.com/friends?userid=1

282 CHAPTER 10 Performance, pitfalls, and anti-patterns
hacker wants to see information about other user’s friends, one can, using a few sim-
ple tricks, inject SQL into the query to exploit this vulnerability.

To exploit this weakness via Gremlin, a hacker would need to know Gremlin and
change their input. However, it’s still possible as depicted here.

With a simple change of the URL, a hacker has exposed others’ private information.
Using tricks similar to this URL hack, a hacker can do more damaging acts, such as
deleting records, deleting the database, or hijacking our system. While we demon-
strated this type of hack with Gremlin, this same technique is applicable to other
graph query languages as well. In fact, any application that accepts input unfiltered or
unchecked, regardless of language, is susceptible to such an attack.

PREVENTING INJECTION ATTACKS

Each graph query language and their drivers offer some type of parameterized tra-
versal functionality. A parameterized traversal uses tokens to represent the input values
in the query. At execution time, these tokens are replaced with values passed in from
the application after being sanitized and validated. Using JDBC in Java, we accomplish
parameterization using a PreparedStatement:

PreparedStatement stmt = connection.prepareStatement("SELECT * FROM person
WHERE first_name = ?");

stmt.setString(1, "Ted");

If we use the Gremlin Language Variants (GLVs) that we’ve employed throughout this
book, then we’re already using parameterized queries. However, many other data-
bases including some TinkerPop-based databases only support string-based traversals.
This exposes possible string concatenation errors as shown here:

public static void insecureGraphTraversal(
 ➥ Cluster cluster, String userid) {
 Client client = cluster.connect();
 String traversal = "g.V().has(\"friend\",
 ➥ \"id\", " + userid + ")";
 client.submit(traversal);
}

This method runs the risk of malicious code being injected into our code because
we are just concatenating user inputted values to our string without validation. To

SQL URL http://diningbyfriends.com/friends?userid=1+OR+userid%3D2+OR+userid%3D3

SQL query SELECT * FROM friends WHERE userid=1 OR userid=2 OR userid=3

Gremlin URL http://diningbyfriends.com/friends?userid=within(1,2,3)

Gremlin g.V().has('friend', 'user', within(1,2,3))

Creates a client connection

Creates our string with
concatenated parameters,
which is not good

Submits our
concatenated string

http://diningbyfriends.com/friends?userid=1+OR+userid%3D2+OR+userid%3D3
http://diningbyfriends.com/friends?userid=within(1,2,3)

283Traversal anti-patterns
protect against malicious code, we use parameters for the data being passed from
the user. First, we construct our string with a token, which is just a name in the string
that represents the user’s input values. We then pass a map of tokens and their cor-
responding values:

public static void secureGraphTraversal(
 ➥ Cluster cluster, String userid) {
 Client client = cluster.connect();
 String traversal = "g.V().has(\"friend\",
 ➥ \"id\", userid)";
 Map<String, Integer> map =
 ➥ Collections.singletonMap("userid", 1);
 client.submit(traversal , map);
}

When the traversal is executed by the client.submit() method, the server replaces
the token values with the values stored by the map. When it does this, it performs it in
a way that doesn’t allow malicious code to execute, just as with a PreparedStatement
in JDBC. While this example was written using Gremlin, the same basic concept applies
to other graph query languages such as Cypher.

 There’s an additional benefit to using parameterized queries. Most data engines,
graph or otherwise, cache the execution plan. This saves us the cost of generating a
new execution plan after the first time that the traversal is called with parameters.
For frequently used traversals, caching execution plans can measurably improve
server performance.

10.4.2 Using unlabeled filtering steps

The anti-pattern in the previous section, injection attack, is one of the most severe
from a security and data integrity perspective, even if it isn’t that common. In con-
trast, the anti-pattern for this section, using unlabeled filtering steps at the start of a
traversal, doesn’t pose a security risk but tends to have a massive impact on traversal
performance. Let’s first investigate what an unlabeled filtering step looks like in
Gremlin:

g.V().has('first_name', 'Hank').next()

This seems innocent enough, but why is it an anti-pattern? If you look closely, you can
see that we didn’t specify the label or labels of the vertex to search. We don’t give the
database any hints or help on where to look to find vertices with a first_name of
Hank. To satisfy this traversal, our database must

1 Find all vertex labels in the graph.
2 For each vertex label, find all vertices.
3 Determine if the vertex has a property called first_name.
4 If so, determine if the value of that first_name property is equal to Hank.
5 If so, return the vertex.

Instantiates a client connection

Formulates our tokenized
traversal (the right way
to do it)

Creates a map of parameters

Submits the traversal and
the map of parameters

284 CHAPTER 10 Performance, pitfalls, and anti-patterns
As we didn’t provide a label to filter for in the first step, all the remaining steps are
required for every vertex label in our graph, causing a huge performance impact.
When transitioning to graph databases from a relational world, not filtering a traversal
at the start is a common mistake, because in the RDBMS world, queries such as this
aren’t even possible. The key difference is that in a graph database, the starting point
is all vertices (g.V()), while in an SQL query, the starting point is a specific table
(FROM table). The table specification provides a natural boundary for an SQL query.

 There are two different ways we can enforce filtering our traversal: either add a
global index on the first_name property, or specify the vertex label at the start of the
traversal. Let’s look at both approaches.

 The first approach, adding a global index on the first_name property, has two
problems. The first is that it might not be easy to create the correct index or indexes.
While TinkerGraph does allow us to add a global index on a property called
first_name, global indexes themselves aren’t common among graph database ven-
dors. Most databases that support indexes require that the index be a combination of
both label and property. Even with the proper global indexes created, we still have to
search all vertex labels. Even though we can search the vertex labels faster, we still
have to manipulate all of those, which is the second problem with this approach.

 The second, and preferred, method to enforce filtering is to add the appropriate
labels to our filtering queries and to also add indexes for the vertex and property com-
bination. After adding the proper filtering to our traversal, it now looks like this:

g.V().has('person', 'first_name', 'Hank').next()

This pattern should be familiar because we’ve done this throughout the book.
Although this approach makes sense, the anti-pattern of unlabeled filtering steps is
probably one of the more typical ones we run across. Even in the schemaless world of
graph databases, there’s an implicit schema being applied to a graph by the domain;
in other words, when we search for a first_name attribute, we know which label or
labels contain the property we’re targeting.

 While this anti-pattern has the greatest impact at the start of a transactional tra-
versal, it is also helpful to think about providing labels whenever possible to com-
monly used filtering steps, both later in a transactional traversal as well as in analytical
traversals.

NOTE As a general rule, the earlier and more precise the filtering criteria we
provide to a traversal, the faster that traversal runs.

Summary
 Performance issues with graph traversals can be diagnosed using one of two

common methods:
– explain()—Shows how a graph traversal is executed but does not run it.
– profile()—Runs the traversal and collects statistics about what actually

occurred. (This step is a lot more helpful.)

285Summary
 Graph databases use indexes to speed up traversals by allowing quick and direct
access to data, similar to relational databases. However, there are multiple types
of indexes offered. The index type available is dependent on the vendor’s spe-
cific database implementation.

 Supernodes are vertices in a graph that have a disproportionately high number
of edges. These can cause traversal performance problems, especially when
running transactional traversals.

 Supernodes can be found by monitoring the branching factor and the number
of successor vertices, and by looking for outliers.

 Supernodes can be mitigated by using data modeling tips and tricks to split up
the edges across multiple, different vertices or by using features such as vertex-
centric indexes available in some graph databases. These indexes are designed
to help alleviate the side effects of supernodes.

 Although supernodes aren’t desirable when running transactional queries, these
can be critically important when running analytical algorithms, such as degree
centrality.

 When writing graph-backed applications, understanding the problem we’re try-
ing to solve is critical to its success. This ensures that we use the right tools and
use those in the right way.

 The use of “dirty” data is a common anti-pattern that is particularly problematic
in graph applications due to the highly connected nature of the data and ques-
tions. Dirty data can be addressed by properly de-duplicating and linking data
to facilitate better application performance.

 You should avoid testing with unrepresentative data because the connectedness
of the data dramatically impacts the performance of graph-backed applications.

 When submitting strings of Gremlin, the only way supported by some graph
database vendors, you should always parameterize graph traversals to prevent
injection attacks from running malicious code.

 When running transactional queries, always start a traversal with a filter tra-
versal that specifies the vertex label (or labels) as well as the properties. Specify-
ing a filter at the start of your traversal prevents a traversal from searching all of
the vertices.

What’s next:
Graph analytics, machine

learning, and resources
Great! You’ve made it to the final chapter. It’s been a journey as we’ve switched
from thinking about problems from a relational, entity-first mindset to a graph,
entity-plus-relationships mindset. Even though this is the end of the book, the next
phase of your journey with graphs is just beginning. So what’s next? Where do you
go from here? This chapter answers these questions by providing an overview of
common paths many people pursue in extending their knowledge of graphs.

 Graph analytics and machine learning (ML) are two of the most common areas
where exploration of graphs might take you next. This chapter introduces these
two concepts and provides you with just enough information to decide if you want
to explore these areas further.

 We’ll start with a high-level look at graph analytics and some of the unique
insights that these algorithms can derive from data. We’ll provide a broad overview

This chapter covers
 Graph analytics algorithms for pathfinding,

centrality, and community detection

 Graphs in machine learning (ML)

 Helpful resources for graph theory, graph
databases, and graph algorithms
286

287Graph analytics
of the graph analytics space so that you will have some understanding of what is avail-
able when you start analyzing your graph data. After we explore the world of graph
analytics, we’ll introduce the role of graphs in ML. This topic is a nice segue from
graph analytics because graph data, graph analytics, and ML are quite complemen-
tary. At the end of this chapter, we’ll close with a set of additional references and read-
ing materials to continue your study and work with graphs.

11.1 Graph analytics
Up to this point in this book, we have worked on questions in our application that
are transactional in nature; questions like, “Who are the friends of my friends?” or
“What are the newest reviews for this restaurant?” These are transactional because
these questions only require us to look at a small subset of our graph data. To
answer questions such as, “Who is the most connected person in my graph?” or
“Which person is the most centrally located?” we need to investigate most or all of
the data in the graph.

 Algorithms that require using most or all of the data in our graph fall into a cate-
gory of problems that use algorithms known as graph analytics. These algorithms are
useful across many domains for problems such as fraud detection, supply chain opti-
mization, and epidemic migration prediction.

In this section, we’ll briefly cover some of the more common algorithms and provide
an overview of what types of problems each solves or the information it returns. We’ll
provide you with enough information to understand the types of questions each cate-
gory of algorithms solves. This understanding should help you to narrow your focus as
you dig deeper into these rich capabilities.

11.1.1 Pathfinding

We introduced the fundamentals of pathfinding algorithms back in chapter 4, where
we used these algorithms to find friends in our social network. Although that is one
way of using pathfinding in a transactional process, it can also be used analytically to
explore the routes between vertices and to identify optimal paths in a graph. Each spe-
cific pathfinding algorithm works a little differently, and each has its advantages and

Graph analytics and graph databases
When looking at graph analytics, there are many frameworks and databases built spe-
cifically to perform these computationally intensive calculations. These sorts of special-
ized libraries tend to have optimizations specifically tailored to performing the long
running computations that most of the algorithms require. Many transactional graph
databases, such as those we have mentioned so far, have the ability to run these
sorts of calculations. But if you are looking to perform these sorts of algorithms at
scale, we recommend that you look at one of the analytical graph databases (such
as AnzoGraph) or frameworks (such as Apache Giraph).

288 CHAPTER 11 What’s next: Graph analytics, machine learning, and resources
disadvantages. In addition to the pathfinding we did in our social network, there are
many other real-world use cases for pathfinding algorithms such as

 Direction finding—Geographic mapping tools use some variation of a pathfind-
ing algorithm to provide directions.

 Optimization problems—Pathfinding algorithms can optimize various problems
that deal with a large number of interdependent entities, from managing sup-
ply chains to optimizing financial trades to determining bottlenecks and points
of failure in computer networks.

 Fraud detection—Many fraud algorithms use cycle detection, finding groups of
entities that connect to themselves, to look for closely connected subgraphs as a
measure of potentially fraudulent accounts.

The most common pathfinding algorithms in use are the shortest path algorithms,
which calculate the shortest path between two vertices. There are two fundamental
approaches to calculating the shortest path. The unweighted approach treats all paths
as equal, calculating the shortest path based on the number of edges traversed. The
weighted approach assigns relative weights to all paths, and these weights are then
used in the computation. Let’s see how having weighted or unweighted edges affects
the results.

UNWEIGHTED SHORTEST PATH ALGORITHM

Let’s say that we have a graph with three vertices, representing towns A, B, and C,
which are connected by three edges that represent the roads 1, 2, and 3 as shown in
figure 11.1. Now, what if we want to determine the shortest route from town A to
town C? Treating all paths as equal, we see that the shortest path between town A and
town C is to follow road 2, as it only requires traversing a single edge.

Town A Town B

Town C

32

1

Figure 11.1 The shortest path from town A to town C is A → 2 → C.

289Graph analytics
The unweighted shortest path algorithm is a great choice when the relative cost of tra-
versing all edges is the same or is not a concern. Social networks are a great example
of when unweighted shortest path algorithms are useful. In a social network, each
friend connection is equal to every other friend connection, so the relative cost of tra-
versing these edges is equal. In fact, an unweighted shortest path is what we built in
section 4.2 to find the path between Ted and Denise. However, in many scenarios, we
cannot treat all the connections as equal. In these scenarios, we need to look towards
a weighted shortest path algorithm.

WEIGHTED SHORTEST PATH ALGORITHM

In many scenarios, the relative cost, or weight, of moving from one vertex to another
differs. To calculate the shortest path in these scenarios, we want to determine the
path with the lowest overall relative cost, so we use a weighted shortest path algorithm.

 Let’s say that road 1 is a highway, while road 2 is a windy mountain road. Because
these roads are not traveled at equal speeds, we first need to assign a relative weight to
each edge. In the case of our graph, these relative weights can be compiled from mul-
tiple factors such as distance, speed, and road condition to account for the compara-
tive travel time difference between roads 1 and 2. Figure 11.2 shows this traversal.

To calculate the shortest path between town A and C, we no longer find only the short-
est number of hops to go between the two paths; instead, we add together the relative
cost of moving across the edges to find the lowest total weight. In our example, tra-
versing edge 1 is one-third as expensive as traversing edge 2, represented by the

Weight:0.3

Weight:0.5Weight:0.9

Town A Town B

Town C

32

1

Figure 11.2 In our weighted graph, the shortest path from town A to town C is
A → 1 → B → 3 → C.

290 CHAPTER 11 What’s next: Graph analytics, machine learning, and resources
Weight property on the edge. When we take this into account, our new, shortest path
is A → 1 → B → 3 → C.

 Weighted shortest path algorithms are a great choice when the relative cost of tra-
versing edges is not equal. This is common with problems such as supply chain optimiza-
tions, where the relative cost (distance/time) of moving goods are not equal, or with
network routing problems, where the time required to transfer network packets differs
between connections due to hardware or other aspects such as geographic proximity.

 Both unweighted shortest pair and weighted shortest pair algorithms have multi-
ple implementations, two of the most common being Djkstra’s algorithm (http://mng
.bz/K5Mn) and the A* search algorithm (https://www.geeksforgeeks.org/a-search-
algorithm/), both of which can be used on weighted and unweighted graphs.

11.1.2 Centrality

We use centrality algorithms to identify the importance of a vertex within a graph.
Centrality algorithms answer questions far beyond the social networking examples for
which many were invented. Some uses for centrality algorithms include

 Finding the most critical components in a computer network that can cause the
most disruption if lost

 Finding the importance of a person within an organization
 Estimating the optimal timing and routing for telecommunications packets
 Finding outliers in a graph as a measurement of likely fraud

When discussing centrality, we often use the word importance to describe the role that a
particular vertex plays in the overall structure of the graph. The specific meaning of the
importance of a vertex varies, based on what is being calculated by a particular algo-
rithm. This means that in order to interpret the results of a particular algorithm, we
need to understand what type of importance is calculated by that algorithm. Let’s look at
an example to get a better understanding of how importance varies by algorithm.

 Think about the social network we built earlier in this book. Within that social net-
work, we could define importance by who has the most friends, or who is the most in
the middle of the graph of friends, or who has the most influence over others in the
network. Each of these is a perfectly valid way to define importance, but calculating
each will likely yield a different result. This context-dependent definition of impor-
tance is why there are many different centrality algorithms, each of which calculates
the importance of a vertex slightly differently.

 Let’s take a look at five common centrality algorithms and see how each measures
centrality in a distinctly different way. We’ll also look at the outcomes of applying
these algorithms on our DiningByFriends social network.

DEGREE

Degree centrality is the simplest to understand. Degree is the number of incident edges
associated with a vertex, so degree centrality ranks vertices based on their edge count.
Degree centrality can be further broken down by measuring the in-degree and the out-

https://shortener.manning.com/K5Mn
https://shortener.manning.com/K5Mn
https://shortener.manning.com/K5Mn
https://www.geeksforgeeks.org/a-search-algorithm/
https://www.geeksforgeeks.org/a-search-algorithm/

291Graph analytics
degree separately. Degree centrality is often used as a baseline for determining how
connected a graph is, especially when calculating the mean, minimum, and maximum
values. In the context of our social network, degree centrality shows us who has the
most friends.

BETWEENNESS

Betweenness centrality is a calculation of the number of times a vertex is used in the
shortest path between all pairs of nodes in the graph. Betweenness centrality is effec-
tive at finding the critical points that connect different groups of vertices. When using
this algorithm, the larger the number returned, the more important the vertex. If we
run betweenness centrality on our social network, we find out who connects most to
different social groups.

CLOSENESS

Closeness centrality is a measurement of the average length of the shortest path from a
vertex to all other vertices, indicating which vertices are the most centrally located
with respect to all other vertices. When running closeness centrality, the smaller the
return value, the more important the vertex. Running closeness centrality on our
social network identifies which people are at the “heart” of the social network.

EIGENVECTOR

Eigenvector centrality is a complex measurement of a centrality that uses the relative
importance of the adjacent vertices as an input to calculate the importance of a given
vertex. Just because a vertex is connected to many other vertices does not necessarily
mean it is important. Instead, the importance of the vertex’s neighbors is used to com-
pute a vertex’s overall significance.

 If a vertex has many adjacent vertices, but those vertices are relatively uncon-
nected, then it receives a lower score than a vertex with fewer adjacent vertices, each
of which is highly connected. Running eigenvector centrality on our social network
graph finds the most influential people in our social network, the ones who not only
have the most connections, but who’s connections are also well-connected.

PAGERANK

PageRank is an algorithm made famous by Larry Page and Sergey Brin of Google for its
use in weighting search results. PageRank works similarly to eigenvector centrality as it
uses the relative importance of the adjacent vertices to aid in determining the overall
importance of a vertex. But it also includes a dampening value (commonly set to 0.85)
to indicate a diminishing of influence as the network is traversed. The higher the Page-
Rank return value for a vertex, the more important the vertex. As with eigenvector
centrality, if we run PageRank on our social network, our results will represent the most
influential people within our social network.

CENTRALITY COMPARISONS

Each of these centrality algorithms measures a different aspect of importance in a graph,
and each of these gives us different information about our data. Let’s demonstrate how

292 CHAPTER 11 What’s next: Graph analytics, machine learning, and resources
some of these centrality algorithms differ by running each on our social network as
the following table shows.

NOTE The code used to run each of these centrality algorithms is available in
the source code repository at chapter11/centrality_algorithms.groovy. Some
of the algorithms use advanced steps, which we have not covered or have
mentioned only in passing.

Examining these centrality measures, we see a wide variance in who is the most import-
ant. In the table, we have highlighted (in bold) the top, or most important, result for
each algorithm. Given the same underlying graph, our algorithms produce different
results for determining the most important vertex. Using degree and betweenness cen-
trality, Dave is the most important. For closeness centrality, Paras is the most important.
For eigenvector and PageRank, Denise is the most important. From the measurements
we can conclude

 Dave has the most friends and connects with the most social groups.
 Paras is the “heart” of the social network.
 Denise is the most influential.

As we mentioned at the beginning of this section, each of these algorithms measures a
different aspect of the importance (centrality) of a vertex in a graph. Understanding
the meaning of each measure is vitally important in choosing the correct algorithm
for your use cases.

11.1.3 Community detection

We use community detection algorithms to uncover groups or communities of vertices
that are tightly connected to one another but loosely connected to other vertices
within the graph. Think about friends in a social network. Does everyone know every-
one else? Are there small groups of people who are close friends but with only a few

First Name
Degree

Centrality
Betweenness

Centrality
Closeness
Centrality

Eigenvector
Centrality

Page Rank

Dave 4 48 3.33 1 0.0174

Josh 3 30 2.91 3 0.0191

Ted 1 16 2.26 1 0.0174

Hank 2 16 2.75 5 0.0197

Kelly 2 24 2.91 2 0.0183

Denise 3 26 3.56 8 0.0206

Jim 3 32 3.08 2 0.0183

Paras 2 14 2.36 3 0.0185

293Graph analytics
friendships to other groups in the network? These are exactly the sort of groupings
that community detection algorithms identify.

 Community detection algorithms aren’t just limited to social networks. These are
used across a large number of industries and use cases such as

 Finding communities of potentially similar accounts within an e-commerce site
to find distinct families within the graph

 Identifying potential fraud by looking for tightly connected components such
as groups of accounts known to commit deceptive activities

 Identifying similar groups of users to provide product recommendations

As with clustering algorithms, there are a large number of potential community detec-
tion algorithms, each finding communities in a slightly different way. Let’s take a look
at two of the most commonly used community detection algorithms and see how these
function.

TRIANGLE COUNTING

Let’s say we wanted to find close-knit communities within a social network. One way to
find these communities is to find the groups of people who all know each other. Let’s
further say that we have a social network like that shown in figure 11.3, where Dave
knows Hank, Hank knows Josh, and Josh knows Dave.

When we look at this figure, we see that these three people are tightly connected to
one another and that this grouping forms a triangle. Counting the number of these
triangles across a graph is known as triangle counting. Triangle counting does what the
name implies: it counts the number of triangles within a given subset of nodes. If we
look at figure 11.4, we see that in this graph, there are two triangles (A–B–D and E–C–F)
that are highlighted.

Dave knows

knowsknows

Hank

Josh
Figure 11.3 A social network where
Dave, Josh, and Hank form a triangle

294 CHAPTER 11 What’s next: Graph analytics, machine learning, and resources
Triangle counting is useful in capturing how cohesive or how closely related the net-
work of vertices are in a graph. Graphs that contain closely associated networks or
communities have a higher triangle count, and graphs with loosely connected net-
works have a lower triangle count.

CONNECTED COMPONENTS

Instead of triangle counting, what if we want to find groups of people who are well-
connected to one another, but who are not connected to other groups? To find these
communities, we use an algorithm known as connected components.

 In graph theory, any subgraph in which every vertex has a path to every other ver-
tex in the subgraph is known as a component. The connected components algorithm
finds all these components within a graph. Looking at figure 11.5, we can see that our
graph has two connected components within it, highlighted by the dashed lines sur-
rounding each component.

 Connected components discover clusters of related data within a global graph,
which can be helpful in finding items such as families within a social graph or groups
of associated or possibly duplicate accounts within an e-commerce site. The algorithm
shown in figure 11.5 does not consider the direction of the edges between the verti-
ces, so it is known as a weakly connected components algorithm.

 However, let’s say we want to find groups within our social network where our rela-
tionships between people are only one-directional, such as with Twitter. The fact that
Dave follows Josh does not mean that Josh follows Dave. To find the communities
within this graph, we need to take the direction of the edge into account. To accomplish

D

G

F

E

C

B

A

Figure 11.4 A graph showing
two highlighted triangles
(A–B–D and C–E–F)

295Graph analytics
this, we use a variation of the connected components algorithm known as strongly con-
nected components.

 Strongly connected components are essentially the same as weakly connected compo-
nents, except that the former considers the direction of an edge. In a strongly connected
component, a pair of edges exists between any two vertices in the subgraph with one
edge in each direction. If we look at the same graph that we used for connected compo-
nents, we can see that although the graph also contains two strongly connected compo-
nents, the vertices included in those components are different, as figure 11.6 highlights.

D

F

G

EA

C

B

Figure 11.5 A graph containing two highlighted components identified by a connected
component algorithm

A

C

B

D

F

G

E

Figure 11.6 Our connected component graph highlighting the two strongly connected
components, which is slightly different than with the connected component algorithm

296 CHAPTER 11 What’s next: Graph analytics, machine learning, and resources
We use the strongly connected components algorithm for detecting highly connected
communities within a graph where directionality matters. Strongly connected compo-
nents are frequently used in domains to find hubs of fraudulent activity or in product
recommendations to find groups of similar users.

11.1.4 Graphs and machine learning

Whereas applying graphs in machine learning (ML) is not new, it is only in the past
few years that this has taken off within the software industry. One irony of this is that
although many ML technologies rely heavily on graphs to accomplish their learning,
these neither allow for graphs as input nor provide them as output. Though this is
starting to change with current research, most standard ML algorithms take as inputs
fixed vectors or matrices of data. Because this is the case, how does the flexible data
structure of a graph get applied to the rigid data structure of an ML model? In this
section, we cover two approaches: feature extractions and graph embeddings.

FEATURE EXTRACTIONS

Often the simplest method for using graphs in ML is to extract features of a graph
that provide insight into the data in the graph. Although we can use any number of
graph features, here is how some of the graph analytics algorithms we learned earlier
in this chapter help generate input features:

 Shortest path—Takes the shortest path between a person and a known bad actor
as a predictive measurement for a fraudulent ML model

 Triangle count—Uses a triangle count in a social network to determine how
social or antisocial a particular user might be

 Degree—Uses the degree of connections of a vertex to determine how critical a
sensor is within a sensor network

These sorts of graph features are frequently beneficial when combined in ways that
complement each other and provide a more holistic view of the topology and con-
nectedness of the graph. When we combine many of these features together to create
a vector or a set of vectors for ML, we now have what is known as a graph embedding.

GRAPH EMBEDDINGS

Graph embeddings turn sparse data into much more compact vector representations.
Although much of the research in this area is driven by work done in natural language
processing (NLP), it is now being applied more generically to graphs to provide
inputs into tasks such as predicting new friendships and finding fraudulent activity.
Graph embeddings tend to come in one of two forms:

 Vertex embedding—Represents each vertex as a single vector/matrix. Used to
compare items on a vertex level. In the case of DiningByFriends, we might use
this to compare relative social networks (a person’s community of friends that
we found in chapter 3).

 Graph embedding—Represents the entire graph/subgraph as a single vector/matrix.
Used to compare entire graphs to one another. In the case of DiningByFriends,

297Graph analytics
we might want to use graph embedding to represent each personalization sub-
graph we found in chapter 9.

Why would we want to take the rich topology of a graph and create a vector out of it?
Vector operations are simpler and faster to perform than comparable operations on a
graph. Also, many of the algorithms and tooling available today are optimized for vec-
tor operations. Few are built with graph as input data in mind. So, what sort of fea-
tures might we want to include in an embedding?

 Well, this is the million-dollar question, isn’t it? The challenge here is to ensure
that whatever features we include adequately represent the topology, connectedness,
and other graph attributes while minimizing the size of the vector. Larger embeddings
require more time to process and more space to store, but also preserve a high level of
fidelity with regards to the original graph data. Choosing the correct features to use
for a given graph in a particular domain for a specific data set can be complex. Fea-
ture engineering is an entire discipline in itself, and its applicability to graph data is
beyond the scope of what we are able to cover in this book. If you are interested in
looking into this in more depth, we recommend that you check out some of the addi-
tional resources in the next section.

11.1.5 Additional resources

Throughout our writing and revising process for this book, we used a large number of
references and resources to aid us in compiling the information condensed here. For
those of you who desire to study these topics further, we include a list of our favorite,
most helpful resources. We have grouped these into four areas: graph theory, graph
databases, graph data sets, and graph algorithms.

GRAPH THEORY

We start with the underlying mathematical fundamentals of graph theory to provide a
strong understanding of how graphs work:

 Sarada Herke, “Graph Theory Channel,” http://mng.bz/9AM8—This YouTube
series provides informative and entertaining videos that focus on graph theory
and discrete mathematics. We found these videos to be an excellent teaching
tool to quickly go from no understanding to a solid grasp of the basic concepts
of graph theory.

 Richard J. Trudeau, Introduction to Graph Theory (Dover Books, 1975), http://
mng.bz/jV49—This book provides a good foundation for understanding the
mathematics of graph theory. It is written in a way that provides those of us with-
out a mathematics background a solid conceptual understanding of the mathe-
matics behind graph theory as long as you are willing to do a bit of work.

 Douglas B. West, Introduction to Graph Theory (University of Illinois, Urbana-
Champaign, 2001), http://mng.bz/WqdX—This graph theory book is for those
who really want to go deep into the mathematics behind graph theory. It
assumes that the reader is familiar with math terms and symbology. If you do

http://mng.bz/9AM8
http://mng.bz/jV49
http://mng.bz/jV49
http://mng.bz/jV49
http://mng.bz/WqdX

298 CHAPTER 11 What’s next: Graph analytics, machine learning, and resources
not come from a mathematics background, you might want to familiarize your-
self with math concepts in order to get the most out of this text.

GRAPH DATABASES

For those interested in taking a deeper dive into the specific tooling and database
options available, we recommend the following books:

 Ian Robinson, et al., Graph Databases, 2nd ed. (O’Reilly Media, Inc., 2015),
http://mng.bz/QxVv—This is pretty much the go-to book for building on
Neo4j. The Neo4j graph database platform powers mission-critical enterprise
applications such as artificial intelligence, fraud detection, and recommenda-
tions. Two of the authors are CEO and Chief Scientist at Neo4j. We highly rec-
ommend that this text be part of your library if you plan on using Neo4j.

 Denise Gosnell and Matthias Broecheler, The Practitioner’s Guide to Graph Data
(O’Reilly Media, Inc., 2020), http://mng.bz/lX1z—This book focuses on how
one thinks about graph data and graph data problems, as well as some of the
considerations when building large-scale graph applications. It also uses Grem-
lin and the Apache TinkerPop framework, but is more focused on the concep-
tual than language syntax.

 Kelvin R. Lawrence, Practical Gremlin: An Apache TinkerPop Tutorial (June, 2020),
http://mng.bz/8GNg—This free online resource is the go-to place for addi-
tional help with the Gremlin language. Because it is an online book, updates
are made regularly as features and syntax in the Gremlin language change.

 Corey L. Lanum, Visualizing Graph Data (Manning, 2016), http://mng.bz/EE2r—
For anyone interested in how to approach the visualization of highly connected
data, this book offers many examples and case studies. It also provides a nice,
real-world perspective on how to think about visualizing graph data.

GRAPH DATA SETS

For those trying out graphs and graph databases, one of the most common frustra-
tions is finding good data sets to work with. In this section, we provide a list of loca-
tions to find data sets ready for graph analysis:

 “Stanford Network Analysis Project (SNAP),” http://snap.stanford.edu/—This
site is full of many great data sets for general graph analysis, including several
extremely large data sets.

 “Kaggle,” https://www.kaggle.com/—The Kaggle community provides excel-
lent data set aggregators for all sorts of data science work. Many of the data sets
are also suitable for those interested in investigating specific graph problems
such as fraud or supply chain optimization.

 “Google Datasets,” https://datasetsearch.research.google.com/—This is a search
engine for publicly available data sets, specifically those associated with govern-
ment and research projects.

http://mng.bz/QxVv
http://mng.bz/EE2r
http://mng.bz/lX1z
http://mng.bz/8GNg
http://snap.stanford.edu/
https://www.kaggle.com/
https://datasetsearch.research.google.com/

299Final thoughts
 LDBC (Linked Data Bench Council), “The Social Network Benchmark (SNB),”
http://ldbcouncil.org/developer/snb—A European-based, non-profit organi-
zation, LDBC provides both tools for generating social networking data sets and
sample data sets of various sizes for benchmarking engine and application per-
formance.

GRAPH ALGORITHMS

For those looking to dive deeper on graph algorithms, we have provided you with a list
of useful resources on the subject. These resources focus on the algorithms and the
analytics that you can use with highly connected data:

 Tushar Roy, “Coding Made Simple, Graph Algorithms Playlist,” http://mng.bz/
NnYX—This YouTube series in an easy-to-consume format provides a detailed
overview of how the most common graph algorithms (Dijkstra’s algorithm,
strongly connected components, and others) work. We found this series helpful
in understanding the implementation of each of the algorithms discussed.

 Algorithms Course, “Graph Theory Tutorial from a Google Engineer,” http://
mng.bz/X0Va—This YouTube video provides almost seven hours of detailed
instruction on common graph algorithms. Each of the examples uses Java imple-
mentations to aid understanding.

 Alessandro Negro, Graph-Powered Machine Learning (Manning, 2018), http://
mng.bz/DzR0—This is one of the few books that focuses solely on the use of
graphs and machine learning. At the time of writing, this book is still in Man-
ning’s MEAP program, but we used a preview text as a reference throughout
the development of this book.

 Mark Needham and Amy E. Hodler, Graph Algorithms: Practical Examples in
Apache Spark and Neo4j (O’Reilly Media, Inc., 2019), http://mng.bz/Mo1B—
This is a well-written book, providing a great overview of graph algorithms and,
especially, how to use them in Python with Neo4j and Apache Spark. This is
another book we highly recommend for everyone’s bookshelf.

11.2 Final thoughts
Congratulations! You have reached the end of your journey into the world of graph
databases. We hope that the skills you have learned inspire you to continue working
with these databases. We have sought to provide you with a solid grounding and con-
ceptual model so that you are successful as you move forward with your own highly
connected data projects.

http://mng.bz/Mo1B
http://ldbcouncil.org/developer/snb
http://mng.bz/NnYX
http://mng.bz/NnYX
http://mng.bz/NnYX
http://mng.bz/X0Va
http://mng.bz/X0Va
http://mng.bz/X0Va
http://mng.bz/DzR0
http://mng.bz/DzR0
http://mng.bz/DzR0

300 CHAPTER 11 What’s next: Graph analytics, machine learning, and resources
Summary
 We use pathfinding algorithms, such as unweighted or weighted shortest path,

to describe the connectedness within a graph.
 We use centrality algorithms such as degree, betweenness, closeness, eigenvector,

and PageRank to describe how important or influential a vertex is within a graph.
 The output of centrality algorithms can vary significantly, so understanding how

each one works is important to selecting the appropriate one for your use case.
 We use community detection algorithms such as triangle counting, connected

components, and strongly connected components to detect unique clusters (or
communities) of highly connected vertices within a graph.

 Graph features such as shortest path, PageRank, and triangle count can be
extracted from a graph to use as input into a feature set in machine learning
(ML).

 Graph embeddings are a mechanism that represents the sparse multi-dimensional
structure of a graph as a vector or matrix.

appendix
Apache TinkerPop

installation and overview

For the examples in this book, we use graph databases and tools from the Apache
Software Foundation’s TinkerPop project (http://tinkerpop.apache.org/). The
project’s software is properly called Apache TinkerPop or simply TinkerPop. This
appendix delivers an overview of the TinkerPop project and explains how to install
and configure the features needed to run the code examples in this book.

A.1 Overview
TinkerPop is a top-level Apache Foundation project, which offers an open source
and vendor-agnostic graph computing framework with both transactional (OLTP)
and analytical (OLAP) capabilities. In addition to the core libraries included as
part of the project, there are a wide array of third-party libraries that are part of the
TinkerPop ecosystem.

 TinkerPop provides a standardized interface that is currently implemented by
more than 20 separate database engines. This includes DBaaS (DataBase-as-a-Service)
products (such as Amazon Neptune and Azure ComosDB), commercial offerings
(such as DataStax Enterprise Graph and Neo4j), and open source software (such as
TinkerGraph and JanusGraph).

NOTE A TinkerPop-enabled graph database is a database that implements
at least the minimum APIs required to perform traversals via the Gremlin
query language.

The TinkerPop project is made up of multiple different pieces. We have included
the ones in this overview that we use throughout this book.
301

http://tinkerpop.apache.org/

302 APPENDIX Apache TinkerPop installation and overview
A.1.1 Gremlin traversal language

The Gremlin traversal language is the graph query language of the TinkerPop project
and is the query language we use for the examples in this book. Gremlin supports
both imperative and declarative syntaxes, but the imperative syntax is the predomi-
nant approach.

 Gremlin allows for both query and mutation operations on data through the use of
a series of steps that are chained together, similar to the way a functional language
chains methods. This ability to chain operations enables the construction of complex
traversals through our graphs. It is often useful to think of a Gremlin traversal in
terms of a stream processor: data enters from the previous step, an operation is per-
formed on it, and data is transmitted on to the next step.

A.1.2 TinkerGraph

TinkerGraph is an in-memory graph engine that supports both OLTP and OLAP
workloads and is part of the TinkerPop Gremlin Server and Gremlin Console. Tinker-
Graph is built as a reference implementation of the TinkerPop API. It is a full-featured,
open source implementation of TinkerPop. TinkerGraph is the core graph engine
used in the various tools and software provided as part of TinkerPop.

 Note that TinkerGraph isn’t a piece of software that you download. It is the core
engine that is used by the downloadable software such as Gremlin Server and Gremlin
Console. Other vendors may choose to include it in their implementations.

A.1.3 Gremlin Console

The Gremlin Console is an interactive terminal application used with TinkerPop-
enabled graph databases. The Gremlin Console enables users to connect to local or
remote databases, load data into a graph, and interactively traverse around the graph.
It can be used either as a standalone application with its own in-memory graph data or
as a client to a graph database server. We use the Gremlin Console as a client through-
out this book for our interactions with a separately running Gremlin Server.

A.1.4 Gremlin Language Variants (GLVs)

Gremlin Language Variants (GLVs) are like language-specific drivers that allow devel-
opers to use Gremlin as a query language, but to do so with the vernacular and idioms
of their preferred development language. GLVs are exceptionally powerful and go
well beyond our common understanding of database drivers.

 When using a GLV for your language, be it Java, Python, C#, or JavaScript, you are
using that language’s tools and syntax. GLVs encourage writing Gremlin traversals in
the style of the application’s programming language: a Java developer uses Java syntax,
a .NET developer uses .NET syntax, and so forth. In this book, we use the Gremlin-
Java variant.

303Installation
A.1.5 Gremlin Server

The Gremlin Server facilitates remote execution of graph commands against graph
data. The Gremlin Server also allows non-JVM clients to communicate with JVM-based
graph databases and provides a mechanism to communicate with databases hosted on
separate machines. In this book, we use the Gremlin Server to host our graph data in
a client-server architecture.

A.1.6 Documentation

The Apache TinkerPop website (http://tinkerpop.apache.org/) has a complete set of
documentation including tutorials, getting started examples, and Gremlin recipes.
Although we discuss some Gremlin concepts and syntax within this book, this book is
not intended to serve as a replacement for the TinkerPop documentation. We strongly
recommend that you take time to familiarize yourself with the available resources on
the site if you choose to use a TinkerPop-enabled database.

A.2 Installation
The first step in installing the TinkerPop framework is to download the reference
tools from the Apache TinkerPop site: http://tinkerpop.apache.org/downloads.html.
The most recent version at the time of publication is 3.4.6, but any TinkerPop 3.4
implementation should work with the examples. For this book, you need to download
and install both the Gremlin Console and the Gremlin Server.

NOTE This book utilizes the MacOS syntax for all examples, but we provide
the Windows syntax for the same options as well.

A.2.1 Installing and verifying the Java Runtime

The prerequisite for running the Gremlin Console is Java version 8. If you do not have
Java installed, you should download and install the latest Java Development Kit (JDK)
from Oracle (http://mng.bz/ZrPj), OpenJDK (https://openjdk.java.net/), or your pre-
ferred Java distribution. To verify that Java is installed and its version number, use the
command java -version like this:

$ java -version
openjdk version "1.8.0_222"
OpenJDK Runtime Environment (AdoptOpenJDK)(build 1.8.0_222-b10)
OpenJDK 64-Bit Server VM (AdoptOpenJDK)(build 25.222-b10, mixed mode)

This indicates that this machine is running Java version 1.8.0.222. From the response,
we know that Java is properly configured and ready to use.

http://tinkerpop.apache.org/
http://tinkerpop.apache.org/downloads.html
http://mng.bz/ZrPj
https://openjdk.java.net/

304 APPENDIX Apache TinkerPop installation and overview
A.2.2 Installing Gremlin Console

Now that we have all the prerequisites installed and verified, the next step is to install
and run the Gremlin Console:

1 From the TinkerPop downloads page (http://tinkerpop.apache.org/downloads),
click the button for Gremlin Console.

2 We are now on a page that lists the mirrors of the sites to download from. Select
a mirror and click the link to download it.

3 Once the download completes, unzip the code using either a command-line tool
or a GUI editor to a directory that we refer to as GREMLIN_CONSOLE_HOME.

4 Open a command-line terminal.
5 Navigate to the GREMLIN_CONSOLE_HOME directory.
6 Start the Gremlin Console:

a For MacOS or Linux, type bin/gremlin.sh.
b For Windows, type bin\gremlin.bat.

7 Once the Gremlin Console starts, you will see it move through a loading pro-
cess where any configured plugins are activated. Once the plugins are activated,
you get an input dialog as shown here:

$ bin/gremlin.sh

 \,,,/
 (o o)
-----oOOo-(3)-oOOo-----
plugin activated: tinkerpop.server
plugin activated: tinkerpop.utilities
plugin activated: tinkerpop.tinkergraph
gremlin>

A.2.3 Installing Gremlin Server

Now that we have installed and can run the Gremlin Console, it is time for us to install
and run the Gremlin Server:

NOTE The Gremlin Server uses TCP port 8182. You may need to adjust your
OS or local firewall settings in order to permit access on this port.

1 From the TinkerPop downloads page (http://tinkerpop.apache.org/downloads),
click the button for Gremlin Server.

2 We are now on a page that lists the mirrors of the sites to download from. Select
a mirror and click the link to download it.

3 Once the download completes, unzip the code using either a command-line tool
or a GUI editor to a directory that we refer to as GREMLIN_SERVER_HOME.

4 Open a command-line terminal.
5 Navigate to the GREMLIN_ SERVER _HOME directory.

Starts the
Gremlin Console

The Gremlin Console command
prompt ready to accept input

http://tinkerpop.apache.org/downloads
http://tinkerpop.apache.org/downloads

305Installation
6 Start the Gremlin Server:
a For MacOS or Linux, type bin/gremlin-server.sh start.
b For Windows, type bin\gremlin-server.bat start.

7 You will get a message saying that the server has started, along with the process
ID. The process ID is different each time you start the server. For example

$ bin/gremlin-server.sh start
Server started 56799.

A.2.4 Configuring the Gremlin Console to connect
to the Gremlin Server

With both the Gremlin Server and the Gremlin Console running, it is time to connect
the Gremlin Console to our Gremlin Server instance:

NOTE If you have any Gremlin Console instances running, close these with
the console commands :q or :exit.

1 Open a command-line terminal.
2 From the GREMLIN_CONSOLE_HOME directory, navigate to the conf direc-

tory.
3 In a text editor, open the remote.yaml file. This file contains three parameters

that you might need to adjust. If you are running everything locally, then you
will not need to change any of these parameters:
– hosts: [localhost]—This parameter is the IP or domain name of the Grem-

lin Server where we want to connect.
– port: 8182—This parameter is the port to connect to; it defaults to 8182.
– serializer: { className: org.apache.tinkerpop.gremlin .driver.ser

.GryoMessageSerializerV3d0, config: { serialize-ResultToString:
true }}—This parameter is the data interchange format between the Grem-
lin Console and the Gremlin Server. Depending on the production database
you choose, you may need to adjust it to the format provided by that data-
base vendors documentation.

4 Save the file and close it.
5 From the GREMLIN_CONSOLE_HOME directory, start the Gremlin Console

with the following commands:
a For MacOS/Linux, type bin\gremlin.sh.
b For Windows, type bin/gremlin.bat.

6 Once the Gremlin Console starts, execute the following command:

:remote connect tinkerpop.server conf/remote.yaml

This command uses the parameters that we just defined to connect to the Grem-
lin Server instance we have running.

306 APPENDIX Apache TinkerPop installation and overview
7 A message is returned confirming that you are connected:

 \,,,/
 (o o)
-----oOOo-(3)-oOOo-----
plugin activated: tinkerpop.server
plugin activated: tinkerpop.utilities
plugin activated: tinkerpop.tinkergraph
gremlin> :remote connect tinkerpop.server

➥ conf/remote.yaml
==>Configured localhost/127.0.0.1:8182
gremlin>

8 Next, run the command to switch from local mode to server mode:

:remote console

The Gremlin Console informs you that it has switched modes:

gremlin> :remote console
==>All scripts will now be sent to Gremlin Server –

➥ [localhost/127.0.0.1:8182] –

➥ type ':remote console' to return to local mode
gremlin>

9 Run the following command to display some basic information about the graph
database hosted on the Gremlin Server:

gremlin> g
==>graphtraversalsource[tinkergraph[vertices:0 edges:0], standard]

We have now successfully connected to our Gremlin Server via the Gremlin Console.
To exit the session with the Gremlin Server and close the connection, execute the fol-
lowing command:

:remote close

A.2.5 Gremlin Console command modes: Local versus remote

When issuing commands to a remote graph database server, you can choose either of
these two modes: local mode and remote mode. The preferred method of sending com-
mands to the Gremlin Server is to put the Gremlin Console into remote mode. This is
what we did in the previous section, and it is becoming the default mode when using
Gremlin Console connected to a server. Remote mode means that any commands exe-
cuted in Gremlin Console will be sent to the Gremlin Server, run there, and the
results will then be displayed by the Gremlin Console.

 If you are going to only issue one or two commands, you can do this with local
mode by prefacing each command with :>. This sends the command to the configured

Gremlin Console command
connects to a Gremlin Server

Response confirms that the
connection is configured

307Installation
remote connection. Only the commands prefaced by these two characters (:>) will be
executed on the Gremlin Server. Any commands that have not been prefaced with
these characters run within Gremlin Console’s own process. To switch between the
two modes, use the :remote console command like this:

gremlin> :remote console
==>All scripts will now be sent to Gremlin Server –

➥ [localhost/127.0.0.1:8182] - type ':remote console'

➥ to return to local mode
gremlin> :remote console
==>All scripts will now be evaluated locally –

➥ type ':remote console' to return to remote mode

➥ for Gremlin Server - [localhost/127.0.0.1:8182]
gremlin>

A.2.6 Using the Gremlin Console

Before we fire up the Gremlin Console, there are a few additional options we should
discuss. If you want to see a list of the options available for the Gremlin Console, type
the following:

$ bin/gremlin.sh --help
Usage: gremlin.sh [-CDhlQvV] [-e=<SCRIPT ARG1 ARG2 ...>]...
 ➥ [-i=<SCRIPT ARG1 ARG2 ...>...]...
 -C, --color Disable use of ANSI colors
 -D, --debug Enabled debug Console output
 -e, --execute=<SCRIPT ARG1 ARG2 ...>
 Execute the specified script (SCRIPT ARG1 ARG2 ...)
 ➥ and close the console on completion
 -h, --help Display this help message
 -i, --interactive=<SCRIPT ARG1 ARG2 ...>...
 Execute the specified script and leave the console
 ➥ open on completion
 -l Set the logging level of components that use
 ➥ standard logging output independent of the Console
 -Q, --quiet Suppress superfluous Console output
 -v, --version Display the version
 -V, --verbose Enable verbose Console output

As depicted, there are a variety of options to use, but the most common one we use
(-i) loads a script while starting the Gremlin Console. This is handy for configur-
ing the Gremlin Console, loading data, and then leaving the Gremlin Console up
and running, waiting for further input. All of the scripts provided in the book’s
GitHub repository (https://github.com/bechbd/graph-databases-in-action) do the
following:

■ Configure a remote connection to a Gremlin Server on localhost
■ Set the Gremlin Console in remote mode
■ Load the data, either with scripted operations or from a GraphSON import

file

https://github.com/bechbd/graph-databases-in-action

308 APPENDIX Apache TinkerPop installation and overview
What follows is an example of running a simple data load script:

$ bin/gremlin.sh -i $BASE_DIR/path/to/

➥ data-load-script.groovy

 \,,,/
 (o o)
-----oOOo-(3)-oOOo-----
plugin activated: tinkerpop.server
plugin activated: tinkerpop.utilities
plugin activated: tinkerpop.tinkergraph
gremlin> g
==>graphtraversalsource[tinkergraph[vertices:4 edges:5], standard]
gremlin>

The Gremlin Console is what is known as a REPL (Read Evaluate Print Loop) termi-
nal. This means that the commands we type are immediately executed, and the results
of that evaluation are printed to the screen. Because the Gremlin Console runs on
Groovy, you can execute standard Groovy code like an addition computation inside
the Gremlin Console. For example

gremlin> a = 1
==>1
gremlin> b = 2
==>2
gremlin> a + b
==>3

The ability to run Groovy code allows you to perform complex queries on your graphs
and to save the results of those queries to variables that you can use later for addi-
tional calculations. This ability to write code is also extremely helpful when debugging
your graph traversal code.

 Inside the Gremlin Console, there are several available commands, all of which
begin with a colon (:). To see a listing of the available commands, type :help and
press Enter. The most common commands we use are :exit, :quit, :x, or :q, which
are all functionally identical and exit the Gremlin Console:

gremlin> :help

For information about Groovy, visit:
 http://groovy-lang.org

Available commands:
 :help (:h) Display this help message
 ? (:?) Alias to: :help
 :exit (:x) Exit the shell
 :quit (:q) Alias to: :exit
 import (:i) Import a class into the namespace
 :display (:d) Display the current buffer

Starts the Gremlin Console
in interactive mode with a
data load script

Uses the built-in g variable
to quickly verify data is
loaded in the graph

The Gremlin Console
prompt waiting for input

309Installation
 :clear (:c) Clear the buffer and reset the prompt counter
 :show (:S) Show variables, classes or imports
 :inspect (:n) Inspect a variable or the last result with the
 GUI object browser
 :purge (:p) Purge variables, classes, imports or preferences
 :edit (:e) Edit the current buffer
 :load (:l) Load a file or URL into the buffer
 . (:.) Alias to: :load
 :save (:s) Save the current buffer to a file
 :record (:r) Record the current session to a file
 :history (:H) Display, manage and recall edit-line history
 :alias (:a) Create an alias
 :grab (:g) Add a dependency to the shell environment
 :register (:rc) Register a new command with the shell
 :doc (:D) Open a browser window displaying the doc for the
 argument
 :set (:=) Set (or list) preferences
 :uninstall (:-) Uninstall a Maven library and its dependencies from
 the Gremlin Console
 :install (:+) Install a Maven library and its dependencies into
 the Gremlin Console
 :plugin (:pin) Manage plugins for the Console
 :remote (:rem) Define a remote connection
 :submit (:>) Send a Gremlin script to Gremlin Server
 :bytecode (:bc) Gremlin bytecode helper commands

For help on a specific command type:
 :help command

index
Symbols

:> characters 307
_ _ anonymous traversal 159

A

access pattern 26
addE() step 84, 86, 93, 95, 160
addV() step 83–84, 90, 92–93,

160, 242
Algorithms Course - Graph The-

ory Tutorial from a Google
Engineer, YouTube 299

alias 118–121
Apache TinkerPop 144

documentation for 303
Gremlin Driver 146

App.java file 145
as keyword 123
as() modulator 123, 125, 159
attribute 26

B

$BASE_DIR variable 55
both() step 67, 103, 105, 108, 166
bothE() step 105–106, 243
bothE().otherV() traversal

pattern 109
bothV() step 105–106
branch step 242
Build Java application 145–146
by() modulator 125–126, 129,

132, 134, 138, 225, 228
bytecode 222–223, 265–267

C

C# / .NET xx, 145, 153, 157
cap() step 162, 242–243
cardinality 44–45
centrality 290–291

betweeness 291
closeness 291
degree 290
eigenvector 291
PageRank 291

:clear command 100
client.submit() method 258,

283
Cluster class 147–148
Cluster object 147–150, 154,

257, 282–283
Cluster.Builder instance 147
Coding Made Simple, Graph

Algorithms Playlist series,
YouTube 299

column-oriented database 7
command query responsibility

segregation (CQRS) 22
commented version 143, 151
community detection 292

connected components
294–295

triangle counting 293
Compile Java application

145–146
CompletableFuture, Java

API 258
completed version 143, 151
conceptual model 33–36,

173–174, 188, 194

conf directory 305
connect() method 257
Connected Components

algorithm 294
connectToDatabase

method 147, 150
contact type example 177–181
count() step 133, 135, 154,

162–163
CQRS (command query respon-

sibility segregation) 22
create() method 148
CTEs (Common Table

Expressions) 69, 95
cycles 100–102
Cypher, openCypher xx

D

Data Manipulation Language
(DML) 64

DDL (Data Definition
Language) 64

decr parameter 132
degree of connections 130, 296
denormalization 110, 183–188,

275–276
detached mode 149
direction finding 288
displayMenu() method 151
DML (Data Manipulation

Language) 64
do-while loop 76
document database 8
driver 145
DriverRemoteConnection 149
311

INDEX312
drop() step 87–88, 90, 161–163
duplicate data 185–187

E

E() steps 65, 84, 105–111
Edge object 64, 160
Edge-induced subgraph 239–240
edges

defined 5–6
direction 42, 59, 62, 67–68
TinkerPop class 157–160
uniqueness 44–48

embedded mode 149
emit() step 76–78
entities 26, 194
entity resolution 278
entity-relationship 240
error examples 162, 222
escape room 62, 110, 233
Eulerian graph 6
:exit command 308
explain() step 264–266

F

filtering 65, 89, 103, 108,
224–225, 233

flatMap step 242
fraud detection 288
friends-of-friends example

69–78, 120–126
from() modulator 86, 125

G

g (traversal source) 64, 146,
150, 245, 253

g = graph.traversal() 64
g.E() step 88, 148
g.V() step 148, 216
g.V().drop().iterate() danger-

ous traversal 90
generic labels 177
getGraphTraversalSource

method 150
global graph steps 64–65
GLV (Gremlin Language

Variants) 152, 256, 281–282
Goldilocks Zone 177
Google Datasets 298
Graph 64, 245
Graph Algorithms (Needham,

Hodler) 299
Graph API 64

Graph Databases (Robinson,
Weber, Efrem) 298

Graph definition 5
Graph Powered Machine Learning

(Negro) 299
graph steps 65, 84
graph structure 64
graphSource 150
GraphTraversal 64, 95, 154
GraphTraversalSource 146–148,

150–153, 155, 161, 205, 245,
252–253, 255

Gremlin bytecode 222–223,
265–267

Gremlin Console 55–56, 91–92,
100, 138, 146, 154, 210–211,
217, 243

Gremlin injection 153
Gremlin Server 55, 144, 146,

211, 240
GREMLIN_CONSOLE_HOME

directory 304–305
Gremlins movie example 45–49,

184–185
GremlinTraversalSource 146
Groovy REPL 91
groovy scripts 89
group of edges 45
group() step 135, 221, 225–226,

228
groupCount() step 134–135,

138–139

H

has() step 65, 89, 108, 137, 224,
233, 255

hasLabel() step 65
hasNext() step 155
:help command 308

I

id property 87
identity() step 225
in vertex 42–43
in() step 66, 103, 105, 108, 159,

211
incident edges 105
incoming incident edges 105
incoming vertex 66, 105
indexes 268–269, 277, 284
inE() step 105–106
Introduction to Graph Theory

(Trudeau) 297

Introduction to Graph Theory
(West) 297

inV() step 105–106, 191
io() step 205
iterate() step 90–91, 162
iterator 64

J

Java xx, 144, 149, 152–153,
155–157, 256

java -version command 303
JavaScript xx, 153
JDK (Java Development Kit) 303

K

Kaggle 298
key token 125, 228
key-value pair 228–229
key-value store 7–8
known walk 175–176, 198, 209–

210, 248–249, 252, 254

L

label type 65, 83
LDBC (Linked Data Bench

Council) 298
limit() step 136, 216
local mode 306
localhost 147
logical data model 37, 173, 189,

193–194, 196, 200, 207, 219,
232, 247, 250, 271, 274, 276

lte() step 108

M

machine learning 296
map directions 68
map step 242
maven 144–145, 150
mean() step 221
modulator 86, 125
multiple uniqueness edge 44–

46
mutation 81, 84, 89–95, 156

N

naming
changing 250–251
edge labels 42
vertex labels 39

INDEX 313
Neo4j xx, 8
network mode 149
next() step 90–92, 154–155,

162, 164
NLP (Natural Language

Processing) 296
not() step 159
null 49–50, 161, 257

O

offset in pagination 215
offset input 215–218
OLAP (Online Analytical

Processing) 19, 301
OLTP (Online Transactional

Processing) 19, 301
Open Web Application Security

Project (OWASP) 280
optimization problems 288
optional(traversal) step 248
order processing example

185–187, 191–193
order() step 132, 212, 216, 222,

224–227
order_id values 116
Orders-Products example

115–120, 127–129
otherV() step 105–106
out vertex 42
out() step 66, 72, 103, 105, 108,

123, 165–166, 191, 221
outE() step 105, 191
outgoing incident edges 105
outgoing vertex 66, 105
outV() step 105–106
OWASP (Open Web Applica-

tion Security Project) 280

P

pagination 214–218
params object 257
path 80, 98–102, 109

definition 80
step 166
TinkerPop API class 157,

166
Path class 166
Path objects 166
path() step 99, 108–109, 166
pathfinding 80, 287
people-addresses example

278–279
performance warnings 75

personalization use case 30,
194–196, 238, 246–256

pom.xml file 145
Power Law distribution 272
Practical Gremlin: An Apache

TinkerPop Tutorial
(Lawrence) 298

Practitioner’s Guide to Graph Data,
The (Koessler,
Broecheler) 298

pre-calculated fields 184–185
predicates 108–109, 231, 235
PreparedStatement 282–283
profile() step 266
project() step 127, 129–131,

140, 228, 234
Property object 64
property() step 83–84, 89
Python xx, 153, 157

Q

:q command 98
:quit command 308

R

range() step 136, 215–216
RDBMS (Relational Database

Management System) xiii,
22, 278

recommendation engine, use
case 30, 173–176, 181–183,
188–194, 198–203, 218–222,
225–235

recursive queries/traversals 9,
68–78, 99, 209–210

refactoring 233–234, 250–255,
275–276

relational database xiii, 4, 7–8,
27, 69, 95, 115, 118, 147,
152–153, 155, 208, 210, 215,
245, 254, 264–265, 278, 284

relationships, defined 26
:remote close command 306
:remote command 100
remote mode 149
remote.yaml file 305
repeat() loop 72, 74–75
repeat() step 72, 75–78, 102
repeat(traversal) step 72
REPL (Read Evaluate Print

Loop) 308
Result class 258
ResultSet 152–153, 258

S

Sarada Herke series,
YouTube 297

scale-free networks 272
schemaless 21, 28–29, 49–51,

108, 284
select() step 125–127, 130–131,

228
selection 127
serial isolation 245–246
session 257
shortest path 296

unweighted 288
weighted 289

showMenu() method 151
shuffle parameter 132
sideEffect() step 162, 242
simplePath() step 102
single uniqueness edge 44–46
skeleton version 143–144, 146,

151
SNAP (Stanford Network Analy-

sis Project) 298
SNB (Social Network

Benchmark) 298
social network graph data

complex 82, 96–97, 121–122
including “works_with”

edges 103–104, 108–109
simple 57, 81

social network use case 30, 174
SQL code examples 63, 86–87,

89, 113–114, 116, 132–133,
135, 152, 225, 251, 258,
281–282, 284

SQL Injection 153
standard parameter 150
Stanford Network Analysis Proj-

ect (SNAP) 298
store() step 162
strategies 150, 162, 265
Strongly Connected Compo-

nents algorithm 295–296
subgraph() step 242–243, 245
subgraphs 238–246
submit() method 153, 257–258,

283
supernodes 269–277

T

tail() step 136
task dependency 69
terminal steps 90–92, 154–155

INDEX314
timeLimit() step 75
times step 72, 75
tinkergraph object 244, 256
TinkerPop API session 257
TinkerPop API tokens 125, 213,

228
TinkerPop Client object 153,

257–258, 282–283
TinkerPop Gremlin

modulators 86, 125
TinkerPop Vertex object

157–158, 242
TinkerPop-specific API elements

anonymous traversal 158–
159, 162, 165, 225–226

Client object 153, 257–258,
282–283

Cluster object 147–150, 154,
257, 282–283

Edge class 157–160
global graph steps 64–65
Graph API 64
GraphTraversalSource 64
key token 125, 228
Path class 157, 166
predicates 108–109, 231, 235
session 257
strategies 150, 162, 265
tokens (id, label, keys,

values) 125, 213, 228
value token 125, 228
Vertex class 157–158, 242
Vertex ID 84, 213, 223

TinkerPop. See Apache Tinker-
Pop

to() modulator 86, 125, 159
toList() step 152, 154–155, 164
toSet() step 155
toString() construct 113, 158

toString() method 149, 258
traversal 57

as a parameter 72, 125
definition 57
execution time 255
writing 63, 137–140, 152, 206,

220
Traversal API 64
Traversal object 149
traversal parameter 72
traversal source 57, 64
traversal.AnonymousTraversal-

Source class 149
traversal() method 149, 245
traverse 57, 61–62, 103–108, 163
traverser 58, 60
triangle count 296
troubleshooting 222–224,

263–268
tryNext() step 155

U

UML (Unified Modeling
Language) 36

unbounded tree traversal 75
unfold() step 134, 138–139, 227
union() step 178–180, 251
until() statement 77–78
until() step 72–73, 75–77
until(traversal) step 72
Unweighted Shortest Pair

algorithm 290
using() method 149

V

V() steps 64, 84, 86–87, 105–
111, 155, 158

v[232] vertex 223
valueMap() step 68, 113, 115,

211, 213
values token 125, 128, 228
values() step 68, 114, 125
Vertex

definition 5–6
TinkerPop class 157–158

vertex embedding 296
Vertex ID 84, 213, 223
Vertex object 64, 157
Vertex-induced subgraph

239–240
VertexProperty object 64
vertices

defined 5
translating entities to 176

Visualizing Graph Data
(Lanum) 298

W

Weakly Connected Components
algorithm 294

Weight property 289
Weighted Shortest Pair

algorithm 290
where() step 224–225, 233
while-do loop 76
wide column database 7
wildcard (*) 113
with(WithOptions.tokens)

step 213
within() step 231
withRemote() method 149

X

:x command 308

Known-walk path through the logical data mode

review
_rating

person person review restaurant cityfriends about

about

wrote

wrote

within

Bechberger ● Perryman

ISBN: 978-1-61729-637-6

I
solated data is a thing of the past! Now, data is connected,
and graph databases—like Amazon Neptune, Microsoft
Cosmos DB, and Neo4j—are the essential tools of this

new reality. Graph databases represent relationships naturally,
speeding the discovery of insights and driving business value.

Graph Databases in Action introduces you to graph database
concepts by comparing them with relational database con-
structs. You’ll learn just enough theory to get started, then
progress to hands-on development. Discover use cases
involving social networking, recommendation engines,
and personalization.

What’s Inside
● Graph databases vs. relational databases
● Systematic graph data modeling
● Querying and navigating a graph
● Graph patterns
● Pitfalls and antipatterns

For software developers. No experience with graph databases
required.

Dave Bechberger and Josh Perryman have decades of experience
building complex data-driven systems and have worked with
graph databases since 2014.

To download their free eBook in PDF, ePub, and Kindle formats,
owners of this book should visit

www.manning.com/books/graph-databases-in-action

$49.99 / Can $65.99 [INCLUDING eBOOK]

Graph Databases IN ACTION

DATABASE/GRAPH

M A N N I N G

“A comprehensive overview
of graph databases and

how to build them using
Apache tools.”

—Richard Vaughan
Purple Monkey Collective

“A well-written and
thorough introduction to the
topic of graph databases.”—Luis Moux, EMO

“A great guide in your
journey towards graph

databases and exploiting
the new possibilities

 for data processing.”—Mladen Knežić, CROZ

“A great introduction to
graph databases and how

you should approach
designing systems that

leverage graph databases.”—Ron Sher, Intuit

See first page

	Graph Databases in Action
	contents
	foreword
	preface
	acknowledgments
	about this book
	Who should read this book
	How this book is organized: A roadmap
	About the code
	About the technologies

	liveBook discussion forum

	about the authors
	about the cover illustration
	Part 1—Getting started with graph databases
	1 Introduction to g raphs
	1.1 What is a graph?
	1.1.1 What is a graph database?
	1.1.2 Comparison with other types of databases
	1.1.3 Why can’t I use SQL?

	1.2 Is my problem a graph problem?
	1.2.1 Explore the questions
	1.2.2 I’m still confused. . . . Is this a graph problem?

	Summary

	2 Graph data modeling
	2.1 The data modeling process
	2.1.1 Data modeling terms
	2.1.2 Four-step process for data modeling

	2.2 Understand the problem
	2.2.1 Domain and scope questions
	2.2.2 Business entity questions
	2.2.3 Functionality questions

	2.3 Developing the whiteboard model
	2.3.1 Identifying and grouping entities
	2.3.2 Identifying relationships between entities

	2.4 Constructing the logical data model
	2.4.1 Translating entities to vertices
	2.4.2 Translating relationships to edges
	2.4.3 Finding and assigning properties

	2.5 Checking our model
	Summary

	3 Running basic and recursive traversals
	3.1 Setting up your environment
	3.1.1 Starting the Gremlin Server
	3.1.2 Starting the Gremlin Console, connecting to the Gremlin Server, and loading the data

	3.2 Traversing a graph
	3.2.1 Using a logical data model (schema) to plan traversals
	3.2.2 Planning the steps through the graph data
	3.2.3 Fundamental concepts of traversing a graph
	3.2.4 Writing traversals in Gremlin
	3.2.5 Retrieving properties with values steps

	3.3 Recursive traversals
	3.3.1 Using recursive logic
	3.3.2 Writing recursive traversals in Gremlin

	Summary

	4 Pathfinding traversals and mutating graphs
	4.1 Mutating a graph
	4.1.1 Creating vertices and edges
	4.1.2 Removing data from our graph
	4.1.3 Updating a graph
	4.1.4 Extending our graph

	4.2 Paths
	4.2.1 Cycles in graphs
	4.2.2 Finding the simple path

	4.3 Traversing and filtering edges
	4.3.1 Introducing the E and V steps for traversing edges
	4.3.2 Filtering with edge properties
	4.3.3 Include edges in path results
	4.3.4 Performant edge counts and denormalization

	Summary

	5 Formatting results
	5.1 Review of values steps
	5.2 Constructing our result payload
	5.2.1 Applying aliases in Gremlin
	5.2.2 Projecting results instead of aliasing

	5.3 Organizing our results
	5.3.1 Ordering results returned from a graph traversal
	5.3.2 Grouping results returned from a graph traversal
	5.3.3 Limiting results

	5.4 Combining steps into complex traversals
	Summary

	6 Developing an application
	6.1 Starting the project
	6.1.1 Selecting our tools
	6.1.2 Setting up the project
	6.1.3 Obtaining a driver
	6.1.4 Preparing the database server Instance

	6.2 Connecting to our database
	6.2.1 Building the cluster configuration
	6.2.2 Setting up the GraphTraversalSource

	6.3 Retrieving data
	6.3.1 Retrieving a vertex
	6.3.2 Using Gremlin language variants (GLVs)
	6.3.3 Adding terminal steps
	6.3.4 Creating the Java method in our application

	6.4 Adding, modifying, and deleting data
	6.4.1 Adding vertices
	6.4.2 Adding edges
	6.4.3 Updating properties
	6.4.4 Deleting elements

	6.5 Translating our list and path traversals
	6.5.1 Getting a list of results
	6.5.2 Implementing recursive traversals
	6.5.3 Implementing paths

	Summary

	Part 2—Building on Graph Databases
	7 Advanced data modeling techniques
	7.1 Reviewing our current data models
	7.2 Extending our logical data model
	7.3 Translating entities to vertices
	7.3.1 Using generic labels
	7.3.2 Denormalizing graph data
	7.3.3 Translating relationships to edges
	7.3.4 Finding and assigning properties
	7.3.5 Moving properties to edges
	7.3.6 Checking our model

	7.4 Extending our data model for personalization
	7.5 Comparing the results
	Summary

	8 Building traversals using known walks
	8.1 Preparing to develop our traversals
	8.1.1 Identifying the required elements
	8.1.2 Selecting a starting place
	8.1.3 Setting up test data

	8.2 Writing our first traversal
	8.2.1 Designing our traversal
	8.2.2 Developing the traversal code

	8.3 Pagination and graph databases
	8.4 Recommending the highest-rated restaurants
	8.4.1 Designing our traversal
	8.4.2 Developing the traversal code

	8.5 Writing the last recommendation engine traversal
	8.5.1 Designing our traversal
	8.5.2 Adding this traversal to our application

	Summary

	9 Working with subgraphs
	9.1 Working with subgraphs
	9.1.1 Extracting a subgraph
	9.1.2 Traversing a subgraph

	9.2 Building a subgraph for personalization
	9.3 Building the traversal
	9.3.1 Reversing the traversing direction
	9.3.2 Evaluating the individualized results of the subgraph

	9.4 Implementing a subgraph with a remote connection
	9.4.1 Connecting with TinkerPop’s Client class
	9.4.2 Adding this traversal to our application

	Summary

	Part 3—Moving Beyond the Basics
	10 Performance, pitfalls, and anti-patterns
	10.1 Slow-performing traversals
	10.1.1 Explaining our traversal
	10.1.2 Profiling our traversal
	10.1.3 Indexes

	10.2 Dealing with supernodes
	10.2.1 It’s about instance data
	10.2.2 It’s about the database
	10.2.3 What makes a supernode?
	10.2.4 Monitoring for supernodes
	10.2.5 What to do if you have a supernode

	10.3 Application anti-patterns
	10.3.1 Using graphs for non-graph use cases
	10.3.2 Dirty data
	10.3.3 Lack of adequate testing

	10.4 Traversal anti-patterns
	10.4.1 Not using parameterized traversals
	10.4.2 Using unlabeled filtering steps

	Summary

	11 What’s next: Graph analytics, machine learning, and resources
	11.1 Graph analytics
	11.1.1 Pathfinding
	11.1.2 Centrality
	11.1.3 Community detection
	11.1.4 Graphs and machine learning
	11.1.5 Additional resources

	11.2 Final thoughts
	Summary

	Appendix—Apache TinkerPop installation and overview
	A.1 Overview
	A.1.1 Gremlin traversal language
	A.1.2 TinkerGraph
	A.1.3 Gremlin Console
	A.1.4 Gremlin Language Variants (GLVs)
	A.1.5 Gremlin Server
	A.1.6 Documentation

	A.2 Installation
	A.2.1 Installing and verifying the Java Runtime
	A.2.2 Installing Gremlin Console
	A.2.3 Installing Gremlin Server
	A.2.4 Configuring the Gremlin Console to connect to the Gremlin Server
	A.2.5 Gremlin Console command modes: Local versus remote
	A.2.6 Using the Gremlin Console

	index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

