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Preface
Quantum information processing is a field of study that is a subclass of information 
processing. It exploits the laws of quantum mechanics to enable information processing 
in a manner that offers some advantages over conventional, non-quantum information 
processing. Quantum information processing has various sub-fields. These include 
quantum communication, quantum cryptography, quantum computing, and quantum 
error correction. This book provides a hands-on introduction to quantum information 
processing using the Python programming language.

In this book, you will find step-by-step explanations of essential concepts, practical 
examples, and self-assessment questions. You will begin by exploring the introductory 
notions of quantum information, including an overview of the prerequisite mathematical 
tools. Furthermore, you will learn how to use the Python programming language to 
implement some of the quantum information processing concepts. Finally, you will learn 
how to use various Python-based quantum information processing frameworks, such as 
QuTiP, Qiskit, Cirq, Strawberry Fields, and PennyLane. 

By the end of this Hands-On Quantum Information Processing with Python book,  
you will have a deeper understanding and appreciation of the subject of quantum 
information and how various quantum information processing concepts can be 
implemented using Python.

Who this book is for
This book is for software developers, physicists, and mathematicians who are interested 
in quantum information processing. An understanding of the Python programming 
language would be beneficial. Furthermore, a basic understanding of mathematics, 
especially linear algebra, would be beneficial.
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What this book covers
Chapter 1, Getting Started with Quantum Information Processing, provides a basic 
introduction to quantum information processing. It further provides information  
on the software tools and other requirements for you to get the most out of this book.

Chapter 2, Quantum States, Operations, and Measurements, provides the mathematics 
required for you to understand the subsequent chapters. Furthermore, this chapter 
introduces some quantum information processing concepts, such as qubits, quantum 
operations, the quantum no-cloning theorem, and models of quantum computing.

Chapter 3, Entanglement and Quantum Teleportation, discusses the concept of quantum 
entanglement. Furthermore, the chapter discusses one of the quantum communication 
protocols, namely the quantum teleportation protocol.

Chapter 4, Working with Quantum Circuits, introduces and discusses various quantum 
circuits. Additionally, this chapter covers quantum error correction. Finally, the chapter 
discusses one of the protocols of quantum communication, namely superdense coding. 

Chapter 5, Quantum Algorithms, introduces various quantum algorithms. The quantum 
algorithms discussed in this chapter include the Deutsch algorithm, the Deutsch-Jozsa 
algorithm, Simon's algorithm, Grover's algorithm, and Shor's algorithm.

Chapter 6, Non-local Quantum Games, introduces various quantum nonlocal games  
that allow players to perform more optimally than if they did not use quantum resources. 
The quantum games covered in this chapter include the CHSH game, the GHZ game,  
and the XOR game.

Chapter 7, Quantum Cryptography, introduces the quantum information processing 
sub-field of quantum cryptography. It covers the implementation of quantum key 
distribution protocols, such as the BB84, B92, and E91 protocols, using the Python 
programming language. Finally, the chapter introduces the implementation of  
post-quantum cryptography using the Python programming language.

Chapter 8, Quantum Machine Learning, introduces quantum machine learning. It also 
covers the implementation of quantum machine learning algorithms using the Python 
programming language.

Chapter 9, Continuous-Variable Quantum Information Processing, covers the  
continuous-variable aspect of quantum information processing. Furthermore, it 
introduces implementations of continuous-variable quantum information processing 
using the Python programming language.
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Chapter 10, Current Trends in Quantum Information Processing, concludes the book and 
covers current trends in the field of quantum information processing. It explores current 
trends in various sub-fields of quantum information processing. Finally, this chapter 
explores the future of quantum information processing. 

To get the most out of this book

If you are using the digital version of this book, we advise you to type the code yourself 
or access the code via the GitHub repository (link available in the next section). Doing 
so will help you avoid any potential errors related to the copying and pasting of code.

Download the example code files
You can download the example code files for this book from GitHub at https://
github.com/PacktPublishing/Hands-On-Quantum-Information-
Processing-with-Python. In case there's an update to the code, it will be updated 
on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at 
https://github.com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used 
in this book. You can download it here: https://static.packt-cdn.com/
downloads/9781800201156_ColorImages.pdf.

https://github.com/PacktPublishing/Hands-On-Quantum-Information-Processing-with-Python
https://github.com/PacktPublishing/Hands-On-Quantum-Information-Processing-with-Python
https://github.com/PacktPublishing/Hands-On-Quantum-Information-Processing-with-Python
https://github.com/PacktPublishing/
https://static.packt-cdn.com/downloads/9781800201156_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781800201156_ColorImages.pdf
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Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names, 
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. 
Here is an example: "The code uses the qiskit Python module."

A block of code is set as follows:

from qutip import * 

 

v_00 = bell_state(state="00") 

v_01 = bell_state(state="01")

v_10 = bell_state(state="10")  

v_11 = bell_state(state="11") 

Any command-line input or output is written as follows:

pip install pipenv

Bold: Indicates a new term, an important word, or words that you see onscreen.  
For example, words in menus or dialog boxes appear in the text like this: "This state  
is one example of entangled quantum states known as Bell states, Bell basis states,  
or EPR states."

Tips or important notes 
Appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book 
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes 
do happen. If you have found a mistake in this book, we would be grateful if you would 
report this to us. Please visit www.packtpub.com/support/errata, selecting your 
book, clicking on the Errata Submission Form link, and entering the details.

http://www.packtpub.com/support/errata
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Piracy: If you come across any illegal copies of our works in any form on the Internet, 
we would be grateful if you would provide us with the location address or website name. 
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in 
and you are interested in either writing or contributing to a book, please visit authors.
packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on 
the site that you purchased it from? Potential readers can then see and use your unbiased 
opinion to make purchase decisions, we at Packt can understand what you think about 
our products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

http://authors.packtpub.com
http://authors.packtpub.com
http://packt.com.




Section 1:  
Fundamentals of 

Quantum Information 
Processing

In this section, we will give you a jumpstart on the content and provide you with 
information regarding the necessary software tools and other requirements. We will cover 
the basic math required to understand the subsequent chapters, using Python as a tool for 
understanding.

This section comprises the following chapters:

• Chapter 1, Getting Started with Quantum Information Processing

• Chapter 2, Quantum States, Operations, and Measurements





1
Getting Started 
with Quantum 

Information 
Processing

This chapter provides an introduction to quantum information processing (QIP). 
However, in order to understand QIP, it is important to revisit classical/conventional 
information processing, from which QIP is derived. 

Therefore, this chapter will first provide a brief introduction to classical information 
processing. This will then be followed by a brief introduction to QIP. 

The birth of classical information processing can be attributed to Claude Shannon, whose 
ideas in the 1940s on information theory paved the way for the information revolution 
that would later follow. Shannon's ideas made use of the laws of classical physics in order 
to enable information processing. 



4     Getting Started with Quantum Information Processing

Furthermore, conventional information processing uses the concept of the binary digit 
(bit) as a unit of information. As we will see later in this book, this unit of information 
has its quantum counterpart, called a quantum bit (qubit). A qubit, as we will later learn, 
is the basic unit of quantum information. We will also later learn that a qubit is a more 
fundamental unit of information than a classical bit.

Another key aspect of conventional information processing is the notion of entropy, 
which was proposed by Shannon. In essence, entropy is a measure of uncertainty. 
Shannon's version of entropy can be used to quantify resources that are required to store 
information. For a random variable, X, and probability p, where the probability of an 
event, i, occurring is denoted by pi, the Shannon entropy, H(X), is given as follows: 

The following applies: 

𝑙𝑙𝑙𝑙𝑙𝑙
𝑥𝑥

𝑥𝑥𝑙𝑙𝑥𝑥𝑥𝑥𝑥𝑥 = 0 

This chapter discusses the following topics:

• Providing an overview of QIP

• Understanding the rationale for choosing Python for QIP

• Installing Python and other packages

• pipenv and creating the environment

Providing an overview of QIP
The field of QIP arose in response to the limits imposed on conventional information 
processing by the fundamental laws of physics. These limits were initially investigated  
in the 1960s by Rolf Landauer. Landauer's work was later extended by his colleague, 
Charles Bennett, in the 1970s. 

Initially, the focus of QIP was to determine the physical limits that are imposed on 
conventional information processing. However, as time progressed, the scope of QIP was 
expanded in order to explore such ideas as quantum cryptography, quantum computing, 
and quantum communication. These ideas will be discussed later in this book.

𝐻𝐻(𝑥𝑥) = 𝐻𝐻(𝑃𝑃1⋯𝑝𝑝𝑛𝑛) = −∑𝑝𝑝(𝑥𝑥)𝑙𝑙𝑙𝑙𝑙𝑙𝑝𝑝(𝑥𝑥)
𝑥𝑥
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Unlike classical/conventional information processing, which is based on the laws of 
classical physics, QIP uses a completely different paradigm. QIP makes use of quantum 
mechanical phenomena and principles in order to provide a more powerful way of 
processing information than is allowed by the laws of classical physics (quantum 
mechanics can be broadly defined as the study of nature at a sub-atomic level). This way, 
QIP is intended to provide some sort of advantage over classical information processing. 

As already stated earlier, the basic unit of quantum information is a qubit (a qubit can 
be generalized to an arbitrary dimension and is called a qudit (for d dimensions). 
However, our focus in this book is limited to a two-dimensional space, and a qubit is for 
two-dimensional space). It is analogous to a bit. However, unlike a bit, which exists in 
either of two states (0 or 1), a qubit can exist in a superposition of states. Mathematically,  
a qubit is represented by a unit vector residing in a two-dimensional complex 
Hilbert space, C2. Basically, Hilbert space is an example of vector space. More details 
about Hilbert space will be covered in Chapter 2, Quantum States, Operations, and 
Measurements. 

Mathematically, a qubit, |𝛙>, is given as follows: 

|𝜓𝜓⟩ = 𝛼𝛼|0⟩ + 𝛽𝛽|1⟩ 

Here, 𝛼𝛼  and 𝛽𝛽  are the probability amplitudes and are such that the following applies:

|𝛼𝛼2| + |𝛽𝛽2| = 1. 
The |0> and |1> states are the computational basis states analogous to 0 and 1 in classical 
information processing. A computational basis for both bits and qubits is made up of  
a pair of vectors that are linearly independent. A basic introduction to linear algebra will 
be provided in Chapter 2, Quantum States, Operations, and Measurements.

The computational basis state, |0>, can be represented as follows: 

[10] 

On the other hand, the computational basis state can also be represented as follows:  

[01] 

It is worth noting that any qubit, |𝛙>, can be represented as the linear combination of the 
computational basis states.



6     Getting Started with Quantum Information Processing

A qubit can also be represented using a Bloch sphere (the Bloch sphere is named after 
the physicist and Nobel laureate Felix Bloch). This representation, which is a geometric 
representation of a qubit, provides a valuable means of visualizing a qubit. 

A schematic diagram of a Bloch sphere is shown in Figure 1.1. Using a Bloch sphere, 
a qubit is represented as a point on the surface of a unit sphere. Therefore, a generic 
quantum state, |𝛙>, is given as follows: 

Here, 0≤𝜃≤𝜋 and 0≤𝜙≤2𝜋. Also, 𝜃, 𝛾, and 𝜙 are real numbers. Since the global factor, 
𝑒𝑒𝑒𝑒𝑒𝑒(𝑖𝑖𝑖𝑖) , has no observable effect, it can be omitted. Therefore, the preceding equation  
can be effectively written as follows: 

Here is a graphical representation of a qubit using the Bloch sphere:

Figure 1.1 – A graphical representation of a qubit using the Bloch sphere

So far, we have only been focusing on a single qubit. However, qubits can also form 
composite systems of more than one qubit. Such systems are represented using a tensor 
product. A tensor is a generalization of a matrix and is widely used in QIP. 

|𝜓𝜓⟩ = 𝑒𝑒𝑖𝑖𝑖𝑖 (𝑐𝑐𝑐𝑐𝑐𝑐 (𝜃𝜃2) |0⟩ + 𝑒𝑒𝑖𝑖𝑖𝑖𝑐𝑐𝑠𝑠𝑠𝑠 (𝜃𝜃2) |1⟩), 

|𝜓𝜓⟩ = 𝑐𝑐𝑐𝑐𝑐𝑐 (𝜃𝜃2) |0⟩ + 𝑒𝑒𝑖𝑖𝑖𝑖|1⟩ 
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In a tensor product representation, an n-qubit quantum system is represented as follows: 

As an example, consider a two-qubit composite system that is made up of qubits |0> and 
|0>. This qubit is written as |00>, which implies the following: 

Vectorially, the same state (|00>) is given as follows: 

This is because, as already stated, the state |0> is represented vectorially as follows: 

|1>, meanwhile, is represented as follows: 

Therefore, |00> means the following: 

This looks as follows: 

Now, let me briefly explain how the preceding tensor product is calculated. This is done  
by taking the first element of the vector on the left, then multiplying by all the elements 
(two elements in this case) of the vector on the right, and writing that result as the first 
two elements of the final product. The same is done for the second element of the vector 
on the left; it is multiplied by all the elements of the vector on the right, and the results  
of that are written as the last two elements of the product. 

|𝜓𝜓⟩ = |𝜓𝜓1⟩⊗ |𝜓𝜓2⟩⊗⋯|𝜓𝜓𝑛𝑛⟩ 

|00⟩ = |0⟩⊗ |0⟩ 

[
1
0
0
0
] 

[10] 

[01] 

[10]⊗ [10] 

[
1
0
0
0
] 



8     Getting Started with Quantum Information Processing

As an exercise for you, we request you to verify the following two elements:

|10⟩ = [
0
0
1
0
] 

|11⟩ = [
0
0
0
1
] 

An additional exercise is for you to determine vectorial representations of the three-qubit 
quantum systems. 

Based on the information provided in the second-last equation previously, it may seem 
natural to assume that any composite quantum system can be written as tensor products 
of the qubits. However, quite unfortunately, this is not the case. Composite quantum 
systems that can be represented in terms of the second-last equation previously shown are 
said to be separable. 

On the other hand, those composite quantum systems that are not separable are said to be 
entangled. One example of an entangled quantum state is (1/√2)(|00 >  + |11 >) . This quantum 
mechanical phenomenon of entanglement, which Albert Einstein referred to as the spooky 
action at a distance, is one of the key resources of QIP. 

The notion of spooky action at a distance will be further covered later in this book in 
Chapter 3, Entanglement and Teleportation. In essence, it refers to the correlated quantum 
effects that are observed by two quantum particles even though such quantum particles 
are separated by an arbitrarily long distance. 

There are two basic quantum operations on a quantum system. These operations are 
quantum logic gate operation and quantum measurement. The former is in essence 
realized through the unitary transformation of a qubit. A qubit's evolution under a unitary 
operation means that a quantum gate, which is a unitary transformation and hence 
reversible, is acting on a qubit. Under this quantum operation, the quantum system does 
not lose its quantumness.

The second quantum operation is the quantum basis measurement. Unlike the former 
quantum operation, this quantum operation on a qubit is irreversible. That is, once the 
quantum measurement operation is applied on a qubit, the qubit loses its quantumness 
and collapses to a classical state of either 0 or 1. The key difference between the two 
operations is that the output of the former is still quantum, while the output of the  
latter is classical.
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The QIP paradigm discussed thus far is known as discrete-variable QIP. It uses discrete, 
finite-dimensional complex Hilbert space. 

On the other hand, there is another paradigm of QIP that uses infinite-dimensional 
complex Hilbert space. This paradigm is known as continuous-variable QIP. By way 
of analogy, discrete-variable QIP can be thought of as digital QIP. On the other hand, 
continuous-variable QIP can be thought of as analog QIP. 

So far in this section, we have provided an overview of QIP. In the next subsection,  
we will explore various subfields of QIP. 

Subfields of QIP 
Having introduced the basic principles of QIP, now our attention will turn to the subfields 
of QIP. We will do so by first exploring the quantum cryptography subfield.

Quantum cryptography
The first subfield of QIP that was pursued in earnest was quantum cryptography. The 
initial quantum cryptography concept was explored by Stephen Wiesner in the 1960s. 

Wiesner's idea was about the use of quantum mechanics to make banknotes that would 
be impossible to counterfeit based on the laws of physics, and the use of these laws for an 
oblivious transfer cryptographic protocol.

Stephen Wiesner's idea of banknotes that are impossible to counterfeit inspired Charles 
Bennett (Bennett was a friend of Wiesner) and Gilles Brassard to propose the first ever 
quantum key distribution (QKD) protocol in 1984. This QKD protocol would later be 
known as the BB84 protocol. 

In the early 1990s, another QKD protocol was independently proposed by Artur Ekert, 
and it was based on entanglement. This QKD protocol, which was later found to be 
mathematically equivalent to the BB84 protocol, came to be known as the E91 protocol. 
Currently, quantum cryptography is arguably one of the most successful subfields of QIP. 

A few examples of real-world implementations of the QKD protocol are provided as 
follows. In 2007, it was used in Switzerland to secure election data. Furthermore,  
it was used in 2010 in Durban, South Africa, to secure communication data during  
the 2010 soccer World Cup competition. Lastly, just recently (in 2020), it was used  
to secure inter-continental communication, with communicating parties being in China 
and Austria.  

Now that we have covered quantum cryptography, which is one of the subfields of QIP,  
the next step is to explore another subfield of QIP, namely quantum processing.
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Quantum computing
Another subfield of QIP that has progressed rapidly is quantum computing. Quantum 
computing harnesses quantum mechanical concepts such as entanglement in order to 
efficiently solve some of the computational problems that are intractable to conventional 
computers. 

Quantum computers are envisaged to provide capabilities that far exceed those of 
conventional computers. Thus, quantum computers should have a super-advantage over 
their conventional counterparts. The expression quantum super-advantage is preferred 
over the more offensive quantum supremacy that is sometimes used. I do believe that 
quantum super-advantage adequately conveys the message that quantum computing 
capabilities far exceed those of conventional computers. This it (quantum super-
advantage) does without sounding offensive like quantum supremacy.

The history of quantum computing began in the 1980s, with the ideas of Yuri Manin in 
the Union of Soviet Socialist Republics (USSR) and Richard Feynman and Paul Bernioff 
in the United States of America (USA). These ideas were further extended by David 
Deutsch, who proposed the first ever universal quantum computer in 1985. 

However, for the remainder of the 1980s, interest in quantum computing seemed to be 
waning. Quantum computing was just considered as an area of academic curiosity that 
was devoid of any practical relevance. The interest in quantum computing was revived in 
the 1990s. This revival was due to two key breakthroughs in quantum computing. 

The first one was due to Peter Shor's quantum algorithm, which could be used to factor 
large numbers. Shor's algorithm demonstrated that in principle, a quantum computer can 
be used to break the security of conventional cryptosystems. 

Another significant quantum computing breakthrough was a quantum search algorithm 
designed by Lov Grover in 1996. This algorithm, which was designed to search for an 
element in an unstructured database, was demonstrated to provide a quadratic speed-up 
compared to the best-known conventional algorithm of the time. This speed-up means 
that if a conventional algorithm would take at most n steps to search for an element in an 
unstructured database, the Grover algorithm would do so in at most √n steps. 

Although quantum computing promises to provide a quantum super-advantage over 
conventional computing, a fully functional quantum computer is yet to be realized. The 
major drawback with the realization of a full-scale quantum computer is that quantum 
systems are very fragile and isolating them from their environment (which they interact 
with) is very challenging. 
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Quantum systems' interaction with an environment might result in some errors that 
would need to be corrected. Since the 1990s, a plethora of quantum error correction 
techniques has been proposed.

Currently, a full-blown, highly scalable quantum computer has not yet been realized. 
However, smaller quantum computers are already being built. These small-to-medium-
scale quantum computers, which typically do not use some of the complex error 
correction techniques, are referred to as noisy intermediate-scale quantum (NISQ) 
computers. NISQ computers are typically used for small-scale quantum computing, since 
they still do not have error correction capabilities. Therefore, NISQ computers are used 
mainly to demonstrate some limited capabilities of quantum computing, since they are 
not full-scale quantum computers.

Now that we have covered the quantum computing subfield, the next step is to explore 
another subfield of QIP, namely quantum games. Therefore, the design of quantum games 
is briefly discussed next.

Design of quantum games 
Besides quantum cryptography and quantum computing, another subfield of QIP is the 
design of quantum games. In a conventional arrangement, game theory is concerned 
with rational decision making in a conflict environment. Quantum game theory 
generalizes conventional game theory to the quantum domain. Like other QIP subfields, 
quantum games harness quantum phenomena, especially entanglement, as a resource,  
and the objective is to outperform their classical counterpart.  

So far, we have provided a brief introduction to QIP. We have introduced the subfields 
of quantum cryptography, quantum computing, and quantum games. The information 
provided in this chapter will make it possible for you to easily follow the information that 
will be provided in the later chapters of this book. Subsequent chapters of this book will 
further elaborate on what was introduced in this chapter. 

The next subsection provides a rationale for using Python for QIP. 

Understanding the rationale for choosing 
Python for QIP
The programming language of choice that will be used in this book is Python. 

Python is arguably one of the most popular programming languages. This is due to the 
fact that Python is a very versatile, high-level programming language with a very active 
and robust developer and open source community. 
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Python's versatility and simplicity make it the language of choice for diverse applications 
such as embedded systems, gaming, website development, graphics design, data science, 
artificial intelligence, and complex scientific and numerical computing.  

Another reason for choosing Python as the language of choice for this book is that the 
majority of the quantum information frameworks that will be deployed later in this book 
are based on Python. These QIP frameworks include those developed by prominent 
companies such as Google and IBM, together with some from lesser-known QIP start-up 
companies such as Xanadu in Canada (the official website of Xanadu is https://www.
xanadu.ai).  

Installing Python and other packages
Python is a cross-platform programming language in the sense that it can be used in at 
least three of the major operating systems, namely Microsoft Windows, Apple's macOS, 
and open source Linux. 

Python's installer and documentation are freely available on Python's official website at 
https://www.python.org/ and are shown in Figure 1.2:

Figure 1.2 – The official website of the Python programming language

Once on the home page of the website, it is then easy to navigate to either the Downloads 
or Documentation tabs. For the purposes of this book, we recommend that you 
download Python version 3.8.2.

Another way of downloading the Python installer is via the use of Continuum Analytics' 
Anaconda cross-platform Python distribution. Unlike the official Python installer, the 
Anaconda installer comes with additional Python packages by default. This makes 

https://www.xanadu.ai
https://www.xanadu.ai
https://www.python.org/
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package management less cumbersome than in the former case. The official website of 
Anaconda is https://www.anaconda.com/.

Once the appropriate Python installers are downloaded, they can then be installed on the 
target machine, depending on the type of operating system being used. 

Note
In the preparation of this book, a 64-bit Ubuntu 20.04 LTS operating system 
was used. 

Furthermore, in order to install additional Python packages, a pip Python installer 
program can be used. The pip command is run from the computer's terminal. The syntax 
for pip package installation is shown as follows: 

pip install PackageName

In order to update an already-installed package using pip, the following command  
is used:

pip install PackageName --upgrade

The QIP frameworks that need to be included for use in this book include the following:

• IBM's Qiskit: https://qiskit.org/

• Google's Cirq: https://cirq.readthedocs.io/en/stable/

• Xanadu's PennyLane: https://pennylane.ai/

• Xanadu's Strawberry Fields: https://strawberryfields.readthedocs.
io/en/stable/

• QuTiP: http://qutip.org/

As an alternative to installing Python packages on a local computer machine, Google's 
Colaboratory or Colab environment can be used. The official website of Google Colab  
is https://colab.research.google.com.

The command that is used to install Python packages on Google Colab is similar to the 
pip command, the exception being that unlike the pip command, the Google Colab 
command is preceded by the ! symbol. Thus, the Google Colab command used to install  
a package called PackageName is as follows:

!pip install PackageName 

https://qiskit.org/
https://cirq.readthedocs.io/en/stable/
https://pennylane.ai/
https://strawberryfields.readthedocs.io/en/stable/
https://strawberryfields.readthedocs.io/en/stable/
http://qutip.org/


14     Getting Started with Quantum Information Processing

The command used to update an already-existing Python package is as follows:

!pip install PackageName --upgrade

Now that we have understood the process of the installation of Python packages, let's 
explore pipenv.

pipenv and creating the environment
Python packages can be installed using installation tools such as pip. In some instances, 
it might be necessary to separate certain Python packages from the main Python 
installation. The reason for this might include the need to avoid some installation conflicts 
and to offer protection to the main Python installation against the installation of unstable 
packages. Examples of the tools that are used to isolate the main Python installation in 
this sense include virtualenv and venv.

Normally, in order to manage Python packages and dependencies, different Python 
libraries are used. For instance, pip is used for package installation, update, and 
uninstallation, while another tool such as venv is used to manage virtual environments. 
These packages are typically used separately. This in practice makes the management  
of a Python project very cumbersome. The solution to this is the use of a tool that can  
do the tasks of package management (installation, updating, and uninstallation), along 
with virtual environment creation and support. The appropriate tool for this is pipenv.  

pipenv is a Python packaging tool. This tool is used to manage and simplify Python 
package dependencies. 

It can be installed using the following command:

pip install pipenv

Once pipenv is installed, it replaces pip as a package management tool. Furthermore, 
it becomes responsible for all the package dependency tasks. It also creates two new files, 
namely the following:

• pipfile: Gives a list of all installed packages

• pipfile.lock: Used to manage complex dependencies

With that, we have reached the end of the chapter.
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Summary
In this introductory chapter, we provided an overview of QIP. We introduced quantum 
cryptography, quantum computing, and quantum game design. 

We also discussed the difference between discrete-variable QIP and continuous-variable 
QIP. Furthermore, we introduced the concept of a qubit, which is analogous to  
a conventional bit (binary digit) used by conventional computers. 

Furthermore, we discussed the benefits of using the Python programming language for 
QIP. Additionally, we discussed the installation of the Python programming language 
and Python packages both on a local machine and in a cloud-based Google Colab 
environment. We also discussed how package management can be done by using the 
pipenv tool.

Having introduced QIP and all the necessary tools of QIP, the next chapter will cover the 
basic mathematics necessary to understand the subsequent chapters. Python will be used 
as a tool for the hands-on demonstrations of the concepts being discussed.

Further reading 
• Nielsen, M. A., & Chuang, I. L. (2011). Quantum computation and quantum 

information: 10th Edition. New York, NY, USA: Cambridge University Press, 
1107002176, 9781107002173.

• Wilde, M. M. (2017). Quantum information theory. Cambridge University Press.

• Khan, F. S., Solmeyer, N., Balu, R., & Humble, T. S. (2018). Quantum games:  
a review of the history, current state, and interpretation. Quantum Information 
Processing, 17 (11), 309.
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Quantum States, 
Operations, and 

Measurements
This chapter covers the basic mathematics that is required to understand the subsequent 
chapters. We will use Python as a tool for understanding the mathematical concepts 
covered in this chapter. 

We will start with a brief introduction to linear algebra, which forms the basis of quantum 
information processing. Then we will provide a brief history of quantum mechanics, and 
link this to the definition of a qubit. Finally, we will cover the quantum operations; both 
unitary operations and quantum measurements (which are non-unitary). 
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We will cover the following main topics in this chapter: 

• An introduction to linear algebra 

• Exploring the history of quantum information processing 

• Understanding the qubit 

• Dealing with multiple qubits

• The quantum no-cloning theorem 

• Quantum computing models – beyond the gate model 

Technical requirements
The requirements for this chapter are the following:

• A basic understanding of the Python programming language

• Navigation of Google's Colab environment

• Elementary (post-secondary) mathematics

The GitHub link for this chapter can be found here: 

https://github.com/PacktPublishing/Hands-On-Quantum-
Information-Processing-with-Python/tree/master/Chapter02

The next section provides a brief introduction to linear algebra. Linear algebra plays  
a central role in quantum information processing. 

An introduction to linear algebra 
Linear algebra is a field of mathematics that is concerned with the study and the 
manipulation of vectors. Alternatively, a vector can be thought of as an ordered sequence 
of numbers. Vectors can be added/subtracted together, or multiplied by a number (scalar), 
to produce another object of the same type, namely a vector.

A vector usually represents quantities that have both magnitude and direction. It consists 
of a tuple of one or more scalars, and these scalars are referred to as the components of  
a vector. For instance, an n-tuple vector, x, has n components and can be written as:  

𝑥𝑥 = [𝑥𝑥1𝑥𝑥2⋯𝑥𝑥𝑥𝑥] 

https://github.com/PacktPublishing/Hands-On-Quantum-Information-Processing-with-Python/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Quantum-Information-Processing-with-Python/tree/master/Chapter02
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Vectors can be written either as rows (row vectors) or as columns (column vectors). The 
preceding vector x is a row vector. Written as a column vector, a vector y is written as:  

 

A concatenation of a vector into two-dimensional space forms a matrix, while  
a concatenation of matrices and/or vectors into higher-dimensional space forms a tensor. 
A matrix 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴  is a rectangular array of numbers (called elements) with n rows and m 
columns. The size of a matrix with n rows and m columns is nxm.  

It can easily be seen that the preceding vector x is a matrix with 1 row and n columns. 
Thus, x is a 1xn matrix. On the other hand, the preceding vector y is a matrix with n rows 
and 1 column. Therefore, it is a nx1 matrix.  

A vector is a one-dimensional array, while a matrix is a two-dimensional array. On the 
other hand, a tensor is a generalization of a matrix and a vector. It is an n-dimensional 
array with n> 2. 

Vectors, matrices, and tensors can be created and manipulated in Python. One of the most 
prominent Python packages used for linear algebra is NumPy. The following code snippet 
shows how vectors, matrices, and tensors can be created using NumPy:

import numpy as np 

 

x = np.array([1,2,3]) # a vector with three components. 

y = np.array([4,5,6]) # another vector. 

 

A = np.array([[1,2,3], [4,5,6], [7,5,6]]) # a 3x3 matrix. 

B = np.array([[2,3,4], [1,2,0], [3,3,3]]) # another 3x3 matrix.

 

v = np.kron(x,A) # a tensor product of vector x and matrix A.

w = np.kron(y,B) # a tensor product of vector y and matrix B. 

𝑦𝑦 = [
𝑦𝑦1
𝑦𝑦2
⋮
𝑦𝑦𝑛𝑛
]. 
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The preceding code snippet can be explained as follows:

1. First, numpy is imported using the alias np. 

2. Then, two vectors, x and y, are created using the array() function from numpy. 

3. This is followed by the creation of two matrices, A and B. 

4. Finally, two tensor products, v and w, are created using the kron() function from 
numpy. 

The former (tensor product v) is the tensor product of vector x and matrix A, while 
the latter (tensor product w) is the tensor product of vector y and matrix B. 

Arithmetic operations, such as addition, subtraction, and scalar multiplication, can be 
performed on the vectors. The same is also true of matrices and tensors. The following 
code snippet shows some examples of arithmetic operations on vectors, matrices, and 
tensors: 

# Arithmetic operations 

#vectors 

z = x + y # vector addition 

z = x - y # vector subtraction 

z = 2 * z # scalar multiplication 

#matrices 

C = A - B # matrix multiplication 

C = x * A # a product of a vector and a matrix 

#tensors 

u = v + w # tensor addition 

u = 5 * u # multiplication of a tensor by a scalar 

The preceding code snippet shows basic operations that can be performed on vectors, 
matrices, and tensors. These operations include addition, multiplication, and scalar 
multiplication.

So far, we have covered the basics of linear algebra, focusing on vectors, matrices, and 
tensors. In the next section, we will cover vector spaces. 
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Exploring vector spaces 
A vector space is a collection of vectors. Let V be a set of vectors on which two arithmetic 
operations of addition and scalar multiplication are defined. Then, for vectors x, y, z and 
scalars a, b, the following axioms hold for a vector space, V: 

• x + y ∈ V

• x + y = y + x

• x + (y + z) = (x + y) + z

• V has a zero vector such that for x ∈ V, x + 0 = x

•  For every x ∈ V, there is a vector in V denoted by -x such that x + (-x) = 0

• ax ∈ V 

• a(x + y) = ax + ay

• (a + b)x = ax + bx

• a(bx) = (ab)x

• 1x =x

Another feature of a vector space is the concept called the basis. A set of vectors, B, forms 
a basis in vector space V, if the following conditions are satisfied: 

• Every vector x ∈ V can be represented as a linear combination of vectors in B.  

• All the vectors in B are linearly independent.  

Finally, the field of scalars in V is either the real numbers (R) or the complex numbers (C). 
A complex number is the number z that can be written in the following form:  

 

Here, both a and b are real numbers, and 

The expression ib is called the imaginary number. The (complex) conjugate of a complex 
number is the same complex number with the + sign replaced by the – sign, or vice versa. 
Thus, the complex conjugate of 𝑧𝑧 = 𝑎𝑎 + 𝑖𝑖𝑖𝑖  

is 𝑧𝑧1 = 𝑎𝑎 − 𝑖𝑖𝑖𝑖  

while the complex conjugate of 𝑧𝑧 = 𝑐𝑐 − 𝑖𝑖𝑖𝑖  is 𝑧𝑧1 = 𝑐𝑐 + 𝑖𝑖𝑖𝑖 .

𝑧𝑧 = 𝑎𝑎 + 𝑖𝑖𝑖𝑖 

𝑖𝑖 = −1 − −−√ 
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Understanding the properties of a vector 
Now let's discuss the properties of a vector. At this point, it is worth noting that a vector 
can either be a row vector or a column vector. In the former, the elements of a vector  
are represented by a row, while in the latter, the elements of such a vector are represented 
by a column:   

• Transpose: One of the properties of a vector is a transpose. A transpose of a vector, 
denoted by T, transforms a column vector into a row vector, and a row vector into a 
column vector. Thus, for a vector x with n components, here are the two equations: 

Equation 1 can be written as follows:

Equation 2 can be written as follows:

The first equation indicates that the elements of a row vector (represented by a row) 
are transformed into the column vector (represented by the column) when the 
transpose is applied to it. On the other hand, the second equation is the opposite 
of the first equation. In the second equation, the transpose is applied to the column 
vector in order to transform it into the row vector:  

• Dot product: Another property of a vector is a dot product, which is also called an 
inner product. For vectors x and y, each with n components (elements), the dot 
product (denoted by <x,y>) is given as: 

[𝑥𝑥1 𝑥𝑥2 ⋯ 𝑥𝑥𝑛𝑛]𝑇𝑇 = [
𝑥𝑥1
𝑥𝑥2
⋮
𝑥𝑥𝑛𝑛
] 

[
𝑥𝑥1
𝑥𝑥2
⋮
𝑥𝑥𝑛𝑛

]

𝑇𝑇

= [𝑥𝑥1 𝑥𝑥2 ⋯ 𝑥𝑥𝑛𝑛]. 

⟨𝑥𝑥, 𝑦𝑦⟩ = ∑𝑛𝑛𝑛𝑛𝑥𝑥𝑛𝑛𝑦𝑦𝑛𝑛 = 𝑥𝑥1𝑦𝑦1 + 𝑥𝑥2𝑦𝑦2+⋯+ 𝑥𝑥𝑛𝑛𝑦𝑦𝑛𝑛 
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The output of a dot product is a scalar. The Python code for computing an inner 
product for two vectors using numpy is as follows:

import numpy as np 

x = np.array([1,2,3]) # a vector with three components. 

y = np.array([4,5,6]) # another vector. 

 

# The output of an inner product of vectors is a scalar  

a = np.inner(x,y)

print(a) 

The preceding code snippet imports numpy (using the alias np). Then it creates two 
vectors, x and y. Finally, the inner product of these two vectors is calculated using 
the inner() function from numpy:  

• Outer product: A vector property related to an inner product is an outer product. 
Unlike an inner product, whose output is a scalar, the output of an outer product  
is a matrix. Matrices will be covered later in this chapter. The Python code snippet 
for computing an outer product of two vectors is shown as follows:

import numpy as np 

 

x = np.array([1,2,3]) # a vector with three components. 

y = np.array([4,5,6]) # another vector. 

 

# The output of an outer product of vectors is a matrix

a = np.outer(x,y) 

print(a)

This code uses numpy to create two vectors, x and y. Then it uses the outer() 
function from numpy in order to compute the outer product of vectors x and y.

• Norm: Another property of a vector is a norm. An Lp-norm of a vector x, denoted 
by ∥x∥p, is defined as:  

‖𝑥𝑥‖𝑝𝑝 = (∑|𝑥𝑥𝑖𝑖|𝑝𝑝
𝑛𝑛

𝑖𝑖=1
) , (1 ⩽ 𝑝𝑝 ⩽ ∞). 
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A norm of a vector characterizes its length. There is a special class of vectors with 
the property that are shown in the following equation:

These vectors are called unit vectors.
• Orthogonality: The vectors have another property called orthogonality. Two 

vectors, x and y, are said to be orthogonal if their inner product is zero. Thus, 
vectors x and y are orthogonal if <x,y> = 0. Geometrically, orthogonal vectors are 
perpendicular. Vectors that are both orthogonal and are unit vectors (have a length 
of 1) are said to be orthonormal. 

Understanding the properties and types of matrices 
A matrix is defined as a two-dimensional array of scalars, with at least one row and at 
least one column. An nxm matrix A is defined as a two-dimensional array with n rows and 
m columns, and is given as: 

Now, let's discuss the properties of a matrix:

• Determinant: One property of a matrix is its determinant. Determinants of 
matrices are only defined for square matrices, where the number of rows is the same 
as the number of columns. The determinant of a matrix A, denoted by det(A) or |A|, 
is a scalar.  

The Python code snippet for computing the determinant of a matrix is given as 
follows:

import numpy as np 

 

A = np.array([[1,2,3], [4,5,6], [1,5,1]]) # a 3x3 matrix. 

det_A = np.linalg.det(A) 

print(det_A) 

The preceding code uses the linalg.det() function from numpy in order to 
compute the determinant of the matrix A: 

• Trace: Matrices also have a property called trace. For a matrix A, the trace of A, 
denoted by Tr(A), is given as a sum of the diagonal elements of A.  

𝐴𝐴𝑛𝑛×𝑚𝑚 = [
𝑎𝑎11 𝑎𝑎12 ⋯ 𝑎𝑎1𝑛𝑛
⋮ ⋮ ⋯ ⋮
𝑎𝑎𝑛𝑛1 𝑎𝑎𝑛𝑛2 ⋯ 𝑎𝑎𝑛𝑛𝑛𝑛

]. 
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• Transpose: Like vectors, matrices also have transposes. A transpose of a matrix A, 
denoted by AT, swaps the row elements of A with its column elements. Hence, the 
following applies:  

A Python code for a matrix transpose is shown as follows, using numpy: 
import numpy as np 

 

A = np.array([[1,2,3], [4,5,9], [5,2,1]]) # a 3x3 matrix. 

det_A = np.linalg.det(A) 

np.transpose(A) 

The preceding code uses the transpose() function from numpy in order to 
compute the transpose of the matrix A.  

• Eigenvalues and Eigenvectors: The last property of matrices worth discussing is 
that of eigenvalues and eigenvectors. Let V be the vector space over a field. Also,  
let A be a matrix. Then, a scalar, 𝝀 ∈ 𝔽, is called an eigenvalue of A if there exists  
a non-zero vector, x ∈ V, such that:  

with vector x being called the eigenvector of A.  
Now, let's focus on various types of matrices. These types are discussed as follows:

• Identity matrix: One of the examples of matrices is the identity matrix, denoted  
by I. An identity matrix has a property such that, for any matrix A, multiplication  
by I does not change A. That is:  

The diagonal elements of an identity matrix are 1's, while the off-diagonal elements 
are 0's. Another example of a matrix is an inverse matrix:  

• Inverse matrix: A matrix A has an inverse matrix, denoted by A-1, such that:  

The inverse of a matrix A exists only if the determinant of A is not 0.

[𝐴𝐴𝑚𝑚×𝑛𝑛]𝑇𝑇 = [𝐴𝐴𝑛𝑛×𝑚𝑚]. 

𝐴𝐴𝐴𝐴 = 𝜆𝜆𝐴𝐴, 

𝐴𝐴 ∗ 𝐼𝐼 = 𝐼𝐼 ∗ 𝐴𝐴 = 𝐴𝐴 

𝐴𝐴 ∗ 𝐴𝐴 − 1 = 𝐴𝐴 − 1 ∗ 𝐴𝐴 = 𝐼𝐼 
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• Diagonal matrix: Finally, for a field in R, a diagonal matrix Q is a matrix such that:  

For a field in C, there are three key matrices worth mentioning in this chapter. They 
are the Hermitian adjoint, Hermitian matrix, and unitary matrix. Let's talk about 
each of these in turn. 

• Hermitian adjoint: A Hermitian adjoint of matrix A, denoted by A†, is a conjugate 
transpose of A. 

• Hermitian matrix: On the other hand, a Hermitian matrix, denoted by H, is  
a square matrix (thus, the number of columns is the same as the number of rows) 
with the property that: 

This means that the adjoint of a Hermitian matrix is the same as the Hermitian 
matrix itself.

• Unitary matrix: A unitary matrix, denoted by U, is the square matrix, Unxn, which 
consists of orthonormal columns. Additionally, a matrix U is unitary if, and only if:  

Here, H is a Hermitian matrix. Another property of a unitary matrix is the 
following: 

Understanding the properties of a tensor product 
As already stated, a tensor is a generalization of a vector and a matrix to higher 
dimensions. For the purposes of this book, we are only interested in two properties  
of a tensor. These properties are the trace of a tensor product, and the partial trace  
of a tensor product.  

For matrices A and B, a tensor product of A and B, denoted by T, is given as:  

𝑄𝑄𝑄𝑄 ∗ 𝑄𝑄 = 𝑄𝑄 ∗ 𝑄𝑄𝑄𝑄 = 𝐼𝐼 

𝐻𝐻 †= 𝐻𝐻 

𝑈𝑈 = 𝑒𝑒𝑒𝑒𝑒𝑒 

𝑈𝑈 † 𝑈𝑈 = 𝑈𝑈𝑈𝑈 †= 𝐼𝐼 

𝑇𝑇 = 𝐴𝐴⊗𝐵𝐵 
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A Python code for computing the tensor product of matrices A and B using both qutip 
and numpy is shown as follows: 

from qutip import * 

import numpy as np 

 

A = np.array([[2,3], [4,5]]) 

B = np.array([[2,4], [1,0]]) 

 

A = Qobj(A); B = Qobj(B) 

# computing tensor product using qutip 

C = tensor(A,B); print(C) 

#computing tensor product using numpy

D = np.kron(A,B); print(D) 

The code uses two modules, namely, qutip and numpy. First, two matrices A and B are 
created using numpy. These matrices are also converted into qutip objects by using the 
Qobj() function. Then, the tensor product is computed using both qutip and numpy. 
For the former, the tensor() function is used, while for the latter, the kron() function 
is used: 

• Trace: A trace of a tensor T, which is a tensor product of matrices A and B, is  
given as: 

• Partial trace: On the other hand, the partial trace of a tensor product traces over 
a part of the tensor product. Thus, for matrices A and B, which form the tensor 
product: 

either A or B can be traced out such that: 

and 

𝑇𝑇𝑇𝑇(𝑇𝑇) = 𝑇𝑇𝑇𝑇(𝐴𝐴) ∗ 𝑇𝑇𝑇𝑇(𝐵𝐵) 

𝑇𝑇 = 𝐴𝐴⊗𝐵𝐵 

𝐴𝐴 = 𝑇𝑇𝑇𝑇𝑇𝑇(𝑇𝑇) = 𝑇𝑇𝑇𝑇𝑇𝑇(𝐴𝐴⊗𝑇𝑇) = 𝐴𝐴 ∗ 𝑇𝑇𝑇𝑇(𝑇𝑇) 

𝐵𝐵 = 𝑇𝑇𝑇𝑇𝑇𝑇(𝑇𝑇) = 𝑇𝑇𝑇𝑇𝑇𝑇(𝑇𝑇⊗𝐵𝐵) = 𝐵𝐵 ∗ 𝑇𝑇𝑇𝑇(𝑇𝑇) 
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A Python code for calculating both the trace and the partial trace of a tensor product 
using qutip is shown in the following code block: 

from qutip import * 

import numpy as np 

 

A = np.array([[2,3], [4,5]]) 

B = np.array([[2,4], [1,1]])  

 

# convert the arrays A and B to qutip objects 

A = Qobj(A); B = Qobj(B) 

T = tensor(A,B);  

print("The tensor product is", T)  

print("The trace of T is", T.tr()) 

Tr_B = T.ptrace(0) # trace out B by selecting A; thus A Tr(B)  

print("Tr_B is", Tr_B) 

Tr_A = T.ptrace(1) # trace out A by selecting B; thus B Tr(A) 

print("Tr_A is", Tr_A)  

The code uses two Python modules, qutip and numpy. First, two matrices, A and B, 
are created using numpy. Then, these matrices are converted into qutip objects. This is 
followed by computing the tensor product of matrices A and B, and this tensor product 
is assigned to T. Then, the trace of T is computed using the tr() function from qutip. 
Finally, using the ptrace() function from qutip, the partial trace is computed.   

So far, we have provided a brief introduction to linear algebra. We have introduced the 
vectors, the matrices, and the tensors. Furthermore, we have provided the properties  
of vectors, matrices, and tensors. In the next section, we will provide a brief history  
of quantum information processing.   

Exploring the history of quantum information 
processing 
In order to grasp the history of quantum information processing, it is imperative to 
explore the development of quantum mechanics (theory) first. This is due to the fact that 
quantum mechanics forms the theoretical basis for quantum information processing.  
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Quantum mechanics is a conceptual framework that is used to describe the microscopic 
physical reality. The development of quantum theory started at the beginning of the 20th 
century, and this development was led by physicists including Niels Bohr, Albert Einstein, 
and Max Planck.

The development of quantum mechanics was motivated in part by the failure of classical 
physics to adequately account for the behavior of sub-atomic objects such as electrons. 
The understanding of nature at a sub-atomic level led to the massive success of the 
electronics and conventional computing industries. This technological achievement is 
referred to as the first quantum revolution.  

Quantum information processing is billed as the second quantum revolution, since it 
follows the success of the first quantum revolution just discussed.  

Quantum information processing arose in response to the limitations imposed on 
conventional computers by the fundamental laws of physics. The first person to explore 
these limitations on conventional computing was Rolf Landauer, who was working at IBM 
at the time. He started these investigations in the early 1960s. Landauer's work focused on 
the application of the laws of thermodynamics to the field of computing.   

In the 1970s, Landauer's work was extended by Charles Bennett, who was his (Landauer's) 
colleague at IBM. Bennett demonstrated that it is possible to perform a two-way reversible 
computation. A two-way reversible computation means that given the outputs of a 
computation, it is possible to use those outputs and the circuit used for computation in 
order to obtain the inputs of the computation.  

It is worth noting that a two-way reversible computation implies that information is not 
lost during the computation. As we will see later, there is a set of quantum operations 
that is reversible. Also, the set of quantum operations that is not reversible is a quantum 
measurement. This will also be discussed later in this chapter. 

Besides the focus on the limitations imposed on conventional information processing, 
the earlier stages of quantum information processing also focused on the use of quantum 
theory for applications in the security sector.  

In the 1960s, Stephen Wiesner explored the use of quantum mechanics in order to 
make banknotes that would be impossible to counterfeit. Unfortunately, Wiesner's idea 
did not gain any acceptance within the scientific community. It was not until the 1980s 
that his idea was used as an inspiration to pursue another field of quantum information 
processing.  
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In the 1980s, inspired by Wiesner's idea of banknotes that cannot be counterfeited, 
Charles Bennett and Gilles Brassard developed a cryptographic scheme that uses the laws 
of quantum mechanics to securely communicate information. This security scheme later 
came to be known as the Bennett Brassard 1984 (BB84) quantum key distribution 
(QKD) protocol. The QKD protocol is used to securely share the cryptographic key 
between the legitimate communicating parties, with the guarantee that the presence  
of an eavesdropper would be detected.  

In 1991, quite independently from the work of Bennett and Brassard, Artur Ekert used 
quantum theory to develop a new QKD protocol, which was later to be known as the  
E91 protocol. Although the BB84 and E91 QKD protocols are based on the different 
aspects of quantum theory, it was established in 1992 by Charles Bennett, Gilles Brassard, 
and David Mermin that the two QKD protocols are mathematically equivalent.  

The idea of a quantum computer was pursued in earnest in the 1980s by the likes of Yuri 
Manin, Paul Bernioff, and Richard Feynman. Due to his popularity, especially in the 
1980s, Feynman's ideas of using the laws of quantum mechanics to perform computing 
were widely accepted in the scientific community, especially in physics.  

In 1985, David Deutsch proposed the first ever computational model for quantum 
computing and demonstrated that such a quantum computing machine could 
theoretically outperform the conventional quantum computing machine.  

For the remainder of the 1980s, quantum computation was just regarded as an area 
of academic curiosity, without any practical relevance. However, this view would be 
challenged and eventually defeated in 1994, when Peter Shor proposed a quantum 
algorithm that could potentially compromise the conventional cryptosystems that were 
widely used at the time.  

Two years later, in 1996, Lov Grover proposed a quantum search algorithm that 
outperformed any known conventional search algorithm. These two key results renewed 
interest in quantum computing by the scientific community. 

Even though there was a renewed interest in quantum computing, one major obstacle 
remained. Quantum systems are very fragile. They can easily interact with the 
environment, and hence easily lose their quantumness before completing the computation.  

It is worth noting that this interaction with the environment by the quantum system can 
induce errors in the computation, rendering the possibility of physically implementing  
a quantum computer virtually impossible. However, this virtual impossibility changed 
with the independent development of quantum error correction (QEC) schemes  
by Peter Shor and Andrew Steane in 1995 and 1996, respectively.  
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At the turn of the 21st century, encouraged by the development of QEC schemes, the 
attention of the quantum information processing community switched to the physical 
technologies that can be used to implement quantum computing. Various technologies 
were explored.  

These technologies include nuclear magnetic resonance, trapped atoms and ions, 
photonic devices, quantum dots, and superconducting circuits. To date, no single physical 
technology has proven to be the best among the rest. Therefore, different technologies are 
still pursued, with varying degrees of preference. 

Building a full-scale quantum computer is still a challenge that is yet to be overcome. 
Currently, quantum computers with limited computational capabilities are already in use. 
These quantum computers are known as noisy, intermediate-scale quantum (NISQ) 
computers. They are called noisy because they do not implement error correction.  

The lack of error correction in NISQ computers means that the circuits that can be 
implemented on them are very shallow. NISQ computers are currently being used to 
tackle various computational tasks, with applications in materials science, drug discovery, 
machine learning, and exploration of tasks where a NISQ computer offers a quantum 
super-advantage. 

Having provided a brief history of quantum information processing, it is now imperative 
to provide information on the basic unit of quantum information. This, I will do in the 
next section. 

Understanding the qubit 
Just like in conventional information processing, where the binary digit (bit) is the basic 
unit of information, the qubit (quantum bit), which is a quantum analogue of a bit, is also 
the basic unit of quantum information.  

Unlike a bit, which exists in either of two states (0 or 1), a qubit can exist in a 
superposition of these two states. It is defined as a vector in a two-dimensional complex 
Hilbert space, with the Hilbert space being defined as a vector space equipped with an 
inner product. 

As already stated in the previous chapter, a qubit |𝛙> is mathematically written as: 

with the complex coefficients 𝛂 and 𝛃 satisfying the relation:

𝜓𝜓⟩ = 𝛼𝛼0⟩ + 𝛽𝛽1⟩, 

|𝛼𝛼|2 + |𝛽𝛽|2 = 1. 
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Any qubit |𝛙> can be written as a linear combination of two basis vectors (states), |0>  
and |1>. This explains why we say that the qubit can exist in a superposition of states.  

Superposition is one of the key properties of quantum theory that is harnessed in 
quantum information processing. Even though a qubit can exist as a linear combination  
of the basis states, as we will see later, the measurement forces the qubit to be either state  
0 or state 1.   

The basis vector |0> is given as:  

while on the other hand, the basis vector |1> is given as: 

Now that we have a basic understanding of a qubit, I will cover some of the operations 
that can be performed on the qubit. This will be done in the next subsection. 

Qubit operations 
For an isolated quantum system (which does not interact with the environment), there  
are two classes of quantum operations that can be performed on a qubit. These classes  
of quantum operations are called the quantum gates. The first class of quantum 
operations is the unitary class, which is a class of reversible quantum gates.  

The second class of quantum gates is the measurement gates, which is a class of 
irreversible gates. Since measurement is irreversible, the initial quantum state cannot be 
recovered after measurement. The measurement forces the qubit to collapse to either state 
0 or state 1.  

As already stated, any 2X2 unitary matrix, which is also called a unitary operator in the 
language of quantum mechanics, is a single-qubit quantum gate. Some examples of the 
single-qubit quantum gates are the Pauli gates. These Pauli gates are X, Y, and Z gates 
(there are actually four Pauli gates. The other one is the 2x2 identity matrix I, which leaves 
the qubit unchanged).  

0⟩ = [10] 

1⟩ = [01]. 
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X gate
The X gate, which is also called the NOT gate, flips the state of the qubit. Thus, it turns 
state |0> into state |1>, and turns state |1> into state |0>. This means that:  

and 

The X gate is defined by the following matrix: 

It can then be observed that: 

and 

The Python code for implementing the X gate in Python using numpy and qutip is 
shown here: 

from qutip import * 

import numpy as np 

 

A = np.array([[1], [0]]) 

B = np.array([[0], [1]]) 

Rho_x = sigmax() 

 

A = Qobj(A) 

B = Qobj(B) 

 

C = Rho_x * A 

D = Rho_x * B  

𝑋𝑋0⟩ = 1⟩ 

𝑋𝑋1⟩ = 0⟩. 

𝑋𝑋 = [0 1
1 0]. 

𝑋𝑋0⟩ = [0 1
1 0] [

1
0] = [01] = 1⟩ 

𝑋𝑋1⟩ = [0 1
1 0] [

0
1] = [10] = 0⟩. 
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print(C) 

print(D)  

The preceding code uses qutip and numpy. Then, two vectors A and B are created using 
the array() function from numpy. Then, a new variable called Rho_x is assigned to 
the X gate using the sigmax() function from qutip. Finally, two variables, C and D, are 
assigned to the product of Rho_x and A, and the product of Rho_x and B. The variable C 
is equivalent to applying the X gate to A, while D is equivalent to applying the X gate to B.

Z gate
Another single-qubit Pauli gate is the Z gate. This gate leaves |0> unchanged, but changes 
the sign of |1>. The Z gate is defined by the following matrix: 

It can be observed that:

and 

The Python code for implementing a Z gate is shown as follows: 

from qutip import * 

import numpy as np 

 

A = np.array([[1], [0]]) 

B = np.array([[0], [1]]) 

Rho_z = sigmaz() 

 

A = Qobj(A) 

B = Qobj(B) 

 

C = Rho_z * A 

D = Rho_z * B  

𝑍𝑍 = [1 0
0 −1]. 

𝑍𝑍0⟩ = 0⟩ 

𝑍𝑍1⟩ = −1⟩. 
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print(C) 

print(D)                                               

The preceding code snippet uses the qutip and numpy Python modules to demonstrate 
the application of the Z gate to two vectors, A and B, and the results of these operations are 
given as C and D, respectively.  

Y gate
The Y gate is another single-qubit Pauli gate. It is defined by the following matrix: 

The assessment of the effect of the Y gate on a qubit, and the corresponding Python code 
to implement the Y gate using Python, are left as an exercise for you to do. 

Another single-qubit quantum gate is the Hadamard gate, which is denoted by H. The 
Hadamard gate is defined by the following matrix: 

It should be noted that the Hadamard gate can also be written in terms of the X and the Z 
Pauli gates. This is given as: 

Lastly, another group of the single-qubit gates is the phase-shift group, which is denoted 
by R, with the R gate being defined by the following matrix: 

 

with 

It is left as an exercise for you to show that the Z gate is a special type of the R group of 
quantum gates.  

𝑌𝑌 = [0 −𝑖𝑖
𝑖𝑖 0 ]. 

𝐻𝐻 = 1
√2

[1 1
1 −1]. 

𝐻𝐻 = 1
√2

[𝑋𝑋 + 𝑍𝑍]. 

𝑅𝑅 = [1 0
0 𝑒𝑒𝑖𝑖𝑖𝑖] 

0 ⩽ 𝜙𝜙 ⩽ 𝜋𝜋. 
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Two other examples of the R group of quantum gates are the S gate and the T gate. The S 
gate is defined by the following matrix: 

which can also be reformulated as: 

On the other hand, the T gate is defined by the following matrix: 

We have come to the end of our discussion on unitary (reversible) quantum computation. 
The next subsection explores quantum measurement. You will recall that unlike unitary 
operation, quantum measurement is not reversible.

Quantum measurement
Besides a single-qubit unitary quantum operation, another type of a single-qubit quantum 
operation is the quantum measurement. As already mentioned, quantum measurement 
collapses the quantum state of a qubit to a classical state. Thus, it is through the quantum 
measurement that we could be able to read the classical information from a quantum 
state.  

A measurable physical property is called an observable, denoted by O, and is represented 
by a Hermitian operator. The eigenvalues of these Hermitian operators are real numbers. 
This is consistent with the fact that the output of a measuring device is a real number.  

Consider a quantum system with n quantum states. In such a system, there exists n 
measurements, denoted by 𝑚𝑚𝑚𝑚  with n = 1, 2, …, n. The measurement operator in such  
a system is denoted by 𝑀𝑀𝑀𝑀 , and the probability p(m) of measuring m for state |𝛙>  
is given as: 

𝑆𝑆 = [1 0
0 𝑒𝑒𝑖𝑖

𝜋𝜋
2
] 

𝑆𝑆 = [1 0
0 𝑖𝑖 ]. 

𝑇𝑇 = [1 0
0 𝑒𝑒𝑖𝑖

𝜋𝜋
4
]. 

𝑝𝑝(𝑚𝑚) = ⟨𝜓𝜓|𝑀𝑀𝑚𝑚
† 𝑀𝑀𝑚𝑚|𝜓𝜓⟩ 
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The probabilities p(m) are normalized. This means the following: 

This then implies that these measurement operators satisfy the completeness relation: 

Types of measurement 
There are two basic types of measurement. These are as follows: 

• Projective measurement (von Neumann) measurement 

• Positive operator valued measurement (POVM)

For projective measurements, the set of measurement operators {𝑀𝑀𝑀𝑀}  is given by the 
projection operators, 𝑃𝑃𝑃𝑃 . For a qubit, using the standard computational basis set, 𝑃𝑃𝑚𝑚   
is a set: 

and

The projection operator 𝑃𝑃1  has the property that it does not affect the state |0>, but 
discards the state |1>. On the other hand, 𝑃𝑃2  has the property that it discards the state |0> 
and does not affect the state |1>. 

As an example of the application of projective measurement, consider the quantum state:

∑ 𝑝𝑝
𝑛𝑛

𝑚𝑚=1
(𝑚𝑚) = ⟨𝜓𝜓|∑ 𝑀𝑀𝑛𝑛

†𝑛𝑛
𝑚𝑚=1 𝑀𝑀𝑀𝑀|𝜓𝜓⟩ = 1. 

∑𝑀𝑀𝑚𝑚†
𝑛𝑛

𝑚𝑚=1
𝑀𝑀𝑀𝑀 = 𝐼𝐼. 

𝑃𝑃1 = 0⟩⟨0. 

𝑃𝑃2 = 1⟩⟨1. 

𝜓𝜓⟩ = 1
√2

[0⟩ + 1⟩] 
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and the projection operators:

and 

It is worth noting that in this case:

and 

Then, the probabilities of measuring 0 (denoted by p(0)) and 1 (denoted by p(1)) are given 
by:

and 

Another basic type of quantum measurement is the positive operator valued 
measurement (POVM). It is more powerful and general than the projective 
measurement. Furthermore, POVM is the most widely used type of measurement in 
quantum information processing. 

Let {𝐸𝐸𝐸𝐸}  be a set of measurement operators that do not necessarily have to be projectors, 
such that for any {𝐸𝐸𝐸𝐸}  and a normalized quantum state |𝛙>, we have the following: 

These Hermitian operators also satisfy the completeness relation: 

𝑃𝑃1 = 0⟩⟨0 

𝑃𝑃2 = 1⟩⟨1. 

𝑃𝑃1 = 𝑃𝑃1 † 

𝑃𝑃2 = 𝑃𝑃2 †. 

𝑝𝑝(0) = ⟨𝜓𝜓|𝑃𝑃1 † 𝑃𝑃1|𝜓𝜓⟩ =
1
2 

𝑝𝑝(1) = ⟨𝜓𝜓|𝑃𝑃2 † 𝑃𝑃2|𝜓𝜓⟩ =
1
2. 

⟨𝜓𝜓|𝐸𝐸𝑚𝑚|𝜓𝜓⟩ ≥ 0. 

∑𝐸𝐸𝑚𝑚
𝑚𝑚

= 𝐼𝐼. 
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The operators Em are called the POVM elements, and the complete set { Em } is called the 
positive operator valued measurement.  

In this section, I introduced single-qubit operations. I also introduced single-qubit 
quantum gates. In the next section, I will focus on multiple qubits, instead of the  
single qubit.  

Dealing with multiple qubits 
Recall that a qubit is a vector in a two-dimensional complex Hilbert space. Therefore,  
a quantum system with two or more qubits, say n qubits, can also be represented as  
a vector in a 2n-dimensional complex Hilbert space.  

Quantum states made up of two or more qubits are said to be composite quantum states. 
Additionally, a composite quantum state of two or more qubits is a tensor product of such 
states. Thus, if |𝛙> is the composite state of n qubits, then we have the following:

The preceding state |𝛙> is also called the joint state of n qubits. If the joint state can be 
expressed as a tensor product of the qubits as previously, it is said to be separable.  

On the other hand, if the composite quantum state is not separable, it is said to be 
entangled. This section will only focus on separable composite states, and entanglement 
will be covered in the next chapter (Chapter 3, Entanglement and Quantum Teleportation). 

The dimension of the Hilbert space, H, of a joint state of n qubits is mathematically 
expressed as: 

Since a qubit is in a two-dimensional Hilbert space, it follows then that the joint state  
of n qubits will be in 2n-dimensional Hilbert space. 

𝜓𝜓⟩ = 𝜓𝜓1⟩ ⊗𝜓𝜓2⟩ ⊗⋯⊗𝜓𝜓𝑛𝑛⟩. 

𝑑𝑑𝑑𝑑𝑑𝑑(𝐻𝐻) = 𝑑𝑑𝑑𝑑𝑑𝑑(𝐻𝐻1) ×⋯× 𝑑𝑑𝑑𝑑𝑑𝑑(𝐻𝐻𝐻𝐻) 
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Any quantum composite state can be written as a linear combination of the orthogonal 
basis states. Consider a two-qubit quantum system, and recall that the basis state for a 
single qubit consists of a set {|0>, |1>}. Then, the computational basis set of a two-qubit 
state composite quantum system has a basis set consisting of the following elements: 

and 

The preceding four-dimensional basis set means that any two-qubit quantum state can 
be written as a linear combination of these four computational basis states. Thus, any 
two-qubit composite quantum state |𝛙> can be written as: 

such that: 

Similarly, a three-qubit composite quantum state can be written as a linear combination  
of the 23 = 8 computational basis states. This state is given as: 

such that: 

00⟩ = [
1
0
0
0
], 

01⟩ = [
0
1
0
0
], 

10⟩ = [
0
0
1
0
], 

11⟩ = [
0
0
0
1
]. 

𝜓𝜓⟩ = 𝛼𝛼0000⟩ + 𝛼𝛼0101⟩ + 𝛼𝛼1010⟩ + 𝛼𝛼1111⟩ 

|𝛼𝛼00|2 + |𝛼𝛼01|2 + |𝛼𝛼10|2 + |𝛼𝛼11|2 = 1. 

𝜓𝜓⟩ = 𝛼𝛼0000⟩ + 𝛼𝛼1001⟩ + 𝛼𝛼2010⟩ + 𝛼𝛼3011⟩ + 𝛼𝛼4100⟩ + 𝛼𝛼5101⟩ + 𝛼𝛼6110⟩ + 𝛼𝛼7111⟩ 

|𝛼𝛼0|2 + |𝛼𝛼1|2 + |𝛼𝛼2|2 + |𝛼𝛼3|2 + |𝛼𝛼4|2 + |𝛼𝛼5|2 + |𝛼𝛼6|2 + |𝛼𝛼7|2 = 1. 
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The preceding examples can be generalized to any separable joint state. Thus, any n-qubit 
joint quantum state can be given as: 

 

with the condition that: 

 

Just like in the case of single-qubit quantum states, quantum operations can also be 
applied to a composite quantum state. As already stated, these quantum operations 
are also referred to as quantum gates, and they can either be unitary or non-unitary 
(measurement).

Quantum gates on multiple qubit systems 
Quantum gates can be applied either on a single qubit or on more than one qubit of the 
composite. As an example, let's consider a three-qubit state, |000>. This state, as can be 
seen, is a tensor product of three qubits in the |0> state. Thus, we have the following: 

 

On the other hand, the tensor products of three qubits in the |1> state is given as: 

 

As an exercise for you, write the tensor products of the following three-qubit quantum 
systems: 

• |0>, |0>, and |1> 

• |0>, |1>, and |0> 

• |1>, |1>, and |0> 

• |1>, |0>, and |0> 

∑ 𝛼𝛼𝑖𝑖
2𝑛𝑛−1

𝑖𝑖=𝑜𝑜
𝑖𝑖⟩ 

∑|𝛼𝛼𝑖𝑖|2
2𝑛𝑛−1

𝑖𝑖=0
= 1. 

000⟩ = 0⟩⊗ 0⟩⊗ 0⟩. 

111⟩ = 1⟩⊗ 1⟩⊗ 1⟩. 
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• |0>, |1>, and |1> 

• |1>, |0>, and |1>

Now, consider applying the X gate to the right-most qubit of one of the aforementioned 
joint states, say, state |000>. This will flip the right-most qubit, while leaving the other 
qubits unchanged. Since the two other qubits remain unchanged, it means that the two 
identity operators (matrices) are operating on them. This operation is given as: 

It can then be observed that applying the X gate on the second qubit of |000> can be 
represented as:  

while applying it (X gate) to the left-most qubit of |000> would result in: 

In general, any single-qubit operation (gate) can be applied to any qubit of the n-qubit 
composite quantum state by using a tensor product of n-1 identity operators and that 
single-qubit operation. The identity operators will be in all the qubit positions except the 
position on which the single-qubit gate is being applied. 

As an exercise, show the results of applying the X gate to each of the qubits of the 
composite quantum state, |01010>. 

CNOT gate 
Besides single-qubit quantum gates, there are also two-qubit and three-qubit quantum 
gates. The most prominent two-qubit gate is the controlled NOT (CNOT) gate. The 
CNOT gate uses the two-qubit computational bases states. It uses the first qubit as  
a control qubit and the second qubit as the target qubit. It operates as follows. If the 
control qubit is |0>, it leaves the target qubit unchanged. However, if the control qubit  
is |1>, it flips the target qubit. Thus, by applying the CNOT gate, we have the following: 

𝐼𝐼 ⊗ 𝐼𝐼 ⊗ 𝑋𝑋⟩000⟩ = 001⟩. 

𝐼𝐼 ⊗ 𝑋𝑋⊗ 𝐼𝐼⟩000⟩ = 010⟩ 

𝑋𝑋⊗ 𝐼𝐼 ⊗ 𝐼𝐼⟩000⟩ = 100⟩. 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶00⟩ → 00⟩, 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶01⟩ → 01⟩, 
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and 

Mathematically, a CNOT gate is represented as: 

Finally, since a CNOT gate is an operator, its matrix is given as:

 

The CNOT gate can be thought of as applying the X gate conditioned on the state of the 
control qubit. That being said, there are other two-qubit gates that apply the single-qubit 
operation on the target qubit conditioned on the state of a control qubit.  

Examples of these two-qubit conditional gates include a controlled Z gate and controlled  
S gate. The operations and matrix representations of these two gates are left as an exercise 
to the reader. 

Swap gate 
Another two-qubit quantum gate is the Swap gate. As the name implies, the Swap gate 
swaps the positions of the qubits such that for a computational basis state, |a,b>, we have 
the following: 

The matrix representation of a Swap gate is as follows:  

 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶10⟩ → 11⟩, 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶10⟩ → 11⟩. 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 0⟩⟨0⊗ 𝐼𝐼 + 1⟩⟨1⊗𝑋𝑋. 

[
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

]. 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆, 𝑏𝑏⟩ → 𝑏𝑏, 𝑆𝑆⟩. 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = [
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

]. 
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Three-qubit gates 
The two prominent three-qubit quantum gates are the Toffoli gate and the Fredkin 
(controlled Swap) gate. Both these gates are variants of the controlled gate operation.  

Toffoli gate 

The Toffoli gate uses two control qubits and one target qubit. The target qubit is flipped 
only when the two control qubits are in the state |1>. For a computational basis state 
|a,b,c>, we have the following: 

The matrix representation of a Toffoli gate is given as follows: 

Fredkin gate 
The Fredkin gate uses one qubit as a control qubit and the two qubits as the target qubit. 
For a three-qubit computational basis |a,b,c>, the Fredkin gate is given as:  

and 

Finally, the matrix representation of a Fredkin gate is given as follows: 

I have covered multi-qubit quantum operations in this section. The next section will focus 
on one of the most important properties of quantum mechanics, namely, the quantum 
no-cloning theorem.

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑜𝑜𝑖𝑖𝑎𝑎, 𝑏𝑏, 𝑐𝑐⟩ → 𝑎𝑎, 𝑏𝑏, (𝑎𝑎𝑏𝑏)⊕ 𝑐𝑐⟩ 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 =

[
 
 
 
 
 
 
 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0]

 
 
 
 
 
 
 

. 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹0, 𝑎𝑎, 𝑏𝑏⟩ → 0, 𝑎𝑎, 𝑏𝑏⟩ 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹1, 𝑎𝑎, 𝑏𝑏⟩ → 1, 𝑏𝑏, 𝑎𝑎⟩. 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 =

[
 
 
 
 
 
 
 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1]

 
 
 
 
 
 
 

. 
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The quantum no-cloning theorem
The quantum no-cloning theorem is one of the features of quantum mechanics that 
are harnessed for quantum information processing. In order to fully appreciate the 
significance of this theorem, it is imperative to contrast the quantum mechanical world 
with the macroscopic world that we live in.

In a macroscopic world, it is possible to make perfect copies of classical information such 
as images and text. However, this is not the case in the quantum world, thanks to the 
quantum no-cloning theorem. 

As we are dealing with the quantum no-cloning theorem, it is important to clear up one 
misconception about the theorem that some people might have. This misconception 
asserts that it is impossible to clone a quantum state. However, this claim is misleading, 
since two orthogonal quantum states can be cloned. 

On the other hand, the quantum no-cloning theorem is concerned with any unknown 
arbitrary quantum state. Additionally, what is prohibited is the perfect cloning of the 
unknown state; the imperfect cloning of a quantum state is possible.  

In essence, the quantum no-cloning theorem asserts that an unknown quantum state 
cannot be perfectly copied. That is, it is impossible to create an identical quantum copy 
of an unknown arbitrary quantum state. This theorem is made possible thanks to the 
linearity of quantum mechanics and the unitarity of quantum evolutions. 

The proof of the no-cloning theorem is as follows. Let |𝜓> be a pure state to be cloned, 
and |e> be the initial state of the copy. Then, the initial state will be represented as follows:  

Now, consider the possibility that the perfect quantum state copier exists. This would 
imply that for a unitary U: 

Therefore, for two quantum states, |𝜓> and |ϕ>: 

and 

𝜓𝜓⟩⊗ 𝑒𝑒⟩. 

𝑈𝑈(𝜓𝜓⟩⊗ 𝑒𝑒⟩)𝜓𝜓⟩⊗𝜓𝜓⟩. 

𝑈𝑈(𝜓𝜓⟩⊗ 𝑒𝑒⟩) = 𝜓𝜓⟩⊗𝜓𝜓⟩ 

𝑈𝑈(𝜙𝜙⟩⊗ 𝑒𝑒⟩) = 𝜙𝜙⟩⊗𝜙𝜙⟩. 
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Now, taking the inner product of |𝜓> and |ϕ>, we end up with:

This implies that either:

or 

The preceding conditions are met only when |𝜓>  = |ϕ> or |𝜓> and |ϕ> are orthogonal, 
respectively, and not for any arbitrary quantum state. This completes the proof of the 
quantum no-cloning theorem.  

The next section discusses quantum computing models beyond the gate model. 

Quantum computing models – beyond the 
gate model 
Although it is the most prominent in quantum computing, the quantum gate model 
discussed thus far is not the only model of quantum computing. There are other models 
of quantum computing that were proven to be computationally equivalent to the quantum 
model of quantum computing, up to a polynomial factor. 

The quantum computing models to be discussed in this section include the cluster-based 
model, adiabatic quantum computing model, and hybrid quantum computing model. 

Cluster-based quantum computing
Cluster-based quantum computing uses entangled states, which are also known as cluster 
states, as the physical resources for quantum computation. This quantum computing 
model is universal for quantum computation. Cluster-based quantum computing is also 
known as one-way quantum computing. 

The operation of a cluster-based quantum computing model is as follows. First, a cluster 
state of a large number of entangled quantum states is prepared. This is then followed by 
the actual quantum computation. The quantum computation consists of a sequence of 
one-qubit quantum measurements on this cluster state. The sequence of measurements 
will be determined by the computing task that is being performed. Therefore, this model 
of quantum computing uses measurement as a tool to perform quantum computing.

⟨𝜓𝜓|𝜙𝜙⟩ = (⟩𝜓𝜓|𝜙𝜙⟩ 2. 

⟨𝜓𝜓|𝜙𝜙⟩ = 1 

⟨𝜓𝜓|𝜙𝜙⟩ = 0. 
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Adiabatic quantum computing 
Another model of quantum computing is the adiabatic model of quantum computing. 
This model is based on the adiabatic theorem of quantum mechanics. The adiabatic 
theorem states that gradually varying the conditions of the quantum system allows the 
system to adapt its functional form (configuration). 

The adiabatic quantum computing model operates as follows. First, for the time interval 
s = [0,1], two Hamiltonians, 𝐻𝐻0  and 𝐻𝐻1 , are specified (a Hamiltonian is an operator 
corresponding to the total energy (kinetic + potential) in the quantum system). The 
computational task to be computed is then encoded on the ground state of 𝐻𝐻0 . 𝐻𝐻0  is the 
Hamiltonian that is easy to prepare. After encoding the computational problem on 𝐻𝐻0 , 
this Hamiltonian (𝐻𝐻0 ) is then gradually evolved such that we have:  

where

After this gradual (quantum) evolution, the solution to the computational problem 
will be in the ground state of the final Hamiltonian (𝐻𝐻1 ). A quantum evolution is a 
gradual change in the quantum system over time, mainly due to its interaction with the 
environment.

Hybrid quantum computing model
The key objective of a hybrid quantum computing model is to demonstrate the quantum 
super-advantage of the NISQ devices. In this model, computational load is shared between 
a conventional/classical computing unit and a quantum processing unit.

In a hybrid quantum computing model, the quantum processing unit first prepares  
a quantum state with a set of variational parameters. In this case, the quantum state that  
is being prepared through guessing is the Hamiltonian of the quantum system. This 
guessed Hamiltonian of a quantum system is known as an ansatz. 

After creating an ansatz, the quantum processing unit then performs a measurement 
and sends these measured parameters to the classical processing unit for optimization 
of these variational parameters. The optimized parameters are then fed back to the 
quantum processing unit. This process iterates until the ground state of the computational 
problem's Hamiltonian is found.  

𝐻𝐻(𝑠𝑠) = (1 − 𝑠𝑠)𝐻𝐻0 + 𝑠𝑠𝐻𝐻1 

0 ⩽ 𝑠𝑠 ⩽ 1 



The classical-quantum hybrid quantum computing model is normally deployed in finding 
solutions to optimization problems. There are two prominent classical-quantum hybrid 
variational algorithms. These are the quantum approximate optimization (QAOA) and 
the variational quantum eigensolver (VQE) algorithms.  

The QAOA algorithm was developed by Farhi, Goldstone, and Gutmann in 2014. This 
variational algorithm produces approximate solutions for combinatorial optimization 
problems in polynomial time. It acts as a bridge between the adiabatic quantum 
computing model and the quantum gate model, since it uses two Hamiltonians in 
alternation, and initializes the state of one of the Hamiltonians using the quantum gate 
model. 

The VQE was introduced by Peruzzo et al. in 2014. It is a classical-quantum hybrid 
variational algorithm that can be deployed to solve for the eigenvalues in a matrix 
and to find solutions to the optimization problems. The VQE algorithm uses both a 
classical processing unit and a quantum processing unit in order to find solutions to the 
optimization problems and eigenvalue problems.  

Summary
This chapter delved into the basic mathematics that is required to understand the 
subsequent chapters. Python was used in this chapter as a tool for understanding the 
mathematical concepts covered. It provided a brief introduction to linear algebra. This 
is due to the fact that linear algebra forms the basis for quantum mechanics and, by 
extension, to quantum information processing.

Additionally, a qubit was introduced, together with the allowed quantum operations that 
can be performed on the qubit. The quantum no-cloning theorem, which plays a crucial 
role in quantum information processing, was also discussed. Finally, quantum computing 
models other than the quantum gate model were discussed. 

Having introduced the necessary mathematics for quantum information in this chapter, it 
is now time to switch attention to the actual quantum information processing algorithms. 
The next chapter sheds some light on quantum entanglement and quantum teleportation. 



Further reading 
• Larson, R. (2016). Elementary linear algebra. Nelson Education. 

• Nielsen, M. A and Chuang, I. L. (2011) Quantum computation and quantum 
information: 10th Edition. New York, NY, USA: Cambridge University Press, 
1107002176, 9781107002173. 

• Scherer, W. (2019). Mathematics of Quantum Computing: An Introduction. Springer 
Nature. 





Section 2:  
Quantum Computers and 

Quantum Algorithms

This section covers the concept of quantum entanglement, which forms the core of the 
correlations that are possible between separated quantum systems. We will also define  
and show Python implementations of various quantum circuits and algorithms.

This section comprises the following chapters:

• Chapter 3, Entanglement and Quantum Teleportation

• Chapter 4, Working with Quantum Circuits

• Chapter 5, Quantum Algorithms





3
Entanglement 
and Quantum 
Teleportation

In this chapter, we will cover the fundamentals of entanglement, and how it came to be 
referred to as spooky action at a distance. Entanglement plays a crucial role in quantum 
information processing, so it is imperative to have a chapter dedicated to entanglement.

After covering the fundamentals of entanglement, the chapter will discuss the Bell 
theorem and the tests of entanglement. Finally, the chapter will discuss one of the 
applications of entanglement, namely, quantum teleportation.  

In this chapter, we will cover the following main topics: 

• Exploring the history of quantum entanglement 

• Understanding the Bell theorem and CHSH inequality 

• Understanding composite systems and entanglement 

• Understanding the CNOT gate – the entangling gate

• Understanding Bell states 
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• Understanding the entanglement of more than two quantum states

• Understanding entanglement as a resource – quantum teleportation 

Technical requirements
The requirements for this chapter are the following:

• A basic understanding of the Python programming language

• Navigation of Google's Colab environment

• Elementary (post-secondary) mathematics knowledge

The GitHub link for this chapter can be found here: https://github.com/
PacktPublishing/Hands-On-Quantum-Information-Processing-with-
Python/tree/master/Chapter03.

In the next section, we will cover the brief history of quantum entanglement.

Exploring the history of quantum 
entanglement 
In our day-to-day lives, we are quite familiar with correlations of various affairs. At  
a sub-atomic level though, correlations of quantum particles go beyond our day-to-day 
experience. These quantum correlations are referred to as quantum entanglement. The 
term entanglement was coined by a German physicist, Erwin Schrödinger, using the 
German word Verschränkung, which he translated to mean entanglement.  

In essence, quantum entanglement occurs when two quantum particles that have 
interacted remain a single, indivisible system, even if such quantum systems are separated 
by an arbitrarily long distance. This way, the quantum particles remain inter-dependent, 
and hence correlated. This means that for these entangled particles, if an action is 
performed on one particle, the second particle will also be affected by that action, and this 
influence occurs instantaneously.   

Albert Einstein, who was one of the greatest scientists of the 20th century, was a firm critic 
of quantum entanglement. He referred to entanglement as spooky action at a distance 
because quantum entanglement suggests an instantaneous correlation between two 
quantum particles that are separated by an arbitrarily long distance.  

https://github.com/PacktPublishing/Hands-On-Quantum-Information-Processing-with-Python/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Quantum-Information-Processing-with-Python/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Quantum-Information-Processing-with-Python/tree/master/Chapter03
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In 1935, Einstein, together with his colleagues Boris Podolsky and Nathan Rosen, 
presented a very serious critique of quantum entanglement. This critique was presented in 
the form of a thought experiment, which would later be referred to as the EPR paradox 
(also referred to as the Einstein-Podolsky-Rosen paradox). 

Through the formulation of the EPR paradox, Einstein, Podolsky, and Rosen used the 
concept of quantum entanglement to demonstrate that quantum mechanics cannot 
provide a complete description of reality and that it should be supplemented by additional 
parameters, the hidden variables. 

The EPR paradox can be explained as follows. Consider two correlated quantum particles, 
Alice and Bob (thus, Alice and Bob are entangled). At first, Alice and Bob are allowed to 
interact. Then, Alice and Bob are separated such that they are so far apart that it would be 
impossible for them to communicate with one another.  

Since Alice and Bob are entangled, the operations performed on one will also affect the 
other. Therefore, for instance, if measurement is performed on Alice, the influence of that 
correlation would be instantaneously reflected by Bob. The paradox in this (in the EPR 
paradox) is that this would imply that this influence would travel faster than the speed 
of light, and this is in direct conflict with the known fact that nothing travels faster than 
light.  

The EPR paradox provided a serious challenge to quantum mechanics for nearly three 
decades. However, in 1964, the physicist John Bell proved that the interpretation given 
in the EPR paradox is inconsistent with quantum mechanics. This proof later came to be 
known as the Bell theorem, and will be discussed later in this chapter. 

Like Einstein, Podolsky, and Rosen, Bell used a thought experiment in order to develop 
his theorem. However, since his theorem made testable predictions, these predictions 
were later tested experimentally. The first experiment was performed by John Clauser and 
Stuart Freedman in 1972.  

Another experiment was conducted by Edward Fry and Randall Thompson in 1976. 
Furthermore, in the 1980s, Alain Aspect performed an entanglement-based experiment. 
Finally, in the late 1990s, Anton Zeilinger performed a set of experiments that firmly 
established the reality of quantum mechanics and hence provided a serious blow to the 
interpretation given in the EPR paradox.

Having provided a brief history of the concept of quantum entanglement, it is now 
imperative to further explore this concept. This exploration will be done in the next 
section, where the Bell theorem and CHSH inequality will be covered.
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Understanding the Bell theorem and CHSH 
inequality
As already stated in the previous section, Bell's theorem renders the quantum mechanical 
interpretation used in the EPR paradox obsolete. This philosophical interpretation is 
known as local realism. The realism in this case posits that objects exist even when they 
are not observed/measured. For instance, the moon does exist regardless of whether you 
are looking at it. On the other hand, local in local realism posits that an event at one point 
cannot instantaneously have an effect at another point. This interpretation is also known 
as the hidden variables interpretation of quantum mechanics. 

In order to address the hidden variables argument, Bell came up with a thought 
experiment that would test the validity of this interpretation. This thought experiment was 
later reformulated by the physicist David Bohm, who used the spin properties of quantum 
mechanical systems such as electrons.  

Consider two quantum variables, each with a spin angular momentum. Now, consider 
the random variables A1𝜶 A2𝜶 to be the outcomes of the spin measurements made along 
the axes 𝜶 = x, y, and z, and taking the values -1 or 1. Then, if the correlations from these 
measurements are not quantum mechanical (there is no quantum entanglement), and 
if the aforementioned random variables are anti-correlated, then for probability p (as 
predicted by the hidden variables interpretation), we have the following: 

( 1 ≠ 2 ) + ( 1 ≠ 2) + ( 1 ≠ 2) ≥ 1  

The inequality in the given equation is known as the Bell theorem, or Bell's inequality. 
Any quantum mechanical correlation, quantum entanglement, violates Bell's inequality.  

Bell's inequality was later generalized by Clauser, Horne, Shimony, and Holt, in 
what would later be known as the CHSH inequality. The CHSH inequality is briefly 
summarized as follows. 

Consider two quantum particles, Alice and Bob, and the detector measurement settings 
a and a1 for Alice, and b and b1 for Bob. Then, for expectation values <A(𝜶)B(𝛃)> 
corresponding to Alice measuring in either measurement setting a or a1, and Bob 
measuring in measurement setting b or b1, then we have the following inequality:  

The inequality shown in the equation is known as the CHSH inequality. Just like with 
Bell's inequality, quantum mechanics also violates CHSH inequality.  

⟨ ( ) ( )⟩+ ⟨ ( 1) ( 1)⟩+ ⟨ ( 1) ( )⟩ − ⟨ ( ) ( 1)⟩ ≥ 2√2  
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In this section, we have provided two key inequalities in quantum mechanics, namely, 
Bell's inequality and CHSH inequality. We have also stated in this section that quantum 
mechanics violates both these inequalities. The following section will cover composite 
quantum systems and the entangled quantum systems. 

Understanding composite systems and 
entanglement 
We have seen in Chapter 2, Quantum States, Operations, and Measurements, that 
composite quantum systems can either be separable or not separable. Let's consider  
two qubits: 

𝑢𝑢1⟩ = 𝛼𝛼00⟩ + 𝛼𝛼11⟩ 
and

1⟩ = 00⟩+ 11⟩  

As we have already seen in the previous section, if the two states are separable, then the 
composite system of these qubits will be given as follows: 

⟩ = 0 000⟩+ 0 101⟩+ 1 010⟩+ 1 111⟩  

Since the composite system |u> is separable, it is possible to factorize (decompose) it into 
its constituent quantum states, namely, |u1> and |u2>. However, this decomposition is not 
always possible. For instance, consider the following composite system:

⟩ =
1
√2

(00⟩+ 11⟩)  

Now, we want to see whether it is possible to decompose |v> into its constituent quantum 
states, say |v1> and |v2>. Recall that states |v1> and |v2> can be written as follows: 

𝑣𝑣1⟩ = 𝛼𝛼00⟩ + 𝛼𝛼11⟩ 
and

2⟩ = 00⟩ + 11⟩  
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 Now, if |v> is a product state, it means the following:

𝑣𝑣⟩ = 𝛼𝛼0𝛽𝛽000⟩ + 𝛼𝛼0𝛽𝛽101⟩ + 𝛼𝛼1𝛽𝛽010⟩ + 𝛼𝛼1𝛽𝛽111⟩ =
1
√2

(00⟩ + 11⟩) 
.

This can only be the case if the following apply: 

and

However, the two aforementioned equations cannot both be true. The implication of the 
first equation is that at least one of the probability amplitudes 𝛂0, 𝛂1, 𝛃0, or 𝛃1 is zero, 
while the second equation implies that neither of the probability amplitudes is zero. This 
leads to a contradiction. Therefore, the composite state |v> cannot be decomposed to its 
constituent quantum states, |v1> and |v2>. Therefore, |v> is not separable and quantum 
states |v1> and |v2> are said to be entangled. 

In this section, we have shown how quantum states can be entangled, instead of being 
separable states. The next section discusses how the CNOT gate is used as an entangling 
gate. The CNOT gate is used to entangle two quantum states. 

Understanding the CNOT gate – the entangling 
gate
In Chapter 2, Quantum States, Operations, and Measurements, we gave a brief overview of 
a two-qubit gate called the controlled-NOT (CNOT) gate. The CNOT gate can be used 
for entangling quantum states. It is also referred to as the entangling qubit. As an example, 
consider two qubits, |w1> and |w2>, both in state |0>. Now, when we apply the Hadamard 
gate (the Hadamard gate was introduced in Chapter 2, Quantum States, Operations, and 
Measurements) to |w1>, we get the following: 

𝛼𝛼0𝛽𝛽1 = 𝛼𝛼1𝛽𝛽0 = 0 

𝛼𝛼0𝛽𝛽0 = 𝛼𝛼1𝛽𝛽1 =
1
√2

. 

1⟩ → 0⟩ =
1
√2

[0⟩+ 1⟩]  
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Furthermore, by applying the CNOT gate to |w1> in the equation and |w2> (which is still 
in state |0>), we get the following:

This, as we have already observed, is an entangled state. This state is one example of 
entangled quantum states known as Bell states, Bell basis states, or EPR states.  

The Python code for generating this Bell state using qutip is shown as follows: 

from qutip import * 

 

w1 = bell_state(state="00") 

print(" A matrix for Bell pair generation is:\n", w1) 

The code uses the bell_state() function from qutip to create one of the four  
Bell states. 

The following code snippet shows the output of this code:

A matrix for the Bell pair generated is:

Quantum object: dims = [ [2, 2], [1, 1] ], 

                        shape = (4, 1), type = ket

Qobj data = 

[ [0.70710678  ]

  [0.          ]

  [0.          ]

  [0.70710678] ]

Let's now move on to the next section and learn about Bell states.

2⟩ → ( 1⟩, 0⟩) =
1
√2

(00⟩+ 11⟩)  
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Understanding Bell states
As we have already mentioned, the |w2> state in the Understanding the Bell theorem and 
CHSH inequality section is an example of a Bell state. There are other examples of Bell 
states too (there are actually four Bell states). The Bell states are prepared by applying the 
Hadamard gate to the first input qubit, and then applying the CNOT gate on the result to 
the first qubit and the second qubit input. This can be summarized as follows:

 

It is left as an exercise for you to prove that the equations provided are correct.  

Let's discuss the four Bell states:

• As can be seen, the first Bell state, |𝛙00>, is created when the two input qubits are  
in state |0>. 

• Furthermore, the Bell state |𝛙01> is created when the first input qubit is in state  
|0> and the second input qubit is in state |1>.

• Additionally, the Bell state |𝛙10> is created when the first input qubit is in state  
|1> and the second input qubit is in state |1>.

• Finally, the Bell state |𝛙11> is created when both input qubits are in state |1>. 

 The Python code for generating these Bell states using qutip is shown as follows: 

from qutip import * 

 

v_00 = bell_state(state="00") 

v_01 = bell_state(state="01") 

v_10 = bell_state(state="10") 

v_11 = bell_state(state="11") 

print("v_00 is:", v_00) 

print("v_01 is:", v_01) 

00⟩ = ( 0⟩, 0⟩) =
1
√2

(00⟩+ 11⟩)

01⟩ = ( 0⟩, 1⟩) =
1
√2

(00⟩ − 11⟩)

10⟩ = ( 1⟩, 0⟩) =
1
√2

(01⟩+ 10⟩)

11⟩ = ( 1⟩, 1⟩) =
1
√2

(01⟩ − 10⟩)
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print("v_10 is:", v_10) 

print("v_11 is:", v_11) 

The preceding code snippet demonstrates the generation of the four Bell states using the 
bell_state() function from qutip. 

Finally, the simple quantum circuit for creating a Bell state is shown here (quantum 
circuits will be discussed in detail in Chapter 4, Working with Quantum Circuits): 

Figure 3.1 – Quantum circuit for creating a Bell state 

In the preceding circuit, the Hadamard gate acts on the first qubit (|a>), and the CNOT 
gate acts on the output of H|a> and the second input qubit (|b>). As an exercise, show that 
the preceding circuit actually generates the Bell states when the first qubit |a> = {|0>, |1>} 
and the second qubit |b> = {|0>, |1>}. 

In this section, we have demonstrated how Bell states are generated using the CNOT gate. 
In the next two sections, we will cover the entanglement of more than two quantum states. 
The next section will focus on the generation of the GHZ state. This will then be followed 
by a discussion of the generation of the W state. 

Understanding the entanglement of more 
than two quantum states 
In the previous section, we demonstrated how Bell states are generated using the CNOT 
gate. In this section, we will cover the entanglement of more than two quantum states. The 
next subsection will focus on the generation of the GHZ state. This will then be followed 
by a discussion of the generation of the W state.  
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Greenberger-Horne-Zeilinger state (GHZ state) 
So far, we have focused on the entanglement of just two quantum states. However, in 
reality, many qubits can be entangled arbitrarily. One of the states that can be generated  
by entangling many qubits arbitrarily is the GHZ state. For n qubits, with all qubits 
initialized to |0>, the GHZ state is given as follows:

 

For three qubits, the GHZ state is given as follows: 

The Python code snippet of a three-qubit GHZ state using qutip is shown as follows: 

from qutip import * 

 

GHZ = ghz_state(N=3) 

 

print(GHZ) 

Finally, the circuit for the generation of a three-qubit GHZ state, with all the input qubits 
(|a>, |b>, and |c>) initialized to |0>, is shown as follows:

Figure 3.2 – Circuit for the generation of a three-qubit GHZ state

⟩ =
1
√2

(0⟩⊗ + 1⟩⊗ )  

⟩ =
1
√2

(000⟩+ 111⟩)  
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The W state 
Besides the GHZ state, another composite quantum state that can be formed by the 
entanglement of three or more qubits is called the W state. A three-qubit W state is 
mathematically represented as follows: 

 

In general, the W state generated from entangling n qubits is given as follows: 

Finally, the Python code snippet for generating the three-qubit W state using qutip and 
numpy is shown here:

from qutip import * 

import numpy as np 

 

a = np.array([[1], [0]])  

b = np.array([[0], [1]])  

 

a = Qobj(a) 

b = Qobj(b) 

 

W = (1/np.sqrt(3))* (tensor(b, a, a) + \

                     tensor(a, b, a) + \

                     tensor(a, a, b))  

 

print("The W state is:", W) 

As can be observed, the preceding code uses two modules, namely, qutip and numpy. 
numpy is used to create two vectors, namely, a and b, using the array() function. These 
vectors are then converted into the qutip objects using the Qobj() function. Then, the 
W state is generated, and the W variable is assigned to such a state.  

Now that we have discussed many-particle entanglement using either the GHZ states  
or the W states, the next section will discuss how quantum entanglement can be used  
as a resource in quantum information processing.

⟩ =
1
√3

(100⟩+ 010⟩+ 001⟩)  

⟩ =
1
√

(10⋯0⟩ + 01⋯0⟩+ ⋯+ 0⋯01⟩)  
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Understanding entanglement as  
a resource – quantum teleportation
In quantum information processing, entanglement is a crucial resource that is used to 
provide information processing advantages over conventional information processing.  
As such, quantum entanglement is typically used in various fields of quantum information 
processing, such as quantum cryptography, quantum computing, and quantum 
communication. 

In quantum communication, quantum entanglement is used as a resource in applications 
such as superdense coding and quantum teleportation. Superdense coding will be 
covered in the next chapter (Chapter 4, Working with Quantum Circuits), while quantum 
teleportation is covered in this section. It is imperative to note that the teleportation that 
will be covered here is that of a quantum state, not the one that is normally talked about in 
sci-fi (science fiction) movies.   

Quantum teleportation
Quantum teleportation involves transmitting an arbitrary quantum state from one 
location to another, with the assistance of an entangled EPR pair. In this quantum 
communication protocol, quantum entanglement is used as a key resource. As already 
mentioned earlier, what is teleported in this protocol is a quantum state, and not a classical 
object such as a human body, as is normally depicted in popular culture.

In quantum teleportation, the objective is to transfer an unknown quantum state from one 
point to another. This transfer is made possible through the use of an EPR pair, which is 
shared by Alice and Bob (remote quantum particles) and a conventional communication 
circuit. Therefore, the objective of quantum teleportation is to enable Alice to transmit an 
arbitrary quantum state to Bob. In order to achieve this, both Alice and Bob use classical 
communication to communicate.

The procedure for a quantum teleportation circuit can be summarized by the following 
circuit. This circuit uses four unitary quantum gates, namely, the Hadamard gate, the X 
gate, the Z gate, and the CNOT gate, together with two measurement gates:  

  

 Figure 3.3 – Circuit for quantum teleportation
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As can be observed from the diagram, Alice has the unknown state |𝝍> and one half 
of the EPR pair that she shares with Bob. She then performs a measurement on the two 
qubits at her disposal, and sends the results of the measurement to Bob through a classical 
channel. Since she is measuring two qubit states, Alice's possible measurement outcomes 
m1 (from the qubit to be transmitted) and m2 (from one half of the EPR pair) are 00, 01, 
10, or 11.  

Based on the value of the measurement outcome received from Alice, Bob can perform 
any of the operations shown in the following table in order to reconstruct the state |𝝍>: 

Figure 3.4 – Table showing operations that can be performed by Bob based on the value of measurement 
outcome received from Alice

Using IBM's Qiskit platform and Google's Colab environment, the following Python code 
can be used to implement quantum teleportation: 

#!pip install qiskit 

from qiskit import * 

from qiskit.visualization import plot_histogram 

 

circuit = QuantumCircuit(3,3) 

 

circuit.h(0) 

 

circuit.h(1) 

circuit.cx(1,2) 

 

circuit.cx(0,1) 

circuit.h(0) 

 

circuit.measure([0, 1], [0, 1]) 

 

circuit.cx(1, 2) 

circuit.cz(0, 2) 
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circuit.measure([2], [2]) 

 

circuit.draw(output='text') 

 

simulator = Aer.get_backend('qasm_simulator') 

result = execute(circuit, backend=simulator,

                 shots=1024).result() 

plot_histogram(result.get_counts(circuit)) 

The code can be summarized as follows. The code uses the qiskit Python module. 
After importing the qiskit module into the workspace, the circuit is instantiated 
using the QuantumCircuit() function, and the circuit variable is assigned to this 
instantiated circuit. This circuit uses three quantum registers and three classical registers. 
After instantiating the circuit, the unitary circuits are then applied to the quantum states. 
Finally, a measurement is performed and the results stored in the classical registers. The 
final part of the code, starting from the circuit.draw(output='text') statement 
to the end, is just used for the visualization of the quantum teleportation circuit generated.

Summary
In this chapter, we have covered the basics of quantum entanglement. We have also seen 
the inequalities that can be used to determine the quantumness of the correlations. These 
inequalities are the Bell inequality and the CHSH inequality.  

Additionally, we introduced the Bell basis states. Furthermore, we learned in this chapter 
that the CNOT gate is the quantum gate that is responsible for entanglement, hence it can 
also be referred to as the entangling gate.  

In this chapter, we also covered the entangled states of more than two entangled qubits, 
and these states are the GHZ and W states. Additionally, we argued in this chapter 
that quantum entanglement is a crucial resource for quantum information processing 
applications. Finally, we provided a hands-on introduction to quantum teleportation.  

The next chapter provides a hands-on exposition to various quantum circuits. It also 
discusses an implementation of a superdense coding quantum communication protocol. 
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Further reading 
• Wilde, M. M. (2017). Quantum Information Theory. Cambridge University Press. 

• Bell, J. S. (1987). Speakable and Unspeakable in Quantum Mechanics. Cambridge 
University. 

• Bertlmann, R., and Zeilinger, A. (2017). Quantum [Un] Speakables II. Berlin: 
Springer. 





4
 Working with 

Quantum Circuits
In this chapter, we will define and show implementations of various quantum circuits.  
We will begin with implementing examples of single-qubit games and also cover quantum 
circuits. We will also cover error correction techniques and superdense coding examples 
in this chapter. Finally, in this chapter, we will focus more on the use of IBM's qiskit 
(www.qiskit.org) and Quantum Experience (https://quantum-computing.
ibm.com/). 

At the end of this chapter, you should be able to understand what a quantum gate is, how 
a quantum gate is different from a conventional gate, and how quantum circuits can be 
formed from the quantum gates. Furthermore, this chapter will expose you to the Python 
code that can be used to represent quantum gates and quantum circuits. 

Just like their classical/conventional circuit counterparts, which illustrate how  
a classical algorithm/program is executed, quantum circuits illustrate how quantum 
algorithms/programs are executed. Additionally, just like in classical computing, where 
circuits are made up of a collection of logic gates, quantum circuits are made up  
of a collection of quantum gates. 

http://www.qiskit.org
https://quantum-computing.ibm.com/
https://quantum-computing.ibm.com/
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We will cover the following main topics in this chapter:

• Introducing classical logic gates

• Introducing single-qubit and multi-qubit gates

• Introducing quantum circuits

• Exploring quantum error correction

• Exploring superdense coding

Technical requirements
The requirements for this chapter are the following: 

• A basic understanding of the Python programming language

• Navigation of Google's Colab environment

The GitHub link for this chapter can be found here:

https://github.com/PacktPublishing/Hands-On-Quantum-
Information-Processing-with-Python/tree/master/Chapter04

Introducing classical logic gates
Let's briefly detour from quantum computing and focus on classical computing. You will 
recall that the basic unit of information in classical computing is a binary digit (bit). 
Furthermore, you will recall that a bit can be in a state of either a zero (0) or one (1). 
Just as a bit is a basic unit of classical information, a logic gate is a basic unit of classical 
computation.

There are two single-bit logic gates. These gates are the Identity (wire) gate and the 
NOT gate. The former leaves the input unchanged, while the latter inverts/negates the 
input. The Truth table for the single-bit identity gate is given as follows:

Table 4.1 – The Truth table for a single-bit identity gate

https://github.com/PacktPublishing/Hands-On-Quantum-Information-Processing-with-Python/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Quantum-Information-Processing-with-Python/tree/master/Chapter04
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The Python code for implementing the identity gate is shown as follows:

#Identity gate

def IDTY(a):

    if a == 0:

        return 0

    else:

        return 1

if __name__ == '__main__':

    print(IDTY(0))

    print(IDTY(1))

As can be seen from the preceding code, after defining the function that can be used  
to represent the identity, the next step is to output the Identity gate when the inputs  
are 0 and 1, respectively. This output is shown as follows:

The output of input 0 is: 

 0

The output of input 1 is: 

 1

On the other hand, the Truth table of the NOT gate is given as follows:

Table 4.2 – A Truth table of a NOT gate

The Python code for implementing the NOT gate is shown as follows:

#NOT gate

def NOT(a):

    if a == 0:

        return 1

    else:

        return 0
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if __name__ == '__main__':

    print(NOT(0))

    print(NOT(1))

The output of the NOT gate is shown as follows:

The output of NOT gate for input 0 is: 

 1

The output of NOT gate for input 1 is: 

 0

Besides the two one-bit gates, there are also various multi-bit logic gates. The two basic 
two-bit logic gates are the OR and AND gates. For two inputs A and B, the Truth table for 
the OR gate is given as follows:

Table 4.3 – A Truth table of a two-bit OR gate

The Python code for the OR gate is shown as follows:

#OR gate

def OR(a,b):

    if a == 0 and b == 0:

       return 0

    else:

        return 1

if __name__ == '__main__':

    print(OR(0,0))

    print(OR(0,1))

    print(OR(1,0))

    print(OR(1,1))
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The output for the OR gate is shown as follows:

The output of OR gate for inputs 0,0 is: 

 0

The output of OR gate for inputs 0,1 is: 

 1

The output of OR gate for inputs 1,0 is: 

 1

The output of OR gate for inputs 1,1 is: 

 1

On the other hand, the Truth table of the AND gate (given inputs A and B) is given  
as follows:

Table 4.4 – A Truth table for a two-bit AND gate

The Python code for the AND gate is given as follows:

#AND gate

def AND(a,b):

    if a == 1 and b == 1:

        return 1

    else:

        return 0

if __name__ == '__main__':

    print(AND(0,0))

    print(AND(0,1))

    print(AND(1,0))

    print(AND(1,1))
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The output of the AND gate is shown as follows:

The output of AND gate for inputs 0,0 is: 

 0

The output of AND gate for inputs 0,1 is: 

 0

The output of AND gate for inputs 1,0 is: 

 0

The output of AND gate for inputs 1,1 is: 

 1

Another multi-bit logic gate of interest is the exclusive-OR (XOR) gate. For two input bits  
A and B, the Truth table of the XOR gate is given as follows:

Table 4.5 – A Truth table of a two-bit XOR gate

The Python code for the XOR gate is given here:

#XOR gate

def XOR(a,b):

    if a != b:

        return 1

    else:

        return 0

if __name__ == '__main__:

    print(XOR(0,0)

    print(XOR(0,1)

    print(XOR(1,0)

    print(XOR(1,1))
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The output of the XOR gate is shown as follows:

The output of XOR gate for inputs 0,0 is: 

 0

The output of XOR gate for inputs 0,1 is: 

 1

The output of XOR gate for inputs 1,0 is: 

 1

The output of XOR gate for inputs 1,1 is: 

 0

Finally, there are two other multi-bit logic gates that are worthy of our attention. These 
logic gates are the NOR gate and the NAND gate. In essence, the NOR gate is a negation  
of the OR gate, while the NAND gate is a negation of the AND gate. Furthermore, both the 
NOR and NAND gates are called universal gates because either of them can be used to 
construct any other logic gate. For two input bits A and B, the Truth table of a NOR gate  
is given as follows:

Table 4.6 – A Truth table of a two-bit NOR gate

The Python code for the NOR gate is given as follows:

#NOR gate

def NOR(a,b):

    if a == 0 and b == 0:

        return 1

    else:

        return 0

if __name__ == '__main_':

    print(NOR(0,0))

    print(NOR(0,1))

    print(NOR(1,0))

    print(NOR(1,1))
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The output of the NOR gate is shown as follows:

The output of NOR gate for inputs 0,0 is: 

 1

The output of NOR gate for inputs 0,1 is: 

 0

The output of NOR gate for inputs 1,0 is: 

 0

The output of NOR gate for inputs 1,1 is: 

 0

On the other hand, the Truth table for the NAND gate (with input bits A and B) is given  
as follows:

Table 4.7 – A Truth table of a two-bit NAND gate

So far, in this section, we have provided an introduction to conventional logic gates. These 
gates include the identity gate, the NOT gate, the OR gate, the AND gate, the XOR gate, 
the NOR gate, and the NAND gate. Furthermore, the Python codes for implementing most 
of these gates were provided. In the next section, we will introduce quantum gates. 

Introducing single-qubit and multi-qubit gates
Most of the multi-bit classical logic gates are not reversible. That is, given the output(s), 
it is not possible to determine what the inputs are. However, as we have already learned 
earlier in this chapter, all the quantum gates are reversible. This, as we have already seen 
earlier in Chapter 2, Quantum States, Operations, and Measurements, is due to the fact that 
all quantum gates are represented by the unitary matrices:

1. We have already seen earlier in this chapter that there are only two single-bit logic 
gates, namely, the identity gate and the NOT gate. However, in the quantum realm, 
there are an infinite number of single-qubit quantum gates. These single-qubit 
quantum gates, as already discussed in Chapter 2, Quantum States, Operations, and 
Measurements, correspond to any 2X2 complex unitary matrix. Additionally, there 
are an infinite number of multi-qubit quantum gates. 
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We discussed a few single-qubit quantum gates back in Chapter 2, Quantum States, 
Operations, and Measurements. One of the single-qubit quantum gates discussed was the 
Pauli X (NOT) gate. For the computational basis states |0> and |1>, the Truth table of the 
X gate is given as follows:

Table 4.8 – A Truth table of the X gate

On the other hand, for the same computational states |0> and |1>, and the input states x 
and y, the Truth table of a two-qubit CNOT gate (recall that CNOT is the entangling qubit) 
is given as follows:

Table 4.9 – A Truth table of a two-qubit CNOT gate

It is important to note that since quantum computing is reversible, the number of inputs is 
the same as the number of outputs. This then ensures that there is no information that is 
lost during the computation. Additionally, it can be seen from the CNOT table in Figure 4.9 
that the operation of a CNOT gate is analogous to the operation of the XOR classical logic 
gate. The key difference though is that in the case of quantum computing, the input x also 
forms part of the output, so there is no information lost (due to the reversibility  
of computation).

We have discussed universal gates in the context of classical computing, whereby we 
established that both NOR and NAND logic gates are universal gates for classical computing. 
Analogous to classical computing, in quantum computing, the CNOT gate and any  
single-qubit gate form a set of universal quantum gates.
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In this section, I have covered the quantum logic gate – both single-qubit and  
multi-qubit quantum gates. These gates can be connected together to form quantum 
circuits. Quantum circuits will be covered in the next section. 

Introducing quantum circuits
We briefly came across a certain class of quantum circuits in the previous chapter, Chapter 
3, Entanglement and Quantum Teleportation. These circuits are the entanglement-based 
circuits, and they include the Bell state preparation circuits and the GHZ circuits. We 
learned that the CNOT gate plays a crucial role in such a class of quantum circuits, namely, 
the entanglement-based circuits. 

In essence, a quantum circuit is made up of a sequence of quantum gates. Typically, 
a quantum circuit consists of a set of unitary evolution operators followed by the 
measurement operators. That is, the measurement is typically performed at the end  
of the computation. 

The first circuit to consider is the circuit that introduces superposition to the quantum 
state. This circuit uses the Hadamard gate in order to bring about the superposition  
of the quantum state. The Python code for implementing this circuit, using qiskit,  
is shown as follows:

1. The first step involves importing the packages that are required in this 
implementation. After importing the Python packages, the seed is set,  
so as to enable reproducibility of the results obtained:

#Import packages required

from qiskit import QuantumCircuit, QuantumRegister,\

 ClassicalRegister, execute, Aer

from qiskit.visualization import plot_histogram

import matplotlib.pyplot as plt

import numpy as np

np.random.seed(42) 
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2. The next step in this implementation of the quantum circuit is to actually define  
the circuit using QuantumCircuit(). This circuit has one classical register and 
one quantum register. After defining the circuit, the qubit, which is initially at state 
|0> (it is initialized to state |0>), is inverted using the Pauli X gate. After inverting 
the gate, the Hadamard gate is then applied. Finally, the state of the quantum 
system is measured. This is achieved by applying the measurement gate to the 
qubit. The application of the measurement gate completes the construction of this 
quantum circuit, which can later be implemented using either the actual quantum 
computer or the classical simulator: 

# Define the Quantum and Classical Registers

qr = QuantumRegister(1)

cr = ClassicalRegister(1)

# Build the circuit

sup = QuantumCircuit(qr, cr)

sup.x(qr)

sup.h(qr)

sup.measure(qr, cr)

sup.draw(output='mpl')

plt.show()

3. Finally, the quantum circuit defined previously is simulated using the qasm_
simulator from qiskit. The results obtained are then displayed: 

# Execute the circuit (using the qasm simulator)

job = execute(sup, backend = \

              Aer.get_backend('qasm_simulator'),

              shots=1024)

result = job.result()

# Print the result

print(result.get_counts(sup))

#plot the results

counts = result.get_counts(sup)

plot_histogram(counts)

plt.show()
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Furthermore, the block diagram of this circuit is shown as follows. 

Figure 4.1 – Circuit introducing superposition to the quantum state

From Figure 4.1, note that the qubit is initialized to |0>. So, the Pauli X gate inverts the 
|0> qubit to |1>, and the Hadamard gate (H) introduces the superposition. Finally, the 
measurement operator is applied, and the results are stored in a classical register.

Finally, the following results prove that the given circuit is indeed the superposition 
circuit:

Figure 4.2 – The results of the simulation of the superposition circuit

Another example of a quantum circuit is shown here. This circuit is generated using 
IBM's Quantum Experience platform and Circuit Composer tool. The circuit uses the 
Hadamard gate, the Pauli X gate, and the measurement operator. Initially, the quantum 
state is initialized to |0>. Then, the Hadamard gate is used to introduce quantum 
superposition. This step is followed by the application of the X gate to the resultant state. 
Finally, measurement is applied to the final state. It can be observed that all the gates used 
in this circuit (Hadamard, X and measurement) are single-qubit gates:
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Figure 4.3 – The quantum circuit generated using IBM's Quantum Experience and Circuit  
Composer tool

The results after performing measurements, and running the experiment 1,024 times, are 
summarized as follows:

Figure 4.4 – The simulation results obtained from the implementation of the quantum circuit 
implemented using Quantum Experience and Circuit Composer (depicted previously in Figure 4.3)

From the results, it can be observed that there is roughly a 50% chance of obtaining either 
0 or 1 after performing measurement. It is worth noting that this circuit was not run on 
an actual quantum computer, but rather, on IBM's classical simulator. 
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The following circuit shows the quantum circuit used for the Bell state preparation:

Figure 4.5 – The quantum circuit for implementing the Bell state preparation

Additionally, the results of running this experiment using IBM's classical simulator are 
summarized as follows:

Figure 4.6 – The results obtained from simulating the Bell state preparation circuit using IBM's classical 
simulator

Finally, once again using Circuit Composer, the 5-qubit quantum circuit can be 
represented as follows:
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Figure 4.7 – The 5-qubit quantum circuit using Hadamard, CNOT, and measurement gates

As we have observed in Chapter 3, Entanglement and Quantum Teleportation, the 
preceding circuit should return all zeros half the time, and all ones half the time, too.  
The results obtained after running this circuit using the IBM's classical simulator are 
shown as follows:

Figure 4.8 – The results obtained from simulating the 5-qubit quantum circuit depicted in Figure 4.7, 
using IBM's classical simulator

In this section, I have covered the quantum circuits that can be formed by connecting 
various quantum gates. The next section discusses another concept that is of the utmost 
importance in quantum information processing, namely, quantum error correction. 
Quantum error correction is used to correct some of the errors that may arise in  
quantum circuits. 
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Exploring quantum error correction
Before delving into quantum error correction, it is prudent to first consider error 
correction in the classical/conventional information and coding theory. 

In classical information and coding theory, error-correction codes are used to mitigate  
the effects of noise in digital systems. The key idea of error-correction codes is to ensure 
that errors are detected and corrected from the received data. In essence, error correction 
is realized by encoding the message in such a way that the redundant information is added 
to the message. The addition of redundancy to the message is to ensure that even if such  
a message is affected by noise, there would be enough information that can be used in 
order to recover/decode the original message.

One of the basic classical error-correction codes is the majority vote code. This code  
is also referred to as the repetition code. The objective of majority vote error correction  
is to detect and correct a single-bit flip. As an example, using a three-bit majority vote 
error-correction code, bits '0' and '1' can be encoded by the computer as follows:

'0' (physical bit) -> '000' (logical '0')

'1' (physical bit) -> '111' (logical '1')

It is clear to see that the coding can correct a single-bit flip. For instance, the bit  
sequences '001', '010', and '100' can be error-corrected using the majority vote  
to '000', which, in turn, can be decoded to '0'. On the other hand, using the  
majority vote error-correction code, the bit sequence '110', '101', and '011'  
can be error-corrected to '111', which, in turn, can be decoded to '1'. 

The task of the error-correction code is to consider the bits, and decide, based on the 
majority rule, whether the encoding message should be '000' or '111'. If there are 
more zeros than ones, then the coded message becomes '000'. On the other hand, if 
there are more ones than zeros, then the coded message becomes '111'. 

Just like in classical information theory and coding, there is also a need to detect and 
correct errors in quantum information theory and coding. Quantum error correction 
codes generalize the classical repetition codes. However, since quantum states are also 
sensitive to the phase. The quantum repetition codes can correct either the qubit flip or 
the phase flip. 

The circuit diagram of a qubit-flip quantum error-correction encoding circuit is shown  
in the following diagram:
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Figure 4.9 – The quantum circuit for encoding the qubit |ψ> using two redundant qubits, with both 
redundant qubits being initialized to |0>

Essentially, the preceding circuit encodes the physical qubit:

with the logical qubit – 𝛼|000> + 𝛽|111>. The two other qubits, initialized to |0>, are used 
to provide redundancy, in order to enable the recovery of the original quantum states. 
These qubits are called auxiliary qubits. Alternatively, the auxiliary qubits are referred to 
as ancilla qubits, an unfortunate expression that will not be used in this book.

On the other hand, the circuit diagram for a qubit phase-flip quantum error-correction 
encoding circuit is shown as follows:

Figure 4.10 – The quantum circuit for implementing the qubit phase-flip quantum  
error-correction encoding

Finally, the Python code for implementing quantum repetition code error correction 
using qiskit is given as follows: 

Note
The link for this code can be found here: https://github.com/
PacktPublishing/Hands-On-Quantum-Information-
Processing-with-Python/tree/master/Chapter04.

1. The first step is to import all the packages that are required for the implementation 
of this quantum error correction scheme: 

from qiskit import *

from qiskit.ignis.verification.topological_codes\

import RepetitionCode

|𝜓𝜓> = 𝛼𝛼|0> + 𝛽𝛽|1> 

https://github.com/PacktPublishing/Hands-On-Quantum-Information-Processing-with-Python/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Quantum-Information-Processing-with-Python/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Quantum-Information-Processing-with-Python/tree/master/Chapter04
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from qiskit.ignis.verification.topological_codes\

import GraphDecoder

from qiskit.ignis.verification.topological_codes\

import lookuptable_decoding, postselection_decoding

from qiskit.compiler import transpile

from qiskit.transpiler import PassManager

from qiskit import QuantumCircuit, execute, Aer

from qiskit.providers.aer import noise

from qiskit.providers.aer.noise import NoiseModel

from qiskit.providers.aer.noise.errors import\

pauli_error, depolarizing_error

from qiskit import QuantumRegister, ClassicalRegister

import numpy as np

import matplotlib.pyplot as plt

np.random.seed(42) 

2. The following stage defines the noise model that will be used in this quantum 
circuit. The error model simulates the physical effects that may affect the 
performance of the qubits. This noise model uses two forms of error, namely,  
the quantum depolarizing noise (which replaces the qubit with a random state),  
and the measurement noise. This noise model is implemented with 5% probability 
of each type of noise (depolarizing noise and measurement noise): 

def get_noise(p_meas,p_gate):

    error_meas = pauli_error([('X',p_meas),

                             ('I', 1 - p_meas)])

    error_gate1 = depolarizing_error(p_gate, 1)

    error_gate2 = error_gate1.tensor(error_gate1)

    noise_model = NoiseModel()

    noise_model.add_all_qubit_quantum_error(

        error_meas, "measure") 

    noise_model.add_all_qubit_quantum_error(

        error_gate1, ["x"]) 

    noise_model.add_all_qubit_quantum_error(
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        error_gate2, ["cx"])  

    return noise_model 

noise_model = get_noise(0.05,0.05)

3. The qubit phase-flip quantum error correction scheme is defined in this stage. The 
circuit uses three quantum registers and three classical registers: 

qc0 = QuantumCircuit(3,3,name='0') 

qc0.measure(qc0.qregs[0],qc0.cregs[0])

4. The circuit constructed is then simulated using the classical simulator and the noise 
model defined earlier. The results obtained (in terms of counts) are then displayed:

counts = execute(qc0, Aer.get_backend('qasm_simulator'),

                 noise_model=noise_model)\

                 .result().get_counts()

print(counts)

5. The next step involves the creation and simulation of another quantum circuit,  
and this time the qubit being measured is in state |1> instead of state |0>. Therefore, 
the X gate is used to invert all three qubits from state |0> to state |1>: 

qc1 = QuantumCircuit(3,3,name='0')

qc1.x(qc1.qregs[0]) 

qc1.measure(qc1.qregs[0],qc1.cregs[0])

counts = execute(qc1,

                Aer.get_backend('qasm_simulator'),

                noise_model=noise_model)\

                .result().get_counts()

print(counts)
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6. Now, let's repeat the simulation of the preceding circuit, but this time increasing the 
probability of measurement from 5% (0.05) to 50% (0.5):

noise_model = get_noise(0.5,0.0)

counts = execute(qc1,

                Aer.get_backend('qasm_simulator'),

                noise_model=noise_model)\

                .result().get_counts()

print(counts)

7. We then introduce a means of tracking errors in our quantum error-correction 
circuit. We do so by introducing the complementing (or 'ancilla') qubit – which  
is always initialized to state |0>, the output of which (the complementing qubit)  
is collected as the syndrome bit. Ultimately, the circuit consists of two code qubits 
and one complementing qubit:

cq = QuantumRegister(2,'code\ qubit\ ')

lq = QuantumRegister(1,'auxiliary\ qubit\ ')

sb = ClassicalRegister(1,'syndrome\ bit\ ')

qc = QuantumCircuit(cq,lq,sb)

qc.cx(cq[0],lq[0])

qc.cx(cq[1],lq[0])

qc.measure(lq,sb)

qc.draw(output='mpl')

qc_init = QuantumCircuit(cq)

(qc_init+qc).draw(output='mpl')

8. The circuit (with the complementing qubit and the syndrome bit) is then simulated, 
and the output of the circuit displayed:

counts = execute(qc_init+qc,

                Aer.get_backend('qasm_simulator'))\

                .result().get_counts()

print('Results:',counts)
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9. The error correction circuit is then simulated, first with code qubits in the state 
|11>, and then in a superposition of |00> and |11>:

qc_init = QuantumCircuit(cq)

qc_init.x(cq)

(qc_init+qc).draw(output='mpl')

counts = execute(qc_init+qc,

                Aer.get_backend('qasm_simulator'))\

                .result().get_counts()

print('Results:',counts)

qc_init = QuantumCircuit(cq)

qc_init.h(cq[0])

qc_init.cx(cq[0],cq[1])

(qc_init+qc).draw(output='mpl')

counts = execute(qc_init+qc,

                 Aer.get_backend('qasm_simulator'))\

                 .result().get_counts()

print('Results:',counts)

10. Then we define a circuit for repetition code, with three repetitions and one 
syndrome measurement. This is achieved by using RepetitionCode():

code = RepetitionCode(3,1) 

for reg in code.circuit['0']\

.qregs+code.circuit['1'].cregs:

    reg.name = reg.name.replace('_','\ ') + '\ '

code.circuit['0'].draw(output='mpl')

code.circuit['1'].draw(output='mpl')



90      Working with Quantum Circuits

11. The next step is to run the repetition code circuit on the 'qasm_simulator'. 
This simulation is run without any addition of noise:

def get_raw_results(code,noise_model=None):

    circuits = code.get_circuit_list()

    raw_results = {}

    for log in range(2):

        job = execute(circuits[log],

                     Aer.get_backend(

                          'qasm_simulator'),

                     noise_model=noise_model)

        raw_results[str(log)] = \

        job.result().get_counts(str(log))

    return raw_results

raw_results = get_raw_results(code)

for log in raw_results:

    print('Logical',log,':',raw_results[log],'\n')

    

code = RepetitionCode(3,1)

12. The next step is to run the repetition code circuit on the 'qasm_simulator',  
but this time with the noise added (p_meas = 5% and p_gate = 5%): 

noise_model = get_noise(0.05,0.05)

raw_results = get_raw_results(code,noise_model)

for log in raw_results:

    print('Logical',log,':',raw_results[log],'\n')

    

circuits = code.get_circuit_list()

table_results = {}

for log in range(2):

    job = execute(circuits[log],

                 Aer.get_backend('qasm_simulator'),

                 noise_model=noise_model, shots=10000 )

    table_results[str(log)] = \

    job.result().get_counts(str(log))
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13.  Finally, we calculate the probability that the qubit was flipped/garbled:   

P = lookuptable_decoding(raw_results,

                         table_results)

print('P =',P)

plt.show()

This section provided a brief introduction to quantum error correction. In the next 
section, I will cover one of the most important protocols in quantum information 
processing, namely, superdense coding. Superdense coding is used to transmit more 
classical bits than is possible classically, using quantum systems. 

Exploring superdense coding
In Chapter 3, Entanglement and Quantum Teleportation, we were exposed to the quantum 
teleportation protocol. Another protocol that is closely related to quantum teleportation 
is superdense coding. While quantum teleportation is intended to send an unknown 
quantum state from one communicating party (the sender, normally called Alice)  
to another (the receiver, normally called Bob), using two classical bits in the process, 
superdense coding is intended to send two classical bits from one communicating party  
to another, using a single quantum state.

The operation of superdense coding is as follows: 

1. First, an EPR pair is created, and this pair is shared by both Alice and Bob. 

2. Then, depending on which bits Alice intends to send to Bob, she applies the 
following operations to her qubit (part of the EPR pair):

Table 4.10 – A set of quantum operations that Alice can perform based on the pair of bits  
she wants to communicate to Bob

3. On the receiving side, Bob first applies the CNOT gate, followed by the Hadamard 
gate. This is, in essence, the reverse of what Alice applied on her side. 

4. Finally, Bob performs a measurement in order to recover the two classical bits that 
Alice sent.
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As an example, the block diagram for sending the classical bits '01' using superdense 
coding is shown as follows:

Figure 4.11 – The quantum circuit for sending the classical bits '01' using superdense coding

Similarly, the other pairs of classical bits can be sent by replacing the preceding Pauli  
Z gate with an appropriate gate operation, as provided in the preceding table. 

Using the IBM's Circuit Composer, the superdense coding for transmitting classical bits 
'01' is given as follows:

Figure 4.12 – The superdense coding circuit for sending classical bits '01'

Note
This circuit is generated using IBM's Circuit Composer.

The dotted vertical lines in the superdense coding circuit in the preceding diagram are the 
barriers. The barriers are used on the Circuit Composer to provide clarity and improve 
the visualization of the circuit. In this case, the gates to the left-most part of the circuit are 
used to generate an EPR pair. Then, the Pauli Z gate is the operation that Alice performs 
on her part of the EPR pair. Furthermore, the next set of gates is used for decoding. Then, 
finally, both Alice and Bob perform measurements on their qubits. 
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Another example of implementing superdense coding using IBM's Circuit Composer is 
shown in the following diagram. In this case, the classical bits being transmitted are '11': 

Figure 4.13 – The superdense coding circuit used to transmit the classical bits '11' 

Note
This quantum circuit is generated using IBM's Circuit Composer. 

The corresponding results for the preceding circuit (using IBM's classical simulator, with 
1,024 runs) are summarized by the following histogram:

Figure 4.14 – The simulation results for transmitting classical bits '11' using superdense coding
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Finally, using the qiskit platform, the Python code for implementing superdense 
coding is given as follows. In this code, the qubits being transmitted are '11':

1. The first step entails importing the modules necessary for the implementation  
of superdense coding:

#Import modules

from qiskit import *

from qiskit.visualization import plot_histogram

import matplotlib.pyplot as plt

import numpy as np

np.random.seed(42) 

2. The next step is to create the Bell state, and this entangled state is shared by both 
Alice and Bob:

def create_bell_pair(qc, a, b):

    q.h(a)

    qc.cx(a,b)

3. This is followed by Alice's encoding of classical bits to be sent over to Bob, and Bob's 
decoding of such bits:   

def encode_message(qc, qubit msg):

    if msg == "00":

        pass    

    elif msg == "10":

        qc.xqubit)

    elif msg == "01":

        qc.zqubit)

    elif msg == "11":

        qc.z(qubit)

        qc.x(qubit)

def decode_message(qc,a, b):

    qc.x(a,b)

    qc.h(a)
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4. The next step is to define the quantum circuit to be used for the implementation of 
superdense coding:

qc = QuantumCircuit(2)

create_bell_pair(qc, 0, 1)

qc.barrier()

message = "11" 

encode_message(qc, 0, message)

qc.barrier()

decode_message(qc, 0, 1)

qc.measure_all()

qc.draw(output = "mpl")

#plt.show()

5. The superdense coding circuit is then simulated using IBM's 'qasm_simulator', 
and the results obtained are then displayed: 

backend = Aer.get_backend('qasm_simulator')

job_sim = execute(qc, backend, shots=1024)

sim_result = job_sim.result()

measurement_result = sim_result.get_counts(qc)

print(measurement_result)

plot_histogram(measurement_result)

plt.show()

Now, let me briefly go through the code: 

1. First, as is always the case, all the modules required are imported. 

2. Then, the function for creating the Bell states is created. 

3. This is followed by the function that defines the encoding of the classical message  
to be sent. 

4. Furthermore, the circuit for decoding the classical message sent is also created. 
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5. After creating these functions, the superdense coding protocol is then implemented. 

6. Finally, the circuit for implementing the superdense coding protocol is simulated 
using the 'qasm simulator'. 

7. The results from the simulation are then plotted. 

In this section, we explored one of the most important protocols of quantum information 
processing, namely, superdense coding. We saw how we can use superdense coding to 
transmit more classical bits than is classically possible. Furthermore, we saw how we could 
use IBM's Circuit Composer in order to construct quantum circuits that could be used to 
implement superdense coding. Finally, we implemented superdense coding using Python 
and qiskit. Next, we will provide a brief summary of this chapter. 

Summary
In this chapter, we have explored and provided Python codes for various implementations 
of quantum circuits. Additionally, we have discussed both quantum error-correction 
coding and the superdense coding protocol, together with the corresponding Python 
codes. 

The next chapter covers quantum algorithms. Quantum algorithms are implemented 
using quantum circuits. Furthermore, these algorithms use the concepts from quantum 
mechanics in order to enable speed-ups compared to their classical counterparts. 

Further reading
• Nielsen, M. A., and Chuang, I. L. (2011). Quantum Computation and Quantum 

Information: 10th Edition. New York, NY, USA: Cambridge University Press, 
1107002176, 9781107002173.

• Sutor, R.S. (2019). Dancing with Qubits: How Quantum Computing Works and How 
It Can Change the World. Birmingham, UK: Packt Publishing.

• Abraham Asfaw, Luciano Bello, Yael Ben-Haim, Sergey Bravyi, Lauren Capelluto, 
Almudena Carrera Vazquez, Jack Ceroni, Richard Chen, Albert Frisch, Jay 
Gambetta, Shelly Garion, Leron Gil, Salvador De La Puente Gonzalez, Francis 
Harkins, Takashi Imamichi, David McKay, Antonio Mezzacapo, Zlatko Minev, 
Ramis Movassagh, Giacomo Nannicni, Paul Nation, Anna Phan, Marco Pistoia, 
Arthur Rattew, Joachim Schaefer, Javad Shabani, John Smolin, Kristan Temme, 
Madeleine Tod, Stephen Wood, and James Wootton. (2020). Learn Quantum 
Computation Using Qiskit. IBM. Available online at http://community.
qiskit.org/textbook.

http://community.qiskit.org/textbook
http://community.qiskit.org/textbook


5
 Quantum 

Algorithms
In the previous chapter, we explored a variety of quantum circuits. In this chapter,  
I will discuss how such circuits can be used to implement quantum algorithms. From 
conventional computing, we know that an algorithm is essentially a recipe for solving 
problems. It is a sequence of instructions that are used to solve a problem (computational 
function). Thus, for a function, f, an algorithm acts on the input state, x, and produces an 
output, f(x). 

Just like a conventional algorithm, a quantum algorithm is also a sequence of instructions 
that is used for solving a problem. However, unlike a conventional algorithm, a quantum 
algorithm uses quantum mechanics in order to enable speed-ups, to offer a quantum 
super-advantage. Quantum algorithms are implemented using the quantum circuits 
covered in the previous chapter. 

Typically, quantum algorithms involve the following steps:

1. Preparation and initialization of the qubits forming the quantum system

2. Transformation of the system into the superposition of many states

3. Unitary evolutions of the system

4. Measurements of the resulting qubits, in order to obtain the solution to the 
computational problem being solved
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In this chapter, we will define and show Python implementations for the following various 
quantum algorithms: 

• Introducing Deutsch's algorithm

• Exploring the Deutsch-Josza algorithm

• Exploring the Bernstein-Vazirani algorithm

• Introducing quantum Fourier transform and quantum phase estimation

• Introducing Simon's algorithm

• Exploring Shor's algorithm

• Exploring Grover's algorithm

In the next section, we will discuss the technical requirements for you to follow  
this chapter. 

Technical requirements 
The requirements for this chapter are the following: 

•  Basic understanding of the Python programming language

• Navigation of Google's Colab environment

The GitHub link for this chapter can be found here: https://github.com/
PacktPublishing/Hands-On-Quantum-Information-Processing-with-
Python/tree/master/Chapter05.

Let's begin with the introduction of one of the first algorithms of quantum computing. 
This algorithm is known as Deutsch's algorithm. 

Introducing Deutsch's algorithm
Deutsch's algorithm was one of the first quantum algorithms to be developed. It was 
developed by David Deutsch in 1985. Deutsch's algorithm was intended to show that  
a quantum computer can perform a task faster than a conventional computer. The task 
chosen for this algorithm is a query to an oracle. 

https://github.com/PacktPublishing/Hands-On-Quantum-Information-Processing-with-Python/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Quantum-Information-Processing-with-Python/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Quantum-Information-Processing-with-Python/tree/master/Chapter05
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Deutsch's algorithm is used to determine whether an unknown binary function, f(x), is 
constant or balanced. Before stating what a constant or a balanced function is, let's take  
a slight step back, to discuss a binary function. A binary function is a function that takes  
a bit as an input and gives out a bit as an output. Thus, a univariate binary function, f(x),  
is given as follows:

There are four possible binary functions, which are summarized as shown in the  
following table:

Figure 5.1 – Four possible binary functions for function f(x)

As you can see from Figure 5.1, the first function, function f1, gives an output of 0 
regardless of the input. On the other hand, function f2 gives the same output as the input. 
Furthermore, function f3 gives the inverse of an input. Finally, the output of function f4  
is 1, regardless of the input. 

Functions f1 and f4 from the preceding table are called constant binary functions while 
functions f2 and f3 are called balanced binary functions. In essence, constant binary 
functions give the same output (either 0 or 1) regardless of the input. Thus, for a constant 
binary function, the outputs do not depend on the input. On the other hand, a balanced 
binary function produces an equal number of 0s or 1s. That is, for a balanced binary 
function, the outputs depend on the inputs.

An alternative explanation of constant and balanced binary functions is given as follows. 
A binary function, f, is constant if the following applies:

On the other hand, a binary function, f, is balanced if the following applies:

Now that we have briefly explained the balanced and constant functions, let's probe 
Deutsch's algorithm even further. As stated earlier, the aim of this algorithm is to evaluate 
whether a given function is a constant or balanced function. This evaluation is done by 
querying a "blackbox" (an oracle). 

𝑓𝑓(𝑥𝑥): {0,1} → {0,1} 

𝑓𝑓(0)⊕ 𝑓𝑓(1) = 0  

𝑓𝑓(0)⊕ 𝑓𝑓(1) = 1 
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Deutsch's problem can be framed as follows. Imagine that you have an oracle that gives  
a response to any query sent to it. In this case, imagine that the oracle gives either a 0 or  
a 1 as a response. Now imagine that you want to determine whether a given binary 
function is constant or balanced. Then, how many queries should you send to the oracle  
in order to convincingly determine this?

Having framed Deutsch's problem, now let's see how many function evaluations are 
required by a classical computer in order to achieve this task. To address this, we will use 
the table given earlier. Now consider this scenario. If you send 0 as an input, and you get 
an output of 0, can you tell whether the function is constant or balanced? Clearly not, 
since both functions f1 and f2 have an output of 0 when the input is 0, and we have seen 
that function f1 is constant while function f2 is balanced. We will need a second function 
evaluation in order to convincingly make this determination. 

We can see from the previous scenario that given a classical computer, a single function 
evaluation would not be enough to determine whether the function is constant or 
balanced. This determination would take at least two function evaluations. Now the 
question is whether this evaluation can be done better using a quantum computer. 
Fortunately for us, the answer to this question is affirmative and forms the basis of 
Deutsch's algorithms. 

In order to realize the Deutsch algorithm, the key step is to realize the unitary operator  
F such that the application of this operator to the inputs |x> and |y> is given as follows:

Pictorially, this unitary gate (F) can be shown as follows:

Figure 5.2 – Unitary gate (F)

Now that we have provided a unitary transformation that can be used for the Deutsch 
algorithm, it is important to explore the complete circuit that can be used to implement 
this algorithm. This circuit is diagrammatically given as follows:

Figure 5.3 – A complete circuit to implement Deutsch's algorithm

𝐹𝐹(𝑥𝑥 ⊗ 𝑦𝑦⟩) = 𝑥𝑥⟩⊗ 𝑦𝑦⊕ 𝑓𝑓(𝑥𝑥)⟩ 
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As it can be seen from the previous figure, the qubits are first initialized to state |0>. 
Therefore, the first state of the preceding system is as follows:

This state is then evolved by flipping the second qubit. This is achieved by applying the  
X gate to the second qubit. The new state of the system then becomes the following:

This step is followed by the application of the Hadamard gate on each of the qubits, 
resulting in the following:

This can also be given as follows:

Now, the next step is to apply the unitary transformation F on the preceding state. This 
results in the following state:

Now we have to consider two scenarios. The first scenario is when the function being 
evaluated is a constant function. This, as we have already seen, means that f(0) = f(1). 
Therefore, the preceding state would be simplified to the following:

The next step of Deutsch's algorithm involves applying the Hadamard gate to the first 
qubit of the preceding state. This results in the following:

Finally, measurement is performed on the first qubit, resulting in bit 0. This is consistent 
with the fact that the function is constant, since we now know that for a constant function, 
the following applies: 

𝜓𝜓0⟩ = 0⟩⊗ 0⟩. 

𝜓𝜓1⟩ = 0⟩⊗ 1⟩. 

𝜓𝜓2⟩ = 𝐻𝐻0⟩⊗𝐻𝐻1⟩, 

𝜓𝜓2⟩ =
1
2 (00⟩ − 01⟩ + 10⟩ − 11⟩). 

𝜓𝜓3⟩ =
1
2 (0⟩⊗ 𝑓𝑓(0)⟩ − 0⟩⊗ 1⊕ 𝑓𝑓(0)⟩ + 1⟩⊗ 𝑓𝑓(1)⟩ − 1⟩⊗ 1⊕ 𝑓𝑓(1)⟩). 

𝜓𝜓3⟩ =
1
2 [(0⟩ + 1⟩)⊗ (𝑓𝑓(0)⟩ − 1⊕ 𝑓𝑓(0)⟩)]. 

𝜓𝜓4⟩ =
1
√2

[0⟩⊗ (𝑓𝑓(0)⟩ − 1⊕ 𝑓𝑓(0)⟩)]. 

𝑓𝑓(0)⊕ 𝑓𝑓(1) = 0. 
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Now, let's see what happens when the function being evaluated is the balanced binary 
function. Recall that for a balanced function, the following applies:

Furthermore, for a balanced binary function, we have the following:

The following also applies:

So, assuming that the function being evaluated is a balanced function instead of a constant 
function, we then have the following: 

Now, applying the Hadamard gate to the first qubit, as we did in the first case, results in 
the following:

It can then be observed that measuring the first qubit of the preceding state would result 
in state 1, which is consistent with the fact that the function is the balanced function.

The preceding technique is quite tedious. Fortunately for us, there is a more concise and 
intuitive way of computing Deutsch's algorithm. This concise technique is called the phase 
kickback technique. It can be summarized as follows. We have already seen the output of 
the system after the inputs go through the unitary transformation (F). That output can be 
simplified to the following:

From this, it is clear that depending on whether f(0) is 0 or 1, we can have the following 
when f(0) = 0:

𝑓𝑓(0) ≠ 𝑓𝑓(1). 

1⊕ 𝑓𝑓(0)⟩ = 𝑓𝑓(1)⟩ 

1⊕ 𝑓𝑓(1)⟩ = 𝑓𝑓(0)⟩ 

𝜓𝜓3⟩ =
1
2 [(0⟩ − 1⟩)⊗ (𝑓𝑓(0)⟩ − 𝑓𝑓(1)⟩)]. 

𝜓𝜓4⟩ =
1
√2

[1⟩⊗ (𝑓𝑓(0) − 𝑓𝑓(1)⟩)]. 

𝜓𝜓3⟩ =
1
2 [0⟩⊗ (𝑓𝑓(0)⟩ − 1⊕ 𝑓𝑓(0)⟩) + 1⟩⊗ (𝑓𝑓(1)⟩ − 1⊕ 𝑓𝑓(1)⟩)],    

𝑓𝑓(0)⟩ − 1⊕ 𝑓𝑓(0)⟩ = 0⟩ − 1⟩ 
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We have the following when f(0) = 1:

The following can then be observed:

The same analysis can also be applied to the function f(1). Refer to the quiz at the end of 
this chapter for this exercise. 

Now, armed with this intuition, we can represent the state after applying the unitary 
transformation F as follows:

This can then be simplified to the following:

The next step is the application of the Hadamard gate to the first qubit. This results in the 
following:

Finally, the measurement is performed on the first qubit. It should be clear by now that 
if the function is constant, then the measured state would be 0 whereas if the function is 
balanced, the measured state would be 1.

Having provided an overview of Deutsch's algorithm, it is now time to explore how this 
algorithm can be implemented. 

Note
This code is adopted from https://github.com/quantumlib/
Cirq/blob/master/examples/deutsch.py.

The link for this code can be found here: https://github.com/
PacktPublishing/Hands-On-Quantum-Information-
Processing-with-Python/tree/master/Chapter05.

𝑓𝑓(0)⟩ − 1⊕ 𝑓𝑓(0)⟩ = 1⟩ − 0⟩ 

𝑓𝑓(0)⟩ − 1⊕ 𝑓𝑓(0)⟩ = (−1)𝑓𝑓(0)(0⟩ − 1⟩). 

𝜓𝜓3⟩ =
1
2 [0⟩ ⊗ (−1)𝑓𝑓(0)(0⟩ − 1⟩) + 1⟩⊗ (−1)𝑓𝑓(1)(0⟩ − 1⟩)], 

𝜓𝜓3⟩ =
1
2 [(−1)

𝑓𝑓(0)0⟩ + (−1)𝑓𝑓(1)1⟩]⊗ [0⟩ − 1⟩]. 

𝜓𝜓4⟩ =
1
2 [((−1)

𝑓𝑓(0) + (−1)𝑓𝑓(1))0⟩ + ((−1)𝑓𝑓(0) − (−1)𝑓𝑓(1))1⟩]⊗ (0⟩ − 1⟩). 

https://github.com/quantumlib/Cirq/blob/master/examples/deutsch.py
https://github.com/quantumlib/Cirq/blob/master/examples/deutsch.py
https://github.com/PacktPublishing/Hands-On-Quantum-Information-Processing-with-Python/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Quantum-Information-Processing-with-Python/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Quantum-Information-Processing-with-Python/tree/master/Chapter05


104      Quantum Algorithms

The Python code for Deutsch's algorithm using cirq is given as follows:

1. The first step is to introduce the necessary modules:

import random

import numpy as np

import cirq

from cirq import H, X, CNOT, measure

2. After importing the necessary modules, the next step is to choose the qubits to use 
for this algorithm:

q0, q1 = cirq.LineQubit.range(2)

secret_function = [random.randint(0,1) for _ in range(2)]

3. Define the functions for realizing the oracle circuit and the complete Deutsch's 
algorithm: 

def make_oracle(a, b, c):

    if c[0]:

        yield [CNOT(a,b), X(b)]

    if c[1]:

        yield CNOT(a,b)

def make_deutsch_circuit(d,e,f):

    c = cirq.Circuit()

    c.append([H(e), H(e), H(d)])

    c.append(f)

    c.append([H(d), measure(d, key=›'result'›)])

    return c

oracle = make_oracle(q0, q1, secret_function)

circuit = make_deutsch_circuit(q0, q1, oracle)

print(circuit)

4. Finally, simulate the quantum circuit that is used to implement Deutsch's algorithm:

simulator = cirq.Simulator()

result = simulator.run(circuit)

print(result)
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The output of the circuit is shown in the following figure:

Figure 5.4 – An output of the circuit used to implement Deutsch's algorithm

The preceding code can be summarized as follows. After importing the necessary 
modules, the two qubits are then instantiated using cirq's LineQubit.range() 
function. This is then followed by defining two functions that will be used by the 
algorithm. The first function defines the function to be used to realize the oracle. This 
oracle uses the CNOT gate for unitary transformation F discussed earlier. 

The next function defines the necessary steps used in realizing the Deutsch algorithm. 
After defining these two functions, the next step is to simulate Deutsch's algorithm using 
cirq's Simulator() function. 

So far, we have covered Deutsch's algorithm and how it can be implemented using Python. 
In the next section, we will cover an algorithm that generalizes Deutsch's algorithm to 
multiple qubits. This algorithm is called the Deutsch-Josza algorithm.

Exploring the Deutsch-Josza algorithm
As already stated, the Deutsch-Josza algorithm generalizes the Deutsch algorithm 
discussed previously. Instead of being a univariate function evaluation like the Deutsch 
algorithm, the Deutsch-Josza algorithm evaluates a multi-variate binary function. The 
goal of this algorithm is also to determine whether the said function is constant or 
balanced.

In essence, a Deutsch-Josza algorithm uses an oracle ("blackbox") that implements the 
function f(x):

Here, n represents the number of variables. As can be observed from the preceding 
equation, the function takes as input n bits and outputs either a 0 or a 1, corresponding 
to whether the function being evaluated is constant or balanced. Using a conventional 
computer, the exercise of evaluating this multi-variate function would require 2n steps. 
However, with a quantum computer, this can be done in a single step.

𝑓𝑓(𝑥𝑥): {0,1}𝑛𝑛 → {0,1}, 
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The circuit for implementing a Deutsch-Josza algorithm is shown as follows:

                            Figure 5.5 – A circuit for implementing a Deutsch-Josza algorithm

The upper part of the circuit shows a register with n qubits, while the lower part of the 
circuit shows a register with a single qubit.

Just like the Deutsch-Josza algorithm, the qubits are initialized to the |0> state. Thus,  
the state of the system is given as follows:

Then, the next step involves flipping the last qubit, which is the qubit in the bottom 
register, with the resulting state of the system being the following:

Now, apply the Hadamard gate on each of the n qubits in state |0>, and another Hadamard 
gate to the last qubit, which now has state |1>. The resulting state of the system is given  
as follows:

The following applies:

 

It is not difficult to see that upon simplification, the preceding state can be given  
as follows:

𝜓𝜓0⟩ = 0⟩⊗⋯⊗0⟩. 

𝜓𝜓1⟩ = 0⟩⊗⋯⊗ 1⟩. 

𝜓𝜓2⟩ = 𝐻𝐻⊗⋯⊗𝐻𝐻(0⊗⋯⊗0⟩)⊗𝐻𝐻(1⟩) 

𝐻𝐻⊗⋯⊗𝐻𝐻0⊗⋯⊗0⟩ = 1
√2𝑛𝑛

∑𝑥𝑥⟩
2𝑛𝑛

𝑥𝑥=1
 

𝜓𝜓2⟩ =
1
√2𝑛𝑛

∑𝑥𝑥⟩
2𝑛𝑛

𝑥𝑥=1
[ 1
√2

[0⟩ − 1⟩]] 
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Just like in the case of the Deutsch algorithm, the next step in the Deutsch-Josza algorithm 
is to apply the unitary transformation to the system. As a generalization, this unitary 
transformation is given as follows:

Therefore, applying F to the system's state results in the following:

Following this step, the Hadamard gate is then applied to all qubits except the last qubit. 
This results in the following state:

The following applies:

Finally, all the qubits except the last qubit are measured. It should be noted from the state 
of the preceding system that the amplitude of the upper register is as follows:

Therefore, the probability of measuring qubits in the upper register is the square of these 
probability amplitudes:

If all the measured qubits yield a value of 0, then the function being evaluated is a constant 
function. If this is not the case, then the function being evaluated is balanced. 

𝐹𝐹(𝑥𝑥 ⊗ 𝑦𝑦⟩) = 𝑥𝑥 ⊗ [𝑦𝑦⊕ 𝑓𝑓(𝑥𝑥)]⟩ 

𝜓𝜓3⟩ =
1
√2𝑛𝑛

[∑(−1)𝑓𝑓(𝑥𝑥)
𝑛𝑛

𝑥𝑥=1
𝑥𝑥⟩] ⊗ [ 1

√2
[0⟩ − 1⟩]] 

𝜓𝜓4⟩ =
1
2𝑛𝑛∑∑(−1)𝑥𝑥.𝑖𝑖+𝑓𝑓(𝑥𝑥)

𝑥𝑥

𝑛𝑛

𝑖𝑖=1
𝑖𝑖⟩ ⊗ [ 1

√2
[0⟩ − 1⟩]] 

𝑥𝑥. 𝑖𝑖 = 𝑥𝑥1𝑖𝑖1 ⊕⋯⊕ 𝑥𝑥𝑛𝑛𝑖𝑖𝑛𝑛 

| 12𝑛𝑛∑(−1)𝑓𝑓(𝑥𝑥)
𝑛𝑛

𝑥𝑥=0
| 

𝑝𝑝(0⊗⋯⊗ 0⟩) = | 12𝑛𝑛∑(−1)𝑓𝑓(𝑥𝑥)
𝑛𝑛

𝑥𝑥=0
|
2
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Having demonstrated the steps involved in the implementation of the Deutsch-Josza 
algorithm, it is now time to focus on the code being used to implement such an algorithm. 
The following Python code, which makes use of Qiskit, shows an implementation of the 
Deutsch-Josza algorithm: 

Note
The code is adopted from https://qiskit.org/textbook/
ch-algorithms/deutsch-jozsa.html#4.-Qiskit-
Implementation-.

The link for this code can be found here: https://github.com/
PacktPublishing/Hands-On-Quantum-Information-
Processing-with-Python/tree/master/Chapter05

1. The first step is the import of the modules necessary for the implementation of the 
Deutsch-Josza algorithm:

import numpy as np

from qiskit import BasicAer

from qiskit import QuantumCircuit, execute

from qiskit.visualization import plot_histogram

np.random.seed(42)

2. Following the importing of the modules, the next step is to configure the number 
of qubits to use in order to implement the Deutsch-Josza algorithm and the 
construction of the oracle that will be used to implement the algorithm:

n = 3

3. The next step then is to define and draw the constant oracle:

const_oracle = QuantumCircuit(n+1)

output = np.random.randint(2)

if output == 1:

    const_oracle.x(n)

const_oracle.draw()

https://qiskit.org/textbook/ch-algorithms/deutsch-jozsa.html#4.-Qiskit-Implementation-
https://qiskit.org/textbook/ch-algorithms/deutsch-jozsa.html#4.-Qiskit-Implementation-
https://qiskit.org/textbook/ch-algorithms/deutsch-jozsa.html#4.-Qiskit-Implementation-
https://github.com/PacktPublishing/Hands-On-Quantum-Information-Processing-with-Python/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Quantum-Information-Processing-with-Python/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Quantum-Information-Processing-with-Python/tree/master/Chapter05
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4. This is then followed by defining and drawing the balanced oracle:

balanced_oracle = QuantumCircuit(n+1)

b_str = "101"

for qubit in range(len(b_str)):

    if b_str[qubit] == '1':

        balanced_oracle.x(qubit)

balanced_oracle.barrier()

for qubit in range(n):

    balanced_oracle.cx(qubit, n)

balanced_oracle.barrier()

for qubit in range(len(b_str)):

    if b_str[qubit] == '1':

        balanced_oracle.x(qubit)

balanced_oracle.draw()

5. After constructing the oracle, the next step is to construct the complete quantum 
circuit that can be used to implement the Deutsch-Josza algorithm:

dj_circuit = QuantumCircuit(n+1, n)

for qubit in range(n):

    dj_circuit.h(qubit)

    dj_circuit.x(n)

    dj_circuit.h(n)

dj_circuit += balanced_oracle

for qubit in range(n):

    dj_circuit.h(qubit)
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    dj_circuit.barrier()

for i in range(n):

    dj_circuit.measure(i, i)

dj_circuit.draw()

6. Finally, simulate the quantum circuit for the Deutsch-Josza algorithm, using  
qasm_simulator:

backend = BasicAer.get_backend('qasm_simulator')

shots = 1024

results = execute(dj_circuit, 

                  backend=backend,

                  shots=shots).result()

answer = results.get_counts()

plot_histogram(answer)

The output of the simulated quantum circuit is shown as follows: 

Figure 5.6 – The output of the Deutsch-Josza three-qubit algorithm
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The preceding code can be summarized as follows. As is always the case, the first step is 
the importing of modules that are to be used for the implementation of the Deutsch-Josza 
algorithm. The code implements the Deutsch-Josza algorithm for a three-qubit function. 
The next step in the code is to construct the constant oracle, followed by the construction 
of the balanced oracle. This is followed by the actual implementation of the Deutsch-
Josza algorithm. Finally, this algorithm is simulated using qasm_simulator. It is worth 
noting that qasm_simulator, which is a local simulator, is used to simulate quantum 
circuits, but on a classical computer. This simulation is done instead of running such 
circuits on an actual quantum computer. 

Now that we have covered the Deutsch-Josza algorithm, the next step is to explore another 
algorithm that can in essence be viewed as an extension of the Deutsch-Josza algorithm. 
This algorithm is called the Bernstein-Vazirani algorithm.

Exploring the Bernstein-Vazirani algorithm
The Bernstein-Vazirani algorithm is in a sense similar to the Deutsch-Josza algorithm 
discussed previously. Thus, the oracle still uses the following function:

On the other hand, unlike the Deutsch-Josza algorithm, where the objective is to 
determine whether the given function is constant or balanced, the objective of the 
Bernstein-Vazirani algorithm is to find the secret string s:

Given the promise that: 

The Bernstein-Vazirani algorithm works as follows. First, two registers, one the input 
register with n qubits and the other the output register with a single qubit, are initialized 
to state |0>. Thus, the state of the system is given as follows:

𝑓𝑓(𝑥𝑥): {0,1}𝑛𝑛 → {0,1} 

𝑠𝑠: 𝑠𝑠 ∈ {0,1}𝑛𝑛 

𝑓𝑓(𝑥𝑥) = (∑𝑠𝑠𝑖𝑖
𝑛𝑛

𝑖𝑖=1
𝑥𝑥𝑖𝑖)𝑚𝑚𝑚𝑚𝑚𝑚2 

𝜓𝜓0⟩ = 0⊗⋯⊗0⟩⊗ 0⟩ 
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Then, the qubit in the second register is flipped, with the new state of the system being the 
following:

The next step in the algorithm is to apply the Hadamard gate to each of the qubits in both 
registers. Then, we end up with the following state:

This step is then followed by the querying of the oracle, and then applying the Hadamard 
gate to each of the qubits on the input register. Finally, the measurement is applied to the 
input register in order to retrieve the secret string.

Note
This code is adopted from https://github.com/qiskit-
community/qiskit-community-tutorials/blob/
master/Coding_With_Qiskit/ep6_Bernstein-Vazirani_
Algorithm.ipynb.

The link for this code can be found here: https://github.com/
PacktPublishing/Hands-On-Quantum-Information-
Processing-with-Python/tree/master/Chapter05.

Using Qiskit, the Python code for implementing the Bernstein-Vazirani algorithm is 
given as follows:

1. The first step is to introduce the necessary modules for the implementation of the 
Bernstein-Vazirani algorithm:

import numpy as np

from qiskit import *

from qiskit.visualization import plot_histogram

np.random.seed(42)

s = input("Enter the secret bit string:\n")

n = len(s)

𝜓𝜓1⟩ = 0⊗⋯⊗0⟩⊗ 1⟩ 

𝜓𝜓2⟩ =
1
√2𝑛𝑛

∑𝑥𝑥⟩
𝑛𝑛

𝑥𝑥=1
⊗ ( 1

√2
[0⟩ − 0⟩]). 

https://github.com/qiskit-community/qiskit-community-tutorials/blob/master/Coding_With_Qiskit/ep6_Bernstein-Vazirani_Algorithm.ipynb
https://github.com/qiskit-community/qiskit-community-tutorials/blob/master/Coding_With_Qiskit/ep6_Bernstein-Vazirani_Algorithm.ipynb
https://github.com/qiskit-community/qiskit-community-tutorials/blob/master/Coding_With_Qiskit/ep6_Bernstein-Vazirani_Algorithm.ipynb
https://github.com/qiskit-community/qiskit-community-tutorials/blob/master/Coding_With_Qiskit/ep6_Bernstein-Vazirani_Algorithm.ipynb
https://github.com/PacktPublishing/Hands-On-Quantum-Information-Processing-with-Python/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Quantum-Information-Processing-with-Python/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Quantum-Information-Processing-with-Python/tree/master/Chapter05
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2. This step is followed by the construction of the quantum circuit that will be used to 
construct the Bernstein-Vazirani algorithm:

circuit = QuantumCircuit(n+1,n)

Since all the qubits are initialized to state |0>, step 0 involves inverting these qubits 
by applying the X gates:

circuit.x(n) 

circuit.barrier() 

3. The next step is to apply the Hadamard gates on all the qubits:

circuit.h(range(n+1)) 

circuit.barrier() 

4. The next step is to apply the controlled gates on the qubits:

for ii, yesno in enumerate(reversed(s)):

    if yesno == '1': 

        circuit.cx(ii, n)

circuit.barrier()

5. The next step involves applying the Hadamard gates on the qubits, followed by the 
measurements of such qubits:

circuit.h(range(n+1)) 

circuit.barrier() 

circuit.measure(range(n), range(n))

%matplotlib inline

circuit.draw(output='mpl')
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6. Finally, simulate the operation of the Bernstein-Vazirani algorithm using  
qasm_simulator:

simulator = Aer.get_backend('qasm_simulator')

result = execute(circuit, backend=simulator, 

                 shots=1024).result()

plot_histogram(result.get_counts(circuit))

The preceding code consists of four key stages. The first one initializes the qubits in both 
registers. This is then followed by applying the Hadamard gate to all the qubits in both 
registers. Furthermore, stage three involves the implementation of the oracle, which 
is made up of the CNOT gate. Finally, the last stage measures all the qubits in the input 
register. 

The output of the Bernstein-Vazirani algorithm (using the input bit string 100) is shown 
as follows:

Figure 5.7 – The output of the Bernstein-Vazirani algorithm for an input bit string 100

So far, we have covered three quantum algorithms in this chapter. In this section, we have 
learned about the Bernstein-Vazirani algorithm, and have seen how such an algorithm can 
be used to find a secret bit string. In the next section, we will cover two other techniques 
that play a crucial role in the quantum algorithms to be discussed later in this chapter. 
These techniques are quantum Fourier transform (QFT) and quantum phase estimation. 
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Introducing quantum Fourier transform and 
quantum phase estimation
As already stated previously, the quantum techniques to be discussed in this section play  
a crucial role in the quantum algorithms to be discussed later in this chapter. Therefore,  
it is imperative to cover the following techniques in this section: 

• QFT

• Quantum phase estimation

First, let's introduce and explore QFT.

Quantum Fourier transform (QFT)
It has been discovered that QFT can be computed faster on a quantum computer than on 
a classical computer. QFT is the quantum analog of the discrete Fourier transform. We 
shall recall a discrete Fourier transform that maps the input vector

into the output vector

where 

As already said, QFT is the quantum analog of the discrete Fourier transform discussed 
previously. Therefore, QFT transforms the input quantum system |x> into the output 
quantum system |y> such that the following applies:

𝑥𝑥 = ∑ 𝑥𝑥𝑖𝑖
𝑁𝑁−1

𝑖𝑖=0
 

𝑦𝑦𝑘𝑘 =
1
√𝑁𝑁

∑ 𝑥𝑥𝑗𝑗
𝑁𝑁−1

𝑗𝑗=𝑜𝑜
𝑤𝑤𝑁𝑁
𝑗𝑗𝑘𝑘; 

𝑤𝑤𝑁𝑁
𝑗𝑗𝑗𝑗 = 𝑒𝑒2𝜋𝜋𝜋𝜋

𝑗𝑗𝑗𝑗
𝑁𝑁  

𝑥𝑥⟩ → 1
√𝑁𝑁

∑𝑊𝑊𝑁𝑁
𝑥𝑥𝑥𝑥

𝑁𝑁−1

𝑥𝑥=0
𝑦𝑦⟩ 
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Using Python and Qiskit, an n-qubit QFT can be implemented using the following code 
snippet:

Note
The link for this code can be found here: https://github.com/
PacktPublishing/Hands-On-Quantum-Information-
Processing-with-Python/tree/master/Chapter05.

from qiskit.circuit.library import QFT

n = input(" Enter the number of qubits: \n")

qft_circuit = QFT(num_qubits = n)

qft_circuit.draw()

The preceding code uses Qiskit's circuit library to implement the QFT. The code first 
prompts the number of qubits to be transformed, then constructs the QFT circuit based 
on the supplied number of qubits:

Figure 5.8 – An output of a three-qubit QFT circuit

The output of the implementation of the three-qubit QFT technique is shown in the 
previous figure.

Quantum phase estimation
The quantum phase estimation technique is used to estimate the eigenvalue (phase)  
of a unitary operator. In order to achieve this task, the quantum phase estimation 
technique makes use of the QFT technique discussed earlier. 

Suppose that a unitary operator, U, has an eigenvector, |u>, with an eigenvalue as follows:

𝑒𝑒2𝜋𝜋𝜋𝜋𝜋𝜋 

https://github.com/PacktPublishing/Hands-On-Quantum-Information-Processing-with-Python/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Quantum-Information-Processing-with-Python/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Quantum-Information-Processing-with-Python/tree/master/Chapter05
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Also, the following applies:

Then, the objective of the quantum phase estimation algorithm is to estimate the  
value of θ. 

The procedure for implementing the quantum phase estimation can be summarized  
as follows:

1. The first step entails the creation of two registers. The first register contains n qubits 
initialized to state |0>. The second register is initialized to state |u>. 

2. This stage is then followed by the application of the Hadamard gate on each of the  
n qubits in the first register. 

3. Furthermore, for the unitary operator U, the controlled-U is applied on the 
quantum state |u> in the second register. The controlled-U gate is somehow similar 
to the controlled-NOT gate discussed in previous chapters. The only difference is 
that instead of applying the NOT gate to the target qubit when the control qubit is 
in state |1>, the controlled-U applies the U unitary to the target qubit (in the second 
register) when the corresponding control qubit (in the first register) is in state |1>.

4. After applying the controlled-U gate, the inverse QFT is then applied to all the n 
qubits in the first register. 

5. Finally, measurement is performed on all the qubits on the first register. 

Note
This code is adopted from https://github.com/quantumlib/
Cirq/blob/master/examples/phase_estimator.py.

The link for this code can be found here: https://github.com/
PacktPublishing/Hands-On-Quantum-Information-
Processing-with-Python/tree/master/Chapter05.

The Python code used to implement the quantum phase estimation using cirq is given  
as follows:

1. As is always the case, the first step entails the importing of the modules necessary 
for the implementation of the quantum phase estimation technique:

import numpy as np

import cirq

𝑈𝑈𝑢𝑢⟩ = 𝑒𝑒2𝜋𝜋𝜋𝜋𝜋𝜋𝑢𝑢⟩ 

https://github.com/quantumlib/Cirq/blob/master/examples/phase_estimator.py
https://github.com/quantumlib/Cirq/blob/master/examples/phase_estimator.py
https://github.com/PacktPublishing/Hands-On-Quantum-Information-Processing-with-Python/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Quantum-Information-Processing-with-Python/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Quantum-Information-Processing-with-Python/tree/master/Chapter05
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2. Now, we construct the quantum circuit for implementing the quantum phase 
estimation technique. This quantum circuit will then be used to execute the 
quantum phase estimation for two, four, and eight qubits:

def run_estimate(unknown_gate, qnum, repetitions):

    ancilla = cirq.LineQu-1)

    qubits = cirq.LineQubit.rangem)

    oracle_raised_to_power= [

        unknown_gate.on(ancilla).controlled_by\

        (qubits[i])**i)

        for i in range(qnum)

    ]

    circuit = cirq.Circuit(cirq.H.on_each(*qubits),

                           oracle_raised_to_power,

                           cirq.QFT(*qubits,

                               without_reverse=True)**-1,

                           cirq.measure(*qubits,

                                        key='phase'))

    return cirq.sample(circuit, repetitions=repetitions)

def experiment(qnum, repetitions):

    def example_gate(phi):

        gate = cirq.MatrixGate(

           matrix=np.array([

                [np.exp(2 * np.pi * 1.0j * phi), 0],

                [0, 1]]))

        return gate

3. The next step is to test the accuracy of the quantum phase estimation using the 
root mean square (RMS) error as the metric. The lower the RMS, the better the 
estimation:

    print(f'Testing with {qnum} qubits.')

    errors = []

    for target in np.arange(0, 1, 0.1):

       result = run_estimate(example_gate(target), 

                        qnum, repetitions)
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        mode = result.data['phase'].mode()[0]

        guess = mode / 2**qnum

        print(f'target={target:0.4f}, '

        f'estimate={guess:0.4f}={mode}/{2**qnum}')

        errors.append((target - guess)**2)

        rms = np.sqrt(sum(errors) / len(errors))

        print(f'RMS Error: {rms:0.4f}\n')

4. Execute the quantum phase estimation for two, four, and eight qubits:

def main(qnums = (2, 4, 8), repetitions=100):

    for qnum nums:

        experiment(qnum, repetitions=repetitions)

if __name__ == '_n__':

    main()

The preceding code implements the quantum phase estimation for two, four, and eight 
qubits. Furthermore, in order to get the results, the phase estimation circuit (experiment) 
is run for a total of 100 repetitions. 

In this section, we have covered two quantum techniques that play a crucial role in some 
of the quantum algorithms. These techniques are QFT and quantum phase estimation.  
In the next section, we will cover yet another quantum algorithm that has been shown to 
be more powerful than its classical counterpart. This algorithm is Simon's algorithm.

Introducing Simon's algorithm
Simon's algorithm builds on the ideas of the Bernstein-Vazirani algorithm discussed earlier 
in this chapter. For Simon's algorithm, suppose that for n qubits, we have the following 
function:

This comes with the promise that for some non-zero bitstring, s, such that:

And for all values of x, y such that:

𝑓𝑓: {0,1}𝑛𝑛 → {0,1}𝑛𝑛 

𝑠𝑠 ∈ {0,1}𝑛𝑛 

𝑥𝑥, 𝑦𝑦 ∈ {0,1}𝑛𝑛 
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Then:

If and only if:

Simon's algorithm can be summarized as follows. First, the two registers are used, each 
with n qubits. Therefore, the initial state of the quantum system is given as follows:

This step is followed by the application of the Hadamard gate on each of the qubits in the 
first register. This results in the following quantum state:

The next step in the implementation of Simon's algorithm is to apply the unitary 
transformation F (the oracle function) such that the new state of the system becomes the 
following:

Furthermore, we measure the second register. This step is followed by the application  
of the Hadamard gate on all the qubits on the first register, followed by the measurement 
of such qubits. 

Note
This code is taken from https://qiskit.org/textbook/ch-
algorithms/simon.html.

The link for this code can be found here: https://github.com/
PacktPublishing/Hands-On-Quantum-Information-
Processing-with-Python/tree/master/Chapter05.

𝑓𝑓(𝑥𝑥) = 𝑓𝑓(𝑦𝑦) 

𝑥𝑥 ⊕ 𝑦𝑦 ∈ {0𝑛𝑛, 𝑠𝑠} 

𝜓𝜓0⟩ = 0⊗⋯⊗0⟩⊗ 0⊗⋯⊗0⟩ 

𝜓𝜓1⟩ = 𝐻𝐻|0⊗⋯⊗0⟩⊗ (0⊗⋯⊗0⟩) 

𝜓𝜓2⟩ =
1
√2𝑛𝑛

∑ 𝑥𝑥⟩
𝑥𝑥∈{0,1}𝑛𝑛

⊗ 𝑓𝑓(𝑥𝑥)⟩ 

https://qiskit.org/textbook/ch-algorithms/simon.html
https://qiskit.org/textbook/ch-algorithms/simon.html
https://github.com/PacktPublishing/Hands-On-Quantum-Information-Processing-with-Python/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Quantum-Information-Processing-with-Python/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Quantum-Information-Processing-with-Python/tree/master/Chapter05
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The Python code for implementing Simon's algorithm using Qiskit is given as follows:

1. The first step involves importing the necessary modules for the implementation  
of Simon's algorithm:

from qiskit import BasicAer

from qiskit.providers.ibmq import least_busy

from qiskit import QuantumCircuit, execute

from qiskit.visualization import plot_histogram

from qiskit_textbook.tools import simon_oracle

import matplotlib.pyplot as plt

2. The next step involves the construction of the quantum circuit used for the 
implementation of Simon's algorithm. The circuit takes a three-bit bit string, 
'110', as an input:

b = '110'

n = len(b)

simon_circuit = QuantumCircuit(n*2, n)

simon_circuit.h(range(n)) 

simon_circuit.barrier()

simon_circuit += simon_oracle(b)

simon_circuit.barrier()

simon_circuit.h(range(n))

simon_circuit.measure(range(n), range(n))

simon_circuit.draw('mpl')

plt.show()

3. Finally, simulate the quantum circuit using qasm_simulator. You should note 
that should you wish to run this code on an actual quantum computer, you will have 
to change the backend from qasm_simulator to the ibmq_vigo backend:

backend = BasicAer.get_backend('qasm_simulator')

shots = 1024



122      Quantum Algorithms

results = execute(simon_circuit, backend=backend,

                  shots=shots).result()

counts = results.get_counts()

plot_histogram(counts)

def bdotz(b, z):

    accum = 0

    for i in range(len(b)):

        accum += int(b[i]) * int(z[i])

   return (accum % 2)

print('b = ' + b)

for z in counts:

    print('{}.{} = {} (mod 2) ({:.1f}%)'\

        .format(b, z, bdotz(b,z), counts[z]*100/shots))

The code can be summarized as follows: 

1. First, as is usually the case, the modules that are going to be used are imported. 

2. Then, the quantum circuit for implementing the b='110' string is constructed. 

3. After constructing the circuit, the constructed circuit is simulated using  
qasm_simulator.

Having covered Simon's algorithm in this section, the next section discusses Shor's 
algorithm.

Exploring Shor's algorithm
Shor's algorithm builds on Simon's algorithm, which was discussed in the previous 
section. This algorithm is used for the factorization of composite (prime) numbers, by first 
finding the period of such numbers. From a historical standpoint, Shor's algorithm played 
a crucial role in bringing quantum computing in to the limelight.

In essence, Shor's algorithm solves the problem of factoring integers in polynomial time! 
This is a significant improvement over the known classical algorithm. Shor's algorithm 
was mainly inspired by Simon's algorithm, which was discussed in the previous section. 
Furthermore, this algorithm makes use of quantum parallelism and QFT, which were 
discussed earlier in this chapter.
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As already stated, Shor's algorithm efficiently finds the period of a periodic function.  
A periodic function, f(x), is given as follows:

Here, mod is a modulo operator, a and N are positive integers that have no common 
factors (thus a and N are co-prime), and the following applies:

Additionally, a period, r, is the smallest non-zero integer such that the following applies:

The implementation of Shor's algorithm can be summarized as follows:

1. First, two registers are used. 

The first register consists of m qubits, while the second register consists of n qubits, 
where the following applies:

The circuit for implementing Shor's algorithm is shown in the following figure:

Figure 5.9 – A quantum circuit for implementing an n-qubit Shor's algorithm
Both registers of Shor's algorithm are initialized to the |0> state for all the qubits. 
Therefore, the initial state is as follows:

2. This step is then followed by the application of the Hadamard gate to each of the 
m qubits in the first register. The state of the quantum system then changes to the 
following:

𝑓𝑓(𝑥𝑥) = 𝑎𝑎𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 

𝑎𝑎 < 𝑁𝑁 

𝑎𝑎𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 1 

𝑚𝑚 = 2𝑛𝑛 

𝜓𝜓0⟩ = 0𝑚𝑚⟩⊗ 0𝑛𝑛⟩ 

𝜓𝜓1⟩ = 𝐻𝐻0⊗⋯⊗0⟩⊗ 0𝑛𝑛⟩ 
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3. After applying the Hadamard gate to the qubits in the first register, the next step in 
Shor's algorithm is to apply the unitary transformation F, which transforms the state 
of the system to the following:

4. This step is followed by the application of the inverse QFT on the top register. This is 
followed by the measurement of the qubits in the second register. Finally, the qubits 
in the first register are also measured.

Note
The link for this code can be found here: https://github.com/
PacktPublishing/Hands-On-Quantum-Information-
Processing-with-Python/tree/master/Chapter05.

The Python code for implementing Shor's algorithm using Qiskit is shown as follows:

1. The first step involves importing the modules necessary for the implementation  
of Shor's algorithm:

from qiskit import BasicAer

from qiskit.aqua import QuantumInstance

from qiskit.aqua.algorithms import Shor

2. The next step involves the actual implementation of Shor's algorithm and simulating 
it using qasm_simulator:

number = Shor(N=15, a=7)

simulator = BasicAer.get_backend('qasm_simulator')

results_dictionary = number.run(QuantumInstance(

                                backend=simulator,

                                shots=5))

#result = results_dictionary['number']

print(results_dictionary)

The preceding code can be summarized as follows. 

After importing the necessary modules and classes, the circuit for computing the Shor 
algorithm is constructed, using the Shor class from Qiskit's Aqua element.

𝜓𝜓2⟩ =
1

√2𝑚𝑚
∑ 𝑥𝑥⟩

𝑥𝑥∈{0,1}𝑚𝑚
⊗ 𝑎𝑎𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚⟩ 

https://github.com/PacktPublishing/Hands-On-Quantum-Information-Processing-with-Python/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Quantum-Information-Processing-with-Python/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Quantum-Information-Processing-with-Python/tree/master/Chapter05
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The output of implementing Shor's algorithm to factor the number 15 is shown in the 
following figure:

Figure 5.10 – An output of factoring 15 using Shor's algorithm 

We have covered Shor's algorithm in this section. The next section discusses Grover's 
search algorithm.

Exploring Grover's algorithm
Grover's search algorithm is used to search for an element in an unstructured database. 
It offers quadratic speed-ups compared to the conventional search algorithms. This 
quadratic speed-up is optimal! This means that in principle, this search algorithm cannot 
be improved further.  

Grover's algorithm is the search algorithm that seeks to identify a distinct element, w, 
from an unstructured list of n elements. Typically, this list is encoded in terms of  
a function f such that the following applies for the distinct element (normally called  
a winner):

The following, meanwhile, applies for other elements:

To implement the Grover's algorithm, use the following list of steps:

1. The first step in the implementation of Grover's algorithm is to encode the following 
string:

The following should apply:

2. The next step in the algorithm is to define the unitary transform (oracle), F1, which 
acts on the state |x> as follows:

𝑓𝑓(𝑤𝑤) = 1 

𝑓𝑓(𝑥𝑥) = 0 

𝑥𝑥, 𝑤𝑤 ∈ {0,1}𝑛𝑛 

𝑁𝑁 = 2𝑛𝑛 

𝐹𝐹1𝑥𝑥⟩ = (−1)𝑓𝑓(𝑥𝑥)𝑥𝑥⟩ 
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3. With the encodings of the elements and the oracle done, the next step in the 
implementation of Grover's algorithm is to initialize the n qubits. Therefore, the 
state of the system |s> at this stage will be as follows:

4. The next step is to apply the Hadamard gate to all the n qubits such that |s> becomes 
the following: 

5. This step is followed by the application of F1 to the state. The next step is to apply 
another transformation, F2. For state |s>, this transformation is given as follows:

Here, I is an identity matrix. Therefore, the new state of the quantum system will  
be given as follows:

6. The previous step is repeated t times such that eventually, the state of the quantum 
system becomes the following: 

7. Finally, the measurement is performed on the n qubits.

Note
The link for this code can be found here: https://github.com/
PacktPublishing/Hands-On-Quantum-Information-
Processing-with-Python/tree/master/Chapter05.

The Python code for implementing Grover's algorithm using Qiskit is shown as follows:

1. The first step involves importing the modules necessary for the implementation  
of Grover's algorithm:

from qiskit import QuantumRegister, ClassicalRegister,\

QuantumCircuit, execute, BasicAer

from qiskit.visualization import plot_histogram

import matplotlib.pyplot as plt

𝜓𝜓0⟩ = 0⊗⋯⊗0⟩ 

𝜓𝜓1⟩ = 𝐻𝐻0⊗⋯⊗0⟩ 

𝐹𝐹2(𝑠𝑠) = 2𝑠𝑠⟩⟨𝑠𝑠 − 𝐼𝐼 

𝜓𝜓2⟩ = 𝐹𝐹2𝐹𝐹1𝜓𝜓1⟩ 

𝜓𝜓𝑡𝑡⟩ = (𝐹𝐹2𝐹𝐹1)𝑡𝑡𝜓𝜓1⟩ 

https://github.com/PacktPublishing/Hands-On-Quantum-Information-Processing-with-Python/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Quantum-Information-Processing-with-Python/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Quantum-Information-Processing-with-Python/tree/master/Chapter05
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2. The next step is to define the quantum circuit to implement Grover's algorithms. In 
this case, the circuit to be used includes a two-qubit quantum register and a two-bit 
classical register:

c = ClassicalRegister(2, 'c')

q = QuantumRegister(2,'q')

qc = QuantumCircuit(q,c)

3. Then, the quantum gates are implemented in order to realize this circuit:

qc.h([q[0]])

qc.h([q[1]])

qc.x([q[0]])

qc.x([q[1]])

qc.cz(0,1)

qc.x([q[0]])

qc.x([q[1]])

qc.h([q[0]])

qc.h([q[1]])

qc.z(q[0])

qc.z(q[1])

qc.cz(0,1)

qc.h([q[0]])

qc.h([q[1]])
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4. After applying the Hadamard, X, Z, and controlled-NOT gates as shown in the 
previous code block, the next step is to perform measurement on the two qubits  
and store the results in the two-bit classical register:

qc.measure(q[0], c[0])

qc.measure(q[1], c[1])

qc.draw('mpl')

plt.show()

5. Finally, use qasm_simulator to simulate this quantum circuit on the local 
simulator:

simulator = BasicAer.get_backend('qasm_simulator')

job = execute(qc, simulator, shots=1024)

result = job.result()

count = result.get_counts(qc)

plot_histogram(count)

plt.show()

The preceding code can be summarized as follows. 

First, the necessary modules are imported. This is followed by the construction of  
the circuit to implement Grover's algorithm. This circuit can be summarized by the 
following figure:

Figure 5.11 – A circuit for implementing Grover's algorithm

After constructing the Grover circuit, the execution of this circuit is simulated using 
qasm_simulator.
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The output for implementing the two-qubit Grover's algorithm is shown in the following 
figure. This circuit outputs the bit string '00':

Figure 5.12 – An output for implementing a two-qubit Grover's algorithm

In this section, we have covered Grover's algorithm. We have provided the background 
information of the algorithm. Furthermore, we have discussed the implementation of 
Grover's algorithm using Python and Qiskit. The next section provides a summary of what 
was covered in this chapter.

Summary
In this chapter, we have explored a variety of quantum algorithms and techniques. We 
have also learned how these quantum algorithms and techniques offer advantages over 
their classical counterparts. The quantum algorithms and techniques covered in this 
chapter include Deutsch's algorithm, the Deutsch-Josza algorithm, the Bernstein-Vazirani 
algorithm, the QFT and quantum phase estimation techniques, Simon's algorithm, Shor's 
algorithm, and Grover's algorithm.

In the next chapter, we will cover another aspect of quantum information processing, 
namely quantum non-local games.
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Section 3:  
Deep Diving into 

Quantum Information

This section discusses the strategies that players can use in a non-local game and then 
proceeds to implement examples of CHSH and GHZ games. We will also showcase 
applications of quantum cryptography and Python implementations of certain quantum 
key distribution schemes. Furthermore, we will cover the key concepts and ideas in 
continuous-variable quantum information processing (QIP). Finally, we will talk about 
current research being undertaken, developments by various vendors, and what the future 
holds for the QIP domain.

This section comprises the following chapters:

• Chapter 6, Non-Local Quantum Games

• Chapter 7, Quantum Cryptography

• Chapter 8, Quantum Machine Learning

• Chapter 9, Continuous-Variable Quantum Information Processing

• Chapter 10, Current Trends in Quantum Information Processing
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Non-Local  

Quantum Games
This chapter covers another aspect of quantum information processing, namely, quantum 
game theory. Furthermore, in this chapter, we will showcase tasks in which quantum 
mechanics can allow participants (players) to perform more optimally than if they made 
no use of quantum resources.

In this chapter, we will first provide an introduction to classical game theory and then 
proceed to quantum game theory. Furthermore, we will discuss the strategies that players 
can use in non-local quantum games and proceed to implement examples of CHSH and 
GHZ games.

In this chapter, we will cover the following main topics:

• Understanding classical game theory

• Understanding quantum game theory

• Understanding non-local quantum games

• Understanding the CHSH game

• Understanding the GHZ game

• Understanding the XOR game
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Technical requirements 
In the next section, we will discuss the technical requirements needed for you in order to 
follow this chapter. 

The requirements for this chapter are the following: 

• A basic understanding of the Python programming language

• Navigation of Google's Colab environment

The GitHub link for this chapter can be found here:

https://github.com/PacktPublishing/Hands-On-Quantum-
Information-Processing-with-Python/tree/master/Chapter06.

The next section will introduce basic information regarding classical game theory. This 
information will form the basis for the quantum non-local games that will be covered later 
in this chapter. 

Understanding classical game theory
In order to delve into non-local quantum games, in this section, we will first discuss 
non-quantum (classical) game theory, together with its quantum counterpart. The former 
(non-quantum/classical game theory) will just be referred to as game theory in this 
chapter. 

Game theory tends to arise in virtually every facet of human (even non-human) 
interaction. Its applications can be found in diverse areas such as economics, business, 
project management, political science, finance, military science, psychology, biology, 
mathematics, computer science, philosophy, law, and international relations.

In essence, game theory is a field of mathematics that studies interactive decisions made 
by rational agents (players). The key assumption in game theory is that the interacting 
agents are acting rationally. This assumption implies that game theory cannot be 
satisfactorily applied in cases where agents act irrationally. 

The main objective of game theory is to use mathematical models in order to analyze 
situations of interactive decision making. This analysis is intended to provide predictions 
of the behavior of the interacting rational agents and sometimes also to provide 
suggestions to the decision makers.

https://github.com/PacktPublishing/Hands-On-Quantum-Information-Processing-with-Python/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Quantum-Information-Processing-with-Python/tree/master/Chapter06
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In game theory, the game consists of at least three essential elements, namely: 

• The players (the agents)

• The strategies

• The payoffs

Based on the information provided previously, it should further be stated that the game in 
game theory can be thought of as involving the following:

• A number of players (at least two) who participate in the game.

• The strategies, which are the plans that are used by each player. These plans describe 
the action to be taken by each player in any situation.

• The payoffs, which are the rewards for each player for all the combinations of the 
strategies.

Now that we have provided the basic exposition to game theory, the next step is to delve 
further, focusing more on the history of game theory.

A brief history of game theory
The roots of game theory can be traced back to the eighteenth century. It was first 
developed by mathematicians, who started investigating parlor games, in order to 
formulate optimal strategies in such games. 

In 1713, a mathematician named Charles Waldegrave made one of the early key 
contributions to the field of game theory. He found a solution to one of the parlor games 
of the time (the problem for which he found the solution has since been referred to as the 
Waldegrave problem). Waldegrave then communicated his solution to his contemporaries. 
These contemporaries included the likes of Pierre-Remond de Montmort and one of the 
famous members of the Bernoulli family, namely, Nicolas Bernoulli.

Another early contribution to game theory came in the nineteenth century. In 1838, 
another mathematician, Augustin Cournot, explored the game of oligopoly. He also 
presented a solution to this game, and demonstrated that such a solution is an equilibrium 
of the game.

In 1913, a mathematician and a logician by the name of Ernst Zermelo developed what 
could be described as the first theorem of game theory. This theorem, which is known as 
the Zermelo theorem, results from the game of chess. The Zermelo theorem asserts that in 
a game of chess, either a white (player) can force a win, or a black (player) can force a win, 
or both can force a draw.
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Another contribution to game theory came from Emile Borel in the 1920s (1921–1927). 
Borel's key contribution to game theory involved the introduction of strategies to this field 
(of game theory). 

Up to this point, game theory did not exist as true, rigorous, and general theory until the 
contributions of Jon von Neumann and Oskar Morgenstein in the late 1920s and the early 
1930s. In 1928, von Neumann published a seminal paper that focused on the development 
of a theory for strategies that are used in game theory.

The von Neumann paper of 1928 was then followed by the publication of a seminal book 
by von Neumann and Morgenstein in 1944. This book discussed many areas of game 
theory, some of which are to be covered later in this chapter. These areas include the 
following:

• Two-player zero-sum games

• Cooperative games

• Utility theory, which later found applications in the field of economics

Following the seminal work of von Neumann and Morgenstein, John Nash contributed 
further to the field of game theory in the 1950s. Nash's contribution to game theory 
involved the following areas:

• Non-cooperative games

• Cooperative games

• Bargain games

In the ensuing decades, game theory has been greatly explored and enriched. 
Furthermore, it has found applications in different fields, as stated earlier in this chapter.  
If you are interested in knowing more about the history of game theory, you are advised  
to go through some of the references provided in the Further reading section.

Now that we have provided a brief history of game theory, it is time to cover other aspects 
of game theory.

Having provided a brief history of game theory, the next subsection covers the strategies 
used in game theory.
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Leaning about strategies in game theory
As already stated in this chapter, a strategy is a set of actions that each player takes in the 
game. Strategies are a significant component of game theory. A strategy gives a complete 
specification of a player's behavior. This (complete) specification describes actions that  
a player would take at each of their decision points (information sets).

In essence, for an n-player game, a strategy is a function that assigns each of the players' 
information sets (places where a player makes decisions) to an action available to said 
player at that information set. Therefore, it can be seen that a strategy can be thought  
of as a prescription for how to play a game in all possible scenarios.

Consider an n-player game. In such a setting, each player, i, has their own set of possible 
strategies, denoted as Si. In order to play a game, each player, i, then selects the strategy:

In such a setting, a vector of strategies (strategy set) selected by a player i is given by:

It is worth noting that a vector of strategies selected by the players in an n-player game 
ultimately determines the outcome for each player in the game. 

A strategy that results in the player having the best outcome regardless of the strategies 
from other players is called the dominant strategy. On the other hand, a strategy that 
results in the worst outcome regardless of the strategies of other players is known as the 
dominated strategy.

Another comparison of strategies in game theory involves whether the strategy is 
deterministic. If the strategy of a player involves a deterministic set of actions, it is said 
to be a pure strategy. On the other hand, if the strategy is stochastic (in which case, the 
player chooses randomly among a set of possible actions), then the strategy is said to be  
a mixed strategy. 

In this subsection, we have covered the strategies used in game theory. Furthermore, we 
have briefly discussed the dominant strategy. Finally, we have contrasted the pure and 
mixed states. The following section will explore the differences between cooperative games 
and the non-cooperative games.

𝑠𝑠𝑖𝑖 ∈ 𝑆𝑆𝑖𝑖 

𝑠𝑠 = (𝑠𝑠1,⋯ , 𝑠𝑠𝑛𝑛) 
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Exploring cooperative and non-cooperative games
In game theory, games can either be cooperative or non-cooperative. A non-cooperative 
game is also referred to as a competition (strategic) game, while a cooperative game is 
also known as a coalition (coalitional) game.

In a non-cooperative game, there is a competition among players. Furthermore, the aim  
of a player in non-cooperative games is to win such games. Thus, in non-cooperative 
games, players take individual actions, and the objective of each player is to win the game.

In non-cooperative game theory, the most important solution concept is the Nash 
equilibrium, which is a concept named after John Nash discussed earlier in this chapter. 
In essence, a Nash equilibrium is a stable set of strategies, one for each player (in a 
non-cooperative game) such that no player has an incentive to change their strategy given 
what other players are doing.

For an n-player non-cooperative game, a Nash equilibrium has the property that each 
player's choice of action is the best response to the choices of the i other competing 
players.

On the other hand, the objective and the mechanism of cooperative games are in stark 
contrast to those of non-cooperative games. In cooperative games, the actions of the 
players are coordinated.

Furthermore, unlike in non-cooperative games, where the objective of the player is to 
win the game, the objective of a player in cooperative games is to achieve agreed-upon 
principles, such as justice, efficiency, non-discrimination, and fairness.

Finally, the most important solution concept in cooperative games is the Shapley value. 
This is characterized by the fair distribution of both the costs and the gains to several 
players working in coalition.

Having explored the differences between cooperative and non-cooperative games  
in this subsection, the next subsection will focus more on non-cooperative games.  
It will introduce and then explore the differences between the zero-sum games and 
non-zero-sum games.

Exploring zero-sum and non-zero-sum games
In non-cooperative game theory, games can be categorized using different criteria.  
One of the criteria of categorizing the games is whether such games are zero-sum or 
non-zero-sum games. For our analysis here, we will only focus on a two-player game. 
However, the analysis can be generalized to any n-player game, where 𝑛𝑛 > 2 .
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A zero-sum two-player game is a game in which one player wins what the other player 
loses. In this game, the players have opposite evaluations of the outcome, thereby resulting 
in the payoff of zero.

From the information provided previously, it is clear to see that in two-player zero-sum 
games, the players are antagonistic, since in order for one player to win, the other player 
must lose.

On the other hand, in non-zero-sum competition games, one player's gain (loss) does not 
necessarily result in the other player's loss (gain). Thus, in non-zero-sum games, there is  
a possibility of a non-zero net gain (loss). This implies that the payoff is not zero, unlike in 
the case of the zero-sum games.

In this subsection, we have explored the differences between zero-sum and non-zero-sum 
non-cooperative games. The following subsections will cover some of the examples of 
these non-cooperative games.

Understanding the prisoner's dilemma
One example of a non-zero-sum non-cooperative game is the prisoner's dilemma. 
For simplicity, we will only focus on the two-player version of the prisoner's dilemma 
non-cooperative game. 

Now, let's briefly explore the prisoner's dilemma. Consider two criminals—Alice and Bob. 
These criminals are arrested and ultimately imprisoned, with the condition that Alice 
and Bob are placed in different prison cells in such a way that they cannot communicate. 
However, the prosecutors realize that they do not have enough evidence to guarantee 
conviction of Alice and Bob. So, they (the prosecutors) come up with a shrewd plan! They 
offer a bargain to either Alice or Bob, on condition that either player comes clean and 
confesses.

Based on the preceding information, there are four possible scenarios:

• Neither Alice nor Bob confess: If neither Alice nor Bob confesses, each is 
sentenced to 3 years' imprisonment.

• Alice confesses while Bob does not: If Alice confesses and Bob does not, Alice is 
sentenced to 1 year in prison, while Bob is sentenced to 4 years in prison.

• Bob confesses while Alice does not: If Bob confesses and Alice does not, Bob is 
sentenced to 1 year in prison, while Alice is sentenced to 4 years in prison.

• Both Alice and Bob confess: If both Alice and Bob confess, they are each sentenced 
to 2 years in prison.
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Using the pay-off matrix, the two-player prisoner's dilemma game between Alice and Bob 
can be given as follows:

Table 6.1 – A pay-off matrix for a two-player prisoner's dilemma game

Using the preceding pay-off matrix, the Nash equilibrium state is reached if both Alice 
and Bob confess.

Using the python, numpy, and the nashpy libraries, the code snippet for implementing 
a two-player prisoner's dilemma is given as follows:

import nashpy as nash

import numpy as np

Alice = np.array([[3, 1], [4, 2]])

Bob = np.array([[3, 4], [1, 2]])

prisoner_dilemma = nash.Game(Alice, Bob)

print(prisoner_dilemma)

Alice_sigma = np.array([1, 0])

Bob_sigma = np.array([1, 0])

print(prisoner_dilemma[Alice_sigma, Bob_sigma])

for eq in prisoner_dilemma.support_enumeration():

    print(eq)

As you can see from the preceding code snippet, the first step is to import the two Python 
libraries, namely, numpy and nashpy, with the former being given an alias of np, and the 
latter being given an alias of nash.

After importing the necessary libraries, the next step is to construct the pay-off matrix for 
both Alice and Bob. This is followed by the creation of the prisoner's dilemma game using 
the nash.Game class. After creating the game, the utilities (payoffs) are then calculated, 
followed by a calculation of the Nash equilibrium.
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In this subsection, we have explored one of the examples of non-cooperative games, 
namely, the prisoner's dilemma game. In the next subsection, we will explore another 
example of non-cooperative games, namely, the battle of the sexes game.

Understanding the battle of the sexes game
The game of the battle of the sexes is another example of non-zero-sum non-cooperative 
games. In order to explore this game, we will consider the game being played by two 
players, namely, Alice and Bob. The battle of the sexes game is relatively easier than the 
prisoner's dilemma.

Unlike in the case of the prisoner's dilemma (where Alice and Bob were criminals), in this 
case, Alice and Bob are wife and husband, respectively. Alice and Bob both want to go out 
for an evening. However, they have conflicting interests. Alice wants to go to the ballet, 
while Bob wants to go to a soccer match.

However, they both would prefer to be together, either at the soccer match or at the ballet, 
rather than going alone to separate events. That is, even though Bob would prefer to go 
to the soccer match, he would rather go to the ballet with Alice than to go to the soccer 
alone. This is also the case with Alice. Even though she prefers going to ballet, she would 
rather go to the soccer match with Bob than go to the ballet alone.

The pay-off matrix for the battle of the sexes game is given as follows:

Table 6.2 – A pay-off matrix for a battle of the sexes game

The Python code snippet for implementing the battle of the sexes game using python, 
numpy, and nashpy is given as follows:

import nashpy as nash

import numpy as np

Alice = np.array([[2, 1], [1, 2]])

Bob = np.array([[3, 1], [1, 3]])

battle_sexes= nash.Game(Alice, Bob)

print(battle_sexes)

Alice_sigma = np.array([1, 0])
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Bob_sigma = np.array([1, 0])

print(battle_sexes[Alice_sigma, Bob_sigma])

for eq in battle_sexes.support_enumeration():

    print(eq)

The preceding code snippet is structurally similar to that of the prisoner's dilemma 
covered previously. It involves the importing of Python modules that are going to be 
used in the implementation of the battle of the sexes game. This is then followed by the 
construction of the pay-off matrix. Furthermore, the payoffs and Nash equilibrium are 
then calculated and displayed.

In this subsection and the one preceding it, we have explored two non-zero-
sum non-cooperative games. It is now time to focus our attention on zero-sum 
non-cooperative games. This will be our focus in the following two subsections.

Understanding the matching pennies game
This game is one of the simplest examples of zero-sum non-cooperative games. This game 
involves two players. Let's continue with our tradition of calling these players Alice and 
Bob, as we did in the previous two-player games.

In the matching pennies game, both Alice and Bob have a coin. The idea is for each player 
to secretly flip their coin and simultaneously reveal the state of the coin to the opponent 
(Alice to Bob, and Bob to Alice). If both coins are in the same state (both heads, or both 
tails), then Alice wins the game. Otherwise, Bob wins the game.

The pay-off matrix for the matching pennies zero-sum non-cooperative game can be given 
as follows:

Table 6.3 – A pay-off matrix for a matching pennies game

From the preceding pay-off matrix, we can see that for each player, the sum of the 
outcome is always zero. This is to be expected, as this is a feature of zero-sum games. 
That is, in a two-player zero-sum game, the sum of one player's gain is equal to the other 
player's loss.
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The Python code for implementing the matching pennies game using python, nashpy, 
and numpy is given as follows:

import nashpy as nash

import numpy as np

Alice = np.array([[1, -1], [-1, 1]])

Bob = np.array([[-1, 1], [1, -1]])

missing_pennies= nash.Game(Alice, Bob)

print(missing_pennies)

Alice_sigma = np.array([1, 0])

Bob_sigma = np.array([1, 0])

print(missing_pennies[Alice_sigma, Bob_sigma])

for eq in missing_pennies.support_enumeration():

    print(eq)

The preceding code can be summarized as follows. First, the Python modules necessary 
for the implementation of the matching pennies game are imported. This is then followed 
by the construction of the pay-off matrix, which, in turn, is followed by the calculation of 
both the payoffs and the Nash equilibrium.

In this subsection, we have covered one of the examples of zero-sum non-cooperative 
games, namely, the matching pennies game. In the next subsection, we will cover another 
example of the zero-sum non-cooperative game, namely, the rock-paper-scissors game.

Exploring the rock-paper-scissors game
Another example of the zero-sum non-cooperative game is the famous rock-paper-
scissors game. In this game, there are two players choosing the moves from three options, 
namely, the rock, the paper, and the scissors. In this zero-sum game, we can have the 
following outcomes:

• The rock beats the scissors.

• The scissors beat the paper.

• The paper beats the rock.
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The preceding outcomes are applicable for the players Alice and Bob, such that, if Alice 
chooses the scissors and Bob chooses the rock, Bob wins the game. On the other hand,  
if Alice chooses the paper and Bob chooses the rock, then Alice wins. 

The pay-off matrix for the rock-paper-scissors game is shown as follows:

Table 6.4 – A pay-off matrix for a rock-paper-scissors game

The Python code for implementing a rock-paper-scissors game using python, numpy, 
and nashpy is given as follows:

import nashpy as nash

import numpy as np

Alice = np.array([[0, -1, 1], [1, 0, -1], [-1, 1, 0]])

Bob = np.array([[0, 1, -1], [-1, 0, 1], [1, -1, 0]])

rock_paper_scissors = nash.Game(Alice, Bob)

print(rock_paper_scissors)

Alice_sigma = np.array([0, 0, 1])

Bob_sigma = np.array([0, 1, 0])

for eq in rock_paper_scissors.support_enumeration():

    print(eq)

The preceding code is similar in structure to those discussed earlier. It involves 
the importing of the necessary Python modules, which, in turn, is followed by the 
construction of the pay-off matrix. This is then followed by calculations of the utilities  
and the Nash equilibrium.

In this section, we learned about the history of game theory and the various game 
strategies. We also learned about cooperative and non-cooperative games, together with 
zero-sum and non-zero-sum games. This concludes the section on classical game theory. 
The next section will cover quantum game theory.
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Understanding quantum game theory
Basically, a quantum game can be conceived of as any quantum system that can be 
manipulated by two or more parties, and where the payoff of the moves from these parties 
can be reasonably quantified.

The quantum game consists of the following elements:

• The number of players, N

• The set of strategies, S

• The utility/payoff functionals, P

• The initial quantum state, ρ

• The Hilbert space, H (refer to Chapter 2, Quantum States, Operations, and 
Measurements, for further details on the Hilbert space)

In essence, quantum game theory generalizes and quantizes classical game theory, 
discussed in the previous section, to the quantum domain. Simply put, quantum game 
theory is the game-theoretic framework that makes use of ideas from quantum mechanics.

In quantum game theory, quantum mechanical concepts, such as the quantum 
superposition of states and entanglement, can be used in the following ways:

• Quantum superposition of initial states

• Quantum entanglement of initial states

• Quantum superposition of strategies

As already stated previously, quantum game theory quantizes classical games. There are 
several reasons for quantizing classical games. These are as follows:

• To tap into the already established classical games in order to develop a new 
framework of game theory. This is due to the fact that both classical games and 
quantum mechanics are based on probability theory.

• To investigate whether the game-theoretic effects can be observed at a sub-atomic 
level, where quantum mechanics dictates the rules.

• To investigate the connection between game theory and the theory of quantum 
communication.

• To explore whether quantum mechanics can offer an advantage in order to win 
some of the specially designed non-cooperative games.
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The first quantum game was proposed by Meyer in 1999. In this work, Meyer proposed 
a quantum game called the penny flip coin. This game is closely related to the matching 
penny game discussed earlier. Furthermore, Meyer demonstrated in this work that 
through the use of a quantum strategy, a player can increase their expected payoff.

The work of Meyer was then shortly followed by the work of Eisert et. al., who further 
introduced quantum games and quantum strategies. Since these early contributions, 
there has been a significant progress in the development of a quantum game-theoretic 
framework.

So far, we have provided a brief introduction to quantum game theory. In the next 
subsection, we will focus more on quantum game theory by exploring non-local quantum 
games.

Understanding non-local quantum games
A non-local quantum game is a game where the quantum players are in different locations 
when they are playing the game. Non-local games are typically used to test non-locality in 
quantum systems. A two-player non-local game involves two players (Alice and Bob) and 
the referee.

The role of the referee, in this case, is to ensure that neither player (Alice or Bob) 
communicates with the other while playing the game. However, Alice and Bob are allowed 
to entangle their qubits (to share correlations). Typically, in non-local quantum games, the 
players are allowed to determine a joint strategy from the complete knowledge of an input 
distribution.

In this subsection, we have covered quantum non-local games. In the next subsection,  
we will briefly explore quantum strategies in non-local quantum games.

Exploring quantum strategies in non-local quantum 
games
In classical game theory, strategies can either be pure (deterministic) or mixed 
(probabilistic). On the other hand, in quantum game theory, the strategies can only be 
probabilistic.

The quantum strategy for each player, denoted by si, is a player's procedure for deciding 
which action to take, depending on the player's information. The quantum strategy space, 
S = {si}, is a set of strategies available to the player.
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In order to probe the quantum strategies further, consider a two-player quantum game, τ, 
characterized by:

where H is the Hilbert space, ρ is the initial quantum state, SA and SB are the strategies of 
the two players, and PA and PB are the pay-off functionals of these players. In such a case, 
quantum strategies sA and sB, which can be given as:

and 

are the quantum operations.

A two-player quantum game is referred to as a zero-sum quantum game if the expected 
payoffs total zero for all pairs of quantum strategies. Otherwise (if this is not the case),  
it is called a non-zero-sum quantum game.

Furthermore, consider the strategies sA, s'A, sB, and s'B such that, 𝑠𝑠𝐴𝐴, 𝑠𝑠′𝐴𝐴 ∈ 𝑆𝑆𝐴𝐴  and 
𝑠𝑠𝐵𝐵, 𝑠𝑠′𝐵𝐵 ∈ 𝑆𝑆𝐵𝐵 .

Furthermore, the quantum strategies sA and s'A are equivalent if 𝑃𝑃𝐴𝐴(𝑠𝑠𝐴𝐴, 𝑠𝑠𝐵𝐵) = 𝑃𝑃𝐴𝐴(𝑠𝑠′𝐴𝐴, 𝑠𝑠𝐵𝐵)  
and 𝑃𝑃𝐵𝐵(𝑠𝑠𝐴𝐴, 𝑠𝑠𝐵𝐵) = 𝑃𝑃𝐴𝐴(𝑠𝑠′𝐴𝐴, 𝑠𝑠𝐵𝐵)  for all sB.

Similarly, quantum strategies sB and s'B are equivalent if 𝑃𝑃𝐵𝐵(𝑠𝑠𝐴𝐴, 𝑠𝑠𝐵𝐵) = 𝑃𝑃𝐵𝐵(𝑠𝑠𝐴𝐴, 𝑠𝑠′𝐵𝐵)  and 
𝑃𝑃𝐴𝐴(𝑠𝑠𝐴𝐴, 𝑠𝑠𝐵𝐵) = 𝑃𝑃𝐵𝐵(𝑠𝑠𝐴𝐴, 𝑠𝑠′𝐵𝐵)  for all sA.

Additionally, a quantum strategy sA is called a dominant strategy if:

In a similar manner, a quantum strategy sB is called a dominant strategy if:

At this juncture, it is worth noting that a pair of quantum strategies (sA, sB) is said to be an 
equilibrium in strategies if sA and sB are the dominant strategies for the two players in this 
two-player quantum game.

Finally, a pair of quantum strategies (sA, sB) is called a Nash equilibrium if 
𝑃𝑃𝐴𝐴(𝑠𝑠𝐴𝐴, 𝑠𝑠′𝐵𝐵) ⩾ 𝑃𝑃𝐴𝐴(𝑠𝑠′𝐴𝐴, 𝑠𝑠′𝐵𝐵)  and 𝑃𝑃𝐵𝐵(𝑠𝑠′𝐴𝐴, 𝑠𝑠𝐵𝐵) ⩾ 𝑃𝑃𝐵𝐵(𝑠𝑠′𝐴𝐴, 𝑠𝑠′𝐵𝐵) .

𝜏𝜏 = (𝐻𝐻, 𝜌𝜌, 𝑆𝑆𝐴𝐴, 𝑆𝑆𝐵𝐵, 𝑃𝑃𝐴𝐴, 𝑃𝑃𝐵𝐵) 

𝑠𝑠𝐴𝐴 ∈ 𝑆𝑆𝐴𝐴 

𝑠𝑠𝐵𝐵 ∈ 𝑆𝑆𝐵𝐵 

𝑃𝑃𝐴𝐴(𝑠𝑠𝐴𝐴, 𝑠𝑠′𝐵𝐵) ⩾ 𝑃𝑃𝐴𝐴(𝑠𝑠′𝐴𝐴, 𝑠𝑠′𝐵𝐵) 

𝑃𝑃𝐵𝐵(𝑠𝑠′𝐴𝐴, 𝑠𝑠𝐵𝐵) ⩾ 𝑃𝑃𝐵𝐵(𝑠𝑠′𝐴𝐴, 𝑠𝑠′𝐵𝐵) 
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In this subsection, we have provided a brief exposition to non-local quantum strategies. 
In the next subsection, we will discuss one of the examples of non-local quantum games, 
namely, the Clauser-Horne-Shimony-Holt (CHSH) quantum game.

Understanding the CHSH game
The CHSH quantum game is an example of a non-local quantum game. It uses the 
CHSH inequality that was discussed earlier in this book, in Chapter 3, Entanglement and 
Teleportation. It just turns inequality into a quantum game that is played by Alice and Bob, 
in the presence of the referee.

The CHSH quantum game can have an application in the witnessing of bipartite 
entanglement in quantum systems.

The CHSH quantum game can be summarized as follows. Consider two players, Alice and 
Bob. They respectively receive bits x and y from the referee, and they have to respond with 
bits a and b, respectively. Additionally, Alice and Bob win if:

with both Alice and Bob communicating on the joint strategy before the start of the game, 
and not being permitted to communicate during the game.

The following steps summarize the procedure used for implementing the CHSH game:

• Before the start of the game, Alice and Bob share a Bell state (Bell pair).

• If Alice receives x = 0, she measures her qubit and outputs the results.

• If she receives x = 1, she applies the rotation gate of π/2 along the y axis, Ry(π/2),  
and measures her qubit.

• If Bob receives y = 0, he applies the rotation gate Ry(π/4) and then measures  
his qubit.

• If Bob receives y = 1, he applies the rotation gate Ry(-π/4) and then measures  
his qubit.

The following steps demonstrate implementation of the CHSH game using Python:

1. Import the necessary modules:

from qiskit import *

import numpy as np

np.random.seed(42)

𝑎𝑎 ⊕ 𝑏𝑏 = 𝑥𝑥 ⋅ 𝑦𝑦 
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2. Then, define the quantum circuit for implementing the CHSH game:

def CHSH_circuit(x,y):

    a0=0 

    a1=np.pi/2

    b0=np.pi/4

    b1=-np.pi/4

    circ = QuantumCircuit(2,2) 

    circ.h(0)

    circ.cx(0,1)

    if(x==0):

        circ.ry(a0,0)

    else:

        circ.ry(a1,0)

    if(y==0):

        circ.ry(b0,1)

    else:

        circ.ry(b1,1)

    circ.measure([0,1], [0,1]) 

    return circ

3. Furthermore, define the probability of Alice and Bob winning this game:

def winning_probability(backend, shots):

    a0=0

    a1=np.pi/2 

    b0=np.pi/4

    b1=-np.pi/4

    total = 0

    circuits = [CHSH_circuit(0,0), CHSH_circuit(0,1), 

               CHSH_circuit(1,0), CHSH_circuit(1,1)] 

    job = execute(circuits, backend=backend, 

                  shots = shots)

    for qc in circuits[0:3]:

        counts = job.result().get_counts(qc)
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    if('00' in counts):

        total += counts['00']

    if('11' in counts):

        total += counts['11']

    counts = job.result().get_counts(circuits[3])

    if('01' in counts):

        total += counts['01']

    if('10' in counts):

        total += counts['10']

    return total/(4*shots) 

4. Finally, simulate the CHSH circuit using 'qasm_simulator' and display the 
probability of winning:

backend = Aer.get_backend('qasm_simulator')

print(winning_probability(backend, shots=1024))

The preceding code can be summarized as follows. First, the necessary Python modules 
are imported. This is then followed by construction of the CHSH quantum circuit, 
using two qubits (for Alice and Bob). This quantum circuit starts with both qubits being 
initialized to the quantum state, |0>. This is then followed by the creation of the Bell pair. 
Furthermore, depending on the classical bits x and y for Alice and Bob, respectively, 
appropriate rotation gates are applied by both Alice and Bob. Eventually, both Alice and 
Bob measure their respective qubits.

Following construction of the quantum circuit for implementing the CHSH game,  
the next step in the preceding Python code is to simulate the circuit using  
'qasm_simulator'. The results obtained are then displayed.

In this subsection, we have covered the CHSH quantum game. We have also provided  
a Python code for implementing the CHSH game. In the next subsection, we will explore 
the GHZ game.

Understanding the GHZ game
Just like the CHSH quantum game discussed previously, the Greenberger-Horne-
Zeilinger (GHZ) quantum game is also an example of a non-local quantum game.  
It is used to witness the tripartite entanglement in quantum systems. However, unlike  
the CHSH game, the GHZ game is a three-player game (Alice, Bob, and Charlie are  
the players).
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In essence, the setup for the GHZ game is similar to that of the CHSH game, except that 
in the former, there are three players (Alice, Bob, and Charlie) who initially share the 
entanglement (tripartite entanglement), while in the latter, there are only two players 
(Alice and Bob) who share the entanglement (bipartite entanglement).

The three-player GHZ quantum game be summarized as follows. Consider three players, 
namely, Alice, Bob, and Charlie. The referee sends the bits x, y, and z to Alice, Bob, and 
Charlie, respectively. In response, the players Alice, Bob, and Charlie output the bits a, b, 
and c, respectively. The players win if:

The following procedure summarizes the implementation of the GHZ quantum game:

• Before the start of the game, ensure that all three players share the tripartite 
entanglement.

• Each player applies the Hadamard gate to their qubit when they receive 1.

• Each player measures their qubit state.

The following steps show the implementation of the GHZ quantum game using Python:

1. The first step entails the importing of the required modules:

from qiskit import *

from qiskit.visualization import plot_histogram

import numpy as np

np.random.seed(42)

2. The next step involves defining the quantum circuit that is used to implement the 
three-qubit GHZ game:

circ = QuantumCircuit(3,3)

circ.h(0)

circ.cx(0,1)

circ.cx(0,2)

circ.h(0)

circ.h(1)

circ.h(2)

circ.measure([0,1,2], [0,1,2])

𝑎𝑎 ⊕ 𝑏𝑏⊕ 𝑐𝑐 = 𝑥𝑥 ∨ 𝑦𝑦 ∨ 𝑧𝑧 
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3. The next step involves simulating the GHZ game using 'qasm_simulator':

backend = Aer.get_backend('qasm_simulator')

shots= 1024

job = execute(circ, backend=backend, shots = shots)

result = job.result()

count = result.get_counts(circ)

4. Eventually, the probability of winning the GHZ game is then calculated and 
displayed: 

total = 0

if('000' in count):

    total += count['000']

if('011' in count):

    total += count['011']

if('101' in count):

    total += count['101']

if('110' in count):

    total += count['110']

probability_winning = total/shots

print("Probability of winning is:", probability_winning)

The preceding code can be summarized as follows. After importing the necessary modules 
for the implementation of the GHZ quantum game, the circuit for the game is then 
constructed. This is followed by the simulation of the circuit using 'qasm_simulator', 
and a display of the results obtained.

So far, we have covered the GHZ quantum game in this subsection. In the next subsection, 
we will cover the XOR quantum game.

Understanding the XOR game
Just like the CHSH and GHZ games, the XOR game is also an example of non-local 
quantum games. Additionally, the XOR game is the most studied and the simplest 
non-local quantum game.
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The global task of the XOR quantum game is to apply the XOR (exclusive OR) function to 
the outcomes of all the players participating in the game. That is, an XOR quantum game 
is a binary game (a game whose outputs are bits) whose outcome depends solely on the 
XOR of the players' responses. 

The CHSH game discussed earlier is an example of a two-player XOR quantum game. 
Another example of a multi-player XOR game is the GHZ quantum game, which was also 
discussed earlier.

In this section, we have covered the XOR quantum game. Furthermore, we have stated 
that the CHSH quantum game is an example of a two-player XOR quantum game. The 
next section provides a summary of what was covered in this chapter. 

Summary
In this chapter, we have delved into one of the branches of quantum information 
processing, namely, quantum game theory. We have discovered that by using some of the 
concepts of quantum mechanics, the players in the game can perform more optimally 
than if they did not deploy quantum mechanics.

Furthermore, in this chapter, we provided the background information on classical 
(non-quantum) game theory. Additionally, we covered some of the examples of quantum 
game theory, and these examples include the CHSH quantum game, the GHZ game, and 
the XOR game.

By the end of this chapter, you should be familiar with the concepts associated with 
classical game theory. Furthermore, you should be able to implement some of the classical 
games using Python. Additionally, you should be familiar with concepts in quantum game 
theory. Furthermore, you should be able to use Python to implement non-local quantum 
games, such as the CHSH game and the GHZ game.

The next chapter explores quantum cryptography. Quantum cryptography is arguably the 
most successful branch of quantum information processing.

Further reading
• Barron, Emmanuel N. Game Theory: an Introduction. Vol. 2. John Wiley & Sons, 

2013.

• Guo, Hong, Juheng Zhang, and Gary J. Koehler. A Survey of Quantum Games. 
Decision Support Systems 46, no. 1 (2008): 318-332.

• Kolokoltsov, Vassili. Quantum Games: a Survey for Mathematicians. arXiv preprint 
arXiv:1909.04466 (2019).





7
Quantum 

Cryptography
This chapter covers arguably the most successful sub-field of quantum information 
processing, namely, quantum cryptography. Additionally, in this chapter, we will use 
Python as a tool for the hands-on implementation of both conventional cryptography  
and quantum cryptography.

In this chapter, we will showcase applications of quantum cryptography and Python 
implementations of certain quantum key distribution schemes. We will begin by 
implementing classical cryptographic primitives in Python. Furthermore, we will also 
learn how to implement quantum cryptographic primitives in Python.

In this chapter, we will cover the following main topics:

• Introducing classical cryptography

• Quantum cryptography

• Post-quantum cryptography
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By the end of this chapter, you should be able to do the following:

• Implement classical cryptographic protocols such as Caesar's cipher and one-time 
pads in Python.

• Implement quantum cryptographic protocols such as the BB84, the B92, and the 
E91 in Python.

• Understand how post-quantum cryptography operates.

In the next section, we will cover the technical requirements for you to understand this 
chapter.

Technical requirements 
The requirements for this chapter are the following:

• A basic understanding of the Python programming language

• Navigation of Google's Colab environment

• Elementary (post-secondary) mathematics

The GitHub link for this chapter can be found here:

https://github.com/PacktPublishing/Hands-On-Quantum-
Information-Processing-with-Python/tree/master/Chapter07

The next section will provide an introduction to classical cryptography.

Introducing classical cryptography
In this section, we will provide a basic introduction to classical cryptography. We 
will briefly go through the history of cryptography. Furthermore, we will explore 
cryptographic schemes such as the Diffie-Hellmann scheme. Finally, we will cover 
classical cryptographic primitives, such as random number generators.

Cryptography is the science and art of securing information in such a way that only the 
intended (legitimate) parties have access to such a communication. That is, cryptography 
makes it possible to ensure that illegitimate parties do not have access to the message that 
is being protected by the legitimate, communicating entities.

https://github.com/PacktPublishing/Hands-On-Quantum-Information-Processing-with-Python/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-Quantum-Information-Processing-with-Python/tree/master/Chapter07
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Cryptography is carried out by first converting an ordinary piece of information (referred 
to as plaintext) into an unintelligible string of characters (referred to as ciphertext). This 
conversion process is done so that the information transmitted from the transmitter 
(conventionally called Alice) is not intercepted by an eavesdropper (conventionally called 
Eve) on its way to the receiver (conventionally called Bob).

Once the plaintext has been converted to ciphertext, it can then be transmitted over the 
channel to Bob. In the channel, Eve can have access to such a ciphertext, but cannot make 
sense of such information (ciphertext), since it is unintelligible. On the receiver's side 
(Bob's side), the ciphertext is then converted back to plaintext.

From the details discussed previously, it can be observed that cryptography can be 
divided into two processes. These processes are encryption and decryption. The former 
(encryption) consists of the conversion of plaintext to ciphertext, using a cryptographic 
key. On the other hand, the latter (decryption) consists of the conversion of ciphertext to 
plaintext, with the help of a cryptographic key.

A schematic diagram of the cryptographic system (cryptosystem) is shown here:

Figure 7.1 – A schematic diagram of a cryptographic system

The main goals of cryptography can be summarized as follows:

• Confidentiality (secrecy): To ensure that information is rendered inaccessible 
to the illegitimate communicating parties. Thus, secrecy ensures that there is no 
unauthorized access to the information.

• Data integrity: To ensure that information is not modified by illegitimate 
communicating parties during transmission.

• Authentication: To guarantee that the sender of the information is who they claim 
to be. This, in turn, ensures that the only parties that can legitimately communicate 
are those that are verified as genuine.

• Non-repudiation: To provide protection against one of the entities involved in  
a communication from denying having participated in such a communication.
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Based on the nature of the cryptographic key being used, cryptography can be broadly 
divided into two branches, namely:

• Symmetric cryptography (secret-key cryptography)

• Asymmetric cryptography (public-key cryptography)

Symmetric cryptography uses a single cryptographic key that is shared by both Alice 
and Bob (recall that Alice and Bob are the legitimate communicating parties). In order 
to guarantee the protection of the information being shared between Alice and Bob, the 
cryptographic key used must be kept secret for as long as the information is kept secret.

Now that we have provided a brief description of symmetric cryptography, it is time 
to turn our attention to asymmetric cryptography. In this branch of cryptography, two 
separate but related cryptographic keys are used. One key, known as the private key, is 
kept secret, while the other key, known as the public key, is made public (and hence can be 
transmitted over an insecure but authenticated communication channel).

Having provided some background information on cryptography, it is now time to briefly 
explore the history of cryptography. Therefore, the next subsection will cover the history 
of cryptography.

A history of classical cryptography
Throughout history, cryptography has been used for various purposes, such as the 
following:

• Diplomatic communications

• Military operations

• Commercial activities

• Private communications

• Religious applications

Earlier implementations of cryptography, which is known as classical cryptography, were 
primarily concerned with the substitution of characters in a message. One of the most 
prominent schemes in classical cryptography is Caesar's substitution cipher.

Caesar's cipher 
The Caesar's cipher cryptographic scheme uses a cyclic alphabet and substitutes a 
character with another three places later in the alphabet. Thus, a character a will be 
substituted with a character d.
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As an example, suppose you wanted to communicate the message YES using Caesar's 
cipher. So, the encrypted message would be: 

• Y = B

• E = H

• S = V

This is BHV.

The Python code for implementing Caesar's cipher is shown as follows:

message = "YES"

shift = 3 

encryption = ""

for c in message:

    if c.isupper():

        c_unicode = ord(c)

        c_index = ord(c) - ord("A")

        new_index = (c_index + shift) % 26

        new_unicode = new_index + ord("A")

        new_character = chr(new_unicode)

        encryption = encryption + new_character

    else:

        encryption += c

print("Plain text:", message)

print("Encrypted text:", encryption)

The preceding Python code can be summarized as follows. First, the message that is to 
be encrypted using Caesar's cipher is provided. In this case, the message is YES. Then 
the shift of three steps (three letters, in a cyclic manner) is provided. Thereafter, each of 
the characters of the message are shifted using a shift of three. Finally, both the original 
message and the encrypted message are displayed.

Having covered Caesar's cipher, we will now turn our attention to the one-time pad. This 
will be covered next.
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The one-time pad
Another key development in the history of classical cryptography was the development 
of the one-time pad (OTP). The OTP ensures that the encrypted message cannot be 
compromised, as long as the cryptographic key used to encrypt the message is used only 
once (hence, the one-time pad). Furthermore, the cryptographic key should have the same 
length (number of characters) as the message being encrypted. 

The Python code for implementing the one-time pad scheme is shown as follows:

key = 5

message = "HELLO"

encrypt = ""

for i in range(len(message)):

    letter = ord(message[i])-65 

    letter = (letter + key)%25 

    letter +=65

    encrypt = encrypt + chr(letter)

print("Original message is:", message) 

print("Encrypted message is:", encrypt)

The preceding Python code can be summarized as follows. First, the length of the key for 
the OTP scheme is set (in this case, it is set to 5). Then the message to be encrypted using 
OTP is provided. Furthermore, OTP is implemented using the given parameters, namely, 
the key length and the message. Finally, both the original message and the encrypted 
message are displayed.

So far, we have focused on the history of what is known as classical cryptography. Next,  
we will cover the history of what is now known as modern cryptography. 

A history of modern cryptography
In the late 1970s, a new field of cryptography emerged. This would later be known as 
modern cryptography. Unlike classical cryptography, modern cryptography is more 
systematic, and takes a rigorous mathematical approach to data protection.

Modern cryptography is said to provide computational security. By this, we mean that the 
security of modern cryptography takes into account the computational capabilities of an 
eavesdropper, in order to guarantee the security of the cryptographic scheme.
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In essence, modern cryptography provides a means of securing information by using 
mathematical techniques that are easier to compute for the legitimate communicating 
parties (due to the presence of a shared cryptographic key), but are computationally 
difficult to compute for illegitimate communicating parties (who do not have access to the 
cryptographic key).

One of the key contributions of modern cryptography was in the development of the 
cryptographic key exchange schemes. So far, we have just stated that these keys are 
required for both encryption and decryption processes. The natural question that arises 
then is how these keys are shared between Alice and Bob. Surely, merely transmitting 
them through the insecure channel would expose them to Eve! This challenge of exploring 
ways to securely exchange the cryptographic key between Alice and Bob through an 
insecure problem is known as the key distribution problem.

The advent of modern cryptography brought into sharp focus the key distribution 
problem discussed previously. Furthermore, in the late 1970s, Whitfield Diffie and Martin 
Hellman developed a cryptographic key exchange scheme that would later be known as 
the Diffie-Hellman key exchange protocol.

Diffie-Hellmann key exchange protocol
The Diffie-Hellman key exchange protocol, which is an example of asymmetric 
cryptography, can be summarized as follows. Alice and Bob agree on the key pair (p,g), 
where p is a large prime and g is a generator (base) such that:

0 < 𝑔𝑔 < 𝑝𝑝 

 Alice then chooses her secret integer a (which is her private key) and then computes:

𝑔𝑔𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 

 
,

which is her public key, and the mod function is the modulo function. Alice's public key  
is also known by Bob and Eve.

On the other end of the communication, Bob chooses his integer b (which is his 
private key). By now, Bob knows his private key (b) and Alice's public key (ga mod p). 
Furthermore, Bob can then perform the following computation:

(𝑔𝑔𝑎𝑎)(𝑏𝑏)𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 

 It is not difficult to observe that.

(𝑔𝑔𝑎𝑎)(𝑏𝑏)𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 =
(𝑔𝑔)𝑎𝑎𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 
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Since Bob's public key is also known by Alice (and Eve for that matter), Alice can then 
compute.

Therefore, Alice and Bob have eventually generated a shared key, 𝑔𝑔𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 

 

.

This is the same for both Alice and Bob. However, since Eve has no access to either a or b, 
she cannot compute the shared key given above. That way, Alice and Bob have managed to 
securely exchange a cryptographic key that can be used for the encryption of information.

A Python code for implementing the Diffie-Hellman scheme is shown as follows:

import math

p = input("Enter the shared prime number: \n")

p = int(p)

g = input("Enter the shared base: \n")

g = int(g)

a = input("Enter Alice's secret key: \n")

a = int(a)

b = input("Enter Bob's secret key: \n")

b = int(b)

AlicePublicKey = (g ** a ) % p

BobPublicKey = (g ** b) % p

AliceSecret = (BobPublicKey ** a) % p

BobSecret = (AlicePublicKey ** b) % p

print(AliceSecret)

print(BobSecret)

The preceding code snippet can be summarized as follows. First, the required parameters 
are entered. These parameters include p, g, a, and b discussed earlier. Since, in Python, 
the input is, by default, a string datatype, these inputs are then converted into integer 
datatypes using the int() function.

(𝑔𝑔𝑏𝑏)(𝑎𝑎)𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 =
(𝑔𝑔𝑎𝑎)(𝑏𝑏)𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 
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The next step in the previous code snippet is for both Alice and Bob to compute their 
public keys. Once this is done, Alice uses Bob's public key and her private key (a) to 
compute the shared secret key. On the other hand, Bob uses Alice's public key and his 
private key (b) to compute the shared secret key.

So far, we have provided a brief history of cryptography. We have introduced classical 
cryptography and modern cryptography. Furthermore, we have briefly discussed how 
the Diffie-Hellman key exchange scheme works. In the next subsection, we will cover the 
cryptographic primitives.

Cryptographic primitives
Cryptographic primitives are algorithms that can be used to build cryptographic protocols 
(schemes). That is, cryptographic primitives are the basic building blocks of cryptographic 
protocols, such as the Diffie-Hellman key exchange discussed earlier.

Examples of cryptographic primitives include the following:

• Pseudorandom number generators (PRNGs)

• Digital signatures

• Hash functions

• Secret sharing

Pseudorandom number generators
Randomness can be generated either from a true source of randomness or from a 
source that may seem random but, in reality, is not. The former option results in true 
randomness, while the other results in pseudorandomness.

The numbers generated from a pseudorandom generator are very close to the random 
number, even though they come from a source that is known to be deterministic as 
opposed to being truly random.

The Python code snippet for generating pseudorandomness using the random module is 
given as follows:

import random

random.seed(42) 

x = []

y = [] 
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for i in range(10):

    a = random.random()

    x.append(a)

print(x)

for i in range(5):

    b = random.randint(0,4)

    y.append(b)

print(y)

The preceding code snippet can be summarized as follows. First, the random module is 
imported into the workspace. Next, the seed is used in order to ensure the reproducibility 
of results. Then, two empty arrays, x and y, are created. The first array (x) is then used 
to store 10 pseudorandom floating-point numbers, while the second array (y) is used to 
store five pseudorandom integers.

We have provided a brief introduction to one of the primitives of cryptography, namely, 
PRNGs. We have also seen how PRNGs can be implemented in Python. Next, we discuss 
another primitive of cryptography, namely, the hash function.

Hash functions
Informally, hash functions are also referred to as one-way hash functions or message 
digests. A hash function is a computationally efficient mapping that maps data of arbitrary 
length to a fixed length. 

The output of a hash function, which is of fixed length, is referred to as the hash value. 
Typically, the input to the hash function is a bit string of arbitrary length, while the output 
(hash value) is a bit string of fixed length.

Hash functions are normally used for cryptographic tasks such as ensuring data integrity. 
In such tasks, they are used in conjunction with another cryptographic primitive, namely, 
the digital signature.
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Examples of hash functions include the following:

• Message digest 5 (MD5)

• Secure hashing algorithm (SHA)

• BLAKE

A Python code snippet for implementing the MD5 hash function using the hashlib 
module is as follows:

import hashlib

AliceMessage = hashlib.md5()

Alice = "This is Alice"

Alice = Alice.encode(encoding='utf-8')

AliceMessage.update(Alice)

print("Alice's MD5 digest is: \n", AliceMessage.hexdigest())

print("Alice's digest size is: \n", AliceMessage.digest_size)

print("Alice's block size is: \n", AliceMessage.block_size)

BobMessage = hashlib.md5()

Bob = "This is Bob"

Bob = Bob.encode(encoding='utf-8')

BobMessage.update(Bob)

print("Bob's MD5 digest is: \n", BobMessage.hexdigest())

print("Bob's digest size is: \n", BobMessage.digest_size)

print("Bob's block size is: \n", BobMessage.block_size)

The preceding code snippet first imports the hashlib module from Python's standard 
library. The hashlib module contains a variety of hash functions. In the preceding code 
snippet, we focused on the MD5 hash function, and this is represented by the hashlib.
md5() function. The next step was to provide the message that would be hashed, and 
then properly encode such a message.
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The MD5 is not the only hash function that can be implemented in Python. Several 
others, including SHA and BLAKE, can also be implemented. The following code shows 
the Python implementation of the SHA scheme using the hashlib module:

import hashlib

AliceMessage = hashlib.sha3_512()

Alice = "This is Alice"

Alice = Alice.encode(encoding='utf-8')

AliceMessage.update(Alice)

print("Alice's SHA digest is: \n", AliceMessage.hexdigest())

print("Alice's digest size is: \n", AliceMessage.digest_size)

print("Alice's block size is: \n", AliceMessage.block_size)

BobMessage = hashlib.sha3_512()

Bob = "This is Bob"

Bob = Bob.encode(encoding='utf-8')

BobMessage.update(Bob)

print("Bob's SHA digest is: \n", BobMessage.hexdigest())

print("Bob's digest size is: \n", BobMessage.digest_size)

print("Bob's block size is: \n", BobMessage.block_size)

Just like the code snippet of the previous example (the MD5 code snippet), the preceding 
code snippet computes the hash function for both Alice and Bob's messages. The only 
difference is that instead of using the MD5 algorithm, the Python code provided above 
uses the Secure Hash Algorithm (SHA). Therefore, the function used in this case is the 
hashlib.sha3_512() function, which uses SHA-3 and has a 512-bit hash value.

So far, we have considered two cryptographic primitives, namely, PRNGs and hash 
functions. The final cryptographic primitive to consider in this chapter is secret sharing. 
This primitive is explored next.

Secret sharing
So far, we have considered cryptography from an angle where two communicating parties 
want to share a secret message. However, this communication can involve more than two 
communicating parties. In such cases, a suitable cryptographic primitive is secret sharing.
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Secret sharing is a cryptographic primitive that is used to distribute a secret value among 
multiple communicating parties. This distribution is done by splitting/fragmenting 
the original message into various small fragments, and sending each fragment to each 
communicating party.

In order to recover the original message that was shared, the communicating parties 
would have to collaborate so that they can combine their fragments into the original 
message. The security of this cryptographic primitive lies in the fact that in order to 
recover the original message, the communicating parties would have to collaborate 
with other parties and recombine the various fragments of the message. This way, no 
individual can have access to the entire message without first collaborating with other 
communicating parties.

The secret sharing cryptographic primitive was independently proposed by Adi Shamir 
and George Blakley in 1979. Here, we focus only on the Shamir version of the secret 
sharing primitive.

The Shamir version of the secret sharing cryptographic primitive can be summarized as 
follows. Consider a secret message denoted by S, which is then divided into n parts,  
such that:

𝑆𝑆 = 𝑠𝑠1, 𝑠𝑠2,⋯ , 𝑠𝑠𝑛𝑛 

 Then, a number k is chosen such that if

𝑠𝑠𝑖𝑖 ≥ 𝑘𝑘 

 
,

the message S could be successfully recovered. However, if the parts of the messages 
combined together are

𝑠𝑠𝑖𝑖 ≤ (𝑘𝑘 − 1) 
 then the original message S could not be successfully recovered.

We have covered the cryptographic primitives. Furthermore, we have provided a brief 
introduction to classical cryptography and modern cryptography. In the next section, we 
will cover quantum cryptography.
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Quantum cryptography
We have learned in the previous section that modern cryptography makes assumptions 
about the computational capabilities of an eavesdropper. Although this cryptographic 
approach is still widely used, it faces a serious challenge in that its security cannot be 
proven theoretically.

As an alternative to modern cryptography, there is another approach to data protection. 
This approach provides an information-theoretic security guarantee instead of the 
computational security guarantee provided by modern cryptography. This approach is 
known as quantum cryptography.

In essence, quantum cryptography is a cryptographic approach that uses quantum 
mechanical concepts such as quantum entanglement, superposition, and the quantum 
no-cloning theorem (these concepts were discussed earlier in Chapter 2, Quantum States, 
Operations, and Measurements) in order to protect data.

A history of quantum cryptography
The history of quantum cryptography can be traced back to the 1970s, when Stephen 
Wiesner proposed a scheme that can be used to provide secure quantum money. The ideas 
from Wiesner's work were then expanded by Charles Bennett and Gilles Brassard in order 
to propose the first ever quantum key distribution (QKD) protocol in 1984. This QKD 
protocol would later be referred to as the BB84 protocol.

Another major breakthrough in quantum cryptography came in 1991, when Artur Ekert 
proposed another QKD protocol based on quantum entanglement. This QKD protocol 
proposed by Ekert would later be referred to as the E91 protocol.

Since its inception some decades back, quantum cryptography has enjoyed a massive 
growth over the years. It is now arguably the most successful field of quantum information 
processing.

In this subsection, we have just covered a brief history of quantum cryptography. In the 
next subsection, we will cover quantum cryptography primitives.

Quantum cryptography primitives
Earlier in this chapter, we explored the cryptographic primitives for modern cryptography. 
Here, we explore some of quantum cryptography primitives. The cryptographic primitives 
to be explored include the following:

• Quantum random number generator (QRNG) 

• Quantum key distribution (QKD)
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Quantum random number generator
Unlike the PRNG, the QRNG is truly random. Its randomness stems from an intrinsic 
randomness of performing measurements of quantum systems.

The Python code snippet for implementing a QRNG is as follows:

1. First, import the necessary modules:

import random

from qiskit import *

from qiskit.visualization import plot_histogram

random.seed(42)

2. Then, define the circuit for implementing the QRNG:

circuit = QuantumCircuit(5,5)

circuit.h(0)

circuit.x(1)

circuit.h(1)

circuit.h(2)

circuit.x(3)

circuit.h(3)

circuit.h(4)

circuit.measure([0,1,2,3,4], [0,1,2,3,4])

circuit.draw(output='text')

3. Finally, simulate the circuit using the 'qasm_simulator':

simulator = Aer.get_backend('qasm_simulator')

result = execute(circuit, backend=simulator,

                 shots=1024).result()

plot_histogram(result.get_counts(circuit))
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The preceding code snippet shows how a five-qubit QRNG can be implemented using 
Python and qiskit. The five qubits are, by default, initialized to the quantum state, |0>. 
So, what we did was to apply the Hadamard gate in odd-numbered qubits while applying 
the X gate followed by the Hadamard gate for all the even-numbered qubits. The next step 
is then to apply the measurement to each of the five qubits. Finally, 'qasm_simulator' 
was used to simulate the results.

Now that we have covered the first quantum cryptography primitive, it is time to shift 
our focus to another primitive, namely, the key exchange primitive. This key exchange 
primitive in quantum settings is known as quantum key distribution.

Quantum key distribution
Quantum Key Distribution (QKD) is the key distribution scheme that employs quantum 
mechanical concepts in order to enable sharing of the cryptographic key between the 
legitimate communicating parties, Alice and Bob. The use of quantum mechanics ensures 
that the presence of an eavesdropper, Eve, could be revealed to Alice and Bob.

QKD uses two communication channels, namely, the quantum channel and the classical 
channel. The quantum channel is used for quantum communication, while the classical 
channel is used for classical post-processing. The following diagram shows the schematic 
diagram of a typical QKD scheme:

Figure 7.2 – A schematic diagram of a typical QKD scheme

Typically, a QKD protocol should address some or all of the following issues: security, 
feasibility, and communication distance.

QKD protocols, which will be discussed later in this chapter, can be broadly divided into 
two categories, namely:

• Prepare-and-measure QKD protocols. The BB84 discussed earlier is an example of 
this category.

• Entanglement-based QKD protocols. The E91 protocol is an example of this category.
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A typical QKD protocol is implemented through the phases summarized in the following 
diagram:

Figure 7.3 – A diagram of a typical QKD protocol implementation

We have so far covered another quantum cryptographic primitive, and this primitive is 
referred to as the QKD. Having provided the background information on QKD, it is now 
time to focus on some of the QKD protocols. This will be discussed in the next subsection.

Quantum key distribution protocols
In this subsection, we will cover some of the QKD protocols. The protocols to be covered 
in this subsection include the following:

• The BB84 QKD protocol

• The B92 QKD protocol
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• The SARG04 QKD protocol

• The E91 QKD protocol

The BB84 protocol
The BB84 protocol was the first QKD protocol to be invented by Bennett and Brassard. It 
uses four quantum states, which comprise any pair of conjugate states. The BB84 protocol 
functions as follows. Alice randomly chooses a quantum state and sends it over to Bob. 
On the receiving side, Bob then randomly chooses a measurement basis, and performs the 
measurement.

Once the quantum communication is done, Alice and Bob both use a classical channel 
to compare their values. Where they used similar bases for state preparation (Alice) and 
measurement (Bob), they keep bit values corresponding to such cases. Otherwise, they 
discard the values.

The Python code snippet for implementing the BB84 protocol is shown as follows:

1. The first step involves importing the necessary modules: 

from qiskit import QuantumCircuit, execute, Aer 

from qiskit.visualization import *

import matplotlib.pyplot as plt

import numpy as np

np.random.seed(42)

2. The next step is to define the circuit for generating a random sequence of bit strings:

circ = QuantumCircuit(1,1)

circ.x(0)

circ.barrier()

circ.h(0) 

circ.barrier()

circ.measure(0,0) 

circ.barrier()

backend = Aer.get_backend('qasm_simulator')



Quantum cryptography     173

3. Alice then uses this defined random circuit to generate 128 random bits:

result = execute(circ, backend, shots=128, 

                 memory = True).result()

bits_alice = [int(q) for q in result.get_memory()] 

print(bits_alice)

4. Furthermore, Alice uses the random circuit to randomly choose the basis she is 
going to use in order to implement the BB84 protocol:

result = execute(circ, backend, shots=128, 

                 memory = True).result()

basis_alice = [int(q) for q in result.get_memory()] 

print(basis_alice)

5. The next step involves Bob randomly choosing his basis using the random circuit 
defined earlier:

result = execute(circ, backend, shots=128, 

                 memory = True).result()

basis_bob = [int(q) for q in result.get_memory()] 

print(basis_bob)

6. Now, Alice encodes the random bits she has generated into qubits and sends them 
over to Bob:

bits_bob = []

for i in range(128):

    circ_send = QuantumCircuit(1,1)

    if bits_alice[i]: 

        circ_send.x(0)

    if basis_alice[i]: 

        circ_send.h(0)

    if basis_bob[i]: 

        circ_send.h(0) 

    circ_send.measure(0,0)

    result = execute(circ_send, backend, shots = 1,

                     memory = True).result()

    bits_bob.append(int(result.get_memory()[0]))

print(bits_bob)
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7. Bob then performs measurements and communicates to Alice regarding the bases 
he used to perform measurements. Eventually, if Bob's bases match with Alice's, 
then they generate and agree on a secret key:

key = []

for i in range(128):

    if basis_alice[i] == basis_bob[i]:

        key.append(bits_bob[i])

print("Key length", len(key))

print(key)

The preceding Python code for the implementation of the BB84 QKD protocol can be 
summarized as follows. First, the modules necessary for the implementation of the BB84 
QKD protocol are imported. The next step involves the implementation of the BB84 
protocol. Finally, Alice and Bob compare their bit strings, and retain those strings where 
their use of bases corresponds and discard the rest. The retained bit strings are then used 
as a secret key generated using the BB84 protocol.

The B92 protocol
The B92 QKD protocol is the simpler version of the BB84 protocol. It was proposed by 
Charles Bennett in 1992.

Instead of using four quantum states, like the BB84 protocol, it only uses two 
non-orthogonal states. The B92 QKD protocol is based on the principle that two quantum 
states that are not orthogonal are sufficient to detect the presence of an eavesdropper.

In order to realize the B92 protocol, Alice randomly prepares a quantum state in either of 
the two non-orthogonal states and sends it over to Bob. On the receiving end, Bob then 
performs the measurement and records the time slots where he received inconclusive 
results and where he measured the results with certainty. He then communicates this 
information over the classical channel to Alice. They then retain bit values for time slots 
where the measurements were done with certainty, and discard bit values for cases where 
the measurements were inconclusive.

The following steps show the implementation of the B92 protocol using Python:

1. The first step entails importing the necessary modules:

from qiskit import QuantumCircuit, execute, Aer 

from qiskit.visualization import *

import matplotlib.pyplot as plt

import numpy as np
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np.random.seed(42)

2. Then, the circuit for generating a random string of bits (128 bits) is generated  
by Alice: 

circ = QuantumCircuit(1,1)

circ.x(0)

circ.barrier()

circ.h(0) 

circ.barrier()

circ.measure(0,0) 

circ.barrier()

circ.draw(output='text')

n = 128

backend = Aer.get_backend('qasm_simulator')

result = execute(circ, backend, shots=n, 

                 memory = True).result()

bits_alice = [int(q) for q in result.get_memory()] 

print(bits_alice)

3. The next step involves Bob choosing at random the bases he will use to perform 
measurements:

result = execute(circ, backend, shots=n, 

                 memory = True).result()

basis_bob = [int(q) for q in result.get_memory()] 

print(basis_bob)

bits_bob = []

for i in range(n):

    circ_send = QuantumCircuit(1,1)

    if bits_alice[i] == 0: 

        circ_send.id(0)

    if bits_alice[i] == 1: 

        circ_send.h(0)



176     Quantum Cryptography

    else:

        circ_send.id(0)

    circ_send.measure(0,0)

    result = execute(circ_send, backend, shots = 1,

                     memory = True).result()

    bits_bob.append(int(result.get_memory()[0]))

print(bits_bob)

4. Finally, both Alice and Bob communicate to generate and agree on the secret key 
generated:

key = []

for i in range(n):

    if bits_alice[i] == bits_bob[i]:

        key.append(bits_bob[i])

print("Key length is:", len(key))

print("The secret Key is:", key)

The preceding code snippet can be summarized as follows. First, as is always the case, the 
necessary modules are imported. The next step involves Alice's random generation of her 
bits to transfer to Bob. Based on the value of the bits generated, Alice can perform two 
tasks. If the generated bit value is '0', Alice does not change the basis (applies the identity 
gate). On the other hand, if the generated bit is '1', Alice changes the basis (applies the 
Hadamard gate).

On Bob's side, Bob randomly chooses the basis to use for measurement. Then, both Alice 
and Bob compare the bases they used. If the bases correspond, they keep the bit value 
corresponding to that. Otherwise, they discard the bit value.

The SARG04 QKD protocol
The SARG04 QKD protocol was invented by Scarani, Acin, Ribordy, and Gisin in 2004. 
This protocol is an improvement on the BB84 protocol discussed earlier. This protocol is 
intended to be robust even when Alice uses a coherent light source (instead of a single-
photon light source) for the preparation of quantum states.

Just like the BB84 protocol, the SARG04 protocol is also the four-state quantum key 
distribution protocol. The key difference between the two protocols lies in the classical 
post-processing.
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So far, we have covered three QKD protocols, namely, the BB84, the B92, and the 
SARG04. All these QKD protocols are examples of the prepare-and-measure category of 
QKD schemes. Next, we will discuss another protocol, namely, the E91 protocol. Unlike 
the previous three QKD protocols, the E91 protocol is an example of the entanglement-
based category of the QKD schemes.

The E91 QKD protocol
As already stated, the E91 protocol uses quantum entanglement as a quantum resource 
in order to secure the data. Additionally, this protocol was developed by Ekert, building 
on the ideas proposed by David Deutsch (Deutsch was mentioned earlier in this book, in 
Chapter 5, Quantum Algorithms).

The E91 QKD protocol operates as follows. First, both Alice and Bob share EPR pairs. 
Then they perform measurements on the parts of the pairs that are on their side. Since 
entanglement states are correlated, any measurement of the EPR pairs by either Alice or 
Bob would result in a correlated state on the side of the other communicating party (Bob 
or Alice).

The following steps show the implementation of the E91 protocol using Python:

1. First, import the modules necessary for the implementation of the E91 protocol:

from qiskit import *

import numpy as np

import matplotlib.pyplot as plt

np.random.seed(42)

2. Then, both Alice and Bob choose their bases to use:

A = [0, np.pi/8, np.pi/4] 

B = [0, np.pi/8, -1*np.pi/8] 

basesA = []

basesB = []

output = []

3. The next step involves defining the circuit to be used by Alice and Bob in order to 
generate a 100-bit random key:

for i in range(100):

    circ = QuantumCircuit(2, 2)
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    circ.h(0)

    circ.cx(0,1) 

    Ta = np.random.choice(A)

    Tb = np.random.choice(B)

    circ.rz(Ta, 0)

    circ.rz(Tb, 1)

    circ.measure([0, 1], [0, 1])

4. Then, simulate the circuit using the 'qasm_simulator':

    backend = Aer.get_backend('qasm_simulator')

    result = execute(circ, backend, shots=1, 

                     memory=True).result()

Finally, generate and display the random key.
    value = result.get_memory()

    output.append(value)

print("The output is:", output)

The preceding Python code for the implementation of the E91 QKD protocol can be 
summarized as follows. The first step involves importing the necessary modules. This is 
then followed by the construction of the circuit for entanglement generation. Now that 
both Alice and Bob share an entangled state, the next step is for Alice to randomly and 
uniformly choose a measurement axis for each or her qubits. She does so by randomly 
and uniformly choosing to rotate her state by any of the angles 0, π/8, or π/4. She then 
performs a measurement on her qubit.

Bob, on the other hand, chooses his measurement axis by randomly and uniformly 
choosing to rotate his state by any of the angles 0, π/8, or -π/8. Just like Alice, Bob also 
performs a measurement on his qubit.

The final step in the implementation of the E91 QKD protocol from the preceding 
code involves simulating the circuit used for this implementation, using the 'qasm_
simulator'. The results obtained are then displayed as a list of pairs of Alice's and Bob's 
measurement results.

We have provided a brief discussion of the QKD protocol. In the next section, we move 
beyond quantum cryptography. We explore the field of study that aims to develop 
non-quantum cryptographic schemes that are resistant to quantum computers. This field 
of study is known as post-quantum cryptography.
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Post-quantum cryptography
Post-quantum cryptography is concerned with the development of cryptographic 
algorithms that are believed to be resistant to code breaking by quantum computers. 
Currently, most modern cryptography algorithms are known to be vulnerable to attacks 
using quantum computers.

Post-quantum cryptography makes use of the some of the mathematical concepts in 
order to design cryptographic systems that appear to be difficult to break, even for a 
cryptanalyst with access to a powerful quantum computer. Like modern cryptography 
systems discussed earlier, post-quantum cryptography systems provide computational 
security instead of the information-theoretic security provided by quantum cryptography. 

Post-quantum cryptography can be implemented using any of the following approaches/
classes:

• Lattice-based cryptography, which can be used to develop digital signatures and key 
exchange cryptographic schemes

• Multivariate quadratic equations cryptography, which is typically used to develop 
digital signature cryptographic schemes

• Hash-based cryptography, which is typically used to develop digital signatures

• Code-based cryptography, which is typically used to develop key exchange 
cryptographic schemes

• Supersingular elliptic curve isogeny cryptography, which can be used to develop 
encryption schemes

Now that we have provided a brief introduction to post-quantum cryptography, the next 
subsections will cover some of the post-quantum cryptographic technics. In the next 
subsection, we will explore a lattice-based key exchange technique called the NewHope 
key exchange scheme.

The NewHope key exchange scheme 
One of the best examples of post-quantum cryptographic tools is the NewHope key 
exchange scheme. This scheme uses the lattice-based approach. As a lattice-based 
approach, the NewHope cryptographic technique offers resistance to all known quantum 
algorithms. Furthermore, the NewHope key exchange technique is one of the fastest and, 
hence, most efficient lattice-based techniques.
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The Python implementation of the NewHope key exchange scheme is given in the 
following code snippet:

from pynewhope import newhope

import numpy as np

np.random.seed(42)

ka, ma = newhope.keygen()

skb, mb = newhope.sharedB(ma)

ska = newhope.sharedA(mb, ka)

if ska == skb:

    print("\nSuccessful key exchange! Keys match.")

else:

    print("\nError! Keys do not match.")

print("The shared key is:", ska)

In the preceding code snippet, the modules necessary to implement the NewHope key 
exchange scheme are imported. This is followed by Alice generating a random key and 
the message she intends to send to Bob. Bob then receives the message from Alice and 
responds to her with his own message. The two communicating parties then use the 
information communicated to generate the secret key. Finally, they verify that indeed  
their keys match. Finally, the shared key is displayed.

Having explored the NewHope key exchange technique in this subsection, the next 
subsection will cover the hash-based, post-quantum cryptographic scheme known  
as SPHINCS+.

The SPHINCS+ digital signature scheme
The SPHINCS+ cryptographic technique is an example of the hash-based approach 
to post-quantum cryptography. Additionally, it offers long-term security even against 
attackers equipped with quantum computers. 

SPHINCS+ can only be used for developing quantum-resistant digital signatures. That is, 
it cannot be used for developing key exchange schemes.
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The SPHINCS+ digital signature scheme can be implemented using either of the three 
hash functions, namely, the SHA-256 hash function, the SHA-2 hash function, or the 
Haraka short-input hash function.

The Python code snippet for implementing the SPHINCS+ digital signature scheme is 
given as follows:

1. The first step involves importing the necessary modules:

import pyspx.shake256_128s as sphincs

import os, binascii

import numpy as np

np.random.seed(42)

2. This step is then followed by the generation of both the private and public keys:

# Key generation: private + public key

seed = os.urandom(sphincs.crypto_sign_SEEDBYTES)

public_key, secret_key = sphincs.generate_keypair(seed)

3. Next, the message is provided, and its corresponding digital signature generated  
and verified:  

message = b'Hello World'

signature = sphincs.sign(message, secret_key)

valid = sphincs.verify(message, signature, public_key)

message = b'Hello World'

valid = sphincs.verify(message, signature, public_key)

print("Tampered message:", message)

print("Tampered signature valid?", valid)

message = b'Bye World'

valid = sphincs.verify(message, signature, public_key)

print("Tampered message:", message)

print("Tampered signature valid?", valid)
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The preceding Python code can be summarized as follows. First, the necessary modules 
are imported. This is then followed by the provision and digital signature of the message. 
Next, verification is performed to confirm that the message was not  
tampered with.

We have now completed our coverage of post-quantum cryptography. The following 
section will summarize this chapter.

Summary
In this chapter, we have explored the field of quantum information processing known 
as quantum cryptography. Furthermore, we have discussed the use of Python for 
implementing cryptographic schemes, both for non-quantum and quantum cryptography. 
Additionally, we have covered the field of cryptography that is believed to be resistant to 
hacking by quantum computers. This field of cryptography is known as post-quantum 
cryptography.

Furthermore, in this chapter, you are expected to have learned more about some of the 
concepts in classical, modern, and quantum cryptography. Additionally, you are expected 
to have acquired hands-on skills in terms of how to implement cryptography using 
Python.

The skills acquired in this chapter can be applied in cybersecurity, where such skills  
can be used for the real-life design and engineering of cryptographic systems.

In the next chapter, we will explore another field of quantum information  
processing – quantum machine learning. 

Further reading
• Schneier, Bruce. Applied Cryptography: Protocols, Algorithms, and Source Code in C. 

John Wiley and sons, 2007.

• Mafu, Mhlambululi, and Senekane, Makhamisa. Security of Quantum Key 
Distribution Protocols. In Advanced Technologies of Quantum Key Distribution, pp. 
3-15, IntechOpen, 2018.

• Bernstein, Daniel J. Introduction to Post-Quantum Cryptography. In Post-quantum 
cryptography, pp. 1-14. Springer, Berlin, Heidelberg, 2009.
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Quantum Machine 

Learning 
Another field of QIP that is worth exploring is quantum machine learning. Quantum 
machine learning makes use of quantum mechanics to enable computers to learn from 
data. Recently, quantum machine learning has enjoyed both theoretical and practical 
implementation success. Examples of successful implementation of quantum machine 
learning include implementations of quantum machine learning in sectors such as 
finance, materials science, and drug discovery. 

Essentially, quantum machine learning fuses together ideas from quantum physics and 
ideas from computer science. The key objective in this case is to use quantum mechanical 
concepts such as superposition and quantum entanglement in order to improve the 
performance of machine learning techniques. 

In this chapter, we will begin with an introduction to conventional machine learning  
and then move to quantum machine learning, while also showcasing the applications  
of quantum machine learning. 

In this chapter, we will cover the following main topics:

• Understanding conventional (classical) machine learning

• Understanding quantum machine learning

• Quantum machine learning algorithms 
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By the end of the chapter, you should be able to do the following:

• Understand key ideas and concepts in conventional machine learning.

• Understand key ideas and concepts in quantum machine learning.

• Summarize key concepts in quantum machine learning.

In the next section, we will discuss the technical requirements for you to follow along with 
this chapter. 

Technical requirements
The requirements for this chapter are the following: 

• Basic understanding of Python programming language

• Navigation of Google's Colab environment

The GitHub link for this chapter can be found here:

https://github.com/PacktPublishing/Hands-On-Quantum-
Information-Processing-with-Python/tree/master/Chapter08

The next section provides a basic introduction to conventional machine learning. 

Understanding conventional (classical) 
machine learning
Machine learning is arguably the most successful branch of artificial intelligence. It has 
applications in various fields:

• Digital signal processing

• Image processing

• Drug discovery

• Financial analysis

• Cybersecurity

• Financial analysis

• Marketing

https://github.com/PacktPublishing/Hands-On-Quantum-Information-Processing-with-Python/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Quantum-Information-Processing-with-Python/tree/master/Chapter08
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In essence, machine learning is a set of techniques that can be used by the computer 
to identify the patterns in data, build models that explain the world, and/or make 
predictions, without being explicitly programmed. 

The overall goal of machine learning is to enable computers to learn on their own,  
without having explicitly pre-programmed rules and models. It enables computers  
to modify or adapt their actions (such as making predictions) in order to increase the 
accuracy of such actions.

The three main categories of machine learning
Machine learning can be classified into three main categories:

• Supervised learning

• Unsupervised learning

• Reinforcement learning

Let's have a quick overview of each of these machine learning categories.

Supervised learning
In a supervised learning algorithm, both the training data (input data) and the target 
data (labels, output data, or responses to training data) are provided. The task of such 
an algorithm then is to make predictions about future output points based on the future 
input points. Supervised learning algorithms can be divided into the following classes:

• Classification learning: The target data has a fixed number of classes.

• Regression learning: The target data has a continuous number of classes.

Examples of supervised learning algorithms include the following:

• Linear regression

• Logistic regression

• Artificial neural networks

• Support Vector Machines (SVMs)
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Unsupervised learning
In unsupervised learning, only the training data is provided, while the target data is 
not provided. The objective, in this case, is not to use the training data to make the 
predictions. Rather, unsupervised learning learns and/or discovers the distribution of the 
input (training) data.

Examples of unsupervised learning algorithms include the following:

• Clustering

• Recommendation

• Dimensionality reduction

• Principal component analysis

• Anomaly detection

Reinforcement learning
Finally, in reinforcement learning algorithms, the computer is induced to learn from  
a series of reinforcements, namely punishments or rewards. If an algorithm succeeds in 
taking a correct action, it is rewarded. However, if an algorithm fails in taking a correct 
action, it is punished.

The notion of reward and punishment in reinforcement learning can be summarized as 
follows. A computer takes a series of steps, and these steps can either lead to the desired 
outcomes or not. If the steps lead to the desired outcome, then the computer is rewarded 
so that it knows which steps to take to arrive at the desired outcome. If the steps do not 
lead to the desired outcome, then the computer is punished so that it does not repeat 
those steps in the future. 

Examples of reinforcement learning algorithms include the following:

• Q-learning

• Sarsa

As already stated, machine learning algorithms are used to enable computers to accurately 
make predictions. In order to measure the performance of such algorithms, various 
performance metrics can be used. These include the following:

• Accuracy

• Precision and recall
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• Confusion matrix

• Receiver operator characteristic (ROC) curve

So far, we have provided a brief introduction to classical machine learning. In the next 
subsections, we are going to discuss two of the most prominent supervised learning 
algorithms, namely, artificial neural networks and SVMs. 

Exploring artificial neural networks
Artificial neural networks (ANNs) are inspired by the operation of the biological 
neurons in the brain. A typical ANN structure is shown in the following schematic 
diagram:

Figure 8.1 – A typical structure of an ANN

As can be seen from the diagram, a typical ANN consists of an input layer, one or more 
hidden layers, and an output layer. In such a setting, each layer consists of a number of 
nodes, where these nodes represent artificial neurons. These nodes are connected by the 
weights.

The input nodes encode the input data to the ANN algorithm. On the other hand, each of 
the other nodes (besides the input nodes) consists of two functions:

• Transfer function

• Activation function
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For inputs xi and weights wi, the transfer function f(x) is given as f(x)=bi+∑ xiwi, where bi  
is a bias value.

An activation function (φ) on the other hand is a non-linear, differentiable function such 
that for a transfer function f(x), the output of the node, denoted yi, is given as follows:

𝑦𝑦𝑖𝑖 = 𝜙𝜙(𝑓𝑓(𝑥𝑥))  

 

 

Depending on the number of hidden layers in the ANN architecture, an ANN can be 
either a shallow neural network or a deep neural network. The former has few hidden 
layers, while the latter has several hidden layers. 

ANNs have several architectures. These include the following:

• Multi-layer perceptron (MLP)

• Recurrent neural networks (RNNs)

• Conventional neural networks (CNNs)

• Autoencoders (AEs)

• Generative adversarial networks (GANs)

A Python code snippet for implementing an MLP ANN using sklearn (sklearn can 
be downloaded from https://scikit-learn.org) is shown next:

Note
The GitHub link for this chapter can be found here:

https://github.com/PacktPublishing/Hands-On-
Quantum-Information-Processing-with-Python/tree/
master/Chapter08

1. The first step is to import the necessary modules for the implementation of an  
MLP ANN:

import numpy as np

from sklearn.datasets import load_digits

from sklearn.model_selection import train_test_split

from sklearn.neural_network import MLPClassifier

from sklearn.metrics import accuracy_score, 
classification_report, confusion_matrix

np.random.seed(42)

https://scikit-learn.org
https://github.com/PacktPublishing/Hands-On-Quantum-Information-Processing-with-Python/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Quantum-Information-Processing-with-Python/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Quantum-Information-Processing-with-Python/tree/master/Chapter08
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2. The data to be used for the implementation of the ANN algorithm is then loaded. 
This is followed by splitting the dataset into the training and the test data. 20% of 
the data is used to test the accuracy of the algorithm, while 80% of the data is used 
to train the model:

iris = load_digits()

X = iris.data

Y = iris.target

x_train, x_test, y_train, y_test = \

train_test_split(X,Y, test_size=0.2, random_state=42)

3. The next step is to actually implement the MLP ANN algorithm:

clf = MLPClassifier(alpha=1, max_iter=1000)

clf.fit(x_train, y_train)

y_pred = clf.predict(x_test)

4. Finally, the accuracy of the MLP ANN algorithm is explored, as shown in the 
following code snippet:

print('Accuracy is:', accuracy_score(y_test, y_pred))

print('\nClassification Report is:\n', 

      classification_report(y_test, y_pred))

print('\nConfusion Matrix is:\n', 

      confusion_matrix(y_test, y_pred))

The preceding code can be summarized as follows:

1. The first step is to import all the packages that will be used. This is followed by 
importing the dataset that will be used. In this case, the dataset to be used is the 
MNIST digits dataset, which is a popular dataset in machine learning. 

2. After importing the dataset, then pre-processing is done, followed by classifying the 
digits with an MLP classifier.

3. Finally, different performance metrics are calculated. These metrics include 
accuracy and a confusion matrix.

Now that we have provided a basic introduction to ANNs, the next step is to cover 
another machine learning algorithm, namely SVMs. 



190     Quantum Machine Learning 

Exploring SVMs 
SVMs are suitable for complex but small or medium-sized datasets. They are used to 
linearly separate data points using the property of maximum margin separator. If the 
linear separation is not possible, then the data points are projected to higher dimensions 
where linear separability is possible. This projection of data points to higher dimensions  
is done using the kernel function. 

SVMs can be used in the following tasks:

• Linear and non-linear classification

• Regression

• Anomaly detection

The Python code snippet for implementing an SVM using sklearn is as follows:

Note
The GitHub link for this chapter can be found here:

https://github.com/PacktPublishing/Hands-On-
Quantum-Information-Processing-with-Python/tree/
master/Chapter08

1. The first step in this code snippet is to import the necessary modules:

import numpy as np

from sklearn.datasets import load_digits

from sklearn.model_selection import train_test_split

from sklearn.svm import SVC

from sklearn.metrics import accuracy_score, 
classification_report, confusion_matrix

np.random.seed(42)

2. This is followed by loading the data that will be used for the SVM classification 
algorithm and splitting the data into training and test sets. In this case, 20% of  
the data will be used to test the algorithm, while 80% will be used to train the  
SVM algorithm:

iris = load_digits()

X = iris.data

https://github.com/PacktPublishing/Hands-On-Quantum-Information-Processing-with-Python/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Quantum-Information-Processing-with-Python/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Quantum-Information-Processing-with-Python/tree/master/Chapter08
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Y = iris.target

x_train, x_test, y_train, y_test = \

train_test_split(X,Y, test_size=0.2, random_state=42)

3. After splitting the data, the next step is to actually implement the SVM classifier:

clf = SVC(kernel='rbf', gamma = 0.0001, C=1e1)

clf.fit(x_train, y_train)

y_pred = clf.predict(x_test)

4. Finally, the last step is to explore the accuracy of the algorithm:

print('Accuracy is:', accuracy_score(y_test, y_pred))

print('\nClassification Report is:\n', 

      classification_report(y_test, y_pred))

print('\nConfusion Matrix is:\n', 

      confusion_matrix(y_test, y_pred))

The preceding code snippet can be summarized as follows: 

1. First, all the necessary modules are imported to the workspace, together with the 
MNIST dataset that is used.

2. The next step is to perform pre-processing.

3. Pre-processing is followed by classifying the MNIST digits with the SVM classifier.

4. Finally, accuracy and confusion matrix metrics are used to assess the performance 
of the SVM algorithm.

So far, we have covered conventional machine learning. In the next section, we will focus 
our attention on quantum machine learning.

Understanding quantum machine learning
As stated earlier in this chapter, quantum machine learning fuses together techniques 
from conventional machine learning with concepts from quantum information theory.  
This fusion of conventional machine learning and quantum information theory aims to 
improve the performance of machine learning techniques.
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Generally, depending on the kind of dataset (classical or quantum) being used and the 
computing platform/algorithm (classical or quantum) used, machine learning can be 
summarized as shown in the following figure:

Figure 8.2 – A summary of machine learning approaches

In the preceding diagram, the CC approach denotes the use of a classical dataset on 
classical hardware, while the QC approach denotes the use of a quantum dataset on  
a classical computer. On the other hand, the CQ approach denotes the use of a classical 
dataset on a quantum computer, while the QQ approach denotes the use of a quantum 
dataset on a quantum computer.

Both the CQ and QQ approaches can be considered as quantum machine learning. In this 
chapter, our focus will be on the CQ approach – the use of classical datasets on quantum 
computers. 

So far, a variety of quantum machine learning algorithms have been developed. These 
include the following:

• Quantum neural networks

• Quantum principal component analysis

• Quantum SVMs

• Variational quantum machine learning algorithms such as the variational quantum 
eigensolver (VQE) and quantum approximate optimization algorithm (QAOA)

So far, we have provided a brief introduction to quantum machine learning. We have also 
seen that in the CQ approach, a classical dataset can be used on a quantum computer. 
Next, we will discuss how classical data can be encoded so that it can be processed by  
a quantum computer.
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Data encoding
There are various ways of encoding classical data so that it can be processed on a quantum 
computer. These data encoding techniques are discussed in brief in this section. They are 
basis encoding, amplitude encoding, and Hamiltonian encoding.

Basic encoding
In basic encoding, data is encoded in the basic (computational) states of a quantum 
computer. That is, each data point is represented as the superposition of the basic states. 
This form of encoding is limited to binary data.

Amplitude encoding
On the other hand, in amplitude encoding, data is encoded on the amplitudes of  
a quantum state. Unlike basis encoding, amplitude encoding is not limited to binary  
data. However, amplitude encoding is vulnerable to noise, as the information is encoded 
in the amplitude, which might vary with noise.  

Hamiltonian encoding
Finally, in Hamiltonian encoding, data is encoded using the Hamiltonian of the system. 
That is, in this data encoding scheme, the Hamiltonian of the system is associated with  
a Hermitian matrix that represents the data.

We have briefly gone through some of the data encoding techniques. The next subsection 
will cover quantum SVMs.

Quantum SVMs
Quantum SVMs form a class of prominent quantum machine learning algorithms. In 
essence, quantum SVMs are the quantum analogs of the conventional SVMs introduced 
in the previous section. Quantum computers can speed up learning in SVMs.
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The python code snippet presented next shows the implementation of the quantum  
SVM using qiskit:

Note
The GitHub link for this chapter can be found here:

https://github.com/PacktPublishing/Hands-On-
Quantum-Information-Processing-with-Python/tree/
master/Chapter08

1. The first step involves importing the modules required for the implementation  
of the quantum SVM algorithm:

from qiskit import BasicAer

from qiskit.aqua import QuantumInstance, aqua_globals

from qiskit.aqua.algorithms import VQC, QSVM

from qiskit.aqua.components.multiclass_extensions \

import *

from qiskit.aqua.components.optimizers import COBYLA

from qiskit.aqua.components.feature_maps import 
RawFeatureVector

from qiskit.circuit.library import ZZFeatureMap, 
ZFeatureMap, PauliFeatureMap

from qiskit.ml.datasets import breast_cancer

from qiskit.circuit.library import TwoLocal

seed = 42

aqua_globals.random_seed = seed

2. This is followed by the loading of the dataset and the preparation of data 
(pre-processing) for the implementation of the quantum SVM:

feature_dim = 4  

_, training_input, test_input, _ = breast_cancer(

                                        training_size=12,

                                        test_size=4,

                                        n=feature_dim)

feature_map = ZZFeatureMap(feature_dimension=feature_dim,

https://github.com/PacktPublishing/Hands-On-Quantum-Information-Processing-with-Python/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Quantum-Information-Processing-with-Python/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Quantum-Information-Processing-with-Python/tree/master/Chapter08
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                           reps=2, entanglement='linear')

#feature_map = \

RawFeatureVector(feature_dimension=feature_dim)

qsvm = QSVM(feature_map, training_input, test_input)

3. The next step is to implement the quantum support vector algorithm and simulate 
this algorithm using 'qasm_simulator':

backend = BasicAer.get_backend('qasm_simulator')

quantum_instance = QuantumInstance(backend, shots=1024,

                                   seed_simulator=seed,

                                   seed_transpiler=seed)

result = qsvm.run(quantum_instance)

print('Testing accuracy: {:0.2f}'\

      .format(result['testing_accuracy']))

The preceding code snippet can be summarized as follows:

1. First, the required modules are imported.

2. Then a classical dataset is also imported.

3. After importing the classical dataset, the basic pre-processing measures are 
undertaken.

4. This is followed by the implementation of the quantum support vector  
machine (QSVM) algorithm, and the execution of the algorithm using  
'qasm_simulator'. 

5. Finally, the performance of the QSVM algorithm is assessed using the accuracy 
metric.

The output of this quantum SVM is shown in the following figure:

Figure 8.3 – The accuracy of the QSVM algorithm

So far, we have explored the QSVM algorithm. We have also seen how it can be 
implemented using qiskit. The next quantum machine learning algorithm to explore  
is the quantum variational classifier.
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Quantum variational classifier
The other prominent class of quantum machine learning algorithms is the quantum 
variational algorithms. Essentially, quantum variational algorithms are classical-quantum 
hybrid learning algorithms.

The python code snippet for implementing a quantum variational classifier using 
qiskit is shown as follows:

Note
The GitHub link for this chapter can be found here:

https://github.com/PacktPublishing/Hands-On-
Quantum-Information-Processing-with-Python/tree/
master/Chapter08

1. The first step in the implementation of the quantum variational classifier is to 
import the necessary modules:

from qiskit import BasicAer

from qiskit.aqua import QuantumInstance, aqua_globals

from qiskit.aqua.algorithms import VQC

from qiskit.aqua.components.optimizers import COBYLA

from qiskit.circuit.library import ZZFeatureMap,\

 ZFeatureMap, PauliFeatureMap

from qiskit.aqua.components.feature_maps import \

RawFeatureVector

from qiskit.ml.datasets import breast_cancer

from qiskit.circuit.library import TwoLocal

seed = 42

aqua_globals.random_seed = seed

2. The next step is the preparation of data for the implementation of the quantum 
variational classifier algorithm:

feature_dim = 4 # dimension of each data point

_, training_input, test_input, _ = breast_cancer(

                                        training_size=12,

                                        test_size=4,

                                        n=feature_dim)

https://github.com/PacktPublishing/Hands-On-Quantum-Information-Processing-with-Python/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Quantum-Information-Processing-with-Python/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Quantum-Information-Processing-with-Python/tree/master/Chapter08
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feature_map = \

RawFeatureVector(feature_dimension=feature_dim)

vqc = VQC(COBYLA(maxiter=1000), feature_map,

          TwoLocal(feature_map.num_qubits, ['ry', 'rz'],

                   'cz', reps=3),

          training_input,

          test_input)

3. The quantum variational classifier is then simulated using the 'qasm_
simulator':

backend = BasicAer.get_backend('qasm_simulator')

quantum_instance = QuantumInstance(backend, shots=1024,

                                   seed_simulator=seed,

                                   seed_transpiler=seed)

result = vqc.run(quantum_instance)

print('Testing accuracy: {:0.2f}'\

      .format(result['testing_accuracy']))

The previous code is similar to the QSVM code discussed earlier. However, there are two 
key differences. The first difference is that in the case of the quantum SVM, the python 
class that is being used is the QSVM() class, while in the case of the quantum variational 
classifier, the python class that is being used is the VQC() class. 

Another key difference is that in the case of the quantum variational classifier, several 
optimization techniques are available. These optimization techniques are as follows:

• The Constrained Optimization by Linear Approximation (COBYLA) optimizer

• The Sequential Least Squares Quadratic Programming (SLSQP) optimizer

• The Simultaneous Perturbation Stochastic Approximation (SPSA) optimizer

The technique used in the previous code is the COBYLA optimizer. On the other hand, 
the QSVM technique only uses the SPSA optimizer.
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The following figure shows the output obtained from implementing the quantum 
variational classifier:

Figure 8.4 – The accuracy of the quantum variational classifier algorithm 

We have now come to the end of this chapter. The next section summarizes what was 
covered in this chapter.

Summary
In this chapter, we have covered the basics of both classical machine learning and 
quantum machine learning. We have learned that quantum information theory can be 
fused with computer science in order to improve the performance of machine learning 
techniques. Furthermore, we have provided and discussed Python implementations  
of two quantum machine learning techniques. These quantum machine learning 
techniques are quantum SVMs and quantum variational classifiers.

In the next chapter, we will cover another aspect of QIP, but this time we will be using 
continuous-variable quantum systems instead of the qubit-based quantum systems 
discussed up to this point. 

Further reading
• Schuld, M., & Petruccione, F. (2018). Supervised learning with quantum computers 

(Vol. 17). Springer.

• Senekane, Makhamisa, Motobatsi Maseli, and Molibeli Benedict Taele. Noisy, 
Intermediate-Scale Quantum Computing and Industrial Revolution 4.0. In The 
Disruptive Fourth Industrial Revolution, pp. 205-225. Springer, Cham, 2020.

• Bishop, Christopher M. Pattern recognition and machine learning. Springer, 2006.
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Continuous-

Variable Quantum 
Information 

Processing
Quantum systems can have either a discrete-variable or continuous-variable spectrum. 

In this chapter, we begin by introducing the continuous-variable quantum information 
processing (QIP) field. Furthermore, we will also cover the key concepts and ideas in 
continuous-variable QIP. 

We will cover the following topics in this chapter:

• Introducing continuous-variable quantum information processing

• Understanding the theory of continuous-variable quantum systems

• Exploring continuous-variable quantum teleportation

• Continuous-variable quantum key distribution

• Understanding continuous-variable quantum machine learning
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At the end of this chapter, you should be able to do the following:

• Differentiate between discrete-variable QIP and continuous-variable QIP.

• Understand key ideas and concepts in continuous-variable QIP.

In the next section, we will cover the necessary technical requirements that will make it 
possible for you to follow this chapter. 

Technical requirements
The requirements for this chapter are the following: 

• A basic understanding of the Python programming language

• Navigation of Google's Colab environment

The GitHub link for this chapter can be found here:

https://github.com/PacktPublishing/Hands-On-Quantum-
Information-Processing-with-Python/tree/master/Chapter09

The next section provides an introduction to continuous-variable QIP.

Introducing continuous-variable quantum 
information processing
So far, we have only focused on QIP using qubits. As we stated earlier in this book, a qubit 
can exist in a two-dimensional (finite) Hilbert space (refer to Chapter 2, Quantum States, 
Operations, and Measurements, for further details on qubits). This implies that QIP using 
qubits is an example of a discrete-variable QIP. 

Another approach to QIP involves the use of quantum systems that exist in  
infinite-dimensional Hilbert space. That is, unlike the discrete-variable QIP – where 
information is in discrete quantum systems such as qubits, in continuous-variable QIP 
Hilbert space (and hence quantum states with a continuous basis). 

Let's recall that for quantum systems in two-dimensional Hilbert space, the unit of 
quantum information is the qubit. On the other hand, the unit of information for  
a continuous-variable quantum system is the qumode. 

https://github.com/PacktPublishing/Hands-On-Quantum-Information-Processing-with-Python/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Quantum-Information-Processing-with-Python/tree/master/Chapter09
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We have just briefly contrasted continuous-variable quantum computing with  
discrete-variable quantum computing. It is now important to further explore the  
former (continuous-variable quantum computing). This exploration of the theory  
of continuous-variable QIP is done next. 

Understanding the theory of  
continuous-variable quantum systems
In essence, discrete-variable QIP can be thought of as digital QIP. On the other hand, 
continuous-variable QIP can be thought of as "analog" QIP. This owes to the fact that the 
former uses quantum states in finite-dimensional Hilbert space (hence digital) while the 
latter uses quantum states in infinite-dimensional Hilbert space (hence analog). 

Its compact nature and versatility are two of the key benefits of using the  
continuous-variable QIP framework. This owes to the fact that in continuous-variable 
QIP, information is encoded in the systems with continuous degrees of freedom (such 
as the quantum states/amplitudes of the electromagnetic field), and the physical systems 
realize the QIP framework is readily available in nature.

Another key advantage of this framework is that it leverages the wave-like properties 
of nature. This in turn makes continuous-variable QIP suited to the photonic 
implementation of the QIP.

Just like in discrete-variable quantum systems such as qubits, where the computational 
basis states are given as |0> and |1>, in continuous-variable quantum systems, we can also 
construct the qumodes |x>x such that: 

𝑥𝑥 ∈ 𝑅𝑅 

 
In essence, the qumode states |x>x are the eigenstates of an operator 𝑥𝑥 . The operator 𝑥𝑥  
has a continuous spectrum. Examples of this operator include position, momentum, and 
quadrature operators (position and momentum quadratures) of an electromagnetic field. 

In reality, the eigenstates of the position and momentum operators are not physical. 
Therefore, in practice, the position and momentum coherent quadratures of an 
electromagnetic field are used. Finally, the output of the result of a continuous-variable 
quantum operation is obtained by measuring the observables of the operator 𝑥𝑥 . 

Now that we have provided a basic introduction to the theory of continuous-variable QIP, 
the next section will cover one of the fields of application of continuous-variable quantum 
information, namely continuous-variable quantum teleportation.
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Exploring continuous-variable quantum 
teleportation
We shall recall that quantum teleportation is used to transfer/transport an arbitrary 
quantum state (either a qubit or qumode) from Alice to Bob, who are separated by 
an arbitrary distance. Earlier in this book (Chapter 3, Entanglement and Quantum 
Teleportation), we discussed quantum teleportation in the context of discrete-variable QIP.

In this section, we will discuss quantum teleportation using the continuous-variable  
QIP framework. Let's recall that quantum teleportation requires the use of entangled 
quantum states and the classical channel. The entanglement required is possible in the 
discrete-variable QIP framework, but not practical in continuous-variable QIP. 

In the continuous-variable QIP setting, quantum teleportation is realized through the 
following procedure, depicted by the circuit:

Figure 9.1 – A circuit diagram for the implementation of continuous-variable quantum teleportation

The preceding circuit can be summarized by the series of steps, and these steps are stated 
as follows: 

1. First, the objective is to transmit the arbitrary qumode |ψ> using two qumodes |ψ>p 
and |ψ>x for Alice and Bob respectively. 

2. After initializing Alice's and Bob's qumodes, these qumodes are then maximally 
entangled using a beam-splitter. This is labeled as BS1 in Figure 9.1.

3. The next step after entangling the two qumodes to the maximum degree from Alice 
to Bob is to separate Alice and Bob by an arbitrary distance. However, just as in 
the case of discrete-variable quantum teleportation, Alice and Bob are still able to 
communicate using the classical channel. This step is then followed by the actual 
teleportation of an arbitrary qumode state from Alice to Bob. In order to do this, 
Alice entangles the part of an entangled pair to the maximum degree on her side 
with the arbitrary state to be teleported. This is also done through the use of the 
beam-splitter (labeled BS2 in Figure 9.1). Once this is done, Alice then performs  
a measurement on her side.
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4. Finally, Alice sends the results of her measurement over a classical channel to Bob. 
Bob then uses the information received from Alice to perform a series of operations 
on his entangled qumode in order to recover the teleported qumode state. 

The Python code snippet for implementing continuous-variable quantum teleportation 
using Strawberry Fields is shown next:

Note
This code is taken from https://strawberryfields.ai/
photonics/demos/run_teleportation.html.

The GitHub link for this chapter can be found here:

https://github.com/PacktPublishing/Hands-On-
Quantum-Information-Processing-with-Python/tree/
master/Chapter09

1. The first step in this code is to import the modules that are necessary for the 
implementation of the continuous-variable quantum teleportation:

import strawberryfields as sf

from strawberryfields.ops import *

import numpy as np

from numpy import pi, sqrt

from matplotlib import pyplot as plt

np.random.seed(42) 

2. The next step involves the initialization phase of the circuit used for the 
implementation of continuous-variable quantum teleportation. In this case, the 
circuit uses three quantum registers:

prog = sf.Program(3) 

alpha = 1+0.5j

r = np.abs(alpha)

phi = np.angle(alpha)

with prog.context as q:

    Coherent(r, phi) | q[0]

https://strawberryfields.ai/photonics/demos/run_teleportation.html
https://strawberryfields.ai/photonics/demos/run_teleportation.html
https://github.com/PacktPublishing/Hands-On-Quantum-Information-Processing-with-Python/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Quantum-Information-Processing-with-Python/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Quantum-Information-Processing-with-Python/tree/master/Chapter09
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    Squeezed(-2) | q[1]

    Squeezed(2) | q[2]

3. After the initialization stage, the next step is to construct the quantum circuit to be 
used for the implementation of quantum teleportation, as summarized in Figure 9.1:

    BS = BSgate(pi/4, pi)

    BS | (q[1], q[2])

    BS | (q[0], q[1])

    MeasureX | q[0]

    MeasureP | q[1]

    Xgate(sqrt(2) * q[0].par) | q[2]

    Zgate(sqrt(2) * q[1].par) | q[2]

4. Finally, continuous-variable quantum teleportation is simulated using Xanadu's 
Strawberry Fields framework. The results obtained are then displayed: 

engine = sf.Engine('fock', 

                   backend_options={"cutoff_dim": 15}) 

result = engine.run(prog, shots=1, modes=None, 

                    compile_options={})

print(result.samples)

print(result.state)

state = result.state

print(state.dm().shape)

rho2 = np.einsum('kkllij->ij', state.dm())

print(rho2.shape)

probs = np.real_if_close(np.diagonal(rho2))

print(probs)

plt.bar(range(7), probs[:7])

plt.xlabel('Fock state')

plt.ylabel('Marginal probability')
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plt.title('Mode 2')

plt.show()

fock_probs = state.all_fock_probs()

fock_probs.shape

np.sum(fock_probs, axis=(0,1))

We have now discussed the implementation of continuous-variable quantum 
teleportation. Furthermore, we have explored how continuous-variable quantum 
teleportation can be implemented using the Strawberry Fields framework. The next 
section will cover continuous-variable quantum game theory. 

Understanding continuous-variable quantum 
game theory
Earlier in this book (Chapter 6, Non-Local Quantum Games), we covered the quantization 
of conventional games into discrete-variable quantum games. Now it is time to introduce 
yet another way of implementing quantum games. However, this time around, our focus 
will be on the implementation of quantum games using the continuous-variable approach. 
Therefore, in this section, we will explore the quantization of conventional games, but this 
time around, quantizing them into continuous-variable quantum games. 

The key difference between the discrete-variable approach to quantum games and 
the continuous-variable approach to quantum games lies in the strategy used in each 
approach (access to strategic space for the players). In the former approach, the number  
of strategies that the players can use is finite. On the other hand, in the latter approach, 
there is a continuum of strategies that the players can choose from. Therefore, since 
the players in the continuous-variable quantum games have access to a continuum of 
strategies, such games can use infinite-dimensional quantum systems (qumodes) instead 
of finite-dimensional systems such as qubits.

The continuous-variable quantum games approach provides a more realistic quantization 
of the conventional games than its discrete-variable counterpart. This is due to the fact 
that in real-life settings, several cases are represented by the games in which players have 
access to a continuum of strategies. 
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In this section, we have provided a brief introduction to continuous-variable quantum 
game theory. Having introduced the theory on continuous-variable quantum games here, 
you should now be in a position to fully appreciate the difference between  
discrete-variable quantum game theory (covered in Chapter 6, Non-local Quantum 
Games) and the continuous-variable quantum game theory covered in this chapter. 
Furthermore, you should now be in a position to appreciate the application of  
continuous-variable QIP to the field of quantum game theory. 

In the next section, we will cover the use of infinite-dimensional quantum systems for 
application in quantum cryptography. Specifically, we will cover continuous-variable 
quantum key distribution. 

Continuous-variable quantum key distribution
We have already learned about Quantum Key Distribution (QKD) using qubits, in 
Chapter 7, Quantum Cryptography. Now it is time to explore the use of qumodes for 
the implementation of QKD. Therefore, in this section, we will turn our attention to 
continuous-variable QKD. 

Continuous-variable QKD relies on continuous-variable quantum systems (coherent 
quantum states) and either homodyne or heterodyne detection/measurement. Succinctly, 
both homodyne and heterodyne detection use the input signal and the frequency mixer 
(this frequency mixer is typically called a local oscillator) in order to detect/measure 
a quantum signal. Homodyne detection uses the same frequency for both the input 
signal and the local oscillator. On the other hand, heterodyne detection uses different 
frequencies for the input signal and the local oscillator.

Continuous-variable QKD offers some advantages over discrete-variable QKD. These 
benefits are highlighted here:

• The first advantage of continuous-variable QKD over discrete-variable QKD is that 
the former uses a relatively simpler hardware setup compared to the latter. 

• Additionally, continuous-variable QKD has the capability to generate higher secret 
key rates than discrete-variable QKD. 

• Another advantage of continuous-variable QKD over discrete-variable QKD 
concerns the choice of photon sources that can be used. Unlike in the latter,  
where the use of single-photon sources is necessary, this is not the case with 
continuous-variable QKD. 
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The operation of the continuous-variable QKD exchange between Alice and Bob can be 
summarized as follows:

1. Alice first randomly selects the position and momentum variables. She then uses 
these random variables to prepare coherent states.

2. Alice then sends the prepared coherent states over to Bob over a noisy channel.

3. On the other side, Bob performs either homodyne or heterodyne measurement, 
choosing position and momentum bases at random. 

4. Finally, Alice and Bob communicate over a classical channel, to perform classical 
post-processing. 

In this section, we have provided background information on continuous-variable QKD. 
In the next section, we will explore another field of continuous-variable QIP, namely 
continuous-variable quantum machine learning. 

Understanding continuous-variable quantum 
machine learning
In this section, we discuss the continuous-variable version of quantum machine learning. 
As we have already learned, this approach to machine learning uses continuous variable 
quantum systems instead of discrete variable quantum systems such as a qubit. 

One of the software toolkits that can be used to implement continuous-variable  
quantum machine learning is the PennyLane framework. This framework supports both 
discrete-variable quantum machine learning and continuous-variable quantum machine 
learning. Furthermore, the PennyLane software toolkit, which is based on the Python 
programming language, also supports classical-quantum hybrid algorithms such as 
variational algorithms. 
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The following code snippet shows the use of Python and the PennyLane framework in the 
design of the quantum variational algorithm that is used to find the ground state of the 
hydrogen molecule:

Note
The following code is taken from www.pennylane.ai.

The GitHub link for this chapter can be found here:

https://github.com/PacktPublishing/Hands-On-
Quantum-Information-Processing-with-Python/tree/
master/Chapter09

1. The first step is to import the necessary modules:

#hydrogen variational quantum eigensolver

import pennylane as qml

from pennylane import numpy as np 

2. The next step involves the description/specification of the hydrogen molecule to be 
used in this algorithm:

geometry = 'h2.xyz'

name ='h2'

charge = 0

multiplicity=1

basis= 'sto-3g' 

h, nr_qubits = qml.qchem.generate_hamiltonian(

    name,

    geometry,

    charge,

    multiplicity,

    basis,

    mapping='jordan_wigner',

    n_active_orbitals=2,

    n_active_electrons=2,

)

print("Hamiltonian is: \n", h)

print("Number of qubits is: \n", nr_qubits)

http://www.pennylane.ai
https://github.com/PacktPublishing/Hands-On-Quantum-Information-Processing-with-Python/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Quantum-Information-Processing-with-Python/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Quantum-Information-Processing-with-Python/tree/master/Chapter09
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3. After specifying the hydrogen molecule, the next step is to formulate an ansatz.  
An ansatz is a rough guess of the state of the hydrogen molecule. It is used as  
a starting point of the quantum variational algorithm, and then the hydrogen 
system is optimized from there until the ground state (the lowest-energy state)  
is found:

dev = qml.device('default.qubit', wires=nr_qubits)

def ansatz(params, wires):

    qml.BasisState(np.array([1, 1, 0, 0]), wires=wires)

    for i in wires:

        qml.Rot(*params[i], wires=i)

    qml.CNOT(wires=[2, 3])

    qml.CNOT(wires=[2, 0])

    qml.CNOT(wires=[3, 1])

cost_fn = qml.VQECost(ansatz, h, dev)    

4. This is then followed by the implementation of the quantum variational algorithm:

opt = qml.GradientDescentOptimizer(stepsize=0.4)

np.random.seed(42)

params = np.random.normal(0, np.pi, (nr_qubits, 3))

print(params)

max_iterations = 250

step_size = 0.05

conv_tol = 1e-06

prev_energy = cost_fn(params)

for n in range(max_iterations):

    params = opt.step(cost_fn, params)

    energy = cost_fn(params)

    conv = np.abs(energy - prev_energy)

    if n % 20 == 0:
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        print('Iteration = {:}, 

              Ground-state energy = {:.8f} Ha,

              Convergence parameter = {'':.8f} Ha'\

              .format(n, energy, conv))

    if conv <= conv_tol:

        break

    prev_energy = energy

5. Finally, the results obtained are displayed:

print()

print('Final convergence parameter = {:.8f} Ha'\

      .format(conv))

print('Final value of the ground-state energy = \

      {:.8f} Ha'.format(energy))

print('Accuracy with respect to the FCI energy: \

      {:.8f} Ha ({:.8f} kcal/mol)'.format(

          np.abs(energy - (-1.136189454088)), \

          np.abs(energy - (-1.136189454088))*627.503))

print()

print('Final circuit parameters = \n', params)

The implementation of this VQE algorithm starts with the initialization of an ansatz, 
which is then trained, with the objective of finding the ground state of the hydrogen 
molecule. Finally, the VQE circuit is optimized, with the optimization being run for 250 
steps. The results obtained are then given. 

The results obtained from executing this VQE algorithm are shown in the following figure:

Figure 9.2 – Results obtained from implementing the VQE algorithm
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In this section, we have explored continuous-variable quantum machine learning. 
Furthermore, we have discussed the Python implementation of the continuous-variable 
quantum eigensolver using Xanadu's PennyLane. The next section summarizes this 
chapter.

Summary
In this chapter, we covered continuous-variable QIP. We first drew on the difference 
between continuous-variable QIP and the discrete-variable QIP covered in the early 
chapters of this book. Furthermore, we discussed various fields of continuous-variable 
QIP, such as continuous-variable quantum teleportation, continuous-variable quantum 
game theory, continuous-variable QKD, and continuous-variable quantum machine 
learning.

In the next chapter, we will conclude this book. We will cover the current trends in QIP 
and try to explore the future prospects of QIP.    

Further reading
• Schuld, Maria and Petruccione, Francesco. Supervised learning with quantum 

computers. Springer, 2018.

• Killoran, Nathan, Josh Izaac, Nicolás Quesada, Ville Bergholm, Matthew Amy, and 
Christian Weedbrook. Strawberry Fields: A software platform for photonic quantum 
computing. Quantum 3 (2019): 129.

• Bergholm, Ville, Josh Izaac, Maria Schuld, Christian Gogolin, Carsten Blank, Keri 
McKiernan, and Nathan Killoran. Pennylane: Automatic differentiation of hybrid 
quantum-classical computations. arXiv preprint arXiv:1811.04968 (2018).





10 
Current Trends 

in Quantum 
Information 

Processing
In this chapter, which concludes this book, we will focus on the current trends in 
quantum information processing (QIP). This will cover trends in various fields of QIP. 
Furthermore, we will explore the future prospects of various fields of QIP. 

At the end of this chapter, you will have a rough picture of the direction that QIP is taking. 
Furthermore, you should be in a position to fully appreciate the current trends in various 
fields of QIP.

In this chapter, we will cover the following topics:

• Exploring current trends in quantum cryptography

• Exploring current trends in quantum communication

• Understanding current trends in quantum algorithm design
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• Exploring current trends in quantum machine learning

• Understanding current trends in quantum computing hardware technologies

• Future prospects of QIP

Exploring current trends in quantum 
cryptography
The key progress in quantum cryptography is mainly in quantum key distribution 
(QKD). This progress is both on the practical implementation side and in the theoretical 
security analysis of QKD. In this section, we will highlight some of these trends. 

One of the serious advances of QKD is in its application to real-world problems. In 2007, 
QKD was used to secure elections in Geneva, Switzerland. This QKD implementation 
project was led by the University of Geneva. Three years later, QKD was used to secure 
communications in Durban, South Africa, during the soccer World Cup. This project was 
spearheaded by the University of KwaZulu-Natal.

These two implementations of QKD (the 2007 Geneva implementation of QKD and 
the 2010 Durban implementation of QKD) propelled the cybersecurity community to 
seriously consider the significance and viability of quantum cryptography. However, the 
research in QKD was mainly limited to university campuses. 

With the successful demonstration of QKD networks across various university campuses, 
the need arose for spin-off companies to commercialize QKD. One of the leading QKD 
spin-off companies is ID Quantique from Switzerland, which is a spin-off company from 
the University of Geneva.  

Another current key area of interest in quantum cryptography is the use of QKD for 
communication between parties separated by long distances. One project of note in 
this respect is one pursued by China. The objective of this project is to enable QKD 
communication between the ground and satellites in space. Ultimately, the project would 
make it possible to have secure inter-continental communication that implements QKD. 

QKD can also be implemented using higher-dimensional discrete quantum systems. These 
systems are generally called qudits. It should be easy to observe that a qubit is an example 
of a qudit in two-dimensional Hilbert space. 

In essence, a qudit is a generalization of a qubit. Recall that in Chapter 1, Getting Started 
with Quantum Information Processing, we stated that a qubit is a unit of quantum 
information that exists in two-dimensional Hilbert space. On the other hand, a qudit 
exists in any finite-dimensional Hilbert space. This means that a qubit is a special case  
of a qudit, with a dimension of two (since it exists in two-dimensional Hilbert space).
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Having stated that QKD can also be implemented using qudit systems instead of just the 
normal qubit systems, let's now briefly explore why and how this can be done. The use of 
higher-dimensional quantum systems (as opposed to qubits) in order to implement QKD 
has a few benefits. These benefits include improved information capacity per quantum 
system, a high key generation rate, improved security, and improved robustness against 
noise. Typically, a photon's orbital angular momentum is used for the implementation of 
higher-dimensional QKD. 

The quantum cryptography trends covered thus far are concerned with the 
implementation aspect of QKD. However, as already stated, the trends in QKD are not 
only limited to the implementation part of QKD but also involve the theoretical advances 
in QKD. Therefore, it is important to also discuss the current trends in the theoretical 
aspects of QKD. 

The security aspect of QKD is concerned with the analysis of the security of the QKD 
protocols under various assumptions. The current approach is to make assumptions about 
the devices to be used in QKD to be as realistic as possible, and then assess the security  
of the QKD protocols based on such assumptions. 

In this section, we have briefly explored the current trends in quantum cryptography. 
The discussion was limited to QKD since it is the most successful and advanced primitive 
of quantum cryptography. In the next section, we will explore the trends in quantum 
communication. 

Exploring current trends in quantum 
communication
Another aspect of QIP that is attracting a lot of attention is quantum communication.  
In this section, our focus will be on quantum networking, which is also referred to as the 
quantum internet. 

The key objective of the quantum internet is to enable the transfer of the quantum state 
from the source to the destination, through the use of various intermediary nodes, 
which are entangled. These intermediary nodes are called quantum repeaters. Quantum 
repeaters are central to the proper operation of the quantum internet. 

At a very basic level, the quantum internet can be thought of as a network that connects 
various potentially heterogeneous quantum networks into one quantum network, 
to enable communication among various quantum networks. It is worth noting that 
currently, there is no practical implementation of any quantum internet. Thus, the 
quantum internet is currently approached from a theoretical perspective, not from an 
implementation perspective. 
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Now that we have provided a brief exposition of the quantum internet in this section, the 
next section will explore the current trends in quantum algorithm design. 

Understanding current trends in quantum 
algorithm design
One of the key objectives of exploring quantum algorithms is to design algorithms 
that make use of quantum mechanics to outperform their non-quantum counterparts. 
Currently, quantum algorithm design is an active area of research. In this section, we will 
explore the current trends in quantum algorithm design. 

Quantum computing algorithms can be implemented in the following fields:

• Cryptography: For developing cryptographic schemes that provide better security 
than their conventional counterparts

• Search and optimization: For developing quantum optimization systems that are 
more efficient than their conventional counterparts

• Simulating quantum systems: For better understanding the behavior of quantum 
systems

• Solving large systems of linear equations: For developing mathematical algorithms 
for systems that outweigh their conventional counterparts in terms of performance

In the next section, we will discuss the current trends in quantum machine learning. 

Exploring current trends in quantum machine 
learning
Like other fields of QIP, quantum machine learning is also gaining traction, both in 
the theoretical and the practical aspects of it. In this section, we will first explore the 
theoretical aspects of quantum machine learning and then move on to its practical 
aspects. 

The theoretical aspect of quantum machine learning concerns the design of quantum 
machine learning algorithms such as quantum support vector machines and quantum 
neural networks. Furthermore, this aspect involves the assessment of the designed 
quantum machine learning algorithms in order to ascertain whether they offer a quantum 
advantage over their classical counterparts. Currently, a variety of quantum machine 
learning algorithms have been proposed in the literature. 
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On the other hand, the practical aspect of quantum machine learning is concerned with 
the application of quantum machine learning problems to solve real-world problems. 
Currently, quantum machine learning has been used to solve, among others, some of the 
following problems:

• Quantum chemistry and materials science to better understand the behavior of 
atoms and molecules

• Drug discovery in medicine in order to come up with new drugs for the treatment 
of diseases

• Optimization for more efficient search and optimization algorithms

• Portfolio optimization in finance

In this section, we briefly discussed the current trends in quantum machine learning.  
In the next section, we will shift our focus toward the current trends in quantum 
computing hardware technologies. 

Understanding current trends in quantum 
computing hardware technologies
In this section, we offer a brief overview of the quantum systems that can be used as basic 
units of information in quantum computing. We should recall that quantum computing 
can be realized using either discrete-variable quantum systems (such as qubits) or 
continuous-variable quantum systems (such as qumodes). 

For qubit-based, discrete-variable quantum computing, among others, the following 
quantum systems can be used to realize the qubit: 

• Nuclear magnetic resonance 

• Trapped atoms or ions 

• Superconducting circuits 

• Photon polarization 

• Non-Abelian anyons

On the other hand, the quantum computing hardware technology used to implement 
continuous-variable quantum computing is different from the ones discussed here. 
Currently, continuous-variable quantum computing uses photons as the physical quantum 
systems for implementing qumodes (refer to the previous chapter for further details on 
continuous-variable quantum computing). 
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In this section, we have briefly discussed the current trends in quantum computing 
hardware technologies. In the next section, we will cover the future prospects  
of QIP. 

Exploring the future prospects of QIP
Various fields of QIP have gained traction lately. The future of these fields offers several 
opportunities. For instance, with quantum cryptography, there is a possibility that the 
technology can have applications in areas where security is an absolute necessity. These 
areas include lotteries and banking.

Furthermore, in the future, more quantum cryptography primitives beyond QKD are 
likely to be the subject of investigation by QIP researchers. Additionally, more emphasis 
will be put on the implementation of long-distance quantum cryptography networks. This 
will likely be followed by attempts to physically implement the quantum internet, which 
will be used to connect various potentially heterogeneous quantum networks.

Concerning quantum computing, we should expect more strides into the design of more 
powerful quantum computing algorithms. We should also expect more progress to be 
made with the design of fault-tolerant quantum computing that will replace the currently 
used noisy intermediate-scale quantum (NISQ) computers. Furthermore, we should 
see the further mainstreaming of quantum computing as a key driving technology of the 
fourth industrial revolution (4IR). 

Quantum machine learning is likely to receive the attention of researchers in QIP.  
We are likely to see more quantum machine learning algorithms to address various  
real-world problems. Since the datasets that would be used in quantum machine learning 
might be sensitive, I anticipate that there will be more emphasis on the development of 
privacy-preserving quantum machine learning algorithms.  

Finally, there is a possibility that advances in QIP might lead to quantum-inspired 
algorithms that can be implemented on conventional computers.  

Summary
Congratulations on making it to the end of this chapter and this book! I hope this book 
was worth your while. Now that we are nearing the end of this book, let me provide a brief 
summary of this chapter, and what is expected of you now that you have gone through the 
various chapters of this book.

In this chapter, we explored and discussed the different research paths pursued by various 
researchers and the various technological advancements related to the field of QIP. 
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Additionally, in this chapter, we discussed the future prospects of QIP. We discussed the 
likely prospects of quantum cryptography, quantum computing, and quantum machine 
learning. 

This chapter concludes this book. It is my hope that you enjoyed reading this book! 
I strongly believe that you will use the knowledge provided in this book to make 
contributions to the various fields of QIP covered in this book. 

Further reading 
• Van Meter, Rodney. Quantum networking. John Wiley & Sons, 2014.

• Senekane, Makhamisa, Mhlambululi Mafu, and Benedict Molibeli Taele.  
Privacy-preserving quantum machine learning using differential privacy. In 2017 
IEEE AFRICON, pp. 1432-1435. IEEE, 2017.

• Sutor, R.S. (2019). Dancing with Qubits: How Quantum Computing Works and How 
It Can Change the World. Birmingham, UK: Packt Publishing.

• Moran, C.C. (2019). Mastering Quantum computing with IBM QX. Birmingham, 
UK: Packt Publishing.
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