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Preface

About

This section briefly introduces the authors, the coverage of this book, the technical skills you'll
need to get started, and the hardware and software requirements required to complete all of
the included activities and exercises.
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About the Book

With so much data being continuously generated, developers who present data

as impactful and interesting visualizations, are always in demand. Interactive Data
Visualization with Python, Second Edition, sharpens your data exploration skills and
provides an excellent takeoff in your remarkable journey of creating interactive data
visualizations with Python.

You'll begin by learning how to draw various plots with Matplotlib and Seaborn, the
non-interactive data visualization libraries. You'll study different types of visualizations,
compare them, and learn how to select a particular type of visualization to suit your
requirements. After you get a hang of the various non-interactive visualization libraries,
you'll learn the principles of intuitive and persuasive data visualization, and use Altair,
Bokeh and Plotly to transform your visuals into strong stories.

By the end of the book, you'll have a new skill set that'll make you the go-to person for
transforming data visualizations into engaging and interesting stories.

About the Authors

Abha Belorkar is an educator and researcher in computer science. She received her
bachelor's degree in computer science from Birla Institute of Technology and Science
Pilani, India and her Ph.D. from the National University of Singapore. Her current
research work involves the development of methods powered by statistics, machine
learning, and data visualization techniques to derive insights from heterogeneous
genomics data on neurodegenerative diseases.

Sharath Chandra Guntuku is a researcher in natural language processing and
multimedia computing. He received his bachelor's degree in computer science from
Birla Institute of Technology and Science, Pilani, India and his Ph.D. from Nanyang
Technological University, Singapore. His research aims to leverage large-scale social
media image and text data to model social health outcomes and psychological traits. He
uses machine learning, statistical analysis, natural language processing, and computer
vision to answer questions pertaining to health and psychology in individuals and
communities.

Shubhangi Hora is a Python developer, artificial intelligence enthusiast, data scientist,
and writer. With a background in computer science and psychology, she is particularly
passionate about mental health-related Al. Apart from this, she is interested in the
performing arts and is a trained musician.
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Anshu Kumar is a data scientist with over 5 years of experience in solving complex
problems in natural language processing and recommendation systems. He has an
M.Tech. from Indian Institute of Technology, Madras in computer science. He is also
a mentor at SpringBoard. His current interests are building semantic search, text
summarization, and content recommendations for large-scale multilingual datasets.

Learning Objectives
By the end of this book, you will be able to:

» Explore and apply different static and interactive data visualization techniques

» Make effective use of plot types and features from the Matplotlib, Seaborn, Altair,
Bokeh, and Plotly libraries

* Master the art of selecting appropriate plotting parameters and styles to create
attractive plots

* Choose meaningful and informative ways to present your stories through data
» Customize data visualization for specific scenarios, contexts, and audiences

* Avoid common errors and slip-ups in visualizing data

Audience

This book intends to provide a solid training ground for Python developers, data
analysts, and data scientists to enable them to present critical data insights in a way
that best captures the user's attention and imagination. It serves as a simple step-by-
step guide that demonstrates the different types and components of visualization, the
principles and techniques of effective interactivity, as well as common pitfalls to avoid
when creating interactive data visualizations.

Students should have an intermediate level of competency in writing Python code, as
well as some familiarity with using libraries such as pandas.

Approach

Resources for learning interactive data visualization are scarce. Moreover, the materials
that are available either deal with tools other than Python (for example, Tableau), or
focus on a single Python library for visualization. This book is the first of its kind to
present a variety of options for building interactive data visualizations with Python.
Moreover, the method of presentation is simple and accessible for anyone who is well
versed in Python.
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The book follows an engaging syllabus as the reader is systematically led through the
various steps and aspects of interactive visualization with a series of realistic case
studies. The book is packed with actionable information throughout, and programming
activities are supplemented with helpful tips and advice on the capabilities and
limitations of the tools being used.

Hardware Requirements

For an optimal experience, we recommend the following hardware configuration:

* Intel® Core™ i5 processor 4300M at 2.60 GHz or 2.59 GHz (1 socket, 2 cores, 2
threads per core) and 8 GB of DRAM

* Intel® Xeon® processor E5-2698 v3 at 2.30 GHz (2 sockets, 16 cores each, 1 thread
per core) and 64 GB of DRAM

* Intel® Xeon Phi™ processor 7210 at 1.30 GHz (1 socket, 64 cores, 4 threads per
core), 32 GB of DRAM, and 16 GB of MCDRAM (flat mode enabled)

* Disk space: 2 to 3 GB
* Operating systems: Windows® 10, macOS, and Linux
Minimum System Requirements:
* Processors: Intel Atom® processor or Intel® Core™ i3 processor
* Disk space: 1 GB

* Operating systems: Windows 7 or later, macOS, and Linux

Software Requirements
We also recommend that you have the following software installed in advance:
* Browser: Google Chrome or Mozilla Firefox
* The latest version of Git
* Anaconda 3.7 Python distribution
e Python 3.7

* The following Python libraries installed: numpy, pandas, matplotlib, seaborn,
plotly, bokeh, altair, and geopandas
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Conventions

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:

"Python performs advanced numerical and scientific computations with libraries

such as numpy and scipy, hosts a wide array of machine learning methods owing to
the availability of the scikit-learn package, provides a great interface for big data
manipulation due to the availability of the pandas package and its compatibility with
Apache Spark, and generates aesthetically pleasing plots and figures with libraries such
as seaborn, plotly, and more.

A block of code is set as follows:
#import the python modules
import seaborn as sns
#load the dataset
diamonds df = sns.load dataset ('diamonds')
#Plot a histogram

diamonds df.hist (column='carat')
New terms and important words are shown in bold:
"The kernel density estimation is a non-parametric way to estimate the probability
density function of a random variable."
Installation and Setup

Before we begin this journey of visualizing various types of data through different
graphs and interactive features, we need to be prepared with the most productive
environment. Follow these notes to learn how to do that:

Installing the Anaconda Python Distribution

Find the Anaconda version for your operating system on the official installation page at
https: //www.anaconda.com /distribution/.

After the download is complete, double-click on the file to open the installer and follow
the prompts displayed on your screen.


https://www.anaconda.com/distribution/
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Installing pip

1. To install pip, go to the following link and download the get-pip.py file: https: //
pip.pypa.io/en/stable/installing /.

2. Then, use the following command to install it: python get-pip.py.

You might need to use the python3 get-pip.py command, as previous versions of
Python on your computer already use the Python command.

Installing the Python Libraries

Use the following command in your Anaconda terminal to install Seaborn:

pip install seaborn

Use the following command in your Anaconda terminal to install Bokeh:

pip install bokeh

Use the following command in your Anaconda terminal to install Plotly:

pip install plotly==4.1.0
Working with JupyterLab and Jupyter Notebook

You'll be working on different exercises and activities in Jupyter Lab or Notebook. These
exercises and activities can be downloaded from the related GitHub repository.

You can download the repository here: https: //github.com /TrainingByPackt/
Interactive-Data-Visualization-with-Python.

You can either download it using GitHub or as a zipped folder by clicking on the green
clone or download button in the top-right corner. In order to open Jupyter Notebooks,
you have to traverse into the directory with your terminal. To do that, type the
following:

cd Interactive-Data-Visualization-with-Python/<your current chapter>.

For example:

cd Interactive-Data-Visualization-with-Python/Chapter01/


https://pip.pypa.io/en/stable/installing/
https://pip.pypa.io/en/stable/installing/
https://github.com/TrainingByPackt/Interactive-Data-Visualization-with-Python
https://github.com/TrainingByPackt/Interactive-Data-Visualization-with-Python
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To complete the process, perform the following steps:

1. Toreach each activity and exercise, you have to use ed once more to go into each
folder, like so:

cd ActivityOl
2. Once you are in the folder of your choice, simply call the following:

jupyter-1lab to start up JupyterLab. Similarly, for Jupyter Notebook, call
jupyter notebook

Importing the Python Libraries

Every exercise and activity in this book will make use of various libraries. Importing
libraries into Python is very simple. Here's how we do it:

* To import libraries, such as seaborn and pandas, we have to run the following
code:
#import the python modules
import seaborn

import pandas

This will import the whole numpy library into our current file.

* In the first cells of the exercises and activities of this book, you will see the follow-
ing code. We can use sns instead of seaborn in our code to call methods from
seaborn:

# import seaborn and assign alias sns

import seaborn as sns

Installing Git

To install Git, go to https: //git-scm.com /downloads and follow the instructions that
are specific to your platform.

Additional Resources

The code bundle for this book is also hosted on GitHub at https: //github.com /
TrainingByPackt /Interactive-Data-Visualization-with-Python.

The high-quality color images used in book can be found at: https: //github.com /
TrainingByPackt/Interactive-Data-Visualization-with-Python /tree /master/Graphics.

We also have other code bundles from our rich catalog of books and videos available at
https: //github.com /PacktPublishing /. Check them out!



https://git-scm.com/downloads
https://github.com/TrainingByPackt/Interactive-Data-Visualization-with-Python
https://github.com/TrainingByPackt/Interactive-Data-Visualization-with-Python
https://github.com/TrainingByPackt/Interactive-Data-Visualization-with-Python/tree/master/Graphics
https://github.com/TrainingByPackt/Interactive-Data-Visualization-with-Python/tree/master/Graphics
https://github.com/PacktPublishing/




Introduction to
Visualization with
Python - Basic and
Customized Plotting

Learning Objectives

By the end of this chapter, you will be able to:

Explain the concept of data visualization

Analyze and describe the pandas DataFrame

Use the basic functionalities of the pandas DataFrame
Create distributional plots using matplotlib

Generate visually appealing plots using seaborn

In this chapter, we will explore the basics of data visualization using Python programming.
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Introduction

Data visualization is the art and science of telling captivating stories with data. Today's
developers and data scientists, irrespective of their operational domain, agree that
communicating insights effectively using data visualization is very important.

Data scientists are always looking for better ways to communicate their findings
through captivating visualizations. Depending on their domain, the type of visualization
varies, and often, this means employing specific libraries and tools that will best

suit the visualization needs. Thus, developers and data scientists are looking for a
comprehensive resource containing quick, actionable information on this topic. The
resources for learning interactive data visualization are scarce. Moreover, the available
materials either deal with tools other than Python (for example, Tableau) or focus on a
single Python library for visualization. This book is designed to be accessible for anyone
who is well-versed in Python.

Why Python? While most languages have associated packages and libraries built
specifically for visualization tasks, Python is uniquely empowered to be a convenient
tool for data visualization. Python performs advanced numerical and scientific
computations with libraries such as numpy and scipy, hosts a wide array of machine
learning methods owing to the availability of the scikit-1learn package, provides a
great interface for big data manipulation due to the availability of the pandas package
and its compatibility with Apache Spark, and generates aesthetically pleasing plots and
figures with libraries such as seaborn, plotly, and more.

The book will demonstrate the principles and techniques of effective interactive
visualization through relatable case studies and aims to enable you to become confident
in creating your own context-appropriate interactive data visualizations using Python.
Before diving into the different visualization types and introducing interactivity features
(which, as we will see in this book, will play a very useful role in certain scenarios), it is
essential to go through the basics, especially with the pandas and seaborn libraries,
which are popularly used in Python for data handling and visualization.

This chapter serves as a refresher and one-stop resource for reviewing these basics.
Specifically, it illustrates creating and handling pandas DataFrame, the basics of
plotting with pandas and seaborn, and tools for manipulating plotting style and
enhancing the visual appeal of your plots.

Note

Some of the images in this chapter have colored notations, you can find
high-quality color images used in this chapter at: https://github.com/
TrainingByPackt/Interactive-Data-Visualization-with-Python/tree/master/Graphics/
Lessont.



https://github.com/TrainingByPackt/Interactive-Data-Visualization-with-Python/tree/master/Graphics/Lesson1
https://github.com/TrainingByPackt/Interactive-Data-Visualization-with-Python/tree/master/Graphics/Lesson1
https://github.com/TrainingByPackt/Interactive-Data-Visualization-with-Python/tree/master/Graphics/Lesson1
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Handling Data with pandas DataFrame

The pandas library is an extremely resourceful open source toolkit for handling,
manipulating, and analyzing structured data. Data tables can be stored in the
DataFrame object available in pandas, and data in multiple formats (for example, .csv,
.tsv, .x1sx, and . json) can be read directly into a DataFrame. Utilizing built-in
functions, DataFrames can be efficiently manipulated (for example, converting tables
between different views, such as, long /wide; grouping by a specific column /feature;
summarizing data; and more).

Reading Data from Files

Most small-to medium-sized datasets are usually available or shared as delimited files
such as comma-separated values (CSV), tab-separated values (TSV), Excel (.xslx),
and JSON files. Pandas provides built-in I /O functions to read files in several formats,
such as, read_csv, read_excel, and read_json, and so on into a DataFrame. In this
section, we will use the diamonds dataset (hosted in book GitHub repository).

Note

The datasets used here can be found in https://github.com/TrainingByPackt/
Interactive-Data-Visualization-with-Python/tree/master/datasets.

Exercise 1: Reading Data from Files

In this exercise, we will read from a dataset. The example here uses the diamonds
dataset:

1. Open ajupyter notebook and load the pandas and seaborn libraries:

#Load pandas library
import pandas as pd

import seaborn as sns
2. Specify the URL of the dataset:

#URL of the dataset

diamonds url = "https://raw.githubusercontent.com/TrainingByPackt/
Interactive-Data-Visualization-with-Python/master/datasets/diamonds.
csv"


https://github.com/TrainingByPackt/Interactive-Data-Visualization-with-Python/tree/master/datasets
https://github.com/TrainingByPackt/Interactive-Data-Visualization-with-Python/tree/master/datasets
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3. Read files from the URL into the pandas DataFrame:

#Yes, we can read files from a URL straight into a pandas DataFrame!
diamonds df = pd.read csv(diamonds url)

# Since the dataset is available in seaborn, we can alternatively
read it in using the following line of code

diamonds_df = sns.load dataset ('diamonds')

The dataset is read directly from the URL!

Note

Use the usecols parameter if only specific columns need to be read.

The syntax can be followed for other datatypes using, as shown here:

diamonds_ df specific cols = pd.read csv(diamonds url,
usecols=['carat', 'cut', 'color', 'clarity'])

Observing and Describing Data

Now that we know how to read from a dataset, let's go ahead with observing and
describing data from a dataset. pandas also offers a way to view the first few rows in a
DataFrame using the head () function. By default, it shows 5 rows. To adjust that, we
can use the argument n—for instance, head (n=5).

Exercise 2: Observing and Describing Data

In this exercise, we'll see how to observe and describe data in a DataFrame. We'll be
again using the diamonds dataset:

1. Load the pandas and seaborn libraries:

#Load pandas library
import pandas as pd

import seaborn as sns

2. Specify the URL of the dataset:

#URL of the dataset
diamonds url = "https://raw.githubusercontent.com/TrainingByPackt/
Interactive-Data-Visualization-with-Python/master/datasets/diamonds.

Ccsv
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3. Read files from the URL into the pandas DataFrame:

#Yes, we can read files from a URL straight into a pandas DataFrame!
diamonds df = pd.read csv(diamonds url)

# Since the dataset is available in seaborn, we can alternatively
read it in using the following line of code

diamonds_df = sns.load dataset ('diamonds')

4. Observe the data by using the head function:
diamonds_df.head()

The output is as follows:

carat cut color clarity depth table price X y z
0 023 Ideal E SI2 615 550 326 3.85 3.98 243
1 021 Premium E S 59.8 61.0 326 3.89 3.84 2.31

2 023 Good E VS1 56.9 65.0 327 4.05 4.07 2.31
3 0.29 Premium | Vs2 624 580 334 4.20 423 2.63

4 0.31 Good J Sl2 633 5680 335 4.34 435 275

Figure 1.1: Displaying the diamonds dataset

The data contains different features of diamonds, such as carat, cut quality,
color, and price, as columns. Now, cut, clarity, and color are categorical
variables, and x, y, z, depth, table, and price are continuous variables. While
categorical variables take unique categories/names as values, continuous values
take real numbers as values.

cut, color, and clarity are ordinal variables with 5, 7, and 8 unique values
(can be obtained by diamonds_df.cut.nunique (), diamonds_df.color.
nunique (), diamonds df.clarity.nunique () - tryit!), respectively. cut is
the quality of the cut, described as Fair, Good, Very Good, Premium, or Ideal;
color describes the diamond color from J (worst) toD (best). There's

also clarity, which measures how clear the diamond is—the degrees are 11
(worst), SI1, SI2,VS1,VS2,Vvvsl, vvs2, and IF (best).
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5. Count the number of rows and columns in the DataFrame using the shape
function:

diamonds_df.shape
The output is as follows:
(53940, 10)

The first number, 53940, denotes the number of rows and the second, 10, denotes
the number of columns.

6. Summarize the columns using describe () to obtain the distribution of variables,
including mean, median, min, max, and the different quartiles:

diamonds_df.describe ()

The output is as follows:

carat depth table price X y z

count 53940.000000 $53940.000000 $3940.000000 53940.000000 53940.000000 53940.000000 53940.000000

mean 0.797940 61.749405 57.457184  3932.799722 5.731157 5.734526 3.538734
std 0.474011 1.432621 2.234491  3989.439738 1.121761 1.142135 0.705699
min 0.200000 43.000000 43.000000 326.000000 0.000000 0.000000 0.000000

25% 0.400000 61.000000 56.000000 950.000000 4.710000 4.720000 2.910000
50% 0.700000 61.800000 57.000000  2401.000000 5.700000 5.710000 3.530000
75% 1.040000 62.500000 59.000000  5324.250000 6.540000 6.540000 4.040000
max 5.010000 79.000000 95.000000 18823.000000 10.740000 58.900000 31.800000

Figure 1.2: Using the describe function to show continuous variables

This works for continuous variables. However, for categorical variables, we need to
use the include=object parameter.

7. Use include=object inside the describe function for categorical variables (
cut, color, clarity):

diamonds_df.describe (include=object)
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The output is as follows:

cut color clarity

count 53940 53940 53940
unique 5 7 8
top Ideal G s
freq 21551 11292 13065

Figure 1.3: Use the describe function to show categorical variables

Now, what if you would want to see the column types and how much memory a
DataFrame occupies?

8. To obtain information on the dataset, use the info () method:
diamonds_df.info ()

The output is as follows:

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 53940 entries, @ to 53939
Data columns (total 1@ columns):

carat 53940 non-null float64
cut 53940 non-null object
color 53940 non-null object
clarity 53940 non-null object
depth 53940 non-null float64
table 53940 non-null float64
price 5394@ non-null int64
X 53940 non-null float64
y 53940 non-null float64
z 53940 non-null float64

dtypes: float64(6), int64(1), object(3)
memory usage: 4.1+ MB

Figure 1.4: Information on the diamonds dataset

The preceding figure shows the data type (fEloat64, object, int64..) of each of the
columns, and memory (4 . 1MB) that the DataFrame occupies. It also tells the number of
rows (53940) present in the DataFrame.
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Selecting Columns from a DataFrame

Let's see how to select specific columns from a dataset. A column in a pandas
DataFrame can be accessed in two simple ways: with the . operator or the [ ]
operator. For example, we can access the cut column of the diamonds_df DataFrame
with diamonds_df . cut or diamonds_df['cut']. However, there are some scenarios
where the . operator cannot be used:

* When the column name contains spaces
* When the column name is an integer

* When creating a new column

Now, how about selecting all rows corresponding to diamonds that have the Ideal
cut and storing them in a separate DataFrame? We can select them using the loc
functionality:

diamonds low df = diamonds df.loc[diamonds df['cut']=="'Ideal']
diamonds low df.head()

The output is as follows:

carat cut color clarity depth table price X y z

0 0.23 Ideal E Sl2 615 550 326 3.95 398 243
11 0.23 Ideal J V81 628 560 340 3.93 3.90 246
13  0.31 Ideal J Sl2 622 540 344 435 437 271
16 0.30 Ideal I Sl2 620 540 348 431 434 268
39 0.33 Ideal I SI2 61.8 55.0 403 449 451 278

Figure 1.5: Selecting specific columns from a DataFrame
Here, we obtain indices of rows that meet the criterion:

[diamonds_df['cut']=='Ideal’ and then select them using loc.

Adding New Columns to a DataFrame

Now, we'll see how to add new columns to a DataFrame. We can add a column, such
as, price per carat, in the diamonds DataFrame. We can divide the values of two
columns and populate the data fields of the newly added column.
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Exercise 3: Adding New Columns to the DataFrame

In this exercise, we are going to add new columns to the diamonds dataset in the
pandas library. We'll start with the simple addition of columns and then move ahead
and look into the conditional addition of columns. To do so, let's go through the
following steps:

1. Load the pandas and seaborn libraries:

#Load pandas library
import pandas as pd
import seaborn as sns

2. Specify the URL of the dataset:

#URL of the dataset
diamonds url = "https://raw.githubusercontent.com/TrainingByPackt/
Interactive-Data-Visualization-with-Python/master/datasets/diamonds.

csv"

3. Read files from the URL into the pandas DataFrame:

#Yes, we can read files from a URL straight into a pandas DataFrame!
diamonds df = pd.read csv(diamonds url)

# Since the dataset is available in seaborn, we can alternatively
read it in using the following line of code

diamonds df = sns.load dataset ('diamonds"')

Let's look at simple addition of columns.
4. Add aprice_per carat column to the DataFrame:

diamonds df['price per carat'] = diamonds df['price']/diamonds
df['carat']

5. Call the DataFrame head function to check whether the new column was added as
expected:

diamonds_df.head()
The output is as follows:

carat cut color clarity depth table price X y z price_per_carat

0.23 Ideal E SI2 615 550 326 3.95 3.98 243 1417.391304
0.21 Premium s 59.8 61.0 326 3.89 3.84 231 1552.380952

0.29 Premium VS2 624 580 334 420 423 2863 1151.724138

O

E

0.23 Good E VS1 569 650 327 4.05 4.07 231 1421.739130
|

0.31 Good J SI2 633 580 335 4.34 435 275 1080.645161

Figure 1.6: Simple addition of columns
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Similarly, we can also use addition, subtraction, and other mathematical operators
on two numeric columns.

Now, we'll look at conditional addition of columns. Let's try and add a column based
on the value in price per carat, say anything more than 3500 as high (coded as
1) and anything less than 3500 as low (coded as 0).

6. Use the np.where function from Python's numpy package:

#Import numpy package for linear algebra

import numpy as np

diamonds df['price per carat is high'] = np.where(diamonds
df['price per carat']>3500,1,0)

diamonds_df.head()

The output is as follows:

carat cut color clarity depth table price X y z price_per_carat price_per_carat_is_high
0 023 Ideal E SI2 615 550 326 3.95 3.98 243 1417.391304 0
1 0.21 Premium E SI1 59.8 61.0 326 3.89 3.84 231 1552.380952 0
2 023 Good E V81 569 65.0 327 405 4.07 2.31 1421.739130 0
3  0.29 Premium I VS2 624 580 334 420 423 263 1151.724138 0
4 031 Good J SI2 633 58.0 335 434 435 275 1080.645161 0

Figure 1.7: Conditional addition of columns

Therefore, we have successfully added two new columns to the dataset.

Applying Functions on DataFrame Columns

You can apply simple functions on a DataFrame column—such as, addition, subtraction,
multiplication, division, squaring, raising to an exponent, and so on. It is also possible to
apply more complex functions on single and multiple columns in a pandas DataFrame.
As an example, let's say we want to round off the price of diamonds to its ceil (nearest
integer equal to or higher than the actual price). Let's explore this through an exercise.
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Exercise 4: Applying Functions on DataFrame columns

In this exercise, we'll consider a scenario where the price of diamonds has increased
and we want to apply an increment factor of 1. 3 to the price of all the diamonds in
our record. We can achieve this by applying a simple function. Next, we'll round off the
price of diamonds to its ceil. We'll achieve that by applying a complex function.Let's go
through the following steps:

1. Load the pandas and seaborn libraries:

#Load pandas library
import pandas as pd

import seaborn as sns
2. Specify the URL of the dataset:

#URL of the dataset
diamonds url = "https://raw.githubusercontent.com/TrainingByPackt/
Interactive-Data-Visualization-with-Python/master/datasets/diamonds.

csv"
3. Read files from the URL into the pandas DataFrame:

#Yes, we can read files from a URL straight into a pandas DataFrame!
diamonds df = pd.read csv(diamonds url)

# Since the dataset is available in seaborn, we can alternatively
read it in using the following line of code

diamonds_df = sns.load dataset ('diamonds')

4. Add aprice_per carat column to the DataFrame:

diamonds df['price per carat'] = diamonds df['price']/diamonds_
df ['carat']

5. Use the np.where function from Python's numpy package:

#Import numpy package for linear algebra

import numpy as np

diamonds df['price per carat is high'] = np.where (diamonds_
df ['price per carat']>3500,1,0)

6. Apply a simple function on the columns using the following code:

diamonds df['price']= diamonds df['price']*1.3
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7. Apply a complex function to round off the price of diamonds to its ceil:

import math
diamonds_df['rounded price']=diamonds_df['price'].apply (math.ceil)
diamonds_df.head()

The output is as follows:

carat cut color clarity depth table price X y z price_per_carat price_per_carat_is_high rounded_price
0 023 Ideal E SI2 615 55.0 423.8 395 3.98 243 1417.391304 0 424
1 021 Premium E SI1 59.8 61.0 423.8 3.89 3.84 2.31 1552.380952 0 424
2 023 Good E VS1 56.9 65.0 425.1 4.05 4.07 2.31 1421.739130 0 426
3 029 Premium | VS2 624 58.0 4342 420 4.23 263 1151.724138 0 435
4 031 Good J SI2  63.3 58.0 4355 4.34 435 275 1080.645161 0 436

Figure 1.8: Dataset after applying simple and complex functions

In this case, the function we wanted for rounding off to the ceil was already
present in an existing library. However, there might be times when you have to
write your own function to perform the task you want to accomplish. In the case
of small functions, you can also use the 1ambda operator, which acts as a one-liner
function taking an argument. For example, say you want to add another column

to the DataFrame indicating the rounded-off price of the diamonds to the nearest
multiple of 100 (equal to or higher than the price).

8. Use the 1lambda function as follows to round off the price of the diamonds to the
nearest multiple of 100:

import math

diamonds df['rounded price to 100multiple']=diamonds df['price'].
apply (lambda x: math.ceil (x/100)*100)

diamonds_df.head()

The output is as follows:

carat cut color clarity depth table price X ¥y z price_per_carat price_per_carat_is_high rounded_price rounded_price_to_100muiltiple
0 0.23 Ideal E Sl2 615 550 4238 395 398 243 1417.391304 0 424 500
1 0.21 Premium E s 59.8 61.0 4238 3.89 384 231 1552.380952 0 424 500
2 023 Good E Vs1 56.9 65.0 4251 4.05 4.07 231 1421.739130 0 426 500
3  0.29 Premium | VSZ 624 0580 4342 420 4.23 263 11561.724138 0 435 500
4 031 Good J SI2 63.3 580 4355 434 435 275 1080.645161 0 436 500

Figure 1.9: Dataset after applying the lambda function

Of book, not all functions can be written as one-liners and it is important to know
how to include user-defined functions in the apply function. Let's write the same
code with a user-defined function for illustration.
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9. Write code to create a user-defined function to round off the price of the
diamonds to the nearest multiple of 100:

import math
def get 100 multiple ceil (x):

y = math.ceil (x/100)*100

return y

diamonds_df['rounded price to 100multiple']=diamonds df['price'].
apply(get 100 multiple ceil)
diamonds_ df.head()

The output is as follows:

carat cut color clarity depth table price X y z price_per_carat price_per_carat_is_high rounded_price rounded_price_to_100multiple
0 023 Ideal E Si2 615 550 4238 395 398 243 1417.391304 0 424 500
1 021 Premium E S 59.8 61.0 423.8 3.89 3.84 2.31 1552.380952 0 424 500
2 023 Good E VS1 56.9 65.0 4251 4.05 407 231 1421.739130 0 426 500
3 029 Premium | Vs2 624 58.0 4342 420 423 263 1151.724138 0 435 500
4 0.3 Good J Sl2  63.3 58.0 4355 4.34 435 275 1080.645161 0 436 500

Figure 1.10: Dataset after applying a user-defined function

Interesting! Now, we had created an user-defined function to add a column to the
dataset.

Exercise 5: Applying Functions on Multiple Columns

When applying a function on multiple columns of a DataFrame, we can similarly use
lambda or user-defined functions. We will continue to use the diamonds dataset.
Suppose we are interested in buying diamonds that have an Ideal cut and a color
of D (entirely colorless). This exercise is for adding a new column, desired to the
DataFrame, whose value will be yes if our criteria are satisfied and no if not satisfied.
Let's see how we do it:

1. Import the necessary modules:

import seaborn as sns
import pandas as pd

2. Import the diamonds dataset from seaborn:

diamonds df exercise = sns.load dataset('diamonds')
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3. Write a function to determine whether a record, x, is desired or not:

def is desired(x):
bool var = 'yes' if (x['cut']=='Ideal' and x['color']=='D"') else
lnol

return bool var
4. Use the apply function to add the new column, desired:

diamonds df exercise['desired']=diamonds df exercise.apply(is
desired, axis=1)
diamonds_ df exercise.head()

The output is as follows:

carat cut color clarity depth table price X y z desired
0 023 Ideal E SI2 61.5 55.0 326 395 3.98 243 no
1 0.21 Premium E S 598 61.0 326 3.89 3.84 2.31 no
2 023 Good E VS1  56.9 65.0 327 4.05 4.07 2.31 no
3 0.29 Premium I Vs2 62.4 58.0 334 420 423 263 no
4 0.31 Good J Si2 63.3 58.0 335 434 435 275 no

Figure 1.11: Dataset after applying the function on multiple columns

The new column desired is added!

Deleting Columns from a DataFrame

Finally, let's see how to delete columns from a pandas DataFrame. For example, we will
delete the rounded price and rounded price to 100multiple columns. Let's go
through the following exercise.

Exercise 6: Deleting Columns from a DataFrame

In this exercise, we will delete columns from a pandas DataFrame. Here, we'll be using
the diamonds dataset:

1. Import the necessary modules:

import seaborn as sns

import pandas as pd
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2. Import the diamonds dataset from seaborn:
diamonds df = sns.load dataset ('diamonds"')
3. Add aprice_per carat column to the DataFrame:

diamonds df['price per carat'] = diamonds df['price']/diamonds
df ['carat']

4. Use the np.where function from Python's numpy package:

#Import numpy package for linear algebra

import numpy as np

diamonds df['price per carat is high'] = np.where (diamonds
df ['price per carat']>3500,1,0)

5. Apply a complex function to round off the price of diamonds to its ceil:

import math
diamonds df['rounded price']=diamonds_df['price'].apply (math.ceil)

6. Write a code to create a user-defined function:
import math
def get 100 multiple ceil(x):

y = math.ceil (x/100)*100

return y

diamonds df['rounded price to 100multiple']=diamonds df['price'].
apply(get 100 multiple ceil)

7. Delete the rounded price and rounded price to 100multiple columns
using the drop function:

diamonds_df=diamonds_df.drop (columns=['rounded price', 'rounded
price to 100multiple'])
diamonds df.head()
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The output is as follows:

carat cut color clarity depth table price X y z price_per_carat price_per_carat_is_high
0 023 Ideal E Si2 61.5 55.0 326 3.95 398 243 1417.391304 0
1 021 Premium E S 59.8 61.0 326 3.89 3.84 2.31 15562.3809562 0
2 023 Good E VS1 56.9 65.0 327 4.05 4.07 2.31 1421.739130 0
3 029 Premium I VS2 62.4 58.0 334 4.20 4.23 263 1151.724138 0
4 0.31 Good J Si2 63.3 58.0 335 4.34 4.3b 275 1080.645161 0

Figure 1.12: Dataset after deleting columns

Note

By default, when the apply or drop function is used on a pandas DataFrame,
the original DataFrame is not modified. Rather, a copy of the DataFrame post
modifications is returned by the functions. Therefore, you should assign the
returned value back to the variable containing the DataFrame (for example,
diamonds_df=diamonds_df.drop (columns=['rounded price’',
'rounded price_ to 100multiple'])).

In the case of the drop function, there is also a provision to avoid assignment by
setting an inplace=True parameter, wherein the function performs the column
deletion on the original DataFrame and does not return anything.

Writing a DataFrame to a File

The last thing to do is write a DataFrame to a file. We will be using the to_csv ()
function. The output is usually a . esv file that will include column and row headers.
Let's see how to write our DataFrame to a . csv file.

Exercise 7: Writing a DataFrame to a File

In this exercise, we will write a diamonds DataFrame to a . esv file. To do so, we'll be
using the following code:

1. Import the necessary modules:

import seaborn as sns

import pandas as pd
2. Load the diamonds dataset from seaborn:

diamonds df = sns.load dataset ('diamonds')
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3.

Write the diamonds dataset into a .csv file:
diamonds df.to csv('diamonds modified.csv')

Let's look at the first few rows of the DataFrame:
print (diamonds df.head())

The output is as follows:

carat cut color clarity depth table price X y z
7] 0.23 Ideal E SI2 61.5 55.0 326 3.95 3.98 2.43
1 0.21 Premium E SI1 59.8 61.0 326 3.89 3.84 2.31
2 0.23 Good E VS1 56.9 65.0 327 4.5 4.07 2.31
3 0.29 Premium I VS2 62.4 58.0 334 4.20 4.23 2.63
4 0.31 Good J SI2 63.3 58.0 335 4.34 4.35 2.75

Figure 1.13: The generated .csv file in the source folder

By default, the to_esv function outputs a file that includes column headers as
well as row numbers. Generally, the row numbers are not desirable, and an index
parameter is used to exclude them:

Add a parameter index=False to exclude the row numbers:

diamonds df.to csv('diamonds modified.csv', index=False)

And that's it! You can find this . esv file in the source directory. You are now equipped
to perform all the basic functions on pandas DataFrames required to get started with
data visualization in Python.

In order to prepare the ground for using various visualization techniques, we went
through the following aspects of handling pandas DataFrames:

Reading data from files using the read csv( ), read excel( ), and readjson (
) functions

Observing and describing data using the dataframe.head( ),dataframe.
tail( ),dataframe.describe( ), and dataframe.info( ) functions

Selecting columns using the dataframe.column__name or
dataframe['column name'] notation

Adding new columns using the dataframe[ 'newcolumnname']=. .. notation

Applying functions to existing columns using the dataframe . apply (func)
function
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* Deleting columns from DataFrames using the dataframe.drop (column list)
function

» Writing DataFrames to files using the _dataframe. tocsv () function

These functions are useful for preparing data in a format suitable for input to
visualization functions in Python libraries such as seaborn.

Plotting with pandas and seaborn

Now that we have a basic sense of how to load and handle data in a pandas DataFrame
object, let's get started with making some simple plots from data. While there are
several plotting libraries in Python (including matplotlib, plotly, and seaborn),

in this chapter, we will mainly explore the pandas and seaborn libraries, which are
extremely useful, popular, and easy to use.

Creating Simple Plots to Visualize a Distribution of Variables

matplotlib is a plotting library available in most Python distributions and is the
foundation for several plotting packages, including the built-in plotting functionality of
pandas and seaborn. matplotlib enables control of every single aspect of a figure
and is known to be verbose. Both seaborn and pandas visualization functions are built
on top of matplotlib. The built-in plotting tool of pandas .is a useful exploratory
tool to generate figures that are not ready for primetime but useful to understand the
dataset you are working with. seaborn, on the other hand, has APIs to draw a wide
variety of aesthetically pleasing plots.

To illustrate certain key concepts and explore the diamonds dataset, we will start with
two simple visualizations in this chapter—histograms and bar plots.

Histograms

A histogram of a feature is a plot with the range of the feature on the x-axis and the
count of data points with the feature in the corresponding range on the y-axis.

Let's look at the following exercise of plotting a histogram with pandas.
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Exercise 8: Plotting and Analyzing a Histogram

In this exercise, we will create a histogram of the frequency of diamonds in the dataset
with their respective carat specifications on the x-axis:

1. Import the necessary modules:

import seaborn as sns

import pandas as pd

2. Import the diamonds dataset from seaborn:
diamonds df = sns.load dataset ('diamonds')

3. Plot a histogram using the diamonds dataset where x axis = carat:
diamonds_df.hist (column='carat')

The output is as follows:

array([[<matplotlib.axes._subplots.AxesSubplot object at @x000e6216D76A8DDS>]],
dtype=object)

carat

25000 1

20000 1

15000 1

10000

5000 1

0 1 2 3 4 5

Figure 1.14: Histogram plot
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The y axis in this plot denotes the number of diamonds in the dataset with the
carat specification on the x-axis.

The hist function has a parameter called bins, which literally refers to the
number of equally sized bins into which the data points are divided. By default,
the bins parameter is set to 10 in pandas. We can change this to a different
number, if we wish.

4. Change the bins parameter to 50:
diamonds_df.hist (column='carat', bins=50)

The output is as follows:

array([[<matplotlib.axes._subplots.AxesSubplot object at exeeeee216D79E7898>]],
dtype=object)

carat
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Figure 1.15: Histogram with bins = 50

This is a histogram with 50 bins. Notice how we can see a more fine-grained
distribution as we increase the number of bins. It is helpful to test with multiple
bin sizes to know the exact distribution of the feature. The range of bin sizes
varies from 1 (where all values are in the same bin) to the number of values (where
each value of the feature is in one bin).

5. Now, let's look at the same function using seaborn:

sns.distplot (diamonds df.carat)
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The output is as follows:

<matplotlib.axes._subplots.AxesSubplot at ©x216d7f@la58>
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0.0
carat

Figure 1.16: Histogram plot using seaborn

There are two noticeable differences between the pandas hist function and
seaborn distplot:

* pandas sets the bins parameter to a default of 10, but seaborn infers an
appropriate bin size based on the statistical distribution of the dataset.

* By default, the distplot function also includes a smoothed curve over the
histogram, called a kernel density estimation.

The kernel density estimation (KDE) is a non-parametric way to estimate the
probability density function of a random variable. Usually, a KDE doesn't tell us
anything more than what we can infer from the histogram itself. However, it is
helpful when comparing multiple histograms on the same plot. If we want to
remove the KDE and look at the histogram alone, we can use the kde=False
parameter.

6. Change kde=False to remove the KDE:

sns.distplot (diamonds_df.carat, kde=False)
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The output is as follows:

<matplotlib.axes._subplots.AxesSubplot at ©x216d800e390>
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Figure 1.17: Histogram plot with KDE = false

Also note that the bins parameter seemed to render a more detailed plot when
the bin size was increased from 10 to 50. Now, let's try to increase it to 100.

7. Increase the bins size to 100:

sns.distplot (diamonds_df.carat, kde=False, bins=100)
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The output is as follows:

<matplotlib.axes. subplots.Axessubplot at ex21e6dsed3sce>
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Figure 1.18: Histogram plot with increased bin size

The histogram with 100 bins shows a better visualization of the distribution of
the variable—we see there are several peaks at specific carat values. Another
observation is that most carat values are concentrated toward lower values and
the tail is on the right—in other words, it is right-skewed.

Alog transformation helps in identifying more trends. For instance, in the
following graph, the x-axis shows log-transformed values of the price variable,
and we see that there are two peaks indicating two kinds of diamonds—one with a
high price and another with a low price.
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8. Use a log transformation on the histogram:

import numpy as np
sns.distplot (np.log(diamonds_df.price), kde=False)

The output is as follows:

<matplotlib.axes. subplots.AxesSubplot at ©x216d3215278>
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Figure 1.19: Histogram using a log transformation

That's pretty neat. Looking at the histogram, even a naive viewer immediately gets a
picture of the distribution of the feature. Specifically, three observations are important
in a histogram:

* Which feature values are more frequent in the dataset (in this case, there is a peak
at around 6.8 and another peak between 8.5 and 9—note that log (price) =
values, in this case,

* How many peaks exist in the data (the peaks need to be further inspected for
possible causes in the context of the data)

* Whether there are any outliers in the data
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Bar Plots
Another type of plot we will look at in this chapter is the bar plot.

In their simplest form, bar plots display counts of categorical variables. More broadly,
bar plots are used to depict the relationship between a categorical variable and

a numerical variable. Histograms, meanwhile, are plots that show the statistical
distribution of a continuous numerical feature.

Let's see an exercise of bar plots in the diamonds dataset. First, we shall present the
counts of diamonds of each cut quality that exist in the data. Second, we shall look at
the price associated with the different types of cut quality (Ideal, Good, Premium,

and so on) in the dataset and find out the mean price distribution. We will use both
pandas and seaborn to get a sense of how to use the built-in plotting functions in both
libraries.

Before generating the plots, let's look at the unique values in the cut and clarity
columns, just to refresh our memory.
Exercise 9: Creating a Bar Plot and Calculating the Mean Price Distribution

In this exercise, we'll learn how to create a table using the pandas crosstab function.
We'll use a table to generate a bar plot. We'll then explore a bar plot generated using the
seaborn library and calculate the mean price distribution. To do so, let's go through
the following steps:

1. Import the necessary modules and dataset:

import seaborn as sns
import pandas as pd

2. Import the diamonds dataset from seaborn:
diamonds df = sns.load dataset ('diamonds"')
3. Print the unique values of the cut column:
diamonds_ df.cut.unique ()
The output will be as follows:

array(['Ideal', 'Premium', 'Good', 'Very Good', 'Fair'],

dtype=object)
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4. Print the unique values of the clarity column:
diamonds df.clarity.unique ()
The output will be as follows:

array(['SsI12', 'sI1', 'vsl', 'vs2', 'vvs2', 'vvsl', '11', 'IF'j],
dtype=object)

Note

unique () returns an array. There are five unique cut qualities and eight
unique values in clarity. The number of unique values can be obtained using
nunique () in pandas.

5. To obtain the counts of diamonds of each cut quality, we first create a table using
the pandas crosstab () function:

cut count table = pd.crosstab(index=diamonds
df ['cut'], columns="'count"')
cut count table

The output will be as follows:

col_0 count

cut

Fair 1610
Good 4006
Ideal 21551

Premium 13791
Very Good 12082

Figure 1.20: Table using the crosstab function
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6. Pass these counts to another pandas function, plot (kind='bar'):
cut count table.plot (kind='bar')

The output will be as follows:

<matplotlib.axes. subplots.AxesSubplot at ex2a24ede1198>
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Figure 1.21: Bar plot using a pandas DataFrame

We see that most of the diamonds in the dataset are of the Ideal cut quality,
followed by Premium, Very Good, Good, and Fair. Now, let's see how to generate
the same plot using seaborn.

7. Generate the same bar plot using seaborn:

sns.catplot ("cut", data=diamonds_ df, aspect=1.5, kind="count",
color="b")
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The output will be as follows:

<seaborn.axisgrid.FacetGrid at ©x2a250111828>
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Figure 1.22: Bar plot using seaborn

Notice how the catplot () function does not require us to create the
intermediate count table (using pd. crosstab () ), and reduces one step in the
plotting process.

8. Next, here is how we obtain the mean price distribution of different cut qualities
using seaborn:

import seaborn as sns

from numpy import median, mean

sns.set (style="whitegrid")

ax = sns.barplot(x="cut", y="price", data=diamonds_
df,estimator=mean)
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The output will be as follows:

4000
3000
2000
1000

0

Ideal Premium Good Very Good Fair
cut

price

Figure 1.23: Bar plot with the mean price distribution

Here, the black lines (error bars) on the rectangles indicate the uncertainty (or
spread of values) around the mean estimate. By default, this value is set to 95%
confidence. How do we change it? We use the ci=68 parameter, for instance, to
set it to 68%. We can also plot the standard deviation in the prices using ci=sd.

Reorder the x axis bars using order:

ax = sns.barplot(x="cut", y="price", data=diamonds
df, estimator=mean, ci=68, order=['Ideal',6 'Good', 'Very
Good', 'Fair', 'Premium'])
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The output will be as follows:
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Figure 1.24: Bar plot with proper order

Grouped bar plots can be very useful for visualizing the variation of a particular feature
within different groups. Now that you have looked into tweaking the plot parameters in
a grouped bar plot, let's see how to generate a bar plot grouped by a specific feature.

Exercise 10: Creating Bar Plots Grouped by a Specific Feature

In this exercise, we will use the diamonds dataset to generate the distribution of
prices with respect to color for each cut quality. In Exercise 9, Creating a Bar Plot
and Calculating the Mean Price Distribution, we looked at the price distribution for
diamonds of different cut qualities. Now, we would like to look at the variation in each
color:

1. Import the necessary modules—in this case, only seaborn:

#Import seaborn

import seaborn as sns
2. Load the dataset:

diamonds df = sns.load dataset ('diamonds')
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3. Use the hue parameter to plot nested groups:
ax = sns.barplot (x="cut", y="price", hue='color', data=diamonds_ df)

The output is as follows:
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Figure 1.25: Grouped bar plot with legends

Here, we can observe that the price patterns for diamonds of different colors are
similar for each cut quality. For instance, for Ideal diamonds, the price distribution of
diamonds of different colors is the same as that for Premium, and other diamonds.

Tweaking Plot Parameters

Looking at the last figure in our previous section, we find that the legend is not
appropriately placed. We can tweak the plot parameters to adjust the placements of
the legends and the axis labels, as well as change the font-size and rotation of the tick
labels.
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Exercise 11: Tweaking the Plot Parameters of a Grouped Bar Plot

In this exercise, we'll tweak the plot parameters, for example, hue, of a grouped bar
plot. We'll see how to place legends and axis labels in the right places and also explore
the rotation feature:

1. Import the necessary modules—in this case, only seaborn:

#Import seaborn

import seaborn as sns
2. Load the dataset:
diamonds df = sns.load dataset ('diamonds')
3. Use the hue parameter to plot nested groups:
ax = sns.barplot (x="cut", y="price", hue='color', data=diamonds_ df)

The output is as follows:
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Figure 1.26: Nested bar plot with the hue parameter
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4. Place the legend appropriately on the bar plot:

ax = sns.barplot(x='cut', y='price', hue='color', data=diamonds_ df)

ax.legend(loc="upper right',ncol=4)
The output is as follows:

<matplotlib.legend.Legend at exldld7320460>
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Figure 1.27: Grouped bar plot with legends placed appropriately

In the preceding ax.legend () call, the ncol parameter denotes the number

of columns into which values in the legend are to be organized, and the 1loc
parameter specifies the location of the legend and can take any one of eight values
(upper left, lower center, and so on).

5. To modify the axis labels on the x axis and y axis, input the following code:

ax = sns.barplot(x='cut', y='price', hue='color', data=diamonds_df)
ax.legend(loc="upper right', ncol=4)

ax.set xlabel ('Cut', fontdict={'fontsize' : 15})

ax.set _ylabel ('Price', fontdict={'fontsize' : 15})
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The output is as follows:

Text(e@, 0.5, 'Price')

N EF = B F
- | HEEH =G

Ideal Premium Good Very Good Fair
Cut

Figure 1.28: Grouped bar plot with modified labels

6. Similarly, use this to modify the font-size and rotation of the x axis of the tick
labels:

ax = sns.barplot(x='cut', y='price', hue='color', data=diamonds_df)
ax.legend(loc="upper right',ncol=4)

# set fontsize and rotation of x-axis tick labels

ax.set xticklabels(ax.get xticklabels(), fontsize=13, rotation=30)
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The output is as follows:

[Text(®, 8, 'Ideal'),
Text(e, €, 'Premium'),
Text(®, €, 'Good'),
Text(e, e, 'Very Good'),
Text(®, €, 'Fair')]
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Figure 1.29: Grouped bar plot with the rotation feature of the labels

The rotation feature is particularly useful when the tick labels are long and crowd
up together on the x axis.

Annotations

Another useful feature to have in plots is the annotation feature. In the following
exercise, we'll make a simple bar plot more informative by adding some annotations.
Suppose we want to add more information to the plot about ideally cut diamonds. We
can do this in the following exercise:
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Exercise 12: Annotating a Bar Plot

In this exercise, we will annotate a bar plot, generated using the catplot function of
seaborn, using a note right above the plot. Let's see how:

1. Import the necessary modules:

import matplotlib.pyplot as plt
import seaborn as sns

2. Load the diamonds dataset:
diamonds df = sns.load dataset ('diamonds')
3. Generate a bar plot using catplot function of the seaborn library:

ax = sns.catplot("cut", data=diamonds_df, aspect=1.5, kind="count",
color="b")

The output is as follows:
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aut

Figure 1.30: Bar plot with seaborn's catplot function

4. Annotate the column belonging to the Ideal category:

# get records in the DataFrame corresponding to ideal cut
ideal group = diamonds_df.loc[diamonds df['cut']=="Ideal']

5. Find the location of the x coordinate where the annotation has to be placed:

# get the location of x coordinate where the annotation has to be
placed

x = ldeal group.index.tolist () [0]
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6. Find the location of the y coordinate where the annotation has to be placed:

# get the location of y coordinate where the annotation has to be
placed
y = len(ideal group)

7. Print the location of the x and y co-ordinates:

print (x)
print (y)

The output is:

0
21551

8. Annotate the plot with a note:

# annotate the plot with any note or extra information

sns.catplot ("cut", data=diamonds_ df, aspect=1.5, kind="count",
color="b")

plt.annotate ('excellent polish and symmetry ratings;\nreflects almost
all the light that enters it', xy=(x,y), xytext=(x+0.3, y+2000),
arrowprops=dict (facecolor="red"'))

The output is as follows:

Text(©.3, 23551, 'excellent polish and symmetry ratings;\nreflects almost all the light that enters it")

excellent pelish and symmetry ratings;
reflects almost all the light that enters it
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Figure 1.31: Annotated bar plot
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Now, there seem to be a lot of parameters in the annotate function, but worry not!
Matplotlib's https: //matplotlib.org /3.1.0 /api/ as gen/matplotlib.pyplot.annotate.html
official documentation covers all the details. For instance, the xy parameter denotes
the point (x,y) on the figure to annotate. xytext denotes the position (x,y) to place the
text at. If None, it defaults to xy. Note that we added an offset of . 3 for x and 2000 for y
(since vy is close to 20,000) for the sake of readability of the text. The color of the arrow
is specified using the arrowprops parameter in the annotate function.

There are several other bells and whistles associated with visualization libraries in
Python, some of which we will see as we progress in the book. At this stage, we will go
through a chapter activity to revise the concepts in this chapter.

So far, we have seen how to generate two simple plots using seaborn and pandas—
histograms and bar plots:

» Histograms: Histograms are useful for understanding the statistical distribution
of a numerical feature in a given dataset. They can be generated using the hist ()
function in pandas and distplot () in seaborn.

* Bar plots: Bar plots are useful for gaining insight into the values taken by
a categorical feature in a given dataset. They can be generated using the
plot (kind="'bar') function in pandas and the catplot (kind='count'), and
barplot () functions in seaborn.

With the help of various considerations arising in the process of plotting these two
types of visualizations, we presented some basic concepts in data visualization:

» Formatting legends to present labels for different elements in the plot with loc
and other parameters in the legend function

* Changing the properties of tick labels, such as font-size, and rotation, with
parameters in the set_xticklabels () and set_yticklabels () functions

* Adding annotations for additional information with the annotate () function


https://matplotlib.org/3.1.0/api/_as_gen/matplotlib.pyplot.annotate.html
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Activity 1: Analyzing Different Scenarios and Generating the Appropriate
Visualization

We'll be working with the 120 years of Olympic History dataset acquired by Randi
Griffin from https: /www.sports-reference.com/ and made available on the GitHub
repository of this book. Your assignment is to identify the top five sports based on the
largest number of medals awarded in the year 2016, and then perform the following
analysis:

1. Generate a plot indicating the number of medals awarded in each of the top five
sports in 2016.

2. Plot a graph depicting the distribution of the age of medal winners in the top five
sports in 2016.

3. Find out which national teams won the largest number of medals in the top five
sports in 2016.

4. Observe the trend in the average weight of male and female athletes winning in
the top five sports in 2016.
High-Level Steps
1. Download the dataset and format it as a pandas DataFrame.

2. Filter the DataFrame to only include the rows corresponding to medal winners
from 2016.

3. Find out the medals awarded in 2016 for each sport.

4. List the top five sports based on the largest number of medals awarded. Filter the
DataFrame one more time to only include the records for the top five sports in
2016.

5. Generate a bar plot of record counts corresponding to each of the top five sports.

6. Generate a histogram for the Age feature of all medal winners in the top five
sports (2016).

7. Generate a bar plot indicating how many medals were won by each country's team
in the top five sports in 2016.

8. Generate a bar plot indicating the average weight of players, categorized based on
gender, winning in the top five sports in 2016.


https://www.sports-reference.com/
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The expected output should be:

After Step 1:

ID Name Sex Age Height Weight Team NOC Games Year Season City Sport Event Medal

0 1 ADiiang M 240 1800 800 China CHN 1992 4995 Summer Barcelona Basketball Baskethall Men's
Summer Basketball

12 Alamusi M 230 1700 600 China CHN 2012 5512 Summer  London Judo Judo Men's Bxtra- -y
Summer Lightweight

2 3 Gunnar Nielsen 1y 545 NaN  NaN Denmark DEN 1920 4950 Summer Antwerpen  Football  Football Men's Football  NaN

Aaby Summer

3 4 BdgALINdenaU a0 NaN NaN Denmark/Sweden DEN 1900 1900 Summer Pais  1ugOF  TugORWarMens Tug- ooy
Aabye Summer War Of-War
Christine Jacoba 1988 - Speed Speed Skating Women's

4 5 ‘Aaftink F 210 1850 82.0 Netherlands NED Winter 1988 Winter Calgary Skating £00 metres NaN

Figure 1.32: Olympics dataset
After Step 2:

D Name Sex Age Height Weight Team NOC Games Year Season City Sport Event Medal

3 4 Edgarlindenau ;555  NaN  NaN Denmark/Sweden DEN 1900 4900 Summer Paris  Tug-Of-War Tug-OfWar Men's ¢4
Aabye Summer Tug-Of-War

37 15 Arvo Ossian M 30.0 NaN NaN Finland FIN 1920 1920 Summer Anifwerpen  Swimming Swimming Men's 200 Bronze
Aaltonen Summer metres Breaststroke

38 15 AolOssian M 30.0 NaN NaN Finland ~ FIN 120 1920 Summer Antwerpen  Swimming SwimmpgIMer=RI00 Bronze
Aaltonen Summer metres Breaststroke

40 16 Juhamatti Tapio ., 565 1849 850 Finland ~ FIN 2014 9014 Winter Sochi lce Hockey |C& Hockey Mensice g,
Aaltonen Winter Hockey

41 17  Paaveldohames a5 4750 640 Finland ~ FIN 1942 4048 Summer  London Gymnastics Gymnastics Men's g, 0
Aaltonen Summer Individual All-Around

Figure 1.33: Filtered Olympics DataFrame
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After Step 3:

Athletics
Swimming
Rowing
Football
Hockey
Handball
Cycling
Canoeing
Water Polo
Rugby Sevens
Basketball
Volleyball
Wrestling
Gymnastics
Fencing

Judo

Boxing
Sailing
Equestrianism
Shooting
Weightlifting
Diving
Taekwondo

Synchronized Swimming

Table Tennis
Badminton
Tennis
Archery

Rhythmic Gymnastics
Beach Volleyball
Modern Pentathlon

Trampolining
Golf
Triathlon

Name: Sport, dtype: inte4

192
191
144
106
99
89
84
82
78
74
72
72
72
66
65
56
51
45
45
45
45
36
32
32
24
24
24
24
18
12

o vy

Figure 1.34: The number of medals awarded



42 | Introduction to Visualization with Python - Basic and Customized Plotting

After Step 4:

1D Name Sex Age Height Weight Team NOC Games Year Season City Sport Event Medal

158 62 Giovanni Abagnale M 210 1980 900 ftaly ITA o 20"% 5016 Summer X298 Roying ROWingMen'sCoxless g
Summer Janeiro Pairs
2016 Rio de Swimming Men's 4 x

814 465 Matthew "Matt" Abood M 300 197.0 92.0 Australia  AUS 2016 Summer Swimming 100 metres Freestyle Bronze
Summer Janeiro Relay

1228 690 Chantal Achterberg ~ F 310 1720 720 Netherlands NED . 2916 2015 summer R0 poying Rowing Women's gy /o
Summer Janeiro Quadruple Sculls

1529 248 Valerie Kasanita Adams- F 310 1930 120.0 New NZL 2016 2016 Summer Rio de Athletics Athletics Women's Shot Silver

Wili (-Price) Zealand Summer Janeiro

1847 1017 Nathan Ghar-JunAdian M 270 1980 1000 United ygp 2018 504 Summer  RIP98 guimming  Swimming Men's 50 g

States Summer Janeiro metres Freestyle

After Step 5:

count

200 A

Rowing

Figure 1.35: Olympics DataFrame

Swimming

Athletics
Sport

Football

Figure 1.36: Generated bar plot

Hockey
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After Step 6:

subplots.AxesSubplot at @xlabselessde>

<matplotlib.axes.

Figure 1.37: Histogram plot with the Age feature

After Step 7:

<seaborn.axisgrid.FacetGrid at exlabsela@208>
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Figure 1.38: Bar plot with the number of medals won
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After Step 8:
| M
= F
0 I

Rowing Swimming Athletics Football Hockey
Sport

Weight

Figure 1.39: Bar plot with the average weight of players

players

The bar plot indicates the highest athlete weight in rowing, followed by swimming,
and then the other remaining sports. The trend is similar across both male and female

Note

The solution steps can be found on page 254
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Summary

In this chapter, we covered the basics of handling pandas DataFrames to format them
as inputs for different visualization functions in libraries such as pandas , seaborn and
more, and we covered some essential concepts in generating and modifying plots to
create pleasing figures.

The pandas library contains functions such as read _csv (), read excel (), and
read_json () to read structured text data files. Functions such as describe () and
info () are useful to get information on the summary statistics and memory usage

of the features in a DataFrame. Other important operations on pandas DataFrames
include subletting based on user-specified conditions/constraints, adding new columns
to a DataFrame, transforming existing columns with built-in Python functions as well

as user-defined functions, deleting specific columns in a DataFrame, and writing a
modified DataFrame to a file on the local system.

Once equipped with knowledge of these common operations on pandas DataFrames,
we went over the basics of visualization and learned how to refine the visual appeal of
the plots. We illustrated these concepts with the plotting of histograms and bar plots.
Specifically, we learned about different ways of presenting labels and legends, changing
the properties of tick labels, and adding annotations.

In the next chapter, we will learn about some popular visualization techniques and
understand the interpretation, strengths, and limitations of each.






Static Visualization -
Global Patterns and
Summary Statistics

Learning Objectives

By the end of this chapter, you will be able to:
+ Explain various visualization techniques for different contexts
+ ldentify global patterns of one or more features in a dataset

+ Create plots to represent global patterns in data: scatter plots, hexbin plots, contour plots,
and heatmaps
+ Create plots that present summary statistics of data: histograms (revisited), box plots, and
violin plots
In this chapter, we'll explore different visualization techniques for presenting global patterns and

summary statistics of data.
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Introduction

In the previous chapter, we learned how to handle pandas DataFrames as inputs for
data visualization, how to plot with pandas and seaborn, and how to refine plots

to increase their aesthetic appeal. The intent of this chapter is to acquire practical
knowledge about the strengths and limitations of various visualization techniques. We'll
practice creating plots for a variety of different contexts. However, you will notice that
the variety in existing plot types and visualization techniques is huge, and choosing
the appropriate visualization becomes confusing. There are times when a plot shows
too much information for the reader to grasp or too little for the reader to get the
necessary intuition regarding the data. There are times when a visualization is too
esoteric for the reader to appreciate properly, and other times when an over-simplistic
visualization just doesn't have the right impact. All these scenarios can be avoided by
being armed with practical knowledge about the interpretation of different kinds of
visualization techniques and their strengths and limitations.

This chapter is a primer on the different types of static visualization and the contexts

in which they are most effective. Using seaborn, you will learn how to create a variety
of plots and become proficient in selecting the right kind of visualization for the most
suitable representation of your data. Combining these skills with the techniques learned
in Chapter 1, Introduction to Visualization with Python - Basic and Customized Plotting,
will help you make stellar plots that are both meaningful and attractive.

Let's first explore the right kind of visualization technique or plot to represent global
patterns in data.

Note

Some of the images in this chapter have colored notations, you can find
high-quality color images used in this chapter at: https://github.com/
TrainingByPackt/Interactive-Data-Visualization-with-Python/tree/master/Graphics/
Lesson2.

Creating Plots that Present Global Patterns in Data

In this section, we will study the context of plots that present global patterns in data,
such as:

* Plots that show the variance in individual features in data, such as histograms

* Plots that show how different features present in data vary with respect to each
other, such as scatter plots, line plots, and heatmaps


https://github.com/TrainingByPackt/Interactive-Data-Visualization-with-Python/tree/master/Graphics/Lesson2
https://github.com/TrainingByPackt/Interactive-Data-Visualization-with-Python/tree/master/Graphics/Lesson2
https://github.com/TrainingByPackt/Interactive-Data-Visualization-with-Python/tree/master/Graphics/Lesson2
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Most data scientists prefer to see such plots because they give an idea of the entire
spectrum of values taken by the features of interest. Plots depicting global patterns are
also useful because they make it easier to spot anomalies in data.

We will work with a dataset called mpg. It was published by the StatLib library,
maintained at Carnegie Mellon University, and is available in the seaborn library. It was
originally used to study the relationship of mileage — Miles Per Gallon (MPG) - with
other features in the dataset; hence the name mpg. Since the dataset contains 3 discrete
features and 5 continuous features, it is a good fit for illustrating multiple concepts in
this chapter.

You can see what the dataset looks like using:
import seaborn as sns
# load a seaborn dataset
mpg df = sns.load dataset ("mpg")
print (mpg df.head())

The output is as follows:

mpg cylinders displacement ... model_year origin name
® 18.9 8 3e7.0 7@ usa chevrolet chevelle malibu
1 15.9 8 350.0 7@ usa buick skylark 328
2 18.9 8 318.0 7@ usa plymouth satellite
3 16.9 8 3e4.0 7e usa amc rebel sst
4 17.0 8 302.0 70 usa ford torino

[5 rows x 9 columns]
Figure 2.1: mpg dataset

Now, let's take a look at a few different kinds of plots to present this data and derive
statistical insights from it.

Scatter Plots

The first type of plot that we will generate is a scatter plot. A scatter plot is a simple
plot presenting the values of two features in a dataset. Each datapoint is represented by
a point with the x coordinate as the value of the first feature and the y coordinate as the
value of the second feature. A scatter plot is a great tool to learn more about two such
numerical attributes.

Scatter plots can help excavate relationships among different features in data such as
weather and sales, nutrition intake, and health statistics in several contexts.

We will learn how to create a scatter plot with the help of an exercise.
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Exercise 13: Creating a Static Scatter Plot

In this exercise, we will generate a scatter plot to examine the relationship between
weight and mileage (mpg) of the vehicles from the mpg dataset. To do so, let's go
through the following steps:

1. Open aJupyter notebook and import the necessary Python modules:
import seaborn as sns

2. Import the dataset from seaborn:
mpg df = sns.load dataset ("mpg")

3. Generate a scatter plot using the scatterplot () function:

# seaborn ('version 0.9.0 is required')
ax = sns.scatterplot (x="weight", y="mpg", data=mpg df)

The output is as follows:
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Figure 2.2: Scatter plot
Notice that the scatter plot shows a decline in mileage (mpg) with an increase in

weight. That's a useful insight into the relationships between different features in the
dataset.
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Hexagonal Binning Plots

There's also a fancier version of scatter plots, called a hexagonal binning plot

(hexbin plot) - this can be used when both rows and columns correspond to numerical
attributes. Where there are lots of data points, the plotted points on a scatter plot can
end up overlapping, resulting in a messy graph. It can be hard to infer trends in such
cases. With a hexbin plot, a lot of data points in the same area can be shown using

a darker shade. Hexbin plots use hexagons to represent clusters of data points. The
darker bins indicate that there is a larger number of points in the corresponding ranges
of features on the x and y axes. The lighter bins indicate fewer points. The white space
corresponds to no points.This way, we end up with a cleaner graph that's clearer to
read.

Let's see how to create a hexbin plot in the next exercise.

Exercise 14: Creating a Static Hexagonal Binning Plot

In this exercise, we will generate a hexagonal binning plot to get a better understanding
of the relationship between weight and mileage (mpg). Let's go through the following
steps:

1. Import the necessary Python modules:
import seaborn as sns
2. Import the dataset from seaborn:
mpg _df = sns.load dataset ("mpg")
3. Plot a hexbin plot using jointplot with kind set to hex:

## set the plot style to include ticks on the axes.
sns.set (style="ticks")

## hexbin plot

sns.jointplot (mpg df.weight, mpg df.mpg, kind="hex",
color="#4CB391")

Note the jointplot function of seaborn mentioned in the above code. It is
defined where we provide the values for the x axis and y axis along with specifying
the kind argument, which is set to hex here, to build the plot.
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The output is as follows:

<seaborn.axisgrid.JointGrid at ex7f7311bc9dd8>
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Figure 2.3: Hexagonal binning plot of weight versus mpg

As you might notice, the histogram on the top and right axes depict the variance in the
features represented by the x and y axes respectively (mpg and weight, in this example).
Also, you might have noticed in the previous scatter plot that data points overlapped
heavily in certain areas, obscuring the actual distribution of the features. Hexbin plots
are quite a nice data visualization tool when data points are very dense.
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Contour Plots

Another alternative to scatter plots when data points are densely populated in specific
region(s) is a contour plot. The advantage of using contour plots is the same as hexbin
plots - accurately depicting the distribution of features in the visualization in cases
where data points are likely to overlap heavily. Contour plots are commonly used to
show the distribution of weather indicators such as temperature, rainfall, and others on
maps of geographical regions.

Let's look at a contour plot in the following exercise.

Exercise 15: Creating a Static Contour Plot

In this exercise, we'll create a contour plot to show the relationship between weight
and mileage in the mpg dataset. We'll be able to see that the relationship between
weight and mileage is strongest when there are more data points. Let's go through
the following steps:

1. Import the necessary Python modules:
import seaborn as sns
2. Import the dataset from seaborn:
mpg _df = sns.load dataset ("mpg")
3. Create a contour plot using the set_style method:

# contour plot
sns.set style("white")

4. Generate a Kernel Density Estimate (KDE) (see Chapter 1, Introduction to
Visualization with Python-Basic and Customized Plotting) plot:

# generate KDE plot: first two parameters are arrays of X and Y
coordinates of data points

# parameter shade is set to True so that the contours are filled with
a color gradient based on number of data points

sns.kdeplot (mpg_df.weight, mpg df.mpg, shade=True)
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The output is as follows:

<matplotlib.axes._subplots.AxesSubplot at ©x7f7311a84400>
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Figure 2.4: Contour plot showing weight versus mpg

Notice that the interpretation of contour plots is similar to that of hexbin plots - darker
regions indicate more data points and lighter regions indicate fewer data points.

In our example of weight versus mileage (mpg), the hexbin plot and the contour plot
indicate that there is a certain curve along which the negative relationship between
weight and mileage is strongest, as is evident by the larger number of data points.
The negative relationship becomes relatively weaker as we move away from the curve
(fewer data points).

Line Plots

Another kind of plot for presenting global patterns in data is a line plot.

Line plots represent information as a series of data points connected by straight-line
segments. They are useful for indicating the relationship between a discrete numerical
feature (on the x axis), such as model_year, and a continuous numerical feature (on the
y axis), such as mpg from the mpg dataset.

Let's look at the succeeding exercise on creating a line plot with model year versus
mpg.
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Exercise 16: Creating a Static Line Plot

In this exercise, we will create a scatter plot for a different pair of features,
model_year and mpg. Then, we'll generate a line plot based on those discrete attributes
-model year and mpg. To do so, let's go through the following steps:

1. Import the necessary Python modules:
import seaborn as sns
2. Import the dataset from seaborn:
mpg df = sns.load dataset ("mpg")
3. Create a contour plot:

# contour plot
sns.set style ("white")

4. Create a two dimensional scatter plot:

# seaborn 2-D scatter plot
axl = sns.scatterplot (x="model year", y="mpg", data=mpg df)

The output is as follows:
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Figure 2.5: Two-dimensional line plot
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In this example, we see that the model_year feature only takes discrete values
between 70 and 82. Now, when we have a discrete numerical feature like this
(model_year), drawing a line plot joining the data points is a good idea. We
can draw a simple line plot showing the relationship between model year and
mileage with the following code.

5. Draw a simple line plot to show the relationship between model_year and
mileage:

# seaborn ('version 0.9.0 is required') line plot code
ax = sns.lineplot (x="model year", y="mpg", data=mpg df)

The output is as follows:
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Figure 2.6: Line plot showing the relationship between model_year and mileage

As we can see, the points connected by the solid line represent the mean of the y
axis feature at the corresponding x coordinate. The shaded area around the line
plot shows the confidence interval for the y axis feature (by default, seaborn sets
this to a 95% confidence interval). The ci parameter can be used to change to a
different confidence interval. The phrase x% confidence interval translates to a
range of feature values where x% of the data points are present. An example of
changing to a confidence interval of 68% is shown in the code that follows.
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6. Change the confidence interval to 68:
sns.lineplot (x="model year", y="mpg", data=mpg df, ci=68)

The output is as follows:

<matplotlib.axes._subplots.AxesSubplot at ex7f7311962ac8>
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Figure 2.7: Line plot where ci = 68

As we can see from the preceding plot, the 68% confidence interval translates to a
range of feature values where 68% of the data points are present. Line plots are great
visualization techniques for scenarios where we have data that changes over time - the
x axis could represent date or time, and the plot would help to visualize how a value
varies over that period.

Speaking of presenting data across time using line plots, let's consider the example of
the £1ights dataset from seaborn. The dataset is used to study a comparison between
airlines, delay distribution, predicting flight delays, and more (this open source dataset
is hosted on Packt's GitHub repository). Through the following example, we'll see how
to generate line plots to represent this dataset.
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Exercise 17: Presenting Data across Time with multiple Line Plots

In this example, we'll see how to present data across time with multiple line plots. We
are using the £1lights dataset:

1. Import the necessary Python modules:
import seaborn as sns
2. Load the flights dataset:

flights df = sns.load dataset ("flights")
print (flights df.head())

The output is as follows:

year month passengers
@ 1949 January 112
1 1949 February 118
2 1943 March 132
3 1949 April 129
4 1949 May 121

Figure 2.8: Flights dataset

Suppose you want to look at how the number of passengers varies between
months in different years. How would you display this information?

One option is to draw multiple line plots in a single figure. For example, let's look
at the line plots for the months of December and January across different years.
We can do this with the code that follows.

3. Create multiple plots for the months of December and January:

#flights df = flights df.pivot ("month", "year", "passengers")

#ax = sns.heatmap (flights df)

# line plots for the planets dataset

ax = sns.lineplot (x="year", y="passengers", data=flights df[flights
df ['month']=="January'], color='green')

ax = sns.lineplot (x="year", y="passengers", data=flights df[flights
df ['month']=="'February'], color='red')

ax = sns.lineplot (x="year", y="passengers", data=flights df[flights
df ['month']=="'March'], color='blue')

ax = sns.lineplot (x="year", y="passengers", data=flights df[flights
df ['month']=="April'], color='cyan')
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ax = sns.lineplot (x="year", y="passengers", data=flights df[flights
df [ 'month']=="May'], color='pink')

ax = sns.lineplot (x="year", y="passengers", data=flights df[flights
df ['month']=="June'], color='black')

ax = sns.lineplot (x="year", y="passengers", data=flights df[flights
df ['month']=="July'], color='grey')

ax = sns.lineplot (x="year", y="passengers", data=flights df[flights
df ['month']=="August'], color='yellow')

ax = sns.lineplot (x="year", y="passengers", data=flights df[flights
df ['month']=="'September'], color='turquoise')

ax = sns.lineplot (x="year", y="passengers", data=flights df[flights
df [ 'month']=="'October'], color='orange')

ax = sns.lineplot (x="year", y="passengers", data=flights df[flights
df [ 'month']=="'November'], color='darkgreen')

ax = sns.lineplot (x="year", y="passengers", data=flights df[flights
df ['month']=="'December'], color='darkred')

The output is as follows:
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Figure 2.9: Multiple line plots for year versus passengers

With this example of 12 line plots, we can see how a figure with too many line plots
quickly begins to get crowded and confusing. Thus, for certain scenarios, line plots are
neither appealing nor useful.

So, what is the alternative for our use case?
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Heatmaps
Enter heatmaps.

A heatmap is a visual representation of a specific continuous numerical feature as a
function of two other discrete features (either a categorical or a discrete numerical)
in the dataset. The information is presented in grid form - each cell in the grid
corresponds to a specific pair of values taken by the two discrete features and is
colored based on the value of the third numerical feature. A heatmap is a great tool to
visualize high-dimensional data and even to tease out features that are particularly
variable across different classes.

Let's go through a concrete exercise.

Exercise 18: Creating and Exploring a Static Heatmap

In this exercise, we will explore and create a heatmap. We will use the £1ights dataset
from the seaborn library to generate a heatmap depicting the number of passengers
per month across the years 1949-1960:

1. Start by importing the seaborn module and loading the £1ights dataset:

import seaborn as sns
flights df = sns.load dataset ('flights"')

2. Now we need to pivot the dataset on the required variables using the pivot ()
function before generating the heatmap. The pivot function first takes as
arguments the feature that will be displayed in rows, then the one displayed in
columns, and finally the feature whose variation we are interested in observing. It
uses unique values from specified indexes/columns to form axes of the resulting
DataFrame:

df pivoted = flights df.pivot ("month", "year", "passengers")
ax = sns.heatmap (df pivoted)
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The output is as follows:
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Figure 2.10: Generated heatmap

Here, we can note that the total number of yearly flights increased steadily from
1949 to 1960. Moreover, the months of July and August seem to have the largest
number of flights (compared to other months) across the years in observation.
Now, that's an interesting trend to find from a simple visualization!

Plotting heatmaps is a very fun thing to explore, and there are lots of options
available to tweak the parameters. You can learn more about them at https: //
seaborn.pydata.org/generated /seaborn.clustermap.html and https: //seaborn.
pvdata.org /generated /seaborn.heatmap.html. However, we will only mention a
few important aspects here - the clustering option and the distance metric.

Rows or columns in a heatmap can also be clustered based on the extent of their
similarity. To do this in seaborn, use the clustermap option.

Exercisel8 continued


https://seaborn.pydata.org/generated/seaborn.clustermap.html
https://seaborn.pydata.org/generated/seaborn.clustermap.html
https://seaborn.pydata.org/generated/seaborn.heatmap.html
https://seaborn.pydata.org/generated/seaborn.heatmap.html
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3. Use clustermap option to cluster rows and columns:

ax = sns.clustermap (df pivoted, col cluster=False, row cluster=True)

The output is as follows:
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Figure 2.11: Heatmap using clustermap
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Did you notice how the order of months got rearranged in the plots but some months
(for example, July and August) stuck together because of their similar trends? In both
July and August, the number of flights increased relatively more drastically in the
last few years till 1960.

Note

We can cluster the data by year by switching the parameter values (row__
cluster=False, col_cluster=True) or cluster both by row and column
(row_cluster=True, col_ cluster=True).

At this point, you may be thinking, But wait, how is the similarity between rows
and columns computed? The answer is that it depends on the distance metric

- that is, how the distance between two rows or two columns is computed.

The rows/columns with the least distance between them are clustered closer
together than the ones with a greater distance between them. The user can set
the distance metric to one of the many available options (manhattan, euclidean,
correlation, and others) simply using the metric option as follows. You can
read more about the distance metric options here: https: //scikit-learn.org/
stable /modules /generated /sklearn.neighbors.DistanceMetric.html.

Note

seaborn sets the metric to euclidean by default.

Exercisel8 continued:
4. Setmetric to euclidean:

# equivalent to ax = sns.clustermap(df pivoted, row cluster=False,
metric='euclidean')

ax = sns.clustermap (df pivoted, col cluster=False)


https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.DistanceMetric.html
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.DistanceMetric.html
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The output is as follows:
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Figure 2.12: Heatmap with distance metric as euclidean
5. Change metric to correlation:

# change distance metric to correlation
ax = sns.clustermap (df pivoted, row cluster=False,
metric='correlation')
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The output is as follows:
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Figure 2.13: Heatmap with distance metric is correlation

On reading about distance metric, we learn that it defines the distance between two
rows/columns. However, if we look carefully, we see that the heatmap also clusters not
just individual rows or columns, but also groups of rows and columns. This is where
linkage comes into the picture. But hold your breath for a moment before we come to
that!
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The Concept of Linkage in Heatmaps

The clustering seen in heatmaps is called agglomerative hierarchical clustering because
it involves the sequential grouping of rows/columns until all of them belong to a

single cluster, resulting in a hierarchy. Without loss of generality, let's assume we are
clustering rows. The first step in hierarchical clustering is to compute the distance
between all possible pairs of rows, and to select two rows, say, A and B, with the least
distance between them. Once these rows are grouped, they are said to be merged into a
single cluster. Once this happens, we need a rule that not only determines the distance
between two rows but also the distance between any two clusters (even if the cluster
contains a single point):

» If we define the distance between two clusters as the distance between the two
points across the clusters closest to each other, the rule is called single linkage.

e If the rule is to define the distance between two clusters as the distance between
the points farthest from each other, it is called complete linkage.

 If the rule is to define the distance as the average of all possible pairs of rows in
the two clusters, it is called average linkage.

The same holds for clustering columns, too.

Exercise 19: Creating Linkage in Static Heatmaps

In this exercise, we'll generate a heatmap and understand the concept of single,
complete, and average linkage in heatmaps using the £1ights dataset. We'll use the
cluster map method and set the method parameter to different values, such as
average, complete, and single. To do so, let's go throughout the following steps:

1. Start by importing the seaborn module and loading the £1ights dataset:

import seaborn as sns
flights df = sns.load dataset ('flights"')

2. Now we need to pivot the dataset on the required variables using the pivot ()
function before generating the heatmap:

df pivoted = flights df.pivot ("month", "year", "passengers")
ax = sns.heatmap (df pivoted)
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The output is as follows:
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Figure 2.14: Generated heatmap for the flights dataset

3. Link the heatmaps using the code that follows:

ax = sns.clustermap (df pivoted, col cluster=False,
metric='correlation', method='average')

ax = sns.clustermap (df pivoted, row cluster=False,
metric='correlation', method='complete')

ax = sns.clustermap (df pivoted, row cluster=False,
metric='correlation', method='single')
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The output is as follows:
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Figure 2.15a: Heatmap showing average linkage
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Figure 2.15b: Heatmap showing complete linkage
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Figure 2.15c: Heatmap showing single linkage

Heatmaps are also a good way to visualize what happens in a 2D space. For example,
they can be used to show where the most action is on the pitch in a soccer game.
Similarly, for a website, heatmaps can be used to show the areas that are most
frequently moussed over by users.
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In this section, we have studied plots that present the global patterns of one or more
features in a dataset. The following plots were specifically highlighted in the section:

* Scatter plots: Useful for observing the relationship between two potentially related
features in a dataset

* Hexbin plots and contour plots: A good alternative for scatter plots when data is too
dense in some parts of a feature space

* Line plots: Useful for indicating the relationship between a discrete numerical
feature (on the x axis) and a continuous numerical feature (on the y axis)

* Heatmaps: Useful for examining the relationship between a continuous numerical
feature of interest and two other features that are either a categorical or a
discrete numerical

Creating Plots That Present Summary Statistics of Your Data

It's now time for a switch to our next section. When datasets are huge, it is sometimes
useful to look at the summary statistics of a range of different features and get a
preliminary idea of the dataset. For example, the summary statistics for any numerical
feature include measures of central tendency, such as the mean, and measures of
dispersion, such as the standard deviation.

When a dataset is too small, plots presenting summary statistics may actually be
misleading because summary statistics are meaningful only when the dataset is big
enough to draw statistical conclusions. For example, if somebody reports the variance
of a feature using five data points, we cannot make any concrete conclusions regarding
the dispersion of the feature.

Histogram Revisited

Let's revisit histograms from Chapter 1, Introduction to Visualization with Python -
Basic and Customized Plotting. Although histograms show the distribution of a given
feature in data, we can make a plot a little more informative by showing some summary
statistics in the same plot. Let's go back to our mpg dataset and draw a histogram to
analyze the spread of vehicle weights in the dataset.
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Example 1: Histogram Revisited

We'll go through a histogram plot to revisit the concept we have learned in Chapter 1,
Introduction to Visualization with Python — Basic and Customized Plotting. Let's go
through the following:

Import the necessary Python modules; load the dataset; choose number of bins and
whether the kernel density estimate should be shown or not; Use red color to show
mean using a straight line on the x axis (parallel to y axis); define the location of legend:

# histogram using seaborn

import matplotlib.pyplot as plt

import seaborn as sns

import numpy as np

mpg _df = sns.load dataset ("mpg")

ax = sns.distplot (mpg df.weight, bins=50, kde=False)

# “label’ defines the name used in legend

plt.axvline (x=np.mean (mpg df.weight), color='red', label='mean')

plt.axvline (x=np.median (mpg df.weight), color='orange',

label="median'")

plt.legend(loc="upper right')

The output is as follows:

<matplotlib.legend.Legend at 0x1a24a60358>

<matplotlib.legend.Legend at 0x7f02c7e07748>

25 | — mean
median

201
15 1
101

54

04 T y v - . -
1500 2000 2500 3000 3500 4000 4500 5000
weight

Figure 2.16: Histogram revisited
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This histogram shows the distribution of the weight feature along with the mean and
median. Notice that the mean is not equal to the median, which means that the feature
is not normally distributed. Read more on this here: http: //mathworld.wolfram.com/
NormalDistribution.html.

Let's explore a few other plots to represent the summary statistics of data.

Box Plots

Box plots are an excellent way to examine the relationship between the summary
statistics of a numerical feature in relation to other categorical features. Now, suppose
we want to see the summary statistics of the mpg feature (mileage) classified by
another feature - the number of cylinders. A popular way to show such information is
to use box plots. This is very easy to do with the seaborn library.

Exercise 20: Creating and Exploring a Static Box Plot

In this exercise, we will create a box plot to analyze the relationship between model
year and mileage using the mpg dataset. We'll analyze manufacturing efficiency and
the mileage of vehicles over a period of years. To do so, let's go through the following
steps:

1. Import seaborn library:

import seaborn as sns
2. Load the dataset:

mpg df = sns.load dataset ("mpg")
3. Create a box plot:

# box plot: mpg(mileage) vs model year
sns.boxplot (x="model year', y='mpg', data=mpg df)


http://mathworld.wolfram.com/NormalDistribution.html
http://mathworld.wolfram.com/NormalDistribution.html
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The output is as follows:

<matplotlib.axes._subplots.AxesSubplot at ex7fe2c7e7bdd8>
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Figure 2.17: Box plot

As we can see, the box boundaries indicate the interquartile range, the upper
boundary marks the 25% quartile, and the lower boundary marks the 75% quartile.
The horizontal line inside the box indicates the median. Any solo points outside
of the whiskers (the T-shaped bars above and below the box) mark outliers, while
the whiskers themselves show the minimum and maximum values that are not
outliers.

Apparently, mileage improved substantially in the 80s compared to the 70s. Let's
add another feature to our mpg DataFrame that denotes whether the car was
manufactured in the 70s or 80s.

4. Modify the mpg DataFrame by creating a new feature, model decade:

import numpy as np

# creating a new feature 'model decade'

mpg df['model decade'] = np.floor (mpg df.model year/10)*10
mpg df['model decade'] = mpg df['model decade'].astype (int)
mpg_df.tail()
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The output is as follows:

mpg cylinders displacement horsepower weight acceleration model_year origin name model_decade
393 27.0 4 140.0 86.0 2790 15.6 82 usa ford mustang gl 80
394 44.0 4 97.0 52.0 2130 246 82 europe VW pickup 80
395 32.0 4 135.0 84.0 2295 11.6 82 usa dodge rampage 80
396 28.0 4 120.0 79.0 2625 18.6 82 usa ford ranger 80
397 31.0 4 119.0 82.0 2720 19.4 82 usa chevy s-10 80

Figure 2.18:Modified mpg DataFrame

5. Now, let's redraw our box plot to look at mileage distribution for the two
decades:

# a boxplot with multiple classes
sns.boxplot (x="model decade', y='mpg', data=mpg df)

The output is as follows:

<matplotlib.axes._subplots.AxesSubplot at ©x7fe87e4aa%978>
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Figure 2.19: Redrawn Box plot

But wait - more can be done with boxplots. We can also add another feature, say,
region of origin, and see how that affects the relationship between mileage
and manufacturing time, the two features we have been considering so far.
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6. Use the hue parameter to group by origin:

# boxplot: mpg (mileage) vs model decade
# parameter hue is used to group by a specific feature, in this case
'origin'

sns.boxplot (x="model decade', y='mpg', data=mpg df, hue='origin')

The output is as follows:

<matplotlib.axes._subplots.AxesSubplot at ex7fe87df49f28>
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Figure 2.20: Box plot where hue=origin

As we can see, according to the mpg dataset, in the 70s and early 80s, Europe and Japan
produced cars with better mileage than the USA. Interesting!

Violin Plots

Now let's consider a different scenario. What if we could get a hint regarding the entire
distribution of a specific numerical feature grouped by other categorical features? The
right kind of visualization technique here is a violin plot. A violin plot is similar to a
box plot, but it includes more detail about variations in the data. The shape of a violin
plot tells you the shape of the data distribution -where the data points cluster around
a common value, the plot is fatter, and where there are fewer data points, the plot is
thinner. We will look at a concrete example with the help of an exercise.
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Exercise 21: Creating a Static Violin Plot

In this exercise, we will use the mpg dataset and generate a violin plot depicting the
detailed variation of mileage (mpg) based on model decade and region of origin:

1. Import the necessary Python modules:
import seaborn as sns
2. Load the dataset:
mpg _df = sns.load dataset ("mpg")
3. Generate the violin plot using the violinplot function in seaborn:

# creating the feature 'model decade'
import numpy as np

mpg df ['model decade'] np.floor (mpg df.model year/10)*10

mpg_df [ 'model decade'] mpg df['model decade'].astype (int)

# code for violinplots

# parameter hue is used to group by a specific feature, in this case
'origin', while x represents the model year and y represent mileage
sns.violinplot (x="model decade', y='mpg', data=mpg df, hue='origin')

The output is as follows:

<matplotlib.axes. subplots.AxesSubplot at 0x7fe2c40915co>
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Figure 2.21: Violin plot
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We can see here that, during the 70s, while most vehicles in the US had a median
mileage of 19 mpg, vehicles in Japan and Europe had median mileages of around 27 and
25 mpg. While the mileages of vehicles in Europe and Japan jumped by 7 to 8 points in
the 80s, the median mileage of vehicles in the US was still similar to that of the vehicles
in Japan and Europe in the previous decade.

As we can see from the preceding plot, the fatter sections of the plot indicate ranges
of higher probability of the y-axis feature, while the thinner sections indicate areas of
lower probability. The thick solid line at the center of each distribution represents the
interquartile range — the two ends are the 25% and 75% quantiles and the dot is the
median. The thinner solid line shows 1.5 times the interquartile range.

Note

Since violin plots estimate a probability distribution based on the existing data,
plots sometimes assign data points to negative values of the feature on the y axis.
This may cause confusion and make readers doubt your results.

In this section, we have studied some plots that present summary statistics of various
features in the dataset. These plots are especially useful representations of data when
datasets are huge and it would be computationally expensive and time-intensive to
generate plots that depict global patterns in the data. We learned how to add mean and
median markers in the histogram of a given feature in the dataset. We also studied box
plots and violin plots - while box plots depict summary statistics alone (with median
and quartiles), violin plots also show the probability distribution of the feature across
different value ranges.

Activity 2: Design Static Visualization to Present Global Patterns and Summary
Statistics

We'll continue to work with the 120 years of Olympic History dataset acquired
by Randi Griffin from https: //www.sports-reference.com/ and made available on the

GitHub repository of this book. As a visualization specialist, your task is to create two

plots for the 2016 medal winners of five sports - athletics, swimming, rowing, football,
and hockey:

* Create a plot using an appropriate visualization technique that best presents the
global pattern of the height and weight features of the 2016 medal winners of
the five sports.


https://www.sports-reference.com/
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* Create a plot using an appropriate visualization technique that best presents the
summary statistic for the height and weight of the players that won each type of
medal (gold/silver/bronze) in the data.

You are encouraged to use your creativity and skills in bringing out important insights
from the data.
High-Level Steps

1. Download the dataset and format it as a pandas DataFrame.

2. Filter the DataFrame to only include the rows corresponding to medal winners
from 2016 for the sports mentioned in the activity description.

3. Look at the features in the dataset and note their data type - are they categorical
or numerical?

4. Evaluate what the appropriate visualization(s) would be for a global pattern to
depict the height and weight features.

5. Evaluate what the appropriate visualization(s) would be for depicting the medal-
wise summary statistics of the weight and height features, further segregated by
athlete gender.

The expected output should be:

After Step 1:

D Name Sex Age Height Weight Team NOC Games Year Season City Sport Event Medal

0 1 ADijlang M 240 1800 800 China CHN 1992 4995 Summer Barcelona Basketball Basketball Men's
Summer Basketball

12 Alamusi M 230 1700 500 China  CHN 2012 5012 Summer  London Judo Judo Men's Extra-
Summer Lightweight

2 3 GunnarNielsen 1y 546 NaN NaN Denmark DEN 1920 4050 Summer Antwerpen  Football  Football Men's Football  NaN

Aaby Summer

3 4 Edgarlindenau ., 544 NaN NaN  Denmark/Sweden DEN 1900 4900 Summer Paris  TUOOF  Tug-OfRWarMen's Tug- 5

Aabye Summer War Of-War

1988 Winter Calgary Speed Speed Skating Women's NaN

Christine Jacoba 1988
4 5 F 21.0 1850 82.0 Netherlands NED Skating 500 metres

Aaftink . ) Winter

Figure 2.22: Olympic History dataset
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After Step 2:

D Name Sex Age Height Weight Team NOC Games Year Season City Sport Event Medal

188 62 Giovanni Abagnale M 210 1980 900 taly A o 2916 5045 summer R9de poing  Rowing Men'sCoxless g
Summer Janeiro Pairs
2016 Rio de Swimming Men's 4 x

814 465 Matthew "Matt" Abood M 300 187.0 92.0 Australia  AUS 5 2016 Summer Swimming 100 metres Freestyle Bronze
ummer Janeiro Relay

1228 690 Chantal Achterberg ~ F 310 1720 720 Netherlands NED 2016 5516 summer 29 Rowing Rowing Women's gy o
Summer Janeiro Quadruple Sculls

1529 846 Valerie KasamtaAda[‘ns— F 310 1930 1200 New NZL 2018 2016 Summer Rio de Athletics Athletics Women's Shot Silver
Vili (-Price) Zealand Summer Janeiro Put

1847 1017 Nathan Ghar-lun Adrian M 27.0 1980  100.0 United yen 2016 5045 summer  RI998 Quimming Swimming Men's 50 g
States Summer Janeiro metres Freestyle

Figure 2.23: Olympics history dataset with the medal winners

After Step 3:

Age Height Weight

count 732.000000 729.000000 727.000000
mean 25577869 180.023320 73.720770
std 4451373 10076398  14.279014
min  16.000000 150.000000  40.000000
25%  22.000000 173.000000 64.000000
50%  25.000000 180.000000  72.000000
75%  29.000000 187.000000  82.000000
max  40.000000 207.000000 136.000000

Figure 2.24: Olympics history dataset with the top sport winners



Creating Plots That Present Summary Statistics of Your Data | 81

After Step 4:
Scatter plot-
140 —
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Figure 2.25: Scatter plot
Hexbin plot-
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Figure 2.26: Hexagonal binning plot
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After Step 5:
First Plot-
Sex
140 — M
120 _ 1
+=100
2 80
)
=
60
40
Bronze Silver Gold
Medal
Figure 2.27: Violin plot showing medal versus weight
Second plot-
S
210 Sex,
200 = F
. 190
5180
[}
T 170
160
150
Bronze Silver Gold
Medal
Figure 2.28: Violin plot showing medal versus height
Note

The solution steps can be found on page 259.
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Summary

In this chapter, we learned how choosing the most appropriate visualization(s) depends
on four key elements:

* The nature of the features in a dataset: categorical /discrete, numerical /
continuous numerical

» The size of the dataset: small/medium/large

* The density of the data points in the chosen feature space: whether too many or
too few data points are set to certain feature values

* The context of the visualization: the source of the dataset and frequently used
visualizations for the given application

For the purpose of explaining the concepts clearly and defining certain general
guidelines, we classified visualizations into two categories:

* Plots representing the global patterns of the chosen features (for example,
histograms, scatter plots, hexbin plots, contour plots, line plots,and heatmaps)

* Plots representing the summary statistics of the specific features (box plots and
violin plots)

We are not implying that a single best visualization must be determined right away
for any given application; for most datasets, the best visualizations will likely emerge
from testing different kinds of plots and carefully examining the insights derived
from each of them. This chapter provided the necessary resources to understand the
interpretation and usage of various popular and less-used informative visualization
types. In the next chapter, we will build on this foundation to introduce interactivity
into our visualizations.






From Static
to Interactive
Visualization

Learning Objectives

By the end of this chapter, you will be able to:
+ Explain the differences between static and interactive visualizations
+ Explain the application of interactive visualizations in various sectors
+ Create interactive plots with zoom, hover, and slide functionalities

+ Use the Bokeh and Plotly (Express) Python libraries to create interactive data visualizations

In this chapter, we'll move from static to interactive visualizations and look into the applications
of interactive visualizations for different scenarios.
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Introduction

As we discussed in the previous chapters, data visualizations are graphical
representations of information and data. Their purpose is to extract values from
multiples rows and columns of numbers and data that are otherwise difficult to
comprehend and represent them in graphically appealing plots. As a result, data
visualizations can provide key insights regarding data at a glance. This is something that
raw data, and even analyzed data in tabular form, is unable to do.

We discussed static data visualizations in the previous chapter — graphs and plots that
are stagnant and cannot be modified or interacted with in real time by the audience.

Interactive data visualizations are a step ahead of static ones. Let's take a look at the
term interactive to understand how. The definition of interactive is something that
involves communication between two or more things or people that work together.
Therefore, interactive visualizations are graphical representations of analyzed data
(static or dynamic) that can react and respond to user actions in the moment. They are
static visualizations that incorporate features to accept human inputs, thus enhancing
and increasing the impact that data has.

Note

Some of the images in this chapter have colored notations, you can find
high-quality color images used in this chapter at: https://github.com/
TrainingByPackt/Interactive-Data-Visualization-with-Python/tree/master/Graphics/
Lesson3.

The ability for a plot to provide you with more information about a datapoint when
there's a user action, such as your mouse hovering above it, is what makes it interactive.
An example of this can be seen in the following diagrams:

Interactive
Static Data Features that Interactive Data
Visualization | Respond to Human 5 Visualization

Inputin Real Time

Figure 3.1: Interactive data visualization


https://github.com/TrainingByPackt/Interactive-Data-Visualization-with-Python/tree/master/Graphics/Lesson3
https://github.com/TrainingByPackt/Interactive-Data-Visualization-with-Python/tree/master/Graphics/Lesson3
https://github.com/TrainingByPackt/Interactive-Data-Visualization-with-Python/tree/master/Graphics/Lesson3
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i region=Middle East & North Africa region=Sub-Saharan Africa

. 0’

2 510002 S10k? S100k 2 51000* S10k? S100k

gdp gdp
Figure 3.2: Hovering over something provides you with more information about it

Interactive visualizations are often also built on dynamic data. The word dynamic is
used to refer to something that is constantly changing, and when used with respect

to data visualizations, it means that the input data that the visualization is built on

is constantly changing as opposed to static data, which is stagnant and does not
change. An example of interactive data visualization with dynamic data is visualizations
depicting fluctuations in stock trends. The input data that's used to create these
graphs is dynamic and constantly changing in real time, and so the visualizations

are interactive. Static data is more for business intelligence, such as when data
visualizations are used as part of a data science/machine learning process.

To understand the real capabilities of interactive visualization, let's compare it head to
head with static visualization.
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Static versus Interactive Visualization

While static data visualizations are a giant leap forward toward the goal of extracting
and explaining the value and information that datasets hold, the addition of interactivity
takes these visualizations a step ahead.

Interactive data visualizations have the following qualities:

* They are easier to explore as they allow you to interact with data by changing
colors, parameters, and plots.

* They can be manipulated easily and instantly. Since you can interact with them,
the graphs can be changed in front of you. For example, in the exercises and
activities in this chapter, you will create an interactive slider. When the position of
this slider is altered and the graph you see changes, you will also be able to create
checkboxes that allow you to select the parameters you wish to see.

* They enable access to real-time data and the insights they provide. This allows for
the efficient and quick analysis of trends.

» They are easier to comprehend, thereby allowing organizations to make better
data-based decisions.

* They remove the requirement of having multiple plots for the same information -
one interactive plot is able to convey the same insights.

* They allow you to observe relationships (for example, cause and effect).

Let's start with an example to understand what we can achieve through interactive
visualization. Let's consider a dataset for members who are enrolled in a gym:

age  weight sex

0 29 88 2
1 45 96 1
2 35 91 0
3 37 79 1
4 27 62 0

Figure 3.3: Gym clients dataset
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The following is a static data visualization in the form of a box plot that describes the
weight of people categorized by their sex (0 is male, 1 is female, and 2 is other):

welght

100

70

0 1 2

sex

Figure 3.4 : A static visualization displaying weight versus the sex of gym clients



90 | From Static to Interactive Visualization

The only insight we can gain from this plot is the relationship between weight and
sex — male clients visiting this gym weigh between 62kg and 91kg, female clients
weigh between 57kg and 86kg, and clients identifying as other weigh between 61kg
and 90kg. There is, however, a third feature present in the dataset that's used to
generate this box plot - age. Adding this feature to the preceding static plot may lead
to confusion in terms of understanding the data. So, we're a little stuck with regards
to showing the relationship between all three features using a static visualization. This
problem can be easily solved by creating an interactive visualization, as shown here:

(2, max: 82)
8o

welght

e

(2, min: 56)

S0

sex

L T I T T T O IO O I | LI T T T A Y T O T TR O TR S S Y RO (O I 13
17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71

Figure 3.5: An interactive visualization displaying the weight and sex of 46-year-old gym clients

In the preceding box plot, a slider has been introduced for the age feature. The user
can manually slide the position of the slider to observe the relationship between
weight, gender, and age at different values of age. Additionally, there is a hover tool
that allows the user to gain more information about the data.
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The preceding box plot describes that, at this gym, the only 46-year-old clients are
those that identify as other, and the heaviest 46-year-old weighs 82 kilograms, while
the lightest weighs 56 kilograms.

The user can slide to another position to observe the relationship between weight and
sex at a different age, as shown in the following plot:

S0

80

70 (1, min: 71)

welght

§0

50

age=34

5 e o S IS el PG| G IR T I TS WL e (ST T [ [ o e S o N L W - B O . O
17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 €5 67 69 71

Figure 3.6: An interactive visualization displaying the weight and sex of 34-year-old gym clients

The preceding plot describes the data at the age of 34 - there are no male gym clients;
however, the heaviest 34-year old female client weights 100 kilograms while the
lightest one weighs 71 kilograms.
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But there are still more aspects to consider when differentiating between static and
interactive visualizations. Let's look at the following table:

Static Data Visualizations Interactive Data Visualizations

Target Media/Fields Best-suited for print media and Social media applications and
presentations websites, business intelligence,

and so on
Cost to Create Low High
Connection to Data Source Not required Required in cases where data is

dynamic; results in complicated
systems involving online
databases

Viewing Render easily and can be Might require advanced Ul
saved as images designs
Popular Python Libraries Matplotlib, Seaborn Bokeh, Plotly

Figure 3.7: Static versus interactive data visualizations

Ultimately, interactive data visualizations transform the discussion of data into the art
of storytelling, thus simplifying the process of understanding what the data is trying to
tell us. They benefit both the people creating the visualizations (since the messages and
information they are trying to convey are put across efficiently and in a visually pleasing
manner) and those who are viewing the visualizations (since they can understand

and observe patterns and insights almost instantly). These aspects are what separate
interactive visualizations from static visualizations.

Let's look at a few applications of interactive data visualizations.
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Applications of Interactive Data Visualizations

Any industry that possesses large amounts of data can benefit from using interactive
data visualizations. A few scenarios, such as those listed here, will help us understand

how interactive visualizations help us get quick insights and facilitate our day-to-day
activities:

* Let's say you wake up early in the morning and have time to hit the gym before
you have to leave for work /school. You ate a pretty heavy meal last night with
lots of carbs and sugar, so you want to do a workout that burns the most calories.
You check your fitness app, which shows you a visualization describing your last
couple of workouts, and with the help of the interactive graphs, you find a workout
that helps you burn the most calories. Let's look at the following figure:

16:29 = .
£ 17 Sep Steps +
n ] ¥ l
17 Sep
12 PM 1 PM | 80 steps
m m B l I BEm
TOTAL 252 steps
Add to Favourites
Show All Data
Data Sources & Access
Unit Steps
Apps for Tracking Steps
1] alm ~ -
E 1] “ I~
Taday Health Data Sources Medical ID

Figure 3.8: Fitness app
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» Before leaving for work /school, you need to decide whether you should drive or
take an Uber. You check Google Maps to see how much traffic there is on your
route, and you see there's a lot. So, you decide to take an Uber to avoid the hassle
of driving in a messy traffic situation. Let's look at an example app below:
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31min (11km) @ vedium

Fastest route now due to traffic conditions

Figure 3.9: Google Maps app
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» Uber drivers often decide what hours they should work and the areas they should
work in based on peak hours, such as hours when there is a high demand for cabs
in specific areas. They can judge this by observing an interactive data visualization.

* When you're at work/in school, you need to prepare a pitch for a client regarding
a social media campaign, conveying the conclusion that Instagram is the app to
target. To do this, you use data describing user habits on different social media
platforms to create an interactive visualization, providing insights as to which app
receives the most users and user time.

* You go to the cinema and ask the ticket vendor for a ticket for the most popular
movie right now. The ticket vendor reviews the trends through an interactive
visualization-based app pertaining to the movies currently in cinemas and gives
you a ticket to Avengers: Endgame.

* When you go home after the movie, you add your review of the movie to the
ticket-selling mobile app. Your review gets added to the data, which creates
visualizations regarding movie trends.

The aforementioned examples involve fitness, Google Maps, transportation, social
media, business intelligence, and the entertainment industry. These fields, along with
many others, benefit from and use interactive data visualizations.

Getting Started with Interactive Data Visualizations

As we mentioned earlier, the key aspect of interactive data visualizations is its ability
to respond and react to human inputs either in the moment or within a very short
time span. Thus, human inputs themselves play an important role in interactive

data visualizations. In this section, we'll look at some human inputs, how they

can be introduced into data visualizations, and the impact that they have on the
comprehension of data.

The following are some of the most popular forms of human input and interactive
features:

* Slider: A slider allows the user to see data pertaining to a range of something.
As the user changes the position of the slider, the plot changes in real time. This
allows the user to see several plots in real time:

Year 1994 1994

Figure 3.10: A slider tool
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* Hover: Hovering a cursor above an element of a plot allows the user to receive
more information about the datapoint than can be seen just by observing the plot.
This is helpful when the information you wish to convey cannot fit in the plot itself
(such as precise values or brief descriptions). Let's look at a hover tool:

region=Middle East & North Africa region=Sub-Saharan Africa

Y A

2 510002  S10k? $100k 2 510002 S10k? $100k

gdp gdp

1
1976 1978 1980 1982 1984 1986 1988 1990 1992 1994

Figure 3.11: A hover tool

* Zoom: Zooming in and out of a plot is a feature that quite a few interactive data
visualization libraries create on their own. They allow you to focus on specific
datapoints of a plot and take a closer look at them.

* Clickable parameters:There are several types of clickable parameters, such as
checkboxes and drop-down menus, that allow the user to pick and choose what
aspects of the data they wish to analyze and view. An example is given here:

region=South Asia
region=Europe & Central Asia
region=Middle East & North Africa
region=Sub-Saharan Africa
region=America

region=East Asia & Pacific

o000

Figure 3.12: Clickable parameters
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There are Python libraries that are used to create these interactive features, which
allow for the visualizations to take human input. Therefore, before we begin coding
for and creating these interactive features, let's take a quick look at some of the most
popular interactive data visualization Python libraries that exist.

In the previous chapters, we looked at two built-in Python libraries:
* matplotlib

* seaborn

Both are popular in the data visualization community.

With these, we can build a static visualization (a static scatter plot showing the
relationship between two variables) like this:

45 Region *
® Americas . ®
401 o Asia Pacific ¢
= Europe . 3 .
()] L P 1]
= 351 e Post-communist e, ° o . e
= @ Middle East and North Africa . % e ae
2 301 e Sub Saharan Africa -+ ‘o o *
o e o 0 e :
. o .. ve
5 25 0" 0.5 * o * e ) L o
2 . 3° o0 0w °, . ., o
tI“ 20 o® '.. . .
. °
15 S T ‘
. o . °
3 4 5 7 8
Wellbeing (0-10)

Figure 3. 13: Static data visualization

While both matplotlib and seaborn are great for static data visualizations, there are
other libraries available that do a good job of designing interactive features.

Two of the most popular interactive data visualization Python libraries are as follows:
* bokeh

* plotly
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These help us create visualizations such as the following:
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Figure 3.14: The interactive data visualization that we will be creating in this chapter

We will be using both bokeh and plotly in the exercises in this chapter to create
interactive data visualizations.

Interactive Data Visualization with Bokeh

bokeh is a Python library for interactive data visualizations. The plots in Bokeh are
created by stacking layers on top of each other. The first step is to create an empty
figure, to which elements are added in layers. These elements are known as glyphs,
which can be anything from lines to bars to circles. Attached to each glyph are
properties such as color, size, and coordinates.

bokeh is popular because the visualizations are rendered using HTML and JavaScript,
which is why it is commonly chosen when designing web-based interactive
visualizations. Furthermore, the bokeh. io module creates a . html file that contains
the basic static plot, along with the interactive features, and doesn't necessarily require
a server to run, which makes the visualization super easy to deploy.

Let's get started with our visualizations!

The most important aspect of any kind of data visualization is the data itself - without
it, there is nothing to convey. So, let's start our journey of interactive data visualizations
by gathering and preparing our data so that we can visualize it in the most efficient
manner.
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In this chapter, Exercises 1 - 4 aim to create an interactive data visualization to
represent the relationship between carbon dioxide emissions and the GDP of a country
using the Python bokeh library.

Note

All the exercises and activities in this chapter will be developed on Jupyter
Notebook. You will need Python 3.6, Bokeh, and Plotly installed on your system.

Exercise 22: Preparing Our Dataset

In this exercise, we will download and prepare our dataset using the built-in pandas
and numpy libraries. By the end of this exercise, we will have a DataFrame on which
we will build our interactive data visualizations. We'll be using the co2.csv and
gapminder.csv datasets. The former consists of the carbon dioxide emissions per
person per year per country, while the latter consists of the GDP per year per country.
These files are available at https: //github.com /TrainingByPackt /Interactive-Data-

Visualization-with-Python /tree /master/datasets.

The following steps will help you prepare the data:

1. Import the pandas and numpy libraries:

import pandas as pd
import numpy as np

2. Store the co2.csv file in a DataFrame called co2, and the gapminder. csv file in
a DataFrame called gm:

url co2 = 'https://raw.githubusercontent.com/TrainingByPackt/
Interactive-Data-Visualization-with-Python/master/datasets/co2.csv'

co2 = pd.read csv(url co2)

url gm = 'https://raw.githubusercontent.com/TrainingByPackt/
Interactive-Data-Visualization-with-Python/master/datasets/
gapminder.csv'

gm = pd.read csv(url gm)

We currently have two separate DataFrames, each consisting of data that
we require to create our interactive data visualization. In order to create the
visualization, we need to combine these two DataFrames and remove the
unwanted columns.


https://github.com/TrainingByPackt/Interactive-Data-Visualization-with-Python/tree/master/datasets
https://github.com/TrainingByPackt/Interactive-Data-Visualization-with-Python/tree/master/datasets
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3. Use .drop_duplicates () to remove the duplicate instances from the gm
DataFrame and save this in a new DataFrame called df_gm:

df gm = gm[['Country', 'region']].drop duplicates()

4. Use .merge () to combine the co2 DataFrame with the df_gm DataFrame. This
merge function basically performs an inner join on the two DataFrames (the same
as the inner join when used in databases). This merge is necessary to ensure that
both the co2 DataFrame and the gm DataFrame consist of the same countries,
thus guaranteeing that the values of the CO2 emissions will correspond to their
respective countries:

df w regions = pd.merge(co2, df gm, left on ='country', right on

='Country', how ='inner')

Note

To find out more about merging and joining in Python, click here: https://www.
shanelynn.ie/merge-join-DataFrames-python-pandas-index-1/.

5. Drop one of the country columns since there are two:
df w regions = df w regions.drop('Country', axis='columns')

6. Next, we're going to apply the .melt () function to this DataFrame and store
it in a new DataFrame called new_co2. This function changes the format of
a DataFrame into one that has identifier variables of our choice. In our case,
we want the identifier variables to be country and region since they are the
constants. We're also going to rename the columns:

new co2 = pd.melt(df w regions, id vars=['country', 'region'])
columns = ['country', 'region', 'year', 'co2']

new_coZ.columns = columns


https://www.shanelynn.ie/merge-join-DataFrames-python-pandas-index-1/
https://www.shanelynn.ie/merge-join-DataFrames-python-pandas-index-1/
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7. Set 1964 and onward as the range for the year column and int64 as the data
type. Set the lower limit for the year column as 1964 so that the column consists
of int64 values for 1964 and onward. Do this within the new_co2 DataFrame we
created in the previous step, and store this in a new DataFrame called df _co2.
Sort the values of the df_co2 DataFrame by the country column and then do the
same for the year column using .sort_values () . Using the head () function,
print the first five rows of the df _co2 DataFrame:

df co2 = new co2[new co2['year'].astype('int64') > 1963]
df co2 = df co2.sort values(by=['country', 'year'])
df co2['year'] = df co2['year'].astype('int64"')

df co2.head()
The output is as follows:

country region year co2
28372 Afghanistan South Asia 1964 0.0863
28545 Afghanistan South Asia 1965 0.1010
28718 Afghanistan South Asia 1966 0.1080
28891 Afghanistan South Asia 1967 0.1240

29064 Afghanistan South Asia 1968 0.1160
Figure 3.15: The first five rows of the df_co2 DataFrame

Now we have a DataFrame that consists of the carbon dioxide emissions per year
per country! The serial numbers are not in ascending order because we have
sorted the data by the country column and then the year column.

Next, we're going to create a similar table for the GDP per year per country.
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8. Create a new DataFrame called df_gdp that consists of the country, year, and
gdp columns from the gm DataFrame:

df gdp = gm[['Country', 'Year', 'gdp'l]]
df gdp.columns = ['country', 'year',K 'gdp']
df gdp.head()

The output is as follows:
country year gdp

0 Afghanistan 1964 1182.0

1 Afghanistan 1965 1182.0

2 Afghanistan 1966 1168.0

3 Afghanistan 1967 1173.0

4 Afghanistan 1968 1187.0

Figure 3.16: The first five rows of the df_gdp DataFrame

We finally have two DataFrames that consist of the following:
The carbon dioxide emissions, the GDP

9. Merge the two DataFrames together by using the .merge () function on the
country and year columns. Store this in a new DataFrame called data. Use the
dropna () function to drop the NaN values and the head () function to print the
first five rows. By doing this, we can see what the final dataset looks like:

data = pd.merge(df co2, df gdp, on=['country', 'year'], how='left')
data = data.dropna/()
data.head ()
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The output is as follows:

country region year co2 gdp
0 Afghanistan South Asia 1964 0.0863 1182.0
1 Afghanistan South Asia 1965 0.1010 1182.0
2 Afghanistan South Asia 1966 0.1080 1168.0
3 Afghanistan South Asia 1967 0.1240 1173.0
4 Afghanistan South Asia 1968 0.1160 1187.0

Figure 3.17:The first five rows of the final DataFrame that we are going to visualize

Finally, let's check the correlation between carbon dioxide emissions and the GDP
to ensure we're analyzing data that is worth visualizing.

10. Create a numpy array of the co2 and gdp columns:

np co2 = np.array(data['co2'])
np gdp = np.array(data['gdp'])

11. Use the .corrcoef () function to print the correlation between the carbon
dioxide emissions and the GDP:

np.corrcoef (np_co2, np_gdp)
The output is as follows:
array([[1. , ©.78219731],
[©.78219731, 1. 1D
Figure 3.18: Correlation between the carbon dioxide emissions and the GDP

As you can see from the preceding output, there is a high correlation between the
carbon dioxide emissions and the GDP.
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Exercise 23: Creating the Base Static Plot for an Interactive Data Visualization

In this exercise, we are going to create a static plot for our dataset and add circular
glyphs to it. The following steps will help you with the solution:

1. Import the following:

* curdoc from bokeh. io: This returns the current default state of the document/
plot.

* The figure from bokeh.plotting: This creates the figure for plotting.

* HoverTool, ColumnDataSource, CategoricalColorMapper, and Slider from
bokeh.models: These are interactive tools and methods for mapping data from
pandas DataFrames to a data source for plotting.

* Spectralé from bokeh.palettes: A color palette for the plot.

* widgetbox and row from bokeh. layouts: widgetbox creates a column of
predefined tools (including zoom), while row creates a row of bokeh layout objects,
forcing them to have the same sizing_mode:

from bokeh.io import curdoc, output notebook

from bokeh.plotting import figure, show

from bokeh.models import HoverTool, ColumnDataSource,
CategoricalColorMapper, Slider

from bokeh.palettes import Spectral6

from bokeh.layouts import widgetbox, row

2. Run the output notebook () function to load BokehdJs. This is what enables the
plot to be displayed within the notebook:

output notebook ()

3. We are going to color code our datapoints (which will be the individual countries)
based on the region that they belong to. To do that, create a list of regions by
applying the .unique () function on the region column in the DataFrame. Make
this a list by using the . tolist () method:

regions_list = data.region.unique () .tolist ()

4. Use CategoricalColorMapper to assign a color from the Spectralé package to
the different regions present in the regions_1list list:

color mapper = CategoricalColorMapper (factors=regions list,
palette=Spectralb)
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5. Next, we need to make a data source for the plot. Do this by creating a
ColumnDataSource and storing it as source. The x axis will be the GDP per year
while the y axis will be the carbon dioxide emissions per year:

source = ColumnDataSource (data={
'x': data.gdpl[datal['year'] == 1964],
'y': data.co2[data['year'] == 1964],
'country': data.countryl[data['year'] == 1964],
'region': data.region[data['year'] == 1964],

})
6. Store the minimum and maximum GDP values as xmin and xmax respectively:
xmin, xmax = min(data.gdp), max(data.gdp)

7. Repeat step 6 to determine the minimum and maximum carbon dioxide emission
values:

ymin, ymax = min(data.co2), max(data.co2)
8. Create the empty figure:
» Set the title as CO2 Emissions versus GDP in 1964.
* Set the plot height as 600.
» Set the plot width as 1000.
* Set the range of the x-axis from xmin to xmax.
* Set the range of the y-axis from ymin to ymax.
* Set the y-axis type as logarithmic:

plot = figure(title='CO2 Emissions vs GDP in 1964"',
plot height=600, plot width=1000,
X_range=(xmin, xmax),

y_range=(ymin, ymax), y axis type='log')
9. Add circular glyphs to the plot:

plot.circle(x="x"', y='y', fill alpha=0.8, source=source,
legend='region', color=dict (field="'region', transform=color mapper),

size=7)
10. Set the location of the legend to the bottom-right corner of the plot:

plot.legend.location = 'bottom right'
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11. Set the x-axis title as Income Per Person:

plot.xaxis.axis label =

12. Set the y-axis title as CO2 Emissions (tons per person):

plot.yaxis.axis label =
Now we have our basic plot created!
13. Display the plot:
show (plot)

The output is as follows:

CO2 Emissions vs GDP in 1964

'CO2 Emissions

'Income Per Person'

(tons per person)'
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Figure 3.19: The static plot with circular glyphs. Right now, this is a static data visualization
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Exercise 24: Adding a Slider to the Static Plot

In this exercise, we are going to add a slider for the year column of the DataFrame to
our plot. The following steps will help you with the solution:

1.

Create a slider object:
Set the start as the first year in the year column.
Set the end as the last year in the year column.

Set the step as 1. Since with each movement of the slider, we want the year to
increment with the value of 1.

Set the value as the minimum value of the year column.
Set the title as Year:

slider = Slider (start=min(data.year), end=max(data.year), step=1,

value=min (data.year), title='Year')

Create a function called update_plot that will update the plot every time the
slider is moved:

def update plot(attr, old, new):

yr = slider.value

new data = {
'x': data.gdpldata['year'] == yr],
'y': data.co2[data['year'] == yr],
'country': data.country[datal['year'] == yr],
'region': data.region[data['year'] == yr],

}
source.data = new data
plot.title.text = 'CO2 Emissions vs GDP in %d' % yr

slider.value is the value of the current position of the slider, and thus is the
year whose data we need to display in the plot. This value is stored as yr. Create a
dictionary called new_data that is structured the way source is structured (from
Exercise 2, Creating the Base Static Plot for an Interactive Data Visualization step
4), except instead of 1964, the year is yr. source.data is set to new_data, and
the plot title is modified.
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3. Apply the .on_change () function with value and update plot as the
parameters to tell the plot that once the value of the slider changes, update the
plot using the method described in the update plot function:

slider.on change('value', update plot)
4. Create a row layout of the slider:
layout = row(widgetbox(slider), plot)
5. Add the layout to the current plot:
curdoc () .add_root (layout)
We have successfully added a slider to our plot! Our visualization is now interactive.

Once again, you can't view the plot just yet, but this is what the slider will look like once
we display our plot:

Year: 1994 1994

Figure 3.20: The slider tool

Exercise 25: Adding a Hover Tool

In this exercise, we are going to allow the user to hover above a datapoint on our plot to
see the name of the country, the carbon dioxide emissions, and the GDP. The following
steps will help you with the solution:

1. Create a hover tool called hover:

hover = HoverTool (tooltips=[('Country', '@country'), ('GDP', '@x'),
('"CO2 Emission', 'Qy')])

2. Add the hover tool to the plot:

plot.add tools (hover)
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Once again, you can't view the plot just yet, but this is what hovering over a
datapoint will look like:

Country: Canada
GDP: 41012
CO2 Emission: 16.700

@
Figure 3.21: Information about the Canada datapoint upon hovering above it
Now that we've added the hover tool, let's display our plot.

Go back to cmd or your Terminal and traverse to the folder that contains this
Jupyter notebook. Type the following command and wait until the plot is displayed
in your web browser:

bokeh serve --show name of your notebook.ipynb
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The output is as follows:
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Figure 3.22: The plot when the slider is at the year 1964

The preceding plot displays the carbon dioxide emissions versus the GDP per
country in the year 1964. As you move the slider, you will see the plot change in
real time:

De+5
Year: 2011 CO2 Emissions vs GDP in 2011
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Figure 3.23:The plot when the slider is at the year 2011
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As you can see, in the right-hand corner, there are several tools. These are
automatically generated by Bokeh when you create a plot:

o
Pan ——|
——— Box Zoom
Wheel Zoom ————
—— Save Plot
Reset ————
———— Hover

Learn More —f———

Figure 3.24: The automatically generated features
These tools are as follows:
* Pan: The pan tool allows you to move and shift the view of your plot.

* Box Zoom: This allows you to zoom in to a particular square-shaped section of the
plot:

Year: 2006 De+5c02 Emissions vs GDP in 2006

CO2 Emissions (ionnes per person)

© South Asia
Europe & Central Asia
Middle East & North Africa
Sub-Sahran Africa
America

© East Asia & Pacific

Income Per Person

Figure 3.25a: Box zoom on the plot
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Figure 3.25b: Plot after pan
* Wheel Zoom: This allows you to arbitrarily zoom in to any point of the plot.
» Save Plot: This allows you to save the current plot.

* Reset: This resets the plot and takes you back to the original plot that you landed
on.

* Hover Tool: We created a hover tool in our plot and programmed it to display
certain information. However, Bokeh also automatically generates a hover tool that
can be enabled and disabled by this icon. This tool may not always display what we
want it to, which is why we created one ourselves.

Learn More: You can click on this to learn more about Bokeh:

Note

To check out some more tools, click here: https://bokeh.pydata.org/en/latest/docs/
user_guide/tools.html.
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Interactive Data Visualization with Plotly Express

Plotly is a very popular Python library and is used to create amazing and informative
interactive data visualizations. It is a JSON-based plotting tool, and so every plot is
defined by two JSON objects - data and layout. Deploying a Plotly visualization
requires a little more effort than a Bokeh visualization does because we need to build a
separate application (most commonly a Flask application) using the Dash framework.

Compared with Bokeh, the tools and syntax of Plotly are much more straightforward.
However, the code that's required to create these interactive data visualizations is

still quite lengthy and tedious. Therefore, the creators of Plotly invented Plotly
Express!

Plotly Express is a high-level API. Basically, it creates a high-level wrapper around
the base Plotly code. As a result, the syntax and commands that are required to create
interactive data visualizations are minimized immensely.

Exercise 26: Creating an Interactive Scatter Plot

In this exercise, we are going to create an interactive data visualization of the
DataFrame we created in Exercise 1, Preparing Our Dataset of this chapter - the carbon
dioxide emissions and GDP DataFrame.

The following steps will help you with the solution:
1. Open a new Jupyter notebook.
2. Import the following libraries and packages:
* Pandas: To prepare the DataFrame
* plotly.express: To create the plots:

import pandas as pd
import plotly.express as px
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3. Create the carbon dioxide emissions and GDP DataFrame from Exercise 1 in this

notebook:

co2 = pd.read csv('co2.csv')

gm = pd.read csv('gapminder.csv')

right

'region'])

df gm = gm[['Country', 'region']].drop duplicates()

df w regions = pd.merge(co2, df gm, left on='country',
on="'Country', how='inner"')

df w regions = df w regions.drop('Country', axis='columns')
new _co2 = pd.melt(df w regions, id vars=['country',

columns = ['country', 'region', 'year', 'co2']

new coZ.columns = columns

df co2 = new _co2Z[new co2['year'].astype('int6d4') > 1963]

df co2 = df co2.sort values(by=['country', 'year'])
df co2['year'] = df co2['year'].astype('int64')
df gdp = gm[['Country', 'Year', 'gdp'l]]
df gdp.columns = ['country', 'year',K 'gdp']
data = pd.merge(df co2, df gdp, on=['country', 'year'],
data = data.dropna/()
data.head ()
The output is as follows:
country region year co2 pdp

0 Afghanistan South Asia 1964 00863 1182.0

1 Afghanistan South Asia 1265 01010 1182.0

2 Afghanistan South Asia 1966 0.1080 1168.0

3 Afghanistan South Asia 1967 01240 1173.0

4 Afghanistan South Asia 1268 0.1160 1187.0

how="'left")

Figure 3.26: The first five rows of the final DataFrame that we are going to visualize

4. Store the minimum and maximum GDP values as xmin and xmax respectively:

xmin, xmax = min(data.gdp),

max (data.gdp)

5. Repeat step 4 for the minimum and maximum carbon dioxide emission values:

ymin, ymax = min(data.co2),

max (data.co2)
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Create the scatter plot and save it as fig:

The data parameter will be the name of our DataFrame, that is, data.
Assign the gdp column to the x-axis.

Assign the co2 column to the y-axis.

Set the animation_frame parameter as the year column.

Set the animation_group parameter as the country column.

Set the color of the datapoints as the region column.

Assign the country column to the hover_name parameter.

Set the facet col parameter as the region column (this divides our plot into six
columns, one for each region).

Set the width as 1579 and the height as 400.
The x-axis must be logarithmic.
Set the size max parameter as 45.

Assign the range of the x-axis and the y-axis as xmin, xmax and ymin, ymax,
respectively:

fig = px.scatter(data, x="gdp", y="co2", animation frame="year",
animation group="country", color="region", hover name="country",
facet col="region", width=1579, height=400, log x=True, size max=45,

range x=[xmin,xmax], range y=[ymin, ymax])
Display the figure:
fig. show ()

The expected output is as follows:

region=Scuth Asiz region=Eurcpe & Central Asiz region=Middle East & North Africa  region=Sub-Ssharen Africa region=America region=East Asiz & Pacific
*  ragicn=South Asia
* ragicn=Eurcps & Central Asiz
- E A

regicn=Americz
region=East Asia & Pacific

= A - — s . e
510002 10k 100k 2 10002 10k2 5100k 10002 510kZ =100k 2 s51000¢  s10k2 100k 2 510002 10k 5100k 2 10002 510k 100k
gdp gdp adp gdp gdp gdp
year=1564
o
. e R
1964 1966 1968 1570 1572 1574 1576 1578 1380 1%82 1584 1586 138 1954 1596 1998 2000 2002 2004 2006 2008 2010 2012

Figure 3.27: The landing plot
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As you can see, we have a plot with six subplots; one for each region. Each region is
color-coded. Each subplot has carbon dioxide emissions in tons per person as the
y-axis and the income per person as the x-axis.

There is a slider at the bottom of the plot that allows us to compare the correlation
between the carbon dioxide emissions and the income per year between regions and
countries per year. Upon hitting the play button in the bottom-left corner, the plot
automatically progresses from the year 1964 to 2013, showing us how the datapoints
vary with time.

We can also manually move the slider:

region=South Asia region=Europe & Central Asia region=Middle East & Morth Africa region=Sub-Saharan Africa region=America region=East Asia & Pacific
@ ragion=South Asia
80 . . Europe & Central Asia
Middle East & Morth Africa
0 | *  regicn=Sub-Szharan Africa
i America

@2

40

20 -
.

R | L et _hL LLL by LA
4 5000¢ 510k2 5100k 1 51000 510k? 5100k 2 51000 510k =100k 2 51000¢ S10k2 5100k 2 510008 510k2 5100k 2 51000¢ 5 10kZ 5100k

odp gdp gdp odp gdp gdp
yazr=1572

S T T T T T .
1564 1566 1568 1570 1572 1574 1576 1978 1960 1562 1984 1986 1985 1390 1392 1394 1596 1998 2000 2002 2004 2006 2008 2010 2012

Figure 3.28: The plot in the year 1972

Additionally, we can hover over a datapoint to get more information about it:

region=Middle East & North Africa region=Sub-Saharan Africa

Y

2 510002  S10k? $100k 2 °1000%  S10k? $100k

gdp gdp

1976 1978 1980 1982 1984 1986 1988 1990 1992 1994

Figure 3.29: Information regarding Kuwait, which was received after hovering over it
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Plotly Express also automatically generates a number of interactive features that
can be found at the top-right corner of the plot. These include pan, zoom in and out,
box select, and hover.

As you can see, creating an interactive data visualization with Plotly Express takes
very few lines of code and the syntax is easy to learn and use. Besides scatter plots, the
library has many other types of plots that you can use to interactively visualize different
types of data. In the following activities, you will be a taking a closer look at them.

Note

Click on the following link to check out some more plots that are available with
Plotly Express: https://plot.ly/python/plotly-express/.

Activity 3: Creating Different Interactive Visualizations Using Plotly Express

In this activity, you will be working on the same dataset that you worked on in exercises
of this chapter. It is important that you try out several different types of visualization to
determine the visualization that best conveys the message you are trying to put across
with your data. Let's create a few interactive visualizations using the Plotly Express
library to determine which is the best fit for our data.

High-Level Steps
1. Recreate the carbon dioxide emissions and GDP DataFrame.

2. Create a scatter plot with the x- and y-axes as year and co2 respectively. Add a
box plot for the co2 values with the marginaly y parameter.

3. Create a rug plot for the gdp values with the marginal x parameter. Add the
animation parameters on the year column

4. Create a scatter plot with the x- and y-axes as gdp and co2 respectively.

5. Create a density contour with the x- and y-axes as gdp and co2 respectively.


https://plot.ly/python/plotly-express/
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Figure 3.30: Scatter plot of CO2 emissions per year
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After Step 5:
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Figure 3.32: Density contour of CO2 emissions versus GDP

Note

The solution steps can be found on page 264.

Summary

In this chapter, we learned how interactive data visualizations are a step ahead of
static data visualizations due to their ability to respond to human inputs in real time.
The range of applications of interactive data visualizations is vast, and we can visualize
almost any type of data interactively.

The human inputs that can be incorporated in interactive data visualizations include,
but are not limited to, sliders, zoom features, hover tools, and clickable parameters.
Bokeh and Plotly Express are two of the most popular and easy Python libraries that
create interactive data visualizations. In the next chapter, we will look at how to create
beautiful context-based interactive data visualizations.






Interactive
Visualization of Data
across Strata

Learning Objectives

By the end of this chapter, you will be able to:
« Create interactivity in scatter plots using altair
+ Use zoom in and out, hover and tooltip, and select and highlight on scatter plots
+ Create interactive bar plots and heatmaps

+ Create dynamic links between different types of plots within a single rich interactive
visualization

In this chapter, you will learn to create interactive visualizations for data stratified with respect to
any categorical variable.
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Introduction

In the previous chapters, we went through a variety of techniques for visualizing data
effectively based on the type of features in the dataset and learned how to introduce
interactivity in plots using the plotly library. The second section of this book, starting
with this chapter, will guide you on building interactive visualizations with Python

for a variety of contexts. An observation made in the previous chapter was that when

it comes to introducing interactivity in certain types of Python plots, plotly can
sometimes be verbose, and may involve a steep learning curve. Therefore, in this
chapter, we'll introduce altair, a library designed especially for generating interactive
plots. We will demonstrate how to create interactive visualizations with altair for data
stratified with respect to any categorical variable. For illustration, we will use a publicly
available dataset to generate scatter plots and bar plots with the features in the dataset
and add a variety of interactive elements to the plots. We will also learn about some
specific advantages of using altair over a more multi-purpose library such as plotly.

We will use the Happy Planet Index (HPI) http: //happyplanetindex.org/ dataset
throughout this chapter. The dataset shows where in the world people are using

ecological resources most efficiently to live long, happy lives. It is not only an interesting
resource for learning more about the ecological conditions as well as the socio-
economic well-being in various parts of our planet but also has an interesting mix of
features that help us demonstrate certain key concepts of interactive visualization. So,
let's dive right in and explore interactive plots using altair.

Note

Some of the images in this chapter have colored notations, you can find
high-quality color images used in this chapter at: https://github.com/
TrainingByPackt/Interactive-Data-Visualization-with-Python/tree/master/Graphics/
Lesson4.

Interactive Scatter Plots

As you know by now, scatter plots are one of the most essential types of plots for
presenting global patterns within a dataset. Naturally, it is important to know how to
introduce interactivity in these plots. We will first look at the zoom and reset actions on
plots. Before that, though, let's have a look at the dataset.

We can view the HPI dataset using the following code:
import pandas as pd

#Download the data from Github repo


http://happyplanetindex.org/
https://github.com/TrainingByPackt/Interactive-Data-Visualization-with-Python/tree/master/Graphics/Lesson4
https://github.com/TrainingByPackt/Interactive-Data-Visualization-with-Python/tree/master/Graphics/Lesson4
https://github.com/TrainingByPackt/Interactive-Data-Visualization-with-Python/tree/master/Graphics/Lesson4
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hpi url = "https://raw.githubusercontent.com/TrainingByPackt/
Interactive-Data-Visualization-with-Python/master/datasets/hpi data

countries.tsv"

# Once downloaded, read it into a DataFrame using pandas
hpi df = pd.read csv(hpi url, sep='\t"')

hpi df.head()

The output is as follows:

Life . . . . Happy

R::i Country Region Expectancy wel%gfi;i Inequzii:imzz Ecologlcilh:c;z:p;:z; Planet

(years) g P Index

0 1 Costa  » hericas 79.1 73 15% 2.8 44.7

Rica

1 2 Mexico Americas 76.4 7.3 19% 29 40.7

2 3 Colombia Americas 73.7 6.4 24% 1.9 40.7

3 4 Vanuatu Asia 713 6.5 22% 1.9 40.6
Pacific

4 5  Vietnam (e 75.5 55 19% 1.7 40.3

Pacific
Figure 4.1: HPI dataset

Note that there are 5 numerical /quantitative features in this dataset: Life
Expectancy (years),Wellbeing (0-10), Inequality of

outcomes, Ecological Footprint (gha/capita), and Happy Planet Index.
There are two categorical /nominal features: Country and Region. In altair,
quantitative features are denoted as Q, and nominal features are denoted as N. We will
soon see how to use this in our visualizations.

This is actually quite tricky. Generally, for the purpose of visualization, if a feature that
denotes an attribute such as rank has a wide range (roughly more than 10 ranks), you
can treat the feature as just another numerical or quantitative feature. But with fewer
ranks, it almost acts like a label and resembles a nominal feature. However, there is one
crucial difference in the way in which rank features differ from nominal features - the
order is important in ordinal features. Rank 1 has a different meaning and priority level
than rank 5.

Note

Each datapoint in the HPI dataset corresponds to one country.

Let's generate and observe a static scatter plot, through an exercise, of the Wellbeing
(0-10) and Happy Planet Index features for each country, using different colors to
denote the region to which the country belongs and go ahead and add interactivity to it.
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Exercise 27: Adding Zoom-In and Zoom-Out to a Static Scatter Plot

In this exercise, we'll generate a static scatter plot using matplotlib. We'll use the
hpi_data_countries dataset here for the plot and we'll analyze the Wellbeing
scores for each country represented by the legend on the plot. We'll go ahead and add
a zoom feature to it. We will be using the altair library to do this. Let's break the
simple code down into simpler components since this is our first interactive plot using
altair. To do so, let's go through the following steps:

1. Load the hpi dataset and read from the dataset using pandas:

import pandas as pd

hpi url = "https://raw.githubusercontent.com/TrainingByPackt/
Interactive-Data-Visualization-with-Python/master/datasets/hpi data
countries.tsv"

# Once downloaded, read it into a DataFrame using pandas

hpi df = pd.read csv(hpi url, sep='\t')

2. Plot a static scatter plot using matplotlib:

import seaborn as sns

import matplotlib.pyplot as plt

fig = plt.figure ()

fig.add_subplot (111)

ax = sns.scatterplot (x='Wellbeing (0-10)"', y='Happy Planet Index',

ax

hue='Region', data=hpi df)
plt.show ()

The output is as follows:

451 Region *
40 ° Americag_ . .
© Asia Pacific *
L]
53 ® Europe .' oo, . °
2351 e Postcommunist % o ., ®
f @ Middle East and North Africa « * % . .'.
2301 e SubSaharan Africa 2 So o °
© - e "% o ®
D>- e o ...- 3%° °
g 25 L a.a :o ° :. ° .
L. e 9 90 o, 9 LY
T ° * oy @
20 o % %e o ® *
] * °
[ e ® L]
15 o ¢ ®s "s 0 -
e @ P °
3 4 5 6 7 8

Wellbeing (0-10)

Figure 4.2: Static scatter plot
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Each dot here represents a country from one of the 7 regions. Wellbeing and
Happy Planet Index appear to be correlated. We see a trend in the Happy
Planet Index scores and Wellbeing scores of different regions.

Now that we have a static scatter plot, let's explore the interactivity on this plot.
We'll look into zoom in and out.

Import the altair module as alt:

import altair as alt
alt.renderers.enable ('notebook"')

The output is as follows:
RendererRegistry.enable ('notebook"')

Provide the DataFrame of choice (hpi_df in our case) to the altair Chart
function.

Use the mark circle () function to denote datapoints in the scatter plot using
filled circles.

Note

You can also use themark point () function to use empty circles instead of
filled ones. Try it.

Use the encode function to specify the features on the x and y axes. Although we
also used the color parameter in this function to color-code the datapoints using
the region feature, this is optional. Lastly, add the interactive () function to
make the plot interactive for zooming! This does require Jupyter Notebook version
5.3 or above. Use the following code:

alt.Chart (hpi df) .mark circle() .encode (
x="'Wellbeing (0-10):Q"',
y="'Happy Planet Index:Q',
color="'Region:N',

) .interactive ()



126 | Interactive Visualization of Data across Strata

The output is as follows:
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Figure 4.3a: The zoom-in feature on a static scatter plot
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Figure 4.3b: The zoom-out feature on a static scatter plot
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And that's it.
Play around a little with that plot to ensure that you can actually zoom in and out.

Did you notice that we added a :Q suffix next to our quantitative features and a :N suffix
next to our nominal feature? Adding suffixes like this helps altair to know the type of
feature beforehand, instead of having to infer it by itself. You can also try eliminating
the suffixes in this plot and you'll find that the plot is still generated without error
because altair can guess the type of features in this case. Therefore, it is good
practice to include the suffixes since there are cases where altair fails to infer the
feature type.

An important concept in altair plots is that of encoding and channels. The concept

is really simple - altair tries to map/encode various aspects of data for better
visualization. This is why you see that there is an encode () function in the code. The
various parameters, such as x, y, and color, that we specify in the encode function are
called channels in altair. Now that you are aware of these important terminologies,
let's look at other interesting forms of interactivity in altair.

Note

Notice the three little dots next to your plot? You can use that to save your plotin
a .png (static) or . svg (interactive) file, once you have set your interactive plot in
the desired configuration. However, the interactivity feature in a . svg file will not
work unless you open it in compatible software such as Adobe Animate.

Exercise 28: Adding Hover and Tooltip Functionality to a Scatter Plot

In this exercise, we'll add hover and tooltip functionality to a static scatter plot using
altair. We will work with the same scatter plot but add the ability to hover over
any country (datapoint) and display information regarding the Region, Wellbeing
(0-10), Happy Planet Index, and Life Expectancy (years) of that country:

1. Load the hpi dataset and read from the dataset using pandas:

import pandas as pd

hpi url = "https://raw.githubusercontent.com/TrainingByPackt/
Interactive-Data-Visualization-with-Python/master/datasets/hpi data
countries.tsv"

# Once downloaded, read it into a DataFrame using pandas

hpi df = pd.read csv(hpi url, sep='\t')
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2. Import the altair module as alt:
import altair as alt

3. Provide the DataFrame of choice (hpi_df in our case) to the altair Chart
function. Use the mark_circle () function to denote datapoints in the scatter
plot using filled circles. Use the encode function to specify the features on the x
and y axes. Although we used the color parameter in this function to color-code
the datapoints using the region feature, this is optional. Specify the tooltip
channel as shown here:

# hover and tooltip in altair
alt.Chart (hpi df) .mark circle () .encode (

x="'Wellbeing (0-10):Q"',

y="'Happy Planet Index:Q',

color="'Region:N',

tooltip=['Country', 'Region', 'Wellbeing (0-10)', 'Happy Planet
Index', 'Life Expectancy (years)'],

)

The output is as follows:

45 Region
. @® Americas
40 N Asia Pacific
= Europe
25| t} Middle East and North Africa
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104
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Wellbeing (0-10)

Figure 4.4: Exploring hover and tooltip on a scatter plot
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Happy Planet Index

In the preceding plot, you'll find that the features mentioned in

the tooltip parameter in the encode function are all displayed when the
cursor is taken near any datapoint. We can see here that when we hover over a
datapoint, it displays information regarding the Region, Wellbeing (0-10),
Happy Planet Index, and Life Expectancy (years) of that country.

In this case, Country - El Salvador, Wellbeing -5.9,6 HPI-35.6, Life
Expectancy-72.5.

However, the zoom function is now lost. How will you bring it back?
Simple - just add the interactive () function!

Add the interactive () function to bring back the zoom feature on the plot as
shown here:

# zoom feature
import altair as alt
alt.Chart (hpi df) .mark circle () .encode (
x='Wellbeing (0-10):Q',
y="'Happy Planet Index:Q',
color="Region:N',
tooltip=['Country', 'Region', 'Wellbeing (0-10)', 'Happy Planet
Index', 'Life Expectancy (years)'],

) .interactive ()

The output is as follows:
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Figure 4.5: Exploring hover and tooltip on a zoomed-in scatter plot
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We can see here, in the preceding zoomed-in plot, that when we hover over a datapoint,
it displays information regarding the Region,Wellbeing (0-10),Happy Planet
Index, and Life Expectancy (years) of that country. In this case, Country -
Greece, Wellbeing -5.1,HPI-23.6,Life Expectancy-80.5.

Now, let's consider a more interesting scenario. Suppose we want to select an area on
the plot to examine datapoints within it. Let's go through the following exercise for this
scenario.

Exercise 29: Exploring Select and Highlight Functionality on a Scatter Plot

In this exercise, we will be using select and highlight functionality using altair. We
can do this using a function called add_selection. We first need to define a variable
that will store a selection interval and then generate the plot to which we want to add
the selection function. In the resultant plot, we can click and then drag the cursor to
create a selection area, which will be colored gray. Let's go through the following steps
to do so:

1. Load the hpi dataset and read from the dataset using pandas:

import pandas as pd

hpi url = "https://raw.githubusercontent.com/TrainingByPackt/
Interactive-Data-Visualization-with-Python/master/datasets/hpi data
countries.tsv"

# Once downloaded, read it into a DataFrame using pandas

hpi df = pd.read csv(hpi url, sep='\t')

2. Import the altair module as alt:
import altair as alt

3. Define the selected area variable to store the selection interval:
selected area = alt.selection interval()

4. Provide the DataFrame of choice (hpi_df in our case) to the altair Chart
function.
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5. Use themark_circle () function to denote datapoints in the scatter plot using
filled circles. Use the encode function to specify the features on the x and y
axes. Although we used the color parameter in this function to color-code the
datapoints using the region feature, this is optional. Use the add_selection ()
function to specify the selected area. Use the following code:

alt.Chart (hpi df) .mark circle () .encode (
x='Wellbeing (0-10):Q',
y="'Happy Planet Index:Q',
color="Region:N'

) .add_selection (
selected area

)

The output is as follows:

45- . Region
: " @ Americas
40 e — Asia Pacific
i Europe
’ ~ Middle East and North Africa
%els ., Post-communist
™ Sub Saharan Africa

35

Happy Planet Index

0 T r T T | T ]
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Wellbeing (0-10)
Figure 4.6: Exploring select and highlight on a scatter plot
Have you made sure you can click and drag to create a selection area? Now, let's

make the plot respond to our selection by adding focus to our selection and
graying out all the points outside of the selection.
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6. Add alt value as lightgray to gray out all the points outside of the selection:

selected area = alt.selection interval()
alt.Chart (hpi df) .mark circle () .encode (
x='Wellbeing (0-10):Q',
y="'Happy Planet Index:Q',
color=alt.condition (selected area, 'Region:N',6 alt.
value ('lightgray'))
) .add_selection (
selected area

)

The output is as follows:

45 Region

@ Americas
40- ® Asia Pacific
Europe
35 L e Middle East and North Africa
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Figure 4.7: Grayed-out points outside of a selected area on a scatter plot

Have you noticed what we did? We set the color parameter in the encode function to
an altair condition that retains the colors of only the points within the selected area.
This can be useful when you want to get insights into a particular range of features on
the axes of a scatter plot. Let's go through an exercise to illustrate this.
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Exercise 30: Generating a Plot with Selection, Zoom, and Hover/Tooltip

Functions

In this exercise, we will continue to work with the happy planet index dataset. The
task is to create a scatter plot of Well-being versus Happy Planet Index and zoom
into the area with high Wwell-being and a high Happy Planet index. You will need to
determine which region is predominant in the selection area, then list the countries in
the area. Let's go through the following steps:

1. Import the necessary modules and the dataset:

import altair as alt

import pandas as pd

# Download the data from "https://raw.githubusercontent.com/
TrainingByPackt/Interactive-Data-Visualization-with-Python/master/
datasets/hpi data countries.tsv"

# Once downloaded, read it into a DataFrame using pandas

hpi df = pd.read csv('hpi data countries.tsv', sep='\t')

2. Create an altair scatter plot of Wellbeing versus Happy Planet Index, along
with the zoom feature, using the interactive () function, and zoom into the
area including the set of datapoints at the top right:

alt.Chart (hpi df) .mark circle() .encode (
x="'Wellbeing (0-10):Q"',
y="'Happy Planet Index:Q',
color="'Region:N',

) .interactive ()
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The output is as follows:
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Figure 4.8: Scatter plot with a zoom feature
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3. Now add the selection feature by changing the color parameter to include the

altair selection condition:

selected area = alt.selection_interval()
alt.Chart (hpi df) .mark circle() .encode (
x="'Wellbeing (0-10):Q"',
y="'Happy Planet Index:Q',

color=alt.condition (selected area, 'Region:N', alt.

value ('lightgray'))
) .interactive () .add _selection(
selected area
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The output is as follows:
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Figure 4.9: Scatter plot with a selection feature

Notice that most countries in the selection area (top right) belong to the Americas
(colored blue). Did you expect this based on your general knowledge? Let's add the
tooltip function to find out which countries appear in our area of interest.

4. Add the tooltip function to locate the area of interest:

selected area = alt.selection_interval()
alt.Chart (hpi df) .mark circle() .encode (
x="'Wellbeing (0-10):Q"',
y="'Happy Planet Index:Q',
color=alt.condition (selected area, 'Region:N', alt.
value ('lightgray')),
tooltip= ['Country', 'Region', 'Wellbeing (0-10)', 'Happy Planet
Index', 'Life Expectancy (years)']
) .interactive () .add selection(
selected area
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The output is as follows:

Region
40 Americas

R o
Country: Panama
Region: Americas
. 9 Wellbeing (0-10): 6.9
: Happy Planet Index: 39.5

w
o

ca

w
(=)

N
o

Life Expectancy (years): 77.2

Happy Planet Index
o o S

(4]

o

0 : 2 3 i 5 6 7
Wellbeing (0-10)
Figure 4.10: Scatter plot with a tooltip function

If you hover over the area of interest, you will see that the top countries are Costa Rica,
Mexico, Panama, and Colombia.

Now, let's jump to the next section to observe how the selection feature could be used
across multiple plots.
Selection across Multiple Plots

The selection feature can be much more powerful when linked across multiple plots.
We will consider the example of two scatter plots:

¢ wellbeing versus happy planet index

¢ life expectancy versus happy planet index

Let's go through the following exercise to create selection feature across multiple plots.
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Exercise 31: Selection across Multiple Plots

In this exercise, let's go step by step to generate an interactive plot. For our first scatter
plot, since we want the y axis to be common across both plots, we will specify only

the y axis feature in the encode function of our altair chart, and then add the x axis
features separately on the Chart object. Further, to put the two plots one after the
other and enable selection across them, we will use the altair vconcat function. See
the following code for details:

1. Open aJupyter notebook and import the necessary Python modules:

import altair as alt
import pandas as pd

2. Read from the dataset:

hpi url = "https://raw.githubusercontent.com/TrainingByPackt/
Interactive-Data-Visualization-with-Python/master/datasets/hpi data
countries.tsv"

#read it into a DataFrame using pandas

hpi df = pd.read csv(hpi url, sep='\t')

3. Plot the scatter plot with the Chart altair vconcat function to place two plots
vertically one after the other:

# multiple altair charts placed one after the other
chart = alt.Chart (hpi df) .mark circle() .encode (
y="'Happy Planet Index',
color="Region:N'
)
chartl = chart.encode(x='Wellbeing (0-10)")
chart2 = chart.encode (x='Life Expectancy (years)"')

alt.vconcat (chartl, chart2)
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The output is as follows:
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Figure 4.11: Scatter plot for HPI versus Well-Being (0-10)
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Figure 4.12: Scatter plot for HPI versus Life Expectancy (years)



Interactive Scatter Plots | 139

4. We can also place the two plots horizontally next to each other with the hconcat
function. Here's how:

# multiple altair charts placed horizontally next to each other
chart = alt.Chart (hpi df) .mark circle() .encode
y="'Happy Planet Index',
color="Region:N'
)
chartl = chart.encode(x="Wellbeing (0-10)")
chart2 = chart.encode(x='Life Expectancy (years)')
alt.hconcat (chartl, chart2)

The output is as follows:
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Figure 4.13:Scatter plots placed horizontally

By the way, there are shortcuts for the hconcat and veconcat functions. We can
substitute alt.hconcat (chartl, chart2) with chartl | chart2 andalt.
vconcat (chartl, chart2) with chartl & chart2.
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5. Add the hover and tooltip functions linking the two plots using the following code:

# hover and tooltip across multiple charts
selected area = alt.selection_interval()
chart = alt.Chart (hpi df) .mark circle() .encode
y="'Happy Planet Index',
color=alt.condition (selected area, 'Region', alt.
value ('lightgray'))
) .add_selection (
selected area
)
chartl = chart.encode(x="Wellbeing (0-10)")
chart2 = chart.encode(x='Life Expectancy (years)')
chartl | chart?2

The output is as follows:
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Figure 4.14: Hover and tooltip functionality on the linked scatter plots

Try selecting an area on either of the plots. You will notice that selection on one plot
automatically leads to highlighting the same datapoints on the other plot. Isn't that
cool?

Selection Based on the Values of a Feature

So far, we have used user input to create a rectangular area of selection using the
selection_interval () function. Now, let's look at how to create a selection based on
the values of a feature.

We'll look at an exercise here. Suppose that we want to select all countries belonging to
a region of our choice - Americas/Asia Pacific/Europe/Middle East and North Africa/
Post-communist /Sub-Saharan Africa. We can do this using a selection function called
selection_single () instead of selection_interval () .Refer to the following
exercise to see how this is done.
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Exercise 32: Selection Based on the Values of a Feature

In this exercise, we'll create an interactive plot where we'll be able to see the datapoints
based on a particular Region. We'll use the selection_single () function to get

a selected set of datapoints. If you study the code carefully, you will find that the
parameters for this function are self-explanatory. For any clarifications, please read
about them in the official documentation at https: //altair-viz.github.io /user guide/
generated /api/altair.selection single.html. Let's go through the following steps to do
this:

1. Import the necessary Python modules:

import altair as alt
import pandas as pd

2. Read from the dataset:

hpi url = "https://raw.githubusercontent.com/TrainingByPackt/
Interactive-Data-Visualization-with-Python/master/datasets/hpi data
countries.tsv"

#read it into a DataFrame using pandas

hpi df = pd.read csv(hpi url, sep='\t')

3. Create an input_dropdown variable using the binding_select () function
and set the options parameter to the list of regions in our dataset. Use the
selection_single () function to select a set of datapoints. Use the color
variable to store the condition under which datapoints will be selected - the
colors assigned to datapoints within and outside of the selection:

input dropdown = alt.binding select (options=list (set (hpi
df.Region)))
selected points = alt.selection single (fields=["'Region'], bind=input
dropdown, name='Select')
color = alt.condition (selected points,
alt.Color('Region:N"),
alt.value('lightgray'))
alt.Chart (hpi df) .mark circle () .encode (
x='Wellbeing (0-10):Q',
y="'Happy Planet Index:Q',
color=color,
tooltip="'Region:N'
) .add_selection (
selected points


https://altair-viz.github.io/user_guide/generated/api/altair.selection_single.html
https://altair-viz.github.io/user_guide/generated/api/altair.selection_single.html

142 | Interactive Visualization of Data across Strata

The output is as follows:
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Figure 4.15a: Selection based on the values of a feature on a scatter plot
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Figure 4.15b: Selection based on the values of a feature on a scatter plot
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The preceding plot initially has all its datapoints in color. However, as you select a value
for the Region feature from the input dropdown, you'll notice that the corresponding
countries are highlighted in color, while all the other countries are grayed out. In the
preceding two plots, the first plot shows datapoints for the Americas region and the
second plot shows datapoints for the Post-communist region.

That is quite nice!

Note

There are a variety of ways to perform selection and highlighting in altair
interactive plots. You can learn more about them at https://altair-viz.github.io/
user_guide/interactions.html.

In this preceding section, we presented an overview of the important ways in which you
can harness the capabilities of altair to make interactive scatter plots. Specifically, we
learned:

* How to generate a scatter plot using the altair Chart () function, to which
interactive components can be added

* How to add interactivity to a scatter plot in the form of zooming in and out with
the interactive () function

* How to add interactivity to a scatter plot in the form of hovering and displaying
information regarding datapoints based on cursor movement with the tooltip
parameter

* How to add interactivity to a scatter plot in the form of selections and highlighting
with the selection_interval () and selection_single () functions, and also
how to link selections across multiple scatter plots

In the next section, we'll explore how to use altair to add interactivity to various
other plots.

Other Interactive Plots in altair

Now that we know how to add interactivity to scatter plots, let's learn how to introduce
interactivity to two other important visualization types - bar plots and heatmaps. We
also encourage you to read the official documentation and look at the official example
gallery at https: //altair-viz.github.io /gallery /index.html to explore altair so as to be
aware of the wide variety of visualization types possible in it.



https://altair-viz.github.io/user_guide/interactions.html
https://altair-viz.github.io/user_guide/interactions.html
https://altair-viz.github.io/gallery/index.html
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Exercise 33: Adding a Zoom-In and Zoom-Out Feature and Calculating the
Mean on a Static Bar Plot

In this exercise, first, we will generate a simple (static) bar plot and then explore
interactivity such as zooming in and out. Then, we'll use the same bar plot and find out
the mean of the Happy Planet Index of each region. We'll use the altair library
here and the Happy Planet Index dataset:

1. Import the altair module as alt:
import altair as alt
2. Read from the dataset:

hpi url = "https://raw.githubusercontent.com/TrainingByPackt/
Interactive-Data-Visualization-with-Python/master/datasets/hpi data
countries.tsv"

#read it into a DataFrame using pandas

hpi df = pd.read csv(hpi url, sep='\t')

3. Provide the DataFrame of choice (hpi_df in our case) to the altair Chart
function.

4. Use the mark_bar () function to denote datapoints on the bar plot. Use the
encode function to specify the features on the x and y axes:

alt.Chart (hpi df) .mark bar () .encode (
x="'Region:N',
y="'mean (Happy Planet Index):Q',
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The output is as follows:
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Figure 4.16: Static bar plot
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That was easy! Did you notice that we simply had to set the y parameter to 'mean
(Happy Planet Index)' to get the mean per region?

The above plot looks a bit too narrow, though. We can easily fix this by setting the
plot width to a different value using the properties function.

5. Set the width to 400 using the properties function to increase the width of the
bar plot:

alt.Chart (hpi df) .mark bar () .encode (
x="'Region:N',
y='mean (Happy Planet Index):Q',
) .properties (width=400)

The output is as follows:
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Figure 4.17: Bar plot with increased width
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Are you wondering whether you can make the plot zoom in and out? Let's give it a
try by adding the interactive () function.

6. Use the interactive function to zoom in and out:

import altair as alt

alt.Chart (hpi df) .mark bar () .encode (
x='Region:N',
y="'mean (Happy Planet Index) :Q',

) .properties (width=400) .interactive ()

The output is as follows:
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Figure 4.18: Zoomed-in bar plot
And it works! Try zooming in and out of the preceding plot if you don't believe it.

Now let's add a line to show the mean of Happy Planet Index across all regions.
Any ideas on how to do this?
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7. Use the | operator to show the mean of HPI across all regions:

import altair as alt
bars = alt.Chart (hpi df) .mark bar () .encode (
x="'Region:N"',
y="'mean (Happy Planet Index) :Q',
) .properties (width=400)
line = alt.Chart (hpi df) .mark rule(color='firebrick') .encode (
y="'mean (Happy Planet Index) :Q',
size=alt.SizeValue (3)
)

bars | line

The output is as follows:
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Figure 4.19: Bar plot with the line on the map
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Nah, that's not what we wanted. We don't want the line to be placed next to our
bar plot. We want it on the plot. So, how do we do that? For this, we need to use the
layer concept in altair. The idea is to create variables to store the bar plot and
line plot, and then layer them one on top of the other. Check out the code in the
next step.

8. Add the layer function from the altair library:

import altair as alt

bars = alt.Chart () .mark bar () .encode (
x='Region:N',
y='mean (Happy Planet Index):Q',

) .properties (width=400)

line = alt.Chart () .mark rule(color='"firebrick') .encode (
y="'mean (Happy Planet Index):Q',
size=alt.SizeValue (3)

)
alt.layer (bars, line, data=hpi df)

The output is as follows:
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Figure 4.20: Showing the mean on the bar plot
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So, now we know that the mean Happy Planet Index across all regions is around 26.
Looks like there's a lot more happiness that our planet could take. Interesting!

By the way, you should also note that we didn't specify the dataset until we used

the layer function. That is, we did not provide the hpi_df dataset in the Chart ()
function as we would usually do. Instead, we mentioned it in the 1ayer function with
the data=hpi_df parameter.

Now that you know about the concept of layering in altair, you can be trusted with a
shortcut for it. Just write code independently for different plots, as you would usually
write it, then use the + operator, as shown in the following example!

Exercise 34: An Alternative Shortcut for Representing the Mean on a Bar Plot

In this exercise, we'll calculate the mean of the HPI index on a bar plot using a
shortcut to the code used in Exercise 33, Adding a Zoom-In and Zoom-Out Feature and
Calculating the Mean on a Static Bar Plot. To do so, let's go through the following steps:

1. Calculate the mean of the HPI index on a bar plot using the following code:

import altair as alt
bars = alt.Chart (hpi df) .mark bar () .encode (
x='Region:N',
y="'mean (Happy Planet Index):Q',
) .properties (width=400)
line = alt.Chart (hpi df) .mark rule(color='firebrick') .encode (
y="'mean (Happy Planet Index):Q',
size=alt.SizeValue (3)
) .interactive ()

bars + line
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The output is as follows:
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Figure 4.21: Mean of the HPI index on a bar plot

Now let's add some interactivity to our plot. Say we want to be able to see the
mean Happy Planet Index of any set of bars that we select using the click - and
- drag mechanism.
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2. Use the click-and-drag mechanism using the following code in altair:

import altair as alt
selected bars = alt.selection(type='interval', encodings=['x"])
bars = alt.Chart (hpi df) .mark bar () .encode (
x="'Region:N"',
y="'mean (Happy Planet Index):Q',
opacity=alt.condition(selected bars, alt.OpacityValue(l), alt.
OpacityValue(0.7)),
) .properties (width=400) .add_selection(
selected bars

)

line = alt.Chart (hpi df) .mark rule(color='firebrick'") .encode (
y='mean (Happy Planet Index):Q',
size=alt.SizeValue (3)

) .transform filter (
selected bars

)

bars + line

The output is as follows:
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Figure 4.22a: HPI=31 for the Americas, Asia Pacific, and Europe regions on a bar plot
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Did you play around with the preceding plot? You can use the click - drag
mechanism to select any set of bars and see how the line indicating the mean
Happy Planet Index shifts accordingly. For example, if you select the three bars on
the left (Americas, Asia Pacific, and Europe), you will notice that the mean
HPI is around 31:
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Figure 4.22b: HPI=24 for the Middle East and North Africa, Post-communist,
and Sub-Saharan Africa regions on a bar plot

If you select the three bars on the right (Middle East and North Africa, Post-
communist, and Sub Saharan Africa), the mean HPI will be shown as around 24.

Exercise 35: Adding a Zoom Feature on a Static Heatmap

In this exercise, we'll use altair to create a heatmap indicating the number of
countries with HPI and Wellbeing in various ranges. Next, we'll add zoom functionality
to the map. We'll move on to also add circles on the heatmap to show different
countries. We'll continue using the HPI dataset. To do so, let's go through the following
steps:

1. Import the altair module as alt:

import altair as alt
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2. Read from the dataset:

hpi url = "https://raw.githubusercontent.com/TrainingByPackt/
Interactive-Data-Visualization-with-Python/master/datasets/hpi data
countries.tsv"

#read it into a DataFrame using pandas

hpi df = pd.read csv(hpi url, sep='\t')

3. Provide the DataFrame of choice (hpi_df in our case) to the altair Chart
function.

4. Use the mark_rect () function to denote datapoints in the bar plot. Use the
encode function to specify the features on the x and y axes:

alt.Chart (hpi df) .mark rect () .encode (
alt.X('Happy Planet Index:Q', bin=True),
alt.Y('Wellbeing (0-10):Q', bin=True),
alt.Color('count()"',
scale=alt.Scale (scheme="'greenblue'),
legend=alt.Legend(title='Total Countries')

)

The output is as follows:

8.0 Total Countries

7.5+ o

- .
o wm o w o
L 1 1 1 1

Wellbeing (0-10) (binned)
-

P
[=]
1

3.5+

3.0+

25 T T T T T T 1
10 15 20 25 0 35 40 45

Happy Planet Index (binned)

Figure 4.23: Static heatmap
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Did you notice how easy it was to bin the Happy Planet Index and Wellbeing
features? We simply had to set the bin parameter to True. altair is lovely!

5. Use the interactive function and add zoom capability. Use the following code:

alt.Chart (hpi df) .mark rect () .encode(
alt.X ('Happy Planet Index:Q', bin=True),
alt.Y('Wellbeing (0-10):Q', bin=True),
alt.Color('count ()",
scale=alt.Scale (scheme="'greenblue'),
legend=alt.Legend(title="'Total Countries')
)

) .interactive ()

The output is as follows:
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Figure 4.24: Heatmap with a zoom feature

Just as we can use a color palette to indicate the number of countries in each cell
of the heatmap, we can also draw circles of varying sizes on a heatmap to indicate
the number of countries.
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6. Draw circles on the heatmap using the heatmap+circles function:

heatmap = alt.Chart (hpi df) .mark rect() .encode (
alt.X ('Happy Planet Index:Q', bin=True),
alt.Y('Wellbeing (0-10):Q', bin=True)

circles = heatmap.mark point () .encode (
alt.ColorValue('lightgray'),
alt.Size('count()',
legend=alt.Legend(title='Records in Selection')

)

heatmap + circles

The output is as follows:
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Figure 4.25: Circles on the heatmap

Varying circle sizes indicate the number of countries with a varying Wellbeing range.
Exciting, isn't it? In the following exercise, we'll generate a bar plot and a heatmap to
draw a comparison between the two.
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Exercise 36: Creating a Bar Plot and a Heatmap Next to Each Other

In this exercise, we will continue to work with the HPI dataset. The objective is to
draw a bar plot depicting the number of countries in each region and a heatmap next
to it, indicating the number of countries in various ranges of wellbeing and life-
expectancy. Let's see the following code:

1. Import the necessary modules and dataset:

import altair as alt
import pandas as pd

2. Read from the dataset:

import pandas as pd

hpi url = "https://raw.githubusercontent.com/TrainingByPackt/
Interactive-Data-Visualization-with-Python/master/datasets/hpi data
countries.tsv"

# Once downloaded, read it into a DataFrame using pandas

hpi df = pd.read csv(hpi url, sep='\t')
3. Generate the required bar chart using the mark_bar () function:

alt.Chart (hpi df) .mark bar () .encode (
x='Region:N',
y="'count () :Q',

) .properties (width=350)
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The output is as follows:
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Figure 4.26: Static bar plot
4. Generate the required heatmap using the mark rect () function:

alt.Chart (hpi df) .mark rect() .encode(
alt.X('Wellbeing (0-10):Q', bin=True),
alt.Y('Life Expectancy (years):Q', bin=True),
alt.Color('count()"',
scale=alt.Scale (scheme="'greenblue'),
legend=alt.Legend(title="'Total Countries')

)
) .properties (width=350)
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The output is as follows:
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Figure 4.27: Static heatmap

5. Merge the code to place the bar chart and heatmap next to each other using the
bars | heatmap function:

bars = alt.Chart (hpi df) .mark bar () .encode (
x="'Region:N"',
y='count () :Q',
) .properties (width=350)
heatmap = alt.Chart (hpi df) .mark rect() .encode (
alt.X('Wellbeing (0-10):Q', bin=True),
alt.Y('Life Expectancy (years):Q', bin=True),
alt.Color('count()"',
scale=alt.Scale (scheme="'greenblue'),
legend=alt.Legend(title="'Total Countries')
)
) .properties (width=350)
bars | heatmap
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The output is as follows:
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Figure 4.28: Horizontally placing a bar plot and a heatmap
Well done!

Now onto a much more interesting exercise - linking a bar chart with the heatmap we
generated in the previous exercise.

Exercise 37: Dynamically Linking a Bar Plot and a Heatmap

In this exercise, we will link a bar plot and a heat map dynamically. Consider a scenario
where you want to be able to click on any of the bars in a bar chart and have an updated
heatmap corresponding to the region represented by the bar. So, for instance, you want
to update the Life Expectancy versus Well Being heatmap only for the countries in
a particular region. We can make this work with the following code:

1. Import the necessary modules and dataset:

import altair as alt

import pandas as pd

# Download the data from "https://raw.githubusercontent.com/
TrainingByPackt/Interactive-Data-Visualization-with-Python/master/
datasets/hpi data countries.tsv"

# Once downloaded, read it into a DataFrame using pandas

hpi df = pd.read csv('hpi data countries.tsv', sep='\t')

hpi df.head()
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2. Select the region using the selection method:

selected region = alt.selection(type="single", encodings=['x'])
heatmap = alt.Chart (hpi df) .mark rect () .encode (
alt.X('Wellbeing (0-10):Q', bin=True),
alt.Y('Life Expectancy (years):Q', bin=True),
alt.Color('count()"',
scale=alt.Scale (scheme="'greenblue'),
legend=alt.Legend(title="'Total Countries')
)
) .properties (
width=350
)

3. Place the circles on a heatmap:

circles = heatmap.mark point () .encode (
alt.ColorValue('grey'),
alt.Size('count()',
legend=alt.Legend(title='Records in Selection')
)
) .transform filter (
selected region

)

4. Use the heatmap+circles | bars function to dynamically link the bar plot and
the heatmap:

bars = alt.Chart (hpi df) .mark bar () .encode (
x='Region:N',
y='count()"',
color=alt.condition(selected region, alt.
ColorValue ("steelblue"), alt.ColorValue("grey"))
) .properties (
width=350
) .add_selection(selected region)
heatmap + circles | bars
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The output is as follows:
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Figure 4.29: A dynamically linked bar plot and heatmap

Spend some time playing around with the visualization and studying the code. Did
you notice how we used both the color palette and circles on the heatmap? As you click
on each bar chart, you will find that the color palette indicating the total countries in
a certain range of well-being and 1life-expectancy remains constant, whereas
the circles get updated to reflect the number of countries in the corresponding range
for the selected region. Making intelligent design choices such as these will not only
increase your audience's understanding of your dataset but will also help you present
your data with confidence and ease.

Note

altairis arich library designed to build both simple and complex interactive
visualizations with ease. Due to time and space limitations, it is impossible to cover
them comprehensively in any chapter. Therefore, we encourage you to build on
the foundations laid in this chapter and study the examples on the altair official

Example Gallery at https://altair-viz.github.io/gallery/index.html. This will equip you
with a deeper understanding of the visualization possibilities in altair.
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In the preceding section, we presented an overview of some important ways to add
interactivity to bar plots and heatmaps. Specifically, we learned:

* How to generate a bar plot using the altair mark_bar () function

* How to generate a heatmap using the altair mark_rect () function, and how to
use color palettes and circles to visually represent heatmap data

* How to add zoom capabilities to bar plots and heatmaps using the
interactive () function

* How to use the layering capability in altair to present plots on top of each other
using the layer () function or the + operator

* How to dynamically link bar plots and heatmaps to create a single compelling
visualization

Activity 4: Generate a Bar Plot and a Heatmap to Represent Content Rating
Types in the Google Play Store Apps Dataset

We will be working with the Google Play Store Apps dataset hosted on the book
repository. Your task is to create a visualization with:

(@) A bar plot of a number of apps stratified by each Content Rating category (rated by
Everyone/Teen).

(b) A heatmap indicating the number of apps stratified by app Category and binned
ranges of Rating. The user should be able to interact with the plot by selecting any
of the Content Rating types and the corresponding change should reflect in the
heatmap to only include the number of apps in that Content Rating category.

High-Level Steps

1. Download the dataset hosted in the book GitHub repository and format it as a
pandas DataFrame.

2. Remove the entries in the DataFrame that have feature values of NA.

3. Create the required bar plot of the number of apps in each Content Rating
category.

4. Create the required heatmap indicating the number of apps across the app
Category and Rating ranges.

5. Merge the code for the bar chart and the heatmap and create a visualization with
both plots linked dynamically to each other.
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The expected output:
After step 3:
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Figure 4.30: Bar plot
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And that's it. Congratulations!

Note

The solution steps can be found on page 268.

Summary

In this chapter, we learned how to create visualizations that respond to the selection
of specific strata in a dataset. For illustration purposes, we used the Happy Planet
Index dataset of 140 countries, creating a variety of plots with stratification based

on the different regions to which countries belonged. We generated scatter plots, bar
plots, and heatmaps with interactive features such as zooming in and out, tool tipping,
the selection of datapoints in a user-specified interval, and the selection of datapoints
belonging to specific strata. We also generated more complex visualizations with
multiple plots interlinked with each other that dynamically respond to user inputs. In
the next chapter, we will learn how to create interactive visualizations of data across
time.









Interactive
Visualization of Data
across Time

Learning Objectives

By the end of this chapter, you will be able to:
+ Explain temporal data and how it is used in the real world
+ Use pandas to manipulate time-series data

+ Build basic interactive plots by adding custom buttons and a range slider to better
represent time-series data with the Bokeh library

+ Use custom aggregators on time-series plots to explain the behavior of data

In this chapter, we will explore the interactive visualization of data across time.
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Introduction

In the previous chapters, we learned how to create interactive visualizations to
represent data in different contexts, such as creating bar plots for stratified data. In
this chapter, we will learn how to create interactive visualizations to present data over
a period of time. Plotting data against time gives us insights into trends, seasonality,
outliers, and important events present in a dataset. Adding a time dimension on a static
plot means that one of the axes of the plot will represent time. Adding interactivity

on top of that gives us the freedom to explore and analyze the data. In an interactive
visualization, we can manipulate the graph according to the user requirements on the
fly.

We'll see how to manipulate and plot temporal data in Python. To plot timed data, we
will first preprocess the time. Time is composed of units such as seconds, minutes,
days, and weeks. So, we first parse the time into the required unit in order to visualize
it. Pandas library provides utilities to parse different time formats, such as dd/mm/yy
and mm/dd/yyyy. Then, by using the datetime object, we can segregate these formats.

To add interactivity, we will use the Bokeh library, which fits easily into the pandas
and matplotlib ecosystem. By default, Bokeh provides many interactive tools, such
as zoom-in and zoom-out, hover, and more. It can easily be integrated into Jupyter
Notebook in a browser, you can run plots on a Bokeh server, or you can integrate them
as a service with web frameworks such as Flask.

This chapter is designed to explain concepts by using practical examples. The first thing
we will do is learn about temporal data. Then, we'll look at a few use cases of temporal
visualization. Then, we will work on the manipulation of data. Finally, we'll use these
concepts and apply them to create interactive plots using Bokeh. Let's explore the
concept of temporal data.

Note

Some of the images in this chapter have colored notations, you can find
high-quality color images used in this chapter at: https://github.com/
TrainingByPackt/Interactive-Data-Visualization-with-Python/tree/master/Graphics/
Lesson5.

Temporal Data

Data that depends on time and where time is recorded explicitly is referred as temporal
data. For this kind of data, time is an inherent dimension and is always attached to the
data. For example, suppose we have a dataset that has records of the rate of ice melting
over the last five years in Greenland.


https://github.com/TrainingByPackt/Interactive-Data-Visualization-with-Python/tree/master/Graphics/Lesson5
https://github.com/TrainingByPackt/Interactive-Data-Visualization-with-Python/tree/master/Graphics/Lesson5
https://github.com/TrainingByPackt/Interactive-Data-Visualization-with-Python/tree/master/Graphics/Lesson5
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Let's look at the following dataset:

Year TemperatureChange

0 1880 -0.07
1 1881 -0.06
2 1882 -0.08
3 1883 -0.12
4 1884 -0.29

Figure 5.1: Rate of temperature change between 1880 and 1884 in Greenland

As we can see, time is an inherent component of this kind of data.

Types of Temporal Data
Temporal data can contain information about the following:

* Events: An event is a change in the state of an object at a given time. Event =
Time + Object State. Examples of events are posting a tweet, sending an email, or
sending a message.

Temporal information in tweets helps us understand trending topics, get the latest
news updates, and analyze the sentiment of topics over time.

e Measurements: Measurements records values across time. Measurement = Time +
Measures. Examples of measurements are sensor data, revenue, and stock values.

Temporal measurement information is the key feature of time-series forecasting.
Also, it helps us find patterns and anomalies in a dataset with sensor data.

Another view of time can be based on how it progresses:

* Sequential: We consider time as continuous linear values here. An example of this
type is a Unix timestamp.

* Cyclical: Time can be viewed as a recurrent event, where it is understood as fixed
periods, such as weeks or months. The cyclical interpretation of time is used to
compare values for the same period, such as sales values per month or yearly
temperature change.
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* Hierarchical: Another way to understand temporal information is through an
hierarchical pattern. A hierarchical time structure helps us to visualize data at
different levels. Suppose you are plotting sales data for each month. To understand
the pattern for each week for a given month, we are hierarchically breaking the
time from a larger periods (months) into smaller periods (weeks).

Why Study Temporal Visualization?

Visualization reveals hidden structures and insights. It helps us understand how values
change. For example, with a product sales count dataset, we can plot a comparative
view of month-on-month or year-on-year changes and understand trends of sales
behavior.

In visualizations with temporal data, time is plotted on the x axis, and the other features
of the dataset are plotted on the y axis.

Understanding and using temporal features of data play a crucial role in time-series
forecasting, recommendations, rankings, and more.

A static plot shows how a feature on a temporal dataset changes over a period of time.
In contrast to that, interactive plots can be visualized with user input/interactivity in
mind. Also, interactive plots can ingest stream data to show the behavior of online data.

Let's look at example bar plots.

Here is the first plot:

Greenland Temperature(-C)

30 -
[l Temperature

25 —

20 —

f T T 1
2009 2010 2011 2012 2013 2014

Figure 5.2a: Static bar plot showing the change in temperature in Greenland
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Here is the second plot:

Greenland Temperature(-C)
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Figure 5.2b: Interactive plot of Greenland's temperature shown by the hover tooltip

In the preceding plots, we can see the change in temperature in Greenland over the last
10 years in Figure 5.2a, which is essentially a static plot. Now, when we add interactivity
on this plot and use the hover functionality, we will be able to see the exact value of
temperature for a particular year. We can see in Figure 5.2b that it's -30 degrees Cin
2012.

The plots allow the reader to get a deeper understanding of the data because we can
play with the plot. Interactive visualizations allow multiple perspectives of the same
data; the problem with static visualizations is that they have been drawn to keep one
view in mind.

We will be using temporal data and time-series data interchangeably throughout the
chapter. Although these terms might not be very similar, they are in fact correlated.
Let's first learn how they are related.
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Understanding the Relation between Temporal Data and
Time-Series Data

Time-series data is a more refined version of temporal data where observations are
taken at equally spaced points in time successively. With temporal data, on the other
hand, observations are simply attached to time, and the intervals may not be equally
spaced.

Time-series data is a subset of temporal data, which means that time-series data

is temporal data but temporal data may not be time-series data. For example, the
following figure of the Puzhal reservoir in Chennai shows the water level over a period
of time, which is not equally spaced out necessarily; therefore, the figure is plotted
based on temporal data and not time-series data.

Let's look at what stories each type of data can tell:

» Puzhal reservoir in Chennai depicts how water levels change over time:

Figure 5.3: June 15, 2018 (L) and April 6, 2019 (R)

This picture is courtesy of https: //time.com /5611385 /india-chennai-water-
crisis/.

Effect of draught: The photos of the Puzhal reservoir in Chennai depict the
change in water level over time. Here, we can study the effect of drought and can
conclude that how water has depleted from 2018 to 2019.
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* Comparative study of GDP growth depicts the growth_rate of US and India:

GDP growth Annual

growth_rate

0 e
2012 2013 2014 2015 2016 2017 2018
year

Figure 5.4: Annual GDP growth of US and India

An interesting thing to note here is how the GDP of India has started going down
in recent years compared to the US, which started going up from 2016. This is an
example of a time-series dataset; we can see that data has been recorded at equal
intervals of time.

Examples of Domains That Use Temporal Data

Easily accessible, yet information-dense, temporal visualizations are the result of
accurate interpretations of data. There are different domains that use temporal and
time-series data for interactive visualizations:

* Finance: Examples include the study of a country's GDP growth and the study of
the revenue growth of a country. In these cases, we use a time-series dataset.

* Meteorological: Forecasting the surface temperature change of a geographical
region over time, for example, CO2 emissions by countries per year, again uses
time-series data.
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» Traffic/mobility: Routing of vehicles/cabs for efficient operations and solving
supply and demand problems pertaining to mobility could use time-series traffic

data.

* Medical/healthcare: Some examples include studies of life expectancy over time,
patients' temporal reports, and medical history analysis.

Visualization of Temporal Data

In temporal data visualization, time is the independent variable and the other features
that are being visualized are plotted against time. So, the other features are dependent
variables. Usually, time is plotted on the x axis, while the dependent variables are
plotted on the y axis. We can see a few plots here:

* Line graph:

Line Plot comparing Population Change
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Figure 5.5: Line plot representing temporal data
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This line graph shows the percentage change in the population of a country for each
year. If multiple lines are plotted on the same graph, then it gives us a comparative
study of the features. Lines plots are easy to interpret and also simple to plot.

* Grouped bar chart:

Medal Counts by Year
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Figure 5.6: Grouped bar plot representing temporal data
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This grouped bar chart shows the counts of medals (shown on the y axis) received
in 2012, 2014, and 2016. Having many lines on the same line graph plot makes
visibility and comparability poor. In this case, a grouped bar chart is a neat option.

* Line plot with a range slider:

Time Series Stock Data
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Figure 5.7: Line plot with a range slider representing temporal data

The preceding graph shows the plot of stock prices between 2000 and 2013. If
we have a wide range on the x axis, a slider helps us to focus on a particular year

range.
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* Timed pie charts:

Pie chart for medal in Olympics et sl Erse
3% 33% 34%
B% i 1%
B% 35% 33%
006 ' ' " 08 ' ' ©o2010

3% 2%

3%

35% 3% 35%
2012 014 2016
Figure 5.8: Timed pie charts representing medal counts in Olympics

The series of pie-charts show the distribution of medal count in the Olympics for
each year. Pie charts provide a ratio of the values being visualized. Pie charts are
recommended when there are not many types of values shown on the chart.

How Time-Series Data Is Manipulated and Visualized

Pandas is the most common library for importing, wrangling, and analyzing data. For
time- series data, it has built-in datetime function that makes time-series analysis
and visualization easy. When we plot time-series data, we want to perform operations
such as resampling, upsampling, or parsing dates for a month or a day to customize the
visualization according to the requirements. Resampling and upsampling are ways to
aggregate time periods. We will get a better understanding of resampling in the next
section with some hands-on exercises.
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For now, let's look at a parsing example using pandas and the Airpassengers.csv
dataset:

import pandas as pd
from pathlib import Path
DATA PATH = Path("datasets/chap5 data")
passenger df = pd.read csv(DATA PATH /"AirPassengers.csv")
print (passenger df.info())

Here is the output:
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 144 entries, 0 to 143
Data columns (total 2 columns):
Month 144 non-null object
#Passengers 144 non-null int64
dtypes: int64(1l), object (1)
memory usage: 2.3+ KB

None

Note

The datasets used in this chapter can be found here https://github.com/
TrainingByPackt/Interactive-Data-Visualization-with-Python/tree/master/datasets/

chap5_data.

We can see the Month column contains data of the object type. Now, let's convert it to
datetime using the following code:

passenger df["Month"] = pd.to_datetime (passenger df["Month"])
# converts into datetime object

print (passenger df.info())

Here is the output:
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 144 entries, 0 to 143

Data columns (total 2 columns):


https://github.com/TrainingByPackt/Interactive-Data-Visualization-with-Python/tree/master/datasets/chap5_data
https://github.com/TrainingByPackt/Interactive-Data-Visualization-with-Python/tree/master/datasets/chap5_data
https://github.com/TrainingByPackt/Interactive-Data-Visualization-with-Python/tree/master/datasets/chap5_data
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Month 144 non-null datetime64[ns]
#Passengers 144 non-null int64

dtypes: datetime64[ns] (1), int64 (1)

memory usage: 2.3 KB

None

Before playing with time-series data, let's introduce you to the main concepts of time
and date manipulation in pandas.

Date/Time Manipulation in pandas

Here are the common date /time manipulation techniques or functions in pandas that
are used during analysis and visualization:

» Datetime: A specific date and time with time zone support. Datetime is used to
convert a str object to a datetime object. Generally, it is applied to a column to
do temporal analysis. It supports various types of date/time formats:

pd.to datetime (['2019/09/20', '2019.10.31'])
Here is the output:

DatetimeIndex (['2019-09-09', '2019-09-10'], dtype='datetime64[ns]',
freg=None)

* timedelta: timedelta is used for calculating an absolute time duration.
timedelta can be used to add or subtract specific time values from a datetime
column. Let's see an example of adding a day to a date:

import numpy as np

#week delta arranged over week period, we can add these dates.
week delta = pd.to_timedelta(np.arange(5), unit='w"')

dates = pd.to datetime(['9/9/2019', '9/9/2019', '9/9/2019"',
'9/9/2019', '9/9/2019'])

print (dates + week delta)

Here is the output:
DatetimeIndex (['2019-09-09', '2019-09-16', '2019-09-23', '2019-09-
30', '2019-10-07'1,
dtype='datetime64 [ns]', freg='W-MON')
#freq="W-MON' implies weekday starting from Monday
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* Time spans: A span of time defined by a point in time and its associated frequency.
Both timestamp and time span can be indexed to a DataFrame:

pd.Period('2019-09")
Here is the output:
Period('2019-09', 'M')

* Date offsets: Date offsets are relative time durations with respect to calendar
arithmetic:

## Day-light saving in US (2019)

timestamp = pd.Timestamp ('2019-03-10 00:00:00', tz='US/Pacific')
# Timedelta with respect to absolute time

print (timestamp + pd.Timedelta (days=1))

Here is the output:
2019-03-11 01:00:00-07:00
Here's another example:

# DateOffset with respect to calendar time
print (timestamp + pd.DateOffset (days=1))

Here is the output:

2019-03-11 00:00:00-07:00

Building a DateTime Index

Pandas DataFrames are indexed by an ordered sliceable set. If we assign
DatetimeIndex as the index of a DataFrame, then we can slice and filter based on date,
months, and so on.

Here is one way to make a datetime index:
passenger df = passenger df.set index (pd.DatetimelIndex (passenger
df['Month']))

Or, we can do it this way:

passenger df.index = passenger df['Month']

Here is the output:
DatetimeIndex (['1949-01-01', '1949-02-01', '1949-03-01', '1949-04-01"',
'1949-05-01", '1949-06-01', '1949-07-01', '1949-08-01',
'1949-09-01"', '1949-10-01",
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'1960-03-01', '1960-04-01', '1960-05-01', '1960-06-01"',
'1960-07-01', '1960-08-01', '1960-09-01', '1960-10-01"',
'1960-11-01", '1960-12-01'],

dtype='datetime64 [ns]', name='Month', length=144,

freg=None)

We can also set the date index while reading the data in the DataFrame:

athelete df = pd.read csv(DATA PATH / "athletes.csv",
parse _dates=['date of birth'],index col='date of birth')

Choosing the Right Aggregation Level for Temporal Data

We will now introduce how time is handled and how to extract time components from
a datetime object. Choosing the right aggregation level can be tricky and is worth
exploring. A natural time aggregation, such as day or hour, may not be representative
of the pattern. For example, an e-commerce website might have cyclical patterns on
active users based on morning, afternoon, and evening. The aggregation level might not
be present in the data and will need to be feature engineered in order to create new
features. This is a common practice in the Machine Learning(ML) domain.

Now, let's do some hands-on exercises pertaining to date handling. We will use the
AirPassengerDates.csv dataset.

Example 1: Converting Date Columns to pandas DateTime Objects

We'll start by importing the necessary Python modules and read from the
AirpassengersDates. csv dataset using the following code:

#Import pandas library and read DataFrame from DATA PATH
import pandas as pd

import numpy as np

from pathlib import Path

DATA PATH = Path("../datasets/chap5 data/")

passenger df = pd.read csv (DATA PATH/"AirPassengersDates.csv")

passenger df.head()
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Here is the output:

Date #Passengers

0 1949-01-12 112
1 1949-02-24 118
2 1949-03-22 132
3 1949-04-05 129
4 1949-05-24 121

Figure 5.9: The airpassengersdates dataset
We'll now convert the Date column to datetime by setting the index to Date:
passenger df["Date"] = pd.to datetime (passenger df["Date"])
passenger df.head()

Here is the output:

Date #Passengers

0 1949-01-12 12
1 1949-02-24 118
2 1949-03-22 132
3 1949-04-05 129
4 1949-05-24 121

Figure 5.10: Converting the date to datetime in the dataset
Example 2: Creating month, day, and day _name Columns from the Date Column

In this example, we'll create month and day columns in the passenger df DataFrame
using the following code:

passenger df ["month"] = passenger df["Date"].dt.month

passenger df["day"] = passenger df["Date"].dt.day
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Now, we'll create a day name column in the passenger_ df DataFrame by accessing
the day_name method:

passenger df["day name"] = passenger df["Date"].dt.day name ()

Let's print passenger_df:

passenger df.head()

Here is the output:

Date #Passengers month day day_name
0 1949-01-12 112 1 12 Wednesday
1 1949-02-24 118 2 24 Thursday
2 1949-03-22 132 3 22 Tuesday
3 1949-04-05 129 - 5 Tuesday
4 1949-05-24 121 5 24 Tuesday

Figure 5.11: Creating day, month, and day_name columns from the Date column

Now we will analyze the #Passenger column against time in the following exercise.

Exercise 38: Creating a Static Bar Plot and Calculating the Mean and Standard
Deviation in Temporal Data

In this exercise, we'll count all passengers by month using the AirPassengerDates.
csv dataset, available on Packt's GitHub repository, and we will create a bar plot to
visualize the data and calculate the mean and standard deviation in the dataset. To do
so, we'll use the following code:

1. Import the pandas library and read the DataFrame using DATA PATH:

gmatplotlib inline

import pandas as pd

import numpy as np

from pathlib import Path

DATA PATH = Path("../datasets/chap5 data/")

2. Read the data and parse the Date column:

passenger df = pd.read csv(DATA PATH/"AirPassengersDates.csv")
passenger df["Date"] = pd.to datetime (passenger df["Date"])
passenger_ df.head()
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Here is the output:

Date #Passengers

0 1949-01-12 112
1 1949-02-24 118
2 1949-03-22 132
3 1949-04-05 129
4 1949-05-24 121

Figure 5.12: The AirpassengersDates dataset

Let's try to visualize the data using Seaborn. Seaborn handles categorical
data well. We will get a better understanding by plotting this dataset. Also, a
visualization or a graphical representation is more appealing to look at than tables.

3. Create month, day, and day-name columns from the Date column:

passenger df["month"] = passenger df["Date"].dt.month passenger
df ["day"] = passenger df["Date"].dt.day passenger df["day name"] =
passenger df["Date"].dt.day name ()

4. Aggregate the #Passengers column by the month column:

passenger per month = passenger df.groupby (["month"])
[["#Passengers"]].agg ("sum")

passenger per month = passenger per month.reset index()
passenger per month.head()

The output is as follows:

month #Passengers

0 1 2901
1 2 2820
2 3 3242
3 - 3205
4 5 3262

Figure 5.13: Aggregated passengers by the month column
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Import the required libraries and set the figure size to create the bar plot:

import seaborn as sns
import matplotlib.pyplot as plt
plt.figure (figsize=(16,8))

Create a bar plot using sns and pass the column names to the x axis and y axis.
Now we will use the passenger_per month DataFrame because it has been
processed:

ax = sns.barplot (x="month", y="#Passengers", data=passenger per
month)
ax.set title("Bar Plot - Passengers per month")

#Annotate the bars with value to have better idea
for p, v in zip(ax.patches, passenger per month['#Passengers']):
height = p.get height()
ax.text(p.get x() + p.get width() / 2, height + 5, v,
ha='center', va='bottom')
plt.show()

The output is as follows:

Bar Plot - Passengers per month
4276 4213

3242 3205 3262

#Passengers

1 2 3 4 5 6 7 8 9 10 1 12

Figure 5.14: Static bar plot
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As we can see, the number of passengers for each month is displayed at the top of
each bar. Now, suppose we also want to calculate the mean of #Passengers per
month.

7. Calculate the mean of #Passengers per month using the following code:

mean_passengers per month = passenger df.groupby (["month"])
[["#Passengers"]].agg ("mean") .reset index()
mean passengers per month.head()

Here is the output:

month #Passengers

0 1 241.750000
1 2 235.000000
2 3  270.166667
3 4  267.083333
<& 5 271.833333

Figure 5.15: The mean of the dataset
8. Calculate the median of #Passengers per month using the following code:

median passengers per month = passenger df.groupby (["month"])
[["#Passengers"]].agg ("median") .reset index()
median passengers_per month.head()

Here is the output:

month #Passengers

0 1 223.0
1 2 2145
2 3 2515
3 4 252.0
< 5 252.0

Figure 5.16: The median of the dataset
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Now, suppose we want to plot the number of passengers with the standard
deviation and cover 80% of the standard deviation.

9. Import the libraries and set up the figure:

import seaborn as sns

import matplotlib.pyplot as plt

plt.figure (figsize=(12,8))

10. Use the lineplot function from seaborn and set ci to 80 to cover 80% of the

standard deviation:

ax = sns.lineplot (x="month",y="#Passengers", data=passenger df,

ci=80)

ax.set title("Bar Plot Mean and Standard Deviation per Month")

plt.show ()

The output is as follows:

400 A

350 -

#Passengers

250 A

200 1

Bar Plot Mean and Standard Deviation per Month

300 A

-

2 4 ] ] 10 12
month

Figure 5.17: Bar plot showing the mean and the standard deviation

From the plot, we can see that the mean is ~230 and the standard deviation is ~80 for

the second month.
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Now, let's understand the zscore concept and why we use it.
The zscore of value x is a measure of how many standard deviations x is away from

the mean. zscore is a normalization technique used in the preprocessing of features. It
helps the ML model to learn better from data. High zscore values in a sample indicate

that the sample value is far away from the mean and could be an outlier. Here's how we
calculate zscore mathematically:

X=X

zscore =
o

X = mean
a(x) = standard deviation

Figure 5.18: Mathematical calcuation of zscore

We'll be using this concept of zscore to find outliers or anomalies in a dataset and
visualize them using a line plot.

Exercise 39: Calculating zscore to Find Outliers in Temporal Data

In this exercise, we'll find the 5 days that have the highest zscore values. Next, we will
use the AirPassengersDates.csv dataset to calculate the zscore and try to find
which months could be outliers. To do this, let's go through the following steps:

1. Import the necessary Python modules:

#Import pandas library and read DataFrame from DATA PATH
import pandas as pd

matplotlib inline

import numpy as np

2. Read the dataset from the path and display it:

from pathlib import Path
DATA PATH = Path("..datasets//chap5 data/")
passenger df = pd.read csv(DATA PATH/"AirPassengersDates.csv")

3. Parse the bate column:

passenger df["Date"] = pd.to datetime (passenger df["Date"])
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Calculate the mean and standard deviation of the #Passengers column and
assign them to new columns in passenger_df:

passenger df['mean'] = passenger_df["#Passengers"].mean()
passenger df['std'] = passenger df["#Passengers"].std()

Calculate the zscore using the formula we introduced earlier by using the mean
and std columns. Assign the result to a new column called zscore:

passenger df['zscore'] = (passenger df["#Passengers"] - passenger
df ['mean']) /passenger df['std']

Now apply the abs function to calculate the absolute value of zscore:
passenger df['zscore abs'] = abs(passenger df['zscore'])
Sort the DataFrame by zscore_abs:
passenger df.sort values(by="zscore abs", ascending=False).head(100)

Here is the output:

Date #Passengers mean std zscore zscore_abs
138 1960-07-02 622 280.298611 119.966317 2.848311 2.848311
139 1960-08-16 606 280.298611 119.966317 2.714940 2.714940
127 1959-08-01 559 280.298611 119.966317 2.323164 2.323164
126 1959-07-29 548 280.298611 119.966317 2.231471 2.231471
137 1960-06-02 535 280.298611 119.966317 2.123108 2.123108
140 1960-09-14 508 280.298611 119.966317 1.898044 1.898044
115 1958-08-18 505 280.298611 119.966317 1.873037 1.873037
114 1958-07-13 491 280.298611 119.966317 1.756338 1.756338
136 1960-05-27 472 280.298611 119.966317 1.597960 1.597960
125 1959-06-24 472 280.298611 119.966317 1.597960 1.597960

Figure 5.19: zscore in AirpassengersDates

Let's try to visualize these outliers in passenger_df.
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8. First, filter the high and low values using the zscore:

anamlous df high = passenger df.sort values (by="zscore",
ascending=False) .head (10)

anamlous df high["Date"] = pd.to datetime (anamlous df high["Date"])
anamlous df low = passenger df.sort values (by="zscore",
ascending=True) .head (10)

anamlous df low["Date"] = pd.to datetime (anamlous_df low["Date"])

9. Import the seaborn and matplotlib libraries, which are required for visualization,
and plot the outliers using the following code:

import seaborn as sns

import matplotlib.pyplot as plt

plt.figure (figsize=(15,8))

plt.grid=True

plt.title("Top 10 high traffic passenger count")

ax = sns.lineplot (x="Date", y="#Passengers", data=passenger df)
ax = sns.scatterplot (x="Date",y="#Passengers", data=anamlous df
high, size="#Passengers")

ax = sns.lineplot (x="Date", y="mean", data=passenger df)

ax.text (pd.to datetime ("1950"), 290, "Mean Line",
horizontalalignment="'left', size='large', color='Blue')

ax = sns.scatterplot (x="Date",y="#Passengers", data=anamlous df low,
size="4#Passengers")

ax.gridl()
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The output is as follows:

Top 10 high traffic passenger count

#Passengers
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Figure 5.20: Showing the outliers in AirpassengerDates dataset

As we can see, the outliers in the dataset are represented by the orange dots and the
blue dots.

We have learned so far that visualization of temporal data requires the DataFrame to
be processed so that the required pattern can be represented on the plot. Here is a
summary of what we have learned:

* We have learned three ways to make datetime as the index for plotting time-
series data, while reading data and setting using index_col, while explicitly
setting the index with df . index = df['date'], and while using set_index ().

* We saw how to convert a parsable string column to a datetime column using
pd.to_datetime().

* datetime arithmetics, for example, adding and subtracting timedelta.

» We saw how to aggregate data across different time values, for example, day,
month, and week.

* We saw how to do analysis using mean, median, and zscore on the time axis.

Let's move on to the next section and delve into the concept of resampling in temporal
data.
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Resampling in Temporal Data

Resampling involves changing the frequency of the time values in a dataset. If data
observed over time has been collected over different frequencies, for example, over
weeks or months, resampling can be used to normalize datasets for a given frequency.
During predictive modeling, resampling is widely used to perform feature engineering.

There are two types of resampling:

* Upsampling: Changing the time from, for example, minutes to seconds.
Upsampling helps us to visualize and analyze data in more detail, and these fine-
grained observations are calculated using interpolation.

* Downsampling: Changing the time from, for example, months to years.
Downsampling helps to summarize and get a general sense of trends in data.

Common Pitfalls of Upsampling and Downsampling

Upsampling leads to NaN values. The methods used in interpolation are linear or cubic
splines for imputing NaN values. This might not represent the original data, so the
analysis and visualization might be misleading.

Downsampling aggregates the observation over sample frequency, where we provide a
frequency to function as an argument, so we might lose some information.

Exercise 40: Upsampling and Downsampling in Temporal Data

In this exercise, we will perform upsampling and downsampling on the walmart store
dataset. We'll first drop the NaN values, and then we'll merge the dataset. Then, we'll
upsample the dataset to visualize the data in more detail. Next, we'll downsample and
smoothen out the line plot. To do so, let's go through the following steps:

1. Import the necessary Python modules and set the data path:

gmatplotlib inline

from datetime import datetime

import pandas as pd

from datetime import datetime

from pathlib import Path

DATA PATH = Path('../datasets/chap5 data/')

2. Read the dataset using pandas and drop the NA values:

walmart stores = pd.read csv(DATA PATH/'1962 2006 walmart store
openings.csv',
parse dates=['date super']) .dropna/()
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Count the number of stores opened per year. We will use the walmart store
count dataset as time-series data:

walmart store count = walmart stores.groupby ("YEAR") [["storenum"]].
agg ("count") \

.rename (columns={"storenum": "store count"})
Merge walmart store count with walmart stores:

walmart store count = pd.merge (walmart stores, walmart store count,
on="YEAR")

Set the index with date_super:

walmart store count= walmart store count.set index (pd.
DatetimeIndex (walmart store count.date super))

Filter out the required columns:

walmart store count = walmart store count[["date super", "store
count"]] walmart store count.drop duplicates (subset="date super",
inplace=True)

Print the DataFrame:
walmart store count.head(8)

The output is as follows:

date_super store_count

date_super

1997-03-01  1997-03-01 1
1996-03-01  1996-03-01 1
2002-03-01  2002-03-01 1
1993-03-01  1993-03-01 1

1998-03-01  1998-03-01
1994-03-01  1994-03-01
2002-02-20  2002-02-20

(S B & I &1 I & |

2000-03-01  2000-03-01
Figure 5.21: The dataset showing the number of stores opened in a certain year

Upsampling helps us to visualize and analyze the data in more detail.
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8. Convert the frequency of walmart store count series to 2 days:

walmart store count series = walmart store count.store count

walmart store count series walmart store count series.asfreqg('2D'")

walmart store count series.head()

The output is as follows:

date_super

1997-03-01 1.0

1997-83-83 NahM

1997-83-85 Nah

1997-83-87 NaM

1997-83-89 NaM

Freq: 2D, Name: store count, dtype: floates

Figure 5.22: Showing the frequency of walmart_store_count_series
9. Interpolate the missing values using linear interpolation:

walmart store count series = walmart store count series.
interpolate (method="spline", order=2) walmart store count series.
plot(style=":")

The output is as follows:

<matplotlib.axes._subplots.AxesSubplot at ©x7f83fe4b8128>

150 A

100 A

1998 1999 2000 2001 2002 2003 2004 2005
date_super

Figure 5.23: The line plot
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Downsampling to a larger unit of time, for example, from day to week, will
introduce smoothing. This is an aggregation method for the given frequency level.

10. Smooth out the plot using downsampling with a frequency of BA (business year)
using the following code:

plt.figure (figsize=(12,8))

plt.ylabel ("Interpolated Values")

plt.plot (walmart store count series)

walmart store count series.resample('BA').mean().plot(style=":",
title="Values Smoothen by Business Year Frequency") #BA stands for

Business Year

The output is as follows:

Values Smoothen by Business Year Frequency

150 4

—
=]
=1

n
=

(=]

Interpolated Values by 2 Days
&
=]

=100 1

date_super

Figure 5.24: Smoothened-out line plot
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11. Downsample with a frequency of BQ (business quarter) to observe higher
granularity:

plt.figure (figsize=(12,8))

plt.ylabel ("Interpolated Values")

walmart store count series.plot(alpha=0.5, style='-")

walmart store count series.resample('BQ').mean().plot(style=":",
title="Values Smoothen by Business Quarter Frequency")#BQ stands for
Business quarter

The output is as follows:

Values Smoothen by Business Quarter Frequency

1501

100+

901

Interpolated Values

=501

=100+

1997 1998 1999 2000 2001 2002 2003 2004 2005
date_super

Figure 5.25: Smoothed-out line plot with a frequency of BQ

As we can see, upsampling and downsampling have been used to view the data with
different levels of detail. We'll now see the lag in time-series data using the shift and
tshift functions.
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Using shift and tshift to Introduce a Lag in Time-Series Data

* tshift: Shifts the datetime index of the DataFrame by a given period. The
period is unit count of frequency; frequency could be week, month, hour, and so
on. It changes the value of DateTimeIndex within the DataFrame.

* shift: Shifts the DataFrame index by a given period. In the process, new rows or
columns will be introduced in the DataFrame with NaN values.

Exercise 41: Using shift and tshift to Shift Time in Data

In this exercise, we will use shift and tshift to shift time in a dataset. We'll be using the
1962_2006_walmart_store_openings.csv dataset. We'll process the dataset, drop the
NaN values, and merge the dataset with walmart_stores, and then we'll go ahead and
create a line plot to visualize the data. To do this, let's go through the following steps:

1. Import the necessary Python modules and preprocess the data:

from datetime import datetime

Smatplotlib inline

import pandas as pd

import matplotlib.pyplot as plt

from pathlib import Path

DATA PATH = Path('../datasets/ chap5 data/"')

walmart stores = pd.read csv(DATA PATH / '1962 2006 walmart store

openings.csv',

parse dates=['date super']) .dropna/)
walmart store count = walmart stores.groupby ("YEAR") [["storenum"]].
agg ("count") .rename (columns={"storenum": "store count"})

walmart store count = pd.merge (walmart stores, walmart store count,
on="YEAR")

walmart store count= walmart store count.set index (pd.
DatetimeIndex (walmart store count.date super))

walmart store count = walmart store count[["date super", "store
count"]]

walmart store count.drop duplicates (subset="date super",

inplace=True)

walmart store count series walmart store count.store count
walmart store count series = walmart store count series.asfreq('2D')
walmart store count series = walmart store count series.

interpolate (method="spline", order=2)
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2. Create three plots: one normal, one shifted with index, and one shifted with time:

walmart store count series = walmart store count series.asfreq('D',
method="pad"')

3. Setup the plot and shift_val. shift val is the value of the lag we want to plot
on graphax[0] .legend(['input'], loc=2):

fig, ax = plt.subplots (3, figsize=(14,9))

shift val = 400

#create 3 plots, one normal, one shifted with index, and other
shifted with time

walmart store count series.plot (ax=ax[0])

#shift the date by shift val

walmart store count series.shift(shift wval) .plot (ax=ax[1])
#shift the time index using tshift

walmart store count series.tshift (shift val) .plot (ax=ax[2])
#select a date to draw line on plot

date max = pd.to datetime ('2002-01-01")

delta = pd.Timedelta(shift val, 'D'")

#Put marker on three plot to undestand how thsift shifting the index
and shift is changing the data.

ax[0].legend(['input'], loc=2)

ax[0].set _ylabel ("Interpolated Store Count")

ax[0] .get xticklabels() [2].set (weight='heavy', color='green')
ax[0].axvline (date max, alpha=0.3, color='red')
ax[l].legend(['shift({})'.format (shift val)], loc=2)

ax[1l] .set ylabel ("Interpolated Store Count")

ax[1l].get xticklabels() [2].set (weight="heavy', color='green')
ax[1l].axvline (date max + delta, alpha=0.2, color='green')
ax[2] .legend(['tshift ({})'.format (shift val)], loc=2)
ax[2].set _ylabel ("Interpolated Store Count")

ax[2].get xticklabels() [1].set (weight="heavy', color='black')
ax[2] .axvline (date max + delta, alpha=0.2, color='black');
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The output is as follows:
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Figure 5.26: Line plots representing tshift and shift
Let's try to understand the shift () and tshift () functions using the preceding plots.
shift shifts the data to a given unit. Here, shift (shift_val) shifts by 400 days,
since we have set the frequency toD in the Timedelta function of pandas.
Autocorrelation in Time Series

Calculating the correlation between time-series values with lagged /shifted values of
the same time-series dataset is called autocorrelation.

A plot of autocorrelation is called an Autocorrelation Function(ACF).

To understand how time-series values are correlated with past values, we need to find a
value of p that gives the highest correlation value. p is also known as an auto-regressive
value.
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For example, if p=6, then the value of time-series data at time t will be determined by
x(t-1)...x(t-6).
Let's go through the following example:
#Drawing the autocorrelation function
from statsmodels.graphics.tsaplots import plot acf
import numpy as np
import pandas as pd
from statsmodels.tsa.stattools import acf
from pandas datareader.data import DataReader
from datetime import datetime
import matplotlib.pyplot as plt

Smatplotlib inline

ilbm = DataReader ('IBM', 'yvahoo', datetime (2010, 2, 1), datetime (2018,
2, 1))

ibm close = ibm['Close']

ibm close month = ibm close.resample ("M") .mean ()
#plot acf(ibm close, lags=50)

lag acf = acf(ibm close month, nlags=72)

#Plot ACF:

plt.figure (figsize= (10, 4))

plt.subplot (121)

plt.plot(lag_acf)
plt.axhline (y=0, linestyle='--",color="gray')

plt.axhline (y=-1.96/np.sqrt (len(ibm close)),linestyle="'--
',color="gray')

plt.axhline(y=1.96/np.sqrt(len(ibm close)),linestyle="'--
',color="gray"')

plt.title('Autocorrelation Function')
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The output is as follows:

Autocorrelation Function

Figure 5.27: Autocorrelation represented through a line plot

As we can see, the graph touches the first confidence interval (represented by the --
line in the plot) at 18, hencep = 18.

In this section, we have learned about time-series manipulation and visualization. Here
are the specific concepts that we have practiced:

* Understanding upsampling and downsampling

* Plotting upsampling and downsampling and the advantages and disadvantages of
each technique

* Understanding shift and tshift understanding using visualization

Interactive Temporal Visualization

We have so far seen how to manipulate temporal data and create static plots. Now, we
need a visualization that can be rendered at runtime based on events and information
details - an interactive plot in which the events could be zoom, hover, change of axis,
3D rotations, and more. Information details could be changing the aggregation column
from year to month or days.

Now we will explain how to plot using the Bokeh library. First, we will plot a simple plot.
At the end, we will learn about callbacks and the sophisticated functionalities of Bokeh.
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Bokeh Basics

Bokeh is an interactive visualization library. It is able to handle large amounts of data
and streaming data as well. Apart from Python, Bokeh can be used with R, Scala, Lua,
and other programming languages.

For a simple graph, many interactivity tools come built-in with Bokeh, for example,
pan, box zoom, and wheel zoom. Since we will be visualizing our output in a Jupyter
Notebook, we need to import and initialize the required settings. Bokeh is essentially
used for the following:

* Plots: Plots are containers that hold tools, data to show the figure, and maps to
bokeh.plotting. figure. This is used to make a plot.

* Glyphs: Basic visual marks that Bokeh can display, for example, lines and circles.

* Guides: Help us to judge distances, angles, and so on. Examples include axes, grid
lines, and ticks.

* Annotations: Visual aids that label certain points on a figure, such as the title and
legends.

Advantages of Using Bokeh
The advantages of using bokeh are:

* Bokeh is fast and can handle a large amount of data. Complex visualizations can be
drawn using the available commands.

It has intuitive parameter names and usable defaults.
Bokeh can output in various formats according to requirements, such as Jupyter
Notebook, server response, and html files.

* Output from matplotlib and seaborn can be easily rendered into bokeh

* By default, many interactive tools are available, such as wheel zoom and box zoom.

Let's look at an example of adding interactivity on static plots using the bokeh library.
Example 3: Adding Zoom in and out Functionality on a Line Plot Using Bokeh

In this example, we'll add interactive features such as pan and zoom in and out on a
static line plot using the Bokeh library. To do this, let's go through the following steps:

1. Import the necessary modules and functions:

import numpy as np from bokeh.plotting import output notebook,
figure, show
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Import the required modules and functions, importing figure, show, output_
notebook, output_file:from bokeh.plotting import output_notebook, figure, show.

Set the output mode as output_notebook():
output notebook ()
Load the data from pandas, SQL, from a URL, or from any other sources:

#prepare some data
X = np.arange (5)
y = [6, 7, 2, 4, 5]

Create a figure and add glyphs to it:

# create a new plot specifying plot height, plot width, with a title
and axis labels.

p = figure(plot height=300, plot width=700,title="simple line
example", x axis label="'x', y axis label='y"')

Add a line renderer with legend and line thickness:

# add a line renderer with legend and line thickness
p.line(x, y, legend="Temp", line width=3)

Show the visualization:

# show the results
show (p)

The output is as follows:

simple Line example

?é — Temp |:}

63

53 I
hdg w

33

Figure 5.28: Zoomed-out line plot (L) and zoomed-in line plot (R)

Now, let's add more interactive functionalities to the plot through an exercise.
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Exercise 42: Adding Interactivity to Static Line Plots Using Bokeh

In this exercise, we'll create static line plots and add interactivity such as zooming in
and out. We'll be using the uk_europe population 2005 2019.csv dataset. To do
this, let's go through the following steps:

1. Import the libraries and read the data from the datasets/chap5_data folder:

import pandas as pd

from pathlib import Path

import pandas as pd

from pathlib import Path

from bokeh.plotting import figure, show, output file

from bokeh.plotting import figure, output notebook, show,
ColumnDataSource

DATA PATH = Path('datasets/chap5 data')

2. Set the output as a notebook:
output notebook ()

3. Read the data as a DataFrame. Filter the rows by UK and France. Make DataFrame
as ColumnDataSource so that Bokeh can access it by column names:

uk _eu population = pd.read csv(DATA PATH / "uk europe
population 2005 2019.csv")

uk population = uk eu population[uk eu population.country == 'UK']
source_uk = ColumnDataSource (dict (year=uk population.year,
change=uk population.change))

france population = uk eu population[uk eu population.country ==
'France']

source france = ColumnDataSource (dict (year=france population.year,
change=france population.change))

4. Initialize the figure with an appropriate title and height:

TOOLTIPS = [
("population:", "@change")
]
r = figure (title="Line Plot comparing Population Change", plot
height=450, tooltips=TOOLTIPS)

r.line(x="year", y="change", source=source uk, color='#1F78B4"',
legend='UK', line color="red", line width=3)
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r.line (x="year", y="change", source=source france, legend='France',
line color="black", line width=2)

r.grid.grid line_ alpha=0.3

show (r)

The output is as follows:

Line Plot comparing Population Change

0.8 4
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0.4 -

0.2 5

1980 1880 2000 2010 2020

Figure 5.29: Line plot comparing population change for France

We have successfully added interactive features to a temporal static plot. We can see in
the plots that in the 2000-2010 time period, the population in the UK increased a lot
more than France.
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Exercise 43: Changing the Line Color and Width on a Line Plot

In this exercise, we will change the line color and width of line plots. We will be
using microsoft_stock.csv and googlestock.csv. To do so, let's go through the
following steps:

1. Import the necessary Python modules and download the sample data from the
library:

import pandas as pd

from bokeh.plotting import figure, output notebook, show,
ColumnDataSource

from bokeh.io import push notebook, show, output notebook
from ipywidgets import interact

output notebook ()

2. Read the data:

from pathlib import Path
DATA PATH = Path("../datasets/chap5 data/")

3. Initialize the figure:

TOOLTIPS = [ ("date", "@date"™), ("value", "@close™) ] p =
figure (title="Interactive plot to change line width and color",
plot width=900, plot height=400, x axis type="datetime",
tooltips=TOOLTIPS)

4. Use the helper function to return the microsoft stock and google stock
DataFrames:

def prepare data():

microsoft stock = pd.read csv(DATA PATH / "microsoft stock ex6.
csv'")

microsoft stock["date"] = pd.to_datetime (microsoft
stock["date"])

google stock = pd.read csv(DATA PATH / "google stock ex6.csv")

google stock["date"] = pd.to_datetime (google stock["date"])

return microsoft stock, google stock
5. Call the helper function to get the DataFrames:

microsoft stock, google stock = prepare data()
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6. Add the lines for both DataFrames:

microsoft line=p.line("date","close", source=microsoft stock, line

width=1.5, legend="microsoft stock")
google line = p.line("date", "close", source=google stock, line

width=1.5, legend="google stock")
7. Define how to interact with user events:

def update(color, width=1):
google line.glyph.line color = color
google line.glyph.line width width
push notebook ()

interact (update, color=["red", "blue", "gray"], width=(1,5))
8. Show the output:
show (p, notebook handle=True)

The output is as follows:

v ‘

color ’ red
width () 1
Interactive plot to change line width and color
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Figure 5.30: Interactive feature that changes the line color and width on a line plot
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Exercise 44: Adding Box Annotations to Find Anomalies in a Dataset

In this exercise, we will add box annotations to link screen coordinates to specific plot
regions in order to find anomalies in sea surface temperature. To do so, let's go through
the following steps:

1. Import the necessary Python modules:

from ipywidgets import interact

import numpy as np

from ipywidgets import interact

from bokeh.io import push notebook, show,output notebook
from ipywidgets import interact

from bokeh.models import BoxAnnotation

2. Set the output as Jupyter Notebook:

output notebook ()
3. Read the data:

# data reading and filtering

from bokeh.sampledata.sea surface temperature import sea surface
temperature

data = sea_surface temperature.loc['2016-02-01"':'2016-03-22"]

4. Set the figure variables:

p = figure(x_axis type="datetime", title="Sea Surface Temperature
Range™)

p.background fill color = "#dfffff"

p.Xgrid.grid line color=None

p.xaxis.axis label = 'Time'

p.yaxis.axis label = 'Value'

5. Add the annotation to the figure:

p.line(data.index, data.temperature, line color='grey')
p.circle(data.index, data.temperature, color='grey',6 size=1)
p.add layout (BoxAnnotation (top=5, fill alpha=0.1, fill
color="red', line color='red'))

p.add layout (BoxAnnotation (bottom=4.5, fill alpha=0.1, fill
color="red', line color='red'))
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6. Show the figure:

show (p)

Sea Surface Temperature Range

5.5 1
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1
—
———1
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Time
Figure 5.31: Line plot showing sea surface temperature change

As we can, during the time period of 1 Feb — 3 Mar in the year of 2016, the sea surface
temperature increased from 5 to 5.5. In the next section, we'll explore interactivity

using the bokeh library.
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Interactivity in Bokeh
There are multiple ways in which we can achieve interactivity using the Bokeh library:

* CustomlJS callbacks: Embedding JavaScript code inside Python. We create
JavaScript code as strings that handle interactive events in the browser.

* Bokeh applications: Application code is executed in the Bokeh server each time a
new connection is made to create a new Bokeh document that will be synced with
the browser.

* Integrating with other frameworks, such as Flask.

* Running in Jupyter Notebooks without a server.

To do interactive plotting inside Jupyter Notebook, we need to use the push _notebook
and interact functions. The only requirement is to write a custom function that will
define the interactivity based on user events.

Let's implement this:
from ipywidgets import interact
import numpy as np
from bokeh.io import push notebook, show, output notebook
from bokeh.plotting import figure
output notebook ()
x = np.linspace (0, 4*np.pi, 1000)

y = np.sin(x)

o) figure (title="simple line example", plot height=300, plot
width=600, y range=(-2,2), background fill color='#efffff")

r = p.line(x, y, color="#8888ff", line width=1.5, alpha=0.8)
#custom function define how to interact for user event.

def update(f, w=1, A=1, phi=0):

if == "sin": func = np.sin

elif £ == "cos": func = np.cos

elif £ == "tan": func = np.tan
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r.data source.data['y'] = A * func(w * x + phi)
push notebook()
show (p, notebook handle=True)

interact (update, f=["sin", "cos", "tan"], w=(0,50), A=(1,10), phi=(0,
20, 0.1))

The output is as follows:

User Driven Interactive Plot
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Figure 5.32: User-driven interactive plot
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Activity 5: Create an Interactive Temporal Visualization

In this activity, we will analyze a large time-series dataset using RangeTool. RangeTool
can be used to focus on a particular time slot. Then, you can also use the zoom feature
to analyze in more depth. The next task is to create a plot that creates a drop-down list.
Based on the aggregation level, it aggregates the data at runtime and renders the plot.

High-Level Steps
1. Import the necessary Python modules.
Read from the dataset.
Add the RangeTool.
Set up the values for the next plot.
Set up the libraries and read the data

Extract the x and y data from the DataFrame

A A R

Plot using the figure line method.

The output should look like:
After Step 3-

Time Series Stock Data
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Figure 5.33: Time-series stock data
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After Step 6:

Time Series Stock Data for Microsoft
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) ) | ) | )
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Figure 5.34: Stock price chart

Note

The solution steps can be found in page 272.

Summary

In this chapter, we focused on temporal data visualizations. Firstly, we learned the
theory behind temporal data. Then, we covered the real-world applications of temporal

data.

We used the pandas time function to learn about transforming date columns, such as
setting time as an index value in line plots and analyzing data at different frequency
levels. Time is sequential in nature, so we covered the shift and tshift functions,
which can be used to compare current observations with past observations and to find
out if there are any correlations.

We also looked at the Bokeh plotting interface. We plotted graphs using increasing
levels of complexity and also explained how to add interactive annotations to play
around with the time axis.

Finally, we covered the most important plots that will interact with users without
running a server using the ipywidgets.interact and push_notebook () functions.

In the next chapter, we will see how to create interactive visualizations for data across
geographical regions.






Interactive
Visualization of
Geographical Data

Learning Objectives

By the end of this chapter, you will be able to:

+ Use choropleth maps to represent data across geographical regions

+ Generate interactive choropleth maps, including choropleth maps depicting countries
in the world and maps depicting states in the US, making layout changes to add
functionality/aesthetic appeal, and adding animation

+ Generate interactive scatter plots on maps, including scatter plots indicating geolocations
of places of interest and interactive bubble plots on maps

+ Generate interactive line plots on maps, including line plots indicating trajectories on a
map

In this chapter, we'll learn about using interactive visualizations to depict data across
geographical regions.
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Introduction

In the previous chapters, you learned how to build interactive visualizations to present
different features in a dataset across features that represent different strata and
different time points. In this chapter, you are going to add another type of visualization
to your skillset - plotting interactive visualizations with geographical data.

Most datasets generated in today's world involve some features depicting spatial or
geographical aspects. For example, users of social media platforms are characterized
by the different parts of the world they reside in, world development metrics are
calculated for different countries in the world, transportation routes span many
different locations across the globe, and so on. Therefore, it is essential to learn
systematic ways to understand and present such information in a digestible yet
insightful manner. This chapter will help you develop this ability by providing the
necessary tools to generate a variety of plots depicting geographical data.

While altair and geopandas provide exciting possibilities in visualizing geographical
data, plotly is especially great for generating a variety of geographical plots that are
easy to build, debug, and customize. Therefore, in this chapter, we will be using plotly
to demonstrate generating different classes of geographical plots with multiple publicly
available datasets from a variety of contexts. We hope that, through this chapter, you
will appreciate that plotly is (although arguably) one of the most powerful, intuitive,
and easy-to-use libraries for the task of rendering interactive geographical plots,
specifically, choropleth maps (which is one of the most widely used representations

for geographical areas). We are going to explore choropleth maps in the succeeding
sections.

Note

Some of the images in this chapter have colored notations, you can find
high-quality color images used in this chapter at: https://github.com/
TrainingByPackt/Interactive-Data-Visualization-with-Python/tree/master/Graphics/
Lesson6.

Choropleth Maps

A choropleth map is a map of a region with different divisions colored to indicate the
value of a specific feature in that division. This division may be a country, state, district,
or any other well-documented area.

For example, you can visualize country-wise populations using a world map, state-
wise populations on a country map, or the percentage of a population with access to a
certain technology with a choropleth map.


https://github.com/TrainingByPackt/Interactive-Data-Visualization-with-Python/tree/master/Graphics/Lesson6
https://github.com/TrainingByPackt/Interactive-Data-Visualization-with-Python/tree/master/Graphics/Lesson6
https://github.com/TrainingByPackt/Interactive-Data-Visualization-with-Python/tree/master/Graphics/Lesson6

Choropleth Maps | 219

Although the term choropleth map may or may not be familiar to you, as you go
through the chapter, the concept of choropleth maps will become clearer.

Let's start exploring the different types of choropleth maps.

Worldwide Choropleth Maps

In the first visualization of this chapter, we are going to use the internet usage statistics

published on Our World in Data (https://ourworldindata.org/internet) and present

the percentage of the population using the internet in each country from 1990 to 2017.
The dataset is hosted on the book GitHub repository for easy access.

You can view the dataset using the code that follows:
import pandas as pd

internet usage url = "https://raw.githubusercontent.com/
TrainingByPackt/Interactive-Data-Visualization-with-Python/master/
datasets/share-of-individualsusing-the-internet.csv"

internet usage df = pd.read csv(internet usage url)

internet usage df.head()

The output is as follows:

Country Code Year Individuals using the Internet (% of population)

0 Afghanistan AFG 1990 0.000000
1 Afghanistan AFG 2001 0.004723
2 Afghanistan AFG 2002 0.004561
3 Afghanistan AFG 2003 0.087891
4 Afghanistan AFG 2004 0.105809

Figure 6.1: The Our World in Data dataset

Did you notice the feature called Code in the dataset? This refers to a code assigned to
each country by a standard called ISO 3166-1. It is widely used so developers across the
world have a common way to refer to and access country names in any data. You can
learn more about the standard here: https: //en.wikipedia.org /wiki/ISO_3166-1.The
Code feature is also used by plotly to map data to the appropriate locations on the
world map, as we will see soon.

Let's go ahead and generate our first world-wide choropleth map through an exercise.


https://ourworldindata.org/internet
https://en.wikipedia.org/wiki/ISO_3166-1
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Exercise 45: Creating a Worldwide Choropleth Map

In this exercise, we'll generate a world-wide choropleth map using the Our World in
Data dataset, available here: https: //raw.githubusercontent.com /TrainingByPackt
Interactive-Data-Visualization-with-Python /master/datasets /share-of-individuals-

using-the-internet.csv. Since the DataFrame contains records from multiple years,
let's first subset the data to one specific year, say, 2016. We'll then use this subset to
generate a world-wide map. To do so, let's go through the following steps:

1. Import the Python modules:
import pandas as pd
2. Read the data from the .ecsv file:

internet usage url = "https://raw.githubusercontent.com/
TrainingByPackt/Interactive-Data-Visualization-with-Python/master/
datasets/share-of-individuals-using-the-internet.csv"

internet usage df = pd.read csv(internet usage url)

3. Subset the data to one specific year since the DataFrame contains records from
multiple years:

internet usage 2016 = internet usage df.query("Year==2016")
internet usage 2016.head()

The output is as follows:

Country Code Year Individuals using the Internet (% of population)

16 Afghanistan AFG 2016 10.595726
39 Albania ALB 2016 66.363445
63 Algeria DZA 2016 42.945527
85 Andorra  AND 2016 97.930637
107 Angola AGO 2016 13.000000

Figure 6.2: Subset of the Our World in Data dataset


https://raw.githubusercontent.com/TrainingByPackt/Interactive-Data-Visualization-with-Python/master/datasets/share-of-individuals-using-the-internet.csv
https://raw.githubusercontent.com/TrainingByPackt/Interactive-Data-Visualization-with-Python/master/datasets/share-of-individuals-using-the-internet.csv
https://raw.githubusercontent.com/TrainingByPackt/Interactive-Data-Visualization-with-Python/master/datasets/share-of-individuals-using-the-internet.csv
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For the next steps, we're going to use the express module (for its simplicity) from
plotly and use the choropleth function from the module. The first argument

passed to this function is the DataFrame that we want to visualize. The following
parameters are set:

¢ locations: This is set to the name of the column in the DataFrame that contains the
ISO 3166 country codes.

e color: This is set to the name of the column that contains the numerical feature
using which the map is to be color-coded.

¢ hover_name: This is set to the name of the column that contains the feature to be
displayed while hovering over the map.

* color_continuous_scale: This is set to a color scheme, such as
Blues | Reds | Greens | px.colors.sequential.Plasma.

Note

For more options, see the plotly express documentation (https://www.plotly.
express/plotly_express/colors/index.html ).

4. Generate an interactive world-wide choropleth map using choropleth function
of plotly library:

import plotly.express as px
fig = px.choropleth (internet usage 2016,

locations="Code", # colunm containing ISO 3166
country codes

color="Individuals using the Internet (% of
population)", # column by which to color-code

hover name="Country", # column to display in
hover information

color continuous_ scale=px.colors.sequential.Plasma)

fig.show ()


https://www.plotly.express/plotly_express/colors/index.html
https://www.plotly.express/plotly_express/colors/index.html
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The output is as follows:

Individuals using the Internet (% of papulation)

Figure 6.3a: World-wide choropleth map showing data for region=Canada

Individuals using the Internet (% of population)

Figure 6.3b: World-wide choropleth map showing data for region=Romania
That was a quick way to get a beautiful plot!

Let's look at the plot carefully and see whether the observations match with our general
knowledge. As you would expect, internet usage in the western world is higher than in
the east.

Hover over the map a bit more. It is interesting to see, from Figure 6.3a and Figure 6.3b,
that a higher percentage of the population (~91. 6) in Australia and Canada have
access to the internet than in the Us and most European countries(~59.5).

What else does the plot show? Did you look at the sidebar at the top right of the plot?
There you will see options for selection types, zooming in and out, resetting the plot, and
even taking a snapshot of the plot in your choice of configuration.

It's worth playing around with the options a bit. Let's explore the interactivity of a
choropleth map through the following exercise.
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Exercise 46: Tweaking a Worldwide Choropleth Map

In this exercise, we will make some simple changes to the layout of the choropleth map,
such as changing the map projection from f£lat to natural earth, zooming into a
specific region, adding text to the map using the update layout function, and adding
a rotation feature. The following code demonstrates how to add these functionalities
to the map. We'll use the dataset available here: https: /raw.githubusercontent.com/
TrainingByPackt /Interactive-Data-Visualization-with-Python /master/datasets /share-

of-individuals-using-the-internet.csv. To do so, let's look at the following steps:
1. Import the Python modules:

import pandas as pd
2. Read the data from the .csv file:

internet usage url = "https://raw.githubusercontent.com/
TrainingByPackt/Interactive-Data-Visualization-with-Python/master/
datasets/share-of-individuals-using-the-internet.csv"

internet usage df = pd.read csv(internet usage url)

3. Subset the data to one specific year since the DataFrame contains records from
multiple years:

internet usage 2016 = internet usage df.query("Year==2016")
4. Add title text to the choropleth map setting the title_text parameter:

import plotly.express as px
fig = px.choropleth (internet usage 2016,

locations="Code",

color="Individuals using the Internet (% of
population)", # column by which to color-code

hover name="Country", # column to display in
hover information color continuous_ scale=px.
colors.sequential.Plasma

)

fig.update layout (
# add a title text for the plot
title text = 'Internet usage across the world (% population) -
2016
)
fig.show ()


https://raw.githubusercontent.com/TrainingByPackt/Interactive-Data-Visualization-with-Python/master/datasets/share-of-individuals-using-the-internet.csv
https://raw.githubusercontent.com/TrainingByPackt/Interactive-Data-Visualization-with-Python/master/datasets/share-of-individuals-using-the-internet.csv
https://raw.githubusercontent.com/TrainingByPackt/Interactive-Data-Visualization-with-Python/master/datasets/share-of-individuals-using-the-internet.csv
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The output is as follows:

Internet usage across the world (% population) - 2016

Individuals using the Internet (% of population)

Figure 6.4: Adding text to the choropleth map

That's nice. But let's say, we are only interested in seeing internet usage across the
continent of Asia.

5. Set geo_scope to asia in the update layout function to zoom into the asia
region. We can quickly do so with the following code:

import plotly.express as px
fig = px.choropleth (internet usage 2016,

locations="Code",

color="Individuals using the Internet (% of
population)", # column by which to color-code

hover name="Country", # column to display in
hover information

color continuous_ scale=px.colors.sequential.

Plasma)

fig.update layout (
# add a title text for the plot

title text = 'Internet usage across the Asian Continent (%
population) - 2016',

geo scope = 'asia' # can be set to north america | south america
| africa | asia | europe | usa

)

fig.show ()
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The output is as follows:

Internet usage across the Asian Continent (% population) - 2016

Individuals using the Internet (% of population)

Figure 6.5: Choropleth map displaying the Asia region

Did you try dragging the plot and notice that it can move up and down or left and
right? Wouldn't it be nice if the plot could rotate like a real globe? Well, that's easily
possible too. All you need to do is to change the projection style of the map.

6. Setprojection type to natural earth:

import plotly.express as px
fig = px.choropleth (internet usage 2016,

locations="Code",

color="Individuals using the Internet (% of
population)", # column by which to color-code

hover name="Country", # column to display in
hover information

color continuous_ scale=px.colors.sequential.
Plasma)

fig.update layout (

# add a title text for the plot

title text = 'Internet usage across the world (% population) -
2016,

# set projection style for the plot

geo = dict(projection={'type':'natural earth'}) # by default,
projection type is set to 'equirectangular'
)

fig. show ()
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The output is as follows:

Internet usage across the world (% population) - 2016 - =

Individuals using the Internet (% of population)
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Figure 6.6: Choropleth map with projection type=natural earth

Try dragging the map now. The rotation gives the plot a much more realistic touch!
plotly offers many such options to tweak visualizations. To experiment with other
projection styles apart from the ones we have seen in our examples, visit the official
plotly documentation here: https: //plot.l thon /reference /#layout-geo-

projection.

It's now time to up the game! So far, we have been generating all our plots for the
records in a single year, 2016. What about all the other timepoints? While it is definitely
possible to generate plots individually for each year we are interested in, that is not the
most optimal use of a developer's time.

We'll see how to use animation, in such cases, on a choropleth map in the next section.

Animation in plotly choropleth maps is surprisingly easy. We simply need to set

a parameter called animation_frame to the name of the column whose values we
wish to animate our visualization for. Let's go through an exercise to understand how
animation works on a choropleth map.


https://plot.ly/python/reference/#layout-geo-projection
https://plot.ly/python/reference/#layout-geo-projection

Choropleth Maps | 227

Exercise 47: Adding Animation to a Choropleth Map

In this exercise, we'll animate a world-wide choropleth map. First, we'll choose a
column. We'll then go ahead and add a slider component to the map to view records at
different timepoints. We'll be using the dataset on the share of populations using the

internet, which is available here: https: //github.com /TrainingByPackt /Interactive-

Data-Visualization-with-Pyvthon /blob/master/datasets /share-of-individuals-using-

the-internet.csv. Let's go through the following steps:
1. Import the Python modules:
import pandas as pd
2. Read the data from the . csv file:

internet usage url = "https://raw.githubusercontent.com/
TrainingByPackt/Interactive-Data-Visualization-with-Python/master/
datasets/share-of-individuals-using-the-internet.csv"

internet usage df = pd.read csv(internet usage url)

3. Add an animation to the year column using animation_frame=year:

import plotly.express as px
fig = px.choropleth (internet usage df, locations="Code",
color="Individuals using the Internet (% of
population)", # lifeExp is a column of gapminder
hover name="Country", # column to add to hover

information

animation frame="Year", # column on which to
animate

color continuous_scale=px.colors.sequential.
Plasma)

fig.update_ layout (
# add a title text for the plot
title text = 'Internet usage across the world (% population)',
# set projection style for the plot
geo = dict(projection={'type':'natural earth'}) # by default,
projection type is set to 'equirectangular'
)
fig. show ()


https://github.com/TrainingByPackt/Interactive-Data-Visualization-with-Python/blob/master/datasets/share-of-individuals-using-the-internet.csv
https://github.com/TrainingByPackt/Interactive-Data-Visualization-with-Python/blob/master/datasets/share-of-individuals-using-the-internet.csv
https://github.com/TrainingByPackt/Interactive-Data-Visualization-with-Python/blob/master/datasets/share-of-individuals-using-the-internet.csv
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The output is as follows:

Internet usage across the world (% population)

Individuals using the Internet (% of population)

Year=1990

R R T T T T T T T S T S S S S S R ST SR
1990 2003 2006 2009 2012 2015 1996 1999 1992 2017 1970 1977 1980 1983 1986 1989

Figure 6.7: Choropleth map with a slider on the year column

Notice that the first argument to our choropleth function is the internet
usage_df DataFrame, which contains records for all the years between 1970-
2017, and not internet_usage_2016, which we had been using until now. If we
used the internet usage 2016 DataFrame, we would get a static plot with no
slider, since there would be nothing to animate with records only for a single year.

The animation functionality is really cool and the slider is a simple way to get a
quick view of how internet usage has grown in different countries of the world
over the years. However, something about the slider is funny! The years on the
slider are not in the right order - it starts with 1990, then goes all the way up to
2015, and then goes back to 1970 and so on. The easiest way to fix this issue is to
sort the DataFrame by time (the Year feature).

4. Sort the dataset by Year using the following code:

internet usage df.sort values (by=["Year"],inplace=True)
internet usage df.head()
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The output is as follows:

Country Code Year Individuals using the Internet (% of population)

5347 Syrian Arab Republic NaN 1960 0.0
718 Burundi  BDI 1960 0.0
5493 Togo TGO 1960 0.0
572 Botswana BWA 1960 0.0
3414 Maldives MDV 1960 0.0

Figure 6.8: Sorted internet usage dataset
5. Generate the animated plot again now that the sorting is done:

import plotly.express as px
fig = px.choropleth (internet usage df, locations="Code",
color="Individuals using the Internet (% of
population)", # lifeExp is a column of gapminder
hover name="Country", # column to add to hover

information

animation frame="Year", # column on which to
animate

color continuous_ scale=px.colors.sequential.
Plasma)

fig.update layout (
# add a title text for the plot
title text = 'Internet usage across the world (% population)',
# set projection style for the plot
geo = dict(projection={'type':'natural earth'}) # by default,
projection type is set to 'equirectangular'
)
fig. show ()
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The output is as follows:

Internet usage across the world (% population)

Individuals using the Internet (% of population)

Year=1992

19‘60 ' 19‘70 ' 19'76 ' 1‘?‘78 ' 1‘?‘80 ' 19‘82 ' 19‘84 ' 19‘86 ' 19‘56 ' 19‘90 ' 19'92 ' 1‘?‘94 ' 1‘?‘96 ' 19‘9& ' 20‘00 ' 20‘02 ' 20‘04 ' 20‘05 ' ZQIGS ' Zﬂ‘lﬁ ' 20‘12 ' 20‘14 ' 20‘15 '
Figure 6.9a: First plot - choropleth map for the year 1992

Internet usage across the world (% population)

Individuals using the Internet (% of population)

Figure 6.9b: Second plot - choropleth map for the year 2010

And this time, it's right! First plot shows internet usage across the world in the year
1992 while second plot shows the results for the year 2010. We can see there was
definitely an increase in internet usage between 1992 and 2010.

There is one more point that needs to addressed before we close our discussion on
worldwide choropleth maps. In your work, you may come across datasets that would be
interesting to visualize on a geographical map but do not have a column that indicates
their ISO 3166-1 code. In such cases, you can download the country codes from

the official ISO website: https: /www.iban.com /country-codes. For easy access, we

have also uploaded these country codes to the book repository.


https://www.iban.com/country-codes
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You'll be able to view the country codes dataset using the following code:

# get the country codes data stored at the github repository

import pandas as pd

country codes url = "https://raw.githubusercontent.com/

TrainingByPackt/Interactive-Data-Visualization-with-Python/master/

country codes.tsv"

country codes = pd.read csv(country codes url,

country codes.head()

The output is as follows:

Country Alpha-2 code Alpha-3

0 Afghanistan AF
1 Albania AL
2 Algeria DZ
3 American Samoa AS
4 Andorra AD

sep="\t")

code Numeric

AFG
ALB
DZA
ASM
AND

Figure 6.10: Country codes dataset
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While the goal of many visualizations is to compare and contrast specific features
across countries, there are often also contexts in which we need to analyze features
across smaller regions - such as states within a country. To generate choropleth maps
for states in the US, we will be using the state-wise population data made available

on the US census website: https: /www.census.gov/newsroom

ress-kits /2018

pop-estimates-national-state.html. We have also made the data available on the

book's GitHub repository: https: //github.com /TrainingByPackt/Interactive-Data-
Visualization-with-Python /blob/master/datasets /us state population.tsv.


https://www.census.gov/newsroom/press-kits/2018/pop-estimates-national-state.html
https://www.census.gov/newsroom/press-kits/2018/pop-estimates-national-state.html
https://github.com/TrainingByPackt/Interactive-Data-Visualization-with-Python/blob/master/datasets/us_state_population.tsv
https://github.com/TrainingByPackt/Interactive-Data-Visualization-with-Python/blob/master/datasets/us_state_population.tsv
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Exercise 48: Creating a USA State Choropleth Map

In this exercise, we'll be using the USA state population dataset. We'll tweak the
dataset and use it to plot a state-wide choropleth map. Then, we'll change the layout of
this map to show the US population across states. Let's go through the following steps
to do so:

1. Import the Python module:

import pandas as pd
2. Read the dataset from the URL:

us_population url = 'https://raw.githubusercontent.com/
TrainingByPackt/Interactive-Data-Visualization-with-Python/master/
datasets/us_state population.tsv'

df = pd.read csv(us_population url, sep='\t')

df .head()

The output is as follows:

State Code 2010 2011 2012 2013 2014 2015 2016 2017 2018
0 Alabama AL 4785448 4798834 4815564 4830460 4842481 4853160 4864745 4875120 4887871
1 Alaska  AK 713906 722038 730399 737045 736307 737547 741504 739786 737438
2  Arizona AZ 6407774 6473497 6556629 6634999 6733840 6833596 6945452 7048876 7171646
3 Arkansas AR 2921978 2940407 2952109 2959549 2967726 2978407 2990410 3002997 3013825

4 California CA 37320903 37641823 37960782 38280824 38625139 38953142 39209127 39399349 39557045

Figure 6.11:USA state population dataset

It is nice that this dataset also has the state codes available in the Code feature.
However, the data is not in the format we would want it to be - it's in the wide
format, and we need it to be long. Now is the time to hark back to the material
covered in the very first chapter of this book!
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3. Use the melt function to convert the data to the desired format:

df = pd.melt (df, id vars=['State', 'Code'], var name="Year", value
name="Population")
df.head ()

The output is as follows:

State Code Year Population
0 Alabama AL 2010 4785448
1 Alaska  AK 2010 713906
2 Arizona AZ 2010 6407774
3 Arkansas AR 2010 2921978

4 California  CA 2010 37320903

Figure 6.12: Dataset after using the melt function

Once you know how to generate a choropleth map for countries in the world,
a choropleth map of US states is quite straight-forward. Unlike the case of
generating a worldwide choropleth map where we used the plotly express
module, we'll use the graph_objects module to generate the choropleth map
for states in the US. There are a few simple steps involved in drawing the US
choropleth:

4. Import the graph_objects module:
import plotly.graph objects as go

5. Initialize the figure with the Figure function in graph_objects. Specifically,
the data argument needs to be an instance of the Choropleth class with the
following parameters:

¢ locations: This is set to the column of the DataFrame that contains the state
name codes.

» z: This is set to the column containing the numerical feature using which the map
is to be color-coded.

* locationmode: This is set to USA-states.

e colorscale: This is set to a color scheme, such as Blues | Reds | Greens.
For more options, see the plotly official documentation: https: //plot.ly/python/

reference/.



https://plot.ly/python/reference/
https://plot.ly/python/reference/
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* colorbar_title:This is set to the title of the color bar on the right, indicating
the correspondence of color and feature values. Refer to the following code:

# initialize the figure
fig = go.Figure (
data=go.Choropleth (
locations=df['Code'], # Code for US states
z = df['Population'].astype (int), # Data to be color-coded
locationmode = 'USA-states', # set of locations match
entries in 'locations'
colorscale = 'Blues',
colorbar title = "Population",

)

6. Make changes to the layout with update layout () —set title_text and geo_
scope:

# update layout

fig.update layout (
title text = 'US Population across states',
geo scope='usa', # limit map scope to USA

)

fig. show ()

The output is as follows:

US Population across states

Population

25M
20M
15M
ioMm

5M

Figure 6.13: State map with updated layout
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Choropleth maps are an effective way to visualize aggregate statistics across divisions
of a geographical region. Two modules from plotly express and graph_objects

- can be used to generate interactive choropleth maps. The modules map records of
divisions such as countries and states to locations on geographical maps using a system
of standardized country and state code names.

In the next section, we'll explore how to create scatter plots and bubble plots on
geographical maps.

Plots on Geographical Maps

While the previous plots were great for visualizing more global trends - such as
countries or states - what if we want to represent features in smaller regions, say
within individual states? In this section, you will learn how to draw scatter plots and
bubble plots on maps. The most intuitive plot of this type is one that simply pinpoints
certain locations of interest on the map.

Scatter Plots

We will be plotting the locations of Walmart stores on a map of the US. This dataset

is publicly available at: https: //github.com /plotly /datasets/ on the plotly website,
and has been made available on the GitHub book repository. Let's look at an exercise on
how to do so.

Exercise 49: Creating a Scatter Plot on a Geographical Map

In this exercise, we'll use the Walmart store openings dataset from 1962-2006
(available at: https: /raw.githubusercontent.com /TrainingByPackt /Interactive-Data-
Visualization-with-Python /master/datasets /1962 2006 walmart store openings.
csv). To create a scatter plot from this dataset, we'll be using the graph_objects
module. We'll find a location of interest on the map and we'll assign longitudes and
latitudes on that map and find out the number of Walmart store openings for different
parts of the US. To do so, let's go through the following steps:

1. Import Python modules:

import pandas as pd


https://github.com/plotly/datasets/
https://raw.githubusercontent.com/TrainingByPackt/Interactive-Data-Visualization-with-Python/master/datasets/1962_2006_walmart_store_openings.csv
https://raw.githubusercontent.com/TrainingByPackt/Interactive-Data-Visualization-with-Python/master/datasets/1962_2006_walmart_store_openings.csv
https://raw.githubusercontent.com/TrainingByPackt/Interactive-Data-Visualization-with-Python/master/datasets/1962_2006_walmart_store_openings.csv
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2. Read the data from the URL:

walmart locations url = "https://raw.githubusercontent.com/
TrainingByPackt/Interactive-Data-Visualization-with-Python/master/
datasets/1962 2006 walmart store openings.csv"

walmart loc df = pd.read csv(walmart locations url)

walmart loc_df.head()

The output is as follows:

storenum OPENDATE date_super conversion st county STREETADDR STRCITY STRSTATE ZIPCODE type_store LAT LON MONTH DAY YEAR
0 1 711162 3/1/97 10 5 7 21:/\[/)AVLVES$ Rogers AR 72756 Supercenter 36.342235 -94.07141 7 1 1962
1 2 8/1/64 3/1/96 10 5 9 1417 HWY Harrison AR 72601 Supercenter 36.236984 -93.09345 8 1 1964

62/85 N

2901 HWY Siloam
2 4 8/1/65 3/1/02 1.0 5 7 412 EAST  Springs AR 72761 Supercenter 36.179905 -94.50208 8 1 1965

1621
3 8 10/1/67 3/1/93 1.0 5 29 NORTH  Morrilton AR 72110 Supercenter 35.156491 -92.75858 10 1 1967
BUSINESS 9

3801 CAMP North
4 7 10/1/67 NaN NaN 5 119  ROBINSON Little AR 72118 Wal-Mart  34.813269 -92.30229 10 1 1967
RD. Rock

Figure 6.14: Walmart store opening dataset showing data from 1962-2006

We will again be using the graph_objects module to generate our scatter plot
on the US map. As for the choropleth map, we will use the Figure function from
graph_objects and the update layout () function. However, this time, we will
be assigning an instance of the Scattergeo class as the argument to Figure ().
We will be passing the longitudes and latitudes of our locations of interest using
the lon and lat parameters.

3. Plot the scatter plot using the update_layout function:

import plotly.graph objects as go

fig = go.Figure (data=go.Scattergeo (

lon = walmart loc df['LON'], # column containing longitude
information of the locations to plot

lat = walmart loc df['LAT'], # column containing latitude
information of the locations to plot

text = walmart loc df['STREETADDR'], # column containing
value to be displayed on hovering over the map

mode = 'markers' # a marker for each location

))
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fig.update layout (
title = 'Walmart stores across world',
geo_scope='usa',
)
fig. show ()

The output is as follows:

Walmart stores across USA
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Figure 6.15: Scatter plot for Walmart stores across the US

And that's it - a scatter plot on a map. A striking observation is that Walmart is much
more prominent in the east of the US than the west of the US.

Let's go ahead a look at bubble plots on geographical maps.

Bubble Plots

Since the eastern side of the map of the USA appears very densely populated with
Walmart stores, it might be a good idea to show an aggregate feature, such as the count
of Walmart stores across the different states. Bubble plots are designed for exactly this
kind of visualization. In the current context of visualizing geographical data, bubble
plots are plots with as many bubbles as regions of interest, where the bubble sizes
depend on the value they are indicating - the bigger the value, the bigger the bubble.
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Exercise 50: Creating a Bubble Plot on a Geographical Map

In this exercise, we'll use the Walmart store openings dataset from 1962-2006(available
at https: //raw.githubusercontent.com /TrainingByPackt /Interactive-Data-
Visualization-with-Python /master/datasets /1962 2006 walmart store openings.
csv) and generate a bubble plot to see the number of Walmart stores across different
states in the USA. Then, we'll look at another context and generate a bubble plot using
the internet usage dataset to find out the number of internet users across the world.
We'll also animate the bubble plot to show the increase in the number of internet users
across the world. To do so, let's go through the following steps:

1. Import the Python modules:
import pandas as pd
2. Read the data from the URL:

walmart locations url = "https://raw.githubusercontent.com/
TrainingByPackt/Interactive-Data-Visualization-with-Python/master/
datasets/1962 2006 walmart store openings.csv"

walmart loc df = pd.read csv(walmart locations url)
walmart loc df.head()

The output is as follows:

storenum OPENDATE date_super conversion st county STREETADDR STRCITY STRSTATE ZIPCODE type_store LAT LON MONTH DAY YEAR

0 1 7/1/62 3/1/97 1.0 5 7 2110 WEST Rogers AR 72756 Supercenter 36.342235 -94.07141 7 1 1962
WALNUT

1 2 8/1/64 3/1/96 1.0 5 9 1417 HWY Harrison AR 72601 Supercenter 36.236984 -93.09345 8 1 1964

62/65N

2901 HWY Siloam
2 4 8/1/65 3/1/02 1.0 5 7 412 EAST  Springs AR 72761 Supercenter 36.179905 -94.50208 8 1 1965

1621

3 8 10/1/67 3/1/93 10 5 29 NORTH  Morrilton AR 72110 Supercenter 35.156491 -92.75858 10 1 1967
BUSINESS 9
3801 CAMP North
4 7 10/1/67 NaN NaN 5 119 ROBINSON Little AR 72118 Wal-Mart 34.813269 -92.30229 10 1 1967
RD. Rock

Figure 6.16: Walmart store opening dataset

o

Use the groupby function to compute the number of Walmart stores per state. If
you don't remember how to do this, it might be a good idea to revise the relevant
concepts from the first chapter:

walmart stores by state = walmart loc df.groupby ('STRSTATE') .count ()
['storenum'].reset index () .rename (columns={'storenum':'NUM STORES'})
walmart stores by state.head()


https://raw.githubusercontent.com/TrainingByPackt/Interactive-Data-Visualization-with-Python/master/datasets/1962_2006_walmart_store_openings.csv
https://raw.githubusercontent.com/TrainingByPackt/Interactive-Data-Visualization-with-Python/master/datasets/1962_2006_walmart_store_openings.csv
https://raw.githubusercontent.com/TrainingByPackt/Interactive-Data-Visualization-with-Python/master/datasets/1962_2006_walmart_store_openings.csv
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The output is as follows:

STRSTATE NUM_STORES

0 AL 90
1 AR 81
2 AZ 55
3 CA 159
4 Co 56

Figure 6.17: Truncated Walmart store openings dataset

4. To generate the bubble plots, we will use the plotly express module and the
scatter geo function. Notice how the locations parameter is set to the name
of the column that contains state codes, and the size parameter is set to the
NUM_STORES feature:

import plotly.express as px
fig = px.scatter geo(walmart stores by state,
locations="STRSTATE", # name of column which
contains state codes
size="NUM STORES", # name of column which
contains aggregate value to visualize
locationmode = 'USA-states',
hover name="STRSTATE",

size max=45)

fig.update layout (
# add a title text for the plot
title text = 'Walmart stores across states in the US',
# limit plot scope to USA
geo_scope='usa'
)
fig.show ()
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The output is as follows:

Walmart stores across states in the US

Figure 6.18: Bubble plot

Can you think of any other contexts where a bubble plot may be useful for
visualization? How about revisiting the internet usage data (on the percentages
of the population using the internet in each country) to generate a world-wide
bubble plot? However, bubble plots are more suitable and intuitive for presenting
counts/numbers, rather than percentages in individual regions.

It turns out that the count of individuals using the internet in each country is also
available from the same resource (Our World in Data: https: //ourworldindata.
org/internet) that we used to collect our previous data. We have made the data
available on the book repository.

5. Use the following code to read data from the internet users by country
dataset:

import pandas as pd

internet users url = "https://raw.githubusercontent.com/
TrainingByPackt/Interactive-Data-Visualization-with-Python/master/
datasets/number-of-internet-users-by-country.csv"

internet users df = pd.read csv(internet users url)
internet users df.head()


https://ourworldindata.org/internet
https://ourworldindata.org/internet
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The output is as follows:

Country Code Year Number of internet users (users)

0 Afghanistan AFG 1990 0
1 Afghanistan AFG 2001 990
2 Afghanistan AFG 2002 1003
3 Afghanistan AFG 2003 20272
4 Afghanistan AFG 2004 25520

Figure 6.19: Internet users dataset
Sort the DataFrame by the Year feature:

internet users df.sort values (by=['Year'],inplace=True)
internet users df.head()

The output is as follows:

Country Code Year Number of internet users (users)

0 Afghanistan AFG 1990 0
1257 Eritrea ERI 1990 0
1236 Equatorial Guinea GNQ 1990 0
4016 Timor TLS 1990 0
1214 El Salvador SLV 1990 0

Figure 6.20: Internet users dataset after sorting by year
Plot the number of users using the internet across the world in 2016:

import plotly.express as px

fig = px.scatter geo(internet users df.query("Year==2016"),
locations="Code", # name of column indicating
country-codes
size="Number of internet users (users)", # name
of column by which to size the bubble
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hover name="Country", # name of column to be
displayed while hovering over the map

size max=80, # parameter to scale all bubble
sizes

color continuous scale=px.colors.sequential.

Plasma)

fig.update layout (
# add a title text for the plot
title text = 'Internet users across the world - 2016',
# set projection style for the plot
geo = dict(projection={'type':'natural earth'}) # by default,
projection type is set to 'equirectangular'
)
fig.show ()

The output is as follows:

Internet users across the world - 2016

Figure 6.21: Bubble plot to see the number of internet users across the world

Notice how the largest numbers of users come from India and China? Since we
know from our previous dataset that the percentage of the population using the
internet in these countries is low, this large user group can be attributed to the
vast population of these countries.
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8. Animate the bubble plot to show the increase in the number of internet users over
the years by using the animation_frame parameter:

import plotly.express as px

fig = px.scatter geo(internet users df,

locations="Code", # name of column indicating
country-codes

size="Number of internet users (users)", # name
of column by which to size the bubble

hover name="Country", # name of column to be
displayed while hovering over the map

size max=80, # parameter to scale all bubble
size

animation frame="Year",

)

fig.update layout (
# add a title text for the plot
title text = 'Internet users across the world',
# set projection style for the plot
geo = dict(projection={'type':'natural earth'}) # by default,
projection type is set to 'equirectangular'
)
fig.show ()

The output is as follows:

Internet users across the world

Vesr=2001

| | | | | | | | | | | | |
1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

Figure 6.22a: Animated bubble plot for the US for the year 2001
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Internet users across the world

Figure 6.22b: Animated bubble plot for the US for the year 2016

We can see from the preceding two plots how the number of internet users increased
between 2001 and 2016 for USA.

Scatter plots on maps can be used to show specific locations of interest on geographical
maps, whereas bubble maps are a nice way to present count data across different
divisions of a geographical region. The Scattergeo function from plotly graph_
objects and the scatter geo function from plotly express are generally used to
generate interactive scatter plots and bubble plots on maps.

In the next section, we'll look at a few line plots on geographical maps.

Line Plots on Geographical Maps

Line plots rendered on maps are another important class of visualization for
geographical data.

For this section, we will be using the airport and flight data from the 2015 Flight Delays
and Cancellations dataset released by the U.S. Department of Transportation's (DOT)
Bureau of Transportation Statistics. Since the dataset is huge, we will only include the
data for all flights with airline delays on Jan 1,2015. This reduced dataset contains
the records of 1,820 flights and is made available in the book GitHub repository as two
files:

airports.csv: Contains location attributes such as latitude and longitude information
for all airports

new_year day 2015 delayed flights.csv: Contains flight details such as flight
numbers, origin, and destination airports for all flights in the selected subset.
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Exercise 51: Creating Line Plots on a Geographical Map

1. In this exercise, we'll use the airports dataset (available at: https: //raw.
ithubusercontent.com /TrainingByvPackt /Interactive-Data-Visualization-with-

Python/master/datasets /airports.csv) and first generate a scatter plot to find

out the locations of all airports in the US. We'll then merge the two DataFrames
(flights and airport_record) together to obtain longitude and latitudes for
the origin airports of all flights and draw line plots from the origin airport to the
destination airport for each flight using this merged dataset. Let's go through the

following steps:
2. Load the airports dataset first:

import pandas as pd

us_airports url = "https://raw.githubusercontent.com/

TrainingByPackt/Interactive-Data-Visualization-with-Python/master/

datasets/airports.csv"
us_airports df =
us_airports df.head()

The output is as follows:

IATA_CODE AIRPORT

0 ABE Lehigh Valley International Airport
1 ABI Abilene Regional Airport
2 ABQ  Albuquerque International Sunport
3 ABR Aberdeen Regional Airport
4 ABY Southwest Georgia Regional Airport

CITY STATE COUNTRY

Allentown
Abilene
Albuquerque
Aberdeen

Albany

pd.read csv(us_airports url)

LATITUDE LONGITUDE

PA USA 40.65236  -75.44040
X USA 3241132 -99.68190
NM USA 35.04022 -106.60919
SD USA 4544906 -98.42183
GA USA 31.53552  -84.19447

Figure 6.23:Airports dataset

3. Generate a scatter plot on the US map to indicate the locations of all airports in

our dataset, using the graph_objects module:

import plotly.graph objects as go

fig = go.Figure ()

fig.add trace(go.Scattergeo (

locationmode = 'USA-states',

lon = us_airports df['LONGITUDE'],
lat = us_airports df['LATITUDE'],
hoverinfo = 'text',

text = us_airports df['AIRPORT'],
mode = 'markers',

marker = dict(size = 5,color =

'black')))


https://raw.githubusercontent.com/TrainingByPackt/Interactive-Data-Visualization-with-Python/master/datasets/airports.csv
https://raw.githubusercontent.com/TrainingByPackt/Interactive-Data-Visualization-with-Python/master/datasets/airports.csv
https://raw.githubusercontent.com/TrainingByPackt/Interactive-Data-Visualization-with-Python/master/datasets/airports.csv

246 | Interactive Visualization of Geographical Data

fig.update_ layout (
title text = 'Airports in the USA',
showlegend = False,
geo = go.layout.Geo (
scope = 'usa'
)
)
fig. show ()

The output is as follows:

Airports in the USA
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Figure 6.24: Number of airports in the US

That is neat! When you hover over a datapoint, you'll get the name of the US

airport. The preceding plot shows Central Illinois Regional Airport at
Bloomington-Normal.

Did you notice that there is an add _trace () function in addition to the usual
instance creation of the Scattergeo class? The add_trace function is used
because we are about to superimpose our flight data in the form of lines on top of
this scatter plot on the map. The add _ trace allows plotly to treat the scatter
plot and the line plots as multiple layers on the map.
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4. Load the file containing the flight records:

new year 2015 flights url = "https://raw.githubusercontent.com/
TrainingByPackt/Interactive-Data-Visualization-with-Python/master/
datasets/new year day 2015 delayed flights.csv"

new year 2015 flights df = pd.read csv(new year 2015 flights url)
new_year 2015 flights df.head()

The output is as follows:

YEAR MONTH DAY DAY_OF_WEEK AIRLINE FLIGHT_NUMBER TAIL_NUMBER ORIGIN_AIRPORT DESTINATION_AIRPORT

0 2015 1 1 4 HA 17 N389HA LAS HNL
1 2015 1 1 4 B6 2134 N307JB SJuU MCO
2 2015 1 1 4 B6 2276 N646JB SJU BDL
3 2015 1 1 4 us 425 N174US PDX PHX
4 2015 1 1 4 AA 89 N3KVAA IAH MIA

Figure 6.25: Dataset with flight records

5. Along with the origin and destination airports for each flight, we need to have
the longitude and latitude information of the corresponding airports. To do this,
we need to merge the DataFrames containing the airport and flight data. Let's
first merge the two datasets to obtain the longitudes and latitudes for the origin
airports of all flights:

# merge the DataFrames on origin airport codes
new _year 2015 flights df = new year 2015 flights df.merge (us_airports
df[['IATA CODE', 'LATITUDE', 'LONGITUDE']], \

left on='ORIGIN AIRPORT', \

right on='IATA CODE', \

how='inner"')

# drop the duplicate column containing airport code
new_year 2015 flights df.drop(columns=['IATA CODE'],inplace=True)

# rename the latitude and longitude columns to reflect that they
correspond to the origin airport

new year 2015 flights df.rename (columns={"LATITUDE":"ORIGIN AIRPORT
LATITUDE", "LONGITUDE":"ORIGIN AIRPORT LONGITUDE"}, inplace=True)
new_year 2015 flights df.head()
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The output is as follows:

YEAR MONTH DAY DAY_OF_WEEK AIRLINE FLIGHT_NUMBER TAIL_NUMBER ORIGIN_AIRPORT DESTINATION_AIRPORT SCHEDULED_DEPARTURE .

0 2015 1 1 4 HA 17 N3EIHA LAS HNL 145
1 2015 1 1 4 HA 7 MN3B5HA LAS HML 900
2 2015 1 1 4 Ad 1623 N433AA LAS DFW 905 .
3 2015 1 1 4 DL 1530 NO54DN LAS MSP 920
4 2015 1 1 4 W 170 NO02WN LAS ELP 950 .

Figure 6.26: Dataset with flight records

6. Now, we will perform a similar merging to get the latitude and longitude data for
the destination airports of all flights:

# merge the DataFrames on destination airport codes
new_year 2015 flights df = new year 2015 flights df.merge (us_airports
df [['IATA CODE', 'LATITUDE', 'LONGITUDE']], \

left on='DESTINATION AIRPORT', \

right on='IATA CODE', \

how='"inner')

# drop the duplicate column containing airport code
new year 2015 flights df.drop (columns=['IATA CODE'],inplace=True)

# rename the latitude and longitude columns to reflect that they
correspond to the destination airport

new_year 2015 flights df.rename (columns={'LATITUDE':'DESTINATION
ATIRPORT LATITUDE', 'LONGITUDE':'DESTINATION AIRPORT
LONGITUDE'}, inplace=True)

new_year 2015 flights df.head()

The output is as follows:

YEAR MONTH DAY DAY_OF_WEEK AIRLINE FLIGHT_NUMBER TAIL_NUMBER ORIGIN_AIRPORT DESTINATION_AIRPORT SCHEDULED _DEPARTURE ..

0 205 1 1 4 HA 17 N388HA LAS HHNL 145
1 2015 1 1 4 HA 7 N395HA LAS HNL 900
2 2015 1 1 4 UA 253 NTE8UA 1AH HNL 920
3 205 1 1 4 UA 328 N210UA DEN HHNL 1130
4 2015 1 1 4 UA 1173 N56859 SFO HNL 805

5 rows x 35 columns

Figure 6.27: Merged flights dataset
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7. Now, we will draw our line plots. For each flight, we need to draw a line between
the origin airport and the destination airport. This is done by providing the
latitude and longitude values of the destination and origin airports to the 1on
and lat parameters of Scattergeo and setting mode to lines instead of markers.
Also, notice that we are using another add_trace function here. It may take a few
minutes for the plot to show the flight routes:

for i in range(len(new year 2015 flights df)):
fig.add trace (
go.Scattergeo (

locationmode = 'USA-states',

lon = [new year 2015 flights df['ORIGIN AIRPORT
LONGITUDE'] [1], new year 2015 flights df['DESTINATION AIRPORT
LONGITUDE'][1]17,

lat = [new year 2015 flights df['ORIGIN AIRPORT
LATITUDE'] [i], new_year 2015 flights df['DESTINATION AIRPORT
LATITUDE'] [i]],

mode = 'lines',

line = dict(width = 1,color = 'red')

fig.update layout (
title text = 'Delayed flight on Jan 1, 2015 in USA',
showlegend = False,
geo = go.layout.Geo (
scope = 'usa'

)y

fig.show ()
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The output is as follows:

Delayed flight on Jan 1, 2015 in USA

N

Figure 6.28: Line plot for all the delayed flights

And that is all for this section. Enjoy your newly gained skill and create a variety of
wonderful geographical plots!

Line plots on geographical maps can be generated using the graph_objects module
from plotly. Generally, a layering technique is used, with the help of the add

trace () function to superimpose two plots together on the map - the locations being
connected as a scatter plot, and the routes connecting various locations as line plots.

Activity 6: Creating a Choropleth Map to Represent Total Renewable Energy
Production and Consumption across the World

We will be working with the Renewable Energy Consumption and Production
datasets from Our World in Data https: //ourworldindata.org /renewable-energy).

These datasets are made available on the book's GitHub repository as share-of-
electricity-production-from-renewable-sources.csv (the production dataset)
and renewable-energy-consumption-by-country.csv (the consumption dataset).
Your task is to create choropleth maps for the total renewable energy production

and consumption across different countries in the world animated based on the
production/consumption years between (excluding) 2007 and 2017.


https://ourworldindata.org/renewable-energy
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High-level steps

1.
2.
3.

© N o wu

Load the renewable energy production dataset.
Sort the production DataFrame based on the Year feature.

Generate a choropleth map for renewable energy production using the plotly
express module animated based on Year.

Update the layout to include a suitable projection style and title text, then display
the figure.

Load the renewable energy consumption dataset.
Convert the consumption DataFrame to a suitable format for visualization.
Sort the consumption DataFrame based on the Year feature.

Generate a choropleth map for renewable energy consumption using the plotly
express module animated based on Year.

Update the layout to include a suitable projection style and title text, then display
the figure.

The output should be:

After Step 1-
Country Code Year Renewable electricity (% electricity production)
0 Afghanistan AFG 1990 67.730496
1 Afghanistan AFG 1991 67.980296
2 Afghanistan AFG 1992 67.994310
3 Afghanistan AFG 1993 68.345324
4 Afghanistan AFG 1994 68.704512

Figure 6.29: Renewable sources dataset
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After Step 2:
Country Code Year Renewable electricity (% electricity production)
0 Afghanistan AFG 1990 67.730496
1668 France FRA 1990 13.369879
1643 Finland  FIN 1990 29.451790
1618 Fiji FJI 1990 82.441113
1593 Faerce Islands FRO 1990 35.545024
Figure 6.30: Renewable sources dataset after sorting by year
After Step 4-

Renewable energy production across the world (% of electricity production)

Renewable electricity (% electricity production)
100

60

Year=1998

B ' | . | ' | ' ' | . | ' | ' ' | i '
1990 1992 1994 19986 1998 2000 2002 2004 2006 2008 2010 2012 2014

Figure 6.31a: Choropleth map showing the renewable energy production
of Greenland in the year 1998
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Renewable energy production across the world (% of electricity production)
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Figure 6.31b: Choropleth map showing the renewable energy production
of Greenland in the year 2014
After Step 5-
Country Code Year Traditional biofuels oOther renewables (modern biofuels, geothermal, wave & tidal) wind Solar PV Hydropower Total
0 Algeria DZA 1965 NaN 00 00 0.0 NaN 0.0
1 Algeria DZA 1966 NaN 00 0.0 0.0 NaN 0.0
2 Algeria DZA 1967 NaN 00 0.0 0.0 NaN 0.0
3  Algeria DZA 1968 NaN 00 0.0 0.0 NaN 0.0
4 Algeria DZA 1969 NaN 00 0.0 0.0 NaN 0.0

Figure 6.32: Renewable energy consumption dataset

After Step 6-

Country Code Year Energy Source Consumption (terrawatt-hours)

0 Algeria DZA 1965 Energy Source Traditional biofuels
1 Algeria DZA 1966 Energy Source Traditional biofuels
2 Algeria DZA 1967 Energy Source Traditional biofuels
3 Algeria DZA 1968 Energy Source Traditional biofuels
4 Algeria DZA 1969  Energy Source Traditional biofuels

Figure 6.33: The desired dataset after conversion
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After Step 7-
Country Code Year Energy Source Consumption (terrawatt-hours)
0 Algeria DZA 1965 Traditional biofuels NaN
4240 Finland FIN 1965 Other renewables (modern biofuels, geothermal,... 0.0
17252 Chile CHL 1965 Total 0.0
4292 France FRA 1965 Other renewables (modern biofuels, geothermal,... 0.0
4344 Germany DEU 1965 Other renewables (modern biofuels, geothermal,... 0.0

Figure 6.34: The dataset after sorting by year
After Step 8-

Renewable energy consumption across the world (terrawatt-hours)

Consumptian (terrawatt-hours)

Year=2008

| | ' | | | | |
2008 2009 2010 2011 2012 2013 2014 2015 2016

Figure 6.35a: Choropleth map showing renewable energy consumption across the world
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Renewable energy consumption across the world (terrawatt-hours)

Year=2013

| | ' |
2008 2009 2010 2011 2012 2012 2014 2015 2016

Figure 6.35b: Choropleth map showing renewable energy consumption across the world

Note

The solution steps can be found on page 275.

Summary

In this chapter, we presented three different types of visualization using geographical
data choropleth maps, scatter plots and bubble plots on geographical maps, and line
plots on geographical maps. Choropleth maps present aggregate statistics across
different regions on geographical maps. Scatter plots are effective at indicating details
regarding specific locations of interest, whereas bubble plots are useful for presenting
count data per region on a map. Line plots are helpful in visualizing the routes of
transportation systems, for instance.

These plots can easily be generated using the plotly express and graph_objects
modules. Animation can be performed with respect to a discrete numeric feature in a
dataset.

In the next chapter, we'll look at a few common pitfalls faced while creating
visualizations and how to avoid them. Along with that, we'll also look at a cheat sheet for
generating interactive visualizations.






Avoiding Common
Pitfalls to Create
Interactive
Visualizations

Learning Objectives
By the end of this chapter, you will be able to:
+ ldentify the errors that are made when creating visualizations
« Apply techniques to correct the errors and create effective visualizations
+ Select and design the appropriate visualizations for specific types of data
+ Describe the different libraries and tools that are available for creating visualizations

In this chapter, we'll learn how to avoid common pitfalls while creating interactive visualizations.
This chapter also gives an overview of some of the quick tricks when it comes to creating
context-based visualizations.
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Introduction

The previous chapters of this book have progressed from static to interactive data
visualizations and described various interactive features (such as sliders and hover
tools) and types of plots (such as grouped bar graphs, line plots, and choropleth world
maps) pertaining to specific types of data, such as temporal and geographical. This
chapter lists and explains the possible mistakes and errors that are made during various
stages of the data visualization process - such as visualizing uncorrelated elements
from a dataset to display a relationship or creating an inapt interactive feature - and
discusses how to ensure that the final visualization is appropriate, informative, and
simple. Additionally, there is a cheat sheet at the end of this chapter that describes
the libraries and the types of visualizations you should use when performing data
visualization.

The process of data visualization may seem simple - take some data, plot some graphs,
add some interactive features, and voila! Your job is done. Or, maybe it's not - there
could be several places during the journey where mistakes may be made. These
mistakes ultimately result in a faulty visualization that is unable to easily and efficiently
convey what the data is saying, thus making it completely useless to the audience who's
viewing it.

Let's break the data visualization process into two parts - data formatting and
interpretation and data visualization - so that we can understand what mistakes can be
made where, and how to best avoid them.

Note

Some of the images in this chapter have colored notations, you can find
high-quality color images used in this chapter at: https://github.com/
TrainingByPackt/Interactive-Data-Visualization-with-Python/tree/master/Graphics/
Lesson?.

Data Formatting and Interpretation

The purpose of interactive data visualization is to visually and interactively present data
so that it is easy to comprehend. Thus, naturally, data is the most important factor of
any visualization. Hence, the first phase of data visualization is understanding the data
in front of you - understanding what it is, what it means, and what it's conveying. Only
when you understand the data will you be able to design a visualization that will help
others understand it.


https://github.com/TrainingByPackt/Interactive-Data-Visualization-with-Python/tree/master/Graphics/Lesson7
https://github.com/TrainingByPackt/Interactive-Data-Visualization-with-Python/tree/master/Graphics/Lesson7
https://github.com/TrainingByPackt/Interactive-Data-Visualization-with-Python/tree/master/Graphics/Lesson7
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Additionally, it is important to ensure that your data makes sense and contains enough
information - be it categorical, numerical, or a mix of both - to be visualized. So, if
you are dealing with erroneous or dirty data, you're bound to end up with a faulty
visualization.

In the next section, we'll look at a few ways to avoid common mistakes that are typically
made in this phase of data and how to avoid them.

Avoiding Common Pitfalls while Dealing with Dirty Data

Garbage In, Garbage Out - this is a popular saying in the field of data science, especially
with respect to data visualization. It basically means that if you use messy and noisy
data, you're going to get a flawed and uninformative visualization.

Messy, noisy, and dirty data corresponds to an array of problems found in data. Let's
discuss the problems one by one and ways to deal with this kind of data.

Outliers

Data containing inaccurate values or instances that are significantly different from the
rest of the data in a dataset are called outliers.

These are the data points that are distinctly different from the majority of the data
points in your dataset. These outliers can either be genuine, that is, they seem incorrect
but are actually not, or are mistakes that are made while collecting or storing the data.

Let's look at an example of a mistake that was made while collecting or storing data.
The following table lists the age, weight, and sex of clients who visit a particular gym.
The sex column consists of three discrete values - 0, 1, and 2 - that all correspond

to a class - male, female and other respectively. The age column is in years and the
weight column is in kilograms. Let's look at the dataset:

age weight sex
0 29 88 2
1 45 96 1
2 35 9 0
3 37 790 1
4 27 62 0

Figure 7.1: The head of a DataFrame displaying an error in storing data
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Everything seems fine until we reach the fourth instance (index 3), where weight is
listed as 790 kg. That seems odd because nobody can actually weigh 790 kg, especially
someone whose height is 5 feet and 7 inches. Whoever stored this data must have
meant 79 kg and added a 0 by mistake. This is an instance of an outlier in the dataset.
This may seem trivial right now, however, this can result in flawed visualizations,
insights, and machine learning model predictions or patterns, especially if there are
multiple repetitions of such data.

Now, let's look at an example of a genuine outlier in the following table:

age weight sex
0 29 88 2
1 45 96 1
2 35 91 0
3 37 167 1
4 27 62 0

Figure 7.2: The head of a DataFrame displaying a genuine outlier

The weight in the fourth instance (index 3) is 167 kilograms, which does seem oddly
high. However, this is still a plausible value - it is possible that someone has a medical
condition and does in fact weigh 167 kilograms at the age of 37. Therefore, this is a
genuine outlier.

While, in the preceding examples, it is easy to spot the outlier as there are only 5
instances, in reality, our datasets are massive, and so checking each instance for
outliers is a tedious and impractical task. Hence, in real-life scenarios, we can use basic
static data visualizations, such as box plots, to observe the existence of outliers.

Box plots are simple yet informative data visualizations that can tell us a lot about the
way our data is distributed. They display the range of our data based on five key values:

* The minimum value in the column
* The first quartile

* The median

* The third quartile

¢ The maximum value in the column
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This is what makes them great at displaying outliers as well, along with describing the
symmetry of the data, how tightly it's grouped (whether all the values are close together
or are spread out over a large range), and whether or not it's skewed.

Exercise 52: Visualizing Outliers in a Dataset with a Box Plot

In this exercise, we are going to create a box plot to check whether our dataset contains
outliers. We are going to use the gym. csv dataset, which contains information about
the clients of a certain gym. The following steps will help you with the solution:

1. Download the .csv file titled gym from this book's GitHub repository into the folder
where you will be creating the interactive data visualization

Note

The datasets can be found here https://github.com/TrainingByPackt/Interactive-
Data-Visualization-with-Python/tree/master/datasets.

2. Open cmd or a terminal, depending on your operating system

3. Navigate to the folder where you have stored the . csv files and use the following
command to initiate a Jupyter notebook:

jupyter notebook
4. Import the pandas library:
import pandas as pd
5. Import the numpy library:
import numpy as np
6. Import the plotly.express library:

import plotly.express as px


https://github.com/TrainingByPackt/Interactive-Data-Visualization-with-Python/tree/master/datasets
https://github.com/TrainingByPackt/Interactive-Data-Visualization-with-Python/tree/master/datasets
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7. Store the gym. csv file in a DataFrame called gym, and print the first five rows of it
to see what the data looks like:

pd.read csv('https://raw.githubusercontent.com/TrainingByPackt/
Interactive-Data-Visualization-with-Python/master/datasets/gym.csv"')
gym.head ()

The output is as follows:

age weight sex
0 29 88 2
1 45 96 1
2 35 91 0
3 37 790 1
4 27 62 0

Figure 7.3: The first five rows of the gym DataFrame

As you can see, our data has three columns - age, weight, and sex. The sex
column consists of three discrete values that correspond to three discrete classes
- 0 is male, 1 is female, and 2 is other.

8. Create a box plot with the x axis as the sex column and the y axis as the weight
column:

fig = px.box(gym, x = 'sex', y = 'weight', notched = True)
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9. Display the figure:
fig.show ()

The output is as follows:

800 -
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&00
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Figure 7.4: The box plot of the gym DataFrame, showing the outlier as a blue dot in the sex = 1 box
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The scale of the y axis seems strangely large since all the box plots are compressed in
the bottom 1/8th of the plot, thus not presenting a clear visualization of the data. This
is due to the outlier in the fourth instance of our DataFrame -790 kg. If you hover near
the point, you'll see the following:

400 - (1, max: 790)
700

&00

500

welght

400

1
= = e e
2

0 1 (1, min: 46)

s5ex

Figure 7.5: The result of hovering over the outlier
All the values seem fine except for that one outlier at the top of the plot with max=790.
Now, we'll look at the ways of dealing with outliers.
Dealing with Outliers
There are three main ways of dealing with outliers:

Deletion: If there are only a few instances (rows) that possess outliers then those
instances can be completely removed from the dataset, thus leaving you with a dataset
with zero outliers. There are also times when a certain feature (column) contains a large
number of outliers. In such a case, that particular feature can be removed from the
dataset, but only if that feature is insignificant. However, deleting data isn't always the
best idea.
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Imputation: Imputation is a better option than deletion, especially if there are many
outliers in the dataset.

This can be done in three ways:

* The most common way is to impute the outliers with the mean, median, or mode
of the column. In the case of many outliers, though, these values may not be good
enough, since each outlier will be replaced by the same value (either the mean,
median, or mode).

* The other method to arrive at better values for outliers, especially in the case of
time series analysis, is linear interpolation, that is, using linear polynomials to
create new data points within a defined range of known data points to replace
outlier values.

* Alinear regression model can also be used to predict a missing value if it is
numerical, and in the case that the missing value is categorical, a logistic
regression model can be used. Linear regression and logistic regression are
supervised machine learning algorithms, that is, they learn from labeled data to
make predictions for new unlabeled data. Linear regression is used to predict
numerical values, while logistic regression is used to predict categories.

* For example, let's say you have a dataset from which you need to display a
relationship between height and weight. The height column has several missing
values but, since it is a significant feature, you can't delete it, nor can you impute
the mean of the column since that might lead to a false relationship. The dataset
can be split into two datasets:

(@) The training dataset, which contains instances without missing values

(b) The new dataset, which contains only those instances where there are missing
values in the height column

A linear regression model can then be used on the training dataset. The model will
learn from this data, and then, when the new dataset is provided as input, it will be
able to predict values for the height column. Now, the two datasets can be merged
together and be used to create visualizations since there are no missing values.
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Transformation: This is the process of transforming the outliers by building up
the column of data wherein the outlier lies, for example, converting the values into
percentages and using that column as a feature instead of the original column.

In the following section, we'll look at an exercise to understand how we can deal with
outliers.
Exercise 53: Dealing with Outliers

In this exercise, we are going to delete the instance that contains the outlier from the
dataset we used in Exercise 52, Visualizing Outliers in a Dataset with a Box Plot and
visualize the dataset again by generating a box plot based on the new dataset. Let's get
started:

1. Import the pandas and numpy libraries:

import pandas as pd
import numpy as np

2. Import the plotly.express library:
import plotly.express as px

3. Store the gym.csv file in a DataFrame called gym and print the first five rows of it
to see what the data looks like:

gym = pd.read csv('gym.csv')

4. Create a boxplot with the x axis as the sex column and the y axis as the weight
column:

fig = px.box(gym, x = 'sex', y = 'weight', notched = True)
5. Display the figure:

fig.show ()
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The output is as follows:
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Figure 7.6:The box plot with the outlier

Upon hovering over the box of sex = 1, we can see that the upper fence is 103.
Therefore, we know that the maximum value that's present in the weight column
is103.

Modify the gym DataFrame so that it only consists of those instances where the
weight is less than 103 and print the first five rows:

gym = gym[gym['weight'] <104]
gym.head ()
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The output is as follows:

age weight sex

0 29 88 2
1 45 96 1
2 35 91 0
4 27 62 0
5 58 55 0

Figure 7.7: The first five rows of the new DataFrame without the outlier
There's no outlier value!
7. Let's create a boxplot to see what the data looks like:

figl = px.box(gym, x = 'sex', y = 'weight', notched = True)
figl.show ()

The output is as follows:
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Figure 7.8: The box plot without the outlier
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Now our visualization looks good! There are no outlier values and so the scale of the y
axis is appropriate. Now that we've looked at how to deal with outliers, we'll look at the
other problems that exist in data that can lead to flawed visualizations.

Missing Data

Missing data is as its name states - values that are blank (NaN, -, 0 when they shouldn't
be 0, and so on). Just like outliers, missing values can be problematic in the case of
visualizations as well as machine learning models. Missing values in visualizations may
display a trend that doesn't actually exist or fail to portray a relationship between

two variables that, in reality, is significant. While it is possible to create visualizations
with a dataset that contains missing values, this isn't recommended. In doing this,

the instances wherein those missing values are found are ignored, thus creating a
visualization based on some of the data but not all of it. Therefore, dealing with missing
values is of utmost importance.

There are two main approaches for dealing with missing values - deletion and
imputation - both of which have been discussed in terms of dealing with outliers. The
same logic applies to missing values.

Exercise 54: Dealing with Missing Values

In this exercise, we are going to work on a dataset that has seven missing values in the
form of 0s. First, we will remove the instances containing these missing values and
generate a box plot to see the impact that the deletion of a large number of instances
has on our visualization. Then, we will impute the median value of the column that
contains the missing values to the said missing values and generate a box plot based on
this imputed dataset. Let's get started:

1. Download the .csv file titled weight from this book's GitHub repository into the
folder where you will be creating the interactive data visualization.

2. Navigate to the folder where you have stored the .csv files and use the following
command to initiate a Jupyter notebook:

jupyter notebook
3. Import the pandas library:
import pandas as pd
4. Import the numpy library:

import numpy as np
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5. Import the plotly.express library:
import plotly.express as px

6. Store the .csv file in a DataFrame and use the .describe () function to display
information about it:

w = pd.read csv('https://raw.githubusercontent.com/TrainingByPackt/
Interactive-Data-Visualization-with-Python/master/datasets/weight.
csv')

w.describe ()

The output is as follows:

weight sex
count 62.000000 62.000000
mean 38200000  0.838710
std 9870307 0.813685
min  21.000000  0.000000
25% 31250000  0.000000
50% 38100000  1.000000
75% 46.000000  1.750000

max 56.000000  2.000000

Figure 7.9: Statistical information about the weight DataFrame

As we can see, the minimum weight value in our dataset is 0; however, nobody
can weigh 0kgs, which means we have missing values in the form of 0s. Let's try
deleting these instances.
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7. Create a new DataFrame that consists of only those instances where the weight is
not equal to 0. Display information about this new DataFrame:

doc w = wlw['weight']!= 0]
doc:w.describe()
The output is as follows:
weight sex
count 55.00000 55.000000
mean 38.20000 0.836364
std 10.49056 0.811118
min 21.00000 0.000000
25% 31.00000 0.000000
50% 36.00000 1.000000

75% 46.50000  1.500000

max 56.00000 2.000000

Figure 7.10: Statistical information about the DataFrame post deletion

8. Create a boxplot with this new DataFrame, with the x axis as sex and the y axis as
weight. Then, display the figure:

figl = px.box(doc w, x = 'sex', y = 'weight', notched = True)
figl.show ()
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The output is as follows:
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Figure 7.11: The box plot that was generated on the DataFrame post deletion

Now, the minimum weight value is 21, which makes more sense. However, our
count has reduced to 55 from 62, which means we've deleted 7 instances from
our dataset. This may seem small in this example, but in reality, this may have
serious repercussions on the insights gained. Also, in the preceding box plot, the
lower end of the box for 0 sex and the upper end of the box for 2 sex is slightly
abnormal. Therefore, let's replace the 0 values in the weight column with the
mean value of the column. Remember that we need to calculate the mean of the
column without considering those 0 values! If we take those into account, then
our mean will be incorrect.

Calculate the mean of the weight column from the DataFrame that consists of
only non-zero weight values:

mean w = doc_w['weight'].mean ()

The mean should be 38. 2.
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10. Use the .replace () function to replace the 0 values present in the weight
column of the original DataFrame with the mean of the weight column from the
modified DataFrame. Store this in a new DataFrame:

11.

w_new = w.replace({'weight':

{O:mean w}})

Display the information of the new DataFrame:

w_new.describe ()

The output is as follows:

count
mean
std
min
25%
50%
75%

max

weight

62.000000

33.887097

15.683451

0.000000

25.000000

35.000000

46.000000

56.000000

sex

62.000000

0.838710

0.813685

0.000000

0.000000

1.000000

1.750000

2.000000

Figure 7.12: Statistical information of the DataFrame post imputation

Our count is 62, which means we have all the instances, and our minimum weight
is 21, which means we have no 0 values!
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12. Create a box plot with this new DataFrame, with the x axis as sex and the y axis as
weight. Then, display the figure:

fig2 = px.box(w new, x = 'sex', y = 'weight', notched = True)
fig2 . show ()

The output is as follows:
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Figure 7.13: The box plot that's generated on the DataFrame post imputation

Now, we have a visualization that has no missing values and represents all the instances
that are present in the dataset!

Let's look at the third problem that can generate faulty visualization.
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Duplicate Instances and/or Features
The third problem is the presence of duplicate instances and/or features in a dataset.

These are unnecessary elements in the dataset and if they are not removed, they

can impact the trends and insights that are displayed by a visualization. For example,
you can create a visualization that displays the relationship between the gender of a
teenager and whether they play the piano. With a dataset devoid of outliers, anomalies,
or missing values, you will get a great visualization. From the visualization, you will

also be able to conclude that more females play the piano than males do. However,
let's say that the following information is from the dataset that was used to create this
visualization:

Name Gender Play the Age
Piano
1 Pooja Rajesh F Yes 17
2 Pooja Rajesh F Yes 17
3  Pooja Rajesh F Yes 17
4 Nita Thadaka F No 19
5  Nita Thadaka F No 19
6  Shubhangi Hora F Yes 14

Table 7.14: The relationship between gender and playing the piano

There are two instances for Nita Thadaka and three instances for Pooja Rajesh,
which means there are three duplicate instances in total! This means that the insights
your visualization is providing are inaccurate.

The way to deal with duplicates is simple - drop them.
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Bad Feature Selection

With respect to a dataset, a feature is a column in the dataset while an instance is a row
in the dataset. For example, in the preceding table, name, gender, play the piano,
and age are features, while Pooja Rajesh, F, Yes, and 17 is an instance.

Since the aim of a visualization is to show a trend, pattern, relationship, or some link
between two or more features in a dataset, it is important that the selection of those
features is done carefully. Therefore, this is a crucial point in the data visualization
journey.

If the goal is to convey that a strong relationship exists between two features, then you
must ensure that they are correlated strongly before going ahead with visualizing them.
Selecting insignificant features will result in a pointless visualization and it won't end

up conveying any concrete information. For example, in terms of the co2. csv dataset,
the dataset contains information regarding carbon dioxide emissions per person per
country and the GDP per country. We checked for a correlation between CO2 emissions
and the GDP before visualizing the dataset, guaranteeing that we were going to create a
worthwhile visualization.

Activity 7: Determining Which Features to Visualize on a Scatter Plot

You are given the co2.csv dataset and are asked to provide insights on it, such as what
kind of patterns exist, are there any trends between the features, and so on. You need
to ensure that your end visualization conveys meaningful information. To achieve this,
you are going to create visualizations for different feature pairings to understand how
to select features that are correlated and, thus, worth visualizing.

High-Level Steps
1. Import the necessary libraries.

2. Recreate the DataFrame. From the gm DataFrame include the population,
fertility, and life columns.

3. Visualize the relationship between co2 and 1ife using a scatter graph, with the
country name as information in the hover tool and the year as a slider.

4. Check the correlation between co2 and 1life.
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5. Visualize the relationship between co2 and fertility using a scatter graph, with
the country name as information in the hover tool and the year as a slider.

6. Check the correlation between co2 and fertility.

The output is as follows:
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Figure 7.15: The interactive scatter plot describing the relationship between carbon dioxide emissions
and life per country per year
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After Step 5:
region=South Asia
region=Europe & Central Asia
region=Middle East & North Africa
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Figure 7.16: The interactive scatter plot describing the relationship between carbon dioxide emissions
and fertility per country per year

Note

The solution steps can be found on page 280.

In this activity, we have a weak negative correlation, which is why we can't observe
much from our visualization. Therefore, it is always important to select features
properly so that we create an insightful visualization. Let's see how we can choose a
visualization wisely and the common pitfalls that are faced during this process.



Data Visualization | 279

Data Visualization

The actual visualization is as important as the data that is being visualized, obviously,
since it is the end product of the process. Thus, paying close attention to creating the
best possible visualization for the data at hand is crucial.

Interactive visualizations have multiple elements/parts. Let's take a closer look at each
element to understand what can go wrong and how to prevent such mistakes.

Choosing a Visualization

Once your data has been cleaned and prepared, and the features that you want to
visualize have been chosen, the first step in creating a visualization is selecting the
graph or plot that is going to display your data. This decision impacts the efficiency and
ease with which your visualization can explain your data, and thus you need to ensure
that you're picking a visualization that can accurately explain and describe your data.

In the previous chapters, we looked at three types of data - stratified, temporal, and
geographical - and used different visualizations to describe them. Hence, you already
know that there are particular types of visualizations that are best suited for specific
types of data; for example, using a world map to describe the relationship between
gender and playing the piano in one particular school is quite pointless.

Let's take a look at the different visualizations that we can use to accurately explain and
represent our data.

Note

As we saw in Chapter 3, From Static to Interactive Visualization, the basic plot is
always a static one; interactive features are added to this static plot. Therefore, all
the plots that we will mention here are static.
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The visualization you choose for your data also depends on what you want to show.
Therefore, the data and what you want to convey can be categorized, making it easier
for you to decide which visualization you need to use to efficiently describe your data.
The categories are as follows:

Relationship Time

What do you
want to show?

.

3
: ~
4 . oe :
E R S 3 \//
2 . 2
o - . 0
0 5 1 Comparison Geo - Spatial W w0
Scatter graphs, network, Venn ' o )
diagram, bybble tree and parallel BtLEIEn:. g;;;tﬁﬂzsizid 3:‘::&
coordinates, and so on. and timeline, and so on
3
4
v ~
H
0 v

A B C D

Bar graphs (simple, paired bar, paired

column, stacked bar, stacked column),

pyramid graph, heatmap, box plot and
violin plot, and so on

World maps with different features such as
choropleth, isopleth, contour, bubble map,
point map, icon map and flow map

Figure 7.17: The broad types of visualizations
Relationship

These visualizations are used when showing a link between two or more variables.

For example, in Chapter 3,From Static to Interactive Visualization, we described the
relationship between the carbon dioxide emissions per person per country and the GDP
per country.

The plots that are used to depict relationships include network graphs, scatter plots,
Venn diagrams, bubble charts, trees, and parallel coordinates, among others.

Comparison

Comparison visualizations are used when you want to show the differences or
similarities between two or more variables.

The plots that are used to depict comparisons include all the types of bar graphs
(simple, paired bar, paired column, stacked bar, and stacked column), pyramid graphs,
heatmaps, box plots, and violin plots, among others.
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Geo-spatial

Geo-spatial visualizations are specific to data that is geographical in nature. Therefore,
location is a feature that must exist in the data. Only then should this visualization be
used.

The plots we used in Chapter 6, Interactive Visualization of Geographical Data, to depict
geo-spatial data include world maps with different features, such as choropleth maps,
isopleth maps, contour maps, bubble maps, point maps, icon maps, and flow maps,
among others.

Time

When data consists of dates and /or times, these visualizations are used to track the
necessary changes.

The plots that are used to depict temporal data include variations of line graphs,
stacked area charts, stock charts, sparklines, fan charts, stream charts, and timeline
charts, among others.

As we mentioned previously, these are all static plots to which interactive features are
added. However, the key thing to remember is when your data comes under more than
one of the aforementioned categories — what visualization should you choose then?

As an example, let's take the co2. csv dataset - we wanted to create a visualization
that depicts the relationship between the carbon dioxide emissions per person per
country and the GDP per country, over the span of a few decades. Therefore, this data
technically comes under three categories - relationship, geo-spatial, and time.

The great thing about interactive features is that they can sometimes deal with the
problem of our data falling under several categories. As you may remember, we used
a slider to show the change in the data points over the time period of the dataset.
Therefore, the time aspect of the data was taken care of by this interactive feature.

However, we still have the problem of choosing between a relationship visualization or a
geo-spatial visualization:

* When deciding between two visualizations, it is important to remind yourself of
what you actually want to convey with your visualization. In this case, we want
to show the relationship between the carbon dioxide emissions per person per
country and the GDP per country, not the relationship between carbon dioxide
emissions and country, or GDP and country. This means that the two main
features are carbon dioxide emissions and GDP, and so one needs to be the x
axis and the other needs to be the y axis. Therefore, we chose a relationship
visualization - the scatter graph.
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» If we wanted to depict just how carbon dioxide emissions changed over time per
country, we would pick a geo-spatial visualization.

* Also, an important thing to keep in mind is that to create a geo-spatial
visualization, you need to have a location, and this location feature needs to
be recognizable by the library you are using and the visualization that you are
creating. For example, in our DataFrame, we have a country column. For us, that
is a location feature and so we should be able to create a geo-spatial visualization
using it. However, this is not recognized by the map visualizations in plotly.
express. Features such as longitude and latitude or iso_alpha codes are
required for the visualizations to understand where on the world map or country
map a particular data point belongs.

Let's take a look at some of the other mistakes that can be made after choosing a
visualization.

Common Pitfalls While Visualizing Data
Visualizing Too Much Information

While visualizations are great at simplifying data and conveying important insights,
forcing them to convey too much information results in them becoming too
complicated, and so, ultimately, the viewer isn't able to understand anything by looking
at them. Too much information basically means incorporating more than four or five
features in your visualization, thereby introducing more than 5 colors and having too
many words.

Inconsistent Scales

Each feature has its own range within which all its data falls; if it's a numerical feature,
then all the values fall within this range, while if it is a categorical feature, then there is
a discrete set of classes.

When visualizing more than one or two features in a single plot, the problem of scales
often arises because each feature has its own scale. Not considering the scale of each
feature often leads to confusing visualizations that show trends where there are none.
Inconsistent scales also often force relationships that do not exist. Additionally, some
visualizations also show elements of a plot that don't scale with respect to each other.
This misleads viewers into believing something is true when it is not.

Mislabeling Elements

Labels are often overlooked and considered as trivial elements of a visualization. Only in
their absence do we realize their importance. Visualizations without labels become very
confusing as the viewer doesn't know what they're seeing.
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Exercise 55: Creating a Confusing Visualization

In this exercise, we're going to use the dataset from Chapter 3, From Static to Interactive
Visualization, and the one we used in this chapter in Activity 7, Determining Which
Features to Visualize on a Scatter Plot, to create a visualization that's hard to understand,
thus explaining to you what you shouldn't be doing. Our visualization will aim to display
the changes in carbon dioxide emissions per region every decade, starting in 1970 and
ending in 2010. Let's get started:

1.

Download the .csv file titled weight from this book's GitHub repository into the
folder where you will be creating the interactive data visualization.

Navigate to the folder where you have stored the .csv files and use the following
command to initiate a Jupyter Notebook:

jupyter notebook

Import the pandas library:

import pandas as pd

Import the numpy library:

import numpy as np

Import the chart _studio.plotly and plotly.graph_objs packages:

import chart studio.plotly as py
import plotly.graph objs as go

Note

Please install chart_studio using pip install chart_studio

6. Create the DataFrame we used in Activity 7, Determining Which Features to

Visualize on a Scatter Plot:

co2 = pd.read csv('../datasets/co2.csv')
gm = pd.read csv('../datasets/gapminder.csv"')
df gm = gm[['Country', 'region']].drop duplicates|()

df w regions = pd.merge(co2, df gm, left on='country', right
on='Country', how='inner')
df w regions = df w regions.drop('Country', axis='columns')
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new co2 = pd.melt(df w regions, id vars=['country', 'region'])
columns = ['country', 'region', 'year', 'co2']
new coZ.columns = columns

df co2 = new co2[new co2['year'].astype('inted') > 1963]

df co2 = df co2.sort values (by=['country', 'year'])

df co2['year'] = df co2['year'].astype('int64"')

df g = gm[['Country', 'Year', 'gdp', 'population', 'fertility',
'life']]

df g.columns = ['country', 'year', 'gdp', 'population', 'fertility"',
'life']

data = pd.merge(df co2, df g, on=['country', 'year'], how='left')
data = data.dropna/()

7. Create a stacked bar graph per region per decade - each bar will correspond
to one region, and will consist of carbon dioxide emissions per country for that
particular year. Therefore, each bar will have 5 stacks. The x axis will be the region
while the y axis will be the carbon dioxide emissions in 1970, 1980, 1990,
2000, and 2010:

source = [

go.Bar (x = datal['region'],

y = data.co2[data['year'] == 1970]),
go.Bar(x = data['region'],

y = data.co2[data['year'] == 1980]),
go.Bar(x = data['region'],

y = data.co2[data['year'] == 1990]),
go.Bar (x = datal['region'],

y = data.co2[data['year'] == 2000]),
go.Bar(x = data['region'],
y = data.co2[data['year'] == 2010]),
]

8. Set the layout as a stacked bar graph:
layout = go.Layout (barmode = 'stack'")
9. Plot the figure and display it:

fig = go.Figure (source, layout)
fig.show ()
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The output is as follows:
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Figure 7.18: The stacked bar graph supposedly displaying the carbon dioxide
emissions per region per decade

It's a little hard to understand this graph, isn't it? The axes aren't labeled, so other than
you no one else is going to know what has been visualized. The legend just describes
the different stacks (colors) as traces:
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Figure 7.19: Hovering over one of the stacks
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When you hover over the stacks, you see some numbers, but you aren't told what
those numbers mean. Maybe you can figure out that each individual line in a stack
corresponds to a country, but you don't know which country. It's even difficult to
compare the bars and stacks with each other. The easiest insight to gain is that the
Middle East & North Africa are at the top of extreme of what this graph is
displaying and that Sub-Saharan Africa is at the bottom end during the span of five
decades.

Activity 8: Creating a Bar Graph for Improving a Visualization

Let's say you're given the visualization we created in Exercise 4, Creating a Confusing
Visualization, and are asked to make it better by adding an interactive feature. How do
you think you could do that?

Note

This activity is a continuation of Exercise 55, so carry out the tasks in the same
Jupyter notebook.

High-Level Steps
1. Import the necessary libraries.

2. Create a bar graph visualizing carbon dioxide emissions per region per year with
the year as a slider and the country name as a part of the hover tool.
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The expected output is:
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Figure 7.20: The interactive visualization in the form of a stacked bar graph depicting the carbon dioxide
emissions per region over the span of five decades

Note

The solution steps can be found on page 284.

We shifted the time information to a sliding bar and added the country information to
the hover tool. This has made our visualization so much better! There are labels on the
axes, and the scale of the y axis isn't abnormally high. With this, we are able to get a
better idea of what's going on. It is easier to compare the total carbon dioxide emissions
per region per year now than it was in the earlier visualization.
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Cheat Sheet for the Visualization Process

We have looked at various static and interactive visualization plots. But when we look
at a dataset, how do we arrive at a conclusion regarding which visualization suits our
needs? Let's take a look at the following flow charts to understand how to make a
decision quickly regarding which plot we should choose and what interactive features
to add to the plot to represent the data in a meaningful way. Let's take a look at the
following diagram:

I have data | want
to visualize

Are there any
missing values
or outliers ?

Yes Imputation /
Deletion /
Transformation

Are there

any duplicates ? Deletion /

Correlation /
Understand your

Are there correlated /
significant features

data
Scatter Graph Line Graph +
; + Variations Relationship What do | Time ; Variations
want to show?
5 o o o 5
4 e oo 4 \/\\
3 ® o o 3 /
: «— . L M
2 ° Comparison | Geo - Spatial 2
1 - 1
0 0
0 5 10 2015 2016 2017 2018
Bar Graph + Maps
Variations
6
2 H H L -
0 H
A B C D Powered by ine

Figure 7.21a: Guideline of how to create a great visualization
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is ready!
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Figure 7.21b: Guideline of how to create a great visualization
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This flow chart acts as a cheat sheet so that you can arrive at a conclusion regarding
how to create a quick visualization based on a dataset.

Summary

In this book, we learned about the benefits of creating interactive data visualizations
and how to build on static data visualizations to make them interactive. Simply
incorporating features such as sliders, hover tools, and checkboxes can have an
immensely positive impact on the way data is understood and how insights are gained.

We looked at different Python libraries and what visualizations and situations they
are best suited for. For example, bokeh is preferred when creating visualizations for
web-based applications.

Data and what you wish to show can be classified into four broad categories -
comparisons, relationships, geo-spatial, and temporal. Each category has a wide array
of graphs that suit that type of data best, but interactive features can help when data or
what you want to show fall under more than one category - that's why interactive data
visualizations are so great!

We also created context-based visualizations for different types of data - temporal,
geographical, and data across strata - to understand the differences in the
visualizations.

In this chapter, we learned about the various errors that can be made in different
phases of the visualization process - right from the formatting of data (anomalies,
missing values, and duplicates) to creating the visualizations (inconsistent scales,
too many features, uncorrelated features, missing labels, and choosing the correct
visualization), and how to avoid /deal with them.

Now, you're ready to create beautiful and meaningful interactive visualizations!









Appendix

About

This section is included to assist the readers to perform the activities in the book.
It includes detailed steps that are to be performed by the readers to achieve the objectives of
the activities.
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Chapter 1: Introduction to Visualization with Python - Basic and
Customized Plotting

Activity 1: Analyzing Different Scenarios and Generating the Appropriate

Visualization

Solution

1. Download the dataset hosted on the book GitHub repository, and format it as a
pandas DataFrame:

# load necessary modules
import pandas as pd
import seaborn as sns

from numpy import median, mean

2. Read the dataset as a pandas DataFrame:

# download file 'athlete events.csv' from course GitHub repository:
https://github.com/TrainingByPackt/Interactive-Data-Visualization-
with-Python/datasets

# read the dataset as a pandas DataFrame

olympics df = pd.read csv('..../Interactive-Data-Visualization-with-
Python/datasets/athlete events.csv')

# preview DataFrame

olympics_df.head()

The output is as follows:

ID Name Sex Age Height Weight Team NOC Games Year Season City Sport Event Medal

0 1 ADiiang M 240 1800 800 China CHN 1992 4995 Summer Barcelona Basketball Baskethall Men's
Summer Basketball

12 Alamusi M 230 1700 600 China CHN 2012 5012 summer  London Judo Judo Men's Extra-
Summer Lightweight

2 3 Gunnar Nielsen 1y 545 NaN  NaN Denmark DEN 1920 4950 Summer Antwerpen  Football  Football Men's Football  NaN

Aaby Summer

3 4 Bdgarlindenau 1 510 NaN  NaN Denmark/Sweden DEN 1900 4900 Summer Pars  UgOR  Tug-ORWarMen's Tug- gy,
Aabye Summer War Of-War
Christine Jacoba 1988 - Speed Speed Skating Women's

4 5 ‘Aaftink F 210 1850 82.0 Netherlands NED Winter 1988 Winter Calgary Skating £00 metres NaN

Figure 1.32: Olympics dataset
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3. Filter the DataFrame to contain only medal winners of the year 2016:

# filter the DataFrame to contain medal winners only (for
non-winners, the Medal feature is NaN)

# note use of the inplace parameter

olympics winners = olympics df.dropna (subset=["'Medal'])
olympics_ winners.head()

The output is as follows:

D Name Sex Age Height Weight Team NOC Games Year Season City Sport Event Medal

3 4 Edgarlindenau ;555  NaN  NaN Denmark/Sweden DEN 1900 4900 Summer Paris  Tug-Of-War Tug-OfWar Men's ¢4
Aabye Summer Tug-Of-War

37 15 Arvo Ossian M 30.0 NaN NaN Finland FIN 1920 1920 Summer Anifwerpen  Swimming Swimming Men's 200 Bronze
Aaltonen Summer metres Breaststroke

38 15 Aavossin M 30.0 NaN NaN Finland FIN Ay 1920 Summer Antwerpen  Swimming Smian Men=R 00 Bronze
Aaltonen Summer metres Breaststroke

40 16 Juhamatti Tapio ., 565 1849 850 Finland ~ FIN 2014 9014 Winter Sochi lce Hockey |C& Hockey Mensice g,
Aaltonen Winter Hockey

41 17  Paaveldohames a5 4750 640 Finland ~ FIN 1942 4048 Summer  London Gymnastics Gymnastics Men's g, 0
Aaltonen Summer Individual All-Around

Figure 1.33: Filtered Olympics DataFrame
4. Print the number of medals awarded in each sport in 2016:

# print records for each value of the feature 'Sport'

olympics winners 2016 = olympics winners|[ (olympics winners.Year ==
2016) ]

olympics winners 2016.Sport.value counts ()
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The output is as follows:

Athletics 192
Swimming 191
Rowing 144
Football 106
Hockey 99
Handball 89
Cycling 84
Canceing 82
Water Polo 78
Rugby Sevens 74
Basketball 72
Vvolleyball 72
Wrestling 72
Gymnastics 66
Fencing 65
Judo 56
Boxing 51
Sailing 45
Equestrianism 45
Shooting 45
Weightlifting 45
Diving 36
Taekwondo 32
synchronized Swimming 32
Table Tennis 24
Badminton 24
Tennis 24
Archery 24
Rhythmic Gymnastics 18
Beach Volleyball 12
Modern Pentathlon 6
Trampolining 6
Golf 6
Triathlon 6

Name: Sport, dtype: inte4

Figure 1.34: The number of medals awarded

5. Note the top five sports based on the largest number of medals awarded in the
year 2016, and then create a DataFrame to include only these sports:

# list the top 5 sports

top sports = ['Athletics', 'Swimming', 'Rowing', 'Football',
'Hockey']

# subset the DataFrame to include data from the top sports

olympics top sports winners 2016 = olympics winners 2016[ (olympics
winners 2016.Sport.isin(top_sports))]

olympics top sports winners 2016.head()
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The output is as follows:

1D Name Sex Age Height Weight Team NOC Games Year Season City Sport Event Medal

158 62 Giovanni Abagnale M 210 1980 900 ftaly ITA o 20"% 5016 Summer X298 Roying ROWingMen'sCoxless g
Summer Janeiro Pairs
2016 Rio de Swimming Men's 4 x

814 465 Matthew "Matt" Abood M 300 197.0 92.0 Australia  AUS 2016 Summer Swimming 100 metres Freestyle Bronze
Summer Janeiro Relay

1228 690 Chantal Achterberg ~ F 310 1720 720 Netherlands NED . 2916 2015 summer R0 poying Rowing Women's gy /o
Summer Janeiro Quadruple Sculls

1529 248 Valerie Kasanita Adams- F 310 1930 120.0 New NZL 2016 2016 Summer Rio de Athletics Athletics Women's Shot Silver

Wili (-Price) Zealand Summer Janeiro

1847 1017 Nathan Ghar-JunAdian M 270 1980 1000 United ygp 2018 504 Summer  RIP98 guimming  Swimming Men's 50 g

States Summer Janeiro metres Freestyle

Figure 1.35: Olympics DataFrame
6. Generate a bar plot of 2016 medal winners across the top five sports:

# generate bar plot indicating count of medals awarded in each of
the top sports

g = sns.catplot('Sport', data=olympics top sports winners 2016,
kind="count", aspect=1.5)

The output is as follows:

2001
1754
150+

1257

Rowing Swimming A’gﬂetics Football Hockey
port

Figure 1.36: Generated bar plot
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7. Generate a histogram for the Age feature of all athletes who competed in the top
five sports in 2016:

sns.distplot (olympics top sports winners 2016.Age, kde=False)

The output is as follows:

<matplotlib.axes. subplots.AxesSubplot at @xlab5e1058de>

100 4

80 1

60 1

40 -

20

0+ T r T r T
15 20 25 30 35 40
Age

Figure 1.37: Histogram plot with the Age feature

While most medal winners are between 20 and 30 years of age, there are also
medal winners who are exceptionally younger (~16 years) or older (~40 years).

8. Generate a bar plot indicating the number of medals won by each country in the
top five sports in 2016:

g = sns.catplot('Team', data=olympics top sports winners 2016,
kind="count", aspect=3)
g.set xticklabels (rotation=90)
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The output is as follows:

<seaborn.axisgrid.FacetGrid at exlab5elae208>
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Figure 1.38: Bar plot with the number of medals won

Considering the five sports, the US won the most medals, followed by Germany,
Great Britain, Canada, and Australia.

9. Generate a bar plot indicating the average weight of players, categorized as male
and female, winning in the top five sports in 2016:

sns.set (style="whitegrid")
sns.barplot (x="Sport", y="Weight", data=olympics top sports
winners 2016, estimator=mean, hue='Sex')
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The output is as follows:

<matplotlib.axes. subplots.AxesSubplot at @xlab5es4ssde>

Hleng Swimming Alhlehm

Welght

Football

Figure 1.39: Bar plot with the average weight of players

The bar plot indicates the highest athlete weight in rowing, followed by swimming,
and then the other remaining sports. The trend is similar across both male and female
players.
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Chapter 2: Static Visualization - Global Patterns and Summary
Statistics

Activity 2: Design Static Visualization to Present Global Patterns and Summary

Statistics

Solution

1. Load the necessary python modules and download the Olympic History dataset
hosted in the book's GitHub repository, and format it as a pandas DataFrame:

# load necessary modules

import pandas as pd

import seaborn as sns

from numpy import median, mean

# download file 'athlete events.csv' from course GitHub repository:
https://github.com/TrainingByPackt/Interactive-Data-Visualization-
with-Python/datasets

# read the dataset as a pandas DataFrame

olympics df = pd.read csv('../Interactive-Data-Visualization-with-
Python-master/datasets/athlete events.csv')

# preview DataFrame

olympics_df.head()

The output is as follows:

ID Name Sex Age Height Weight Team NOC Games Year Season City Sport Event Medal

0 1 ADiiang M 240 1800 800 China CHN 1992 4065 Summer Barcelona Basketball Basketball Men's
Summer Basketball

102 Alamusi M 230 1700 600 China GHN 2012 5012 Summer  London Judo Judo Men's Extra- oy
Summer Lightweight

2 2 GunnarNielsen 1 945 NaN NaN Denmark DEN 1920 1920 Summer Antwerpen  Football  Football Men's Football  NaN

Aaby Summer

3 4 Edgarlindenau ., 544 NaN NaN  DenmarkiSweden DEN 1900 4900 summer Pais ~ 1UgOF  Tug-OfWarMen's Tug-
Aabye Summer War Of-War
Christine Jacoba 1988 3 Speed  Speed Skating Women's

4 5 ‘Aaftink F 210 1850 820 Netherlands NED Winter 1988 Winter Calgary Skating 500 metres NaN

Figure 2.22: Olympic History dataset
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2. Filter the DataFrame to contain only the medal winners of the year 2016 for the

sports mentioned in the activity description:

# filter the DataFrame to contain medal winners only (for
non-winners, the Medal feature is NaN)

# note use of the inplace parameter

olympics winners = olympics df.dropna(subset=["'Medal'])

# list the top 5 sports

top sports = ['Athletics', 'Swimming', 'Rowing', 'Football',

'Hockey']

# filter dataframe to include 2016 records of specified sports
olympics top sports winners 2016 = olympics winners|[ (olympics
winners.Sport.isin(top sports)) & (olympics winners.Year == 2016)]

olympics_ top sports winners 2016.head()

The output is as follows:

ID Name Sex Age Height Weight Team NOC Games Year Season City Sport Event Medal

1588 62 Giovanni Abagnale M 210 1980 900 taly A . 2916 5045 summer RI998 poying  ROWIng Men'sCoxless g0
Summer Janeiro Pairs
2016 Rio de Swimming Men's 4 x

814 465 Matthew "Matt" Abood M 300 1970 920 Australia AUS 2016 Summer Swimming 100 metres Freestyle Bronze
Summer Janeiro Relay

1228 690 Chantal Achterberg ~ F 310 1720 720 Netherlands NED 2016 5096 Summer R298  poying Rowing Women's gy .
Summer Janeiro Quadruple Sculls

1529 848 Valerie Kasanita Adams- F 310 1930 1200 New NZL 2016 2016 Summer Rio de Athletics Athletics Women's Shot Silver
Vili (-Price) Zealand Summer Janeiro ut

1847 1017 Nathan Ghar-JunAdrian M 27.0 1980  100.0 United yon 2016 5045 summer S99 Suimming Swimming Men's 50 g
States Summer Janeiro metres Freestyle

Figure 2.23: Olympics history dataset with the medal winners

Look at the features in the dataset and note their data type - are they categorical
or numerical?

The Sport feature, the Team feature, the Medal feature, and the Sex feature

are all categorical, while the Age, Height, and Weight features are numerical.
However, we should also note the range of values taken by the numerical features
to get a sense of the data. This can be done using the describe function, as seen
in Chapter 1, Introduction to Visualization with Python- Basic and Customized
Plotting like so:

olympics top sports winners 2016[['Age', 'Height', 'Weight']].
describe ()
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The output is as follows:

Age Height Weight

count 732.000000 729.000000 727.000000
mean 25577869 180.023320 73.720770
std 4451372 10.076388  14.279014
min  16.000000 150.000000  40.000000
25%  22.000000 173.000000 64.000000
50%  25.000000 180.000000  72.000000
756%  29.000000 187.000000  82.000000
max  40.000000 207.000000 136.000000

Figure 2.24: Olympics history dataset with the top sport winners

4. Based on the output above, we are going to visualize the Height and Weight
features, depicting their global pattern:

# import the seaborn library
import matplotlib.pyplot as plt

import seaborn as sns

figl = plt.figure ()

ax = figl.add subplot (111)

ax = sns.scatterplot (x="Height", y="Weight", data=olympics_ top
sports winners 2016)

plt.show ()
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The output is as follows:

140

Figure 2.25: Scatter plot

It is interesting to note that there is an almost linear relationship between the
Height and Weight features of the medal winners, with a few outliers. However,

since this is a fairly dense plot with many universities in certain ranges we will
draw a hexbin plot to represent the data.

5. Draw a hexbin plot:
sns.set (style="ticks")
## hexbin plot

sns.jointplot (olympics_ top sports winners 2016.Height, olympics top
sports winners 2016.Weight, kind="hex", color="#4CB391")
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The output is as follows:

<seaborn.axisgrid.JointGrid at @x221bcf759e8>
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Figure 2.26: Hexagonal binning plot

Now let's visualize the height and weight features, depicting the medal-wise
summary statistics, segregated by athlete gender:

sns.set style('white')

axl = sns.violinplot(x='Medal', y='Weight', data=olympics top_
sports winners 2016, hue='Sex')
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The output is as follows:

Sex
140 — M
120 = F
. 100
=
D 80
)
=
60
40
Bronze Silver Gold
Medal

Figure 2.27: Violin plot showing medal versus weight

7. Set the y axis to Height like so:

ax2 = sns.violinplot (x='Medal', y='Height', data=olympics top
sports winners 2016, hue='Sex')

The output is as follows:
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Figure 2.28: Violin plot showing medal versus height

As expected, we see that the Height and Weight features do not differ significantly

across the different medal winners. Also, Height and Weight are substantially lower
for female medal winners than for male winners.
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Chapter 3: From Static to Interactive Visualization
Activity 3: Creating Different Interactive Visualizations Using Plotly Express

Solution
1. Open a new Jupyter notebook.
2. Import the necessary Python libraries and packages:

import pandas as pd
import plotly.express as px

3. Recreate the carbon dioxide emissions and GDP DataFrame from Exercise 22 in
this notebook:

url co2 = 'https://raw.githubusercontent.com/TrainingByPackt/
Interactive-Data-Visualization-with-Python/master/datasets/co2.csv'
url gm = 'https://raw.githubusercontent.com/TrainingByPackt/
Interactive-Data-Visualization-with-Python/master/datasets/
gapminder.csv'

co2 = pd.read csv(url co2)

gm = pd.read csv(url gm)

df gm = gm[['Country', 'region']].drop duplicates()

df w regions = pd.merge(co2, df gm, left on='country', right

on="'Country', how='inner')

df w regions = df w regions.drop('Country', axis='columns')
new _co2 = pd.melt(df w regions, id vars=['country', 'region'])
columns = ['country', 'region', 'year', 'co2']

new_coZ.columns = columns

df co2 = new co2Z[new co2['year'].astype('int6d4') > 1963]

df co2 = df co2.sort values (by=['country', 'year'])
df co2['year'] = df co2['year'].astype('int64"')

df gdp = gm[['Country', 'Year', 'gdp'l]

df gdp.columns = ['country', 'year',K 'gdp']

data = pd.merge(df co2, df gdp, on=['country', 'year'], how='left')
data = data.dropna/()
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4. Create a scatter plot with the x- and y-axes as year and co2 respectively. Let the
region determine the color of the datapoints. Add a box plot for the co2 values
with the marginaly y parameter:

scat = px.scatter(data, x = 'year', y = 'co2', color = 'region',
marginal y = 'box')

5. Display the scatter plot:
scat.show ()

The output is as follows:
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Figure 3.31: Scatter plot of CO2 emissions per year
This plot is interactive because of the following reasons:

You can hover over a datapoint to receive more information. You can also select
and deselect the regions to observe data that's specific to a particular region/set
of regions.
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6. Create a scatter plot with the x and y axes as gdp and co2 respectively. Let the
region determine the color of the datapoints. Add a box plot for the co2 values
with the marginal y parameter and a rug plot for the gdp values with the
marginal x parameter. Add the animation parameters on the year column:

scatl = px.scatter(data, x = 'gdp', y = 'co2', color = 'region',
marginal y = 'box', marginal x = 'rug', animation frame = 'year',
animation group = 'country')

7. Display the scatter plot:
scatl.show ()

The output should be as follows:

region=South Asia

region=Europe & Central Asia
region=Middle East & North Africa
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Figure 3.32: Scatter plot of CO2 emissions versus GDP
This plot is interactive because of the following reasons:

You can hover over a datapoint to receive more information about it; you can also
select and deselect the regions to observe data specific to a particular region/set
of regions; you can slide the bar to observe the datapoints in different years.
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8. Create a density contour with the x and y axes as gdp and co2 respectively. Let
the region determine the color of the datapoints. Add a histogram for the co2
values with the marginal y parameter and a rug plot for the gdp values with the
marginal x parameter. Add the animation parameters on the year column:

densl = px.density contour (data, x="gdp", y="co2", color="region",
marginal x="rug", marginal y="histogram", animation frame = 'year',

animation group = 'region')
9. Display the density contour:
densl.show ()

The output is as follows:
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Fig 3.33: Density contour of CO2 emissions versus GDP
This plot is interactive because of the following reasons:

You can hover over a contour to receive more information about it ; you can select and
deselect the regions to observe data that's specific to a particular region/set of regions;
you can slide the bar to observe the contours in different years.
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Chapter 4: Interactive Visualization of Data across Strata

Activity 4: Generate a Bar Plot and a Heatmap to Represent Content Rating
Types in the Google Play Store Apps Dataset
Solution

1. Load the necessary Python modules and download the dataset hosted in the book
GitHub repository and format it as a pandas DataFrame:

# load pandas library

Import pandas as pd

# download file 'googleplaystore.csv' from course GitHub repository
# read the dataset as a pandas DataFrame

gps_apps_df =pd.read csv('https://raw.githubusercontent.com/
TrainingByPackt/Interactive-Data-Visualization-with-Python/master/
datasets/googleplaystore.csv')

#worldrank df = pd.read csv('https://raw.githubusercontent.com/
TrainingByPackt/Interactive-Data-Visualization-with-Python/master/
datasets/googleplaystore.csv')

# preview DataFrame

gps_apps_df.head()

The output is as follows:

: N : : Content Last Current Android

App Category Rating Reviews Size Installs Type Price Rating Genres Updated ver ver

Photo Editor & Candy Camera & . January 403

0 Grid & ScrapBook ART_AND_DESIGN 41 159 19M 10,000+ Free 0 Everyone Art & Design 7.2018 1.00 i

Art & January

1 Coloring book moana ART_AND_DESIGN 39 967 14M 500,000+ Free 0 Everyone Design;Pretend 15, 2.00 a:aof'
Play 2018 P
U Launcher Lite - FREE Live . August 403
2 Bl Thermes Hids.. ART_AND_DESIGN 47 87510 8.7M 5,000,000+ Free 0 Everyone Art & Design 1,2018 124 e
Varies
June 8, 4.2 and
3 Sketch - Draw & Paint  ART_AND_DESIGN 45 215644 25M 50,000,000+ Free 0 Teen Art & Design 2018 with u
device P
Pixel Draw - Number Art Art & June 20, 4.4 and
4 Coloring Book ART_AND_DESIGN 4.3 967 2.8M 100,000+ Free 0 Everyone Design:Creativity 2018 1.1 up

Figure 4.30: Google Play Store dataset apps
2. Remove the entries in the DataFrame that have feature values of NA:

gps_apps_df = gps_apps_df.dropna ()
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3. Create the required bar chart of the number of apps in each Content Rating
category of the app; that is, whether the app is rated by Adults only 18+/
Everyone/Everyone 10+/Mature 17+/Teen/Unrated:

#import altair

Import altair as alt

alt.data transformers.enable ('default', max rows=None)
# create bar plot

alt.Chart (gps_apps_df) .mark bar () .encode(

x="'Content Rating:N',

y="'count () :Q'

) .properties (width=200)

The output is as follows:
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Count of Records

3,000
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<

Content Rating

Figure 4.31: Bar plot
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4. Create the required heatmap indicating the number of apps across the app
Category and Rating ranges:

# create heatmap

alt.Chart (gps_apps df) .mark rect () .encode (
alt.X('Category:N"),
alt.Y('Rating:Q',bin=True),
alt.Color('count()"',

scale=alt.Scale (scheme="'greenblue'),
legend=alt.Legend(title="'Total Apps')
)

) .properties (

width=600

)

The output is as follows:
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Figure 4.32: Heatmap
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5. Merge the code for the bar chart and heatmap and create a visualization with both
plots linked dynamically to each other such that the selection in the bar chart is
reflected in the changes on the heatmap:

# define selection

selected category = alt.selection(type="single", encodings=['x"'])
# heatmap

heatmap = alt.Chart (gps_apps df) .mark rect () .encode (
alt.X('Category:N"),

alt.Y('Rating:Q', bin=True),
alt.Color('count()"',

scale=alt.Scale (scheme="'greenblue'),
legend=alt.Legend(title="'Total Apps')

)

) .properties (

width=600

)

# circles to be placed on the heatmap

circles = heatmap.mark point () .encode (
alt.ColorValue('grey'),

alt.Size('count()',
scale=alt.Scale(domain=(1, 600), range=(1,200)),
legend=alt.Legend (title="'Apps in Selection')

)

) .transform filter (

selected category)

6. Link the bar plot and the heatmap using the following code:

# bar plot

bars = alt.Chart (gps_apps_df) .mark bar () .encode (
x="'Content Rating:N',

y='count () "',
color=alt.condition(selected category, alt.ColorValue("steelblue"),
alt.ColorValue ("grey"))

) .properties (

width=200

) .add_selection (selected category)

# layering and hconcat

heatmap+circles|bars
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Figure 4.33

And that's it. Congratulations!
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Chapter 5: Interactive Visualization of Data across Time

Activity 5: Create an Interactive Temporal Visualization using RangeTool and
Aggregator
1. Import required libraries:

from bokeh.io import show

from bokeh.layouts import column

from bokeh.models import ColumnDataSource, RangeTool

from bokeh.plotting import figure

from bokeh.io import push notebook, show, output notebook
from pathlib import Path

import pandas as pd

import numpy as np

from ipywidgets import interact

gmatplotlib inline

2. Setup the output to Jupyter Notebook:

DATA PATH = Path(“../datasets/chap5 data/”)
output notebook ()

3. Create a DataFrame microsoft_ df and parse the date column:

microsoft df = pd.read csv(DATA PATH / “microsoft stock.csv”, parse
dates=[‘date’])

4. Set the index as date:
microsoft df.index = microsoft df.date

5. Create date numpy array and source as ColumnDataSource. We will use these to
draw line plot:

dates = np.array(microsoft df[‘date’], dtype=np.datetime64)
source = ColumnDataSource (data=dict (date=dates, close=microsoft
df [‘high’]))

6. Initialize the figure and draw the line:

p = figure(plot height=300, plot width=800, tools="xpan”, toolbar
location=None, title="Time Series Stock Data”,

X axls type="datetime”, x axis location="above”,
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background fill color="#ffefef”, x range=(dates([1000],
dates[1800]))
r = p.line(‘date’, ‘close’, source=source)
p.yaxis.axis label = ‘High Price’

7. Create range slider using RangeTool:

select = figure(title="Drag To See More Data”,plot width=800, y
range=p.y_ range,

X axis type="datetime”, y axis type=None, plot
height=130,

tools="", background fill color="#ffefef”, toolbar
location=None, )
range tool = RangeTool (x_range=p.x range)
range tool.overlay.fill color = “green”
range tool.overlay.fill alpha = 0.2

8. Write a custom update function which aggregate data by month, year and day:

def update (f) :
if f == “day”:
r.data source.data = dict ({
‘date’ : microsoft df.index,
‘high’: microsoft df.high
})
elif £ == “month”:
month = microsoft df.groupby (pd.Grouper (freg="M"))
[[‘high’]] .mean ()
r.data source.data = dict ({
‘date’ : month.index,
‘high’: month.high
})
elif £ == “year”:
year = microsoft df.groupby(pd.Grouper (freg="Y”)) [[‘high’]].
mean ()
r.data source.data = dict ({
‘date’ : year.index,
‘high’: year.high
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push notebook ()

select
select

select.
select.

.line(‘'date’, ‘high’, source=source)
.ygrid.grid line color = None

add_tools(range tool)
toolbar.active multi = range tool

show (column (p, select), notebook handle=True)

i Time Series Sfock Dat; B
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Figure 5.33: Time-series Microsoft stock data

9. Plot both range slider and aggregator on the plot:

select

select.
select.
select.

.line(‘date’, ‘high’, source=source)

ygrid.grid line color = None
add tools(range tool)
toolbar.active multi = range tool

show (column (p, select), notebook handle=True)

interact (update, f=[“day”, “month”, “year”])

f
2010

2012
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The output is as follows:

Time Series Stock Data for Microsoft
7/2003 1/2004 7/2004 1/2005

7/2002 1/2003
1 1 1 1 1 1

70

High Price for Day
5 3 3
] ] ]

w
o
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Drag To See More Data

f f f
2002 2004 2006 2008 2010 2012 2014

f | year
Figure 5.34: Microsoft stock price chart with range slider and aggregator

We can now change the plot to show month, day, and year. In this section, we have
delved into interactive temporal visualizations using bokeh. We've looked at basic
interactive plots in bokeh and used box annotations to highlight regions.
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Chapter 6: Interactive Visualizations of Data across Geographical
Regions

Activity 6: Creating a Choropleth Map to Represent Total Renewable

Energy Production and Consumption across the World

Solution
1. Load the renewable energy production dataset:

import pandas as pd

renewable energy prod url = "https://raw.githubusercontent.com/
TrainingByPackt/Interactive-Data-Visualization-with-Python/master/
datasets/share-of-electricity-production-from-renewable-sources.csv"
renewable energy prod df = pd.read csv(renewable energy prod url)
renewable energy prod df.head()

The output is as follows:

Country Code Year Renewable electricity (% electricity production)

0 Afghanistan AFG 1990 67.730496
1 Afghanistan AFG 1991 67.980296
2 Afghanistan AFG 1992 67.994310
3 Afghanistan AFG 1993 68.345324
4 Afghanistan AFG 1994 68.704512

Figure 6.29: Renewable sources dataset
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2. Sort the production DataFrame based on the Year feature:

renewable energy prod df.sort values (by=['Year'],inplace=True)
renewable energy prod df.head()

The output is as follows:

Country Code Year Renewable electricity (% electricity production)

0 Afghanistan AFG 1990 67.730496
1668 France FRA 1990 13.369879
1643 Finland  FIN 1990 29.451790
1618 Fiji FJI 1990 82.441113
1593 Faeroe Islands FRO 1990 35.545024

Figure 6.30: Renewable sources dataset after sorting by year

3. Generate a choropleth map using the plotly express module animated based on
Year:

import plotly.express as px

renewable energy prod = renewable energy prod df.query('Year<2017
and Year>2007")

fig = px.choropleth (renewable energy prod df, locations="Code",
color="Renewable electricity (% electricity production)",

hover name="Country",

animation frame="Year",

color continuous scale='Greens')

4. Update the layout to include a suitable projection style and title text, then display
the figure:

fig.update_ layout (

# add a title text for the plot

title text = 'Renewable energy production across the world (% of
electricity production)',

# set projection style for the plot

geo = dict(projection={'type':'natural earth'}) # by default,
projection type is set to 'equirectangular'

)

fig. show ()
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The output is as follows:

Renewable energy production across the world (% of electricity production)

Renewable electricity (% electricity preduction)
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Figure 6.31a: Choropleth map showing the renewable energy production of Greenland
in the year 1998
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Figure 6.31b: Choropleth map showing the renewable energy production of Greenland
in the year 2014
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5. Load the renewable energy consumption dataset:

import pandas as pd

renewable energy cons url = "https://raw.githubusercontent.com/
TrainingByPackt/Interactive-Data-Visualization-with-Python/master/
datasets/renewable-energy-consumption-by-country.csv"

renewable energy cons df = pd.read csv(renewable energy cons url)
renewable energy cons_df.head()

The output is as follows:

Country Code Year Traditional biofuels Other renewables (modern biofuels, geothermal, wave & tidal) Wind Selar PV Hydropower Total

0 Algeria DZA 1965 NaN 00 0.0 0.0 NaN 0.0
1 Algeria DZA 1966 NaN 00 0.0 0.0 NaN 0.0
2 Algeria DZA 1967 NaN 00 00 0.0 NaN 0.0
3 Algeria DZA 1968 NaN 00 0.0 0.0 NaN 0.0
4 Algeria DZA 1969 NaN 00 0.0 0.0 NaN 0.0

Figure 6.32: Renewable energy consumption dataset
6. Convert the DataFrame to the desired format:

#renewable energy long df = pd.wide to long(renewable energy df,
stubnames='Consumption', i=['Country', 'Code','Year'], j='Energy
Source')

#renewable energy long df.head()

renewable energy cons df = pd.melt (renewable energy cons df, \

id vars=['Country', 'Code','Year'], \

var name="Energy Source", \

value name="Consumption (terrawatt-hours)")
renewable energy cons df.head()

The output is as follows:

Country Code Year Energy Source Consumption (terrawatt-hours)

0 Algeria DZA 1965 Energy Source Traditional biofuels
1 Algeria DZA 1966  Energy Source Traditional biofuels
2  Algeria DZA 1967 Energy Source Traditional biofuels
3 Algeria DZA 1968 Energy Source Traditional biofuels
4 Algeria DZA 1969 Energy Source Traditional biofuels

Figure 6.33: The desired dataset after conversion
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7. Sort the consumption DataFrame based on the Year feature:

renewable energy cons df.sort values (by=['Year'], inplace=True)
renewable energy cons_df.head()

The output is as follows:

0
4240
17252
4292
4344

Country Code Year Energy Source Consumption (terrawatt-hours)
Algeria DZA 1965 Traditional biofuels NaN
Finland FIN 19685 Other renewables (modern biofuels, geothermal,... 0.0

Chile CHL 1965 Total 0.0
France FRA 19865 Other renewables (modern biofuels, geothermal,... 0.0
Germany DEU 1965 Other renewables (modern biofuels, geothermal,... 0.0

Figure 6.34: The dataset after sorting by year

8. Generate a choropleth map for renewable energy consumption using the plotly
express module animated based on Year:

import plotly.express as px

renewable energy total cons = renewable energy cons df[renewable
energy cons_df['Energy Source']=="'Total'].query('Year<2017 and
Year>2007")

fig = px.choropleth (renewable energy total cons, locations="Code",
color="Consumption (terrawatt-hours)",

hover name="Country",

animation frame="Year",

color continuous scale='Blues')

9. Update the layout of the consumption plot to include a suitable projection style
and title text, then display the figure:

fig.update_ layout (

# add a title text for the plot

title text = 'Renewable energy consumption across the world
(terrawatt-hours) ',

# set projection style for the plot

geo = dict (projection={'type':'natural earth'}) # by default,
projection type is set to 'equirectangular'

)

fig.show ()
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The output is as follows:

Renewable energy consumption across the world (terrawatt-hours)

| | | '
2008 2009 2010 2011 2012 2013 2014 2015 2016

Figure 6.35a: Choropleth map showing renewable energy consumption across the world

Renewable energy consumption across the world (terrawatt-hours) ¥ =4

Consumptien (terrawatt-hours)

o

Year=2013

| | | | | | '
2008 2009 2010 2011 2012 2013 2014 2015 2016

Figure 6.35b: Choropleth map showing renewable energy consumption across the world

So, from the preceding two plots we can deduce that China's renewable energy
consumption increased between 2008 and 2013.



326 | Appendix

Chapter 7: Avoiding Common Pitfalls to Create Interactive
Visualizations

Activity 7: Determining Which Features to Visualize on a Scatter Plot
Solution

1. Navigate to the folder where you have stored the .csv files and initiate a Jupyter
Notebook.

2. Import pandas, numpy, and plotly.express

import pandas as pd
import numpy as np
import plotly.express as px

3. Create the same DataFrame, but instead of including only the gdp column from
the gm DataFrame, include the population, fertility, and 1ife columns as
well:

co2 = pd.read csv('co2.csv')

gm = pd.read csv('gapminder.csv')

df gm = gm[['Country', 'region']].drop duplicates ()

df w regions = pd.merge(co2, df gm, left on='country', right

on="'Country', how='inner')

df w regions = df w regions.drop('Country', axis='columns')
new co2 = pd.melt(df w regions, id vars=['country', 'region'])
columns = ['country', 'region', 'year', 'co2']

new coZ.columns = columns

df co2 = new _co2Z[new co2['year'].astype('int6d4') > 1963]

df co2 = df co2.sort values(by=['country', 'year'])

df co2['year'] = df co2['year'].astype('int64')

df g = gm[['Country', 'Year', 'gdp', 'population', 'fertility',
'life']]

df g.columns = ['country', 'year', 'gdp', 'population', 'fertility',
'life']

data = pd.merge(df co2, df g, on=['country', 'year'], how='left')
data = data.dropna()
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Print the head of this DataFrame. You should have eight columns, excluding the
index column:

data.head ()

The output is as follows:

Country Year fertility life population child_mortality gdp region
0 Afghanistan 1864  7.671 33.63% 10474303.0 3387 1182.0 South Asia
1 Afghanistan 1865  7.671 34152 10897933.0 3341 11820 South Asia
2 Afghanistan 1866  7.671 346682 109277240 3287 1168.0 South Asia
3 Afghanistan 1867  7.471 35170 111838556.0 3233 1173.0 South Asia
4 Afghanistan 1868 7.671 35674 114110220 318.1 1187.0 South Asia

Figure 7.22: The first five rows of the final DataFrame

Visualize the relationship between co2 and 1ife using a scatter graph with the
following information:

The x axis as the 1ife column, the y axis as the co2 column, the size parameter
as the population column, the color parameter as the region column, the
animation_frame parameter as the year column, the animation_group
parameter as the country column, the hover name parameter as the country
column, the maximum size as 60

fig = px.scatter(data, x="1life", y="co2", size="population",
color="region", animation frame = 'year',K animation group =
'country', hover name="country", size max=60)

fig.show ()
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The following is the expected output:

region=South Asia
region=Eurcpe & Central Asia
region=Middle East & Morth &frica

80 region=5ub-Saharan Africa

region=America
region=East Asia & Pacific
50

30 40 50 a0 70

life

year=1964
[ 3 | ]

1564 1988 1972 1976 1930 1584 1983 1992 1556 2000 2004 2008 2012

Figure 7.23: The interactive scatter plot describing the relationship between carbon dioxide emissions
and life per country per year

If you press the play button or manually drag the sliding bar to different years,
you'll notice that there isn't much of a trend or pattern emerging from this scatter
plot. But the whole point of a scatter plot is to display a relationship, so is there even
a relationship here worth visualizing? Let's check.

6. Create numpy arrays of the co2 column and the 1ife column:

npl = np.array(data['co2'])
np2 = np.array(data['life'])

7. Calculate the correlation between the two arrays:

np.corrcoef (npl, np2)



Chapter 7: Avoiding Common Pitfalls to Create Interactive Visualizations | 329

The following is the expected output:

array ([[1. , 0.40288934],
[0.40288934, 1. 1)

There's barely any correlation here. Compare this with the correlation we found
between co2 and gdp.

Repeat steps 6 and 7 with the co2 and gdp columns:

npl = np.array(datal['co2'])
np2 = np.array(datal['gdp'])
np.corrcoef (npl, np2)

The following is the expected output:

array([[1l..., 0.78219731],
[0.78219731, 1...11)

That's a high correlation! That's why we were able to observe a trend when we
plotted these two features together.

Visualize the relationship between co2 and fertility using a scatter graph with
the following information:

The x axis as the fertility column, the y axis as the co2 column, the size
parameter as the population column, the color parameter as the region
column, The animation_frame parameter as the year column, The animation_
group parameter as the country column, the hover_ name parameter as the
country column, the maximum size as 60:

fig = px.scatter(data, x="fertility", y="co2", size="population",
color="region", animation frame = 'year',K animation group =
'country', hover name="country", size max=60)

fig.show ()
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The expected output is as follows:

® region=South Asia
region=Europe & Central Asia
region=Middle East & North Africa

80 region=Sub-Saharan Africa
region=America
region=East Asia & Pacific
60
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Figure 7.24: The interactive scatter plot describing the relationship between carbon dioxide emissions
and fertility per country per year

Much like our previous graph, there doesn't seem to be much of a relationship
between these two features. Let's check again.
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10. Repeat steps 6 and 7 for the co2 and fertility columns:
npl = np.array(datal['co2'])

np2 = np.array(data['fertility'])
np.corrcoef (npl, np2)

The output is as follows:

array([[ 1., -0.31439742],
[-0.31439742,1. 11)

Here, we have a weak negative correlation, which is why we can't observe much from
our visualization. Therefore, it is always important to select features properly so that we
create an insightful visualization. Let's see how we can choose a visualization wisely and
the common pitfalls that are faced during this process.

Activity 8: Creating a Bar Graph for Improving a Visualization
Solution
1. Importplotly.express:

%run exerciseb55.ipynb
import plotly.express as px

2. Create a bar graph visualizing carbon dioxide emissions per region, per year with
the following information:

The x-axis as the region column. The y-axis as the co2 column. The animation_
frame parameter as the year column. The animation group parameter as the
country column. The hover name parameter as the country column.

fig3 = px.bar(data, x = 'region', y = "co2", animation frame =
'year', animation group = 'region', hover name = 'country')

fig3.show ()



332 | Appendix

The output is as follows:
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Fig 7.25: The interactive visualization in the form of a stacked bar graph depicting the carbon dioxide
emissions per region over the span of five decades

We shifted the time information to a sliding bar and added the country information to
the hover tool. This has made our visualization so much better! There are labels on the
axes, and the scale of the y axis isn't abnormally high. With this, we are able to get a
better idea of what's going on. It is easier to compare the total carbon dioxide emissions
per region, per year now than it was in the earlier visualization.
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