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About

This section briefly introduces the authors, the coverage of this book, the technical skills you'll 
need to get started, and the hardware and software requirements required to complete all of 
the included activities and exercises.

Preface

>
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About the Book
With so much data being continuously generated, developers who present data 
as impactful and interesting visualizations, are always in demand. Interactive Data 
Visualization with Python, Second Edition, sharpens your data exploration skills and 
provides an excellent takeoff in your remarkable journey of creating interactive data 
visualizations with Python.

You'll begin by learning how to draw various plots with Matplotlib and Seaborn, the 
non-interactive data visualization libraries. You'll study different types of visualizations, 
compare them, and learn how to select a particular type of visualization to suit your 
requirements. After you get a hang of the various non-interactive visualization libraries, 
you'll learn the principles of intuitive and persuasive data visualization, and use Altair, 
Bokeh and Plotly to transform your visuals into strong stories.

By the end of the book, you'll have a new skill set that'll make you the go-to person for 
transforming data visualizations into engaging and interesting stories.

About the Authors

Abha Belorkar is an educator and researcher in computer science. She received her 
bachelor's degree in computer science from Birla Institute of Technology and Science 
Pilani, India and her Ph.D. from the National University of Singapore. Her current 
research work involves the development of methods powered by statistics, machine 
learning, and data visualization techniques to derive insights from heterogeneous 
genomics data on neurodegenerative diseases.

Sharath Chandra Guntuku is a researcher in natural language processing and 
multimedia computing. He received his bachelor's degree in computer science from 
Birla Institute of Technology and Science, Pilani, India and his Ph.D. from Nanyang 
Technological University, Singapore. His research aims to leverage large-scale social 
media image and text data to model social health outcomes and psychological traits. He 
uses machine learning, statistical analysis, natural language processing, and computer 
vision to answer questions pertaining to health and psychology in individuals and 
communities.

Shubhangi Hora is a Python developer, artificial intelligence enthusiast, data scientist, 
and writer. With a background in computer science and psychology, she is particularly 
passionate about mental health-related AI. Apart from this, she is interested in the 
performing arts and is a trained musician.
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Anshu Kumar is a data scientist with over 5 years of experience in solving complex 
problems in natural language processing and recommendation systems. He has an 
M.Tech. from Indian Institute of Technology, Madras in computer science. He is also 
a mentor at SpringBoard. His current interests are building semantic search, text 
summarization, and content recommendations for large-scale multilingual datasets.

Learning Objectives

By the end of this book, you will be able to:

•	 Explore and apply different static and interactive data visualization techniques

•	 Make effective use of plot types and features from the Matplotlib, Seaborn, Altair, 
Bokeh, and Plotly libraries

•	 Master the art of selecting appropriate plotting parameters and styles to create 
attractive plots

•	 Choose meaningful and informative ways to present your stories through data

•	 Customize data visualization for specific scenarios, contexts, and audiences

•	 Avoid common errors and slip-ups in visualizing data

Audience

This book intends to provide a solid training ground for Python developers, data 
analysts, and data scientists to enable them to present critical data insights in a way 
that best captures the user's attention and imagination. It serves as a simple step-by-
step guide that demonstrates the different types and components of visualization, the 
principles and techniques of effective interactivity, as well as common pitfalls to avoid 
when creating interactive data visualizations.

Students should have an intermediate level of competency in writing Python code, as 
well as some familiarity with using libraries such as pandas.

Approach

Resources for learning interactive data visualization are scarce. Moreover, the materials 
that are available either deal with tools other than Python (for example, Tableau), or 
focus on a single Python library for visualization. This book is the first of its kind to 
present a variety of options for building interactive data visualizations with Python. 
Moreover, the method of presentation is simple and accessible for anyone who is well 
versed in Python.
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The book follows an engaging syllabus as the reader is systematically led through the 
various steps and aspects of interactive visualization with a series of realistic case 
studies. The book is packed with actionable information throughout, and programming 
activities are supplemented with helpful tips and advice on the capabilities and 
limitations of the tools being used.

Hardware Requirements

For an optimal experience, we recommend the following hardware configuration: 

•	 Intel® Core™ i5 processor 4300M at 2.60 GHz or 2.59 GHz (1 socket, 2 cores, 2 
threads per core) and 8 GB of DRAM

•	 Intel® Xeon® processor E5-2698 v3 at 2.30 GHz (2 sockets, 16 cores each, 1 thread 
per core) and 64 GB of DRAM

•	 Intel® Xeon Phi™ processor 7210 at 1.30 GHz (1 socket, 64 cores, 4 threads per 
core), 32 GB of DRAM, and 16 GB of MCDRAM (flat mode enabled)

•	 Disk space: 2 to 3 GB

•	 Operating systems: Windows® 10, macOS, and Linux 

Minimum System Requirements:

•	 Processors: Intel Atom® processor or Intel® Core™ i3 processor

•	 Disk space: 1 GB

•	 Operating systems: Windows 7 or later, macOS, and Linux

Software Requirements

We also recommend that you have the following software installed in advance: 

•	 Browser: Google Chrome or Mozilla Firefox

•	 The latest version of Git

•	 Anaconda 3.7 Python distribution 

•	 Python 3.7

•	 The following Python libraries installed: numpy, pandas, matplotlib, seaborn, 
plotly, bokeh, altair, and geopandas
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Conventions

Code words in text, database table names, folder names, filenames, file extensions, 
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: 

"Python performs advanced numerical and scientific computations with libraries 
such as numpy and scipy, hosts a wide array of machine learning methods owing to 
the availability of the scikit-learn package, provides a great interface for big data 
manipulation due to the availability of the pandas package and its compatibility with 
Apache Spark, and generates aesthetically pleasing plots and figures with libraries such 
as seaborn, plotly, and more."

A block of code is set as follows: 

#import the python modules

import seaborn as sns

#load the dataset

diamonds_df = sns.load_dataset('diamonds')

#Plot a histogram

diamonds_df.hist(column='carat')

New terms and important words are shown in bold:

"The kernel density estimation is a non-parametric way to estimate the probability 
density function of a random variable."

Installation and Setup

Before we begin this journey of visualizing various types of data through different 
graphs and interactive features, we need to be prepared with the most productive 
environment. Follow these notes to learn how to do that:

Installing the Anaconda Python Distribution

Find the Anaconda version for your operating system on the official installation page at 
https://www.anaconda.com/distribution/.

After the download is complete, double-click on the file to open the installer and follow 
the prompts displayed on your screen. 

https://www.anaconda.com/distribution/
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Installing pip

1.	 To install pip, go to the following link and download the get-pip.py file: https://
pip.pypa.io/en/stable/installing/.

2.	 Then, use the following command to install it: python get-pip.py.

You might need to use the python3 get-pip.py command, as previous versions of 
Python on your computer already use the Python command.

Installing the Python Libraries

Use the following command in your Anaconda terminal to install Seaborn:

pip install seaborn

Use the following command in your Anaconda terminal to install Bokeh:

pip install bokeh

Use the following command in your Anaconda terminal to install Plotly:

pip install plotly==4.1.0

Working with JupyterLab and Jupyter Notebook

You'll be working on different exercises and activities in Jupyter Lab or Notebook. These 
exercises and activities can be downloaded from the related GitHub repository.

You can download the repository here: https://github.com/TrainingByPackt/
Interactive-Data-Visualization-with-Python.

You can either download it using GitHub or as a zipped folder by clicking on the green 
clone or download button in the top-right corner. In order to open Jupyter Notebooks, 
you have to traverse into the directory with your terminal. To do that, type the 
following:

cd Interactive-Data-Visualization-with-Python/<your current chapter>.

For example:

cd Interactive-Data-Visualization-with-Python/Chapter01/

https://pip.pypa.io/en/stable/installing/
https://pip.pypa.io/en/stable/installing/
https://github.com/TrainingByPackt/Interactive-Data-Visualization-with-Python
https://github.com/TrainingByPackt/Interactive-Data-Visualization-with-Python
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To complete the process, perform the following steps:

1.	 To reach each activity and exercise, you have to use cd once more to go into each 
folder, like so:

cd Activity01

2.	 Once you are in the folder of your choice, simply call the following: 

jupyter-lab to start up JupyterLab. Similarly, for Jupyter Notebook, call 
jupyter notebook

Importing the Python Libraries

Every exercise and activity in this book will make use of various libraries. Importing 
libraries into Python is very simple. Here's how we do it:

•	 To import libraries, such as seaborn and pandas, we have to run the following 
code: 

#import the python modules
import seaborn
import pandas 

This will import the whole numpy library into our current file.

•	 In the first cells of the exercises and activities of this book, you will see the follow-
ing code. We can use sns instead of seaborn in our code to call methods from 
seaborn:

# import seaborn and assign alias sns
import seaborn as sns 

Installing Git

To install Git, go to https://git-scm.com/downloads and follow the instructions that 
are specific to your platform.

Additional Resources

The code bundle for this book is also hosted on GitHub at https://github.com/
TrainingByPackt/Interactive-Data-Visualization-with-Python.

The high-quality color images used in book can be found at: https://github.com/
TrainingByPackt/Interactive-Data-Visualization-with-Python/tree/master/Graphics.

We also have other code bundles from our rich catalog of books and videos available at 
https://github.com/PacktPublishing/. Check them out!

https://git-scm.com/downloads
https://github.com/TrainingByPackt/Interactive-Data-Visualization-with-Python
https://github.com/TrainingByPackt/Interactive-Data-Visualization-with-Python
https://github.com/TrainingByPackt/Interactive-Data-Visualization-with-Python/tree/master/Graphics
https://github.com/TrainingByPackt/Interactive-Data-Visualization-with-Python/tree/master/Graphics
https://github.com/PacktPublishing/




Learning Objectives

By the end of this chapter, you will be able to:

•	 Explain the concept of data visualization 

•	 Analyze and describe the pandas DataFrame

•	 Use the basic functionalities of the pandas DataFrame

•	 Create distributional plots using matplotlib

•	 Generate visually appealing plots using seaborn

In this chapter, we will explore the basics of data visualization using Python programming.

Introduction to 
Visualization with 

Python – Basic and 
Customized Plotting

1
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Introduction
Data visualization is the art and science of telling captivating stories with data. Today's 
developers and data scientists, irrespective of their operational domain, agree that 
communicating insights effectively using data visualization is very important.

Data scientists are always looking for better ways to communicate their findings 
through captivating visualizations. Depending on their domain, the type of visualization 
varies, and often, this means employing specific libraries and tools that will best 
suit the visualization needs. Thus, developers and data scientists are looking for a 
comprehensive resource containing quick, actionable information on this topic. The 
resources for learning interactive data visualization are scarce. Moreover, the available 
materials either deal with tools other than Python (for example, Tableau) or focus on a 
single Python library for visualization. This book is designed to be accessible for anyone 
who is well-versed in Python.

Why Python? While most languages have associated packages and libraries built 
specifically for visualization tasks, Python is uniquely empowered to be a convenient 
tool for data visualization. Python performs advanced numerical and scientific 
computations with libraries such as numpy and scipy, hosts a wide array of machine 
learning methods owing to the availability of the scikit-learn package, provides a 
great interface for big data manipulation due to the availability of the pandas package 
and its compatibility with Apache Spark, and generates aesthetically pleasing plots and 
figures with libraries such as seaborn, plotly, and more.

The book will demonstrate the principles and techniques of effective interactive 
visualization through relatable case studies and aims to enable you to become confident 
in creating your own context-appropriate interactive data visualizations using Python. 
Before diving into the different visualization types and introducing interactivity features 
(which, as we will see in this book, will play a very useful role in certain scenarios), it is 
essential to go through the basics, especially with the pandas and seaborn libraries, 
which are popularly used in Python for data handling and visualization.

This chapter serves as a refresher and one-stop resource for reviewing these basics. 
Specifically, it illustrates creating and handling pandas DataFrame, the basics of 
plotting with pandas and seaborn, and tools for manipulating plotting style and 
enhancing the visual appeal of your plots.

Note

Some of the images in this chapter have colored notations, you can find 
high‑quality color images used in this chapter at: https://github.com/
TrainingByPackt/Interactive-Data-Visualization-with-Python/tree/master/Graphics/
Lesson1.

https://github.com/TrainingByPackt/Interactive-Data-Visualization-with-Python/tree/master/Graphics/Lesson1
https://github.com/TrainingByPackt/Interactive-Data-Visualization-with-Python/tree/master/Graphics/Lesson1
https://github.com/TrainingByPackt/Interactive-Data-Visualization-with-Python/tree/master/Graphics/Lesson1
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Handling Data with pandas DataFrame
The pandas library is an extremely resourceful open source toolkit for handling, 
manipulating, and analyzing structured data. Data tables can be stored in the 
DataFrame object available in pandas, and data in multiple formats (for example, .csv, 
.tsv, .xlsx, and .json) can be read directly into a DataFrame. Utilizing built-in 
functions, DataFrames can be efficiently manipulated (for example, converting tables 
between different views, such as, long/wide; grouping by a specific column/feature; 
summarizing data; and more).

Reading Data from Files

Most small-to medium-sized datasets are usually available or shared as delimited files 
such as comma-separated values (CSV), tab-separated values (TSV), Excel (.xslx), 
and JSON files. Pandas provides built-in I/O functions to read files in several formats, 
such as, read_csv, read_excel, and read_json, and so on into a DataFrame. In this 
section, we will use the diamonds dataset (hosted in book GitHub repository).

Note

The datasets used here can be found in https://github.com/TrainingByPackt/
Interactive-Data-Visualization-with-Python/tree/master/datasets.

Exercise 1: Reading Data from Files

In this exercise, we will read from a dataset. The example here uses the diamonds 
dataset:

1.	 Open a jupyter notebook and load the pandas and seaborn libraries:

#Load pandas library
import pandas as pd 
import seaborn as sns

2.	 Specify the URL of the dataset:

#URL of the dataset 
diamonds_url = "https://raw.githubusercontent.com/TrainingByPackt/
Interactive-Data-Visualization-with-Python/master/datasets/diamonds.
csv"

https://github.com/TrainingByPackt/Interactive-Data-Visualization-with-Python/tree/master/datasets
https://github.com/TrainingByPackt/Interactive-Data-Visualization-with-Python/tree/master/datasets
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3.	 Read files from the URL into the pandas DataFrame:

#Yes, we can read files from a URL straight into a pandas DataFrame!
diamonds_df = pd.read_csv(diamonds_url)
# Since the dataset is available in seaborn, we can alternatively 
read it in using the following line of code
diamonds_df = sns.load_dataset('diamonds')

The dataset is read directly from the URL!

Note

Use the usecols parameter if only specific columns need to be read. 

The syntax can be followed for other datatypes using, as shown here:

diamonds_df_specific_cols = pd.read_csv(diamonds_url, 
usecols=['carat','cut','color','clarity'])

Observing and Describing Data

Now that we know how to read from a dataset, let's go ahead with observing and 
describing data from a dataset. pandas also offers a way to view the first few rows in a 
DataFrame using the head() function. By default, it shows 5 rows. To adjust that, we 
can use the argument n—for instance, head(n=5).

Exercise 2: Observing and Describing Data

In this exercise, we'll see how to observe and describe data in a DataFrame. We'll be 
again using the diamonds dataset:

1.	 Load the pandas and seaborn libraries:

#Load pandas library
import pandas as pd 
import seaborn as sns

2.	 Specify the URL of the dataset:

#URL of the dataset 
diamonds_url = "https://raw.githubusercontent.com/TrainingByPackt/
Interactive-Data-Visualization-with-Python/master/datasets/diamonds.
csv"
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3.	 Read files from the URL into the pandas DataFrame:

#Yes, we can read files from a URL straight into a pandas DataFrame!
diamonds_df = pd.read_csv(diamonds_url)
# Since the dataset is available in seaborn, we can alternatively 
read it in using the following line of code
diamonds_df = sns.load_dataset('diamonds')

4.	 Observe the data by using the head function:

diamonds_df.head()

The output is as follows:

Figure 1.1: Displaying the diamonds dataset

The data contains different features of diamonds, such as carat, cut quality, 
color, and price, as columns. Now, cut, clarity, and color are categorical 
variables, and x, y, z, depth, table, and price are continuous variables. While 
categorical variables take unique categories/names as values, continuous values 
take real numbers as values.

cut, color, and clarity are ordinal variables with 5, 7, and 8 unique values 
(can be obtained by diamonds_df.cut.nunique(), diamonds_df.color.
nunique(), diamonds_df.clarity.nunique() – try it!), respectively. cut is 
the quality of the cut, described as Fair, Good, Very Good, Premium, or Ideal; 
color describes the diamond color from J (worst) to D (best). There's 
also clarity, which measures how clear the diamond is—the degrees are I1 
(worst), SI1, SI2, VS1, VS2, VVS1, VVS2, and IF (best).
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5.	 Count the number of rows and columns in the DataFrame using the shape 
function:

diamonds_df.shape

The output is as follows:

(53940, 10)

The first number, 53940, denotes the number of rows and the second, 10, denotes 
the number of columns.

6.	 Summarize the columns using describe() to obtain the distribution of variables, 
including mean, median, min, max, and the different quartiles:

diamonds_df.describe()

The output is as follows:

Figure 1.2: Using the describe function to show continuous variables

This works for continuous variables. However, for categorical variables, we need to 
use the include=object parameter.

7.	 Use include=object inside the describe function for categorical variables ( 
cut, color, clarity):

diamonds_df.describe(include=object)
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The output is as follows:

Figure 1.3: Use the describe function to show categorical variables

Now, what if you would want to see the column types and how much memory a 
DataFrame occupies? 

8.	 To obtain information on the dataset, use the info() method:

diamonds_df.info()

The output is as follows:

Figure 1.4: Information on the diamonds dataset

The preceding figure shows the data type (float64, object, int64..) of each of the 
columns, and memory (4.1MB) that the DataFrame occupies. It also tells the number of 
rows (53940) present in the DataFrame.
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Selecting Columns from a DataFrame

Let's see how to select specific columns from a dataset. A column in a pandas 
DataFrame can be accessed in two simple ways: with the . operator or the [ ] 
operator. For example, we can access the cut column of the diamonds_df DataFrame 
with diamonds_df.cut or diamonds_df['cut']. However, there are some scenarios 
where the . operator cannot be used:

•	 When the column name contains spaces

•	 When the column name is an integer

•	 When creating a new column

Now, how about selecting all rows corresponding to diamonds that have the Ideal 
cut and storing them in a separate DataFrame? We can select them using the loc 
functionality:

diamonds_low_df = diamonds_df.loc[diamonds_df['cut']=='Ideal']

diamonds_low_df.head()

The output is as follows:

Figure 1.5: Selecting specific columns from a DataFrame

Here, we obtain indices of rows that meet the criterion:

[diamonds_df['cut']=='Ideal' and then select them using loc.

Adding New Columns to a DataFrame

Now, we'll see how to add new columns to a DataFrame. We can add a column, such 
as, price_per_carat, in the diamonds DataFrame. We can divide the values of two 
columns and populate the data fields of the newly added column.
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Exercise 3: Adding New Columns to the DataFrame

In this exercise, we are going to add new columns to the diamonds dataset in the 
pandas library. We'll start with the simple addition of columns and then move ahead 
and look into the conditional addition of columns. To do so, let's go through the 
following steps:

1.	 Load the pandas and seaborn libraries:

#Load pandas library
import pandas as pd 
import seaborn as sns

2.	 Specify the URL of the dataset:

#URL of the dataset 
diamonds_url = "https://raw.githubusercontent.com/TrainingByPackt/
Interactive-Data-Visualization-with-Python/master/datasets/diamonds.
csv"

3.	 Read files from the URL into the pandas DataFrame:

#Yes, we can read files from a URL straight into a pandas DataFrame!
diamonds_df = pd.read_csv(diamonds_url)
# Since the dataset is available in seaborn, we can alternatively 
read it in using the following line of code
diamonds_df = sns.load_dataset('diamonds')

Let's look at simple addition of columns.

4.	 Add a price_per_carat column to the DataFrame:

diamonds_df['price_per_carat'] = diamonds_df['price']/diamonds_
df['carat']

5.	 Call the DataFrame head function to check whether the new column was added as 
expected:

diamonds_df.head()

The output is as follows:

Figure 1.6: Simple addition of columns
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Similarly, we can also use addition, subtraction, and other mathematical operators 
on two numeric columns.

Now, we'll look at conditional addition of columns. Let's try and add a column based 
on the value in price_per_carat, say anything more than 3500 as high (coded as 
1) and anything less than 3500 as low (coded as 0).

6.	 Use the np.where function from Python's numpy package:

#Import numpy package for linear algebra
import numpy as np
diamonds_df['price_per_carat_is_high'] = np.where(diamonds_
df['price_per_carat']>3500,1,0)
diamonds_df.head()

The output is as follows:

Figure 1.7: Conditional addition of columns

Therefore, we have successfully added two new columns to the dataset.

Applying Functions on DataFrame Columns

You can apply simple functions on a DataFrame column—such as, addition, subtraction, 
multiplication, division, squaring, raising to an exponent, and so on. It is also possible to 
apply more complex functions on single and multiple columns in a pandas DataFrame. 
As an example, let's say we want to round off the price of diamonds to its ceil (nearest 
integer equal to or higher than the actual price). Let's explore this through an exercise.
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Exercise 4: Applying Functions on DataFrame columns

In this exercise, we'll consider a scenario where the price of diamonds has increased 
and we want to apply an increment factor of 1.3 to the price of all the diamonds in 
our record. We can achieve this by applying a simple function. Next, we'll round off the 
price of diamonds to its ceil. We'll achieve that by applying a complex function.Let's go 
through the following steps:

1.	 Load the pandas and seaborn libraries:

#Load pandas library
import pandas as pd 
import seaborn as sns

2.	 Specify the URL of the dataset:

#URL of the dataset 
diamonds_url = "https://raw.githubusercontent.com/TrainingByPackt/
Interactive-Data-Visualization-with-Python/master/datasets/diamonds.
csv"

3.	 Read files from the URL into the pandas DataFrame:

#Yes, we can read files from a URL straight into a pandas DataFrame!
diamonds_df = pd.read_csv(diamonds_url)
# Since the dataset is available in seaborn, we can alternatively 
read it in using the following line of code
diamonds_df = sns.load_dataset('diamonds')

4.	 Add a price_per_carat column to the DataFrame:

diamonds_df['price_per_carat'] = diamonds_df['price']/diamonds_
df['carat']

5.	 Use the np.where function from Python's numpy package:

#Import numpy package for linear algebra
import numpy as np
diamonds_df['price_per_carat_is_high'] = np.where(diamonds_
df['price_per_carat']>3500,1,0)

6.	 Apply a simple function on the columns using the following code:

diamonds_df['price']= diamonds_df['price']*1.3



12 | Introduction to Visualization with Python – Basic and Customized Plotting

7.	 Apply a complex function to round off the price of diamonds to its ceil:

import math
diamonds_df['rounded_price']=diamonds_df['price'].apply(math.ceil)
diamonds_df.head()

The output is as follows:

Figure 1.8: Dataset after applying simple and complex functions

In this case, the function we wanted for rounding off to the ceil was already 
present in an existing library. However, there might be times when you have to 
write your own function to perform the task you want to accomplish. In the case 
of small functions, you can also use the lambda operator, which acts as a one-liner 
function taking an argument. For example, say you want to add another column 
to the DataFrame indicating the rounded-off price of the diamonds to the nearest 
multiple of 100 (equal to or higher than the price). 

8.	 Use the lambda function as follows to round off the price of the diamonds to the 
nearest multiple of 100:

import math
diamonds_df['rounded_price_to_100multiple']=diamonds_df['price'].
apply(lambda x: math.ceil(x/100)*100)
diamonds_df.head()

The output is as follows:

Figure 1.9: Dataset after applying the lambda function

Of book, not all functions can be written as one-liners and it is important to know 
how to include user-defined functions in the apply function. Let's write the same 
code with a user-defined function for illustration.
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9.	 Write code to create a user-defined function to round off the price of the 
diamonds to the nearest multiple of 100:

import math

def get_100_multiple_ceil(x):
    y = math.ceil(x/100)*100
    return y
    
diamonds_df['rounded_price_to_100multiple']=diamonds_df['price'].
apply(get_100_multiple_ceil)
diamonds_df.head()

The output is as follows:

Figure 1.10: Dataset after applying a user-defined function

Interesting! Now, we had created an user-defined function to add a column to the 
dataset.

Exercise 5: Applying Functions on Multiple Columns

When applying a function on multiple columns of a DataFrame, we can similarly use 
lambda or user-defined functions. We will continue to use the diamonds dataset. 
Suppose we are interested in buying diamonds that have an Ideal cut and a color 
of D (entirely colorless). This exercise is for adding a new column, desired to the 
DataFrame, whose value will be yes if our criteria are satisfied and no if not satisfied. 
Let's see how we do it:

1.	 Import the necessary modules:

import seaborn as sns
import pandas as pd

2.	 Import the diamonds dataset from seaborn:

diamonds_df_exercise = sns.load_dataset('diamonds')
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3.	 Write a function to determine whether a record, x, is desired or not:

def is_desired(x):
    bool_var = 'yes' if (x['cut']=='Ideal' and x['color']=='D') else 
'no'
    return bool_var

4.	 Use the apply function to add the new column, desired:

diamonds_df_exercise['desired']=diamonds_df_exercise.apply(is_
desired, axis=1)
diamonds_df_exercise.head()

The output is as follows:

Figure 1.11: Dataset after applying the function on multiple columns

The new column desired is added!

Deleting Columns from a DataFrame

Finally, let's see how to delete columns from a pandas DataFrame. For example, we will 
delete the rounded_price and rounded_price_to_100multiple columns. Let's go 
through the following exercise.

Exercise 6: Deleting Columns from a DataFrame

In this exercise, we will delete columns from a pandas DataFrame. Here, we'll be using 
the diamonds dataset:

1.	 Import the necessary modules:

import seaborn as sns
import pandas as pd
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2.	 Import the diamonds dataset from seaborn:

diamonds_df = sns.load_dataset('diamonds')

3.	 Add a price_per_carat column to the DataFrame:

diamonds_df['price_per_carat'] = diamonds_df['price']/diamonds_
df['carat']

4.	 Use the np.where function from Python's numpy package:

#Import numpy package for linear algebra
import numpy as np
diamonds_df['price_per_carat_is_high'] = np.where(diamonds_
df['price_per_carat']>3500,1,0)

5.	 Apply a complex function to round off the price of diamonds to its ceil:

import math
diamonds_df['rounded_price']=diamonds_df['price'].apply(math.ceil)

6.	 Write a code to create a user-defined function:

import math

def get_100_multiple_ceil(x):
    y = math.ceil(x/100)*100
    return y
    
diamonds_df['rounded_price_to_100multiple']=diamonds_df['price'].
apply(get_100_multiple_ceil)

7.	 Delete the rounded_price and rounded_price_to_100multiple columns 
using the drop function:

diamonds_df=diamonds_df.drop(columns=['rounded_price', 'rounded_
price_to_100multiple'])
diamonds_df.head()



16 | Introduction to Visualization with Python – Basic and Customized Plotting

The output is as follows:

Figure 1.12: Dataset after deleting columns

Note

By default, when the apply or drop function is used on a pandas DataFrame, 
the original DataFrame is not modified. Rather, a copy of the DataFrame post 
modifications is returned by the functions. Therefore, you should assign the 
returned value back to the variable containing the DataFrame (for example, 
diamonds_df=diamonds_df.drop(columns=['rounded_price', 
'rounded_price_to_100multiple'])).

In the case of the drop function, there is also a provision to avoid assignment by 
setting an inplace=True parameter, wherein the function performs the column 
deletion on the original DataFrame and does not return anything.

Writing a DataFrame to a File

The last thing to do is write a DataFrame to a file. We will be using the to_csv() 
function. The output is usually a .csv file that will include column and row headers. 
Let's see how to write our DataFrame to a .csv file. 

Exercise 7: Writing a DataFrame to a File

In this exercise, we will write a diamonds DataFrame to a .csv file. To do so, we'll be 
using the following code:

1.	 Import the necessary modules:

import seaborn as sns
import pandas as pd

2.	 Load the diamonds dataset from seaborn:

diamonds_df = sns.load_dataset('diamonds')
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3.	 Write the diamonds dataset into a .csv file:

diamonds_df.to_csv('diamonds_modified.csv')

4.	 Let's look at the first few rows of the DataFrame:

print(diamonds_df.head())

The output is as follows:

Figure 1.13: The generated .csv file in the source folder

By default, the to_csv function outputs a file that includes column headers as 
well as row numbers. Generally, the row numbers are not desirable, and an index 
parameter is used to exclude them:

5.	 Add a parameter index=False to exclude the row numbers:

diamonds_df.to_csv('diamonds_modified.csv', index=False)

And that's it! You can find this .csv file in the source directory. You are now equipped 
to perform all the basic functions on pandas DataFrames required to get started with 
data visualization in Python.

In order to prepare the ground for using various visualization techniques, we went 
through the following aspects of handling pandas DataFrames:

•	 Reading data from files using the read_csv( ), read_excel( ), and readjson( 
) functions

•	 Observing and describing data using the dataframe.head( ), dataframe.
tail( ), dataframe.describe( ), and dataframe.info( ) functions

•	 Selecting columns using the dataframe.column__name or 
dataframe['column__name'] notation

•	 Adding new columns using the dataframe['newcolumnname']=... notation

•	 Applying functions to existing columns using the dataframe.apply(func) 
function
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•	 Deleting columns from DataFrames using the _dataframe.drop(column_list) 
function

•	 Writing DataFrames to files using the _dataframe.tocsv() function

These functions are useful for preparing data in a format suitable for input to 
visualization functions in Python libraries such as seaborn.

Plotting with pandas and seaborn
Now that we have a basic sense of how to load and handle data in a pandas DataFrame 
object, let's get started with making some simple plots from data. While there are 
several plotting libraries in Python (including matplotlib, plotly, and seaborn), 
in this chapter, we will mainly explore the pandas and seaborn libraries, which are 
extremely useful, popular, and easy to use.

Creating Simple Plots to Visualize a Distribution of Variables

matplotlib is a plotting library available in most Python distributions and is the 
foundation for several plotting packages, including the built-in plotting functionality of 
pandas and seaborn. matplotlib enables control of every single aspect of a figure 
and is known to be verbose. Both seaborn and pandas visualization functions are built 
on top of matplotlib. The built-in plotting tool of pandas .is a useful exploratory 
tool to generate figures that are not ready for primetime but useful to understand the 
dataset you are working with. seaborn, on the other hand, has APIs to draw a wide 
variety of aesthetically pleasing plots.

To illustrate certain key concepts and explore the diamonds dataset, we will start with 
two simple visualizations in this chapter—histograms and bar plots.

Histograms

A histogram of a feature is a plot with the range of the feature on the x-axis and the 
count of data points with the feature in the corresponding range on the y-axis.

Let's look at the following exercise of plotting a histogram with pandas.
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Exercise 8: Plotting and Analyzing a Histogram 

In this exercise, we will create a histogram of the frequency of diamonds in the dataset 
with their respective carat specifications on the x-axis:

1.	 Import the necessary modules:

import seaborn as sns
import pandas as pd

2.	 Import the diamonds dataset from seaborn:

diamonds_df = sns.load_dataset('diamonds')

3.	 Plot a histogram using the diamonds dataset where x axis = carat:

diamonds_df.hist(column='carat')

The output is as follows:

Figure 1.14: Histogram plot
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The y axis in this plot denotes the number of diamonds in the dataset with the 
carat specification on the x-axis.

The hist function has a parameter called bins, which literally refers to the 
number of equally sized bins into which the data points are divided. By default, 
the bins parameter is set to 10 in pandas. We can change this to a different 
number, if we wish.

4.	 Change the bins parameter to 50:

diamonds_df.hist(column='carat', bins=50)

The output is as follows:

Figure 1.15: Histogram with bins = 50

This is a histogram with 50 bins. Notice how we can see a more fine-grained 
distribution as we increase the number of bins. It is helpful to test with multiple 
bin sizes to know the exact distribution of the feature. The range of bin sizes 
varies from 1 (where all values are in the same bin) to the number of values (where 
each value of the feature is in one bin).

5.	 Now, let's look at the same function using seaborn:

sns.distplot(diamonds_df.carat)
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The output is as follows:

Figure 1.16: Histogram plot using seaborn

There are two noticeable differences between the pandas hist function and 
seaborn distplot:

•	 pandas sets the bins parameter to a default of 10, but seaborn infers an 
appropriate bin size based on the statistical distribution of the dataset.

•	 By default, the distplot function also includes a smoothed curve over the 
histogram, called a kernel density estimation.

The kernel density estimation (KDE) is a non-parametric way to estimate the 
probability density function of a random variable. Usually, a KDE doesn't tell us 
anything more than what we can infer from the histogram itself. However, it is 
helpful when comparing multiple histograms on the same plot. If we want to 
remove the KDE and look at the histogram alone, we can use the kde=False 
parameter.

6.	 Change kde=False to remove the KDE:

sns.distplot(diamonds_df.carat, kde=False)
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The output is as follows:

Figure 1.17: Histogram plot with KDE = false

Also note that the bins parameter seemed to render a more detailed plot when 
the bin size was increased from 10 to 50. Now, let's try to increase it to 100.

7.	 Increase the bins size to 100:

sns.distplot(diamonds_df.carat, kde=False, bins=100)
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The output is as follows:

Figure 1.18: Histogram plot with increased bin size

The histogram with 100 bins shows a better visualization of the distribution of 
the variable—we see there are several peaks at specific carat values. Another 
observation is that most carat values are concentrated toward lower values and 
the tail is on the right—in other words, it is right-skewed.

A log transformation helps in identifying more trends. For instance, in the 
following graph, the x-axis shows log-transformed values of the price variable, 
and we see that there are two peaks indicating two kinds of diamonds—one with a 
high price and another with a low price.



24 | Introduction to Visualization with Python – Basic and Customized Plotting

8.	 Use a log transformation on the histogram:

import numpy as np
sns.distplot(np.log(diamonds_df.price), kde=False)

The output is as follows:

Figure 1.19: Histogram using a log transformation

That's pretty neat. Looking at the histogram, even a naive viewer immediately gets a 
picture of the distribution of the feature. Specifically, three observations are important 
in a histogram:

•	 Which feature values are more frequent in the dataset (in this case, there is a peak 
at around 6.8 and another peak between 8.5 and 9—note that log(price) = 
values, in this case,

•	 How many peaks exist in the data (the peaks need to be further inspected for 
possible causes in the context of the data)

•	 Whether there are any outliers in the data
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Bar Plots

Another type of plot we will look at in this chapter is the bar plot.

In their simplest form, bar plots display counts of categorical variables. More broadly, 
bar plots are used to depict the relationship between a categorical variable and 
a numerical variable. Histograms, meanwhile, are plots that show the statistical 
distribution of a continuous numerical feature.

Let's see an exercise of bar plots in the diamonds dataset. First, we shall present the 
counts of diamonds of each cut quality that exist in the data. Second, we shall look at 
the price associated with the different types of cut quality (Ideal, Good, Premium, 
and so on) in the dataset and find out the mean price distribution. We will use both 
pandas and seaborn to get a sense of how to use the built-in plotting functions in both 
libraries.

Before generating the plots, let's look at the unique values in the cut and clarity 
columns, just to refresh our memory.

Exercise 9: Creating a Bar Plot and Calculating the Mean Price Distribution 

In this exercise, we'll learn how to create a table using the pandas crosstab function. 
We'll use a table to generate a bar plot. We'll then explore a bar plot generated using the 
seaborn library and calculate the mean price distribution. To do so, let's go through 
the following steps:

1.	 Import the necessary modules and dataset:

import seaborn as sns
import pandas as pd

2.	 Import the diamonds dataset from seaborn:

diamonds_df = sns.load_dataset('diamonds')

3.	 Print the unique values of the cut column:

diamonds_df.cut.unique()

The output will be as follows:

array(['Ideal', 'Premium', 'Good', 'Very Good', 'Fair'], 
dtype=object)
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4.	 Print the unique values of the clarity column:

diamonds_df.clarity.unique()

The output will be as follows: 

array(['SI2', 'SI1', 'VS1', 'VS2', 'VVS2', 'VVS1', 'I1', 'IF'],
      dtype=object)

Note

unique() returns an array. There are five unique cut qualities and eight 
unique values in clarity. The number of unique values can be obtained using 
nunique() in pandas.

5.	 To obtain the counts of diamonds of each cut quality, we first create a table using 
the pandas crosstab() function:

cut_count_table = pd.crosstab(index=diamonds_
df['cut'],columns='count')
cut_count_table

The output will be as follows:

Figure 1.20: Table using the crosstab function
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6.	 Pass these counts to another pandas function, plot(kind='bar'):

cut_count_table.plot(kind='bar')

The output will be as follows:

Figure 1.21: Bar plot using a pandas DataFrame

We see that most of the diamonds in the dataset are of the Ideal cut quality, 
followed by Premium, Very Good, Good, and Fair. Now, let's see how to generate 
the same plot using seaborn.

7.	 Generate the same bar plot using seaborn:

sns.catplot("cut", data=diamonds_df, aspect=1.5, kind="count", 
color="b")
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The output will be as follows:

Figure 1.22: Bar plot using seaborn

Notice how the catplot() function does not require us to create the 
intermediate count table (using pd.crosstab()), and reduces one step in the 
plotting process.

8.	 Next, here is how we obtain the mean price distribution of different cut qualities 
using seaborn:

import seaborn as sns
from numpy import median, mean
sns.set(style="whitegrid")
ax = sns.barplot(x="cut", y="price", data=diamonds_
df,estimator=mean)
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The output will be as follows:

Figure 1.23: Bar plot with the mean price distribution

Here, the black lines (error bars) on the rectangles indicate the uncertainty (or 
spread of values) around the mean estimate. By default, this value is set to 95% 
confidence. How do we change it? We use the ci=68 parameter, for instance, to 
set it to 68%. We can also plot the standard deviation in the prices using ci=sd.

9.	 Reorder the x axis bars using order:

ax = sns.barplot(x="cut", y="price", data=diamonds_
df, estimator=mean, ci=68, order=['Ideal','Good','Very 
Good','Fair','Premium'])
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The output will be as follows: 

Figure 1.24: Bar plot with proper order

Grouped bar plots can be very useful for visualizing the variation of a particular feature 
within different groups. Now that you have looked into tweaking the plot parameters in 
a grouped bar plot, let's see how to generate a bar plot grouped by a specific feature.

Exercise 10: Creating Bar Plots Grouped by a Specific Feature

In this exercise, we will use the diamonds dataset to generate the distribution of 
prices with respect to color for each cut quality. In Exercise 9, Creating a Bar Plot 
and Calculating the Mean Price Distribution, we looked at the price distribution for 
diamonds of different cut qualities. Now, we would like to look at the variation in each 
color:

1.	 Import the necessary modules—in this case, only seaborn:

#Import seaborn
import seaborn as sns

2.	 Load the dataset:

diamonds_df = sns.load_dataset('diamonds')
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3.	 Use the hue parameter to plot nested groups:

ax = sns.barplot(x="cut", y="price", hue='color', data=diamonds_df)

The output is as follows:

Figure 1.25: Grouped bar plot with legends

Here, we can observe that the price patterns for diamonds of different colors are 
similar for each cut quality. For instance, for Ideal diamonds, the price distribution of 
diamonds of different colors is the same as that for Premium, and other diamonds.

Tweaking Plot Parameters
Looking at the last figure in our previous section, we find that the legend is not 
appropriately placed. We can tweak the plot parameters to adjust the placements of 
the legends and the axis labels, as well as change the font-size and rotation of the tick 
labels. 
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Exercise 11: Tweaking the Plot Parameters of a Grouped Bar Plot

In this exercise, we'll tweak the plot parameters, for example, hue, of a grouped bar 
plot. We'll see how to place legends and axis labels in the right places and also explore 
the rotation feature:

1.	 Import the necessary modules—in this case, only seaborn:

#Import seaborn
import seaborn as sns

2.	 Load the dataset:

diamonds_df = sns.load_dataset('diamonds')

3.	 Use the hue parameter to plot nested groups:

ax = sns.barplot(x="cut", y="price", hue='color', data=diamonds_df)

The output is as follows:

Figure 1.26: Nested bar plot with the hue parameter
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4.	 Place the legend appropriately on the bar plot:

ax = sns.barplot(x='cut', y='price', hue='color', data=diamonds_df)
ax.legend(loc='upper right',ncol=4)

The output is as follows:

Figure 1.27: Grouped bar plot with legends placed appropriately

In the preceding ax.legend() call, the ncol parameter denotes the number 
of columns into which values in the legend are to be organized, and the loc 
parameter specifies the location of the legend and can take any one of eight values 
(upper left, lower center, and so on).

5.	 To modify the axis labels on the x axis and y axis, input the following code: 

ax = sns.barplot(x='cut', y='price', hue='color', data=diamonds_df)
ax.legend(loc='upper right', ncol=4)
ax.set_xlabel('Cut', fontdict={'fontsize' : 15})
ax.set_ylabel('Price', fontdict={'fontsize' : 15})
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The output is as follows:

Figure 1.28: Grouped bar plot with modified labels

6.	 Similarly, use this to modify the font-size and rotation of the x axis of the tick 
labels: 

ax = sns.barplot(x='cut', y='price', hue='color', data=diamonds_df)
ax.legend(loc='upper right',ncol=4)
# set fontsize and rotation of x-axis tick labels
ax.set_xticklabels(ax.get_xticklabels(), fontsize=13, rotation=30)
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The output is as follows:

Figure 1.29: Grouped bar plot with the rotation feature of the labels

The rotation feature is particularly useful when the tick labels are long and crowd 
up together on the x axis.

Annotations

Another useful feature to have in plots is the annotation feature. In the following 
exercise, we'll make a simple bar plot more informative by adding some annotations.
Suppose we want to add more information to the plot about ideally cut diamonds. We 
can do this in the following exercise:
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Exercise 12: Annotating a Bar Plot

In this exercise, we will annotate a bar plot, generated using the catplot function of 
seaborn, using a note right above the plot. Let's see how:

1.	 Import the necessary modules:

import matplotlib.pyplot as plt
import seaborn as sns

2.	 Load the diamonds dataset:

diamonds_df = sns.load_dataset('diamonds')

3.	 Generate a bar plot using catplot function of the seaborn library:

ax = sns.catplot("cut", data=diamonds_df, aspect=1.5, kind="count", 
color="b")

The output is as follows:

Figure 1.30: Bar plot with seaborn's catplot function

4.	 Annotate the column belonging to the Ideal category:

# get records in the DataFrame corresponding to ideal cut
ideal_group = diamonds_df.loc[diamonds_df['cut']=='Ideal']

5.	 Find the location of the x coordinate where the annotation has to be placed:

# get the location of x coordinate where the annotation has to be 
placed
x = ideal_group.index.tolist()[0]
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6.	 Find the location of the y coordinate where the annotation has to be placed:

# get the location of y coordinate where the annotation has to be 
placed
y = len(ideal_group)

7.	 Print the location of the x and y co-ordinates:

print(x)
print(y)

The output is:

0
21551

8.	 Annotate the plot with a note:

# annotate the plot with any note or extra information
sns.catplot("cut", data=diamonds_df, aspect=1.5, kind="count", 
color="b")
plt.annotate('excellent polish and symmetry ratings;\nreflects almost 
all the light that enters it', xy=(x,y), xytext=(x+0.3, y+2000), 
arrowprops=dict(facecolor='red'))

The output is as follows:

Figure 1.31: Annotated bar plot
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Now, there seem to be a lot of parameters in the annotate function, but worry not! 
Matplotlib's https://matplotlib.org/3.1.0/api/_as_gen/matplotlib.pyplot.annotate.html 
official documentation covers all the details. For instance, the xy parameter denotes 
the point (x,y) on the figure to annotate. xytext denotes the position (x,y) to place the 
text at. If None, it defaults to xy. Note that we added an offset of .3 for x and 2000 for y 
(since y is close to 20,000) for the sake of readability of the text. The color of the arrow 
is specified using the arrowprops parameter in the annotate function.

There are several other bells and whistles associated with visualization libraries in 
Python, some of which we will see as we progress in the book. At this stage, we will go 
through a chapter activity to revise the concepts in this chapter.

So far, we have seen how to generate two simple plots using seaborn and pandas—
histograms and bar plots:

•	 Histograms: Histograms are useful for understanding the statistical distribution 
of a numerical feature in a given dataset. They can be generated using the hist() 
function in pandas and distplot() in seaborn.

•	 Bar plots: Bar plots are useful for gaining insight into the values taken by 
a categorical feature in a given dataset. They can be generated using the 
plot(kind='bar') function in pandas and the catplot(kind='count'), and 
barplot() functions in seaborn.

With the help of various considerations arising in the process of plotting these two 
types of visualizations, we presented some basic concepts in data visualization:

•	 Formatting legends to present labels for different elements in the plot with loc 
and other parameters in the legend function

•	 Changing the properties of tick labels, such as font-size, and rotation, with 
parameters in the set_xticklabels() and set_yticklabels() functions

•	 Adding annotations for additional information with the annotate() function

https://matplotlib.org/3.1.0/api/_as_gen/matplotlib.pyplot.annotate.html
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Activity 1: Analyzing Different Scenarios and Generating the Appropriate 

Visualization

We'll be working with the 120 years of Olympic History dataset acquired by Randi 
Griffin from https://www.sports-reference.com/ and made available on the GitHub 
repository of this book. Your assignment is to identify the top five sports based on the 
largest number of medals awarded in the year 2016, and then perform the following 
analysis:

1.	 Generate a plot indicating the number of medals awarded in each of the top five 
sports in 2016.

2.	 Plot a graph depicting the distribution of the age of medal winners in the top five 
sports in 2016.

3.	 Find out which national teams won the largest number of medals in the top five 
sports in 2016.

4.	 Observe the trend in the average weight of male and female athletes winning in 
the top five sports in 2016.

High-Level Steps

1.	 Download the dataset and format it as a pandas DataFrame.

2.	 Filter the DataFrame to only include the rows corresponding to medal winners 
from 2016.

3.	 Find out the medals awarded in 2016 for each sport.

4.	 List the top five sports based on the largest number of medals awarded. Filter the 
DataFrame one more time to only include the records for the top five sports in 
2016.

5.	 Generate a bar plot of record counts corresponding to each of the top five sports.

6.	 Generate a histogram for the Age feature of all medal winners in the top five 
sports (2016).

7.	 Generate a bar plot indicating how many medals were won by each country's team 
in the top five sports in 2016.

8.	 Generate a bar plot indicating the average weight of players, categorized based on 
gender, winning in the top five sports in 2016.

https://www.sports-reference.com/
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The expected output should be:

After Step 1:

Figure 1.32: Olympics dataset

After Step 2:

Figure 1.33: Filtered Olympics DataFrame
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After Step 3:

Figure 1.34: The number of medals awarded
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After Step 4:

Figure 1.35: Olympics DataFrame

After Step 5:

Figure 1.36: Generated bar plot
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After Step 6:

Figure 1.37: Histogram plot with the Age feature

After Step 7:

Figure 1.38: Bar plot with the number of medals won
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After Step 8:

Figure 1.39: Bar plot with the average weight of players

The bar plot indicates the highest athlete weight in rowing, followed by swimming, 
and then the other remaining sports. The trend is similar across both male and female 
players.

Note

The solution steps can be found on page 254.
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Summary
In this chapter, we covered the basics of handling pandas DataFrames to format them 
as inputs for different visualization functions in libraries such as pandas , seaborn and 
more, and we covered some essential concepts in generating and modifying plots to 
create pleasing figures.

The pandas library contains functions such as read_csv(), read_excel(), and 
read_json() to read structured text data files. Functions such as describe() and 
info() are useful to get information on the summary statistics and memory usage 
of the features in a DataFrame. Other important operations on pandas DataFrames 
include subletting based on user-specified conditions/constraints, adding new columns 
to a DataFrame, transforming existing columns with built-in Python functions as well 
as user-defined functions, deleting specific columns in a DataFrame, and writing a 
modified DataFrame to a file on the local system.

Once equipped with knowledge of these common operations on pandas DataFrames, 
we went over the basics of visualization and learned how to refine the visual appeal of 
the plots. We illustrated these concepts with the plotting of histograms and bar plots. 
Specifically, we learned about different ways of presenting labels and legends, changing 
the properties of tick labels, and adding annotations.

In the next chapter, we will learn about some popular visualization techniques and 
understand the interpretation, strengths, and limitations of each.





Learning Objectives

By the end of this chapter, you will be able to:

•	 Explain various visualization techniques for different contexts 

•	 Identify global patterns of one or more features in a dataset

•	 Create plots to represent global patterns in data: scatter plots, hexbin plots, contour plots, 
and heatmaps

•	 Create plots that present summary statistics of data: histograms (revisited), box plots, and 
violin plots

In this chapter, we'll explore different visualization techniques for presenting global patterns and 
summary statistics of data.

Static Visualization – 
Global Patterns and 
Summary Statistics

2
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Introduction
In the previous chapter, we learned how to handle pandas DataFrames as inputs for 
data visualization, how to plot with pandas and seaborn, and how to refine plots 
to increase their aesthetic appeal. The intent of this chapter is to acquire practical 
knowledge about the strengths and limitations of various visualization techniques. We'll 
practice creating plots for a variety of different contexts. However, you will notice that 
the variety in existing plot types and visualization techniques is huge, and choosing 
the appropriate visualization becomes confusing. There are times when a plot shows 
too much information for the reader to grasp or too little for the reader to get the 
necessary intuition regarding the data. There are times when a visualization is too 
esoteric for the reader to appreciate properly, and other times when an over-simplistic 
visualization just doesn't have the right impact. All these scenarios can be avoided by 
being armed with practical knowledge about the interpretation of different kinds of 
visualization techniques and their strengths and limitations.

This chapter is a primer on the different types of static visualization and the contexts 
in which they are most effective. Using seaborn, you will learn how to create a variety 
of plots and become proficient in selecting the right kind of visualization for the most 
suitable representation of your data. Combining these skills with the techniques learned 
in Chapter 1, Introduction to Visualization with Python – Basic and Customized Plotting, 
will help you make stellar plots that are both meaningful and attractive.

Let's first explore the right kind of visualization technique or plot to represent global 
patterns in data.

Note

Some of the images in this chapter have colored notations, you can find 
high‑quality color images used in this chapter at: https://github.com/
TrainingByPackt/Interactive-Data-Visualization-with-Python/tree/master/Graphics/
Lesson2.

Creating Plots that Present Global Patterns in Data
In this section, we will study the context of plots that present global patterns in data, 
such as:

•	 Plots that show the variance in individual features in data, such as histograms 

•	 Plots that show how different features present in data vary with respect to each 
other, such as scatter plots, line plots, and heatmaps

https://github.com/TrainingByPackt/Interactive-Data-Visualization-with-Python/tree/master/Graphics/Lesson2
https://github.com/TrainingByPackt/Interactive-Data-Visualization-with-Python/tree/master/Graphics/Lesson2
https://github.com/TrainingByPackt/Interactive-Data-Visualization-with-Python/tree/master/Graphics/Lesson2
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Most data scientists prefer to see such plots because they give an idea of the entire 
spectrum of values taken by the features of interest. Plots depicting global patterns are 
also useful because they make it easier to spot anomalies in data.

We will work with a dataset called mpg. It was published by the StatLib library, 
maintained at Carnegie Mellon University, and is available in the seaborn library. It was 
originally used to study the relationship of mileage – Miles Per Gallon (MPG) – with 
other features in the dataset; hence the name mpg. Since the dataset contains 3 discrete 
features and 5 continuous features, it is a good fit for illustrating multiple concepts in 
this chapter.

You can see what the dataset looks like using:

import seaborn as sns

# load a seaborn dataset

mpg_df = sns.load_dataset("mpg")

print(mpg_df.head())

The output is as follows:

Figure 2.1: mpg dataset

Now, let's take a look at a few different kinds of plots to present this data and derive 
statistical insights from it.

Scatter Plots

The first type of plot that we will generate is a scatter plot. A scatter plot is a simple 
plot presenting the values of two features in a dataset. Each datapoint is represented by 
a point with the x coordinate as the value of the first feature and the y coordinate as the 
value of the second feature. A scatter plot is a great tool to learn more about two such 
numerical attributes. 

Scatter plots can help excavate relationships among different features in data such as 
weather and sales, nutrition intake, and health statistics in several contexts.

We will learn how to create a scatter plot with the help of an exercise.
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Exercise 13: Creating a Static Scatter Plot

In this exercise, we will generate a scatter plot to examine the relationship between 
weight and mileage (mpg) of the vehicles from the mpg dataset. To do so, let's go 
through the following steps:

1.	 Open a Jupyter notebook and import the necessary Python modules:

import seaborn as sns

2.	 Import the dataset from seaborn:

mpg_df = sns.load_dataset("mpg")

3.	 Generate a scatter plot using the scatterplot() function:

# seaborn ('version 0.9.0 is required')
ax = sns.scatterplot(x="weight", y="mpg", data=mpg_df)

The output is as follows:

Figure 2.2: Scatter plot

Notice that the scatter plot shows a decline in mileage (mpg) with an increase in 
weight. That's a useful insight into the relationships between different features in the 
dataset. 
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Hexagonal Binning Plots

There's also a fancier version of scatter plots, called a hexagonal binning plot  
(hexbin plot) – this can be used when both rows and columns correspond to numerical 
attributes. Where there are lots of data points, the plotted points on a scatter plot can 
end up overlapping, resulting in a messy graph. It can be hard to infer trends in such 
cases. With a hexbin plot, a lot of data points in the same area can be shown using 
a darker shade. Hexbin plots use hexagons to represent clusters of data points. The 
darker bins indicate that there is a larger number of points in the corresponding ranges 
of features on the x and y axes. The lighter bins indicate fewer points. The white space 
corresponds to no points.This way, we end up with a cleaner graph that's clearer to 
read. 

Let's see how to create a hexbin plot in the next exercise.

Exercise 14: Creating a Static Hexagonal Binning Plot

In this exercise, we will generate a hexagonal binning plot to get a better understanding 
of the relationship between weight and mileage (mpg). Let's go through the following 
steps:

1.	 Import the necessary Python modules:

import seaborn as sns

2.	 Import the dataset from seaborn:

mpg_df = sns.load_dataset("mpg")

3.	 Plot a hexbin plot using jointplot with kind set to hex:

## set the plot style to include ticks on the axes.  
sns.set(style="ticks")
## hexbin plot
sns.jointplot(mpg_df.weight, mpg_df.mpg, kind="hex", 
color="#4CB391")

Note the jointplot function of seaborn mentioned in the above code. It is 
defined where we provide the values for the x axis and y axis along with specifying 
the kind argument, which is set to hex here, to build the plot.
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The output is as follows: 

Figure 2.3: Hexagonal binning plot of weight versus mpg

As you might notice, the histogram on the top and right axes depict the variance in the 
features represented by the x and y axes respectively (mpg and weight, in this example). 
Also, you might have noticed in the previous scatter plot that data points overlapped 
heavily in certain areas, obscuring the actual distribution of the features. Hexbin plots 
are quite a nice data visualization tool when data points are very dense.
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Contour Plots

Another alternative to scatter plots when data points are densely populated in specific 
region(s) is a contour plot. The advantage of using contour plots is the same as hexbin 
plots – accurately depicting the distribution of features in the visualization in cases 
where data points are likely to overlap heavily. Contour plots are commonly used to 
show the distribution of weather indicators such as temperature, rainfall, and others on 
maps of geographical regions.

Let's look at a contour plot in the following exercise.

Exercise 15: Creating a Static Contour Plot

In this exercise, we'll create a contour plot to show the relationship between weight 
and mileage in the mpg dataset. We'll be able to see that the relationship between 
weight and mileage is strongest when there are more data points. Let's go through 
the following steps:

1.	 Import the necessary Python modules:

import seaborn as sns

2.	 Import the dataset from seaborn:

mpg_df = sns.load_dataset("mpg")

3.	 Create a contour plot using the set_style method:

# contour plot
sns.set_style("white")

4.	 Generate a Kernel Density Estimate (KDE) (see Chapter 1, Introduction to 
Visualization with Python-Basic and Customized Plotting) plot:

# generate KDE plot: first two parameters are arrays of X and Y 
coordinates of data points
# parameter shade is set to True so that the contours are filled with 
a color gradient based on number of data points
sns.kdeplot(mpg_df.weight, mpg_df.mpg, shade=True)
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The output is as follows:

Figure 2.4: Contour plot showing weight versus mpg

Notice that the interpretation of contour plots is similar to that of hexbin plots – darker 
regions indicate more data points and lighter regions indicate fewer data points.

In our example of weight versus mileage (mpg), the hexbin plot and the contour plot 
indicate that there is a certain curve along which the negative relationship between 
weight and mileage is strongest, as is evident by the larger number of data points. 
The negative relationship becomes relatively weaker as we move away from the curve 
(fewer data points).

Line Plots

Another kind of plot for presenting global patterns in data is a line plot.

Line plots represent information as a series of data points connected by straight-line 
segments. They are useful for indicating the relationship between a discrete numerical 
feature (on the x axis), such as model_year, and a continuous numerical feature (on the 
y axis), such as mpg from the mpg dataset.

Let's look at the succeeding exercise on creating a line plot with model_year versus 
mpg.
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Exercise 16: Creating a Static Line Plot

In this exercise, we will create a scatter plot for a different pair of features,  
model_year and mpg. Then, we'll generate a line plot based on those discrete attributes 
– model_year and mpg. To do so, let's go through the following steps:

1.	 Import the necessary Python modules:

import seaborn as sns

2.	 Import the dataset from seaborn:

mpg_df = sns.load_dataset("mpg")

3.	 Create a contour plot:

# contour plot
sns.set_style("white")

4.	 Create a two dimensional scatter plot:

# seaborn 2-D scatter plot 
ax1 = sns.scatterplot(x="model_year", y="mpg", data=mpg_df)

The output is as follows:

Figure 2.5: Two-dimensional line plot
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In this example, we see that the model_year feature only takes discrete values 
between 70 and 82. Now, when we have a discrete numerical feature like this 
(model_year), drawing a line plot joining the data points is a good idea. We 
can draw a simple line plot showing the relationship between model_year and 
mileage with the following code.

5.	 Draw a simple line plot to show the relationship between model_year and 
mileage:

# seaborn ('version 0.9.0 is required') line plot code
ax = sns.lineplot(x="model_year", y="mpg", data=mpg_df)

The output is as follows:

Figure 2.6: Line plot showing the relationship between model_year and mileage

As we can see, the points connected by the solid line represent the mean of the y 
axis feature at the corresponding x coordinate. The shaded area around the line 
plot shows the confidence interval for the y axis feature (by default, seaborn sets 
this to a 95% confidence interval). The ci parameter can be used to change to a 
different confidence interval. The phrase x% confidence interval translates to a 
range of feature values where x% of the data points are present. An example of 
changing to a confidence interval of 68% is shown in the code that follows.
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6.	 Change the confidence interval to 68:

sns.lineplot(x="model_year", y="mpg", data=mpg_df, ci=68)

The output is as follows:

Figure 2.7: Line plot where ci = 68

As we can see from the preceding plot, the 68% confidence interval translates to a 
range of feature values where 68% of the data points are present. Line plots are great 
visualization techniques for scenarios where we have data that changes over time – the 
x axis could represent date or time, and the plot would help to visualize how a value 
varies over that period.

Speaking of presenting data across time using line plots, let's consider the example of 
the flights dataset from seaborn. The dataset is used to study a comparison between 
airlines, delay distribution, predicting flight delays, and more (this open source dataset 
is hosted on Packt's GitHub repository). Through the following example, we'll see how 
to generate line plots to represent this dataset.
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Exercise 17: Presenting Data across Time with multiple Line Plots

In this example, we'll see how to present data across time with multiple line plots. We 
are using the flights dataset:

1.	 Import the necessary Python modules:

import seaborn as sns

2.	 Load the flights dataset:

flights_df = sns.load_dataset("flights")
print(flights_df.head())

The output is as follows:

Figure 2.8: Flights dataset

Suppose you want to look at how the number of passengers varies between 
months in different years. How would you display this information?

One option is to draw multiple line plots in a single figure. For example, let's look 
at the line plots for the months of December and January across different years. 
We can do this with the code that follows.

3.	 Create multiple plots for the months of December and January:

#flights_df = flights_df.pivot("month", "year", "passengers")
#ax = sns.heatmap(flights_df)
# line plots for the planets dataset
ax = sns.lineplot(x="year", y="passengers", data=flights_df[flights_
df['month']=='January'], color='green')
ax = sns.lineplot(x="year", y="passengers", data=flights_df[flights_
df['month']=='February'], color='red')
ax = sns.lineplot(x="year", y="passengers", data=flights_df[flights_
df['month']=='March'], color='blue')
ax = sns.lineplot(x="year", y="passengers", data=flights_df[flights_
df['month']=='April'], color='cyan')
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ax = sns.lineplot(x="year", y="passengers", data=flights_df[flights_
df['month']=='May'], color='pink')
ax = sns.lineplot(x="year", y="passengers", data=flights_df[flights_
df['month']=='June'], color='black')
ax = sns.lineplot(x="year", y="passengers", data=flights_df[flights_
df['month']=='July'], color='grey')
ax = sns.lineplot(x="year", y="passengers", data=flights_df[flights_
df['month']=='August'], color='yellow')
ax = sns.lineplot(x="year", y="passengers", data=flights_df[flights_
df['month']=='September'], color='turquoise')
ax = sns.lineplot(x="year", y="passengers", data=flights_df[flights_
df['month']=='October'], color='orange')
ax = sns.lineplot(x="year", y="passengers", data=flights_df[flights_
df['month']=='November'], color='darkgreen')
ax = sns.lineplot(x="year", y="passengers", data=flights_df[flights_
df['month']=='December'], color='darkred')

The output is as follows:

Figure 2.9: Multiple line plots for year versus passengers

With this example of 12 line plots, we can see how a figure with too many line plots 
quickly begins to get crowded and confusing. Thus, for certain scenarios, line plots are 
neither appealing nor useful.

So, what is the alternative for our use case?
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Heatmaps

Enter heatmaps.

A heatmap is a visual representation of a specific continuous numerical feature as a 
function of two other discrete features (either a categorical or a discrete numerical) 
in the dataset. The information is presented in grid form – each cell in the grid 
corresponds to a specific pair of values taken by the two discrete features and is 
colored based on the value of the third numerical feature. A heatmap is a great tool to 
visualize high-dimensional data and even to tease out features that are particularly 
variable across different classes.

Let's go through a concrete exercise. 

Exercise 18: Creating and Exploring a Static Heatmap

In this exercise, we will explore and create a heatmap. We will use the flights dataset 
from the seaborn library to generate a heatmap depicting the number of passengers 
per month across the years 1949-1960:

1.	 Start by importing the seaborn module and loading the flights dataset:

import seaborn as sns
flights_df = sns.load_dataset('flights')

2.	 Now we need to pivot the dataset on the required variables using the pivot() 
function before generating the heatmap. The pivot function first takes as 
arguments the feature that will be displayed in rows, then the one displayed in 
columns, and finally the feature whose variation we are interested in observing. It 
uses unique values from specified indexes/columns to form axes of the resulting 
DataFrame:

df_pivoted = flights_df.pivot("month", "year", "passengers")
ax = sns.heatmap(df_pivoted)
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The output is as follows:

Figure 2.10: Generated heatmap

Here, we can note that the total number of yearly flights increased steadily from 
1949 to 1960. Moreover, the months of July and August seem to have the largest 
number of flights (compared to other months) across the years in observation. 
Now, that's an interesting trend to find from a simple visualization!

Plotting heatmaps is a very fun thing to explore, and there are lots of options 
available to tweak the parameters. You can learn more about them at https://
seaborn.pydata.org/generated/seaborn.clustermap.html and https://seaborn.
pydata.org/generated/seaborn.heatmap.html. However, we will only mention a 
few important aspects here – the clustering option and the distance metric.

Rows or columns in a heatmap can also be clustered based on the extent of their 
similarity. To do this in seaborn, use the clustermap option.

Exercise18 continued

https://seaborn.pydata.org/generated/seaborn.clustermap.html
https://seaborn.pydata.org/generated/seaborn.clustermap.html
https://seaborn.pydata.org/generated/seaborn.heatmap.html
https://seaborn.pydata.org/generated/seaborn.heatmap.html
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3.	 Use clustermap option to cluster rows and columns:

ax = sns.clustermap(df_pivoted, col_cluster=False, row_cluster=True)

The output is as follows:

Figure 2.11: Heatmap using clustermap
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Did you notice how the order of months got rearranged in the plots but some months 
( for example, July and August) stuck together because of their similar trends? In both 
July and August, the number of flights increased relatively more drastically in the 
last few years till 1960.

Note

We can cluster the data by year by switching the parameter values (row_
cluster=False, col_cluster=True) or cluster both by row and column 
(row_cluster=True, col_cluster=True).

At this point, you may be thinking, But wait, how is the similarity between rows 
and columns computed? The answer is that it depends on the distance metric 
– that is, how the distance between two rows or two columns is computed. 
The rows/columns with the least distance between them are clustered closer 
together than the ones with a greater distance between them. The user can set 
the distance metric to one of the many available options (manhattan, euclidean, 
correlation, and others) simply using the metric option as follows. You can 
read more about the distance metric options here: https://scikit-learn.org/
stable/modules/generated/sklearn.neighbors.DistanceMetric.html. 

Note 

seaborn sets the metric to euclidean by default.

Exercise18 continued:

4.	 Set metric to euclidean:

# equivalent to ax = sns.clustermap(df_pivoted, row_cluster=False, 
metric='euclidean')
ax = sns.clustermap(df_pivoted, col_cluster=False) 

https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.DistanceMetric.html
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.DistanceMetric.html
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The output is as follows:

Figure 2.12: Heatmap with distance metric as euclidean

5.	 Change metric to correlation:

# change distance metric to correlation
ax = sns.clustermap(df_pivoted, row_cluster=False, 
metric='correlation')
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The output is as follows:

Figure 2.13: Heatmap with distance metric is correlation

On reading about distance metric, we learn that it defines the distance between two 
rows/columns. However, if we look carefully, we see that the heatmap also clusters not 
just individual rows or columns, but also groups of rows and columns. This is where 
linkage comes into the picture. But hold your breath for a moment before we come to 
that!
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The Concept of Linkage in Heatmaps

The clustering seen in heatmaps is called agglomerative hierarchical clustering because 
it involves the sequential grouping of rows/columns until all of them belong to a 
single cluster, resulting in a hierarchy. Without loss of generality, let's assume we are 
clustering rows. The first step in hierarchical clustering is to compute the distance 
between all possible pairs of rows, and to select two rows, say, A and B, with the least 
distance between them. Once these rows are grouped, they are said to be merged into a 
single cluster. Once this happens, we need a rule that not only determines the distance 
between two rows but also the distance between any two clusters (even if the cluster 
contains a single point):

•	 If we define the distance between two clusters as the distance between the two 
points across the clusters closest to each other, the rule is called single linkage.

•	 If the rule is to define the distance between two clusters as the distance between 
the points farthest from each other, it is called complete linkage.

•	 If the rule is to define the distance as the average of all possible pairs of rows in 
the two clusters, it is called average linkage.

The same holds for clustering columns, too. 

Exercise 19: Creating Linkage in Static Heatmaps

In this exercise, we'll generate a heatmap and understand the concept of single, 
complete, and average linkage in heatmaps using the flights dataset. We'll use the 
cluster map method and set the method parameter to different values, such as 
average, complete, and single. To do so, let's go throughout the following steps:

1.	 Start by importing the seaborn module and loading the flights dataset:

import seaborn as sns
flights_df = sns.load_dataset('flights')

2.	 Now we need to pivot the dataset on the required variables using the pivot() 
function before generating the heatmap: 

df_pivoted = flights_df.pivot("month", "year", "passengers")
ax = sns.heatmap(df_pivoted)
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The output is as follows:

Figure 2.14: Generated heatmap for the flights dataset

3.	 Link the heatmaps using the code that follows:

ax = sns.clustermap(df_pivoted, col_cluster=False, 
metric='correlation', method='average')
ax = sns.clustermap(df_pivoted, row_cluster=False, 
metric='correlation', method='complete')
ax = sns.clustermap(df_pivoted, row_cluster=False, 
metric='correlation', method='single')
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The output is as follows:

Figure 2.15a: Heatmap showing average linkage
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Figure 2.15b: Heatmap showing complete linkage
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Figure 2.15c: Heatmap showing single linkage

Heatmaps are also a good way to visualize what happens in a 2D space. For example, 
they can be used to show where the most action is on the pitch in a soccer game. 
Similarly, for a website, heatmaps can be used to show the areas that are most 
frequently moussed over by users.
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In this section, we have studied plots that present the global patterns of one or more 
features in a dataset. The following plots were specifically highlighted in the section:

•	 Scatter plots: Useful for observing the relationship between two potentially related 
features in a dataset

•	 Hexbin plots and contour plots: A good alternative for scatter plots when data is too 
dense in some parts of a feature space

•	 Line plots: Useful for indicating the relationship between a discrete numerical 
feature (on the x axis) and a continuous numerical feature (on the y axis)

•	 Heatmaps: Useful for examining the relationship between a continuous numerical 
feature of interest and two other features that are either a categorical or a 
discrete numerical

Creating Plots That Present Summary Statistics of Your Data
It's now time for a switch to our next section. When datasets are huge, it is sometimes 
useful to look at the summary statistics of a range of different features and get a 
preliminary idea of the dataset. For example, the summary statistics for any numerical 
feature include measures of central tendency, such as the mean, and measures of 
dispersion, such as the standard deviation.

When a dataset is too small, plots presenting summary statistics may actually be 
misleading because summary statistics are meaningful only when the dataset is big 
enough to draw statistical conclusions. For example, if somebody reports the variance 
of a feature using five data points, we cannot make any concrete conclusions regarding 
the dispersion of the feature.

Histogram Revisited

Let's revisit histograms from Chapter 1, Introduction to Visualization with Python – 
Basic and Customized Plotting. Although histograms show the distribution of a given 
feature in data, we can make a plot a little more informative by showing some summary 
statistics in the same plot. Let's go back to our mpg dataset and draw a histogram to 
analyze the spread of vehicle weights in the dataset.
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Example 1: Histogram Revisited

We'll go through a histogram plot to revisit the concept we have learned in Chapter 1, 
Introduction to Visualization with Python – Basic and Customized Plotting. Let's go 
through the following:

Import the necessary Python modules; load the dataset; choose number of bins and 
whether the kernel density estimate should be shown or not; Use red color to show 
mean using a straight line on the x axis (parallel to y axis); define the location of legend:

# histogram using seaborn

import matplotlib.pyplot as plt

import seaborn as sns

import numpy as np

mpg_df = sns.load_dataset("mpg")

ax = sns.distplot(mpg_df.weight, bins=50, kde=False)

# `label` defines the name used in legend

plt.axvline(x=np.mean(mpg_df.weight), color='red', label='mean')

plt.axvline(x=np.median(mpg_df.weight), color='orange', 
label='median')

plt.legend(loc='upper right')

The output is as follows:

<matplotlib.legend.Legend at 0x1a24a60358>

Figure 2.16: Histogram revisited
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This histogram shows the distribution of the weight feature along with the mean and 
median. Notice that the mean is not equal to the median, which means that the feature 
is not normally distributed. Read more on this here: http://mathworld.wolfram.com/
NormalDistribution.html.

Let's explore a few other plots to represent the summary statistics of data.

Box Plots

Box plots are an excellent way to examine the relationship between the summary 
statistics of a numerical feature in relation to other categorical features. Now, suppose 
we want to see the summary statistics of the mpg feature (mileage) classified by 
another feature – the number of cylinders. A popular way to show such information is 
to use box plots. This is very easy to do with the seaborn library.

Exercise 20: Creating and Exploring a Static Box Plot

In this exercise, we will create a box plot to analyze the relationship between model_
year and mileage using the mpg dataset. We'll analyze manufacturing efficiency and 
the mileage of vehicles over a period of years. To do so, let's go through the following 
steps:

1.	 Import seaborn library:

import seaborn as sns

2.	 Load the dataset:

mpg_df = sns.load_dataset("mpg")

3.	 Create a box plot:

# box plot: mpg(mileage) vs model_year
sns.boxplot(x='model_year', y='mpg', data=mpg_df)

http://mathworld.wolfram.com/NormalDistribution.html
http://mathworld.wolfram.com/NormalDistribution.html
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The output is as follows:

Figure 2.17: Box plot

As we can see, the box boundaries indicate the interquartile range, the upper 
boundary marks the 25% quartile, and the lower boundary marks the 75% quartile. 
The horizontal line inside the box indicates the median. Any solo points outside 
of the whiskers (the T-shaped bars above and below the box) mark outliers, while 
the whiskers themselves show the minimum and maximum values that are not 
outliers.

Apparently, mileage improved substantially in the 80s compared to the 70s. Let's 
add another feature to our mpg DataFrame that denotes whether the car was 
manufactured in the 70s or 80s.

4.	 Modify the mpg DataFrame by creating a new feature, model_decade:

import numpy as np
# creating a new feature 'model_decade'
mpg_df['model_decade'] = np.floor(mpg_df.model_year/10)*10
mpg_df['model_decade'] = mpg_df['model_decade'].astype(int)
mpg_df.tail()
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The output is as follows:

Figure 2.18:Modified mpg DataFrame

5.	 Now, let's redraw our box plot to look at mileage distribution for the two 
decades:

# a boxplot with multiple classes
sns.boxplot(x='model_decade', y='mpg', data=mpg_df)

The output is as follows:

Figure 2.19: Redrawn Box plot

But wait – more can be done with boxplots. We can also add another feature, say, 
region of origin, and see how that affects the relationship between mileage 
and manufacturing time, the two features we have been considering so far. 
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6.	 Use the hue parameter to group by origin:

# boxplot: mpg (mileage) vs model_decade
# parameter hue is used to group by a specific feature, in this case 
'origin'
sns.boxplot(x='model_decade', y='mpg', data=mpg_df, hue='origin')

The output is as follows:

Figure 2.20: Box plot where hue=origin

As we can see, according to the mpg dataset, in the 70s and early 80s, Europe and Japan 
produced cars with better mileage than the USA. Interesting!

Violin Plots

Now let's consider a different scenario. What if we could get a hint regarding the entire 
distribution of a specific numerical feature grouped by other categorical features? The 
right kind of visualization technique here is a violin plot. A violin plot is similar to a 
box plot, but it includes more detail about variations in the data. The shape of a violin 
plot tells you the shape of the data distribution –where the data points cluster around 
a common value, the plot is fatter, and where there are fewer data points, the plot is 
thinner. We will look at a concrete example with the help of an exercise.
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Exercise 21: Creating a Static Violin Plot

In this exercise, we will use the mpg dataset and generate a violin plot depicting the 
detailed variation of mileage (mpg) based on model_decade and region of origin:

1.	 Import the necessary Python modules:

import seaborn as sns

2.	 Load the dataset:

mpg_df = sns.load_dataset("mpg")

3.	 Generate the violin plot using the violinplot function in seaborn:

# creating the feature 'model_decade'
import numpy as np
mpg_df['model_decade'] = np.floor(mpg_df.model_year/10)*10
mpg_df['model_decade'] = mpg_df['model_decade'].astype(int)

# code for violinplots
# parameter hue is used to group by a specific feature, in this case 
'origin', while x represents the model year and y represent mileage
sns.violinplot(x='model_decade', y='mpg', data=mpg_df, hue='origin')

The output is as follows:

Figure 2.21: Violin plot
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We can see here that, during the 70s, while most vehicles in the US had a median 
mileage of 19 mpg, vehicles in Japan and Europe had median mileages of around 27 and 
25 mpg. While the mileages of vehicles in Europe and Japan jumped by 7 to 8 points in 
the 80s, the median mileage of vehicles in the US was still similar to that of the vehicles 
in Japan and Europe in the previous decade.

As we can see from the preceding plot, the fatter sections of the plot indicate ranges 
of higher probability of the y-axis feature, while the thinner sections indicate areas of 
lower probability. The thick solid line at the center of each distribution represents the 
interquartile range – the two ends are the 25% and 75% quantiles and the dot is the 
median. The thinner solid line shows 1.5 times the interquartile range.

Note

Since violin plots estimate a probability distribution based on the existing data, 
plots sometimes assign data points to negative values of the feature on the y axis. 
This may cause confusion and make readers doubt your results.

In this section, we have studied some plots that present summary statistics of various 
features in the dataset. These plots are especially useful representations of data when 
datasets are huge and it would be computationally expensive and time-intensive to 
generate plots that depict global patterns in the data. We learned how to add mean and 
median markers in the histogram of a given feature in the dataset. We also studied box 
plots and violin plots – while box plots depict summary statistics alone (with median 
and quartiles), violin plots also show the probability distribution of the feature across 
different value ranges.

Activity 2: Design Static Visualization to Present Global Patterns and Summary 

Statistics

We'll continue to work with the 120 years of Olympic History dataset acquired 
by Randi Griffin from https://www.sports-reference.com/ and made available on the 
GitHub repository of this book. As a visualization specialist, your task is to create two 
plots for the 2016 medal winners of five sports – athletics, swimming, rowing, football, 
and hockey:

•	 Create a plot using an appropriate visualization technique that best presents the 
global pattern of the height and weight features of the 2016 medal winners of 
the five sports.

https://www.sports-reference.com/
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•	 Create a plot using an appropriate visualization technique that best presents the 
summary statistic for the height and weight of the players that won each type of 
medal (gold/silver/bronze) in the data.

You are encouraged to use your creativity and skills in bringing out important insights 
from the data.

High-Level Steps

1.	 Download the dataset and format it as a pandas DataFrame.

2.	 Filter the DataFrame to only include the rows corresponding to medal winners 
from 2016 for the sports mentioned in the activity description.

3.	 Look at the features in the dataset and note their data type – are they categorical 
or numerical?

4.	 Evaluate what the appropriate visualization(s) would be for a global pattern to 
depict the height and weight features.

5.	 Evaluate what the appropriate visualization(s) would be for depicting the medal-
wise summary statistics of the weight and height features, further segregated by 
athlete gender.

The expected output should be:

After Step 1:

Figure 2.22: Olympic History dataset
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After Step 2:

Figure 2.23: Olympics history dataset with the medal winners

After Step 3:

Figure 2.24: Olympics history dataset with the top sport winners
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After Step 4:

Scatter plot-

Figure 2.25: Scatter plot

Hexbin plot-

Figure 2.26: Hexagonal binning plot
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After Step 5: 

First Plot-

Figure 2.27: Violin plot showing medal versus weight

Second plot-

Figure 2.28: Violin plot showing medal versus height

Note

The solution steps can be found on page 259.
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Summary
In this chapter, we learned how choosing the most appropriate visualization(s) depends 
on four key elements:

•	 The nature of the features in a dataset: categorical/discrete, numerical/
continuous numerical

•	 The size of the dataset: small/medium/large 

•	 The density of the data points in the chosen feature space: whether too many or 
too few data points are set to certain feature values

•	 The context of the visualization: the source of the dataset and frequently used 
visualizations for the given application

For the purpose of explaining the concepts clearly and defining certain general 
guidelines, we classified visualizations into two categories:

•	 Plots representing the global patterns of the chosen features (for example, 
histograms, scatter plots, hexbin plots, contour plots, line plots,and heatmaps)

•	 Plots representing the summary statistics of the specific features (box plots and 
violin plots)

We are not implying that a single best visualization must be determined right away 
for any given application; for most datasets, the best visualizations will likely emerge 
from testing different kinds of plots and carefully examining the insights derived 
from each of them. This chapter provided the necessary resources to understand the 
interpretation and usage of various popular and less-used informative visualization 
types. In the next chapter, we will build on this foundation to introduce interactivity 
into our visualizations.





Learning Objectives

By the end of this chapter, you will be able to:

•	 Explain the differences between static and interactive visualizations

•	 Explain the application of interactive visualizations in various sectors

•	 Create interactive plots with zoom, hover, and slide functionalities 

•	 Use the Bokeh and Plotly (Express) Python libraries to create interactive data visualizations 

In this chapter, we'll move from static to interactive visualizations and look into the applications 
of interactive visualizations for different scenarios.

From Static 
to Interactive 
Visualization

3
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Introduction 
As we discussed in the previous chapters, data visualizations are graphical 
representations of information and data. Their purpose is to extract values from 
multiples rows and columns of numbers and data that are otherwise difficult to 
comprehend and represent them in graphically appealing plots. As a result, data 
visualizations can provide key insights regarding data at a glance. This is something that 
raw data, and even analyzed data in tabular form, is unable to do.

We discussed static data visualizations in the previous chapter – graphs and plots that 
are stagnant and cannot be modified or interacted with in real time by the audience.

Interactive data visualizations are a step ahead of static ones. Let's take a look at the 
term interactive to understand how. The definition of interactive is something that 
involves communication between two or more things or people that work together. 
Therefore, interactive visualizations are graphical representations of analyzed data 
(static or dynamic) that can react and respond to user actions in the moment. They are 
static visualizations that incorporate features to accept human inputs, thus enhancing 
and increasing the impact that data has. 

Note

Some of the images in this chapter have colored notations, you can find 
high‑quality color images used in this chapter at: https://github.com/
TrainingByPackt/Interactive-Data-Visualization-with-Python/tree/master/Graphics/
Lesson3.

The ability for a plot to provide you with more information about a datapoint when 
there's a user action, such as your mouse hovering above it, is what makes it interactive. 
An example of this can be seen in the following diagrams:

Figure 3.1: Interactive data visualization

https://github.com/TrainingByPackt/Interactive-Data-Visualization-with-Python/tree/master/Graphics/Lesson3
https://github.com/TrainingByPackt/Interactive-Data-Visualization-with-Python/tree/master/Graphics/Lesson3
https://github.com/TrainingByPackt/Interactive-Data-Visualization-with-Python/tree/master/Graphics/Lesson3
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Figure 3.2: Hovering over something provides you with more information about it

Interactive visualizations are often also built on dynamic data. The word dynamic is 
used to refer to something that is constantly changing, and when used with respect 
to data visualizations, it means that the input data that the visualization is built on 
is constantly changing as opposed to static data, which is stagnant and does not 
change. An example of interactive data visualization with dynamic data is visualizations 
depicting fluctuations in stock trends. The input data that's used to create these 
graphs is dynamic and constantly changing in real time, and so the visualizations 
are interactive. Static data is more for business intelligence, such as when data 
visualizations are used as part of a data science/machine learning process.

To understand the real capabilities of interactive visualization, let's compare it head to 
head with static visualization. 
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Static versus Interactive Visualization
While static data visualizations are a giant leap forward toward the goal of extracting 
and explaining the value and information that datasets hold, the addition of interactivity 
takes these visualizations a step ahead. 

Interactive data visualizations have the following qualities:

•	 They are easier to explore as they allow you to interact with data by changing 
colors, parameters, and plots.

•	 They can be manipulated easily and instantly. Since you can interact with them, 
the graphs can be changed in front of you. For example, in the exercises and 
activities in this chapter, you will create an interactive slider. When the position of 
this slider is altered and the graph you see changes, you will also be able to create 
checkboxes that allow you to select the parameters you wish to see.

•	 They enable access to real-time data and the insights they provide. This allows for 
the efficient and quick analysis of trends.

•	 They are easier to comprehend, thereby allowing organizations to make better 
data-based decisions.

•	 They remove the requirement of having multiple plots for the same information – 
one interactive plot is able to convey the same insights.

•	 They allow you to observe relationships (for example, cause and effect). 

Let's start with an example to understand what we can achieve through interactive 
visualization. Let's consider a dataset for members who are enrolled in a gym:

Figure 3.3: Gym clients dataset
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The following is a static data visualization in the form of a box plot that describes the 
weight of people categorized by their sex (0 is male, 1 is female, and 2 is other):

Figure 3.4 : A static visualization displaying weight versus the sex of gym clients
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The only insight we can gain from this plot is the relationship between weight and 
sex – male clients visiting this gym weigh between 62kg and 91kg, female clients 
weigh between 57kg and 86kg, and clients identifying as other weigh between 61kg 
and 90kg. There is, however, a third feature present in the dataset that's used to 
generate this box plot – age. Adding this feature to the preceding static plot may lead 
to confusion in terms of understanding the data. So, we're a little stuck with regards 
to showing the relationship between all three features using a static visualization. This 
problem can be easily solved by creating an interactive visualization, as shown here:

Figure 3.5: An interactive visualization displaying the weight and sex of 46-year-old gym clients

In the preceding box plot, a slider has been introduced for the age feature. The user 
can manually slide the position of the slider to observe the relationship between 
weight, gender, and age at different values of age. Additionally, there is a hover tool 
that allows the user to gain more information about the data. 
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The preceding box plot describes that, at this gym, the only 46-year-old clients are 
those that identify as other, and the heaviest 46-year-old weighs 82 kilograms, while 
the lightest weighs 56 kilograms. 

The user can slide to another position to observe the relationship between weight and 
sex at a different age, as shown in the following plot:

Figure 3.6: An interactive visualization displaying the weight and sex of 34-year-old gym clients

The preceding plot describes the data at the age of 34 – there are no male gym clients; 
however, the heaviest 34-year old female client weights 100 kilograms while the 
lightest one weighs 71 kilograms. 
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But there are still more aspects to consider when differentiating between static and 
interactive visualizations. Let's look at the following table:

Figure 3.7: Static versus interactive data visualizations 

Ultimately, interactive data visualizations transform the discussion of data into the art 
of storytelling, thus simplifying the process of understanding what the data is trying to 
tell us. They benefit both the people creating the visualizations (since the messages and 
information they are trying to convey are put across efficiently and in a visually pleasing 
manner) and those who are viewing the visualizations (since they can understand 
and observe patterns and insights almost instantly). These aspects are what separate 
interactive visualizations from static visualizations. 

Let's look at a few applications of interactive data visualizations.
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Applications of Interactive Data Visualizations 
Any industry that possesses large amounts of data can benefit from using interactive 
data visualizations. A few scenarios, such as those listed here, will help us understand 
how interactive visualizations help us get quick insights and facilitate our day-to-day 
activities:

•	 Let's say you wake up early in the morning and have time to hit the gym before 
you have to leave for work/school. You ate a pretty heavy meal last night with 
lots of carbs and sugar, so you want to do a workout that burns the most calories. 
You check your fitness app, which shows you a visualization describing your last 
couple of workouts, and with the help of the interactive graphs, you find a workout 
that helps you burn the most calories. Let's look at the following figure:

Figure 3.8: Fitness app
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•	 Before leaving for work/school, you need to decide whether you should drive or 
take an Uber. You check Google Maps to see how much traffic there is on your 
route, and you see there's a lot. So, you decide to take an Uber to avoid the hassle 
of driving in a messy traffic situation. Let's look at an example app below:

Figure 3.9: Google Maps app
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•	 Uber drivers often decide what hours they should work and the areas they should 
work in based on peak hours, such as hours when there is a high demand for cabs 
in specific areas. They can judge this by observing an interactive data visualization. 

•	 When you're at work/in school, you need to prepare a pitch for a client regarding 
a social media campaign, conveying the conclusion that Instagram is the app to 
target. To do this, you use data describing user habits on different social media 
platforms to create an interactive visualization, providing insights as to which app 
receives the most users and user time. 

•	 You go to the cinema and ask the ticket vendor for a ticket for the most popular 
movie right now. The ticket vendor reviews the trends through an interactive 
visualization-based app pertaining to the movies currently in cinemas and gives 
you a ticket to Avengers: Endgame.

•	 When you go home after the movie, you add your review of the movie to the 
ticket-selling mobile app. Your review gets added to the data, which creates 
visualizations regarding movie trends. 

The aforementioned examples involve fitness, Google Maps, transportation, social 
media, business intelligence, and the entertainment industry. These fields, along with 
many others, benefit from and use interactive data visualizations. 

Getting Started with Interactive Data Visualizations
As we mentioned earlier, the key aspect of interactive data visualizations is its ability 
to respond and react to human inputs either in the moment or within a very short 
time span. Thus, human inputs themselves play an important role in interactive 
data visualizations. In this section, we'll look at some human inputs, how they 
can be introduced into data visualizations, and the impact that they have on the 
comprehension of data. 

The following are some of the most popular forms of human input and interactive 
features:

•	 Slider: A slider allows the user to see data pertaining to a range of something. 
As the user changes the position of the slider, the plot changes in real time. This 
allows the user to see several plots in real time: 

Figure 3.10: A slider tool



96 | From Static to Interactive Visualization

•	 Hover: Hovering a cursor above an element of a plot allows the user to receive 
more information about the datapoint than can be seen just by observing the plot. 
This is helpful when the information you wish to convey cannot fit in the plot itself 
(such as precise values or brief descriptions). Let's look at a hover tool:

Figure 3.11: A hover tool

•	 Zoom: Zooming in and out of a plot is a feature that quite a few interactive data 
visualization libraries create on their own. They allow you to focus on specific 
datapoints of a plot and take a closer look at them.

•	 Clickable parameters:There are several types of clickable parameters, such as 
checkboxes and drop-down menus, that allow the user to pick and choose what 
aspects of the data they wish to analyze and view. An example is given here:

Figure 3.12: Clickable parameters
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There are Python libraries that are used to create these interactive features, which 
allow for the visualizations to take human input. Therefore, before we begin coding 
for and creating these interactive features, let's take a quick look at some of the most 
popular interactive data visualization Python libraries that exist. 

In the previous chapters, we looked at two built-in Python libraries: 

•	 matplotlib

•	 seaborn

Both are popular in the data visualization community. 

With these, we can build a static visualization (a static scatter plot showing the 
relationship between two variables) like this:

Figure 3. 13: Static data visualization

While both matplotlib and seaborn are great for static data visualizations, there are 
other libraries available that do a good job of designing interactive features. 

Two of the most popular interactive data visualization Python libraries are as follows:

•	 bokeh 

•	 plotly
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These help us create visualizations such as the following: 

Figure 3.14: The interactive data visualization that we will be creating in this chapter

We will be using both bokeh and plotly in the exercises in this chapter to create 
interactive data visualizations. 

Interactive Data Visualization with Bokeh

bokeh is a Python library for interactive data visualizations. The plots in Bokeh are 
created by stacking layers on top of each other. The first step is to create an empty 
figure, to which elements are added in layers. These elements are known as glyphs, 
which can be anything from lines to bars to circles. Attached to each glyph are 
properties such as color, size, and coordinates. 

bokeh is popular because the visualizations are rendered using HTML and JavaScript, 
which is why it is commonly chosen when designing web-based interactive 
visualizations. Furthermore, the bokeh.io module creates a .html file that contains 
the basic static plot, along with the interactive features, and doesn't necessarily require 
a server to run, which makes the visualization super easy to deploy. 

Let's get started with our visualizations!

The most important aspect of any kind of data visualization is the data itself – without 
it, there is nothing to convey. So, let's start our journey of interactive data visualizations 
by gathering and preparing our data so that we can visualize it in the most efficient 
manner. 
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In this chapter, Exercises 1 – 4 aim to create an interactive data visualization to 
represent the relationship between carbon dioxide emissions and the GDP of a country 
using the Python bokeh library.

Note

All the exercises and activities in this chapter will be developed on Jupyter 
Notebook. You will need Python 3.6, Bokeh, and Plotly installed on your system.

Exercise 22: Preparing Our Dataset

In this exercise, we will download and prepare our dataset using the built-in pandas 
and numpy libraries. By the end of this exercise, we will have a DataFrame on which 
we will build our interactive data visualizations. We'll be using the co2.csv and 
gapminder.csv datasets. The former consists of the carbon dioxide emissions per 
person per year per country, while the latter consists of the GDP per year per country. 
These files are available at https://github.com/TrainingByPackt/Interactive-Data-
Visualization-with-Python/tree/master/datasets.

The following steps will help you prepare the data: 

1.	 Import the pandas and numpy libraries:

import pandas as pd
import numpy as np

2.	 Store the co2.csv file in a DataFrame called co2, and the gapminder.csv file in 
a DataFrame called gm:

url_co2 = 'https://raw.githubusercontent.com/TrainingByPackt/
Interactive-Data-Visualization-with-Python/master/datasets/co2.csv'
co2 = pd.read_csv(url_co2)

url_gm = 'https://raw.githubusercontent.com/TrainingByPackt/
Interactive-Data-Visualization-with-Python/master/datasets/
gapminder.csv'
gm = pd.read_csv(url_gm)

We currently have two separate DataFrames, each consisting of data that 
we require to create our interactive data visualization. In order to create the 
visualization, we need to combine these two DataFrames and remove the 
unwanted columns. 

https://github.com/TrainingByPackt/Interactive-Data-Visualization-with-Python/tree/master/datasets
https://github.com/TrainingByPackt/Interactive-Data-Visualization-with-Python/tree/master/datasets
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3.	 Use .drop_duplicates() to remove the duplicate instances from the gm 
DataFrame and save this in a new DataFrame called df_gm:

df_gm = gm[['Country', 'region']].drop_duplicates()

4.	 Use .merge() to combine the co2 DataFrame with the df_gm DataFrame. This 
merge function basically performs an inner join on the two DataFrames (the same 
as the inner join when used in databases). This merge is necessary to ensure that 
both the co2 DataFrame and the gm DataFrame consist of the same countries, 
thus guaranteeing that the values of the CO2 emissions will correspond to their 
respective countries:

df_w_regions = pd.merge(co2, df_gm, left_on ='country', right_on 
='Country', how ='inner')

Note

To find out more about merging and joining in Python, click here: https://www.
shanelynn.ie/merge-join-DataFrames-python-pandas-index-1/.

5.	 Drop one of the country columns since there are two:

df_w_regions = df_w_regions.drop('Country', axis='columns')

6.	 Next, we're going to apply the .melt() function to this DataFrame and store 
it in a new DataFrame called new_co2. This function changes the format of 
a DataFrame into one that has identifier variables of our choice. In our case, 
we want the identifier variables to be country and region since they are the 
constants. We're also going to rename the columns: 

new_co2 = pd.melt(df_w_regions, id_vars=['country', 'region'])
columns = ['country', 'region', 'year', 'co2']
new_co2.columns = columns

https://www.shanelynn.ie/merge-join-DataFrames-python-pandas-index-1/
https://www.shanelynn.ie/merge-join-DataFrames-python-pandas-index-1/
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7.	 Set 1964 and onward as the range for the year column and int64 as the data 
type. Set the lower limit for the year column as 1964 so that the column consists 
of int64 values for 1964 and onward. Do this within the new_co2 DataFrame we 
created in the previous step, and store this in a new DataFrame called df_co2. 
Sort the values of the df_co2 DataFrame by the country column and then do the 
same for the year column using .sort_values(). Using the head() function, 
print the first five rows of the df_co2 DataFrame:

df_co2 = new_co2[new_co2['year'].astype('int64') > 1963]
df_co2 = df_co2.sort_values(by=['country', 'year'])
df_co2['year'] = df_co2['year'].astype('int64')
df_co2.head()

The output is as follows:

Figure 3.15: The first five rows of the df_co2 DataFrame

Now we have a DataFrame that consists of the carbon dioxide emissions per year 
per country! The serial numbers are not in ascending order because we have 
sorted the data by the country column and then the year column. 

Next, we're going to create a similar table for the GDP per year per country. 
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8.	 Create a new DataFrame called df_gdp that consists of the country, year, and 
gdp columns from the gm DataFrame: 

df_gdp = gm[['Country', 'Year', 'gdp']]
df_gdp.columns = ['country', 'year', 'gdp']
df_gdp.head() 

The output is as follows:

Figure 3.16: The first five rows of the df_gdp DataFrame

We finally have two DataFrames that consist of the following:

The carbon dioxide emissions, the GDP

9.	 Merge the two DataFrames together by using the .merge() function on the 
country and year columns. Store this in a new DataFrame called data. Use the 
dropna() function to drop the NaN values and the head() function to print the 
first five rows. By doing this, we can see what the final dataset looks like: 

data = pd.merge(df_co2, df_gdp, on=['country', 'year'], how='left')
data = data.dropna()
data.head()
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The output is as follows: 

Figure 3.17:The first five rows of the final DataFrame that we are going to visualize

Finally, let's check the correlation between carbon dioxide emissions and the GDP 
to ensure we're analyzing data that is worth visualizing. 

10.	 Create a numpy array of the co2 and gdp columns: 

np_co2 = np.array(data['co2'])
np_gdp = np.array(data['gdp'])

11.	 Use the .corrcoef() function to print the correlation between the carbon 
dioxide emissions and the GDP: 

np.corrcoef(np_co2, np_gdp)

The output is as follows:

Figure 3.18: Correlation between the carbon dioxide emissions and the GDP

As you can see from the preceding output, there is a high correlation between the 
carbon dioxide emissions and the GDP. 
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Exercise 23: Creating the Base Static Plot for an Interactive Data Visualization

In this exercise, we are going to create a static plot for our dataset and add circular 
glyphs to it. The following steps will help you with the solution:

1.	 Import the following: 

•	 curdoc from bokeh.io: This returns the current default state of the document/
plot.

•	 The figure from bokeh.plotting: This creates the figure for plotting.

•	 HoverTool, ColumnDataSource, CategoricalColorMapper, and Slider from 
bokeh.models: These are interactive tools and methods for mapping data from 
pandas DataFrames to a data source for plotting.

•	 Spectral6 from bokeh.palettes: A color palette for the plot.

•	 widgetbox and row from bokeh.layouts: widgetbox creates a column of 
predefined tools (including zoom), while row creates a row of bokeh layout objects, 
forcing them to have the same sizing_mode:

from bokeh.io import curdoc, output_notebook
from bokeh.plotting import figure, show
from bokeh.models import HoverTool, ColumnDataSource, 
CategoricalColorMapper, Slider
from bokeh.palettes import Spectral6
from bokeh.layouts import widgetbox, row

2.	 Run the output_notebook() function to load BokehJS. This is what enables the 
plot to be displayed within the notebook:

output_notebook()

3.	 We are going to color code our datapoints (which will be the individual countries) 
based on the region that they belong to. To do that, create a list of regions by 
applying the .unique() function on the region column in the DataFrame. Make 
this a list by using the .tolist() method: 

regions_list = data.region.unique().tolist()

4.	 Use CategoricalColorMapper to assign a color from the Spectral6 package to 
the different regions present in the regions_list list:

color_mapper = CategoricalColorMapper(factors=regions_list, 
palette=Spectral6)
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5.	 Next, we need to make a data source for the plot. Do this by creating a 
ColumnDataSource and storing it as source. The x axis will be the GDP per year 
while the y axis will be the carbon dioxide emissions per year:

source = ColumnDataSource(data={
    'x': data.gdp[data['year'] == 1964],
    'y': data.co2[data['year'] == 1964],
    'country': data.country[data['year'] == 1964],
    'region': data.region[data['year'] == 1964],
})

6.	 Store the minimum and maximum GDP values as xmin and xmax respectively: 

xmin, xmax = min(data.gdp), max(data.gdp)

7.	 Repeat step 6 to determine the minimum and maximum carbon dioxide emission 
values:

ymin, ymax = min(data.co2), max(data.co2)

8.	 Create the empty figure: 

•	 Set the title as CO2 Emissions versus GDP in 1964.

•	 Set the plot height as 600.

•	 Set the plot width as 1000.

•	 Set the range of the x-axis from xmin to xmax.

•	 Set the range of the y-axis from ymin to ymax.

•	 Set the y-axis type as logarithmic:

plot = figure(title='CO2 Emissions vs GDP in 1964', 
              plot_height=600, plot_width=1000,
              x_range=(xmin, xmax),
              y_range=(ymin, ymax), y_axis_type='log')

9.	 Add circular glyphs to the plot:

plot.circle(x='x', y='y', fill_alpha=0.8, source=source, 
legend='region', color=dict(field='region', transform=color_mapper), 
size=7)

10.	 Set the location of the legend to the bottom-right corner of the plot: 

plot.legend.location = 'bottom_right'
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11.	 Set the x-axis title as Income Per Person:

plot.xaxis.axis_label = 'Income Per Person'

12.	 Set the y-axis title as CO2 Emissions (tons per person):

plot.yaxis.axis_label = 'CO2 Emissions (tons per person)'

Now we have our basic plot created!

13.	 Display the plot:

show(plot)

The output is as follows:

Figure 3.19: The static plot with circular glyphs. Right now, this is a static data visualization
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Exercise 24: Adding a Slider to the Static Plot

In this exercise, we are going to add a slider for the year column of the DataFrame to 
our plot. The following steps will help you with the solution:

1.	 Create a slider object:

•	 Set the start as the first year in the year column.

•	 Set the end as the last year in the year column.

•	 Set the step as 1. Since with each movement of the slider, we want the year to 
increment with the value of 1.

•	 Set the value as the minimum value of the year column.

•	 Set the title as Year:

slider = Slider(start=min(data.year), end=max(data.year), step=1, 
value=min(data.year), title='Year')

2.	 Create a function called update_plot that will update the plot every time the 
slider is moved:

def update_plot(attr, old, new):
yr = slider.value
new_data = {
        'x': data.gdp[data['year'] == yr],
        'y': data.co2[data['year'] == yr],
        'country': data.country[data['year'] == yr],
        'region': data.region[data['year'] == yr],
}
source.data = new_data
plot.title.text = 'CO2 Emissions vs GDP in %d' % yr

slider.value is the value of the current position of the slider, and thus is the 
year whose data we need to display in the plot. This value is stored as yr. Create a 
dictionary called new_data that is structured the way source is structured (from 
Exercise 2, Creating the Base Static Plot for an Interactive Data Visualization step 
4), except instead of 1964, the year is yr. source.data is set to new_data, and 
the plot title is modified. 



108 | From Static to Interactive Visualization

3.	 Apply the .on_change() function with value and update_plot as the 
parameters to tell the plot that once the value of the slider changes, update the 
plot using the method described in the update_plot function:

slider.on_change('value', update_plot)

4.	 Create a row layout of the slider:

layout = row(widgetbox(slider), plot)

5.	 Add the layout to the current plot: 

curdoc().add_root(layout)

We have successfully added a slider to our plot! Our visualization is now interactive. 

Once again, you can't view the plot just yet, but this is what the slider will look like once 
we display our plot:

Figure 3.20: The slider tool

Exercise 25: Adding a Hover Tool

In this exercise, we are going to allow the user to hover above a datapoint on our plot to 
see the name of the country, the carbon dioxide emissions, and the GDP. The following 
steps will help you with the solution:

1.	 Create a hover tool called hover:

hover = HoverTool(tooltips=[('Country', '@country'), ('GDP', '@x'), 
('CO2 Emission', '@y')])

2.	 Add the hover tool to the plot:

plot.add_tools(hover)
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Once again, you can't view the plot just yet, but this is what hovering over a 
datapoint will look like:

Figure 3.21: Information about the Canada datapoint upon hovering above it

Now that we've added the hover tool, let's display our plot. 

3.	 Go back to cmd or your Terminal and traverse to the folder that contains this 
Jupyter notebook. Type the following command and wait until the plot is displayed 
in your web browser:

bokeh serve --show name_of_your_notebook.ipynb
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The output is as follows:

Figure 3.22: The plot when the slider is at the year 1964

The preceding plot displays the carbon dioxide emissions versus the GDP per 
country in the year 1964. As you move the slider, you will see the plot change in 
real time:

Figure 3.23:The plot when the slider is at the year 2011
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As you can see, in the right-hand corner, there are several tools. These are 
automatically generated by Bokeh when you create a plot:

Figure 3.24: The automatically generated features

These tools are as follows:

•	 Pan: The pan tool allows you to move and shift the view of your plot. 

•	 Box Zoom: This allows you to zoom in to a particular square-shaped section of the 
plot:

Figure 3.25a: Box zoom on the plot
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Figure 3.25b: Plot after pan

•	 Wheel Zoom: This allows you to arbitrarily zoom in to any point of the plot. 

•	 Save Plot: This allows you to save the current plot. 

•	 Reset: This resets the plot and takes you back to the original plot that you landed 
on. 

•	 Hover Tool: We created a hover tool in our plot and programmed it to display 
certain information. However, Bokeh also automatically generates a hover tool that 
can be enabled and disabled by this icon. This tool may not always display what we 
want it to, which is why we created one ourselves. 

Learn More: You can click on this to learn more about Bokeh:

Note

To check out some more tools, click here: https://bokeh.pydata.org/en/latest/docs/
user_guide/tools.html.
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Interactive Data Visualization with Plotly Express

Plotly is a very popular Python library and is used to create amazing and informative 
interactive data visualizations. It is a JSON-based plotting tool, and so every plot is 
defined by two JSON objects – data and layout. Deploying a Plotly visualization 
requires a little more effort than a Bokeh visualization does because we need to build a 
separate application (most commonly a Flask application) using the Dash framework. 

Compared with Bokeh, the tools and syntax of Plotly are much more straightforward. 
However, the code that's required to create these interactive data visualizations is 
still quite lengthy and tedious. Therefore, the creators of Plotly invented Plotly 
Express!

Plotly Express is a high-level API. Basically, it creates a high-level wrapper around 
the base Plotly code. As a result, the syntax and commands that are required to create 
interactive data visualizations are minimized immensely. 

Exercise 26: Creating an Interactive Scatter Plot

In this exercise, we are going to create an interactive data visualization of the 
DataFrame we created in Exercise 1, Preparing Our Dataset of this chapter – the carbon 
dioxide emissions and GDP DataFrame. 

The following steps will help you with the solution:

1.	 Open a new Jupyter notebook. 

2.	 Import the following libraries and packages: 

•	 Pandas: To prepare the DataFrame

•	 plotly.express: To create the plots:

import pandas as pd
import plotly.express as px
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3.	 Create the carbon dioxide emissions and GDP DataFrame from Exercise 1 in this 
notebook: 

co2 = pd.read_csv('co2.csv')
gm = pd.read_csv('gapminder.csv')
df_gm = gm[['Country', 'region']].drop_duplicates()
df_w_regions = pd.merge(co2, df_gm, left_on='country', right_
on='Country', how='inner')
df_w_regions = df_w_regions.drop('Country', axis='columns')
new_co2 = pd.melt(df_w_regions, id_vars=['country', 'region'])
columns = ['country', 'region', 'year', 'co2']
new_co2.columns = columns
df_co2 = new_co2[new_co2['year'].astype('int64') > 1963]
df_co2 = df_co2.sort_values(by=['country', 'year'])
df_co2['year'] = df_co2['year'].astype('int64')
df_gdp = gm[['Country', 'Year', 'gdp']]
df_gdp.columns = ['country', 'year', 'gdp']
data = pd.merge(df_co2, df_gdp, on=['country', 'year'], how='left')
data = data.dropna()
data.head()

The output is as follows:

Figure 3.26: The first five rows of the final DataFrame that we are going to visualize

4.	 Store the minimum and maximum GDP values as xmin and xmax respectively: 

xmin, xmax = min(data.gdp), max(data.gdp)

5.	 Repeat step 4 for the minimum and maximum carbon dioxide emission values:

ymin, ymax = min(data.co2), max(data.co2)



Getting Started with Interactive Data Visualizations | 115

6.	 Create the scatter plot and save it as fig:

•	 The data parameter will be the name of our DataFrame, that is, data. 

•	 Assign the gdp column to the x-axis.

•	 Assign the co2 column to the y-axis.

•	 Set the animation_frame parameter as the year column.

•	 Set the animation_group parameter as the country column.

•	 Set the color of the datapoints as the region column.

•	 Assign the country column to the hover_name parameter. 

•	 Set the facet_col parameter as the region column (this divides our plot into six 
columns, one for each region).

•	 Set the width as 1579 and the height as 400.

•	 The x-axis must be logarithmic. 

•	 Set the size_max parameter as 45. 

•	 Assign the range of the x-axis and the y-axis as xmin, xmax and ymin, ymax, 
respectively:

fig = px.scatter(data, x="gdp", y="co2", animation_frame="year", 
animation_group="country", color="region", hover_name="country", 
facet_col="region", width=1579, height=400, log_x=True, size_max=45, 
range_x=[xmin,xmax], range_y=[ymin,ymax])

7.	 Display the figure: 

fig.show()

The expected output is as follows: 

Figure 3.27: The landing plot



116 | From Static to Interactive Visualization

As you can see, we have a plot with six subplots; one for each region. Each region is 
color-coded. Each subplot has carbon dioxide emissions in tons per person as the 
y-axis and the income per person as the x-axis. 

There is a slider at the bottom of the plot that allows us to compare the correlation 
between the carbon dioxide emissions and the income per year between regions and 
countries per year. Upon hitting the play button in the bottom-left corner, the plot 
automatically progresses from the year 1964 to 2013, showing us how the datapoints 
vary with time. 

We can also manually move the slider: 

Figure 3.28: The plot in the year 1972

Additionally, we can hover over a datapoint to get more information about it: 

Figure 3.29: Information regarding Kuwait, which was received after hovering over it
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Plotly Express also automatically generates a number of interactive features that 
can be found at the top-right corner of the plot. These include pan, zoom in and out, 
box select, and hover. 

As you can see, creating an interactive data visualization with Plotly Express takes 
very few lines of code and the syntax is easy to learn and use. Besides scatter plots, the 
library has many other types of plots that you can use to interactively visualize different 
types of data. In the following activities, you will be a taking a closer look at them. 

Note

Click on the following link to check out some more plots that are available with 
Plotly Express: https://plot.ly/python/plotly-express/.

Activity 3: Creating Different Interactive Visualizations Using Plotly Express

In this activity, you will be working on the same dataset that you worked on in exercises 
of this chapter. It is important that you try out several different types of visualization to 
determine the visualization that best conveys the message you are trying to put across 
with your data. Let's create a few interactive visualizations using the Plotly Express 
library to determine which is the best fit for our data. 

High-Level Steps

1.	 Recreate the carbon dioxide emissions and GDP DataFrame.

2.	 Create a scatter plot with the x- and y-axes as year and co2 respectively. Add a 
box plot for the co2 values with the marginaly_y parameter.

3.	 Create a rug plot for the gdp values with the marginal_x parameter. Add the 
animation parameters on the year column

4.	 Create a scatter plot with the x- and y-axes as gdp and co2 respectively.

5.	 Create a density contour with the x- and y-axes as gdp and co2 respectively.

https://plot.ly/python/plotly-express/
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The outputs should be :

After Step 2:

Figure 3.30: Scatter plot of CO2 emissions per year

After Step 3:

Figure 3.31: Scatter plot of CO2 emissions versus GDP
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After Step 5:

Figure 3.32: Density contour of CO2 emissions versus GDP

Note

The solution steps can be found on page 264.

Summary
In this chapter, we learned how interactive data visualizations are a step ahead of 
static data visualizations due to their ability to respond to human inputs in real time. 
The range of applications of interactive data visualizations is vast, and we can visualize 
almost any type of data interactively. 

The human inputs that can be incorporated in interactive data visualizations include, 
but are not limited to, sliders, zoom features, hover tools, and clickable parameters. 
Bokeh and Plotly Express are two of the most popular and easy Python libraries that 
create interactive data visualizations. In the next chapter, we will look at how to create 
beautiful context-based interactive data visualizations. 





Learning Objectives

By the end of this chapter, you will be able to:

•	 Create interactivity in scatter plots using altair

•	 Use zoom in and out, hover and tooltip, and select and highlight on scatter plots

•	 Create interactive bar plots and heatmaps

•	 Create dynamic links between different types of plots within a single rich interactive 
visualization

In this chapter, you will learn to create interactive visualizations for data stratified with respect to 
any categorical variable.

Interactive 
Visualization of Data 

across Strata

4
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Introduction
In the previous chapters, we went through a variety of techniques for visualizing data 
effectively based on the type of features in the dataset and learned how to introduce 
interactivity in plots using the plotly library. The second section of this book, starting 
with this chapter, will guide you on building interactive visualizations with Python 
for a variety of contexts. An observation made in the previous chapter was that when 
it comes to introducing interactivity in certain types of Python plots, plotly can 
sometimes be verbose, and may involve a steep learning curve. Therefore, in this 
chapter, we'll introduce altair, a library designed especially for generating interactive 
plots. We will demonstrate how to create interactive visualizations with altair for data 
stratified with respect to any categorical variable. For illustration, we will use a publicly 
available dataset to generate scatter plots and bar plots with the features in the dataset 
and add a variety of interactive elements to the plots. We will also learn about some 
specific advantages of using altair over a more multi-purpose library such as plotly.

We will use the Happy Planet Index (HPI) http://happyplanetindex.org/ dataset 
throughout this chapter. The dataset shows where in the world people are using 
ecological resources most efficiently to live long, happy lives. It is not only an interesting 
resource for learning more about the ecological conditions as well as the socio-
economic well-being in various parts of our planet but also has an interesting mix of 
features that help us demonstrate certain key concepts of interactive visualization. So, 
let's dive right in and explore interactive plots using altair.

Note

Some of the images in this chapter have colored notations, you can find 
high‑quality color images used in this chapter at: https://github.com/
TrainingByPackt/Interactive-Data-Visualization-with-Python/tree/master/Graphics/
Lesson4.

Interactive Scatter Plots
As you know by now, scatter plots are one of the most essential types of plots for 
presenting global patterns within a dataset. Naturally, it is important to know how to 
introduce interactivity in these plots. We will first look at the zoom and reset actions on 
plots. Before that, though, let's have a look at the dataset. 

We can view the HPI dataset using the following code:

import pandas as pd

#Download the data from Github repo 

http://happyplanetindex.org/
https://github.com/TrainingByPackt/Interactive-Data-Visualization-with-Python/tree/master/Graphics/Lesson4
https://github.com/TrainingByPackt/Interactive-Data-Visualization-with-Python/tree/master/Graphics/Lesson4
https://github.com/TrainingByPackt/Interactive-Data-Visualization-with-Python/tree/master/Graphics/Lesson4
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hpi_url = "https://raw.githubusercontent.com/TrainingByPackt/
Interactive-Data-Visualization-with-Python/master/datasets/hpi_data_
countries.tsv"

# Once downloaded, read it into a DataFrame using pandas

hpi_df = pd.read_csv(hpi_url, sep='\t')

hpi_df.head()

The output is as follows:

Figure 4.1: HPI dataset

Note that there are 5 numerical/quantitative features in this dataset: Life 
Expectancy (years), Wellbeing (0-10), Inequality of 
outcomes, Ecological Footprint (gha/capita), and Happy Planet Index. 
There are two categorical/nominal features: Country and Region. In altair, 
quantitative features are denoted as Q, and nominal features are denoted as N. We will 
soon see how to use this in our visualizations.

This is actually quite tricky. Generally, for the purpose of visualization, if a feature that 
denotes an attribute such as rank has a wide range (roughly more than 10 ranks), you 
can treat the feature as just another numerical or quantitative feature. But with fewer 
ranks, it almost acts like a label and resembles a nominal feature. However, there is one 
crucial difference in the way in which rank features differ from nominal features – the 
order is important in ordinal features. Rank 1 has a different meaning and priority level 
than rank 5.

Note 

Each datapoint in the HPI dataset corresponds to one country. 

Let's generate and observe a static scatter plot, through an exercise, of the Wellbeing 
(0-10) and Happy Planet Index features for each country, using different colors to 
denote the region to which the country belongs and go ahead and add interactivity to it.
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Exercise 27: Adding Zoom-In and Zoom-Out to a Static Scatter Plot

In this exercise, we'll generate a static scatter plot using matplotlib. We'll use the 
hpi_data_countries dataset here for the plot and we'll analyze the Wellbeing 
scores for each country represented by the legend on the plot. We'll go ahead and add 
a zoom feature to it. We will be using the altair library to do this. Let's break the 
simple code down into simpler components since this is our first interactive plot using 
altair. To do so, let's go through the following steps:

1.	 Load the hpi dataset and read from the dataset using pandas:

import pandas as pd
hpi_url = "https://raw.githubusercontent.com/TrainingByPackt/
Interactive-Data-Visualization-with-Python/master/datasets/hpi_data_
countries.tsv"
# Once downloaded, read it into a DataFrame using pandas
hpi_df = pd.read_csv(hpi_url, sep='\t')

2.	 Plot a static scatter plot using matplotlib:

import seaborn as sns
import matplotlib.pyplot as plt
fig = plt.figure()
ax = fig.add_subplot(111)
ax = sns.scatterplot(x='Wellbeing (0-10)', y='Happy Planet Index', 
hue='Region', data=hpi_df)
plt.show()

The output is as follows:

Figure 4.2: Static scatter plot
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Each dot here represents a country from one of the 7 regions. Wellbeing and 
Happy Planet Index appear to be correlated. We see a trend in the Happy 
Planet Index scores and Wellbeing scores of different regions.

Now that we have a static scatter plot, let's explore the interactivity on this plot. 
We'll look into zoom in and out. 

3.	 Import the altair module as alt:

import altair as alt
alt.renderers.enable('notebook')

The output is as follows:

RendererRegistry.enable('notebook')

4.	 Provide the DataFrame of choice (hpi_df in our case) to the altair Chart 
function. 

5.	 Use the mark_circle() function to denote datapoints in the scatter plot using 
filled circles. 

Note 

You can also use the mark_point() function to use empty circles instead of 
filled ones. Try it.

6.	 Use the encode function to specify the features on the x and y axes. Although we 
also used the color parameter in this function to color-code the datapoints using 
the region feature, this is optional. Lastly, add the interactive() function to 
make the plot interactive for zooming! This does require Jupyter Notebook version 
5.3 or above. Use the following code:

alt.Chart(hpi_df).mark_circle().encode(
    x='Wellbeing (0-10):Q',
    y='Happy Planet Index:Q',
    color='Region:N',
).interactive()
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The output is as follows:

Figure 4.3a: The zoom-in feature on a static scatter plot

Figure 4.3b: The zoom-out feature on a static scatter plot
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And that's it.

Play around a little with that plot to ensure that you can actually zoom in and out.

Did you notice that we added a :Q suffix next to our quantitative features and a :N suffix 
next to our nominal feature? Adding suffixes like this helps altair to know the type of 
feature beforehand, instead of having to infer it by itself. You can also try eliminating 
the suffixes in this plot and you'll find that the plot is still generated without error 
because altair can guess the type of features in this case. Therefore, it is good 
practice to include the suffixes since there are cases where altair fails to infer the 
feature type.

An important concept in altair plots is that of encoding and channels. The concept 
is really simple – altair tries to map/encode various aspects of data for better 
visualization. This is why you see that there is an encode() function in the code. The 
various parameters, such as x, y, and color, that we specify in the encode function are 
called channels in altair. Now that you are aware of these important terminologies, 
let's look at other interesting forms of interactivity in altair.

Note

Notice the three little dots next to your plot? You can use that to save your plot in 
a .png (static) or .svg (interactive) file, once you have set your interactive plot in 
the desired configuration. However, the interactivity feature in a .svg file will not 
work unless you open it in compatible software such as Adobe Animate.

Exercise 28: Adding Hover and Tooltip Functionality to a Scatter Plot

In this exercise, we'll add hover and tooltip functionality to a static scatter plot using 
altair. We will work with the same scatter plot but add the ability to hover over 
any country (datapoint) and display information regarding the Region, Wellbeing 
(0-10), Happy Planet Index, and Life Expectancy (years) of that country:

1.	 Load the hpi dataset and read from the dataset using pandas:

import pandas as pd
hpi_url = "https://raw.githubusercontent.com/TrainingByPackt/
Interactive-Data-Visualization-with-Python/master/datasets/hpi_data_
countries.tsv"
# Once downloaded, read it into a DataFrame using pandas
hpi_df = pd.read_csv(hpi_url, sep='\t')
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2.	 Import the altair module as alt:

import altair as alt

3.	 Provide the DataFrame of choice (hpi_df in our case) to the altair Chart 
function. Use the mark_circle() function to denote datapoints in the scatter 
plot using filled circles. Use the encode function to specify the features on the x 
and y axes. Although we used the color parameter in this function to color-code 
the datapoints using the region feature, this is optional. Specify the tooltip 
channel as shown here:

# hover and tooltip in altair
alt.Chart(hpi_df).mark_circle().encode(
    x='Wellbeing (0-10):Q',
    y='Happy Planet Index:Q',
    color='Region:N',
    tooltip=['Country', 'Region', 'Wellbeing (0-10)', 'Happy Planet 
Index', 'Life Expectancy (years)'],
)

The output is as follows:

Figure 4.4: Exploring hover and tooltip on a scatter plot
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In the preceding plot, you'll find that the features mentioned in 
the tooltip parameter in the encode function are all displayed when the 
cursor is taken near any datapoint. We can see here that when we hover over a 
datapoint, it displays information regarding the Region, Wellbeing (0-10), 
Happy Planet Index, and Life Expectancy (years) of that country. 
In this case, Country – El Salvador, Wellbeing -5.9, HPI-35.6, Life 
Expectancy-72.5.

However, the zoom function is now lost. How will you bring it back?  
Simple – just add the interactive() function!

4.	 Add the interactive() function to bring back the zoom feature on the plot as 
shown here:

# zoom feature
import altair as alt
alt.Chart(hpi_df).mark_circle().encode(
    x='Wellbeing (0-10):Q',
    y='Happy Planet Index:Q',
    color='Region:N',
    tooltip=['Country', 'Region', 'Wellbeing (0-10)', 'Happy Planet 
Index', 'Life Expectancy (years)'],
).interactive()

The output is as follows:

Figure 4.5: Exploring hover and tooltip on a zoomed-in scatter plot
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We can see here, in the preceding zoomed-in plot, that when we hover over a datapoint, 
it displays information regarding the Region,Wellbeing (0-10),Happy Planet 
Index, and Life Expectancy (years) of that country. In this case, Country – 
Greece, Wellbeing -5.1, HPI-23.6, Life Expectancy-80.5.

Now, let's consider a more interesting scenario. Suppose we want to select an area on 
the plot to examine datapoints within it. Let's go through the following exercise for this 
scenario.

Exercise 29: Exploring Select and Highlight Functionality on a Scatter Plot

In this exercise, we will be using select and highlight functionality using altair. We 
can do this using a function called add_selection. We first need to define a variable 
that will store a selection interval and then generate the plot to which we want to add 
the selection function. In the resultant plot, we can click and then drag the cursor to 
create a selection area, which will be colored gray. Let's go through the following steps 
to do so:

1.	 Load the hpi dataset and read from the dataset using pandas:

import pandas as pd
hpi_url = "https://raw.githubusercontent.com/TrainingByPackt/
Interactive-Data-Visualization-with-Python/master/datasets/hpi_data_
countries.tsv"
# Once downloaded, read it into a DataFrame using pandas
hpi_df = pd.read_csv(hpi_url, sep='\t')

2.	 Import the altair module as alt:

import altair as alt

3.	 Define the selected_area variable to store the selection interval:

selected_area = alt.selection_interval()

4.	 Provide the DataFrame of choice (hpi_df in our case) to the altair Chart 
function.
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5.	 Use the mark_circle() function to denote datapoints in the scatter plot using 
filled circles. Use the encode function to specify the features on the x and y 
axes. Although we used the color parameter in this function to color-code the 
datapoints using the region feature, this is optional. Use the add_selection() 
function to specify the selected area. Use the following code:

alt.Chart(hpi_df).mark_circle().encode(
    x='Wellbeing (0-10):Q',
    y='Happy Planet Index:Q',
    color='Region:N'
).add_selection(
    selected_area
)

The output is as follows:

Figure 4.6: Exploring select and highlight on a scatter plot

Have you made sure you can click and drag to create a selection area? Now, let's 
make the plot respond to our selection by adding focus to our selection and 
graying out all the points outside of the selection.
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6.	 Add alt_value as lightgray to gray out all the points outside of the selection:

selected_area = alt.selection_interval()
alt.Chart(hpi_df).mark_circle().encode(
    x='Wellbeing (0-10):Q',
    y='Happy Planet Index:Q',
    color=alt.condition(selected_area, 'Region:N', alt.
value('lightgray'))
).add_selection(
    selected_area
)

The output is as follows:

Figure 4.7: Grayed-out points outside of a selected area on a scatter plot

Have you noticed what we did? We set the color parameter in the encode function to 
an altair condition that retains the colors of only the points within the selected area. 
This can be useful when you want to get insights into a particular range of features on 
the axes of a scatter plot. Let's go through an exercise to illustrate this.
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Exercise 30: Generating a Plot with Selection, Zoom, and Hover/Tooltip 

Functions

In this exercise, we will continue to work with the happy planet index dataset. The 
task is to create a scatter plot of Well-being versus Happy Planet Index and zoom 
into the area with high Well-being and a high Happy Planet index. You will need to 
determine which region is predominant in the selection area, then list the countries in 
the area. Let's go through the following steps:

1.	 Import the necessary modules and the dataset:

import altair as alt
import pandas as pd
# Download the data from "https://raw.githubusercontent.com/
TrainingByPackt/Interactive-Data-Visualization-with-Python/master/
datasets/hpi_data_countries.tsv"
# Once downloaded, read it into a DataFrame using pandas
hpi_df = pd.read_csv('hpi_data_countries.tsv', sep='\t')

2.	 Create an altair scatter plot of Wellbeing versus Happy Planet Index, along 
with the zoom feature, using the interactive() function, and zoom into the 
area including the set of datapoints at the top right:

alt.Chart(hpi_df).mark_circle().encode(
    x='Wellbeing (0-10):Q',
    y='Happy Planet Index:Q',
    color='Region:N',
).interactive()
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The output is as follows:

Figure 4.8: Scatter plot with a zoom feature

3.	 Now add the selection feature by changing the color parameter to include the 
altair selection condition:

selected_area = alt.selection_interval()
alt.Chart(hpi_df).mark_circle().encode(
    x='Wellbeing (0-10):Q',
    y='Happy Planet Index:Q',
    color=alt.condition(selected_area, 'Region:N', alt.
value('lightgray'))
).interactive().add_selection(
    selected_area
)
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The output is as follows:

Figure 4.9: Scatter plot with a selection feature

Notice that most countries in the selection area (top right) belong to the Americas 
(colored blue). Did you expect this based on your general knowledge? Let's add the 
tooltip function to find out which countries appear in our area of interest.

4.	 Add the tooltip function to locate the area of interest:

selected_area = alt.selection_interval()
alt.Chart(hpi_df).mark_circle().encode(
    x='Wellbeing (0-10):Q',
    y='Happy Planet Index:Q',
    color=alt.condition(selected_area, 'Region:N', alt.
value('lightgray')),
    tooltip= ['Country', 'Region', 'Wellbeing (0-10)', 'Happy Planet 
Index', 'Life Expectancy (years)']
).interactive().add_selection(
    selected_area
)
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The output is as follows:

Figure 4.10: Scatter plot with a tooltip function

If you hover over the area of interest, you will see that the top countries are Costa Rica, 
Mexico, Panama, and Colombia.

Now, let's jump to the next section to observe how the selection feature could be used 
across multiple plots.

Selection across Multiple Plots

The selection feature can be much more powerful when linked across multiple plots. 
We will consider the example of two scatter plots:

•	   wellbeing versus happy planet index

•	  life expectancy versus happy planet index

Let's go through the following exercise to create selection feature across multiple plots.
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Exercise 31: Selection across Multiple Plots

In this exercise, let's go step by step to generate an interactive plot. For our first scatter 
plot, since we want the y axis to be common across both plots, we will specify only 
the y axis feature in the encode function of our altair chart, and then add the x axis 
features separately on the Chart object. Further, to put the two plots one after the 
other and enable selection across them, we will use the altair vconcat function. See 
the following code for details:

1.	 Open a Jupyter notebook and import the necessary Python modules:

import altair as alt
import pandas as pd

2.	 Read from the dataset:

hpi_url = "https://raw.githubusercontent.com/TrainingByPackt/
Interactive-Data-Visualization-with-Python/master/datasets/hpi_data_
countries.tsv"
#read it into a DataFrame using pandas
hpi_df = pd.read_csv(hpi_url, sep='\t')

3.	 Plot the scatter plot with the Chart altair vconcat function to place two plots 
vertically one after the other:

# multiple altair charts placed one after the other
chart = alt.Chart(hpi_df).mark_circle().encode(
    y='Happy Planet Index',
    color='Region:N'
)
chart1 = chart.encode(x='Wellbeing (0-10)')
chart2 = chart.encode(x='Life Expectancy (years)')
alt.vconcat(chart1, chart2)
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The output is as follows:

Figure 4.11: Scatter plot for HPI versus Well-Being (0-10)

Figure 4.12: Scatter plot for HPI versus Life Expectancy (years)
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4.	 We can also place the two plots horizontally next to each other with the hconcat 
function. Here's how:

# multiple altair charts placed horizontally next to each other
chart = alt.Chart(hpi_df).mark_circle().encode(
    y='Happy Planet Index',
    color='Region:N'
)
chart1 = chart.encode(x='Wellbeing (0-10)')
chart2 = chart.encode(x='Life Expectancy (years)')
alt.hconcat(chart1, chart2)

The output is as follows:

Figure 4.13:Scatter plots placed horizontally

By the way, there are shortcuts for the hconcat and vconcat functions. We can 
substitute alt.hconcat(chart1, chart2) with chart1 | chart2 and alt.
vconcat(chart1, chart2) with chart1 & chart2.



140 | Interactive Visualization of Data across Strata

5.	 Add the hover and tooltip functions linking the two plots using the following code:

# hover and tooltip across multiple charts
selected_area = alt.selection_interval()
chart = alt.Chart(hpi_df).mark_circle().encode(
    y='Happy Planet Index',
    color=alt.condition(selected_area, 'Region', alt.
value('lightgray'))
).add_selection(
    selected_area
)
chart1 = chart.encode(x='Wellbeing (0-10)')
chart2 = chart.encode(x='Life Expectancy (years)')
chart1 | chart2

The output is as follows:

Figure 4.14: Hover and tooltip functionality on the linked scatter plots

Try selecting an area on either of the plots. You will notice that selection on one plot 
automatically leads to highlighting the same datapoints on the other plot. Isn't that 
cool?

Selection Based on the Values of a Feature

So far, we have used user input to create a rectangular area of selection using the 
selection_interval() function. Now, let's look at how to create a selection based on 
the values of a feature. 

We'll look at an exercise here. Suppose that we want to select all countries belonging to 
a region of our choice – Americas/Asia Pacific/Europe/Middle East and North Africa/
Post-communist/Sub-Saharan Africa. We can do this using a selection function called 
selection_single() instead of selection_interval().Refer to the following 
exercise to see how this is done.
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Exercise 32: Selection Based on the Values of a Feature

In this exercise, we'll create an interactive plot where we'll be able to see the datapoints 
based on a particular Region. We'll use the selection_single() function to get 
a selected set of datapoints. If you study the code carefully, you will find that the 
parameters for this function are self-explanatory. For any clarifications, please read 
about them in the official documentation at https://altair-viz.github.io/user_guide/
generated/api/altair.selection_single.html. Let's go through the following steps to do 
this:

1.	 Import the necessary Python modules:

import altair as alt
import pandas as pd

2.	 Read from the dataset:

hpi_url = "https://raw.githubusercontent.com/TrainingByPackt/
Interactive-Data-Visualization-with-Python/master/datasets/hpi_data_
countries.tsv"
#read it into a DataFrame using pandas
hpi_df = pd.read_csv(hpi_url, sep='\t')

3.	 Create an input_dropdown variable using the binding_select() function 
and set the options parameter to the list of regions in our dataset. Use the 
selection_single() function to select a set of datapoints. Use the color 
variable to store the condition under which datapoints will be selected – the 
colors assigned to datapoints within and outside of the selection:

input_dropdown = alt.binding_select(options=list(set(hpi_
df.Region)))
selected_points = alt.selection_single(fields=['Region'], bind=input_
dropdown, name='Select')
color = alt.condition(selected_points,
                    alt.Color('Region:N'),
                    alt.value('lightgray'))
alt.Chart(hpi_df).mark_circle().encode(
    x='Wellbeing (0-10):Q',
    y='Happy Planet Index:Q',
    color=color,
    tooltip='Region:N'
).add_selection(
    selected_points
)

https://altair-viz.github.io/user_guide/generated/api/altair.selection_single.html
https://altair-viz.github.io/user_guide/generated/api/altair.selection_single.html
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The output is as follows:

Figure 4.15a: Selection based on the values of a feature on a scatter plot

Figure 4.15b: Selection based on the values of a feature on a scatter plot
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The preceding plot initially has all its datapoints in color. However, as you select a value 
for the Region feature from the input dropdown, you'll notice that the corresponding 
countries are highlighted in color, while all the other countries are grayed out. In the 
preceding two plots, the first plot shows datapoints for the Americas region and the 
second plot shows datapoints for the Post-communist region.

That is quite nice!

Note

There are a variety of ways to perform selection and highlighting in altair 
interactive plots. You can learn more about them at https://altair-viz.github.io/
user_guide/interactions.html.

In this preceding section, we presented an overview of the important ways in which you 
can harness the capabilities of altair to make interactive scatter plots. Specifically, we 
learned:

•	 How to generate a scatter plot using the altair Chart() function, to which 
interactive components can be added

•	 How to add interactivity to a scatter plot in the form of zooming in and out with 
the interactive() function

•	 How to add interactivity to a scatter plot in the form of hovering and displaying 
information regarding datapoints based on cursor movement with the tooltip 
parameter

•	 How to add interactivity to a scatter plot in the form of selections and highlighting 
with the selection_interval() and selection_single() functions, and also 
how to link selections across multiple scatter plots

In the next section, we'll explore how to use altair to add interactivity to various 
other plots.

Other Interactive Plots in altair
Now that we know how to add interactivity to scatter plots, let's learn how to introduce 
interactivity to two other important visualization types – bar plots and heatmaps. We 
also encourage you to read the official documentation and look at the official example 
gallery at https://altair-viz.github.io/gallery/index.html to explore altair so as to be 
aware of the wide variety of visualization types possible in it.

https://altair-viz.github.io/user_guide/interactions.html
https://altair-viz.github.io/user_guide/interactions.html
https://altair-viz.github.io/gallery/index.html
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Exercise 33: Adding a Zoom-In and Zoom-Out Feature and Calculating the 

Mean on a Static Bar Plot 

In this exercise, first, we will generate a simple (static) bar plot and then explore 
interactivity such as zooming in and out. Then, we'll use the same bar plot and find out 
the mean of the Happy Planet Index of each region. We'll use the altair library 
here and the Happy Planet Index dataset:

1.	 Import the altair module as alt:

import altair as alt

2.	 Read from the dataset:

hpi_url = "https://raw.githubusercontent.com/TrainingByPackt/
Interactive-Data-Visualization-with-Python/master/datasets/hpi_data_
countries.tsv"
#read it into a DataFrame using pandas
hpi_df = pd.read_csv(hpi_url, sep='\t')

3.	 Provide the DataFrame of choice (hpi_df in our case) to the altair Chart 
function.

4.	 Use the mark_bar() function to denote datapoints on the bar plot. Use the 
encode function to specify the features on the x and y axes:

alt.Chart(hpi_df).mark_bar().encode(
    x='Region:N',
    y='mean(Happy Planet Index):Q',
)



Other Interactive Plots in altair | 145

The output is as follows:

Figure 4.16: Static bar plot
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That was easy! Did you notice that we simply had to set the y parameter to 'mean 
(Happy Planet Index)' to get the mean per region?

The above plot looks a bit too narrow, though. We can easily fix this by setting the 
plot width to a different value using the properties function.

5.	 Set the width to 400 using the properties function to increase the width of the 
bar plot:

alt.Chart(hpi_df).mark_bar().encode(
    x='Region:N',
    y='mean(Happy Planet Index):Q',
).properties(width=400)

The output is as follows:

Figure 4.17: Bar plot with increased width
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Are you wondering whether you can make the plot zoom in and out? Let's give it a 
try by adding the interactive() function.

6.	 Use the interactive function to zoom in and out:

import altair as alt
alt.Chart(hpi_df).mark_bar().encode(
    x='Region:N',
    y='mean(Happy Planet Index):Q',
).properties(width=400).interactive()

The output is as follows:

Figure 4.18: Zoomed-in bar plot

And it works! Try zooming in and out of the preceding plot if you don't believe it. 

Now let's add a line to show the mean of Happy Planet Index across all regions. 
Any ideas on how to do this? 



148 | Interactive Visualization of Data across Strata

7.	 Use the | operator to show the mean of HPI across all regions:

import altair as alt
bars = alt.Chart(hpi_df).mark_bar().encode(
    x='Region:N',
    y='mean(Happy Planet Index):Q',
).properties(width=400)
line = alt.Chart(hpi_df).mark_rule(color='firebrick').encode(
    y='mean(Happy Planet Index):Q',
    size=alt.SizeValue(3)
)
bars | line

The output is as follows:

Figure 4.19: Bar plot with the line on the map
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Nah, that's not what we wanted. We don't want the line to be placed next to our 
bar plot. We want it on the plot. So, how do we do that? For this, we need to use the 
layer concept in altair. The idea is to create variables to store the bar plot and 
line plot, and then layer them one on top of the other. Check out the code in the 
next step.

8.	 Add the layer function from the altair library:

import altair as alt
bars = alt.Chart().mark_bar().encode(
    x='Region:N',
    y='mean(Happy Planet Index):Q',
).properties(width=400)

line = alt.Chart().mark_rule(color='firebrick').encode(
    y='mean(Happy Planet Index):Q',
    size=alt.SizeValue(3)
)
alt.layer(bars, line, data=hpi_df)

The output is as follows:

Figure 4.20: Showing the mean on the bar plot



150 | Interactive Visualization of Data across Strata

So, now we know that the mean Happy Planet Index across all regions is around 26. 
Looks like there's a lot more happiness that our planet could take. Interesting!

By the way, you should also note that we didn't specify the dataset until we used 
the layer function. That is, we did not provide the hpi_df dataset in the Chart() 
function as we would usually do. Instead, we mentioned it in the layer function with 
the data=hpi_df parameter.

Now that you know about the concept of layering in altair, you can be trusted with a 
shortcut for it. Just write code independently for different plots, as you would usually 
write it, then use the + operator, as shown in the following example!

Exercise 34: An Alternative Shortcut for Representing the Mean on a Bar Plot

In this exercise, we'll calculate the mean of the HPI index on a bar plot using a 
shortcut to the code used in Exercise 33, Adding a Zoom-In and Zoom-Out Feature and 
Calculating the Mean on a Static Bar Plot. To do so, let's go through the following steps:

1.	 Calculate the mean of the HPI index on a bar plot using the following code:

import altair as alt
bars = alt.Chart(hpi_df).mark_bar().encode(
    x='Region:N',
    y='mean(Happy Planet Index):Q',
).properties(width=400)
line = alt.Chart(hpi_df).mark_rule(color='firebrick').encode(
    y='mean(Happy Planet Index):Q',
    size=alt.SizeValue(3)
).interactive()
bars + line
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The output is as follows:

Figure 4.21: Mean of the HPI index on a bar plot

Now let's add some interactivity to our plot. Say we want to be able to see the 
mean Happy Planet Index of any set of bars that we select using the click – and 
- drag mechanism.
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2.	 Use the click-and-drag mechanism using the following code in altair:

import altair as alt
selected_bars = alt.selection(type='interval', encodings=['x'])
bars = alt.Chart(hpi_df).mark_bar().encode(
    x='Region:N',
    y='mean(Happy Planet Index):Q',
    opacity=alt.condition(selected_bars, alt.OpacityValue(1), alt.
OpacityValue(0.7)),
).properties(width=400).add_selection(
    selected_bars
)
line = alt.Chart(hpi_df).mark_rule(color='firebrick').encode(
    y='mean(Happy Planet Index):Q',
    size=alt.SizeValue(3)
).transform_filter(
    selected_bars
)
bars + line

The output is as follows:

Figure 4.22a: HPI=31 for the Americas, Asia Pacific, and Europe regions on a bar plot
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Did you play around with the preceding plot? You can use the click - drag 
mechanism to select any set of bars and see how the line indicating the mean 
Happy Planet Index shifts accordingly. For example, if you select the three bars on 
the left (Americas, Asia Pacific, and Europe), you will notice that the mean 
HPI is around 31:

Figure 4.22b: HPI=24 for the Middle East and North Africa, Post-communist,  
and Sub-Saharan Africa regions on a bar plot

If you select the three bars on the right (Middle East and North Africa, Post-
communist, and Sub Saharan Africa), the mean HPI will be shown as around 24.

Exercise 35: Adding a Zoom Feature on a Static Heatmap

In this exercise, we'll use altair to create a heatmap indicating the number of 
countries with HPI and Wellbeing in various ranges. Next, we'll add zoom functionality 
to the map. We'll move on to also add circles on the heatmap to show different 
countries. We'll continue using the HPI dataset. To do so, let's go through the following 
steps:

1.	 Import the altair module as alt:

import altair as alt
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2.	 Read from the dataset:

hpi_url = "https://raw.githubusercontent.com/TrainingByPackt/
Interactive-Data-Visualization-with-Python/master/datasets/hpi_data_
countries.tsv"
#read it into a DataFrame using pandas
hpi_df = pd.read_csv(hpi_url, sep='\t')

3.	 Provide the DataFrame of choice (hpi_df in our case) to the altair Chart 
function.

4.	 Use the mark_rect() function to denote datapoints in the bar plot. Use the 
encode function to specify the features on the x and y axes:

alt.Chart(hpi_df).mark_rect().encode(
    alt.X('Happy Planet Index:Q', bin=True),
    alt.Y('Wellbeing (0-10):Q', bin=True),
    alt.Color('count()',
        scale=alt.Scale(scheme='greenblue'),
        legend=alt.Legend(title='Total Countries')
    )
)

The output is as follows:

Figure 4.23: Static heatmap
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Did you notice how easy it was to bin the Happy Planet Index and Wellbeing 
features? We simply had to set the bin parameter to True. altair is lovely!

5.	 Use the interactive function and add zoom capability. Use the following code:

alt.Chart(hpi_df).mark_rect().encode(
    alt.X('Happy Planet Index:Q', bin=True),
    alt.Y('Wellbeing (0-10):Q', bin=True),
    alt.Color('count()',
        scale=alt.Scale(scheme='greenblue'),
        legend=alt.Legend(title='Total Countries')
    )
).interactive()

The output is as follows:

Figure 4.24: Heatmap with a zoom feature

Just as we can use a color palette to indicate the number of countries in each cell 
of the heatmap, we can also draw circles of varying sizes on a heatmap to indicate 
the number of countries. 
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6.	 Draw circles on the heatmap using the heatmap+circles function:

heatmap = alt.Chart(hpi_df).mark_rect().encode(
    alt.X('Happy Planet Index:Q', bin=True),
    alt.Y('Wellbeing (0-10):Q', bin=True)
)
​
circles = heatmap.mark_point().encode(
    alt.ColorValue('lightgray'),
    alt.Size('count()',
        legend=alt.Legend(title='Records in Selection')
    )
)
​heatmap + circles

The output is as follows:

Figure 4.25: Circles on the heatmap

Varying circle sizes indicate the number of countries with a varying Wellbeing range. 
Exciting, isn't it? In the following exercise, we'll generate a bar plot and a heatmap to 
draw a comparison between the two.
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Exercise 36: Creating a Bar Plot and a Heatmap Next to Each Other

In this exercise, we will continue to work with the HPI dataset. The objective is to 
draw a bar plot depicting the number of countries in each region and a heatmap next 
to it, indicating the number of countries in various ranges of wellbeing and life-
expectancy. Let's see the following code:

1.	 Import the necessary modules and dataset:

import altair as alt
import pandas as pd

2.	 Read from the dataset:

import pandas as pd
hpi_url = "https://raw.githubusercontent.com/TrainingByPackt/
Interactive-Data-Visualization-with-Python/master/datasets/hpi_data_
countries.tsv"
# Once downloaded, read it into a DataFrame using pandas
hpi_df = pd.read_csv(hpi_url, sep='\t')

3.	 Generate the required bar chart using the mark_bar() function:

alt.Chart(hpi_df).mark_bar().encode(
    x='Region:N',
    y='count():Q',
).properties(width=350)
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The output is as follows:

Figure 4.26: Static bar plot

4.	 Generate the required heatmap using the mark_rect() function:

alt.Chart(hpi_df).mark_rect().encode(
    alt.X('Wellbeing (0-10):Q', bin=True),
    alt.Y('Life Expectancy (years):Q', bin=True),
    alt.Color('count()',
        scale=alt.Scale(scheme='greenblue'),
        legend=alt.Legend(title='Total Countries')
    )
).properties(width=350)
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The output is as follows:

Figure 4.27: Static heatmap

5.	 Merge the code to place the bar chart and heatmap next to each other using the 
bars | heatmap function:

bars = alt.Chart(hpi_df).mark_bar().encode(
    x='Region:N',
    y='count():Q',
).properties(width=350)
heatmap = alt.Chart(hpi_df).mark_rect().encode(
    alt.X('Wellbeing (0-10):Q', bin=True),
    alt.Y('Life Expectancy (years):Q', bin=True),
    alt.Color('count()',
        scale=alt.Scale(scheme='greenblue'),
        legend=alt.Legend(title='Total Countries')
    )
).properties(width=350)
bars | heatmap
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The output is as follows:

Figure 4.28: Horizontally placing a bar plot and a heatmap

Well done!

Now onto a much more interesting exercise – linking a bar chart with the heatmap we 
generated in the previous exercise.

Exercise 37: Dynamically Linking a Bar Plot and a Heatmap

In this exercise, we will link a bar plot and a heat map dynamically. Consider a scenario 
where you want to be able to click on any of the bars in a bar chart and have an updated 
heatmap corresponding to the region represented by the bar. So, for instance, you want 
to update the Life Expectancy versus Well Being heatmap only for the countries in 
a particular region. We can make this work with the following code:

1.	 Import the necessary modules and dataset:

import altair as alt
import pandas as pd
# Download the data from "https://raw.githubusercontent.com/
TrainingByPackt/Interactive-Data-Visualization-with-Python/master/
datasets/hpi_data_countries.tsv"
# Once downloaded, read it into a DataFrame using pandas
hpi_df = pd.read_csv('hpi_data_countries.tsv', sep='\t')
hpi_df.head()
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2.	 Select the region using the selection method:

selected_region = alt.selection(type="single", encodings=['x'])
heatmap = alt.Chart(hpi_df).mark_rect().encode(
    alt.X('Wellbeing (0-10):Q', bin=True),
    alt.Y('Life Expectancy (years):Q', bin=True),
    alt.Color('count()',
        scale=alt.Scale(scheme='greenblue'),
        legend=alt.Legend(title='Total Countries')
    )
).properties(
    width=350
)

3.	 Place the circles on a heatmap:

circles = heatmap.mark_point().encode(
    alt.ColorValue('grey'),
    alt.Size('count()',
        legend=alt.Legend(title='Records in Selection')
    )
).transform_filter(
    selected_region
)

4.	 Use the heatmap+circles | bars function to dynamically link the bar plot and 
the heatmap:

bars = alt.Chart(hpi_df).mark_bar().encode(
    x='Region:N',
    y='count()',
    color=alt.condition(selected_region, alt.
ColorValue("steelblue"), alt.ColorValue("grey"))
).properties(
    width=350
).add_selection(selected_region)
heatmap + circles | bars
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The output is as follows:

Figure 4.29: A dynamically linked bar plot and heatmap

Spend some time playing around with the visualization and studying the code. Did 
you notice how we used both the color palette and circles on the heatmap? As you click 
on each bar chart, you will find that the color palette indicating the total countries in 
a certain range of well-being and life-expectancy remains constant, whereas 
the circles get updated to reflect the number of countries in the corresponding range 
for the selected region. Making intelligent design choices such as these will not only 
increase your audience's understanding of your dataset but will also help you present 
your data with confidence and ease.

Note 

altair is a rich library designed to build both simple and complex interactive 
visualizations with ease. Due to time and space limitations, it is impossible to cover 
them comprehensively in any chapter. Therefore, we encourage you to build on 
the foundations laid in this chapter and study the examples on the altair official 
Example Gallery at https://altair-viz.github.io/gallery/index.html. This will equip you 
with a deeper understanding of the visualization possibilities in altair.

https://altair-viz.github.io/gallery/index.html
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In the preceding section, we presented an overview of some important ways to add 
interactivity to bar plots and heatmaps. Specifically, we learned:

•	 How to generate a bar plot using the altair mark_bar() function

•	 How to generate a heatmap using the altair mark_rect() function, and how to 
use color palettes and circles to visually represent heatmap data

•	 How to add zoom capabilities to bar plots and heatmaps using the 
interactive() function

•	 How to use the layering capability in altair to present plots on top of each other 
using the layer() function or the + operator

•	 How to dynamically link bar plots and heatmaps to create a single compelling 
visualization

Activity 4: Generate a Bar Plot and a Heatmap to Represent Content Rating 

Types in the Google Play Store Apps Dataset

We will be working with the Google Play Store Apps dataset hosted on the book 
repository. Your task is to create a visualization with: 

(a) A bar plot of a number of apps stratified by each Content Rating category (rated by 
Everyone/Teen). 

(b) A heatmap indicating the number of apps stratified by app Category and binned 
ranges of Rating. The user should be able to interact with the plot by selecting any 
of the Content Rating types and the corresponding change should reflect in the 
heatmap to only include the number of apps in that Content Rating category. 

High-Level Steps 

1.	 Download the dataset hosted in the book GitHub repository and format it as a 
pandas DataFrame.

2.	 Remove the entries in the DataFrame that have feature values of NA.

3.	 Create the required bar plot of the number of apps in each Content Rating 
category. 

4.	 Create the required heatmap indicating the number of apps across the app 
Category and Rating ranges. 

5.	 Merge the code for the bar chart and the heatmap and create a visualization with 
both plots linked dynamically to each other.
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The expected output:

After step 3:

Figure 4.30: Bar plot
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After step 4:

Figure 4.31: Heatmap

After step 5:

Figure 4.32: Linked bar plot and heatmap
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And that's it. Congratulations! 

Note

The solution steps can be found on page 268.

Summary
In this chapter, we learned how to create visualizations that respond to the selection 
of specific strata in a dataset. For illustration purposes, we used the Happy Planet 
Index dataset of 140 countries, creating a variety of plots with stratification based 
on the different regions to which countries belonged. We generated scatter plots, bar 
plots, and heatmaps with interactive features such as zooming in and out, tool tipping, 
the selection of datapoints in a user-specified interval, and the selection of datapoints 
belonging to specific strata. We also generated more complex visualizations with 
multiple plots interlinked with each other that dynamically respond to user inputs. In 
the next chapter, we will learn how to create interactive visualizations of data across 
time. 







Learning Objectives

By the end of this chapter, you will be able to:

•	 Explain temporal data and how it is used in the real world

•	 Use pandas to manipulate time-series data

•	 Build basic interactive plots by adding custom buttons and a range slider to better 
represent time-series data with the Bokeh library

•	 Use custom aggregators on time-series plots to explain the behavior of data

In this chapter, we will explore the interactive visualization of data across time.

Interactive 
Visualization of Data 

across Time

5
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Introduction
In the previous chapters, we learned how to create interactive visualizations to 
represent data in different contexts, such as creating bar plots for stratified data. In 
this chapter, we will learn how to create interactive visualizations to present data over 
a period of time. Plotting data against time gives us insights into trends, seasonality, 
outliers, and important events present in a dataset. Adding a time dimension on a static 
plot means that one of the axes of the plot will represent time. Adding interactivity 
on top of that gives us the freedom to explore and analyze the data. In an interactive 
visualization, we can manipulate the graph according to the user requirements on the 
fly.

We'll see how to manipulate and plot temporal data in Python. To plot timed data, we 
will first preprocess the time. Time is composed of units such as seconds, minutes, 
days, and weeks. So, we first parse the time into the required unit in order to visualize 
it. Pandas library provides utilities to parse different time formats, such as dd/mm/yy 
and mm/dd/yyyy. Then, by using the datetime object, we can segregate these formats.

To add interactivity, we will use the Bokeh library, which fits easily into the pandas 
and matplotlib ecosystem. By default, Bokeh provides many interactive tools, such 
as zoom-in and zoom-out, hover, and more. It can easily be integrated into Jupyter 
Notebook in a browser, you can run plots on a Bokeh server, or you can integrate them 
as a service with web frameworks such as Flask.

This chapter is designed to explain concepts by using practical examples. The first thing 
we will do is learn about temporal data. Then, we'll look at a few use cases of temporal 
visualization. Then, we will work on the manipulation of data. Finally, we'll use these 
concepts and apply them to create interactive plots using Bokeh. Let's explore the 
concept of temporal data.

Note

Some of the images in this chapter have colored notations, you can find 
high‑quality color images used in this chapter at: https://github.com/
TrainingByPackt/Interactive-Data-Visualization-with-Python/tree/master/Graphics/
Lesson5.

Temporal Data
Data that depends on time and where time is recorded explicitly is referred as temporal 
data. For this kind of data, time is an inherent dimension and is always attached to the 
data. For example, suppose we have a dataset that has records of the rate of ice melting 
over the last five years in Greenland. 

https://github.com/TrainingByPackt/Interactive-Data-Visualization-with-Python/tree/master/Graphics/Lesson5
https://github.com/TrainingByPackt/Interactive-Data-Visualization-with-Python/tree/master/Graphics/Lesson5
https://github.com/TrainingByPackt/Interactive-Data-Visualization-with-Python/tree/master/Graphics/Lesson5
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Let's look at the following dataset:

Figure 5.1: Rate of temperature change between 1880 and 1884 in Greenland

As we can see, time is an inherent component of this kind of data.

Types of Temporal Data
Temporal data can contain information about the following:

•	 Events: An event is a change in the state of an object at a given time. Event = 
Time + Object State. Examples of events are posting a tweet, sending an email, or 
sending a message. 

Temporal information in tweets helps us understand trending topics, get the latest 
news updates, and analyze the sentiment of topics over time.

•	 Measurements: Measurements records values across time. Measurement = Time + 
Measures. Examples of measurements are sensor data, revenue, and stock values.

Temporal measurement information is the key feature of time-series forecasting. 
Also, it helps us find patterns and anomalies in a dataset with sensor data. 

Another view of time can be based on how it progresses:

•	 Sequential: We consider time as continuous linear values here. An example of this 
type is a Unix timestamp.

•	 Cyclical: Time can be viewed as a recurrent event, where it is understood as fixed 
periods, such as weeks or months. The cyclical interpretation of time is used to 
compare values for the same period, such as sales values per month or yearly 
temperature change.
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•	 Hierarchical: Another way to understand temporal information is through an 
hierarchical pattern. A hierarchical time structure helps us to visualize data at 
different levels. Suppose you are plotting sales data for each month. To understand 
the pattern for each week for a given month, we are hierarchically breaking the 
time from a larger periods (months) into smaller periods (weeks).

Why Study Temporal Visualization?

Visualization reveals hidden structures and insights. It helps us understand how values 
change. For example, with a product sales count dataset, we can plot a comparative 
view of month-on-month or year-on-year changes and understand trends of sales 
behavior.

In visualizations with temporal data, time is plotted on the x axis, and the other features 
of the dataset are plotted on the y axis. 

Understanding and using temporal features of data play a crucial role in time-series 
forecasting, recommendations, rankings, and more.

A static plot shows how a feature on a temporal dataset changes over a period of time. 
In contrast to that, interactive plots can be visualized with user input/interactivity in 
mind. Also, interactive plots can ingest stream data to show the behavior of online data.

Let's look at example bar plots.

Here is the first plot:

Figure 5.2a: Static bar plot showing the change in temperature in Greenland
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Here is the second plot:

Figure 5.2b: Interactive plot of Greenland's temperature shown by the hover tooltip

In the preceding plots, we can see the change in temperature in Greenland over the last 
10 years in Figure 5.2a, which is essentially a static plot. Now, when we add interactivity 
on this plot and use the hover functionality, we will be able to see the exact value of 
temperature for a particular year. We can see in Figure 5.2b that it's -30 degrees C in 
2012.

The plots allow the reader to get a deeper understanding of the data because we can 
play with the plot. Interactive visualizations allow multiple perspectives of the same 
data; the problem with static visualizations is that they have been drawn to keep one 
view in mind.

We will be using temporal data and time-series data interchangeably throughout the 
chapter. Although these terms might not be very similar, they are in fact correlated. 
Let's first learn how they are related.
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Understanding the Relation between Temporal Data and 
Time‑Series Data
Time-series data is a more refined version of temporal data where observations are 
taken at equally spaced points in time successively. With temporal data, on the other 
hand, observations are simply attached to time, and the intervals may not be equally 
spaced.

Time-series data is a subset of temporal data, which means that time-series data 
is temporal data but temporal data may not be time-series data. For example, the 
following figure of the Puzhal reservoir in Chennai shows the water level over a period 
of time, which is not equally spaced out necessarily; therefore, the figure is plotted 
based on temporal data and not time-series data.

Let's look at what stories each type of data can tell:

•	 Puzhal reservoir in Chennai depicts how water levels change over time:

  

Figure 5.3: June 15, 2018 (L) and April 6, 2019 (R) 

This picture is courtesy of https://time.com/5611385/india-chennai-water-
crisis/.

Effect of draught: The photos of the Puzhal reservoir in Chennai depict the 
change in water level over time. Here, we can study the effect of drought and can 
conclude that how water has depleted from 2018 to 2019. 
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•	 Comparative study of GDP growth depicts the growth_rate of US and India:

Figure 5.4: Annual GDP growth of US and India

An interesting thing to note here is how the GDP of India has started going down 
in recent years compared to the US, which started going up from 2016. This is an 
example of a time-series dataset; we can see that data has been recorded at equal 
intervals of time.

Examples of Domains That Use Temporal Data
Easily accessible, yet information-dense, temporal visualizations are the result of 
accurate interpretations of data. There are different domains that use temporal and 
time-series data for interactive visualizations: 

•	 Finance: Examples include the study of a country's GDP growth and the study of 
the revenue growth of a country. In these cases, we use a time-series dataset.

•	 Meteorological: Forecasting the surface temperature change of a geographical 
region over time, for example, CO2 emissions by countries per year, again uses 
time-series data.
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•	 Traffic/mobility: Routing of vehicles/cabs for efficient operations and solving 
supply and demand problems pertaining to mobility could use time-series traffic 
data.

•	 Medical/healthcare: Some examples include studies of life expectancy over time, 
patients' temporal reports, and medical history analysis.

Visualization of Temporal Data
In temporal data visualization, time is the independent variable and the other features 
that are being visualized are plotted against time. So, the other features are dependent 
variables. Usually, time is plotted on the x axis, while the dependent variables are 
plotted on the y axis. We can see a few plots here:

•	 Line graph:

Figure 5.5: Line plot representing temporal data



Visualization of Temporal Data | 177

This line graph shows the percentage change in the population of a country for each 
year. If multiple lines are plotted on the same graph, then it gives us a comparative 
study of the features. Lines plots are easy to interpret and also simple to plot.

•	 Grouped bar chart:

Figure 5.6: Grouped bar plot representing temporal data
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This grouped bar chart shows the counts of medals (shown on the y axis) received 
in 2012, 2014, and 2016. Having many lines on the same line graph plot makes 
visibility and comparability poor. In this case, a grouped bar chart is a neat option.

•	  Line plot with a range slider:

Figure 5.7: Line plot with a range slider representing temporal data

The preceding graph shows the plot of stock prices between 2000 and 2013. If 
we have a wide range on the x axis, a slider helps us to focus on a particular year 
range.
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•	 Timed pie charts:

Figure 5.8: Timed pie charts representing medal counts in Olympics

The series of pie-charts show the distribution of medal count in the Olympics for 
each year. Pie charts provide a ratio of the values being visualized. Pie charts are 
recommended when there are not many types of values shown on the chart. 

How Time-Series Data Is Manipulated and Visualized

Pandas is the most common library for importing, wrangling, and analyzing data. For 
time- series data, it has built-in datetime function that makes time-series analysis 
and visualization easy. When we plot time-series data, we want to perform operations 
such as resampling, upsampling, or parsing dates for a month or a day to customize the 
visualization according to the requirements. Resampling and upsampling are ways to 
aggregate time periods. We will get a better understanding of resampling in the next 
section with some hands-on exercises. 
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For now, let's look at a parsing example using pandas and the Airpassengers.csv 
dataset:

import pandas as pd

from pathlib import Path

DATA_PATH = Path("datasets/chap5_data")

passenger_df = pd.read_csv(DATA_PATH /"AirPassengers.csv")

print(passenger_df.info())

Here is the output:

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 144 entries, 0 to 143

Data columns (total 2 columns):

Month          144 non-null object

#Passengers    144 non-null int64

dtypes: int64(1), object(1)

memory usage: 2.3+ KB

None

Note

The datasets used in this chapter can be found here https://github.com/
TrainingByPackt/Interactive-Data-Visualization-with-Python/tree/master/datasets/
chap5_data.

We can see the Month column contains data of the object type. Now, let's convert it to 
datetime using the following code:

passenger_df["Month"] = pd.to_datetime(passenger_df["Month"]) 

# converts into datetime object 

print(passenger_df.info())

Here is the output:

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 144 entries, 0 to 143

Data columns (total 2 columns):

https://github.com/TrainingByPackt/Interactive-Data-Visualization-with-Python/tree/master/datasets/chap5_data
https://github.com/TrainingByPackt/Interactive-Data-Visualization-with-Python/tree/master/datasets/chap5_data
https://github.com/TrainingByPackt/Interactive-Data-Visualization-with-Python/tree/master/datasets/chap5_data
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Month          144 non-null datetime64[ns]

#Passengers    144 non-null int64

dtypes: datetime64[ns](1), int64(1)

memory usage: 2.3 KB

None

Before playing with time-series data, let's introduce you to the main concepts of time 
and date manipulation in pandas. 

Date/Time Manipulation in pandas

Here are the common date/time manipulation techniques or functions in pandas that 
are used during analysis and visualization:

•	 Datetime: A specific date and time with time zone support. Datetime is used to 
convert a str object to a datetime object. Generally, it is applied to a column to 
do temporal analysis. It supports various types of date/time formats:

pd.to_datetime(['2019/09/20', '2019.10.31'])

Here is the output:

DatetimeIndex(['2019-09-09', '2019-09-10'], dtype='datetime64[ns]', 
freq=None)

•	 timedelta: timedelta is used for calculating an absolute time duration. 
timedelta can be used to add or subtract specific time values from a datetime 
column. Let's see an example of adding a day to a date:

import numpy as np
#week_delta arranged over week period, we can add these dates.
week_delta = pd.to_timedelta(np.arange(5), unit='w')
dates = pd.to_datetime(['9/9/2019', '9/9/2019', '9/9/2019', 
'9/9/2019', '9/9/2019'])
print(dates + week_delta)

Here is the output:

DatetimeIndex(['2019-09-09', '2019-09-16', '2019-09-23', '2019-09-
30', '2019-10-07'],
dtype='datetime64[ns]', freq='W-MON')
#freq='W-MON' implies weekday starting from Monday
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•	 Time spans: A span of time defined by a point in time and its associated frequency. 
Both timestamp and time span can be indexed to a DataFrame:

pd.Period('2019-09')

Here is the output:

Period('2019-09', 'M')

•	 Date offsets: Date offsets are relative time durations with respect to calendar 
arithmetic:

## Day-light saving in US (2019)
timestamp = pd.Timestamp('2019-03-10 00:00:00', tz='US/Pacific')
# Timedelta with respect to absolute time
print(timestamp + pd.Timedelta(days=1))

Here is the output:

2019-03-11 01:00:00-07:00

Here's another example:

# DateOffset with respect to calendar time
print(timestamp + pd.DateOffset(days=1))

Here is the output:

2019-03-11 00:00:00-07:00

Building a DateTime Index

Pandas DataFrames are indexed by an ordered sliceable set. If we assign 
DatetimeIndex as the index of a DataFrame, then we can slice and filter based on date, 
months, and so on.

Here is one way to make a datetime index:

passenger_df = passenger_df.set_index(pd.DatetimeIndex(passenger_
df['Month']))

Or, we can do it this way:

passenger_df.index = passenger_df['Month'] 

Here is the output:

DatetimeIndex(['1949-01-01', '1949-02-01', '1949-03-01', '1949-04-01',

               '1949-05-01', '1949-06-01', '1949-07-01', '1949-08-01',

               '1949-09-01', '1949-10-01',
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               ...

               '1960-03-01', '1960-04-01', '1960-05-01', '1960-06-01',

               '1960-07-01', '1960-08-01', '1960-09-01', '1960-10-01',

               '1960-11-01', '1960-12-01'],

              dtype='datetime64[ns]', name='Month', length=144, 
freq=None)

We can also set the date index while reading the data in the DataFrame:

athelete_df = pd.read_csv(DATA_PATH / "athletes.csv",         
parse_dates=['date_of_birth'],index_col='date_of_birth')

Choosing the Right Aggregation Level for Temporal Data
We will now introduce how time is handled and how to extract time components from 
a datetime object. Choosing the right aggregation level can be tricky and is worth 
exploring. A natural time aggregation, such as day or hour, may not be representative 
of the pattern. For example, an e-commerce website might have cyclical patterns on 
active users based on morning, afternoon, and evening. The aggregation level might not 
be present in the data and will need to be feature engineered in order to create new 
features. This is a common practice in the Machine Learning(ML) domain.

Now, let's do some hands-on exercises pertaining to date handling. We will use the 
AirPassengerDates.csv dataset.

Example 1: Converting Date Columns to pandas DateTime Objects

We'll start by importing the necessary Python modules and read from the 
AirpassengersDates.csv dataset using the following code:

#Import pandas library and read DataFrame from DATA_PATH

import pandas as pd

import numpy as np

from pathlib import Path

DATA_PATH = Path("../datasets/chap5_data/")

passenger_df = pd.read_csv(DATA_PATH/"AirPassengersDates.csv")

passenger_df.head()
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Here is the output:

Figure 5.9: The airpassengersdates dataset

We'll now convert the Date column to datetime by setting the index to Date:

passenger_df["Date"] = pd.to_datetime(passenger_df["Date"])

passenger_df.head()

Here is the output:

Figure 5.10: Converting the date to datetime in the dataset

Example 2: Creating month, day, and day_name Columns from the Date Column

In this example, we'll create month and day columns in the passenger_df DataFrame 
using the following code:

passenger_df["month"] = passenger_df["Date"].dt.month

passenger_df["day"] = passenger_df["Date"].dt.day
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Now, we'll create a day_name column in the passenger_df DataFrame by accessing 
the day_name method:

passenger_df["day_name"] = passenger_df["Date"].dt.day_name()

Let's print passenger_df:

passenger_df.head()

Here is the output:

Figure 5.11: Creating day, month, and day_name columns from the Date column

Now we will analyze the #Passenger column against time in the following exercise.

Exercise 38: Creating a Static Bar Plot and Calculating the Mean and Standard 

Deviation in Temporal Data

In this exercise, we'll count all passengers by month using the AirPassengerDates.
csv dataset, available on Packt's GitHub repository, and we will create a bar plot to 
visualize the data and calculate the mean and standard deviation in the dataset. To do 
so, we'll use the following code:

1.	 Import the pandas library and read the DataFrame using DATA_PATH:

%matplotlib inline
import pandas as pd
import numpy as np 
from pathlib import Path
DATA_PATH = Path("../datasets/chap5_data/")

2.	 Read the data and parse the Date column:

passenger_df = pd.read_csv(DATA_PATH/"AirPassengersDates.csv") 
passenger_df["Date"] = pd.to_datetime(passenger_df["Date"]) 
passenger_df.head()
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Here is the output:

Figure 5.12: The AirpassengersDates dataset

Let's try to visualize the data using Seaborn. Seaborn handles categorical 
data well. We will get a better understanding by plotting this dataset. Also, a 
visualization or a graphical representation is more appealing to look at than tables.

3.	 Create month, day, and day-name columns from the Date column:

passenger_df["month"] = passenger_df["Date"].dt.month passenger_
df["day"] = passenger_df["Date"].dt.day passenger_df["day_name"] = 
passenger_df["Date"].dt.day_name()

4.	 Aggregate the #Passengers column by the month column:

passenger_per_month = passenger_df.groupby(["month"])
[["#Passengers"]].agg("sum") 
passenger_per_month = passenger_per_month.reset_index() 
passenger_per_month.head()

The output is as follows:

Figure 5.13: Aggregated passengers by the month column
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5.	 Import the required libraries and set the figure size to create the bar plot:

import seaborn as sns 
import matplotlib.pyplot as plt 
plt.figure(figsize=(16,8))

6.	 Create a bar plot using sns and pass the column names to the x axis and y axis. 
Now we will use the passenger_per_month DataFrame because it has been 
processed:

ax = sns.barplot(x="month",y="#Passengers", data=passenger_per_
month) 
ax.set_title("Bar Plot - Passengers per month")

#Annotate the bars with value to have better idea
for p, v in zip(ax.patches, passenger_per_month['#Passengers']): 
    height = p.get_height() 
    ax.text(p.get_x() + p.get_width() / 2, height + 5, v, 
            ha='center', va='bottom') 
plt.show()

The output is as follows:

Figure 5.14: Static bar plot



188 | Interactive Visualization of Data across Time

As we can see, the number of passengers for each month is displayed at the top of 
each bar. Now, suppose we also want to calculate the mean of #Passengers per 
month.

7.	 Calculate the mean of #Passengers per month using the following code:

mean_passengers_per_month = passenger_df.groupby(["month"])
[["#Passengers"]].agg("mean").reset_index()
mean_passengers_per_month.head()

Here is the output: 

Figure 5.15: The mean of the dataset

8.	 Calculate the median of #Passengers per month using the following code:

median_passengers_per_month = passenger_df.groupby(["month"])
[["#Passengers"]].agg("median").reset_index()
median_passengers_per_month.head()

Here is the output:

Figure 5.16: The median of the dataset
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Now, suppose we want to plot the number of passengers with the standard 
deviation and cover 80% of the standard deviation.

9.	 Import the libraries and set up the figure:

import seaborn as sns
import matplotlib.pyplot as plt
plt.figure(figsize=(12,8))

10.	 Use the lineplot function from seaborn and set ci to 80 to cover 80% of the 
standard deviation:

ax = sns.lineplot(x="month",y="#Passengers", data=passenger_df, 
ci=80)
ax.set_title("Bar Plot Mean and Standard Deviation per Month")
plt.show()

The output is as follows:

Figure 5.17: Bar plot showing the mean and the standard deviation

From the plot, we can see that the mean is ~230 and the standard deviation is ~80 for 
the second month. 
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Now, let's understand the zscore concept and why we use it.

The zscore of value x is a measure of how many standard deviations x is away from 

the mean. zscore is a normalization technique used in the preprocessing of features. It 
helps the ML model to learn better from data. High zscore values in a sample indicate 
that the sample value is far away from the mean and could be an outlier. Here's how we 
calculate zscore mathematically:

Figure 5.18: Mathematical calcuation of zscore

We'll be using this concept of zscore to find outliers or anomalies in a dataset and 
visualize them using a line plot.

Exercise 39: Calculating zscore to Find Outliers in Temporal Data

In this exercise, we'll find the 5 days that have the highest zscore values. Next, we will 
use the AirPassengersDates.csv dataset to calculate the zscore and try to find 
which months could be outliers. To do this, let's go through the following steps:

1.	 Import the necessary Python modules:

#Import pandas library and read DataFrame from DATA_PATH 
import pandas as pd 
%matplotlib inline
import numpy as np 

2.	 Read the dataset from the path and display it:

from pathlib import Path 
DATA_PATH = Path("..datasets//chap5_data/")
passenger_df = pd.read_csv(DATA_PATH/"AirPassengersDates.csv") 

3.	 Parse the Date column:

passenger_df["Date"] = pd.to_datetime(passenger_df["Date"])
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4.	 Calculate the mean and standard deviation of the #Passengers column and 
assign them to new columns in passenger_df:

passenger_df['mean'] = passenger_df["#Passengers"].mean()
passenger_df['std'] = passenger_df["#Passengers"].std()

5.	 Calculate the zscore using the formula we introduced earlier by using the mean 
and std columns. Assign the result to a new column called zscore:

passenger_df['zscore'] = (passenger_df["#Passengers"] - passenger_
df['mean'])/passenger_df['std']

6.	 Now apply the abs function to calculate the absolute value of zscore:

passenger_df['zscore_abs'] = abs(passenger_df['zscore'])

7.	 Sort the DataFrame by zscore_abs:

passenger_df.sort_values(by="zscore_abs", ascending=False).head(100)

Here is the output:

Figure 5.19: zscore in AirpassengersDates

Let's try to visualize these outliers in passenger_df.
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8.	 First, filter the high and low values using the zscore:

anamlous_df_high = passenger_df.sort_values(by="zscore", 
ascending=False).head(10)
anamlous_df_high["Date"] = pd.to_datetime(anamlous_df_high["Date"])
anamlous_df_low = passenger_df.sort_values(by="zscore", 
ascending=True).head(10)
anamlous_df_low["Date"] = pd.to_datetime(anamlous_df_low["Date"])

9.	 Import the seaborn and matplotlib libraries, which are required for visualization, 
and plot the outliers using the following code:

import seaborn as sns
import matplotlib.pyplot as plt
plt.figure(figsize=(15,8))
plt.grid=True
plt.title("Top 10 high traffic passenger count")
ax = sns.lineplot(x="Date", y="#Passengers", data=passenger_df)
ax = sns.scatterplot(x="Date",y="#Passengers", data=anamlous_df_
high, size="#Passengers")
ax = sns.lineplot(x="Date", y="mean", data=passenger_df)
ax.text(pd.to_datetime("1950"), 290, "Mean Line", 
horizontalalignment='left', size='large', color='Blue')
ax = sns.scatterplot(x="Date",y="#Passengers", data=anamlous_df_low, 
size="#Passengers")
ax.grid()
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The output is as follows:

Figure 5.20: Showing the outliers in AirpassengerDates dataset

As we can see, the outliers in the dataset are represented by the orange dots and the 
blue dots.

We have learned so far that visualization of temporal data requires the DataFrame to 
be processed so that the required pattern can be represented on the plot. Here is a 
summary of what we have learned:

•	 We have learned three ways to make datetime as the index for plotting time-
series data, while reading data and setting using index_col, while explicitly 
setting the index with df.index = df['date'],  and while using set_index().

•	 We saw how to convert a parsable string column to a datetime column using 
pd.to_datetime().

•	 datetime arithmetics, for example, adding and subtracting timedelta.

•	 We saw how to aggregate data across different time values, for example, day, 
month, and week.

•	 We saw how to do analysis using mean, median, and zscore on the time axis.

Let's move on to the next section and delve into the concept of resampling in temporal 
data.
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Resampling in Temporal Data
Resampling involves changing the frequency of the time values in a dataset. If data 
observed over time has been collected over different frequencies, for example, over 
weeks or months, resampling can be used to normalize datasets for a given frequency. 
During predictive modeling, resampling is widely used to perform feature engineering.

There are two types of resampling:

•	 Upsampling: Changing the time from, for example, minutes to seconds. 
Upsampling helps us to visualize and analyze data in more detail, and these fine-
grained observations are calculated using interpolation.

•	 Downsampling: Changing the time from, for example, months to years. 
Downsampling helps to summarize and get a general sense of trends in data.

Common Pitfalls of Upsampling and Downsampling

Upsampling leads to NaN values. The methods used in interpolation are linear or cubic 
splines for imputing NaN values. This might not represent the original data, so the 
analysis and visualization might be misleading.

Downsampling aggregates the observation over sample frequency, where we provide a 
frequency to function as an argument, so we might lose some information.

Exercise 40: Upsampling and Downsampling in Temporal Data

In this exercise, we will perform upsampling and downsampling on the walmart store 
dataset. We'll first drop the NaN values, and then we'll merge the dataset. Then, we'll 
upsample the dataset to visualize the data in more detail. Next, we'll downsample and 
smoothen out the line plot. To do so, let's go through the following steps:

1.	 Import the necessary Python modules and set the data path:

%matplotlib inline
from datetime import datetime 
import pandas as pd 
from datetime import datetime 
from pathlib import Path 
DATA_PATH = Path('../datasets/chap5_data/')

2.	 Read the dataset using pandas and drop the NA values:

walmart_stores = pd.read_csv(DATA_PATH/'1962_2006_walmart_store_
openings.csv',  
parse_dates=['date_super']).dropna()
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3.	 Count the number of stores opened per year. We will use the walmart_store_
count dataset as time-series data:

walmart_store_count = walmart_stores.groupby("YEAR")[["storenum"]].
agg("count")\
.rename(columns={"storenum": "store_count"})

4.	 Merge walmart_store_count with walmart_stores:

walmart_store_count = pd.merge(walmart_stores, walmart_store_count, 
on="YEAR")

5.	 Set the index with date_super:

walmart_store_count= walmart_store_count.set_index(pd.
DatetimeIndex(walmart_store_count.date_super))

6.	 Filter out the required columns:

walmart_store_count = walmart_store_count[["date_super", "store_
count"]] walmart_store_count.drop_duplicates(subset="date_super", 
inplace=True)

7.	 Print the DataFrame:

walmart_store_count.head(8)

The output is as follows:

Figure 5.21: The dataset showing the number of stores opened in a certain year

Upsampling helps us to visualize and analyze the data in more detail.
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8.	 Convert the frequency of walmart_store_count_series to 2 days:

walmart_store_count_series = walmart_store_count.store_count
walmart_store_count_series = walmart_store_count_series.asfreq('2D')
walmart_store_count_series.head()

The output is as follows:

Figure 5.22: Showing the frequency of walmart_store_count_series 

9.	 Interpolate the missing values using linear interpolation:

walmart_store_count_series = walmart_store_count_series.
interpolate(method="spline", order=2) walmart_store_count_series.
plot(style=":")

The output is as follows:

Figure 5.23: The line plot
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Downsampling to a larger unit of time, for example, from day to week, will 
introduce smoothing. This is an aggregation method for the given frequency level.

10.	 Smooth out the plot using downsampling with a frequency of BA (business year) 
using the following code:

plt.figure(figsize=(12,8))
plt.ylabel("Interpolated Values")
plt.plot(walmart_store_count_series)
walmart_store_count_series.resample('BA').mean().plot(style=':', 
title="Values Smoothen by Business Year Frequency") #BA stands for 
Business Year

The output is as follows:

Figure 5.24: Smoothened-out line plot 
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11.	 Downsample with a frequency of BQ (business quarter) to observe higher 
granularity:

plt.figure(figsize=(12,8))
plt.ylabel("Interpolated Values")
walmart_store_count_series.plot(alpha=0.5, style='-')
walmart_store_count_series.resample('BQ').mean().plot(style=':', 
title="Values Smoothen by Business Quarter Frequency")#BQ stands for 
Business quarter

The output is as follows:

Figure 5.25: Smoothed-out line plot with a frequency of BQ

As we can see, upsampling and downsampling have been used to view the data with 
different levels of detail. We'll now see the lag in time-series data using the shift and 
tshift functions.
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Using shift and tshift to Introduce a Lag in Time-Series Data

•	 tshift: Shifts the datetime index of the DataFrame by a given period. The 
period is unit count of frequency; frequency could be week, month, hour, and so 
on. It changes the value of DateTimeIndex within the DataFrame.

•	 shift: Shifts the DataFrame index by a given period. In the process, new rows or 
columns will be introduced in the DataFrame with NaN values.

Exercise 41: Using shift and tshift to Shift Time in Data

In this exercise, we will use shift and tshift to shift time in a dataset. We'll be using the 
1962_2006_walmart_store_openings.csv dataset. We'll process the dataset, drop the 
NaN values, and merge the dataset with walmart_stores, and then we'll go ahead and 
create a line plot to visualize the data. To do this, let's go through the following steps:

1.	 Import the necessary Python modules and preprocess the data:

from datetime import datetime
%matplotlib inline
import pandas as pd
import matplotlib.pyplot as plt
from pathlib import Path
DATA_PATH = Path('../datasets/ chap5_data/')
walmart_stores = pd.read_csv(DATA_PATH / '1962_2006_walmart_store_
openings.csv', 
parse_dates=['date_super']).dropna()
walmart_store_count = walmart_stores.groupby("YEAR")[["storenum"]].
agg("count").rename(columns={"storenum": "store_count"})
walmart_store_count = pd.merge(walmart_stores, walmart_store_count, 
on="YEAR")
walmart_store_count= walmart_store_count.set_index(pd.
DatetimeIndex(walmart_store_count.date_super))
walmart_store_count = walmart_store_count[["date_super", "store_
count"]]
walmart_store_count.drop_duplicates(subset="date_super", 
inplace=True)
walmart_store_count_series = walmart_store_count.store_count
walmart_store_count_series = walmart_store_count_series.asfreq('2D')
walmart_store_count_series = walmart_store_count_series.
interpolate(method="spline", order=2)
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2.	 Create three plots: one normal, one shifted with index, and one shifted with time:

walmart_store_count_series = walmart_store_count_series.asfreq('D', 
method='pad')

3.	 Set up the plot and shift_val. shift_val is the value of the lag we want to plot 
on graphax[0].legend(['input'], loc=2):

fig, ax = plt.subplots(3, figsize=(14,9))
shift_val = 400
#create 3 plots, one normal, one shifted with index, and other 
shifted with time
walmart_store_count_series.plot(ax=ax[0])
#shift the date by shift_val
walmart_store_count_series.shift(shift_val).plot(ax=ax[1])
#shift the time index using tshift
walmart_store_count_series.tshift(shift_val).plot(ax=ax[2])
#select a date to draw line on plot
date_max = pd.to_datetime('2002-01-01')
delta = pd.Timedelta(shift_val, 'D')
#Put marker on three plot to undestand how thsift shifting the index 
and shift is changing the data.
ax[0].legend(['input'], loc=2)
ax[0].set_ylabel("Interpolated Store Count")
ax[0].get_xticklabels()[2].set(weight='heavy', color='green')
ax[0].axvline(date_max, alpha=0.3, color='red')
ax[1].legend(['shift({})'.format(shift_val)], loc=2)
ax[1].set_ylabel("Interpolated Store Count")
ax[1].get_xticklabels()[2].set(weight='heavy', color='green')
ax[1].axvline(date_max + delta, alpha=0.2, color='green')
ax[2].legend(['tshift({})'.format(shift_val)], loc=2)
ax[2].set_ylabel("Interpolated Store Count")
ax[2].get_xticklabels()[1].set(weight='heavy', color='black')
ax[2].axvline(date_max + delta, alpha=0.2, color='black');
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The output is as follows:

Figure 5.26: Line plots representing tshift and shift

Let's try to understand the shift() and tshift() functions using the preceding plots.

shift shifts the data to a given unit. Here, shift(shift_val) shifts by 400 days, 
since we have set the frequency to D in the Timedelta function of pandas.

Autocorrelation in Time Series

Calculating the correlation between time-series values with lagged/shifted values of 
the same time-series dataset is called autocorrelation.

A plot of autocorrelation is called an Autocorrelation Function(ACF).

To understand how time-series values are correlated with past values, we need to find a 
value of p that gives the highest correlation value. p is also known as an auto-regressive 
value.
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For example, if p=6, then the value of time-series data at time t will be determined by 
x(t-1)...x(t-6).

Let's go through the following example:

#Drawing the autocorrelation function 

from statsmodels.graphics.tsaplots import plot_acf 

import numpy as np

import pandas as pd

from statsmodels.tsa.stattools import acf 

from pandas_datareader.data import DataReader

from datetime import datetime

import matplotlib.pyplot as plt

%matplotlib inline

ibm = DataReader('IBM',  'yahoo', datetime(2010, 2, 1), datetime(2018, 
2, 1))

ibm_close = ibm['Close']

ibm_close_month = ibm_close.resample("M").mean() 

#plot_acf(ibm_close, lags=50) 

lag_acf = acf(ibm_close_month, nlags=72) 

#Plot ACF: 

plt.figure(figsize=(10, 4)) 

plt.subplot(121) 

 

plt.plot(lag_acf) 

plt.axhline(y=0,linestyle='--',color='gray') 

plt.axhline(y=-1.96/np.sqrt(len(ibm_close)),linestyle='--
',color='gray') 

plt.axhline(y=1.96/np.sqrt(len(ibm_close)),linestyle='--
',color='gray') 

plt.title('Autocorrelation Function')
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The output is as follows:

Figure 5.27: Autocorrelation represented through a line plot

As we can see, the graph touches the first confidence interval (represented by the -- 
line in the plot) at 18, hence p = 18.

In this section, we have learned about time-series manipulation and visualization. Here 
are the specific concepts that we have practiced:

•	 Understanding upsampling and downsampling

•	 Plotting upsampling and downsampling and the advantages and disadvantages of 
each technique

•	 Understanding shift and tshift understanding using visualization

Interactive Temporal Visualization
We have so far seen how to manipulate temporal data and create static plots. Now, we 
need a visualization that can be rendered at runtime based on events and information 
details – an interactive plot in which the events could be zoom, hover, change of axis, 
3D rotations, and more. Information details could be changing the aggregation column 
from year to month or days.

Now we will explain how to plot using the Bokeh library. First, we will plot a simple plot. 
At the end, we will learn about callbacks and the sophisticated functionalities of Bokeh.
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Bokeh Basics

Bokeh is an interactive visualization library. It is able to handle large amounts of data 
and streaming data as well. Apart from Python, Bokeh can be used with R, Scala, Lua, 
and other programming languages.

For a simple graph, many interactivity tools come built-in with Bokeh, for example, 
pan, box zoom, and wheel zoom. Since we will be visualizing our output in a Jupyter 
Notebook, we need to import and initialize the required settings. Bokeh is essentially 
used for the following:

•	 Plots: Plots are containers that hold tools, data to show the figure, and maps to 
bokeh.plotting.figure. This is used to make a plot.

•	 Glyphs: Basic visual marks that Bokeh can display, for example, lines and circles.

•	 Guides: Help us to judge distances, angles, and so on. Examples include axes, grid 
lines, and ticks.

•	 Annotations: Visual aids that label certain points on a figure, such as the title and 
legends.

Advantages of Using Bokeh

The advantages of using bokeh are:

•	 Bokeh is fast and can handle a large amount of data. Complex visualizations can be 
drawn using the available commands.

•	 It has intuitive parameter names and usable defaults. 
Bokeh can output in various formats according to requirements, such as Jupyter 
Notebook, server response, and html files.

•	 Output from matplotlib and seaborn can be easily rendered into bokeh

•	 By default, many interactive tools are available, such as wheel zoom and box zoom.

Let's look at an example of adding interactivity on static plots using the bokeh library.

Example 3: Adding Zoom in and out Functionality on a Line Plot Using Bokeh

In this example, we'll add interactive features such as pan and zoom in and out on a 
static line plot using the Bokeh library. To do this, let's go through the following steps:

1.	 Import the necessary modules and functions:

import numpy as np from bokeh.plotting import output_notebook, 
figure, show
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2.	 Import the required modules and functions, importing figure, show, output_
notebook, output_file:from bokeh.plotting import output_notebook, figure, show.

3.	 Set the output mode as output_notebook():

output_notebook()

4.	 Load the data from pandas, SQL, from a URL, or from any other sources:

#prepare some data
x = np.arange(5)
y = [6, 7, 2, 4, 5]

5.	 Create a figure and add glyphs to it:

# create a new plot specifying plot_height, plot_width, with a title 
and axis labels.
p = figure(plot_height=300, plot_width=700,title="simple line 
example", x_axis_label='x', y_axis_label='y')

6.	 Add a line renderer with legend and line thickness:

# add a line renderer with legend and line thickness
p.line(x, y, legend="Temp", line_width=3)

7.	 Show the visualization:

# show the results
show(p)

The output is as follows: 

Figure 5.28: Zoomed-out line plot (L) and zoomed-in line plot (R)

Now, let's add more interactive functionalities to the plot through an exercise.
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Exercise 42: Adding Interactivity to Static Line Plots Using Bokeh

In this exercise, we'll create static line plots and add interactivity such as zooming in 
and out. We'll be using the uk_europe_population_2005_2019.csv dataset. To do 
this, let's go through the following steps:

1.	 Import the libraries and read the data from the datasets/chap5_data folder:

import pandas as pd
from pathlib import Path
import pandas as pd 
from pathlib import Path
from bokeh.plotting import figure, show, output_file
from bokeh.plotting import figure, output_notebook, show, 
ColumnDataSource
DATA_PATH = Path('datasets/chap5_data')

2.	 Set the output as a notebook:

output_notebook()

3.	 Read the data as a DataFrame. Filter the rows by UK and France. Make DataFrame 
as ColumnDataSource so that Bokeh can access it by column names:

uk_eu_population = pd.read_csv(DATA_PATH / "uk_europe_
population_2005_2019.csv")
uk_population = uk_eu_population[uk_eu_population.country == 'UK']
source_uk = ColumnDataSource(dict(year=uk_population.year, 
change=uk_population.change))
france_population = uk_eu_population[uk_eu_population.country == 
'France']
source_france = ColumnDataSource(dict(year=france_population.year, 
change=france_population.change))

4.	 Initialize the figure with an appropriate title and height:

TOOLTIPS = [
    ("population:", "@change")
]
r = figure(title="Line Plot comparing Population Change", plot_
height=450, tooltips=TOOLTIPS)

r.line(x="year", y="change", source=source_uk, color='#1F78B4', 
legend='UK', line_color="red", line_width=3)
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r.line(x="year", y="change", source=source_france, legend='France', 
line_color="black", line_width=2)
r.grid.grid_line_alpha=0.3
show(r)

The output is as follows:

Figure 5.29: Line plot comparing population change for France

We have successfully added interactive features to a temporal static plot. We can see in 
the plots that in the 2000-2010 time period, the population in the UK increased a lot 
more than France.
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Exercise 43: Changing the Line Color and Width on a Line Plot

In this exercise, we will change the line color and width of line plots. We will be 
using microsoft_stock.csv and googlestock.csv. To do so, let's go through the 
following steps:

1.	 Import the necessary Python modules and download the sample data from the 
library:

import pandas as pd
from bokeh.plotting import figure, output_notebook, show, 
ColumnDataSource
from bokeh.io import push_notebook, show, output_notebook
from ipywidgets import interact
output_notebook()

2.	 Read the data:

from pathlib import Path
DATA_PATH = Path("../datasets/chap5_data/")

3.	 Initialize the figure: 

TOOLTIPS = [ ("date", "@date"), ("value", "@close") ] p = 
figure(title="Interactive plot to change line width and color", 
plot_width=900, plot_height=400, x_axis_type="datetime", 
tooltips=TOOLTIPS)

4.	 Use the helper function to return the microsoft_stock and google_stock 
DataFrames:

def prepare_data():
    microsoft_stock = pd.read_csv(DATA_PATH / "microsoft_stock_ex6.
csv")
    microsoft_stock["date"] = pd.to_datetime(microsoft_
stock["date"])
    google_stock = pd.read_csv(DATA_PATH / "google_stock_ex6.csv")
    google_stock["date"] = pd.to_datetime(google_stock["date"])
    
return microsoft_stock, google_stock

5.	 Call the helper function to get the DataFrames:

microsoft_stock, google_stock = prepare_data()
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6.	 Add the lines for both DataFrames:

microsoft_line=p.line("date","close", source=microsoft_stock, line_
width=1.5, legend="microsoft_stock")
google_line = p.line("date", "close", source=google_stock, line_
width=1.5, legend="google_stock")

7.	 Define how to interact with user events:

def update(color, width=1):
    google_line.glyph.line_color = color
    google_line.glyph.line_width = width
    push_notebook()

interact(update, color=["red", "blue", "gray"], width=(1,5))

8.	 Show the output:

show(p, notebook_handle=True)

The output is as follows:

Figure 5.30: Interactive feature that changes the line color and width on a line plot
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Exercise 44: Adding Box Annotations to Find Anomalies in a Dataset

In this exercise, we will add box annotations to link screen coordinates to specific plot 
regions in order to find anomalies in sea surface temperature. To do so, let's go through 
the following steps:

1.	 Import the necessary Python modules: 

from ipywidgets import interact 
import numpy as np 
from ipywidgets import interact
from bokeh.io import push_notebook, show,output_notebook
from ipywidgets import interact
from bokeh.models import BoxAnnotation

2.	 Set the output as Jupyter Notebook:

output_notebook()

3.	 Read the data:

# data reading and filtering
from bokeh.sampledata.sea_surface_temperature import sea_surface_
temperature
data = sea_surface_temperature.loc['2016-02-01':'2016-03-22']

4.	 Set the figure variables:

p = figure(x_axis_type="datetime", title="Sea Surface Temperature 
Range")
p.background_fill_color = "#dfffff"
p.xgrid.grid_line_color=None
p.xaxis.axis_label = 'Time'
p.yaxis.axis_label = 'Value'

5.	 Add the annotation to the figure:

p.line(data.index, data.temperature, line_color='grey') 
p.circle(data.index, data.temperature, color='grey', size=1) 
p.add_layout(BoxAnnotation(top=5, fill_alpha=0.1, fill_
color='red', line_color='red')) 
p.add_layout(BoxAnnotation(bottom=4.5, fill_alpha=0.1, fill_
color='red', line_color='red')) 
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6.	 Show the figure:

show(p)

Figure 5.31: Line plot showing sea surface temperature change

As we can, during the time period of 1 Feb – 3 Mar in the year of 2016, the sea surface 
temperature increased from 5 to 5.5. In the next section, we'll explore interactivity 
using the bokeh library. 
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Interactivity in Bokeh

There are multiple ways in which we can achieve interactivity using the Bokeh library:

•	 CustomJS callbacks: Embedding JavaScript code inside Python. We create 
JavaScript code as strings that handle interactive events in the browser.

•	 Bokeh applications: Application code is executed in the Bokeh server each time a 
new connection is made to create a new Bokeh document that will be synced with 
the browser.

•	 Integrating with other frameworks, such as Flask.

•	 Running in Jupyter Notebooks without a server.

To do interactive plotting inside Jupyter Notebook, we need to use the push_notebook 
and interact functions. The only requirement is to write a custom function that will 
define the interactivity based on user events. 

Let's implement this:

from ipywidgets import interact

import numpy as np

from bokeh.io import push_notebook, show, output_notebook

from bokeh.plotting import figure

output_notebook()

x = np.linspace(0, 4*np.pi, 1000)

y = np.sin(x)

p = figure(title="simple line example", plot_height=300, plot_
width=600, y_range=(-2,2), background_fill_color='#efffff')

r = p.line(x, y, color="#8888ff", line_width=1.5, alpha=0.8) 

#custom function define how to interact for user event.

def update(f, w=1, A=1, phi=0):

if f == "sin": func = np.sin

elif f == "cos": func = np.cos

elif f == "tan": func = np.tan



Interactive Temporal Visualization | 213

r.data_source.data['y'] = A * func(w * x + phi)

push_notebook()

show(p, notebook_handle=True)

interact(update, f=["sin", "cos", "tan"], w=(0,50), A=(1,10), phi=(0, 
20, 0.1))

The output is as follows: 

Figure 5.32: User-driven interactive plot
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Activity 5: Create an Interactive Temporal Visualization 

In this activity, we will analyze a large time-series dataset using RangeTool. RangeTool 
can be used to focus on a particular time slot. Then, you can also use the zoom feature 
to analyze in more depth. The next task is to create a plot that creates a drop-down list. 
Based on the aggregation level, it aggregates the data at runtime and renders the plot.

High-Level Steps

1.	 Import the necessary Python modules.

2.	 Read from the dataset.

3.	 Add the RangeTool.

4.	 Set up the values for the next plot.

5.	 Set up the libraries and read the data

6.	 Extract the x and y data from the DataFrame

7.	 Plot using the figure line method.

The output should look like:

After Step 3-

Figure 5.33: Time-series stock data
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After Step 6:

Figure 5.34: Stock price chart

Note

The solution steps can be found in page 272.

Summary
In this chapter, we focused on temporal data visualizations. Firstly, we learned the 
theory behind temporal data. Then, we covered the real-world applications of temporal 
data.

We used the pandas time function to learn about transforming date columns, such as 
setting time as an index value in line plots and analyzing data at different frequency 
levels. Time is sequential in nature, so we covered the shift and tshift functions, 
which can be used to compare current observations with past observations and to find 
out if there are any correlations.

We also looked at the Bokeh plotting interface. We plotted graphs using increasing 
levels of complexity and also explained how to add interactive annotations to play 
around with the time axis.

Finally, we covered the most important plots that will interact with users without 
running a server using the ipywidgets.interact and push_notebook() functions.

In the next chapter, we will see how to create interactive visualizations for data across 
geographical regions.





Learning Objectives

By the end of this chapter, you will be able to:

•	 Use choropleth maps to represent data across geographical regions

•	 Generate interactive choropleth maps, including choropleth maps depicting countries 
in the world and maps depicting states in the US, making layout changes to add 
functionality/aesthetic appeal, and adding animation 

•	 Generate interactive scatter plots on maps, including scatter plots indicating geolocations 
of places of interest and interactive bubble plots on maps

•	 Generate interactive line plots on maps, including line plots indicating trajectories on a 
map

In this chapter, we'll learn about using interactive visualizations to depict data across 
geographical regions.

Interactive 
Visualization of 

Geographical Data

6
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Introduction
In the previous chapters, you learned how to build interactive visualizations to present 
different features in a dataset across features that represent different strata and 
different time points. In this chapter, you are going to add another type of visualization 
to your skillset – plotting interactive visualizations with geographical data.

Most datasets generated in today's world involve some features depicting spatial or 
geographical aspects. For example, users of social media platforms are characterized 
by the different parts of the world they reside in, world development metrics are 
calculated for different countries in the world, transportation routes span many 
different locations across the globe, and so on. Therefore, it is essential to learn 
systematic ways to understand and present such information in a digestible yet 
insightful manner. This chapter will help you develop this ability by providing the 
necessary tools to generate a variety of plots depicting geographical data.

While altair and geopandas provide exciting possibilities in visualizing geographical 
data, plotly is especially great for generating a variety of geographical plots that are 
easy to build, debug, and customize. Therefore, in this chapter, we will be using plotly 
to demonstrate generating different classes of geographical plots with multiple publicly 
available datasets from a variety of contexts. We hope that, through this chapter, you 
will appreciate that plotly is (although arguably) one of the most powerful, intuitive, 
and easy-to-use libraries for the task of rendering interactive geographical plots, 
specifically, choropleth maps (which is one of the most widely used representations 
for geographical areas). We are going to explore choropleth maps in the succeeding 
sections.

Note

Some of the images in this chapter have colored notations, you can find 
high‑quality color images used in this chapter at: https://github.com/
TrainingByPackt/Interactive-Data-Visualization-with-Python/tree/master/Graphics/
Lesson6.

Choropleth Maps
A choropleth map is a map of a region with different divisions colored to indicate the 
value of a specific feature in that division. This division may be a country, state, district, 
or any other well-documented area. 

For example, you can visualize country-wise populations using a world map, state-
wise populations on a country map, or the percentage of a population with access to a 
certain technology with a choropleth map. 

https://github.com/TrainingByPackt/Interactive-Data-Visualization-with-Python/tree/master/Graphics/Lesson6
https://github.com/TrainingByPackt/Interactive-Data-Visualization-with-Python/tree/master/Graphics/Lesson6
https://github.com/TrainingByPackt/Interactive-Data-Visualization-with-Python/tree/master/Graphics/Lesson6
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Although the term choropleth map may or may not be familiar to you, as you go 
through the chapter, the concept of choropleth maps will become clearer.

Let's start exploring the different types of choropleth maps.

Worldwide Choropleth Maps 

In the first visualization of this chapter, we are going to use the internet usage statistics 
published on Our World in Data (https://ourworldindata.org/internet) and present 
the percentage of the population using the internet in each country from 1990 to 2017. 
The dataset is hosted on the book GitHub repository for easy access. 

You can view the dataset using the code that follows:

import pandas as pd

​internet_usage_url = "https://raw.githubusercontent.com/
TrainingByPackt/Interactive-Data-Visualization-with-Python/master/
datasets/share-of-individualsusing-the-internet.csv"

internet_usage_df = pd.read_csv(internet_usage_url)

internet_usage_df.head()

The output is as follows:

Figure 6.1: The Our World in Data dataset

Did you notice the feature called Code in the dataset? This refers to a code assigned to 
each country by a standard called ISO 3166-1. It is widely used so developers across the 
world have a common way to refer to and access country names in any data. You can 
learn more about the standard here: https://en.wikipedia.org/wiki/ISO_3166-1.The 
Code feature is also used by plotly to map data to the appropriate locations on the 
world map, as we will see soon.

Let's go ahead and generate our first world-wide choropleth map through an exercise.

https://ourworldindata.org/internet
https://en.wikipedia.org/wiki/ISO_3166-1
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Exercise 45: Creating a Worldwide Choropleth Map

In this exercise, we'll generate a world-wide choropleth map using the Our World in 
Data dataset, available here: https://raw.githubusercontent.com/TrainingByPackt/
Interactive-Data-Visualization-with-Python/master/datasets/share-of-individuals-
using-the-internet.csv. Since the DataFrame contains records from multiple years, 
let's first subset the data to one specific year, say, 2016. We'll then use this subset to 
generate a world-wide map. To do so, let's go through the following steps:

1.	 Import the Python modules:

import pandas as pd

2.	 Read the data from the .csv file:

internet_usage_url = "https://raw.githubusercontent.com/
TrainingByPackt/Interactive-Data-Visualization-with-Python/master/
datasets/share-of-individuals-using-the-internet.csv"
internet_usage_df = pd.read_csv(internet_usage_url)

3.	 Subset the data to one specific year since the DataFrame contains records from 
multiple years:

internet_usage_2016 = internet_usage_df.query("Year==2016")
internet_usage_2016.head()

The output is as follows:

Figure 6.2: Subset of the Our World in Data dataset

https://raw.githubusercontent.com/TrainingByPackt/Interactive-Data-Visualization-with-Python/master/datasets/share-of-individuals-using-the-internet.csv
https://raw.githubusercontent.com/TrainingByPackt/Interactive-Data-Visualization-with-Python/master/datasets/share-of-individuals-using-the-internet.csv
https://raw.githubusercontent.com/TrainingByPackt/Interactive-Data-Visualization-with-Python/master/datasets/share-of-individuals-using-the-internet.csv
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For the next steps, we're going to use the express module (for its simplicity) from 
plotly and use the choropleth function from the module. The first argument 
passed to this function is the DataFrame that we want to visualize. The following 
parameters are set:

•	 locations: This is set to the name of the column in the DataFrame that contains the 
ISO 3166 country codes.

•	 color: This is set to the name of the column that contains the numerical feature 
using which the map is to be color-coded.

•	 hover_name: This is set to the name of the column that contains the feature to be 
displayed while hovering over the map.

•	 color_continuous_scale: This is set to a color scheme, such as 
Blues | Reds | Greens | px.colors.sequential.Plasma. 

Note

For more options, see the plotly express documentation (https://www.plotly.
express/plotly_express/colors/index.html ).

4.	 Generate an interactive world-wide choropleth map using choropleth function 
of plotly library:

import plotly.express as px
​fig = px.choropleth(internet_usage_2016,
                    locations="Code", # colunm containing ISO 3166 
country codes
                    color="Individuals using the Internet (% of 
population)", # column by which to color-code
                    hover_name="Country", # column to display in 
hover information
                 color_continuous_scale=px.colors.sequential.Plasma)
​fig.show()

https://www.plotly.express/plotly_express/colors/index.html
https://www.plotly.express/plotly_express/colors/index.html
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The output is as follows: 

Figure 6.3a: World-wide choropleth map showing data for region=Canada

Figure 6.3b: World-wide choropleth map showing data for region=Romania

That was a quick way to get a beautiful plot! 

Let's look at the plot carefully and see whether the observations match with our general 
knowledge. As you would expect, internet usage in the western world is higher than in 
the east. 

Hover over the map a bit more. It is interesting to see, from Figure 6.3a and Figure 6.3b, 
that a higher percentage of the population (~91.6) in Australia and Canada have 
access to the internet than in the US and most European countries(~59.5).

What else does the plot show? Did you look at the sidebar at the top right of the plot? 
There you will see options for selection types, zooming in and out, resetting the plot, and 
even taking a snapshot of the plot in your choice of configuration. 

It's worth playing around with the options a bit. Let's explore the interactivity of a 
choropleth map through the following exercise.



Choropleth Maps | 223

Exercise 46: Tweaking a Worldwide Choropleth Map

In this exercise, we will make some simple changes to the layout of the choropleth map, 
such as changing the map projection from flat to natural earth, zooming into a 
specific region, adding text to the map using the update_layout function, and adding 
a rotation feature. The following code demonstrates how to add these functionalities 
to the map. We'll use the dataset available here: https://raw.githubusercontent.com/
TrainingByPackt/Interactive-Data-Visualization-with-Python/master/datasets/share-
of-individuals-using-the-internet.csv. To do so, let's look at the following steps:

1.	 Import the Python modules:

import pandas as pd

2.	 Read the data from the .csv file:

internet_usage_url = "https://raw.githubusercontent.com/
TrainingByPackt/Interactive-Data-Visualization-with-Python/master/
datasets/share-of-individuals-using-the-internet.csv"
internet_usage_df = pd.read_csv(internet_usage_url)

3.	 Subset the data to one specific year since the DataFrame contains records from 
multiple years:

internet_usage_2016 = internet_usage_df.query("Year==2016")

4.	  Add title text to the choropleth map setting the title_text parameter:

import plotly.express as px
fig = px.choropleth(internet_usage_2016,
                    locations="Code",
                    color="Individuals using the Internet (% of 
population)", # column by which to color-code
                    hover_name="Country", # column to display in 
hover information                    color_continuous_scale=px.
colors.sequential.Plasma
)
​
fig.update_layout(
    # add a title text for the plot
    title_text = 'Internet usage across the world (% population) - 
2016'
)
​fig.show()

https://raw.githubusercontent.com/TrainingByPackt/Interactive-Data-Visualization-with-Python/master/datasets/share-of-individuals-using-the-internet.csv
https://raw.githubusercontent.com/TrainingByPackt/Interactive-Data-Visualization-with-Python/master/datasets/share-of-individuals-using-the-internet.csv
https://raw.githubusercontent.com/TrainingByPackt/Interactive-Data-Visualization-with-Python/master/datasets/share-of-individuals-using-the-internet.csv
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The output is as follows:

Figure 6.4: Adding text to the choropleth map

That's nice. But let's say, we are only interested in seeing internet usage across the 
continent of Asia. 

5.	 Set geo_scope to asia in the update_layout function to zoom into the asia 
region. We can quickly do so with the following code:

import plotly.express as px
fig = px.choropleth(internet_usage_2016,
                    locations="Code",
                    color="Individuals using the Internet (% of 
population)", # column by which to color-code
                    hover_name="Country", # column to display in 
hover information
                    color_continuous_scale=px.colors.sequential.
Plasma)
​
fig.update_layout(
    # add a title text for the plot
    title_text = 'Internet usage across the Asian Continent (% 
population) - 2016',
    geo_scope = 'asia' # can be set to north america | south america 
| africa | asia | europe | usa
)
​
fig.show()
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The output is as follows:

Figure 6.5: Choropleth map displaying the Asia region

Did you try dragging the plot and notice that it can move up and down or left and 
right? Wouldn't it be nice if the plot could rotate like a real globe? Well, that's easily 
possible too. All you need to do is to change the projection style of the map. 

6.	 Set projection type to natural earth:

import plotly.express as px
fig = px.choropleth(internet_usage_2016,
                    locations="Code",
                    color="Individuals using the Internet (% of 
population)", # column by which to color-code
                    hover_name="Country", # column to display in 
hover information
                    color_continuous_scale=px.colors.sequential.
Plasma)
​
fig.update_layout(
    # add a title text for the plot
    title_text = 'Internet usage across the world (% population) - 
2016',
    # set projection style for the plot
    geo = dict(projection={'type':'natural earth'}) # by default, 
projection type is set to 'equirectangular'
)
​
fig.show()
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The output is as follows:

Figure 6.6: Choropleth map with projection type=natural earth

Try dragging the map now. The rotation gives the plot a much more realistic touch! 
plotly offers many such options to tweak visualizations. To experiment with other 
projection styles apart from the ones we have seen in our examples, visit the official 
plotly documentation here: https://plot.ly/python/reference/#layout-geo-
projection.

It's now time to up the game! So far, we have been generating all our plots for the 
records in a single year, 2016. What about all the other timepoints? While it is definitely 
possible to generate plots individually for each year we are interested in, that is not the 
most optimal use of a developer's time. 

We'll see how to use animation, in such cases, on a choropleth map in the next section.

Animation in plotly choropleth maps is surprisingly easy. We simply need to set 
a parameter called animation_frame to the name of the column whose values we 
wish to animate our visualization for. Let's go through an exercise to understand how 
animation works on a choropleth map.

https://plot.ly/python/reference/#layout-geo-projection
https://plot.ly/python/reference/#layout-geo-projection
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Exercise 47: Adding Animation to a Choropleth Map

In this exercise, we'll animate a world-wide choropleth map. First, we'll choose a 
column. We'll then go ahead and add a slider component to the map to view records at 
different timepoints. We'll be using the dataset on the share of populations using the 
internet, which is available here: https://github.com/TrainingByPackt/Interactive-
Data-Visualization-with-Python/blob/master/datasets/share-of-individuals-using-
the-internet.csv. Let's go through the following steps:

1.	 Import the Python modules:

import pandas as pd

2.	 Read the data from the .csv file:

internet_usage_url = "https://raw.githubusercontent.com/
TrainingByPackt/Interactive-Data-Visualization-with-Python/master/
datasets/share-of-individuals-using-the-internet.csv"
internet_usage_df = pd.read_csv(internet_usage_url)

3.	 Add an animation to the year column using animation_frame=year:

import plotly.express as px
fig = px.choropleth(internet_usage_df, locations="Code",
                    color="Individuals using the Internet (% of 
population)", # lifeExp is a column of gapminder
                    hover_name="Country", # column to add to hover 
information
                    animation_frame="Year", # column on which to 
animate
                    color_continuous_scale=px.colors.sequential.
Plasma)
                    
fig.update_layout(
    # add a title text for the plot
    title_text = 'Internet usage across the world (% population)',
    # set projection style for the plot
    geo = dict(projection={'type':'natural earth'}) # by default, 
projection type is set to 'equirectangular'
)
​fig.show()

https://github.com/TrainingByPackt/Interactive-Data-Visualization-with-Python/blob/master/datasets/share-of-individuals-using-the-internet.csv
https://github.com/TrainingByPackt/Interactive-Data-Visualization-with-Python/blob/master/datasets/share-of-individuals-using-the-internet.csv
https://github.com/TrainingByPackt/Interactive-Data-Visualization-with-Python/blob/master/datasets/share-of-individuals-using-the-internet.csv
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The output is as follows:

Figure 6.7: Choropleth map with a slider on the year column

Notice that the first argument to our choropleth function is the internet_
usage_df DataFrame, which contains records for all the years between 1970-
2017, and not internet_usage_2016, which we had been using until now. If we 
used the internet_usage_2016 DataFrame, we would get a static plot with no 
slider, since there would be nothing to animate with records only for a single year.

The animation functionality is really cool and the slider is a simple way to get a 
quick view of how internet usage has grown in different countries of the world 
over the years. However, something about the slider is funny! The years on the 
slider are not in the right order – it starts with 1990, then goes all the way up to 
2015, and then goes back to 1970 and so on. The easiest way to fix this issue is to 
sort the DataFrame by time (the Year feature).

4.	 Sort the dataset by Year using the following code:

internet_usage_df.sort_values(by=["Year"],inplace=True)
internet_usage_df.head()
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The output is as follows:

Figure 6.8: Sorted internet usage dataset

5.	 Generate the animated plot again now that the sorting is done:

import plotly.express as px
fig = px.choropleth(internet_usage_df, locations="Code",
                    color="Individuals using the Internet (% of 
population)", # lifeExp is a column of gapminder
                    hover_name="Country", # column to add to hover 
information
                    animation_frame="Year", # column on which to 
animate
                    color_continuous_scale=px.colors.sequential.
Plasma)
                    
fig.update_layout(
    # add a title text for the plot
    title_text = 'Internet usage across the world (% population)',
    # set projection style for the plot
    geo = dict(projection={'type':'natural earth'}) # by default, 
projection type is set to 'equirectangular'
)
​fig.show()
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The output is as follows:

Figure 6.9a: First plot – choropleth map for the year 1992

Figure 6.9b: Second plot – choropleth map for the year 2010

And this time, it's right! First plot shows internet usage across the world in the year 
1992 while second plot shows the results for the year 2010. We can see there was 
definitely an increase in internet usage between 1992 and 2010.

There is one more point that needs to addressed before we close our discussion on 
worldwide choropleth maps. In your work, you may come across datasets that would be 
interesting to visualize on a geographical map but do not have a column that indicates 
their ISO 3166-1 code. In such cases, you can download the country codes from 
the official ISO website: https://www.iban.com/country-codes. For easy access, we 
have also uploaded these country codes to the book repository. 

https://www.iban.com/country-codes
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You'll be able to view the country codes dataset using the following code:

# get the country codes data stored at the github repository

import pandas as pd

country_codes_url = "https://raw.githubusercontent.com/
TrainingByPackt/Interactive-Data-Visualization-with-Python/master/
country_codes.tsv"

country_codes = pd.read_csv(country_codes_url, sep='\t')

country_codes.head()

The output is as follows:

Figure 6.10: Country codes dataset

USA State Maps

While the goal of many visualizations is to compare and contrast specific features 
across countries, there are often also contexts in which we need to analyze features 
across smaller regions – such as states within a country. To generate choropleth maps 
for states in the US, we will be using the state-wise population data made available 
on the US census website: https://www.census.gov/newsroom/press-kits/2018/
pop-estimates-national-state.html. We have also made the data available on the 
book's GitHub repository: https://github.com/TrainingByPackt/Interactive-Data-
Visualization-with-Python/blob/master/datasets/us_state_population.tsv.

https://www.census.gov/newsroom/press-kits/2018/pop-estimates-national-state.html
https://www.census.gov/newsroom/press-kits/2018/pop-estimates-national-state.html
https://github.com/TrainingByPackt/Interactive-Data-Visualization-with-Python/blob/master/datasets/us_state_population.tsv
https://github.com/TrainingByPackt/Interactive-Data-Visualization-with-Python/blob/master/datasets/us_state_population.tsv
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Exercise 48: Creating a USA State Choropleth Map

In this exercise, we'll be using the USA state population dataset. We'll tweak the 
dataset and use it to plot a state-wide choropleth map. Then, we'll change the layout of 
this map to show the US population across states. Let's go through the following steps 
to do so:

1.	 Import the Python module:

import pandas as pd

2.	 Read the dataset from the URL:

us_population_url = 'https://raw.githubusercontent.com/
TrainingByPackt/Interactive-Data-Visualization-with-Python/master/
datasets/us_state_population.tsv'
df = pd.read_csv(us_population_url, sep='\t')
df.head()

The output is as follows:

Figure 6.11:USA state population dataset

It is nice that this dataset also has the state codes available in the Code feature. 
However, the data is not in the format we would want it to be – it's in the wide 
format, and we need it to be long. Now is the time to hark back to the material 
covered in the very first chapter of this book!
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3.	 Use the melt function to convert the data to the desired format:

df = pd.melt(df, id_vars=['State', 'Code'], var_name="Year", value_
name="Population")
df.head()

The output is as follows:

Figure 6.12: Dataset after using the melt function

Once you know how to generate a choropleth map for countries in the world, 
a choropleth map of US states is quite straight-forward. Unlike the case of 
generating a worldwide choropleth map where we used the plotly express 
module, we'll use the graph_objects module to generate the choropleth map 
for states in the US. There are a few simple steps involved in drawing the US 
choropleth:

4.	 Import the graph_objects module:

import plotly.graph_objects as go

5.	 Initialize the figure with the Figure function in graph_objects. Specifically, 
the data argument needs to be an instance of the Choropleth class with the 
following parameters:

•	 locations: This is set to the column of the DataFrame that contains the state 
name codes.

•	 z: This is set to the column containing the numerical feature using which the map 
is to be color-coded.

•	 locationmode: This is set to USA-states.

•	 colorscale: This is set to a color scheme, such as Blues | Reds | Greens. 
For more options, see the plotly official documentation: https://plot.ly/python/
reference/.

https://plot.ly/python/reference/
https://plot.ly/python/reference/
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•	 colorbar_title:This is set to the title of the color bar on the right, indicating 
the correspondence of color and feature values. Refer to the following code:

# initialize the figure
fig = go.Figure(
    data=go.Choropleth(
        locations=df['Code'], # Code for US states
        z = df['Population'].astype(int), # Data to be color-coded
        locationmode = 'USA-states', # set of locations match 
entries in 'locations'
        colorscale = 'Blues',
        colorbar_title = "Population",
    )
)

6.	 Make changes to the layout with update_layout() – set title_text and geo_
scope:

# update layout
fig.update_layout(
    title_text = 'US Population across states',
    geo_scope='usa', # limit map scope to USA
)
​fig.show()

The output is as follows:

Figure 6.13: State map with updated layout
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Choropleth maps are an effective way to visualize aggregate statistics across divisions 
of a geographical region. Two modules from plotly express and graph_objects 
– can be used to generate interactive choropleth maps. The modules map records of 
divisions such as countries and states to locations on geographical maps using a system 
of standardized country and state code names.

In the next section, we'll explore how to create scatter plots and bubble plots on 
geographical maps.

Plots on Geographical Maps
While the previous plots were great for visualizing more global trends – such as 
countries or states – what if we want to represent features in smaller regions, say 
within individual states? In this section, you will learn how to draw scatter plots and 
bubble plots on maps. The most intuitive plot of this type is one that simply pinpoints 
certain locations of interest on the map.

Scatter Plots

We will be plotting the locations of Walmart stores on a map of the US. This dataset 
is publicly available at: https://github.com/plotly/datasets/ on the plotly website, 
and has been made available on the GitHub book repository. Let's look at an exercise on 
how to do so.

Exercise 49: Creating a Scatter Plot on a Geographical Map

In this exercise, we'll use the Walmart store openings dataset from 1962-2006 
(available at: https://raw.githubusercontent.com/TrainingByPackt/Interactive-Data-
Visualization-with-Python/master/datasets/1962_2006_walmart_store_openings.
csv). To create a scatter plot from this dataset, we'll be using the graph_objects 
module. We'll find a location of interest on the map and we'll assign longitudes and 
latitudes on that map and find out the number of Walmart store openings for different 
parts of the US. To do so, let's go through the following steps:

1.	 Import Python modules:

import pandas as pd​

https://github.com/plotly/datasets/
https://raw.githubusercontent.com/TrainingByPackt/Interactive-Data-Visualization-with-Python/master/datasets/1962_2006_walmart_store_openings.csv
https://raw.githubusercontent.com/TrainingByPackt/Interactive-Data-Visualization-with-Python/master/datasets/1962_2006_walmart_store_openings.csv
https://raw.githubusercontent.com/TrainingByPackt/Interactive-Data-Visualization-with-Python/master/datasets/1962_2006_walmart_store_openings.csv
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2.	 Read the data from the URL:

walmart_locations_url = "https://raw.githubusercontent.com/
TrainingByPackt/Interactive-Data-Visualization-with-Python/master/
datasets/1962_2006_walmart_store_openings.csv"
walmart_loc_df = pd.read_csv(walmart_locations_url)
walmart_loc_df.head()

The output is as follows:

Figure 6.14: Walmart store opening dataset showing data from 1962-2006

We will again be using the graph_objects module to generate our scatter plot 
on the US map. As for the choropleth map, we will use the Figure function from 
graph_objects and the update_layout() function. However, this time, we will 
be assigning an instance of the Scattergeo class as the argument to Figure(). 
We will be passing the longitudes and latitudes of our locations of interest using 
the lon and lat parameters.

3.	 Plot the scatter plot using the update_layout function:

import plotly.graph_objects as go
​
fig = go.Figure(data=go.Scattergeo(
        lon = walmart_loc_df['LON'], # column containing longitude 
information of the locations to plot
        lat = walmart_loc_df['LAT'], # column containing latitude 
information of the locations to plot
        text = walmart_loc_df['STREETADDR'], # column containing 
value to be displayed on hovering over the map
        mode = 'markers' # a marker for each location
        ))
​
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fig.update_layout(
        title = 'Walmart stores across world',
        geo_scope='usa',
    )
​fig.show()

The output is as follows:

Figure 6.15: Scatter plot for Walmart stores across the US

And that's it – a scatter plot on a map. A striking observation is that Walmart is much 
more prominent in the east of the US than the west of the US.

Let's go ahead a look at bubble plots on geographical maps.

Bubble Plots

Since the eastern side of the map of the USA appears very densely populated with 
Walmart stores, it might be a good idea to show an aggregate feature, such as the count 
of Walmart stores across the different states. Bubble plots are designed for exactly this 
kind of visualization. In the current context of visualizing geographical data, bubble 
plots are plots with as many bubbles as regions of interest, where the bubble sizes 
depend on the value they are indicating – the bigger the value, the bigger the bubble.
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Exercise 50: Creating a Bubble Plot on a Geographical Map

In this exercise, we'll use the Walmart store openings dataset from 1962-2006(available 
at https://raw.githubusercontent.com/TrainingByPackt/Interactive-Data-
Visualization-with-Python/master/datasets/1962_2006_walmart_store_openings.
csv) and generate a bubble plot to see the number of Walmart stores across different 
states in the USA. Then, we'll look at another context and generate a bubble plot using 
the internet_usage dataset to find out the number of internet users across the world. 
We'll also animate the bubble plot to show the increase in the number of internet users 
across the world. To do so, let's go through the following steps:

1.	 Import the Python modules:

import pandas as pd​

2.	 Read the data from the URL:

walmart_locations_url = "https://raw.githubusercontent.com/
TrainingByPackt/Interactive-Data-Visualization-with-Python/master/
datasets/1962_2006_walmart_store_openings.csv"
walmart_loc_df = pd.read_csv(walmart_locations_url)
walmart_loc_df.head()

The output is as follows:

Figure 6.16: Walmart store opening dataset

3.	 Use the groupby function to compute the number of Walmart stores per state. If 
you don't remember how to do this, it might be a good idea to revise the relevant 
concepts from the first chapter:

walmart_stores_by_state = walmart_loc_df.groupby('STRSTATE').count()
['storenum'].reset_index().rename(columns={'storenum':'NUM_STORES'})
walmart_stores_by_state.head()

https://raw.githubusercontent.com/TrainingByPackt/Interactive-Data-Visualization-with-Python/master/datasets/1962_2006_walmart_store_openings.csv
https://raw.githubusercontent.com/TrainingByPackt/Interactive-Data-Visualization-with-Python/master/datasets/1962_2006_walmart_store_openings.csv
https://raw.githubusercontent.com/TrainingByPackt/Interactive-Data-Visualization-with-Python/master/datasets/1962_2006_walmart_store_openings.csv
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The output is as follows:

Figure 6.17: Truncated Walmart store openings dataset

4.	 To generate the bubble plots, we will use the plotly express module and the 
scatter_geo function. Notice how the locations parameter is set to the name 
of the column that contains state codes, and the size parameter is set to the 
NUM_STORES feature:

import plotly.express as px
​fig = px.scatter_geo(walmart_stores_by_state, 
                    locations="STRSTATE", # name of column which 
contains state codes
                    size="NUM_STORES", # name of column which 
contains aggregate value to visualize
                    locationmode = 'USA-states',
                    hover_name="STRSTATE",
                    size_max=45)
                    
fig.update_layout(
    # add a title text for the plot
    title_text = 'Walmart stores across states in the US',
    # limit plot scope to USA
    geo_scope='usa'
)
​fig.show()
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The output is as follows:

Figure 6.18: Bubble plot

Can you think of any other contexts where a bubble plot may be useful for 
visualization? How about revisiting the internet usage data (on the percentages 
of the population using the internet in each country) to generate a world-wide 
bubble plot? However, bubble plots are more suitable and intuitive for presenting 
counts/numbers, rather than percentages in individual regions.

It turns out that the count of individuals using the internet in each country is also 
available from the same resource (Our World in Data: https://ourworldindata.
org/internet) that we used to collect our previous data. We have made the data 
available on the book repository.

5.	 Use the following code to read data from the internet users by country 
dataset:

import pandas as pd
​internet_users_url = "https://raw.githubusercontent.com/
TrainingByPackt/Interactive-Data-Visualization-with-Python/master/
datasets/number-of-internet-users-by-country.csv"
internet_users_df = pd.read_csv(internet_users_url)
internet_users_df.head()

https://ourworldindata.org/internet
https://ourworldindata.org/internet
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The output is as follows:

Figure 6.19: Internet users dataset

6.	 Sort the DataFrame by the Year feature:

internet_users_df.sort_values(by=['Year'],inplace=True)
internet_users_df.head()

The output is as follows:

Figure 6.20: Internet users dataset after sorting by year

7.	 Plot the number of users using the internet across the world in 2016:

import plotly.express as px
​
fig = px.scatter_geo(internet_users_df.query("Year==2016"), 
                    locations="Code", # name of column indicating 
country-codes
                    size="Number of internet users (users)", # name 
of column by which to size the bubble
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                    hover_name="Country", # name of column to be 
displayed while hovering over the map
                    size_max=80, # parameter to scale all bubble 
sizes
                    color_continuous_scale=px.colors.sequential.
Plasma)
                    
fig.update_layout(
    # add a title text for the plot
    title_text = 'Internet users across the world - 2016',
    # set projection style for the plot
    geo = dict(projection={'type':'natural earth'}) # by default, 
projection type is set to 'equirectangular'
)
​fig.show()

The output is as follows:

Figure 6.21: Bubble plot to see the number of internet users across the world

Notice how the largest numbers of users come from India and China? Since we 
know from our previous dataset that the percentage of the population using the 
internet in these countries is low, this large user group can be attributed to the 
vast population of these countries.
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8.	 Animate the bubble plot to show the increase in the number of internet users over 
the years by using the animation_frame parameter:

import plotly.express as px
​
fig = px.scatter_geo(internet_users_df, 
                    locations="Code", # name of column indicating 
country-codes
                    size="Number of internet users (users)", # name 
of column by which to size the bubble
                    hover_name="Country", # name of column to be 
displayed while hovering over the map
                    size_max=80, # parameter to scale all bubble 
size
                    animation_frame="Year",
                    )
                    
fig.update_layout(
    # add a title text for the plot
    title_text = 'Internet users across the world',
    # set projection style for the plot
    geo = dict(projection={'type':'natural earth'}) # by default, 
projection type is set to 'equirectangular'
)
​fig.show()

The output is as follows:

Figure 6.22a: Animated bubble plot for the US for the year 2001
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Figure 6.22b: Animated bubble plot for the US for the year 2016

We can see from the preceding two plots how the number of internet users increased 
between 2001 and 2016 for USA.

Scatter plots on maps can be used to show specific locations of interest on geographical 
maps, whereas bubble maps are a nice way to present count data across different 
divisions of a geographical region. The Scattergeo function from plotly graph_
objects and the scatter_geo function from plotly express are generally used to 
generate interactive scatter plots and bubble plots on maps.

In the next section, we'll look at a few line plots on geographical maps.

Line Plots on Geographical Maps

Line plots rendered on maps are another important class of visualization for 
geographical data.

For this section, we will be using the airport and flight data from the 2015 Flight Delays 
and Cancellations dataset released by the U.S. Department of Transportation's (DOT) 
Bureau of Transportation Statistics. Since the dataset is huge, we will only include the 
data for all flights with airline delays on Jan 1,2015. This reduced dataset contains 
the records of 1,820 flights and is made available in the book GitHub repository as two 
files:

airports.csv: Contains location attributes such as latitude and longitude information 
for all airports

new_year_day_2015_delayed_flights.csv: Contains flight details such as flight 
numbers, origin, and destination airports for all flights in the selected subset.
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Exercise 51: Creating Line Plots on a Geographical Map

1.	 In this exercise, we'll use the airports dataset (available at: https://raw.
githubusercontent.com/TrainingByPackt/Interactive-Data-Visualization-with-
Python/master/datasets/airports.csv) and first generate a scatter plot to find 
out the locations of all airports in the US. We'll then merge the two DataFrames 
(flights and airport_record) together to obtain longitude and latitudes for 
the origin airports of all flights and draw line plots from the origin airport to the 
destination airport for each flight using this merged dataset. Let's go through the 
following steps:

2.	 Load the airports dataset first:

import pandas as pd
​us_airports_url = "https://raw.githubusercontent.com/
TrainingByPackt/Interactive-Data-Visualization-with-Python/master/
datasets/airports.csv"
us_airports_df = pd.read_csv(us_airports_url)
us_airports_df.head()

The output is as follows:

Figure 6.23:Airports dataset

3.	 Generate a scatter plot on the US map to indicate the locations of all airports in 
our dataset, using the graph_objects module:

import plotly.graph_objects as go
​fig = go.Figure()
​fig.add_trace(go.Scattergeo(
    locationmode = 'USA-states',
    lon = us_airports_df['LONGITUDE'],
    lat = us_airports_df['LATITUDE'],
    hoverinfo = 'text',
    text = us_airports_df['AIRPORT'],
    mode = 'markers',
    marker = dict(size = 5,color = 'black')))

https://raw.githubusercontent.com/TrainingByPackt/Interactive-Data-Visualization-with-Python/master/datasets/airports.csv
https://raw.githubusercontent.com/TrainingByPackt/Interactive-Data-Visualization-with-Python/master/datasets/airports.csv
https://raw.githubusercontent.com/TrainingByPackt/Interactive-Data-Visualization-with-Python/master/datasets/airports.csv
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​fig.update_layout(
    title_text = 'Airports in the USA',
    showlegend = False,
    geo = go.layout.Geo(
        scope = 'usa'
    ),
)
​fig.show()

The output is as follows:

Figure 6.24: Number of airports in the US

That is neat! When you hover over a datapoint, you'll get the name of the US 
airport. The preceding plot shows Central Illinois Regional Airport at 
Bloomington-Normal.

Did you notice that there is an add_trace() function in addition to the usual 
instance creation of the Scattergeo class? The add_trace function is used 
because we are about to superimpose our flight data in the form of lines on top of 
this scatter plot on the map. The add_ trace allows plotly to treat the scatter 
plot and the line plots as multiple layers on the map.
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4.	 Load the file containing the flight records:

new_year_2015_flights_url = "https://raw.githubusercontent.com/
TrainingByPackt/Interactive-Data-Visualization-with-Python/master/
datasets/new_year_day_2015_delayed_flights.csv"
new_year_2015_flights_df = pd.read_csv(new_year_2015_flights_url)
new_year_2015_flights_df.head()

The output is as follows:

Figure 6.25: Dataset with flight records

5.	 Along with the origin and destination airports for each flight, we need to have 
the longitude and latitude information of the corresponding airports. To do this, 
we need to merge the DataFrames containing the airport and flight data. Let's 
first merge the two datasets to obtain the longitudes and latitudes for the origin 
airports of all flights:

# merge the DataFrames on origin airport codes
new_year_2015_flights_df = new_year_2015_flights_df.merge(us_airports_
df[['IATA_CODE','LATITUDE','LONGITUDE']], \
                                  left_on='ORIGIN_AIRPORT', \
                                  right_on='IATA_CODE', \
                                  how='inner')
​
# drop the duplicate column containing airport code
new_year_2015_flights_df.drop(columns=['IATA_CODE'],inplace=True)
​
# rename the latitude and longitude columns to reflect that they 
correspond to the origin airport
new_year_2015_flights_df.rename(columns={"LATITUDE":"ORIGIN_AIRPORT_
LATITUDE", "LONGITUDE":"ORIGIN_AIRPORT_LONGITUDE"},inplace=True)
new_year_2015_flights_df.head()
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The output is as follows:

Figure 6.26: Dataset with flight records

6.	 Now, we will perform a similar merging to get the latitude and longitude data for 
the destination airports of all flights:

# merge the DataFrames on destination airport codes
new_year_2015_flights_df = new_year_2015_flights_df.merge(us_airports_
df[['IATA_CODE','LATITUDE','LONGITUDE']], \
                              left_on='DESTINATION_AIRPORT', \
                              right_on='IATA_CODE', \
                              how='inner')
​
# drop the duplicate column containing airport code
new_year_2015_flights_df.drop(columns=['IATA_CODE'],inplace=True)
​
# rename the latitude and longitude columns to reflect that they 
correspond to the destination airport
new_year_2015_flights_df.rename(columns={'LATITUDE':'DESTINATION_
AIRPORT_LATITUDE', 'LONGITUDE':'DESTINATION_AIRPORT_
LONGITUDE'},inplace=True)
new_year_2015_flights_df.head()

The output is as follows:

Figure 6.27: Merged flights dataset
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7.	 Now, we will draw our line plots. For each flight, we need to draw a line between 
the origin airport and the destination airport. This is done by providing the 
latitude and longitude values of the destination and origin airports to the lon 
and lat parameters of Scattergeo and setting mode to lines instead of markers. 
Also, notice that we are using another add_trace function here. It may take a few 
minutes for the plot to show the flight routes:

for i in range(len(new_year_2015_flights_df)):
    fig.add_trace(
        go.Scattergeo(
            locationmode = 'USA-states',
            lon = [new_year_2015_flights_df['ORIGIN_AIRPORT_
LONGITUDE'][i], new_year_2015_flights_df['DESTINATION_AIRPORT_
LONGITUDE'][i]],
            lat = [new_year_2015_flights_df['ORIGIN_AIRPORT_
LATITUDE'][i], new_year_2015_flights_df['DESTINATION_AIRPORT_
LATITUDE'][i]],
            mode = 'lines',
            line = dict(width = 1,color = 'red')
        )
    )
 
fig.update_layout(
    title_text = 'Delayed flight on Jan 1, 2015 in USA',
    showlegend = False,
    geo = go.layout.Geo(
        scope = 'usa'
    ),
)
fig.show()
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The output is as follows:

Figure 6.28: Line plot for all the delayed flights

And that is all for this section. Enjoy your newly gained skill and create a variety of 
wonderful geographical plots!

Line plots on geographical maps can be generated using the graph_objects module 
from plotly. Generally, a layering technique is used, with the help of the add_
trace() function to superimpose two plots together on the map – the locations being 
connected as a scatter plot, and the routes connecting various locations as line plots.

Activity 6: Creating a Choropleth Map to Represent Total Renewable Energy 

Production and Consumption across the World

We will be working with the Renewable Energy Consumption and Production 
datasets from Our World in Data https://ourworldindata.org/renewable-energy). 
These datasets are made available on the book's GitHub repository as share-of-
electricity-production-from-renewable-sources.csv (the production dataset) 
and renewable-energy-consumption-by-country.csv (the consumption dataset). 
Your task is to create choropleth maps for the total renewable energy production 
and consumption across different countries in the world animated based on the 
production/consumption years between (excluding) 2007 and 2017.

https://ourworldindata.org/renewable-energy
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High-level steps

1.	 Load the renewable energy production dataset.

2.	 Sort the production DataFrame based on the Year feature.

3.	 Generate a choropleth map for renewable energy production using the plotly 
express module animated based on Year.

4.	 Update the layout to include a suitable projection style and title text, then display 
the figure.

5.	 Load the renewable energy consumption dataset.

6.	 Convert the consumption DataFrame to a suitable format for visualization.

7.	 Sort the consumption DataFrame based on the Year feature.

8.	 Generate a choropleth map for renewable energy consumption using the plotly 
express module animated based on Year.

9.	 Update the layout to include a suitable projection style and title text, then display 
the figure.

The output should be:

After Step 1-

Figure 6.29: Renewable sources dataset
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After Step 2:

Figure 6.30: Renewable sources dataset after sorting by year

After Step 4-

Figure 6.31a: Choropleth map showing the renewable energy production  
of Greenland in the year 1998
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Figure 6.31b: Choropleth map showing the renewable energy production  
of Greenland in the year 2014

After Step 5-

Figure 6.32: Renewable energy consumption dataset

After Step 6-

Figure 6.33: The desired dataset after conversion
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After Step 7-

Figure 6.34: The dataset after sorting by year

After Step 8-

Figure 6.35a: Choropleth map showing renewable energy consumption across the world
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Figure 6.35b: Choropleth map showing renewable energy consumption across the world

Note

The solution steps can be found on page 275.

Summary
In this chapter, we presented three different types of visualization using geographical 
data choropleth maps, scatter plots and bubble plots on geographical maps, and line 
plots on geographical maps. Choropleth maps present aggregate statistics across 
different regions on geographical maps. Scatter plots are effective at indicating details 
regarding specific locations of interest, whereas bubble plots are useful for presenting 
count data per region on a map. Line plots are helpful in visualizing the routes of 
transportation systems, for instance.

These plots can easily be generated using the plotly express and graph_objects 
modules. Animation can be performed with respect to a discrete numeric feature in a 
dataset.

In the next chapter, we'll look at a few common pitfalls faced while creating 
visualizations and how to avoid them. Along with that, we'll also look at a cheat sheet for 
generating interactive visualizations.





Learning Objectives

By the end of this chapter, you will be able to:

•	 Identify the errors that are made when creating visualizations 

•	 Apply techniques to correct the errors and create effective visualizations

•	 Select and design the appropriate visualizations for specific types of data 

•	 Describe the different libraries and tools that are available for creating visualizations

In this chapter, we'll learn how to avoid common pitfalls while creating interactive visualizations. 
This chapter also gives an overview of some of the quick tricks when it comes to creating 
context-based visualizations.

Avoiding Common 
Pitfalls to Create 

Interactive 
Visualizations

7
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Introduction
The previous chapters of this book have progressed from static to interactive data 
visualizations and described various interactive features (such as sliders and hover 
tools) and types of plots (such as grouped bar graphs, line plots, and choropleth world 
maps) pertaining to specific types of data, such as temporal and geographical. This 
chapter lists and explains the possible mistakes and errors that are made during various 
stages of the data visualization process – such as visualizing uncorrelated elements 
from a dataset to display a relationship or creating an inapt interactive feature – and 
discusses how to ensure that the final visualization is appropriate, informative, and 
simple. Additionally, there is a cheat sheet at the end of this chapter that describes 
the libraries and the types of visualizations you should use when performing data 
visualization.  

The process of data visualization may seem simple – take some data, plot some graphs, 
add some interactive features, and voila! Your job is done. Or, maybe it's not – there 
could be several places during the journey where mistakes may be made. These 
mistakes ultimately result in a faulty visualization that is unable to easily and efficiently 
convey what the data is saying, thus making it completely useless to the audience who's 
viewing it. 

Let's break the data visualization process into two parts – data formatting and 
interpretation and data visualization – so that we can understand what mistakes can be 
made where, and how to best avoid them. 

Note

Some of the images in this chapter have colored notations, you can find 
high‑quality color images used in this chapter at: https://github.com/
TrainingByPackt/Interactive-Data-Visualization-with-Python/tree/master/Graphics/
Lesson7.

Data Formatting and Interpretation
The purpose of interactive data visualization is to visually and interactively present data 
so that it is easy to comprehend. Thus, naturally, data is the most important factor of 
any visualization. Hence, the first phase of data visualization is understanding the data 
in front of you – understanding what it is, what it means, and what it's conveying. Only 
when you understand the data will you be able to design a visualization that will help 
others understand it. 

https://github.com/TrainingByPackt/Interactive-Data-Visualization-with-Python/tree/master/Graphics/Lesson7
https://github.com/TrainingByPackt/Interactive-Data-Visualization-with-Python/tree/master/Graphics/Lesson7
https://github.com/TrainingByPackt/Interactive-Data-Visualization-with-Python/tree/master/Graphics/Lesson7
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Additionally, it is important to ensure that your data makes sense and contains enough 
information – be it categorical, numerical, or a mix of both – to be visualized. So, if 
you are dealing with erroneous or dirty data, you're bound to end up with a faulty 
visualization.

In the next section, we'll look at a few ways to avoid common mistakes that are typically 
made in this phase of data and how to avoid them.

Avoiding Common Pitfalls while Dealing with Dirty Data

Garbage In, Garbage Out – this is a popular saying in the field of data science, especially 
with respect to data visualization. It basically means that if you use messy and noisy 
data, you're going to get a flawed and uninformative visualization. 

Messy, noisy, and dirty data corresponds to an array of problems found in data. Let's 
discuss the problems one by one and ways to deal with this kind of data.

Outliers

Data containing inaccurate values or instances that are significantly different from the 
rest of the data in a dataset are called outliers.

These are the data points that are distinctly different from the majority of the data 
points in your dataset. These outliers can either be genuine, that is, they seem incorrect 
but are actually not, or are mistakes that are made while collecting or storing the data. 

Let's look at an example of a mistake that was made while collecting or storing data. 
The following table lists the age, weight, and sex of clients who visit a particular gym. 
The sex column consists of three discrete values – 0, 1, and 2 – that all correspond 
to a class – male, female and other respectively. The age column is in years and the 
weight column is in kilograms. Let's look at the dataset:

Figure 7.1: The head of a DataFrame displaying an error in storing data



260 | Avoiding Common Pitfalls to Create Interactive Visualizations

Everything seems fine until we reach the fourth instance (index 3), where weight is 
listed as 790 kg. That seems odd because nobody can actually weigh 790 kg, especially 
someone whose height is 5 feet and 7 inches. Whoever stored this data must have 
meant 79 kg and added a 0 by mistake. This is an instance of an outlier in the dataset. 
This may seem trivial right now, however, this can result in flawed visualizations, 
insights, and machine learning model predictions or patterns, especially if there are 
multiple repetitions of such data.  

Now, let's look at an example of a genuine outlier in the following table:

Figure 7.2: The head of a DataFrame displaying a genuine outlier 

The weight in the fourth instance (index 3) is 167 kilograms, which does seem oddly 
high. However, this is still a plausible value – it is possible that someone has a medical 
condition and does in fact weigh 167 kilograms at the age of 37. Therefore, this is a 
genuine outlier. 

While, in the preceding examples, it is easy to spot the outlier as there are only 5 
instances, in reality, our datasets are massive, and so checking each instance for 
outliers is a tedious and impractical task. Hence, in real-life scenarios, we can use basic 
static data visualizations, such as box plots, to observe the existence of outliers. 

Box plots are simple yet informative data visualizations that can tell us a lot about the 
way our data is distributed. They display the range of our data based on five key values:

•	 The minimum value in the column

•	 The first quartile

•	 The median

•	 The third quartile

•	 The maximum value in the column
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This is what makes them great at displaying outliers as well, along with describing the 
symmetry of the data, how tightly it's grouped (whether all the values are close together 
or are spread out over a large range), and whether or not it's skewed. 

Exercise 52: Visualizing Outliers in a Dataset with a Box Plot

In this exercise, we are going to create a box plot to check whether our dataset contains 
outliers. We are going to use the gym.csv dataset, which contains information about 
the clients of a certain gym. The following steps will help you with the solution:

1.	 Download the .csv file titled gym from this book's GitHub repository into the folder 
where you will be creating the interactive data visualization

Note

The datasets can be found here https://github.com/TrainingByPackt/Interactive-
Data-Visualization-with-Python/tree/master/datasets.

2.	 Open cmd or a terminal, depending on your operating system

3.	 Navigate to the folder where you have stored the .csv files and use the following 
command to initiate a Jupyter notebook: 

jupyter notebook

4.	 Import the pandas library:

import pandas as pd

5.	 Import the numpy library:

import numpy as np

6.	 Import the plotly.express library: 

import plotly.express as px

https://github.com/TrainingByPackt/Interactive-Data-Visualization-with-Python/tree/master/datasets
https://github.com/TrainingByPackt/Interactive-Data-Visualization-with-Python/tree/master/datasets
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7.	 Store the gym.csv file in a DataFrame called gym, and print the first five rows of it 
to see what the data looks like:

pd.read_csv('https://raw.githubusercontent.com/TrainingByPackt/
Interactive-Data-Visualization-with-Python/master/datasets/gym.csv')
gym.head()

The output is as follows: 

Figure 7.3: The first five rows of the gym DataFrame

As you can see, our data has three columns – age, weight, and sex. The sex 
column consists of three discrete values that correspond to three discrete classes 
– 0 is male, 1 is female, and 2 is other. 

8.	 Create a box plot with the x axis as the sex column and the y axis as the weight 
column:

fig = px.box(gym, x = 'sex', y = 'weight', notched = True)
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9.	 Display the figure: 

fig.show()

The output is as follows:

Figure 7.4: The box plot of the gym DataFrame, showing the outlier as a blue dot in the sex = 1 box



264 | Avoiding Common Pitfalls to Create Interactive Visualizations

The scale of the y axis seems strangely large since all the box plots are compressed in 
the bottom 1/8th of the plot, thus not presenting a clear visualization of the data. This 
is due to the outlier in the fourth instance of our DataFrame –790 kg. If you hover near 
the point, you'll see the following: 

Figure 7.5: The result of hovering over the outlier

All the values seem fine except for that one outlier at the top of the plot with max=790.

Now, we'll look at the ways of dealing with outliers.

Dealing with Outliers

There are three main ways of dealing with outliers: 

Deletion: If there are only a few instances (rows) that possess outliers then those 
instances can be completely removed from the dataset, thus leaving you with a dataset 
with zero outliers. There are also times when a certain feature (column) contains a large 
number of outliers. In such a case, that particular feature can be removed from the 
dataset, but only if that feature is insignificant. However, deleting data isn't always the 
best idea.
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Imputation: Imputation is a better option than deletion, especially if there are many 
outliers in the dataset. 

This can be done in three ways:

•	 The most common way is to impute the outliers with the mean, median, or mode 
of the column. In the case of many outliers, though, these values may not be good 
enough, since each outlier will be replaced by the same value (either the mean, 
median, or mode). 

•	 The other method to arrive at better values for outliers, especially in the case of 
time series analysis, is linear interpolation, that is, using linear polynomials to 
create new data points within a defined range of known data points to replace 
outlier values.

•	 A linear regression model can also be used to predict a missing value if it is 
numerical, and in the case that the missing value is categorical, a logistic 
regression model can be used. Linear regression and logistic regression are 
supervised machine learning algorithms, that is, they learn from labeled data to 
make predictions for new unlabeled data. Linear regression is used to predict 
numerical values, while logistic regression is used to predict categories. 

•	 For example, let's say you have a dataset from which you need to display a 
relationship between height and weight. The height column has several missing 
values but, since it is a significant feature, you can't delete it, nor can you impute 
the mean of the column since that might lead to a false relationship. The dataset 
can be split into two datasets: 

(a) The training dataset, which contains instances without missing values

(b) The new dataset, which contains only those instances where there are missing 
values in the height column

A linear regression model can then be used on the training dataset. The model will 
learn from this data, and then, when the new dataset is provided as input, it will be 
able to predict values for the height column. Now, the two datasets can be merged 
together and be used to create visualizations since there are no missing values.
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Transformation: This is the process of transforming the outliers by building up 
the column of data wherein the outlier lies, for example, converting the values into 
percentages and using that column as a feature instead of the original column. 

In the following section, we'll look at an exercise to understand how we can deal with 
outliers.

Exercise 53: Dealing with Outliers

In this exercise, we are going to delete the instance that contains the outlier from the 
dataset we used in Exercise 52, Visualizing Outliers in a Dataset with a Box Plot and 
visualize the dataset again by generating a box plot based on the new dataset. Let's get 
started:

1.	 Import the pandas and numpy libraries:

import pandas as pd
import numpy as np

2.	 Import the plotly.express library: 

import plotly.express as px

3.	 Store the gym.csv file in a DataFrame called gym and print the first five rows of it 
to see what the data looks like:

gym = pd.read_csv('gym.csv')

4.	 Create a boxplot with the x axis as the sex column and the y axis as the weight 
column:

fig = px.box(gym, x = 'sex', y = 'weight', notched = True)

5.	 Display the figure: 

fig.show()
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The output is as follows:

Figure 7.6:The box plot with the outlier

Upon hovering over the box of sex = 1, we can see that the upper fence is 103. 
Therefore, we know that the maximum value that's present in the weight column 
is 103. 

6.	 Modify the gym DataFrame so that it only consists of those instances where the 
weight is less than 103 and print the first five rows:

gym = gym[gym['weight'] <104]
gym.head()
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The output is as follows:

Figure 7.7: The first five rows of the new DataFrame without the outlier

There's no outlier value!

7.	 Let's create a boxplot to see what the data looks like: 

fig1 = px.box(gym, x = 'sex', y = 'weight', notched = True)
fig1.show()

The output is as follows:

Figure 7.8: The box plot without the outlier
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Now our visualization looks good! There are no outlier values and so the scale of the y 
axis is appropriate. Now that we've looked at how to deal with outliers, we'll look at the 
other problems that exist in data that can lead to flawed visualizations.

Missing Data

Missing data is as its name states – values that are blank (NaN, -, 0 when they shouldn't 
be 0, and so on). Just like outliers, missing values can be problematic in the case of 
visualizations as well as machine learning models. Missing values in visualizations may 
display a trend that doesn't actually exist or fail to portray a relationship between 
two variables that, in reality, is significant. While it is possible to create visualizations 
with a dataset that contains missing values, this isn't recommended. In doing this, 
the instances wherein those missing values are found are ignored, thus creating a 
visualization based on some of the data but not all of it. Therefore, dealing with missing 
values is of utmost importance. 

There are two main approaches for dealing with missing values – deletion and 
imputation – both of which have been discussed in terms of dealing with outliers. The 
same logic applies to missing values. 

Exercise 54: Dealing with Missing Values

In this exercise, we are going to work on a dataset that has seven missing values in the 
form of 0s. First, we will remove the instances containing these missing values and 
generate a box plot to see the impact that the deletion of a large number of instances 
has on our visualization. Then, we will impute the median value of the column that 
contains the missing values to the said missing values and generate a box plot based on 
this imputed dataset. Let's get started:

1.	 Download the .csv file titled weight from this book's GitHub repository into the 
folder where you will be creating the interactive data visualization. 

2.	 Navigate to the folder where you have stored the .csv files and use the following 
command to initiate a Jupyter notebook: 

jupyter notebook

3.	 Import the pandas library:

import pandas as pd

4.	 Import the numpy library:

import numpy as np
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5.	 Import the plotly.express library: 

import plotly.express as px

6.	 Store the .csv file in a DataFrame and use the .describe() function to display 
information about it: 

w = pd.read_csv('https://raw.githubusercontent.com/TrainingByPackt/
Interactive-Data-Visualization-with-Python/master/datasets/weight.
csv')
w.describe()

The output is as follows:

Figure 7.9: Statistical information about the weight DataFrame

As we can see, the minimum weight value in our dataset is 0; however, nobody 
can weigh 0kgs, which means we have missing values in the form of 0s. Let's try 
deleting these instances. 
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7.	 Create a new DataFrame that consists of only those instances where the weight is 
not equal to 0. Display information about this new DataFrame: 

doc_w = w[w['weight']!= 0]
doc_w.describe()

The output is as follows:

Figure 7.10: Statistical information about the DataFrame post deletion

8.	 Create a boxplot with this new DataFrame, with the x axis as sex and the y axis as 
weight. Then, display the figure:

fig1 = px.box(doc_w, x = 'sex', y = 'weight', notched = True)
fig1.show()
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The output is as follows:

Figure 7.11: The box plot that was generated on the DataFrame post deletion

Now, the minimum weight value is 21, which makes more sense. However, our 
count has reduced to 55 from 62, which means we've deleted 7 instances from 
our dataset. This may seem small in this example, but in reality, this may have 
serious repercussions on the insights gained. Also, in the preceding box plot, the 
lower end of the box for 0 sex and the upper end of the box for 2 sex is slightly 
abnormal. Therefore, let's replace the 0 values in the weight column with the 
mean value of the column. Remember that we need to calculate the mean of the 
column without considering those 0 values! If we take those into account, then 
our mean will be incorrect. 

9.	 Calculate the mean of the weight column from the DataFrame that consists of 
only non-zero weight values: 

mean_w = doc_w['weight'].mean() 

The mean should be 38.2. 
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10.	 Use the .replace() function to replace the 0 values present in the weight 
column of the original DataFrame with the mean of the weight column from the 
modified DataFrame. Store this in a new DataFrame:

w_new = w.replace({'weight': {0:mean_w}})

11.	 Display the information of the new DataFrame: 

w_new.describe()

The output is as follows:

Figure 7.12: Statistical information of the DataFrame post imputation

Our count is 62, which means we have all the instances, and our minimum weight 
is 21, which means we have no 0 values! 
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12.	 Create a box plot with this new DataFrame, with the x axis as sex and the y axis as 
weight. Then, display the figure: 

fig2 = px.box(w_new, x = 'sex', y = 'weight', notched = True)
fig2.show()

 The output is as follows:

Figure 7.13: The box plot that's generated on the DataFrame post imputation

Now, we have a visualization that has no missing values and represents all the instances 
that are present in the dataset!

Let's look at the third problem that can generate faulty visualization.
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Duplicate Instances and/or Features

The third problem is the presence of duplicate instances and/or features in a dataset.

These are unnecessary elements in the dataset and if they are not removed, they 
can impact the trends and insights that are displayed by a visualization. For example, 
you can create a visualization that displays the relationship between the gender of a 
teenager and whether they play the piano. With a dataset devoid of outliers, anomalies, 
or missing values, you will get a great visualization. From the visualization, you will 
also be able to conclude that more females play the piano than males do. However, 
let's say that the following information is from the dataset that was used to create this 
visualization:

Table 7.14: The relationship between gender and playing the piano

There are two instances for Nita Thadaka and three instances for Pooja Rajesh, 
which means there are three duplicate instances in total! This means that the insights 
your visualization is providing are inaccurate. 

The way to deal with duplicates is simple – drop them. 
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Bad Feature Selection

With respect to a dataset, a feature is a column in the dataset while an instance is a row 
in the dataset. For example, in the preceding table, name, gender, play the piano, 
and age are features, while Pooja Rajesh, F, Yes, and 17 is an instance.  

Since the aim of a visualization is to show a trend, pattern, relationship, or some link 
between two or more features in a dataset, it is important that the selection of those 
features is done carefully. Therefore, this is a crucial point in the data visualization 
journey. 

If the goal is to convey that a strong relationship exists between two features, then you 
must ensure that they are correlated strongly before going ahead with visualizing them. 
Selecting insignificant features will result in a pointless visualization and it won't end 
up conveying any concrete information. For example, in terms of the co2.csv dataset, 
the dataset contains information regarding carbon dioxide emissions per person per 
country and the GDP per country. We checked for a correlation between CO2 emissions 
and the GDP before visualizing the dataset, guaranteeing that we were going to create a 
worthwhile visualization. 

Activity 7: Determining Which Features to Visualize on a Scatter Plot

You are given the co2.csv dataset and are asked to provide insights on it, such as what 
kind of patterns exist, are there any trends between the features, and so on. You need 
to ensure that your end visualization conveys meaningful information. To achieve this, 
you are going to create visualizations for different feature pairings to understand how 
to select features that are correlated and, thus, worth visualizing. 

High-Level Steps

1.	 Import the necessary libraries.

2.	 Recreate the DataFrame. From the gm DataFrame include the population, 
fertility, and life columns. 

3.	 Visualize the relationship between co2 and life using a scatter graph, with the 
country name as information in the hover tool and the year as a slider.

4.	 Check the correlation between co2 and life. 
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5.	 Visualize the relationship between co2 and fertility using a scatter graph, with 
the country name as information in the hover tool and the year as a slider.

6.	 Check the correlation between co2 and fertility. 

The output is as follows: 

After Step 4:

Figure 7.15: The interactive scatter plot describing the relationship between carbon dioxide emissions 
and life per country per year
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After Step 5:

Figure 7.16: The interactive scatter plot describing the relationship between carbon dioxide emissions 
and fertility per country per year

Note

The solution steps can be found on page 280.

In this activity, we have a weak negative correlation, which is why we can't observe 
much from our visualization. Therefore, it is always important to select features 
properly so that we create an insightful visualization. Let's see how we can choose a 
visualization wisely and the common pitfalls that are faced during this process.
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Data Visualization 
The actual visualization is as important as the data that is being visualized, obviously, 
since it is the end product of the process. Thus, paying close attention to creating the 
best possible visualization for the data at hand is crucial.  

Interactive visualizations have multiple elements/parts. Let's take a closer look at each 
element to understand what can go wrong and how to prevent such mistakes. 

Choosing a Visualization 

Once your data has been cleaned and prepared, and the features that you want to 
visualize have been chosen, the first step in creating a visualization is selecting the 
graph or plot that is going to display your data. This decision impacts the efficiency and 
ease with which your visualization can explain your data, and thus you need to ensure 
that you're picking a visualization that can accurately explain and describe your data.

In the previous chapters, we looked at three types of data – stratified, temporal, and 
geographical – and used different visualizations to describe them. Hence, you already 
know that there are particular types of visualizations that are best suited for specific 
types of data; for example, using a world map to describe the relationship between 
gender and playing the piano in one particular school is quite pointless. 

Let's take a look at the different visualizations that we can use to accurately explain and 
represent our data. 

Note

As we saw in Chapter 3, From Static to Interactive Visualization, the basic plot is 
always a static one; interactive features are added to this static plot. Therefore, all 
the plots that we will mention here are static. 
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The visualization you choose for your data also depends on what you want to show. 
Therefore, the data and what you want to convey can be categorized, making it easier 
for you to decide which visualization you need to use to efficiently describe your data. 
The categories are as follows:

Figure 7.17: The broad types of visualizations

Relationship

These visualizations are used when showing a link between two or more variables. 
For example, in Chapter 3,From Static to Interactive Visualization, we described the 
relationship between the carbon dioxide emissions per person per country and the GDP 
per country. 

The plots that are used to depict relationships include network graphs, scatter plots, 
Venn diagrams, bubble charts, trees, and parallel coordinates, among others. 

Comparison

Comparison visualizations are used when you want to show the differences or 
similarities between two or more variables. 

The plots that are used to depict comparisons include all the types of bar graphs 
(simple, paired bar, paired column, stacked bar, and stacked column), pyramid graphs, 
heatmaps, box plots, and violin plots, among others.  
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Geo-spatial

Geo-spatial visualizations are specific to data that is geographical in nature. Therefore, 
location is a feature that must exist in the data. Only then should this visualization be 
used. 

The plots we used in Chapter 6, Interactive Visualization of Geographical Data, to depict 
geo-spatial data include world maps with different features, such as choropleth maps, 
isopleth maps, contour maps, bubble maps, point maps, icon maps, and flow maps, 
among others. 

Time

When data consists of dates and/or times, these visualizations are used to track the 
necessary changes. 

The plots that are used to depict temporal data include variations of line graphs, 
stacked area charts, stock charts, sparklines, fan charts, stream charts, and timeline 
charts, among others. 

As we mentioned previously, these are all static plots to which interactive features are 
added. However, the key thing to remember is when your data comes under more than 
one of the aforementioned categories – what visualization should you choose then? 

As an example, let's take the co2.csv dataset – we wanted to create a visualization 
that depicts the relationship between the carbon dioxide emissions per person per 
country and the GDP per country, over the span of a few decades. Therefore, this data 
technically comes under three categories – relationship, geo-spatial, and time. 

The great thing about interactive features is that they can sometimes deal with the 
problem of our data falling under several categories. As you may remember, we used 
a slider to show the change in the data points over the time period of the dataset. 
Therefore, the time aspect of the data was taken care of by this interactive feature. 

However, we still have the problem of choosing between a relationship visualization or a 
geo-spatial visualization:

•	 When deciding between two visualizations, it is important to remind yourself of 
what you actually want to convey with your visualization. In this case, we want 
to show the relationship between the carbon dioxide emissions per person per 
country and the GDP per country, not the relationship between carbon dioxide 
emissions and country, or GDP and country. This means that the two main 
features are carbon dioxide emissions and GDP, and so one needs to be the x 
axis and the other needs to be the y axis. Therefore, we chose a relationship 
visualization – the scatter graph. 
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•	 If we wanted to depict just how carbon dioxide emissions changed over time per 
country, we would pick a geo-spatial visualization.

•	 Also, an important thing to keep in mind is that to create a geo-spatial 
visualization, you need to have a location, and this location feature needs to 
be recognizable by the library you are using and the visualization that you are 
creating. For example, in our DataFrame, we have a country column. For us, that 
is a location feature and so we should be able to create a geo-spatial visualization 
using it. However, this is not recognized by the map visualizations in plotly.
express. Features such as longitude and latitude or iso_alpha codes are 
required for the visualizations to understand where on the world map or country 
map a particular data point belongs. 

Let's take a look at some of the other mistakes that can be made after choosing a 
visualization.

Common Pitfalls While Visualizing Data

Visualizing Too Much Information 

While visualizations are great at simplifying data and conveying important insights, 
forcing them to convey too much information results in them becoming too 
complicated, and so, ultimately, the viewer isn't able to understand anything by looking 
at them. Too much information basically means incorporating more than four or five 
features in your visualization, thereby introducing more than 5 colors and having too 
many words. 

Inconsistent Scales

Each feature has its own range within which all its data falls; if it's a numerical feature, 
then all the values fall within this range, while if it is a categorical feature, then there is 
a discrete set of classes. 

When visualizing more than one or two features in a single plot, the problem of scales 
often arises because each feature has its own scale. Not considering the scale of each 
feature often leads to confusing visualizations that show trends where there are none. 
Inconsistent scales also often force relationships that do not exist. Additionally, some 
visualizations also show elements of a plot that don't scale with respect to each other. 
This misleads viewers into believing something is true when it is not. 

Mislabeling Elements

Labels are often overlooked and considered as trivial elements of a visualization. Only in 
their absence do we realize their importance. Visualizations without labels become very 
confusing as the viewer doesn't know what they're seeing. 
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Exercise 55: Creating a Confusing Visualization

In this exercise, we're going to use the dataset from Chapter 3, From Static to Interactive 
Visualization, and the one we used in this chapter in Activity 7, Determining Which 
Features to Visualize on a Scatter Plot, to create a visualization that's hard to understand, 
thus explaining to you what you shouldn't be doing. Our visualization will aim to display 
the changes in carbon dioxide emissions per region every decade, starting in 1970 and 
ending in 2010. Let's get started:

1.	 Download the .csv file titled weight from this book's GitHub repository into the 
folder where you will be creating the interactive data visualization. 

2.	 Navigate to the folder where you have stored the .csv files and use the following 
command to initiate a Jupyter Notebook: 

jupyter notebook

3.	 Import the pandas library:

import pandas as pd

4.	 Import the numpy library:

import numpy as np

5.	 Import the chart_studio.plotly and plotly.graph_objs packages: 

import chart_studio.plotly as py
import plotly.graph_objs as go

Note

Please install chart_studio using pip install chart_studio

6.	 Create the DataFrame we used in Activity 7, Determining Which Features to 
Visualize on a Scatter Plot:

co2 = pd.read_csv('../datasets/co2.csv')
gm = pd.read_csv('../datasets/gapminder.csv')
df_gm = gm[['Country', 'region']].drop_duplicates()
df_w_regions = pd.merge(co2, df_gm, left_on='country', right_
on='Country', how='inner')
df_w_regions = df_w_regions.drop('Country', axis='columns')
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new_co2 = pd.melt(df_w_regions, id_vars=['country', 'region'])
columns = ['country', 'region', 'year', 'co2']
new_co2.columns = columns
df_co2 = new_co2[new_co2['year'].astype('int64') > 1963]
df_co2 = df_co2.sort_values(by=['country', 'year'])
df_co2['year'] = df_co2['year'].astype('int64')
df_g = gm[['Country', 'Year', 'gdp', 'population', 'fertility', 
'life']]
df_g.columns = ['country', 'year', 'gdp', 'population', 'fertility', 
'life']
data = pd.merge(df_co2, df_g, on=['country', 'year'], how='left')
data = data.dropna()

7.	 Create a stacked bar graph per region per decade – each bar will correspond 
to one region, and will consist of carbon dioxide emissions per country for that 
particular year. Therefore, each bar will have 5 stacks. The x axis will be the region 
while the y axis will be the carbon dioxide emissions in 1970, 1980, 1990, 
2000, and 2010:

source = [
    go.Bar(x = data['region'], 
          y = data.co2[data['year'] == 1970]), 
    go.Bar(x = data['region'], 
          y = data.co2[data['year'] == 1980]), 
    go.Bar(x = data['region'], 
          y = data.co2[data['year'] == 1990]),
    go.Bar(x = data['region'], 
          y = data.co2[data['year'] == 2000]),
    go.Bar(x = data['region'], 
          y = data.co2[data['year'] == 2010]),
]

8.	 Set the layout as a stacked bar graph:

layout = go.Layout(barmode = 'stack')

9.	 Plot the figure and display it:

fig = go.Figure(source, layout)
fig.show()
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The output is as follows:

Figure 7.18: The stacked bar graph supposedly displaying the carbon dioxide  
emissions per region per decade

It's a little hard to understand this graph, isn't it? The axes aren't labeled, so other than 
you no one else is going to know what has been visualized. The legend just describes 
the different stacks (colors) as traces:

Figure 7.19: Hovering over one of the stacks
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When you hover over the stacks, you see some numbers, but you aren't told what 
those numbers mean. Maybe you can figure out that each individual line in a stack 
corresponds to a country, but you don't know which country. It's even difficult to 
compare the bars and stacks with each other. The easiest insight to gain is that the 
Middle East & North Africa are at the top of extreme of what this graph is 
displaying and that Sub-Saharan Africa is at the bottom end during the span of five 
decades. 

Activity 8: Creating a Bar Graph for Improving a Visualization

Let's say you're given the visualization we created in Exercise 4, Creating a Confusing 
Visualization, and are asked to make it better by adding an interactive feature. How do 
you think you could do that?

Note 

This activity is a continuation of Exercise 55, so carry out the tasks in the same 
Jupyter notebook.

High-Level Steps

1.	 Import the necessary libraries. 

2.	 Create a bar graph visualizing carbon dioxide emissions per region per year with 
the year as a slider and the country name as a part of the hover tool. 
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The expected output is:

Figure 7.20: The interactive visualization in the form of a stacked bar graph depicting the carbon dioxide 
emissions per region over the span of five decades

Note

The solution steps can be found on page 284.

We shifted the time information to a sliding bar and added the country information to 
the hover tool. This has made our visualization so much better! There are labels on the 
axes, and the scale of the y axis isn't abnormally high. With this, we are able to get a 
better idea of what's going on. It is easier to compare the total carbon dioxide emissions 
per region per year now than it was in the earlier visualization. 
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Cheat Sheet for the Visualization Process
We have looked at various static and interactive visualization plots. But when we look 
at a dataset, how do we arrive at a conclusion regarding which visualization suits our 
needs? Let's take a look at the following flow charts to understand how to make a 
decision quickly regarding which plot we should choose and what interactive features 
to add to the plot to represent the data in a meaningful way. Let's take a look at the 
following diagram:

Figure 7.21a: Guideline of how to create a great visualization
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Figure 7.21b: Guideline of how to create a great visualization 
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This flow chart acts as a cheat sheet so that you can arrive at a conclusion regarding 
how to create a quick visualization based on a dataset.

Summary
In this book, we learned about the benefits of creating interactive data visualizations 
and how to build on static data visualizations to make them interactive. Simply 
incorporating features such as sliders, hover tools, and checkboxes can have an 
immensely positive impact on the way data is understood and how insights are gained. 

We looked at different Python libraries and what visualizations and situations they 
are best suited for. For example, bokeh is preferred when creating visualizations for 
web-based applications. 

Data and what you wish to show can be classified into four broad categories – 
comparisons, relationships, geo-spatial, and temporal. Each category has a wide array 
of graphs that suit that type of data best, but interactive features can help when data or 
what you want to show fall under more than one category – that's why interactive data 
visualizations are so great!

We also created context-based visualizations for different types of data – temporal, 
geographical, and data across strata – to understand the differences in the 
visualizations. 

In this chapter, we learned about the various errors that can be made in different 
phases of the visualization process – right from the formatting of data (anomalies, 
missing values, and duplicates) to creating the visualizations (inconsistent scales, 
too many features, uncorrelated features, missing labels, and choosing the correct 
visualization), and how to avoid/deal with them. 

Now, you're ready to create beautiful and meaningful interactive visualizations!
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Chapter 1: Introduction to Visualization with Python – Basic and 
Customized Plotting

Activity 1: Analyzing Different Scenarios and Generating the Appropriate 

Visualization

Solution

1.	 Download the dataset hosted on the book GitHub repository, and format it as a 
pandas DataFrame:

# load necessary modules
import pandas as pd
import seaborn as sns
from numpy import median, mean

2.	 Read the dataset as a pandas DataFrame:

# download file 'athlete_events.csv' from course GitHub repository: 
https://github.com/TrainingByPackt/Interactive-Data-Visualization-
with-Python/datasets
# read the dataset as a pandas DataFrame
olympics_df = pd.read_csv('..../Interactive-Data-Visualization-with-
Python/datasets/athlete_events.csv')
# preview DataFrame
olympics_df.head()

The output is as follows:

Figure 1.32: Olympics dataset
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3.	 Filter the DataFrame to contain only medal winners of the year 2016:

# filter the DataFrame to contain medal winners only (for 
non-winners, the Medal feature is NaN)
# note use of the inplace parameter
olympics_winners = olympics_df.dropna(subset=['Medal'])
olympics_winners.head()

The output is as follows:

Figure 1.33: Filtered Olympics DataFrame

4.	 Print the number of medals awarded in each sport in 2016:

# print records for each value of the feature 'Sport'
olympics_winners_2016 = olympics_winners[(olympics_winners.Year == 
2016)]
olympics_winners_2016.Sport.value_counts()
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The output is as follows:

Figure 1.34: The number of medals awarded

5.	 Note the top five sports based on the largest number of medals awarded in the 
year 2016, and then create a DataFrame to include only these sports:

# list the top 5 sports
top_sports = ['Athletics', 'Swimming', 'Rowing', 'Football', 
'Hockey']
# subset the DataFrame to include data from the top sports
olympics_top_sports_winners_2016 = olympics_winners_2016[(olympics_
winners_2016.Sport.isin(top_sports))]
olympics_top_sports_winners_2016.head()
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The output is as follows:

Figure 1.35: Olympics DataFrame

6.	 Generate a bar plot of 2016 medal winners across the top five sports:

# generate bar plot indicating count of medals awarded in each of 
the top sports
g = sns.catplot('Sport', data=olympics_top_sports_winners_2016, 
kind="count", aspect=1.5)

The output is as follows:

Figure 1.36: Generated bar plot
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7.	 Generate a histogram for the Age feature of all athletes who competed in the top 
five sports in 2016:

sns.distplot(olympics_top_sports_winners_2016.Age, kde=False)

The output is as follows:

Figure 1.37: Histogram plot with the Age feature

While most medal winners are between 20 and 30 years of age, there are also 
medal winners who are exceptionally younger (~16 years) or older (~40 years).

8.	 Generate a bar plot indicating the number of medals won by each country in the 
top five sports in 2016:

g = sns.catplot('Team', data=olympics_top_sports_winners_2016, 
kind="count", aspect=3)
g.set_xticklabels(rotation=90)
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The output is as follows:

Figure 1.38: Bar plot with the number of medals won

Considering the five sports, the US won the most medals, followed by Germany, 
Great Britain, Canada, and Australia.

9.	 Generate a bar plot indicating the average weight of players, categorized as male 
and female, winning in the top five sports in 2016:

sns.set(style="whitegrid")
sns.barplot(x="Sport", y="Weight", data=olympics_top_sports_
winners_2016, estimator=mean, hue='Sex')
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The output is as follows:

Figure 1.39: Bar plot with the average weight of players

The bar plot indicates the highest athlete weight in rowing, followed by swimming, 
and then the other remaining sports. The trend is similar across both male and female 
players.
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Chapter 2: Static Visualization – Global Patterns and Summary 
Statistics

Activity 2: Design Static Visualization to Present Global Patterns and Summary 

Statistics

Solution

1.	 Load the necessary python modules and download the Olympic History dataset 
hosted in the book's GitHub repository, and format it as a pandas DataFrame:

# load necessary modules
import pandas as pd
import seaborn as sns
from numpy import median, mean
# download file 'athlete_events.csv' from course GitHub repository: 
https://github.com/TrainingByPackt/Interactive-Data-Visualization-
with-Python/datasets
# read the dataset as a pandas DataFrame
olympics_df = pd.read_csv('../Interactive-Data-Visualization-with-
Python-master/datasets/athlete_events.csv')
# preview DataFrame
olympics_df.head()

The output is as follows:

Figure 2.22: Olympic History dataset
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2.	 Filter the DataFrame to contain only the medal winners of the year 2016 for the 
sports mentioned in the activity description:

# filter the DataFrame to contain medal winners only (for 
non-winners, the Medal feature is NaN)
# note use of the inplace parameter
olympics_winners = olympics_df.dropna(subset=['Medal'])
# list the top 5 sports
top_sports = ['Athletics', 'Swimming', 'Rowing', 'Football', 
'Hockey']
# filter dataframe to include 2016 records of specified sports
olympics_top_sports_winners_2016 = olympics_winners[(olympics_
winners.Sport.isin(top_sports)) & (olympics_winners.Year == 2016)]
olympics_top_sports_winners_2016.head()

The output is as follows:

Figure 2.23: Olympics history dataset with the medal winners

Look at the features in the dataset and note their data type – are they categorical 
or numerical?

3.	 The Sport feature, the Team feature, the Medal feature, and the Sex feature 
are all categorical, while the Age, Height, and Weight features are numerical. 
However, we should also note the range of values taken by the numerical features 
to get a sense of the data. This can be done using the describe function, as seen 
in Chapter 1, Introduction to Visualization with Python– Basic and Customized 
Plotting like so:

olympics_top_sports_winners_2016[['Age', 'Height', 'Weight']].
describe()
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The output is as follows:

Figure 2.24: Olympics history dataset with the top sport winners

4.	 Based on the output above, we are going to visualize the Height and Weight 
features, depicting their global pattern:

# import the seaborn library
import matplotlib.pyplot as plt
import seaborn as sns

fig1 = plt.figure()
ax = fig1.add_subplot(111)
ax = sns.scatterplot(x="Height", y="Weight", data=olympics_top_
sports_winners_2016)
plt.show()
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The output is as follows:

Figure 2.25: Scatter plot

It is interesting to note that there is an almost linear relationship between the 
Height and Weight features of the medal winners, with a few outliers. However, 
since this is a fairly dense plot with many universities in certain ranges we will 
draw a hexbin plot to represent the data.

5.	 Draw a hexbin plot:

sns.set(style="ticks")
## hexbin plot
sns.jointplot(olympics_top_sports_winners_2016.Height, olympics_top_
sports_winners_2016.Weight, kind="hex", color="#4CB391")
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The output is as follows:

Figure 2.26: Hexagonal binning plot

6.	 Now let's visualize the height and weight features, depicting the medal-wise 
summary statistics, segregated by athlete gender:

sns.set_style('white')
ax1 = sns.violinplot(x='Medal', y='Weight', data=olympics_top_
sports_winners_2016, hue='Sex')
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The output is as follows:

Figure 2.27: Violin plot showing medal versus weight

7.	 Set the y axis to Height like so:

ax2 = sns.violinplot(x='Medal', y='Height', data=olympics_top_
sports_winners_2016, hue='Sex')

The output is as follows:

Figure 2.28: Violin plot showing medal versus height

As expected, we see that the Height and Weight features do not differ significantly 
across the different medal winners. Also, Height and Weight are substantially lower 
for female medal winners than for male winners.
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Chapter 3: From Static to Interactive Visualization 

Activity 3: Creating Different Interactive Visualizations Using Plotly Express

Solution

1.	 Open a new Jupyter notebook. 

2.	 Import the necessary Python libraries and packages:

import pandas as pd
import plotly.express as px

3.	 Recreate the carbon dioxide emissions and GDP DataFrame from Exercise 22 in 
this notebook:

url_co2 = 'https://raw.githubusercontent.com/TrainingByPackt/
Interactive-Data-Visualization-with-Python/master/datasets/co2.csv'
url_gm = 'https://raw.githubusercontent.com/TrainingByPackt/
Interactive-Data-Visualization-with-Python/master/datasets/
gapminder.csv'
co2 = pd.read_csv(url_co2)
gm = pd.read_csv(url_gm)
df_gm = gm[['Country', 'region']].drop_duplicates()
df_w_regions = pd.merge(co2, df_gm, left_on='country', right_
on='Country', how='inner')
df_w_regions = df_w_regions.drop('Country', axis='columns')
new_co2 = pd.melt(df_w_regions, id_vars=['country', 'region'])
columns = ['country', 'region', 'year', 'co2']
new_co2.columns = columns
df_co2 = new_co2[new_co2['year'].astype('int64') > 1963]
df_co2 = df_co2.sort_values(by=['country', 'year'])
df_co2['year'] = df_co2['year'].astype('int64')
df_gdp = gm[['Country', 'Year', 'gdp']]
df_gdp.columns = ['country', 'year', 'gdp']
data = pd.merge(df_co2, df_gdp, on=['country', 'year'], how='left')
data = data.dropna()
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4.	 Create a scatter plot with the x- and y-axes as year and co2 respectively. Let the 
region determine the color of the datapoints. Add a box plot for the co2 values 
with the marginaly_y parameter:

scat = px.scatter(data, x = 'year', y = 'co2', color = 'region', 
marginal_y = 'box')

5.	 Display the scatter plot:

scat.show()

The output is as follows:

Figure 3.31: Scatter plot of CO2 emissions per year

This plot is interactive because of the following reasons: 

You can hover over a datapoint to receive more information. You can also select 
and deselect the regions to observe data that's specific to a particular region/set 
of regions. 
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6.	 Create a scatter plot with the x and y axes as gdp and co2 respectively. Let the 
region determine the color of the datapoints. Add a box plot for the co2 values 
with the marginal_y parameter and a rug plot for the gdp values with the 
marginal_x parameter. Add the animation parameters on the year column:

scat1 = px.scatter(data, x = 'gdp', y = 'co2', color = 'region', 
marginal_y = 'box', marginal_x = 'rug', animation_frame = 'year', 
animation_group = 'country')

7.	 Display the scatter plot:

scat1.show()

The output should be as follows:

Figure 3.32: Scatter plot of CO2 emissions versus GDP

This plot is interactive because of the following reasons:

You can hover over a datapoint to receive more information about it; you can also 
select and deselect the regions to observe data specific to a particular region/set 
of regions; you can slide the bar to observe the datapoints in different years. 
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8.	 Create a density contour with the x and y axes as gdp and co2 respectively. Let 
the region determine the color of the datapoints. Add a histogram for the co2 
values with the marginal_y parameter and a rug plot for the gdp values with the 
marginal_x parameter. Add the animation parameters on the year column:

dens1 = px.density_contour(data, x="gdp", y="co2", color="region", 
marginal_x="rug", marginal_y="histogram", animation_frame = 'year', 
animation_group = 'region')

9.	 Display the density contour:

dens1.show()

The output is as follows:

Fig 3.33: Density contour of CO2 emissions versus GDP

This plot is interactive because of the following reasons: 

You can hover over a contour to receive more information about it ; you can select and 
deselect the regions to observe data that's specific to a particular region/set of regions; 
you can slide the bar to observe the contours in different years. 
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Chapter 4: Interactive Visualization of Data across Strata

Activity 4: Generate a Bar Plot and a Heatmap to Represent Content Rating 

Types in the Google Play Store Apps Dataset

Solution

1.	 Load the necessary Python modules and download the dataset hosted in the book 
GitHub repository and format it as a pandas DataFrame: 

# load pandas library
Import pandas as pd
# download file 'googleplaystore.csv' from course GitHub repository
# read the dataset as a pandas DataFrame
gps_apps_df =pd.read_csv('https://raw.githubusercontent.com/
TrainingByPackt/Interactive-Data-Visualization-with-Python/master/
datasets/googleplaystore.csv')
#worldrank_df = pd.read_csv('https://raw.githubusercontent.com/
TrainingByPackt/Interactive-Data-Visualization-with-Python/master/
datasets/googleplaystore.csv')
# preview DataFrame
gps_apps_df.head()

The output is as follows:

Figure 4.30: Google Play Store dataset apps

2.	 Remove the entries in the DataFrame that have feature values of NA:

gps_apps_df = gps_apps_df.dropna()
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3.	 Create the required bar chart of the number of apps in each Content Rating 
category of the app; that is, whether the app is rated by Adults only 18+/
Everyone/Everyone 10+/Mature 17+/Teen/Unrated:

#import altair 
Import altair as alt
alt.data_transformers.enable('default',max_rows=None)
# create bar plot
alt.Chart(gps_apps_df).mark_bar().encode(
x='Content Rating:N',
y='count():Q'
).properties(width=200)

The output is as follows:

Figure 4.31: Bar plot
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4.	 Create the required heatmap indicating the number of apps across the app 
Category and Rating ranges:

# create heatmap
alt.Chart(gps_apps_df).mark_rect().encode(
alt.X('Category:N'),
alt.Y('Rating:Q',bin=True),
alt.Color('count()',
scale=alt.Scale(scheme='greenblue'), 
legend=alt.Legend(title='Total Apps') 
)
).properties(
width=600
)

The output is as follows:

Figure 4.32: Heatmap
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5.	 Merge the code for the bar chart and heatmap and create a visualization with both 
plots linked dynamically to each other such that the selection in the bar chart is 
reflected in the changes on the heatmap:

# define selection
selected_category = alt.selection(type="single", encodings=['x'])
# heatmap
heatmap = alt.Chart(gps_apps_df).mark_rect().encode(
alt.X('Category:N'),
alt.Y('Rating:Q', bin=True),
alt.Color('count()',
scale=alt.Scale(scheme='greenblue'),
legend=alt.Legend(title='Total Apps')
)
).properties(
width=600
)
# circles to be placed on the heatmap
circles = heatmap.mark_point().encode(
alt.ColorValue('grey'),
alt.Size('count()',
scale=alt.Scale(domain=(1,600),range=(1,200)),
legend=alt.Legend(title='Apps in Selection')
)
).transform_filter(
selected_category)

6.	 Link the bar plot and the heatmap using the following code:

# bar plot
bars = alt.Chart(gps_apps_df).mark_bar().encode(
x='Content Rating:N',
y='count()',
color=alt.condition(selected_category, alt.ColorValue("steelblue"), 
alt.ColorValue("grey"))
).properties(
width=200
).add_selection(selected_category)
# layering and hconcat 
heatmap+circles|bars
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The output is as follows:

Figure 4.33: Linked bar plot and heatmap

And that's it. Congratulations!
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Chapter 5: Interactive Visualization of Data across Time 

Activity 5: Create an Interactive Temporal Visualization using RangeTool and 

Aggregator

1.	 Import required libraries:

from bokeh.io import show
from bokeh.layouts import column
from bokeh.models import ColumnDataSource, RangeTool
from bokeh.plotting import figure
from bokeh.io import push_notebook, show, output_notebook
from pathlib import Path
import pandas as pd
import numpy as np
from ipywidgets import interact
%matplotlib inline

2.	 Setup the output to Jupyter Notebook:

DATA_PATH = Path(“../datasets/chap5_data/”)
output_notebook()

3.	 Create a DataFrame microsoft_df and parse the date column:

microsoft_df = pd.read_csv(DATA_PATH / “microsoft_stock.csv”, parse_
dates=[‘date’])

4.	 Set the index as date:

microsoft_df.index = microsoft_df.date

5.	 Create date numpy array and source as ColumnDataSource. We will use these to 
draw line plot:

dates = np.array(microsoft_df[‘date’], dtype=np.datetime64)
source = ColumnDataSource(data=dict(date=dates, close=microsoft_
df[‘high’]))

6.	 Initialize the figure and draw the line:

p = figure(plot_height=300, plot_width=800, tools=”xpan”, toolbar_
location=None, title=”Time Series Stock Data”,
           x_axis_type=”datetime”, x_axis_location=”above”,
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           background_fill_color=”#ffefef”, x_range=(dates[1000], 
dates[1800]))
r = p.line(‘date’, ‘close’, source=source)
p.yaxis.axis_label = ‘High Price’

7.	 Create range slider using RangeTool:

select = figure(title=”Drag To See More Data”,plot_width=800, y_
range=p.y_range,
                x_axis_type=”datetime”, y_axis_type=None, plot_
height=130,
                tools=””, background_fill_color=”#ffefef”, toolbar_
location=None,)
range_tool = RangeTool(x_range=p.x_range)
range_tool.overlay.fill_color = “green”
range_tool.overlay.fill_alpha = 0.2

8.	 Write a custom update function which aggregate data by month, year and day:

def update(f):
    if   f == “day”:
        r.data_source.data = dict({
            ‘date’: microsoft_df.index,
            ‘high’: microsoft_df.high
        })
    elif f == “month”:
        month = microsoft_df.groupby(pd.Grouper(freq=”M”))
[[‘high’]].mean()
        r.data_source.data = dict({
            ‘date’: month.index,
            ‘high’: month.high
        })
    elif f == “year”:
        year = microsoft_df.groupby(pd.Grouper(freq=”Y”))[[‘high’]].
mean()
        r.data_source.data = dict({
            ‘date’: year.index,
            ‘high’: year.high
        })
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    push_notebook()
 
select.line(‘date’, ‘high’, source=source)
select.ygrid.grid_line_color = None
select.add_tools(range_tool)
select.toolbar.active_multi = range_tool
show(column(p, select), notebook_handle=True)

The output is as follows:

Figure 5.33: Time-series Microsoft stock data

9.	 Plot both range slider and aggregator on the plot:

select.line(‘date’, ‘high’, source=source)
select.ygrid.grid_line_color = None
select.add_tools(range_tool)
select.toolbar.active_multi = range_tool
show(column(p, select), notebook_handle=True)
interact(update, f=[“day”, “month”, “year”])
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The output is as follows:

Figure 5.34: Microsoft stock price chart with range slider and aggregator

We can now change the plot to show month, day, and year. In this section, we have 
delved into interactive temporal visualizations using bokeh. We've looked at basic 
interactive plots in bokeh and used box annotations to highlight regions.
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Chapter 6: Interactive Visualizations of Data across Geographical 
Regions

Activity 6: Creating a Choropleth Map to Represent Total Renewable  

Energy Production and Consumption across the World

Solution

1.	 Load the renewable energy production dataset:

import pandas as pd
renewable_energy_prod_url = "https://raw.githubusercontent.com/
TrainingByPackt/Interactive-Data-Visualization-with-Python/master/
datasets/share-of-electricity-production-from-renewable-sources.csv"
renewable_energy_prod_df = pd.read_csv(renewable_energy_prod_url)
renewable_energy_prod_df.head()

The output is as follows:

Figure 6.29: Renewable sources dataset
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2.	 Sort the production DataFrame based on the Year feature:

renewable_energy_prod_df.sort_values(by=['Year'],inplace=True)
renewable_energy_prod_df.head()

The output is as follows:

Figure 6.30: Renewable sources dataset after sorting by year

3.	 Generate a choropleth map using the plotly express module animated based on 
Year:

import plotly.express as px
renewable_energy_prod = renewable_energy_prod_df.query('Year<2017 
and Year>2007')
fig = px.choropleth(renewable_energy_prod_df, locations="Code",
color="Renewable electricity (% electricity production)",
hover_name="Country", 
animation_frame="Year",
color_continuous_scale='Greens')

4.	 Update the layout to include a suitable projection style and title text, then display 
the figure:

fig.update_layout(
# add a title text for the plot
title_text = 'Renewable energy production across the world (% of 
electricity production)',
# set projection style for the plot
geo = dict(projection={'type':'natural earth'}) # by default, 
projection type is set to 'equirectangular'
)
fig.show()
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The output is as follows:

Figure 6.31a: Choropleth map showing the renewable energy production of Greenland  
in the year 1998

Figure 6.31b: Choropleth map showing the renewable energy production of Greenland  
in the year 2014
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5.	 Load the renewable energy consumption dataset:

import pandas as pd
renewable_energy_cons_url = "https://raw.githubusercontent.com/
TrainingByPackt/Interactive-Data-Visualization-with-Python/master/
datasets/renewable-energy-consumption-by-country.csv"
renewable_energy_cons_df = pd.read_csv(renewable_energy_cons_url)
renewable_energy_cons_df.head()

The output is as follows:

Figure 6.32: Renewable energy consumption dataset

6.	 Convert the DataFrame to the desired format:

#renewable_energy_long_df = pd.wide_to_long(renewable_energy_df, 
stubnames='Consumption', i=['Country', 'Code','Year'], j='Energy_
Source')
#renewable_energy_long_df.head()
renewable_energy_cons_df = pd.melt(renewable_energy_cons_df, \
id_vars=['Country', 'Code','Year'], \
var_name="Energy Source", \
value_name="Consumption (terrawatt-hours)")
renewable_energy_cons_df.head()

The output is as follows:

Figure 6.33: The desired dataset after conversion
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7.	 Sort the consumption DataFrame based on the Year feature:

renewable_energy_cons_df.sort_values(by=['Year'], inplace=True)
renewable_energy_cons_df.head()

The output is as follows:

Figure 6.34: The dataset after sorting by year

8.	 Generate a choropleth map for renewable energy consumption using the plotly 
express module animated based on Year:

import plotly.express as px
renewable_energy_total_cons = renewable_energy_cons_df[renewable_
energy_cons_df['Energy Source']=='Total'].query('Year<2017 and 
Year>2007')
fig = px.choropleth(renewable_energy_total_cons, locations="Code",
color="Consumption (terrawatt-hours)",
hover_name="Country", 
animation_frame="Year",
color_continuous_scale='Blues')

9.	 Update the layout of the consumption plot to include a suitable projection style 
and title text, then display the figure:

fig.update_layout(
# add a title text for the plot
title_text = 'Renewable energy consumption across the world 
(terrawatt-hours)',
# set projection style for the plot
geo = dict(projection={'type':'natural earth'}) # by default, 
projection type is set to 'equirectangular'
)
fig.show()
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The output is as follows:

Figure 6.35a: Choropleth map showing renewable energy consumption across the world

Figure 6.35b: Choropleth map showing renewable energy consumption across the world

So, from the preceding two plots we can deduce that China's renewable energy 
consumption increased between 2008 and 2013.
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Chapter 7: Avoiding Common Pitfalls to Create Interactive  
Visualizations

Activity 7: Determining Which Features to Visualize on a Scatter Plot

Solution

1.	 Navigate to the folder where you have stored the .csv files and initiate a Jupyter 
Notebook.

2.	 Import pandas, numpy, and plotly.express:

import pandas as pd
import numpy as np
import plotly.express as px

3.	 Create the same DataFrame, but instead of including only the gdp column from 
the gm DataFrame, include the population, fertility, and life columns as 
well:

co2 = pd.read_csv('co2.csv')
gm = pd.read_csv('gapminder.csv')
df_gm = gm[['Country', 'region']].drop_duplicates()
df_w_regions = pd.merge(co2, df_gm, left_on='country', right_
on='Country', how='inner')
df_w_regions = df_w_regions.drop('Country', axis='columns')
new_co2 = pd.melt(df_w_regions, id_vars=['country', 'region'])
columns = ['country', 'region', 'year', 'co2']
new_co2.columns = columns
df_co2 = new_co2[new_co2['year'].astype('int64') > 1963]
df_co2 = df_co2.sort_values(by=['country', 'year'])
df_co2['year'] = df_co2['year'].astype('int64')
df_g = gm[['Country', 'Year', 'gdp', 'population', 'fertility', 
'life']]
df_g.columns = ['country', 'year', 'gdp', 'population', 'fertility', 
'life']
data = pd.merge(df_co2, df_g, on=['country', 'year'], how='left')
data = data.dropna()
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4.	 Print the head of this DataFrame. You should have eight columns, excluding the 
index column: 

data.head()

The output is as follows: 

Figure 7.22: The first five rows of the final DataFrame

5.	 Visualize the relationship between co2 and life using a scatter graph with the 
following information:

The x axis as the life column, the y axis as the co2 column, the size parameter 
as the population column, the color parameter as the region column, the 
animation_frame parameter as the year column, the animation_group 
parameter as the country column, the hover_name parameter as the country 
column, the maximum size as 60 :

fig = px.scatter(data, x="life", y="co2", size="population", 
color="region", animation_frame = 'year', animation_group = 
'country', hover_name="country", size_max=60)
fig.show()
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The following is the expected output: 

Figure 7.23: The interactive scatter plot describing the relationship between carbon dioxide emissions 
and life per country per year

If you press the play button or manually drag the sliding bar to different years, 
you'll notice that there isn't much of a trend or pattern emerging from this scatter 
plot. But the whole point of a scatter plot is to display a relationship, so is there even 
a relationship here worth visualizing? Let's check.

6.	 Create numpy arrays of the co2 column and the life column:

np1 = np.array(data['co2'])
np2 = np.array(data['life'])

7.	 Calculate the correlation between the two arrays: 

np.corrcoef(np1, np2)
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The following is the expected output:

array([[1.        , 0.40288934],
 [0.40288934, 1.        ]])

There's barely any correlation here. Compare this with the correlation we found 
between co2 and gdp. 

8.	 Repeat steps 6 and 7 with the co2 and gdp columns:

np1 = np.array(data['co2'])
np2 = np.array(data['gdp'])
np.corrcoef(np1, np2)

The following is the expected output: 

array([[1..., 0.78219731],
[0.78219731, 1...]])

That's a high correlation! That's why we were able to observe a trend when we 
plotted these two features together. 

9.	 Visualize the relationship between co2 and fertility using a scatter graph with 
the following information:

The x axis as the fertility column, the y axis as the co2 column, the size 
parameter as the population column, the color parameter as the region 
column, The animation_frame parameter as the year column, The animation_
group parameter as the country column, the hover_name parameter as the 
country column, the maximum size as 60:

fig = px.scatter(data, x="fertility", y="co2", size="population", 
color="region", animation_frame = 'year', animation_group = 
'country', hover_name="country", size_max=60)
fig.show()
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The expected output is as follows:

Figure 7.24: The interactive scatter plot describing the relationship between carbon dioxide emissions 
and fertility per country per year

Much like our previous graph, there doesn't seem to be much of a relationship 
between these two features. Let's check again. 
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10.	 Repeat steps 6 and 7 for the co2 and fertility columns: 

np1 = np.array(data['co2'])
np2 = np.array(data['fertility'])
np.corrcoef(np1, np2)

The output is as follows:

array([[ 1., -0.31439742],
 [-0.31439742,1.        ]])

Here, we have a weak negative correlation, which is why we can't observe much from 
our visualization. Therefore, it is always important to select features properly so that we 
create an insightful visualization. Let's see how we can choose a visualization wisely and 
the common pitfalls that are faced during this process.

Activity 8: Creating a Bar Graph for Improving a Visualization

Solution

1.	 Import plotly.express:

%run exercise55.ipynb
import plotly.express as px

2.	 Create a bar graph visualizing carbon dioxide emissions per region, per year with 
the following information:

The x-axis as the region column. The y-axis as the co2 column. The animation_
frame parameter as the year column. The animation_group parameter as the 
country column. The hover_name parameter as the country column.

fig3 = px.bar(data, x = 'region', y = "co2", animation_frame = 
'year', animation_group = 'region', hover_name = 'country')
fig3.show()
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The output is as follows:

Fig 7.25: The interactive visualization in the form of a stacked bar graph depicting the carbon dioxide 
emissions per region over the span of five decades

We shifted the time information to a sliding bar and added the country information to 
the hover tool. This has made our visualization so much better! There are labels on the 
axes, and the scale of the y axis isn't abnormally high. With this, we are able to get a 
better idea of what's going on. It is easier to compare the total carbon dioxide emissions 
per region, per year now than it was in the earlier visualization. 
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