
Matt Neuburg

iOS 14
Programming
Fundamentals
with Swift
Swift, Xcode, and Cocoa Basics

Covers iOS 14,

Xcode 12, and Swift 5.3

Matt Neuburg

Boston

iOS 14 Programming
Fundamentals with Swift

Swift, Xcode, and Cocoa Basics

SEVENTH EDITION

ISBN: 978-1-492-09209-4

[GP]

iOS 14 Programming Fundamentals with Swift, Seventh Edition
by Matt Neuburg

Copyright © 2021 Matt Neuburg. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com). For more information, contact our corporate/institu‐
tional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Rachel Roumeliotis Indexer: Matt Neuburg
Production Editor: Kristen Brown Cover Designer: Karen Montgomery
Proofreader: O’Reilly Production Services Interior Designer: David Futato
Illustrator: Matt Neuburg

April 2015: First Edition
October 2015: Second Edition
October 2016: Third Edition
October 2017: Fourth Edition
September 2018: Fifth Edition
October 2019: Sixth Edition
October 2020: Seventh Edition

Revision History for the Seventh Edition
2020-09-23: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781492092094 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. iOS 14 Programming Fundamentals
with Swift, the image of a harp seal, and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the author, and do not represent the publisher’s views.
While the publisher and the author have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781492092094

Table of Contents

Preface. xiii

Part I. Language

1. The Architecture of Swift. 3
Ground of Being 3
Everything Is an Object? 5
Three Flavors of Object Type 6
Variables 6
Functions 8
The Structure of a Swift File 9
Scope and Lifetime 12
Object Members 13
Namespaces 13
Modules 14
Instances 15
Why Instances? 17
The Keyword self 19
Privacy 20
Design 22

2. Functions. 25
Function Parameters and Return Value 25

Void Return Type and Parameters 29
Function Signature 30

External Parameter Names 30
Overloading 32

iii

Default Parameter Values 33
Variadic Parameters 34
Ignored Parameters 34
Modifiable Parameters 35

Calling Objective-C with Modifiable Parameters 37
Called by Objective-C with Modifiable Parameters 38
Reference Type Modifiable Parameters 38

Function in Function 39
Recursion 40
Function as Value 40
Anonymous Functions 44

Using Anonymous Functions Inline 45
Anonymous Function Abbreviated Syntax 46

Define-and-Call 50
Closures 51

How Closures Improve Code 52
Function Returning Function 54
Closure Setting a Captured Variable 57
Closure Preserving Captured Environment 57
Escaping Closures 59

Curried Functions 60
Function References and Selectors 61

Function Reference Scope 63
Selectors 65

3. Variables and Simple Types. 67
Variable Scope and Lifetime 67
Variable Declaration 69
Computed Variable Initialization 73
Computed Variables 74

Computed Properties 75
Property Wrappers 77

Setter Observers 78
Lazy Initialization 79

Singleton 80
Lazy Initialization of Instance Properties 80

Built-In Simple Types 82
Bool 82
Numbers 84
String 92

iv | Table of Contents

Character and String Index 97
Range 102
Tuple 104
Optional 106

4. Object Types. 121
Object Type Declarations and Features 121

Initializers 123
Properties 130
Methods 133
Subscripts 134
Nested Object Types 137

Enums 138
Raw Values 139
Associated Values 141
Enum Case Iteration 143
Enum Initializers 144
Enum Properties 145
Enum Methods 146
Why Enums? 148

Structs 149
Struct Initializers 149
Struct Properties 151
Struct Methods 151
Struct as Namespace 152

Classes 152
Value Types and Reference Types 153
Subclass and Superclass 158
Class Initializers 164
Class Deinitializer 172
Class Properties 172
Static/Class Members 173

Polymorphism 174
Casting 178

Casting Down 179
Type Testing and Casting Down Safely 179
Type Testing and Casting Optionals 181
Bridging to Objective-C 182

Type References 183
From Instance to Type 183

Table of Contents | v

From self to Type 183
Type as Value 187
Summary of Type Terminology 188
Comparing Types 188

Protocols 189
Why Protocols? 191
Adopting a Library Protocol 192
Protocol Type Testing and Casting 193
Declaring a Protocol 194
Protocol Composition 194
Class Protocols 195
Optional Protocol Members 197
Implicitly Required Initializers 199
Expressible by Literal 200

Generics 201
Generic Declarations 204
Contradictory Resolution Is Impossible 206
Type Constraints 207
Explicit Specialization 209
Generic Invariance 211
Associated Type Chains 212
Where Clauses 214

Extensions 217
Extending Protocols 219
Extending Generics 221

Umbrella Types 223
Any 223
AnyObject 225
AnyClass 227

Collection Types 228
Array 228
Dictionary 244
Set 252

5. Flow Control and More. 259
Flow Control 259

Branching 260
Loops 272
Jumping 278

Privacy 294

vi | Table of Contents

Private and Fileprivate 295
Public and Open 297
Privacy Rules 298

Introspection 298
Operators 299
Memory Management 303

Memory Management of Reference Types 303
Exclusive Access to Value Types 311

Miscellaneous Swift Language Features 313
Synthesized Protocol Implementations 313
Key Paths 316
Instance as Function 319
Dynamic Membership 320
Property Wrappers 322
Custom String Interpolation 325
Reverse Generics 327
Function Builders 329
Result 329

Part II. IDE

6. Anatomy of an Xcode Project. 335
New Project 335
The Project Window 337

The Navigator Pane 339
The Inspectors Pane 344
The Editor 345

Project File and Dependents 348
Contents of the Project Folder 349
Groups 350

The Target 351
Build Phases 351
Build Settings 353
Configurations 354
Schemes and Destinations 355

From Project to Built App 358
Build Settings 360
Property List Settings 361
Nib Files 362

Table of Contents | vii

Resources 362
Code Files 364
Frameworks, SDKs, and Packages 364

The App Launch Process 369
The Entry Point 369
How an App Gets Going 370
App Without a Storyboard 372

Renaming Parts of a Project 373

7. Nib Files. 375
The Nib Editor Interface 377

Document Outline 378
Canvas 380
Inspectors 382

Loading a Nib 383
Loading a View Controller Nib 383
Loading a Main View Nib 384
Loading a View Nib Manually 385

Connections 387
Outlets 387
The Nib Owner 389
Automatically Configured Nibs 392
Misconfigured Outlets 393
Deleting an Outlet 395
More Ways to Create Outlets 396
Outlet Collections 399
Action Connections 399
More Ways to Create Actions 401
Misconfigured Actions 403
Connections Between Nibs — Not! 404

Additional Configuration of Nib-Based Instances 404

8. Documentation. 409
The Documentation Window 409
Class Documentation Pages 411
Quick Help 414
Symbol Declarations 416
Header Files 417
Sample Code 418
Internet Resources 419

viii | Table of Contents

9. Life Cycle of a Project. 421
Environmental Dependencies 421

Conditional Compilation 422
Build Action 423
Permissible Runtime Environment 424
Backward Compatibility 425
Device Type 426
Arguments and Environment Variables 428

Version Control 429
Editing and Navigating Your Code 432

Text Editing Preferences 433
Multiple Selection 434
Autocompletion and Placeholders 435
Snippets 436
Refactoring and Structure Editing 437
Fix-it and Live Syntax Checking 439
Navigation 439
Finding 441

Running in the Simulator 443
Debugging 445

Caveman Debugging 445
The Xcode Debugger 449

Testing 456
Unit Tests 458
Interface Tests 463
Test Plans 465
Massaging the Report 467

Clean 468
Running on a Device 469

Obtaining a Developer Program Membership 469
Signing an App 470
Automatic Signing 471
Manual Signing 474
Running the App 475
Managing Development Certificates and Devices 476

Profiling 477
Gauges 477
Memory Debugging 478
Instruments 479

Localization 482

Table of Contents | ix

Creating Localized Content 483
Testing Localization 487

Distribution 488
Making an Archive 488
The Distribution Certificate 489
The Distribution Profile 490
Distribution for Testing 491
Final App Preparations 493
Screenshots and Video Previews 495
Property List Settings 497
Submission to the App Store 498

Part III. Cocoa

10. Cocoa Classes. 503
Subclassing 503
Categories and Extensions 506

How Swift Uses Extensions 506
How You Use Extensions 506
How Cocoa Uses Categories 507

Protocols 508
Optional Members 509
Informal Protocols 512

Some Foundation Classes 512
NSRange 513
NSNotFound 515
NSString and Friends 515
NSDate and Friends 518
NSNumber 520
NSValue 522
NSData 523
NSMeasurement and Friends 524
Equality, Hashability, and Comparison 524
NSArray and NSMutableArray 527
NSDictionary and NSMutableDictionary 529
NSSet and Friends 529
NSIndexSet 530
NSNull 531
Immutable and Mutable 532

x | Table of Contents

Property Lists 533
Codable 534

Accessors, Properties, and Key–Value Coding 537
Swift Accessors 539
Key–Value Coding 540
How Outlets Work 541
Cocoa Key Paths 541
Uses of Key–Value Coding 542
KeyPath Notation 543

The Secret Life of NSObject 545

11. Cocoa Events. 547
Reasons for Events 547
Subclassing 548
Notifications 549

Receiving a Notification 551
Unregistering 553
Posting a Notification 554
Timer 555

Delegation 556
Cocoa Delegation 557
Implementing Delegation 558

Data Sources 560
Actions 561

The Responder Chain 564
Nil-Targeted Actions 565

Key–Value Observing 566
Registration and Notification 567
Unregistering 568
Key–Value Observing Example 569

Swamped by Events 571
Delayed Performance 574

12. Memory Management. 577
Principles of Cocoa Memory Management 577
Rules of Cocoa Memory Management 578
What ARC Is and What It Does 579
How Cocoa Objects Manage Memory 580
Autorelease Pool 581
Memory Management of Instance Properties 583

Table of Contents | xi

Retain Cycles and Weak References 584
Unusual Memory Management Situations 586

Notification Observers 587
KVO Observers 588
Timers 588
Other Unusual Situations 590

Nib Loading and Memory Management 590
Memory Management of CFTypeRefs 591
Property Memory Management Policies 593
Debugging Memory Management Mistakes 595

13. Communication Between Objects. 597
Visibility Through an Instance Property 597
Visibility by Instantiation 598
Getting a Reference 600

Visibility by Relationship 601
Global Visibility 601

Notifications and Key–Value Observing 603
The Combine Framework 604
Alternative Architectures 611

Model–View–Controller 611
Router and Data Space 611
Model–View–Presenter 612
Protocols and Reactive Programming 613
VIPER 614

SwiftUI 614
Function Builders and Modifiers 615
State Properties 616
Bindings 618
Passing Data Downhill 619
Passing Data Uphill 620
Custom State Objects 621

A. C, Objective-C, and Swift. 625

Index. 663

xii | Table of Contents

Preface

Ten years ago, in July of 2010, Chris Lattner created a folder on his computer called
Shiny, and a new computer language was born. Four years later, in 2014, that lan‐
guage, renamed Swift, was introduced to the public, and was greeted with a mixture
of surprise and excitement — and skepticism.

Prior to that moment, Cocoa programming, on iOS and before that on Mac OS, had
always been done chiefly in Objective-C. The Cocoa frameworks that give an iOS app
its functionality are based on Objective-C; they expect to be spoken to in Objective-C.
The tradition of using Objective-C was long and deeply ingrained. For all its faults,
Objective-C was the language we had all learned to live with as the price of program‐
ming Cocoa. Could Cocoa be spoken to in a whole new language? Could this new
language replace Objective-C as the iOS developer’s language of choice?

No one knew. I certainly didn’t know! So the first thing I did, as an experiment, was
to try translating my own existing iOS apps into Swift. Not only was I able to do it,
but I found the new Swift versions easier to understand and maintain than their
Objective-C originals. From that moment, I was convinced that the vast majority of
new iOS programmers would hitherto adopt Swift. I was right.

Swift is a superb language to learn, even (perhaps especially) if you’ve never program‐
med before, and is the easiest and clearest way to program iOS. It has these salient
features:

Object-orientation
Swift is a modern, object-oriented language. It is purely object-oriented: “Every‐
thing is an object.”

Clarity
Swift is easy to read and easy to write. Its syntax is clear, consistent, and explicit,
with few hidden shortcuts and minimal syntactic trickery.

xiii

Safety
Swift enforces strong typing to ensure that it knows, and that you know, what the
type of every object reference is at every moment.

Economy
Swift is a fairly small language, providing some basic types and functionalities
and no more. The rest must be provided by your code, or by libraries of code that
you use — such as Cocoa.

Memory management
Swift manages memory automatically. You will rarely have to concern yourself
with memory management.

Cocoa compatibility
The Cocoa APIs are written primarily in C and Objective-C. Swift is explicitly
designed to interface with most of the Cocoa APIs.

Earlier editions of this book, before 2014, taught the reader Objective-C. After 2014,
they teach Swift. This edition is geared to Swift 5.3. The Swift language has reached a
high state of maturity. It has achieved ABI stability, which means that the Swift lan‐
guage has become part of the system. Swift apps are smaller and faster than ever.

The Foundation and Cocoa APIs, however, are still written in C and Objective-C. To
interact with them, you might have to know what those languages would expect.
Therefore in this book I describe Objective-C in enough detail to allow you to read it
when you encounter it in the documentation and on the internet, and I occasionally
show some Objective-C code. Part III, on Cocoa, is largely about learning to think the
way Objective-C thinks — because the structure and behavior of the Cocoa APIs are
fundamentally based on Objective-C. And the book ends with an appendix that
details how Swift and Objective-C communicate with one another, as well as explain‐
ing how your app can be written partly in Swift and partly in Objective-C.

The Scope of This Book
This book is intended to accompany and precede Programming iOS 14, which picks
up where this book leaves off. If writing an iOS program is like building a house of
bricks, this book teaches you what a brick is and how to handle it, while Program‐
ming iOS 14 shows you some actual bricks and tells you how to assemble them.

When you have read this book, you’ll know about Swift, Xcode, and the underpin‐
nings of the Cocoa framework, and you will be ready to proceed directly to Program‐
ming iOS 14. Conversely, Programming iOS 14 assumes a knowledge of this book; it
begins, like Homer’s Iliad, in the middle of the story, with the reader jumping with all
four feet into views and view controllers, and with a knowledge of the language and
the Xcode IDE already presupposed. If you started reading Programming iOS 14 and

xiv | Preface

https://www.oreilly.com/library/view/programming-ios-14/9781492092162/

wondered about such unexplained matters as Swift language basics, the
UIApplicationMain function, the nib-loading mechanism, Cocoa patterns of delega‐
tion and notification, and retain cycles, wonder no longer — I didn’t explain them
there because I do explain them here.

This book doesn’t show how to write any particularly interesting iOS apps, but it does
constantly use my own real apps and real programming situations to illustrate and
motivate its explanations, as it teaches you the underlying basis of iOS programming.
It has three parts:

• Part I introduces the Swift language, from the ground up — I do not assume that
you know any other programming languages. My way of teaching Swift is differ‐
ent from other treatments, such as Apple’s; it is systematic and Euclidean, with
pedagogical building blocks piled on one another in what I regard as the most
helpful order. At the same time, I have tried to confine myself to the essentials.
Swift is not a big language, but it has some subtle and unusual corners that you
probably don’t need to know about. Also, I never mention Swift playgrounds or
the REPL. My focus here is real-life iOS programming, and my explanation of
Swift concentrates on the practical aspects of the language that actually come
into play in the course of programming iOS.

• Part II turns to Xcode, the world in which all iOS programming ultimately takes
place. It explains what an Xcode project is and how it is transformed into an app,
and how to work comfortably and nimbly with Xcode to consult the documenta‐
tion and to write, navigate, and debug code, as well as how to bring your app
through the subsequent stages of running on a device and submission to the App
Store. There is also a chapter on nibs and the nib editor (Interface Builder),
including outlets and actions as well as the mechanics of nib loading (but such
specialized topics as autolayout constraints in the nib are postponed to the other
book).

• Part III introduces the Cocoa Touch framework. The Foundation and UIKit
frameworks, and other frameworks that they entail, constitute Cocoa, which pro‐
vides the underlying functionality that any iOS app needs to have. To use a
framework effectively, you have to think the way the framework thinks, put your
code where the framework expects it, and fulfill many obligations imposed on
you by the framework. Also, Cocoa uses Objective-C, so you need to know how
your Swift code will interface with Cocoa’s features and behaviors. Cocoa pro‐
vides important foundational classes and adds linguistic and architectural devices
such as categories, protocols, delegation, and notifications, as well as the perva‐
sive responsibilities of memory management. Key–value coding and key–value
observing are also discussed here.
The last chapter of Part III is about the general problem of how objects can refer
to one another in an iOS program. In addition to the traditional Cocoa-based

Preface | xv

solutions, I also discuss the new Swift Combine framework. Also, in June of
2019, Apple introduced SwiftUI. It constitutes an alternative to UIKit and Cocoa,
with a completely different programming paradigm for constructing apps. I do
not teach SwiftUI in this book — that would require another entire book — but I
do explain its chief linguistic features, and I talk about its solutions to the prob‐
lem of communicating between objects within an iOS app and how they differ
from Cocoa patterns.

From the Preface to the First Edition (Programming iOS 4)
The popularity of the iPhone, with its largely free or very inexpensive apps, and the
subsequent popularity of the iPad, have brought and will continue to bring into the
fold many new programmers who see programming for these devices as worthwhile
and doable, even though they may not have felt the same way about OS X. Apple’s
own annual WWDC developer conventions have reflected this trend, with their
emphasis shifted from OS X to iOS instruction.

The widespread eagerness to program iOS, however, though delightful on the one
hand, has also fostered a certain tendency to try to run without first learning to walk.
iOS gives the programmer mighty powers that can seem as limitless as imagination
itself, but it also has fundamentals. I often see questions online from programmers
who are evidently deep into the creation of some interesting app, but who are sty‐
mied in a way that reveals quite clearly that they are unfamiliar with the basics of the
very world in which they are so happily cavorting.

It is this state of affairs that has motivated me to write this book, which is intended to
ground the reader in the fundamentals of iOS. Here I have attempted to marshal and
expound, in what I hope is a pedagogically helpful and instructive yet ruthlessly
Euclidean and logical order, the principles and elements on which sound iOS pro‐
gramming rests. My hope, as with my previous books, is that you will both read this
book cover to cover (learning something new often enough to keep you turning the
pages) and keep it by you as a handy reference.

This book is not intended to disparage Apple’s own documentation and example
projects. They are wonderful resources and have become more wonderful as time
goes on. I have depended heavily on them in the preparation of this book. But I also
find that they don’t fulfill the same function as a reasoned, ordered presentation of
the facts. The online documentation must make assumptions as to how much you
already know; it can’t guarantee that you’ll approach it in a given order. And online
documentation is more suitable to reference than to instruction. A fully written
example, no matter how well commented, is difficult to follow; it demonstrates, but it
does not teach.

xvi | Preface

A book, on the other hand, has numbered chapters and sequential pages; I can
assume you know views before you know view controllers for the simple reason that
Part I precedes Part II. And along with facts, I also bring to the table a degree of expe‐
rience, which I try to communicate to you. Throughout this book you’ll find me
referring to “common beginner mistakes”; in most cases, these are mistakes that I
have made myself, in addition to seeing others make them. I try to tell you what the
pitfalls are because I assume that, in the course of things, you will otherwise fall into
them just as naturally as I did as I was learning. You’ll also see me construct many
examples piece by piece or extract and explain just one tiny portion of a larger app. It
is not a massive finished program that teaches programming, but an exposition of the
thought process that developed that program. It is this thought process, more than
anything else, that I hope you will gain from reading this book.

Versions
This book is geared to Swift 5.3, iOS 14, and Xcode 12.

In general, only very minimal attention is given to earlier versions of iOS and Xcode.
Earlier versions can be very different from the current version, and it would be
impossible to go into detail about all that has changed over the years. Besides, that
information is readily and compendiously available in my earlier books. Recent inno‐
vations are called out clearly. The book does contain some advice about backward
compatibility (especially in Chapter 9).

I generally give method names in Swift, in the style of a function reference (as
described in Chapter 2) — that is, the name plus parentheses containing the parame‐
ter labels followed by colon. Now and then, if a method is already under discussion
and there is no ambiguity, I’ll use the bare name. In a few places, such as Appendix A,
where the Objective-C language is explicitly under discussion, I use Objective-C
method names.

I have tried to keep my code up-to-date right up to the moment when the manuscript
left my hands; but if, at some future time, a new version of Xcode is released along
with a new version of Swift, some of the code in this book, and even some informa‐
tion about Swift itself, might be slightly incorrect. Please make allowances, and be
prepared to compensate.

Screenshots of Xcode were taken using Xcode 12 under macOS 11 Big Sur. I have
waited until the last moment before publication to take these screenshots; I don’t
expect the interface to have changed significantly by the time you read this, and if it
does, the difference shouldn’t cause any confusion.

Preface | xvii

Acknowledgments
This book was written with the aid of some wonderful software:

• Git (http://git-scm.com)
• Sourcetree (http://www.sourcetreeapp.com)
• TextMate (http://macromates.com)
• AsciiDoc (http://www.methods.co.nz/asciidoc)
• Asciidoctor (http://asciidoctor.org)
• BBEdit (http://barebones.com/products/bbedit)
• EasyFind (https://www.devontechnologies.com/support/download)
• Snapz Pro X (http://www.ambrosiasw.com)
• GraphicConverter (http://www.lemkesoft.com)
• OmniGraffle (http://www.omnigroup.com)

At O’Reilly Media, many people have made writing this book fun and easy; particular
thanks go to Kristen Brown, Rachel Roumeliotis, Dan Fauxsmith, Adam Witwer,
Nick Adams, Heather Scherer, Melanie Yarbrough, Sarah Schneider, and Sanders
Kleinfeld. My first editor was Brian Jepson; his influence is present throughout.

Finally, a special thanks to my beloved wife, Charlotte Wilson, for her sharp eye, her
critical ear, and her unflagging encouragement. This book could not have been writ‐
ten without her.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

xviii | Preface

http://git-scm.com
http://www.sourcetreeapp.com
http://macromates.com
http://www.methods.co.nz/asciidoc
http://asciidoctor.org
http://barebones.com/products/bbedit
https://www.devontechnologies.com/support/download
http://www.ambrosiasw.com
http://www.lemkesoft.com
http://www.omnigroup.com

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
http://github.com/mattneub/Programming-iOS-Book-Examples.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing a CD-ROM of examples
from O’Reilly books does require permission. Answering a question by citing this
book and quoting example code does not require permission. Incorporating a signifi‐
cant amount of example code from this book into your product’s documentation
does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “iOS 14 Programming Fundamentals
with Swift by Matt Neuburg (O’Reilly). Copyright 2021 Matt Neuburg,
978-1-492-09209-4.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

O’Reilly Online Learning
For almost 40 years, O’Reilly Media has provided technology and business train‐
ing, knowledge, and insight to help companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, and our online learning platform. O’Reilly’s online learning
platform gives you on-demand access to live training courses, in-depth learning
paths, interactive coding environments, and a vast collection of text and video from

Preface | xix

http://github.com/mattneub/Programming-iOS-Book-Examples
mailto:permissions@oreilly.com
http://oreilly.com

O’Reilly and 200+ other publishers. For more information, please visit http://
oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at https://oreil.ly/ios14-prog-fundamentals.

To comment or ask technical questions about this book, send email to bookques‐
tions@oreilly.com.

For news and more information about our books and courses, see our website at
http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

xx | Preface

http://oreilly.com
http://oreilly.com
https://oreil.ly/ios14-prog-fundamentals
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

PART I

Language

This part of the book teaches the Swift language, from the ground up. The descrip‐
tion is rigorous and orderly. Here you’ll become sufficiently conversant with Swift to
be comfortable with it, so that you can proceed to the practical business of actual
programming.

• Chapter 1 surveys the structure of a Swift program, both physically and concep‐
tually. You’ll learn how Swift code files are organized, and you’ll be introduced to
the most important underlying concepts of the object-oriented Swift language:
variables and functions, scopes and namespaces, object types and their instances.

• Chapter 2 explores Swift functions. We start with the basics of how functions are
declared and called; then we discuss parameters — external parameter names,
default parameters, and variadic parameters. Then we dive deep into the power
of Swift functions, with an explanation of functions inside functions, functions as
first-class values, anonymous functions, functions as closures, curried functions,
and function references and selectors.

• Chapter 3 starts with Swift variables — their scope and lifetime, and how they are
declared and initialized, along with features such as computed variables and set‐
ter observers. Then some important built-in Swift types are introduced, includ‐
ing Booleans, numbers, strings, ranges, tuples, and Optionals.

• Chapter 4 is all about Swift object types — classes, structs, and enums. It explains
how these three object types work, and how you declare, instantiate, and use
them. Then it proceeds to polymorphism and casting, protocols, generics, and
extensions. The chapter concludes with a discussion of Swift’s umbrella types,

such as Any and AnyObject, and collection types — Array, Dictionary, and Set
(including option sets).

• Chapter 5 is a miscellany. We start with Swift’s flow control structures for
branching, looping, and jumping, including error handling. Then I describe Swift
access control (privacy), introspection (reflection), and how to create your own
operators. Next I talk about Swift memory management. The chapter ends with a
survey of some recently added Swift language features: synthesized protocol
implementations, key paths, instances as functions, dynamic members, property
wrappers, custom string interpolation, reverse generics, function builders, and
Result.

CHAPTER 1

The Architecture of Swift

It will be useful at the outset for you to have a general sense of how the Swift language
is constructed and what a Swift-based iOS program looks like. This chapter will sur‐
vey the overall architecture and nature of the Swift language. Subsequent chapters
will fill in the details.

Ground of Being
A complete Swift command is a statement. A Swift text file consists of multiple lines
of text. Line breaks are meaningful. The typical layout of a program is one statement,
one line:

print("hello")
print("world")

(The print command provides instant feedback in the Xcode console.)

You can combine more than one statement on a line, but then you need to put a
semicolon between them:

print("hello"); print("world")

You are free to put a semicolon at the end of a statement that is last or alone on its
line, but no one ever does (except out of habit, because C and Objective-C require the
semicolon):

print("hello");
print("world");

Conversely, a single statement can be broken into multiple lines, to prevent long
statements from becoming long lines. But you should try to do this at sensible places
so as not to confuse Swift. After an opening parenthesis is a good place:

3

print(
 "world")

Comments are everything after two slashes in a line (so-called C++-style comments):

print("world") // this is a comment, so Swift ignores it

You can also enclose comments in /*...*/, as in C. Unlike C, C-style comments can
be nested.

Many constructs in Swift use curly braces as delimiters:

class Dog {
 func bark() {
 print("woof")
 }
}

By convention, the contents of curly braces are preceded and followed by line breaks
and are indented for clarity, as shown in the preceding code. Xcode will help impose
this convention, but the truth is that Swift doesn’t care, and layouts like this are legal
(and are sometimes more convenient):

class Dog { func bark() { print("woof") }}

Swift is a compiled language. This means that your code must build — passing
through the compiler and being turned from text into some lower-level form that a
computer can understand — before it can run and actually do the things it says to do.
The Swift compiler is very strict; in the course of writing a program, you will often try
to build and run, only to discover that you can’t even build in the first place, because
the compiler will flag some error, which you will have to fix if you want the code to
run. Less often, the compiler will let you off with a warning; the code can run, but in
general you should take warnings seriously and fix whatever they are telling you
about. The strictness of the compiler is one of Swift’s greatest strengths, and provides
your code with a large measure of audited correctness even before it ever runs.

The Swift compiler’s error and warning messages range from the insightful to the
obtuse to the downright misleading. You will sometimes know that something is
wrong with a line of code, but the Swift compiler might not be telling you clearly
exactly what is wrong or even where in the line to focus your attention (though Xcode
12 contains some significant improvements in this regard). My advice in these situa‐
tions is to pull the line apart into several lines of simpler code until you reach a point
where you can work out what the issue is. Try to love the compiler even when its
messages seem mysterious; remember, it knows more than you do.

4 | Chapter 1: The Architecture of Swift

Everything Is an Object?
In Swift, “everything is an object.” That’s a boast common to various modern object-
oriented languages, but what does it mean? Well, that depends on what you mean by
“object” — and what you mean by “everything.”

Let’s start by stipulating that an object, roughly speaking, is something you can send a
message to. A message, roughly speaking, is an imperative instruction. For example,
you can give commands to a dog: “Bark!” “Sit!” In this analogy, those phrases are
messages, and the dog is the object to which you are sending those messages.

In Swift, the syntax of message-sending is dot-notation. We start with the object; then
there’s a dot (a period); then there’s the message. (Some messages are also followed
by parentheses, but ignore them for now; the full syntax of message-sending is one of
those details we’ll be filling in later.) This is valid Swift syntax:

fido.bark()
rover.sit()

By the way, a dot is also another good place to break up a long line (before the dot):

fido
 .bark()

The idea of everything being an object is a way of suggesting that even “primitive”
linguistic entities can be sent messages. Take, for example, 1. It appears to be a literal
digit and no more. It will not surprise you, if you’ve ever used any programming lan‐
guage, that you can say things like this in Swift:

let sum = 1 + 2

But it is surprising to find that 1 can be followed by a dot and a message. This is legal
and meaningful in Swift (don’t worry about what it actually means):

let s = 1.description

But we can go further. Return to that innocent-looking 1 + 2 from our earlier code.
It turns out that this is actually a kind of syntactic trickery, a convenient way of
expressing and hiding what’s really going on. Just as 1 is actually an object, + is
actually a message; but it’s a message with special syntax (operator syntax). In Swift,
every noun is an object, and every verb is a message.

Perhaps the ultimate acid test for whether something is an object in Swift is whether
you can modify it. An object type can be extended in Swift, meaning that you can
define your own messages on that type. For example, you can’t normally send the say-
Hello message to a number, but you can change a number type so that you can:

Everything Is an Object? | 5

extension Int {
 func sayHello() {
 print("Hello, I'm \(self)")
 }
}
1.sayHello() // outputs: "Hello, I'm 1"

In Swift, then, 1 is an object. In some languages, such as Objective-C, it clearly is not;
it is a “primitive” or scalar built-in data type. So the distinction being drawn here is
between object types on the one hand and scalars on the other. In Swift, there are no
scalars; all types are ultimately object types. That’s what “everything is an object”
really means.

Three Flavors of Object Type
If you know Objective-C or some other object-oriented language, you may be sur‐
prised by Swift’s notion of what kind of object 1 is. In many languages, such as
Objective-C, an object is a class or an instance of a class (I’ll explain later what an
instance is). Swift has classes, but 1 in Swift is not a class or an instance of a class: the
type of 1, namely Int, is a struct, and 1 is an instance of a struct. And Swift has yet
another kind of thing you can send messages to, called an enum.

So Swift has three kinds of object type: classes, structs, and enums. I like to refer to
these as the three flavors of object type. Exactly how they differ from one another will
emerge in due course. But they are all very definitely object types, and their similari‐
ties to one another are far stronger than their differences. For now, just bear in mind
that these three flavors exist.

(The fact that a struct or enum is an object type in Swift will surprise you particularly
if you know Objective-C. Objective-C has structs and enums, but they are not
objects. Swift structs, in particular, are much more important and pervasive than
Objective-C structs. This difference between how Swift views structs and enums and
how Objective-C views them can matter when you are talking to Cocoa.)

Variables
A variable is a name for an object. Technically, it refers to an object; it is an object
reference. Nontechnically, you can think of it as a shoebox into which an object is
placed. The object may undergo changes, or it may be replaced inside the shoebox by
another object, but the name has an integrity all its own. The object to which the vari‐
able refers is the variable’s value.

In Swift, no variable comes implicitly into existence; all variables must be declared. If
you need a name for something, you must say “I’m creating a name.” You do this
with one of two keywords: let or var. In Swift, declaration is usually accompanied by

6 | Chapter 1: The Architecture of Swift

initialization — you use an equal sign to give the variable a value immediately, as part
of the declaration. These are both variable declarations (and initializations):

let one = 1
var two = 2

Once the name exists, you are free to use it. We can change the value of two to be the
same as the value of one:

let one = 1
var two = 2
two = one

The last line of that code uses both the name one and the name two declared in the
first two lines: the name one, on the right side of the equal sign, is used merely to refer
to the value inside the shoebox one (namely 1); but the name two, on the left side of
the equal sign, is used to replace the value inside the shoebox two. Before saying two
= one, the value of two was 2; afterward, it is 1.

A statement with a variable name on the left side of an equal sign is called an assign‐
ment, and the equal sign is the assignment operator. The equal sign is not an assertion
of equality, as it might be in an algebraic formula; it is a command. It means: “Get the
value of what’s on the right side of me, and use it to replace the value of what’s on the
left side of me.”

The two kinds of variable declaration differ in that a name declared with let cannot
have its initial value replaced. A variable declared with let is a constant; its value is
assigned once and stays. This won’t even compile:

let one = 1
var two = 2
one = two // compile error

It is always possible to declare a name with var to give yourself the most flexibility,
but if you know you’re never going to replace the initial value of a variable, it’s better
to use let, as this permits Swift to behave more efficiently — in fact, the Swift com‐
piler will call your attention to any case of your using var where you could have used
let, offering to change it for you.

Variables also have a type. This type is established when the variable is declared and
can never change. This won’t compile:

var two = 2
two = "hello" // compile error

Once two is declared and initialized as 2, it is a number (properly speaking, an Int)
and it must always be so. You can replace its value with 1 because that’s also an Int,
but you can’t replace its value with "hello" because that’s a string (properly speak‐
ing, a String) — and a String is not an Int.

Variables | 7

Variables literally have a life of their own — more accurately, a lifetime of their own.
As long as a variable exists, it keeps its value alive. Thus, a variable can be not only a
way of conveniently naming something, but also a way of preserving it. I’ll have more
to say about that later.

By convention, type names such as String or Int (or Dog) start with a capital let‐
ter; variable names start with a small letter. Do not violate this convention. If you
do, your code might still compile and run just fine, but I will personally send
agents to your house to remove your kneecaps in the dead of night.

Functions
Executable code, like fido.bark() or one = two or print("hello"), cannot go just
anywhere in your program. Failure to appreciate this fact is a common beginner mis‐
take, and can result in a mysterious compile error message such as “Expected declara‐
tion.”

In general, executable code must live inside the body of a function. A function is a
batch of code that can be told, as a batch, to run. Its body is delimited by curly braces.
Typically, a function has a name, and it gets that name through a function declara‐
tion. Function declaration syntax is another of those details that will be filled in later,
but here’s an example:

func go() {
 let one = 1
 var two = 2
 two = one
}

That describes a sequence of things to do — declare one, declare two, change the
value of two to match the value of one — and it gives that sequence a name, go; but it
doesn’t perform the sequence. The sequence is performed when someone calls the
function. Thus, we might say, elsewhere:

go()

That is a command to the go function that it should actually run. But again, that
command is itself executable code, so it cannot live on its own either. It might live in
the body of a different function:

func doGo() {
 go()
}

But wait! This is getting a little nutty. That, too, is just a function declaration; to run
it, someone must call doGo by saying doGo() — and that’s executable code too. This
seems like some kind of infinite regression; it looks like none of our code will ever

8 | Chapter 1: The Architecture of Swift

run. If all executable code has to live in a function, who will tell any function to run?
The initial impetus must come from somewhere.

In real life, fortunately, this regression problem doesn’t arise. Remember that your
goal is ultimately to write an iOS app. Your app will be run on an iOS device (or the
Simulator) by a runtime that already wants to call certain functions. So you start by
writing special functions that you know the runtime itself will call. That gives your
app a way to get started and gives you places to put functions that will be called by the
runtime at key moments.

Swift also has a special rule that a file called main.swift, exceptionally, can have
executable code at its top level, outside any function body, and this is the code
that actually runs when the program runs. You can construct your app with a
main.swift file, but in general you won’t need to. In the rest of this chapter I’ll
assume that we are not in a main.swift file.

The Structure of a Swift File
A Swift program can consist of one file or many files. In Swift, a file is a meaningful
unit, and there are definite rules about the structure of the Swift code that can go
inside it. Only certain things can go at the top level of a Swift file — chiefly the
following:

Module import statements
A module is an even higher-level unit than a file. A module can consist of multi‐
ple files, and these can all see each other automatically. Your app’s files belong to
a single module and can see each other. But a module can’t see another module
without an import statement. That is how you are able to talk to Cocoa in an iOS
program: the first line of your file says import UIKit.

Variable declarations
A variable declared at the top level of a file is a global variable: all code in any file
will be able to see and access it, without explicitly sending a message to any
object.

Function declarations
A function declared at the top level of a file is a global function: all code in any
file will be able to see and call it, without explicitly sending a message to any
object.

Object type declarations
The declaration for a class, a struct, or an enum.

The Structure of a Swift File | 9

This is a legal Swift file containing at its top level (just to demonstrate that it can be
done) an import statement, a variable declaration, a function declaration, a class dec‐
laration, a struct declaration, and an enum declaration:

import UIKit
var one = 1
func changeOne() {
}
class Manny {
}
struct Moe {
}
enum Jack {
}

That’s a very silly and mostly empty example, but remember, our goal is to survey the
parts of the language and the structure of a file, and the example shows them.

So much for the top level of a file. But now let’s talk about what can go inside the
curly braces that we see in our example. It turns out that they, too, can all have vari‐
able declarations, function declarations, and object type declarations within them!
Indeed, any structural curly braces can contain such declarations.

But what about executable code? You’ll notice that I did not say that executable code
can go at the top level of a file. That’s because it can’t! Only a function body can con‐
tain executable code. A statement like one = two or print("hello") is executable
code, and can’t go at the top level of a file. But in our previous example, func change-
One() is a function declaration, so executable code can go inside its curly braces,
because they constitute a function body:

var one = 1
// executable code can't go here!
func changeOne() {
 let two = 2 // executable code
 one = two // executable code
}

Similarly, executable code can’t go directly inside the curly braces that accompany the
class Manny declaration; that’s the top level of a class declaration, not a function
body. But a class declaration can contain a function declaration, and that function
declaration can contain executable code:

class Manny {
 let name = "manny"
 // executable code can't go here!
 func sayName() {
 print(name) // executable code
 }
}

10 | Chapter 1: The Architecture of Swift

To sum up, Example 1-1 is a legal Swift file, schematically illustrating the structural
possibilities. (Ignore the hanky-panky with the name variable declaration inside the
enum declaration for Jack; enum top-level variables have some special rules that I’ll
explain later.)

Example 1-1. Schematic structure of a legal Swift file

import UIKit
var one = 1
func changeOne() {
 let two = 2
 func sayTwo() {
 print(two)
 }
 class Klass {}
 struct Struct {}
 enum Enum {}
 one = two
}
class Manny {
 let name = "manny"
 func sayName() {
 print(name)
 }
 class Klass {}
 struct Struct {}
 enum Enum {}
}
struct Moe {
 let name = "moe"
 func sayName() {
 print(name)
 }
 class Klass {}
 struct Struct {}
 enum Enum {}
}
enum Jack {
 var name : String {
 return "jack"
 }
 func sayName() {
 print(name)
 }
 class Klass {}
 struct Struct {}
 enum Enum {}
}

The Structure of a Swift File | 11

Obviously, we can recurse down as far we like: we could have a class declaration con‐
taining a class declaration containing a class declaration, and so on. But I’m sure you
have the idea by now, so there’s no point illustrating further.

Scope and Lifetime
In a Swift program, things have a scope. This refers to their ability to be seen by other
things. Things are nested inside of other things, making a nested hierarchy of things.
The rule is that things can see things at their own level and at a higher level containing
them. The levels are:

• A module is a scope.
• A file is a scope.
• Curly braces are a scope.

When something is declared, it is declared at some level within that hierarchy. Its
place in the hierarchy — its scope — determines whether it can be seen by other
things.

Look again at Example 1-1. Inside the declaration of Manny is a name variable decla‐
ration and a sayName function declaration; the code inside sayName’s curly braces can
see things outside those curly braces at a higher containing level, and can therefore see
the name variable. Similarly, the code inside the body of the changeOne function can
see the one variable declared at the top level of the file; indeed, everything throughout
this file can see the one variable declared at the top level of the file.

Scope is thus a very important way of sharing information. Two different functions
declared inside Manny would both be able to see the name declared at Manny’s top
level. Code inside Jack and code inside Moe can both see the one declared at the file’s
top level.

Things also have a lifetime, which is effectively equivalent to their scope. A thing lives
as long as its surrounding scope lives. In Example 1-1, the variable one lives as long as
the file lives — namely, as long the program runs. It is global and persistent. But the
variable name declared at the top level of Manny exists only so long as a Manny
instance exists (I’ll talk in a moment about what that means).

Things declared at a deeper level live even shorter lifetimes. Consider this code:

func silly() {
 if true {
 class Cat {}
 var one = 1
 one = one + 1
 }
}

12 | Chapter 1: The Architecture of Swift

That code is silly, but it’s legal: remember, I said that variable declarations, function
declarations, and object type declarations can appear in any structural curly braces.
In that code, the class Cat and the variable one will not even come into existence until
someone calls the silly function, and even then they will exist only during the brief
instant that the path of code execution passes through the if construct. Suppose the
function silly is called; the path of execution then enters the if construct. Here, Cat
is declared and comes into existence; then one is declared and comes into existence;
then the executable line one = one + 1 is executed; and then the scope ends — and
both Cat and one vanish in a puff of smoke. And throughout their brief lives, Cat and
one were completely invisible to the rest of the program. (Do you see why?)

Object Members
Inside the three object types (class, struct, and enum), things declared at the top level
have special names, mostly for historical reasons. Let’s use the Manny class as an
example:

class Manny {
 let name = "manny"
 func sayName() {
 print(name)
 }
}

In that code:

• name is a variable declared at the top level of an object declaration, so it is called a
property of that object.

• sayName is a function declared at the top level of an object declaration, so it is
called a method of that object.

Things declared at the top level of an object declaration — properties, methods, and
any objects declared at that level — are collectively the members of that object. Mem‐
bers have a special significance, because they define the messages you are allowed to
send to that object!

Namespaces
A namespace is a named region of a program. The names of things inside a name‐
space cannot be reached by things outside it without somehow first passing through
the barrier of saying that region’s name. This is a good thing because it allows the
same name to be used in different places without a conflict. Clearly, namespaces and
scopes are closely related notions.

Namespaces help to explain the significance of declaring an object at the top level of
an object, like this:

Object Members | 13

class Manny {
 class Klass {}
}

This way of declaring Klass makes Klass a nested type. It effectively “hides” Klass
inside Manny. Manny is a namespace! Code inside Manny can see (and say) Klass
directly. But code outside Manny can’t do that. It has to specify the namespace explic‐
itly in order to pass through the barrier that the namespace represents. To do so, it
must say Manny’s name first, followed by a dot, followed by the term Klass. In short,
it has to say Manny.Klass.

The namespace does not, of itself, provide secrecy or privacy; it’s a convenience. In
Example 1-1, I gave Manny a Klass class, and I also gave Moe a Klass class. But they
don’t conflict, because they are in different namespaces, and I can differentiate them,
if necessary, as Manny.Klass and Moe.Klass.

It will not have escaped your attention that the syntax for diving explicitly into a
namespace is the message-sending dot-notation syntax. They are, in fact, the same
thing.

In effect, message-sending allows you to see into scopes you can’t see into otherwise.
Code inside Moe can’t automatically see the Klass declared inside Manny, but it can
see it by taking one easy extra step, namely by speaking of Manny.Klass. It can do
that because it can see Manny (because Manny is declared at a level that code inside
Moe can see).

Modules
The top-level namespaces are modules. Your app is a module and hence a namespace;
that namespace’s name is, by default, the name of the app. If my app is called MyApp,
then if I declare a class Manny at the top level of a file, that class’s real name is
MyApp.Manny. But I don’t usually need to use that real name, because my code is
already inside the same namespace, and can see the name Manny directly.

When you import a module, all the top-level declarations of that module become
visible to your code as well, without your having to use the module’s namespace
explicitly to refer to them. For example, Cocoa’s Foundation framework, where
NSString lives, is a module. When you program iOS, you will say import Foundation
(or, more likely, you’ll say import UIKit, which itself imports Foundation), allowing
you to speak of NSString without saying Foundation.NSString.

Swift itself is defined in a module — the Swift module. But you don’t have to import
it, because your code always implicitly imports the Swift module. You could make this
explicit by starting a file with the line import Swift; there is no need to do this, but it
does no harm either.

14 | Chapter 1: The Architecture of Swift

That fact is important, because it solves a major mystery: where do things like print
come from, and why is it possible to use them outside of any message to any object?
print is in fact a function declared at the top level of the Swift module, and your code
can see the Swift module’s top-level declarations because it imports Swift. The print
function becomes, as far as your code is concerned, an ordinary top-level function
like any other; it is global to your code, and your code can speak of it without specify‐
ing its namespace. You can specify its namespace — it is perfectly legal to say things
like Swift.print("hello") — but you probably never will, because you won’t need
to.

Your own app module, however, overshadows any modules you import. That means
that if you declare a term identical to an imported term, you lose the magical ability
to use the imported term without specifying the namespace. If you were to declare a
print function of your own, it would effectively hide the Swift print function; you
can still call the Swift print function, but now you have to use the namespaced
Swift.print explicitly. Similarly, if you were to declare your own String type, all
code that refers to Swift’s String type would require you to say Swift.String. Nearly
always, that sort of thing is accidental and you will prefer that your own terms not
conflict with any imported terms.

You can actually see the Swift top-level declarations and read and study them,
and this can be a useful thing to do. For example, to see the declaration of print,
Command-Control-click the term print in your code. Behold, there are some
Swift top-level declarations! You won’t see any executable Swift code here, but
you will see the declarations for various available Swift terms, including print.

Instances
Object types — class, struct, and enum — have an important feature in common:
they can be instantiated. In effect, when you declare an object type, you are only
defining a type. To instantiate a type is to make a thing — an instance — of that type.

For example, I can declare a Dog class, and I can give my class a method:

class Dog {
 func bark() {
 print("woof")
 }
}

But I don’t actually have any Dog objects in my program yet. I have merely described
the type of thing a Dog would be if I had one. To get an actual Dog, I have to make
one. The process of making an actual Dog object whose type is the Dog class is the
process of instantiating Dog. The result is a new object — a Dog instance.

Instances | 15

Figure 1-1. Making an instance and calling an instance method

In Swift, instances can be created by using the object type’s name as a function name
and calling the function. This involves using parentheses. When you append paren‐
theses to the name of an object type, you are sending a very special kind of message to
that object type: Instantiate yourself!

So now I’m going to make a Dog instance:

let fido = Dog()

There’s a lot going on in that code! I did two things. I instantiated Dog, causing me to
end up with a Dog instance. I also put that Dog instance into a shoebox called fido
— I declared a variable and initialized the variable by assigning my new Dog instance
to it. Now fido is a Dog instance. (Moreover, because I used let, fido will always be
this same Dog instance. I could have used var instead, but even then, initializing fido
as a Dog instance would mean fido could only be some Dog instance after that.)

Now that I have a Dog instance, I can send instance messages to it. And what do you
suppose they are? They are Dog’s properties and methods! For example:

let fido = Dog()
fido.bark()

That code is legal. Not only that, it is effective: it actually does cause "woof" to appear
in the console. I made a Dog and I made it bark! (See Figure 1-1.)

There’s an important lesson here, so let me pause to emphasize it. By default, proper‐
ties and methods are instance properties and methods. You can’t use them as mes‐
sages to the object type itself; you have to have an instance to send those messages to.
As things stand, this is illegal and won’t compile:

16 | Chapter 1: The Architecture of Swift

Dog.bark() // compile error

It is possible to declare a function bark in such a way that saying Dog.bark() is legal,
but that would be a different kind of function — a class function or a static function
— and you would need to say so when you declare it.

The same thing is true of properties. To illustrate, let’s give Dog a name property:

class Dog {
 var name = ""
}

That allows me to set a Dog’s name, but it needs to be an instance of Dog:

let fido = Dog()
fido.name = "Fido"

It is possible to declare a property name in such a way that saying Dog.name is legal,
but that would be a different kind of property — a class property or a static property
— and you would need to say so when you declare it.

Why Instances?
Even if there were no such thing as an instance, an object type is itself an object. We
know this because it is possible to send a message to an object type (the phrase
Manny.Klass is a case in point). Why, then, do instances exist at all?

The answer has mostly to do with the nature of instance properties. The value of an
instance property is defined with respect to a particular instance. This is where
instances get their real usefulness and power.

Consider again our Dog class. I’ll give it a name property and a bark method; remem‐
ber, these are an instance property and an instance method:

class Dog {
 var name = ""
 func bark() {
 print("woof")
 }
}

A Dog instance comes into existence with a blank name (an empty string). But its
name property is a var, so once we have any Dog instance, we can assign to its name a
new String value:

let dog1 = Dog()
dog1.name = "Fido"

We can also ask for a Dog instance’s name:

Why Instances? | 17

Figure 1-2. Two dogs with different property values

let dog1 = Dog()
dog1.name = "Fido"
print(dog1.name) // "Fido"

The important thing is that we can make more than one Dog instance, and that two
different Dog instances can have two different name property values (Figure 1-2):

let dog1 = Dog()
dog1.name = "Fido"
let dog2 = Dog()
dog2.name = "Rover"
print(dog1.name) // "Fido"
print(dog2.name) // "Rover"

Note that a Dog instance’s name property has nothing to do with the name of the vari‐
able to which a Dog instance is assigned. The variable is just a shoebox. You can pass
an instance from one shoebox to another. But the instance itself maintains its own
internal integrity:

let dog1 = Dog()
dog1.name = "Fido"
var dog2 = Dog()
dog2.name = "Rover"
print(dog1.name) // "Fido"
print(dog2.name) // "Rover"
dog2 = dog1
print(dog2.name) // "Fido"

18 | Chapter 1: The Architecture of Swift

That code didn’t change Rover’s name; it changed which dog was inside the dog2
shoebox, replacing Rover with Fido.

The full power of object-based programming has now emerged. There is a Dog object
type which defines what it is to be a Dog. Our declaration of Dog says that any and
every Dog instance has a name property and a bark method. But each Dog instance
can have its own name property value. So multiple instances of the same object type
behave alike — both Fido and Rover can bark, and will do so when they are sent the
bark message — but they are different instances and can have different property val‐
ues: Fido’s name is "Fido" while Rover’s name is "Rover".

An instance is responsible not only for the values but also for the lifetimes of its prop‐
erties. Suppose we bring a Dog instance into existence and assign to its name property
the value "Fido". Then this Dog instance is keeping the string "Fido" alive just so
long as we do not replace the value of its name with some other value — and just so
long as this instance lives.

In short, an instance is both code and data. The code it gets from its type and in a
sense is shared with all other instances of that type, but the data belong to it alone.
The data can persist as long as the instance persists. The instance has, at every
moment, a state — the complete collection of its own personal property values. An
instance is a device for maintaining state. It’s a box for storage of data.

The Keyword self
An instance is an object, and an object is the recipient of messages. Thus, an instance
needs a way of sending a message to itself. This is made possible by the keyword
self. This word can be used wherever an instance of the appropriate type is expected.

Let’s say I want to keep the thing that a Dog says when it barks, such as "woof", in a
property. Then in my implementation of bark I need to refer to that property. I can
do it like this:

class Dog {
 var name = ""
 var whatADogSays = "woof"
 func bark() {
 print(self.whatADogSays)
 }
}

Similarly, let’s say I want to write an instance method speak which is merely a syno‐
nym for bark. My speak implementation can consist of simply calling my own bark
method. I can do it like this:

The Keyword self | 19

class Dog {
 var name = ""
 var whatADogSays = "woof"
 func bark() {
 print(self.whatADogSays)
 }
 func speak() {
 self.bark()
 }
}

Observe that the term self in that example appears only in instance methods. When
an instance’s code says self, it is referring to this instance. If the expression
self.name appears in a Dog instance method’s code, it means the name of this Dog
instance, the one whose code is running at that moment.

It turns out that every use of the word self I’ve just illustrated is optional. You can
omit it and all the same things will happen:

class Dog {
 var name = ""
 var whatADogSays = "woof"
 func bark() {
 print(whatADogSays)
 }
 func speak() {
 bark()
 }
}

The reason is that if you omit the message recipient and the message you’re sending
can be sent to self, the compiler supplies self as the message’s recipient under the
hood. However, I never do that (except by mistake). As a matter of style, I like to be
explicit in my use of self. I find code that omits self harder to read and understand.
And there are situations where you must say self, so I prefer to use it whenever I’m
allowed to.

Privacy
Earlier, I said that a namespace is not, of itself, an insuperable barrier to accessing the
names inside it. But such a barrier is sometimes desirable. Not all data stored by an
instance is intended for alteration by, or even visibility to, another instance. And not
every instance method is intended to be called by other instances. Any decent object-
based programming language needs a way to endow its object members with privacy
— a way of making it harder for other objects to see those members if they are not
supposed to be seen.

Consider, for example:

20 | Chapter 1: The Architecture of Swift

class Dog {
 var name = ""
 var whatADogSays = "woof"
 func bark() {
 print(self.whatADogSays)
 }
 func speak() {
 print(self.whatADogSays)
 }
}

Here, other objects can come along and change my property whatADogSays. Since
that property is used by both bark and speak, we could easily end up with a Dog that,
when told to bark, says "meow". That seems somehow undesirable:

let dog1 = Dog()
dog1.whatADogSays = "meow"
dog1.bark() // meow

You might reply: Well, silly, why did you declare whatADogSays with var? Declare it
with let instead. Make it a constant! Now no one can change it:

class Dog {
 var name = ""
 let whatADogSays = "woof"
 func bark() {
 print(self.whatADogSays)
 }
 func speak() {
 print(self.whatADogSays)
 }
}

That is a good answer, but it is not quite good enough. There are two problems. Sup‐
pose I want a Dog instance itself to be able to change its own whatADogSays — by
assigning to self.whatADogSays. Then whatADogSays has to be a var; otherwise,
even the instance itself can’t change it. Also, suppose I don’t want any other object to
know what this Dog says, except by calling bark or speak. Even when declared with
let, other objects can still read the value of whatADogSays. Maybe I don’t like that.

To solve this problem, Swift provides the private keyword. I’ll talk later about all the
ramifications of this keyword, but for now it’s enough to know that it exists:

class Dog {
 var name = ""
 private var whatADogSays = "woof"
 func bark() {
 print(self.whatADogSays)
 }

Privacy | 21

Reserved Words
Certain terms, like class and func and var and let and if and private and import,
are reserved in Swift; they are part of the language. That means you can’t use them as
identifiers — such as the name of a class, a function, or a variable. If you try to do so,
you’ll get a compile error.

To force a reserved word to be an identifier, surround it by backticks (`). This (extra‐
ordinarily confusing) code is legal:

class `func` {
 func `if`() {
 let `class` = 1
 }
}

 func speak() {
 print(self.whatADogSays)
 }
}

Now name is a public property, but whatADogSays is a private property: it can’t be
seen by other types of object. A Dog instance can speak of self.whatADogSays, but a
Cat instance with a reference to a Dog instance as fido cannot say fido.whatADog-
Says. The important lesson here is that object members are public by default, and if
you want privacy, you have to ask for it.

To sum up: A class declaration defines a namespace. This namespace requires that
other objects use an extra level of dot-notation to refer to what’s inside the name‐
space, but other objects can still refer to what’s inside the namespace; the namespace
does not, in and of itself, close any doors of visibility. The private keyword lets you
close those doors.

Design
Instances do not come into being by magic. You have to instantiate a type in order to
obtain an instance. Much of the action of your program, therefore, will consist of
instantiating types. And of course you will want those instances to persist, so you will
also assign each newly created instance to a variable as a shoebox to hold it, name it,
and give it a lifetime. The instance will persist according to the lifetime of the variable
that refers to it. And the instance will be visible to other instances according to the
scope of the variable that refers to it.

Much of the art of object-based programming involves giving instances a sufficient
lifetime and making them visible to one another. You will often put an instance into a

22 | Chapter 1: The Architecture of Swift

particular shoebox — assigning it to a particular variable, declared at a certain scope
— exactly so that, thanks to the rules of variable lifetime and scope, this instance will
persist long enough to keep being useful to your program while it will still be needed,
and so that other code can get a reference to this instance and talk to it later.

Planning how you’re going to create instances, and working out the lifetimes and
communication between those instances, may sound daunting. Fortunately, in real
life, when you’re programming iOS, the framework will provide scaffolding for you.
Before you write a single line of code, the framework ensures that your app, as it
launches, is given some instances that will persist for the lifetime of the app, provid‐
ing the basis of your app’s visible interface and giving you an initial place to put your
own instances and give them sufficiently long lifetimes.

What about the question of what object types your program will need in the first
place, and what methods and properties they should have? This is not as much of a
worry as you might suppose. Swift itself supplies a library of powerful and useful
object types. Moreover, much of your code when you’re programming iOS will be
focused on the details of real-world interface objects, such as labels and buttons that
the user can see and tap, and the framework will make it clear what object types and
facilities it offers for this purpose, and will provide ways to ensure the appropriate
persistence and visibility of the associated instances.

What the framework cannot tell you is how to design the underlying business logic of
whatever your app does behind the scenes. This is where you will have the most free‐
dom — and the most difficulty arriving at an appropriate architecture of object types,
functionalities, and relationships. These will not be easy decisions, and there are no
clear-cut answers. Object-based programming is an art; and allowing your program
(and your thinking) to evolve as you write code, discovering new needs and issues, is
an art within that art, which I call growing a program. All individuals and teams
develop their own way of meeting the long-term challenges involved.

Design | 23

CHAPTER 2

Functions

Nothing is so characteristic of Swift syntax as the way you declare and call functions.
Probably nothing is so important, either! As I said in Chapter 1, all your executable
code is going to be in functions; they are where the action is.

Function Parameters and Return Value
Remember those imaginary machines for processing miscellaneous stuff that you
drew in your math textbook in elementary school? You know the ones I mean: with a
funnel-like “hopper” at the top, and then a bunch of gears and cranks, and then a
tube at the bottom where something is produced. A function works like that: you feed
some stuff in, the stuff is processed in accordance with what this particular machine
does, and something is produced. The stuff that goes in is the input; what comes out
is the output. More technically, a function that expects input has parameters; a func‐
tion that produces output has a result.

Here’s the declaration for a silly but valid function that expects two Int values, adds
them together, and produces that sum:

func sum (_ x:Int, _ y:Int) -> Int {
 let result = x + y
 return result
}

The syntax here is very strict and well-defined, and you can’t use Swift unless you
understand it perfectly. Let’s pause to appreciate it in full detail. I’ll break the first line
into pieces so that I can call them out individually:

25

func sum
 (_ x:Int, _ y:Int)
 -> Int {
 let result = x + y
 return result
}

The declaration starts with the keyword func, followed by the name of this func‐
tion; here, it’s sum. This is the name that must be used in order to call the func‐
tion — that is, in order to run the code that the function contains.

The name of the function is followed by its parameter list. It consists, minimally,
of parentheses. If this function takes parameters (input), they are listed inside the
parentheses, separated by a comma. Each parameter has a strict format: the name
of the parameter, a colon, and the type of the parameter.

This particular function declaration also has an underscore (_) and a space
before each parameter name in the parameter list. I’m not going to explain that
underscore yet, but I need it for the example, so just trust me for now.

If the function is to return a value, then after the parentheses is an arrow opera‐
tor (->) followed by the type of value that this function will return.

Then we have curly braces enclosing the body of the function — its actual code.

Within the curly braces, in the function body, the variables defined as the param‐
eter names have sprung to life, with the types specified in the parameter list.

If the function is to return a value, it must do so with the keyword return fol‐
lowed by that value. And, not surprisingly, the type of that value must match the
type declared earlier for the return value (after the arrow operator).

Here are some further points to note about the parameters and return type of our
function:

Parameters
Our sum function expects two parameters — an Int, to which it gives the name x,
and another Int, to which it gives the name y. The function body code won’t run
unless code elsewhere calls this function and actually passes values of the speci‐
fied types for its parameters. If I try to call this function without providing a
value for each of these two parameters, or if either of the values I provide is not
an Int, the compiler will stop me with an error.

In the body of the function, therefore, we can confidently use those values, refer‐
ring to them by those names, certain that they will exist as specified by our
parameter list. The parameter names x and y, indeed, are defined just so that the

26 | Chapter 2: Functions

parameter values can be referred to within the function body. The parameter
declaration is thus a kind of variable declaration: we are declaring variables x and
y for use inside this function. With regard to their scope, these variables are local
(internal) to the function; only the function body can see them, and they are dif‐
ferent from any other x and y that may be used in other functions or at a higher
level of scope.

Return type
The last statement of our sum function’s body returns the value of a variable
called result; this variable was created by adding two Int values together, so it is
an Int, which is what this function is supposed to produce. If I try to return a
String (return "howdy"), or if I omit the return statement altogether, the com‐
piler will stop me with an error.

The keyword return actually does two things. It returns the accompanying value,
and it also halts execution of the function. It is permitted for more lines of code
to follow a return statement, but the compiler will warn if this means that those
lines can never be executed.

A function that returns a value must contain a return statement, so if its body
consists of just a single statement, it must be the return statement. Starting in
Swift 5.1, the keyword return can be omitted in that situation. This is mostly to
facilitate the SwiftUI domain-specific language, and in general I like to say
return explicitly, but in some situations it does feel more elegant to omit it.

You can view the function declaration before the curly braces as a contract about
what kinds of values will be used as input and about what kind of output will be pro‐
duced. According to this contract, the function expects a certain number of parame‐
ters, each of a certain type, and yields a certain type of result. Everything must
correspond to this contract. The function body, inside the curly braces, can use the
parameters as local variables. The returned value must match the declared return
type.

The same contract applies to code elsewhere that calls this function. Here’s some
code that calls our sum function:

let z = sum(4,5)

Focus your attention on the right side of the equal sign — sum(4,5). That’s the func‐
tion call. How is it constructed? It uses the name of the function; that name is fol‐
lowed by parentheses; and inside those parentheses, separated by a comma, are the
values to be passed to each of the function’s parameters. Technically, these values are
called arguments. Here, I’m using literal Int values, but I’m perfectly free to use Int
variables instead; the only requirement is that I use things that have the correct type:

Function Parameters and Return Value | 27

let x = 4
let y = 5
let z = sum(y,x)

In that code, I purposely used the names x and y for the variables whose values are
passed as arguments, and I purposely reversed them in the call, to emphasize that
these names have nothing to do with the names x and y inside the function parameter
list and the function body. Argument names do not magically make their way to the
function. Their values are all that matter; their values are the arguments.

What about the value returned by the function? That value is magically substituted
for the function call, at the point where the function call is made. It happens that in
the preceding code, the result is 9. So the last line is exactly as if I had said:

let z = 9

The programmer and the compiler both know what type of thing this function
returns, so they also know where it is and isn’t legal to call this function. It’s fine to
call this function as the initialization part of the declaration of the variable z, just as it
would be to use 9 as the initialization part of that declaration: in both cases, we have
an Int, and so z ends up being declared as an Int. But it would not be legal to write
this:

let z = sum(4,5) + "howdy" // compile error

Because sum returns an Int, that’s the same as trying to add an Int to a String — and
by default, you can’t do that in Swift.

Observe that it is legal to ignore the value returned from a function call:

sum(4,5)

That code is rather silly in this particular situation, because we have made our sum
function go to all the trouble of adding 4 and 5 for us and we have then thrown away
the answer without capturing or using it. The compiler knows this, and will warn that
we are failing to use the result of our function call. Nevertheless, a warning is not an
error; that code is legal. There are, in fact, lots of situations where it is perfectly rea‐
sonable to ignore the value returned from a function call; in particular, the function
may do other things (technically called side effects) in addition to returning a value,
and the purpose of your call to that function may be those other things.

If you’re ignoring a function call result deliberately, you can silence the compiler
warning by assigning the function call to _ (a variable without a name) — for
example, _ = sum(4,5). Alternatively, if the function being called is your own,
you can prevent the warning by marking the function declaration with
@discardableResult.

28 | Chapter 2: Functions

If you can call sum wherever you can use an Int, and if the parameters of sum have to
be Int values, doesn’t that mean you can call sum inside a call to sum? Of course it
does! This is perfectly legal (and reasonable):

let z = sum(4,sum(5,6))

The only arguments against writing code like that are that you might confuse yourself
and that it might make things harder to debug later. But technically it’s legal and
quite normal.

Void Return Type and Parameters
Let’s return to our function declaration. With regard to a function’s parameters and
return type, there are two degenerate cases that allow us to express a function decla‐
ration more briefly:

A function without a return type
No law says that a function must return a value. A function may be declared to
return no value. In that case, there are three ways to write the declaration: you
can write it as returning Void; you can write it as returning (), an empty pair of
parentheses; or you can omit the arrow operator and the return type entirely.
These are all legal:

func say1(_ s:String) -> Void { print(s) }
func say2(_ s:String) -> () { print(s) }
func say3(_ s:String) { print(s) }

If a function returns no value, then its body need not contain a return statement.
If it does contain a return statement, it will consist of the word return alone, and
its purpose will be purely to end execution of the function at that point.

A call to a function that returns no value is made purely for the function’s side
effects; it has no useful return value that can be made part of a larger expression,
so the statement that calls the function will usually consist of the function call
and nothing else.

A function without any parameters
No law says that a function must take any parameters. If it doesn’t, the parameter
list in the function declaration can be completely empty. But you can’t omit the
parameter list parentheses themselves! They will be present in the function decla‐
ration, after the function’s name:

func greet() -> String { return "howdy" }

Just as you cannot omit the parentheses (the parameter list) from a function dec‐
laration, you cannot omit the parentheses from a function call. Those parenthe‐
ses will be empty if the function takes no parameters, but they must be present:

Function Parameters and Return Value | 29

let greeting = greet()

Notice the parentheses!

A function can lack both a return value and parameters; these are all ways of express‐
ing the same thing:

func greet1() -> Void { print("howdy") }
func greet2() -> () { print("howdy") }
func greet3() { print("howdy") }

Function Signature
If we ignore the parameter names in the function declaration, we can completely
characterize a function by the types of its inputs and its output. To do so, we write the
parameter types in parentheses, followed by the arrow operator and the output type,
like this:

(Int, Int) -> Int

That is a legal expression in Swift; it is the signature of a function. In this case, it’s the
signature of a function that takes two Int parameters and returns an Int. In fact, it’s
the signature of our sum function! Of course, there can be other functions that take
two Int parameters and return an Int — and that’s just the point. This signature char‐
acterizes all functions that have this number of parameters, of these types, and that
return a result of this type. A function’s signature is, in effect, its type — the type of
the function. The fact that functions have types will be of great importance later on.

The signature of a function must include both the parameter list (without parameter
names) and the return type, even if one or both of those is empty; the signature of a
function that takes no parameters and returns no value may be written () -> Void
or () -> ().

External Parameter Names
A function can externalize the names of its parameters. The external parameter
names become part of the function’s name, and must appear in a call to the function
as labels to the arguments. There are several reasons why this is a good thing:

• It clarifies the purpose of each argument; an argument label can give a clue as to
how that argument contributes to the behavior of the function.

• It distinguishes one function from another; two functions with the same name
before the parentheses and the same signature, but with different external
parameter names, are two distinct functions.

• It helps Swift to interface with Objective-C and Cocoa, where method parameters
nearly always have external names.

30 | Chapter 2: Functions

It will be useful to have a term for the part of a function’s name that precedes the
parentheses, so I don’t have to keep calling it “the name before the parentheses”
to distinguish it from the external parameter names. Let’s call it the function’s
base name.

External parameter names are so standard in Swift that there’s a rule: by default, all
parameter names are externalized automatically, using the internal name as the exter‐
nal name. If you want a parameter name to be externalized, and if you want the exter‐
nal name to be the same as the internal name, do nothing — that will happen all by
itself.

If you want to depart from the default behavior, you can do either of the following in
your function declaration:

Change the name of an external parameter
If you want the external name of a parameter to be different from its internal
name, precede the internal name with the external name and a space.

Suppress the externalization of a parameter
To suppress a parameter’s external name, precede the internal name with an
underscore and a space.

That explains my declaration func sum (_ x:Int, _ y:Int) -> Int at the start of
this chapter: I was suppressing the externalization of the parameter names, so as not
to have to explain argument labels at the outset.

Here’s the declaration for a function that concatenates a string with itself a given
number of times:

func echoString(_ s:String, times:Int) -> String {
 var result = ""
 for _ in 1...times { result += s }
 return result
}

That function’s first parameter has an internal name only, but its second parameter
has an external name, which will be the same as its internal name, namely times. And
here’s how to call it:

let s = echoString("hi", times:3)

In the call, as you can see, the external name precedes the argument as a label, separa‐
ted by a colon.

Now let’s say that in our echoString function we prefer to use times purely as an
external name for the second parameter, with a different name — say, n — as the
internal name. And let’s strip the string off the function’s base name and make it the
external name of the first parameter. Then the declaration would look like this:

External Parameter Names | 31

func echo(string s:String, times n:Int) -> String {
 var result = ""
 for _ in 1...n { result += s }
 return result
}

In the body of that function, there is now no times variable available; times is purely
an external name, for use as a label in the call. The internal name is n, and that’s the
name the code refers to. And here’s how to call it:

let s = echo(string:"hi", times:3)

The existence of external names doesn’t mean that the call can use a different
parameter order from the declaration. Our echo(string:times:) expects a
String parameter and an Int parameter, in that order. The order can’t be different
in the call, even though the label might appear to disambiguate which argument
goes with which parameter.

Overloading
In Swift, function overloading is legal (and common). This means that two functions
with exactly the same name, including their external parameter names, can coexist as
long as they have different signatures. (Two functions with the same base name but
different external parameter names do not constitute a case of overloading; they are
simply two different functions with two different names.) These two functions can
coexist:

func say (_ what:String) {
}
func say (_ what:Int) {
}

The reason overloading works is that Swift has strict typing. A String parameter is
not an Int parameter. Swift can tell them apart both in the declaration and in a func‐
tion call. So Swift knows unambiguously that say("what") is different from say(1),
and it knows which say function each is calling.

Overloading works for the return type as well. Two functions with the same name
and parameter types can have different return types. But the context of the call must
disambiguate; that is, it must be clear what return type the caller is expecting.

For example, these two functions can coexist:

func say() -> String {
 return "one"
}
func say() -> Int {
 return 1
}

32 | Chapter 2: Functions

But now you can’t call say like this:

let result = say() // compile error

The call is ambiguous, and the compiler tells you so. The call must be used in a con‐
text where the expected return type is clear. One solution, as I’ll describe in Chap‐
ter 3, is to state the problematic type explicitly (rather than relying on type inference):

let result: String = say()

Alternatively, the context itself might disambiguate. Suppose we have another func‐
tion that is not overloaded, and that expects a String parameter:

func giveMeAString(_ s:String) {
 print("thanks!")
}

Then giveMeAString(say()) is legal, because only a String can go in this spot, so we
must be calling the say that returns a String. Similarly:

let result = say() + "two"

Only a String can be “added” to a String, so this must be the say that returns a String.

You can also disambiguate explicitly between overloads in a method call using the
name of the method, the keyword as, and the signature of the desired method. The
syntax is a little odd, because the entire expression must be enclosed in parentheses,
followed immediately by the parentheses signifying that this is a method call:

let result = (say as () -> String)()

Default Parameter Values
A parameter can have a default value. This means that the caller can omit the param‐
eter entirely, supplying no argument for it; the value will then be the default.

To specify a default value in a function declaration, append = and the default value
after the parameter type:

class Dog {
 func say(_ s:String, times:Int = 1) {
 for _ in 1...times {
 print(s)
 }
 }
}

In effect, there are now two functions, one with a single unlabeled parameter, the
other with an additional times: parameter. If you just want to say something once,
you can call the say that takes a single unlabeled argument:

Default Parameter Values | 33

let d = Dog()
d.say("woof") // same as d.say("woof", times:1)

If you want repetition, call the say that takes a times: parameter:

let d = Dog()
d.say("woof", times:3)

Variadic Parameters
A parameter can be variadic. This means that the caller can supply as many values of
this parameter’s type as desired, separated by a comma; the function body will receive
these values as an array.

To indicate in a function declaration that a parameter is variadic, follow it with three
dots, like this:

func sayStrings(_ arrayOfStrings:String ...) {
 for s in arrayOfStrings { print(s) }
}

And here’s how to call it:

sayStrings("hey", "ho", "nonny nonny no")

The global print function takes a variadic first parameter, so you can output multiple
values with a single command:

print("Manny", 3, true) // Manny 3 true

The print function’s default parameters dictate further details of the output. The
default separator: (for when you provide multiple values) is a space, and the default
terminator: is a newline; you can change either or both:

print("Manny", "Moe", separator:", ", terminator:", ")
print("Jack")
// output is "Manny, Moe, Jack" on one line

A function can declare a maximum of one variadic parameter (because otherwise it
might be impossible to determine where the list of values ends).

Unfortunately, there’s a hole in the Swift language: there’s no way to convert an
array into a comma-separated list of arguments (comparable to splatting in
Ruby). If what you’re starting with is an array of some type, you can’t use it
where a variadic of that type is expected.

Ignored Parameters
A parameter whose local name is an underscore is ignored. The caller must supply an
argument, but it has no name within the function body and cannot be referred to
there. For example:

34 | Chapter 2: Functions

Initializers Are Functions
In Chapter 1, I declared a Dog class and instantiated it, creating a Dog instance, by
saying Dog(). When you do this, you are actually calling a function — a special func‐
tion called an initializer. This particular initializer function takes no parameters;
hence the parentheses are empty. But an initializer is a function like any other, so it
can have parameters, external parameter names, default parameter values, overload‐
ing, and so forth.

In Chapter 4 I’ll explain how initializers are declared and implemented. For now, it’s
enough to know that initializers are functions, and that the syntax for calling them
(and thus for creating an instance) is the same as the syntax for any other function
call. What’s special is only that the parentheses follow the name of the type we’re
instantiating.

Swift built-in types tend to have lots of initializers (and in Chapter 4 you’ll learn how
to give your own types lots of initializers). For example, we can create a string like
this:

let s = String(repeating: "ho", count: 2)

After that, s is the string "hoho". And there are many other String initializers, each
providing another way to make a String.

func say(_ s:String, times:Int, loudly _:Bool) {

No loudly parameter makes its way into the function body, but the caller must still
provide it:

say("hi", times:3, loudly:true)

What’s the purpose of this feature? It isn’t to satisfy the compiler, because the com‐
piler doesn’t complain if a parameter is never referred to in the function body. I use it
primarily as a kind of note to myself, a way of saying, “Yes, I know there is a parame‐
ter here, and I am deliberately not using it for anything.”

Modifiable Parameters
In the body of a function, a parameter is essentially a local variable. By default, it’s a
variable implicitly declared with let. You can’t assign to it:

func say(_ s:String, times:Int, loudly:Bool) {
 loudly = true // compile error
}

Modifiable Parameters | 35

If your code needs to assign to a parameter name within the body of a function,
declare a var local variable inside the function body and assign the parameter value
to it; your local variable can even have the same name as the parameter:

func say(_ s:String, times:Int, loudly:Bool) {
 var loudly = loudly
 loudly = true // no problem
}

In that code, loudly is a local variable; assigning to it doesn’t change the value of any
variable outside the function body. However, it is also possible to configure a param‐
eter in such a way that assigning to it does modify the value of a variable outside the
function body! One typical use case is that you want your function to return more
than one result. Here I’ll write a rather advanced function that removes all
occurrences of a given character from a given string and returns the number of
occurrences that were removed:

func removeCharacter(_ c:Character, from s:String) -> Int {
 var s = s
 var howMany = 0
 while let ix = s.firstIndex(of:c) {
 s.remove(at:ix)
 howMany += 1
 }
 return howMany
}

And you call it like this:

let s = "hello"
let result = removeCharacter("l", from:s) // 2

That’s nice, but the original string, s, is still "hello"! In the function body, we
removed all occurrences of the character from the local copy of the String parameter.

If we want a function to alter the original value of an argument passed to it, we must
do the following:

• The type of the parameter we intend to modify must be declared inout.
• When we call the function, the variable holding the value to be modified must be

declared with var, not let.
• Instead of passing the variable as an argument, we must pass its address. This is

done by preceding its name with an ampersand (&).
Our removeCharacter(_:from:) now looks like this:

func removeCharacter(_ c:Character, from s: inout String) -> Int {
 var howMany = 0
 while let ix = s.firstIndex(of:c) {
 s.remove(at:ix)

36 | Chapter 2: Functions

 howMany += 1
 }
 return howMany
}

And our call to removeCharacter(_:from:) now looks like this:

var s = "hello"
let result = removeCharacter("l", from:&s)

After the call, result is 2 and s is "heo". Notice the ampersand before the name s
when we pass it as the from: argument. It is required; if you omit it, the compiler will
stop you. I like this requirement, because it forces us to acknowledge explicitly to the
compiler, and to ourselves, that we’re about to do something potentially dangerous:
we’re letting this function, as a side effect, modify a value outside of itself.

When a function with an inout parameter is called, the variable whose address
was passed as argument to that parameter is always set, even if the function
makes no changes to that parameter.

Calling Objective-C with Modifiable Parameters
You may encounter variations on this pattern when you’re using Cocoa. The Cocoa
APIs are written in C and Objective-C, so instead of the Swift term inout, you’ll
probably see some mysterious type such as UnsafeMutablePointer. From your point
of view as the caller, however, it’s the same thing: you’ll prepare a var variable and
pass its address.

For instance, consider the problem of learning a UIColor’s RGBA components.
There are four such components: the color’s red, green, blue, and alpha values. A
function that, given a UIColor, returned the components of that color, would need to
return four values at once — and that is something that Objective-C cannot do. So a
different strategy is used. The UIColor method getRed(_:green:blue:alpha:)
returns only a Bool reporting whether the component extraction succeeded. Instead
of returning the actual components, it says: “You hand me four CGFloats as argu‐
ments, and I will modify them for you so that they are the results of this operation.”
Here’s roughly how the declaration for getRed(_:green:blue:alpha:) appears in
Swift:

func getRed(_ red: UnsafeMutablePointer<CGFloat>,
 green: UnsafeMutablePointer<CGFloat>,
 blue: UnsafeMutablePointer<CGFloat>,
 alpha: UnsafeMutablePointer<CGFloat>) -> Bool

How would you call this function? The parameters are each an UnsafeMutable‐
Pointer to a CGFloat. You’ll create four var CGFloat variables beforehand, giving
them each some value even though that value will be replaced when you call get-
Red(_:green:blue:alpha:). The arguments you’ll pass will be the addresses of those

Modifiable Parameters | 37

variables. Those variables are where the component values will be after the call; and
you’ll probably be so sure that the component extraction will succeed, that you won’t
even bother to capture the call’s actual result:

let c = UIColor.purple
var r : CGFloat = 0
var g : CGFloat = 0
var b : CGFloat = 0
var a : CGFloat = 0
c.getRed(&r, green: &g, blue: &b, alpha: &a)
// now r, g, b, a are 0.5, 0.0, 0.5, 1.0

Called by Objective-C with Modifiable Parameters
Sometimes, Cocoa will call your function with an UnsafeMutablePointer parameter,
and you will want to change its value. To do this, you cannot assign directly to it, as
we did earlier with the inout parameter s that we declared in our implementation of
remove(from:character:). You’re talking to Objective-C, not to Swift, and this is an
UnsafeMutablePointer, not an inout parameter. The technique here is to assign to
the UnsafeMutablePointer’s pointee property. Here (without further explanation) is
an example from my own code:

func popoverPresentationController(
 _ popoverPresentationController: UIPopoverPresentationController,
 willRepositionPopoverTo rect: UnsafeMutablePointer<CGRect>,
 in view: AutoreleasingUnsafeMutablePointer<UIView>) {
 view.pointee = self.button2
 rect.pointee = self.button2.bounds
}

Reference Type Modifiable Parameters
There is one very common situation where your function can modify a parameter
without declaring it as inout — namely, when the parameter is an instance of a class.
This is a special feature of classes, as opposed to the other two object type flavors,
enum and struct. String isn’t a class; it’s a struct. That’s why we had to use inout in
order to modify a String parameter. So I’ll illustrate by declaring a Dog class with a
name property:

class Dog {
 var name = ""
}

Here’s a function that takes a Dog instance parameter and a String, and sets that Dog
instance’s name to that String. Notice that no inout is involved:

func changeName(of d:Dog, to newName:String) {
 d.name = newName
}

38 | Chapter 2: Functions

Here’s how to call it. We pass a Dog instance directly:

let d = Dog()
d.name = "Fido"
print(d.name) // "Fido"
changeName(of:d, to:"Rover")
print(d.name) // "Rover"

We were able to change a property of our Dog instance d, even though it wasn’t
passed as an inout parameter, and even though it was declared originally with let,
not var. This appears to be an exception to the rules about modifying parameters —
but it isn’t. It’s a feature of class instances, namely that they are themselves mutable.
In changeName(of:to:), we didn’t actually attempt to assign a different Dog instance
to the parameter. To do that, the Dog parameter would need to be declared inout
(and d would have to be declared with var and we would have to pass its address as
argument).

Technically, we say that classes are reference types, whereas the other object type fla‐
vors are value types. When you pass an instance of a struct as an argument to a func‐
tion, you effectively wind up with a separate copy of the struct instance. But when you
pass an instance of a class as an argument to a function, you pass a reference to the
class instance itself. I’ll discuss this topic in more detail later (“Value Types and Refer‐
ence Types” on page 153).

Function in Function
A function can be declared anywhere, including inside the body of a function. A
function declared in the body of a function (also called a local function) is available to
be called by later code within the same scope, but is completely invisible elsewhere.

This feature is an elegant architecture for functions whose sole purpose is to assist
another function. If only function A ever needs to call function B, function B might
as well be packaged inside function A.

Here’s a typical example from one of my apps (I’ve omitted everything except the
structure):

func checkPair(_ p1:Piece, and p2:Piece) -> Path? {
 // ...
 func addPathIfValid(_ midpt1:Point, _ midpt2:Point) {
 // ...
 }
 for y in -1..._yct {
 addPathIfValid((pt1.x,y),(pt2.x,y))
 }
 for x in -1..._xct {

Function in Function | 39

 addPathIfValid((x,pt1.y),(x,pt2.y))
 }
 // ...
}

What I’m doing in the first for loop (for y) and what I’m doing in the second for
loop (for x) are the same — but with a different set of starting values. We could
write out the functionality in full inside each for loop, but that would be an unneces‐
sary and confusing repetition. (Such a repetition would violate the principle often
referred to as DRY, for “Don’t Repeat Yourself.”) To prevent that repetition, we could
refactor the repeated code into an instance method to be called by both for loops, but
that exposes this functionality more broadly than we need, as it is called only by these
two for loops inside checkPair. A local function is the perfect compromise.

Local functions are really local variables with function values (a notion that I’ll
explain later in this chapter). Therefore, a local function can’t have the same
name as a local variable in the same scope, and two local functions can’t have the
same name as one another in the same scope.

Recursion
A function can call itself. This is called recursion. Recursion seems a little scary,
rather like jumping off a cliff, because of the danger of creating an infinite loop; but if
you write the function correctly, you will always have a “stopper” condition that han‐
dles the degenerate case and prevents the loop from being infinite:

func countDownFrom(_ ix:Int) {
 print(ix)
 if ix > 0 { // stopper
 countDownFrom(ix-1) // recurse!
 }
}
countDownFrom(5) // 5, 4, 3, 2, 1, 0

Function as Value
If you’ve never used a programming language where functions are first-class citizens,
perhaps you’d better sit down now, because what I’m about to tell you might make
you feel a little faint: In Swift, a function is a first-class citizen. This means that a
function can be used wherever a value can be used. A function can be assigned to a
variable; a function can be passed as an argument in a function call; a function can be
returned as the result of a function.

Swift has strict typing. You can assign a value to a variable or pass a value into or out
of a function only if it is the right type of value. In order for a function to be used as a

40 | Chapter 2: Functions

Type Aliases Can Clarify Function Types
To make function type specifiers clearer, we can take advantage of Swift’s type alias
feature to give a function type a name. The name can be descriptive, and the possibly
confusing arrow operator notation is avoided:

typealias VoidVoidFunction = () -> ()
func dothis(_ f:VoidVoidFunction) {
 f()
}

value, the function needs to have a type. And indeed it does: a function’s signature is
its type.

The chief purpose of using a function as a value is so that this function can later be
called without a definite knowledge of what function it is. Here’s the world’s simplest
(and silliest) example, just to show the syntax and structure:

func doThis(_ f:() -> ()) {
 f()
}

That is a function doThis that takes one parameter (and returns no value). The
parameter, f, is itself a function! How do we know? Well, look at its type (after the
colon): it is () -> (). That’s a function signature; in particular, it is the signature of a
function that takes no parameters and returns no value.

The function doThis, then, expects as its parameter a function, which it names f.
Then, within its body, doThis calls the function f that it received as its parameter, by
saying f(). So doThis is merely a function that trivially calls another function. But it
does this without knowing in advance what function it is going to call. That’s the
power of functions being first-class citizens.

Having declared the function doThis, how would you call it? You’d need to pass it a
function as argument. Here’s one way to do that:

func doThis(_ f:() -> ()) {
 f()
}
func whatToDo() {
 print("I did it")
}
doThis(whatToDo)

First, we declare a function (whatToDo) of the proper type — a function that takes
no parameters and returns no value.

Function as Value | 41

Then, we call doThis, passing as argument a function reference — in effect, the
bare name of the function. Notice that we are not calling whatToDo here; we are
passing it.

Sure enough, this works: we pass whatToDo as argument to doThis; doThis calls the
function that it receives as its parameter; and the string "I did it" appears in the
console.

Obviously, that example, while demonstrating a remarkable ability of the Swift lan‐
guage, is far from compelling, because the outcome in practice is no different from
what would have happened if we had simply called whatToDo directly. But in real life,
encapsulating function-calling in a function can reduce repetition and opportunity
for error. Moreover, a function may call its parameter function in some special way; it
might call it after doing other things, or at some later time.

Here’s a case from my own code. A common thing to do in Cocoa is to draw an
image, directly, in code. One way of doing this involves four steps:

let size = CGSize(width:45, height:20)
UIGraphicsBeginImageContextWithOptions(size, false, 0)
let p = UIBezierPath(
 roundedRect: CGRect(x:0, y:0, width:45, height:20), cornerRadius: 8)
p.stroke()
let result = UIGraphicsGetImageFromCurrentImageContext()!
UIGraphicsEndImageContext()

Open an image context.

Draw into the context.

Extract the image.

Close the image context.

That works — in this case, it generates an image of a rounded rectangle — but it’s
ugly. The sole purpose of all that code is to obtain result, the image; but that pur‐
pose is buried in all the other code. At the same time, everything except for the two
lines involving the UIBezierPath p (step 2) is boilerplate; every time I do this in any
app, step 1, step 3, and step 4 are exactly the same. Moreover, I live in mortal fear of
forgetting a step; if I were to omit step 4 by mistake, the universe would explode.

Since the only thing that’s different every time I draw is step 2, step 2 is the only part I
should have to write out! The entire problem is solved by writing a utility function
expressing the boilerplate:

42 | Chapter 2: Functions

func imageOfSize(_ size:CGSize, _ whatToDraw:() -> ()) -> UIImage {
 UIGraphicsBeginImageContextWithOptions(size, false, 0)
 whatToDraw()
 let result = UIGraphicsGetImageFromCurrentImageContext()!
 UIGraphicsEndImageContext()
 return result
}

My imageOfSize utility is so useful that I declare it at the top level of a file, where all
my files can see it. To make an image, I can perform step 2 (the actual drawing) in a
function and pass that function as argument to the imageOfSize utility:

func drawing() {
 let p = UIBezierPath(
 roundedRect: CGRect(x:0, y:0, width:45, height:20),
 cornerRadius: 8)
 p.stroke()
}
let image = imageOfSize(CGSize(width:45, height:20), drawing)

Now that is a beautifully expressive and clear way to turn drawing instructions into
an image.

Evidently Apple agrees with my criticism of UIGraphicsBeginImageContextWith-
Options, because in iOS 10 a new class was introduced, UIGraphicsImageRen‐
derer, that expresses itself using syntax similar to my imageOfSize. Nevertheless,
I’ll continue using imageOfSize in this chapter, because it illustrates important
aspects of Swift functions.

The Cocoa API is full of situations where you’ll pass a function to be called by the
runtime in some special way or at some later time. Some common Cocoa situations
even involve passing two functions. For instance, when you perform view animation,
you’ll often pass one function prescribing the action to be animated and another
function saying what to do afterward:

func whatToAnimate() { // self.myButton is a button in the interface
 self.myButton.frame.origin.y += 20
}
func whatToDoLater(finished:Bool) {
 print("finished: \(finished)")
}
UIView.animate(withDuration:0.4,
 animations: whatToAnimate, completion: whatToDoLater)

That means: Change the frame origin (that is, the position) of this button in the
interface, but do it over time (four-tenths of a second); and then, when that’s fin‐
ished, print a log message in the console saying whether the animation was per‐
formed or not.

Function as Value | 43

The Cocoa documentation will often describe a function to be passed in this way
as a handler, and will refer it as a block, because that’s the Objective-C syntactic
construct needed here. In Swift, it’s a function.

Anonymous Functions
Consider once again this example:

func whatToAnimate() { // self.myButton is a button in the interface
 self.myButton.frame.origin.y += 20
}
func whatToDoLater(finished:Bool) {
 print("finished: \(finished)")
}
UIView.animate(withDuration:0.4,
 animations: whatToAnimate, completion: whatToDoLater)

There’s a slight bit of ugliness in that code. I’m declaring functions whatToAnimate
and whatToDoLater, just because I want to pass those functions in the last line. But I
don’t really need the names whatToAnimate and whatToDoLater for anything, except
to refer to them in the last line; neither the names nor the functions will ever be used
again. In my call to UIView.animate(withDuration:animations:completion:),
it would be nice to be able to pass just the body of those functions without a declared
name.

We can do that. A nameless function body is called an anonymous function, and is
legal and common in Swift. To form an anonymous function, you do two things:

1. Create the function body itself, including the surrounding curly braces, but with
no function declaration.

2. If necessary, express the function’s parameter list and return type as the first
thing inside the curly braces, followed by the keyword in.

Let’s practice by transforming our named function declarations into anonymous
functions. Here’s the named function declaration for whatToAnimate:

func whatToAnimate() {
 self.myButton.frame.origin.y += 20
}

Here’s an anonymous function that does the same thing. Notice how I’ve moved the
parameter list and return type inside the curly braces:

{
 () -> () in
 self.myButton.frame.origin.y += 20
}

Here’s the named function declaration for whatToDoLater:

44 | Chapter 2: Functions

func whatToDoLater(finished:Bool) {
 print("finished: \(finished)")
}

Here’s an anonymous function that does the same thing:

{
 (finished:Bool) -> () in
 print("finished: \(finished)")
}

Using Anonymous Functions Inline
Now that we know how to make anonymous functions, let’s use them. The point
where we need the functions is the point where we’re passing the second and third
arguments to animate(withDuration:animations:completion:). We can create and
pass anonymous functions right at that point, like this:

UIView.animate(withDuration:0.4,
 animations: {
 () -> () in
 self.myButton.frame.origin.y += 20
 },
 completion: {
 (finished:Bool) -> () in
 print("finished: \(finished)")
 }
)

We can make the same improvement in the way we call the imageOfSize function
from the preceding section. Earlier, we called that function like this:

func drawing() {
 let p = UIBezierPath(
 roundedRect: CGRect(x:0, y:0, width:45, height:20),
 cornerRadius: 8)
 p.stroke()
}
let image = imageOfSize(CGSize(width:45, height:20), drawing)

We now know, however, that we don’t need to declare the drawing function sepa‐
rately. We can call imageOfSize with an anonymous function:

let image = imageOfSize(CGSize(width:45, height:20), {
 () -> () in
 let p = UIBezierPath(
 roundedRect: CGRect(x:0, y:0, width:45, height:20),
 cornerRadius: 8)
 p.stroke()
})

Anonymous functions are very commonly used in Swift, so make sure you can read
and write that code!

Anonymous Functions | 45

Anonymous Function Abbreviated Syntax
Anonymous functions are so common and so important in Swift that some shortcuts
for writing them are provided:

Omission of the return type
If the anonymous function’s return type is already known to the compiler, you
can omit the arrow operator and the specification of the return type:

UIView.animate(withDuration:0.4,
 animations: {
 () in // *
 self.myButton.frame.origin.y += 20
 }, completion: {
 (finished:Bool) in // *
 print("finished: \(finished)")
})

(Occasionally the compiler will fail to infer the anonymous function’s return
type, even though you think it should be obvious, and will give a compile error.
If that happens, just don’t use this shortcut: supply an in expression with an
explicit return type.)

Omission of the in expression when there are no parameters
If the anonymous function takes no parameters, and if the return type can be
omitted, the in expression itself can be omitted:

UIView.animate(withDuration:0.4,
 animations: { // *
 self.myButton.frame.origin.y += 20
 }, completion: {
 (finished:Bool) in
 print("finished: \(finished)")
})

Omission of the parameter types
If the anonymous function takes parameters and their types are already known to
the compiler, the types can be omitted:

UIView.animate(withDuration:0.4,
 animations: {
 self.myButton.frame.origin.y += 20
 }, completion: {
 (finished) in // *
 print("finished: \(finished)")
})

Omission of the parentheses
If the parameter types are omitted, the parentheses around the parameter list can
be omitted:

46 | Chapter 2: Functions

UIView.animate(withDuration:0.4,
 animations: {
 self.myButton.frame.origin.y += 20
 }, completion: {
 finished in // *
 print("finished: \(finished)")
})

Omission of the in expression even when there are parameters
If the return type can be omitted, and if the parameter types are already known
to the compiler, you can omit the in expression and refer to the parameters
directly within the body of the anonymous function by using the magic names
$0, $1, and so on, in order:

UIView.animate(withDuration:0.4,
 animations: {
 self.myButton.frame.origin.y += 20
 }, completion: {
 print("finished: \($0)") // *
})

Omission of the parameter names
If the anonymous function body doesn’t need to refer to a parameter, you can
substitute an underscore for its name in the parameter list in the in expression:

UIView.animate(withDuration:0.4,
 animations: {
 self.myButton.frame.origin.y += 20
 }, completion: {
 _ in // *
 print("finished!")
})

If an anonymous function takes parameters, you must acknowledge them some‐
how. You can omit the in expression and use the parameters by the magic names
$0 and so on. Or you can keep the in expression and give the parameters names
or ignore them with underscores. But you can’t omit the in expression and not
use the parameters’ magic names! If you do, your code won’t compile.

Omission of the function argument label
If your anonymous function is the last argument being passed in this function
call — which will just about always be the case — you can close the function call
with a right parenthesis before this last argument, and then put just the anony‐
mous function body without a label. This is called trailing closure syntax (I’ll
explain in a moment what a closure is):

Anonymous Functions | 47

UIView.animate(withDuration:0.4,
 animations: {
 self.myButton.frame.origin.y += 20
 }) { // *
 _ in
 print("finished!")
}

In that code, the completion: parameter is last, so the call can pass the anony‐
mous function argument outside the call’s parentheses, using trailing closure
syntax with no label.

But there’s a curious asymmetry in that particular example, because this is a
method that takes two function parameters. The animations: parameter is an
anonymous function too, but it still sits inside the parentheses. New in Swift 5.3,
that asymmetry is resolved; now, multiple anonymous function arguments can be
expressed using trailing closure syntax. When you do that, the first anonymous
function takes no label; the remaining functions do each have their labels, with
no comma:

UIView.animate(withDuration:0.4) { // *
 self.myButton3.frame.origin.y += 20
} completion: { // *
 _ in
 print("finished")
}

Omission of the calling function parentheses
If you use a trailing closure, and if the function you are calling takes no parame‐
ters other than the function you are passing to it, you can omit the empty paren‐
theses from the call. This is the only situation in which you can omit the
parentheses from a function call! To illustrate, I’ll declare and call a different
function:

func doThis(_ f:() -> ()) {
 f()
}
doThis { // no parentheses!
 print("Howdy")
}

Omission of the keyword return
If the anonymous function body consists of exactly one statement consisting of
returning a value with the keyword return, the keyword return can be omitted
(and in this situation, I like to do so):

48 | Chapter 2: Functions

func greeting() -> String {
 return "Howdy"
}
func performAndPrint(_ f:()->String) {
 let s = f()
 print(s)
}
performAndPrint {
 greeting() // meaning: return greeting()
}

When writing anonymous functions, you will frequently find yourself taking advan‐
tage of all the omissions you are permitted. In addition, you’ll sometimes shorten the
layout of the code (though not the code itself) by putting the whole anonymous func‐
tion together with the function call on one line. Thus, Swift code involving anony‐
mous functions can be extremely compact.

Here’s a typical example. We start with an array of Int values and generate a new
array consisting of all those values multiplied by 2, by calling the map(_:) instance
method. The map(_:) method of an array takes a function that takes one parameter
of the same type as the array’s elements, and returns a new value; here, our array is
made of Int values, and we are passing to the map(_:) method a function that takes
one Int parameter and returns an Int. We could write out the whole function, like
this:

let arr = [2, 4, 6, 8]
func doubleMe(i:Int) -> Int {
 return i*2
}
let arr2 = arr.map(doubleMe) // [4, 8, 12, 16]

That, however, is not very Swifty. We don’t need the name doubleMe for anything
else, so this may as well be an anonymous function:

let arr = [2, 4, 6, 8]
let arr2 = arr.map ({
 (i:Int) -> Int in
 return i*2
})

Now let’s abbreviate our anonymous function. Its parameter type is known in
advance, so we don’t need to specify that. Its return type is known by inspection of
the function body, so we don’t need to specify that. There’s just one parameter and
we are going to use it, so we don’t need the in expression as long we refer to the
parameter as $0. Our function body consists of just one statement, and it is a return
statement, so we can omit return. And map(_:) doesn’t take any other parameters,
so we can omit the parentheses and follow the name directly with a trailing closure:

Anonymous Functions | 49

let arr = [2, 4, 6, 8]
let arr2 = arr.map {$0*2}

It doesn’t get any Swiftier than that!

Define-and-Call
A pattern that’s surprisingly common in Swift is to define an anonymous function
and call it, all in one move:

{
 // ... code goes here
}()

Notice the parentheses after the curly braces! The curly braces define an anonymous
function body; the parentheses call that anonymous function. I call this construct
define-and-call.

Using define-and-call, an action can be taken at the point where it is needed, rather
than in a series of preparatory steps. Here’s a common Cocoa situation where we cre‐
ate and configure an NSMutableParagraphStyle and then use it as an argument in a
call to the NSMutableAttributedString method addAttribute(_:value:range:), like
this:

let para = NSMutableParagraphStyle()
para.headIndent = 10
para.firstLineHeadIndent = 10
// ... more configuration of para ...
content.addAttribute(// content is an NSMutableAttributedString
 .paragraphStyle,
 value:para,
 range:NSRange(location:0, length:1))

I find that code ugly. We don’t need para except to pass it as the value: argument
within the call to addAttribute(_:value:range:), so it would be much nicer to cre‐
ate and configure it right there within the call, as the value: argument itself. That
sounds like an anonymous function — except that the value: parameter is not a
function, but an NSMutableParagraphStyle object.

We can solve the problem by providing, as the value: argument, an anonymous
function that produces an NSMutableParagraphStyle object and calling it so that it
does produce an NSMutableParagraphStyle object:

content.addAttribute(
 .paragraphStyle,
 value: {
 let para = NSMutableParagraphStyle()
 para.headIndent = 10
 para.firstLineHeadIndent = 10

50 | Chapter 2: Functions

 // ... more configuration of para ...
 return para
 }(),
 range:NSRange(location:0, length:1))

I’ll demonstrate some further uses of define-and-call in Chapter 3.

Closures
Swift functions are closures. This means they can capture references to external vari‐
ables in scope within the body of the function. What do I mean by that? Well, recall
from Chapter 1 that code in curly braces constitutes a scope, and this code can “see”
variables and functions declared in a surrounding scope. For example:

class Dog {
 var whatThisDogSays = "woof"
 func bark() {
 print(self.whatThisDogSays)
 }
}

In that code:

The variable whatThisDogSays is external to the function: it is declared outside
the body of the function, and yet is in scope for the body of the function, so that
the code inside the body of the function can see it.

The code inside the body of the function refers to the external variable whatThis-
DogSays — it says, explicitly, whatThisDogSays.

So far, so good; but we now know that the function bark can be passed as a value. In
effect, it can travel from one environment to another. When it does, what happens to
that reference to whatThisDogSays? Let’s find out:

func doThis(_ f : () -> ()) {
 f()
}
let d = Dog()
d.whatThisDogSays = "arf"
let barkFunction = d.bark
doThis(barkFunction) // arf

We run that code, and "arf" appears in the console!

Perhaps that result doesn’t seem very surprising to you. But think about it. We do not
directly call d.bark(). We make a Dog instance and pass its bark function as a value
into the function doThis. There, it is called. Now, whatThisDogSays is an instance
property of a particular Dog. Inside the function doThis there is no whatThisDog-
Says. Indeed, inside the function doThis there is no Dog instance! Nevertheless the

Closures | 51

call f() still works. The function d.bark, as it is passed around, evidently carries the
variable whatThisDogSays along with itself.

But there’s more. I’ll change the example by moving the line where we set d.what-
ThisDogSays to after we assign d.bark into our variable barkFunction:

func doThis(_ f : () -> ()) {
 f()
}
let d = Dog()
let barkFunction = d.bark
doThis(barkFunction) // woof
d.whatThisDogSays = "arf"
doThis(barkFunction) // arf

What just happened?

We assigned d.bark to barkFunction, once and for all; after that, we never
changed barkFunction.

At that time, d.whatThisDogSays was "woof", so we passed barkFunction into
doThis and got "woof".

We then changed d.whatThisDogSays to "arf". We didn’t change bark-
Function.

We passed barkFunction into doThis again, and this time we got "arf"!

After creating both d and barkFunction, changing a property of the Dog d changes
the output of calling barkFunction! How can this be? Evidently, after step 1, when
d.bark has been assigned to barkFunction, both our Dog variable d and the function
barkFunction are holding references to the same Dog instance. This is because
d.bark, which we assigned to barkFunction, refers to self, which is the Dog
instance. That’s what we mean when we say that a function is a closure and that it
captures external variables referred to in its body.

How Closures Improve Code
You can use the fact that functions are closures to make your code more general, and
hence more useful. To illustrate, here, once again, is my earlier example of a function
that accepts drawing instructions and performs them to generate an image:

52 | Chapter 2: Functions

func imageOfSize(_ size:CGSize, _ whatToDraw:() -> ()) -> UIImage {
 UIGraphicsBeginImageContextWithOptions(size, false, 0)
 whatToDraw()
 let result = UIGraphicsGetImageFromCurrentImageContext()!
 UIGraphicsEndImageContext()
 return result
}

As you know, we can call imageOfSize with a trailing closure:

let image = imageOfSize(CGSize(width:45, height:20)) {
 let p = UIBezierPath(
 roundedRect: CGRect(x:0, y:0, width:45, height:20),
 cornerRadius: 8)
 p.stroke()
}

That code, however, contains an annoying repetition. This is a call to create an image
of a given size consisting of a rounded rectangle of that size. We are repeating the
size; the pair of numbers 45,20 appears twice. That’s silly. Let’s prevent the repetition
by putting the size into a variable at the outset:

let sz = CGSize(width:45, height:20)
let image = imageOfSize(sz) {
 let p = UIBezierPath(
 roundedRect: CGRect(origin:CGPoint.zero, size:sz),
 cornerRadius: 8)
 p.stroke()
}

The variable sz, declared outside our anonymous function at a higher level, is visible
inside it. Thus we can refer to it inside the anonymous function — and we do so. The
anonymous function is just a function body; it won’t be executed until imageOfSize
calls it. Nevertheless, when we refer to sz from inside the function body in the
expression CGRect(origin:CGPoint.zero, size:sz), we capture its value now,
because the function body is a closure. When imageOfSize calls whatToDraw, and
whatToDraw turns out to be a function whose body refers to a variable sz, there’s no
problem, even though there is no sz anywhere in the neighborhood of imageOfSize.

Now let’s go further. So far, we’ve been hard-coding the size of the desired rounded
rectangle. Imagine, though, that creating images of rounded rectangles of various
sizes is something we do often. It would make sense to package this code up as a
function, where sz is not a fixed value but a parameter; the function will then return
the image:

func makeRoundedRectangle(_ sz:CGSize) -> UIImage {
 let image = imageOfSize(sz) {
 let p = UIBezierPath(
 roundedRect: CGRect(origin:CGPoint.zero, size:sz),
 cornerRadius: 8)

Closures | 53

 p.stroke()
 }
 return image
}

Incredibly, that works! The parameter sz that arrives into makeRoundedRectangle is
no longer a hard-coded value; we don’t know what it will be. Nevertheless, when make-
RoundedRectangle is called, sz will have a value, and the anonymous function cap‐
tures sz, so when imageOfSize calls the anonymous function, sz inside that function
will have the sz value that was passed to makeRoundedRectangle.

Our code is becoming beautifully compact. To call makeRoundedRectangle, supply a
size; an image is returned. I can perform the call, obtain the image, and display that
image, all in one move, like this (self.iv is a UIImageView in the interface):

self.iv.image = makeRoundedRectangle(CGSize(width:45, height:20))

Function Returning Function
But now let’s go even further! Instead of returning an image, our function can return
a function that makes rounded rectangles of the specified size. If you’ve never seen a
function returned as a value from a function, you may now be gasping for breath. But
a function, after all, can be used as a value. We have already passed a function into a
function as an argument in the function call; now we are going to receive a function
from a function call as its result:

func makeRoundedRectangleMaker(_ sz:CGSize) -> () -> UIImage {
 func f () -> UIImage {
 let im = imageOfSize(sz) {
 let p = UIBezierPath(
 roundedRect: CGRect(origin:CGPoint.zero, size:sz),
 cornerRadius: 8)
 p.stroke()
 }
 return im
 }
 return f
}

Let’s analyze that code slowly:

The declaration is the hardest part. What on earth is the type (signature) of this
function makeRoundedRectangleMaker? It is (CGSize) -> () -> UIImage. That
expression has two arrow operators. To understand it, keep in mind that every‐
thing after each arrow operator is the type of a returned value. So makeRounded-
RectangleMaker is a function that takes a CGSize parameter and returns a
() -> UIImage. Okay, and what’s a () -> UIImage? We already know that: it’s a
function that takes no parameters and returns a UIImage. So makeRounded-

54 | Chapter 2: Functions

RectangleMaker is a function that takes a CGSize parameter and returns a func‐
tion — a function that itself, when called with no parameters, will return a
UIImage.

Now here we are in the body of the function makeRoundedRectangleMaker, and
our first step is to declare a function (a function-in-function, or local function) of
precisely the type we intend to return, namely, one that takes no parameters and
returns a UIImage. Here, we’re naming this function f. The way this function
works is simple and familiar: it calls imageOfSize, passing it an anonymous func‐
tion that makes an image of a rounded rectangle (im) — and then it returns the
image.

Finally, we return the function we just made (f). We have fulfilled our contract:
we said we would return a function that takes no parameters and returns a
UIImage, and we do so.

But perhaps you are still gazing open-mouthed at makeRoundedRectangleMaker,
wondering how you would ever call it and what you would get if you did. Let’s try it:

let maker = makeRoundedRectangleMaker(CGSize(width:45, height:20))

What is the variable maker after that code runs? It’s a function — a function that takes
no parameters and that, when called, produces the image of a rounded rectangle of
size 45,20. You don’t believe me? I’ll prove it — by calling the function that is now
the value of maker:

let maker = makeRoundedRectangleMaker(CGSize(width:45, height:20))
self.iv.image = maker()

Now that you’ve gotten over your stunned surprise at the notion of a function that
produces a function as its result, turn your attention once again to the implementa‐
tion of makeRoundedRectangleMaker and let’s analyze it again, a different way.
Remember, I didn’t write that function to show you that a function can produce a
function. I wrote it to illustrate closures! Let’s think about how the environment gets
captured:

func makeRoundedRectangleMaker(_ sz:CGSize) -> () -> UIImage {
 func f () -> UIImage {
 let im = imageOfSize(sz) { // *
 let p = UIBezierPath(
 roundedRect: CGRect(origin:CGPoint.zero, size:sz), // *
 cornerRadius: 8)
 p.stroke()
 }
 return im
 }
 return f
}

Closures | 55

The function f takes no parameters. Yet, twice within the function body of f (I’ve
marked the places with asterisk comments), there are references to a size value sz.
The body of the function f can see sz, the parameter of the surrounding function
makeRoundedRectangleMaker, because it is in a surrounding scope. The function f
captures the reference to sz at the time makeRoundedRectangleMaker is called, and
keeps that reference when f is returned and assigned to maker:

let maker = makeRoundedRectangleMaker(CGSize(width:45, height:20))

That is why maker is now a function that, when it is called, creates and returns an
image of the particular size 45,20 even though it itself will be called with no parame‐
ters. The knowledge of what size of image to produce has been baked into the func‐
tion referred to by maker. Looking at it another way, makeRoundedRectangleMaker is
a factory for creating a whole family of functions similar to maker, each of which pro‐
duces an image of one particular size. That’s a dramatic illustration of the power of
closures.

Before I leave makeRoundedRectangleMaker, I’d like to rewrite it in a Swiftier fashion.
Within f, there is no need to create im and then return it; we can return the result of
calling imageOfSize directly:

func makeRoundedRectangleMaker(_ sz:CGSize) -> () -> UIImage {
 func f () -> UIImage {
 return imageOfSize(sz) {
 let p = UIBezierPath(
 roundedRect: CGRect(origin:CGPoint.zero, size:sz),
 cornerRadius: 8)
 p.stroke()
 }
 }
 return f
}

But there is no need to declare f and then return it either; it can be an anonymous
function and we can return it directly:

func makeRoundedRectangleMaker(_ sz:CGSize) -> () -> UIImage {
 return {
 return imageOfSize(sz) {
 let p = UIBezierPath(
 roundedRect: CGRect(origin:CGPoint.zero, size:sz),
 cornerRadius: 8)
 p.stroke()
 }
 }
}

But our anonymous function consists of nothing but a return statement; the anony‐
mous function parameter to imageOfSize consists of multiple statements, but the

56 | Chapter 2: Functions

imageOfSize call itself is still just one Swift statement. We can omit the keyword
return (and we could omit the remaining return too, but I prefer not to):

func makeRoundedRectangleMaker(_ sz:CGSize) -> () -> UIImage {
 return {
 imageOfSize(sz) {
 let p = UIBezierPath(
 roundedRect: CGRect(origin:CGPoint.zero, size:sz),
 cornerRadius: 8)
 p.stroke()
 }
 }
}

Closure Setting a Captured Variable
The power that a closure gets through its ability to capture its environment is even
greater than I’ve shown so far. If a closure captures a reference to a variable outside
itself, and if that variable is settable, then the closure can set the variable.

Let’s say I’ve declared this simple function. All it does is to accept a function that
takes an Int parameter, and to call that function with an argument of 100:

func pass100 (_ f:(Int) -> ()) {
 f(100)
}

Now, look closely at this code and try to guess what will happen when we run it:

var x = 0
print(x) // ?
func setX(newX:Int) {
 x = newX
}
pass100(setX)
print(x) // ?

The first print(x) call obviously produces 0. The second print(x) call produces 100!
The pass100 function has reached into my code and changed the value of my variable
x. That’s because the function setX that I passed to pass100 contains a reference to x;
not only does it contain it, but it captures it; not only does it capture it, but it sets its
value. That x is my x. pass100 was able to set my x just as readily as I would have set
it by calling setX directly.

Closure Preserving Captured Environment
When a closure captures its environment, it preserves that environment even if noth‐
ing else does. Here’s an example calculated to blow your mind — a function that
modifies a function:

Closures | 57

func countAdder(_ f: @escaping () -> ()) -> () -> () {
 var ct = 0
 return {
 ct = ct + 1
 print("count is \(ct)")
 f()
 }
}

The function countAdder accepts a function as its parameter and returns a function
as its result. (I’ll explain the @escaping attribute in the next section.) The function
that it returns calls the function that it accepts, with a little bit added: it increments a
variable and reports the result. So now try to guess what will happen when we run
this code:

func greet () {
 print("howdy")
}
let countedGreet = countAdder(greet)
countedGreet() // ?
countedGreet() // ?
countedGreet() // ?

What we’ve done here is to take a function greet, which prints "howdy", and pass it
through countAdder. What comes out the other side of countAdder is a new function,
which we’ve named countedGreet. We then call countedGreet three times. Here’s
what appears in the console:

count is 1
howdy
count is 2
howdy
count is 3
howdy

Clearly, countAdder has added to the functionality of the function that was passed
into it the ability to report how many times it is called. Now ask yourself: Where on
earth is the variable that maintains this count? Inside countAdder, it was a local
variable ct. But it isn’t declared inside the anonymous function that countAdder
returns. That’s deliberate! If it were declared inside the anonymous function, we
would be setting ct to 0 every time countedGreet is called — we wouldn’t be count‐
ing. Instead, ct is initialized to 0 once and then captured by the anonymous function.
This variable is preserved as part of the environment of countedGreet — it is outside
countedGreet in some mysterious environment-preserving world, so that it can be
incremented every time countedGreet is called.

58 | Chapter 2: Functions

Escaping Closures
If a function passed around as a value will be preserved for later execution, rather
than being called directly, it is a closure that captures and preserves its environment
over time. That’s called an escaping closure. In some situations, the function’s type
must be explicitly marked @escaping. The compiler will detect violations of this rule,
so if you find the rule confusing, don’t worry about it; just let the compiler enforce it
for you.

This function is legal because it receives a function and calls it directly:

func funcCaller(f:() -> ()) {
 f()
}

And this function is legal, even though it returns a function to be executed later,
because it also creates that function internally. The function that it returns is an
escaping closure, but the type of the function’s returned value does not have to be
marked as @escaping:

func funcMaker() -> () -> () {
 return { print("hello world") }
}

But this function is illegal. It receives a function as a parameter and returns that func‐
tion to be executed later:

func funcPasser(f:() -> ()) -> () -> () { // compile error
 return f
}

The solution is to mark the type of the incoming parameter f as @escaping, and the
compiler will prompt you to do so:

func funcPasser(f:@escaping () -> ()) -> () -> () {
 return f
}

A secondary feature of escaping closures is that, when you refer to a property or
method of self within the function body, the compiler may insist that you say self
explicitly. That’s because such a reference captures self, and the compiler wants you
to acknowledge this fact by saying self:

let f1 = funcPasser {
 print(view.bounds) // compile error, because self.view is implied
}
let f2 = funcPasser {
 print(self.view.bounds) // ok
}

I’ll return to that point when I talk about memory management in Chapter 5.

Closures | 59

Curried Functions
Return once more to makeRoundedRectangleMaker:

func makeRoundedRectangleMaker(_ sz:CGSize) -> () -> UIImage {
 return {
 imageOfSize(sz) {
 let p = UIBezierPath(
 roundedRect: CGRect(origin:CGPoint.zero, size:sz),
 cornerRadius: 8)
 p.stroke()
 }
 }
}

There’s something I don’t like about this method: the size of the rounded rectangle
that it creates is a parameter (sz), but the cornerRadius of the rounded rectangle is
hard-coded as 8. I’d like the ability to pass a value for the corner radius as part of the
call. I can think of two ways to do that. One is to give makeRoundedRectangleMaker
itself another parameter:

func makeRoundedRectangleMaker(_ sz:CGSize, _ r:CGFloat) -> () -> UIImage {
 return {
 imageOfSize(sz) {
 let p = UIBezierPath(
 roundedRect: CGRect(origin:CGPoint.zero, size:sz),
 cornerRadius: r)
 p.stroke()
 }
 }
}

And we would then call it like this:

let maker = makeRoundedRectangleMaker(CGSize(width:45, height:20), 8)

But there’s another way. The function that we are returning from makeRounded-
RectangleMaker takes no parameters. Instead, it could take the extra parameter:

func makeRoundedRectangleMaker(_ sz:CGSize) -> (CGFloat) -> UIImage {
 return { r in
 imageOfSize(sz) {
 let p = UIBezierPath(
 roundedRect: CGRect(origin:CGPoint.zero, size:sz),
 cornerRadius: r)
 p.stroke()
 }
 }
}

Now makeRoundedRectangleMaker returns a function that, itself, takes one parame‐
ter, so we must remember to supply that when we call it:

60 | Chapter 2: Functions

let maker = makeRoundedRectangleMaker(CGSize(width:45, height:20))
self.iv.image = maker(8)

If we don’t need to conserve maker for anything, we can of course do all that in one
line — a function call that yields a function which we immediately call to obtain our
image:

self.iv.image = makeRoundedRectangleMaker(CGSize(width:45, height:20))(8)

When a function returns a function that takes a parameter in this way, it is called a
curried function (after the computer scientist Haskell Curry).

Function References and Selectors
When you want to refer to a function by name — perhaps in order to pass it as argu‐
ment to another function — you can often use its bare name. That’s what I’ve been
doing throughout this chapter, in examples like this:

func whatToAnimate() { // self.myButton is a button in the interface
 self.myButton.frame.origin.y += 20
}
func whatToDoLater(finished:Bool) {
 print("finished: \(finished)")
}
UIView.animate(withDuration:0.4,
 animations: whatToAnimate, completion: whatToDoLater) // *

A bare name like whatToAnimate or whatToDoLater is a function reference. It consists
of the base name alone, the part of the function’s name that precedes the parentheses.
The lack of parentheses makes it clear that this is a reference, not a call. Use of the
bare name as a function reference is legal when it’s unambiguous: in this particular
context, there’s only one function called whatToDoLater in scope, and I’m using its
name as argument in a function call where the parameter type is known (namely,
(Bool) -> ()).

But now consider the following situation. Just as I can pass a function as an argu‐
ment, I can assign a function as a value to a variable. And suppose I have two func‐
tions with the same name, one that takes a parameter, and one that doesn’t:

class Dog {
 func bark() {
 print("woof")
 }
 func bark(_ loudly:Bool) {
 if loudly {
 print("WOOF")
 } else {
 self.bark()
 }
 }

Function References and Selectors | 61

 func test() {
 let barkFunction = bark // compile error
 // ...
 }
}

That code won’t compile, because the bare name bark is ambiguous in this context:
which bark method does it refer to? To solve this problem, Swift provides a notation
allowing you to refer to a function more precisely. This notation has two parts:

Full name
The full name of a Swift function is the base name along with parentheses con‐
taining the external names of its parameters, each followed by colon (and no
commas or spaces). If the external name of a parameter is suppressed, we repre‐
sent its external name as an underscore.

Signature
The signature of a Swift function may be appended to its bare name (or full
name) with the keyword as.

So, for example:

func say(_ s:String, times:Int) {

That method has full name say(_:times:) but may be referred to using a bare name
and signature as say as (String, Int) -> ().

In our bark example, use of the full name solves the problem if the function to which
we want a reference is the one that takes a parameter:

class Dog {
 func bark() {
 // ... as before ...
 }
 func bark(_ loudly:Bool) {
 // ... as before ...
 }
 func test() {
 let barkFunction = bark(_:) // fine
 }
}

But use of the full name doesn’t solve the problem if the function to which we want a
reference is the one that takes no parameters, because in that case the full name is the
bare name, which is exactly what’s ambiguous in this context. Use of the signature
solves the problem:

class Dog {
 func bark() {
 // ... as before ...
 }

62 | Chapter 2: Functions

 func bark(_ loudly:Bool) {
 // ... as before ...
 }
 func test() {
 let barkFunction = bark as () -> () // fine
 }
}

Obviously, an explicit signature is needed also when a function is overloaded:

class Dog {
 func bark() {
 }
 func bark(_ loudly:Bool) {
 }
 func bark(_ times:Int) {
 }
 func test() {
 let barkFunction = bark(_:) // compile error
 }
}

Here, we have said that we want the bark that takes one parameter, but there are two
such bark functions, one whose parameter is a Bool, the other whose parameter is an
Int. The signature disambiguates (and we can use the bare name):

let barkFunction = bark as (Int) -> () // "times", not "loudly"

Function Reference Scope
In the foregoing examples of function references, there was no need to tell the com‐
piler where the function is defined. That’s because the function is already in scope at
the point where the function reference appears. If you can call the function without
supplying further information, you can form the function reference without supply‐
ing further information.

However, a function reference can supply further information about where a func‐
tion is defined; and sometimes it must do so. This is done by prefixing an instance or
class to the function reference, using dot-notation. There are situations where the
compiler would force you to use self to call a function; in those situations, you will
have to use self to refer to the function as well:

class Dog {
 func bark() {
 }
 func bark(_ loudly:Bool) {
 }
 func test() {
 let f = {

Function References and Selectors | 63

 return self.bark(_:) // self required here
 }
 }
}

To form a function reference to an instance method of another type, you have two
choices. If you have on hand an instance of that type, you can use dot-notation with a
reference to that instance:

class Cat {
 func purr() {
 }
}
class Dog {
 let cat = Cat()
 func test() {
 let purrFunction = cat.purr
 }
}

The other possibility is to use the type with dot-notation (this works even if the func‐
tion is an instance method):

class Cat {
 func purr() {
 }
}
class Dog {
 func bark() {
 }
 func test() {
 let barkFunction = Dog.bark // legal but not necessary
 let purrFunction = Cat.purr
 }
}

If you use the type with dot-notation and you need to disambiguate the function ref‐
erence by giving its signature, the signature must describe the curried static/class ver‐
sion of the instance method (see “The Secret Life of Instance Methods” on page 134):

class Cat {
 func purr() {
 }
 func purr(_ loudly:Bool) {
 }
}
class Dog {
 func test() {
 let purrFunction = Cat.purr as (Cat) -> () -> Void
 }
}

64 | Chapter 2: Functions

Selectors
In Objective-C, a selector is a kind of method reference. In iOS programming, you
might have to call a Cocoa method that wants a selector as one of its parameters; typi‐
cally, this parameter will be named either selector: or action:. Usually, such a
method also requires that you provide a target (an object reference); the idea is that
the runtime can later call the method by turning the selector into a message and
sending that message to that target.

Unfortunately, this architecture can be extremely risky. The reason is that to form the
selector, it is necessary to construct a string representing a method’s Objective-C
name. If you construct that string incorrectly, then when the time comes to send the
message to the target, the runtime will find that the target can’t handle that message,
because it has no such method, and the app comes to a violent and premature halt,
dumping into the console the dreaded phrase “unrecognized selector.” Here’s a typi‐
cal recipe for failure:

class ViewController : UIViewController {
 @IBOutlet var button : UIButton!
 func viewDidLoad() {
 super.viewDidLoad()
 self.button.addTarget(// prepare to crash!
 self, action: "buttonPressed", for: .touchUpInside)
 }
 @objc func buttonPressed(_ sender: Any) {
 // ...
 }
}

In that code, self.button is a button in the interface, and we are configuring it by
calling addTarget(action:for:), so that when the button is tapped, our button-
Pressed method will be called. But we are configuring it incorrectly! Unfortunately,
"buttonPressed" is not the Objective-C name of our buttonPressed method; the
correct name would have been "buttonPressed:", with a colon. (I’ll explain why in
Appendix A.) Therefore, our app will crash when the user taps that button.

The point is that if you don’t know the rules for forming a selector string — or even if
you do, but you make a typing mistake — an “unrecognized selector” crash is likely
to result. Humans are fallible, and therefore “unrecognized selector” crashes have his‐
torically been extremely common among iOS programmers. The Swift compiler,
however, is not fallible in this way. Therefore, Swift provides a way to let the compiler
form the selector for you, by means of #selector syntax.

To ask the compiler to form an Objective-C selector for you, you use
#selector(...) with a function reference inside the parentheses. We would rewrite
our button action example like this:

Function References and Selectors | 65

class ViewController : UIViewController {
 @IBOutlet var button : UIButton!
 func viewDidLoad() {
 super.viewDidLoad()
 self.button.addTarget(
 self, action: #selector(buttonPressed), for: .touchUpInside)
 }
 @objc func buttonPressed(_ sender: Any) {
 // ...
 }
}

When you use that notation, two wonderful things happen:

The compiler validates the function reference
If your function reference isn’t valid, your code won’t even compile. The com‐
piler also checks that this function is exposed to Objective-C; there’s no point
forming a selector for a method that Objective-C can’t see, as your app would
crash if Objective-C were to try to call such a method. To ensure Objective-C vis‐
ibility, the method may need to be marked with the @objc attribute; the compiler
will enforce this requirement.

The compiler forms the Objective-C selector for you
If your code compiles, the actual selector that will be passed into this parameter
is guaranteed to be correct. You might form the selector incorrectly, but the com‐
piler won’t! It is impossible that the resulting selector should fail to match the
method, and there is no chance of an “unrecognized selector” crash.

Very rarely, you still might need to create a selector manually. To do so, you can use a
string, or you can instantiate Selector with the string as argument — for example,
Selector("woohoo:").

You can still crash, even with #selector syntax, by sending an action message to
the wrong target. In the preceding example, if you changed self, the first argu‐
ment of the addTarget call, to self.button, you’d crash at runtime with “unrec‐
ognized selector” — because the buttonPressed method is declared in
ViewController, not in UIButton. Unfortunately, the compiler won’t help you
with this kind of mistake.

66 | Chapter 2: Functions

CHAPTER 3

Variables and Simple Types

A variable is a named “shoebox” whose contained value must be of a single well-
defined type. Every variable must be explicitly and formally declared. To put a value
into the shoebox, causing the variable name to refer to that value, you assign the value
to the variable. The variable name becomes a reference to that value.

This chapter goes into detail about declaration and initialization of variables. It
then discusses all the primary built-in Swift simple types. (I mean “simple” as
opposed to collections; the primary built-in collection types are discussed at the end
of Chapter 4.)

Variable Scope and Lifetime
A variable not only gives its referent a name; it also, by virtue of where it is declared,
endows its referent with a particular scope (visibility) and lifetime. (See “Scope and
Lifetime” on page 12.) Assigning a value to a variable is a way of ensuring that this
value can be seen by code that needs to see it and that it persists long enough to serve
its purpose. There are three distinct levels of variable scope and lifetime:

Global variables
A global variable, or simply a global, is a variable declared at the top level of a
Swift file. A global variable lives as long as the file lives, which is as long as the
program runs. A global variable is visible everywhere (that’s what “global”
means). It is visible to all code within the same file, because it is at top level; any
other code in the same file is therefore at the same level or at a lower contained
level of scope. Moreover, it is visible (by default) to all code within any other file
in the same module, because Swift files in the same module can automatically see
one another, and hence can see one another’s top levels:

67

// File1:
let globalVariable = "global"
class Dog {
 func printGlobal() {
 print(globalVariable) // *
 }
}
// File2:
class Cat {
 func printGlobal() {
 print(globalVariable) // *
 }
}

Properties
A property is a variable declared at the top level of an object type declaration (an
enum, struct, or class). There are two kinds of properties: instance properties and
static/class properties.

Instance properties
By default, a property is an instance property. Its value can differ for each
instance of this object type, as I explained in Chapter 1. Its lifetime is the
same as the lifetime of the instance. An instance comes into existence
through deliberate instantiation of an object type; the subsequent lifetime of
the instance, and hence of its instance properties, depends primarily on the
lifetime of the variable to which the instance itself is assigned.

Static/class properties
A property is a static/class property if its declaration is preceded by the key‐
word static or class. (I’ll go into detail about those terms in Chapter 4.) Its
lifetime is the same as the lifetime of the object type. If the object type is
declared at the top level of a file, the property lives as long as the program
runs.

A property is visible only by way of the object. An object’s methods can see that
object’s properties directly; such code can refer to the property using dot-
notation with self, and I always do this as a matter of style, but self can usually
be omitted except for purposes of disambiguation. An instance property is also
visible (by default) to other code, provided the other code has a reference to this
instance; in that case, the property can be referred to through dot-notation with
the instance reference. A static/class property is visible (by default) to other code
that can see the name of this object type; in that case, it can be referred to
through dot-notation with the object type:

68 | Chapter 3: Variables and Simple Types

// File1:
class Dog {
 static let staticProperty = "staticProperty"
 let instanceProperty = "instanceProperty"
 func printInstanceProperty() {
 print(self.instanceProperty) // *
 }
}
// File2:
class Cat {
 func printDogStaticProperty() {
 print(Dog.staticProperty) // *
 }
 func printDogInstanceProperty() {
 let d = Dog()
 print(d.instanceProperty) // *
 }
}

Local variables
A local variable is a variable declared inside a function body. A local variable lives
only as long as its surrounding curly-braces scope lives: it comes into existence
when the path of execution passes into the scope and reaches the variable decla‐
ration, and it goes out of existence when the path of execution exits the scope.
Local variables are sometimes called automatic, to signify that they come into
and go out of existence automatically. A local variable can be seen only by subse‐
quent code within the same scope (including a subsequent deeper scope within
the same scope):

class Dog {
 func printLocalVariable() {
 let localVariable = "local"
 print(localVariable) // *
 }
}

Variable Declaration
A variable is declared with let or var:

• With let, the variable becomes a constant — its value can never be changed after
the first assignment of a value.

• With var, the variable is a true variable, and its value can be changed by subse‐
quent assignment.

A variable declaration is usually accompanied by initialization — you use an equal
sign to assign the variable a value, as part of the declaration. That, however, is not a
requirement; it is legal to declare a variable without immediately initializing it.

Variable Declaration | 69

What is not legal is to declare a variable without giving it a type. A variable must have
a type from the outset, and that type can never be changed. A variable declared with
var can have its value changed by subsequent assignment, but the new value must
conform to the variable’s fixed type.

You can give a variable a type explicitly or implicitly:

Explicit variable type declaration
After the variable’s name in the declaration, add a colon and the name of the
type:

var x : Int

Implicit variable type by initialization
If you initialize the variable as part of the declaration, and if you provide no
explicit type, Swift will infer its type, based on the value with which it is initial‐
ized:

var x = 1 // and now x is an Int

It is perfectly possible to declare a variable’s type explicitly and assign it an initial
value, all in one move:

var x : Int = 1

In that example, the explicit type declaration is superfluous, because the type (Int)
would have been inferred from the initial value. Sometimes, however, providing an
explicit type, even while also assigning an initial value, is not superfluous. Here are
the main situations where that’s the case:

Swift’s inference would be wrong
A very common case in my own code is when I want to provide the initial value
as a numeric literal. Swift will infer either Int or Double, depending on whether
the literal contains a decimal point. But there are a lot of other numeric types!
When I mean one of those, I will provide the type explicitly, like this:

let separator : CGFloat = 2.0

Swift can’t infer the type
Sometimes, the type of the initial value is completely unknown to the compiler
unless you tell it. A very common case involves option sets (discussed in Chap‐
ter 4). This won’t compile:

var opts = [.autoreverse, .repeat] // compile error

The problem is that Swift doesn’t know the type of .autoreverse and .repeat
unless we tell it:

let opts : UIView.AnimationOptions = [.autoreverse, .repeat]

70 | Chapter 3: Variables and Simple Types

The programmer can’t infer the type
I frequently include a superfluous explicit type declaration as a kind of note to
myself. Here’s an example from my own code:

let duration : CMTime = track.timeRange.duration

In that code, track is an AVAssetTrack. Swift knows perfectly well that the
duration property of an AVAssetTrack’s timeRange property is a CMTime. But
I don’t! In order to remind myself of that fact, I’ve shown the type explicitly.

Even if the compiler can infer a variable’s type correctly from its initial value,
such inference takes time. You can reduce compilation times by providing your
variable declarations with explicit types.

As I’ve already said, a variable doesn’t have to be initialized when it is declared —
even if the variable is a constant. It is legal to write this:

let x : Int

Now x is an empty shoebox — an Int variable without an initial value. You can assign
this variable an initial value later. Since this particular variable is a constant, that ini‐
tial value will be its only value from then on.

In the case of an instance property of an object (at the top level of an enum, struct, or
class declaration), that sort of thing is quite normal, because the property can be ini‐
tialized in the object’s initializer function. (I’ll have more to say about that in Chap‐
ter 4.) For a local variable, however, such behavior is unusual, and I strongly urge you
to avoid it. It isn’t a disaster — the Swift compiler will stop you from trying to use a
variable that has never been assigned a value — but it’s not a good habit. A local vari‐
able should generally be initialized as part of its declaration.

The exception that proves the rule is what we might call conditional initialization.
Sometimes, we don’t know a variable’s initial value until we’ve performed some sort
of conditional test. The variable itself, however, can be declared only once; so it must
be declared in advance and conditionally initialized afterward. This sort of thing is
not unreasonable:

let timed : Bool
if val == 1 {
 timed = true
} else {
 timed = false
}

That particular example can arguably be better expressed in other ways (which I’ll
come to in Chapter 5), but there are situations where conditional initialization is the
cleanest approach.

Variable Declaration | 71

When a variable’s address is to be passed as argument to a function, the variable must
be declared and initialized beforehand, even if the initial value is fake. Recall this
example from Chapter 2:

var r : CGFloat = 0
var g : CGFloat = 0
var b : CGFloat = 0
var a : CGFloat = 0
c.getRed(&r, green: &g, blue: &b, alpha: &a)

After that code runs, our four CGFloat 0 values will have been replaced; they were
just momentary placeholders, to satisfy the compiler.

On rare occasions, you’ll want to call a Cocoa method that returns a value immedi‐
ately and later uses that value in a function passed to that same method. For example,
Cocoa has a UIApplication instance method declared like this:

func beginBackgroundTask(
 expirationHandler handler: (() -> Void)? = nil)
 -> UIBackgroundTaskIdentifier

beginBackgroundTask(expirationHandler:) returns an identifier object, and will
later call the expirationHandler: function passed to it — a function in which you
will want to use the identifier object that was returned at the outset. Swift’s safety
rules won’t let you declare the variable that holds this identifier and use it in an
anonymous function all in the same statement:

let bti = UIApplication.shared.beginBackgroundTask {
 UIApplication.shared.endBackgroundTask(bti)
} // error: variable used within its own initial value

Therefore, you need to declare the variable beforehand; but then Swift has another
complaint:

var bti : UIBackgroundTaskIdentifier
bti = UIApplication.shared.beginBackgroundTask {
 UIApplication.shared.endBackgroundTask(bti)
} // error: variable captured by a closure before being initialized

One solution is to declare the variable beforehand with a fake initial value as a
placeholder:

var bti : UIBackgroundTaskIdentifier = .invalid
bti = UIApplication.shared.beginBackgroundTask {
 UIApplication.shared.endBackgroundTask(bti)
}

72 | Chapter 3: Variables and Simple Types

Computed Variable Initialization
Sometimes, you’d like to run several lines of code in order to compute a variable’s
initial value. A simple and compact way to express this is with a define-and-call
anonymous function (see “Define-and-Call” on page 50). I’ll illustrate by rewriting an
earlier example:

let timed : Bool = {
 if val == 1 {
 return true
 } else {
 return false
 }
}()

You can do the same thing when you’re initializing an instance property. Here’s a
class with an image (a UIImage) that I’m going to need many times later on. It makes
sense to create this image in advance as a constant instance property of the class. To
create it means to draw it. That takes several lines of code. So I declare and initialize
the property by defining and calling an anonymous function, like this (for my image-
OfSize utility, see Chapter 2):

class RootViewController : UITableViewController {
 let cellBackgroundImage : UIImage = {
 return imageOfSize(CGSize(width:320, height:44)) {
 // ... drawing goes here ...
 }
 }()
 // ... rest of class goes here ...
}

You might ask: Instead of a define-and-call initializer, why don’t I declare an instance
method and initialize the instance property by calling that method? The reason is that
that’s illegal:

class RootViewController : UITableViewController {
 let cellBackgroundImage : UIImage = self.makeTheImage() // compile error
 func makeTheImage() -> UIImage {
 return imageOfSize(CGSize(width:320, height:44)) {
 // ... drawing goes here ...
 }
 }
}

The problem is that, at the time of initializing the instance property, there is no
instance yet — the instance is what we are in the process of creating. Therefore you
can’t refer to self (implicitly or explicitly) in a property declaration’s initializer. A
define-and-call anonymous function, however, is legal. But the define-and-call

Computed Variable Initialization | 73

anonymous function still can’t refer to self! I’ll provide a workaround a little later in
this chapter.

Computed Variables
The variables I’ve been describing so far in this chapter have all been stored variables.
The named shoebox analogy applies: a value can be put into the shoebox by assigning
it to the variable, and it then sits there and can be retrieved later by referring to the
variable, for as long the variable lives.

But a variable in Swift can work in a completely different way: it can be computed.
This means that the variable, instead of having a value, has functions. One function,
the setter, is called when the variable is assigned to. The other function, the getter, is
called when the variable is referred to. Here’s some code illustrating schematically the
syntax for declaring a computed variable:

var now : String {
 get {
 return Date().description
 }
 set {
 print(newValue)
 }
}

The variable must be declared with var (not let). Its type must be declared
explicitly. The type is followed immediately by curly braces.

The getter function is called get. There is no formal function declaration; the
word get is simply followed immediately by a function body in curly braces.

The getter function must return a value of the same type as the variable. When
the getter is a single statement, it is legal to omit the keyword return (starting in
Swift 5.1).

The setter function is called set. There is no formal function declaration; the
word set is simply followed immediately by a function body in curly braces.

The setter behaves like a function taking one parameter. By default, this parame‐
ter arrives into the setter function body with the local name newValue.

Here’s some code that illustrates the use of our computed variable. You don’t treat it
any differently than any other variable! To assign to the variable, assign to it; to use
the variable, use it. Behind the scenes, though, the setter and getter functions are
called:

74 | Chapter 3: Variables and Simple Types

now = "Howdy" // Howdy
print(now) // 2019-06-26 17:03:30 +0000

Assigning to now calls its setter. The argument passed into this call is the assigned
value; here, that’s "Howdy". That value arrives in the set function as newValue.
Our set function prints newValue to the console.

Fetching now calls its getter. Our get function obtains the current date-time and
translates it into a string, and returns the string. Our code then prints that string
to the console.

There are a couple of variants on the basic syntax I’ve just illustrated:

• The name of the set function parameter doesn’t have to be newValue. To specify
a different name, put it in parentheses after the word set, like this:

set (val) { // now you can use "val" inside the setter function body

• There doesn’t have to be a setter. If the setter is omitted, this becomes a read-only
variable. This is the computed variable equivalent of a let variable: attempting to
assign to it is a compile error.

• There must always be a getter! However, if there is no setter, the word get and
the curly braces that follow it can be omitted. This is a legal declaration of a read-
only variable (omitting the return keyword):

var now : String {
 Date().description
}

Computed Properties
In real life, your main use of computed variables will nearly always be as instance
properties. Here are some common ways in which computed properties are useful:

Façade for a longer expression
When a value can be readily calculated or obtained each time it is needed, it often
makes for simpler syntax to express it as a read-only computed variable, which
effectively acts as a shorthand for a longer expression. Here’s an example from
my own code:

var mp : MPMusicPlayerController {
 MPMusicPlayerController.systemMusicPlayer
}
var nowPlayingItem : MPMediaItem? {
 self.mp.nowPlayingItem
}

Computed Variables | 75

No work is saved by these computed variables; each time we ask for self.now-
PlayingItem, we are fetching MPMusicPlayerController.systemMusic-

Player.nowPlayingItem. Still, the clarity and convenience of the resulting code
justifies the use of computed variables here.

Façade for an elaborate calculation
A computed variable getter can encapsulate multiple lines of code, in effect turn‐
ing a method into a property. Here’s an example from my own code:

var authorOfItem : String? {
 guard let authorNodes =
 self.extensionElements(
 withXMLNamespace: "http://www.tidbits.com/dummy",
 elementName: "app_author_name")
 else {return nil}
 guard let authorNode = authorNodes.last as? FPExtensionNode
 else {return nil}
 return authorNode.stringValue
}

In that example, I’m diving into some parsed XML and extracting a value. I could
have declared this as a method func authorOfItem() -> String?, but a method
expresses a process, whereas a computed property characterizes it more intui‐
tively as a thing.

Façade for storage
A computed variable can sit in front of one or more stored variables, acting as a
gatekeeper on how those stored variables are set and fetched. This is comparable
to an accessor method in Objective-C. Commonly, a public computed variable is
backed by a private stored variable. The simplest possible storage façade would
do no more than get and set the private stored variable directly:

private var _p : String = ""
var p : String {
 get {
 self._p
 }
 set {
 self._p = newValue
 }
}

That’s legal but pointless. A storage façade becomes useful when it does other
things while getting or setting the stored variable. Here’s a more realistic exam‐
ple: a “clamped” setter. This is an Int property to which only values between 0
and 5 can be assigned; larger values are replaced by 5, and smaller values are
replaced by 0:

76 | Chapter 3: Variables and Simple Types

private var _pp : Int = 0
var pp : Int {
 get {
 self._pp
 }
 set {
 self._pp = max(min(newValue,5),0)
 }
}

As the preceding examples demonstrate, a computed instance property getter or set‐
ter can refer to other instance members. That’s important, because in general the ini‐
tializer for a stored property can’t do that. The reason it’s legal for a computed
property is that the getter and setter functions won’t be called until the instance
actually exists.

Property Wrappers
If we have several storage façade computed properties that effectively do the same
thing, we’re going to end up with a lot of repeated code. Imagine implementing more
than one Int property with a clamped setter, as in the preceding section. It would be
nice to move the common functionality off into a single location. Starting in Swift
5.1, we can do that, using a property wrapper.

A property wrapper is declared as a type marked with the @propertyWrapper
attribute, and must have a wrappedValue computed property. Here’s a property
wrapper implementing the “clamped” pattern:

@propertyWrapper struct Clamped {
 private var _i : Int = 0
 var wrappedValue : Int {
 get {
 self._i
 }
 set {
 self._i = Swift.max(Swift.min(newValue,5),0)
 }
 }
}

The result is that we can declare a computed property marked with a custom
attribute whose name is the same as that struct (@Clamped), with no getter or setter:

@Clamped var p

Our property p doesn’t need to be initialized, because it’s a computed property. And
it doesn’t need a getter or a setter — indeed, in this case it doesn’t even need a type
declaration — because the wrappedValue computed property of the Clamped struct
supplies them!

Computed Variables | 77

Behind the scenes, an actual Clamped instance has been created for us. When we set
self.p to some value through assignment, the assignment passes through the
Clamped instance’s wrappedValue setter, and the resulting clamped value is stored in
the Clamped instance’s _i property. When we fetch the value of self.p, what we get
is the value returned from the Clamped instance’s wrappedValue getter, which is the
value stored in the Clamped instance’s _i property.

Thanks to our property wrapper, we have encapsulated this computed property pat‐
tern, which means we can now declare another @Clamped property which will behave
in just the same way. It’s also nice that this pattern now has a name: the declaration
@Clamped var tells us what the behavior of this computed property will be.

(Believe it or not, I created the Clamped example before discovering that the Swift
language proposal for property wrappers uses the same example!)

There’s considerably more to know about property wrappers, but I’ll postpone fur‐
ther discussion to Chapter 5, after I’ve explained other language features that will
help you appreciate their power and flexibility.

Setter Observers
Computed variables are not needed as a stored variable façade as often as you might
suppose. That’s because Swift has another feature, which lets you inject functionality
into the setter of a stored variable — setter observers. These are functions that are
called just before and just after other code sets a stored variable.

The syntax for declaring a variable with a setter observer is very similar to the syntax
for declaring a computed variable; you can write a willSet function, a didSet func‐
tion, or both:

var s = "whatever" {
 willSet {
 print(newValue)
 }
 didSet {
 print(oldValue)
 // self.s = "something else"
 }
}

The variable must be declared with var (not let). It can be assigned an initial
value. It is then followed immediately by curly braces.

The willSet function, if there is one, is the word willSet followed immediately
by a function body in curly braces. It is called when other code sets this variable,
just before the variable actually receives its new value.

78 | Chapter 3: Variables and Simple Types

By default, the willSet function receives the incoming new value as newValue.
You can change this name by writing a different name in parentheses after the
word willSet. The old value is still sitting in the stored variable, and the willSet
function can access it there.

The didSet function, if there is one, is the word didSet followed immediately by
a function body in curly braces. It is called when other code sets this variable, just
after the variable actually receives its new value.

By default, the didSet function receives the old value, which has already been
replaced as the value of the variable, as oldValue. You can change this name by
writing a different name in parentheses after the word didSet. The new value is
already sitting in the stored variable, and the didSet function can access it there.
Moreover, it is legal for the didSet function to set the stored variable to a differ‐
ent value.

Setter observer functions are not called when the stored variable is initialized or
when the didSet function changes the stored variable’s value. That would be
circular!

In real-life iOS programming, you’ll want the visible interface to reflect the state of
your objects. A setter observer is a simple but powerful way to synchronize the inter‐
face with a property. In this example, we have an instance property of a view class,
determining how much the view should be rotated; every time this property changes,
we change the interface to reflect it, setting self.transform so that the view is rota‐
ted by that amount:

var angle : CGFloat = 0 {
 didSet {
 // modify interface to match
 self.transform = CGAffineTransform(rotationAngle: self.angle)
 }
}

A computed variable can’t have setter observers. But it doesn’t need them! There’s a
setter function, so anything additional that needs to happen during setting can be
programmed directly into that setter function. (But a property-wrapped computed
variable can have setter observers.)

Lazy Initialization
The term lazy is not a pejorative puritanical judgment; it’s a formal description of a
useful behavior. If a stored variable is assigned an initial value as part of its declara‐
tion, and if it uses lazy initialization, then the initial value is not actually evaluated
and assigned until running code accesses the variable’s value.

Lazy Initialization | 79

There are three types of variable that can be initialized lazily in Swift:

Global variables
Global variables are automatically lazy. This makes sense if you ask yourself
when they should be initialized. As the app launches, files and their top-level
code are encountered. It would make no sense to initialize globals now, because
the app isn’t even running yet. Thus global initialization must be postponed to
some moment that does make sense. Therefore, a global variable’s initialization
doesn’t happen until other code first refers to that global. Under the hood, this
behavior is implemented in such a way as to make initialization both singular (it
can happen only once) and thread-safe.

Static properties
Static properties are automatically lazy. They behave exactly like global variables,
and for basically the same reason. (There are no stored class properties in Swift,
so class properties can’t be initialized and thus can’t have lazy initialization.)

Instance properties
An instance property is not lazy by default, but it may be made lazy by marking
its declaration with the keyword lazy. This property must be declared with var,
not let. The initializer for such a property might never be evaluated, namely if
code assigns the property a value before any code fetches the property’s value.

Singleton
Lazy initialization is often used to implement singleton. Singleton is a pattern where
all code is able to get access to a single shared instance of a certain class:

class MyClass {
 static let shared = MyClass()
}

Now other code can obtain a reference to MyClass’s singleton by saying
MyClass.shared. The singleton instance is not created until the first time other code
says MyClass.shared; subsequently, no matter how many times other code may say
MyClass.shared, the instance returned is always that same instance. (That is not what
would happen if this were a computed read-only property whose getter calls
MyClass() and returns that instance; do you see why?)

Lazy Initialization of Instance Properties
Why might you want an instance property to be lazy? One reason is obvious: the ini‐
tial value might be expensive to generate, so you’d like to avoid generating it unless it
is actually needed. But there’s another reason that turns out to be even more impor‐
tant: a lazy initializer can do things that a normal initializer can’t.

80 | Chapter 3: Variables and Simple Types

In particular, a lazy initializer can refer to the instance. A normal initializer can’t do
that, because the instance doesn’t yet exist at the time that a normal initializer would
need to run (we’re in the middle of creating the instance, so it isn’t ready yet). A lazy
initializer, by contrast, is guaranteed not to run until some time after the instance has
fully come into existence, so referring to the instance is fine. This code would be ille‐
gal if the arrow property weren’t declared lazy:

class MyView : UIView {
 lazy var arrow = self.arrowImage() // legal
 func arrowImage () -> UIImage {
 // ... big image-generating code goes here ...
 }
}

A very common idiom is to initialize a lazy instance property with a define-and-call
anonymous function whose code can refer to self:

lazy var prog : UIProgressView = {
 let p = UIProgressView(progressViewStyle: .default)
 p.alpha = 0.7
 p.trackTintColor = UIColor.clear
 p.progressTintColor = UIColor.black
 p.frame =
 CGRect(x:0, y:0, width:self.view.bounds.size.width, height:20) // legal
 p.progress = 1.0
 return p
}()

There’s no lazy let for instance properties, so you can’t readily make a lazy instance
property read-only. That’s unfortunate, because there are some common situations
that would benefit from such a feature.

Suppose we want to arm ourselves (self) with a helper property holding an instance
of a Helper class that needs a reference back to self. We also want this one Helper
instance to persist for the entire lifetime of self. We can enforce that rule by making
helper a let property and initializing it in its declaration. But we can’t pass self into
the Helper instance at that point, because we can’t refer to self in the property decla‐
ration.

We can solve the problem by declaring the helper property lazy, but then it has to
be a var property, meaning that, in theory, other code can come along and replace
this Helper with another. Of course, we’ll try not to let that happen; but the point is
that the expression lazy var fails to express and enforce this policy as an unbreaka‐
ble contract. (It may be possible to work around the issue by making helper a com‐
puted property acting as a façade on storage — and we can even encapsulate that
pattern as a property wrapper — but even then we can enforce our policy only at run‐
time, not at compile time the way let does.)

Lazy Initialization | 81

Unlike automatically lazy global and static variables, an instance property
marked lazy does not initialize itself in a thread-safe way. When used in a multi‐
threaded context, lazy instance properties can cause multiple initialization and
even crashes.

Built-In Simple Types
Every variable, and every value, must have a type. But what types are there? Up to this
point, I’ve assumed the existence of some types, such as Int and String, without for‐
mally telling you about them. Here’s a survey of the primary simple types provided
by Swift, along with some instance methods, global functions, and operators that
apply to them. (Collection types will be discussed at the end of Chapter 4.)

Bool
The Bool object type (a struct) has only two values, commonly regarded as true and
false (or yes and no). You can represent these values using the literal keywords true
and false, and it is natural to think of a Bool value as being either true or false:

var selected : Bool = false

In that code, selected is a Bool variable initialized to false; it can subsequently be
set to false or true, and to no other values. Because of its simple yes-or-no state, a
Bool variable of this kind is often referred to as a flag.

Cocoa methods very often expect a Bool parameter or return a Bool value. For exam‐
ple, when your app launches, Cocoa calls a method in your code declared like this:

func application(_ application: UIApplication,
 didFinishLaunchingWithOptions
 launchOptions: [UIApplication.LaunchOptionsKey : Any]?)
 -> Bool {

You can do anything you like in that method; often, you will do nothing. But you
must return a Bool! And in real life, that Bool will probably be true. A minimal
implementation looks like this:

func application(_ application: UIApplication,
 didFinishLaunchingWithOptions
 launchOptions: [UIApplication.LaunchOptionsKey : Any]?)
 -> Bool {
 return true
}

A Bool is useful in conditions; as I’ll explain in Chapter 5, when you say if
something, the something is the condition, and is a Bool or an expression that evalu‐
ates to a Bool. When you compare two values using the equality comparison operator
==, the result is a Bool — true if they are equal to each other, false if they are not:

82 | Chapter 3: Variables and Simple Types

if meaningOfLife == 42 { // ...

(I’ll talk more about equality comparison in a moment, when we come to discuss
types that can be compared, such as Int and String.)

When preparing a condition, you will sometimes find that it enhances clarity to store
the Bool value in a variable beforehand:

let comp = self.traitCollection.horizontalSizeClass == .compact
if comp { // ...

Observe that, when employing that idiom, we use the Bool variable comp directly as
the condition. There is no need to test explicitly whether a Bool equals true or false;
the conditional expression itself is already testing that. It is pointless to say if comp
== true, because if comp already means “if comp is true.”

Since a Bool can be used as a condition, a call to a function that returns a Bool can be
used as a condition. Here’s an example from my own code. I’ve declared a function
that returns a Bool to say whether the cards the user has selected constitute a correct
answer to the puzzle:

func isCorrect(_ cells:[CardCell]) -> Bool { // ...

I can then use a call to isCorrect as a condition:

if self.isCorrect(cellsToTest) { // ...

Unlike many computer languages, nothing else in Swift is implicitly coerced to or
treated as a Bool. In C, for example, a boolean is actually a number, and 0 is false. But
in Swift, nothing is false but false, and nothing is true but true.

The type name, Bool, comes from the English mathematician George Boole; Boolean
algebra provides operations on logical values. Bool values are subject to these same
operations:

! (not)
The ! unary operator reverses the truth value of the Bool to which it is applied as
a prefix. If ok is true, !ok is false — and vice versa.

&& (logical-and)
Returns true only if both operands are true; otherwise, returns false. If the first
operand is false, the second operand is not even evaluated (avoiding possible
side effects).

|| (logical-or)
Returns true if either operand is true; otherwise, returns false. If the first
operand is true, the second operand is not even evaluated (avoiding possible side
effects).

Built-In Simple Types | 83

If a logical operation is complicated or elaborate, parentheses around subexpressions
can help clarify both the logic and the order of operations.

A common situation is that we have a Bool stored in a var variable somewhere, and
we want to reverse its value — that is, make it true if it is false, and false if it is
true. The ! operator solves the problem; we fetch the variable’s value, reverse it
with !, and assign the result back into the variable:

v.isUserInteractionEnabled = !v.isUserInteractionEnabled

That, however, is cumbersome and error-prone, so there’s a simpler way — call the
toggle method on the Bool variable:

v.isUserInteractionEnabled.toggle()

Numbers
The main numeric types are Int and Double — meaning that, left to your own devi‐
ces, those are the types you’ll generally use. Other numeric types exist mostly for
compatibility with the C and Objective-C APIs that Swift needs to be able to talk to
when you’re programming iOS.

Int

The Int object type (a struct) represents an integer between Int.min and Int.max
inclusive. The actual values of those limits might depend on the platform and archi‐
tecture under which the app runs, so don’t count on them to be absolute; in my test‐
ing at this moment, they are –263 and 263–1 respectively (64-bit words).

The easiest way to represent an Int value is as a numeric literal. A numeric literal
without a decimal point is taken as an Int by default. Internal underscores are legal;
this is useful for making long numbers readable. Leading zeroes are legal; this is use‐
ful for padding and aligning values in your code.

You can write an Int literal using binary, octal, or hexadecimal digits. To do so, start
the literal with 0b, 0o, or 0x respectively. For example, 0x10 is decimal 16.

Negative numbers are stored in the two’s complement format (consult Wikipe‐
dia if you’re curious). You can write a binary literal that looks like the underlying
storage, but to use it you must pass it through the Int(bitPattern:) initializer.

Double
The Double object type (a struct) represents a floating-point number to a precision of
about 15 decimal places (64-bit storage).

84 | Chapter 3: Variables and Simple Types

The easiest way to represent a Double value is as a numeric literal. A numeric literal
containing a decimal point is taken as a Double by default. Internal underscores and
leading zeroes are legal.

A Double literal may not begin with a decimal point (unlike C and Objective-C). If
the value to be represented is between 0 and 1, start the literal with a leading 0.

You can write a Double literal using scientific notation. Everything after the letter e is
the exponent of 10. You can omit the decimal point if the fractional digits would be
zero. For example, 3e2 is 3 times 102 (300).

You can write a Double literal using hexadecimal digits. To do so, start the literal
with 0x. You can use exponentiation here too (and again, you can omit the decimal
point); everything after the letter p is the exponent of 2. For example, 0x10p2 is deci‐
mal 64, because you are multiplying 16 by 22.

There are static properties Double.infinity and Double.pi, and an instance prop‐
erty isZero, among others.

Numeric coercion
Coercion is the conversion of a value from one type to another, and numeric coercion
is the conversion of a value from one numeric type to another. Swift doesn’t really
have explicit coercion, but it has something that serves the same purpose — instantia‐
tion. Swift numeric types are supplied with initializers that take another numeric type
as parameter. To convert an Int explicitly into a Double, instantiate Double with the
Int in the parentheses. To convert a Double explicitly into an Int, instantiate Int with
the Double in the parentheses; this will truncate the original value (everything after
the decimal point will be thrown away):

let i = 10
let x = Double(i)
print(x) // 10.0, a Double
let y = 3.8
let j = Int(y)
print(j) // 3, an Int

When numeric values are assigned to variables or passed as arguments to a function,
Swift can perform implicit coercion of literals only. This code is legal:

let d : Double = 10

But this code is not legal, because what you’re assigning is a variable (not a literal) of
a different type; the compiler will stop you:

let i = 10
let d : Double = i // compile error

Built-In Simple Types | 85

The problem is that i is an Int and d is a Double, and never the twain shall meet. The
solution is to coerce explicitly as you assign or pass the variable:

let i = 10
let d : Double = Double(i)

The same rule holds when numeric values are combined by an arithmetic operation.
Swift will perform implicit coercion of literals only. The usual situation is an Int com‐
bined with a Double; the Int is treated as a Double:

let x = 10/3.0
print(x) // 3.33333333333333

But variables of different numeric types must be coerced explicitly so that they are the
same type if you want to combine them in an arithmetic operation:

let i = 10
let n = 3.0
let x = i / n // compile error; you need to say Double(i)

These rules are evidently a consequence of Swift’s strict typing; but (as far as I am
aware) they constitute very unusual treatment of numeric values for a modern com‐
puter language, and will probably drive you mad in short order. The examples I’ve
given so far were easily solved, but things can become more complicated if an arith‐
metic expression is longer, and the problem is compounded by the existence of other
numeric types that are needed for compatibility with Cocoa, as I shall now proceed to
explain.

Other numeric types
If you were using Swift in some isolated, abstract world, you could probably do all
necessary arithmetic with Int and Double alone. But when you’re programming iOS,
you encounter Cocoa, which is full of other numeric types; and Swift has types that
match every one of them. In addition to Int, there are signed integer types of various
sizes — Int8, Int16, Int32, Int64 — plus the unsigned integer type UInt along with
UInt8, UInt16, UInt32, and UInt64. In addition to Double, there is the lower-
precision Float (32-bit storage, about 6 or 7 decimal places of precision), the even
lower-precision Float16 (new in Swift 5.3), and the extended-precision Float80 —
plus, in the Core Graphics framework, CGFloat (whose size can be that of Float or
Double, depending on the bitness of the architecture).

You may also encounter a C numeric type when trying to interface with a C API.
These types, as far as Swift is concerned, are just type aliases, meaning that they are
alternate names for another type: a CDouble (corresponding to C’s double) is just a
Double by another name, a CLong (C’s long) is an Int, and so on. Many other
numeric type aliases will arise in various Cocoa frameworks; for example, Time‐
Interval (Objective-C NSTimeInterval) is merely a type alias for Double.

86 | Chapter 3: Variables and Simple Types

Figure 3-1. Quick Help displays a variable’s type

Recall that you can’t assign, pass, or combine values of different numeric types using
variables; you have to coerce those values explicitly to the correct type. But now it
turns out that you’re being flooded by Cocoa with numeric values of many types!
Cocoa will often hand you a numeric value that is neither an Int nor a Double — and
you won’t necessarily realize this, until the compiler stops you dead in your tracks for
some sort of type mismatch. You must then figure out what you’ve done wrong and
coerce everything to the same type.

Here’s a typical example from one of my apps. A slider in the interface is a UISlider,
whose minimumValue and maximumValue are Floats. In this code, s is a UISlider, g is a
UIGestureRecognizer, and we’re trying to use the gesture recognizer to move the
slider’s “thumb” to wherever the user tapped within the slider:

let pt = g.location(in:s)
let percentage = pt.x / s.bounds.size.width
let delta = percentage * (s.maximumValue - s.minimumValue) // compile error

That won’t compile. Here’s why:

pt is a CGPoint, and therefore pt.x is a CGFloat.

Luckily, s.bounds.size.width is also a CGFloat, so the second line compiles;
percentage is now inferred to be a CGFloat.

We now try to combine percentage with s.maximumValue and s.minimumValue
— and they are Floats, not CGFloats. That’s a compile error.

This sort of thing is not an issue in C or Objective-C, where there is implicit coercion;
but in Swift a CGFloat can’t be combined with Floats. We must coerce explicitly:

let delta = Float(percentage) * (s.maximumValue - s.minimumValue)

The good news here is that if you can get enough of your code to compile, Xcode’s
Quick Help feature will tell you what type Swift has inferred for a selected variable
(Figure 3-1). This can assist you in tracking down your issues with numeric types.

Another problem is that not every numeric value can be coerced to a numeric value
of a different type. In particular, integers of various sizes can be out of range with
respect to integer types of other sizes. For example, Int8.max is 127, so attempting to
assign a literal 128 or larger to an Int8 variable is illegal. Fortunately, the compiler

Built-In Simple Types | 87

will stop you in that case, because it knows what the literal is. But now consider coerc‐
ing a variable value of a larger integer type to an Int8:

let i : Int16 = 128
let ii = Int8(i)

That code is legal — and will crash at runtime. One solution is to call the numeric
exactly: initializer; this is a failable initializer — meaning, as I’ll explain in Chap‐
ter 4, that you won’t crash, but you’ll have to add code to test whether the coercion
succeeded (and you’ll understand what the test would be when you’ve read the dis‐
cussion of Optionals later in this chapter):

let i : Int16 = 128
let ii = Int8(exactly:i)
if // ... test to learn whether ii holds a real Int8

Yet another solution is to call the clamping: initializer; it always succeeds, because an
out of range value is forced to fall within range:

let i : Int16 = 128
let ii = Int8(clamping:i) // 127

(There is also a truncatingIfNeeded: initializer, but you probably won’t need to
know about it unless you are deliberately manipulating integers as binary, so I won’t
describe it here.)

When a floating-point type, such as a Double, is coerced to an integer type, the stuff
after the decimal point is thrown away first and then the coercion is attempted.
Int8(127.9) succeeds, because 127 is in bounds.

Arithmetic operations
Swift’s arithmetic operators are as you would expect; they are familiar from other
computer languages as well as from real arithmetic:

+ (addition operator)
Add the second operand to the first and return the result.

- (subtraction operator)
Subtract the second operand from the first and return the result. A different
operator (unary minus), used as a prefix, looks the same; it returns the additive
inverse of its single operand. (There is, in fact, also a unary plus operator, which
returns its operand unchanged.)

* (multiplication operator)
Multiply the first operand by the second and return the result.

88 | Chapter 3: Variables and Simple Types

/ (division operator)
Divide the first operand by the second and return the result. As in C, division of
one Int by another Int yields an Int; any remaining fraction is stripped away.
10/3 is 3, not 3-and-one-third.

% (remainder operator)
Divide the first operand by the second and return the remainder. The result can
be negative, if the first operand is negative; if the second operand is negative, it is
treated as positive. For floating-point operands, use a method such as
remainder(dividingBy:).

Integers also have a quotientAndRemainder(dividingBy:) method, which
returns a tuple of two integers labeled quotient and remainder. If the question is
whether one integer evenly divides another, calling isMultiple(of:) may be
clearer than checking for a zero remainder.

Integer types can be treated as binary bitfields and subjected to binary bitwise
operations:

& (bitwise-and)
A bit in the result is 1 if and only if that bit is 1 in both operands.

| (bitwise-or)
A bit in the result is 0 if and only if that bit is 0 in both operands.

^ (bitwise-or, exclusive)
A bit in the result is 1 if and only if that bit is not identical in both operands.

~ (bitwise-not)
Precedes its single operand; inverts the value of each bit and returns the result.

<< (shift left)
Shift the bits of the first operand leftward the number of times indicated by the
second operand.

>> (shift right)
Shift the bits of the first operand rightward the number of times indicated by the
second operand.

Technically, the shift operators perform a logical shift if the integer is unsigned,
and an arithmetic shift if the integer is signed.

Integer overflow or underflow — for example, adding two Int values so as to exceed
Int.max — is a runtime error (your app will crash). In simple cases the compiler will
stop you, but you can get away with it easily enough:

Built-In Simple Types | 89

let i = Int.max - 2
let j = i + 12/2 // crash

Under certain circumstances you might want to force such an operation to succeed,
so special overflow/underflow methods are supplied. These methods return a tuple;
I’ll show you an example even though I haven’t discussed tuples yet:

let i = Int.max - 2
let (j, over) = i.addingReportingOverflow(12/2)

Now j is Int.min + 3 (because the value has wrapped around from Int.max to
Int.min) and over is an enum reporting that overflow occurred.

If you don’t care to hear about whether or not there was an overflow/underflow, spe‐
cial arithmetic operators let you suppress the error: &+, &-, &*.

You will frequently want to combine the value of an existing variable arithmetically
with another value and store the result in the same variable. To do so, you will need
to have declared the variable as a var:

var i = 1
i = i + 7

As a shorthand, operators are provided that perform the arithmetic operation and the
assignment all in one move:

var i = 1
i += 7

The shorthand (compound) assignment arithmetic operators are +=, -=, *=, /=, %=, &=,
|=, ^=, <<=, >>=.

Operation precedence is largely intuitive: for example, * has a higher precedence than
+, so x+y*z multiplies y by z first, and then adds the result to x. Use parentheses to
dictate precedence explicitly: (x+y)*z performs the addition first.

Global functions from the Swift standard library include abs (absolute value), max,
and min:

let i = -7
let j = 6
print(abs(i)) // 7
print(max(i,j)) // 6

Doubles are also stocked with mathematical methods. If d is a Double, you can say
d.squareRoot() or d.rounded(); if dd is also a Double, you can say
Double.maximum(d,dd). Other global mathematical functions, such as trigonometric
sin and cos, come from the C standard libraries that are visible because you’ve
imported UIKit. Also, a Swift package called Swift Numerics (https://github.com/
apple/swift-numerics) unites all the floating-point types under the Real protocol and
supplies most of the mathematical functions you could ever want.

90 | Chapter 3: Variables and Simple Types

https://github.com/apple/swift-numerics
https://github.com/apple/swift-numerics

Numeric types have a random(in:) static method allowing generation of a random
number. The parameter is a range representing the bounds within which the random
number should fall. (Ranges are discussed later in this chapter.) This method is much
easier to use correctly than the C library methods such as arc4random_uniform,
which should be avoided:

// pick a number from 1 to 10
let i = Int.random(in: 1...10)

Comparison
Numbers are compared using the comparison operators, which return a Bool. The
expression i==j tests whether i and j are equal; when i and j are numbers, “equal”
means numerically equal. So i==j is true only if i and j are “the same number,” in
exactly the sense you would expect.

The comparison operators are:

== (equality operator)
Returns true if its operands are equal.

!= (inequality operator)
Returns false if its operands are equal.

< (less-than operator)
Returns true if the first operand is less than the second operand.

<= (less-than-or-equal operator)
Returns true if the first operand is less than or equal to the second operand.

> (greater-than operator)
Returns true if the first operand is greater than the second operand.

>= (greater-than-or-equal operator)
Returns true if the first operand is greater than or equal to the second operand.

Curiously, you can compare values of different integer types, even though you can’t
combine them in an arithmetic operation:

let i:Int = 1
let i2:UInt8 = 2
let ok = i < i2 // true
let ok2 = i == i2 // false
let sum = i + i2 // error

Because of the way computers store numbers, equality comparison of Double values
may not succeed where you would expect. To give a classic example, adding 0.1 to 0
ten times does not give the same result as multiplying 0.1 by ten:

Built-In Simple Types | 91

let f = 0.1
var sum = 0.0
for _ in 0..<10 { sum += f }
let product = f * 10
let ok = sum == product // false

Working around this sort of thing is not easy. The usual approach is to check
whether two values are sufficiently close to one another, but this begs the question of
what constitutes sufficient closeness. A useful formula is:

let ok2 = sum >= product.nextDown && sum <= product.nextUp // true

String
The String object type (a struct) represents text. The simplest way to represent a
String value is with a literal, delimited by double quotes:

let greeting = "hello"

A Swift string is thoroughly modern; under the hood, it’s Unicode, and you can
include any character (such as an emoji) directly in a string literal. If you don’t want
to bother typing a Unicode character whose codepoint you know, use the notation
\u{...}, where what’s between the curly braces is up to eight hex digits:

let leftTripleArrow = "\u{21DA}"

The backslash in that string representation is the escape character; it means, “I’m not
really a backslash; I indicate that the next character gets special treatment.” Various
nonprintable and ambiguous characters are entered as escaped characters; the most
important are:

\n

A Unix newline character

\t

A tab character

\"

A quotation mark (escaped to show that this is not the end of the string literal)

\\

A backslash (escaped because a lone backslash is the escape character)

Escaped quotation marks and backslashes can quickly make your string literals ugly
and illegible. The issue arises particularly in contexts such as regular expression pat‐
terns. For example, the pattern \b\d\d\b (a word consisting of two digits) must be
written "\\b\\d\\d\\b". But you can omit the escape character before quotes and
backslashes by surrounding your literal with one or more hash characters (#); these
are all identical strings:

92 | Chapter 3: Variables and Simple Types

let pattold = "\\b\\d\\d\\b"
let pattnew = #"\b\d\d\b"# // same thing
let pattnew2 = ##"\b\d\d\b"## // same thing

That’s called a raw string literal. The downside is that if you want to use a backslash
as an escape character in a raw string literal, you must follow it with the same number
of # characters you are using to surround your literal. The string #"hello\nthere"#
does not contain a newline character (\n), but #"hello\#nthere"# does.

A string literal containing newline characters can be entered as multiple lines (rather
than a single-line expression containing \n characters). This is called a multiline
string literal. The rules are:

• The multiline string literal must be delimited by a triple of double quotes (""") at
start and end.

• No material may follow the opening delimiter on the same line.
• No material other than whitespace may appear on the same line as the closing

delimiter.
• The last implicit newline character before the closing delimiter is ignored.
• The indentation of the closing delimiter dictates the indentation of the lines of

text, which must be indented at least as far as the closing delimiter (except for
completely empty lines).

For example:

func f() {
 let s = """
 Line 1
 Line 2
 Line 3
 """
 // ...
}

In that code, the string s consists of three lines of text; lines 1 and 3 start with no
whitespace; line 2 starts with four spaces; and there are two newline characters,
namely after lines 1 and 2. To add a newline after line 3, you could enter a blank line,
or write it as an escaped \n.

Quotation marks do not have to be escaped. A line ending with a backslash is joined
with the following line. In this code, the string s consists of just two lines of text; the
second line consists of four spaces followed by “Line 2 and this is still line 2”:

func f() {
 let s = """
 Line "1"
 Line 2 \

Built-In Simple Types | 93

 and this is still Line 2
 """
 // ...
}

(You can surround a multiline string literal with # characters, making a raw multiline
string literal; but you are unlikely to do so.)

String interpolation permits you to embed any value that can be output with print
inside a string literal as a string, even if it is not itself a string. The notation is escaped
parentheses: \(...):

let n = 5
let s = "You have \(n) widgets."

Now s is the string "You have 5 widgets." The example is not very compelling,
because we know what n is and could have typed 5 directly into our string; but imag‐
ine that we don’t know what n is! Moreover, the stuff in escaped parentheses doesn’t
have to be the name of a variable; it can be almost any expression that evaluates as
legal Swift:

let m = 4
let n = 5
let s = "You have \(m + n) widgets."

String interpolation is legal inside a multiline string literal. It is also legal inside a raw
string literal surrounded with # characters, but then the backslash must be followed
by the same number of # characters, to indicate that it is the escape character.

String interpolation syntax can be customized to accept additional parameters, refin‐
ing how the first parameter should be transformed. Expressions of this form can be
legal:

let s = "You have \(n, roman:true) widgets"

(I’m imagining that if n is 5, this would yield "You have V widgets".) I’ll say more in
Chapter 5 about how that is achieved. New in iOS 14, the Logger class takes advan‐
tage of that kind of syntax (Chapter 9).

To combine (concatenate) two strings, the simplest approach is to use the + operator:

let s = "hello"
let s2 = " world"
let greeting = s + s2

This convenient notation is possible because the + operator is overloaded: it does one
thing when the operands are numbers (numeric addition) and another when the
operands are strings (concatenation). As I’ll explain in Chapter 5, all operators can be
overloaded, and you can overload them to operate in some appropriate way on your
own types.

94 | Chapter 3: Variables and Simple Types

The + operator comes with a += assignment shortcut; naturally, the variable on the
left side must have been declared with var:

var s = "hello"
let s2 = " world"
s += s2

As an alternative to +=, you can call the append(_:) instance method:

var s = "hello"
let s2 = " world"
s.append(s2)

Another way of concatenating strings is with the joined(separator:) method. You
start with an array of strings to be concatenated, and hand it the string that is to be
inserted between all of them:

let s = "hello"
let s2 = "world"
let space = " "
let greeting = [s,s2].joined(separator:space)

The comparison operators are also overloaded so that they work with String
operands. Two String values are equal (==) if they are, in the natural sense, the same
text. A String is less than another if it is alphabetically prior.

Some additional convenient instance methods and properties are provided. isEmpty
returns a Bool reporting whether this string is the empty string (""). hasPrefix(_:)
and hasSuffix(_:) report whether this string starts or ends with another string;
"hello".hasPrefix("he") is true. The uppercased and lowercased methods pro‐
vide uppercase and lowercase versions of the original string.

Coercion between a String and an Int is possible. To make a string that represents an
Int, it is sufficient to use string interpolation; alternatively, use a String initializer tak‐
ing the Int:

let i = 7
let s = String(i) // "7"

Your string can also represent an Int in some other base; in the initializer, supply a
radix: argument expressing the base:

let i = 31
let s = String(i, radix:16) // "1f"

A String that might represent a number can be coerced to a numeric type; an integer
type will accept a radix: argument expressing the base. The coercion might fail,
because the String might not represent a number of the specified type; so the result is
not a number but an Optional wrapping a number (I haven’t talked about Optionals
yet, so you’ll have to trust me for now; failable initializers are discussed in Chapter 4):

Built-In Simple Types | 95

let s = "31"
let i = Int(s) // Optional(31)
let s2 = "1f"
let i2 = Int(s2, radix:16) // Optional(31)

Similarly, you can coerce a Bool to a String, which will be "true" or "false". Going
the other way, you can coerce the string "true" to the Bool true and the string
"false" to the Bool false; again, this is a failable initializer, and any other string will
fail.

The length of a String, in characters, is given by its count property:

let s = "hello"
let length = s.count // 5

This property is called count rather then length because a String doesn’t really have a
simple length. The String comprises a sequence of Unicode codepoints, but multiple
Unicode codepoints can combine to form a single character; so, in order to know
how many characters are represented by such a sequence, we actually have to walk
through the sequence and resolve it into the characters that it represents.

You, too, can walk through a String’s characters. The simplest way is with the
for...in construct (see Chapter 5). What you get when you do this are Character
objects; I’ll talk more about Character objects later:

let s = "hello"
for c in s {
 print(c) // print each Character on its own line
}

At an even deeper level, you can decompose a String into its UTF-8 codepoints or its
UTF-16 codepoints, using the utf8 and utf16 properties:

let s = "\u{BF}Qui\u{E9}n?"
for i in s.utf8 {
 print(i) // 194, 191, 81, 117, 105, 195, 169, 110, 63
}
for i in s.utf16 {
 print(i) // 191, 81, 117, 105, 233, 110, 63
}

There is also a unicodeScalars property representing a collection (a String.Unicode‐
ScalarView) of the String’s UTF-32 codepoints expressed as UnicodeScalar structs.
To illustrate, here’s a utility function that turns a two-letter country abbreviation into
an emoji representation of its flag:

func flag(country:String) -> String {
 let base : UInt32 = 127397
 var s = ""
 for v in country.unicodeScalars {
 s.unicodeScalars.append(UnicodeScalar(base + v.value)!)
 }

96 | Chapter 3: Variables and Simple Types

 return String(s)
}
// and here's how to use it:
let s = flag(country:"DE")

The curious thing is that there aren’t more methods for standard string manipula‐
tion. How do you capitalize a string, or find out whether a string contains a given
substring? Most modern programming languages have a compact, convenient way of
doing things like that; Swift doesn’t. The reason appears to be that missing features
are provided by the Foundation framework, to which you’ll always be linked in real
life (importing UIKit imports Foundation). A Swift String is bridged to a Foundation
NSString. This means that, to a large extent, Foundation NSString properties and
methods magically spring to life whenever you are using a Swift String:

let s = "hello world"
let s2 = s.capitalized // "Hello World"

The capitalized property comes from the Foundation framework; it’s provided by
Cocoa, not by Swift. It’s an NSString property; it appears tacked onto String “for
free.” Similarly, here’s how to locate a substring of a string:

let s = "hello"
let range = s.range(of:"ell") // Optional(Range(...)) [details omitted]

I haven’t explained yet what an Optional is or what a Range is (I’ll talk about them
later in this chapter), but that innocent-looking code has made a remarkable round-
trip from Swift to Cocoa and back again: the Swift String s becomes an NSString, an
NSString method is called, a Foundation NSRange struct is returned, and the
NSRange is converted to a Swift Range and wrapped up in an Optional.

Character and String Index
You are more likely to be interested in a string’s characters than its codepoints. Code‐
points are numbers, but what we naturally think of as characters are effectively mini‐
mal strings: a character is a single “letter” or “symbol” — formally, a grapheme. The
equivalence between numeric codepoints and symbolic graphemes is provided, in
Unicode, by the notion of a grapheme cluster. To embody this equivalence, Swift pro‐
vides the Character object type (a struct), representing a single grapheme cluster.

A String (in Swift 4 and later) simply is a character sequence — quite literally, a
Sequence of the Character objects that constitute it. That is why, as I mentioned ear‐
lier, you can walk through a string with for...in to obtain the String’s Characters,
one by one; when you do that, you’re walking through the string qua character
sequence:

Built-In Simple Types | 97

The String–NSString Element Mismatch
Swift and Cocoa have different ideas of what the elements of a string are. The Swift
conception involves characters. The NSString conception involves UTF-16 code‐
points. Each approach has its advantages. The NSString way makes for great speed
and efficiency in comparison to Swift, which must walk the string to investigate how
the characters are constructed; but the Swift way gives what you would intuitively
think of as the right answer. To emphasize this difference, a nonliteral Swift string has
no length property; its analog to an NSString’s length is its utf16.count.

Fortunately, the element mismatch doesn’t arise very often in practice; but it can
arise. Here’s a good test case:

let s = "Ha\u{030A}kon"
print(s.count) // 5
let length = (s as NSString).length // or: s.utf16.count
print(length) // 6

We’ve created our string (the Norwegian name Ha ̊kon) using a Unicode codepoint
that combines with the previous codepoint to form a character with a ring over it.
Swift walks the whole string, so it normalizes the combination and reports five char‐
acters. Cocoa just sees at a glance that this string contains six 16-bit codepoints.

let s = "hello"
for c in s {
 print(c) // print each Character on its own line
}

It isn’t common to encounter Character objects outside of some character sequence
of which they are a part. There isn’t even a way to write a literal Character. To make a
Character from scratch, initialize it from a single-character String:

let c = Character("h")

Similarly, you can pass a one-character String literal where a Character is expected,
and many examples in this section will do so.

By the same token, you can initialize a String from a Character:

let c = Character("h")
let s = (String(c)).uppercased()

Characters can be compared for equality; “less than” means what you would expect it
to mean.

Formally, a String is both a Sequence of Characters and a Collection of Characters.
Sequence and Collection are protocols; I’ll discuss protocols in Chapter 4, but what’s
important for now is that a String is endowed with methods and properties that it
gets by virtue of being a Sequence and a Collection.

98 | Chapter 3: Variables and Simple Types

A String has a first and last property; the resulting Character is wrapped in an
Optional because the string might be empty:

let s = "hello"
let c1 = s.first // Optional("h")
let c2 = s.last // Optional("o")

The firstIndex(of:) method locates the first occurrence of a given character within
the sequence and returns its index. Again, this is an Optional, because the character
might be absent:

let s = "hello"
let firstL = s.firstIndex(of:"l") // Optional(2)

All Swift indexes are numbered starting with 0, so 2 means the third character. The
index value here, however, is not an Int; I’ll explain in a moment what it is and what
it’s good for.

A related method, firstIndex(where:), takes a function that takes a Character and
returns a Bool. This code locates the first character smaller than "f":

let s = "hello"
let firstSmall = s.firstIndex {$0 < "f"} // Optional(1)

Those methods are matched by lastIndex(of:) and lastIndex(where:).

A String has a contains(_:) method that returns a Bool, reporting whether a certain
character is present:

let s = "hello"
let ok = s.contains("o") // true

Alternatively, contains(_:) can take a function that takes a Character and returns a
Bool. This code reports whether the target string contains a vowel:

let s = "hello"
let ok = s.contains {"aeiou".contains($0)} // true

The filter(_:) method, too, takes a function that takes a Character and returns a
Bool, effectively eliminating those characters for which false is returned. Here, we
delete all consonants from a string:

let s = "hello"
let s2 = s.filter {"aeiou".contains($0)} // "eo"

The dropFirst and dropLast methods return, in effect, a new string without the first
or last character, respectively:

let s = "hello"
let s2 = s.dropFirst() // "ello"

I say “in effect” because a method that extracts a substring returns, in reality, a Sub‐
string instance. The Substring struct is an efficient way of pointing at part of some

Built-In Simple Types | 99

original String, rather than having to generate a new String. When we call s.drop-
First() on the string "hello", the resulting Substring points at the "ello" part of
"hello", which continues to exist; there is still only one string, and no new string
storage memory is required.

In general, the difference between a String and a Substring will make little practical
difference to you, because what you can do with a String, you can usually do also with
a Substring. Nevertheless, they are different classes; this code won’t compile:

var s = "hello"
let s2 = s.dropFirst()
s = s2 // compile error

To pass a Substring where a String is expected, coerce the Substring to a String
explicitly:

var s = "hello"
let s2 = s.dropFirst()
s = String(s2)

You can coerce the other way, too, from a String to a Substring.

prefix(_:) and suffix(_:) extract a Substring of a given length from the start or
end of the original string:

var s = "hello"
s = String(s.prefix(4)) // "hell"

split(_:) breaks a string up into an array, according to a function that takes a Char‐
acter and returns a Bool. In this example, I obtain the words of a String, where a
“word” is simplemindedly defined as a run of Characters other than a space:

let s = "hello world"
let arr = s.split {$0 == " "} // ["hello", "world"]

The result is actually an array of Substrings. If we needed to get String objects, we
could apply the map(_:) function and coerce them all to Strings. I’ll talk about
map(_:) in Chapter 4, so you’ll have to trust me for now:

let s = "hello world"
let arr = s.split {$0 == " "}.map {String($0)} // ["hello", "world"]

A String, qua character sequence, can also be manipulated similarly to an array. For
example, you can use subscripting to obtain the character at a certain position.
Unfortunately, this isn’t as easy as it might be. What’s the second character of
"hello"? This doesn’t compile:

let s = "hello"
let c = s[1] // compile error

The reason is that the indexes on a String are not Int values, but rather a nested type,
String.Index (actually a type alias for String.CharacterView.Index). To make an

100 | Chapter 3: Variables and Simple Types

object of this type is rather tricky. Start with a String’s startIndex or endIndex, or
with the return value from firstIndex or lastIndex; you can then call the
index(_:offsetBy:) method to derive the index you want:

let s = "hello"
let ix = s.startIndex
let ix2 = s.index(ix, offsetBy:1)
let c = s[ix2] // "e"

The reason for this clumsy circumlocution is that Swift doesn’t know where the char‐
acters of a character sequence are until it actually walks the sequence; calling
index(_:offsetBy:) is how you make Swift do that.

To offset an index by a single position, you can obtain the next or preceding index
value with the index(after:) and index(before:) methods. I could have written
the preceding example like this:

let s = "hello"
let ix = s.startIndex
let c = s[s.index(after:ix)] // "e"

Another reason why it’s necessary to think of a string index as an offset from the
startIndex or endIndex is that those values may not be what you think they are — in
particular, when you’re dealing with a Substring. Consider, once again, the following:

let s = "hello"
let s2 = s.dropFirst()

Now s2 is "ello". What, then, is s2.startIndex (as an Int)? Not 0, but 1 — because
s2 is a Substring pointing into the original "hello", where the index of the "e" is 1.
Similarly, s2.firstIndex(of:"o") is not 3, but 4, because the index value is reck‐
oned with respect to the original "hello".

Once you’ve obtained a desired character index value, you can use it to modify the
String. The insert(contentsOf:at:) method inserts a string into a string:

var s = "hello"
let ix = s.index(s.startIndex, offsetBy:1)
s.insertContentsOf("ey, h", at: ix) // s is now "hey, hello"

Similarly, remove(at:) deletes a single character, and also returns that character.
(Manipulations involving longer character stretches require use of a Range, which is
the subject of the next section.)

On the other hand, a character sequence can be coerced directly to an Array of Char‐
acter objects — Array("hello") creates an array of the characters "h", "e", and so on
— and array indexes are Ints and are easy to work with. Once you’ve manipulated the
array of Characters, you can coerce it directly to a String. I’ll give an example in the
next section (and I’ll discuss arrays, and say more about collections and sequences, in
Chapter 4).

Built-In Simple Types | 101

Range
The Range object type (a struct) represents a pair of endpoints. There are two opera‐
tors for forming a Range literal; you supply a start value and an end value, with one of
the Range operators between them:

... (closed range operator)
The notation a...b means “everything from a up to b, including b.”

..< (half-open range operator)
The notation a..<b means “everything from a up to but not including b.”

Spaces around a Range operator are legal.

The types of a Range’s endpoints will typically be some kind of number — most
often, Ints:

let r = 1...3

If the end value is a negative literal, it has to be enclosed in parentheses or preceded
by whitespace:

let r = -1000 ... -1

A very common use of a Range is to loop through numbers with for...in:

for ix in 1...3 {
 print(ix) // 1, then 2, then 3
}

There are no reverse Ranges: the start value of a Range can’t be greater than the end
value (the compiler won’t stop you, but you’ll crash at runtime). In practice, you can
use Range’s reversed() method to iterate from a higher value to a lower one:

for ix in (1...3).reversed() {
 print(ix) // 3, then 2, then 1
}

In Chapter 5 I’ll show how to create a custom operator that effectively generates a
reverse Range.

You can also use a Range’s contains(_:) instance method to test whether a value
falls within given limits:

let ix = // ... an Int ...
if (1...3).contains(ix) { // ...

For purposes of testing containment, a Range’s endpoints can be Doubles:

let d = // ... a Double ...
if (0.1...0.9).contains(d) { // ...

102 | Chapter 3: Variables and Simple Types

There are also methods for learning whether two ranges overlap, and for clamping
one range to another.

Another common use of a Range is to index into a sequence. Here’s one way to get
the second, third, and fourth characters of a String. As I suggested at the end of the
preceding section, if we coerce the String to an Array of Character, we can then use
an Int Range as an index into that array, and coerce back to a String:

let s = "hello"
let arr = Array(s)
let result = arr[1...3]
let s2 = String(result) // "ell"

A String is itself a sequence — a character sequence — so you can use a Range to
index directly into a String; but then it has to be a Range of String.Index, which, as
I’ve already pointed out, is rather tricky to obtain. By manipulating String.Index val‐
ues, you can form a Range of the proper type and use it to extract a substring by
subscripting:

let s = "hello"
let ix1 = s.index(s.startIndex, offsetBy:1)
let ix2 = s.index(ix1, offsetBy:2)
let s2 = s[ix1...ix2] // "ell"

The replaceSubrange(_:with:) method splices into a range, modifying the string:

var s = "hello"
let ix = s.startIndex
let r = s.index(ix, offsetBy:1)...s.index(ix, offsetBy:3)
s.replaceSubrange(r, with: "ipp") // s is now "hippo"

Similarly, you can delete a stretch of characters with the removeSubrange(_:)
method:

var s = "hello"
let ix = s.startIndex
let r = s.index(ix, offsetBy:1)...s.index(ix, offsetBy:3)
s.removeSubrange(r) // s is now "ho"

It is possible to omit one of the endpoints from a Range literal, specifying a partial
range. There are three kinds of partial range expression, corresponding to three types
of Range-like struct. To illustrate, the following expressions are identical ways of
specifying the range of an entire String s:

let range1 = s.startIndex..<s.endIndex // Range
let range2 = ..<s.endIndex // PartialRangeUpTo
let range3 = ...s.index(before: s.endIndex) // PartialRangeUpThrough
let range4 = s.startIndex... // PartialRangeFrom

If you need to convert a partial range to a range, call relative(to:). In the preceding
code, range1 and range2.relative(to:s) are identical. But in general you won’t

Built-In Simple Types | 103

need to do that, because a partial range literal can be used wherever you would use a
range literal. For instance, a partial range is a legal String subscript value:

let s = "hello"
let ix2 = s.index(before: s.endIndex)
let s2 = s[..<ix2] // "hell"

I’ll show further practical examples later on.

Tuple
A tuple is a lightweight custom ordered collection of multiple values. As a type, it is
expressed by surrounding the types of the contained values with parentheses, separa‐
ted by a comma. Here’s a declaration for a variable whose type is a tuple of an Int and
a String:

var pair : (Int, String)

The literal value of a tuple is expressed in the same way — the contained values, sur‐
rounded with parentheses and separated by a comma:

var pair : (Int, String) = (1, "Two")

Those types can be inferred, so there’s no need for the explicit type in the declaration:

var pair = (1, "Two")

Tuples are a pure Swift language feature; they are not compatible with Cocoa and
Objective-C, so you’ll use them only for values that Cocoa never sees. Within Swift,
however, they have many uses. For example, a tuple is an obvious solution to the
problem that a function can return only one value; a tuple is one value, but it contains
multiple values, so using a tuple as the return type of a function permits that function
to return multiple values.

Tuples come with numerous linguistic conveniences. You can assign to a tuple of
variable names as a way of assigning to multiple variables simultaneously:

let ix: Int
let s: String
(ix, s) = (1, "Two")

That’s such a convenient thing to do that Swift lets you do it in one line, declaring
and initializing multiple variables simultaneously:

let (ix, s) = (1, "Two")

To ignore one of the assigned values, use an underscore to represent it in the receiv‐
ing tuple:

let pair = (1, "Two")
let (_, s) = pair // now s is "Two"

Assigning variable values to one another through a tuple swaps them safely:

104 | Chapter 3: Variables and Simple Types

var s1 = "hello"
var s2 = "world"
(s1, s2) = (s2, s1) // now s1 is "world" and s2 is "hello"

The enumerated method lets you walk a sequence with for...in and receive, on each
iteration, each successive element’s index number along with the element itself; this
double result comes to you as — you guessed it — a tuple:

let s = "hello"
for (ix,c) in s.enumerated() {
 print("character \(ix) is \(c)")
}

I also pointed out earlier that numeric instance methods such as addingReporting-
Overflow return a tuple.

You can refer to the individual elements of a tuple directly, in two ways. The first way
is by index number, using a literal number (not a variable value) as the name of a
message sent to the tuple with dot-notation:

let pair = (1, "Two")
let ix = pair.0 // now ix is 1

If you have a var reference to a tuple, you can assign into it by the same means:

var pair = (1, "Two")
pair.0 = 2 // now pair is (2, "Two")

The second way to access tuple elements is to give them labels. The notation is like
that of function parameters, and must appear as part of the explicit or implicit type
declaration. Here’s one way to establish tuple element labels:

let pair : (first:Int, second:String) = (1, "Two")

And here’s another way:

let pair = (first:1, second:"Two")

The labels are now part of the type of this value, and travel with it through subse‐
quent assignments. You can then use them as literal messages, just like (and together
with) the numeric literals:

var pair = (first:1, second:"Two")
let x = pair.first // 1
pair.first = 2
let y = pair.0 // 2

The tuple generated by the enumerated method has labels offset and element, so we
can rewrite an earlier example like this:

let s = "hello"
for t in s.enumerated() {
 print("character \(t.offset) is \(t.element)")
}

Built-In Simple Types | 105

You can assign from a tuple without labels into a corresponding tuple with labels
(and vice versa):

let pair = (1, "Two")
let pairWithNames : (first:Int, second:String) = pair
let ix = pairWithNames.first // 1

You can also pass, or return from a function, a tuple without labels where a corre‐
sponding tuple with labels is expected:

func tupleMaker() -> (first:Int, second:String) {
 return (1, "Two") // no labels here
}
let ix = tupleMaker().first // 1

If you’re going to be using a certain type of tuple consistently throughout your pro‐
gram, it might be useful to give it a type name. To do so, define a type alias. In my
LinkSame app, I have a Board class describing and manipulating the game layout.
The board is a grid of Piece objects. I need a way to describe positions of the grid.
That’s a pair of integers, so I define my own type as a tuple:

class Board {
 typealias Point = (x:Int, y:Int)
 // ...
}

The advantage of that notation is that it now becomes easy to use Points throughout
my code. Given a Point, I can fetch the corresponding Piece:

func piece(at p:Point) -> Piece? {
 let (i,j) = p
 // ... error-checking goes here ...
 return self.grid[i][j]
}

Still, one should not overuse tuples. In a very real sense, they are not a full-fledged
type. Keep your tuples small, light, and temporary.

Void, the type of value returned by a function that doesn’t return a value, is
actually a type alias for an empty tuple. That’s why it is also notated as ().

Optional
The Optional object type (an enum) wraps another object of any type. What makes
an Optional optional is this: it might wrap another object, but then again it might not.
Think of an Optional as being itself a kind of shoebox — a shoebox which can quite
legally be empty.

106 | Chapter 3: Variables and Simple Types

Let’s start by creating an Optional that does wrap an object. Suppose we want an
Optional wrapping the String "howdy". One way to create it is with the Optional
initializer:

var stringMaybe = Optional("howdy")

If we log stringMaybe to the console with print, we’ll see an expression identical to
the corresponding initializer: Optional("howdy").

After that declaration and initialization, stringMaybe is typed, not as a String, nor as
an Optional plain and simple, but as an Optional wrapping a String. This means that
any other Optional wrapping a String can be assigned to it — but not an Optional
wrapping some other type. This code is legal:

var stringMaybe = Optional("howdy")
stringMaybe = Optional("farewell")

This code, however, is not legal:

var stringMaybe = Optional("howdy")
stringMaybe = Optional(123) // compile error

Optional(123) is an Optional wrapping an Int, and you can’t assign an Optional
wrapping an Int where an Optional wrapping a String is expected.

Optionals are so important to Swift that special syntax for working with them is
baked into the language. The usual way to make an Optional is not to use the
Optional initializer (though you can certainly do that), but to assign or pass a value of
some type to a reference that is already typed as an Optional wrapping that type. This
seems as if it should not be legal — but it is. Once stringMaybe is typed as an
Optional wrapping a String, it is legal to assign a String directly to it. The outcome is
that the assigned String is wrapped in an Optional for us, automatically:

var stringMaybe = Optional("howdy")
stringMaybe = "farewell" // now stringMaybe is Optional("farewell")

We also need a way of typing something explicitly as an Optional wrapping a String.
Otherwise, we cannot declare a variable or parameter with an Optional type. For‐
mally, an Optional is a generic, so an Optional wrapping a String is an
Optional<String>. (I’ll explain that syntax in Chapter 4.) However, you don’t have
to write that. The Swift language supports syntactic sugar for expressing an Optional
type: use the name of the wrapped type followed by a question mark:

var stringMaybe : String?

Thus I don’t need to use the Optional initializer at all. I can type the variable as an
Optional wrapping a String and assign a String into it for wrapping, all in one move:

var stringMaybe : String? = "howdy"

That, in fact, is the normal way to make an Optional in Swift.

Built-In Simple Types | 107

Once you’ve got an Optional wrapping a particular type, you can use it wherever an
Optional wrapping that type is expected — just like any other value. If a function
expects an Optional wrapping a String as its parameter, you can pass stringMaybe as
the argument:

func optionalExpecter(_ s:String?) {}
let stringMaybe : String? = "howdy"
optionalExpecter(stringMaybe)

Moreover, where an Optional wrapping a certain type of value is expected, you can
pass a value of that wrapped type instead. That’s because parameter passing is just
like assignment: an unwrapped value will be wrapped implicitly for you. If a function
expects an Optional wrapping a String, you can pass a String argument, which will be
wrapped into an Optional in the received parameter:

func optionalExpecter(_ s:String?) {
 // ... here, s will be an Optional wrapping a String ...
 print(s)
}
optionalExpecter("howdy") // console prints: Optional("howdy")

But you cannot do the opposite — you cannot use an Optional wrapping a type
where the wrapped type is expected. This won’t compile:

func realStringExpecter(_ s:String) {}
let stringMaybe : String? = "howdy"
realStringExpecter(stringMaybe) // compile error

The error message reads: “Value of Optional type String? must be unwrapped.”
You’re going to be seeing that sort of message a lot in Swift, so get used to it! If you
want to use an Optional where the type of thing it wraps is expected, you must
unwrap the Optional — that is, you must reach inside it and retrieve the actual thing
that it wraps. Now I’m going to talk about how to do that.

Unwrapping an Optional
We have seen more than one way to wrap an object in an Optional. But what about
the opposite procedure? How do we unwrap an Optional to get at the object wrapped
inside it? One way is to use the unwrap operator (or forced unwrap operator), which is
a postfixed exclamation mark:

func realStringExpecter(_ s:String) {}
let stringMaybe : String? = "howdy"
realStringExpecter(stringMaybe!)

In that code, the stringMaybe! syntax expresses the operation of reaching inside the
Optional stringMaybe, grabbing the wrapped value, and substituting it at that point.
Since stringMaybe is an Optional wrapping a String, the thing inside it is a String.
That is exactly what the realStringExpecter function wants as its parameter!

108 | Chapter 3: Variables and Simple Types

stringMaybe is an Optional wrapping the String "howdy", but stringMaybe! is the
String "howdy".

If an Optional wraps a certain type, you cannot send it a message expected by that
type. You must unwrap it first. Let’s try to get an uppercase version of stringMaybe:

let stringMaybe : String? = "howdy"
let upper = stringMaybe.uppercased() // compile error

The solution is to unwrap stringMaybe to get at the String inside it. We can do this
directly, in place, using the unwrap operator:

let stringMaybe : String? = "howdy"
let upper = stringMaybe!.uppercased()

If an Optional is to be used several times where the unwrapped type is expected, and
if you’re going to be unwrapping it with the unwrap operator each time, your code
can quickly start to look like the dialog from a 1960s Batman comic. For example, an
app’s window is an Optional UIWindow property (self.window):

// self.window is an Optional wrapping a UIWindow
self.window!.rootViewController = RootViewController()
self.window!.backgroundColor = UIColor.white
self.window!.makeKeyAndVisible()

That sort of thing soon gets old (or silly). One obvious alternative is to assign the
unwrapped value once to a variable of the wrapped type and then use that variable:

// self.window is an Optional wrapping a UIWindow
let window = self.window!
// now window (not self.window) is a UIWindow, not an Optional
window.rootViewController = RootViewController()
window.backgroundColor = UIColor.white
window.makeKeyAndVisible()

Implicitly unwrapped Optional
Swift provides another way of using an Optional where the wrapped type is expected:
you can declare the Optional type as being implicitly unwrapped. An implicitly
unwrapped Optional is an Optional, but the compiler permits some special magic
associated with it: its value can be used directly where the wrapped type is expected.
You can unwrap an implicitly unwrapped Optional explicitly, but you don’t have to,
because it will be unwrapped for you, automatically, if you try to use it where the
wrapped type is expected. Moreover, Swift provides syntactic sugar for expressing an
implicitly unwrapped Optional type: use the name of the wrapped type followed by
an exclamation mark:

func realStringExpecter(_ s:String) {}
var stringMaybe : String! = "howdy"
realStringExpecter(stringMaybe) // no problem

Built-In Simple Types | 109

Bear in mind that an implicitly unwrapped Optional is still an Optional. It’s just a
convenience. By declaring something as an implicitly unwrapped Optional, you are
asking the compiler, if you happen to use this value where the wrapped type is
expected, to forgive you and to unwrap the value for you.

In reality, an implicitly unwrapped Optional type is not really a distinct type; it is
merely an Optional marked in a special way that allows it to be used where the
unwrapped type is expected. For this reason, implicit unwrapping does not propagate
by assignment. Here’s a case in point. If self is a UIViewController, then self.view
is typed as UIView!. As a result, this expression is legal (assume v is a UIView):

self.view.addSubview(v)

But this is not legal:

let mainview = self.view
mainview.addSubview(v) // compile error

The problem is that, although self.view is an implicitly unwrapped Optional wrap‐
ping a UIView, mainview is a normal Optional wrapping a UIView, and so it would
have to be unwrapped explicitly before you could send it the addSubview message.
Alternatively, you could unwrap the implicitly unwrapped Optional explicitly at the
outset:

let mainview = self.view!
mainview.addSubview(v)

In real life, the primary situation in which you’re likely to declare an implicitly
unwrapped Optional is when an instance property’s initial value can’t be provided
until after the instance itself is created. I’ll give some examples at the end of this
chapter.

The keyword nil
I have talked so far about Optionals that contain a wrapped value. But what about an
Optional that doesn’t contain any wrapped value? Such an Optional is, as I’ve already
said, a perfectly legal entity; that, indeed, is the whole point of Optionals.

You are going to need a way to ask whether an Optional contains a wrapped value,
and a way to specify an Optional without a wrapped value. Swift makes both of those
things easy, through the use of a special keyword, nil:

To learn whether an Optional contains a wrapped value
Test the Optional for equality against nil. If the test succeeds, the Optional is
empty. An empty Optional is also reported in the console as nil.

To specify an Optional with no wrapped value
Assign or pass nil where the Optional type is expected. The result is an Optional
of the expected type, containing no wrapped value.

110 | Chapter 3: Variables and Simple Types

To illustrate:

var stringMaybe : String? = "Howdy"
print(stringMaybe) // Optional("Howdy")
if stringMaybe == nil {
 print("it is empty") // does not print
}
stringMaybe = nil
print(stringMaybe) // nil
if stringMaybe == nil {
 print("it is empty") // prints
}

The keyword nil lets you express the concept, “an Optional wrapping the appropri‐
ate type, but not actually containing any object of that type.” Clearly, that’s very con‐
venient magic; you’ll want to take advantage of it. It is very important to understand,
however, that it is magic: nil in Swift is not a thing and is not a value. It is a short‐
hand. It is natural to think and speak as if this shorthand were real. I will often say
that something “is nil.” But in reality, nothing “is nil”; nil isn’t a thing. What I
really mean is that this thing is equatable with nil, because it is an Optional not
wrapping anything. (I’ll explain in Chapter 4 how nil, and Optionals in general,
really work.)

Because a variable typed as an Optional can be nil, Swift follows a special initializa‐
tion rule: a variable (var) typed as an Optional is nil, automatically:

func optionalExpecter(_ s:String?) {}
var stringMaybe : String?
optionalExpecter(stringMaybe)

That code looks as if it should be illegal. We declared a variable stringMaybe, but we
never assigned it a value. Nevertheless we are now passing it around as if it were an
actual thing. That’s because it is an actual thing. This variable has been implicitly ini‐
tialized — to nil. A variable (var) typed as an Optional is the only sort of variable
that gets implicit initialization in Swift.

We come now to perhaps the most important rule in all of Swift: You cannot unwrap
an Optional containing nothing (an Optional equatable with nil). Such an Optional
contains nothing; there’s nothing to unwrap. Like Oakland, there’s no there there. In
fact, explicitly unwrapping an Optional containing nothing will crash your program
at runtime:

var stringMaybe : String?
let s = stringMaybe! // crash

The crash message reads: “Fatal error: unexpectedly found nil while unwrapping an
Optional value.” Get used to it, because you’re going to be seeing it a lot. This is an
easy mistake to make. Unwrapping an Optional that contains no value is, in fact,
probably the most common way to crash a Swift program. You should look upon this

Built-In Simple Types | 111

kind of crash as a blessing. Very often, in fact, you will want to crash if your Optional
contains no value, because it should contain a value, and the fact that it doesn’t indi‐
cates that you’ve made a mistake elsewhere.

In the long run, however, crashing is bad. To eliminate this kind of crash, you need to
ensure that your Optional contains a value, and don’t unwrap it if it doesn’t! Ensuring
that an Optional contains a value before attempting to unwrap it is clearly a very
important thing to do. Accordingly, Swift provides several convenient ways of doing
it. I’ll describe some of them now, and I’ll discuss others in Chapter 5.

One obvious approach is to test your Optional against nil explicitly before you
unwrap it:

var stringMaybe : String?
// ... stringMaybe might be assigned a real value here ...
if stringMaybe != nil {
 let s = stringMaybe!
 // ...
}

But there’s a more elegant way, as I shall now explain.

Optional chains
A common situation is that you want to send a message to the value wrapped inside
an Optional. You cannot send such a message to the Optional itself. If you try to do
so, you will get an error message from the compiler:

let stringMaybe : String? = "howdy"
let upper = stringMaybe.uppercased() // compile error

You must unwrap the Optional first, so that you can send that message to the actual
thing wrapped inside. Conveniently, you can unwrap the Optional in place. I gave an
example earlier:

let stringMaybe : String? = "howdy"
let upper = stringMaybe!.uppercased()

That form of code is called an Optional chain. In the middle of a chain of dot-
notation, you have unwrapped an Optional.

However, if you unwrap an Optional that contains no wrapped object, you’ll crash.
So what if you’re not sure whether this Optional contains a wrapped object? How can
you send a message to the value inside an Optional in that situation?

Swift provides a special shorthand for exactly this purpose. To send a message safely
to the value wrapped inside an Optional that might be empty, you can unwrap the
Optional optionally. To do so, unwrap the Optional with the question mark postfix
operator instead of the exclamation mark:

112 | Chapter 3: Variables and Simple Types

var stringMaybe : String?
// ... stringMaybe might be assigned a real value here ...
let upper = stringMaybe?.uppercased()

That’s an Optional chain in which you used a question mark to unwrap the Optional.
By using that notation, you have unwrapped the Optional optionally — meaning
conditionally. The condition in question is one of safety; a test for nil is performed
for us. Our code means: “If stringMaybe contains a String, unwrap it and send that
String the uppercased message. If it doesn’t (that is, if it equates to nil), do not
unwrap it and do not send it any messages!”

Such code is a double-edged sword. On the one hand, if stringMaybe is nil, you
won’t crash at runtime. On the other hand, if stringMaybe is nil, that line of code
won’t do anything useful — you won’t get any uppercase string.

But now there’s a new question. In that code, we initialized a variable upper to an
expression that involves sending the uppercased message. Now it turns out that the
uppercased message might not even be sent. So what, exactly, is upper initialized to?

To handle this situation, Swift has a special rule. If an Optional chain contains an
optionally unwrapped Optional, and if this Optional chain produces a value, that
value is itself wrapped in an Optional. Thus, upper is typed as an Optional wrapping a
String. This works brilliantly, because it covers both possible cases. Let’s say, first,
that stringMaybe contains a String:

var stringMaybe : String?
stringMaybe = "howdy"
let upper = stringMaybe?.uppercased()

After that code, upper is not a String; it is not "HOWDY". It is an Optional wrapping
"HOWDY".

On the other hand, if the attempt to unwrap the Optional fails, the Optional chain
can return nil instead:

var stringMaybe : String?
let upper = stringMaybe?.uppercased()

After that code, upper is typed as an Optional wrapping a String, but it wraps no
string; its value is nil.

Unwrapping an Optional optionally in this way is elegant and safe; even if string-
Maybe is nil, we won’t crash at runtime. On the other hand, we’ve ended up with yet
another Optional on our hands! upper is typed as an Optional wrapping a String, and
in order to use that String, we’re going to have to unwrap upper. And we don’t know
whether upper is nil, so we have exactly the same problem we had before — we need
to make sure that we unwrap upper safely, and that we don’t accidentally unwrap an
empty Optional.

Built-In Simple Types | 113

Longer Optional chains are legal. No matter how many Optionals are unwrapped in
the course of the chain, if any of them is unwrapped optionally, the entire expression
produces an Optional wrapping the type it would have produced if the Optionals
were unwrapped normally, and is free to fail safely at any point along the way:

// self is a UIViewController
let f = self.view?.window?.rootViewController?.view?.frame

The frame property of a view is a CGRect. But after that code, f is not a CGRect. It’s
an Optional wrapping a CGRect. If any of the optional unwrapping along the chain
fails (because the Optional we propose to unwrap is nil), f will be nil to indicate
failure.

(Observe that the preceding code does not end up nesting Optionals; it doesn’t pro‐
duce a CGRect wrapped in an Optional wrapped in an Optional, and so on, merely
because there are multiple Optionals being optionally unwrapped in the chain! How‐
ever, it is possible, for other reasons, to end up with an Optional wrapped in an
Optional, and I’ll call out some examples as we proceed.)

If a function call returns an Optional, you can unwrap the result and use it. You don’t
necessarily have to capture the result in order to do that; you can unwrap it in place,
by putting an exclamation mark or a question mark after the function call (that is,
after the closing parenthesis). That’s really no different from what we’ve been doing
all along, except that instead of an Optional property or variable, this is a function
call that returns an Optional:

class Dog {
 var noise : String?
 func speak() -> String? {
 return self.noise
 }
}
let d = Dog()
let bigname = d.speak()?.uppercased()

After that, don’t forget, bigname is not a String — it’s an Optional wrapping a String.

You can also assign safely into an Optional chain. If any of the optionally unwrapped
Optionals in the chain turns out to be nil, nothing happens:

// self is a UIViewController
self.navigationController?.hidesBarsOnTap = true

A view controller might or might not have a navigation controller, so its navigation-
Controller property is an Optional. In that code, we are setting our navigation con‐
troller’s hidesBarsOnTap property safely; if we happen to have no navigation
controller, no harm is done — because nothing happens.

114 | Chapter 3: Variables and Simple Types

When assigning into an Optional chain, if you also want to know whether the assign‐
ment succeeded, you can capture the result of the assignment as an Optional wrap‐
ping a Void and test it for nil:

let ok : Void? = self.navigationController?.hidesBarsOnTap = true

Now, if ok is not nil, self.navigationController was safely unwrapped and the
assignment succeeded.

The ! and ? postfix operators, which are used to unwrap an Optional, have basi‐
cally nothing to do with the ! and ? used with type names as syntactic sugar for
expressing Optional types (such as String? and `String!). The outward simi‐
larity has confused many a beginner.

Optional map and flatMap
When you want to do something to an Optional’s wrapped value more elaborate than
sending it a simple message, such as calling uppercased(), while keeping the advan‐
tages of Optional chaining, Swift provides a method that elegantly and safely permits
you to do so: map(_:). This is a method of Optional itself, so it’s fine to send it to an
Optional. The parameter is a function that you supply (usually an anonymous func‐
tion) that takes whatever type is wrapped in the Optional; the unwrapped value is
passed to this function, and now you can manipulate it in any desired manner. The
result of the function is then wrapped as an Optional. If the original Optional was
nil, the whole thing produces nil, safely:

let s : String? = "howdy"
let s2 = s.map {($0 + ", world").uppercased()}

In that example, we start with an Optional wrapping a String; we append a string to
the string, and uppercase the result. You can’t apply the + operator to an Optional
string, but inside the map function, the string is not Optional. Afterward, s2 is an
Optional wrapping a String. If s had turned out to be nil, there would be no crash,
and s2 would be set to nil as well.

The output Optional type doesn’t have to be the same as the input Optional type. To
illustrate, I’ll use a closely related Optional method, flatMap(_:). Here’s an elegant
way to coerce an Optional String to an (Optional) Int:

let s : String? = // whatever
let i = s.flatMap {Int($0)}

In that code, we attempt to unwrap an Optional String and coerce it to an Int. The
result is an Optional Int, which will be nil if s is nil, or if s isn’t nil but the coercion
fails because the string wrapped by s doesn’t represent an integer.

That example also illustrates the difference between map and flatMap. If the map
function itself produces an Optional — as coercing a String to an Int does — flatMap

Built-In Simple Types | 115

unwraps it before wrapping the result in an Optional. map doesn’t do that, so if we
had used map here, we would have ended up with a double-wrapped Optional (an
Int??).

Comparison with Optional

In an equality comparison with something other than nil, an Optional gets special
treatment: the wrapped value, not the Optional itself, is compared. This works:

let s : String? = "Howdy"
if s == "Howdy" { // ... they _are_ equal!

That shouldn’t work — how can an Optional be the same as a String? — but it does.
Instead of comparing the Optional itself with "Howdy", Swift automagically (and
safely) compares its wrapped value (if there is one) with "Howdy". If the wrapped
value is "Howdy", the comparison succeeds. If the wrapped value is not "Howdy", the
comparison fails. If there is no wrapped value (s is nil), the comparison fails too —
safely! You can compare s to nil or to a String, and the comparison works correctly
in all cases.

(This feature depends upon the wrapped type itself being usable with ==. This means
that the wrapped type must adopt the Equatable protocol; otherwise, the compiler
will stop you from using == with an Optional wrapping it. I’ll talk about protocols
and Equatable in Chapters 4 and 5.)

Direct comparison of Optionals does not work for an inequality comparison, using
the greater-than and less-than operators:

let i : Int? = 2
if i < 3 { // compile error

To perform that sort of comparison, you can unwrap safely and perform the compar‐
ison directly on the unwrapped value:

if i != nil && i! < 3 { // ... it _is_ less

Do not compare an implicitly unwrapped Optional with anything; you can crash
at runtime.

Why Optionals?
Now that you know how to use an Optional, you are probably wondering why to use
an Optional. Why does Swift have Optionals at all? What are they good for?

One important use of Optionals is to permit a value to be marked as empty or errone‐
ous. Many built-in Swift functions use an Optional this way:

116 | Chapter 3: Variables and Simple Types

let arr = [1,2,3]
let ix = arr.firstIndex(of:4)
if ix == nil { // ...

Swift’s firstIndex(of:) method returns an Optional because the object sought
might not be present, in which case it has no index. The type returned cannot be an
Int, because there is no Int value that can be taken to mean, “I didn’t find this object
at all.” Returning an Optional solves the problem neatly: nil means “I didn’t find the
object,” and otherwise the actual Int result is sitting there wrapped up in the
Optional.

Another purpose of Optionals is to provide interchange of object values with
Objective-C. In Objective-C, any object reference can be nil. You need a way to send
nil to Objective-C and to receive nil from Objective-C. Swift Optionals provide
your only way to do that.

Swift will typically assist you by a judicious use of appropriate types in the Cocoa
APIs. Consider a UIView’s backgroundColor property. It’s a UIColor, but it can be
nil, and you are allowed to set it to nil. Thus, it is typed as UIColor?. You don’t
need to work directly with Optionals in order to set such a value! Remember, assign‐
ing the wrapped type to an Optional is legal, as the assigned value will be wrapped for
you. You can set myView.backgroundColor to a UIColor — or to nil. If you get a
UIView’s backgroundColor, you now have an Optional wrapping a UIColor, and you
must be conscious of that fact, for all the reasons I’ve already discussed: if you’re not,
surprising things can happen:

let v = UIView()
let c = v.backgroundColor
let c2 = c.withAlphaComponent(0.5) // compile error

You’re trying to send the withAlphaComponent message to c, as if it were a UIColor.
It isn’t a UIColor. It’s an Optional wrapping a UIColor. Xcode will try to help you in
this situation; if you use code completion (Chapter 9) to enter the name of the with-
AlphaComponent method, Xcode will insert a question mark after c, (optionally)
unwrapping the Optional and giving you legal code:

let v = UIView()
let c = v.backgroundColor
let c2 = c?.withAlphaComponent(0.5)

In the vast majority of situations, however, a Cocoa object type will not be marked as
an Optional. That’s because, although in theory it could be nil (because any
Objective-C object reference can be nil), in practice it won’t be. Swift saves you a
step by treating the value as the object type itself. This magic is performed by hand-
tweaking the Cocoa APIs (also called auditing). In the very first public version of
Swift (in June of 2014), all object values received from Cocoa were typed as Optionals
(usually implicitly unwrapped Optionals); but then Apple embarked on the massive

Built-In Simple Types | 117

project of hand-tweaking the APIs to eliminate Optionals that didn’t need to be
Optionals, and that project is now essentially complete.

Finally, an important use of Optionals is to defer initialization of an instance prop‐
erty. If a variable (declared with var) is typed as an Optional, it has a value even if
you don’t initialize it — namely nil. That comes in very handy in situations where
you know something will have a value, but not right away.

One way this can happen is that a property represents data that will take time to
acquire. In my Albumen app, as we launch, I create an instance of my root view con‐
troller. I also want to gather a bunch of data about the user’s music library and store
that data in instance properties of the root view controller instance. But gathering
that data will take time. Therefore I must instantiate the root view controller first and
gather the data later, because if we pause to gather the data before instantiating the
root view controller, the app will take too long to launch — the delay will be percepti‐
ble, and we might even crash (because iOS forbids long launch times). Therefore the
data properties are all typed as Optionals; they are nil until the data are gathered, at
which time they are assigned their “real” values:

class RootViewController : UITableViewController {
 var albums : [MPMediaItemCollection]? // initialized to nil
 // ...
}

This approach has a second advantage: as with firstIndex, the initial nil value of
albums is a signal to the rest of my code that we don’t yet have a real value. When my
Albumen app launches, it displays a table listing all the user’s music albums. At
launch time, however, that data has not yet been gathered. My table-display code
tests albums to see whether it’s nil and, if it is, displays an empty table. After gather‐
ing the data, I tell my table to display its data again. This time, the table-display code
finds that albums is not nil, but rather consists of actual data — and it now displays
that data. The use of an Optional allows one and the same value, albums, to store the
data or to state that there is no data.

Sometimes, a property’s value isn’t time-consuming to acquire, but it still won’t be
ready at initialization time. A common case in real life is an outlet, which is a refer‐
ence to something in your interface such as a button:

class ViewController: UIViewController {
 @IBOutlet var myButton: UIButton! // initialized to nil
 // ...
}

Ignore, for now, the @IBOutlet designation, which is an internal hint to Xcode (as I’ll
explain in Chapter 7). The important thing is that this property, myButton, won’t
have a value when our ViewController instance first comes into existence, but shortly
thereafter the view controller’s view will be loaded and myButton will be set so that it

118 | Chapter 3: Variables and Simple Types

points to an actual UIButton object in the interface. Therefore, the variable is typed
as an implicitly unwrapped Optional:

• It’s an Optional because we need a placeholder value (namely nil) for myButton
when the ViewController instance first comes into existence.

• It’s implicitly unwrapped so that in our code, once self.myButton has been
assigned a UIButton value, we can treat it as a reference to an actual UIButton,
passing through the Optional without noticing that it is an Optional. Moreover,
most of this view controller’s code will run after the view is loaded and the actual
button is assigned to myButton, so the implicitly unwrapped Optional is generally
safe: code can confidently refer to myButton as if it were a UIButton, without fear
that it might be nil.

A shortcoming of this architecture is that our outlet property must be declared with
var, meaning that, in theory, other code can come along later and replace this button
reference with another. That is usually undesirable. This is similar to the lack of lazy
let discussed earlier in this chapter — and you can work around the problem in a
similar way, namely with a property wrapper that allows the outlet property’s value,
initialized to nil, to be set only once thereafter.

Built-In Simple Types | 119

CHAPTER 4

Object Types

In the preceding chapter, I discussed some built-in object types. But I have not yet
explained object types themselves. As I mentioned in Chapter 1, Swift object types
come in three flavors: enum, struct, and class. What are the differences between
them? And how would you create your own object type?

In this chapter, I’ll describe first object types generally and then each of the three fla‐
vors. Then I’ll explain three Swift ways of giving an object type greater flexibility: pro‐
tocols, generics, and extensions. Finally, I’ll complete the survey of Swift’s main built-
in types with three umbrella types and three collection types.

Object Type Declarations and Features
Object types are declared with the flavor of the object type (enum, struct, or class),
the name of the object type (which should start with a capital letter), and curly braces:

class Manny {
}
struct Moe {
}
enum Jack {
}

The visibility of an object type to other code — its scope — depends upon where its
declaration appears (compare “Variable Scope and Lifetime” on page 67):

Top level
Object types declared at the top level of a file will, by default, be visible to all files
in the same module. This is the usual place for object type declarations.

121

Inside another type declaration
Sometimes it’s useful to declare a type inside the declaration of another type, giv‐
ing it a namespace. This is called a nested type.

Function body
An object type declared within the body of a function will exist only inside the
scope of the curly braces that surround it; such declarations are legal but rare.

Declarations for any object type may contain within their curly braces the following
things:

Initializers
An object type is merely the type of an object. The purpose of declaring an object
type will usually (though not always) be so that you can make an actual object —
an instance — that has this type. An initializer is a function, declared and called
in a special way, allowing you to do that.

Properties
A variable declared at the top level of an object type declaration is a property.

By default, a property is an instance property. An instance property is scoped to
an instance: it is accessed through a particular instance of this type, and its value
can be different for every instance of this type.

Alternatively, a property can be a static/class property. For an enum or struct, it is
declared with the keyword static; for a class, it may instead be declared with the
keyword class. It belongs to the object type itself: it is accessed through the type,
and it has just one value, associated with the type.

Methods
A function declared at the top level of an object type declaration is a method.

By default, a method is an instance method: it is called by sending a message to a
particular instance of this type. Inside an instance method, self is the instance.

Alternatively, a method can be a static/class method. For an enum or struct, it is
declared with the keyword static; for a class, it may be declared instead with the
keyword class. It is called by sending a message to the type. Inside a static/class
method, self is the type.

Subscripts
A subscript is a special kind of method, called by appending square brackets to
an instance reference or type name.

Object type declarations
An object type declaration can contain an object type declaration — a nested
type. From inside the containing object type, the nested type is in scope; from

122 | Chapter 4: Object Types

outside the containing object type, the nested type must be referred to through
the containing object type. The containing object type is a namespace for the
nested type.

Initializers
An initializer is a function for producing an instance of an object type. Strictly speak‐
ing, it is a static/class method, because it is called by talking to the object type. It is
usually called by means of special syntax: the name of the type is followed directly by
parentheses, as if the type itself were a function. When an initializer is called, a new
instance is created and returned as a result. You will usually do something with the
returned instance, such as assigning it to a variable, in order to preserve it and work
with it in subsequent code.

Suppose we have a Dog class:

class Dog {
}

Then we can make a Dog instance like this:

Dog()

That code, however, though legal, is silly — so silly that it warrants a warning from
the compiler. We have created a Dog instance, but there is no reference to that
instance. Without such a reference, the Dog instance comes into existence and then
immediately vanishes in a puff of smoke. The usual sort of thing is more like this:

let fido = Dog()

Now our Dog instance will persist as long as the variable fido persists (see Chapter 3)
— and the variable fido gives us a reference to our Dog instance, so that we can use
it.

Observe that Dog() calls an initializer even though our Dog class doesn’t declare any
initializers! The reason is that object types may have implicit initializers. These are a
convenience that save you the trouble of writing your own initializers. But you can
write your own initializers, and you will often do so.

How to write an initializer
An initializer is a kind of function, but its declaration syntax doesn’t involve the key‐
word func or a return type. Instead, you use the keyword init with a parameter list,
followed by curly braces containing the code. An object type can have multiple ini‐
tializers, distinguished by their parameters. A frequent use of the parameters is to set
the values of instance properties.

Here’s a Dog class with two instance properties, name (a String) and license (an Int).
We give these instance properties default values that are effectively placeholders — an

Object Type Declarations and Features | 123

empty string and the number zero. Then we declare three initializers, so that the
caller can create a Dog instance in three different ways: by supplying a name, by sup‐
plying a license number, or by supplying both. In each initializer, the parameters that
are supplied are used to set the values of the corresponding properties:

class Dog {
 var name = ""
 var license = 0
 init(name:String) {
 self.name = name
 }
 init(license:Int) {
 self.license = license
 }
 init(name:String, license:Int) {
 self.name = name
 self.license = license
 }
}

In that code, in each initializer, I’ve given each parameter the same name as the prop‐
erty to which it corresponds. There’s no reason to do that apart from stylistic clarity.
In the initializer function body, I can distinguish the parameter from the property by
using self explicitly to access the property.

The result of that declaration is that I can create a Dog in three different ways:

let fido = Dog(name:"Fido")
let rover = Dog(license:1234)
let spot = Dog(name:"Spot", license:1357)

But now I can’t create a Dog with no initializer parameters. I wrote initializers, so my
implicit initializer went away. This code is no longer legal:

let puff = Dog() // compile error

Of course, I could make that code legal by explicitly declaring an initializer with no
parameters:

class Dog {
 var name = ""
 var license = 0
 init() {
 }
 init(name:String) {
 self.name = name
 }
 init(license:Int) {
 self.license = license
 }
 init(name:String, license:Int) {

124 | Chapter 4: Object Types

 self.name = name
 self.license = license
 }
}

Now, the truth is that we don’t need those four initializers, because an initializer is a
function, and a function’s parameters can have default values. I can condense all that
code into a single initializer, like this:

class Dog {
 var name = ""
 var license = 0
 init(name:String = "", license:Int = 0) {
 self.name = name
 self.license = license
 }
}

I can still make an actual Dog instance in four different ways:

let fido = Dog(name:"Fido")
let rover = Dog(license:1234)
let spot = Dog(name:"Spot", license:1357)
let puff = Dog()

Now comes the really interesting part. In my property declarations, I can eliminate
the assignment of default initial values (as long as I declare explicitly the type of each
property):

class Dog {
 var name : String // no default value!
 var license : Int // no default value!
 init(name:String = "", license:Int = 0) {
 self.name = name
 self.license = license
 }
}

That code is legal (and common) — because an initializer initializes! In other words,
I don’t have to give my properties initial values in their declarations, provided I give
them initial values in all initializers. That way, I am guaranteed that all my instance
properties have values when the instance comes into existence, which is what mat‐
ters. Conversely, an instance property without an initial value when the instance
comes into existence is illegal. A property must be initialized either as part of its dec‐
laration or by every initializer, and the compiler will stop you otherwise.

The Swift compiler’s insistence that all instance properties be properly initialized is a
valuable feature of Swift. (Contrast Objective-C, where instance properties can go
uninitialized — and often do, leading to mysterious errors later.) Don’t fight the
compiler; work with it. The compiler will help you by giving you an error message

Object Type Declarations and Features | 125

(“Return from initializer without initializing all stored properties”) until all your ini‐
tializers initialize all your instance properties:

class Dog {
 var name : String
 var license : Int
 init(name:String = "") {
 self.name = name // compile error (do you see why?)
 }
}

Because setting an instance property in an initializer counts as initialization, it is legal
even if the instance property is a constant declared with let:

class Dog {
 let name : String
 let license : Int
 init(name:String = "", license:Int = 0) {
 self.name = name
 self.license = license
 }
}

In our artificial examples, we have been very generous with our initializers: we are
letting the caller instantiate a Dog without supplying a name: argument or a license:
argument. Usually, however, the purpose of an initializer is just the opposite: we want
to force the caller to supply all needed information at instantiation time. In real life, it
is much more likely that our Dog class would look like this:

class Dog {
 let name : String
 let license : Int
 init(name:String, license:Int) {
 self.name = name
 self.license = license
 }
}

In that code, our Dog has a name property and a license property, and values for
these must be supplied at instantiation time (there are no default values), and those
values can never be changed thereafter (the properties are constants). In this way, we
enforce a rule that every Dog must have a meaningful name and license. There is now
only one way to make a Dog:

let spot = Dog(name:"Spot", license:1357)

Deferred initialization of properties
Sometimes there is no meaningful value that can be assigned to an instance property
during initialization. Perhaps the initial value of this property will not be obtained
until some time has elapsed after this instance has come into existence. This situation

126 | Chapter 4: Object Types

conflicts with the requirement that all instance properties be initialized either in their
declaration or through an initializer. You could circumvent the problem by assigning
a default initial value anyway; but this fails to communicate to your own code the fact
that this isn’t a “real” value.

A common solution, as I explained in Chapter 3, is to declare your instance property
as a var having an Optional type. An Optional has a value, namely nil, signifying
that no “real” value has been supplied; and an Optional var is initialized to nil auto‐
matically. Your code can test this instance property against nil and, if it is nil, it
won’t use the property. Later, the property will be given its “real” value. Of course,
that value is now wrapped in an Optional; but if you declare this property as an
implicitly unwrapped Optional, you can use the wrapped value directly, without
explicitly unwrapping it — as if this weren’t an Optional at all — once you’re sure it is
safe to do so:

// this property will be set automatically when the nib loads
@IBOutlet var myButton: UIButton!
// this property will be set after time-consuming gathering of data
var albums : [MPMediaItemCollection]?

Referring to self
An initializer may refer to an already initialized instance property, and may refer to
an uninitialized instance property in order to initialize it. Otherwise, an initializer
may not refer to self, explicitly or implicitly, until all instance properties have been
initialized. This rule guarantees that the instance is fully formed before it is used. This
code is illegal:

struct Cat {
 var name : String
 var license : Int
 init(name:String, license:Int) {
 self.name = name
 meow() // too soon - compile error
 self.license = license
 }
 func meow() {
 print("meow")
 }
}

The call to the instance method meow is implicitly a reference to self — it means
self.meow(). The initializer can say that, but not until it has fulfilled its primary con‐
tract of initializing all uninitialized properties. The call to the instance method meow
simply needs to be moved down one line, so that it comes after both name and
license have been initialized.

Object Type Declarations and Features | 127

Delegating initializers
Initializers within an object type can call one another by using the syntax
self.init(...). An initializer that calls another initializer is called a delegating ini‐
tializer. When an initializer delegates, the other initializer — the one that it delegates
to — must completely initialize the instance first, and then the delegating initializer
can work with the fully initialized instance, possibly setting again a var property that
was already set by the initializer that it delegated to.

A delegating initializer appears to be an exception to the rule against saying self too
early. But it isn’t, because it is saying self in order to delegate — and delegating will
cause all instance properties to be initialized. In fact, the rules about a delegating ini‐
tializer saying self are even more stringent: a delegating initializer cannot refer to
self at all, not even to set a property, until after the call to the other initializer. For
example:

struct Digit {
 var number : Int
 var meaningOfLife : Bool
 init(number:Int) {
 self.number = number
 self.meaningOfLife = false
 }
 init() { // this is a delegating initializer
 self.init(number:42)
 self.meaningOfLife = true
 }
}

A delegating initializer cannot set a constant property (a let variable). That is because
it cannot refer to the property until after it has called the other initializer, and at that
point the instance is fully formed — initialization proper is over, and the door for
initialization of properties has closed. This property is a constant, it has been initial‐
ized, and that’s that. The preceding code would be illegal if meaningOfLife were
declared with let, because the second initializer is a delegating initializer and cannot
set a constant property.

Be careful not to delegate recursively! If you tell an initializer to delegate to itself, or if
you create a vicious circle of delegating initializers, the compiler won’t stop you, but
your running app will hang. Don’t say this:

struct Digit { // do not do this!
 var number : Int = 100
 init(value:Int) {
 self.init(number:value)
 }

128 | Chapter 4: Object Types

 init(number:Int) {
 self.init(value:number)
 }
}

Failable initializers

An initializer can return an Optional wrapping the new instance. In this way, nil can
be returned to signal failure. An initializer that behaves this way is a failable initial‐
izer. To mark an initializer as failable when declaring it, put a question mark after the
keyword init. If your failable initializer needs to return nil, explicitly write return
nil. It is up to the caller to test the resulting Optional for equivalence with nil,
unwrap it, and so forth, as with any Optional.

Here’s a version of Dog with an initializer that returns an Optional, returning nil if
the name: or license: arguments are invalid:

class Dog {
 let name : String
 let license : Int
 init?(name:String, license:Int) {
 if name.isEmpty {
 return nil
 }
 if license <= 0 {
 return nil
 }
 self.name = name
 self.license = license
 }
}

The resulting value is typed as an Optional wrapping a Dog, and the caller will need
to unwrap that Optional (if isn’t nil) before sending any messages to it.

Cocoa and Objective-C conventionally return nil from initializers to signal failure;
the API for such initializers has been hand-tweaked as a Swift failable initializer if ini‐
tialization really might fail. For example, the UIImage initializer init?(named:) is a
failable initializer, because there might be no image with the given name. The result‐
ing value is a UIImage?, and will typically have to be unwrapped before using it.

(Most Objective-C initializers, however, are not bridged as failable initializers, even
though in theory any Objective-C initializer might return nil. This is essentially the
same hand-tweaking policy I described in “Why Optionals?” on page 116.)

Object Type Declarations and Features | 129

Properties
A property is a variable — one that happens to be declared at the top level of an object
type declaration. This means that everything said about variables in Chapter 3
applies. A property has a fixed type; it can be declared with var or let; it can be
stored or computed; it can have setter observers. An instance property can also be
declared lazy.

A stored instance property must be given an initial value. As I explained a moment
ago, this doesn’t have to happen through assignment in the declaration; it can happen
through initializer functions instead. Setter observers are not called during initializa‐
tion of properties.

How properties are accessed
If a property is an instance property (the default), it can be accessed only through an
instance, and its value is separate for each instance. To illustrate, let’s start once again
with a Dog class:

class Dog {
 let name : String
 let license : Int
 init(name:String, license:Int) {
 self.name = name
 self.license = license
 }
}

Our Dog class has a name instance property. Then we can make two different Dog
instances with two different name values, and we can access each Dog instance’s name
through the instance:

let fido = Dog(name:"Fido", license:1234)
let spot = Dog(name:"Spot", license:1357)
let aName = fido.name // "Fido"
let anotherName = spot.name // "Spot"

A static/class property, on the other hand, is accessed through the type, and is scoped
to the type, which usually means that it is global and unique. I’ll use a struct as an
example:

struct Greeting {
 static let friendly = "hello there"
 static let hostile = "go away"
}

Now code elsewhere can fetch the values of Greeting.friendly and
Greeting.hostile. That example is neither artificial nor trivial; immutable static

130 | Chapter 4: Object Types

properties are a convenient and effective way to supply your code with nicely name‐
spaced constants.

Property initialization and self
A property declaration that assigns an initial value to the property cannot fetch an
instance property or call an instance method. Such behavior would require a reference,
explicit or implicit, to self; and during initialization, there is no self yet — self is
exactly what we are in the process of initializing. Making this mistake can result in
some of Swift’s most perplexing compile error messages. This is illegal (and removing
the explicit references to self doesn’t make it legal):

class Moi {
 let first = "Matt"
 let last = "Neuburg"
 let whole = self.first + " " + self.last // compile error
}

There are two common solutions in that situation:

Make this a computed property
A computed property can refer to self because the computation won’t actually
be performed until after self exists:

class Moi {
 let first = "Matt"
 let last = "Neuburg"
 var whole : String {
 self.first + " " + self.last
 }
}

Declare this property lazy
Like a computed property, a lazy property can refer to self legally because that
reference won’t be accessed until after self exists:

class Moi {
 let first = "Matt"
 let last = "Neuburg"
 lazy var whole = self.first + " " + self.last
}

As I demonstrated in Chapter 3, a variable can be initialized as part of its declaration
using multiple lines of code by means of a define-and-call anonymous function. If
this variable is an instance property, and if the function code refers to self, the vari‐
able must also be declared lazy:

Object Type Declarations and Features | 131

class Moi {
 let first = "Matt"
 let last = "Neuburg"
 lazy var whole : String = {
 var s = self.first
 s.append(" ")
 s.append(self.last)
 return s
 }()
}

Unlike instance properties, static properties can be initialized with reference to one
another; the reason is that static property initializers are lazy:

struct Greeting {
 static let friendly = "hello there"
 static let hostile = "go away"
 static let ambivalent = friendly + " but " + hostile
}

Notice the lack of self in that code. In static/class code, self means the type itself. I
like to use self explicitly wherever it would be implicit, but here I can’t use it without
arousing the ire of the compiler (I regard this as a bug). To clarify the status of the
terms friendly and hostile, I can use the type name (or the term Self, as I’ll
explain later in this chapter):

struct Greeting {
 static let friendly = "hello there"
 static let hostile = "go away"
 static let ambivalent = Greeting.friendly + " but " + Greeting.hostile
}

On the other hand, if I write ambivalent as a computed property, I can use self:

struct Greeting {
 static let friendly = "hello there"
 static let hostile = "go away"
 static var ambivalent : String {
 self.friendly + " but " + self.hostile
 }
}

On the other other hand, I’m not allowed to use self when the initial value is set by a
define-and-call anonymous function (again, I regard this as a bug):

struct Greeting {
 static let friendly = "hello there"
 static let hostile = "go away"
 static var ambivalent : String = {
 self.friendly + " but " + self.hostile // compile error
 }()
}

132 | Chapter 4: Object Types

Methods
A method is a function — one that happens to be declared at the top level of an object
type declaration. This means that everything said about functions in Chapter 2
applies.

By default, a method is an instance method. This means that it can be accessed only
through an instance. Within the body of an instance method, self is the instance. To
illustrate, let’s continue to develop our Dog class:

class Dog {
 let name : String
 let license : Int
 let whatDogsSay = "woof"
 init(name:String, license:Int) {
 self.name = name
 self.license = license
 }
 func bark() {
 print(self.whatDogsSay)
 }
 func speak() {
 self.bark()
 print("I'm \(self.name)")
 }
}

Now I can make a Dog instance and tell it to speak:

let fido = Dog(name:"Fido", license:1234)
fido.speak() // woof I'm Fido

In my Dog class, the speak method calls the instance method bark by way of self,
and obtains the value of the instance property name by way of self; and the bark
instance method obtains the value of the instance property whatDogsSay by way of
self. This is because instance code can use self to refer to this instance. Such code
can omit self if the reference is unambiguous; I could have written this:

func speak() {
 bark()
 print("I'm \(name)")
}

But I never write code like that (except by accident). Omitting self, in my view,
makes the code harder to read and maintain; the loose terms bark and name seem
mysterious and confusing. Moreover, sometimes self cannot be omitted (for a case
in point, see “Escaping Closures” on page 59), so it’s more consistent to use it always.

A static/class method is accessed through the type. Within the body of a static/class
method, self means the type:

Object Type Declarations and Features | 133

struct Greeting {
 static let friendly = "hello there"
 static func beFriendly() {
 print(self.friendly)
 }
}

And here’s how to call the static beFriendly method:

Greeting.beFriendly() // hello there

There is a kind of conceptual wall between static/class members, on the one hand,
and instance members on the other; even though they may be declared within the
same object type declaration, they inhabit different worlds. A static/class method
can’t refer to “the instance” because there is no instance; thus, a static/class method
cannot directly refer to any instance properties or call any instance methods. An
instance method, on the other hand, can refer to the type, and can thus access static/
class properties and can call static/class methods.

Let’s return to our Dog class and grapple with the question of what dogs say. Presume
that all dogs say the same thing. We’d prefer, therefore, to express whatDogsSay not at
instance level but at class level. This would be a good use of a static property. Here’s a
simplified Dog class that illustrates:

class Dog {
 static var whatDogsSay = "woof"
 func bark() {
 print(Dog.whatDogsSay)
 }
}

Now we can make a Dog instance and tell it to bark:

let fido = Dog()
fido.bark() // woof

(Instead of Dog.whatDogsSay, a Dog instance method can say Self.whatDogsSay, as
I’ll explain later in this chapter.)

Subscripts
A subscript is a method that is called by appending square brackets containing argu‐
ments directly to a reference. You can use this feature for whatever you like, but it is
suitable particularly for situations where this is an object type with elements that can
be appropriately accessed by key or by index number. I have already described (in
Chapter 3) the use of this syntax with strings, and it is familiar also from dictionaries
and arrays; you can use square brackets with strings and dictionaries and arrays
exactly because Swift’s String and Dictionary and Array types declare subscript
methods.

134 | Chapter 4: Object Types

The Secret Life of Instance Methods
Here’s a secret: instance methods are actually static/class methods. This is legal (but
strange):

class MyClass {
 var s = ""
 func store(_ s:String) {
 self.s = s
 }
}
let m = MyClass()
let f = MyClass.store(m) // what just happened!?

Even though store is an instance method, we are able to call it as a class method —
with a parameter that is an instance of this class! The reason is that an instance
method is actually a curried static/class method composed of two functions — one
function that takes an instance, and another function that takes the parameters of the
instance method. After that code, f is the second of those functions, and can be called
as a way of passing a parameter to the store method of the instance m:

f("howdy")
print(m.s) // howdy

The syntax for declaring a subscript method is somewhat like a function declaration
and somewhat like a computed property declaration. That’s no coincidence. A sub‐
script is like a function in that it can take parameters: arguments can appear in the
square brackets when a subscript method is called. A subscript is like a computed
property in that the call is used like a reference to a property: you can fetch its value
or you can assign into it.

To illustrate the syntax, here’s a struct that treats an integer as if it were a digit
sequence, returning a digit that can be specified by an index number in square brack‐
ets; for simplicity, I’m deliberately omitting any error-checking:

struct Digit {
 var number : Int
 init(_ n:Int) {
 self.number = n
 }
 subscript(ix:Int) -> Int {
 get {
 let s = String(self.number)
 return Int(String(s[s.index(s.startIndex, offsetBy:ix)]))!
 }
 }
}

Object Type Declarations and Features | 135

After the keyword subscript we have a parameter list stating what parameters
are to appear inside the square brackets. By default, parameter names are not
externalized; if you want a parameter name to be externalized, your declaration
must include an external name before the internal name, even if they are the
same name — for example, subscript(ix ix:Int). This is different from how
external names work everywhere else in Swift (and therefore I regard it as a bug
in the language).

Then we have the type of value that is passed out (when the getter is called) or in
(when the setter is called); this is parallel to the type declared for a computed
property, except that (oddly) the type is preceded by the arrow operator instead
of a colon.

Finally, we have curly braces whose contents are exactly like those of a computed
property. You can have get and curly braces for the getter, and set and curly
braces for the setter. The setter can be omitted (as here); in that case, the word
get and its curly braces can be omitted. If the getter consists of a single state‐
ment, the keyword return can be omitted. The setter receives the new value as
newValue, but you can change that name by supplying a different name in paren‐
theses after the word set.

Here’s an example of calling the getter; the instance with appended square brackets
containing the arguments is used just as if you were getting a property value:

var d = Digit(1234)
let aDigit = d[1] // 2

Now I’ll expand my Digit struct so that its subscript method includes a setter (and
again I’ll omit error-checking):

struct Digit {
 var number : Int
 init(_ n:Int) {
 self.number = n
 }
 subscript(ix:Int) -> Int {
 get {
 let s = String(self.number)
 return Int(String(s[s.index(s.startIndex, offsetBy:ix)]))!
 }
 set {
 var s = String(self.number)
 let i = s.index(s.startIndex, offsetBy:ix)
 s.replaceSubrange(i...i, with: String(newValue))
 self.number = Int(s)!
 }
 }
}

136 | Chapter 4: Object Types

And here’s an example of calling the setter; the instance with appended square brack‐
ets containing the arguments is used just as if you were setting a property value:

var d = Digit(1234)
d[0] = 2 // now d.number is 2234

An object type can declare multiple subscript methods, distinguished by their
parameters.

Starting in Swift 5.1, a subscript can be a static/class method. I’ll demonstrate later,
when we talk about enums.

Starting in Swift 5.2, a subscript can have default parameter values. I can declare my
Digit subscript method like this (though I can’t think why I’d want to):

subscript(ix:Int = 0) -> Int {

And then I can call it like this:

var d = Digit(1234)
let aDigit = d[] // 1

Nested Object Types
An object type may be declared inside an object type declaration, forming a nested
type:

class Dog {
 struct Noise {
 static var noise = "woof"
 }
 func bark() {
 print(Dog.Noise.noise)
 }
}

A nested object type is no different from any other object type, but the rules for refer‐
ring to it from the outside are changed; the surrounding object type acts as a name‐
space, and must be referred to explicitly in order to access the nested object type:

Dog.Noise.noise = "arf"

Here, the Noise struct is namespaced inside the Dog class. This namespacing pro‐
vides clarity: the name Noise does not float free, but is explicitly associated with the
Dog class to which it belongs. Namespacing also allows more than one Noise type to
exist, without any clash of names. Swift built-in object types often take advantage of
namespacing; for example, the String struct is one of several structs that contain an
Index struct, with no clash of names.

A nested type can’t refer directly to the surrounding type’s instance members, but it
can refer directly to the surrounding type’s static/class members:

Object Type Declarations and Features | 137

class Dog {
 static let sound = "ruff"
 struct Noise {
 static var noise = "woof"
 func barkTheDog() { bark() } // compile error
 var othernoise = sound // fine!
 }
 func bark() {
 print(Dog.Noise.noise)
 }
}

In that example, code inside Noise cannot refer directly to Dog’s bark method,
because it’s an instance method, which can be referred to only by way of some spe‐
cific instance of Dog. But code inside Noise can refer directly to Dog’s sound static
property. Moreover, it can do so without explicit namespacing — that is, it doesn’t
have to say Dog.sound. In effect, the term sound is global in scope to the nested type.

Enums
An enum is an object type whose instances represent distinct predefined alternative
values. Think of it as a list of known possibilities. An enum is the Swift way to express
a set of constants that are alternatives to one another. An enum declaration includes
case statements. Each case is the name of one of the alternatives. An instance of an
enum will represent exactly one alternative — one case.

In my Albumen app, different instances of the same view controller can list any of
four different sorts of music library contents: albums, playlists, podcasts, or audio‐
books. The view controller’s behavior is slightly different in each case. So I need a sort
of four-way switch that I can set once when the view controller is instantiated, saying
which sort of contents this view controller is to display. That sounds like an enum!

Here’s the basic declaration for that enum; I call it Filter, because each case represents
a different way of filtering the contents of the music library:

enum Filter {
 case albums
 case playlists
 case podcasts
 case books
}

That enum doesn’t have an initializer. You can write an initializer for an enum, as I’ll
demonstrate in a moment; but there is a default mode of initialization that you’ll
probably use most of the time — the name of the enum followed by dot-notation and
one of the cases. Here’s how to make an instance of Filter representing the albums
case:

let type = Filter.albums

138 | Chapter 4: Object Types

If the type is known in advance, you can omit the name of the enum; the bare case
must still be preceded by a dot:

let type : Filter = .albums

You can’t say .albums just anywhere out of the blue, because Swift doesn’t know
what enum it belongs to. But in that code, the variable is explicitly declared as a Filter,
so Swift knows what .albums means. A similar thing happens when passing an enum
instance as an argument in a function call:

func filterExpecter(_ type:Filter) {}
filterExpecter(.albums)

In the second line, I create an instance of Filter and pass it, all in one move, without
having to include the name of the enum. That’s because Swift knows from the func‐
tion declaration that a Filter is expected here.

In real life, the space savings when omitting the enum name can be considerable —
especially because, when talking to Cocoa, the enum type names are often long:

let v = UIView()
v.contentMode = .center

A UIView’s contentMode property is typed as a UIView.ContentMode enum. Our
code is neater and simpler because we don’t have to include the type name explicitly
here; .center is nicer than UIView.ContentMode.center. But either is legal.

Instances of an enum with the same case are regarded as equal. You can compare an
enum instance for equality against a case. Again, the type of enum is known from the
first term in the comparison, so the second term can omit the enum name:

func filterExpecter(_ type:Filter) {
 if type == .albums {
 print("it is albums")
 }
}
filterExpecter(.albums) // "it is albums"

Raw Values
Optionally, when you declare an enum, you can add a type declaration. The cases
then all carry with them a fixed (constant) value of that type. The types attached to an
enum in this way are limited to numbers and strings, and the values assigned must be
literals.

If the type is an integer numeric type, the values can be implicitly assigned, and will
start at zero by default:

Enums | 139

enum PepBoy : Int {
 case manny
 case moe
 case jack
}

In that code, .manny carries a value of 0, .moe carries of a value of 1, and so on.

If the type is String, the implicitly assigned values are the string equivalents of the
case names:

enum Filter : String {
 case albums
 case playlists
 case podcasts
 case books
}

In that code, .albums carries a value of "albums", and so on.

Regardless of the type, you can assign values explicitly as part of the case declarations,
like this:

enum Normal : Double {
 case fahrenheit = 98.6
 case centigrade = 37
}
enum PepBoy : Int {
 case manny = 1
 case moe // 2 implicitly
 case jack = 4
}
enum Filter : String {
 case albums = "Albums"
 case playlists = "Playlists"
 case podcasts = "Podcasts"
 case books = "Audiobooks"
}

The values carried by the cases are called their raw values. An enum with a type dec‐
laration implicitly adopts the RawRepresentable protocol, meaning that it implicitly
has an init(rawValue:) initializer and a rawValue property. (I’ll explain later what a
protocol is.) So you can retrieve a case’s assigned value as its rawValue:

let type = Filter.albums
print(type.rawValue) // Albums

Having each case carry a fixed raw value can be quite useful. In my Albumen app, the
Filter cases really do have those String values, and type is a Filter instance property of
the view controller; when the view controller wants to know what title string to put at
the top of the screen, it simply retrieves self.type.rawValue.

140 | Chapter 4: Object Types

The raw value associated with each case must be unique within this enum; the com‐
piler will enforce this rule. Therefore, the mapping works the other way: given a raw
value, you can derive the case; in particular, you can instantiate an enum that has raw
values by using its init(rawValue:) initializer:

let type = Filter(rawValue:"Albums")

However, the attempt to instantiate the enum in this way still might fail, because you
might supply a raw value corresponding to no case; therefore, this is a failable
initializer, and the value returned is an Optional. In that code, type is not a Filter; it’s
an Optional wrapping a Filter. This might not be terribly important, however,
because the thing you are most likely to want to do with an enum is to compare it for
equality with a case of the enum; you can do that with an Optional without unwrap‐
ping it. This code is legal and works correctly:

let type = Filter(rawValue:"Albums")
if type == .albums { // ...

Associated Values
The raw values discussed in the preceding section are fixed in the enum’s declaration:
a given case carries with it a certain raw value, and that’s that. But there’s also a way
to construct a case whose constant value can be set when the instance is created. The
attached value here is called an associated value.

To write an enum with one or more cases taking an associated value, do not declare
any raw value type for the enum as a whole; instead, you append to the name of the
case an expression that looks very much like a tuple — that is, parentheses containing
a list of possibly labeled types. Unlike a raw value, your choice of type is not limited.
Most often, a single value will be attached to a case, so you’ll write parentheses con‐
taining a single type name. Here’s an example:

enum MyError {
 case number(Int)
 case message(String)
 case fatal
}

That code means that, at instantiation time, a MyError instance with the .number
case must be assigned an Int value, a MyError instance with the .message case must
be assigned a String value, and a MyError instance with the .fatal case can’t be
assigned any value. Instantiation with assignment of a value is really a way of calling
an initialization function, so to supply the value, you pass it as an argument in
parentheses:

let err : MyError = .number(4)

This is an ordinary function call, so the argument doesn’t have to be a literal:

Enums | 141

Inference of Type Name with Static/Class Members
Just as you can use a dot and the name of an enum case where an instance of that
enum is expected, you can do the same thing when referring to a type’s static/class
member whose value is an instance of that type. For example, UIColor has many class
properties that produce a UIColor instance, so you can omit UIColor where a
UIColor is expected:

p.trackTintColor = .red // instead of UIColor.red

Similarly, suppose we have a struct Thing with static constants whose values are
Thing instances:

struct Thing : RawRepresentable {
 let rawValue : Int
 static let one : Thing = Thing(rawValue:1)
 static let two : Thing = Thing(rawValue:2)
}

Then we can refer to Thing.one as .one where a Thing instance is expected:

let thing : Thing = .one

Many Objective-C enums are bridged to Swift as that kind of struct, as I’ll explain
later in the chapter.

In the same way, when a type has a static/class method that produces an instance of
that type, the type name can be omitted when an instance of that type is expected.
Moreover, an initializer is such a method! Suppose Dog has an initializer that expects
a name: parameter, and dogExpecter is a function that takes a Dog as its parameter:

struct Dog {
 let name: String
}
func dogExpecter(_ dog: Dog) {
 print(dog.name)
}

Then we can create and pass a Dog to dogExpecter without using the term Dog:

dogExpecter(.init(name:"Fido"))

That sort of thing is regarded as good Swift style.

let num = 4
let err : MyError = .number(num)

At the risk of sounding like a magician explaining his best trick, I can now reveal
how an Optional works. An Optional is simply an enum with two cases: .none
and .some. If it is .none, it carries no associated value, and it equates to nil. If it
is .some, it carries the wrapped value as its associated value.

142 | Chapter 4: Object Types

If a case’s associated value type has a label, that label must be used at initialization
time:

enum MyError2 {
 case number(Int)
 case message(String)
 case fatal(n:Int, s:String)
}
let err : MyError2 = .fatal(n:-12, s:"Oh the horror")

By default, the == operator cannot be used to compare cases of an enum if any case of
that enum has an associated value:

if err == MyError.fatal { // compile error

But if you declare this enum explicitly as adopting the Equatable protocol (discussed
later in this chapter and in Chapter 5), the == operator starts working:

enum MyError : Equatable { // *
 case number(Int)
 case message(String)
 case fatal
}

That code won’t compile, however, unless all the associated types are themselves
Equatable. That makes sense; if we declare case pet(Dog) and there is no way to
know whether any two Dogs are equal, there is obviously no way to know whether
any two pet cases are equal.

I’ll explain in Chapter 5 how to check the case of an instance of an enum that has an
associated value case, as well as how to extract the associated value from an enum
instance that has one.

Enum Case Iteration
It is often useful to have a list — that is, an array — of all the cases of an enum. You
could define this list manually as a static property of the enum:

enum Filter : String {
 case albums = "Albums"
 case playlists = "Playlists"
 case podcasts = "Podcasts"
 case books = "Audiobooks"
 static let cases : [Filter] = [.albums, .playlists, .podcasts, .books]
}

That, however, is error-prone and hard to maintain; if, as you develop your program,
you modify the enum’s cases, you must remember to modify the cases property to
match. Instead, the list of cases can be generated for you automatically. Simply have
your enum adopt the CaseIterable protocol (adoption of protocols is explained later

Enums | 143

in this chapter); now the list of cases springs to life as a static property called all-
Cases:

enum Filter : String, CaseIterable {
 case albums = "Albums"
 case playlists = "Playlists"
 case podcasts = "Podcasts"
 case books = "Audiobooks"
 // static allCases is now [.albums, .playlists, .podcasts, .books]
}

I’ll put this feature to use in the next section.

Automatic generation of allCases is impossible if any of the enum’s cases has an
associated value, as it would then be unclear how that case should be defined in the
list.

Enum Initializers
An explicit enum initializer must do what default initialization does: it must return a
particular case of this enum. To do so, set self to the case. In this example, I’ll
expand my Filter enum so that it can be initialized with a numeric argument:

enum Filter : String, CaseIterable {
 case albums = "Albums"
 case playlists = "Playlists"
 case podcasts = "Podcasts"
 case books = "Audiobooks"
 init(_ ix:Int) {
 self = Filter.allCases[ix]
 }
}

Now there are three ways to make a Filter instance:

let type1 = Filter.albums
let type2 = Filter(rawValue:"Playlists")!
let type3 = Filter(2) // .podcasts

In that example, we’ll crash in the third line if the caller passes a number that’s out of
range (less than 0 or greater than 3). If we want to avoid that, we can make this a
failable initializer and return nil if the number is out of range:

enum Filter : String, CaseIterable {
 case albums = "Albums"
 case playlists = "Playlists"
 case podcasts = "Podcasts"
 case books = "Audiobooks"
 init?(_ ix:Int) {
 if !Filter.allCases.indices.contains(ix) {
 return nil

144 | Chapter 4: Object Types

 }
 self = Filter.allCases[ix]
 }
}

An enum can have multiple initializers. Enum initializers can delegate to one another
by saying self.init(...). The only requirement is that, at some point in the chain
of calls, self must be set to a case; if that doesn’t happen, your enum won’t compile.

In this example, I improve my Filter enum so that it can be initialized with a String
raw value without having to say rawValue: in the call. To do so, I declare a failable
initializer with a string parameter that delegates to the built-in failable rawValue:
initializer:

enum Filter : String, CaseIterable {
 case albums = "Albums"
 case playlists = "Playlists"
 case podcasts = "Podcasts"
 case books = "Audiobooks"
 init?(_ ix:Int) {
 if !Filter.allCases.indices.contains(ix) {
 return nil
 }
 self = Filter.allCases[ix]
 }
 init?(_ rawValue:String) {
 self.init(rawValue:rawValue)
 }
}

Now there are four ways to make a Filter instance:

let type1 = Filter.albums
let type2 = Filter(rawValue:"Playlists")!
let type3 = Filter(2)
let type4 = Filter("Audiobooks")!

Enum Properties
An enum can have instance properties and static properties, but there’s a limitation:
an enum instance property can’t be a stored property. Computed instance properties
are fine, however, and the value of the property can vary by rule in accordance with
the case of self. In this example from my real code, I’ve associated an MPMedia‐
Query (obtained by calling an MPMediaQuery factory class method) with each case
of my Filter enum, suitable for fetching the songs of that type from the music library:

enum Filter : String {
 case albums = "Albums"
 case playlists = "Playlists"
 case podcasts = "Podcasts"
 case books = "Audiobooks"

Enums | 145

 var query : MPMediaQuery {
 switch self {
 case .albums:
 return .albums()
 case .playlists:
 return .playlists()
 case .podcasts:
 return .podcasts()
 case .books:
 return .audiobooks()
 }
 }
}

If an enum instance property is a computed variable with a setter, other code can
assign to this property. However, that code’s reference to the enum instance itself
must be a variable (var), not a constant (let). If you try to assign to an enum
instance property through a let reference to the enum, you’ll get a compile error.

For example, here’s a silly enum:

enum Silly {
 case one
 var sillyProperty : String {
 get { "Howdy" }
 set {} // do nothing
 }
}

It is then legal to say this:

var silly = Silly.one
silly.sillyProperty = "silly"

But if silly were declared with let instead of var, trying to set silly.silly-
Property would cause a compile error.

An enum static property can have a property wrapper, but an enum instance prop‐
erty can’t, because that would imply storage of an instance of the underlying
@propertyWrapper type — and enums have no stored instance properties.

Enum Methods
An enum can have instance methods (including subscripts) and static methods.
Writing an enum method is straightforward. Here’s an example from my own code.
In a card game, the cards draw themselves as rectangles, ellipses, or diamonds. I’ve
abstracted the drawing code into an enum that draws itself as a rectangle, an ellipse,
or a diamond, depending on its case:

146 | Chapter 4: Object Types

enum Shape {
 case rectangle
 case ellipse
 case diamond
 func addShape (to p: CGMutablePath, in r: CGRect) -> () {
 switch self {
 case .rectangle:
 p.addRect(r)
 case .ellipse:
 p.addEllipse(in:r)
 case .diamond:
 p.move(to: CGPoint(x:r.minX, y:r.midY))
 p.addLine(to: CGPoint(x: r.midX, y: r.minY))
 p.addLine(to: CGPoint(x: r.maxX, y: r.midY))
 p.addLine(to: CGPoint(x: r.midX, y: r.maxY))
 p.closeSubpath()
 }
 }
}

Earlier, I mentioned that a subscript can be a static method. That gives me an idea for
yet another way to make a Filter instance by number:

enum Filter : String, CaseIterable {
 case albums = "Albums"
 case playlists = "Playlists"
 case podcasts = "Podcasts"
 case books = "Audiobooks"
 static subscript(ix: Int) -> Filter {
 Filter.allCases[ix] // warning, no range checking
 }
}

And now we can say:

let type = Filter[2] // podcasts

An enum instance method that modifies the enum itself must be marked as
mutating. For example, an enum instance method might assign to an instance prop‐
erty of self; even though this is a computed property, such assignment is illegal
unless the method is marked as mutating. The caller of a mutating instance method
must have a variable reference to the instance (var), not a constant reference (let).

A mutating enum instance method can replace this instance with another instance,
by assigning another case to self. In this example, I add an advance method to my
Filter enum. The idea is that the cases constitute a sequence, and the sequence can
cycle. By calling advance, I transform a Filter instance into an instance of the next
case in the sequence:

Enums | 147

enum Filter : String, CaseIterable {
 case albums = "Albums"
 case playlists = "Playlists"
 case podcasts = "Podcasts"
 case books = "Audiobooks"
 mutating func advance() {
 let cases = Filter.allCases
 var ix = cases.firstIndex(of:self)!
 ix = (ix + 1) % cases.count
 self = cases[ix]
 }
}

And here’s how to call it:

var type = Filter.books
type.advance() // type is now Filter.albums

Observe that type is declared with var; if it were declared with let, we’d get a com‐
pile error.

A subscript or computed property setter is considered mutating by default and does
not have to be specially marked. However, if a getter sets another property as a side
effect, it must be marked mutating get.

Why Enums?
An enum is a switch whose states have names. There are many situations where that’s
a desirable thing. You could implement a multistate value yourself; if there are five
possible states, you could use an Int whose values can be 0 through 4. But then you
would have to provide a lot of additional overhead, interpreting those numeric values
correctly and making sure that no other values are used. A list of five named cases is
much better!

Even when there are only two states, an enum is often better than, say, a mere Bool,
because the enum’s states have names. With a Bool, you have to know what true and
false signify in a particular usage; with an enum, the name of the enum and the
names of its cases tell you its significance.

Moreover, you can store extra information in an enum’s associated value or raw
value.

In my LinkSame app, the user can play a real game with a timer or a practice game
without a timer. At various places in the code, I need to know which type of game
this is. The game types are the cases of an enum:

enum InterfaceMode : Int {
 case timed = 0
 case practice = 1
}

148 | Chapter 4: Object Types

The current game type is stored in an instance property interfaceMode, whose value
is an InterfaceMode. It’s easy to set the game type by case name:

// ... initialize new game ...
self.interfaceMode = .timed

And it’s easy to examine the game type by case name:

// notify of high score only if user is not just practicing
if self.interfaceMode == .timed { // ...

And what are my InterfaceMode enum’s raw value integers for? That’s the really
clever part. They correspond to the segment indexes of a UISegmentedControl in the
interface! Whenever I change the interfaceMode property, a setter observer also
selects the corresponding segment of the UISegmentedControl (self.timed-
Practice), simply by fetching the rawValue of the current enum case:

var interfaceMode : InterfaceMode = .timed {
 willSet (mode) {
 self.timedPractice?.selectedSegmentIndex = mode.rawValue
 }
}

Structs
A struct is the Swift object type par excellence. An enum, with its fixed set of cases, is a
reduced, specialized kind of object. A class, at the other extreme, will often turn out
to be overkill; it has some features that a struct lacks (I’ll talk later about what they
are), but if you don’t need those features, a struct may be preferable.

Of more than two hundred object types declared in the Swift header, maybe half a
dozen are classes. A couple of dozen are enums. All the rest are structs. A String is a
struct. An Int is a struct. A Range is a struct. An Array is a struct. And so on. That
shows how powerful a struct can be.

Struct Initializers
A struct that doesn’t have an explicit initializer and that doesn’t need an explicit ini‐
tializer — because it has no stored properties, or because all its stored properties are
assigned default values as part of their declaration — automatically gets an implicit
initializer with no parameters, init(). For example:

struct Digit {
 var number = 42
}

That struct can be initialized by saying Digit(). But if you add any explicit initializ‐
ers of your own, you lose that implicit initializer:

Structs | 149

struct Digit {
 var number = 42
 init(number:Int) {
 self.number = number
 }
}

Now you can say Digit(number:42), but you can’t say Digit() any longer. Of
course, you can add an explicit initializer that does the same thing:

struct Digit {
 var number = 42
 init() {}
 init(number:Int) {
 self.number = number
 }
}

Now you can say Digit() once again, as well as Digit(number:42).

A struct that has stored properties and that doesn’t have an explicit initializer auto‐
matically gets an implicit initializer derived from its instance properties. This is called
the memberwise initializer. For example:

struct Test {
 var number = 42
 var name : String
 let age : Int
 let greeting = "Hello"
}

That struct is legal, even though it seems we have not fulfilled the contract requiring
us to initialize all stored properties in their declaration or in an initializer. The reason
is that this struct automatically has a memberwise initializer which does initialize all
its properties. Given that declaration, there are two ways to make a Test instance:

let t1 = Test(number: 42, name: "matt", age: 65)
let t2 = Test(name: "matt", age: 65)

The memberwise initializer includes number, name, and age, but not greeting,
because greeting is a let property that has already been initialized before the initial‐
izer is called. number has been initialized too, but it is a var property, so the member‐
wise initializer includes it — but you can also omit it from your call to the
memberwise initializer, because it has been initialized already and therefore has a
default value.

(The ability to omit an initialized var property from a call to the memberwise initial‐
izer was introduced in Swift 5.1.)

150 | Chapter 4: Object Types

But if you add any explicit initializers of your own, or if any of the properties
involved are declared private, you lose the memberwise initializer (though of course
you can write an explicit initializer that does the same thing).

All stored properties must be initialized either by direct initialization in the declara‐
tion or by all initializers. If a struct has multiple explicit initializers, they can delegate
to one another by saying self.init(...).

Struct Properties
A struct can have instance properties and static properties, which can be stored or
computed variables. If other code wants to set a property of a struct instance, its ref‐
erence to that instance must be a variable (var), not a constant (let).

Here’s a Digit struct with a var number instance property:

struct Digit {
 var number : Int
 init(_ n:Int) {
 self.number = n
 }
}

Then this is legal:

var d = Digit(123)
d.number = 42

But if d were declared with let, trying to set d.number would cause a compile error.

Struct Methods
A struct can have instance methods and static methods, including subscripts. If an
instance method sets a property, it must be marked as mutating, and the caller’s ref‐
erence to the struct instance must be a variable (var), not a constant (let).

Here’s a new version of our Digit struct:

struct Digit {
 private var number : Int
 init(_ n:Int) {
 self.number = n
 }
 mutating func changeNumberTo(_ n:Int) {
 self.number = n
 // or: self = Digit(n)
 }
}

Here we have a private number property, along with a public method for setting it.
We can then say this:

Structs | 151

var d = Digit(123)
d.changeNumberTo(42)

The changeNumberTo method must be declared mutating, and if d were declared with
let, trying to call d.changeNumberTo would cause a compile error.

A subscript or computed property setter is considered mutating by default and does
not have to be specially marked. However, if a getter sets another property as a side
effect, it must be marked mutating get.

A mutating instance method can replace this instance with another instance, by set‐
ting self to a different instance of the same struct.

Struct as Namespace
I often use a degenerate struct as a handy namespace for constants. I call such a struct
“degenerate” because it consists entirely of static members; I don’t intend to use this
object type to make any instances.

Let’s say I’m going to be storing user preference information in Cocoa’s UserDe‐
faults. UserDefaults is a kind of dictionary: each item is accessed through a key. The
keys are typically strings. A common programmer mistake is to write out these string
keys literally every time a key is used; if you then misspell a key name, there’s no
penalty at compile time, but your code will mysteriously fail to work correctly. A bet‐
ter approach is to embody those keys as constant strings and use the names of the
strings; if you make a mistake typing a name, the compiler can catch you. A struct
with static members is a great way to define constant strings and clump their names
into a namespace:

struct Default {
 static let rows = "CardMatrixRows"
 static let columns = "CardMatrixColumns"
 static let hazyStripy = "HazyStripy"
}

That code means that I can now refer to a UserDefaults key with a name, such as
Default.hazyStripy.

Classes
A class is similar to a struct, with the following key differences:

Reference type
Classes are reference types. This means, among other things, that a class instance
has two remarkable features that are not true of struct or enum instances:

152 | Chapter 4: Object Types

Mutability
A class instance is mutable in place. Even if your reference to an instance of a
class is a constant (let), you can change the value of an instance property
through that reference. An instance method of a class never has to be
marked mutating (and cannot be).

Multiple references
When a given instance of a class is assigned to multiple variables or passed as
argument to a function, you get multiple references to one and the same
object.

Inheritance
A class can have a superclass. A class that has a superclass is a subclass of that
superclass, and inherits its superclass’s members. Class types can form a hier‐
archical tree.

In Objective-C, classes are the only object type. Some built-in Swift struct types are
magically bridged to Objective-C class types, but your custom struct types don’t have
that magic. Thus, when programming iOS with Swift, one reason for declaring a
class, rather than a struct, is as a form of interchange with Objective-C and Cocoa.

Value Types and Reference Types
A major difference between enums and structs, on the one hand, and classes, on the
other, is that enums and structs are value types, whereas classes are reference types. I
will now explain what that means.

Class instances are mutable
A value type is not mutable in place, even though it seems to be. Consider a struct. A
struct is a value type:

struct Digit {
 var number : Int
 init(_ n:Int) {
 self.number = n
 }
}

Now, Swift’s syntax of assignment would lead us to believe that changing a Digit’s
number is possible:

var d = Digit(123)
d.number = 42

But in reality, when you apparently mutate an instance of a value type, you are
actually replacing that instance with a different instance. To see that this is true, add a
setter observer:

Classes | 153

var d : Digit = Digit(123) { // Digit is a struct
 didSet {
 print("d was set")
 }
}
d.number = 42 // "d was set"

That explains why it is impossible to mutate a value type instance if the reference to
that instance is declared with let:

let d = Digit(123) // Digit is a struct
d.number = 42 // compile error

Under the hood, this change would require us to replace the Digit instance pointed to
by d with another Digit instance — and we can’t do that, because it would mean
assigning into d, which is exactly what the let declaration forbids.

That also explains why an instance method of a struct or enum that sets a property of
the instance must be marked explicitly with the mutating keyword. Such a method
can potentially replace this object with another, so the reference to the object must be
var, not let.

But classes are not value types. They are reference types. A reference to a class
instance does not have to be declared with var in order to set a var property through
that reference:

class Dog {
 var name : String = "Fido"
}
let rover = Dog()
rover.name = "Rover" // fine

In the last line of that code, the class instance pointed to by rover is being mutated in
place. No implicit assignment to rover is involved, and so the let declaration is pow‐
erless to prevent the mutation. A setter observer on a Dog variable is not called when
a property is set:

var rover : Dog = Dog() { // Dog is a class
 didSet {
 print("did set rover")
 }
}
rover.name = "Rover" // nothing in console

The setter observer would be called if we were to set rover explicitly (to another Dog
instance), but it is not called merely because we change a property of the Dog
instance already pointed to by rover.

Exactly the same difference between a value type and a reference type may be seen
with a parameter of a function call. When we receive an instance of a value type as a

154 | Chapter 4: Object Types

Mutating Captured Self
Here’s a Digit struct with some mutating methods:

struct Digit {
 var number : Int
 init(_ n:Int) {
 self.number = n
 }
 mutating func changeNumberTo(_ n:Int) {
 self.number = n
 }
 func otherFunction(_ f: ()->()) {
 }
 mutating func callAnotherFunction() {
 otherFunction {
 self.changeNumberTo(345) // *
 }
 }
}

Whether that’s legal depends on whether otherFunction declares its function param‐
eter @escaping (“Escaping Closures” on page 59). If it does, the compiler will stop us:

func otherFunction(_ f: @escaping ()->()) {
}

That change causes a compile error at the starred line: “Escaping closure captures
mutating self parameter.” Now that otherFunction is escaping, we are threatening
to mutate a persisting captured self at some later time. Digit is a struct, so that would
involve replacing the captured self with a different Digit — and that’s incoherent.
No such problem arises if Digit is a class, because the persistent captured self can be
mutated in place.

parameter into a function body, the compiler will stop us in our tracks if we try to
assign to its instance property. This doesn’t compile:

func digitChanger(_ d:Digit) { // Digit is a struct
 d.number = 42 // compile error
}

But this does compile:

func dogChanger(_ d:Dog) { // Dog is a class
 d.name = "Rover"
}

Classes | 155

Class instance references are pointers
With a reference type, there is a concealed level of indirection between your reference
to the instance and the instance itself; the reference actually holds a pointer to the
instance. This means that when a class instance is assigned to a variable or passed as
an argument to a function or as the result of a function, you can wind up with multi‐
ple references to the same object. That is not true of structs and enums:

Struct or enum instance (value type)
When an enum instance or a struct instance is assigned or passed, what is
assigned or passed is essentially a new copy of that instance.

Class instance (reference type)
When a class instance is assigned or passed, what is assigned or passed is a refer‐
ence to the same instance.

To prove it, I’ll assign one reference to another, and then mutate the second reference
— and then I’ll examine what happened to the first reference. Let’s start with the
struct:

var d = Digit(123) // Digit is a struct
print(d.number) // 123
var d2 = d // assignment!
d2.number = 42
print(d.number) // 123

In that code, we changed the number property of d2, a struct instance; but nothing
happened to the number property of d. Now let’s try the class:

var fido = Dog() // Dog is a class
print(fido.name) // Fido
var rover = fido // assignment!
rover.name = "Rover"
print(fido.name) // Rover

In that code, we changed the name property of rover, a class instance — and the name
property of fido was changed as well! That’s because, after the assignment in the
third line, fido and rover refer to one and the same instance.

The same thing is true of parameter passing. With a class instance, what is passed is a
reference to the same instance:

func dogChanger(_ d:Dog) { // Dog is a class
 d.name = "Rover"
}
var fido = Dog()
print(fido.name) // "Fido"
dogChanger(fido)
print(fido.name) // "Rover"

156 | Chapter 4: Object Types

The change made to d inside the function dogChanger affected our Dog instance
fido! You can’t do that with an enum or struct instance parameter — unless it’s an
inout parameter — because the instance is effectively copied as it is passed. But hand‐
ing a class instance to a function does not copy that instance; it is more like lending
that instance to the function.

Advantages of value types vs. reference types
The ability to generate multiple references to the same instance is significant particu‐
larly in a world of object-based programming, where objects persist and can have
properties that persist along with them. If object A and object B are both long-lived,
and if they both have a Dog property where Dog is a class, and if they have each been
handed a reference to one and the same Dog instance, then either object A or object
B can mutate its Dog, and this mutation will affect the other’s Dog. You can be hold‐
ing on to an object, only to discover that it has been mutated by someone else behind
your back. If that happens unexpectedly, it can put your program into an invalid
state.

Class instances are also more complicated behind the scenes. Swift has to manage
their memory (as I’ll explain in detail in Chapter 12), precisely because there can be
multiple references to the same object; this management can involve quite a bit of
overhead.

On the whole, therefore, you should prefer a value type (such as a struct) to a refer‐
ence type (a class) wherever possible. Struct instances are not shared between refer‐
ences, and so you are relieved from any worry about such an instance being mutated
behind your back; moreover, under the hood, storage and memory management are
far simpler as well. Apple likes to say that value types are easier to reason about. The
Swift language itself will help you by imposing value types in front of many Cocoa
Foundation reference types. Objective-C NSDate and NSData are classes, but Swift
will steer you toward using struct types Date and Data instead. (I’ll talk about these
types in detail in Chapter 10.)

But don’t get the wrong idea. Classes are not bad; they’re good! For one thing, a class
instance is very efficient to pass around, because all you’re passing is a pointer. No
matter how big and complicated a class instance may be, no matter how many prop‐
erties it may have containing vast amounts of data, passing the instance is incredibly
fast and efficient.

And although a class may be a reference type, a particular class can be implemented
in such a way as to exhibit value semantics. Simply put, a class’s API can refuse to
mutate that class in place. Cocoa NSString, NSArray, NSDictionary, NSDate,
NSIndexSet, NSParagraphStyle, and many more behave like this; they are immutable
by design. Two objects may hold a reference to the same NSArray without fear that it
will be mutated behind their backs, not because it’s a value type (it isn’t) but because

Classes | 157

it’s immutable. In effect, this architecture combines the ease of use of a value type
with the pointer efficiency of a reference type.

Moreover, there are many situations where the independent identity of a class
instance, no matter how many times it is referred to, is exactly what you want. The
extended lifetime of a class instance, as it is passed around, can be crucial to its func‐
tionality and integrity. In particular, only a class instance can successfully represent
an independent reality. A UIView needs to be a class, not a struct, because an individ‐
ual UIView instance, no matter how it gets passed around, must continue to repre‐
sent the same single real and persistent view in your running app’s interface.

Still another reason for preferring a class over a struct or enum is when you need
recursive references. A value type cannot be structurally recursive: a stored instance
property of a value type cannot be an instance of the same type. This code won’t
compile:

struct Dog { // compile error
 var puppy : Dog?
}

More complex circular chains, such as a Dog with a Puppy property and a Puppy
with a Dog property, are similarly illegal. But if Dog is a class instead of a struct,
there’s no error. This is a consequence of the nature of memory management of value
types as opposed to reference types.

An enum case’s associated value can be an instance of that enum, provided the
case (or the entire enum) is marked indirect:

enum Node {
 case none(Int)
 indirect case left(Int, Node)
 indirect case right(Int, Node)
 indirect case both(Int, Node, Node)
}

Subclass and Superclass
Two classes can be subclass and superclass of one another. For example, we might
have a class Quadruped and a class Dog, with Quadruped as the superclass of Dog. A
class may have many subclasses, but a class can have only one immediate superclass. I
say “immediate” because that superclass might itself have a superclass, and so on
until we get to the ultimate superclass, called the base class, or root class. Thus there is
a hierarchical tree of subclasses, each group of subclasses branching from its super‐
class, and so on, with a single class, the base class, at the top.

As far as the Swift language itself is concerned, there is no requirement that a class
should have any superclass, or, if it does have a superclass, that it should ultimately be
descended from any particular base class. A Swift program can have many classes

158 | Chapter 4: Object Types

Figure 4-1. Part of the Cocoa class hierarchy as shown in Xcode

that have no superclass, and it can have many independent hierarchical subclass
trees, each descended from a different base class.

Cocoa, however, doesn’t work that way. In Cocoa, there is effectively just one base
class — NSObject, which embodies all the functionality necessary for a class to be a
class in the first place — and all other classes are subclasses, at some level, of that one
base class. Cocoa thus consists of one huge tree of hierarchically arranged classes,
even before you write a single line of code or create any classes of your own.

We can imagine diagramming this tree as an outline. And in fact Xcode will show you
this outline (Figure 4-1): in an iOS project window, choose View → Navigators →
Show Symbol Navigator and click Hierarchical, with the first and third icons in the
filter bar selected (filled). Now locate NSObject in the list; the Cocoa classes are the
part of the tree descending from it.

Inheritance
The reason for having a superclass–subclass relationship in the first place is to allow
related classes to share functionality. Suppose we have a Dog class and a Cat class, and
we are considering declaring a walk method for both of them. We might reason that
both a dog and a cat walk in pretty much the same way, by virtue of both being quad‐
rupeds. So it might make sense to declare walk as a method of the Quadruped class,
and make both Dog and Cat subclasses of Quadruped. When we do that, both Dog
and Cat can be sent the walk message, even if neither of them has a walk method,
because each of them has a superclass that does have a walk method. We say that a
subclass inherits the methods of its superclass.

Classes | 159

To declare that a certain class is a subclass of a certain superclass, add a colon and the
superclass name after the class’s name in its declaration:

class Quadruped {
 func walk () {
 print("walk walk walk")
 }
}
class Dog : Quadruped {}
class Cat : Quadruped {}

Now let’s prove that Dog has indeed inherited walk from Quadruped:

let fido = Dog()
fido.walk() // walk walk walk

The walk message can be sent to a Dog instance just as if the walk instance method
were declared in the Dog class, even though the walk instance method is in fact
declared in a superclass of Dog. That’s inheritance at work.

A class declaration can prevent the class from being subclassed by preceding the
class declaration with the final keyword.

Additional functionality
The purpose of subclassing is not merely so that a class can inherit another class’s
methods; it’s so that it can also declare methods of its own. Typically, a subclass
consists of the methods inherited from its superclass and then some. For example,
dogs can bark, but quadrupeds in general can’t. If we declare bark in the Dog class,
and walk in the Quadruped class, and make Dog a subclass of Quadruped, then Dog
inherits the ability to walk from the Quadruped class and also knows how to bark:

class Quadruped {
 func walk () {
 print("walk walk walk")
 }
}
class Dog : Quadruped {
 func bark () {
 print("woof")
 }
}

Again, let’s prove that it works:

let fido = Dog()
fido.walk() // walk walk walk
fido.bark() // woof

160 | Chapter 4: Object Types

Within a class, it is a matter of indifference whether that class has an instance method
because that method is declared in that class or because the method is declared in a
superclass and inherited. A message to self works equally well either way. In this
code, we have declared a barkAndWalk instance method that sends two messages to
self, without regard to where the corresponding methods are declared (one is native
to the subclass, one is inherited from the superclass):

class Quadruped {
 func walk () {
 print("walk walk walk")
 }
}
class Dog : Quadruped {
 func bark () {
 print("woof")
 }
 func barkAndWalk() {
 self.bark()
 self.walk()
 }
}

And here’s proof that it works:

let fido = Dog()
fido.barkAndWalk() // woof walk walk walk

Overriding
It is also permitted for a subclass to redefine a method inherited from its superclass.
For example, perhaps some dogs bark differently from other dogs. We might have a
class NoisyDog, for instance, that is a subclass of Dog. Dog declares bark, but Noisy‐
Dog also declares bark, and defines it differently from how Dog defines it. This is
called overriding. The very natural rule is that if a subclass overrides a method inher‐
ited from its superclass, then when the corresponding message is sent to an instance
of that subclass, it is the subclass’s version of that method that is called.

In Swift, when you override something inherited from a superclass, you must explic‐
itly acknowledge this fact by preceding its declaration with the keyword override:

class Quadruped {
 func walk () {
 print("walk walk walk")
 }
}
class Dog : Quadruped {
 func bark () {
 print("woof")
 }
}

Classes | 161

class NoisyDog : Dog {
 override func bark () {
 print("woof woof woof")
 }
}

And let’s try it:

let fido = Dog()
fido.bark() // woof
let rover = NoisyDog()
rover.bark() // woof woof woof

Observe that a subclass method by the same name as a superclass’s method is not
necessarily, of itself, an override. Recall that Swift can distinguish two functions with
the same name, provided they have different signatures. Those are different func‐
tions, and so an implementation of one in a subclass is not an override of the other in
a superclass. An override situation exists only when the subclass redefines the same
method that it inherits from a superclass — using the same name, including the
external parameter names, and the same signature.

However, a method override need not have exactly the same signature as the overrid‐
den method. In particular, in a method override, the type of a parameter may be
replaced with a superclass, or with an Optional wrapping the superclass. If we have a
Cat class and its Kitten subclass, the following is legal:

class Dog {
 func barkAt(cat:Kitten) {}
}
class NoisyDog : Dog {
 override func barkAt(cat:Cat) {}
 // or barkAt(cat:Cat?)
}

Moreover, a parameter may be overridden with an Optional wrapping its own type,
and an Optional parameter may be overridden with an Optional wrapping its wrap‐
ped type’s superclass:

class Dog {
 func barkAt(cat:Cat) {}
 // or barkAt(cat:Kitten)
 // or barkAt(cat:Kitten?)
}
class NoisyDog : Dog {
 override func barkAt(cat:Cat?) {}
}

There are further rules along the same lines, but I won’t try to list them all here; you
probably won’t need to take advantage of them, and in any case the compiler will tell
you if your override is illegal.

162 | Chapter 4: Object Types

Along with methods, a subclass also inherits its superclass’s properties. Naturally, the
subclass may also declare additional properties of its own. It is possible to override an
inherited property (with some restrictions that I’ll talk about later).

I’ll have more to say about the implications of overriding when I talk about polymor‐
phism, later in this chapter.

A class declaration can prevent a class member from being overridden by a sub‐
class by preceding the member’s declaration with the final keyword.

The keyword super
It often happens that we want to override something in a subclass and yet access the
thing overridden in the superclass. This is done by sending a message to the keyword
super. Our bark implementation in NoisyDog is a case in point. What NoisyDog
really does when it barks is the same thing Dog does when it barks, but more times.
We’d like to express that relationship in our implementation of NoisyDog’s bark. To
do so, we have NoisyDog’s bark implementation send the bark message, not to self
(which would be circular), but to super; this causes the search for a bark instance
method implementation to start in the superclass rather than in our own class:

class Dog : Quadruped {
 func bark () {
 print("woof")
 }
}
class NoisyDog : Dog {
 override func bark () {
 for _ in 1...3 {
 super.bark()
 }
 }
}

And it works:

let fido = Dog()
fido.bark() // woof
let rover = NoisyDog()
rover.bark() // woof woof woof

A subscript function is a method. If a superclass declares a subscript, the subclass
can declare a subscript with the same signature, provided it designates it with the
override keyword. To call the superclass subscript implementation, the subclass
can use square brackets after the keyword super (e.g. super[3]).

Classes | 163

Class Initializers
Initialization of a class instance is considerably more complicated than initialization
of a struct or enum instance, because of class inheritance. The chief task of an initial‐
izer is to ensure that all properties have an initial value, making the instance well-
formed as it comes into existence; and an initializer may have other tasks to perform
that are essential to the initial state and integrity of this instance. A class, however,
may have a superclass, which may have properties and initializers of its own. Thus we
must somehow ensure that when a subclass is initialized, its superclass’s properties
are initialized and the tasks of its initializers are performed in good order, in addition
to those of the subclass itself.

Swift solves this problem coherently and reliably — and ingeniously — by enforcing
some clear and well-defined rules about what a class initializer must do.

Kinds of class initializer
The rules begin with a distinction between the kinds of initializer that a class can
have:

Designated initializer
A class initializer, by default, is a designated initializer. A class can be instantiated
only through a call to one of its designated initializers. A designated initializer
must see to it that all stored properties are initialized. It may not delegate to
another initializer in the same class; it is illegal for a designated initializer to use
the phrase self.init(...).

A class with any stored properties that are not initialized as part of their declara‐
tion must have at least one explicit designated initializer. A class with no stored
properties, or with stored properties all of which are initialized as part of their
declaration, and that has no explicit designated initializers, has an implicit desig‐
nated initializer init().

Convenience initializer
A convenience initializer is marked with the keyword convenience. A conve‐
nience initializer is not how a class is instantiated; it is merely a façade for a des‐
ignated initializer. A convenience initializer is a delegating initializer; it must
contain the phrase self.init(...), which must call a designated initializer in
the same class — or, if it calls another convenience initializer in the same class,
the chain of convenience initializers must end by calling a designated initializer
in the same class.

Here are some examples. This class has no stored properties, so it has an implicit
init() designated initializer:

164 | Chapter 4: Object Types

class Dog {
}
let d = Dog()

This class’s stored properties have default values, so it has an implicit init() designa‐
ted initializer too:

class Dog {
 var name = "Fido"
}
let d = Dog()

This class’s stored properties have default values, but it has no implicit init() initial‐
izer because it has an explicit designated initializer:

class Dog {
 var name = "Fido"
 init(name:String) {self.name = name}
}
let d = Dog(name:"Rover") // ok
let d2 = Dog() // compile error

This class’s stored properties have default values, and it has an explicit initializer, but
it also has an implicit init() initializer because its explicit initializer is a convenience
initializer. Moreover, the implicit init() initializer is a designated initializer, so the
convenience initializer can delegate to it:

class Dog {
 var name = "Fido"
 convenience init(name:String) {
 self.init()
 self.name = name
 }
}
let d = Dog(name:"Rover")
let d2 = Dog()

This class has stored properties without default values; it has an explicit designated
initializer, and all of those properties are initialized in that designated initializer:

class Dog {
 var name : String
 var license : Int
 init(name:String, license:Int) {
 self.name = name
 self.license = license
 }
}
let d = Dog(name:"Rover", license:42)

This class is similar to the previous example, but it also has convenience initializers
forming a chain that ends with a designated initializer:

Classes | 165

class Dog {
 var name : String
 var license : Int
 init(name:String, license:Int) {
 self.name = name
 self.license = license
 }
 convenience init(license:Int) {
 self.init(name:"Fido", license:license)
 }
 convenience init() {
 self.init(license:1)
 }
}
let d = Dog()

Note that the rules about what else an initializer can say and when it can say it, as I
described them earlier in this chapter, are still in force:

• A designated initializer cannot, except in order to initialize a property (or to
fetch the value of a property that is already initialized), say self, implicitly or
explicitly, until all of this class’s properties have been initialized.

• A convenience initializer is a delegating initializer, so it cannot say self for any
purpose until after it has called, directly or indirectly, a designated initializer
(and cannot set a constant property at all).

Subclass initializers
Having defined and distinguished between designated initializers and convenience
initializers, we are ready for the rules about a subclass’s initializers:

No declared initializers
If a subclass doesn’t have to have any initializers of its own, and if it declares no
initializers of its own, then its initializers consist of the initializers inherited from
its superclass. (A subclass thus has no implicit init() initializer unless it inherits
it from its superclass.)

Convenience initializers only
If a subclass doesn’t have to have any initializers of its own, it is eligible to declare
convenience initializers, and these work exactly as convenience initializers always
do, because inheritance supplies the designated initializers that the convenience
initializers must call by saying self.init(...).

Designated initializers
If a subclass declares any designated initializers of its own, the entire game
changes drastically. Now, no initializers are inherited! The existence of an explicit
designated initializer blocks initializer inheritance. The only initializers the sub‐
class now has are the initializers that you explicitly write (with one exception that

166 | Chapter 4: Object Types

I’ll mention later). This rule may seem surprising, but I’ll justify it in an example
later on.

Moreover, every designated initializer in the subclass now has an extra require‐
ment: it must call one of the superclass’s designated initializers, by saying
super.init(...). If it fails to do this, then super.init() is called implicitly if
possible, but I disapprove of this feature (in my view, Swift should not indulge in
secret behavior, even if that behavior might be considered “helpful”).

At the same time, the rules about saying self continue to apply.

Thus, a subclass designated initializer must do these things in this order:

1. It must ensure that all properties of this class (the subclass) are initialized.
2. It must call super.init(...), and the initializer that it calls must be a desig‐

nated initializer.
3. Only then may this initializer say self for such purposes as to call an

instance method or to access an inherited property.

Designated and convenience initializers
If a subclass declares both designated and convenience initializers, the conve‐
nience initializers in the subclass are still subject to the rules I’ve already out‐
lined. They must call self.init(...), calling a designated initializer directly or
through a chain of convenience initializers. There are no inherited initializers, so
the designated initializer must be explicitly declared in the subclass.

Override initializers
A subclass may override initializers from its superclass:

• An initializer whose parameters match a convenience initializer of the super‐
class can be a designated initializer or a convenience initializer, and is not
marked override.

• An initializer whose parameters match a designated initializer of the super‐
class can be a designated initializer or a convenience initializer, and must be
marked override. An override designated initializer must still call some
superclass designated initializer (possibly even the one that it overrides) with
super.init(...).

If a subclass overrides all of its superclass’s designated initializers, then the sub‐
class inherits the superclass’s convenience initializers. (This is the exception to the
rule that if a subclass has any designated initializers, no initializers are inherited.)

Classes | 167

Failable initializers
If an initializer called by a failable initializer is failable, the calling syntax does not
change, and no additional test is needed — if a failable initializer fails, the whole
initialization process will fail (and will be aborted) immediately.

There are some additional restrictions on failable initializers:

• init can override init?, but not vice versa.
• init? can call init.
• init can call init? by saying init and unwrapping the result with an excla‐

mation mark (and if the init? fails, you’ll crash).

At no time can a subclass initializer set a constant (let) property of a superclass. This
is because, by the time the subclass is allowed to do anything other than initialize its
own properties and call another initializer, the superclass has finished its own initiali‐
zation and the door for initializing its constants has closed.

Subclass initializer examples
Your eyes may glaze over reading the subclass initializer rules, but the most impor‐
tant rules are very easy to understand with the help of some basic examples. We start
with a subclass that has no explicit initializers of its own:

class Dog {
 var name : String
 var license : Int
 init(name:String, license:Int) {
 self.name = name
 self.license = license
 }
 convenience init(license:Int) {
 self.init(name:"Fido", license:license)
 }
}
class NoisyDog : Dog {
}

Given that code, you can make a NoisyDog like this:

let nd1 = NoisyDog(name:"Fido", license:1)
let nd2 = NoisyDog(license:2)

That code is legal, because NoisyDog inherits its superclass’s initializers. However,
you can’t make a NoisyDog like this:

let nd3 = NoisyDog() // compile error

That code is illegal. Even though a NoisyDog has no properties of its own, it has no
implicit init() initializer; its initializers are its inherited initializers, and its super‐
class, Dog, has no implicit init() initializer to inherit.

168 | Chapter 4: Object Types

Now here is a subclass whose only explicit initializer is a convenience initializer:

class Dog {
 var name : String
 var license : Int
 init(name:String, license:Int) {
 self.name = name
 self.license = license
 }
 convenience init(license:Int) {
 self.init(name:"Fido", license:license)
 }
}
class NoisyDog : Dog {
 convenience init(name:String) {
 self.init(name:name, license:1)
 }
}

Observe how NoisyDog’s convenience initializer fulfills its contract by calling
self.init(...) to call a designated initializer — which it happens to have inherited.
Given that code, there are three ways to make a NoisyDog, just as you would expect:

let nd1 = NoisyDog(name:"Fido", license:1)
let nd2 = NoisyDog(license:2)
let nd3 = NoisyDog(name:"Rover")

Next, here is a subclass that declares a designated initializer:

class Dog {
 var name : String
 var license : Int
 init(name:String, license:Int) {
 self.name = name
 self.license = license
 }
 convenience init(license:Int) {
 self.init(name:"Fido", license:license)
 }
}
class NoisyDog : Dog {
 init(name:String) {
 super.init(name:name, license:1)
 }
}

NoisyDog’s explicit initializer is now a designated initializer. It fulfills its contract by
calling a designated initializer in super. NoisyDog has now cut off inheritance of all
initializers; the only way to make a NoisyDog is like this:

let nd1 = NoisyDog(name:"Rover")

Classes | 169

Earlier, I promised to justify the rule that adding a designated initializer to a subclass
cuts off initializer inheritance. That example is a case in point. It would be terrible if
the caller could bypass NoisyDog’s designated initializer by using an inherited Dog
initializer instead. NoisyDog’s initializer enforces a rule that a NoisyDog can only
have a license value of 1; if you could say NoisyDog(license:2), you’d bypass that
rule. Here’s another example that makes the same point a little more realistically:

class Dog {
 let name : String
 init(name:String) {
 self.name = name
 }
}
class RoverDog : Dog {
 init() {
 super.init(name:"Rover")
 }
}
let fido = RoverDog(name:"Fido") // compile error

Clearly that last line needs to be an error; otherwise, a RoverDog could be named
Fido, undermining the point of the subclass.

Finally, here is a subclass that overrides its designated initializers:

class Dog {
 var name : String
 var license : Int
 init(name:String, license:Int) {
 self.name = name
 self.license = license
 }
 convenience init(license:Int) {
 self.init(name:"Fido", license:license)
 }
}
class NoisyDog : Dog {
 override init(name:String, license:Int) {
 super.init(name:name, license:license)
 }
}

NoisyDog has overridden all of its superclass’s designated initializers, so it inherits its
superclass’s convenience initializers. There are thus two ways to make a NoisyDog:

let nd1 = NoisyDog(name:"Rover", license:1)
let nd2 = NoisyDog(license:2)

Those examples illustrate the main rules that you should keep in your head. You
probably don’t need to memorize the remaining rules, because the compiler will
enforce them, and will keep slapping you down until you get them right.

170 | Chapter 4: Object Types

Required initializers
There’s one more thing to know about class initializers: a class initializer may be pre‐
ceded by the keyword required. This means that a subclass may not lack this initial‐
izer. This, in turn, means that if a subclass implements designated initializers, thus
blocking inheritance, it must override this initializer and mark the override required.
Here’s a (rather pointless) example:

class Dog {
 var name : String
 required init(name:String) {
 self.name = name
 }
}
class NoisyDog : Dog {
 var obedient = false
 init(obedient:Bool) {
 self.obedient = obedient
 super.init(name:"Fido")
 }
} // compile error

That code won’t compile. Dog’s init(name:) is marked required; our code won’t
compile unless we inherit or override init(name:) in NoisyDog. But we cannot
inherit it, because, by implementing the NoisyDog designated initializer
init(obedient:), we have blocked inheritance. Therefore we must override it:

class Dog {
 var name : String
 required init(name:String) {
 self.name = name
 }
}
class NoisyDog : Dog {
 var obedient = false
 init(obedient:Bool) {
 self.obedient = obedient
 super.init(name:"Fido")
 }
 required init(name:String) {
 super.init(name:name)
 }
}

Observe that our overridden required initializer is not marked with override, but is
marked with required, guaranteeing that the requirement continues drilling down to
any further subclasses.

I have explained what declaring an initializer as required does, but I have not
explained why you’d need to do it. That’s another matter! I’ll discuss it later in this
chapter.

Classes | 171

Class Deinitializer
A class can have a deinitializer. This is a function declared with the keyword deinit
followed by curly braces containing the function body. You never call this function
yourself; it is called by the runtime when an instance of this class goes out of exis‐
tence. If a class has a superclass, the subclass’s deinitializer (if any) is called before the
superclass’s deinitializer (if any).

A deinitializer is a class feature only; a struct or enum has no deinitializer. That’s
because a class is a reference type (as I explained earlier in this chapter). The idea is
that you might want to perform some cleanup. Another good use of a class’s deinit
is to log to the console to prove to yourself that your instance is going out of existence
in good order; I’ll take advantage of that when I discuss memory management issues
in Chapter 5.

Property observers are not called during deinit.

Class Properties
A subclass can override its inherited properties. The override must have the same
name and type as the inherited property, and must be marked with override. (A
property cannot have the same name as an inherited property but a different type, as
there is no way to distinguish them.)

The chief restriction here is that an override property cannot be a stored property.
More specifically:

• If the superclass property is writable (a stored property or a computed property
with a setter), the subclass’s override may consist of adding setter observers to
this property.

• Alternatively, the subclass’s override may be a computed property. In that case:
▪ If the superclass property is stored, the subclass’s computed property override

must have both a getter and a setter.
▪ If the superclass property is computed, the subclass’s computed property

override must have at least a getter, and:
⚬ If the superclass property has a setter, the override must have a setter.
⚬ If the superclass property has no setter, the override can add one.

The overriding property’s functions may refer to — and may read from and write to
— the inherited property, through the super keyword.

172 | Chapter 4: Object Types

Static/Class Members
A class can have static members, marked static, just like a struct or an enum. It can
also have class members, marked class. Both static and class members are inherited
by subclasses.

Static methods vs. class methods
The chief difference between static and class methods, from the programmer’s point
of view, is that a static method cannot be overridden; it is as if static were a synonym
for class final.

Here, I’ll use a static method to express what dogs say:

class Dog {
 static func whatDogsSay() -> String {
 return "woof"
 }
 func bark() {
 print(Dog.whatDogsSay())
 }
}

A subclass now inherits whatDogsSay, but can’t override it. No subclass of Dog may
contain any implementation of a class method or a static method whatDogsSay with
this same signature.

Now I’ll use a class method to express what dogs say:

class Dog {
 class func whatDogsSay() -> String {
 return "woof"
 }
 func bark() {
 print(Dog.whatDogsSay())
 }
}

A subclass inherits whatDogsSay, and can override it, either as a class method or as a
static method:

class NoisyDog : Dog {
 override class func whatDogsSay() -> String {
 return "WOOF"
 }
}

Classes | 173

Static properties vs. class properties
The difference between static and class properties is similar to the difference between
static and class methods, but with an additional, rather dramatic qualification: a static
property can be stored, but a class property must be a computed property.

Here, I’ll use a static class property to express what dogs say:

class Dog {
 static var whatDogsSay = "woof"
 func bark() {
 print(Dog.whatDogsSay)
 }
}

A subclass inherits whatDogsSay, but can’t override it; no subclass of Dog can declare
a class or static property whatDogsSay.

Now I’ll use a class property to express what dogs say. It cannot be a stored property,
so I’ll have to use a computed property instead:

class Dog {
 class var whatDogsSay : String {
 return "woof"
 }
 func bark() {
 print(Dog.whatDogsSay)
 }
}

A subclass inherits whatDogsSay and can override it either as a class property or as a
static property. But the rule about property overrides not being stored is still in force,
even if the override is a static property:

class NoisyDog : Dog {
 override static var whatDogsSay : String {
 return "WOOF"
 }
}

Polymorphism
When a computer language has a hierarchy of types and subtypes, it must resolve the
question of what such a hierarchy means for the relationship between the type of an
object and the declared type of a reference to that object. Swift obeys the principles of
polymorphism. In my view, it is polymorphism that turns an object-based language
into a full-fledged object-oriented language. We may summarize Swift’s polymor‐
phism principles:

174 | Chapter 4: Object Types

Substitution
Wherever a certain type of object is expected, the actual object may be a subtype
of that type.

Internal identity
An object’s real type is a matter of its internal nature, regardless of how that
object is referred to.

To see what these principles mean in practice, imagine we have a Dog class, along
with its subclass, NoisyDog:

class Dog {
}
class NoisyDog : Dog {
}
let d : Dog = NoisyDog()

In that code:

• The substitution rule says that the last line is legal: we can assign a NoisyDog
instance to a reference, d, that is typed as Dog.

• The internal identity rule says that, under the hood, even though d is typed as
Dog, the instance that it refers to is a NoisyDog.

You may be asking: How is the internal identity rule manifested? If a reference to a
NoisyDog is typed as Dog, in what sense is this “really” a NoisyDog? To illustrate,
let’s examine what happens when a subclass overrides an inherited method. I’ll
redefine Dog and NoisyDog to demonstrate:

class Dog {
 func bark() {
 print("woof")
 }
}
class NoisyDog : Dog {
 override func bark() {
 for _ in 1...3 {
 super.bark()
 }
 }
}

Now consider the following code:

func tellToBark(_ d:Dog) {
 d.bark()
}
var nd = NoisyDog()
tellToBark(nd) // what will happen??????

Polymorphism | 175

That code is legal, because, by the substitution principle, we can pass nd, typed as
NoisyDog, where a Dog is expected. Now, inside the tellToBark function, d is typed
as Dog. How will it react to being told to bark? On the one hand, d is typed as Dog,
and a Dog barks by saying "woof" once. On the other hand, in our code, when tell-
ToBark is called, what is really passed is a NoisyDog instance, and a NoisyDog barks
by saying "woof" three times. What will happen? Let’s find out:

func tellToBark(_ d:Dog) {
 d.bark()
}
var nd = NoisyDog()
tellToBark(nd) // woof woof woof

The result is "woof woof woof". The internal identity rule says that what matters
when a message is sent is not how the recipient of that message is typed through this
or that reference, but what that recipient actually is. What arrives inside tellToBark
is a NoisyDog, regardless of the type of variable that holds it; thus, the bark message
causes this object to say "woof" three times.

Here’s another important consequence of polymorphism — the meaning of the key‐
word self. Its meaning depends upon the type of the actual instance — even if the
word self appears in a superclass’s code. For example:

class Dog {
 func bark() {
 print("woof")
 }
 func speak() {
 self.bark()
 }
}
class NoisyDog : Dog {
 override func bark() {
 for _ in 1...3 {
 super.bark()
 }
 }
}

What happens when we tell a NoisyDog to speak? The speak method is declared in
Dog, the superclass — not in NoisyDog. The speak method calls the bark method. It
does this by way of the keyword self. (I could have omitted the explicit reference to
self here, but self would still be involved implicitly, so I’m not cheating by making
self explicit.) There’s a bark method in Dog, and an override of the bark method in
NoisyDog. Which bark method will be called? Let’s find out:

let nd = NoisyDog()
nd.speak() // woof woof woof

176 | Chapter 4: Object Types

The word self is encountered within the Dog class’s implementation of speak. But
what matters is not where the word self appears but what it means. It means this
instance. And the internal identity principle tells us that this instance is a NoisyDog!
Thus, it is NoisyDog’s override of bark that is called when Dog’s speak says
self.bark().

Polymorphism applies to Optional types in the same way that it applies to the type of
thing wrapped by the Optional. Suppose we have a reference typed as an Optional
wrapping a Dog. You already know that you can assign a Dog to it. Well, you can also
assign a NoisyDog, or an Optional wrapping a NoisyDog, and the underlying wrap‐
ped object will maintain its integrity:

var d : Dog?
d = Dog()
d = NoisyDog()
d = Optional(NoisyDog())

(The applicability of polymorphism to Optionals derives from a special dispensation
of the Swift language: Optionals are covariant. I’ll talk more about that later in this
chapter.)

Thanks to polymorphism, you can take advantage of subclasses to add power and
customization to existing classes. This is important particularly in the world of iOS
programming, where most of the classes are defined by Cocoa and don’t belong to
you. The UIViewController class, for example, is defined by Cocoa; it has lots of
built-in methods that Cocoa will call, and these methods perform various important
tasks — but in a generic way. In real life, you’ll make a UIViewController subclass,
and you’ll override those methods to do the tasks appropriate to your particular app.
When you do that:

• It won’t bother Cocoa in the slightest, because (substitution principle) wherever
Cocoa expects to receive or to be talking to a UIViewController, it will accept
without question an instance of your UIViewController subclass.

• The substituted UIViewController subclass will also work as expected, because
(internal identity principle) whenever Cocoa calls one of those UIViewController
methods on your subclass, it is your subclass’s override that will be called, and
wherever a UIViewController method refers to self, that will mean your sub‐
class.

I’ll talk more about subclassing Cocoa classes in Chapter 10.

Polymorphism | 177

Polymorphism is cool, but in the grand scheme of things it is also relatively slow.
It requires dynamic dispatch, meaning that the compiler can’t perform certain
optimizations, and that the runtime has to think about what a message to a class
instance means. You can reduce the need for dynamic dispatch by declaring a
class or a class member final or private. Or use a struct, if appropriate; structs
don’t need dynamic dispatch.

Casting
Here’s a conundrum. The Swift compiler, with its strict typing, imposes severe
restrictions on what messages can be sent to an object reference. The messages that
the compiler will permit to be sent to an object reference depend upon the reference’s
declared type. But the internal identity principle of polymorphism says that, under
the hood, an object may have a real type that is different from its reference’s declared
type. Such an object may be capable of receiving certain messages, but the compiler
won’t permit us to send them.

To illustrate the problem, let’s give NoisyDog a method that Dog doesn’t have:

class Dog {
 func bark() {
 print("woof")
 }
}
class NoisyDog : Dog {
 override func bark() {
 super.bark(); super.bark()
 }
 func beQuiet() {
 self.bark()
 }
}

In that code, we configure a NoisyDog so that we can tell it to beQuiet. Now look at
what happens when we try to tell an object typed as Dog to be quiet:

func tellToHush(_ d:Dog) {
 d.beQuiet() // compile error
}
let nd = NoisyDog()
tellToHush(nd)

Our code doesn’t compile. We can’t send the beQuiet message to the reference d
inside the function body, because it is typed as Dog — and a Dog has no beQuiet
method. But there is a certain irony here: for once, we happen to know more than the
compiler does — namely, that this object is in fact a NoisyDog and does have a
beQuiet method! Our code would run correctly — because d really is a NoisyDog —
if only we could get our code to compile in the first place. We need a way to say to the

178 | Chapter 4: Object Types

compiler, “Look, compiler, just trust me: this thing is going to turn out to be a Noisy‐
Dog when the program actually runs, so let me send it this message.”

There is in fact a way to do this — casting. To cast, you use a form of the keyword as
followed by the name of the type you claim something really is.

Casting Down
Swift will not let you cast just any old type to any old other type — you can’t cast a
String to an Int — but it will let you cast a superclass to a subclass. This is called
casting down. When you cast down, the form of the keyword as that you use is as!
with an exclamation mark. The exclamation mark reminds you that you are forcing
the compiler to do something it would rather not do:

func tellToHush(_ d:Dog) {
 (d as! NoisyDog).beQuiet()
}
let nd = NoisyDog()
tellToHush(nd)

That code compiles, and works. A useful way to rewrite the example is like this:

func tellToHush(_ d:Dog) {
 let d = d as! NoisyDog
 d.beQuiet()
 // ... other NoisyDog messages to d can go here ...
}
let nd = NoisyDog()
tellToHush(nd)

The reason that way of rewriting the code is useful is in case we have other NoisyDog
messages to send to this object. Instead of casting every time we want to send a mes‐
sage to it, we cast the object once to its internal identity type, and assign it to a vari‐
able. Now that variable’s type — inferred, in this case, from the cast — is the internal
identity type, and we can send multiple messages to the variable.

Type Testing and Casting Down Safely
A moment ago, I said that the as! operator’s exclamation mark reminds you that you
are forcing the compiler’s hand. It also serves as a warning: your code can now crash!
The reason is that you might be lying to the compiler. Casting down is a way of tell‐
ing the compiler to relax its strict type checking and to let you call the shots. If you
use casting to make a false claim, the compiler may permit it, but you will crash when
the app runs:

Casting | 179

func tellToHush(_ d:Dog) {
 let d = d as! NoisyDog // crash
 d.beQuiet()
}
let d = Dog()
tellToHush(d)

In that code, we told the compiler that this object would turn out to be a NoisyDog,
and the compiler obediently took its hands off and allowed us to send the beQuiet
message to it. But in fact, this object was a Dog when our code ran, and so we ulti‐
mately crashed when the cast failed because this object was not a NoisyDog.

To prevent yourself from lying accidentally, you can test the type of an instance at
runtime. One way to do that is with the keyword is. You can use is in a condition; if
the condition passes, then cast, in the knowledge that your cast is safe:

func tellToHush(_ d:Dog) {
 if d is NoisyDog {
 let d = d as! NoisyDog
 d.beQuiet()
 }
}

The result is that we won’t cast d to a NoisyDog unless it really is a NoisyDog.

An alternative way to solve the same problem is to use Swift’s as? operator. This casts
down, but with the option of failure; therefore what it casts to is (you guessed it) an
Optional — and now we are on familiar ground, because we know how to deal safely
with an Optional:

func tellToHush(_ d:Dog) {
 let d = d as? NoisyDog // an Optional wrapping a NoisyDog
 if d != nil {
 d!.beQuiet()
 }
}

That doesn’t look much cleaner or shorter than our previous approach. But remem‐
ber that we can safely send a message to an Optional by optionally unwrapping the
Optional:

func tellToHush(_ d:Dog) {
 let d = d as? NoisyDog // an Optional wrapping a NoisyDog
 d?.beQuiet()
}

Or, as a one-liner:

func tellToHush(_ d:Dog) {
 (d as? NoisyDog)?.beQuiet()
}

180 | Chapter 4: Object Types

First we use the as? operator to obtain an Optional wrapping a NoisyDog. Then we
optionally unwrap that Optional and send a message to it. If the original d wasn’t a
NoisyDog, the Optional will be nil and it won’t be unwrapped and no message will
be sent.

Type Testing and Casting Optionals
The is, as!, and as? operators work with Optionals in the same way that the equality
comparison operators do (Chapter 3): they are automatically applied to the object
wrapped by the Optional.

Let’s start with is. Consider an Optional d ostensibly wrapping a Dog (that is, d is a
Dog? object). It might, in actual fact, be wrapping either a Dog or a NoisyDog. To
find out which it is, you might be tempted to use is. But can you? After all, an
Optional is neither a Dog nor a NoisyDog — it’s an Optional! Nevertheless, Swift
knows what you mean; when the thing on the left side of is is an Optional, Swift pre‐
tends that it’s the value wrapped in the Optional. This works just as you would hope:

let d : Dog? = NoisyDog()
if d is NoisyDog { // it is!

When using is with an Optional, the test fails in good order if the Optional is nil.
Our test really does two things: it checks whether the Optional is nil, and if it is not,
it then checks whether the wrapped value is the type we specify.

What about casting? You can’t really cast an Optional to anything. Nevertheless,
Swift knows what you mean; you can use the as! operator with an Optional. When
the thing on the left side of as! is an Optional, Swift treats it as the wrapped type.
Moreover, the consequence of applying the as! operator is that two things happen:
Swift unwraps first, and then casts. This code works, because d is unwrapped to give
us d2, which is a NoisyDog:

let d : Dog? = NoisyDog()
let d2 = d as! NoisyDog
d2.beQuiet()

That code, however, is not safe. You shouldn’t cast like that, without testing first,
unless you are very sure of your ground. If d were nil, you’d crash in the second line
because you’re trying to unwrap a nil Optional. And if d were a Dog, not a Noisy‐
Dog, you’d still crash in the second line when the cast fails. That’s why there’s also an
as? operator, which is safe — but yields an Optional:

let d : Dog? = NoisyDog()
let d2 = d as? NoisyDog
d2?.beQuiet()

Casting | 181

In that code, we use as? to cast down from an Optional wrapping a Dog (d) to an
Optional wrapping a NoisyDog (d2). The operation is safe, twice. If d is nil, d2 will
be nil, safely. If d is not nil but wraps a Dog, not a NoisyDog, the cast will fail, and
d2 will be nil, safely. If d wraps a NoisyDog, d2 wraps a NoisyDog. In the last line, we
unwrap d2 and send it a NoisyDog message — safely.

Bridging to Objective-C
Another way you’ll use casting is during a value interchange between Swift and
Objective-C when two types are equivalent. For example, you can cast a Swift String
to a Cocoa NSString, and vice versa. That’s not because one is a subclass of the other,
but because they are bridged to one another; in a very real sense, they are the same
type. When you cast from String to NSString, you’re not casting down, and what
you’re doing is not dangerous, so you use the as operator, with no exclamation mark
or question mark.

In general, to cross the bridge from a Swift type to a bridged Objective-C type, you
will need to cast explicitly (except in the case of a string literal):

let s : NSString = "howdy" // string literal to NSString
let s2 = "howdy"
let s3 : NSString = s2 as NSString // String to NSString
let i : NSNumber = 1 as NSNumber // Int to NSNumber

That sort of code, however, is rather artificial. In real life, you won’t be casting all that
often, because the Cocoa API will present itself to you in terms of Swift types. This is
legal with no cast:

let name = "MyNib" // Swift String
let vc = ViewController(nibName:name, bundle:nil)

The UIViewController class comes from Cocoa, and its nibName property is an
Objective-C NSString — not a Swift String. But you don’t have to help the Swift
String name across the bridge by casting, because, in the Swift world, nibName: is
typed as a Swift String (actually, an Optional wrapping a String). The bridge, in effect,
is crossed later.

Similarly, no cast is required here:

let ud = UserDefaults.standard
let s = "howdy"
ud.set(s, forKey:"greeting")

You don’t have to help the Swift String s across the bridge by casting, because the
first argument of set(_:forKey:) is typed as a Swift type, namely Any (actually, an
Optional wrapping Any) — and any Swift type can be used, without casting, where
an Any is expected. I’ll talk more about Any later in this chapter.

182 | Chapter 4: Object Types

Coming back the other way, it is possible that you’ll receive from Objective-C a value
about whose real underlying type Swift has no information. In that case, you’ll proba‐
bly want to cast explicitly to the underlying type — and now you are casting down,
with all that that implies. Here’s what happens when we go to retrieve the "howdy"
that we put into UserDefaults in the previous example:

let ud = UserDefaults.standard
let test = ud.object(forKey:"greeting") as! String

When we call ud.object(forKey:), Swift has no type information; the result is an
Any (actually, an Optional wrapping Any). But we know that this particular call
should yield a string — because that’s what we put in to begin with. So we can force-
cast this value down to a String — and it works. However, if ud.object(for-
Key:"greeting") were not a string (or if it were nil), we’d crash. If you’re not sure of
your ground, use is or as? to be safe.

Type References
This section talks about the ways in which Swift can refer to the type of an object,
other than saying the bare type literally.

From Instance to Type
Sometimes, what you’ve got is an instance, and you want to know its type. This might
be for no other reason than to log its type to the console, for the sake of information
or debugging; or you might need to use the type as a value, as I’ll explain later.

For this purpose, you can use the global type(of:) function:

let d : Dog = NoisyDog()
print(type(of:d)) // NoisyDog

As you would expect, the identity principle applies. We are not asking how d, the
variable, is typed; we’re asking what sort of object the instance referred to by d really
is. It’s typed as Dog, but it’s a NoisyDog instance.

From self to Type
It is particularly important for an instance to be able to refer to its own type. Quite
commonly, this is in order to send a message to that type. For instance, suppose an
instance wants to send a class message to its class. In an earlier example, a Dog
instance method fetched a Dog class property by sending a message to the Dog type,
literally using the word Dog:

Type References | 183

class Dog {
 class var whatDogsSay : String {
 return "woof"
 }
 func bark() {
 print(Dog.whatDogsSay) // woof
 }
}

The expression Dog.whatDogsSay seems clumsy and inflexible. Why should we hard-
code into Dog a knowledge of what type it is? It has a type; it should just know what it
is. We can refer to the current type — the type of self — using the keyword Self
(with a capital letter):

class Dog {
 class var whatDogsSay : String {
 return "woof"
 }
 func bark() {
 print(Self.whatDogsSay) // woof
 }
}

Similarly, we wrote a Filter enum earlier in this chapter that accessed its static all-
Cases by saying Filter.allCases. We can say Self.allCases instead, and I prefer
to do so; it’s prettier.

Saying Self instead of a type name isn’t just prettier; it’s more powerful, because
Self, like self, obeys polymorphism. Here are Dog and its subclass, NoisyDog:

class Dog {
 class var whatDogsSay : String {
 return "woof"
 }
 func bark() {
 print(Self.whatDogsSay)
 }
}
class NoisyDog : Dog {
 override class var whatDogsSay : String {
 return "woof woof woof"
 }
}

Now watch what happens:

let nd = NoisyDog()
nd.bark() // woof woof woof

If we tell a NoisyDog instance to bark, it says "woof woof woof". The reason is that
Self means, “The type that this object actually is, right now.” We send the bark mes‐
sage to a NoisyDog instance. The bark implementation refers to Self; even though

184 | Chapter 4: Object Types

the bark implementation is inherited from Dog, Self means the type of this instance,
which is a NoisyDog, and so Self is the NoisyDog class, and it is NoisyDog’s version
of whatDogsSay that is fetched.

(This use of Self was introduced in Swift 5.1. Before that, you had to say
type(of:self).)

Another important use of polymorphic Self is as a return type. To show why this is
valuable, I’ll introduce the notion of a factory method.

Suppose our Dog class has a name instance property, and its only initializer is
init(name:). Let’s give our Dog class a class method makeAndName. We want this
class method to create and return a named Dog of whatever class we send the make-
AndName message to. If we say Dog.makeAndName(), we should get a Dog. If we say
NoisyDog.makeAndName(), we should get a NoisyDog. Well, we know how to do that;
just initialize polymorphic Self. It works in a class method just as it works in an
instance method:

class Dog {
 var name : String
 init(name:String) {
 self.name = name
 }
 class func makeAndName() -> Dog {
 let d = Self(name:"Fido") // compile error
 return d
 }
}
class NoisyDog : Dog {
}

However, there’s a problem: that code doesn’t compile. The reason is that the com‐
piler is in doubt as to whether the init(name:) initializer is implemented by every
possible subtype of Dog. To reassure it, we must declare that initializer with the
required keyword:

class Dog {
 var name : String
 required init(name:String) { // *
 self.name = name
 }
 class func makeAndName() -> Dog {
 let d = Self(name:"Fido")
 return d
 }
}
class NoisyDog : Dog {
}

Type References | 185

I promised earlier that I’d tell you why you might need to declare an initializer as
required; now I’m fulfilling that promise! The required designation reassures the
compiler; every subclass of Dog must inherit or reimplement init(name:), so it’s legal
to call init(name:) message on a type reference that might refer to Dog or some sub‐
class of Dog.

So now our code compiles, and we can call our function:

let d = Dog.makeAndName() // d is a Dog named Fido
let d2 = NoisyDog.makeAndName() // d2 is a NoisyDog named Fido

That code works as expected. But now there’s another problem. Although d2 is in fact
a NoisyDog, it is typed as a Dog. That’s because our makeAndName class method is
declared as returning a Dog. That isn’t what we want to declare. We want to declare
that this method returns an instance of the same type as the class to which the make-
AndName message was originally sent. In other words, we need a polymorphic type
declaration! That type is Self once again:

class Dog {
 var name : String
 required init(name:String) {
 self.name = name
 }
 class func makeAndName() -> Self { // *
 let d = Self(name:"Fido")
 return d
 }
}
class NoisyDog : Dog {
}

The Self type is used as a return type in a method declaration to mean “an instance
of whatever type this is at runtime.” So when we call NoisyDog.makeAndName() we get
a NoisyDog typed as NoisyDog.

Self also works for instance method declarations. Therefore, we can write an
instance method version of our factory method. Here, we start with a Dog or a Noisy‐
Dog and tell it to have a puppy of the same type as itself:

class Dog {
 var name : String
 required init(name:String) {
 self.name = name
 }
 func havePuppy(name:String) -> Self {
 return Self(name:name)
 }
}
class NoisyDog : Dog {
}

186 | Chapter 4: Object Types

And here’s some code to test it:

let d = Dog(name:"Fido")
let d2 = d.havePuppy(name:"Fido Junior")
let nd = NoisyDog(name:"Rover")
let nd2 = nd.havePuppy(name:"Rover Junior")

As expected, d2 is a Dog, but nd2 is a NoisyDog typed as NoisyDog.

Type as Value
In some situations, you may want to treat an object type as a value. That is legal. An
object type is itself an object, of a sort; it’s what Swift calls a metatype. So an object
type can be assigned to a variable or passed as a parameter:

• To declare that an object type is acceptable — as when declaring the type of a
variable or parameter — use dot-notation with the name of the type and the key‐
word Type.

• To use an object type as a value — as when assigning a type to a variable or pass‐
ing it as a parameter — hand the object to type(of:), or use dot-notation with
the name of the type and the keyword self. (In the latter case, the name of the
type might be Self, in which case you’ll be saying Self.self!)

Here’s a function dogTypeExpecter that accepts a Dog type as its parameter:

func dogTypeExpecter(_ whattype:Dog.Type) {
}

And here’s an example of calling that function:

dogTypeExpecter(Dog.self)

Or you could call it like this:

let d = Dog()
dogTypeExpecter(type(of:d))

The substitution principle applies, so you could call dogTypeExpecter like this:

dogTypeExpecter(NoisyDog.self)

Or like this:

let nd = NoisyDog()
dogTypeExpecter(type(of:nd))

To illustrate more practically, I’ll rewrite our Dog factory method as a global factory
function that will accept a Dog type as a parameter and will create an instance from
that type. You can use a variable reference to a type (a metatype) to instantiate that
type, but you can’t just append parentheses to a variable reference:

Type References | 187

func dogMakerAndNamer(_ whattype:Dog.Type) -> Dog {
 let d = whattype(name:"Fido") // compile error
 return d
}

Instead, you must explicitly send the reference an init(...) message:

func dogMakerAndNamer(_ whattype:Dog.Type) -> Dog {
 let d = whattype.init(name:"Fido")
 return d
}

And here’s how to call our function:

let d = dogMakerAndNamer(Dog.self) // d is a Dog named Fido
let d2 = dogMakerAndNamer(NoisyDog.self) // d2 is a NoisyDog named Fido

Unfortunately, the global factory function dogMakerAndNamer, displays the same
problem we had before — it returns an object typed as Dog, even if the underlying
instance is in fact a NoisyDog. We can’t return Self to solve the problem here,
because there’s no type for it to refer to. Swift does have a solution, however — gener‐
ics. I’ll discuss generic functions later in this chapter.

Summary of Type Terminology
All this terminology can get a bit confusing, so here’s a quick summary:

type(of:)

Applied to an object: the polymorphic (internal) type of the object, regardless of
how a reference is typed.

Self

In a method body, or in a method declaration when specifying the return type,
this type or this instance’s type, polymorphically.

.Type

Appended to a type in a type declaration to specify that the type itself (or a sub‐
type) is expected.

.self

Sent to a type to generate a metatype, suitable for passing where a type (.Type) is
expected.

Comparing Types
Type references can be compared to one another. On the right side of an == compari‐
son, you can use the name of a type with .self; on the right side of an is compari‐
son, you can use the name of a type with .Type. The difference, as you might expect,
is that == tests for absolutely identical types, whereas is permits subtypes.

188 | Chapter 4: Object Types

In this artificial example, if the parameter whattype is Dog.self, both equality and
typology are true; if whattype is NoisyDog.self, equality is false but typology is
still true:

func dogTypeExpecter(_ whattype:Dog.Type) {
 let equality = whattype == Dog.self
 let typology = whattype is Dog.Type
}

In that example, whattype might be replaced on the left side of the comparisons by
the result of a call to type(of:) (or by a type name qualified by .self, though that
would be pointless); and Dog.self might be replaced on the right side of the == com‐
parison by whattype or the result of a call to type(of:). But neither whattype nor
type(of:) can appear on the right side of an is comparison; is requires a literal type
as its second operand.

In real life, however, comparing type references is a very rare thing to do. Passing
metatypes around is not Swifty, and comparing metatypes is really not Swifty. In gen‐
eral, if you find yourself talking like that, you should probably think of another way
of doing whatever it is you’re trying to do.

Protocols
A protocol is a way of expressing commonalities between otherwise unrelated types.
For example, a Bee object and a Bird object might have features in common by virtue
of the fact that both a bee and a bird can fly. Thus, it might be useful to define a Flier
type. The question is: In what sense can both Bee and Bird be Fliers?

One possibility might be class inheritance. If Bee and Bird are both classes, Flier
could be the superclass of both Bee and Bird. However, there may be other reasons
why Flier can’t be the superclass of both Bee and Bird. A Bee is an Insect; a Bird isn’t.
Yet they both have the power of flight — independently. We need a type that cuts
across the class hierarchy somehow, tying remote classes together.

Moreover, what if Bee and Bird are not both classes? In Swift, that’s a real possibility.
Important and powerful objects can be structs instead of classes. But there is no hier‐
archy of superstructs and substructs! How can a Bee struct and a Bird struct both be
Fliers?

Swift solves this problem through the use of protocols. Protocols are tremendously
important in Swift; the Swift header defines over 60 protocols! Moreover, Objective-
C has protocols as well, and Cocoa makes heavy use of protocols; Swift protocols cor‐
respond roughly to Objective-C protocols, and can interchange with them.

A protocol is an object type, but there are no protocol objects — you can’t instantiate
a protocol. A protocol declaration is just a lightweight list of properties and methods.

Protocols | 189

The properties have no values, and the methods have no code! The idea is that a
“real” object type can formally declare that it belongs to a protocol type; this is called
adopting the protocol. An object type that adopts a protocol is promising to imple‐
ment the properties and methods listed by the protocol. And it must keep that
promise! This is called conforming to the protocol.

Let’s say that being a Flier consists of no more than implementing a fly method.
Then a Flier protocol could specify that there must be a fly method; to do so, it lists
the fly method with no function body, like this:

protocol Flier {
 func fly()
}

Any type — an enum, a struct, a class, or even another protocol — can then adopt
this protocol. To do so, it lists the protocol after a colon after its name in its declara‐
tion. (If the adopter is a class with a superclass, the protocol comes after a comma
after the superclass specification.)

Let’s say Bird is a struct. Then it can adopt Flier like this:

struct Bird : Flier {
} // compile error

So far, so good. But that code won’t compile. The Bird struct has promised to imple‐
ment the features listed in the Flier protocol. Now it must keep that promise! The fly
method is the only requirement of the Flier protocol. To satisfy that requirement, I’ll
just give Bird an empty fly method:

protocol Flier {
 func fly()
}
struct Bird : Flier {
 func fly() {
 }
}

That’s all there is to it. We’ve defined a protocol, and we’ve made a struct adopt and
conform to that protocol. Of course, in real life you’ll probably want to make the
adopter’s implementation of the protocol’s methods do something; but the protocol
says nothing about that.

A protocol can also declare a method and provide its implementation, thanks to
protocol extensions, which I’ll discuss later in this chapter.

190 | Chapter 4: Object Types

Why Protocols?
Perhaps at this point you’re wondering: So what? If we wanted a Bird to know how to
fly, why didn’t we just give Bird a fly method without adopting any protocol? What
difference does the protocol make?

The answer has to do with types. A protocol, such as our Flier, is a type. Therefore, I
can use Flier as a type when declaring the type of a variable or a function parameter:

func tellToFly(_ f:Flier) {
 f.fly()
}

Protocols thus give us another way of expressing the notion of type and subtype —
and polymorphism applies. By the substitution principle, a Flier here could be an
instance of any object type, as long as it adopts the Flier protocol. It might be a Bird, it
might be something else; we don’t care. If it adopts the Flier protocol, it can be passed
where a Flier is expected; moreover, it must have a fly method, because that’s exactly
what it means to adopt the Flier protocol! Therefore we can confidently send the fly
message to this object, and the compiler lets us do that.

The converse, however, is not true: an object with a fly method is not automatically a
Flier. It isn’t enough to obey the requirements of a protocol; the object type must for‐
mally adopt the protocol. This code won’t compile:

func tellToFly(_ f:Flier) {
 f.fly()
}
struct Bee {
 func fly() {
 }
}
let b = Bee()
tellToFly(b) // compile error

A Bee can be sent the fly message, qua Bee. But tellToFly doesn’t take a Bee param‐
eter; it takes a Flier parameter. Formally, a Bee is not a Flier. To make a Bee a Flier,
just declare formally that Bee adopts the Flier protocol! This code does compile:

func tellToFly(_ f:Flier) {
 f.fly()
}
struct Bee : Flier {
 func fly() {
 }
}
let b = Bee()
tellToFly(b)

Protocols | 191

Adopting a Library Protocol
Enough of birds and bees; we’re ready for a real-life example! As I’ve already said, the
Swift standard library is chock full of protocols already. Let’s make one of our own
object types adopt one and watch the powers of that protocol spring to life for us.

The CustomStringConvertible protocol requires that we implement a description
String property. If we do that, a wonderful thing happens: when an instance of this
type is used in string interpolation or with print (or the po command in the console,
or in the String initializer init(describing:)), its description property value is
used automatically to represent it.

Recall the Filter enum, from earlier in this chapter. I’ll add a description property to
it:

enum Filter : String {
 case albums = "Albums"
 case playlists = "Playlists"
 case podcasts = "Podcasts"
 case books = "Audiobooks"
 var description : String { return self.rawValue }
}

But that isn’t enough, in and of itself, to give Filter the power of the CustomString‐
Convertible protocol; to do that, we also need to adopt the CustomStringConvertible
protocol formally. There is already a colon and a type in the Filter declaration, so an
adopted protocol comes after a comma:

enum Filter : String, CustomStringConvertible {
 case albums = "Albums"
 case playlists = "Playlists"
 case podcasts = "Podcasts"
 case books = "Audiobooks"
 var description : String { return self.rawValue }
}

We have now made Filter formally adopt the CustomStringConvertible protocol. The
CustomStringConvertible protocol requires that we implement a description String
property; we do implement a description String property, so our code compiles.
Now we can interpolate a Filter into a string, or hand it over to print, or coerce it to
a String, and its description will be used automatically:

let type = Filter.albums
print("It is \(type)") // It is Albums
print(type) // Albums
let s = String(describing:type) // Albums

Behold the power of protocols. You can give any object type the power of string con‐
version in exactly the same way.

192 | Chapter 4: Object Types

Note that a type can adopt more than one protocol! The built-in Double type adopts
CustomStringConvertible, Hashable, Strideable, and several other built-in protocols.
To declare adoption of multiple protocols, list them separated by a comma after the
protocol name and colon in the declaration (after the raw value type or superclass
type if there is one):

struct MyType : CustomStringConvertible, TextOutputStreamable, Strideable {
 // ...
}

(Of course, that code won’t compile unless I also declare, in MyType, any required
properties and methods, so that MyType actually conforms to those protocols.)

Protocol Type Testing and Casting
The operators for mediating between an object’s declared type and its real type work
when the declared type is a protocol type. Given a protocol Flier that is adopted by
both Bird and Bee, we can use the is operator to test whether a particular Flier is in
fact a Bird:

func isBird(_ f:Flier) -> Bool {
 return f is Bird
}

Similarly, as! and as? can be used to cast an object declared as a protocol type down
to its actual type. This is important to be able to do, because the adopting object will
typically be able to receive messages that the protocol can’t receive. Let’s say that a
Bird can get a worm:

struct Bird : Flier {
 func fly() {
 }
 func getWorm() {
 }
}

A Bird can fly qua Flier, but it can getWorm only qua Bird. You can’t tell just any old
Flier to get a worm:

func tellGetWorm(_ f:Flier) {
 f.getWorm() // compile error
}

But if this Flier is a Bird, clearly it can get a worm. That is exactly what casting is all
about:

func tellGetWorm(f:Flier) {
 (f as? Bird)?.getWorm()
}

Protocols | 193

Declaring a Protocol
Protocol declaration can take place only at the top level of a file. To declare a proto‐
col, use the keyword protocol followed by the name of the protocol (which should
start with a capital letter, as this is a type). Then come curly braces which may con‐
tain declarations for any of the following:

Properties
A property declaration in a protocol consists of var (not let), the property
name, a colon, its type, and curly braces containing the word get or the words
get set. In the former case, the adopter’s implementation of this property can
be writable, while in the latter case, it must be: the adopter may not implement a
get set property as a read-only computed property or as a constant (let) stored
property.

To declare a static/class property, precede it with the keyword static. A class
adopter is free to implement this as a class property.

Methods
A method declaration in a protocol is a function declaration without a function
body; it has no curly braces and no code. Any object function type is legal,
including init and subscript. (The syntax for declaring a subscript in a proto‐
col is the same as the syntax for declaring a subscript in an object type, except
that the curly braces will contain get or get set.)

To declare a static/class method, precede it with the keyword static. A class
adopter is free to implement this as a class method.

To permit an enum or struct adopter to declare a method mutating, declare it
mutating in the protocol. An adopter cannot add mutating if the protocol lacks
it, but the adopter may omit mutating if the protocol has it.

A protocol can itself adopt one or more protocols; the syntax is just as you would
expect — a colon after the protocol’s name in the declaration, followed by a comma-
separated list of the protocols it adopts. In effect, this gives you a way to create an
entire secondary hierarchy of types! The Swift headers make heavy use of this.

A protocol that adopts another protocol may repeat the contents of the adopted pro‐
tocol’s curly braces, for clarity; but it doesn’t have to, as this repetition is implicit. An
object type that adopts a protocol must satisfy the requirements of this protocol and
all protocols that the protocol adopts.

Protocol Composition
If the only purpose of a protocol is to combine other protocols by adopting all of
them, without adding any new requirements, you can avoid formally declaring the

194 | Chapter 4: Object Types

protocol in the first place by specifying the protocol combination on the fly. To do so,
join the protocol names with &. This is called protocol composition:

func f(_ x: CustomStringConvertible & CustomDebugStringConvertible) {
}

That is a function declaration with a parameter whose type is specified as being some
object type that adopts both the CustomStringConvertible protocol and the Custom‐
DebugStringConvertible protocol.

A type can also be specified as a composite of a class type and one or more protocols.
A case in point might look something like this:

protocol MyViewProtocol {
 func doSomethingReallyCool()
}
class ViewController: UIViewController {
 var v: (UIView & MyViewProtocol)?
 func test() {
 self.v?.doSomethingReallyCool() // a MyViewProtocol requirement
 self.v?.backgroundColor = .red // a UIView property
 }
}

To be assigned to ViewController’s v property, an object would need to be an
instance of a UIView subclass that is also an adopter of MyViewProtocol. In this way,
we guarantee to the compiler that both UIView messages and MyViewProtocol mes‐
sages can be sent to a ViewController’s v; otherwise, we’d have to type v as a
MyViewProtocol and then cast down to UIView in order to send it UIView messages,
even if we knew that v would in fact always be a UIView.

There’s another way to accomplish the same thing; we can declare MyViewProtocol
itself in such a way that it can be adopted only by UIView, as I shall now explain.

Class Protocols
A protocol declaration may include the name of a class after the colon. This limits the
types capable of adopting this protocol to that class or its subclasses:

protocol MyViewProtocol : UIView {
 func doSomethingReallyCool()
}
class ViewController: UIViewController {
 var v: MyViewProtocol? // and therefore a UIView
 func test() {
 self.v?.doSomethingReallyCool() // a MyViewProtocol requirement
 self.v?.backgroundColor = .red // a UIView property
 }
}

Protocols | 195

Here, MyViewProtocol can be adopted only by UIView or a UIView subclass. This
means that an object typed as MyViewProtocol can be sent both MyViewProtocol
messages and UIView messages, because ex hypothesi a MyViewProtocol adopter
must be a UIView.

To specify that a protocol can be adopted only by some class (and not a struct or
enum) without specifying what class it must be, use the protocol type AnyObject,
which every class type adopts (as I’ll explain later):

protocol MyClassProtocol : AnyObject {
 // ...
}

An alternative notation is a where clause before the curly braces. I have not yet talked
about where clauses or the use of Self to signify the protocol’s adopter, but I’ll show
you the notation now anyway:

protocol MyViewProtocol where Self:UIView {
 func doSomethingReallyCool()
}
protocol MyClassProtocol where Self:AnyObject {
 // ...
}

Instead of AnyObject after the colon following the name of the protocol, you can use
the keyword class. That notation predates Swift 5 and may eventually be deprecated,
but it is still legal as of this writing:

protocol MyClassProtocol : class {
 // ...
}

A valuable byproduct of declaring a class protocol is that the resulting type can take
advantage of special memory management features that apply only to classes. I
haven’t discussed memory management yet, but I’ll give an example anyway (and I’ll
repeat it when I talk about memory management in Chapter 5):

protocol SecondViewControllerDelegate : AnyObject {
 func accept(data:Any)
}
class SecondViewController : UIViewController {
 weak var delegate : SecondViewControllerDelegate?
 // ...
}

The keyword weak marks the delegate property as having special memory manage‐
ment that applies only to class instances. The delegate property is typed as a proto‐
col, and a protocol might be adopted by a struct or an enum type. So to satisfy the
compiler that this object will in fact be a class instance, and not a struct or enum
instance, the protocol is declared as a class protocol.

196 | Chapter 4: Object Types

An @objc protocol is a class protocol, as class protocols are the only kind of pro‐
tocol Objective-C understands.

Optional Protocol Members
In Objective-C, a protocol member can be declared optional, meaning that this mem‐
ber doesn’t have to be implemented by the adopter, but it may be. Swift allows
optional protocol members, but this feature is solely for compatibility with Objective-
C, and in fact is implemented by Objective-C; it isn’t really a Swift feature at all.
Therefore, everything about an optional protocol member must be explicitly exposed
to Objective-C. The protocol declaration must be marked with the @objc attribute,
and an optional member’s declaration must be marked with the keywords @objc
optional:

@objc protocol Flier {
 @objc optional var song : String {get}
 @objc optional func sing()
}

(I’ll explain in Chapter 10 how Objective-C implements optional protocol members.)

Many Cocoa protocols have optional members. For example, your iOS app will have
an app delegate class that adopts the UIApplicationDelegate protocol; this protocol
has many methods, all of them optional. That fact, however, will have no effect on
how you implement those methods; either you implement a method or you don’t.
(I’ll talk more about Cocoa protocols in Chapter 10, and about delegate protocols in
Chapter 11.)

An optional member is not guaranteed to be implemented by the adopter, so Swift
doesn’t know whether it’s safe to send a Flier either the song message or the sing
message. How Swift solves that problem depends on whether this is an optional prop‐
erty or an optional method.

Optional properties

In the case of an optional property like song, Swift solves the problem by wrapping its
fetched value in an Optional. If the Flier adopter doesn’t implement the property, the
result is nil and no harm done:

@objc protocol Flier {
 @objc optional var song : String {get}
}
let f : Flier = Bird()
let s = f.song // s is an Optional wrapping a String

Protocols | 197

This is one of those rare situations where you can wind up with a double-wrapped
Optional. If the value of the optional property song were itself a String?, then fetch‐
ing its value from a Flier would yield a String??.

A curious limitation is that if a protocol declares an optional property {get set},
you can’t set that property. If f is a Flier and song is declared {get set}, you can’t set
f.song:

@objc protocol Flier {
 @objc optional var song : String? {get set}
}
let f : Flier = Bird()
f.song = "tweet tweet" // compile error

The error message claims that f is immutable, which is blatantly false. This is evi‐
dently a bug in the language. A workaround (pointed out to me by Jordan Rose) is to
use key path notation (which I’ll explain in Chapter 5):

let f : Flier = Bird()
f[keyPath: \.song] = "tweet tweet"

Optional methods

In the case of an optional method like sing, things are more elaborate. If the method
is not implemented, we must not be permitted to call it in the first place. To handle
this situation, the method is typed as an Optional version of its declared type. To
send the sing message to a Flier, therefore, you must unwrap it. What you are
unwrapping is not the result of the method call; it’s the method itself. In the method
call, the unwrap operator must appear before the parentheses!

The safe approach is to unwrap an optional method optionally, with a question mark:

@objc protocol Flier {
 @objc optional func sing()
}
let f : Flier = Bird()
f.sing?()

The effect is to send the sing message to f only if this Flier adopter implements sing.
If this Flier adopter doesn’t implement sing, nothing happens. You could have force-
unwrapped the call — f.sing!() — but then your app would crash if the adopter
doesn’t implement sing.

If an optional method returns a value, that value is wrapped in an Optional as well:

@objc protocol Flier {
 @objc optional func sing() -> String
}

If we now call sing?() on a Flier, the result is an Optional wrapping a String:

198 | Chapter 4: Object Types

let f : Flier = Bird()
let s = f.sing?() // s is an Optional wrapping a String

If we force-unwrap the call — f.sing!() — the result is either a String (if the adopter
implements sing) or a crash (if it doesn’t).

Implicitly Required Initializers
Suppose that a protocol declares an initializer. And suppose that a class adopts this
protocol. By the terms of this protocol, this class and any subclass it may ever have
must implement this initializer. Therefore, the class not only must implement the ini‐
tializer, but also must mark it as required. An initializer declared in a protocol is
implicitly required, and the class is forced to make that requirement explicit.

Consider this simple example, which won’t compile:

protocol Flier {
 init()
}
class Bird : Flier {
 init() {} // compile error
}

That code generates an elaborate but perfectly informative compile error message:
“Initializer requirement init() can only be satisfied by a required initializer in non-
final class Bird.” To compile our code, we must designate our initializer as required:

protocol Flier {
 init()
}
class Bird : Flier {
 required init() {}
}

Alternatively, if Bird were marked final, there would be no need to mark its init as
required, because this would mean that Bird cannot have any subclasses — guaran‐
teeing that the problem will never arise in the first place.

In the above code, Bird is not marked as final, and its init is marked as required.
This, as I’ve already explained, means that any subclass of Bird that implements any
designated initializers — and thus loses initializer inheritance — must implement the
required initializer and mark it required as well.

That fact is responsible for a strange and annoying feature of real-life iOS program‐
ming with Swift. Let’s say you subclass the built-in Cocoa class UIViewController —
something that you are extremely likely to do. And let’s say you give your subclass an
initializer — something that you are also extremely likely to do:

Protocols | 199

class ViewController: UIViewController {
 init() {
 super.init(nibName:"ViewController", bundle:nil) // compile error
 }
}

That code won’t compile. The compile error says: “required initializer init(coder:)
must be provided by subclass of UIViewController.”

What’s going on here? It turns out that UIViewController adopts a protocol called
NSCoding. And this protocol requires an initializer init(coder:). None of that is
your doing; UIViewController and NSCoding are declared by Cocoa, not by you. But
that doesn’t matter! This is the same situation I was just describing. Your UIView‐
Controller subclass must either inherit init(coder:) or must explicitly implement it
and mark it required. Well, your subclass has implemented a designated initializer of
its own — thus cutting off initializer inheritance. Therefore it must implement
init(coder:) and mark it required.

But that makes no sense if you are not expecting init(coder:) ever to be called on
your UIViewController subclass. You are being forced to write an initializer for
which you can provide no meaningful functionality! Fortunately, Xcode’s Fix-it fea‐
ture will offer to write the initializer for you, like this:

required init?(coder: NSCoder) {
 fatalError("init(coder:) has not been implemented")
}

That code satisfies the compiler. (I’ll explain in Chapter 5 why it’s a legal initializer
even though it doesn’t fulfill an initializer’s contract.) It also deliberately crashes if it
is ever called — which is fine, because ex hypothesi you don’t expect it ever to be
called.

If, on the other hand, you do have functionality for this initializer, you will delete the
fatalError line and insert that functionality in its place. A minimum meaningful
implementation would be to call super.init(coder:coder), but of course if your
class has properties that need initialization, you will need to initialize them first.

Not only UIViewController but lots of built-in Cocoa classes adopt NSCoding. You
will encounter this problem if you subclass any of those classes and implement your
own initializer. It’s just something you’ll have to get used to.

Expressible by Literal
One of the wonderful things about Swift is that so many of its features, rather than
being built-in and accomplished by magic, are exposed in the Swift header. Literals
are a case in point. The reason you can say 5 to express an Int whose value is 5,
instead of formally initializing Int by saying Int(5), is not because of magic (or at

200 | Chapter 4: Object Types

least, not entirely because of magic). It’s because Int adopts a protocol, Expressible‐
ByIntegerLiteral. Not only Int literals, but all literals work this way. The following
protocols are declared in the Swift header:

• ExpressibleByNilLiteral
• ExpressibleByBooleanLiteral
• ExpressibleByIntegerLiteral
• ExpressibleByFloatLiteral
• ExpressibleByStringLiteral
• ExpressibleByExtendedGraphemeClusterLiteral
• ExpressibleByUnicodeScalarLiteral
• ExpressibleByArrayLiteral
• ExpressibleByDictionaryLiteral

Your own object type can adopt an expressible by literal protocol as well. This means
that a literal can appear where an instance of your object type is expected! Here we
declare a Nest type that contains some number of eggs (its eggCount):

struct Nest : ExpressibleByIntegerLiteral {
 var eggCount : Int = 0
 init() {}
 init(integerLiteral val: Int) {
 self.eggCount = val
 }
}

Because Nest adopts ExpressibleByIntegerLiteral, we can pass an Int where a Nest is
expected, and our init(integerLiteral:) will be called automatically, causing a
new Nest object with the specified eggCount to come into existence at that moment:

func reportEggs(_ nest:Nest) {
 print("this nest contains \(nest.eggCount) eggs")
}
reportEggs(4) // this nest contains 4 eggs

Generics
A generic is a sort of placeholder for a type, into which an actual type will be slotted
later. In particular, there are situations where you want to say that a certain same type
is to be used in several places, without specifying precisely what type this is to be.
Swift generics allow you to say that, without sacrificing or evading Swift’s fundamen‐
tal strict typing.

A motivating case in point arose earlier in this chapter, when we wrote a global fac‐
tory function for dogs:

Generics | 201

func dogMakerAndNamer(_ whattype:Dog.Type) -> Dog {
 let d = whattype.init(name:"Fido")
 return d
}

That works, but it isn’t quite what we’d like to say. This function’s declared return
type is Dog. So if we are passed a Dog subclass such as NoisyDog as the parameter,
we will instantiate that type (which is good) but then return that instance typed as
Dog (which is bad). Instead, we’d like the type declared as the return type after the
arrow operator to be the same type that we were passed as a parameter in the first line
and that we instantiated in the second line — whatever that type may be. Generics
permit us to say that:

func dogMakerAndNamer<WhatType:Dog>(_:WhatType.Type) -> WhatType {
 let d = WhatType.init(name:"Fido")
 return d
}

I haven’t yet explained the syntax, but you can see the point. The angle brackets
(<WhatType:Dog>) declare that the type WhatType is a generic type — a placeholder
— and that it stands for Dog or for some subclass thereof. Then, WhatType is used in
the course of the declaration, in three places:

As the type passed in as parameter

As the type instantiated in the function body

As the declared type of the returned instance (after the arrow operator)

The generic function specifies that WhatType is the same type throughout, without
having to specify exactly what type it is (beyond the fact that it is Dog or a Dog
subclass).

However, Swift has strict typing, so in order to let us call this function, the compiler
needs to know the real type that WhatType stands for. But in fact it knows this from
looking at the call itself! For example:

let dog = dogMakerAndNamer(NoisyDog.self)

In that call, we pass NoisyDog.self as the parameter. That tells the compiler what
WhatType is! It is NoisyDog. In effect, the compiler now substitutes NoisyDog for
WhatType throughout the generic, like this (pseudocode):

func dogMakerAndNamer(_:NoisyDog.Type) -> NoisyDog {
 let d = NoisyDog.init(name:"Fido")
 return d
}

That process of substitution is called resolving (or specializing) the generic. The type
in question is unambiguously clear for this call to our function, and the compiler is

202 | Chapter 4: Object Types

satisfied. And this resolution extends beyond the generic itself. Now that the com‐
piler knows that this call to our function will return a NoisyDog instance, it can type
the variable initialized to the result of the call as a NoisyDog by inference:

let dog = dogMakerAndNamer(NoisyDog.self) // dog is typed as NoisyDog

Let’s consider another case in point: an Optional. Any type of value can be wrapped
up in an Optional. Yet there is no doubt as to what type is wrapped up in a particular
Optional. How can this be? It’s because Optional is a generic! Here’s how an Optional
works.

I have already said that an Optional is an enum, with two cases: .none and .some. If
an Optional’s case is .some, it has an associated value — the value that is wrapped by
this Optional. But what is the type of that associated value? On the one hand, one
wants to say that it can be any type; that, after all, is why anything can be wrapped up
in an Optional. On the other hand, any particular Optional can wrap a value only of
some one specific known type. That sounds like a generic! The declaration for the
Optional enum in the Swift header starts like this:

enum Optional<Wrapped> : ExpressibleByNilLiteral {
 case none
 case some(Wrapped)
 init(_ some: Wrapped)
 // ...
}

The angle-bracket syntax <Wrapped> declares that Wrapped is a placeholder. The rest
of the enum declaration proceeds to use the placeholder. Besides the case .none,
there’s also a case .some, which has an associated value — of type Wrapped. And
there’s an initializer, which takes a parameter — of type Wrapped. Thus, the type
with which we are initialized — whatever type that may be — is type Wrapped, and
therefore is the type associated with the .some case.

And how will this placeholder be resolved? Well, when an Optional is created, it will
be initialized with an actual value of some definite type:

let s = Optional("howdy")

We’re calling init(_ some: Wrapped), so "howdy" is being supplied here as a Wrap‐
ped instance, resolving the generic as String. The compiler now knows that Wrapped
is String throughout this particular Optional<Wrapped>; the declaration for this par‐
ticular Optional looks, in the compiler’s mind, like this (pseudocode):

enum Optional<String> {
 case none
 case some(String)
 init(_ some: String)
 // ...
}

Generics | 203

That is the pseudocode declaration of an Optional whose Wrapped placeholder has
been replaced everywhere with the String type. We can summarize this by saying that
s is an Optional<String>. In fact, that is legal syntax! We can create the same
Optional like this:

let s : Optional<String> = "howdy"

Generic Declarations
Here’s a list of places where generics, in one form or another, can be declared in
Swift:

Generic protocol with Self
In a protocol body, use of the keyword Self turns the protocol into a generic.
Self here is a placeholder meaning the type of the adopter. Here’s a Flier protocol
that declares a method that takes a Self parameter:

protocol Flier {
 func flockTogetherWith(_ f:Self)
}

That means that if the Bird object type were to adopt the Flier protocol, its imple‐
mentation of flockTogetherWith would need to declare its parameter as a Bird.

Generic protocol with associated type
A protocol can declare an associated type using an associatedtype statement.
This turns the protocol into a generic; the associated type name is a placeholder:

protocol Flier {
 associatedtype Other
 func flockTogetherWith(_ f:Other)
 func mateWith(_ f:Other)
}

An adopter will declare a particular type at some point where the generic uses the
associated type name, resolving the placeholder:

struct Bird : Flier {
 func flockTogetherWith(_ f:Bird) {}
 func mateWith(_ f:Bird) {}
}

The Bird struct adopts the Flier protocol and declares the parameter of flock-
TogetherWith as a Bird. That declaration resolves Other to Bird for this particu‐
lar adopter — and therefore Bird must declare the parameter for mateWith as a
Bird as well.

204 | Chapter 4: Object Types

Generic functions
A function declaration can use a generic placeholder type for any of its parame‐
ters, for its return type, and within its body. The placeholder name is declared in
angle brackets after the function name:

func takeAndReturnSameThing<T> (_ t:T) -> T {
 print(T.self)
 return t
}

The caller will use a particular type at some point where the placeholder appears
in the function declaration, resolving the placeholder:

let thing = takeAndReturnSameThing("howdy")

Here, the type of the argument "howdy" used in the call resolves T to String;
therefore this call to takeAndReturnSameThing will also return a String, and the
variable capturing the result, thing, is inferred to String as well.

Generic object types
An object type declaration can use a generic placeholder type anywhere within its
curly braces. The placeholder name is declared in angle brackets after the object
type name:

struct HolderOfTwoSameThings<T> {
 var firstThing : T
 var secondThing : T
 init(thingOne:T, thingTwo:T) {
 self.firstThing = thingOne
 self.secondThing = thingTwo
 }
}

A user of this object type will use a particular type at some point where the place‐
holder appears in the object type declaration, resolving the placeholder:

let holder = HolderOfTwoSameThings(thingOne:"howdy", thingTwo:"getLost")

Here, the type of the thingOne argument, "howdy", used in the initializer call,
resolves T to String; therefore thingTwo must also be a String, and the properties
firstThing and secondThing are Strings as well.

The angle brackets that declare a placeholder may declare multiple placeholders, sep‐
arated by a comma:

func flockTwoTogether<T, U>(_ f1:T, _ f2:U) {}

The two parameters of flockTwoTogether can now be resolved to two different types
(though they do not have to be different).

Generics | 205

Inside a generic’s code, the generic placeholder is a type reference standing for the
resolved type, which can be interrogated using type reference comparison, as
described earlier in this chapter:

func takeAndReturnSameThing<T> (_ t:T) -> T {
 if T.self is String.Type {
 // ...
 }
 return t
}

If we call takeAndReturnSameThing("howdy"), the condition will be true. That sort of
thing, however, is unusual; a generic whose behavior depends on interrogation of the
placeholder type may need to be rewritten in some other way.

Contradictory Resolution Is Impossible
Because the use of a generic resolves the generic, a resolution that would contradict
itself is ruled out at compile time. This is one of the most important features of gener‐
ics: contradictory resolution is impossible as a consequence of Swift’s strict typing. A
generic placeholder must be resolved consistently throughout the generic, or it can‐
not be resolved at all.

To illustrate, I’ll return to an earlier example:

func dogMakerAndNamer<WhatType:Dog>(_:WhatType.Type) -> WhatType {
 let d = WhatType.init(name:"Fido")
 return d
}

Now consider this code:

let d : NoisyDog = dogMakerAndNamer(Dog.self)

That code makes no sense. On the one hand, the parameter Dog.self resolves What‐
Type to Dog. On the other hand, the explicit type of the result d resolves WhatType
to NoisyDog. Those two resolutions contradict one another. The compiler knows
this, and stops you in your tracks:

let d : NoisyDog = dogMakerAndNamer(Dog.self) // compile error

Similarly, recall this example:

protocol Flier {
 associatedtype Other
 func flockTogetherWith(_ f:Other)
 func mateWith(_ f:Other)
}

The placeholder Other may be resolved to any type, but it must be the same type.
This is a legal adoption of Flier:

206 | Chapter 4: Object Types

struct Bird : Flier {
 func flockTogetherWith(_ f: String) {}
 func mateWith(_ f:String) {}
}

But this is not:

struct Bird : Flier { // compile error
 func flockTogetherWith(_ f: String) {}
 func mateWith(_ f:Int) {}
}

The compiler stops you, complaining that Bird does not conform to Flier.

Type Constraints
A generic declaration can limit the types that are eligible to be used for resolving a
particular placeholder. This is called a type constraint.

The simplest form of type constraint is to put a colon and a type name after the
placeholder’s name when it first appears. The type name after the colon can be a class
name or a protocol name:

Class name
A class name means that the type must be this class or a subclass of this class.

Protocol name
A protocol name means that the type must be an adopter of this protocol.

For a protocol associated type, the type constraint appears as part of the
associatedtype declaration:

protocol Flier {
 func fly()
}
protocol Flocker {
 associatedtype Other : Flier // *
 func flockTogetherWith(f:Other)
}
struct Bird : Flocker, Flier {
 func fly() {}
 func flockTogetherWith(f:Bird) {}
}

In that example, Flocker’s associated type Other is constrained to be an adopter of
Flier. Bird is an adopter of Flier; therefore it can also adopt Flocker while specifying
that the parameter type in its flockTogetherWith implementation is Bird.

Observe that we could not have achieved the same effect without the associated type,
by declaring Flocker like this:

Generics | 207

protocol Flocker {
 func flockTogetherWith(f:Flier)
}

That’s not the same thing! That requires that a Flocker adopter specify the parameter
for flockTogetherWith as Flier. We would then have had to write Bird like this:

struct Bird : Flocker, Flier {
 func fly() {}
 func flockTogetherWith(f:Flier) {}
}

The constrained associated type, on the other hand, requires that a Flocker adopter
specify the parameter for flockTogetherWith as some Flier adopter (such as Bird).

For a generic function or a generic object type, the type constraint appears in the
angle brackets. The global function func dogMakerAndNamer<WhatType:Dog>,
declared earlier in this chapter, is an example; Dog is a class, so the constraint says
that WhatType must be Dog or a Dog subclass. Here’s another example, using a pro‐
tocol as a constraint:

func flockTwoTogether<T:Flier>(_ f1:T, _ f2:T) {}

In that example, Flier is a protocol, so the constraint says that T must be a Flier
adopter. If Bird and Insect both adopt Flier, this flockTwoTogether function can be
called with two Bird arguments or with two Insect arguments — but not with a Bird
and an Insect, because T is just one placeholder, signifying one Flier adopter type.
And you can’t call flockTwoTogether with two String parameters, because a String is
not a Flier.

A type constraint on a placeholder is often used to reassure the compiler that some
message can be sent to an instance of the placeholder type. Let’s say we want to
implement a function myMin that returns the smallest from a list of the same type.
Here’s a promising implementation as a generic function, but there’s one problem —
it doesn’t compile:

func myMin<T>(_ things:T...) -> T {
 var minimum = things.first!
 for item in things.dropFirst() {
 if item < minimum { // compile error
 minimum = item
 }
 }
 return minimum
}

The problem is the comparison item < minimum. How does the compiler know that
the type T, the type of item and minimum, will be resolved to a type that can in fact be
compared using the less-than operator in this way? It doesn’t, and that’s exactly why
it rejects that code. The solution is to promise the compiler that the resolved type of T

208 | Chapter 4: Object Types

will in fact work with the less-than operator. The way to do that, it turns out, is to
constrain T to Swift’s built-in Comparable protocol:

func myMin<T:Comparable>(_ things:T...) -> T {

Now myMin compiles, because it cannot be called except by resolving T to an object
type that adopts Comparable and hence can be compared with the less-than operator.
Naturally, built-in object types that you think should be comparable, such as Int,
Double, String, and Character, do in fact adopt the Comparable protocol! If you look
in the Swift headers, you’ll find that the built-in min global function is declared in just
this way, and for just this reason.

A generic protocol type can be used only as a type constraint. If you try to use it
in any other way, you’ll get a compile error. This restriction can be quite frustrat‐
ing. The standard way of circumventing it is called type erasure; for an excellent
discussion, see http://robnapier.net/erasure.

Explicit Specialization
In the generic examples so far, the placeholder’s type has been resolved mostly
through inference. But there’s another way to perform resolution: we can resolve the
type manually. This is called explicit specialization. In some situations, explicit spe‐
cialization is mandatory — namely, if the placeholder type cannot be resolved
through inference. There are two forms of explicit specialization:

Generic protocol with associated type
The adopter of a protocol can resolve an associated type manually through a type
alias defining the associated type as some explicit type:

protocol Flier {
 associatedtype Other
}
struct Bird : Flier {
 typealias Other = String
}

Generic object type
The user of a generic object type can resolve a placeholder type manually using
the same angle bracket syntax used to declare the generic in the first place, with
the type name in the angle brackets:

class Dog<T> {
 var name : T?
}
let d = Dog<String>()

Generics | 209

http://robnapier.net/erasure

You cannot explicitly specialize a generic function. One solution is to make your
generic function take a type parameter resolving the generic. That’s what I did in my
earlier dogMakerAndNamer example:

func dogMakerAndNamer<WhatType:Dog>(_:WhatType.Type) -> WhatType {
 let d = WhatType.init(name:"Fido")
 return d
}

The parameter to dogMakerAndNamer is never used within the function body, which is
why it has no name (just an underscore). It does, however, serve to resolve the
generic!

Another approach is not to use a generic function in the first place. Instead, declare a
generic object type wrapping a nongeneric function that uses the generic type’s place‐
holder. The generic type can be explicitly specialized, resolving the placeholder in the
function:

protocol Flier {
 init()
}
struct Bird : Flier {
 init() {}
}
struct FlierMaker<T:Flier> {
 static func makeFlier() -> T {
 return T()
 }
}
let f = FlierMaker<Bird>.makeFlier() // returns a Bird

When a class is generic, you can subclass it, provided you resolve the generic. You
can do this either through a matching generic subclass or by resolving the superclass
generic explicitly. Here’s a generic Dog:

class Dog<T> {
 func speak(_ what:T) {}
}

You can subclass it as a generic whose placeholder matches that of the superclass:

class NoisyDog<T> : Dog<T> {}

That’s legal because the resolution of the NoisyDog placeholder T will resolve the
Dog placeholder T. The alternative is to subclass an explicitly specialized Dog:

class NoisyDog : Dog<String> {}

In that case, a method override in the subclass can use the specialized type where the
superclass uses the generic:

210 | Chapter 4: Object Types

class NoisyDog : Dog<String> {
 override func speak(_ what:String) {}
}

Generic Invariance
In general, a generic type specialized to a subtype is not polymorphic with respect to
the same generic type specialized to a supertype. Suppose we have a simple generic
Wrapper struct along with a Cat class and its CalicoCat subclass:

struct Wrapper<T> {
}
class Cat {
}
class CalicoCat : Cat {
}

Then you can’t assign a Wrapper specialized to CalicoCat where a Wrapper special‐
ized to Cat is expected:

let w : Wrapper<Cat> = Wrapper<CalicoCat>() // compile error

It appears that polymorphism is failing here — but it isn’t. The two generic types,
Wrapper<Cat> and Wrapper<CalicoCat>, are not superclass and subclass. Rather, if
this assignment were possible, we would say that the types are covariant, meaning
that the polymorphic relationship between the specializations of the placeholders is
applied to the generic types themselves. Certain Swift built-in generic types are cova‐
riant; Optional is a clear example! But, frustratingly, covariance is not a general lan‐
guage feature; there’s no way for you to specify that your generic types should be
covariant.

One workaround is to have your generic placeholder constrained to a protocol, and
have your types adopt that protocol:

protocol Meower {
 func meow()
}
struct Wrapper<T:Meower> {
 let meower : T
}
class Cat : Meower {
 func meow() { print("meow") }
}
class CalicoCat : Cat {
}

Now it is legal to say:

let w : Wrapper<Cat> = Wrapper(meower:CalicoCat())

Generics | 211

Associated Type Chains
When a generic placeholder is constrained to a generic protocol with an associated
type, you can refer to the associated type using dot-notation: the placeholder name, a
dot, and the associated type name.

Here’s an example. Imagine that in a game program, soldiers and archers are enemies
of one another. I’ll express this by subsuming a Soldier struct and an Archer struct
under a Fighter protocol that has an Enemy associated type, which is itself con‐
strained to be a Fighter:

protocol Fighter {
 associatedtype Enemy : Fighter
}

I’ll resolve that associated type manually for both the Soldier and the Archer structs:

struct Soldier : Fighter {
 typealias Enemy = Archer
}
struct Archer : Fighter {
 typealias Enemy = Soldier
}

Now I’ll create a generic struct to express the opposing camps of these fighters:

struct Camp<T:Fighter> {
}

Now suppose that a camp may contain a spy from the opposing camp. What is the
type of that spy? Well, if this is a Soldier camp, it’s an Archer; and if it’s an Archer
camp, it’s a Soldier. More generally, since T is a Fighter, it’s the type of the Enemy of
this adopter of Fighter. I can express that as T.Enemy:

struct Camp<T:Fighter> {
 var spy : T.Enemy?
}

The result is that if, for a particular Camp, T is resolved to Soldier, T.Enemy means
Archer — and vice versa. We have created a correct and inviolable rule for the type
that a Camp’s spy must be. This won’t compile:

var c = Camp<Soldier>()
c.spy = Soldier() // compile error

We’ve tried to assign an object of the wrong type to this Camp’s spy property. But
this does compile:

var c = Camp<Soldier>()
c.spy = Archer()

A generic protocol might have an associated type which is constrained to a generic
protocol that also has an associated type. Therefore, longer chains of associated type

212 | Chapter 4: Object Types

names are possible. Let’s give each type of Fighter a characteristic weapon: a soldier
has a sword, while an archer has a bow. I’ll make a Sword struct and a Bow struct,
and I’ll unite them under a Wieldable protocol:

protocol Wieldable {
}
struct Sword : Wieldable {
}
struct Bow : Wieldable {
}

I’ll add a Weapon associated type to Fighter, which is constrained to be a Wieldable,
and once again I’ll resolve it manually for each type of Fighter:

protocol Fighter {
 associatedtype Enemy : Fighter
 associatedtype Weapon : Wieldable
}
struct Soldier : Fighter {
 typealias Weapon = Sword
 typealias Enemy = Archer
}
struct Archer : Fighter {
 typealias Weapon = Bow
 typealias Enemy = Soldier
}

Now let’s say that every Fighter has the ability to steal his enemy’s weapon. I’ll give
the Fighter generic protocol a steal(weapon:from:) method. How can the Fighter
generic protocol express the parameter types in a way that causes its adopter to
declare this method with the proper types?

The from: parameter type is this Fighter’s Enemy. We already know how to express
that: it’s the placeholder plus dot-notation with the associated type name. Here, the
placeholder is the adopter of this protocol — namely, Self. So the from: parameter
type is Self.Enemy. And what about the weapon: parameter type? That’s the Weapon
of that Enemy! So the weapon: parameter type is Self.Enemy.Weapon:

protocol Fighter {
 associatedtype Enemy : Fighter
 associatedtype Weapon : Wieldable
 func steal(weapon:Self.Enemy.Weapon, from:Self.Enemy)
}

(We could omit Self from that code, and it would compile and would mean the same
thing. But Self would still be the implicit start of the chain, and I think explicit Self
makes the meaning of the code clearer.)

The result is that the following declarations for Soldier and Archer correctly adopt
the Fighter protocol, and the compiler approves:

Generics | 213

struct Soldier : Fighter {
 typealias Weapon = Sword
 typealias Enemy = Archer
 func steal(weapon:Bow, from:Archer) {
 }
}
struct Archer : Fighter {
 typealias Weapon = Bow
 typealias Enemy = Soldier
 func steal(weapon:Sword, from:Soldier) {
 }
}

Where Clauses
The most flexible way to express a type constraint is to add a where clause. Before I
tell you what a where clause looks like, I’ll tell you where it goes:

• For a generic function, a where clause may appear after the signature declaration
(after the parameter list, following the arrow operator and return type if
included).

• For a generic type, a where clause may appear after the type declaration, before
the curly braces.

• For a generic protocol, a where clause may appear after the protocol declaration,
before the curly braces.

• For an associated type in a generic protocol, a where clause may appear at the
end of the associated type declaration.

Now let’s talk about the syntax of a where clause. It starts with the keyword where.
Then what? One possibility is a comma-separated list of additional constraints on an
already declared placeholder. You already know that we can constrain a placeholder
at the point of declaration, using a colon and a type (which might be a protocol
composition):

func flyAndWalk<T: Flier> (_ f:T) {}
func flyAndWalk2<T: Flier & Walker> (_ f:T) {}
func flyAndWalk3<T: Flier & Dog> (_ f:T) {}

Using a where clause, we can move those constraints out of the angle brackets. No
new functionality is gained, but the resulting notation is arguably neater:

func flyAndWalk<T> (_ f:T) where T: Flier {}
func flyAndWalk2<T> (_ f:T) where T: Flier & Walker {}
func flyAndWalk2a<T> (_ f:T) where T: Flier, T: Walker {}
func flyAndWalk3<T> (_ f:T) where T: Flier & Dog {}
func flyAndWalk3a<T> (_ f:T) where T: Flier, T: Dog {}

When a constraint on a placeholder is a generic protocol with an associated type, you
can use an associated type chain to impose additional constraints on the associated

214 | Chapter 4: Object Types

type. This pseudocode shows what I mean (I’ve omitted the content of the where
clause, to focus on what the where clause will be constraining):

protocol Flier {
 associatedtype Other
}
func flockTogether<T> (_ f:T) where T:Flier, T.Other /* ... */ {}

In that pseudocode, the placeholder T is constrained to be a Flier — and Flier is itself
a generic protocol, with an associated type Other. Therefore, whatever type resolves T
will resolve Other. We can proceed to constrain the types eligible to resolve T.Other
— and this, in turn, will further constrain the types eligible to resolve T.

Let’s fill in the blank in our pseudocode. What sort of restriction are we allowed to
impose here? One possibility is a colon expression, as for any type constraint:

protocol Flier {
 associatedtype Other
}
struct Bird : Flier {
 typealias Other = String
}
struct Insect : Flier {
 typealias Other = Bird
}
func flockTogether<T> (_ f:T) where T:Flier, T.Other:Equatable {}

Both Bird and Insect adopt Flier. The flockTogether function can be called with a
Bird argument, because a Bird’s Other associated type is resolved to String, which
adopts the built-in Equatable protocol. But flockTogether can’t be called with an
Insect argument, because an Insect’s Other associated type is resolved to Bird, which
doesn’t adopt the Equatable protocol:

flockTogether(Bird()) // okay
flockTogether(Insect()) // compile error

The other possibility is the equality operator == followed by a type or an associated
type chain, and the constrained type must then match it exactly:

protocol Flier {
 associatedtype Other
}
struct Bird : Flier {
 typealias Other = String
}
struct Insect : Flier {
 typealias Other = Int
}
func flockTwoTogether<T,U> (_ f1:T, _ f2:U)
 where T:Flier, U:Flier, T.Other == U.Other {}

Generics | 215

The flockTwoTogether function can be called with a Bird and a Bird, and it can be
called with an Insect and an Insect, but it can’t be called with an Insect and a Bird,
because they don’t resolve the Other associated type to the same type.

The Swift header makes extensive use of where clauses with an == operator, especially
as a way of restricting a sequence type. Take the String append(contentsOf:)
method, declared like this:

mutating func append<S>(contentsOf newElements: S)
 where S:Sequence, S.Element == Character

The Sequence protocol has an Element associated type, representing the type of the
sequence’s elements. This where clause means that a sequence of characters — but
not a sequence of something else, such as Int — can be concatenated to a String:

var s = "hello"
s.append(contentsOf: Array(" world")) // "hello world"
s.append(contentsOf: ["!" as Character, "?" as Character])

The Array append(contentsOf:) method is declared a little differently:

mutating func append<S>(contentsOf newElements: S)
 where S:Sequence, S.Element == Self.Element

An array is a sequence; its element type is its Element associated type. The where
clause means that you can append to an Array the elements of any sort of Sequence,
but only if they are the same kind of element as the elements of this array. If the array
consists of String elements, you can add more String elements to it, but you can’t add
Int elements.

Actually, a sequence’s Element associated type is just a kind of shorthand. In reality, a
sequence has an Iterator associated type, which is constrained to be an adopter of the
generic IteratorProtocol, which in turn has an associated type Element. So a
sequence’s element type is its Iterator.Element. But a generic protocol or its
associated type can have a where clause, and this can be used to reduce the length of
associated type chains:

protocol Sequence {
 associatedtype Iterator : IteratorProtocol
 associatedtype Element where Self.Element == Self.Iterator.Element
 // ...
}

As a result, wherever the Swift header would have to say Iterator.Element, it can
say simply Element instead.

216 | Chapter 4: Object Types

Extensions
An extension is a way of injecting your own code into an object type that has already
been declared elsewhere; you are extending an existing object type. You can extend
your own object types; you can also extend one of Swift’s object types or one of
Cocoa’s object types, in which case you are adding functionality to a type that doesn’t
belong to you!

Extension declaration can take place only at the top level of a file. To declare an
extension, put the keyword extension followed by the name of an existing object
type, then optionally a colon plus the names of any protocols you want to add to the
list of those adopted by this type, and finally curly braces containing the usual things
that go inside an object type declaration — with some restrictions:

• An extension can’t declare a stored property (but it can declare a computed
property).

• An extension of a class can’t declare a designated initializer or a deinitializer (but
it can declare a convenience initializer).

• An extension can’t override an existing member (but it can overload an existing
method), and a method declared in an extension can’t be overridden.

In my real programming life, I sometimes extend a built-in Swift or Cocoa type just
to inject some missing functionality by expressing it as a property or method.

For example, Cocoa’s Core Graphics framework has many useful functions associ‐
ated with the CGRect struct, and Swift already extends CGRect to add some helpful
properties and methods; but there’s no shortcut for getting the center point (a
CGPoint) of a CGRect, something that in practice is often needed. I extend CGRect
to give it a center property:

extension CGRect {
 var center : CGPoint {
 return CGPoint(x:self.midX, y:self.midY)
 }
}

String ranges, as we’ve already seen, are hard to construct, because they are a range of
String.Index rather than Int. We can extend String with methods that take an Int
index and a count, yielding a Swift Range; while we’re up, let’s permit a negative
index, as most modern languages do:

extension String {
 func range(_ start:Int, _ count:Int) -> Range<String.Index> {
 let i = self.index(start >= 0 ?
 self.startIndex :
 self.endIndex, offsetBy: start)

Extensions | 217

 let j = self.index(i, offsetBy: count)
 return i..<j
 }
}

An extension can declare a static or class member; this can be a good way to slot a
global function into an appropriate namespace. In one of my apps, I find myself fre‐
quently using a certain color (a UIColor). Instead of creating that color repeatedly, it
makes sense to encapsulate the instructions for generating it in a global function. But
instead of making that function completely global, I make it — appropriately enough
— a read-only static property of UIColor:

extension UIColor {
 static var myGolden : UIColor {
 return self.init(
 red:1.000, green:0.894, blue:0.541, alpha:0.900
)
 }
}

Now I can use that color throughout my code as UIColor.myGolden, parallel to built-
in class properties such as UIColor.red.

Extensions on one’s own object types can help to organize code. A frequently used
convention is to add an extension for each protocol the object type needs to adopt,
like this:

class ViewController: UIViewController {
 // ... UIViewController method overrides go here ...
}
extension ViewController : UIPopoverPresentationControllerDelegate {
 // ... UIPopoverPresentationControllerDelegate methods go here ...
}
extension ViewController : UIToolbarDelegate {
 // ... UIToolbarDelegate methods go here ...
}

An extension on your own object type can also be a way to spread your definition of
that object type over multiple files, if you feel that several shorter files are better than
one long file.

When you extend a Swift struct, a curious thing happens with initializers: it becomes
possible to declare an initializer and keep the implicit initializers:

struct Digit {
 var number : Int
}
extension Digit {
 init() {
 self.init(number:42)
 }
}

218 | Chapter 4: Object Types

Class Extensions and Overrides
The rules about class extensions and overrides are more complicated than I’ve stated.
A native Swift method in an extension can neither override nor be overridden, but
then Objective-C comes along with its own rules and messes everything up. Let’s say
we have a class Dog and its subclass NoisyDog:

• If we have an extension on Dog that declares a method, NoisyDog can override it
if the Dog extension method is exposed to Objective-C.

• If we have a method in Dog, an extension on NoisyDog can override it if Dog’s
method is exposed to Objective-C and marked dynamic.

Things are made even messier by the existence of modules; if there’s a class with a
method in a module, an extension on that class in another module can declare the
same method, not overriding but effectively replacing it. No doubt Apple will eventu‐
ally straighten all this out.

In that code, the explicit declaration of an initializer through an extension did not
cause us to lose the implicit memberwise initializer, as would have happened if we
had declared the same initializer inside the original struct declaration. Now we can
instantiate a Digit by calling the explicitly declared initializer — Digit() — or by
calling the implicit memberwise initializer — Digit(number:7).

Extending Protocols
When you extend a protocol, you can add methods and properties to the protocol,
just as for any object type. Unlike a protocol declaration, these methods and proper‐
ties are not mere requirements, to be fulfilled by the adopter of the protocol; they are
actual methods and properties, to be inherited by the adopter of the protocol:

protocol Flier {
}
extension Flier {
 func fly() {
 print("flap flap flap")
 }
}
struct Bird : Flier {
}

Observe that Bird can now adopt Flier without implementing the fly method. That’s
because the Flier protocol extension supplies the fly method! Bird inherits an imple‐
mentation of fly:

let b = Bird()
b.fly() // flap flap flap

Extensions | 219

Of course, an adopter can still provide its own implementation of a method inherited
from a protocol extension:

protocol Flier {
}
extension Flier {
 func fly() {
 print("flap flap flap")
 }
}
struct Insect : Flier {
 func fly() {
 print("whirr")
 }
}
let i = Insect()
i.fly() // whirr

But be warned: this kind of inheritance is not polymorphic. The adopter’s implemen‐
tation is not an override; it is merely another implementation. The internal identity
rule does not apply; it matters how a reference is typed:

let f : Flier = Insect()
f.fly() // flap flap flap (!!)

Even though f is internally an Insect (as we can discover with the is operator), the
fly message is being sent to an object reference typed as Flier, so it is Flier’s imple‐
mentation of the fly method that is called, not Insect’s implementation.

To get something that looks like polymorphic inheritance, we must also declare fly
as a requirement in the original protocol:

protocol Flier {
 func fly() // *
}
extension Flier {
 func fly() {
 print("flap flap flap")
 }
}
struct Insect : Flier {
 func fly() {
 print("whirr")
 }
}

Now an Insect maintains its internal integrity:

let f : Flier = Insect()
f.fly() // whirr

220 | Chapter 4: Object Types

Extending Generics
When you extend a generic type, the placeholder type names are visible to your
extension declaration. That’s good, because you might need to use them; but it can
make your code a little mystifying, because you seem to be using an undefined type
name out of the blue. It might be a good idea to add a comment, to remind yourself
what you’re up to:

class Dog<T> {
 var name : T?
}
extension Dog {
 func sayYourName() -> T? { // T? is the type of self.name
 return self.name
 }
}

A generic type extension declaration can include a where clause. Similar to a generic
constraint, this limits which resolvers of the generic can call the code injected by this
extension, and assures the compiler that your code is legal for those resolvers.

For instance, recall this example from earlier in this chapter:

func myMin<T:Comparable>(_ things:T...) -> T {
 var minimum = things.first!
 for item in things.dropFirst() {
 if item < minimum {
 minimum = item
 }
 }
 return minimum
}

That’s a global function. I’d prefer to inject it into Array as a method. I can do that
with an extension. Array is a generic struct whose placeholder type is called Element.
To make this work, I need somehow to bring along the Comparable type constraint
that makes this code legal; without it, as you remember, my use of the < operator
won’t compile. I can do that with a where clause on the extension:

extension Array where Element:Comparable {
 func myMin() -> Element? {
 var minimum = self.first
 for item in self.dropFirst() {
 if item < minimum! {
 minimum = item
 }
 }
 return minimum
 }
}

Extensions | 221

The where clause is a constraint guaranteeing that this array’s elements adopt Com‐
parable, so the compiler permits the use of the < operator — and it doesn’t permit the
myMin method to be called on an array whose elements don’t adopt Comparable. The
Swift standard library makes heavy use of that sort of thing, and in fact Sequence has
a min method declared like myMin.

New in Swift 5.3, the where clause can be applied to the method instead of the
extension:

extension Array {
 func myMin() -> Element? where Element:Comparable {
 // ...
 }
}

The advantages are primarily organizational. In Swift 5.2 and before, the only way for
a generic type to restrict a method to one or more constraints on the placeholder type
was to put the method into an extension with all of the constraints in the extension
declaration:

struct MyStruct<T> {
 // ...
}
extension MyStruct where T:Protocol1, T:Protocol2 {
 func f() {
 // ...
 }
}

In Swift 5.3, we can distribute the statement of the constraints in whatever way seems
clearest. We could write this:

extension MyStruct where T:Protocol1 {
 func f() where T:Protocol2 {
 // ...
 }
}

We could even forego the extension altogether:

struct MyStruct<T> {
 // ...
 func f() where T:Protocol1, T:Protocol2 {
 // ...
 }
}

An extension with a where clause can also be used to express conditional conformance
to a protocol. The idea is that a generic type should adopt a certain protocol only if
something is true of its placeholder type — and the extension then contains whatever
is needed to satisfy the protocol requirements when that’s the case.

222 | Chapter 4: Object Types

In the standard library, conditional conformance fills what used to be a serious hole
in the Swift language. For example, an Array can consist of Equatable elements, and
in that case it is possible to compare two arrays for equality:

let arr1 = [1,2,3]
let arr2 = [1,2,3]
if arr1 == arr2 { // ...

It’s clear what array equality should consist of: the two arrays should consist of the
same elements in the same order. The elements must be Equatable so as to guarantee
the meaningfulness of the notion “same elements.”

Ironically, however, there was, before Swift 4.1, no way to compare two arrays of
arrays:

let arr1 = [[1], [2], [3]]
let arr2 = [[1], [2], [3]]
let arr1 == arr2 { // compile error before Swift 4.1

That’s because there was no coherent way to make Array itself Equatable — because
there was no way to assert that Array should be Equatable only just in case its ele‐
ments are Equatable. That’s conditional conformance! Now that conditional con‐
formance exists, the standard library says:

extension Array : Equatable where Element : Equatable {
 // ...
}

And so comparing arrays of arrays becomes legal:

let arr1 = [[1], [2], [3]]
let arr2 = [[1], [2], [3]]
let arr1 == arr2 { // fine

Umbrella Types
Swift provides a few built-in types as general umbrella types, capable of embracing
multiple real types under a single heading.

Any
The Any type is the universal Swift umbrella type. Where an Any object is expected,
absolutely any object or function can be passed, without casting:

func anyExpecter(_ a:Any) {}
anyExpecter("howdy") // a struct instance
anyExpecter(String.self) // a struct type
anyExpecter(Dog()) // a class instance
anyExpecter(Dog.self) // a class type
anyExpecter(anyExpecter) // a function

Umbrella Types | 223

Going the other way, if you want to type an Any object as a more specific type, you
will generally have to cast down. Such a cast is legal for any specific object type or
function type. A forced cast isn’t safe, but you can easily make it safe, because you can
also test an Any object against any specific object type or function type. Here,
anything is typed as Any:

if anything is String {
 let s = anything as! String
 // ...
}

(In Chapter 5 I’ll introduce a more elegant syntax for casting down safely.)

The Any umbrella type is the general medium of interchange between Swift and the
Cocoa Objective-C APIs. When an Objective-C object type is nonspecific (id), it will
appear to Swift as Any. Commonly encountered examples are UserDefaults and key–
value coding (Chapter 10); these allow you to pass an object of indeterminate class
along with a string key name, and they allow you to retrieve an object of indetermi‐
nate class by a string key name. That object is typed, in Swift, as Any (or as an
Optional wrapping Any, so that it can be nil):

let ud = UserDefaults.standard
ud.set(Date(), forKey:"now") // Date to Any

The first parameter of UserDefaults set(_:forKey:) is typed as Any.

When a Swift object is assigned or passed to an Any that acts as a conduit to
Objective-C, it crosses the bridge to Objective-C. If the object’s type is not an
Objective-C type (a class derived from NSObject), it will be transformed in order to
cross the bridge. If this type is automatically bridged to an Objective-C class type, it
becomes that type; other types are boxed up in a way that allows them to survive the
journey into Objective-C’s world, even though Objective-C can’t deal with them
directly. (For full details, see Appendix A.)

To illustrate, suppose we have an Objective-C class Thing with a method take1id:,
declared like this:

- (void) take1id: (id) anid;

That appears to Swift as:

func take1id(_ anid: Any)

When we pass an object to take1Id(_:) as its parameter, it crosses the bridge:

let t = Thing()
t.take1id("howdy") // String to NSString
t.take1id(1) // Int to NSNumber
t.take1id(CGRect()) // CGRect to NSValue
t.take1id(Date()) // Date to NSDate
t.take1id(Bird()) // Bird (struct) to boxed type

224 | Chapter 4: Object Types

Coming back the other way, if Objective-C hands you an Any object, you will need to
cast it down to its underlying type in order to do anything useful with it:

let ud = UserDefaults.standard
let d = ud.object(forKey:"now")
if d is Date {
 let d = d as! Date
 // ...
}

The result returned from UserDefaults object(forKey:) is typed as Any — actually,
as an Optional wrapping an Any, because UserDefaults might need to return nil to
indicate that no object exists for that key. But you know that it’s supposed to be a
date, so you cast it down to Date.

AnyObject
AnyObject is an empty protocol with the special feature that all class types conform to
it automatically. Although Objective-C APIs present Objective-C id as Any in Swift,
Swift AnyObject is Objective-C id. AnyObject is useful primarily when you want to
take advantage of the behavior of Objective-C id, as I’ll demonstrate in a moment.

A class type can be assigned directly where an AnyObject is expected; to retrieve it as
its original type, you’ll need to cast down:

class Dog {
}
let d = Dog()
let anyo : AnyObject = d
let d2 = anyo as! Dog

Assigning a nonclass type to an AnyObject requires casting (with as). The bridge to
Objective-C is then crossed immediately, as I described for Any in the preceding
section:

let s = "howdy" as AnyObject // String to NSString to AnyObject
let i = 1 as AnyObject // Int to NSNumber to AnyObject
let r = CGRect() as AnyObject // CGRect to NSValue to AnyObject
let d = Date() as AnyObject // Date to NSDate to AnyObject
let b = Bird() as AnyObject // Bird (struct) to boxed type to AnyObject

Suppressing type checking

Because AnyObject is Objective-C id, it can be used, like Objective-C id, to suspend
the compiler’s judgment as to whether a certain message can be sent to an object.
Thus, you can send a message to an AnyObject without bothering to cast down to its
real type.

Umbrella Types | 225

You can’t send just any old message to an AnyObject; this is an Objective-C feature,
so the message must correspond to a class member that meets one of the following
criteria:

• It is a member of an Objective-C class.
• It is a member of your own Swift subclass of an Objective-C class.
• It is a member of your own Swift extension of an Objective-C class.
• It is a member of a Swift class or protocol marked @objc.

This feature is fundamentally parallel to optional protocol members, which I dis‐
cussed earlier in this chapter. Let’s start with two classes:

class Dog {
 @objc var noise : String = "woof"
 @objc func bark() -> String {
 return "woof"
 }
}
class Cat {}

The Dog property noise and the Dog method bark are marked @objc, so they are
visible as potential messages to be sent to an AnyObject. To prove it, I’ll type a Cat as
an AnyObject and send it one of those messages. Let’s start with the noise property:

let c : AnyObject = Cat()
let s = c.noise

That code, amazingly, compiles. Moreover, it doesn’t crash when the code runs! The
noise property has been typed as an Optional wrapping its original type. Here, that’s
an Optional wrapping a String. If the object typed as AnyObject doesn’t implement
noise, the result is nil and no harm done.

Now let’s try it with a method call:

let c : AnyObject = Cat()
let s = c.bark?()

Again, that code compiles and is safe. If the Object typed as AnyObject doesn’t
implement bark, no bark() call is performed; the method result type has been wrap‐
ped in an Optional, so s is typed as String? and has been set to nil. If the AnyObject
turns out to have a bark method (because it’s a Dog), the result is an Optional wrap‐
ping the returned String. If you call bark!() on the AnyObject instead, the result will
be a String, but you’ll crash if the AnyObject doesn’t implement bark. Unlike an
optional protocol member, you can even send the message with no unwrapping. This
is legal:

let c : AnyObject = Cat()
let s = c.bark()

226 | Chapter 4: Object Types

That’s just like force-unwrapping the call: the result is a String, but it’s possible to
crash.

Don’t make a habit of sending messages to an AnyObject; because it involves
dynamic lookup, it’s expensive at build time and expensive at runtime.

Object identity
Sometimes, what you want to know is not what type an object is, but whether an
object itself is the particular object you think it is. This problem can’t arise with a
value type, but it can arise with a reference type — in particular, with class instances.

Swift’s solution is the identity operator (===). Its operands are typed as AnyObject?,
meaning an object whose type is a class or an Optional whose wrapped type is a class;
it compares one object reference with another. This is not a comparison of values,
like the equality operator (==); you’re asking whether two object references refer to
one and the same object. There is also a negative version (!==) of the identity
operator.

A typical use case is that a class instance arrives from Cocoa, and you need to know
whether it is in fact a particular object to which you already have a reference. For
example, a Notification has an object property that helps identify the notification
(usually, it is the original sender of the notification). We can use === to test whether
this object is a certain object to which we already have a reference. However, object
is typed as Any (actually, as an Optional wrapping Any), so we must cast to Any‐
Object in order to take advantage of the identity operator:

@objc func changed(_ n:Notification) {
 let player = MPMusicPlayerController.applicationMusicPlayer
 if n.object as AnyObject === player {
 // ...
 }
}

AnyClass
AnyClass is the type of AnyObject. It corresponds to the Objective-C Class type. It
arises typically in declarations where a Cocoa API wants to say that a class is
expected. The UIView layerClass class property is declared, in its Swift translation,
like this:

class var layerClass : AnyClass {get}

That means that if you override this class property, you’ll implement your getter to
return a class (which will presumably be a CALayer subclass):

override class var layerClass : AnyClass { CATiledLayer.self }

Umbrella Types | 227

A reference to an AnyClass object behaves much like a reference to an AnyObject
object. You can send it any Objective-C message that Swift knows about — any
Objective-C class message. To demonstrate, once again I’ll start with two classes:

class Dog {
 @objc static var whatADogSays : String = "woof"
}
class Cat {}

Objective-C can see whatADogSays, and it sees it as a class property. Therefore you
can send whatADogSays to an AnyClass reference:

let c : AnyClass = Cat.self
let s = c.whatADogSays

Collection Types
Swift, in common with most modern computer languages, has built-in collection
types Array and Dictionary, along with a third type, Set. Array and Dictionary are
sufficiently important that the language accommodates them with some special
syntax.

Array
An array (Array, a struct) is an ordered collection of object instances (the elements of
the array) accessible by index number, where an index number is an Int numbered
from 0. If an array contains four elements, the first has index 0 and the last has index
3. A Swift array cannot be sparse: if there is an element with index 3, there is also an
element with index 2 and so on.

The salient feature of Swift arrays is their strict typing. Unlike some other computer
languages, a Swift array’s elements must be uniform — that is, the array must consist
solely of elements of the same definite type. Even an empty array must have a definite
element type, despite lacking elements at this moment. An array is itself typed in
accordance with its element type. Two arrays whose elements are of different types
are considered, themselves, to be of two different types: an array of Int elements has a
different type from an array of String elements.

If all this reminds you of Optionals, it should. Like Optional, Array is a generic. It is
declared as Array<Element>, where the placeholder Element is the type of a particu‐
lar array’s elements. And, like Optional types, Array types are covariant, meaning
that they behave polymorphically in accordance with their element types: if Noisy‐
Dog is a subclass of Dog, then an array of NoisyDog can be used where an array of
Dog is expected.

To state an Array type, then, you need to state its element type. You could explicitly
resolve the generic placeholder; an array of Int elements would be an Array<Int>.

228 | Chapter 4: Object Types

However, Swift offers syntactic sugar using square brackets around the name of the
element type, like this: [Int]. That’s the syntax you’ll use most of the time.

A literal array is represented as square brackets containing a list of its elements sepa‐
rated by a comma (and optional spaces): [1,2,3]. The literal for an empty array is
empty square brackets: [].

Array’s default initializer init(), called by appending empty parentheses to the
array’s type, yields an empty array of that type. You can create an empty array of Int
like this:

var arr = [Int]()

Alternatively, if a reference’s type is known in advance, the empty array [] can be
inferred to that type. So you can also create an empty array of Int like this:

var arr : [Int] = []

If you’re starting with a literal array containing elements, you won’t usually need to
declare the array’s type, because Swift will infer it by looking at the elements. Swift
will infer that [1,2,3] is an array of Int. If the array element types consist of a class
and its subclasses, like Dog and NoisyDog, Swift will infer the common superclass as
the array’s type. However, in some cases you will need to declare an array reference’s
type explicitly even while assigning a literal to that array:

let arr : [Any] = [1, "howdy"] // mixed bag
let arr2 : [Flier] = [Insect(), Bird()] // protocol adopters

If an array variable is declared and initialized to a literal with many elements, it’s
a good idea to declare the variable’s type explicitly. This saves the compiler from
having to examine the entire array to decide its type, and makes compilation
faster.

Array also has an initializer whose parameter is a sequence. This means that if a type
is a sequence, you can split an instance of it into the elements of an array. For
example:

• Array(1...3) generates the array of Int [1,2,3].
• Array("hey") generates the array of Character ["h","e","y"].
• Array(d), where d is a Dictionary, generates an array of tuples of the key–value

pairs of d.
Another Array initializer, init(repeating:count:), lets you populate an array with
the same value. In this example, I create an array of 100 Optional strings initialized to
nil:

let strings : [String?] = Array(repeating:nil, count:100)

Collection Types | 229

That’s the closest you can get in Swift to a sparse array; we have 100 slots, each of
which might or might not contain a string (and to start with, none of them do).

Beware of using init(repeating:count:) with a reference type! If Dog is a class, and
you say let dogs = Array(repeating:Dog(), count:3), you don’t have an array of
three Dogs; you have an array consisting of three references to one Dog. I’ll give a
workaround later.

Array casting and type testing
When you assign, pass, or cast an array of a certain type to another array type, you
are really operating on the individual elements of the array:

let arr : [Int?] = [1,2,3]

That code is actually syntactic sugar: assigning an array of Int where an array of
Optionals wrapping Int is expected constitutes a request that each individual Int in
the original array should be wrapped in an Optional. And that is exactly what
happens:

let arr : [Int?] = [1,2,3]
print(arr) // [Optional(1), Optional(2), Optional(3)]

Similarly, suppose we have a Dog class and its NoisyDog subclass; then this code is
legal:

let dog1 : Dog = NoisyDog()
let dog2 : Dog = NoisyDog()
let arr = [dog1, dog2]
let arr2 = arr as! [NoisyDog]

In the third line, we have an array of Dog. In the fourth line, we apparently cast this
array down to an array of NoisyDog — which really means that we cast each
individual Dog in the first array to a NoisyDog. We can crash when we do that, but
we won’t if each element of the first array really is a NoisyDog.

The as? operator will cast an array to an Optional wrapping an array, which will be
nil if the requested cast cannot be performed for each element individually:

let dog1 : Dog = NoisyDog()
let dog2 : Dog = NoisyDog()
let dog3 : Dog = Dog()
let arr = [dog1, dog2]
let arr2 = arr as? [NoisyDog] // Optional wrapping an array of NoisyDog
let arr3 = [dog2, dog3]
let arr4 = arr3 as? [NoisyDog] // nil

You can test each element of an array with the is operator by testing the array itself.
Given the array of Dog from the previous code, you can say:

if arr is [NoisyDog] { // ...

230 | Chapter 4: Object Types

That will be true if each element of the array is in fact a NoisyDog.

Array comparison
Array equality works just as you would expect: two arrays are equal if they contain
the same number of elements and all the elements are pairwise equal in order. Of
course, this presupposes that the notion “equal” is meaningful for these elements:

let i1 = 1
let i2 = 2
let i3 = 3
let arr : [Int] = [1,2,3]
if arr == [i1,i2,i3] { // they are equal!

Two arrays don’t have to be of the same type to be compared against one another for
equality, but the test won’t succeed unless they do in fact contain objects that are
equal to one another. Here, I compare a Dog array against a NoisyDog array; this is
legal if equatability is defined for two Dogs. (Dog might be an NSObject subclass; or
you might make Dog adopt Equatable, as I’ll explain in Chapter 5.) The two arrays
are in fact equal, because the dogs they contain are the same dogs in the same order:

let nd1 = NoisyDog()
let d1 = nd1 as Dog
let nd2 = NoisyDog()
let d2 = nd2 as Dog
let arr1 = [d1,d2] // [Dog]
let arr2 = [nd1,nd2] // [NoisyDog]
if arr1 == arr2 { // they are equal!

Arrays are value types
Because an array is a struct, it is a value type, not a reference type. This means that
every time an array is assigned to a variable or passed as argument to a function, it is
effectively copied. I do not mean to imply, however, that merely assigning or passing
an array is expensive, or that a lot of actual copying takes place every time. If the ref‐
erence to an array is a constant, clearly no copying is necessary; and even operations
that yield a new array derived from another array, or that mutate an array, may be
quite efficient. You just have to trust that the designers of Swift have thought about
these problems and have implemented arrays efficiently behind the scenes.

Although an array is itself a value type, its elements might not be. If an array of class
instances is assigned to multiple variables, the result is multiple references to the
same instances.

Array subscripting
The Array struct implements subscript methods to allow access to elements using
square brackets after a reference to an array. You can use an Int inside the square

Collection Types | 231

brackets. If an array is referred to by a variable arr, then arr[1] accesses the second
element.

You can also use a Range of Int inside the square brackets. If arr is an array, then
arr[1...2] signifies the second and third elements. Technically, an expression like
arr[1...2] yields something called an ArraySlice, which stands in relation to Array
much as Substring stands in relation to String (Chapter 3). It’s very similar to an
array, and in general you will probably pretend that an ArraySlice is an array. You
can subscript an ArraySlice in just the same ways you would subscript an array. Nev‐
ertheless, they are not the same thing. An ArraySlice is not a new array; it’s just a way
of pointing into a section of the original array. For this reason, its index numbers are
those of the original array:

let arr = ["manny", "moe", "jack"]
let slice = arr[1...2] // ["moe", "jack"]
print(slice[1]) // moe

The ArraySlice slice consists of two elements, "moe" and "jack", of which "moe" is
the first element. But these are not merely "moe" and "jack" taken from the original
array, but the "moe" and "jack" in the original array. For this reason, their index
numbers are not 0 and 1, but rather 1 and 2, just as in the original array. If you need
to extract a new array based on this slice, coerce the slice to an Array:

let arr2 = Array(slice) // ["moe", "jack"]
print(arr2[1]) // jack

If the reference to an array is mutable (var, not let), then it’s possible to assign to a
subscript expression. This alters what’s in that slot. Of course, what is assigned must
accord with the type of the array’s elements:

var arr = [1,2,3]
arr[1] = 4 // arr is now [1,4,3]

If the subscript is a range, what is assigned must be a slice. You can assign a literal
array, because it will be coerced for you to an ArraySlice; but if what you’re starting
with is an array reference, you’ll have to coerce it to a slice yourself. Such assignment
can change the length of the array being assigned to:

var arr = [1,2,3]
arr[1..<2] = [7,8] // arr is now [1,7,8,3]
arr[1..<2] = [] // arr is now [1,8,3]
arr[1..<1] = [10] // arr is now [1,10,8,3] (no element was removed!)
let arr2 = [20,21]
// arr[1..<1] = arr2 // compile error! You have to say this:
arr[1..<1] = ArraySlice(arr2) // arr is now [1,20,21,10,8,3]

Subscripting an array with a Range is an opportunity to use partial range notation.
The missing value is taken to be the array’s first or last index. If arr is [1,2,3], then

232 | Chapter 4: Object Types

arr[1...] is [2,3], and arr[...1] is [1,2]. Similarly, you can assign into a range
specified as a partial range:

var arr = [1,2,3]
arr[1...] = [4,5] // arr is now [1,4,5]

It is a runtime error to access an element by an index number larger than the
largest element number or smaller than the smallest element number. If arr has
three elements, speaking of arr[-1] or arr[3] is not illegal linguistically, but
your program will crash.

Nested arrays
It is legal for the elements of an array to be arrays:

let arr = [[1,2,3], [4,5,6], [7,8,9]]

That’s an array of arrays of Int. Its type declaration, therefore, is [[Int]]. (No law
says that the contained arrays have to be the same length; that’s just something I did
for clarity.)

To access an individual Int inside those nested arrays, you can chain subscripts:

let arr = [[1,2,3], [4,5,6], [7,8,9]]
let i = arr[1][1] // 5

If the outer array reference is mutable, you can also write into a nested array:

var arr = [[1,2,3], [4,5,6], [7,8,9]]
arr[1][1] = 100

You can modify the inner arrays in other ways as well; for example, you can insert
additional elements into them.

Thanks to conditional conformance (discussed earlier in this chapter), nested arrays
can be compared with == as long as the inner array’s elements are Equatable. If arr
and arr2 are both [[Int]], you can compare them by saying arr == arr2.

Basic array properties and methods
An array is a Collection, which is itself a Sequence. If those terms have a familiar ring,
they should: the same is true of a String’s underlying character sequence, which I dis‐
cussed in Chapter 3. For this reason, an array and a character sequence bear some
striking similarities to one another.

As a collection, an array’s count read-only property reports the number of elements it
contains. If an array’s count is 0, its isEmpty property is true.

An array’s first and last read-only properties return its first and last elements, but
they are wrapped in an Optional because the array might be empty and so these
properties would need to be nil. (This is one of those rare situations in Swift where

Collection Types | 233

you can wind up with an Optional wrapping an Optional. Consider an array of
Optionals wrapping Ints, and what happens when you get its last property.)

An array’s largest accessible index is one less than its count. You may find yourself
calculating index values with reference to the count; to refer to the last two elements
of arr, you might say:

let arr = [1,2,3]
let slice = arr[arr.count-2...arr.count-1] // [2,3]

Swift doesn’t adopt the modern convention of letting you use negative indexes as a
shorthand for that calculation. On the other hand, for the common case where you
want the last n elements of an array, you can use the suffix(_:) method:

let arr = [1,2,3]
let slice = arr.suffix(2) // [2,3]

Therefore, a neat way to obtain, say, the next-to-last element of an array is to com‐
bine suffix with first:

let arr = [1,2,3]
let nextToLast = arr.suffix(2).first // Optional(2)

Both suffix(_:) and its companion prefix(_:) yield ArraySlices, and have the
remarkable feature that there is no penalty for going out of range:

let arr = [1,2,3]
let slice = arr.suffix(10) // [1,2,3] (and no crash)

Instead of describing the size of the suffix or prefix by its count, you can express the
limit of the suffix or prefix by its index. And partial range notation may provide yet
another useful alternative:

let arr = [1,2,3]
let slice = arr.suffix(from:1) // [2,3]
let slice2 = arr[1...] // [2,3]
let slice3 = arr.prefix(upTo:1) // [1]
let slice4 = arr.prefix(through:1) // [1,2]

An array’s startIndex property is 0, and its endIndex property is its count. An
array’s indices property is a half-open range whose endpoints are the array’s start-
Index and endIndex — that is, a range accessing the entire array. Moreover, these
values are Ints, so you can use ordinary arithmetic operations on them:

let arr = [1,2,3]
let slice = arr[arr.endIndex-2..<arr.endIndex] // [2,3]

But the startIndex, endIndex, and indices of an ArraySlice are measured against
the original array; after the previous code, slice.indices is 1..<3, and slice.start-
Index is 1.

234 | Chapter 4: Object Types

The firstIndex(of:) method reports the index of the first occurrence of an element
in an array, but it is wrapped in an Optional so that nil can be returned if the ele‐
ment doesn’t appear in the array. In general, the comparison uses == behind the
scenes to identify the element being sought, and therefore the array elements must
adopt Equatable (otherwise the compiler will stop you):

let arr = [1,2,3]
let ix = arr.firstIndex(of:2) // Optional wrapping 1

Alternatively, you can call firstIndex(where:), supplying your own function that
takes an element type and returns a Bool, and you’ll get back the index of the first
element for which that Bool is true. In this example, my Bird struct has a name String
property:

let aviary = [Bird(name:"Tweety"), Bird(name:"Flappy"), Bird(name:"Lady")]
let ix = aviary.firstIndex {$0.name.count < 5} // Optional(2)

If what you want is not the index but the object itself, the first(where:) method
returns it — wrapped, naturally, in an Optional. These methods are matched by last-
Index(of:), lastIndex(where:), and last(where:).

As a sequence, an array’s contains(_:) method reports whether it contains an ele‐
ment. Again, you can rely on the == operator if the elements are Equatable, or you
can supply your own function that takes an element type and returns a Bool:

let arr = [1,2,3]
let ok = arr.contains(2) // true
let ok2 = arr.contains {$0 > 3} // false

The starts(with:) method reports whether an array’s starting elements match the
elements of a given sequence of the same type. Once more, you can rely on the ==
operator for Equatable elements, or you can supply a function that takes two values
of the element type and returns a Bool stating whether they match:

let arr = [1,2,3]
let ok = arr.starts(with:[1,2]) // true
let ok2 = arr.starts(with:[1,-2]) {abs($0) == abs($1)} // true

The min and max methods return the smallest or largest element in an array, wrapped
in an Optional in case the array is empty. If the array consists of Comparable ele‐
ments, you can let the < operator do its work; alternatively, you can call min(by:) or
max(by:), supplying a function that returns a Bool stating whether the smaller of two
given elements is the first:

let arr = [3,1,-2]
let min = arr.min() // Optional(-2)
let min2 = arr.min {abs($0)<abs($1)} // Optional(1)

If the reference to an array is mutable, the append(_:) and append(contentsOf:)
instance methods add elements to the end of it. The difference between them is that

Collection Types | 235

append(_:) takes a single value of the element type, while append(contentsOf:)
takes a sequence of the element type:

var arr = [1,2,3]
arr.append(4)
arr.append(contentsOf:[5,6])
arr.append(contentsOf:7...8) // arr is now [1,2,3,4,5,6,7,8]

The + operator is overloaded to behave like append(contentsOf:) (not append(_:)!)
when the left-hand operand is an array, except that it generates a new array, so it
works even if the reference to the array is a constant (let). If the reference to the
array is mutable (var), you can append to it in place with the += operator:

let arr = [1,2,3]
let arr2 = arr + [4] // arr2 is now [1,2,3,4]
var arr3 = [1,2,3]
arr3 += [4] // arr3 is now [1,2,3,4]

If the reference to an array is mutable, the instance method insert(at:) inserts a
single element at the given index. To insert multiple elements at once, call the
insert(contentsOf:at:) method. Assignment into a range-subscripted array, which
I described earlier, is even more flexible.

If the reference to an array is mutable, the instance method remove(at:) removes the
element at that index; the instance method removeLast removes the last element.
These methods also return the value that was removed from the array; you can ignore
the returned value if you don’t need it. These methods do not wrap the returned
value in an Optional, and accessing an out-of-range index will crash your program.
On the other hand, popLast does wrap the returned value in an Optional, and is safe
even if the array is empty.

Similar to removeLast and popLast are removeFirst and popFirst. Alternate forms
removeFirst(_:) and removeLast(_:) allow you to specify how many elements to
remove, but return no value; they, too, can crash if there aren’t as many elements as
you specify. popFirst, remarkably, operates on a slice, not an array, presumably for
the sake of efficiency: all it has to do is increase the slice’s startIndex, whereas with
an array, the whole array must be renumbered.

Even if the reference is not mutable, you can use the dropFirst and dropLast meth‐
ods to return a slice with the end element removed. Again, you can supply a parame‐
ter stating how many elements to drop. And again, there is no penalty for dropping
too many elements; you simply end up with an empty slice.

The joined(separator:) instance method starts with an array of arrays. It extracts
their individual elements, and interposes between each sequence of extracted ele‐
ments the elements of the separator:. The result is an intermediate sequence called a

236 | Chapter 4: Object Types

JoinSequence, which might have to be coerced further to an Array if that’s what you
were after:

let arr = [[1,2], [3,4], [5,6]]
let joined = Array(arr.joined(separator:[10,11]))
// [1, 2, 10, 11, 3, 4, 10, 11, 5, 6]

Calling joined() with no separator: is a way to flatten an array of arrays. Again, it
returns an intermediate sequence (or collection), so you might want to coerce to an
Array:

let arr = [[1,2], [3,4], [5,6]]
let arr2 = Array(arr.joined())
// [1, 2, 3, 4, 5, 6]

The split instance method breaks an array into an array of slices at elements match‐
ing the parameter, if you call split(separator:), or at elements that pass a specified
test, if you call split(isSeparator:); in the latter, the parameter is a function that
takes a value of the element type and returns a Bool. The separator elements them‐
selves are eliminated:

let arr = [1,2,3,4,5,6]
let arr2 = arr.split {$0.isMultiple(of:2)} // split at evens: [[1], [3], [5]]

The reversed instance method yields a new array whose elements are in the opposite
order from the original.

The sort and sorted instance methods respectively sort the original array (if the ref‐
erence to it is mutable) and yield a new sorted array based on the original. Once
again, you get two choices. If this is an array of Comparable elements, you can let the
< operator dictate the new order. Alternatively, you can call sort(by:) or
sorted(by:); you supply a function that takes two parameters of the element type
and returns a Bool stating whether the first parameter should be ordered before the
second (just like min and max):

var arr = [4,3,5,2,6,1]
arr.sort() // [1, 2, 3, 4, 5, 6]
arr.sort {$0 > $1} // [6, 5, 4, 3, 2, 1]

In that last line, I provided an anonymous function. Alternatively, of course, you can
pass as argument the name of a declared function. In Swift, comparison operators are
the names of functions! Therefore, I can do the same thing like this:

var arr = [4,3,5,2,6,1]
arr.sort(by: >) // [6, 5, 4, 3, 2, 1]

An interesting problem is subsorting an array. Suppose we have a Person struct with a
firstName and a lastName, and we have an array of Persons:

Collection Types | 237

var arr = [
 Person(firstName: "Manny", lastName: "Pep"),
 Person(firstName: "Harpo", lastName: "Marx"),
 Person(firstName: "Jack", lastName: "Pep"),
 Person(firstName: "Groucho", lastName: "Marx")
]

We wish to sort this array by last name, but if two Persons have the same last name,
they should be sorted by first name. In other words, all Marx brothers should precede
all Pep boys, and within those groups, Groucho should precede Harpo, and Jack
should precede Manny.

Cocoa provides an elegant solution, NSSortDescriptor; but Swift has no native equiv‐
alent (though there are proposals to introduce one). We could write out an elaborate
comparison function; but that’s an invitation to make a mistake, and won’t scale if
we’re subsorting on many properties.

In a simple case like this one, where the comparison operator is the same for all prop‐
erties, there’s a trick: use tuples. It turns out that tuples, by default, are comparable if
their element types are comparable, by a rule that a given element is compared only if
all preceding elements are equal. That’s exactly how we want to sort this array! So we
can sort the array in accordance with the corresponding tuple:

arr.sort {
 ($0.lastName, $0.firstName) < ($1.lastName, $1.firstName)
}

The swapAt method accepts two Int index numbers and interchanges those elements
of a mutable array:

var arr = [1,2,3]
arr.swapAt(0,2) // [3,2,1]

The shuffle and shuffled methods sort an array in random order, while the random-
Element method generates a valid index at random and hands you the element at that
index (wrapped in an Optional, in case the array is empty).

Array enumeration and transformation
An array is a sequence, and so you can enumerate it, inspecting or operating with
each element in turn. The simplest way is by means of a for...in loop; I’ll have more
to say about this construct in Chapter 5:

let pepboys = ["Manny", "Moe", "Jack"]
for pepboy in pepboys {
 print(pepboy) // prints Manny, then Moe, then Jack
}

238 | Chapter 4: Object Types

Alternatively, you can use the forEach(_:) instance method. Its parameter is a func‐
tion that takes an element and returns no value. Think of it as the functional equiva‐
lent of the imperative for...in loop:

let pepboys = ["Manny", "Moe", "Jack"]
pepboys.forEach {print($0)} // prints Manny, then Moe, then Jack

If you need the index numbers as well as the elements, call the enumerated instance
method and loop on the result; what you get on each iteration is a tuple with labels
offset and element:

let pepboys = ["Manny", "Moe", "Jack"]
for (ix,pepboy) in pepboys.enumerated() {
 print("Pep boy \(ix) is \(pepboy)") // Pep boy 0 is Manny, etc.
}
// or:
pepboys.enumerated().forEach {
 print("Pep boy \($0.offset) is \($0.element)")
}

The allSatisfy(_:) method tells you whether all elements pass some test; you sup‐
ply a function that takes an element and returns a Bool:

let pepboys = ["Manny", "Moe", "Jack"]
let ok = pepboys.allSatisfy {$0.hasPrefix("M")} // false
let ok2 = pepboys.allSatisfy {$0.hasPrefix("M") || $0.hasPrefix("J")} // true

Swift also provides some powerful array transformation instance methods. Like for-
Each(_:) and allSatisfy(_:), these methods enumerate the array for you, so that
the loop is buried implicitly inside the method call, making your code tighter and
cleaner.

The filter(_:) instance method yields a new array, each element of which is an ele‐
ment of the old array, in the same order; but some of the elements of the old array
may be omitted — they were filtered out. What filters them out is a function that you
supply; it accepts a parameter of the element type and returns a Bool stating whether
this element should go into the new array:

let pepboys = ["Manny", "Moe", "Jack"]
let pepboys2 = pepboys.filter {$0.hasPrefix("M")} // ["Manny", "Moe"]

If the function is effectively negative, and if the reference to the collection is mutable,
you should call removeAll(where:) rather whan filter(_:):

var pepboys = ["Manny", "Jack", "Moe"]
pepboys.removeAll {$0.hasPrefix("M")} // pepboys is now ["Jack"]

That’s better in general than saying pepboys.filter {!$0.hasPrefix("M")} because
of efficiencies achieved under the hood.

Collection Types | 239

Similar to filter(_:) is prefix(while:). The difference is that prefix(while:)
stops looping as soon as it encounters an element for which the supplied function
returns false; it returns the start of the original array as a slice. The complement of
prefix(while:) is drop(while:); it stops where prefix(while:) stops, but it
returns the rest of the original array as a slice:

let pepboys = ["Manny", "Jack", "Moe"]
let arr1 = pepboys.filter {$0.hasPrefix("M")} // ["Manny", "Moe"]
let arr2 = pepboys.prefix {$0.hasPrefix("M")} // ["Manny"]
let arr3 = pepboys.drop {$0.hasPrefix("M")} // ["Jack", "Moe"]

The map(_:) instance method yields a new array, each element of which is the result
of passing the corresponding element of the old array through a function that you
supply. This function accepts a parameter of the element type and returns a result
which may be of some other type; Swift can usually infer the type of the resulting
array elements by looking at the type returned by the function.

Here’s how to multiply every element of an array by 2:

let arr = [1,2,3]
let arr2 = arr.map {$0 * 2} // [2,4,6]

Here’s another example, to illustrate the fact that map(_:) can yield an array with a
different element type:

let arr = [1,2,3]
let arr2 = arr.map {Double($0)} // [1.0, 2.0, 3.0]

Here’s a real-life example showing how neat and compact your code can be when you
use map(_:). In order to remove all the table cells in a section of a UITableView, I
have to specify the cells as an array of IndexPath objects. If sec is the section number,
I can form those IndexPath objects individually like this:

let path0 = IndexPath(row:0, section:sec)
let path1 = IndexPath(row:1, section:sec)
// ...

Hmmm, I think I see a pattern here! I could generate my array of IndexPath objects
by looping through the row values using for...in. But with map(_:), there’s a much
tighter way to express the same loop — namely, to loop through the range 0..<ct
(where ct is the number of rows in the section). Since map(_:) is a Collection
instance method, and a Range is itself a Collection, I can call map(_:) directly on the
range:

let paths = (0..<ct).map {IndexPath(row:$0, section:sec)}

The map(_:) method provides a neat alternative to init(repeating:count:) with a
reference type:

let dogs = Array(repeating:Dog(), count:3) // probably a mistake

240 | Chapter 4: Object Types

You probably wanted an array of three Dogs. But if Dog is a class, the array consists
of three references to one and the same Dog instance! Instead, generate the array
using map(_:), like this:

let dogs = (0..<3).map {_ in Dog()}

The map(_:) method has a specialized companion, flatMap(_:). Applied to an array,
flatMap(_:) first calls map(_:), and then, if the map function produces an array of
arrays, flattens it. For instance, [[1],[2]].flatMap {$0} is [1,2]. Here’s a more
interesting example:

let arr = [[1, 2], [3, 4]]
let arr2 = arr.flatMap {$0.map {String($0)}} // ["1", "2", "3", "4"]

First our map function calls map(_:) to coerce the individual elements of each inner
array to a string, yielding an array of arrays of String: [["1", "2"], ["3", "4"]].
Then flatMap(_:) flattens the array of arrays, and we end up with a simple array of
String.

Another specialized map(_:) companion is compactMap(_:). (Before Swift 4.1, this
was another form of flatMap(_:).) Given a map function that produces an array of
Optionals, compactMap(_:) safely unwraps them by first eliminating any nil ele‐
ments. This neatly solves a type of problem that arises quite often. In particular, we
can coerce or cast an array safely by eliminating those elements that can’t be coerced
or cast.

Suppose I have a mixed bag of strings, some of which represent integers. I’d like to
coerce to Int those that can be coerced to Int, and eliminate the others. Int coercion
of a String yields an Optional, so the compactMap(_:) lightbulb should go on in our
heads:

let arr = ["1", "hey", "2", "ho"]
let arr2 = arr.compactMap {Int($0)} // [1, 2]

First we map the original array to an array of Optionals wrapping Int, by coercing:
[Optional(1), nil, Optional(2), nil]. Then compactMap(_:) removes the nil
elements and unwraps the remaining elements, resulting in an array of Int.

The reduce instance method is a way of combining all the elements of an array
(actually, a sequence) into a single value. This value’s type — the result type —
doesn’t have to be the same as the array’s element type. reduce takes two parameters:

• You supply, as the second parameter, a function that takes two parameters; the
first is of the result type, the second is of the element type, and the function’s
result is your combination of those two parameters, as the result type. That
result, on each iteration, becomes the function’s first parameter in the next itera‐
tion, along with the next element of the array as the second parameter. In this

Collection Types | 241

way, the output of combining pairs accumulates, and the final accumulated value
is the final output of the function.

• However, that doesn’t explain where the first parameter for the first iteration
comes from. The answer is that you have to supply it as the first parameter of the
reduce call.

That will all be easier to understand with a simple example. Let’s assume we’ve got an
array of Int. Then we can use reduce to sum the elements of the array. Here’s some
pseudocode where I’ve left out the first argument of the call, so that you can think
about what it needs to be:

let sum = arr.reduce(/* ... */) {$0 + $1}

Each pair of parameters will be added together to get the first parameter ($0) on the
next iteration. The second parameter on every iteration ($1) is a successive element of
the array. Clearly we are just summing the elements, adding each element one by one
to the accumulated total. So the remaining question is: What should the first element
of the array be added to? We want the actual sum of all the elements, no more and no
less; so the first element of the array should be added to 0:

let arr = [1, 4, 9, 13, 112]
let sum = arr.reduce(0) {$0 + $1} // 139

The + operator is the name of a function of the required type, so here’s another way
to write the same thing:

let sum = arr.reduce(0, +)

There is also reduce(into:), which greatly improves efficiency when the goal is to
build a collection such as an array or a dictionary. The into: argument is passed into
your function as an inout parameter, and persists through each iteration; instead of
returning a value, your function modifies it, and the final result is its final value.

Suppose we have an array of integers, and our goal is to “deal” them into two piles
consisting of the even elements and the odd elements respectively. You can’t do that
with a single call to map; you’d have to cycle through the original array twice. With
reduce(into:), both target arrays are constructed while cycling through the original
array once:

let nums = [1,3,2,4,5]
let result = nums.reduce(into: [[],[]]) { temp, i in
 temp[i%2].append(i)
}
// result is now [[2, 4], [1, 3, 5]]

Swift’s array transformation methods are very powerful and very useful. In real life,
your code is likely to depend heavily on all of these methods, especially filter, map,
and reduce, alone or in combination, nested or chained together.

242 | Chapter 4: Object Types

Swift Array and Objective-C NSArray
When you’re programming iOS, you import the Foundation framework (or UIKit,
which imports Foundation) and the Objective-C NSArray type. Swift Array is
bridged to Objective-C NSArray. The most general medium of array interchange is
[Any]; if an Objective-C API specifies an NSArray, with no further type information,
Swift will see this as an array of Any. This reflects the fact that Objective-C’s rules for
what can be an element of an NSArray are looser than Swift’s: the elements of an
NSArray do not all have to be of the same type. On the other hand, the elements of an
Objective-C NSArray must be Objective-C objects — that is, they must be class types.

Passing a Swift array to Objective-C is usually easy. Typically, you’ll just pass the
array, either by assignment or as an argument in a function call:

let arr = [UIBarButtonItem(), UIBarButtonItem()]
self.navigationItem.leftBarButtonItems = arr

The objects that you pass as elements of the array will cross the bridge to Objective-C
in the usual way:

let lay = CAGradientLayer()
lay.locations = [0.25, 0.5, 0.75] // bridged to NSArray of NSNumber

CAGradientLayer’s locations property needs to be an array of NSNumber. But we
can pass an array of Double, because Double is bridged to NSNumber, and so
Objective-C receives an NSArray of NSNumber.

To call an NSArray method on a Swift array, you may have to cast to NSArray:

let arr = ["Manny", "Moe", "Jack"]
let s = (arr as NSArray).componentsJoined(by:", ")
// s is "Manny, Moe, Jack"

A Swift Array seen through a var reference is mutable, but an NSArray isn’t mutable
ever. For mutability in Objective-C, you need an NSMutableArray, a subclass of
NSArray. You can’t cast, assign, or pass a Swift array as an NSMutableArray; you
have to coerce. The best way is to call the NSMutableArray initializer init(array:),
to which you can pass a Swift array directly. To convert back from an NSMutable‐
Array to a Swift array, you can cast:

var arr = ["Manny", "Moe", "Jack"]
let arr2 = NSMutableArray(array:arr)
arr2.remove("Moe")
arr = arr2 as! [String]

Now let’s talk about what happens when an NSArray arrives from Objective-C into
Swift. There won’t be any problem crossing the bridge: the NSArray will arrive safely
as a Swift Array. But a Swift Array of what?

Of itself, an NSArray carries no information about what type of element it contains.
Starting in Xcode 7, however, the Objective-C language was modified so that the

Collection Types | 243

declaration of an NSArray, NSDictionary, or NSSet — the three collection types that
are bridged to Swift — can include element type information. (Objective-C calls this
a lightweight generic.) Thus, for the most part, the arrays you receive from Cocoa will
be correctly typed.

For example, this elegant code was impossible in the bad old days before Xcode 7:

let arr = UIFont.familyNames.map {
 UIFont.fontNamesForFamilyName($0)
}

The result is an array of arrays of String, listing all available fonts grouped by family.
That code is possible because both of those UIFont class methods are seen by Swift as
returning an array of String. Before Xcode 7, however, those arrays were untyped,
and casting down to an array of String was up to you.

Nevertheless, lightweight generics are not omnipresent. You might read an array
from a .plist file stored on disk with NSArray’s initializer init(contentsOf:); you
might retrieve an array from UserDefaults; you might even be dealing with an
Objective-C API that hasn’t been updated to use lightweight generics. In such a situa‐
tion, you’re going to end up with a plain vanilla NSArray or a Swift array of Any. If
that happens, you will usually want to cast down or otherwise transform this array
into an array of some specific Swift type. Here’s an Objective-C class containing a
method whose return type of NSArray hasn’t been marked up with an element type:

@implementation Pep
- (NSArray*) boys {
 return @[@"Manny", @"Moe", @"Jack"];
}
@end

To call that method and do anything useful with the result, it will be necessary to cast
that result down to an array of String. If I’m sure of my ground, I can force the cast:

let p = Pep()
let boys = p.boys() as! [String]

As with any cast, though, be sure you don’t lie! An Objective-C array can contain
more than one type of object. Don’t force such an array to be cast down to a type to
which not all the elements can be cast, or you’ll crash when the cast fails; you’ll need a
more deliberate strategy (possibly involving compactMap) for eliminating or other‐
wise transforming the problematic elements.

Dictionary
A dictionary (Dictionary, a struct) is an unordered collection of object pairs. In each
pair, the first object is the key; the second object is the value. The idea is that you use
a key to access a value. Keys are usually strings, but they don’t have to be; the formal
requirement is that they be types that conform to the Hashable protocol.

244 | Chapter 4: Object Types

For a type to be Hashable requires three things:

• The type must be Equatable.
• The type must implement an Int hashValue property.
• The type’s implementation of equality and hashValue must be such that equal

keys have equal hash values. The protocol itself cannot formally insist upon this
rule, but that is what is needed for hashability to be useful and well-behaved.

The hash values can then be used behind the scenes for rapid key access. Most Swift
standard types are Hashable; I’ll talk in Chapter 5 about how to make your own
object types Hashable.

Do not use mutable objects as keys. Mutating a key while it is in use will break
the dictionary (lookup will no longer work correctly).

As with arrays, a given dictionary’s types must be uniform. The key type and the
value type don’t have to be the same as one another, and they often will not be. But
within any dictionary, all keys must be of the same type, and all values must be of the
same type. Formally, a dictionary is a generic, and its placeholder types are its key
type and its value type: Dictionary<Key,Value>. As with arrays, Swift provides syn‐
tactic sugar for expressing a dictionary’s type, and that is what you’ll usually use:
[Key: Value]. That’s square brackets containing a colon (and optional spaces) sepa‐
rating the key type from the value type. This code creates an empty dictionary whose
keys (when they exist) will be Strings and whose values (when they exist) will be
Strings:

var d = [String:String]()

The colon is used also between each key and value in the literal syntax for expressing
a dictionary. The key–value pairs appear between square brackets, separated by a
comma, just like an array. This code creates a dictionary by describing it literally (and
the dictionary’s type of [String:String] is inferred):

var d = ["CA": "California", "NY": "New York"]

If a dictionary variable is declared and initialized to a literal with many elements,
it’s a good idea to declare the variable’s type explicitly. This saves the compiler
from having to examine the entire dictionary to decide its type, and makes com‐
pilation faster.

The literal for an empty dictionary is square brackets containing just a colon: [:].
That notation can be used provided the dictionary’s type is known in some other
way. This is another way to create an empty [String:String] dictionary:

var d : [String:String] = [:]

Collection Types | 245

You can also initialize a dictionary from a sequence of key–value tuples. This is useful
particularly if you’re starting with two sequences. Suppose we happen to have state
abbreviations in one array and state names in another:

let abbrevs = ["CA", "NY"]
let names = ["California", "New York"]

We can combine those two arrays into a single array of tuples and call init(unique-
KeysWithValues:) to generate a dictionary:

let tuples = (abbrevs.indices).map {(abbrevs[$0],names[$0])}
let d = Dictionary(uniqueKeysWithValues: tuples)
// ["NY": "New York", "CA": "California"]

There is actually a simpler way to form those tuples — the global zip function, which
takes two sequences and yields a sequence of tuples:

let tuples = zip(abbrevs, names)
let d = Dictionary(uniqueKeysWithValues: tuples)

A nice feature of zip is that if one sequence is longer than the other, the extra ele‐
ments of the longer sequence are ignored — tuple formation simply stops when the
end of the shorter sequence is reached. For example, one of the zipped sequences can
be a partial range; in theory the range is infinite, but in fact the end of the other
sequence ends the range as well:

let r = 1...
let names = ["California", "New York"]
let d = Dictionary(uniqueKeysWithValues: zip(r,names))
// [2: "New York", 1: "California"]

If the keys in the tuple sequence are not unique, you’ll crash at runtime when
init(uniqueKeysWithValues:) is called. To work around that, you can use
init(_:uniquingKeysWith:) instead. The second parameter is a function taking two
values — the existing value for this key, and the new incoming value for the same key
— and returning the value that should actually be used for this key. I’ll give an exam‐
ple later.

Another way to form a dictionary is init(grouping:by:). This is useful for forming
a dictionary whose values are arrays. You start with a sequence of the elements of the
arrays, and the initializer clumps them into arrays for you, in accordance with a func‐
tion that generates the corresponding key from each value.

Suppose we have a list (states) of the 50 U.S. states in alphabetical order as an array
of strings, and we want to group them by the letter they start with. Here’s a verbose
strategy. We loop through the list to construct two arrays (an array of String and an
array of arrays of String); we then zip those arrays together to form the dictionary:

246 | Chapter 4: Object Types

var sectionNames = [String]()
var cellData = [[String]]()
var previous = ""
for aState in states {
 // get the first letter
 let c = String(aState.prefix(1))
 // only add a letter to sectionNames when it's a different letter
 if c != previous {
 previous = c
 sectionNames.append(c.uppercased())
 // and in that case also add new subarray to our array of subarrays
 cellData.append([String]())
 }
 cellData[cellData.count-1].append(aState)
}
let d = Dictionary(uniqueKeysWithValues: zip(sectionNames,cellData))
// ["H": ["Hawaii"], "V": ["Vermont", "Virginia"], ...

With init(grouping:by:), however, that becomes effectively a one-liner:

let d = Dictionary(grouping: states) {$0.prefix(1).uppercased()}

Dictionary subscripting
Access to a dictionary’s contents is usually by subscripting. To fetch a value by key,
use the key as a subscript:

let d = ["CA": "California", "NY": "New York"]
let state = d["CA"]

If you try to fetch a value through a nonexistent key, there is no error, but Swift needs
a way to report failure; to do so, by default, it returns nil. This, in turn, implies that
the value returned when you successfully access a value through a key must be an
Optional wrapping the real value. After that code, therefore, state is not a String —
it’s an Optional wrapping a String! Forgetting this is a common beginner mistake.

You can change that behavior by supplying your own default value as part of the
subscript. If the key isn’t found in the dictionary, the default value is returned, and
so there is no need for the returned value to be wrapped in an Optional:

let d = ["CA": "California", "NY": "New York"]
let state = d["MD", default:"N/A"] // state is a String (not an Optional)

If the reference to a dictionary is mutable, you can also assign into a key subscript
expression. If the key already exists, its value is replaced. If the key doesn’t already
exist, it is created and the value is attached to it:

var d = ["CA": "California", "NY": "New York"]
d["CA"] = "Casablanca"
d["MD"] = "Maryland"
// d is now ["MD": "Maryland", "NY": "New York", "CA": "Casablanca"]

Collection Types | 247

Instead of assigning into a subscript expression, you can call updateValue(_:for-
Key:); it has the advantage that it returns the old value.

As with fetching a value by key, you can supply a default value when assigning into
a key subscript expression. This can be a source of great economy of expression. Con‐
sider the common task of collecting a histogram: we want to know how many times
each element appears in a sequence:

let sentence = "how much wood would a wood chuck chuck"
let words = sentence.split(separator: " ").map {String($0)}

Our goal is now to make a dictionary pairing each word with the number of times it
appears. A manual approach would be rather laborious, along these lines:

var d = [String:Int]()
for word in words {
 let ct = d[word]
 if ct != nil {
 d[word]! += 1
 } else {
 d[word] = 1
 }
}
// d is now ["how": 1, "wood": 2, "a": 1, "chuck": 2, "would": 1, "much": 1]

With a default value, it’s effectively a one-liner:

var d = [String:Int]()
words.forEach {d[$0, default:0] += 1}

Earlier, I promised to give an example of init(_:uniquingKeysWith:), so here it is,
forming the same histogram in a silly but interesting way; I start with a values array
of ones, and sum the values whenever a duplicate key is encountered:

let ones = Array(repeating: 1, count: words.count)
let d = Dictionary(zip(words,ones)) {$0+$1}

By a kind of shorthand, assigning nil into a key subscript expression removes that
key–value pair if it exists:

var d = ["CA": "California", "NY": "New York"]
d["NY"] = nil // d is now ["CA": "California"]

Alternatively, call removeValue(forKey:); it has the advantage that it returns the
removed value before it removes the key–value pair.

Dictionaries have no order
Dictionaries are unordered. Whenever you probe a dictionary’s entire contents —
when you print them, when you cycle through them with for...in, and so forth —
each entry arrives in a completely unpredictable order. If you run the same code as I
do (indeed, even if you run the same code as yourself on two different occasions),

248 | Chapter 4: Object Types

your results may be ordered differently. This makes no difference to the actual con‐
tents of the dictionary, which consists of particular keys, each associated with a par‐
ticular value. [2: "New York", 1: "California"] is actually the same dictionary as
[1: "California", 2: "New York"].

If you needed order to be meaningful, you were thinking of an array, not a dictionary.
To put it another way, you can have rapid access by key or meaningful order with
rapid access by index number, but not both. For an ordered array of key-value pairs
— with no subscripting by key, no hashability requirement, and no guaranteed
uniqueness of keys — you can use a KeyValuePairs object, which is essentially an
array of tuples with labels key and value; it can be initialized from a dictionary literal:

let pairs : KeyValuePairs = ["CA": "California", "NY": "New York"]
print(pairs.count) // 2
print(pairs[0]) // (key: "CA", value: "California")
// to access by key, cycle through the array
if let pair = pairs.first(where: {$0.key == "NY"}) {
 let val = pair.value // New York
}

Dictionary casting and comparison
As with arrays, a dictionary type is legal for casting down, meaning that the individ‐
ual elements will be cast down. Typically, only the value types will differ:

let dog1 : Dog = NoisyDog()
let dog2 : Dog = NoisyDog()
let d = ["fido": dog1, "rover": dog2]
let d2 = d as! [String : NoisyDog]

As with arrays, is can be used to test the actual types in the dictionary, and as? can
be used to test and cast safely.

Dictionary equality is like array equality. Key types are necessarily Equatable, because
they are Hashable. Value types are not necessarily Equatable, but if they are, the ==
and != operators work as you would expect.

Basic dictionary properties and enumeration

A dictionary has a count property reporting the number of key–value pairs it con‐
tains, and an isEmpty property reporting whether that number is 0.

A dictionary has a keys property reporting all its keys, and a values property report‐
ing all its values. These are effectively opaque structs providing a specialized view of
the dictionary itself. You can’t assign one to a variable, or print it out, but you can
work with them as collections. For example, you can enumerate them with for...in
(though you should not expect them to arrive in any particular order, as a dictionary
is unordered):

Collection Types | 249

var d = ["CA": "California", "NY": "New York"]
for s in d.keys {
 print(s) // NY, then CA (or vice versa)
}

You can coerce them to an array:

var d = ["CA": "California", "NY": "New York"]
var keys = Array(d.keys) // ["NY", "CA"] or ["CA", "NY"]

You can sort them, filter them, or map them (yielding an array); you can take their
min or max; you can reduce them; you can compare keys of different dictionaries for
equality:

let d : [String:Int] = ["one":1, "two":2, "three":3]
let keysSorted = d.keys.sorted() // ["one", "three", "two"]
let arr = d.values.filter {$0 < 2} // [1]
let min = d.values.min() // Optional(1)
let sum = d.values.reduce(0, +) // 6
let ok = d.keys == ["one":1, "three":3, "two":2].keys // true

You can also enumerate a dictionary itself. Each iteration provides a key–value tuple
(arriving in no particular order, because a dictionary is unordered):

var d = ["CA": "California", "NY": "New York"]
for (abbrev, state) in d {
 print("\(abbrev) stands for \(state)")
}

The tuple members have labels key and value, so the preceding example can be
rewritten like this:

var d = ["CA": "California", "NY": "New York"]
for pair in d {
 print("\(pair.key) stands for \(pair.value)")
}

You can extract a dictionary’s entire contents at once as an array of key–value tuples
(in an unpredictable order) by coercing the dictionary to an array:

var d = ["CA": "California", "NY": "New York"]
let arr = Array(d)
// [(key: "NY", value: "New York"), (key: "CA", value: "California")]

When you apply filter to a dictionary, what you get is a dictionary. In addition,
there’s a mapValues method that yields a dictionary with its values changed according
to your map function:

let d = ["CA": "California", "NY": "New York"]
let d2 = d.filter {$0.value > "New Jersey"}.mapValues {$0.uppercased()}
// ["NY": "NEW YORK"]

There’s also a compactMapValues method that applies a map function yielding an
Optional and filters out any keys for which the resulting value is nil.

250 | Chapter 4: Object Types

You can combine two dictionaries with the merging(_:uniquingKeysWith:) method
— or, if your reference to the first dictionary is mutable, you can call merge to modify
it directly. The second parameter is like the second parameter of init(_:uniquing-
KeysWith:), saying what the value should be in case the second dictionary has a key
matching an existing key in the first dictionary:

let d1 = ["CA": "California", "NY": "New York"]
let d2 = ["MD": "Maryland", "NY": "New York"]
let d3 = d1.merging(d2) {orig, _ in orig}
// ["MD": "Maryland", "NY": "New York", "CA": "California"]

Swift Dictionary and Objective-C NSDictionary
The Foundation framework dictionary type is NSDictionary, and Swift Dictionary is
bridged to it. The untyped API characterization of an NSDictionary will be [Any-
Hashable:Any]. (AnyHashable is a type eraser struct, to cope with the possibility,
legal in Objective-C, that the keys may be of different Hashable types.)

Like NSArray element types, NSDictionary key and value types can be marked in
Objective-C using a lightweight generic. The most common key type in a real-life
Cocoa NSDictionary is NSString, so you might well receive an NSDictionary typed as
[String:Any]. Specific typing of an NSDictionary’s values is rare, because dictionar‐
ies that you pass to and receive from Cocoa will often have values of multiple types; it
is not surprising to have a dictionary whose keys are strings but whose values include
a string, a number, a color, and an array. For this reason, you will usually not cast
down the entire dictionary’s type; instead, you’ll work with the dictionary as having
Any values, and cast when fetching an individual value from the dictionary. Since the
value returned from subscripting a key is itself an Optional, you will typically unwrap
and cast the value as a standard single move.

Here’s an example. A Cocoa Notification object comes with a userInfo property. It is
an NSDictionary that might itself be nil, so the Swift API characterizes it as [Any-
Hashable:Any]?. Let’s say I’m expecting this dictionary to be present and to contain
a "progress" key whose value is an NSNumber containing a Double. My goal is to
extract that NSNumber and assign the Double that it contains to a property,
self.progress. Here’s one way to do that safely, using optional unwrapping and
optional casting (n is the Notification object):

let prog = n.userInfo?["progress"] as? Double
if prog != nil {
 self.progress = prog!
}

The variable prog is implicitly typed as an Optional wrapping a Double. The code is
safe, because if there is no userInfo dictionary, or if it doesn’t contain a "progress"
key, or if that key’s value isn’t a Double, nothing happens, and prog will be nil.

Collection Types | 251

I then test prog to see whether it is nil; if it isn’t, I know that it’s safe to force-unwrap
it, and that the unwrapped value is the Double I’m after.

(In Chapter 5 I’ll describe another syntax for accomplishing the same goal, using con‐
ditional binding.)

Conversely, here’s a typical example of creating a dictionary and handing it off to
Cocoa. This dictionary is a mixed bag: its values are a UIFont, a UIColor, and an
NSShadow. Its keys are all strings, which I obtain as constants from Cocoa. I form the
dictionary as a literal and pass it, all in one move, with no need to cast anything:

UINavigationBar.appearance().titleTextAttributes = [
 .font: UIFont(name: "ChalkboardSE-Bold", size: 20)!,
 .foregroundColor: UIColor.darkText,
 .shadow.: {
 let shad = NSShadow()
 shad.shadowOffset = CGSize(width:1.5,height:1.5)
 return shad
 }()
]

As with NSArray and NSMutableArray, if you want Cocoa to mutate a dictionary,
you must coerce to NSDictionary’s subclass NSMutableDictionary:

var d1 = ["NY":"New York", "CA":"California"]
let d2 = ["MD":"Maryland"]
let mutd1 = NSMutableDictionary(dictionary:d1)
mutd1.addEntries(from:d2)
d1 = mutd1 as! [String:String]
// d1 is now ["MD": "Maryland", "NY": "New York", "CA": "California"]

Set
A set (Set, a struct) is an unordered collection of unique objects. Its elements must be
all of one type; it has a count and an isEmpty property; it can be initialized from any
sequence; you can cycle through its elements with for...in (where the order of ele‐
ments is unpredictable).

The uniqueness of set elements is implemented by constraining their type to be
Hashable (and hence Equatable), just like the keys of a dictionary, so that the hash
values can be used behind the scenes for rapid access. Checking whether a set con‐
tains a given element, which you can do with the contains(_:) instance method, is
very efficient — far more efficient than doing the same thing with an array. There‐
fore, if element uniqueness is acceptable (or desirable) and you don’t need indexing
or a guaranteed order, a set can be a much better choice of collection than an array.

The warnings in the preceding section apply: don’t store a mutable value in a Set,
and don’t expect Set values to be reported to you in any particular order. I’ll talk
in Chapter 5 about how to make your own types Hashable.

252 | Chapter 4: Object Types

There are no set literals in Swift, but you won’t need them because you can pass an
array literal where a set is expected. There is no syntactic sugar for expressing a set
type, but the Set struct is a generic, so you can express the type by explicitly specializ‐
ing the generic:

let set : Set<Int> = [1, 2, 3, 4, 5]

In that particular example there was no real need to specialize the generic, as the Int
type can be inferred from the array. However, when setting a Set variable from a
literal, it is more efficient to specialize the generic. This saves the compiler the trouble
of reading the whole literal.

It sometimes happens (more often than you might suppose) that you want to exam‐
ine one element of a set as a kind of sample. Order is meaningless, so it’s sufficient to
obtain any element, such as the first element. For this purpose, use the first instance
property; it returns an Optional, just in case the set is empty.

The distinctive feature of a set is the uniqueness of its objects. If an object is added to
a set and that object is already present, it isn’t added a second time. Conversion from
an array to a set and back to an array is a quick and reliable way of uniquing the array
— though of course order is not preserved:

let arr = [1,2,1,3,2,4,3,5]
let set = Set(arr)
let arr2 = Array(set) // [5, 2, 3, 1, 4], perhaps

A set is a Collection and a Sequence. Like Array, Set has a map(_:) instance method;
it returns an array, but of course you can turn that right back into a set if you need to:

let set : Set = [1,2,3,4,5]
let set2 = Set(set.map {$0+1}) // Set containing 2, 3, 4, 5, 6

On the other hand, applying filter to a Set yields a Set directly:

let set : Set = [1,2,3,4,5]
let set2 = set.filter {$0>3} // Set containing 4, 5

If the reference to a set is mutable, you can add an object to it with insert(_:); there
is no penalty for trying to add an object that’s already in the set, but the object won’t
be added. insert(_:) also returns a result, a tuple whose inserted element will be
false if an equivalent object was already present in the set. This result is usually dis‐
regarded, but it can sometimes be useful; here, we use it to unique an array while pre‐
serving its order:

var arr = ["Manny", "Manny", "Moe", "Jack", "Jack", "Moe", "Manny"]
var temp = Set<String>()
arr = arr.filter { temp.insert($0).inserted }

The other element of the tuple returned by insert(_:) is memberAfterInsert. If
inserted is true, this is simply the parameter of insert(_:). If inserted is false,

Collection Types | 253

however, it is the existing member of the set that caused the insertion to fail because
it is regarded as equal to the parameter of insert(_:); this may be of interest because
it tells you why the insertion was rejected.

Instead of insert(_:), you can call update(with:); the difference is that if you’re
trying to add an object that already has an equivalent in the set, the former doesn’t
insert the new object, but the latter always inserts, replacing the old object (if there is
one) with the new one.

You can remove an object and return it by specifying an equivalent object with the
remove(_:) method; it returns the object from the set, wrapped in an Optional, or
nil if the object was not present. You can remove and return an arbitrary object from
the set with removeFirst; it crashes if the set is empty, so take precautions — or use
popFirst, which is safe.

Equality comparison (==) is defined for sets as you would expect; two sets are equal if
every element of each is equal to an element of the other.

If the notion of a set evokes visions of Venn diagrams from elementary school, that’s
good, because sets have instance methods giving you all those set operations you
remember so fondly. The parameter can be a set, or it can be any sequence, which
will be converted to a set; it might be an array, a range, or even a character sequence:

intersection(_:), formIntersection(_:)
Yields the elements of this set that also appear in the parameter. The first forms a
new Set; the second is mutating.

union(_:), formUnion(_:)
Yields the elements of this set along with the (unique) elements of the parameter.
The first forms a new Set; the second is mutating.

symmetricDifference(_:), formSymmetricDifference(_:)
Yields the elements of this set that don’t appear in the parameter, plus the
(unique) elements of the parameter that don’t appear in this set. The first forms a
new Set; the second is mutating.

subtracting(_:), subtract(_:)
Yields the elements of this set except for those that appear in the parameter. The
first forms a new Set; the second is mutating.

isSubset(of:), isStrictSubset(of:)
isSuperset(of:), isStrictSuperset(of:)

Returns a Bool reporting whether the elements of this set are respectively
embraced by or embrace the elements of the parameter. The “strict” variant
yields false if the two sets consist of the same elements.

254 | Chapter 4: Object Types

isDisjoint(with:)

Returns a Bool reporting whether this set and the parameter have no elements in
common.

Here’s a real-life example of Set usage from one of my apps. I have a lot of numbered
pictures, of which we are to choose one randomly. But I don’t want to choose a pic‐
ture that has recently been chosen. Therefore, I keep a list of the numbers of all
recently chosen pictures. When it’s time to choose a new picture, I convert the list of
all possible numbers to a Set, convert the list of recently chosen picture numbers to a
Set, and call subtracting(_:) to get a list of unused picture numbers! Now I choose
a picture number at random and add it to the list of recently chosen picture numbers:

let ud = UserDefaults.standard
let recents = ud.object(forKey: Defaults.recents) as? [Int] ?? []
var forbiddenNumbers = Set(recents)
let legalNumbers = Set(1...PIXCOUNT).subtracting(forbiddenNumbers)
let newNumber = legalNumbers.randomElement()!
forbiddenNumbers.insert(newNumber)
ud.set(Array(forbiddenNumbers), forKey:Defaults.recents)

Option sets
An option set (OptionSet struct) is Swift’s way of treating a certain type of Cocoa enu‐
meration as a Swift struct. It is not, strictly speaking, a Set; but it is deliberately set-
like, sharing common features with Set through the SetAlgebra protocol. An option
set has contains(_:), insert(_:), and remove(_:) methods, along with all the vari‐
ous set operation methods.

The purpose of option sets is to help you grapple with Objective-C bitmasks. A bit‐
mask is an integer whose bits are used as switches when multiple options are to be
specified simultaneously. Bitmasks are very common in Cocoa. In Objective-C, bit‐
masks are manipulated through the arithmetic bitwise-or and bitwise-and operators.
Such manipulation can be mysterious and error-prone. But in Swift, thanks to option
sets, bitmasks can be manipulated easily through set operations instead.

For example, when specifying how a UIView is to be animated, you are allowed to
pass an options: argument whose value comes from the UIView.AnimationOptions
enumeration, whose definition (in Objective-C) begins:

typedef NS_OPTIONS(NSUInteger, UIViewAnimationOptions) {
 UIViewAnimationOptionLayoutSubviews = 1 << 0,
 UIViewAnimationOptionAllowUserInteraction = 1 << 1,
 UIViewAnimationOptionBeginFromCurrentState = 1 << 2,
 UIViewAnimationOptionRepeat = 1 << 3,
 UIViewAnimationOptionAutoreverse = 1 << 4,
 // ...
};

Collection Types | 255

Pretend that an NSUInteger is 8 bits (it isn’t, but let’s keep things simple and short).
Then this enumeration means that (in Swift) the following name–value pairs are
defined:

UIView.AnimationOptions.layoutSubviews 0b00000001
UIView.AnimationOptions.allowUserInteraction 0b00000010
UIView.AnimationOptions.beginFromCurrentState 0b00000100
UIView.AnimationOptions.repeat 0b00001000
UIView.AnimationOptions.autoreverse 0b00010000

These values can be combined into a single value — a bitmask — that you pass as the
options: argument for your animation. All Cocoa has to do to understand your
intentions is to look to see which bits in the value that you pass are set to 1. So, for
example, 0b00011000 would mean that UIView.AnimationOptions.repeat and
UIView.AnimationOptions.autoreverse are both true (and that the others are all
false).

The question is how to form the value 0b00011000 in order to pass it. You could form
it directly as a literal and set the options: argument to UIView.Animation-
Options(rawValue:0b00011000); but that’s not a very good idea, because it’s error-
prone and makes your code incomprehensible. In Objective-C, you’d use the
arithmetic bitwise-or operator, analogous to this Swift code:

let val =
 UIView.AnimationOptions.autoreverse.rawValue |
 UIView.AnimationOptions.repeat.rawValue
let opts = UIView.AnimationOptions(rawValue: val)

That’s rather ugly! However, help is on the way: The UIView.AnimationOptions type
is an option set struct in Swift (because it is marked as NS_OPTIONS in Objective-C),
and therefore can be treated much like a Set. Given a UIView.AnimationOptions
value, you can add an option to it using insert(_:):

var opts = UIView.AnimationOptions.autoreverse
opts.insert(.repeat)

Alternatively, you can start with an array literal, just as if you were initializing a Set:

let opts : UIView.AnimationOptions = [.autoreverse, .repeat]

To indicate that no options are to be set, pass an empty option set ([]) or, where
permitted, omit the options: parameter altogether.

Sometimes Cocoa hands you a bitmask, and you want to know whether a certain bit
is set. In this example from a UITableViewCell subclass, the cell’s state comes to us
as a bitmask; we want to know about the bit indicating that the cell is showing its edit
control. The Objective-C way is to extract the raw values and use the bitwise-and
operator:

256 | Chapter 4: Object Types

override func didTransition(to state: UITableViewCell.StateMask) {
 let editing = UITableViewCell.StateMask.showingEditControl.rawValue
 if state.rawValue & editing != 0 {
 // ... the ShowingEditControl bit is set ...
 }
}

That’s a tricky formula, all too easy to get wrong. But in Swift this is an option set, so
the contains(_:) method tells you the answer:

override func didTransition(to state: UITableViewCell.StateMask) {
 if state.contains(.showingEditControl) {
 // ... the ShowingEditControl bit is set ...
 }
}

Swift Set and Objective-C NSSet
Swift’s Set type is bridged to Objective-C NSSet. The untyped medium of interchange
is Set<AnyHashable>. Coming back from Objective-C, if Objective-C doesn’t know
what this is a set of, you would probably cast down as needed. As with NSArray, how‐
ever, NSSet can be marked up using lightweight generics to indicate its element type,
in which case no casting will be necessary:

override func touchesBegan(_ touches: Set<UITouch>, with event: UIEvent?) {
 let t = touches.first // an Optional wrapping a UITouch
 // ...
}

Collection Types | 257

CHAPTER 5

Flow Control and More

This chapter is a miscellany. I’ll start by describing Swift’s flow control constructs for
branching, looping, and jumping. Then, I’ll summarize Swift’s privacy and introspec‐
tion features, and talk about how to override operators and how to create your own
operators. Next, I’ll explain some specialized aspects of Swift memory management.
Finally, I’ll survey some recently added Swift language features: synthesized protocol
implementations, key paths, instance as function, dynamic members, property wrap‐
pers, custom string interpolation, reverse generics, function builders, and Result.

Flow Control
A computer program has a path of execution through its code statements. Normally,
this path follows a simple rule: execute each statement in succession. But there is
another possibility. Flow control can be used to make the path of execution skip some
statements, or go back and repeat some statements.

Flow control is what makes a computer program “intelligent.” By testing in real time
the truth value of a condition — an expression that evaluates to a Bool and is thus
true or false — the program decides at that moment how to proceed. Flow control
based on testing a condition may be divided into two general types:

Branching
The code is divided into alternative chunks, like roads that diverge in a wood,
and the program is presented with a choice of possible ways to go; the truth of a
condition is used to determine which chunk will actually be executed.

Looping
A chunk of code is marked off for possible repetition; the truth of a condition is
used to determine whether the chunk should be executed, and then whether it
should be executed again. Each repetition is called an iteration.

259

The chunks of code in flow control, which I refer to as blocks, are demarcated by
curly braces. These curly braces constitute a scope (Chapter 1). New local variables
can be declared here, and go out of existence automatically when the path of execu‐
tion exits the curly braces (Chapter 3). For a loop, this means that local variables
come into existence and go out of existence on each iteration. As with any scope,
code inside the curly braces can see the surrounding higher scope.

Swift flow control is fairly simple, and by and large is similar to flow control in C and
related languages. There are two fundamental syntactic differences between Swift and
C, both of which make Swift simpler and clearer:

• A condition does not have to be wrapped in parentheses in Swift.
• The curly braces can never be omitted in Swift.

Moreover, Swift adds some specialized flow control features to help you grapple more
conveniently with Optionals, and boasts a particularly powerful form of switch
statement.

Branching
Swift has two forms of branching: the if construct, and the switch statement. I’ll also
discuss conditional evaluation, a compact form of if construct.

If construct

The Swift branching construct with if is similar to C. Many examples of if constructs
have appeared already in this book. The construct may be formally summarized as
shown in Example 5-1.

Example 5-1. The Swift if construct

if condition {
 statements
}

if condition {
 statements
} else {
 statements
}

if condition {
 statements
} else if condition {
 statements
} else {
 statements
}

260 | Chapter 5: Flow Control and More

The third form, containing else if, can have as many else if blocks as needed, and
the final else block may be omitted.

Here’s a real-life if construct that lies at the heart of one of my apps:

// okay, we've tapped a tile; there are three cases
if self.selectedTile == nil { // no selected tile: select and play this tile
 self.select(tile:tile)
 self.play(tile:tile)
} else if self.selectedTile == tile { // selected tile tapped: deselect it
 self.deselectAll()
 self.player?.pause()
} else { // there was a selected tile, another tile was tapped: swap them
 self.swap(self.selectedTile, with:tile, check:true, fence:true)
}

Conditional binding

In Swift, if can be followed immediately by a variable declaration and assignment —
that is, by let or var and a new local variable name, possibly followed by a colon and
a type declaration, then an equal sign and a value:

if let var = val {
 // the block
}

This syntax, called a conditional binding, is actually a shorthand for conditionally
unwrapping an Optional. The assigned value (val) is expected to be an Optional —
the compiler will stop you if it isn’t — and this is what happens:

• If the Optional (val) is nil, the condition fails and the block is skipped, with exe‐
cution resuming after the block.

• If the Optional is not nil, then:
1. The Optional is unwrapped.
2. The unwrapped value is assigned to the declared local variable (var).
3. The block is executed with the local variable in scope. The local variable is

not in scope outside the block.
So a conditional binding safely passes an unwrapped Optional into a block. The
Optional is unwrapped, and the block is executed, only if the Optional can be
unwrapped.

It is perfectly reasonable for the local variable in a conditional binding to have the
same name as an existing variable in the surrounding scope. It can even have the
same name as the Optional being unwrapped! There is then no need to make up a
new name, and inside the block the unwrapped value of the Optional neatly over‐
shadows the original Optional so that the latter can’t be accessed accidentally.

Flow Control | 261

Recall this code from Chapter 4, where I optionally unwrap a Notification’s userInfo
dictionary, attempt to fetch a value from the dictionary using the "progress" key,
and proceed only if that value turns out to be an NSNumber that can be cast down to
a Double:

let prog = n.userInfo?["progress"] as? Double
if prog != nil {
 self.progress = prog!
}

We can rewrite that code more elegantly and compactly as a conditional binding:

if let prog = n.userInfo?["progress"] as? Double {
 self.progress = prog
}

It is also possible to nest conditional bindings. To illustrate, I’ll rewrite the previous
example to use a separate conditional binding for each Optional in the chain:

if let ui = n.userInfo {
 if let prog = ui["progress"] as? Double {
 self.progress = prog
 }
}

The result, if the chain involves many optional unwrappings, can be somewhat ver‐
bose and the nest can become deeply indented — Swift programmers like to call this
the “pyramid of doom.” To help avoid the indentation, successive conditional bind‐
ings can be combined into a condition list, with each condition separated by a
comma:

if let ui = n.userInfo, let prog = ui["progress"] as? Double {
 self.progress = prog
}

In that code, the assignment to prog won’t even be attempted if n.userInfo is nil;
the assignment to ui fails and that’s the end.

Condition lists do not have to consist solely of conditional bindings. They can
include ordinary conditions. The important thing is the left-to-right order of evalua‐
tion, which allows each condition to depend upon the previous one. It would be
possible (though not as elegant) to rewrite the previous example like this:

if let ui = n.userInfo, let prog = ui["progress"], prog is Double {
 self.progress = prog as! Double
}

Nevertheless, I am not fond of this kind of extended condition list. I actually prefer
the pyramid of doom, where the structure reflects perfectly the successive stages of
testing. If I want to avoid the pyramid of doom, I can usually use a sequence of guard
statements (“Guard” on page 292):

262 | Chapter 5: Flow Control and More

guard let ui = n.userInfo else {return}
guard let prog = ui["progress"] as? Double else {return}
self.progress = prog

Switch statement

A switch statement is a neater way of writing an extended if...else if...else
construct. In C (and Objective-C), a switch statement contains hidden traps; Swift
eliminates those traps, and adds power and flexibility. As a result, switch statements
are commonly used in Swift (whereas they are relatively rare in my Objective-C
code).

In a switch statement, the condition involves the comparison of different possible
values, called cases, against a single value, called the tag. The case comparisons are
performed successively in order. As soon as a case comparison succeeds, that case’s
code is executed and the entire switch statement is exited. The schema is shown in
Example 5-2; there can be as many cases as needed, and the default case can be
omitted (subject to restrictions that I’ll explain in a moment).

Example 5-2. The Swift switch statement

switch tag {
case pattern1:
 statements
case pattern2:
 statements
default:
 statements
}

Here’s an actual example:

switch i {
case 1:
 print("You have 1 thingy!")
case 2:
 print("You have 2 thingies!")
default:
 print("You have \(i) thingies!")
}

In that code, an Int variable i functions as the tag. The value of i is first compared to
the value 1. If it is 1, that case’s code is executed and that’s all. If it is not 1, it is com‐
pared to the value 2. If it is 2, that case’s code is executed and that’s all. If the value of
i matches neither of those, the default case’s code is executed.

In Swift, a switch statement must be exhaustive. This means that every possible value
of the tag must be covered by a case. The compiler will stop you if you try to violate
this rule. If you don’t want to write every case explicitly, you must add a “mop-up”

Flow Control | 263

case that covers all other cases; a common way to do that is to add a default case. It’s
easy to write an exhaustive switch when the tag is an enum with a small number of
cases, but when the tag is an Int, there is an infinite number of possible cases, so a
“mop-up” case must appear.

Each case’s code can consist of multiple statements; it doesn’t have to be a single
statement, like the cases in the preceding example. However, it must consist of at
least a single statement; it is illegal for a Swift switch case to be empty. It is legal for
the first (or only) statement of a case’s code to appear on the same line as the case,
after the colon; I could have written the preceding example like this:

switch i {
case 1: print("You have 1 thingy!")
case 2: print("You have 2 thingies!")
default: print("You have \(i) thingies!")
}

The minimum single statement of case code is the keyword break; used in this way,
break acts as a placeholder meaning, “Do nothing.” It is very common for a switch
statement to include a default (or other “mop-up” case) consisting of nothing but
the keyword break; in this way, you exhaust all possible values of the tag, but if the
value is one that no case explicitly covers, you do nothing.

Now let’s focus on the comparison between the tag value and the case value. In the
preceding example, it works like an equality comparison (==); but that isn’t the only
possibility. In Swift, a case value is actually a special expression called a pattern, and
the pattern is compared to the tag value using a “secret” pattern-matching operator,
~=. The more you know about the syntax for constructing a pattern, the more power‐
ful your case values and your switch statements will be.

A pattern can include an underscore (_) to absorb all values without using them. An
underscore case is thus an alternative form of “mop-up” case:

switch i {
case 1:
 print("You have 1 thingy!")
case _:
 print("You have many thingies!")
}

A pattern can include a declaration of a local variable name (an unconditional bind‐
ing) to absorb all values and use the actual value. This is yet another alternative form
of “mop-up” case:

264 | Chapter 5: Flow Control and More

switch i {
case 1:
 print("You have 1 thingy!")
case let n:
 print("You have \(n) thingies!")
}

When the tag is a Comparable, a case can include a Range; the test involves sending
the Range the contains message:

switch i {
case 1:
 print("You have 1 thingy!")
case 2...10:
 print("You have \(i) thingies!")
default:
 print("You have more thingies than I can count!")
}

A Range pattern can be an opportunity to use partial range syntax:

switch i {
case ..<0:
 print("i is negative, namely \(i)")
case 1...:
 print("i is positive, namely \(i)")
case 0:
 print("i is 0")
default:break
}

When the tag is an Optional, a case can test it against nil. Moreover, appending ? to
a case pattern safely unwraps an Optional tag. Presume that i is an Optional wrap‐
ping an Int:

switch i {
case 1?:
 print("You have 1 thingy!")
case let n?:
 print("You have \(n) thingies!")
case nil: break
}

When the tag is a Bool, a case can test it against a condition. Thus, by a clever perver‐
sion, you can use the cases to test any conditions you like by using true as the tag; a
switch statement becomes a genuine substitute for an extended if...else if con‐
struct. In this example from my own code, I could have used if...else if, but a
switch statement seems cleaner:

Flow Control | 265

func position(for bar: UIBarPositioning) -> UIBarPosition {
 switch true {
 case bar === self.navbar: return .topAttached
 case bar === self.toolbar: return .bottom
 default: return .any
 }
}

A pattern can include a where clause adding a condition to limit the truth value of the
case. This is often, though not necessarily, used in combination with a binding; the
condition can refer to the variable declared in the binding:

switch i {
case let j where j < 0:
 print("i is negative, namely \(j)")
case let j where j > 0:
 print("i is positive, namely \(j)")
case 0:
 print("i is 0")
default:break
}

A pattern can include the is operator to test the tag’s type. In this example, we have a
Dog class and its NoisyDog subclass, and d is typed as Dog:

switch d {
case is NoisyDog:
 print("You have a noisy dog!")
case _:
 print("You have a dog")
}

A pattern can include a cast with the as (not as?) operator. Typically, you’ll combine
this with a binding that declares a local variable; despite the use of unconditional as,
the value is conditionally cast and, if the cast succeeds, the local variable carries the
cast value into the case code. Again, d is typed as Dog, which has a NoisyDog sub‐
class; assume that Dog implements bark and that NoisyDog implements beQuiet:

switch d {
case let nd as NoisyDog:
 nd.beQuiet()
case let d:
 d.bark()
}

You can also use as (not as?) to cast down the tag (and possibly unwrap it) condi‐
tionally as part of a test against a specific match. In this example, i might be an Any
or an Optional wrapping an Any:

266 | Chapter 5: Flow Control and More

switch i {
case 0 as Int:
 print("It is 0")
default:break
}

You can perform multiple tests at once by expressing the tag as a tuple and wrapping
the corresponding tests in a tuple. The case passes only if every test in the case tuple
succeeds against the corresponding member of the tag tuple. In this example, we start
with a dictionary d typed as [String:Any]. Using a tuple, we can safely attempt to
fetch and cast two values at once:

switch (d["size"], d["desc"]) {
case let (size as Int, desc as String):
 print("You have size \(size) and it is \(desc)")
default:break
}

When a tag is an enum, the cases can be cases of the enum. A switch statement is thus
an excellent way to handle an enum. Here’s the Filter enum from Chapter 4:

enum Filter {
 case albums
 case playlists
 case podcasts
 case books
}

And here’s a switch statement, where the tag, type, is a Filter; no mop-up is needed,
because I’ve exhausted the cases:

switch type {
case .albums:
 print("Albums")
case .playlists:
 print("Playlists")
case .podcasts:
 print("Podcasts")
case .books:
 print("Books")
}

If an enum comes from Objective-C (or C) or the Swift standard library, an
exhaustive switch over it might get you a warning from the compiler that the
enum “may have additional unknown values.” I’ll explain what that means, and
what to do about it, in Appendix A.

A switch statement provides a way to extract an associated value from an enum case.
Recall this enum from Chapter 4:

Flow Control | 267

enum MyError {
 case number(Int)
 case message(String)
 case fatal
}

If a case of the enum has an associated value, a tuple of patterns after the matched
case name is applied to the associated value. If a pattern is a binding variable, it cap‐
tures the associated value. The let (or var) can appear inside the parentheses or after
the case keyword; this code illustrates both alternatives:

switch err {
case .number(let theNumber):
 print("It is a number: \(theNumber)")
case let .message(theMessage):
 print("It is a message: \(theMessage)")
case .fatal:
 print("It is fatal")
}

If the let (or var) appears after the case keyword, I can add a where clause:

switch err {
case let .number(n) where n > 0:
 print("It's a positive error number \(n)")
case let .number(n) where n < 0:
 print("It's a negative error number \(n)")
case .number(0):
 print("It's a zero error number")
default:break
}

If I don’t want to extract the error number but just want to match against it, I can use
some other pattern inside the parentheses:

switch err {
case .number(1...):
 print("It's a positive error number")
case .number(..<0):
 print("It's a negative error number")
case .number(0):
 print("It's a zero error number")
default:break
}

This same pattern also gives us yet another way to deal with an Optional tag. An
Optional, as I explained in Chapter 4, is in fact an enum. It has two cases, .none
and .some, where the wrapped value is the .some case’s associated value. But now we
know how to extract the associated value! We can rewrite yet again the earlier exam‐
ple where i is an Optional wrapping an Int:

268 | Chapter 5: Flow Control and More

switch i {
case .none: break
case .some(1):
 print("You have 1 thingy!")
case .some(let n):
 print("You have \(n) thingies!")
}

To combine switch case tests (with an implicit logical-or), separate them with a
comma:

switch i {
case 1,3,5,7,9:
 print("You have a small odd number of thingies")
case 2,4,6,8,10:
 print("You have a small even number of thingies")
default:
 print("You have too many thingies for me to count")
}

In this example, i is declared as an Any:

switch i {
case is Int, is Double:
 print("It's some kind of number")
default:
 print("I don't know what it is")
}

A comma can even combine patterns that declare binding variables, provided they
declare the same variable of the same type (err is our MyError once again):

switch err {
case let .number(n) where n > 0, let .number(n) where n < 0:
 print("It's a nonzero error number \(n)")
case .number(0):
 print("It's a zero error number")
default:break
}

Another way of combining cases is to jump from one case to the next by using a
fallthrough statement. When a fallthrough statement is encountered, the current
case code is aborted immediately and the next case code runs unconditionally. The
test of the next case is not performed, so the next case can’t declare any binding vari‐
ables, because they would never be set. It is not uncommon for a case to consist
entirely of a fallthrough statement:

switch pep {
case "Manny": fallthrough
case "Moe": fallthrough
case "Jack":

Flow Control | 269

 print("\(pep) is a Pep boy")
default:
 print("I don't know who \(pep) is")
}

If case
When all you want to do is extract an associated value from one enum case, a full
switch statement may seem a bit heavy-handed. The lightweight if case construct
lets you use in a condition the same sort of pattern syntax you’d use in a case of a
switch statement. The structural difference is that, whereas a switch case pattern is
compared against a previously stated tag, an if case pattern is followed by an equal
sign and then the tag. In this code, err is our MyError enum once again:

if case let .number(n) = err {
 print("The error number is \(n)")
}

The condition starting with case can be part of a longer comma-separated condition
list:

if case let .number(n) = err, n < 0 {
 print("The negative error number is \(n)")
}

Conditional evaluation
An interesting problem arises when you’d like to decide on the fly what value to use
— for example, what value to assign to a variable. This seems like a good use of a
branching construct. You can, of course, declare the variable first without initializing
it, and then set it from within a subsequent branching construct. It would be nice,
however, to use a branching construct as the variable’s value. Here, I try (and fail) to
write a variable assignment where the equal sign is followed directly by a branching
construct:

let title = switch type { // compile error
case .albums:
 "Albums"
case .playlists:
 "Playlists"
case .podcasts:
 "Podcasts"
case .books:
 "Books"
}

There are languages that let you talk that way, but Swift is not one of them. However,
an easy workaround does exist — use a define-and-call anonymous function, as I
suggested in Chapter 2:

270 | Chapter 5: Flow Control and More

let title : String = {
 switch type {
 case .albums:
 return "Albums"
 case .playlists:
 return "Playlists"
 case .podcasts:
 return "Podcasts"
 case .books:
 return "Books"
 }
}()

In the special case where a value can be decided by a two-pronged condition, Swift
provides the C ternary operator (?:). Its scheme is:

condition ? exp1 : exp2

If the condition is true, the expression exp1 is evaluated and the result is used; other‐
wise, the expression exp2 is evaluated and the result is used. You can use the ternary
operator while performing an assignment, using this schema:

let myVariable = condition ? exp1 : exp2

What myVariable gets initialized to depends on the truth value of the condition.

I use the ternary operator heavily in my own code. Here’s an example:

cell.accessoryType =
 ix.row == self.currow ? .checkmark : .disclosureIndicator

The context needn’t be an assignment; here, we’re deciding what value to pass as a
function argument:

context.setFillColor(self.hilite ? purple.cgColor : beige.cgColor)

The ternary operator can also be used to determine the receiver of a message. In this
example, one of two UIViews will have its background color set:

(self.firstRed ? v1 : v2).backgroundColor = .red

In Objective-C, there’s a collapsed form of the ternary operator that allows you to test
a value against nil. If it is nil, you get to supply a substitute value. If it isn’t nil, the
tested value itself is used. In Swift, the analogous operation would involve testing an
Optional: if the tested Optional is nil, use the substitute value; if it isn’t nil, unwrap
the Optional and use the unwrapped value. Swift has such an operator — the ?? oper‐
ator (called the nil-coalescing operator).

Here’s a real-life example from my own code:

func tableView(_ tv: UITableView, numberOfRowsInSection sec: Int) -> Int {
 return self.titles?.count ?? 0
}

Flow Control | 271

In that example, self.titles is of type [String]?. If it’s not nil, I want to unwrap
the array and return its count. But if it is nil, there is no data and no table to display
— but I must return some number, so clearly I want to return zero. The nil-coalescing
operator lets me express all that very neatly.

The nil-coalescing operator together with the Optional map(_:) method neatly solves
a class of problem where your goal is to process the wrapped value of an Optional or,
if it is nil, to assign some default value. Suppose our goal is to produce a string
expressing the index of target within arr if it is present, or "NOT FOUND" if it is not.
This works, but it’s ugly:

let arr = ["Manny", "Moe", "Jack"]
let target = // some string
let pos = arr.firstIndex(of:target)
let s = pos != nil ? String(pos!) : "NOT FOUND"

Here’s a more elegant way:

let arr = ["Manny", "Moe", "Jack"]
let target = // some string
let s = arr.firstIndex(of:target).map {String($0)} ?? "NOT FOUND"

Expressions using ?? can be chained:

let someNumber = i1 as? Int ?? i2 as? Int ?? 0

That code tries to cast i1 to an Int and use that Int. If that fails, it tries to cast i2 to an
Int and use that Int. If that fails, it gives up and uses 0.

Loops
The usual purpose of a loop is to repeat a block of code with some simple difference
on each iteration. This difference will typically serve also as a signal for when to stop
the loop. Swift provides two basic loop structures: while loops and for loops.

While loops
A while loop comes in two forms, schematized in Example 5-3.

Example 5-3. The Swift while loop

while condition {
 statements
}

repeat {
 statements
} while condition

272 | Chapter 5: Flow Control and More

The chief difference between the two forms is the timing of the test. In the second
form, the condition is tested after the block has executed — meaning that the block
will be executed at least once.

Usually, the code inside the block will change something that alters the environment
and hence the value of the condition, eventually bringing the loop to an end. Here’s a
typical example from my own code (movenda is an array):

while self.movenda.count > 0 {
 let p = self.movenda.removeLast()
 // ...
}

Each iteration removes an element from movenda, so eventually its count, evaluated
in the condition, falls to 0 and the loop is no longer executed; execution then pro‐
ceeds to the next line after the closing curly braces.

In its first form, a while loop’s condition can involve a conditional binding of an
Optional. This provides a compact way of safely unwrapping an Optional and loop‐
ing until the Optional is nil; the local variable containing the unwrapped Optional is
in scope inside the curly braces. My previous code can be rewritten more compactly:

while let p = self.movenda.popLast() {
 // ...
}

Here’s an example of repeat...while from my own code. In my LinkSame app, if
there are no legal moves, we pick up all the cards, shuffle them, and redeal them into
the same positions. It’s possible that when we do that, there will still be no legal
moves. So we do it again until there is a legal move:

repeat {
 var deck = self.gatherUpCards()
 deck.shuffle()
 self.redeal(deck)
} while self.legalPath() == nil

Similar to the if case construct, while case lets you use a switch case pattern. In
this rather artificial example, we have an array of various MyError enums:

let arr : [MyError] = [
 .message("ouch"), .message("yipes"), .number(10), .number(-1), .fatal
]

We can extract the .message associated string values from the start of the array, like
this:

var i = 0
while case let .message(message) = arr[i] {
 print(message) // "ouch", then "yipes"; then the loop stops
 i += 1
}

Flow Control | 273

For loops
The Swift for loop is schematized in Example 5-4.

Example 5-4. The Swift for loop

for variable in sequence {
 statements
}

With a for loop, you cycle through (enumerate) a sequence. The sequence must be an
instance of a type that adopts the Sequence protocol. An Array is a Sequence. A Dic‐
tionary is a Sequence. A Set is a Sequence. A String is a Sequence. A Range is a
Sequence (as long as it is a range of something that comes in discrete steps, like Int).
Those, and sequences derived from them, are the things to which you will regularly
apply for...in.

On each iteration, a successive element of the sequence is used to initialize the vari‐
able. The variable is local to the block; it is in scope inside the curly braces, and is not
visible outside them. The variable is implicitly declared with let; it is immutable by
default. If you need to assign to or mutate the variable within the block, write
for var.

A common use of for loops is to iterate through successive numbers. This is easy in
Swift, because you can readily create a sequence of numbers on the fly — a Range:

for i in 1...5 {
 print(i) // 1, 2, 3, 4, 5
}

A Sequence has a makeIterator method that yields an iterator object adopting Itera‐
torProtocol. According to this protocol, the iterator has a mutating next method that
returns the next object in the sequence wrapped in an Optional, or nil if there is no
next object. Under the hood, for...in is repeatedly calling the next method in a
while loop. The previous code actually works like this:

var iterator = (1...5).makeIterator()
while let i = iterator.next() {
 print(i) // 1, 2, 3, 4, 5
}

Sometimes you may find that writing out the while loop explicitly in that way makes
the loop easier to control and to customize.

When you cycle through a sequence with for...in, what you’re actually cycling
through is a copy of the sequence. That means it’s safe to mutate the sequence while
you’re cycling through it:

274 | Chapter 5: Flow Control and More

var s : Set = [1,2,3,4,5]
for i in s {
 if i.isMultiple(of:2) {
 s.remove(i)
 }
} // s is now [1,3,5]

That may not be the most elegant way to remove all even numbers from the Set s, but
it’s not illegal or dangerous.

Not only is the sequence a copy; if the variable type is a value type (“Value Types and
Reference Types” on page 153), the variable is a copy. So even if you mutate the
variable (which is legal if you say for var), the original sequence’s elements are unaf‐
fected. Here’s a Dog that’s a struct, not a class:

struct Dog {
 var name : String
 init(_ n:String) {
 self.name = n
 }
}

We cycle through an array of Dogs, uppercasing their names:

var dogs : [Dog] = [Dog("rover"), Dog("fido")]
for var dog in dogs {
 dog.name = dog.name.uppercased()
}

But nothing useful happens; dogs still consists of Dogs named "rover" and "fido". If
the Sequence is also a Collection, one workaround is to cycle through its indices
instead, so that you can assign back into the original array:

var dogs : [Dog] = [Dog("rover"), Dog("fido")]
for ix in dogs.indices {
 dogs[ix].name = dogs[ix].name.uppercased()
}

Now dogs consists of Dogs named "ROVER" and "FIDO".

As I explained in Chapter 4, you may encounter an array coming from Objective-C
whose elements will need to be cast down from Any. If your goal is to iterate through
that array, you can cast down as part of the sequence specification:

let p = Pep() // p.boys() is an array of Any
for boy in p.boys() as! [String] {
 // ...
}

The sequence enumerated method yields a succession of tuples in which each element
of the original sequence (labeled element) is preceded by its index number (labeled

Flow Control | 275

offset). In this example from my real code, tiles is an array of UIViews and
centers is an array of CGPoints saying where those views are to be positioned:

for (i,v) in self.tiles.enumerated() {
 v.center = self.centers[i]
}

A for...in construct can take a where clause, allowing you to skip some values of
the sequence:

for i in 0...10 where i.isMultiple(of:2) {
 print(i) // 0, 2, 4, 6, 8, 10
}

Like if case and while case, there’s also for case, permitting a switch case pattern
to be used in a for loop. The tag is each successive value of the sequence, so no assign‐
ment operator is used. To illustrate, let’s start again with an array of MyError enums:

let arr : [MyError] = [
 .message("ouch"), .message("yipes"), .number(10), .number(-1), .fatal
]

Here we cycle through the whole array, extracting only the .number associated values:

for case let .number(i) in arr {
 print(i) // 10, -1
}

Another common use of for case is to cast down conditionally, picking out only
those members of the sequence that can be cast down safely. Let’s say I want to hide
all subviews that happen to be buttons:

for case let b as UIButton in self.boardView.subviews {
 b.isHidden = true
}

A sequence also has instance methods, such as map(_:), filter(_:), and reversed;
you can apply these to hone the sequence through which we will cycle. In this exam‐
ple, I count backward by even numbers:

let range = (0...10).reversed().filter {$0.isMultiple(of:2)}
for i in range {
 print(i) // 10, 8, 6, 4, 2, 0
}

Yet another approach is to generate the sequence by calling global functions such as
stride(from:through:by) or stride(from:to:by:). These are applicable to adopt‐
ers of the Strideable protocol, such as numeric types and anything else that can be
incremented and decremented. Which form you use depends on whether you want
the sequence to include the final value. The by: argument can be negative:

276 | Chapter 5: Flow Control and More

for i in stride(from: 10, through: 0, by: -2) {
 print(i) // 10, 8, 6, 4, 2, 0
}

For maximum flexibility, you can use the global sequence function to generate your
sequence by rule. It takes two parameters — an initial value, and a generation func‐
tion that returns the next value based on what has gone before. In theory, the
sequence generated by the sequence function can be infinite in length — though this
is not a problem, because the resulting sequence is “lazy,” meaning that an element
isn’t generated until you ask for it. In reality, you’ll use one of two techniques to limit
the result:

Return nil
The generation function can limit the sequence by returning nil to signal that
the end has been reached:

let seq = sequence(first:1) {$0 >= 10 ? nil : $0 + 1}
for i in seq {
 print(i) // 1,2,3,4,5,6,7,8,9,10
}

Stop requesting elements
You can request just a piece of the infinite sequence — for example, by cycling
through the sequence for a while and then stopping, or by taking a finite prefix:

let seq = sequence(first:1) {$0 + 1}
for i in seq.prefix(5) {
 print(i) // 1,2,3,4,5
}

The sequence function comes in two forms:

sequence(first:next:)

Initially hands first into the next: function and subsequently hands the previ‐
ous result of the next: function into the next: function, as illustrated in the pre‐
ceding examples.

sequence(state:next:)

This form is more general: it repeatedly hands state into the next: function as
an inout parameter; the next: function is expected to set that parameter, using it
as a scratchpad, in addition to returning the next value in the sequence.

An obvious illustration of the second form is the Fibonacci series:

let fib = sequence(state:(0,1)) { (pair: inout (Int,Int)) -> Int in
 let n = pair.0 + pair.1
 pair = (pair.1,n)
 return n

Flow Control | 277

Trailing Closures and Flow Control Blocks
Trailing closures do not play well with subsequent flow control blocks; therefore
parentheses are sometimes needed where generally they would not be. The closing
curly brace of the trailing closure, followed by the opening curly brace of the block,
upsets the compiler:

for i in arr.map {$0*2} { // warning
 print(i)
}

To silence the warning, wrap the trailing closure in parentheses:

for i in arr.map ({$0*2}) {
 print(i)
}

In this example, the curly braces are not adjacent, but you get the warning anyway:

if arr.map {$0*2}.first == 4 { // warning

Again, parentheses are the simplest solution:

if arr.map ({$0*2}).first == 4 {

}
for i in fib.prefix(10) {
 print(i) // 1, 2, 3, 5, 8, 13, 21, 34, 55, 89
}

Any sequence can be made “lazy” by asking for its lazy property. This can be a
source of efficiency if you’re going to be looping through the sequence (explicitly
or implicitly) and potentially short-circuiting the loop; there’s no point generat‐
ing more elements of the sequence than the loop will actually process, and that is
what lazy prevents. Importantly, laziness propagates through a chain of
sequence operations. I’ll give an example in the next section.

Jumping
Although branching and looping constitute the bulk of the decision-making flow of
code execution, sometimes they are insufficient to express the logic of what needs to
happen next. It can be useful to interrupt your code’s progress completely and jump
to a different place within it. In this section, I’ll list Swift’s modes of jumping. These
are all controlled forms of early exit from the current flow of code.

Return
You already know one form of early exit: the return statement. One function calls
another, which may call another, and so on, forming a call stack. When a return

278 | Chapter 5: Flow Control and More

statement is encountered, execution of this function is aborted and the path of execu‐
tion jumps to the point where the call was made in the function one level up the call
stack.

Short-circuiting and labels
Swift has several ways of short-circuiting the flow of branch and loop constructs:

fallthrough

A fallthrough statement in a switch case aborts execution of the current case
code and immediately begins executing the code of the next case. There must be
a next case or the compiler will stop you.

continue

A continue statement in a loop construct aborts execution of the current itera‐
tion and proceeds to the next iteration:

• In a while loop, continue means to perform immediately the conditional
test.

• In a for loop, continue means to proceed immediately to the next iteration if
there is one.

break

A break statement aborts the current construct and proceeds after the end of the
construct:

• In a loop, break aborts the loop.
• In a switch case, break aborts the entire switch construct.

When constructs are nested, you may need to specify which construct you mean
when you say continue or break. Therefore, Swift permits you to put a label before
the start of an if construct, a switch statement, a while loop, or a for loop (or a do
block, which I’ll describe later). The label is an arbitrary name followed by a colon.
You can then use that label name in a continue statement or a break statement within
the labeled construct at any depth, to specify that this is the construct you are refer‐
ring to.

To illustrate, here’s a simple struct for generating prime numbers:

struct Primes {
 static var primes = [2]
 static func appendNextPrime() {
 next: for i in (primes.last!+1)... {
 let sqrt = Int(Double(i).squareRoot())
 for prime in primes.lazy.prefix(while: {$0 <= sqrt}) {
 if i.isMultiple(of: prime) {
 continue next

Flow Control | 279

 }
 }
 primes.append(i)
 return
 }
 }
}

The algorithm is crude — it could be optimized further — but it’s effective and
straightforward. The struct maintains a list of the primes we’ve found so far, and
appendNextPrime basically just looks at each successive larger integer i to see
whether any of the primes we’ve already found (prime) divides it. If so, i is not a
prime, so we want to go on to the next i. But if we merely say continue, we’ll jump to
the next prime, not to the next i. The label solves the problem.

(That example also demonstrates lazy. We want to keep prefix(while:_) from
working harder than it has to; there’s no point extracting all the primes less than the
square root of i in advance, because the loop might be short-circuited. So we make
primes lazy, which makes prefix(while:_) lazy, and so a prime is tested as a divisor
of i only if it has to be.)

Throwing and catching errors
Sometimes a situation arises where further coherent progress is impossible: the entire
operation in which we are engaged has failed. It can then be desirable to abort the
current scope, and possibly the current function, and possibly even the function that
called that function, and so on, exiting to some point where we can acknowledge this
failure and proceed in good order in some other way.

For this purpose, Swift provides a mechanism for throwing and catching errors. In
keeping with its usual insistence on safety and clarity, Swift imposes strict conditions
on the use of this mechanism, and the compiler will ensure that you adhere to them.

An error, in this sense, is a kind of message, presumably indicating what went wrong.
This message is passed up the nest of scopes and function calls as part of the error-
handling process, and the code that recovers from the failure can read it. In Swift, an
error must be an object of a type that adopts the Error protocol, which has just two
requirements: a String _domain property and an Int _code property. The purpose of
those properties is to help errors cross the bridge between Swift and Objective-C; in
real life, they are hidden and you will be unaware of them. The Error object will be
one of the following:

A Swift type that adopts Error
As soon as a Swift type formally declares adoption of the Error protocol, it is
ready to be used as an error object; the protocol requirements are magically ful‐
filled for you behind the scenes. Typically, this type will be an enum, with

280 | Chapter 5: Flow Control and More

different cases distinguishing different kinds of possible failure, perhaps with raw
values or associated types to carry further information.

NSError
NSError is Cocoa’s class for communicating the nature of a problem; Swift
extends NSError to adopt Error and bridges them to one another. If your call to a
Cocoa method generates a failure, Cocoa will send you an NSError instance
typed as an Error.

There are two stages of the error mechanism to consider:

Throwing an error
Throwing an error aborts the current path of execution and hands an error
object to the error mechanism.

Catching an error
Catching an error receives that error object from the error mechanism and
responds in good order, with the path of execution resuming after the point of
catching. In effect, we have jumped from the throwing point to the catching
point.

To throw an error, use the keyword throw followed by an error object. That’s all it
takes! The current block of code is immediately aborted, and the error mechanism
takes over. However, to ensure that the throw command is used coherently, Swift
imposes a rule that you can say throw only in a context where the error will be caught.
What is such a context?

The primary context for throwing and catching an error is the do...catch construct.
This consists of a do block and one or more catch blocks. It is legal to throw in the do
block; an accompanying catch block can then be fed any errors thrown from within
the do block. The do...catch construct’s schema looks like Example 5-5.

Example 5-5. The Swift do...catch construct

do {
 statements // a throw can happen here
} catch errortype {
 statements
} catch {
 statements
}

A single do block can be accompanied by multiple catch blocks. Catch blocks are like
the cases of a switch statement, and will usually have the same logic: first, you might
have specialized catch blocks, each of which is designed to handle some limited set of
possible errors; finally, you might (and usually will) have a general catch block that

Flow Control | 281

acts as the default, mopping up any errors that were not caught by any of the special‐
ized catch blocks.

In fact, the syntax used by a catch block to specify what sorts of error it catches is the
pattern syntax used by a case in a switch statement! Imagine that this is a switch
statement, and that the tag is the error object. Then the matching of that error object
to a particular catch block is performed just as if you had written case instead of
catch. Typically, when the Error is an enum, a specialized catch block will state at
least the enum that it catches, and possibly also the case of that enum; it can have a
binding, to capture the enum or its associated type; and it can have a where clause to
limit the possibilities still further.

To illustrate, I’ll start by defining a couple of errors:

enum MyFirstError : Error {
 case firstMinorMistake
 case firstMajorMistake
 case firstFatalMistake
}
enum MySecondError : Error {
 case secondMinorMistake(i:Int)
 case secondMajorMistake(s:String)
 case secondFatalMistake
}

And here’s a do...catch construct designed to demonstrate some of the different
ways we can catch different errors in different catch blocks:

do {
 // throw can happen here
} catch MyFirstError.firstMinorMistake, MyFirstError.firstMajorMistake {
 // catches MyFirstError.firstMinorMistake
 // also catches MyFirstError.firstMajorMistake
} catch let err as MyFirstError {
 // catches other case(s) of MyFirstError
} catch MySecondError.secondMinorMistake(let i) where i < 0 {
 // catches e.g. MySecondError.secondMinorMistake(i:-3)
} catch {
 // catches everything else
}

Now let’s talk about how the error object makes its way into each of the catch blocks:

Catch block with pattern
In a catch block with an accompanying pattern, it is up to you to capture in the
pattern any desired information about the error. If you want the error itself to
travel as a variable into the catch block, you’ll need a binding in the pattern.

282 | Chapter 5: Flow Control and More

Catch block with “mop-up” binding
A catch block whose pattern is only a binding catches any error under that name;
catch let mistake is a “mop-up” catch block that catches any error as a vari‐
able called mistake.

Bare catch block
In a “mop-up” catch block with no accompanying pattern (that is, the bare word
catch and no more), the error arrives into the block automatically as a variable
called error.

Let’s look again at the previous example, but this time we’ll note whether and how
the error object arrives into each catch block:

do {
 // throw can happen here
} catch MyFirstError.firstMinorMistake {
 // no error object
 // but we know it's either MyFirstError.firstMinorMistake
 // or MyFirstError.firstMajorMistake
} catch let err as MyFirstError {
 // MyFirstError arrives as err
} catch MySecondError.secondMinorMistake(let i) where i < 0 {
 // only i arrives, but we know it's MySecondError.secondMinorMistake
} catch {
 // error object arrives as error
}

So much for the do...catch construct. But there’s something else that can happen to
a thrown error; instead of being caught directly, it can percolate up the call stack,
leaving the current function and arriving at the point where this function was called.
In this situation, the error won’t be caught here, at the point of throwing; it needs to
be caught further up the call stack. This can happen in one of two ways:

Throw without a corresponding catch
A do...catch construct might lack a “mop-up” catch block. Then a throw inside
the do block might not be caught here.

Throw outside a do block
A throw might occur outside of any immediate do...catch construct.

However, a thrown error must be caught somehow. We therefore need a way to say to
the compiler: “Look, I understand that it looks like this throw is not happening in a
context where it will be caught, but that’s only because you’re not looking far enough
up the call stack. If you do look up far enough, you’ll see that a throw at this point is
eventually caught.” And there is a way to say that! Use the throws keyword in a func‐
tion declaration.

Flow Control | 283

If you mark a function with the throws keyword, then its entire body becomes a legal
place for throwing. The syntax for declaring a throws function is that the keyword
throws appears immediately after the parameter list (and before the arrow operator,
if there is one):

enum NotLongEnough : Error {
 case iSaidLongIMeantLong
}
func giveMeALongString(_ s:String) throws {
 if s.count < 5 {
 throw NotLongEnough.iSaidLongIMeantLong
 }
 print("thanks for the string")
}

The addition of throws to a function declaration creates a distinct function type. The
type of giveMeALongString is not (String) -> (), but rather (String) throws ->
(). If a function receives as parameter a function that can throw, that parameter’s
type needs to be specified accordingly:

func receiveThrower(_ f:(String) throws -> ()) {
 // ...
}

That function can now be called with giveMeALongString as argument:

func callReceiveThrower() {
 receiveThrower(giveMeALongString)
}

An anonymous function, if necessary, can include the keyword throws in its in
expression, in the same place where it would appear in a normal function declaration.
But this is not necessary if, as is usually the case, the anonymous function’s type is
known by inference:

func receiveThrower(_ f:(String) throws -> ()) {
 // ...
}
func callReceiveThrower() {
 receiveThrower {
 s in // can say "s throws in", but not required
 if s.count < 5 {
 throw NotLongEnough.iSaidLongIMeantLong
 }
 print("thanks for the string")
 }
}

So now we know that throws functions exist. But there’s more. Swift imposes some
requirements on the caller of a throws function:

284 | Chapter 5: Flow Control and More

• The caller of a throws function must precede the function call with the keyword
try. This keyword acknowledges, to the programmer and to the compiler, that
this function can throw.

• The function call must be made in a place where throwing is legal! A function
called with try can throw, so saying try is just like saying throw: you must say it
either in the do block of a do...catch construct or in the body of a throws
function.

Swift also provides two variants of try that you will often use as a shorthand:

try!

If you are very sure that a throws function will in fact not throw, then you can
call it with the keyword try! instead of try. This relieves you of all further
responsibility: you can say try! anywhere, without catching the possible throw.
But be warned: if you’re wrong, and this function does throw when your program
runs, your program can crash at that moment, because you have allowed an error
to percolate, uncaught, all the way up to the top of the call stack.

try?

Like try!, you can use try? anywhere; but, like a do...catch construct, try?
catches the throw if there is one, without crashing. If there’s a throw, you don’t
receive any error information, as you would with a do...catch construct; but
try? tells you if there was a throw, by returning nil. Thus, try? is useful particu‐
larly in situations where you’re calling a throws function that returns a value. If
there’s a throw, try? returns nil. If there’s no throw, try? wraps the returned
value in an Optional. Commonly, you’ll unwrap that Optional safely in the same
line with a conditional binding.

To illustrate, here’s an artificial test method that can either throw or return a String:

func canThrowOrReturnString(shouldThrow:Bool) throws -> String {
 enum Whoops : Error {
 case oops
 }
 if shouldThrow {
 throw Whoops.oops
 }
 return "Howdy"
}

We can call that method with try inside a do...catch construct:

do {
 let s = try self.canThrowOrReturnString(shouldThrow: true)
 print(s)
} catch {
 print(error)
}

Flow Control | 285

Rethrows
A function that receives a throws function parameter, and that calls that function
(with try), and that doesn’t throw for any other reason, may itself be marked as
rethrows instead of throws. The difference is that when a rethrows function is
called, the caller can pass as argument a function that does not throw, and in that case
the call doesn’t have to be marked with try (and the calling function doesn’t have to
be marked with throws):

func receiveThrower(_ f:(String) throws -> ()) rethrows {
 try f("ok?")
}
func callReceiveThrower() { // no throws needed
 receiveThrower { s in // no try needed
 print("thanks for the string!")
 }
}

At the other extreme, we can call that method with try! anywhere, but if the method
throws, we’ll crash:

let s = try! self.canThrowOrReturnString(shouldThrow: false)
print(s)

In between, we can call our method with try? anywhere. If the method doesn’t
throw, we’ll receive a String wrapped in an Optional; if it does throw, we won’t crash
and we’ll receive nil (but no error information):

if let s = try? self.canThrowOrReturnString(shouldThrow: true) {
 print(s)
} else {
 print("failed")
}

Just as with an Optional chain, if a throws function returns no value, the return type
from try? is Void? — and you can capture that and compare it against nil to learn
whether there was an error. In this example, canThrowButReturnsNoValue throws
but returns no value:

let ok : Void? = try? self.canThrowButReturnsNoValue()

Now, if ok is not nil, no error was thrown.

An initializer can throw — that is, the initializer’s declaration is marked throws. So in
designing an initializer, when should you prefer a failable initializer (init?) and
when should you prefer a throwing initializer (init...throws)? No hard and fast
rule can be given; it depends on your overall design goals. In general, init? implies

286 | Chapter 5: Flow Control and More

simple failure to create an instance, whereas throws implies that there is useful infor‐
mation to be gleaned by studying the error.

Even if your own code never uses the keyword throw explicitly, you’re still very likely,
in real life, to call Cocoa methods that are marked with throws. (For the details of
how the error mechanism works in Objective-C and how this is bridged to the Swift
throws mechanism, see Appendix A.) Objective-C will be supplying an NSError; this
class is bridged to Swift Error. Swift helps you cross the bridge by giving Error a
localizedDescription property, allowing you to read NSError’s localized-

Description. Moreover, you can catch a specific NSError by its name. The name
you’ll use is the NSError domain, and optionally (with dot-notation) the Cocoa name
of its code.

For example, NSString initWithContentsOfFile:encoding:error: appears to Swift
as:

init(contentsOfFile path: String, encoding enc: String.Encoding) throws

So let’s say we call that initializer, and we want specifically to catch the error thrown
when there is no such file. This NSError’s domain, according to Cocoa, is "NSCocoa-
ErrorDomain". Its code is 260, for which Cocoa provides the name NSFileReadNo‐
SuchFileError (I found that out by looking in the FoundationErrors.h header file in
Objective-C). The Swift Foundation overlay translates those into CocoaError
and .fileReadNoSuchFile respectively, so we can catch the error like this:

do {
 let f = // path to some file, maybe
 let s = try String(contentsOfFile: f)
 // ... if successful, do something with s ...
} catch CocoaError.fileReadNoSuchFile {
 print("no such file")
} catch {
 print(error)
}

Objective-C sees a Swift error coherently as well. By default, it receives a Swift error
as an NSError whose domain is the name of the Swift object type. If the Swift object
type is an enum, the NSError’s code is the index number of its case; otherwise, the
code is 1. When you want to provide Objective-C with a fuller complement of infor‐
mation, make your error type adopt one or both of these protocols:

LocalizedError
Adopts Error, adding three optional properties: errorDescription (NSError
localizedDescription), failureReason (NSError localizedFailureReason),
and recoverySuggestion (NSError localizedRecoverySuggestion). Observe
that these are String? properties; declaring them as simple String rather than

Flow Control | 287

Optional fails to communicate the information to Objective-C, and is a common
mistake.

CustomNSError
Adopts Error, adding three properties with default implementations: error-
Domain, errorCode, and errorUserInfo, which Objective-C will see as the
NSError’s domain, code, and userInfo.

Later in this chapter, I’ll talk about a new Swift 5 feature, the Result enum, that
lets you deal elegantly with errors in an asynchronous context.

Nested scopes
When a local variable needs to exist only for a few lines of code, you might like to
define an artificial scope — a custom nested scope, at the start of which you can
introduce your local variable, and at the end of which that variable will be permitted
to go out of scope, destroying its value automatically. Swift does not permit you to
use bare curly braces to do this. Instead, use a bare do block without a catch.

Here’s a rewrite of our earlier code (Chapter 4) for uniquing an array while keeping
its order:

var arr = ["Manny", "Manny", "Moe", "Jack", "Jack", "Moe", "Manny"]
do {
 var temp = Set<String>()
 arr = arr.filter { temp.insert($0).inserted }
}

The only purpose of temp is to act as a “helper” for this one filter call. So we embed
its declaration and the filter call in a bare do block; that way, temp is in a lower
scope that doesn’t clutter up our local namespace, and as soon as the filter call is
over, we exit the block and temp is destroyed.

Another use of a bare do block is to implement the simplest form of early exit. The do
block gives you a scope to jump out of; now you can label the do block and break to
that label:

out: do {
 // ...
 if somethingBadHappened {
 break out
 }
 // we won't get here if somethingBadHappened
}

288 | Chapter 5: Flow Control and More

Defer statement
A defer statement applies to the scope in which it appears, such as a function body, a
while block, an if construct, a do block, and so on. Wherever you say defer, curly
braces surround it somehow; the defer block will be executed when the path of execu‐
tion leaves those curly braces. Leaving the curly braces can involve reaching the last
line of code within the curly braces, or any of the forms of early exit described earlier
in this section.

To see one reason why this is useful, consider the following pair of commands:

self.view.window?.isUserInteractionEnabled = false

Stops all user touches from reaching any view of the application.

self.view.window?.isUserInteractionEnabled = true

Restores the ability of user touches to reach views of the application.

It can be valuable to turn off user interactions at the start of some slightly time-
consuming operation and then turn them back on after that operation, especially
when, during the operation, the interface or the app’s logic will be in some state
where the user’s tapping a button, say, could cause things to go awry. It is not uncom‐
mon for a method to be constructed like this:

func doSomethingTimeConsuming() {
 self.view.window?.isUserInteractionEnabled = false
 // ... do stuff ...
 self.view.window?.isUserInteractionEnabled = true
}

All well and good — if we can guarantee that the only path of execution out of this
function will be by way of that last line. But what if we need to return early from this
function? Our code now looks like this:

func doSomethingTimeConsuming() {
 self.view.window?.isUserInteractionEnabled = false
 // ... do stuff ...
 if somethingHappened {
 return
 }
 // ... do more stuff ...
 self.view.window?.isUserInteractionEnabled = true
}

Oops! We’ve just made a terrible mistake. By providing an additional path out of our
doSomethingTimeConsuming function, we’ve created the possibility that our code
might never encounter the call to set isUserInteractionEnabled to true. We might
leave our function by way of the return statement — and the user will then be left
unable to interact with the interface. Obviously, we need to add another isUser-
InteractionEnabled = true call inside the if construct, just before the return

Flow Control | 289

statement. But as we continue to develop our code, we must remember, if we add
further ways out of this function, to add yet another isUserInteractionEnabled =
true call for each of them. This is madness!

The defer statement solves the problem. It lets us specify once what should happen
when we leave this scope, no matter how. Our code now looks like this:

func doSomethingTimeConsuming() {
 defer {
 self.view.window?.isUserInteractionEnabled = true
 }
 self.view.window?.isUserInteractionEnabled = false
 // ... do stuff ...
 if somethingHappened {
 return
 }
 // ... do more stuff ...
}

The isUserInteractionEnabled = true call in the defer block will be executed, not
where it appears, but before the return statement, or before the last line of the
method — whichever path of execution ends up leaving the function. The defer state‐
ment says: “Eventually, and as late as possible, be sure to execute this code.” We have
ensured the necessary balance between turning off user interactions and turning them
back on again. Most uses of the defer statement will probably come under this same
rubric: you’ll use it to balance a command or restore a disturbed state.

Observe that in the preceding code, I placed the defer statement very early in its sur‐
rounding scope. This placement is important because a defer statement is itself a
command. If a defer statement is not actually encountered by the path of execution
before we exit from the surrounding scope, its block won’t be executed. For this rea‐
son, always place your defer statement as close to the start of its surrounding block as
you can, to ensure that it will in fact be encountered.

When a defer statement changes a value that is returned by a return statement, the
return happens first and the defer statement happens second. In other words, defer
effectively lets you return a value and then change it. This example comes from
Apple’s own code (in the documentation, demonstrating how to write a struct that
can adopt the Sequence protocol):

struct Countdown: Sequence, IteratorProtocol {
 var count: Int
 mutating func next() -> Int? {
 if count == 0 {
 return nil
 } else {
 defer { count -= 1 }

290 | Chapter 5: Flow Control and More

 return count
 }
 }
}

That code returns the current value of count and then decrements count, ready for
the next call to the next method. Without defer, we’d decrement count and then
return the decremented value, which is not what’s wanted.

If the current scope has multiple defer blocks pending, they will be called in the
reverse of the order in which they were originally encountered. In effect, there is a
defer stack; each successive defer statement, as it is encountered, pushes its code onto
the top of the stack, and exiting the scope in which a defer statement appeared pops
that code and executes it.

Aborting the whole program
Aborting the whole program is an extreme form of flow control; the program stops
dead in its tracks. In effect, you have deliberately crashed your own program. This is
an unusual thing to do, but it can be useful as a way of raising a very red flag: you
don’t really want to abort, so if you do abort, things must be so bad that you’ve no
choice.

One way to abort is by calling the global function fatalError. It takes a String
parameter permitting you to provide a message to appear in the console. I’ve already
given this example:

required init?(coder: NSCoder) {
 fatalError("init(coder:) has not been implemented")
}

That code says, in effect, that execution should never reach this point. We have
declared init(coder:) just because it is required, and we need to satisfy the com‐
piler; but we have no real implementation of init(coder:), and we do not expect to
be initialized this way. If we are initialized this way, something has gone very wrong,
and we want to crash, because our program has a serious bug.

An initializer containing a fatalError call does not have to initialize any properties.
This is because fatalError is declared as returning the special Never enum type,
which causes the compiler to abandon any contextual requirements. Similarly, a
function that returns a value does not have to return any value if a fatalError call is
encountered.

You can abort conditionally by calling the assert function. Its first parameter is a
condition — something that evaluates as a Bool. If the condition is false, we will
abort; the second parameter is a String message to appear in the console if we do
abort. The idea here is that you are making a bet (an assertion) that the condition is

Flow Control | 291

true — a bet that you feel so strongly about that if the condition is false, there’s a
serious bug in your program and you want to crash so you can learn of this bug and
fix it.

By default, assert works only when you’re developing your program. When your
program is to be finalized and made public, you throw a different build switch, telling
the compiler that assert should be ignored. In effect, the conditions in your assert
calls are then disregarded; they are all seen as true. This means that you can safely
leave assert calls in your code. By the time your program ships, of course, none of
your assertions should be failing; any bugs that caused them to fail should already
have been ironed out.

The disabling of assertions in shipping code is performed in an interesting way. The
condition parameter is given an extra layer of indirection by declaring it as an
@autoclosure function. This means that, even though the parameter is not in fact a
function, the compiler will wrap it in a function; the runtime won’t call that function
unless it has to. In shipping code, the runtime will not call that function. This mecha‐
nism averts expensive and unnecessary evaluation: an assert condition test may
involve side effects, but the test won’t even be performed when assertions are turned
off in your shipping program.

In addition, Swift provides the assertionFailure function. It’s like an assert that
always fails — and, like an assert, it doesn’t fail in your shipping program where
assertions are turned off. It’s a convenient synonym for assert(false), as a way of
assuring yourself that your code never goes where it’s never supposed to go.

precondition and preconditionFailure are similar to assert and assertion-
Failure, except that they do fail even in a shipping program.

Guard
When your code needs to decide whether to exit early, Swift provides a special syntax
— the guard construct. In effect, a guard construct is an if construct where you exit
early if the condition fails. Its form is shown in Example 5-6.

Example 5-6. The Swift guard construct

guard condition else {
 statements
 exit
}

A guard construct consists solely of a condition and an else block. The else block
must jump out of the current scope, by any of the means that Swift provides, such as
return, break, continue, throw, or fatalError — anything that guarantees to the

292 | Chapter 5: Flow Control and More

compiler that, in case of failure of the condition, execution absolutely will not pro‐
ceed within the block that contains the guard construct.

Because the guard construct guarantees an exit on failure of the condition, the com‐
piler knows that the condition has succeeded after the guard construct if we do not
exit. An elegant consequence is that a conditional binding in the condition is in scope
after the guard construct, without introducing a further nested scope:

guard let s = optionalString else {return}
// s is now a String (not an Optional)

For the same reason, a guard construct’s conditional binding can’t use, on the left
side of the equal sign, a name already declared in the same scope. This is illegal:

let s = // ... some Optional
guard let s = s else {return} // compile error

The reason is that guard let, unlike if let and while let, doesn’t declare the
bound variable for a nested scope; it declares it for this scope. We can’t declare s here
because s has already been declared in the same scope.

In my own code, it’s not uncommon to have a series of guard constructs, one after
another. This may seem a rather clunky and imperative mode of expression, but I’m
fond of it nevertheless. It’s a nice alternative to a single elaborate if construct, or to
the “pyramid of doom” that I discussed earlier; and it looks like exactly what it is, a
sequence of gates through which the code must pass in order to proceed further.
Here’s an actual example from my real-life code:

@objc func tapField(_ g: Any) {
 // g must be a gesture recognizer
 guard let g = g as? UIGestureRecognizer else {return}
 // and the gesture recognizer must have a view
 guard g.view != nil else {return}
 // okay, now we can proceed...
}

It’s often possible to combine multiple guard statement conditions into a single con‐
dition list:

@objc func tapField(_ g: Any) {
 // g must be a gesture recognizer
 // and the gesture recognizer must have a view
 guard let g = g as? UIGestureRecognizer, g.view != nil
 else {return}
 // okay, now we can proceed...
}

A guard construct will also come in handy in conjunction with try?. Let’s presume
we can’t proceed unless String(contentsOfFile:) succeeds. Then we can call it like
this:

Flow Control | 293

let f = // path to some file, maybe
guard let s = try? String(contentsOfFile: f) else {return}
// s is now a String (not an Optional)

There is also a guard case construct, forming the logical inverse of if case. To illus‐
trate, we’ll use our MyError enum once again:

guard case let .number(n) = err else {return}
// n is now the extracted number

guard case helps to solve an interesting problem. Suppose we have a function whose
returned value we want to check in a guard statement:

guard howMany() > 10 else {return}

All well and good; but suppose also that in the next line we want to use the value
returned from that function. We don’t want to call the function again; it might be
time-consuming and it might have side effects. We want to capture the result of call‐
ing the function and pass that captured result on into the subsequent code. But we
can’t do that with guard let, because that requires an Optional, and our function
howMany doesn’t return an Optional.

What should we do? guard case to the rescue:

guard case let output = howMany(), output > 10 else {return}
// now output is in scope

Privacy
Privacy (also known as access control) refers to the explicit modification of the nor‐
mal scope rules. I gave an example in Chapter 1:

class Dog {
 var name = ""
 private var whatADogSays = "woof"
 func bark() {
 print(self.whatADogSays)
 }
}

The intention here is to limit how other objects can see the Dog property whatADog-
Says. It is a private property, intended primarily for the Dog class’s own internal use:
a Dog can speak of self.whatADogSays, but other objects should not be aware that it
even exists.

Swift has five levels of privacy:

294 | Chapter 5: Flow Control and More

internal

The default rule is that declarations are internal, meaning that they are globally
visible within the containing module. That is why Swift files within the same
module can see one another’s top-level contents automatically, with no effort on
your part. (That’s different from C and Objective-C, where files can’t see each
other at all unless you explicitly show them to one another through include or
import statements.)

fileprivate (narrower than internal)
A thing declared fileprivate is visible only within its containing file. Two object
types declared in the same file can see one another’s members declared
fileprivate, but code in other files cannot see those members.

private (even narrower than fileprivate)
A thing declared private is visible only within its containing curly braces. In
effect, the visibility of an object type’s member declared private is limited to
code within this type declaration. (A private declaration at the top level of a file
is equivalent to fileprivate.)

public (wider than internal)
A thing declared public is visible even outside its containing module. Another
module must first import this module before it can see anything at all. But even
when another module has imported this module, it still won’t be able to see any‐
thing in this module that hasn’t been explicitly declared public. If you don’t
write any modules, you might never need to declare anything public. If you do
write a module, you must declare something public, or your module is useless.

open (even wider than public)
If a class is declared open, code in another module can subclass it; it can’t do that
if the class is declared merely public. If an open class member is declared open,
code in another module that subclasses this class can override this member; it
can’t do that if the member is declared merely public.

Private and Fileprivate
Declaring something private restricts its visibility. In this way, you specify by inver‐
sion what the public API of this object is. Here’s an example from my own code:

class CancelableTimer: NSObject {
 private var q = DispatchQueue(label: "timer")
 private var timer : DispatchSourceTimer!
 private var firsttime = true
 private var once : Bool
 private var handler : () -> ()
 init(once:Bool, handler:@escaping () -> ()) {

Privacy | 295

 // ...
 }
 func start(withInterval interval:Double) {
 // ...
 }
 func cancel() {
 // ...
 }
}

The initializer init(once:handler:) and the start(withInterval:) and cancel
methods, which are not marked private, are this class’s public API. They say, “Please
feel free to call me!” The properties, however, are all private; no other code can see
them, either to get them or to set them. They are purely for the internal use of the
methods of this class. They maintain state, but it is not a state that any other code
needs to know about.

Privacy is not magically violated by the existence of a special object relationship. Even
a subclass cannot see its superclass’s private members. (This comes as a surprise to
those coming from a language with a protected privacy level.) You can work around
this by declaring the class and its subclass in the same file and declaring those mem‐
bers fileprivate instead of private.

A nested type can see the private members of the type in which it is nested. This
makes sense, because the outer type is a surrounding scope; the nested type sees what
everything else inside this type sees.

An extension can see the private members of the type it extends, provided the type
and the extension are in the same file:

class Dog {
 private var whatADogSays = "woof"
}
extension Dog {
 func speak() {
 print(self.whatADogSays) // ok
 }
}

In effect, an extension sees its type’s private as meaning fileprivate. This lets you
break up a type into extensions without being forced to raise the type’s private mem‐
bers to fileprivate just so the extensions can see them.

It may be that on some occasions you will want to draw a distinction between the
privacy of a variable regarding setting and its privacy regarding getting. To draw this
distinction, place the word set in parentheses after its own privacy declaration.
private(set) var myVar means that the setting of this variable is restricted, but says
nothing about the getting of this variable, which is left at the default. Similarly, you

296 | Chapter 5: Flow Control and More

can say public private(set) var myVar to make getting this variable public, while
setting this variable is kept private.

The existence of Objective-C adds complications. Things marked @objc can be
marked private without harm; Objective-C can still see them. (That includes things
marked @IBAction and @IBOutlet, which imply @objc.) But your implementation of
a member defined by an Objective-C protocol cannot be marked private without
hiding it from Objective-C. In particular, optional methods defined by a Cocoa pro‐
tocol must be at least internal (the default), or Cocoa won’t be able to find them and
won’t call them. You are forced to expose these methods to other files in your mod‐
ule, as if they were part of this class’s public API, even though you would probably
prefer not to.

Public and Open
If you write a module, you’ll need to specify at least some object type declaration as
public; otherwise, code that imports your module won’t be able to see that type.
Other declarations that are not declared public are internal, meaning that they are
private to the module. Judicious use of public declarations configures the public API
of your module.

The members of a public object type are not, themselves, automatically public. If you
want a method to be public, you have to declare it public. This is an excellent default
behavior, because it means that these members are not shared outside the module
unless you want them to be. (As Apple puts it, you must “opt in to publishing” object
members.)

In my Zotz app, which is a card game, the files declaring object types for creating and
portraying cards and for combining them into a deck are bundled into a framework
called ZotzDeck. A framework is a module. The idea is for these files to be able to see
one another freely while limiting access from the rest of my app. Many of the Zotz‐
Deck types, such as Card and Deck, are declared public. Many utility object types,
however, are not; the classes within the ZotzDeck module can see and use them, but
code outside the module doesn’t need to be aware of them. Moreover, the Card class
is declared public but its initializer is not, because the public way to get cards is by
initializing a Deck; the initializer for Deck is declared public, so you can do that.

If the only initializer for a public type is implicit, code in another module can’t
see it and cannot create an instance of this type. If you want other code to be able
to create an instance of this type, you must declare the initializer explicitly and
make it public.

The open access level draws a further distinction. It is applicable only to classes and to
members of open classes. A public class can’t be subclassed in another module that
can see this class; an open class can. A public member of an open class that has been

Privacy | 297

subclassed in another module can’t be overridden in that subclass; an open member
can.

Privacy Rules
There is an extensive set of rules for ensuring that the privacy level of related things is
coherent. Here are some of them:

• A variable can’t be public if its type is private, because other code wouldn’t be
able to use such a variable.

• A subclass can’t be public unless the superclass is public.
• A subclass can change an overridden member’s access level, but it cannot even

see its superclass’s private members unless they are declared in the same file
together.

And so on. I could proceed to list all the rules, but I won’t. There is no need for me to
enunciate them formally. They are spelled out in great detail in the Swift manual,
which you can consult if you need to. In general, you probably won’t need to; the
privacy rules make intuitive sense, and you can rely on the compiler to help you with
useful error messages if you violate one.

Introspection
Swift provides limited ability to introspect an object, letting an object display the
names and values of its properties. This feature is intended for debugging, not for use
in your program’s logic. For example, you can use it to modify the way your object is
displayed in the Xcode Debug pane.

To introspect an object, use it as the reflecting: parameter when you instantiate a
Mirror. The Mirror’s children will then be name–value tuples describing the original
object’s properties. Here’s a Dog class with a description property that takes advan‐
tage of introspection. Instead of hard-coding a list of the class’s instance properties,
we introspect the instance to obtain the names and values of the properties. This
means that we can later add more properties without having to modify our
description implementation:

struct Dog : CustomStringConvertible {
 var name = "Fido"
 var license = 1
 var description : String {
 var desc = "Dog ("
 let mirror = Mirror(reflecting:self)
 for (k,v) in mirror.children {
 desc.append("\(k!): \(v), ")

298 | Chapter 5: Flow Control and More

 }
 return desc.dropLast(2) + ")"
 }
}

If we now instantiate Dog and print that instance, this is what we see in the console:

Dog (name: Fido, license: 1)

The main use of Mirror is to generate the console output for the Swift dump function
(or the po command when debugging). By adopting the CustomReflectable protocol,
we can take charge of what a Mirror’s children are. To do so, we implement the
customMirror property to return our own custom Mirror object whose children
property we have configured as a collection of name–value tuples.

In this (silly) example, we implement customMirror to supply altered names for our
properties:

struct Dog : CustomReflectable {
 var name = "Fido"
 var license = 1
 var customMirror: Mirror {
 let children : [Mirror.Child] = [
 ("ineffable name", self.name),
 ("license to kill", self.license)
]
 let m = Mirror(self, children:children)
 return m
 }
}

The outcome is that when our code says dump(Dog()), our custom property names
are displayed:

* Dog
 - ineffable name : "Fido"
 - license to kill : 1

Operators
Swift operators such as + and > are not magically baked into the language. They are,
in fact, functions; they are explicitly declared and implemented just like any other
function. That is why, as I pointed out in Chapter 4, the term + can be passed as the
second parameter in a reduce call; reduce expects a function taking two parameters
and returning a value whose type matches that of the first parameter, and + is in fact
the name of such a function. It also explains how Swift operators can be overloaded
for different types of operand. You can use + with numbers, strings, or arrays — with
a different meaning in each case — because Swift functions can be overloaded; there

Operators | 299

are multiple declarations of the + function, and Swift is able to determine from the
parameter types which + function you are calling.

These facts are not merely an intriguing behind-the-scenes implementation detail.
They have practical implications for you and your code. You are free to overload
existing operators to apply to your object types. You can even invent new operators!
In this section, we’ll do both.

First we’ll talk about how operators are declared. Clearly there is some sort of syntac‐
tical hanky-panky (a technical computer science term), because you don’t call an
operator function in the same way as a normal function. You don’t say +(1,2); you
say 1+2. Even so, 1 and 2 in that second expression are the parameters to a + function
call. How does Swift know that the + function uses this special syntax?

To see the answer, look in the Swift header:

infix operator + : AdditionPrecedence

That is an operator declaration. An operator declaration announces that this symbol
is an operator, and specifies how many parameters it has and what the usage syntax
will be in relation to those parameters. The really important part is the stuff before
the colon: the keyword operator, preceded by an operator type — here, infix — and
followed by the name of the operator. The types are:

infix

This operator takes two parameters and appears between them.

prefix

This operator takes one parameter and appears before it.

postfix

This operator takes one parameter and appears after it.

The term after the colon in an operator declaration is the name of a precedence
group. Precedence groups dictate the order of operations when an expression con‐
tains multiple operators. I’m not going to go into the details of how precedence
groups are defined. The Swift header declares about a dozen precedence groups, and
you can easily see how those declarations work. You will probably have no need to
declare a new precedence group; you’ll just look for an operator similar to yours and
copy its precedence group (or omit the colon and the precedence group from your
declaration).

An operator is also a function, so you also need a function declaration stating the
type of the parameters and the result type of the function. Again, the Swift header
shows us an example:

func +(lhs: Int, rhs: Int) -> Int

300 | Chapter 5: Flow Control and More

That is one of many declarations for the + function in the Swift header. In particular,
it is the declaration for when the parameters are both Int. In that situation, the result
is itself an Int. (The local parameter names lhs and rhs, which don’t affect the special
calling syntax, presumably stand for “left-hand side” and “right-hand side.”)

An operator declaration must appear at the top level of a file. The corresponding
function declaration may appear either at the top level of a file or at the top level of a
type declaration; in the latter case, it must be marked static. If the operator is a
prefix or postfix operator, the function declaration must start with the word
prefix or postfix; the default is infix and can be omitted.

We now know enough to override an operator to work with an object type of our
own! As a simple example, imagine a Vial full of bacteria:

struct Vial {
 var numberOfBacteria : Int
 init(_ n:Int) {
 self.numberOfBacteria = n
 }
}

When two Vials are combined, you get a Vial with all the bacteria from both of them.
So the way to add two Vials is to add their bacteria:

extension Vial {
 static func +(lhs:Vial, rhs:Vial) -> Vial {
 let total = lhs.numberOfBacteria + rhs.numberOfBacteria
 return Vial(total)
 }
}

And here’s code to test our new + operator override:

let v1 = Vial(500_000)
let v2 = Vial(400_000)
let v3 = v1 + v2
print(v3.numberOfBacteria) // 900000

In the case of a compound assignment operator, the first parameter is the thing being
assigned to. Therefore, to implement such an operator, the first parameter must be
declared inout. Let’s do that for our Vial class:

extension Vial {
 static func +=(lhs:inout Vial, rhs:Vial) {
 let total = lhs.numberOfBacteria + rhs.numberOfBacteria
 lhs.numberOfBacteria = total
 }
}

Here’s code to test our += override:

Operators | 301

var v1 = Vial(500_000)
let v2 = Vial(400_000)
v1 += v2
print(v1.numberOfBacteria) // 900000

Next, let’s invent a completely new operator. As an example, I’ll inject an operator
into Int that raises one number to the power of another. As my operator symbol, I’ll
use ^^ (I’d like to use ^ but it’s already in use for something else). For simplicity, I
have omitted error-checking for edge cases (such as exponents less than 1):

infix operator ^^
extension Int {
 static func ^^(lhs:Int, rhs:Int) -> Int {
 var result = lhs
 for _ in 1..<rhs {result *= lhs}
 return result
 }
}

That’s all it takes! Here’s some code to test it:

print(2^^2) // 4
print(2^^3) // 8
print(3^^3) // 27

Here’s another example. I’ve already illustrated the use of Range’s reversed method
to allow iteration from a higher value to a lower one. That works, but I find the
notation unpleasant. There’s an asymmetry with how you iterate up; the endpoints
are in the wrong order, and you have to remember to surround a literal range with
parentheses:

let r1 = 1..<10
let r2 = (1..<10).reversed()

Let’s define a custom operator that calls reversed() for us:

infix operator >>> : RangeFormationPrecedence
func >>><Bound>(maximum: Bound, minimum: Bound)
 -> ReversedCollection<Range<Bound>>
 where Bound : Strideable {
 return (minimum..<maximum).reversed()
}

Now our expressions can be more symmetrical and compact:

let r1 = 1..<10
let r2 = 10>>>1

The Swift manual lists the special characters that can be used as part of a custom
operator name:

/ = - + ! * % < > & | ^ ? ~

302 | Chapter 5: Flow Control and More

An operator name can also contain many other symbol characters (that is, characters
that can’t be mistaken for some sort of alphanumeric) that are harder to type; see the
manual for a formal list.

Memory Management
Swift memory management is handled automatically, and you will usually be
unaware of it. Objects come into existence when they are instantiated and go out of
existence as soon as they are no longer needed. Nevertheless, there are some memory
management issues of which you must be conscious.

Memory Management of Reference Types
Memory management of reference type objects (“Value Types and Reference Types”
on page 153) is quite tricky under the hood; I’ll devote Chapter 12 to a discussion of
the underlying mechanism. Swift normally does all the work for you, but trouble can
arise when two class instances have references to one another. When that’s the case,
you can have a retain cycle which will result in a memory leak, meaning that the two
instances never go out of existence. Some computer languages solve this sort of prob‐
lem with a periodic “garbage collection” phase that detects retain cycles and cleans
them up, but Swift doesn’t do that; you have to fend off retain cycles manually.

One way to test for and observe a memory leak is to implement a class’s deinit. This
method is called when the instance goes out of existence. If the instance never goes
out of existence, deinit is never called. That’s a bad sign, if you were expecting that
the instance should go out of existence.

Here’s an example. First, I’ll make two class instances and watch them go out of
existence:

func testRetainCycle() {
 class Dog {
 deinit {
 print("farewell from Dog")
 }
 }
 class Cat {
 deinit {
 print("farewell from Cat")
 }
 }
 let d = Dog()
 let c = Cat()
}
testRetainCycle() // farewell from Cat, farewell from Dog

When we run that code, both “farewell” messages appear in the console. We created a
Dog instance and a Cat instance, but the only references to them are automatic

Memory Management | 303

(local) variables inside the testRetainCycle function. When execution of that func‐
tion’s body comes to an end, all automatic variables are destroyed; that is what it
means to be an automatic variable. There are no other references to our Dog and Cat
instances that might make them persist, and so they are destroyed in good order.

Now I’ll change that code by giving the Dog and Cat objects references to each other:

func testRetainCycle() {
 class Dog {
 var cat : Cat?
 deinit {
 print("farewell from Dog")
 }
 }
 class Cat {
 var dog : Dog?
 deinit {
 print("farewell from Cat")
 }
 }
 let d = Dog()
 let c = Cat()
 d.cat = c // create a...
 c.dog = d // ...retain cycle
}
testRetainCycle() // nothing in console

When we run that code, neither “farewell” message appears in the console. The Dog
and Cat objects have references to one another. Those are strong references (also
called persisting references). A strong reference sees to it that as long as our Dog has a
reference to a particular Cat, that Cat will not be destroyed, and vice versa. That’s a
good thing, and is a fundamental principle of sensible memory management. The
bad thing is that the Dog and the Cat have strong references to one another. That’s a
retain cycle! Neither the Dog instance nor the Cat instance can be destroyed, because
neither of them can “go first” — it’s like Alphonse and Gaston who can never get
through the door because each requires the other to precede him. The Dog can’t be
destroyed first because the Cat has a strong reference to it, and the Cat can’t be
destroyed first because the Dog has a strong reference to it.

These objects are now leaking. Our code is over; both d and c are gone. There are no
further references to either of these objects; neither object can ever be referred to
again. No code can mention them; no code can reach them. But they live on, floating,
useless, and taking up memory.

304 | Chapter 5: Flow Control and More

The term “retain cycle” is based on the retain command, which is used in
Objective-C to form a strong reference. You can’t say retain in Swift, so Apple
often refers to this kind of cycle as a strong reference cycle. But a strong reference
cycle is a retain cycle — the compiler is in fact inserting retain commands
under the hood — and I’ll continue calling it a retain cycle.

Weak references

One solution to a retain cycle is to mark the problematic reference as weak. This
means that the reference is not a strong reference. It is a weak reference. The object
referred to can now go out of existence even while the referrer continues to exist. Of
course, this might present a danger, because now the object referred to may be
destroyed behind the referrer’s back. But Swift has a solution for that, too: only an
Optional reference can be marked as weak. That way, if the object referred to is
destroyed behind the referrer’s back, the referrer will see something coherent, namely
nil. Also, the reference must be a var reference, precisely because it can change
spontaneously to nil.

This code breaks the retain cycle and prevents the memory leak:

func testRetainCycle() {
 class Dog {
 weak var cat : Cat?
 deinit {
 print("farewell from Dog")
 }
 }
 class Cat {
 weak var dog : Dog?
 deinit {
 print("farewell from Cat")
 }
 }
 let d = Dog()
 let c = Cat()
 d.cat = c
 c.dog = d
}
testRetainCycle() // farewell from Cat, farewell from Dog

I’ve gone overboard in that code. To break the retain cycle, there’s no need to make
both Dog’s cat and Cat’s dog weak references; making just one of the two a weak ref‐
erence is sufficient to break the cycle. That, in fact, is the usual solution when a retain
cycle threatens. One of the pair will typically be more of an “owner” than the other;
the one that is not the “owner” will have a weak reference to its “owner.”

Value types are not subject to the same memory management issues as reference
types, but a value type can still be involved in a retain cycle with a class instance. In

Memory Management | 305

my retain cycle example, if Dog is a class and Cat is a struct, we still get a retain cycle.
The solution is the same: make Cat’s dog a weak reference. (You can’t make Dog’s
cat a weak reference if Cat is a struct; only a reference to a class type can be declared
weak.)

Do not use weak references unless you have to! Memory management is not to be
toyed with lightly. Nevertheless, there are real-life situations in which weak references
are the right thing to do, even when no retain cycle appears to threaten. The delega‐
tion pattern (Chapter 11) is a typical case in point; an object typically has no business
owning (retaining) its delegate. And a view controller @IBOutlet property is usually
weak, because it refers to a subview already owned by its own superview.

Unowned references
There’s another Swift solution for retain cycles. Instead of marking a reference as
weak, you can mark it as unowned. This approach is useful in special cases where one
object absolutely cannot exist without a reference to another, but where this reference
need not be a strong reference.

Let’s pretend that a Boy may or may not have a Dog, but every Dog must have a Boy
— and so I’ll give Dog an init(boy:) initializer. The Dog needs a reference to its
Boy, and the Boy needs a reference to his Dog if he has one; that’s potentially a retain
cycle:

func testUnowned() {
 class Boy {
 var dog : Dog?
 deinit {
 print("farewell from Boy")
 }
 }
 class Dog {
 let boy : Boy
 init(boy:Boy) { self.boy = boy }
 deinit {
 print("farewell from Dog")
 }
 }
 let b = Boy()
 let d = Dog(boy: b)
 b.dog = d
}
testUnowned() // nothing in console

We can solve this by declaring Dog’s boy property unowned:

func testUnowned() {
 class Boy {
 var dog : Dog?
 deinit {

306 | Chapter 5: Flow Control and More

 print("farewell from Boy")
 }
 }
 class Dog {
 unowned let boy : Boy // *
 init(boy:Boy) { self.boy = boy }
 deinit {
 print("farewell from Dog")
 }
 }
 let b = Boy()
 let d = Dog(boy: b)
 b.dog = d
}
testUnowned() // farewell from Boy, farewell from Dog

An advantage of an unowned reference is that it doesn’t have to be an Optional and it
can be a constant (let). But an unowned reference is also genuinely dangerous,
because the object referred to can go out of existence behind the referrer’s back, and
an attempt to use that reference will cause a crash, as I can demonstrate by this rather
forced code:

var b = Optional(Boy())
let d = Dog(boy: b!)
b = nil // destroy the Boy behind the Dog's back
print(d.boy) // crash

Clearly you should use unowned only if you are absolutely certain that the object
referred to will outlive the referrer.

Stored anonymous functions
A particularly insidious kind of retain cycle arises when an instance property holds a
function referring to the instance:

class FunctionHolder {
 var function : (() -> ())?
 deinit {
 print("farewell from FunctionHolder")
 }
}
func testFunctionHolder() {
 let fh = FunctionHolder()
 fh.function = {
 print(fh)
 }
}
testFunctionHolder() // nothing in console

Oops! I’ve created a retain cycle, by referring, inside the anonymous function, to the
object that is holding a reference to it. Because functions are closures, the Function‐

Memory Management | 307

Holder instance fh, declared outside the anonymous function, is captured by the
anonymous function as a strong reference when the anonymous function says
print(fh). But the anonymous function has also been assigned to the function
property of the FunctionHolder instance fh, and that’s a strong reference too. So
that’s a retain cycle: the FunctionHolder persistently refers to the function, which
persistently refers to the FunctionHolder.

In this situation, I cannot break the retain cycle by declaring the function property as
weak or unowned. Only a reference to a class type can be declared weak or unowned,
and a function is not a class. I must declare the captured value fh inside the anony‐
mous function as weak or unowned instead.

Swift provides an ingenious syntax for doing that. At the very start of the anonymous
function body, you put square brackets containing a comma-separated list of any
problematic references that will be captured from the surrounding environment,
each preceded by weak or unowned. This is called a capture list. If you have a capture
list, you must follow it with the keyword in if there’s no in expression already:

class FunctionHolder {
 var function : (() -> ())?
 deinit {
 print("farewell from FunctionHolder")
 }
}
func testFunctionHolder() {
 let fh = FunctionHolder()
 fh.function = {
 [weak fh] in // *
 print(fh)
 }
}
testFunctionHolder() // farewell from FunctionHolder

This syntax solves the problem. But marking a reference as weak in a capture list has a
mild side effect that you will need to be aware of: the reference passes into the anony‐
mous function as an Optional. This is good, because it means that if the object
referred to goes out of existence behind our back, the value of the Optional is nil.
But of course you must also adjust your code accordingly, unwrapping the Optional
as needed in order to use it. The usual technique is to perform the weak–strong dance:
you unwrap the Optional once, right at the start of the function, in a conditional
binding:

fh.function = {
 [weak fh] in // weak
 guard let fh = fh else { return }
 print(fh) // strong (and not Optional)
}

308 | Chapter 5: Flow Control and More

The conditional binding let fh = fh elegantly accomplishes three goals:

• It unwraps the Optional version of fh that arrived into the anonymous function.
• It declares another fh that is a normal (strong) reference. So if the unwrapping

succeeds, this new fh will persist for the rest of this scope.
• It causes the second fh to overshadow the first fh (because they have the same

name). So it is impossible after the guard statement to refer accidentally to the
weak Optional fh.

Now, it happens that, in this particular example, there is no way the FunctionHolder
instance fh can go out of existence while the anonymous function lives on. There are
no other references to the anonymous function; it persists only as a property of fh.
Therefore I can avoid some behind-the-scenes bookkeeping overhead, as well as the
weak–strong dance, by declaring fh as unowned in my capture list instead of weak. In
real life, my own most frequent use of unowned is precisely in this context. Very often,
the reference marked as unowned in the capture list will be self.

There’s another way to write a capture list: you can capture a value and assign it to a
constant name. Here’s an example from my own code (without explanation of the
context):

self.undoer.registerUndo(withTarget: self) {
 [oldCenter = self.center] myself in
 myself.setCenterUndoably(oldCenter)
}

That code declares a constant oldCenter and sets its value to self.center. This
avoids capturing self, because self never appears in the anonymous function,
explicitly or implicitly; instead, the value of a property of self is captured directly,
and that value is what passes into the anonymous function. Not only does this pre‐
vent a retain cycle, but also it avoids closure semantics; the value of self.center is
evaluated now, when registerUndo is called, rather than later, when the anonymous
function is called (at which time the value of self.center may have changed).

Recall, from Chapter 2, that the compiler forces you to say self explicitly when you
refer to a property or method of self within the function body of an escaping clo‐
sure. Now we can see why: you are threatening to form a retain cycle involving self,
and the compiler wants to make sure you realize that. Of course, you’re probably not
going to form a retain cycle! But the compiler can’t check for that; once the closure is
escaping, anything could happen:

Memory Management | 309

let f1 = funcPasser {
 print(view.bounds) // compile error, because self.view is implied
}
let f2 = funcPasser {
 print(self.view.bounds) // ok
}

Many people don’t like saying self, though; and if this anonymous function implies
self many times, it may be objectionable to have to say self explicitly many times.
New in Swift 5.3, there’s a stylistic alternative: if you put [self] in the capture list,
that satisfies the compiler, and you don’t have to write self as the implicit target in
the function body:

let f3 = funcPasser { [self] in
 print(view.bounds) // ok in Swift 5.3
}

Above all, don’t panic. Beginners may be tempted to backstop all their anonymous
functions with [weak self]. That’s wrong. Only a stored function can raise even the
possibility of a retain cycle. Merely passing a function does not introduce such a pos‐
sibility, especially if the function being passed will be called immediately. And even if
a function is stored, if it is stored elsewhere, it might not imply a retain cycle. Always
confirm that you actually have a retain cycle before concerning yourself with how to
prevent it.

Consider the standard expression of an animation, which I discussed in Chapter 2:

UIView.animate(withDuration:0.4) {
 self.myButton3.frame.origin.y += 20
} completion: { _ in
 self.someMethod()
}

No one should be using [weak self] in these anonymous functions. There’s no
retain cycle, because the anonymous functions are not being retained by self (the
view controller). Moreover, the view controller is not going to go out of existence
while the animation is proceeding. In fact, capturing the view controller as self in
the body of the anonymous function actually prevents it from going out of existence
while the animation is proceeding — and that’s good! Extending the lifetime of an
object, such as self, long enough for an anonymous function to be called at some
future time, is a useful thing to do. (In fact, it’s so useful that Swift provides a way to
do it without explicitly capturing the object in the anonymous function: there’s a
global function, withExtendedLifetime, for precisely that purpose.)

Memory management of protocol-typed references

Only a reference to an instance of a class type can be declared weak or unowned. A
reference to an instance of a struct or enum type cannot be so declared, because its

310 | Chapter 5: Flow Control and More

memory management doesn’t work the same way (and is not subject to retain cycles).
A reference that is declared as a protocol type, therefore, has a problem. A reference
typed as a protocol that might be adopted by a struct or an enum cannot be declared
weak or unowned. You can only declare a protocol-typed reference weak or unowned if
the compiler knows that only a class can adopt it. You can assure the compiler of that
by making the protocol a class protocol.

In this code, SecondViewControllerDelegate is a protocol that I’ve declared. This
code won’t compile unless SecondViewControllerDelegate is declared as a class
protocol:

class SecondViewController : UIViewController {
 weak var delegate : SecondViewControllerDelegate?
 // ...
}

Here’s the actual declaration of SecondViewControllerDelegate; it is declared as a
class protocol, and that’s why the preceding code is legal:

protocol SecondViewControllerDelegate : AnyObject {
 func accept(data:Any)
}

A protocol declared in Objective-C is implicitly marked as @objc and is a class proto‐
col. This declaration from my real-life code is legal:

weak var delegate : WKScriptMessageHandler?

WKScriptMessageHandler is a protocol declared by Cocoa (in particular, by the Web
Kit framework), so only a class can adopt WKScriptMessageHandler, and the com‐
piler is satisfied that the delegate variable will be an instance of a class — and the
reference can be treated as weak.

Exclusive Access to Value Types
Even value types can have memory management issues. In particular, a struct and its
members might be directly accessed simultaneously, which could lead to unpredicta‐
ble results. Fortunately, the compiler will usually stop you before such an issue can
arise.

To illustrate, imagine that we have a Person struct with a firstName string property.
Now let’s write a function that takes both a Person and a string as inout parameters:

func change(_ p:inout Person, _ s:inout String) {}

So far so good; but now imagine calling that function with both a Person and that
same Person’s firstName as the parameters:

var p = Person(firstName: "Matt")
change(&p, &p.firstName) // compile error

Memory Management | 311

The compiler will stop you from doing that, with this message: “Overlapping accesses
to p, but modification requires exclusive access.” The problem is that the single func‐
tion change is being given direct access to the memory of both the struct and a mem‐
ber of that struct, simultaneously. We are threatening to alter the struct in some
unpredictable way. This dangerous situation is forbidden; the compiler enforces
exclusive access when a struct is being modified.

You may encounter that error message from the compiler under surprising circum‐
stances:

let c = UIColor.purple
var components = Array(repeating: CGFloat(0), count: 4)
c.getRed(&components[0], green: &components[1],
 blue: &components[2], alpha: &components[3]) // compile error

That code was legal in Swift 3 and before; in Swift 4 and later, it isn’t. No exclusive
access problem is evident to the untrained eye; you just have to take the compiler’s
word for it. One workaround is to take control of memory access yourself, silencing
the compiler:

components.withUnsafeMutableBufferPointer { ptr -> () in
 c.getRed(&ptr[0], green: &ptr[1], blue: &ptr[2], alpha: &ptr[3])
}

It might be better to write a UIColor extension that assembles the array without any
simultaneous memory access to multiple elements of the array:

extension UIColor {
 func getRedGreenBlueAlpha() -> [CGFloat] {
 var (r,g,b,a) = (CGFloat(0),CGFloat(0),CGFloat(0),CGFloat(0))
 self.getRed(&r, green: &g, blue: &b, alpha: &a)
 return [r,g,b,a]
 }
}

Sometimes the compiler can’t see the issue coming, and you’ll crash at runtime
instead:

var i = 0
func tweak(_ ii:inout Int) {
 print(i) // legal, but crash
}
tweak(&i)

In that code, tweak is accessing i in two ways simultaneously. On the one hand, i is
being passed into tweak as an inout parameter. On the other hand, tweak is reaching
out directly to i (which is in scope). Even though tweak never actually modifies i and
never mentions its own inout parameter ii, that’s a simultaneous access, and is
forbidden.

312 | Chapter 5: Flow Control and More

Miscellaneous Swift Language Features
This chapter is a miscellany, and this section is a miscellany within a miscellany. It
surveys some “advanced” Swift language features that have been added relatively
recently. The reason for postponing the discussion to this point is in part to avoid
cluttering up the earlier exposition and in part to ensure that you know enough to
understand the subject matter.

Synthesized Protocol Implementations
A few protocols built into the Swift standard library have the ability to synthesize
implementations of their own requirements. Such a protocol can supply code behind
the scenes so that an object that adopts the protocol will satisfy the protocol’s require‐
ments automatically.

Equatable
Equatable is one such protocol. That’s good, because making your custom type adopt
Equatable is often a really useful thing to do. Equatable adoption means that the ==
operator can be used to check whether two instances of this type are equal. The only
requirement of the Equatable protocol is that you do, in fact, define == for your type.
Using our Vial struct from earlier in this chapter, let’s first do that manually:

struct Vial {
 var numberOfBacteria : Int
 init(_ n:Int) {
 self.numberOfBacteria = n
 }
}
extension Vial : Equatable {
 static func ==(lhs:Vial, rhs:Vial) -> Bool {
 return lhs.numberOfBacteria == rhs.numberOfBacteria
 }
}

Now that Vial is an Equatable, not only can it be compared with ==, but also lots of
methods that need an Equatable parameter spring to life. For example, Vial becomes
a candidate for use with methods such as firstIndex(of:):

let v1 = Vial(500_000)
let v2 = Vial(400_000)
let arr = [v1,v2]
let ix = arr.firstIndex(of:v1) // Optional wrapping 0

What’s more, the complementary inequality operator != has sprung to life for Vial
automatically! That’s because it’s already defined for any Equatable in terms of the ==
operator.

Miscellaneous Swift Language Features | 313

Our implementation of == for Vial was easy to write, but that’s mostly because this
struct has just one property. As soon as you have multiple properties, implementing
== manually, though theoretically trivial, becomes tedious and possibly hard to main‐
tain. This is just the kind of task computers are good at! You’re likely going to want
to define == in terms of the equality of all your type’s properties simultaneously; well,
Swift will implement == automatically in exactly that way. All we have to do is declare
adoption of Equatable, like this:

struct Vial : Equatable {
 var numberOfBacteria : Int
 init(_ n:Int) {
 self.numberOfBacteria = n
 }
}

That code compiles, even though we now have no implementation of ==. That’s
because the implementation has been synthesized for us. Behind the scenes, two Vial
objects are now equal just in case their numberOfBacteria are equal — which is
exactly the implementation we supplied when we wrote the code explicitly.

For Equatable synthesis to operate, the following requirements must be met:

• Our object type is a struct or an enum.
• We have adopted Equatable, not in an extension.
• We have not supplied an implementation of the == operator.
• All of our struct’s stored property types are themselves Equatable.

For an enum, the requirement here is that, if the enum has associated values, the
types of those associated values must be Equatable. The synthesized == implementa‐
tion will then say that two instances of our enum are equal if they are the same case
and, if that case has an associated value, the associated values are equal for both
instances. Recall that our MyError enum in Chapter 4 couldn’t be used with the ==
operator until we explicitly declared it Equatable:

enum MyError : Equatable {
 case number(Int)
 case message(String)
 case fatal
}

(If an enum has no associated values, then it is already effectively Equatable and there
is no need to adopt Equatable explicitly.)

If you don’t like the synthesized implementation of == (perhaps because there is a
property that you don’t want involved in the definition of equality), all you have to
do is write your own, explicitly. You lose the convenience of automatic synthesis, but
you’re no worse off than you were before automatic synthesis existed.

314 | Chapter 5: Flow Control and More

Let’s say we have a Dog struct with a name property and a license property and a
color property. And let’s say we think two Dogs are equal just in case they have the
same name and license; we don’t care whether the colors are the same. Then we just
have to write the implementation of == ourselves, omitting color from the
calculation:

struct Dog : Equatable {
 let name : String
 let license : Int
 let color : UIColor
 static func ==(lhs:Dog,rhs:Dog) -> Bool {
 return lhs.name == rhs.name && lhs.license == rhs.license
 }
}

Hashable
Another protocol that performs synthesis of its own implementation is Hashable.
Recall that a type must be Hashable to be used in a Set or as the key type of a Dictio‐
nary. A struct whose properties are all Hashable, or an enum whose associated values
are all Hashable, can conform to Hashable merely by declaring that it adopts
Hashable.

Hashable requires that its adopter, in addition to being Equatable, have a hashValue
Int property; the idea is that two equal objects should have equal hash values. The
implicit implementation combines the hashValue of the Hashable members to pro‐
duce a hashValue for the object itself. That’s good, because you would surely have no
idea how to do that for yourself. Writing your own hash function is a very tricky
business! Thanks to this feature, you don’t have to.

But suppose you don’t like the synthesized implementation of hashValue. Then you
will have to calculate the hashValue yourself. Luckily, Swift 4.2 introduced a way to
do that. You ignore hashValue, and instead implement the hash(into:) method.
There is then no need to implement hashValue, because it is autogenerated based on
the result of hash(into:). In this method, you are handed a Hasher object; you call
hash(into:) with that object on every property that you want included in the hash
calculation — and omit the ones you don’t. For hashability to work properly in a Dic‐
tionary or Set, these should be the very same properties you’ve included in the
Equatable calculation of ==.

So, for our Dog struct, we could write:

struct Dog : Hashable { // and therefore Equatable
 let name : String
 let license : Int
 let color : UIColor
 static func ==(lhs:Dog,rhs:Dog) -> Bool {
 return lhs.name == rhs.name && lhs.license == rhs.license

Miscellaneous Swift Language Features | 315

 }
 func hash(into hasher: inout Hasher) {
 name.hash(into:&hasher)
 license.hash(into:&hasher)
 }
}

Other protocols, alas, do not provide the same convenience. If we want our Vial
struct to be Comparable, we must implement < explicitly. (And when we do, the
other three comparison operators spring to life automatically as well.)

Comparable
New in Swift 5.3, the Comparable protocol does provide a synthesized implementa‐
tion — but only for an enum, and only if the enum has no raw value. The order of the
cases is the order in which they are declared; if a case has an associated value, it must
be of a Comparable type, so that if two instances of the enum have the same case,
they can be ordered by their associated value:

enum Planet : Comparable {
 case mercury
 case venus
 case earth
 case mars
 case asteroid(String)
 case jupiter
}
// let's test it!
let test1 = Planet.mercury < Planet.venus // true
let test2 = Planet.jupiter > Planet.asteroid("Ceres") // true
let test3 = Planet.asteroid("Ceres") < Planet.asteroid("Vesta") // true

Key Paths
Key paths, a language feature introduced in Swift 4, effectively stand in relation to
properties the way function references stand in relation to function calls — they are a
way of storing a reference to a property without actually accessing the property.

Suppose we have a Person struct with a firstName String property and a lastName
String property, and that we want to access one of these properties on a Person p,
without knowing until runtime which property we are to access. We might write
something like this:

var getFirstName : Bool = // ...
let name : String = {
 if getFirstName {
 return p.firstName

316 | Chapter 5: Flow Control and More

 } else {
 return p.lastName
 }
}()

That’s not altogether atrocious, but it’s hardly elegant. If we do the same sort of thing
in several places, the same choice must somehow be repeated in each of those places
— and the more choices there are, the more elaborate our code must be each time.

Key paths solve the problem by permitting us to encapsulate the notion of accessing a
particular property of a type, such as Person’s firstName or lastName, without
actually performing the access. That notion is expressed as an instance; therefore, we
can store it as a variable, or pass it as a function parameter. That instance then acts as
a token that we can use to access the actual property on an actual instance of that type
at some future time.

The literal notation for constructing a key path is:

\Type.property.property...

We start with a backslash. Then we have the name of a type, which may be omitted if
the type can be inferred from the context. Then we have a dot followed by a property
name — and this may be repeated if that property’s type itself has a property that we
will want to access, and so on.

In our simple case, we might store the notion of accessing a particular property as a
key path variable, like this:

var prop = \Person.firstName

To perform the actual access, start with a reference to a particular instance and fetch
its keyPath: subscript:

let whatname = p[keyPath:prop]

If p is a Person with a firstName of "Matt" and a lastName of "Neuburg", then
whatname is now "Matt". Moreover, whatname is inferred to be a String, because the
key path carries within itself information about the type of the property that it refers
to (it is a generic).

Now imagine substituting a different key path for the value of prop:

var prop = \Person.firstName
// ... time passes ...
prop = \.lastName // inferred as \Person.lastName

That substitution is legal, because both firstName and lastName are Strings.
Instantly, throughout our program, all occurrences of the Person [keyPath:prop]
subscript take on a new meaning!

Miscellaneous Swift Language Features | 317

If the property referenced by a key path is writable and you have a writable object
reference, then you can also set into the keyPath: subscript on that object, changing
the value of the property:

p[keyPath:prop] = "Ethan"

Here’s a practical example where my own code takes advantage of key paths. One of
my apps is a version of a well-known game involving a deck of 81 cards, where every
card has four attributes (color, number, shape, and fill), each of which can have three
possible values. (81 is 34.) The player’s job is to spot three cards obeying the following
rule: each attribute has either the same value for all three cards or a different value for
each of the three cards. The problem is to express that rule succinctly.

For the four card attributes, I use enums with Int raw values. This allows me to repre‐
sent any attribute as a common type (Int). I express those raw values as computed
properties, and I vend a list of all four computed properties as an array of key paths
(attributes):

struct Card {
 let itsColor : Color
 let itsNumber : Number
 let itsShape : Shape
 let itsFill : Fill
 var itsColorRaw : Int { return itsColor.rawValue }
 var itsNumberRaw : Int { return itsNumber.rawValue }
 var itsShapeRaw : Int { return itsShape.rawValue }
 var itsFillRaw : Int { return itsFill.rawValue }
 static let attributes : [KeyPath<Card, Int>] = [
 \.itsColorRaw, \.itsNumberRaw, \.itsShapeRaw, \.itsFillRaw
]
 // ...
}

Now I can express the rule clearly and elegantly:

func isValidTriple(_ cards:[Card]) -> Bool {
 func evaluateOneAttribute(_ n:[Int]) -> Bool {
 let allSame = (n[0] == n[1]) && (n[1] == n[2])
 let allDiff = (n[0] != n[1]) && (n[1] != n[2]) && (n[2] != n[0])
 return allSame || allDiff
 }
 return Card.attributes.allSatisfy {attribute in
 evaluateOneAttribute(cards.map {$0[keyPath:attribute]}) // wow!
 }
}

Starting in Swift 5.2, a keypath literal can be used wherever a function is expected that
takes that object’s type as its sole parameter and produces that property’s type as its
result. That sentence is enough to make one’s head swim, but the idea is quite simple.
Consider our Person with a firstName and a lastName String property. If you have
an array of Person, you can extract a list of first names using map, like this:

318 | Chapter 5: Flow Control and More

let names = arrayOfPersons.map {$0.firstName}

Well, now you can use a keypath literal instead:

let names = arrayOfPersons.map (\.firstName)

That’s more than mere syntactic sugar; the point is that \.firstName acts as the name
of a function. Here’s a more surprising case in point:

let f : (Person) -> String = \Person.firstName

Instance as Function
Sometimes a type’s primary job is to contain or represent a function. In those situa‐
tions, it makes for cleaner code if we can treat an instance of that type as a function.
The ability to do that was introduced in Swift 5.2.

Before I explain, I’ll give an example. (This particular example comes more or less
directly from Apple.) Imagine I have a struct Adder, whose job is to store a base value
and add it to any addend we care to supply:

let add3 = Adder(3)
let sum = add3(4)
print(sum) // 7

That code, and indeed the entire concept of Adder, should remind you of the notion
of a function as a factory for other functions (see “Function Returning Function” on
page 54). In the second line, we treat add3 as a function that takes an Int and returns
another Int, namely the first Int with 3 added to it. But here’s the thing: add3 is not a
function! It is an instance of a struct. We are treating an instance as a function.

The implementation, behind the scenes, is simple. If a type declares an instance
method named callAsFunction, you can “call” an instance of that type as if it were a
function: the “call” is routed to the callAsFunction method. Here’s Adder:

struct Adder {
 let base: Int
 init(_ base:Int) {
 self.base = base
 }
 func callAsFunction(_ addend:Int) -> Int {
 return self.base + addend
 }
}

So when we create an Adder instance named add3 and then say add3(4), it is exactly
the same as if we had said add3.callAsFunction(4).

The function notation in add3(4) is mere syntactic sugar. But it’s very nice syntactic
sugar, because it reflects the truth more compactly. To be sure, we could have given

Miscellaneous Swift Language Features | 319

Adder an add method that performs the addition, or a makeAdder method that pro‐
duces a function that performs the addition:

struct Adder {
 let base: Int
 init(_ base:Int) {
 self.base = base
 }
 func add(_ addend:Int) -> Int {
 return self.base + addend
 }
 // or:
 func makeAdder() -> (Int) -> Int {
 return { addend in self.base + addend }
 }
}

Either of those would have been just fine. But the job of Adder is to act like a func‐
tion, so rather than having it contain or produce that function, we can use callAs-
Function to let an Adder effectively be that function.

You can give your type multiple callAsFunction overloads, distinguished in the
usual way by parameter types, parameter labels, or both. In this way, a single instance
can behave as if it were itself an overloaded function.

Dynamic Membership
Dynamic membership was introduced in Swift 4.2, with additional features in Swift 5.
It allows you to do two things:

• Access a nonexistent property (a dynamic property) of an instance or type.
• Treat a reference to an instance as the name of a nonexistent function (a dynamic

function).
Before I explain, I’ll give an example. Imagine I have a class Flock that acts as a gate‐
keeper to a dictionary. I proceed to talk to a Flock instance like this:

let flock = Flock()
flock.chicken = "peep"
flock.partridge = "covey"
// flock's dictionary is now ["chicken": "peep", "partridge": "covey"]
if let s = flock.partridge {
 print(s) // covey
}
flock(remove:"partridge")
// flock's dictionary is now ["chicken": "peep"]

That’s surprising, because Flock has no chicken property and no partridge prop‐
erty, and it is not the name of a function with a remove: parameter. So why am I able
to talk that way?

320 | Chapter 5: Flow Control and More

Here’s how the implementation works:

Dynamic properties
The type must be marked @dynamicMemberLookup, and must declare a subscript
taking a single parameter that is either a string or a key path and has an external
name dynamicMember. The subscript return type is up to you, and you can have
multiple overloads distinguished by the return type. When other code accesses a
nonexistent property of this type, the corresponding subscript function — the
getter or, if there is one, the setter — is called with the name of the property as
parameter.

Dynamic functions
The type must be marked @dynamicCallable, and must declare either or both of
these methods, where the type T is up to you:

dynamicallyCall(withArguments:[T])

Other code uses an instance as a function name and calls it with a variadic
parameter of type T. The variadic becomes an array. If T is Int, and the caller
says myObject(1,2), then this method is called with parameter [1,2].

dynamicallyCall(withKeywordArguments:KeyValuePairs<String, T>)

Other code uses an instance as a function name and calls it with labeled
arguments of type T. The label–value pairs become string–T pairs; if a label
is missing, it becomes an empty string. If T is String, and the caller says
myObject(label:"one", "two"), then this method is called with parameter
["label":"one", "":"two"].

So here’s the implementation of Flock. Its dynamic properties are turned into dictio‐
nary keys, and it can be called as a function with a "remove" label to remove a key:

@dynamicMemberLookup
@dynamicCallable
class Flock {
 var d = [String:String]()
 subscript(dynamicMember s:String) -> String? {
 get { d[s] }
 set { d[s] = newValue }
 }
 func dynamicallyCall(withKeywordArguments kvs:KeyValuePairs<String, String>) {
 if kvs.count == 1 {
 if let (key,val) = kvs.first {
 if key == "remove" {
 d[val] = nil
 }
 }
 }
 }
}

Miscellaneous Swift Language Features | 321

As originally conceived, dynamic membership is not intended for general use; its pri‐
mary purpose is to prepare Swift for future interoperability with languages like Ruby,
and perhaps to permit domain-specific languages. It is, after all, constitutionally
opposed to the spirit of Swift: dynamism means that the compiler’s validity checking
is thrown away.

On the other hand, @dynamicMemberLookup with a subscript that takes a key path is
Swift-like, because the validity of a given key path is checked at compile time. This
feature is good particularly for forwarding messages to a wrapped value. Here’s a
Kennel struct that wraps a Dog:

struct Dog {
 let name : String
 func bark() { print("woof") }
}
@dynamicMemberLookup
struct Kennel {
 let dog : Dog
 subscript(dynamicMember kp:KeyPath<Dog,String>) -> String {
 self.dog[keyPath:kp]
 }
}

If k is a Kennel instance, we can now fetch k.name as a way of fetching k.dog.name.
An attempt to say k.nickname, however, won’t even compile; key paths maintain
validity checking.

Property Wrappers
The idea of property wrappers, as you’ll recall from Chapter 3, is that commonly used
computed property getter and setter patterns can be encapsulated into a type with a
wrappedValue computed property:

@propertyWrapper struct MyWrapper {
 // ...
 var wrappedValue : SomeType {
 get { /*...*/ }
 set { /*...*/ }
 }
}

You can then declare your computed property using the property wrapper type name
as a custom attribute:

@MyWrapper var myProperty

The result is that, behind the scenes, a MyWrapper instance is created for you, and
when your code gets or sets the value of myProperty, it is the getter or setter of this
MyWrapper instance that is called.

322 | Chapter 5: Flow Control and More

In real life, your property wrapper’s purpose will almost certainly be to act as a façade
for access to a stored instance property, declared inside the property wrapper’s type.
This alone makes the property wrapper worth the price of admission, because now
your main code is not cluttered with private stored properties acting as the backing
store for computed properties; the stored properties are hidden in the property wrap‐
per instances.

To introduce the syntax, I’ll start with a property wrapper that acts as a façade for
storage, and no more:

@propertyWrapper struct Facade<T> {
 private var _p : T
 init(wrappedValue:T) {
 self._p = wrappedValue
 }
 var wrappedValue : T {
 get {
 return self._p
 }
 set {
 self._p = newValue
 }
 }
}

That’s a fairly normal-looking struct. It’s a generic so that our property declaration
can be of any type. The only special feature here is the initializer. The rule is that if
you declare an init(wrappedValue:) initializer, it will be called automatically with
the value to which the property is initialized:

@Facade var p = "test"

Here, the property wrapper’s generic is resolved to String, and its init(wrapped-
Value:) initializer is called with parameter "test". You can call other initializers
instead, by treating the custom attribute name as a type name (which, of course, is
just what it is) and putting parentheses after it. Suppose our property wrapper
declares an initializer with no external parameter name:

init(_ val:T) {
 self._p = val
}

Then we can call that initializer by declaring our property like this:

@Facade("test") var p

More practically, here’s a generalized version of the Clamped property wrapper from
Chapter 3; we accept any Comparable type (so that min and max are available), and we
accept (and require) initialization with a minimum and maximum to clamp to:

Miscellaneous Swift Language Features | 323

@propertyWrapper struct Clamped<T:Comparable> {
 private var _i : T
 private let min : T
 private let max : T
 init(wrappedValue: T, min:T, max:T) {
 self._i = wrappedValue
 self.min = min
 self.max = max
 }
 var wrappedValue : T {
 get {
 self._i
 }
 set {
 self._i = Swift.max(Swift.min(newValue,self.max),self.min)
 }
 }
}

And here’s how to use it:

@Clamped(min:-7, max:7) var i = 0
@Clamped(wrappedValue:0, min:-7, max:7) var ii

Those declarations are equivalent, but the first is more natural; behind the scenes, the
value with which we initialize the property is routed to the wrappedValue: parameter
of the property wrapper initializer.

As I’ve said, when you declare a property with a property wrapper attribute, an actual
property wrapper instance is generated. That instance is accessible to our code under
the same name as the computed property with underscore (_) prefixed to it. In the
case of our @Facade property p, if we set p to "howdy" and then say print(_p), the
console says Facade<String>(_p: "howdy"). You might use this feature for debug‐
ging, or to expose additional public members of the struct. This underscore-prefixed
variable is declared with var, so you can even assign to it a property wrapper instance
that you’ve initialized manually.

The property wrapper may also vend a value that can be referred to elsewhere by pre‐
fixing a dollar sign ($) to the property name. It does this by declaring a projected-
Value property (this will usually be a computed property). You might use this to
expose some useful secondary object. That’s how the SwiftUI @State attribute works.
It is a property wrapper (one of several that are commonly used in SwiftUI). The
State property wrapper struct has a projectedValue computed property whose getter
returns the State struct’s binding property. That property is a Binding, so when you
use your @State property’s $ name, you get a Binding (see Chapter 13).

324 | Chapter 5: Flow Control and More

Be careful not to cause a name clash! If you declare a @Facade property p, you
can’t declare a property _p in the same scope, because that’s the name of the syn‐
thesized property wrapper instance. (The same issue does not arise for the $
name, because a variable name can’t start with $.)

Property wrappers are a brilliant addition to Swift, and can be of practical value
immediately. For instance, I’ve pointed out already that deferred initialization of an
instance property using an Optional (“Deferred initialization of properties” on page
126) entails an architectural flaw: the property must be declared with var. Property
wrappers can’t change that, but they can prevent further assignment at runtime:

@propertyWrapper struct DeferredConstant<T> {
 private var _value: T? = nil
 var wrappedValue: T {
 get {
 if _value == nil {
 fatalError("not yet initialized")
 }
 return _value!
 }
 set {
 if _value == nil {
 _value = newValue
 }
 }
 }
}

Suppose we now declare an outlet as a DeferredConstant:

@IBOutlet @DeferredConstant var myButton: UIButton!

The result is that after a real button from the interface is assigned to myButton, subse‐
quent code that tries to assign a different value to myButton will fail silently.

Despite the name, property wrappers can be applied to global variables. They
cannot be applied to local variables, but that may become possible in the future.

Custom String Interpolation
Starting in Swift 5, string interpolation syntax can be customized. The example I
imagined in Chapter 3 is an expression such as "You have \(n, roman:true)

widgets", where n is an Int; the idea is that, if n is 5, this would yield "You have V
widgets", expressing the Int in Roman numerals instead of Arabic notation. This
would be an odd goal to accomplish through string interpolation, but it demonstrates
the syntax; so let’s implement that example.

Miscellaneous Swift Language Features | 325

To implement string interpolation, you need an adopter of the ExpressibleByString‐
Literal protocol that also adopts the ExpressibleByStringInterpolation protocol. This
might be some custom type of your own, but in most situations you’ll just use the
built-in type that already adopts both of these protocols — String. "You have \(n,
roman:true) widgets" is a String, and it already implements string interpolation.

That makes our job easy: all we have to do is customize String’s already existing
implementation of string interpolation. That implementation hinges on two meth‐
ods, appendInterpolation and appendLiteral. The overall string is broken into
segments, the interpolations (appendInterpolation) and the other parts (append-
Literal), and those methods are called; our job is to assemble them into a single
object. String is already doing that job, and we don’t need to modify the way it imple‐
ments appendLiteral; we just need to modify the way it implements append-
Interpolation.

To help us do that, there’s another protocol, DefaultStringInterpolation. We extend
this protocol to inject a version of appendInterpolation that takes our interpolated
type — in this case, Int — along with any additional parameters. Our implementation
should perform any necessary transformations to get a String, and then call the
default appendInterpolation(_:).

Here’s an Int method toRoman() that yields an Optional String (Int values of 0 or less
will return nil, to indicate that they can’t be expressed in Roman numerals):

extension Int {
 func toRoman() -> String? {
 guard self > 0 else { return nil }
 let rom = ["M","CM","D","CD","C","XC","L","XL","X","IX","V","IV","I"]
 let ar = [1000,900,500,400,100,90,50,40,10,9,5,4,1]
 var result = ""
 var cur = self
 for (c, num) in zip(rom, ar) {
 let div = cur / num
 if (div > 0) {
 for _ in 0..<div { result += c }
 cur -= num * div
 }
 }
 return result
 }
}

Our interpolated type is Int, and we want to add one parameter, roman:, a Bool. So
our extension of DefaultStringInterpolation will inject an implementation of append-
Interpolation like this:

326 | Chapter 5: Flow Control and More

extension DefaultStringInterpolation {
 mutating func appendInterpolation(_ i: Int, roman: Bool) {
 if roman {
 if let r = i.toRoman() {
 self.appendInterpolation(r)
 return
 }
 }
 self.appendInterpolation(i)
 }
}

For a practical example of custom string interpolation in action, take a look at the
Logger struct, introduced in Swift 5.3 as a Swifty wrapper for OSLog (Chapter 9). Its
methods take string literals, but the parameter here is not a String; it is a special
OSLogMessage struct that adopts ExpressibleByStringLiteral and ExpressibleByString‐
Interpolation and performs the interpolation at runtime, with custom interpolation
parameters, by way of an OSLogInterpolation struct that adopts StringInterpolation‐
Protocol.

Reverse Generics
Starting in Swift 5.1 and iOS 13, a function return type can be specified as a subtype
of some supertype without stating what subtype it is. The syntax is the keyword some
followed by the supertype. Suppose we have a protocol P and a struct S that adopts it:

protocol P {}
struct S : P {}

Then we can declare a function that returns a P adopter without specifying what
adopter it is, by saying some P:

func f() -> some P {
 return S()
}

A computed property getter (or a subscript getter) is a function, so a computed prop‐
erty can also be declared a some P:

var p : some P { S() }

A stored variable cannot be declared a some P explicitly, but it can be a some P by
inference:

var p2 = f() // now p2 is typed as some P

In those examples, the type actually being returned is S — and the compiler knows
this by inference. But users of f and p know only that the type is an unspecified
adopter of P. For this reason, this is sometimes called a reverse generic (or an opaque
type). Instead of you declaring a placeholder and helping the compiler resolve it, the
compiler has already resolved it and hides that resolution behind the placeholder.

Miscellaneous Swift Language Features | 327

A reverse generic some P is different from declaring the returned type as P. For one
thing, in some situations you can’t declare the returned type as P — as when P is a
generic protocol. (A generic protocol, you remember, can be used only as a type con‐
straint.) But more important, if f declared its return type as P, then it could return
any P adopter on any occasion. That’s not the case with some P; f returns an S and
can return only an S. The compiler uses strict typing to enforce this — but the exter‐
nal declaration hides what exactly the compiler is enforcing. If there are two P
adopters, S and S2, then a some P resolved to S has the same underlying type as
another some P resolved to S, but it does not have the same type as a some P resolved
to S2. This should remind you of a regular generic: an Optional<String> is a differ‐
ent type from an Optional<Int>.

As a result, a some type plays well with a generic in a way that an ordinary supertype
would not. Suppose we have a Named protocol and an adopter of that protocol:

protocol Named {
 var name : String {get set}
}
struct Person : Named {
 var name : String
}

And suppose we have a generic function that uses this protocol as a type constraint:

func haveSameName<T:Named>(_ named1:T, _ named2:T) -> Bool {
 return named1.name == named2.name
}

Obviously, you can hand two Person objects to this generic function, because they
resolve the generic placeholder T the same way:

let matt = Person(name: "Matt")
let ethan = Person(name: "Ethan")
let ok = haveSameName(matt,ethan) // fine

But you couldn’t do that with two Named objects, because they might or might not
represent the same adopting type:

let named1 : Named = Person(name: "Matt")
let named2 : Named = Person(name: "Ethan")
let ok = haveSameName(named1, named2) // compile error

Now suppose we have a function namedMaker that makes a some Named out of a
String:

func namedMaker(_ name: String) -> some Named {
 return Person(name:name)
}

You, the user of namedMaker, do not necessarily know what Named adopter is pro‐
duced by namedMaker. But you do know that every call to namedMaker produces the

328 | Chapter 5: Flow Control and More

same type of Named adopter! The compiler knows this too, and it also knows what
type of Named adopter namedMaker produces. Therefore you might write this, and
the compiler will allow it:

let named1 = namedMaker("Matt")
let named2 = namedMaker("Ethan")
let ok = haveSameName(named1, named2) // fine

The main place you are likely to encounter some is when using SwiftUI or some other
domain-specific language or library that wants to vend specific types while masking
them under some common identity. (You are less likely to use some in your own
code, though I suppose it could be useful for masking types in one area of your code
from visibility in another area.)

For example, in SwiftUI a View’s body is typed as some View. You are shielded from
the underlying complexities of compound view types, such as:

VStack<TupleView<(Text, HStack<TupleView<(Image, Image)>>)>>

At the same time, the compiler knows that that is the type of this View’s body, and
therefore behind the scenes SwiftUI can reason coherently about this view.

Function Builders
Swift 5.1 introduced the ability to intercept a function passed to another function,
capture its parameters and content, and transform them by way of a function builder
to get a different function that is actually passed. This complex and highly specialized
feature is aimed at enabling Swift to embrace domain-specific languages — the chief
such language, at the moment, being SwiftUI. You can say this in SwiftUI:

VStack {
 Text("Hello")
 Text("World")
}

That doesn’t look like legal Swift, so what’s going on? Well, VStack is a type, and we
are creating an instance of that type. We call an initializer to instantiate VStack. This
particular initializer takes a function as its content: parameter. We could write this
as VStack(content:f), but instead we use trailing closure syntax; the curly braces
embrace the body of an anonymous function. This body is now handed off to a func‐
tion builder, which detects its structure and transforms it into something that is legal
Swift (and that creates a VStack instance consisting of two Texts). The entire look
and feel of SwiftUI code rests on this mechanism.

Result
A frustrating problem arises when you want to throw an error in a context where this
is forbidden. To see what I mean, consider a function that does some networking:

Miscellaneous Swift Language Features | 329

func doSomeNetworking(completion:@escaping (Data) -> ()) {
 URLSession.shared.dataTask(with: myURL) { data, _, err in
 if let data = data {
 completion(data)
 }
 if let err = err {
 throw err // compile error
 }
 }.resume()
}

In doSomeNetworking, we get some data from across the internet by calling resume on
a URLSession’s dataTask, supplying an anonymous function to be called when either
data arrives or we get an error. These are handed to us as separate Optional parame‐
ters: an Optional wrapping a Data (data), and an Optional wrapping an Error (err).
If the data arrives, data won’t be nil, and we hand it back to whoever called doSome-
Networking by calling a completion function that takes a Data object. If there’s an
error, data will be nil and err won’t be. The question is: now what? We’re not
allowed to throw err; we’re not in a throwing context, and there’s no place for the
thrown error to percolate up to; the dataTask anonymous function isn’t a throws
function, and even if it were, we’d be talking to the URLSession, not to the caller of
doSomeNetworking.

One option is to respond to the error somehow right here in the anonymous func‐
tion. Often, though, what we’d really like to do is to hand the error back to the caller
of doSomeNetworking. One way to do that is to give the completion function another
parameter, perpetuating the separate Optional parameters that were foisted upon us
by Objective-C:

func doSomeNetworking(completion:@escaping (Data?, Error?) -> ()) {
 URLSession.shared.dataTask(with: myURL) { data, _, err in
 completion(data, err)
 }.resume()
}

But here’s a cleaner solution — a type that expresses the notion of data-or-error in a
single object. It’s a generic enum called Result, with a success case and a failure
case, each of them carrying an associated value which is the data or error, respec‐
tively:

func doSomeNetworking(completion:@escaping (Result<Data,Error>) -> ()) {
 URLSession.shared.dataTask(with: myURL) { data, _, err in
 if let data = data {
 completion(.success(data))
 }
 if let err = err {

330 | Chapter 5: Flow Control and More

 completion(.failure(err))
 }
 }.resume()
}

The really cool part is that Result provides an initializer that lets us express ourselves
in a much more Swifty way: we can return the data or throw the error, just as we
would if we weren’t in this asynchronous situation:

func doSomeNetworking(completion:@escaping (Result<Data,Error>) -> ()) {
 URLSession.shared.dataTask(with: myURL) { data, _, err in
 let result = Result<Data,Error> {
 if let err = err {
 throw err
 }
 return data!
 }
 completion(result)
 }.resume()
}

And things work the same way at the caller’s end. We call the Result object’s get
method, which is a throws function. Either this gives us the data or else it throws:

self.doSomeNetworking { result in
 do {
 let data = try result.get()
 // do something with the data
 } catch {
 // respond to the error
 }
}

That summarizes the most important aspects of the Result enum; there’s more to
know, but you can explore further on your own if you need to.

Miscellaneous Swift Language Features | 331

PART II

IDE

By now, you’re doubtless anxious to jump in and start writing an app. To do that, you
need a solid grounding in the tools you’ll be using. The heart and soul of those tools
can be summed up in one word: Xcode. In this part of the book we explore Xcode,
the IDE (integrated development environment) in which you’ll be programming iOS.
Xcode is a big program, and writing an app involves coordinating a lot of pieces; this
part of the book will help you become comfortable with Xcode. Along the way, we’ll
generate a simple working app through some hands-on tutorials.

• Chapter 6 tours Xcode and explains the architecture of the project, the collection
of files from which an app is generated.

• Chapter 7 is about nibs. A nib is a file containing a drawing of your interface.
Understanding nibs — how they work and how they relate to your code — is
crucial to your use of Xcode and to development of just about any Cocoa app.

• Chapter 8 pauses to discuss the Xcode documentation and other sources of infor‐
mation on the API.

• Chapter 9 explains editing your code, testing and debugging your code, and the
various steps you’ll take on the way to submitting your app to the App Store.
You’ll probably want to skim this chapter quickly at first, returning to it as a
detailed reference later while developing and submitting an actual app.

CHAPTER 6

Anatomy of an Xcode Project

Xcode is the application used to develop an iOS app. An Xcode project is the source
for an app; it’s the entire collection of files and settings used to construct the app. To
create, develop, and maintain an app, it helps to know how to manipulate and navi‐
gate an Xcode project. You’ll want to be familiar with Xcode, and you’ll need to know
about the nature and structure of Xcode projects and how Xcode shows them to you.
That’s the subject of this chapter.

Xcode is a powerful, complex, and very large program. Our survey will chart a safe,
restricted, and essential path, focusing on aspects of Xcode that you most need to
understand immediately, and resolutely ignoring everything else.

The term “Xcode” is used in two ways. It’s the name of the application in which
you edit and build your app, and it’s the name of an entire suite of utilities that
accompanies it; in the latter sense, Instruments and the Simulator are part of
Xcode. This ambiguity should generally present little difficulty.

New Project
Even before you’ve written any code, an Xcode project is quite elaborate. To see this,
let’s make a new, essentially “empty” project; you’ll find that it isn’t empty at all.

1. Start up Xcode and choose File → New → Project.
2. The “Choose a template” dialog appears. The template is your project’s initial set

of files and settings. When you pick a template, you’re really picking an existing
folder full of files; this folder is hidden deep inside the Xcode bundle, and will
essentially be copied, with a few values filled in, to create your project.
In this case, select iOS; under Application, select the App template. Click Next.

335

3. You are now asked to provide a name for your project (Product Name). Let’s call
our new project Empty Window.
As Xcode copies the template folder, it’s going to insert the project’s name in sev‐
eral places, including using it as the name of the app. Whatever you type at this
moment is something you’ll be seeing throughout your project. You are not
locked into the name of your project forever, though, and there’s a separate set‐
ting allowing you to change the name of the app that your project produces. (I’ll
talk later about name changes; see “Renaming Parts of a Project” on page 373.)
Spaces are legal in the project name, the app name, and the various names of files
and folders that Xcode will generate automatically; and in the few places where
spaces are problematic (such as the bundle identifier, which I’ll discuss in a
moment), the name you type as the Product Name will have its spaces converted
to hyphens. But do not use any other punctuation in your project name! Such
punctuation can cause Xcode features to break in subtle ways.

4. Ignore the Team pop-up menu for now; I’ll discuss its significance in Chapter 9.
Ignore the Organization Name as well; it is used only in some automatically gen‐
erated code comments.

5. Note the Organization Identifier field. The first time you create a project, this
field will be blank, and you should fill it in. The goal here is to create a unique
string identifying you or your organization. The convention is to start the orga‐
nization identifier with com. and to follow it with a string (possibly with multiple
dot-components) that no one else is likely to use. Every app on a device or sub‐
mitted to the App Store needs a unique bundle identifier. Your app’s bundle
identifier, which is shown in gray below the organization identifier, will consist
by default of the organization identifier plus a version of the project’s name; if
you choose a unique organization identifier and give every project a unique
name within your personal world, the bundle identifier will uniquely identify this
project and the app that it produces. (You will be able to change the bundle iden‐
tifier manually later if necessary.)

6. The Interface pop-up menu should say Storyboard, not SwiftUI. (The Life Cycle
pop-up menu will then automatically be set to UIKit App Delegate.)

7. The Language pop-up menu lets you choose between Swift and Objective-C. This
choice is not positively binding; it dictates the initial structure and code of the
project template, but you are free to add Swift files to an Objective-C project, or
Objective-C files to a Swift project. You can even start with an Objective-C
project and decide later to convert it completely to Swift. (See “Bilingual Targets”
on page 658.) For now, choose Swift.

8. For this example project, make sure Use Core Data and Include Tests are not
checked. Click Next.

336 | Chapter 6: Anatomy of an Xcode Project

9. You’ve now told Xcode how to construct your project. Basically, it’s going to
copy a template folder from somewhere deep within the Xcode application
bundle. But you need to tell it where to copy this template folder to. That’s why
Xcode is now presenting a Save dialog with a Create button. You are to specify
the location of a folder that is about to be created — the project folder for this
project. The project folder can go just about anywhere, and you can move it after
creating it. I usually create new projects on the Desktop.

10. Xcode also offers, through a checkbox, to create a Git repository for your project.
(You might need to click Options to see the checkbox.) In real life, this can be a
great convenience (see Chapter 9), but for now, uncheck that checkbox. (If you
see an Add To pop-up menu, leave it at the default, “Don’t add to any project or
workspace.”) Click Create.
The Empty Window project folder is created on disk (on the Desktop, if that’s the
location you just specified), and the project window for the Empty Window
project opens in Xcode.

The project we’ve just created is a working project; it really does build an iOS app
called Empty Window. To see this, you can actually build the app — and run it! The
scheme and destination in the project window’s toolbar will be listed as Empty Win‐
dow and some model of iPhone. (The scheme and destination are actually pop-up
menus, so you can click them to change their values if needed.) Choose Product →
Run. After some delay, the Simulator application opens and displays your app run‐
ning — an empty white screen.

To build a project is to compile its code and assemble the compiled code,
together with various resources, into the actual app. Typically, if you want to
know whether your code compiles and your project is consistently and correctly
constructed, you’ll build the project (Product → Build). To run a project is to
launch the built app, in the Simulator or on a connected device; if you want to
know whether your code works as expected, you’ll run the project (Product →
Run), which automatically builds first if necessary.

The Project Window
An Xcode project embodies a lot of information about what files constitute the
project and how they are to be used when building the app, such as:

• The source files (your code) that are to be compiled
• Any .storyboard or .xib files, graphically expressing interface objects to be instan‐

tiated as your app runs
• Any resources, such as icons, images, or sound files, that are to be part of the app

The Project Window | 337

Figure 6-1. The project window

• All settings (instructions to the compiler, to the linker, and so on) that are to be
obeyed as the app is built

• Any frameworks that the code will need when it runs
A single Xcode project window presents all of this information, lets you access, edit,
and navigate your code, and reports the progress and results of such procedures as
building or debugging an app and more. This window displays a lot of information
and embodies a lot of functionality! A project window is powerful and elaborate;
learning to navigate and understand it takes time. Let’s pause to explore this window
and see how it is constructed.

A project window has four main parts (Figure 6-1):

1. On the left is the Navigator pane. Show and hide it with View → Navigators →
Show/Hide Navigator (Command-0) or with the button at the left end of the
toolbar.

2. In the middle is the Editor pane (or simply “editor”). This is the main area of a
project window. A project window nearly always displays an Editor pane.

3. On the right is the Inspectors pane. Show and hide it with View → Inspectors →
Show/Hide Inspectors (Command-Option-0) or with the button at the right end
of the toolbar.

4. At the bottom is the Debug pane. Show and hide it with View → Debug Area →
Show/Hide Debug Area (Command-Shift-Y).

All Xcode keyboard shortcuts can be customized; see the Key Bindings pane of
the Preferences window. Keyboard shortcuts that I cite are the defaults.

338 | Chapter 6: Anatomy of an Xcode Project

The Navigator Pane
The Navigator pane is the column of information at the left of the project window.
Among other things, it’s your primary mechanism for controlling what you see in the
main area of the project window (the editor). An important use pattern for Xcode is:
you select something in the Navigator pane, and that thing is displayed in the editor.

It is possible to toggle the visibility of the Navigator pane (View → Navigators →
Hide/Show Navigator, or Command-0); you might hide the Navigator pane tem‐
porarily to maximize your screen real estate (especially on a smaller monitor). You
can change the Navigator pane’s width by dragging the vertical line at its right edge.
New in Xcode 12, if the project window is being displayed fullscreen with the Naviga‐
tor pane hidden, you can display the Navigator pane by hovering the mouse at the
left side of the screen.

The Navigator pane can display nine different sets of information; there are actually
nine navigators. These are represented by the nine icons across its top; to switch
among them, use these icons or their keyboard shortcuts (Command-1, Command-2,
and so on). If the Navigator pane is hidden, pressing a navigator’s keyboard shortcut
both shows the Navigator pane and switches to that navigator.

Depending on your settings in the Behaviors pane of Xcode’s preferences, a navigator
might show itself automatically when you perform a certain action. For example,
when you build your project, if warning messages or error messages are generated,
the Issue navigator may appear. This automatic behavior will not prove troublesome,
because it is usually the behavior you want, and if it isn’t, you can change it; plus you
can easily switch to a different navigator at any time.

Let’s begin experimenting immediately with the various navigators:

Project navigator (Command-1)
Click here for basic navigation through the files that constitute your project
(Figure 6-2). For example, in the Empty Window folder (the folder-like things in
the Project navigator are actually called groups), click AppDelegate.swift to view
its code in the editor.

At the top of the Project navigator, with a blue Xcode icon, is the Empty Window
project itself; click it to view the settings associated with your project and its tar‐
gets. Don’t change anything here without knowing what you’re doing!

The filter bar at the bottom of the Project navigator lets you limit what files are
shown; when there are many files, this is great for quickly reaching a file with a
known name. For example, try typing “delegate” in the filter bar search field.
Don’t forget to remove your filter when you’re done experimenting.

The Project Window | 339

Figure 6-2. The Project navigator

Once you’ve filtered a navigator, it stays filtered until you remove the filter —
even if you close the project! A common mistake is to filter a navigator, forget
that you’ve done so, fail to notice the filter (because you’re looking at the naviga‐
tor itself, not down at the bottom where the filter bar is), and wonder, “Hey,
where did all my files go?”

Source Control navigator (Command-2)
The Source Control navigator helps you manipulate how your project’s files are
handled through version control. I’ll discuss version control in Chapter 9.

Symbol navigator (Command-3)
A symbol is a name, typically the name of a class or method. The Symbol naviga‐
tor lists symbols available to your code. Among other things, this can be useful
for navigating. For example, highlight the first two icons in the filter bar (so that
they are filled), twist open the class listings, and see how quickly you can reach
your code’s implementation of SceneDelegate’s sceneDidBecomeActive(_:)
method.

Try highlighting the filter bar icons in various ways to see how the contents of
the Symbol navigator change. Type in the search field in the filter bar to limit
what appears in the Symbol navigator; for example, try typing “active” in the
search field, and see what happens.

Find navigator (Command-4)
This is a powerful search facility for finding text globally in your project. You can
also summon the Find navigator with Find → Find in Project (Command-Shift-
F). The words above the search field show what options are currently in force;
they are pop-up menus, so click one to change the options. This is a powerful
intelligent search that can filter on how a term is used. Try searching for “dele‐
gate” among References; then change it to search among Definitions
(Figure 6-3). Click a search result to jump to it in your code.

340 | Chapter 6: Anatomy of an Xcode Project

Figure 6-3. The Find navigator

Below the search field, at the left, is the current search scope. This limits what files
will be searched. Click it to reveal the search scopes. You can create or edit a
“smart” scope (for example, search only .swift files), and you can limit the search
to one or more groups (folders).

You can type in the other search field, the one in the filter bar at the bottom, to
limit further which search results are displayed. (I’m going to stop calling your
attention to the filter bar now; every navigator has it in some form.)

Issue navigator (Command-5)
You’ll need this navigator primarily when your code has issues. This doesn’t refer
to emotional instability; it’s Xcode’s term for warning and error messages emit‐
ted when you build your project. The Issue navigator can also display certain
runtime issues (such as leaks, as I’ll explain in Chapter 9).

To see the Issue navigator in action, let’s give your code a buildtime issue. Navi‐
gate to the file AppDelegate.swift, and in the blank line after the last comment at
the top of the file’s contents, above the import line, type howdy. Build the project
(Command-B). Switch to the Issue navigator if it doesn’t appear automatically; in
its Buildtime pane, it displays some error messages, showing that the compiler is
unable to cope with this illegal word appearing in an illegal place. Click an issue
to see it within its file. In your code, issue banners appear to the right of lines
containing issues; the compiler can even underline the troublesome spot within a
line. But it’s always a good idea to look at the Issue navigator as well, because it
may contain additional useful information.

Now that you’ve made Xcode miserable, select “howdy” and delete it; save and
build again, and your issues will be gone. If only real life were this easy!

You can create a custom buildtime issue, either a compile error or a warning, by
starting a line with #error or #warning respectively followed by a string literal in
parentheses, like this: #warning("Fix this!"). This can be a dramatic way to
leave a note to whoever subsequently tries to compile this code — possibly your
future self.

The Project Window | 341

Figure 6-4. The Debug layout

Test navigator (Command-6)
This navigator lists test files and individual test methods and permits you to run
your tests and see whether they succeeded. A test is code that isn’t part of your
app; rather, it calls a bit of your app’s code, or exercises your app’s interface, to
see whether things behave as expected. I’ll talk more about tests in Chapter 9.

Debug navigator (Command-7)
By default, this navigator will appear when your code is paused while you’re
debugging it. There is not a strong distinction in Xcode between running and
debugging; the milieu is the same. The difference is mostly a matter of whether
breakpoints are obeyed (more about that, and about debugging in general, in
Chapter 9).

To see the Debug navigator in action, you’ll need to give your code a breakpoint.
Navigate once more to the file AppDelegate.swift, select in the line that says
return true, and choose Debug → Breakpoints → Add Breakpoint at Current
Line to make a breakpoint arrow appear on that line. Run the project. By default,
as the breakpoint is encountered, the Navigator pane switches to the Debug navi‐
gator, and the Debug pane appears at the bottom of the window. This overall lay‐
out (Figure 6-4) will rapidly become familiar as you debug your projects.

The Debug navigator starts with several numeric and graphical displays of profil‐
ing information (at a minimum, you’ll see CPU, Memory, Disk, and Network);
click one to see extensive graphical information in the editor. This information
allows you to track possible misbehavior of your app as you run it, without the
added complexity of running the Instruments utility (discussed in Chapter 9). To

342 | Chapter 6: Anatomy of an Xcode Project

toggle the visibility of the profiling information at the top of the Debug naviga‐
tor, click the “gauge” icon (to the right of the process’s name).

The Debug navigator also displays the call stack, with the names of the nested
methods in which a pause occurs; as you would expect, you can click a method
name to navigate to it. You can shorten or lengthen the list with the first button
in the filter bar at the bottom of the navigator.

The Debug pane, which can be shown or hidden at will (View → Debug Area →
Hide/Show Debug Area, or Command-Shift-Y), has at its top the debug bar con‐
taining various buttons, and consists of two subpanes:

The variables list (on the left)
The variables in scope for the selected method in the call stack at the point
where we are paused, along with their values.

The console (on the right)
Here the debugger displays text messages; that’s how you learn of exceptions
thrown by your running app, plus you can have your code deliberately send
you log messages describing your app’s progress and behavior. Such mes‐
sages are important, so keep an eye on the console as your app runs. You can
also use the console to enter commands to the debugger. This can often be a
better way to explore values during a pause than the variables list.

Either the variables list or the console can be hidden using the two buttons at the
bottom right of the pane. The console can also be summoned by choosing
View → Debug Area → Activate Console.

Breakpoint navigator (Command-8)
This navigator lists all your breakpoints. At the moment you have only one, but
when you’re actively debugging a large project with many breakpoints, you’ll be
glad of this navigator. Also, this is where you create special breakpoints (such as
symbolic breakpoints), and in general it’s your center for managing existing
breakpoints. We’ll return to this topic in Chapter 9.

Report navigator (Command-9)
This navigator lists your recent major actions, such as building or running
(debugging) your project. Click a listing to see (in the editor) the report gener‐
ated when you performed that action. The report might contain information that
isn’t displayed in any other way, and also it lets you dredge up console messages
from the recent past (“What was that exception I got while debugging a moment
ago?”).

By clicking on the listing for a successful build, we can see the steps by which a
build takes place (Figure 6-5). To reveal the full text of a step, click that step and

The Project Window | 343

Figure 6-5. The start of a build report

then click the Expand Transcript button that appears at the far right (and see also
the menu items in the Editor menu).

The Inspectors Pane
The Inspectors pane is the column at the right of the project window. It contains
inspectors that provide information about the current selection or its settings; if those
settings can be changed, this is where you change them. The Inspectors pane’s
importance emerges mostly when you’re editing a .storyboard or .xib file (Chapter 7).
But it can be useful also while editing code, mostly because Quick Help, a form of
documentation (Chapter 8), is displayed here as well. To toggle the visibility of the
Inspectors pane, choose View → Inspectors → Hide/Show Inspectors (Command-
Option-0). You can change the Inspectors pane’s width by dragging the vertical line
at its left edge. New in Xcode 12, if the project window is being displayed fullscreen
with the Inspectors pane hidden, you can display the Inspectors pane by hovering the
mouse at the right side of the screen.

What appears in the Inspectors pane depends on what’s selected in the current editor:

A code file is being edited
The Inspectors pane shows the File inspector, the History inspector, or the Quick
Help inspector. Toggle between them with the icons at the top of the Inspectors
pane, or with their keyboard shortcuts (Command-Option-1, Command-
Option-2, Command-Option-3). The File inspector consists of multiple sections,
each of which can be expanded or collapsed by clicking its header; I’ll give an
example of using it in Chapter 9 when I talk about localization. History is about
version control (Chapter 9 as well). Quick Help can be useful because it displays
documentation (Chapter 8).

344 | Chapter 6: Anatomy of an Xcode Project

A .storyboard or .xib file is being edited
The Inspectors pane adds the Identity inspector (Command-Option-4), the
Attributes inspector (Command-Option-5), the Size inspector (Command-
Option-6), and the Connections inspector (Command-Option-7). These inspec‐
tors can consist of multiple sections, each of which can be expanded or collapsed
by clicking its header. I’ll talk more about them in Chapter 7.

Other forms of editing may cause other inspector combinations to appear here.

The Editor
In the middle of the project window is the editor. This is where you get actual work
done, reading and writing your code (Chapter 9) or designing your interface in
a .storyboard or .xib file (Chapter 7). The editor is the core of the project window.
You can hide the Navigator pane, the Inspectors pane, and the Debug pane, but there
is basically no such thing as a project window without an editor.

The jump bar across the top shows you hierarchically what file is currently being edi‐
ted. It also allows you to switch to a different file. Each path component in the jump
bar is a pop-up menu. These pop-up menus can be summoned by clicking on a path
component, or by using keyboard shortcuts (shown in the View → Editor submenu).
Control-4 summons a hierarchical pop-up menu, which can be navigated entirely
with the keyboard, allowing you to choose a different file in your project to edit. Each
pop-up menu in the jump bar also has a filter field; to see it, summon a pop-up menu
from the jump bar and start typing. Thus you can navigate your project even if the
Project navigator isn’t showing.

Command-click a jump bar component to summon a menu showing the corre‐
sponding file in the Finder and its hierarchy of enclosing folders.

The symbol at the left end of the jump bar (Control-1) summons the Related Items
menu. This helps you navigate to files conceptually related to the current one. Its
contents depend on both the current file and the current selection within it. You can
navigate to files declaring related types (Superclasses, Subclasses, Siblings, and adop‐
ted Protocols) and to methods that call or are called by the currently selected method.
The Generated Interface menu displays a file’s public interface as seen by Swift or
Objective-C (see Appendix A).

The editor remembers the history of what it has displayed, and you can return to pre‐
viously viewed content with the Back button in the jump bar, which is also a pop-up
menu (Control-2). Alternatively, choose Navigate → Go Back (Command-Control-
Left).

The Project Window | 345

Editor panes
It is likely, as you develop a project, that you’ll want to edit more than one file simul‐
taneously, or obtain multiple views of a single file so that you can edit different areas
of it simultaneously. For this purpose, the Editor pane area of the project window can
be subdivided into smaller editor panes. Each pane can display a different file, or a
different area of the same file.

To summon a new editor pane, choose File → New → Editor (Command-Control-T)
or click the Add Editor button at the top right of an editor. Alternatively, if there is
only one editor pane, Option-click a file listing in the Project navigator to open it in a
new editor pane.

The new pane appears to the right of the current editor or below it; choose View →
Change Editor Orientation to reverse this default or to move a pane from the right to
below (or vice versa). To summon a new editor pane in the other orientation, choose
File → New → Editor Below / On Right, or Option-click the Add Editor button.

To close an editor pane, choose File → Close Editor, or click the X button at the top
left of an editor pane.

To zoom an editor pane temporarily, so that it takes over the whole editor area
without closing any other panes, choose View → Editor → Focus, or click the out‐
ward double-arrow button at the top left of the pane. To unzoom, do the same thing
again: choose View → Editor → Hide Focus, or click the inward double-arrow but‐
ton. While a pane is zoomed, Close Editor and the X button are disabled; you have to
unzoom the pane before you can close it.

Zooming a pane, deliberately or accidentally, and then wondering why you can’t
make additional editor panes, is a common beginner mistake.

When there are multiple editor panes, what happens when you click a file listing in
the Project navigator? By default, its destination is current editor pane. But you can
Option-click a file listing to specify a different destination; the exact details depend
on your settings in the Navigation pane of Xcode’s preferences. For maximum flexi‐
bility, Option-Shift-click a file listing to enter destination chooser mode; you can then
navigate with arrow keys to specify where you want this file to open — in an existing
pane or as a new additional pane, to the right or below — and hit Return to open it
there.

I like the destination chooser so much that I have made it the default: in the Naviga‐
tion preference pane, under Optional Navigation, I’ve selected Uses Destination
Chooser. The outcome is that the Option-click and Option-Shift-click shortcuts are
swapped: the destination chooser appears when I hold the Option key while
navigating.

346 | Chapter 6: Anatomy of an Xcode Project

If the Project navigator selection gets out of sync with the file displayed in the
current editor pane, you can bring it back in sync by choosing Navigate → Reveal
in Project Navigator (Command-Shift-J).

Assistant panes
An assistant pane is a special kind of editor pane tied to some primary editor pane, in
the following way: when you cause the primary pane to display a different file, its
assistant pane automatically displays a different file to match. To summon an assis‐
tant pane, choose Editor → Assistant (or choose Assistant from the Editor Options
pop-up menu at the top right of the editor pane). You’ll know you’ve entered editor-
and-assistant mode because both panes will display an icon showing two linked rings.
To configure whether the assistant pane divides the editor vertically or horizontally,
choose Editor → Layout → Assistant On Right/Bottom (or use the Editor Options
pop-up menu).

Exactly what category of file the assistant pane automatically displays depends upon
what you’ve specified as its relationship to the primary pane. You do that with the
first pop-up menu in the assistant pane’s jump bar, containing the linked rings icon
(Control-4). Your choices here are much like the menu items in the Related Items
menu.

If more than one file falls into the category in question — for example, you’ve set the
assistant to show Callers and in the primary pane you’ve selected a method with more
than one caller — then a pair of arrow buttons appears at the right end of the assis‐
tant’s jump bar, with which you can navigate between them, or use the second jump
bar component (Control-5).

Tabs and windows
New in Xcode 12, there are two kinds of tab. This is rather confusing, because menu
commands don’t always distinguish them. There are document tabs and window tabs:

Document tabs
A document tab (new in Xcode 12) is an alternative way of populating an editor
pane with multiple files. Instead of splitting the editor pane into two or more
smaller panes, the editor pane displays different files as different tabs that you see
one at a time, occupying the entire editor pane — and then you can readily
switch between them.

To make a document tab, choose File → Open In Tab (Command-Option-O), or
Control-click on a file listing in the Project navigator and choose Open In Tab.
Or, if the document tab bar is already showing, you can drag file listings into it
from the Project navigator to open them as tabs. (To show the document tab bar
all the time, choose View → Always Show Tab Bar so that it is checked.) Addi‐
tionally, in the Navigation preference pane, you can set Optional Navigation or

The Project Window | 347

Double-click Navigation to Uses Tab. I like the latter; that way, I double-click a
listing in the Project navigator to open it as a document tab.

A file opened as a document tab is “pinned” as a tab in the editor pane. By “pin‐
ned,” I mean that if you click a different file listing in the Project navigator, it
opens as a separate tab rather than replacing this file. So “pinned” files have a
degree of permanence. They mean: These are the particular files I want to work
on right now. (Tabs that open without being pinned are replaceable; they display
their filenames in italics.) You can “pin” as many files as you like, making it easy
to switch between them and ensure that none of them will be replaced
accidentally.

Window tabs (and windows)
A window tab (which Xcode 11 and before calls simply a tab) doesn’t just display
a file, like an editor pane or a document tab; it displays the whole project window
interface, and can display it differently from another window tab. Thus one win‐
dow tab might show the Project navigator, while another might have the Project
navigator hidden, or display a different navigator. In other words, a window tab
is like a second window on the same project, except that it doesn’t occupy any
independent screen real estate: rather, it shares the space with an existing project
window.

To make a new window tab, choose File → New → Window Tab (Command-T),
revealing the window’s tab bar (just below the toolbar) if it wasn’t showing
already. Or, instead of a window tab, you can display a second independent win‐
dow on the same project. To make a new window, choose File → New → Win‐
dow (Command-Shift-T), or promote a window tab to be a window by dragging
it right out of its current window.

In the Navigation preference pane, you can set Optional Navigation or Double-
click Navigation to Uses Separate Window Tab or Uses Separate Window.

Project File and Dependents
The first item in the Project navigator represents the project itself. (In the Empty
Window project that we created earlier in this chapter, it is called Empty Window.)
Hierarchically dependent upon it are items that contribute to the building of the
project. Many of the listings in the Project navigator correspond to items on disk in
the project folder.

To survey this correspondence, let’s view our Empty Window project in two ways
simultaneously — in the Project navigator in the Xcode project window, and in the
project folder in a Finder window. Select the project listing in the Project navigator
and choose File → Show in Finder. The Finder displays the contents of your project
folder (Figure 6-6).

348 | Chapter 6: Anatomy of an Xcode Project

Figure 6-6. The Project navigator (Xcode) and the project folder (Finder)

Contents of the Project Folder
The most important file in the project folder is Empty Window.xcodeproj. This is the
project file, corresponding to the project listed first in the Project navigator. All
Xcode’s knowledge about your project — what files it consists of and how to build
the project — is stored in this file. To open a project from the Finder, double-click
the project file. (Alternatively, you can drag the project folder onto Xcode’s icon in
the Finder, the Dock, or the application switcher; Xcode will locate the project file
and open it for you.)

The Project navigator displays groups (folder-like things) and files hierarchically
from the project. Let’s consider how these correspond to reality on disk as portrayed
in the Finder (Figure 6-6):

• The Empty Window group corresponds directly to the Empty Window folder on
disk. Groups in the Project navigator don’t necessarily correspond to folders on
disk in the Finder, and folders on disk in the Finder don’t necessarily correspond
to groups in the Project navigator. But in this case, they do correspond (this is a
folder-linked group, as I’ll explain later).

• Files within the Empty Window group, such as AppDelegate.swift, correspond to
real files on disk that are inside the Empty Window folder. If you were to create
additional code files (which, in real life, you would almost certainly do in the
course of developing your project), you would likely put them in the Empty Win‐
dow group in the Project navigator, and they, too, would then be in the Empty
Window folder on disk. (However, your files can live anywhere and your project
will still work fine.)

• Two files in the Empty Window group, Main.storyboard and LaunchScreen.story‐
board, appear in the Finder inside a folder that doesn’t visibly correspond to any‐
thing in the Project navigator, called Base.lproj. This arrangement has to do with
localization, which I’ll discuss in Chapter 9.

Project File and Dependents | 349

• The item Assets.xcassets in the Project navigator corresponds to a specially struc‐
tured folder Assets.xcassets on disk. This is an asset catalog; you add resources to
the asset catalog in Xcode, which maintains that folder on disk for you. I’ll talk
more about the asset catalog later in this chapter, and in Chapter 9.

• The Products group and its contents don’t correspond to anything in the project
folder. Xcode generates a reference to the executable bundle generated by build‐
ing each target in your project, and by convention these references appear in the
Products group.

Now that you have inspected the contents of a typical project folder, you should have
little need to open a project folder ever again, except in order to double-click the
project file to open the project. Generally speaking, you should not manipulate the
contents of a project folder by way of the Finder; manipulate the project in the project
window. The project expects things in the project folder to be a certain way; if you
make any alterations to the project folder directly in the Finder, behind the project’s
back, you can upset those expectations and break the project. When you work in the
project window, it is Xcode itself that makes any necessary changes in the project
folder, and all will be well.

Groups
The purpose of groups in the Project navigator is to make the Project navigator work
conveniently for you. So feel free to add further groups! If some of your code files
have to do with a login screen that your app sometimes presents, you might clump
them together in a Login group. If your app is to contain some sound files, you might
put them into a Sounds group. And so on.

A group might or might not correspond to a folder on disk in the project folder.
There’s a visual distinction: a group that corresponds to a folder on disk is a folder-
linked group, and has a solid folder icon, like the Empty Window group in Figure 6-6;
a group plain and simple exists purely within the Project navigator, and has a marked
folder icon, like the Products group in Figure 6-6. You’ll encounter this distinction at
various times:

Creating a group
When you make a new group, there’s a choice of menu items: in the contextual
menu, you might see New Group and New Group Without Folder. (Confusingly,
the choice might sometimes be New Group and New Group With Folder.) The
one without a folder creates a group plain and simple; the other creates a folder-
linked group.

Using a group
When you place a file into a folder-linked group, it goes into the corresponding
folder on disk (like the contents of the Empty Window folder in Figure 6-6).

350 | Chapter 6: Anatomy of an Xcode Project

When you place a file into a group plain and simple, the group is effectively
ignored in determining where the file will go; it generally will go into the same
place as files at the same level as the group.

Renaming a group
To rename a group, select it in the Project navigator and press Return to make
the name editable. When you rename a folder-linked group, the folder on disk is
renamed as well.

The Target
A target is a collection of parts along with rules and settings for how to build a prod‐
uct from those parts. Whenever you build, what you’re building is a target (possibly
more than one target).

Select the Empty Window project at the top of the Project navigator, and you’ll see
the project itself along with its targets listed on the left side of the editor (Figure 6-7).
Our Empty Window project comes with one target — the app target, called Empty
Window (like the project itself). The app target is the target that you use to build and
run your app. Its settings are the settings that tell Xcode how your app is to be built;
its product is the app itself.

Under certain circumstances, you might add further targets to a project:

• You might want to add unit tests or interface tests to your project. A test bundle
is a target.

• You might write an application extension, such as a photo editing extension
(custom photo editing interface to appear in the Photos app). An extension is a
target.

• You might write a library, such as a custom framework, as part of your iOS app.
A custom framework is a target.

The project name and the list of targets can appear in two ways (Figure 6-7): either as
a column on the left side of the editor, or, if that column is collapsed to save space, as
a pop-up menu at the top left of the editor. If, in the column or pop-up menu, you
select the project, you edit the project; if you select a target, you edit the target.

Build Phases
Edit the app target and click Build Phases at the top of the editor (Figure 6-8). These
are the stages by which your app is built. The build phases are both a report to you on
how the target will be built and a set of instructions to Xcode on how to build the
target; if you change the build phases, you change the build process. Click each build
phase to see a list of the files in your target to which that build phase will apply.

The Target | 351

Figure 6-7. Two ways of showing the project and targets

Two of the build phases have contents. The meanings of these build phases are pretty
straightforward:

Compile Sources
Certain files (your code) are compiled, and the resulting compiled code is copied
into the app. This build phase typically applies to all of the target’s .swift files.
Sure enough, it currently contains all three Swift files supplied by the app tem‐
plate when we created the project.

Copy Bundle Resources
Certain files are copied into the app, so that your code or the system can find
them there when the app runs. This build phase currently applies to the asset cat‐
alog; any resources you add to the asset catalog will be copied into your app as
part of the catalog. It also applies to your launch storyboard file,
LaunchScreen.storyboard, and your app’s interface storyboard file, Main.story‐
board.

Copying doesn’t necessarily mean making an identical copy. Certain types of file are
automatically treated in special ways as they are copied into the app bundle. Copying
the asset catalog means that icons in the catalog are written out to the top level of the
app bundle, while the asset catalog itself is transformed into a .car file; copying
a .storyboard file means that it is transformed into a .storyboardc file, which is itself a
bundle containing nib files.

You can alter these lists manually, and sometimes you may need to do so. For
instance:

• If something in your project, such as a sound file, is not in Copy Bundle Resour‐
ces and you want it copied into the app during the build process, drag it from the
Project navigator into the Copy Bundle Resources list, or (easier) click the Plus
button beneath the Copy Bundle Resources list to get a helpful dialog listing
everything in your project.

• Conversely, if something in your project is in the Copy Bundle Resources list and
you don’t want it copied into the app, delete it from the list; this will not delete it

352 | Chapter 6: Anatomy of an Xcode Project

Figure 6-8. The app target’s build phases

Figure 6-9. Target build settings

from your project, from the Project navigator, or from the Finder, but only from
the list of things to be copied into your app.

Build Settings
Build phases are only one aspect of how a target knows how to build the app. The
other aspect is build settings. To see them, edit the target and click Build Settings at
the top of the editor (Figure 6-9). Here you’ll find a long list of settings, most of
which you’ll never touch. Xcode examines this list in order to know what to do at
various stages of the build process. Build settings are the reason your project com‐
piles and builds the way it does.

The Target | 353

You can determine what build settings are displayed by clicking Basic or All. The set‐
tings are combined into categories, and you can close or open each category heading
to save room. To locate a setting quickly based on something you already know about
it, such as its name, use the search field at the top right to filter what settings are
shown.

You can determine how build settings are displayed by clicking Combined or Levels;
in Figure 6-9, I’ve clicked Levels, in order to discuss what levels are. It turns out that
not only does a target contain values for the build settings, but the project also con‐
tains values for the same build settings; furthermore, Xcode has certain built-in
default build setting values. The Levels display shows all of these levels at once, so you
can trace the derivation of the actual values used for every build setting.

To understand the chart, read from right to left. For example, the iOS default for the
Build Active Architecture Only setting’s Debug configuration (far right) is No. But
then the project comes along (second column from the right) and sets it to Yes. The
target (third column from the right) doesn’t change that setting, so the result (fourth
column from the right) is that the setting resolves to Yes.

You will rarely have occasion to manipulate build settings directly, as the defaults are
usually acceptable. Nevertheless, you can change build setting values, and this is
where you would do so. You can change a value at the project level or at the target
level. You can select a build setting and show Quick Help in the Inspectors pane to
learn more about it.

Configurations
There are actually multiple lists of build setting values — though only one such list
applies when a particular build is performed. Each such list is called a configuration.
Multiple configurations are needed because you build in different ways at different
times for different purposes, and you’ll want certain build settings to take on different
values under different circumstances.

By default, there are two configurations:

Debug
This configuration is used throughout the development process, as you write and
run your app.

Release
This configuration is used for late-stage testing, when you want to check perfor‐
mance on a device, and for archiving the app to be submitted to the App Store.

Configurations exist at all because the project says so. To see where the project says
so, edit the project and click Info at the top of the editor (Figure 6-10). Note that
these configurations are just names. You can create additional configurations, and

354 | Chapter 6: Anatomy of an Xcode Project

Figure 6-10. Configurations

Figure 6-11. How configurations affect build settings

when you do, you’re just adding to the list of names. The importance of configura‐
tions emerges only when those names are coupled with build setting values. Configu‐
rations can affect build setting values both at the project level and at the target level.

For example, return to the target build settings (Figure 6-9) and type “optim” into the
search field. Now you can look at the Optimization Level build setting for Swift, at
the very bottom of the window (Figure 6-11):

• The Debug configuration value for Optimization Level is No Optimization: while
you’re developing your app, you build with the Debug configuration, so your
code is just compiled line by line in a straightforward way.

• The Release configuration value for Optimization Level is Optimize for Speed.
When your app is ready to ship, you build it with the Release configuration, so
the resulting binary is optimized for speed, which is great for your users running
the app on a device, but would be no good while you’re developing the app
because breakpoints and stepping in the debugger wouldn’t work properly. Com‐
pilation may take longer when the compiler must optimize for speed, but you
won’t mind the delay, because you won’t do a Release build very often.

Schemes and Destinations
So far, I have not said how Xcode knows which configuration to use during a particu‐
lar build. This is determined by a scheme.

The Target | 355

Figure 6-12. The scheme editor

A scheme unites a target (or multiple targets) with a build configuration, with respect
to the purpose for which you’re building. A new project comes by default with a sin‐
gle scheme, named after the project. The Empty Window project’s single scheme is
currently called Empty Window. To see it, choose Product → Scheme → Edit
Scheme. The scheme editor dialog opens (Figure 6-12).

On the left side of the scheme editor are listed various actions you might perform
from the Product menu. Click an action to see its corresponding settings in this
scheme.

The first action, the Build action, is different from the other actions, because it is
common to all of them — the other actions all implicitly involve building. The Build
action merely determines what target(s) will be built when each of the other actions is
performed. For our project this means that the app target is always to be built,
regardless of the action you perform.

The second action, the Run action, determines the settings that will be used when you
build and run. The Build Configuration pop-up menu (in the Info pane) is set to
Debug. That explains where the current build configuration comes from: whenever
you build and run (Product → Run, or click the Run button in the toolbar), you’re
using the Debug build configuration and the build setting values that correspond to
it, because you’re using this scheme, and that’s what this scheme says to do when you
build and run.

You can edit an existing scheme, and this can be useful especially as a temporary
measure for doing certain kinds of specialized debugging. For example, the Run
action’s Diagnostics tab contains checkboxes that let you turn on the Address Sani‐
tizer or the Thread Sanitizer, useful for tracking down certain types of obscure

356 | Chapter 6: Anatomy of an Xcode Project

Figure 6-13. The Scheme pop-up menu

runtime error. You’d check the checkbox, build and run, work on the error, and then
uncheck the checkbox again.

Alternatively, you can add a scheme. A typical approach is to duplicate an existing
scheme and then modify the duplicate. Instead of changing your main scheme to
turn on the Address Sanitizer temporarily, you might have a second scheme where
the Address Sanitizer is always turned on; you would then use the Address Sanitizer
by switching schemes.

Handy access to schemes and their management is through the Scheme pop-up menu
in the project window toolbar (Figure 6-13).

The Scheme pop-up menu is something you’re going to be using a lot. Your schemes
are listed here; hierarchically appended to each scheme are the destinations. A desti‐
nation is effectively a machine that can run your app. On any given occasion, you
might want to run the app on a physical device or in the Simulator — and, if in the
Simulator, you might want to specify that a particular type of device should be simu‐
lated. To make that choice, pick a destination in the Scheme pop-up menu.

Destinations and schemes have nothing to do with one another. The presence of des‐
tinations in the Scheme pop-up menu is just a convenience, letting you choose a
scheme or a destination or both in a single move. To switch easily among destina‐
tions without changing schemes, click the destination name in the Scheme pop-up
menu. To switch among schemes, possibly also determining the destination (as
shown in Figure 6-13), click the scheme name in the Scheme pop-up menu. You can
open the Scheme pop-up menu with Control-0 (zero), and the Destination pop-up
menu with Control-Shift-0; the menu can then be navigated with the keyboard, and
is also filterable in the same way as the jump bar (discussed earlier in this chapter).

Each simulated device has a system version that is installed on that device. At the
moment, all our simulated devices are running iOS 14; there is no distinction to be
drawn, and the system version is not shown. But you can download earlier SDKs
(systems) in Xcode’s Components preference pane. If you do, and if your app can run

The Target | 357

Figure 6-14. Contents of the app package

under more than one system version, you might also see a system version listed in the
Scheme pop-up menu as part of a Simulator destination name.

To manage destinations, choose Window → Devices and Simulators. Switch to the
Simulators pane if necessary. This is where you govern what simulated devices exist.
Here you can create, delete, and rename simulated devices, and specify whether a
simulated device actually appears as a destination in the Scheme pop-up menu.

From Project to Built App
Now that you know what’s in a project, I’m going to summarize how Xcode builds
that project into an app. Let’s first jump ahead and examine the end product — the
app itself.

What is an app anyway? It’s actually a special kind of folder called a package (and a
special kind of package called a bundle). The Finder normally disguises a package as a
file and does not dive into it to reveal its contents to the user, but you can bypass this
protection and investigate an app bundle with the Show Package Contents command.
By doing so, you can study the internal structure of your built app bundle.

We’ll use the Empty Window app that we built earlier as a sample minimal app to
investigate. Open the Products group in the Project navigator, Control-click the app
listing, and choose Show in Finder. In the Finder, Control-click the Empty Window
app, and choose Show Package Contents. Here you can see the results of the build
process (Figure 6-14).

Think of the app bundle as a transformation of the project folder. Here are some of
the things it contains, and how they relate to what’s in the project folder:

Empty Window
Our app’s compiled code. The build process has compiled all our Swift files into
this single file, our app’s binary. This is the heart of the app, its actual executable
material.

358 | Chapter 6: Anatomy of an Xcode Project

Main.storyboardc
Our app’s interface storyboard file. The project’s Main.storyboard is currently
where our app’s interface comes from — in this case, an empty white view occu‐
pying the entire window. The build process has compiled Main.storyboard into a
tighter format, resulting in a .storyboardc file, which is actually a bundle of nib
files to be loaded as required while the app runs. One of these nib files, loaded as
our app launches, will be the source of the hitherto empty view displayed in the
interface. Main.storyboardc sits in the same Base.lproj subfolder as Main.story‐
board does in the project folder; as I said earlier, this folder structure has to do
with localization (to be discussed in Chapter 9).

LaunchScreen.storyboardc
This is the compiled version of LaunchScreen.storyboard, containing the interface
that will be displayed briefly during the time it takes for our app to launch (the
launch screen).

Assets.car, AppIcon60x60@2x.png
An asset catalog and an icon file. In preparation for this build, I added an icon
image to the original asset catalog, Assets.xcassets. The build process has com‐
piled this file, resulting in a compiled asset catalog file (.car) containing any
resources that have been added to the catalog; at the same time, the icon file has
been written out to the top level of the app bundle.

Info.plist
A configuration file in a strict text format (a property list file). It is derived from,
but is not identical to, the project’s Info.plist. It contains instructions to the sys‐
tem about how to treat and launch the app. For example, the project’s Info.plist
has a calculated bundle name derived from the product name, $(PRODUCT_NAME);
in the built app’s Info.plist, this calculation has been performed, and the value
reads Empty Window, which is why our app is labeled “Empty Window” on the
device. Also, in conjunction with the asset catalog writing out our icon file to the
app bundle’s top level, a setting has been added to the built app’s Info.plist telling
the system the name of that icon file, so that the system can find it and display it
as our app’s icon.

Frameworks
The built app contains no frameworks. That was a major innovation of Swift 5,
standing in sharp contrast to what used to happen; previously, several megabytes
of framework files were added to the app, containing the entirety of the Swift lan‐
guage! One of the great overarching achievements of Swift 5 was the introduction
of ABI stability, which means, in practical terms, that the Swift frameworks could
be moved off into the system, reducing the size and overhead of your built apps.
However, that’s only on iOS 13 and later. If you were to build this app for an

From Project to Built App | 359

Figure 6-15. Contents of the app package, old style

earlier system, those framework files would return, and the app package would
look more like Figure 6-15.

In real life, an app bundle may contain more files, but the difference will be mostly
one of degree, not kind. Our project might have additional .storyboard or .xib files,
additional frameworks, or additional resources such as sound files. All of these would
make their way into the app bundle. Also, an app bundle built to run on a device will
contain some security-related files.

You are now in a position to appreciate, in a general sense, how the components of a
project are treated and assembled into an app, and what responsibilities accrue to
you, the programmer, in order to ensure that the app is built correctly. The rest of
this section outlines what goes into the building of an app from a project.

Build Settings
We have already talked about how build settings are determined. Xcode itself, the
project, and the target all contribute to the resolved build setting values, some of
which may differ depending on the build configuration. You, the programmer, will
have specified a scheme before building; the scheme determines the build configura‐
tion, meaning the specific set of build setting values that will apply as this build
proceeds.

360 | Chapter 6: Anatomy of an Xcode Project

Property List Settings
Your project contains a property list file that will be used to generate the built app’s
Info.plist file. The file in the project does not have to be named Info.plist! The app
target knows what file it is because it is specified in the Info.plist File build setting. In
our project, the value of the app target’s Info.plist File build setting is Empty Win‐
dow/Info.plist.

The property list file is a collection of key–value pairs. You can edit it, and you may
need to do so. There are three main ways to edit your project’s Info.plist:

• Edit the target, and switch to the General pane. Some of the settings here are
effectively ways of editing the Info.plist. For example, when you click a Device
Orientation checkbox here, you are changing the value of the “Supported inter‐
face orientations” key in the Info.plist.

• Edit the Info.plist file manually by selecting it in the Project navigator. The editor
displays a special .plist editor interface. By default, most of the key names (and
some of the values) are displayed descriptively, in terms of their functionality; for
example, it says “Bundle name” instead of the actual key, which is CFBundleName.
To view the actual keys, choose Editor → Raw Keys & Values, or use the contex‐
tual menu.
If you like, you can see the file in its true XML text form: Control-click the
Info.plist file in the Project navigator and choose Open As → Source Code from
the contextual menu. (But editing an Info.plist as raw XML is risky, because if
you make a mistake you can invalidate the XML, causing things to break with no
warning.)

• Edit the target, and switch to the Info pane. The Custom iOS Target Properties
section shows effectively the same information as editing the Info.plist in the
editor.

Some values in the project’s Info.plist are processed at build time to transform them
into their final values in the built app’s Info.plist. For example, the “Executable file”
key’s value in the project’s Info.plist is $(EXECUTABLE_NAME); for this will be substitu‐
ted the value of the EXECUTABLE_NAME build environment variable, supplied by Xcode
at build time. Also, some additional key–value pairs will be injected into the Info.plist
during processing.

For a complete list of the possible keys and their meanings, consult Apple’s Informa‐
tion Property List Key Reference in the documentation archive (see Chapter 8). I’ll talk
more in Chapter 9 about some Info.plist settings that you’re particularly likely to edit.

From Project to Built App | 361

Nib Files
A nib file is a file with the extension .nib containing a description of a piece of user
interface in a compiled format. You edit a .xib or .storyboard file graphically, as in a
drawing program. Your .xib and .storyboard files are then transformed into nib files
by compilation during the build process. This compilation takes place by virtue of
the .storyboard or .xib file being listed in the app target’s Copy Bundle Resources
build phase. A .xib file results in a single nib file; a .storyboard file results in a .story‐
boardc bundle containing multiple nib files.

Our Empty Window project generated from the iOS App template contains an inter‐
face .storyboard file called Main.storyboard. This is our app’s main storyboard — not
because of its name, but because the Info.plist file says so, under the key “Main story‐
board file base name” (UIMainStoryboardFile). I’ll talk more about the main story‐
board later in this chapter; in Chapter 7 I’ll explain how nib files create instances
when your code runs.

Resources
Resources are ancillary files embedded in your app bundle to be extracted as needed
while the app runs. At some point during your app’s lifetime you might want to dis‐
play some images, or play some sound files; to do so, you can include these files in
your app bundle. In effect, your app bundle is being treated as a folder full of extra
stuff.

There are two different places to add resources to your project in Xcode:

The Project navigator
If you add a resource to the Project navigator, it is copied by the build process to
the top level of your app bundle (assuming that it is also listed in the Copy Bun‐
dle Resources build phase).

An asset catalog
If you add a resource to an asset catalog, then when the asset catalog is copied
and compiled by the build process to the top level of your app bundle, the
resource’s data will be embedded inside it.

Resources in the Project navigator
To add a resource to your project through the Project navigator, choose File → Add
Files to [Project], or drag the resource from the Finder into the Project navigator. A
dialog appears (Figure 6-16):

Copy items if needed
Check this checkbox so that the resource is copied into the project folder. Other‐
wise, your project will depend on a file that’s outside the project folder, where

362 | Chapter 6: Anatomy of an Xcode Project

Figure 6-16. Options when adding a resource to a project

you might delete or change it unintentionally; keeping all of your project’s con‐
tents inside the project folder is far safer.

Added folders
If what you’re adding to the project is a folder, these choices determine how the
project references the folder contents:

Create groups
The folder’s name becomes the name of a folder-linked group within the
Project navigator, and its contents appear in this group; but the folder con‐
tents are listed individually in the Copy Bundle Resources build phase and
are copied individually to the top level of the app bundle.

Create folder references
The folder becomes a folder reference. It is shown in blue in the Project navi‐
gator, and the folder itself is listed in the Copy Bundle Resources build
phase. The build process will copy the folder itself, along with its contents,
into the app bundle; the resources won’t be at the top level of the app bundle,
but rather in a subfolder within the app bundle. Your code for accessing a
resource will have to specify the subfolder.

Add to targets
This checkbox determines whether the resource is added to a target’s Copy Bun‐
dle Resources build phase. If your purpose is to make this resource available to
the app when it runs, the app target checkbox should be checked. If your purpose
is merely to use the project folder as convenient storage for something that isn’t
part of your app, the checkbox should not be checked. If you get this wrong, you
can change this setting later by editing the target’s Copy Bundle Resources build
phase.

Resources in an asset catalog
Asset catalogs were invented originally to accommodate image files; they can now
contain any kind of data file. Keeping your resources in an asset catalog provides cer‐
tain advantages over keeping them at the top level of the app bundle.

From Project to Built App | 363

Figure 6-17. Slots for an image set in the asset catalog

For example, you might need two or three versions of an image file, corresponding to
the single-, double-, and triple-resolution screens of target devices; the asset catalog
provides resolution slots to make that easy (Figure 6-17). The asset catalog can per‐
form certain transformations on an image as it is loaded. And asset catalog images
load more efficiently, because they are stored in a special format.

Asset catalogs can also hold named colors, Sprite Kit textures, and general data
objects. Different versions of the same asset can load in response to device type, light
or dark mode, and localization. An asset catalog can contain “folders” that subdivide
the assets between namespaces, and multiple asset catalogs can be distinguished by
putting them in different bundles (such as frameworks).

Code Files
The build process compiles a code file into the app’s binary if it is listed in the app
target’s Compile Sources build phase. The Swift files provided by the app template
are listed under Compile Sources already. As you develop a real app, you’ll create new
Swift files by choosing File → New → File; a Save dialog will appear, offering to make
this file part of the app target, and if you accept, the file will be added to the app tar‐
get’s Compile Sources build phase. If you get this wrong, your code probably won’t
compile, because the compiler won’t see the newly added Swift file; you can fix this by
editing the Compile Sources build phase.

When you create a new file using the Cocoa Touch Class template, you get some
boilerplate code for free. A file template might import the UIKit framework and write
the initial class declaration for you, and in the case of some commonly subclassed
superclasses, such as UIViewController and UITableViewController, it even provides
stub declarations of some of that class’s methods.

Frameworks, SDKs, and Packages
A framework is a library of compiled code used by your code. Most of the frame‐
works you are likely to use when programming iOS will be Apple’s built-in frame‐
works. These frameworks are the locus of all the stuff that every app might need to
do; they are Cocoa. That’s a lot of stuff, and a lot of compiled code. Your app gets to

364 | Chapter 6: Anatomy of an Xcode Project

share in the goodness and power of the frameworks because it is hooked up to them.
Your code works as if the framework code were incorporated into it. Yet your app is
relatively tiny; it’s the frameworks that are huge.

The Cocoa frameworks are already part of the system on the device where your app
will run; they live in /System/Library/Frameworks on the device, though you can’t tell
that because there’s no way (normally) to inspect a device’s file hierarchy directly.

Your compiled code also needs to be connected to those frameworks when the
project is being built and run on your computer. To make this possible, the iOS
device’s /System/Library/Frameworks is duplicated on your computer, inside Xcode
itself. This duplicated subset of the device’s system is called an SDK (for “software
development kit”). Which SDK is used depends upon what destination you’re build‐
ing for.

The process of hooking up your compiled code with the frameworks that it needs,
whether on your computer or on an actual device, is called linking. Linking takes care
of connecting your compiled code to any needed frameworks, but your code also
needs to be able to compile in the first place. The frameworks are full of classes and
methods that your code will call. To satisfy the compiler, the frameworks publish
their API in header files, which your code can import. For instance, your code can
speak of NSString and can call range(of:) because it imports the NSString header.
(Actually, what your code imports is the UIKit header, which in turn imports the
Foundation header, which in turn imports the NSString header, which declares the
range(of:) method.)

Using a framework is therefore a two-stage process. Your code must import the
framework’s header in order to compile, and it must link to the framework’s binary
so that your code can communicate with the framework’s code at runtime. Luckily,
Swift’s use of modules simplifies the importing and linking process (as well as
improving compilation times). A Swift import statement takes care of everything.
The import UIKit statement at the top of our project’s code files imports the UIKit
framework’s header files and allows your code to compile; then, at build time, it also
enables linkage with the UIKit framework.

A custom framework can be a useful way to subdivide your code into modules, allow‐
ing your code to be compartmentalized and shared between other modules. Also, a
framework is a bundle, so it can include resources that are referenced by specifying
that bundle. Here’s how to create a framework in your project:

1. Edit the target and choose Editor → Add Target.
2. Select iOS. Under Framework & Library, select Framework. Click Next.
3. Give your framework a name; let’s call it MyCoolFramework. You can pick a lan‐

guage, but I’m not sure this makes any difference, as no code files will be created.

From Project to Built App | 365

Figure 6-18. Adding a local package to the app target

The Project and Embed in Application pop-up menus should be correctly set by
default. Click Finish.

A new MyCoolFramework target is created in your project. If you now add a Swift
file to the MyCoolFramework target, and inside it define an object type and declare it
public, then, back in one of your main app target’s files, such as AppDelegate.swift,
your code can import MyCoolFramework and will then be able to see that object type
and its public members. In the built app, the app bundle contains a Frameworks
folder which, in turn, contains a MyCoolFramework.framework package containing
your framework’s code and resources — a secondary bundle embedded in your app.

Sharing frameworks between apps, however, is not simple; it can be rather tricky to
use a framework in more than one app of your own, and it’s even harder to distribute
your code to others as a framework, and for others to embed your framework in their
own app. Starting in Xcode 11, a far more convenient mechanism is available: Swift
packages. The primary purpose of a Swift package is to share your code as open
source. A package is simpler and more efficient than a framework, because it is basi‐
cally just a collection of source code, which doesn’t need linking.

Here’s how to create a package:

1. In your project (such as our Empty Window project), choose File → New →
Swift Package.

2. Give the package a name, such as MyCoolPackage. At the bottom of the Save dia‐
log, specify that you want to add this package to the existing project (Empty
Window), and make sure you’re adding it at the top level of the project, not
inside any group. Observe that this is a folder and will not necessarily be placed
inside your project folder, though you can specify that if you want to. Click
Create.

3. The initial package files appear in the Project navigator, but this module is not
yet available to the app target. Edit the app target; in the General pane, under
Frameworks, Libraries, and Embedded Content, click Plus and choose the pack‐
age library in the dialog (Figure 6-18). Click Add.

In your app target’s code, you can now import MyCoolPackage to access public types
declared in the package. There is already one source file, MyCoolPackage.swift, ready
for you to play with.

366 | Chapter 6: Anatomy of an Xcode Project

A package is not a framework, and it’s not a full-fledged target. There are no build
settings or build phases; instead, at the top level of the package is a configuration file,
Package.swift, consisting primarily of a single call to the Package class initializer. This
call is the package manifest. In effect, it does in code for a package what you would
have done with build settings and phases for a full-fledged target. This call declares a
target called "MyCoolPackage"; this name corresponds to the MyCoolPackage group
inside Sources, so that whatever is inside that group, such as the MyCoolPackage.swift
file, goes into that target. If you add code files to the package, add them inside this
same MyCoolPackage group, so that they too are compiled as part of the target.

Here’s the interesting part. When your app uses a Swift package consisting of code
files, then when you build the app, nothing new is visibly added to the built app.
There is no Frameworks folder. There is no additional bundle. So where did the pack‐
age code go? It has been compiled together with your app target’s code, and is part of
your app’s binary. There is no need for linking! In effect, the package has been incor‐
porated directly into the app target.

When packages were introduced in Xcode 11, there was a severe limitation: they had
to consist only of code. You couldn’t include images, a storyboard, or anything else
that wasn’t code.

New in Xcode 12, however, you can add bundle resources, as well as localizations, to
your Swift package. For instance, suppose we want to add an asset catalog. Select the
existing source file, MyCoolPackage.swift, and choose File → New → File. In the tem‐
plate chooser, choose iOS → Resource → Asset Catalog. We have now added the asset
catalog to the package’s target, simply by virtue of its place within the MyCoolPack‐
age group.

The result is that now the built app will contain an actual bundle, called MyCoolPack‐
age_MyCoolPackage.bundle, created at top level, containing this asset catalog. To
access an image in the asset catalog, code in the package must specify the bundle; the
easiest way to do that is with the convenience variable Bundle.module, which is
implemented for you by the build process. (Your app’s own code can also specify the
bundle, but not so easily; the expectation is that resources in a package are for direct
use by the package, not the surrounding app.)

You can also include individual files or folders as resources in your package, but in
that case the package build mechanism needs to be told what to do with them. You
do that by editing the .target value in the package manifest:

• A file that you don’t want to add to the target would be added to the target’s
excludes: array.

• A file that you do want to add to the target would be added to the target’s
resources: array as a .process Resource object; for an entire folder (similar to a
folder reference, discussed earlier), it would be a .copy Resource object.

From Project to Built App | 367

(For more details, there’s a good WWDC 2020 video on this topic.)

What we’ve created is a local package. But one of the key features of packages is that
they can readily be made public. You place your package folder under Git control
(see Chapter 9) and upload it to an online remote Git repository, such as GitHub.
That’s easy for you to do. Now other programmers can incorporate it into their
projects. That’s easy for them to do.

To demonstrate, let’s turn the tables and see how easy it is for you to incorporate
other programmers’ public packages into your own projects. For example, to add to
your project the Swift Numerics package that I mentioned in Chapter 3:

1. Choose File → Swift Packages → Add Package Dependency.
2. Enter the URL https://github.com/apple/swift-numerics into the field in the

dialog.
3. Click Next (twice).
4. Check the checkbox next to Numerics in the final dialog, and click Finish.

The package is downloaded and made available to your project, and now you can
import Numerics in your project’s code files and use the package code.

Interestingly, the package code is shown in your project, but the package is not stored
in your project folder. It’s stored in Xcode’s DerivedData folder, where Xcode can
incorporate it into your project’s build process without polluting your project. From
now on, whenever you open your project, Xcode will check to see whether it has the
package code, and if it doesn’t, it will download it there and then.

In addition, Xcode checks the version of the package code. This is one of the most
important features of Swift packages. Xcode can ascertain online whether you’ve got
the latest official version of a package, and will update the package source if you
don’t. Choose File → Swift Packages → Update to Latest Package Versions to make
Xcode go online and check for updates. Moreover, a package can declare a depend‐
ency, meaning that it relies on some other package — and Xcode will also download
that package and make sure that it stays up to date. The package version numbering
system and the rules for determining whether a dependency needs updating are quite
sophisticated.

When you upload your own package, or when you update your package, you need to
declare its version number. You do this by attaching a Git tag, in the form of a ver‐
sion string, to the most recent commit:

% git tag "0.0.1"
% git push --tags

Xcode’s package management mechanism works fine with private repositories, so
you can share your code without making it public; you can upload your package and

368 | Chapter 6: Anatomy of an Xcode Project

share it with yourself. This is a great way to factor out common code and use it in
different projects.

The App Launch Process
When the user launches your app, or when you launch it by building and running it
in Xcode, a lot needs to happen. Your app needs some initial instances and an initial
interface, and at least some of your code needs an opportunity to run.

The Entry Point
When the app launches, the system knows where to find the compiled binary inside
the app’s bundle, because the app bundle’s Info.plist file has an “Executable file” key
(CFBundleExecutable) whose value is the name of the binary; by default, the binary’s
name comes from the EXECUTABLE_NAME environment variable (such as “Empty
Window”).

The system locates and loads the binary and links any needed frameworks. Now it
must call into the binary’s code to start it running. But where?

If this app were an Objective-C program, the answer would be clear. Objective-C is C,
so the entry point is the main function. Our project would typically have a main.m file
containing the main function, like this:

int main(int argc, char *argv[]) {
 @autoreleasepool {
 return UIApplicationMain(argc, argv, nil,
 NSStringFromClass([AppDelegate class]));
 }
}

The main function does two things:

• It sets up a memory management environment — the @autoreleasepool and the
curly braces that follow it.

• It calls the UIApplicationMain function, which helps your app pull itself up by
its bootstraps and get running.

Our app, however, is a Swift program. It has no main function! Instead, Swift has a
special attribute: @main. You can see it in the AppDelegate.swift file, attached to the
declaration of the AppDelegate class:

@main
class AppDelegate: UIResponder, UIApplicationDelegate {

This attribute essentially does everything that the Objective-C main.m file was doing:
it creates an entry point that calls UIApplicationMain to get the app started.

The App Launch Process | 369

The term @main is new in Swift 5.3; formerly, this attribute was called
@UIApplicationMain.

It would be very unusual for you to give your Swift app project a main file. But you
are free to do so. Delete the @main attribute and instead create a main.swift file, mak‐
ing sure it is added to the app target. The name is crucial, because a file called
main.swift gets a special dispensation: it is allowed to put executable code at the top
level of the file (Chapter 1)! The file should contain essentially the Swift equivalent of
the Objective-C call to UIApplicationMain, like this:

import UIKit
UIApplicationMain(
 CommandLine.argc, CommandLine.unsafeArgv, nil,
 NSStringFromClass(AppDelegate.self)
)

New in Swift 5.3 and Xcode 12, there’s another way. Instead of writing a main.swift
file, you can designate one of your own types as @main and give it a static main func‐
tion, where you do whatever you would have done in the main.swift file. Behind the
scenes, the main.swift file is synthesized for you. Here’s a minimal implementation:

@main
struct MyMain {
 static func main() -> Void {
 UIApplicationMain(
 CommandLine.argc, CommandLine.unsafeArgv, nil,
 NSStringFromClass(AppDelegate.self)
)
 }
}

(This use of the @main attribute is key to the new SwiftUI app architecture, where
your code doesn’t need to refer to any UIKit classes in order to bootstrap the app.)

Regardless of whether you rely on the Swift @main attribute or write your own
main.swift file, in a Cocoa app you are calling the UIApplicationMain function. This
one function call is the primary thing your app does. Your entire app is really nothing
but a single gigantic call to UIApplicationMain! Moreover, UIApplicationMain is
responsible for solving some tricky problems as your app gets going. Where will your
app get its initial instances? What instance methods will initially be called on those
instances? Where will your app’s initial interface come from? UIApplicationMain to
the rescue!

How an App Gets Going
Let’s trace the sequence of events as your app launches and UIApplicationMain is
called. The opening sequence varies somewhat, depending on the circumstances. So

370 | Chapter 6: Anatomy of an Xcode Project

let’s focus on what happens for a new project created in Xcode 12, such as the Empty
Window project we created earlier in this chapter, which has these key features:

• The app supports scenes: the Info.plist contains an “Application Scene Manifest”
dictionary (Figure 6-19), and the code mentions classes and protocols whose
names begin with UIScene.

• The app has a main storyboard.
When an app with that structure launches in iOS 13 or later, here’s what happens:

1. UIApplicationMain creates the shared application instance, subsequently acces‐
sible to your code as UIApplication.shared. The default class is UIApplication;
it is possible to specify a different class, but it is unlikely that you’d need to do so.

2. UIApplicationMain creates the application instance’s delegate. With an explicit
call to UIApplicationMain, the fourth argument specifies, as a string, what the
class of the app delegate instance should be; in the main.swift file I described ear‐
lier, that specification is NSStringFromClass(AppDelegate.self). When we use
the @main attribute in the AppDelegate class declaration in AppDelegate.swift, it
means: “This is the app delegate class!”

3. If this app supports scenes, UIApplicationMain turns to the app delegate and, for
the first time, runs some of your code: it calls application(_:didFinish-
LaunchingWithOptions:). This is a place for you to perform certain initializa‐
tions.

4. UIApplicationMain creates a UISceneSession, a UIWindowScene, and your
app’s window scene delegate. The Info.plist typically specifies, as a string, what
the class of the window scene delegate instance should be. In the app template, it
is the SceneDelegate class, which is declared in SceneDelegate.swift; in the “Appli‐
cation Scene Manifest” entry in the Info.plist, this value is written as
$(PRODUCT_MODULE_NAME).SceneDelegate to take account of Swift “name man‐
gling” (Figure 6-19).

5. If there is a storyboard associated with this scene, as specified by the Info.plist,
UIApplicationMain loads it and looks inside it to find the view controller desig‐
nated as this storyboard’s initial view controller (or storyboard entry point); it
instantiates this view controller, a UIViewController subclass. In our app tem‐
plate, the app’s main storyboard, Main.storyboard, is the initial scene’s story‐
board; in that storyboard, the initial view controller is an instance of the
ViewController class, which is declared in ViewController.swift.

6. UIApplicationMain creates your app’s window. This window is assigned to the
scene delegate’s window property. UIApplicationMain then assigns the initial
view controller instance to the window instance’s rootViewController property.
This view controller is now the app’s root view controller.

The App Launch Process | 371

7. More of your code now has a chance to run: UIApplicationMain calls the scene
delegate’s scene(_:willConnectTo:options:) method.

8. UIApplicationMain causes your app’s interface to appear, by calling the
UIWindow instance method makeKeyAndVisible.

9. The window is about to appear. This causes the window to turn to the root view
controller and tell it to obtain its main view. If this view controller gets its view
from a nib file, that nib is loaded and its objects are instantiated and initialized
(as I’ll describe in Chapter 7). The view controller’s viewDidLoad is then called —
another early opportunity for your code to run. Finally, the root view controller’s
main view is placed into the window, where it and its subviews are visible to the
user.

More of your code can run at this time (some further app delegate and scene delegate
methods are called if they are implemented), but basically the app is now up and run‐
ning, with an initial set of instances and a visible interface. UIApplicationMain is still
running (like Charlie on the M.T.A., UIApplicationMain never returns), and is just
sitting there, watching for the user to do something, maintaining the event loop,
which will respond to user actions as they occur. Henceforth, your app’s code will be
called only in response to Cocoa events (as I’ll explain in Chapter 11).

App Without a Storyboard
In the preceding description of the app launch process, I assume that the app has a
main storyboard. It is possible, however, not to have a main storyboard. Without a
main storyboard, things like creating a window instance, assigning it to the window
property, creating an initial view controller, assigning that view controller to the win‐
dow’s rootViewController property, and calling makeKeyAndVisible on the window
to show the interface, must be done by your code. This architecture is useful when
your intention is to create the entire interface in code.

Let’s try it. Make a new project starting with the iOS App template; call it Truly
Empty. Now follow these steps:

1. Edit the target. In the General pane, select “Main” in the Main Interface field and
delete it (and press Tab to set this change).

2. In the Info.plist, select the “Storyboard Name” entry in the “Application Scene
Configuration” dictionary (Figure 6-19) and press Delete (and save).

3. Optionally, in the Project navigator, delete Main.storyboard from the project.
You don’t have to do this, because even if Main.storyboard remains, it will now
be ignored.

4. In SceneDelegate.swift, edit scene(_:willConnectTo:options:) to look like
Example 6-1.

372 | Chapter 6: Anatomy of an Xcode Project

Figure 6-19. The “Application Scene Manifest” entry in the Info.plist

Example 6-1. A scene delegate with no storyboard

func scene(_ scene: UIScene,
 willConnectTo session: UISceneSession,
 options connectionOptions: UIScene.ConnectionOptions) {
 if let windowScene = scene as? UIWindowScene {
 let window = UIWindow(windowScene: windowScene)
 window.backgroundColor = .white
 window.rootViewController = ViewController()
 self.window = window
 window.makeKeyAndVisible()
 }
}

The result is a minimal working app with an empty white window. You can prove to
yourself that the app is working normally by editing ViewController.swift so that its
viewDidLoad method changes the main view’s background color:

override func viewDidLoad() {
 super.viewDidLoad()
 self.view.backgroundColor = .red
}

Run the app again; sure enough, the background is now red.

In between an app with a main storyboard and an app without a main storyboard,
there is a hybrid architecture where there’s a main storyboard (you omit steps 1, 2,
and 3 in the earlier example) but you sometimes ignore it at launch time (step 4). A
common use case would be an app with a sign-in screen that should appear when the
user first launches the app (you create the sign-in view controller manually), but once
the user has signed in, that screen shouldn’t appear on any future launch (you let the
main storyboard construct the interface).

Renaming Parts of a Project
The name you give your project at creation time is used in many places throughout
the project. Beginners may worry that they can never rename a project without
breaking something. But in fact it’s not a problem.

Renaming Parts of a Project | 373

In the first place, you probably don’t need to rename the project. The project name
isn’t something the user will ever see, so what does it matter? Typically, what you
want to change is the name of the app — the name that the user sees on the device,
associated with this app’s icon. To do so, change (or create) the “Bundle Display
Name” in the Info.plist; you can do this most easily by editing the Display Name text
field at the top of the General pane when you edit the target (see “Property List Set‐
tings” on page 497).

If you really do want to rename the project, select the project listing at the top of the
Project navigator, press Return to make its name editable, type the new name, and
press Return again. Xcode presents a dialog proposing to change some other names
to match, including the app target and the built app and, by implication, various rele‐
vant build settings.

Everything that needs to change changes coherently when you rename the project in
this way. The only thing that isn’t changed is the scheme name; there is no particular
need to change it, but you can do so: choose Product → Manage Schemes and click
the scheme name to make it editable.

You can change the name of the project folder in the Finder at any time, and you can
move the project folder in the Finder at will, because all build setting references to file
and folder items in the project folder are relative.

When you change the name of a folder-linked group, Xcode automatically
changes the name of the corresponding folder on disk, but does not change build
settings that depend upon the name of that folder, such as the Info.plist File
build setting. I regard this as a bug, because it means that changing a group’s
name can prevent your project from building. However, it usually isn’t hard to
fix the problem by changing manually any build settings that have broken.

374 | Chapter 6: Anatomy of an Xcode Project

CHAPTER 7

Nib Files

A view (UIView) is an interface object, which draws itself into a rectangular area.
Your app’s visible interface consists of views. When your app launches, some view
controller is made the root view controller of your app’s window (“How an App Gets
Going” on page 370). That view controller has a main view. That view and its sub‐
views now occupy the window. Whatever that view and its subviews look like when
they draw themselves, that is what the user will see.

Where do these interface views come from? Well, UIView is a class; an individual
UIView is an instance of that class. And you know how to make an instance of a class
— you call that class’s initializer:

let v = UIView()

So you could create all your interface views in code, one by one. For each view, you
would instantiate it; then you would configure it. You’d say where it should go on the
screen, what size it should have, what color it should be. If the view is a button or a
label, you’d say what text it should display. And so on.

But that could be a lot of code. Wouldn’t it be nice if, instead, you could draw your
desired interface, just as in a drawing application, and have the runtime build the
interface for you, based on your drawing? Well, you can — using a nib.

A nib is a file, in a special format, consisting of instructions for creating and configur‐
ing instances — primarily UIView instances. You “write” those instructions graphi‐
cally, by drawing. You design your app’s interface visually. Under the hood, Xcode
encodes that design. When the app runs and it’s time for those UIView instances to
appear visibly to the user, the runtime loads the nib. It decodes the instructions and
obeys them: it actually creates and configures the view instances that the nib
describes.

375

Xcode includes a graphical design environment so that you can draw your interface
into a nib file. I call this the nib editor. Long ago, the files on which the nib editor
operated were literally nib files — that is, they had a .nib file extension. Nowadays,
you’ll use the nib editor to edit a .storyboard file or a .xib file. However, they will be
turned into actual .nib files when you build your project (“Nib Files” on page 362), so
I still refer to them loosely as nibs or nib files.

The name nib has nothing to do with fountain pens or bits of chocolate. The nib
editor used to be a separate application called Interface Builder. The operating
system for which it was originally developed was called NeXTStep. The files cre‐
ated by Interface Builder were given the .nib file extension as an acronym for
“NeXTStep Interface Builder.”

You don’t have to use nibs to create your interface objects. The loading of a nib does
nothing that you could not have done directly, in code. A nib is just a device for mak‐
ing the creation of interface views convenient and compact; one nib file can generate
many views, and the nib editor’s visual representation of those views can be more
intuitive than a code description. But you still have the alternative of using code: you
can programmatically instantiate a UIView, you can configure it, you can place that
view into your interface — manually, step by step, one line of code at a time. You are
free to mix and match; you can generate some views in code and design other views
in the nib editor, or design a view in the nib editor but complete its configuration in
code. Clearly, nibs can be a powerful and convenient way to create your app’s inter‐
face, in whole or in part.

Beginners often use nibs, to take advantage of that power and convenience, without
knowing what they really are, how they really work, or how to manipulate them in
code — as if nibs were some kind of impenetrable magic. But nibs are not magic, and
they are not hard to understand. Failure to understand nibs and nib loading opens
the door to some elementary, confusing mistakes that can be avoided or corrected
merely by grasping the basic facts outlined in this chapter.

One of the salient features of SwiftUI is that it avoids nibs completely. By con‐
densing the code needed to create views programmatically, it lets you describe
your interface clearly and compactly in Swift. Part of the goal is multiplatform
reusability: the same code can construct an interface destined for an Apple
Watch, an iPhone, an Apple TV, or a desktop Mac.

376 | Chapter 7: Nib Files

Figure 7-1. Editing a nib file

The Nib Editor Interface
Let’s explore Xcode’s nib editor. This is where you’ll draw your app’s interface graph‐
ically. In Chapter 6, we created a simple project, Empty Window, directly from the
iOS App template; it contains a storyboard file, so we’ll use that. In Xcode, open the
Empty Window project, locate Main.storyboard in the Project navigator, and click to
edit it.

Figure 7-1 shows part of the project window after selecting Main.storyboard in the
Project navigator. The interface may be considered in four pieces:

1. The bulk of the editor is devoted to the canvas, where you physically design your
app’s interface. The canvas portrays views graphically. View controllers are also
represented in the canvas; a view controller isn’t a view, so it isn’t drawn in your
app’s interface, but it has a view, which is drawn.

2. At the left of the editor is the document outline, listing the storyboard’s contents
hierarchically by name.

3. To the right of the editor, the inspectors in the Inspectors pane let you edit
details of the currently selected object.

4. The Objects Library, available as a floating window (View → Show Library,
Command-Shift-L), is your source of interface objects to be added to the canvas
or the document outline.

(If your nib editor’s canvas is displaying more panes to the right, choose Editor →
Show Editor Only to remove them.)

The Nib Editor Interface | 377

Figure 7-2. A view controller selected in a storyboard

Document Outline
The document outline portrays hierarchically the relationships between the objects in
the nib. To show or hide the document outline, choose Editor → Document Outline,
or choose Document Outline from the Editor Options pop-up menu at the top right
of the canvas. The document outline can also be hidden by dragging its right edge,
and it can be shown or hidden by clicking the button at the bottom left corner below
the canvas.

The structure of what’s displayed in the document outline differs slightly depending
on whether you’re editing a .storyboard file or a .xib file.

In a storyboard file, the primary constituents are scenes. A scene is, roughly speaking,
a single view controller, along with some ancillary material; every scene has a single
view controller at its top level.

A view controller isn’t an interface object, but it manages an interface object, a view
that serves as its main view. A scene’s view controller is displayed in the canvas with
its main view inside it. In Figure 7-1, the large rectangle in the canvas is a view con‐
troller’s main view, and is actually inside a view controller. The view controller itself
can be seen and selected in the document outline. When anything in this scene is
selected, the view controller is also represented as an icon in the scene dock, which
appears above the view controller in the canvas (Figure 7-2).

In the document outline, all the scenes are listed. Each scene is the top level of a hier‐
archical list. Hierarchically down from each scene are the objects that also appear in
the view controller’s scene dock: the view controller itself, along with two proxy
objects, the First Responder token and the Exit token. They are the scene’s top-level
objects. Then, hierarchically down from the view controller, we have the view con‐
troller’s main view, along with the main view’s subviews (if any) appearing hierarchi‐
cally down from that, reflecting the interface hierarchy of superviews and subviews.

Objects listed in the document outline are of two kinds:

378 | Chapter 7: Nib Files

Figure 7-3. A .xib file containing a view

Nib objects
The view controller, along with its main view and its subviews, will be turned
into actual instances when the nib is loaded by the running app. They are called
nib objects.

Proxy objects
The First Responder and Exit tokens will not be turned into instances when the
nib is loaded. They are proxy objects. They represent objects that already exist.
They are displayed in the nib in order to facilitate communication between nib
objects and those already existing objects; I’ll give examples later in this chapter.

The document outline also contains the Storyboard Entry Point. This isn’t an object
of any kind. It’s an indicator that this view controller is the storyboard’s initial view
controller (because Is Initial View Controller is checked in the view controller’s
Attributes inspector); it corresponds to the right-pointing arrow seen at the left of
this view controller in the canvas in Figure 7-1.

In a .xib file, there are no scenes. What would be, in a .storyboard file, the top-level
objects of a scene become, in a .xib file, the top-level objects of the nib itself; and the
top-level interface object of a .xib file is usually a view. (A .xib file can contain a view
controller, but it usually doesn’t.) A .xib file’s top-level view might well be a view that
is to serve as a view controller’s main view, but that’s not a requirement. Figure 7-3
shows a .xib file with a structure parallel to the single scene of Figure 7-2.

The document outline in Figure 7-3 lists three top-level objects. Two of them are
proxy objects, termed Placeholders in the document outline: the File’s Owner, and
the First Responder. The third is a nib object, a view; it will be turned into a UIView
instance when the nib is loaded as the app runs.

At present, the document outline may seem unnecessary, because there is very little
hierarchy; all objects in Figures 7-2 and 7-3 are readily accessible in the canvas. But
when a storyboard contains many scenes, and when a view contains many levels of
hierarchically arranged objects, some of which are difficult to see or select in the can‐
vas, you’re going to be very glad of the document outline, which lets you survey the
contents of the nib in a nice hierarchical structure, and where you can locate and
select the object you’re after. You can also rearrange the hierarchy here; if you’ve

The Nib Editor Interface | 379

made a view a subview of the wrong superview, you can reposition it within this out‐
line by dragging its name.

You can also select objects using the jump bar at the top of the editor: the last
jump bar path component is a hierarchical pop-up menu similar to the docu‐
ment outline.

If the names of nib objects in the document outline seem generic and uninformative,
you can change them. The name is technically a label, and has no special meaning, so
feel free to assign nib objects labels that are useful to you. Select a nib object’s label in
the document outline and press Return to make it editable, or select the object and
edit the Label field in the Document section of the Identity inspector.

Canvas
The canvas provides a graphical representation of a view and its subviews, similar to
what you’re probably accustomed to in any drawing program. The canvas is scrolla‐
ble and automatically accommodates however many graphical representations it con‐
tains, and can also be zoomed (Option-scroll, or choose Editor → Zoom, or use the
contextual menu or the zoom buttons at the bottom of the canvas). New in Xcode 12,
you can also display the minimap, which shows you the whole content of the canvas
in miniature and lets you scroll around it by dragging; choose Editor → Canvas →
Minimap or choose Minimap from the Editor Options pop-up menu at the top right
of the canvas.

Our simple Empty Window project’s Main.storyboard contains just one scene, so the
only thing it represents in the canvas is that scene’s view controller with its main view
inside it. When the app runs, this view controller will become the window’s rootView-
Controller; therefore its view will occupy the entire window, and will effectively be
our app’s initial interface. That gives us an excellent opportunity to experiment: any
visible changes we make within this view should be visible when we subsequently
build and run the app! To prove it, let’s add a subview:

1. Start with the nib editor looking more or less like Figure 7-1.
2. Summon the Objects Library (Command-Shift-L, or click the Library button in

the project window toolbar). Make sure it’s displaying objects (not images or col‐
ors). If it’s in icon view (a grid of icons without text), switch to list view. Click in
the search field and type “button” so that only button objects are shown in the
list. The Button object we’re after is listed first.

3. Drag the Button object from the Library into the view controller’s main view in
the canvas (Figure 7-4), and let go of the mouse.

A button is now present in the view in the canvas. The move we’ve just performed —
dragging from the Library into the canvas — is extremely characteristic; you’ll do it
often as you design your interface.

380 | Chapter 7: Nib Files

Figure 7-4. Dragging a button into a view

By default, the Library floating window is temporary; it vanishes as soon as you
drag something out of it. To make it remain onscreen after the drag, hold Option
when summoning the Library or when dragging out of it; the Library window’s
toolbar then contains a close button, and the window will remain open until you
click that button.

Much as in a drawing program, the nib editor provides features to aid you in design‐
ing your interface. Here are some things to try:

• Select the button: resizing handles appear.
• Using the resizing handles, resize the button to make it wider: dimension infor‐

mation appears.
• Drag the button near an edge of the view: a guideline appears, showing standard

spacing. Similarly, drag the button near the center of the view: a guideline shows
you when the button is centered.

• With the button selected, hold Option (but not the mouse button) and hover the
mouse outside the button: arrows and numbers appear showing the distance
between the button and the edges of the view.

• Control-Shift-click the button: a menu appears, letting you select the button or
whatever is behind it or up the hierarchy from it. This is useful particularly when
views overlap.

• Double-click the button’s title. The title becomes editable. Give it a new title,
such as “Hello.” Press Return to set the new title.

To prove that we really are designing our app’s interface, we’ll run the app:

1. Drag the button to a position near the top left corner of the canvas. (If you don’t
do this, the button could be off the screen when the app runs.)

The Nib Editor Interface | 381

Figure 7-5. The Empty Window app’s window is empty no longer

2. Examine the Debug → Activate / Deactivate Breakpoints menu item. If it says
Deactivate Breakpoints, choose it; we don’t want to pause at any breakpoints you
may have created while reading the previous chapter.

3. Make sure the destination in the Scheme pop-up menu is an iPhone simulator.
4. Choose Product → Run (or click the Run button in the toolbar).

After a heart-stopping pause, the Simulator opens, and presto, our empty window is
empty no longer (Figure 7-5); it contains a button! You can tap this button with the
mouse, emulating what the user would do with a finger; the button highlights as you
tap it.

Inspectors
In addition to the File, History, and Quick Help inspectors, four inspectors appear in
conjunction with the nib editor, and apply to whatever object is selected in the docu‐
ment outline, dock, or canvas:

Identity inspector (Command-Option-4)
The first section of this inspector, Custom Class, is the most important. Here you
can learn — and can change — the selected object’s class.

Attributes inspector (Command-Option-5)
Settings here correspond to properties and methods that you might use to con‐
figure the object in code. For instance, selecting our view and choosing from the
Background pop-up menu in the Attributes inspector corresponds to setting the
view’s backgroundColor property in code.

The Attributes inspector has sections corresponding to the selected object’s class
inheritance. The UIButton Attributes inspector has three sections: in addition to
a Button section, there’s a Control section (because a UIButton is also a UICon‐
trol) and a View section (because a UIControl is also a UIView).

Size inspector (Command-Option-6)
The X, Y, Width, and Height fields determine the object’s position and size
within its superview, corresponding to its frame property in code; you can

382 | Chapter 7: Nib Files

equally set these values in the canvas by dragging and resizing, but numeric pre‐
cision can be desirable.

Connections inspector (Command-Option-7)
I’ll demonstrate use of the Connections inspector later in this chapter.

Loading a Nib
A nib file is a collection of potential instances — its nib objects. They become actual
instances only if, while your app is running, the nib is loaded. At that moment, the
nib objects described in the nib are effectively transformed into instances that are
available to your app. I call this process — the loading of a nib and the resulting cre‐
ation of instances — the nib-loading mechanism. We may speak as if a nib contains
literal object instances; we may speak of “loading” or “instantiating” a view controller
or a view from a nib. But in fact the nib contains nothing but instructions for creating
a view controller or view instance, and the nib-loading mechanism fulfills those
instructions.

Using nibs as a source of instances is efficient. Interface is relatively heavyweight
stuff, but a nib is small. Moreover, a nib isn’t loaded until it is needed; indeed, it
might never be loaded. So this heavyweight stuff won’t come into existence until and
unless it is about to be displayed.

There’s no such thing as “unloading” a nib. A nib is loaded, its nib objects are turned
into instances, those instances are handed over to the running app, and that’s all; the
nib has done its job. It is then up to the running app to decide what to do with the
instances that just sprang to life. It must hang on to them for as long as it needs them,
and will let them go out of existence when they are no longer needed. Typically, it
will do this by adding them to the interface, where they will persist until that interface
as a whole is removed.

The same nib file can be loaded multiple times, generating a new set of instances each
time. A nib is thus a mechanism for reproducing a view controller or a view hierar‐
chy as many times as necessary. A single nib file might represent interface that you
intend to use in several places in your app — possibly several places simultaneously
— by loading the nib repeatedly. A case in point is the repeated cells in a table view.

Loading a View Controller Nib
A nib containing a view controller will almost certainly come from a storyboard.
(A .xib file can contain a view controller, but it usually won’t.) A storyboard is a col‐
lection of scenes. Each scene starts with a view controller. When the app is built and
the storyboard is compiled, each view controller in the storyboard ends up in its own
individual nib. When the app runs, if that view controller is needed, that nib is
loaded.

Loading a Nib | 383

A view controller may be loaded from a storyboard automatically (by the runtime) or
manually (by your code):

Automatic creation of a view controller
There are two main occasions when a view controller is loaded automatically
from a nib:

At app launch time
As your app launches, if it has a main storyboard, the runtime looks for that
storyboard’s initial view controller (entry point) and loads its nib, turning it
into a view controller instance to serve as the app’s root view controller
(“How an App Gets Going” on page 370).

When a segue is performed
A storyboard typically contains several scenes connected by segues; when a
segue is performed, the destination scene’s view controller nib is loaded and
turned into an instance.

Manual instantiation of a view controller
In code, to turn a view controller in a storyboard into a view controller instance,
you start with a UIStoryboard instance, and call one of these methods:

instantiateInitialViewController

Loads the storyboard’s initial view controller nib and turns it into a view
controller instance.

instantiateViewController(withIdentifier:)

Loads the nib of a view controller within the storyboard whose scene is
named by an identifier string, and turns it into a view controller instance.

Loading a Main View Nib
A view controller has a main view. But for reasons of efficiency, a view controller,
when it is instantiated, lacks its main view. It obtains its main view later, when that
view is needed because it is to be placed into the interface. We say that a view con‐
troller loads its view lazily. A view controller can obtain its main view in several ways;
one way is to load it from a nib. There are two main cases to consider:

View controller in a storyboard
When a view controller and its view belong to a scene in a storyboard, then when
the app is built and the storyboard is compiled, we end up with two nibs: the nib
containing the view controller, and the nib containing the view. The app runs,
and let’s say the nib containing the view controller is loaded in order to instanti‐
ate the view controller, as I just described; later, when the view controller
instance needs its main view, it automatically loads that nib and generates its
main view from it.

384 | Chapter 7: Nib Files

View controller instantiated in code
Another fairly common configuration is a view controller instantiated entirely in
code, whose main view has been designed in a .xib file in your project. When you
call the view controller’s designated initializer init(nibName:bundle:), the nib-
Name: parameter tells this view controller instance the name of the nib file gener‐
ated from that .xib file. Alternatively, you might override the view controller’s
nibName property. Subsequently, when the view controller needs its main view, it
automatically loads that nib and generates its main view from it.

Those two ways of getting the view controller’s main view are actually the same. In
each case, there is a view controller and an associated nib. The view controller’s nib-
Name property is the key; it tells the view controller what nib to load in order to gener‐
ate its main view when it needs it.

Loading a View Nib Manually
A view can be designed in a .xib file. When the app is built, this file is turned into a
nib. Assume that this is not a view controller’s main view. In the running app, to load
that nib and create the view instance requires a call to one of these methods:

loadNibNamed(_:owner:options:)

A Bundle instance method. Usually, you’ll direct it to Bundle.main.

instantiate(withOwner:options:)

A UINib instance method. The nib in question was specified when UINib was
instantiated and initialized with init(nibName:bundle:).

Sometimes the runtime will make those calls for you. Alternatively, you can make
those calls yourself to load a nib view directly. That’s the best way to explore and
exercise the nib-loading mechanism. Let’s try it!

First we’ll create and configure a .xib file in our Empty Window project:

1. In the Empty Window project, choose File → New → File and specify iOS →
User Interface → View. This will be a .xib file containing a UIView instance.
Click Next.

2. In the Save dialog, accept the default name, View, for the new .xib file. Click
Create.

3. We are now back in the Project navigator; our View.xib file has been created and
selected, and we’re looking at its contents in the editor. Those contents consist of
a single UIView.

4. Our view is too large for purposes of this demonstration, so select it and, in the
Attributes inspector, change the Size pop-up menu, under Simulated Metrics, to

Loading a Nib | 385

Figure 7-6. Designing a view in a .xib file

Freeform. Handles appear around the view in the canvas; drag them to make the
view smaller. About 240×200 would be a good size.

5. Populate the view with some arbitrary subviews by dragging them into it from
the Library. You can also configure the view itself; for example, in the Attributes
inspector, change its background color (Figure 7-6).

Our goal now is to load this nib file, manually, in code, when the app runs. There are
three tasks you have to perform when you load a nib:

1. Load the nib.
2. Obtain the instances that it creates as it loads.
3. Do something with those instances.

I’ve already said that to load the nib we can call loadNibNamed(_:owner:). This
would be the complete code for loading our nib:

Bundle.main.loadNibNamed("View", owner: nil)

That’s the first task. But if that’s all we do, we will load the nib to no effect. The
instances will be created and will then vanish in a puff of smoke. In order to prevent
that, we need to capture those instances. Here’s one way to do that. The call to load-
NibNamed(_:owner:) returns an array of instances created from the nib’s top-level
nib objects through the loading of that nib. Our nib contains just one top-level nib
object — the UIView — so it is sufficient to capture the first (and only) element of
this array:

let arr = Bundle.main.loadNibNamed("View", owner: nil)!
let v = arr[0] as! UIView

We have now performed the second task: we’ve captured an instance that we created
by loading the nib. The variable v now refers to a brand-new UIView instance.

386 | Chapter 7: Nib Files

Figure 7-7. A nib-loaded view appears in our interface

Now let’s perform the third task — doing something with the view we’ve just instan‐
tiated. A useful and dramatic thing to do with it, and probably the reason you’d load
a nib in the first place, is to put that view into your interface. Let’s do that! Edit View‐
Controller.swift and put these lines of code into its viewDidLoad method:

let arr = Bundle.main.loadNibNamed("View", owner: nil)!
let v = arr[0] as! UIView
self.view.addSubview(v)

Build and run the app. There’s our view, visible in the running app’s interface! This
proves that our loading of the nib worked (Figure 7-7).

Connections
A connection is a directional linkage in the nib editor running from one object to
another. I’ll call the two objects the source and the destination of the connection.
There are two kinds of connection: outlet connections and action connections. The
rest of this section describes them, explains how to create and configure them, and
discusses the nature of the problems that they are intended to solve.

Outlets
When a nib loads and its instances come into existence, those instances are useless
unless you can get a reference to them. In the preceding section, we solved that prob‐
lem by capturing the array of instances returned from the loading of the nib. But
there’s another way: use an outlet. This approach is more complicated — it requires
some advance configuration, which can easily go wrong. But it is also more common,
especially when nibs are loaded automatically.

An outlet is a connection that has a name, which is effectively just a string. When the
nib loads, something unbelievably clever happens. The source object and the destina‐
tion object are no longer just potential objects in a nib; they are now real, full-fledged
instances. The runtime looks in the outlet’s source object for an instance property

Connections | 387

Figure 7-8. How an outlet provides a reference to a nib-instantiated object

 with the same name as the outlet, and assigns the destination object to that property.
The source object now has a reference to the destination object!

To illustrate, suppose that the following three things are true:

1. As defined in code, a Dog has a master instance property which is typed as
Person.

2. There’s a Dog object and a Person object in a nib.
3. We make an outlet from the Dog object to the Person object in the nib, and we

name that outlet "master".
In that case, when the nib loads and the Dog instance and the Person instance are
created, that Person instance will be assigned as the value of that Dog instance’s
master property (Figure 7-8), just as if we had said dog.master = person in code.

As you can see, for an outlet to work, preparation must be performed in two different
places: in the class of the source object, where the instance property is declared, and
in the nib, where the outlet is created and configured. This is a bit tricky; Xcode does

388 | Chapter 7: Nib Files

try to help you get it right, but it is still possible to mess it up. (I will discuss ways of
messing it up, in detail, later in this chapter.)

The Nib Owner
Consider once again the view-loading example that we implemented earlier (illustra‐
ted in Figure 7-7). Let’s implement that example again; this time, instead of assigning
the nib-loaded view to a variable in code, we’ll use an outlet connection to capture
the nib-loaded view into a property.

Now, there is an important difference between the Dog-and-Person example I just
outlined and the view-loading example. In our view-loading example, who is the
Dog, and who is the Person? The Person is the view in the nib. But the Dog is the
view controller (a ViewController instance) — and the view controller is not in the
nib.

For our view controller to use an outlet to capture a reference to a view instance cre‐
ated from a nib, therefore, we need an outlet that runs from an object outside the nib
(the view controller) to an object inside the nib (the view). That seems metaphysically
impossible — but it isn’t. The nib editor cleverly permits such an outlet to be created,
using the nib owner object.

Before I explain what the nib owner is, I’ll tell you where to find the nib owner object
in the nib editor:

In a storyboard scene
In a storyboard scene, the nib owner is the view controller. It is the first object
listed for that scene in the document outline, and the first object shown in the
scene dock.

In a .xib file
In a .xib file, the nib owner is a proxy object. It is the first object shown in the
document outline, listed under Placeholders as the File’s Owner.

So what is the nib owner object? It’s a proxy representing an instance that already
exists outside the nib at the time that the nib is loaded. When the nib is loaded, the
nib-loading mechanism doesn’t instantiate that object; the nib owner is already an
instance. Instead, the nib-loading mechanism substitutes the real, already existing
instance for the nib owner object, using the real instance to fulfill any connections
that involve the nib owner.

But wait! How does the nib-loading mechanism know what real, already existing
instance to substitute for the nib owner object in the nib? It knows because it is told,
in one of two ways, at nib-loading time:

Connections | 389

Your code loads the nib
If your code loads a nib manually, either by calling loadNib-

Named(_:owner:options:) or by calling instantiate(withOwner:options:),
you specify an owner object as the owner: argument.

A view controller loads the nib
If a view controller instance loads a nib automatically in order to obtain its main
view, the view controller instance specifies itself as the owner object.

Let’s do a thought-experiment with our Dog and Person objects. This time, suppose
the following four things are true:

1. As defined in code, a Dog has a master instance property which is typed as
Person.

2. There is a Person nib object in our nib, but no Dog nib object.
3. We configure an outlet in the nib from the nib owner object to the Person object,

and we name that outlet "master". We can’t do that unless the nib owner object’s
class is Dog, so we’ll set its class first if necessary (using the Identity inspector).

4. When we load the nib, we specify an existing Dog instance as owner.
The nib-loading mechanism will then match the Dog nib owner object with the
already existing actual Dog instance that we specified as owner, and will assign the
newly instantiated Person instance as that Dog instance’s master (Figure 7-9).

Back in the real world, let’s reconfigure our Empty View nib-loading project to
demonstrate this mechanism. In ViewController.swift, we’re already loading the View
nib in code. This code is running inside a ViewController instance. We want to use
that instance as the nib owner. This will be a little tedious to configure, but bear with
me, because understanding how it works is crucial:

1. We need an instance property in ViewController. At the start of the body of the
ViewController class declaration, insert the property declaration, like this:

class ViewController: UIViewController {
 @IBOutlet var coolview : UIView!

The var declaration you already understand; we’re making an instance property
called coolview. It is declared as an Optional because it won’t have a “real” value
when the ViewController instance is created; it’s going to get that value later
through the loading of the nib (“Deferred initialization of properties” on page
126). The @IBOutlet attribute is a hint to Xcode to allow us to create the outlet in
the nib editor.

2. Edit View.xib. We’d like to make the outlet, but in order to do that, we must
ensure that the nib owner object is designated as a ViewController instance.
Select the File’s Owner proxy object and switch to the Identity inspector. In the

390 | Chapter 7: Nib Files

Figure 7-9. An outlet from the nib owner object

first text field, under Custom Class, set the Class value as ViewController. Tab
out of the text field and save.

3. Now we’re ready to make the outlet! In the document outline, hold Control and
Control-drag from the File’s Owner object to the View; a little line follows the
mouse as you drag. Release the mouse when the View is highlighted. A little
HUD (heads-up display) appears, listing possible outlets we are allowed to create
(Figure 7-10). There are two of them: coolview and view. Click coolview (not
view!).

4. Finally, we need to modify our nib-loading code. We no longer need to capture
the result of our call to loadNibNamed(_:owner:). That’s the whole point of this

Connections | 391

Figure 7-10. Creating an outlet

exercise! Instead, we’re going to load the nib with ourself as owner. This will
cause our coolview instance property to be set automatically:

Bundle.main.loadNibNamed("View", owner: self)
self.view.addSubview(self.coolview)

Build and run. It works! The first line loaded the nib, instantiated the view, and set
our coolview instance property to that view. The second line can display
self.coolview in the interface, because self.coolview now is that view.

Let’s sum up what we just did. Our preparatory configuration was a little tricky,
because it was performed in two places — in code, and in the nib:

In code
There must be an instance property in the class whose instance will act as owner
when the nib loads. It must be marked as @IBOutlet; otherwise, Xcode won’t
permit us to create the outlet in the nib editor.

In the nib editor
The class of the nib owner object must be set to the class whose instance will act as
owner when the nib loads; otherwise, Xcode still won’t permit us to create the
outlet. We must then create the outlet, with the same name as the property, from
the nib owner to some nib object.

If all those things are true, then, when the nib loads, if it is loaded with an owner of
the correct class, that owner’s instance property will be set to the outlet destination.

When you configure an outlet to an object in the nib, that object’s name as listed
in the document outline ceases to be generic (e.g. “View”) and takes on the name
of the outlet (e.g. “coolview”). This name is still just a label — it has no effect on
the operation of the outlet — and you can change it in the Identity inspector.

Automatically Configured Nibs
Now that we’ve created a nib owner outlet manually and loaded a nib manually, we
have demystified the nib-loading mechanism. When a view controller gets its main
view from a nib automatically, everything works exactly like what we just did!

392 | Chapter 7: Nib Files

Figure 7-11. A view controller’s view outlet connection

Consider our Empty Window project’s Main.storyboard, with its single scene consist‐
ing of a ViewController and its main view:

• In our manual example, we started with an instance property in our nib owner
class. Well, ViewController is a UIViewController, and UIViewController has an
instance property — its view property! This is the property that needs to be set in
order for the view controller to obtain its main view.

• In our manual example, in the nib editor, we made sure that the nib owner
object’s class would be the class of the owner when the nib loads. Well, in our
Main.storyboard scene, the View Controller object is the nib owner, and it is of
the correct class, namely ViewController (the class declared in the View‐
Controller.swift file). Look and see: select the ViewController object in the story‐
board and examine its class in the Identity inspector.

• In our manual example, in the nib editor, we created an outlet with the same
name as the owner instance property, leading from the owner to the nib object.
Well, in our Main.storyboard scene, the ViewController object is the view nib
owner, and it has an outlet named view which is connected to the main view.
Look and see: select the view controller object in the storyboard and examine its
Connections inspector (Figure 7-11).

So the storyboard has already been configured in a manner exactly parallel to how we
configured View.xib in the preceding section. And the result is exactly the same!
When the view controller needs its view, it loads the view nib with itself as owner, the
nib-loading mechanism sees the connected view outlet, the view at the destination of
that outlet is assigned to the view controller’s view property, and voilà! The view con‐
troller has its main view.

Moreover, the view controller’s main view is then placed into the interface. And that
is why whatever we design in this view in the storyboard, such as putting into it a
button whose title is “Hello,” actually appears in the interface when the app runs.

Misconfigured Outlets
Setting up an outlet to work correctly involves several things being true at the same
time. You should expect that at some point in the future you will fail to get this right,
and your outlet won’t work properly — and your app will probably crash. So be pre‐
pared! And don’t worry; this happens to everyone. The important thing is to

Connections | 393

recognize the symptoms so that you know what’s gone wrong. We’re deliberately
going to make things go wrong, so that we can explore the main ways for an outlet to
be incorrectly configured. The crashes I’m about to describe, especially the first two,
are extremely common for beginners.

Outlet–property name mismatch
Start with our working Empty Window example. Run the project to prove that all is
well. Now, in ViewController.swift, change the property name to badview:

@IBOutlet var badview : UIView!

In order to get the code to compile, you’ll also have to change the reference to this
property in viewDidLoad:

self.view.addSubview(self.badview)

The code compiles just fine. But when you run it, the app crashes with this message
in the console: “This class is not key value coding-compliant for the key coolview.”

I’ll explain that message in Chapter 10. For now, just think of it as a technical way of
saying that the name of the outlet in the nib (which is still coolview) doesn’t match
the name of any property of the nib’s owner when the nib loads — because we
changed the name of that property to badview and wrecked the configuration. In
effect, we had everything set up correctly, but then we went behind the nib editor’s
back and removed the corresponding instance property from the outlet source’s class.
When the nib loads, the runtime can’t match the outlet’s name with any property in
the outlet’s source — the ViewController instance — and we crash.

There are other ways to bring about this same misconfiguration. You could change
things so that the nib owner is an instance of the wrong class. You might do that in
the nib editor, by selecting the nib owner and changing its class in the Identity
inspector. Alternatively, you might do it in code:

Bundle.main.loadNibNamed("View", owner: NSObject())

We made the owner a plain vanilla NSObject instance. The NSObject class has no
property with the same name as the outlet, so the app crashes when the nib loads,
complaining about the owner not being “key value coding-compliant.”

To change an outlet property’s name without breaking the connection from the
nib, select the property name in code and choose Editor → Refactor → Rename.

No outlet in the nib
Fix the problem from the previous example by changing both references to the prop‐
erty name from badview back to coolview in ViewController.swift. Run the project to

394 | Chapter 7: Nib Files

prove that all is well. Now we’re going to mess things up at the other end! Edit
View.xib. Select the File’s Owner and switch to the Connections inspector, and dis‐
connect the coolview outlet by clicking the X at the left end of the second cartouche.
Run the project. We crash with this error message in the console: “Fatal error: unex‐
pectedly found nil while unwrapping an Optional value.”

We removed the outlet from the nib. So when the nib loaded, our ViewController
instance property coolview, which is typed as an implicitly unwrapped Optional
wrapping a UIView, was never set to anything. It kept its initial value, which is nil.
We then tried to use the implicitly unwrapped Optional by putting it into the
interface:

self.view.addSubview(self.coolview)

Swift tries to obey by unwrapping the Optional, but you can’t unwrap nil, so we
crash.

No view outlet
I can’t demonstrate this problem using a .storyboard file. What we’d like to do is dis‐
connect the view outlet in Main.storyboard, but the storyboard editor guards against
this. But if you could make this mistake, then trying to run the project would result in
a crash at launch time, with a console message complaining that “the view outlet was
not set.”

A nib that is to serve as the source of a view controller’s main view must have a con‐
nected view outlet from the view controller (the nib owner object) to the view. In
a .xib file whose view is to function as a view controller’s main view, you can make
this mistake — usually by forgetting to connect the File’s Owner view outlet to the
view in the first place.

Deleting an Outlet
Deleting an outlet coherently — that is, without causing one of the problems
described in the previous section — involves working in several places at once, just as
creating an outlet does. I recommend proceeding in this order:

1. Disconnect the outlet in the nib.
2. Remove the outlet declaration from the code.
3. Attempt compilation and let the compiler catch any remaining issues for you.

Let’s suppose that you decide to delete the coolview outlet from the Empty Window
project. You would follow the same three-step procedure that I just outlined:

Connections | 395

1. Disconnect the outlet in the nib. To do so, edit View.xib, select the source object
(the File’s Owner proxy object), and disconnect the coolview outlet in the Con‐
nections inspector by clicking the X.

2. Remove the outlet declaration from the code. To do so, edit ViewController.swift
and delete or comment out the @IBOutlet declaration line.

3. Now attempt to build the project; the compiler issues an error on the line refer‐
ring to self.coolview in ViewController.swift, because there is now no such
property. Delete or comment out that line, and build again to prove that all is
well.

More Ways to Create Outlets
Earlier, we created an outlet by control-dragging from the source to the destination
in the document outline. Xcode provides many other ways to create outlets — too
many to list here. I’ll survey some of the most interesting. We’ll continue to use the
Empty Window project and the View.xib file. All of this works exactly the same way
for a .storyboard file.

To prepare, delete the outlet in View.xib as I described in the previous section (if you
haven’t already done so). In ViewController.swift, create (or uncomment) the prop‐
erty declaration, and save:

@IBOutlet var coolview : UIView!

Now we’re ready to experiment:

Drag from source Connections inspector
You can drag from a circle in the Connections inspector in the nib editor to con‐
nect the outlet. In View.xib, select the File’s Owner and switch to the Connec‐
tions inspector. The coolview outlet is listed here, but it isn’t connected: the
circle at its right is open. Drag from the circle next to coolview to the UIView
object in the nib. You can drag to the view in the canvas or in the document out‐
line. You don’t need to hold Control as you drag from the circle, and there’s no
HUD because you’re dragging from a specific outlet, so Xcode knows which one
you mean.

Drag from destination Connections inspector
Now let’s make that same move the other way round. Delete the outlet in the nib.
Select the View and look at the Connections inspector. We want an outlet that
has this view as its destination: that’s a “referencing outlet.” Drag from the circle
next to New Referencing Outlet to the File’s Owner object. The HUD appears:
click coolview to make the outlet connection.

396 | Chapter 7: Nib Files

Figure 7-12. Connecting an outlet by dragging from code to nib editor

Drag from source HUD
Instead of starting by dragging, we can start by Control-clicking to summon a
HUD and then drag from that HUD. Again delete the outlet in the Connections
inspector. Control-click the File’s Owner. A HUD appears, looking a lot like the
Connections inspector. Drag from the circle at the right of coolview to the
UIView.

Drag from destination HUD
Again, let’s make that same move the other way round. Delete the outlet in the
Connections inspector. Either in the canvas or in the document outline, Control-
click the view. There’s the HUD showing its Connections inspector. Drag from
the New Referencing Outlet circle to the File’s Owner. A second HUD appears,
listing possible outlets; click coolview.

Again, delete the outlet. Now we’re going to create the outlet by dragging between the
code and the nib editor. This will require that you work in two places at once: you’re
going to need two editor panes (see Chapter 6). In one editor pane, show View‐
Controller.swift. In the other editor pane, show View.xib, in such a way that the view
is visible.

Drag from property declaration to nib
Next to the property declaration in the code, in the gutter, is an empty circle.
Drag from that circle right across the barrier to the View in the nib editor
(Figure 7-12). You’ve done it! The outlet connection has been formed in the nib;
you can see this by looking at the Connections inspector, and also because, back
in the code, the circle in the gutter is now filled in.

You can hover over the filled circle, or click it, to learn what the outlet in the nib
is connected to. You can click the little menu that appears when you click in the
filled circle to navigate to the destination object.

Connections | 397

Figure 7-13. Creating an outlet by dragging from nib editor to code

Figure 7-14. Configuring an outlet property declaration

Here’s one more way — the most amazing of all. Keep the two-pane arrangement
from the preceding example. Again, delete the outlet (you will probably need to use
the Connections inspector or HUD in the nib editor pane to do this). Also delete the
@IBOutlet line from the code! We’re going to create the property declaration and
connect the outlet, in a single move!

Drag from nib to code
Control-drag from the view in the nib editor across the pane barrier to just inside
the body of the class ViewController declaration. A HUD offers to Insert Out‐
let or Outlet Collection (Figure 7-13). Release the mouse. A popover appears,
where you can configure the declaration to be inserted into your code. Configure
it as shown in Figure 7-14: you want an outlet, and this property should be
named coolview. Click Connect. The property declaration is inserted into your
code, and the outlet is connected in the nib.

Making an outlet by connecting directly between code and the nib editor is cool and
convenient, but don’t be fooled: there’s no such direct connection. There are two dis‐
tinct and separate things — an instance property in a class, and an outlet in the nib
with the same name and coming from an instance of that class. It is the identity of the
names and classes that allows the two to be matched at runtime when the nib loads.
Xcode tries to help you get everything set up correctly, but it is not in fact magically

398 | Chapter 7: Nib Files

connecting the code to the nib, and it is still possible to mess up the configuration
later, as I’ve already described.

Outlet Collections
An outlet collection is an array instance property (in code) matched (in a nib) by mul‐
tiple connections to objects of the same type.

Suppose a class contains this property declaration:

@IBOutlet var coollabels: [UILabel]!

The outcome is that, in the nib editor, with an instance of this class selected, the Con‐
nections inspector lists coollabels — not under Outlets, but under Outlet Collec‐
tions. This means that you can form multiple coollabels outlets, each one
connected to a different UILabel object in the nib. When the nib loads, those UILabel
instances become the elements of the array coollabels; the order of elements in the
array is the order in which the outlets were formed. Your code can then refer to the
labels by number (the index into the array). This can be cleaner than having a sepa‐
rate instance property for each label.

Action Connections
An action connection, like an outlet connection, is a way of giving one object in a nib
a reference to another. But, unlike an outlet connection, it’s not a property reference;
it’s a message-sending reference.

An action is a message emitted automatically by a Cocoa UIControl interface object
(a control), sent to another object when the user does something to it, such as tapping
the control. The various user behaviors that will cause a control to emit an action
message are called events. To see a list of possible events, look at the UIControl.Event
documentation. For example, in the case of a UIButton, the user tapping the button
corresponds to the .touchUpInside control event.

For this architecture to work, the control object must know three things:

Control event
What control event to respond to

Action
What message to send (that is, what method to call) when that control event
occurs

Target
What object to send that message to

An action connection in a nib builds the knowledge of those three things into itself. It
has the control object as its source; its destination is the target; and you tell the action

Connections | 399

connection, as you form it, what the control event and action message should be. To
form the action connection, you need to configure the class of the destination object
so that it has an instance method suitable as an action message.

To experiment with action connections, we’ll need a UIControl object in a nib, such
as a button. You may already have such a button in the Empty Window project’s
Main.storyboard file. However, it’s probable that, when the app runs, we’ve been cov‐
ering the button with the view that we’re loading from View.xib. So first clear out the
ViewController class declaration body in ViewController.swift, so that there is no out‐
let property and no manual nib-loading code; this should be all that’s left:

class ViewController: UIViewController {
}

Now let’s arrange to use the view controller in our Empty Window project as a target
for an action message emitted by the button’s .touchUpInside event (meaning that
the button was tapped). We’ll need a method in the view controller that will be called
by the button when the button is tapped. To make this method dramatic and obvious,
we’ll have the view controller put up an alert window. Insert this method into the
ViewController declaration body:

@IBAction func buttonPressed(_ sender: Any) {
 let alert = UIAlertController(
 title: "Howdy!", message: "You tapped me!", preferredStyle: .alert)
 alert.addAction(
 UIAlertAction(title: "OK", style: .cancel))
 self.present(alert, animated: true)
}

The @IBAction attribute is like @IBOutlet: it’s a hint to Xcode itself, asking Xcode to
make this method available in the nib editor. And indeed, if we look in the nib editor,
we find that it is now available: edit Main.storyboard, select the View Controller
object and switch to the Connections inspector, and you’ll find that buttonPressed:,
which is the Objective-C name of our action method, is now listed under Received
Actions.

In Main.storyboard, in the single scene that it contains, the top-level View Control‐
ler’s View should contain a button. (We created it earlier in this chapter: see
Figure 7-4.) If it doesn’t, add one, and position it in the upper left corner of the view.
Our goal now is to connect that button’s Touch Up Inside event, as an action, to the
buttonPressed(_:) method in ViewController.

As with an outlet connection, there is a source and a destination. The source here is
the button in the storyboard; the destination is the ViewController instance acting as
owner of the nib containing the button. There are many ways to form this action
connection, all of them completely parallel to the formation of an outlet connection.
The difference is that we must configure both ends of the connection. At the button

400 | Chapter 7: Nib Files

Figure 7-15. A HUD showing an action method

(source) end, we must specify that the control event we want to use is Touch Up
Inside; fortunately, this is the default for a UIButton, so we might be able to skip this
step. At the view controller (destination) end, we must specify that the action method
to be called is our buttonPressed(_:) method.

Let’s form the action connection by Control-dragging from the button to the view
controller in the nib editor:

1. Control-drag from the button (in the canvas or in the document outline) to the
View Controller listing in the document outline (or to the view controller icon in
the scene dock above the view in the canvas).

2. A HUD listing possible connections appears (Figure 7-15); it lists mostly segues,
but it also lists Sent Events, and in particular it lists buttonPressed:.

3. Click the buttonPressed: listing in the HUD.
The action connection has now been formed. This means that when the app runs,
any time the button gets a Touch Up Inside event — meaning that it was tapped — it
will call the buttonPressed(_:) method in the target, which is the view controller
instance. We know what that method should do: it should put up an alert. Try it!
Build and run the app, and when the app appears in the Simulator, tap the button. It
works!

More Ways to Create Actions
Other ways to form the action connection in the nib, having created the action
method in ViewController.swift, include the following:

Drag from source Connections inspector
Select the button and use the Connections inspector. Drag from the Touch Up
Inside circle to the view controller. A HUD appears, listing the known action
methods in the view controller; click buttonPressed:.

Connections | 401

Figure 7-16. Configuring an action method declaration

Drag from source HUD
Control-click the button. A HUD appears, similar to the Connections inspector.
Proceed as in the previous case.

Drag from destination HUD
Control-click the view controller. A HUD appears, similar to the Connections
inspector. Drag from buttonPressed: (under Received Actions) to the button.
Another HUD appears, listing possible control events. Click Touch Up Inside.

Drag from action method to nib
Make two editor panes. Arrange to see ViewController.swift in one pane and the
storyboard in the other. The buttonPressed(_:) declaration in View‐
Controller.swift has a circle to its left, in the gutter. Drag from that circle across
the pane barrier to the button in the nib.

As with an outlet connection, the most impressive way to make an action connection
is to drag from the nib editor to your code, inserting the action method and forming
the action connection in the nib in a single move. To try this, first delete the button-
Pressed(_:) method in your code and delete the action connection in the nib. Make
two editor panes. Arrange to see ViewController.swift in one pane and the storyboard
in the other. Now:

1. Control-drag from the button in the nib editor to an empty area in the View‐
Controller class declaration’s body. A HUD offering to create an outlet or an
action appears in the code. Release the mouse.

2. The popover view appears:
a. Always look first at the Connection pop-up menu. It might be offering to

create an outlet connection. That isn’t what you want; you want an action
connection! If it says Outlet, change it to Action.

b. Enter the name of the action method (here, buttonPressed) and configure
the rest of the declaration. The defaults are probably good enough: see
Figure 7-16.

402 | Chapter 7: Nib Files

Xcode forms the action connection in the nib, and inserts a stub method into your
code:

@IBAction func buttonPressed(_ sender: Any) {
}

The method is just a stub (Xcode can’t read your mind and guess what you want the
method to do), so in real life, at this point, you’d insert some functionality between
those curly braces. As with an outlet connection, the filled circle next to the code in
an action method tells you that Xcode believes that this connection is correctly con‐
figured, and you can click the filled circle to learn, and navigate to, the object at the
source of the connection.

Misconfigured Actions
As with an outlet connection, configuring an action connection involves setting
things up correctly at both ends (the nib and the code) so that they match. So of
course you can wreck an action connection’s configuration and crash your app. So be
prepared! The typical misconfiguration, commonly encountered by beginners, is that
the name of the action method as embedded in the action connection in the nib no
longer matches the name of the action method in the code.

To see this, change the name of the action method in the code from buttonPressed
to something else, like buttonPushed. Now run the app and tap the button. Your app
crashes, displaying in the console this dreaded error message: “Unrecognized selector
sent to instance.” A selector is a message — the name of a method (Chapter 2). The
runtime tried to send a message to an object, but that object turned out to have no
corresponding method (because we renamed it). If you look a little earlier in the error
message, it even tells you the name of this method:

-[Empty_Window.ViewController buttonPressed:]

The runtime is telling you (using Objective-C notation) that it tried to call the button-
Pressed(_:) method in your Empty Window module’s ViewController class, but the
ViewController class has no such method.

To change an action method’s name without breaking the connection from the
nib, select the method name in code and choose Editor → Refactor → Rename.

Connections | 403

Should Outlets and Actions Be Private?
In my opinion, every @IBOutlet and @IBAction attribute should be followed by the
keyword private, or at least fileprivate. There is never any reason for one view
controller to access another view controller’s outlet properties or action methods
directly; to do so would be interfering, in effect, with that view controller’s views. An
outlet or action marked private continues to work correctly, because the attribute
exposes it to Objective-C.

Connections Between Nibs — Not!
You cannot draw an outlet connection or an action connection between an object in
a nib and an object in a different nib:

• You cannot open nib editors on two different .xib files and Control-drag a con‐
nection from one to the other.

• In a .storyboard file, you cannot Control-drag a connection between an object in
one scene and an object in another scene.

The reason is obvious when you consider what a nib is. Objects in a nib together will
become instances together, at the moment when the nib loads, so it makes sense to
connect them in that nib, because we know what instances we’ll be talking about
when the nib loads. The two objects may both be instantiated by loading the nib, or
one of them may be a proxy object (the nib owner), but they must both be repre‐
sented in the same nib, so that the actual instances can be configured in relation to
one another on each particular occasion when this nib loads.

If an outlet connection or an action connection were drawn from an object in one nib
to an object in another nib, there would be no way to understand what actual future
instances the connection is supposed to connect, because they are different nibs and
will be loaded at different times (if ever). The problem of communicating between an
instance generated from one nib and an instance generated from another nib is a spe‐
cial case of the more general problem of how to communicate between instances in a
program, discussed in Chapter 13.

Additional Configuration of Nib-Based Instances
After a nib finishes loading, the instances that it describes have been initialized and
configured with all the attributes dictated through the Attributes and Size inspectors,
and their outlets have been used to set the values of the corresponding instance prop‐
erties. Nevertheless, you might want to append your own code to the initialization
process as an object is instantiated by loading a nib. This section describes some ways
you can do that.

404 | Chapter 7: Nib Files

A common situation is that a view controller, functioning as the owner when a nib
containing its main view loads (and therefore represented in the nib by the nib owner
object), has an outlet to an interface object instantiated by the loading of the nib. In
this architecture, the view controller can perform further configuration on that inter‐
face object, because it has a reference to it after the nib loads — the corresponding
instance property. The earliest place where it can perform such configuration is its
viewDidLoad method. At the time viewDidLoad is called, the view controller’s view
has been instantiated and assigned to its view property, and all its outlets have been
connected; but the view is not yet in the visible interface.

Another possibility is that you’d like the nib object to configure itself, over and above
whatever configuration has been performed in the nib. Often, this will be because
you’ve got a custom subclass of a built-in interface object class; in fact, you might
want to create a subclass precisely so as to have a place to put this self-configuring
code. The problem you’re trying to solve might be that the nib editor doesn’t let you
perform the configuration you’re after, or that you have many objects that need to be
configured similarly, so that it makes more sense for them to configure themselves by
virtue of sharing a common class than to configure each one individually.

One approach is to implement awakeFromNib in your custom class. The awakeFrom-
Nib message is sent to all nib-instantiated objects just after they are instantiated by
the loading of the nib: the object has been initialized and configured and its connec‐
tions are operational.

Let’s make a button whose background color is always red, regardless of how it’s con‐
figured in the nib. (This is a nutty example, but it’s dramatically effective.) In the
Empty Window project, we’ll create a button subclass, RedButton:

1. In the Project navigator, choose File → New → File. Specify iOS → Source →
Cocoa Touch Class. Click Next.

2. Call the new class RedButton. Make it a subclass of UIButton. Click Next.
3. Make sure you’re saving into the project folder, in the Empty Window group,

and that the Empty Window app target is checked. Click Create. Xcode creates
RedButton.swift.

4. In RedButton.swift, inside the body of the RedButton class declaration, imple‐
ment awakeFromNib:

override func awakeFromNib() {
 super.awakeFromNib()
 self.backgroundColor = .red
}

We now have a UIButton subclass that turns itself red when it’s instantiated from a
nib. But we have no instance of this subclass in any nib. Let’s fix that. Edit the story‐
board, select the button that’s already in the main view, and use the Identity inspector

Additional Configuration of Nib-Based Instances | 405

Figure 7-17. Rounding a button’s corners with a runtime attribute

to change this button’s class to RedButton. Now build and run the project. Sure
enough, the button is red!

A further possibility is to take advantage of the User Defined Runtime Attributes in
the nib object’s Identity inspector. This can allow you to configure, in the nib editor,
aspects of a nib object for which the nib editor itself provides no built-in interface.
What you’re actually doing here is sending the nib object, at nib-loading time, a set-
Value(_:forKeyPath:) message; Cocoa key paths are discussed in Chapter 10. Natu‐
rally, the object needs to be prepared to respond to the given key path, or your app
will crash when the nib loads.

One of the disadvantages of the nib editor is that it provides no way to configure
layer attributes. Let’s say we’d like to use the nib editor to round the corners of our
red button. In code, we would do that by setting the button’s layer.cornerRadius
property. The nib editor gives no access to this property. Instead, we can select the
button in the nib editor and use the User Defined Runtime Attributes in the Identity
inspector. We set the Key Path to layer.cornerRadius, the Type to Number, and the
Value to whatever value we want — let’s say 10 (Figure 7-17). Now build and run;
sure enough, the button’s corners are now rounded.

If you define your own property, your User Defined Runtime Attributes setting
for that property will fail silently unless you mark the property @objc.

You can also configure a custom property of a nib object by making that property
inspectable. To do so, add the @IBInspectable attribute to the property’s declaration
in your code. This causes the property to be listed in the nib object’s Attributes
inspector. (It also implicitly marks it @objc.)

Let’s make it possible to configure our button’s border in the nib editor. At the start
of the RedButton class declaration body, add this code:

406 | Chapter 7: Nib Files

Figure 7-18. An inspectable property in the nib editor

@IBInspectable var borderWidth : CGFloat {
 get {
 return self.layer.borderWidth
 }
 set {
 self.layer.borderWidth = newValue
 }
}

That code declares a RedButton property, borderWidth, and makes it a façade in
front of the layer’s borderWidth property. It also causes the nib editor to display that
property in the Attributes inspector for any button that is an instance of the Red‐
Button class (Figure 7-18). The result is that when we give this property a value in the
nib editor, that value is sent to the setter for this property at nib-loading time, and the
button border appears with that width.

To intervene with a nib object’s initialization even earlier, if the object is a UIView
(or a UIView subclass), you can override init(coder:). A minimal implementation
would look like this:

required init?(coder: NSCoder) {
 super.init(coder:coder)
 // your code here
}

Additional Configuration of Nib-Based Instances | 407

CHAPTER 8

Documentation

Knowledge is of two kinds. We know a subject ourselves,
or we know where we can find information upon it.

—Samuel Johnson,
Boswell’s Life of Johnson

No aspect of iOS programming is more important than a fluid and nimble relation‐
ship with the documentation. In addition to Swift’s own types, there are hundreds of
built-in Cocoa classes along with their numerous methods and properties and other
details. Apple’s documentation, whatever its flaws, is the definitive official word on
how you can expect Cocoa to behave, and on the contractual rules incumbent upon
you in working with this massive framework whose inner workings you cannot see
directly.

Your primary access to the documentation is in Xcode, through the documentation
window. But there are other forms of documentation and assistance. Quick Help
popovers and the Quick Help inspector provide documentation without leaving the
code editor. You can examine the code headers, which provide a useful overview and
often contain valuable comments, and you can jump quickly to a symbol declaration.
Apple provides sample code, and there are lots of additional online resources.

The Documentation Window
There are two main categories of documentation provided by Apple:

Primary documentation
The primary documentation (reference documentation) for Cocoa classes and
other symbols is included entirely within Xcode, and is displayed in the docu‐
mentation window (Window → Developer Documentation or Help → Developer

409

Documentation, Command-Shift-0). You can also view the same documentation
online, at https://developer.apple.com/documentation.

Secondary documentation
Secondary documentation consisting of older guides, sample code, and technical
notes and Q&As is available only online, at https://developer.apple.com/library/
archive/navigation. Apple refers to this material as the documentation archive.

Within the documentation window, the primary pathway is a search; press
Command-Shift-0 (or Command-L or Command-Shift-F if you’re already in the
documentation window) and type a search term, typically a class name such as
“NSString” or “UIButton.” As you type, you’re shown the top search results pertinent
to the language of your choice (such as Swift or Objective-C). You can choose a result
with the mouse, or you can navigate the results with arrow keys and press Return to
select the desired hit.

You can also perform a documentation window search starting from within your
code. You’ll very often want to do this: you’re looking directly at a symbol (a type
name, a function name, a property name, and so on) at its point of use in your code,
and you want to know more about it. Select text in your code (or anywhere else) and
choose Help → Search Documentation for Selected Text (Command-Option-
Control-/). This is like typing that text into the search field in the documentation
window.

The documentation window behaves basically as a sort of web browser. Terms shown
in a documentation page are links; click one to navigate to the documentation page
about that term. You can then navigate between pages you’ve already loaded, using
Navigate → Go Back and Navigate → Go Forward (or the back and forward buttons
in the documentation window). To split your view of the documentation into multi‐
ple tabs, choose File → New → Window Tab (Command-T); to open a link in a new
tab, hold Command when you click the link.

A hierarchical table of contents for the whole documentation appears in the naviga‐
tor pane at the left of the documentation window; to see it if it isn’t showing, choose
View → Navigators → Show Navigator (Command-0), or click the Navigator button
in the window toolbar. The table of contents can display any of three panes: Swift,
Objective-C, or Other. You can switch between them with the pop-up menu at the
top of the table of contents, or use the keyboard shortcuts (Command-1 and so on).
To select in the table of contents the page you’re currently viewing, choose Editor →
Reveal in Navigator (or use the contextual menu).

To search for text within the current documentation page, use the Find menu com‐
mands. Find → Find (Command-F) summons a find bar, as in Safari.

410 | Chapter 8: Documentation

https://developer.apple.com/documentation
https://developer.apple.com/library/archive/navigation
https://developer.apple.com/library/archive/navigation

Figure 8-1. The start of the UIButton class documentation page

Class Documentation Pages
When dealing with Cocoa, your target documentation page will most likely be the
documentation for a class, such as the page shown in Figure 8-1. Here are some typi‐
cal features of a class documentation page:

Jump bar
At the top of the page is the jump bar. This has two main purposes:

Breadcrumbs
The jump bar functions as a kind of “breadcrumbs” display of where you are.
The UIButton class documentation page is in the Views and Controls section
of the UIKit division of the documentation. This is the same hierarchy in
which the page is displayed in the navigator table of contents.

Navigation
Each item in the jump bar is a hierarchical menu, displaying the same hierar‐
chy as in the navigator table of contents. Choose a menu item to navigate
there. As with the Xcode project window editor’s jump bar, you can type to
filter the items of the currently selected menu.

Language
Links let you choose between Swift and Objective-C as the language for display
of symbol names.

Class Documentation Pages | 411

Availability
This list tells you two important things:

• What sort of hardware you’re programming for when you use this class.
That’s important because searches are not filtered by hardware type. If you
were to stumble accidentally into the NSViewController class documenta‐
tion page, you might be confused about how this class fits into the rest of iOS
programming, unless you notice that iOS is not even listed in this class’s
Availability; this is a macOS class (AppKit).

• The lowest version number in which this class became available. For exam‐
ple, the UIGraphicsImageRenderer page tells you that this class is available
in iOS 10.0 and later. So you wouldn’t be able to use it in code intended to
run on iOS 9.

Framework
The framework that vends this class.

On This Page
The class reference page is divided into sections, and these are links to them, in
order:

Declaration
The formal declaration for this class, showing its superclass.

Overview
If a page has an Overview section, read it! It explains what this class is for
and how to use it. It may also contain valuable links to guides that provide
related information.

Topics
These are primarily the class’s members — its properties and methods —
grouped by their purpose. Each member is accompanied by a short descrip‐
tion; click the member itself to see further details. (I’ll talk more about that in
a moment.) There may also be listings for enums used by this class’s proper‐
ties and methods, and notifications if this class emits any; the UIApplication
class documentation page is a case in point.

Relationships
There are two chief kinds of relationship that a class can have, and you’ll
want to keep an eye on both of them; a common beginner mistake is failing
to follow the documentation links in this section:

Inherits from
This class’s superclass. A class inherits from its superclasses, so the func‐
tionality or information you’re looking for may be in a superclass. You
won’t find addTarget(_:action:for:) listed in the UIButton class

412 | Chapter 8: Documentation

page; it’s in the UIControl class page (UIButton’s superclass). You won’t
find out that a UIButton has a frame property from the UIButton class
page; that information is in the UIView class page (UIControl’s super‐
class).

Conforms to
Protocols adopted by this class. Again, the functionality or information
you’re looking for might be documented for a protocol rather than
in this class’s own page. For instance, you won’t discover the viewWill-
Transition(to:with:) method on the UIViewController class page;
you have to look in the documentation for the UIContentContainer pro‐
tocol, which UIViewController adopts.

When you click the name of a property or method in a class documentation page,
you’re taken to a separate page that describes it in detail. This page is laid out simi‐
larly to a class documentation page:

Jump bar
The jump bar provides breadcrumb navigation leading back to the class docu‐
mentation page.

Language
The page gives you a choice of languages.

Availability
The availability for a property or method need not be the same as its class’s avail‐
ability, because a class can acquire (and lose) members over time. The
UINavigationBar class is as old as iOS itself and is available starting in iOS 2.0,
but its prefersLargeTitles property didn’t appear until iOS 11.0.

On This Page
There is no separate Overview section, but there is always an initial summary of
purpose (the same summary that appears on the class documentation page). The
other sections of a method’s page are:

Declaration
The formal declaration for this method, showing its parameters and return
type.

Parameters
Separate explanations for each parameter.

Return Value
An explicit description of what this method returns.

Class Documentation Pages | 413

Figure 8-2. Filtering the jump bar for the UIButton topics

Discussion
Often contains extremely important further details about how this method
behaves. Always pay attention to this section!

See Also
Links to related methods and properties. Helpful for getting a larger perspec‐
tive on how this method fits into the overall behavior of this class.

The Topics section of a class documentation page may list many class members, and
these can rapidly threaten to become overwhelming. If you know the name of a class
member that you’re interested in, or you want to get to a particular topic quickly,
how are you going to reach it without the tedium of scrolling? Don’t forget the jump
bar! The jump bar lists all the class members listed on the page, grouped by topic.
And that list can be filtered by typing. Let’s say I know that the class member I’m
interested in contains the term “background.” I summon the rightmost level of the
jump bar, type “back,” and am shown a shortened list of just those terms (Figure 8-2).
Now it’s easy to navigate to the detail page for any of those items.

In addition to the class documentation, the built-in primary documentation includes
explanatory guides on overall topics. The existence of these guides is not always obvi‐
ous. The UIButton class documentation is inside the Views and Controls section; that
page, the section page, is an introductory guide to views and controls. Sometimes
there are extensive explanatory pages, effectively constituting the chapters of a virtual
booklet. The Table of Contents can be a big help in spotting these; such pages are
marked with a document icon. The discussion of Swift Packages is a case in point.

Quick Help
Quick Help is a condensed rendering of the documentation for a particular symbol
such as a type, function, or property name. It appears with regard to the current
selection or insertion point automatically in the Quick Help inspector (Command-
Option-3) if the inspector is showing. For instance, if you’re editing code and the
insertion point or selection is within the term viewDidLoad, documentation for the
viewDidLoad method automatically appears in the Quick Help inspector if it is

414 | Chapter 8: Documentation

visible. Quick Help is also available in the Quick Help inspector for interface objects
selected in the nib editor.

Quick Help documentation can also be displayed as a popover window. Select a term
in the code editor and choose Help → Show Quick Help for Selected Item
(Command-Control-Shift-?). Alternatively, hold Option and hover the mouse over a
term until the cursor becomes a question mark; then Option-click the term.

When you’re developing Swift code, Quick Help is of increased importance. If
you click in the name of a Swift variable whose type is inferred, Quick Help
shows the inferred type (see Figure 3-1). This can help you understand compile
errors and other surprises.

The Quick Help documentation contains links. Click the Open in Developer Refer‐
ence link to see the full documentation in the documentation window.

You can inject documentation for your own code into Quick Help. To do so, precede
a declaration with a comment enclosed in /**...*/ or a sequence of single-line com‐
ments starting with ///. Within the comment, Markdown formatting can be used
(http://daringfireball.net/projects/markdown/syntax). The first paragraph of the com‐
ment becomes the Summary field for Quick Help; remaining paragraphs become the
Description field, except that certain list items (paragraphs beginning with * or -
followed by space) are treated in a special way, such as:

• List paragraphs beginning with Parameter paramname: are incorporated into the
Parameters field.

• A list paragraph beginning with Throws: becomes the Throws field.
• A list paragraph beginning with Returns: becomes the Returns field.
• A list paragraph beginning with Note: becomes a Note field.

Here’s a function declaration with a preceding comment:

/**
Many people would like to dog their cats. So it is *perfectly*
reasonable to supply a convenience method to do so:

* Because it's cool.
* Because it's there.

* Parameter cats: A string containing cats

* Returns: A string containing dogs
*/

func dogMyCats(_ cats:String) -> String {
 return "Dogs"
}

Quick Help | 415

http://daringfireball.net/projects/markdown/syntax

Figure 8-3. Custom documentation injected into Quick Help

The double asterisk in the opening comment delimiter denotes that this is documen‐
tation, which is automatically associated with the dogMyCats method declaration that
follows it. The outcome is that when dogMyCats is selected anywhere in my code, its
documentation is displayed in Quick Help (Figure 8-3). The first paragraph of the
comment becomes the Summary, and is also displayed as part of code completion
(see Chapter 9). The word surrounded by asterisks is formatted as italics; the aster‐
isked paragraphs become bulleted paragraphs; and the last two paragraphs become
special fields.

You can also generate a documentation comment automatically. Select within the
declaration line and choose Editor → Structure → Add Documentation. The com‐
ment is inserted before the declaration. The description, plus (if this is a function
declaration) the Parameters, Returns, and Throws fields, as applicable, are provided
as placeholders.

There are additional special documentation fields. For more information about these,
see the “Markup Functionality” page of Apple’s Markup Formatting Reference.

Symbol Declarations
A symbol is a declared term, such as the name of a function, variable, or object type. If
you can see the name of a symbol in the code editor, you can jump quickly to the
declaration of that symbol. Select the term and choose Navigate → Jump to

416 | Chapter 8: Documentation

https://developer.apple.com/library/archive/documentation/Xcode/Reference/xcode_markup_formatting_ref/MarkupFunctionality.html

Definition (Command-Control-J); alternatively, hold Command-Control and hover
the mouse over a prospective term, until the cursor becomes a pointing finger, and
then Command-Control-click the term:

• If the symbol is declared in your code, you jump to its declaration in your code;
this can be helpful not only for understanding your code but also for navigation.

• If the symbol is declared in the Swift library or a Cocoa framework, you jump to
its declaration in the header file. (I’ll talk more about header files in the next
section.)

Command-Control-click is the default for jumping to a symbol’s declaration, but
it can be changed. In the Navigation pane of Xcode’s preferences, under
Command-click on Code, switch the pop-up menu to Jumps to Definition. Now
you can jump to a symbol declaration with a simple Command-click.

To jump to the declaration of a symbol whose name you know, even if you don’t see
the name in the code before you, choose File → Open Quickly (Command-Shift-O).
A search field appears. In it, type key letters from the name, which will be interpreted
intelligently; to search for application(_:didFinishLaunchingWithOptions:), you
might type “appdidf.” Possible matches are shown in a scrolling list below the search
field; you can navigate this list with the mouse or by keyboard alone. Besides declara‐
tions from the framework headers, declarations in your own code are listed as well, so
this, too, can be a rapid way of navigating your code.

In addition, a list of available symbols appears in the Symbol navigator (Chapter 6). If
the second icon in the filter bar is highlighted, these are symbols declared in your
project; if not, symbols from imported frameworks are listed as well. Click to navigate
to a symbol declaration.

Header Files
A header file can be a useful form of documentation. The header is necessarily accu‐
rate, up-to-date, and complete, and it may contain comments telling you things that
the documentation doesn’t. Also, a single header file can contain declarations for
multiple classes and protocols. So it can be an excellent quick reference.

The previous section describes various ways of jumping to a symbol declaration;
since most symbols are declared in header files, these are ways of reaching header
files. To reach NSString.h, select the term NSString wherever it may appear in your
code and jump to its declaration, or choose File → Open Quickly (Command-Shift-
O) and type “NSString.” Once you’re in a header file, you can navigate it conven‐
iently through the jump bar at the top of the editor.

When you jump to a header file from your code, the header file, if it is written in
Objective-C, can appear in Objective-C or Swift:

Header Files | 417

• To switch from an Objective-C original to its Swift translation, choose Generated
Interface from the Related Items menu (at the left end of the jump bar,
Control-1).

• To switch from a Swift translated (generated) header to the Objective-C original,
choose Navigate → Jump to Original Source, or choose Original Source from the
Related Items menu.

You can learn a lot about the Swift language and the built-in library functions by
examining the Swift header file. The special Swift header files for Core Graphics and
Foundation are also likely to prove useful. A neat trick is to write an import state‐
ment just so that you can reach the corresponding header. If you import Swift at the
top of a Swift file, the word Swift itself is a symbol that you can use to jump to the
Swift header.

Sample Code
The documentation archive includes plenty of sample code projects. You can view
the code in a browser, but you can see only one file at a time, so it’s difficult to get an
overview. Instead, click the Download Sample Code button and open the downloa‐
ded project in Xcode; with the sample code project open in a project window, you
can read the code, navigate it, edit it, and of course run the project.

Some of the primary documentation guides contain links to downloadable sample
code as well. This sample code can be difficult to discover. In a few cases, the docu‐
mentation archive links to it. In other cases, you just have to stumble across it. Again,
the table of contents in the documentation window can be a big help here; sample
code pages are marked with a curly braces icon.

As a form of documentation, sample code is both good and bad. It can be a superb
source of working code that you can often copy and paste and use with very little
alteration in your own projects. It is usually heavily commented, because the Apple
folks are aware, as they write the code, that it is intended for instructional purposes.
Sample code also illustrates concepts that users have difficulty extracting from the
documentation. But the logic of a project is often spread over multiple files, and
nothing is more difficult to understand than someone else’s code (except, perhaps,
your own code). Moreover, what learners most need is not the fait accompli of a fully
written project but the reasoning process that constructed the project, which no
amount of commentary can provide.

Apple’s sample code is generally thoughtful and instructive, and is definitely a major
component of the documentation; it deserves more appreciation and usage than it
seems to get. But it is most useful, I think, after you’ve reached a certain level of com‐
petence and comfort. Also, while some of the sample code is astoundingly well-
written, some of it is a bit careless or even downright faulty.

418 | Chapter 8: Documentation

Internet Resources
Programming has become a lot easier since the internet came along and Google
started indexing it. It’s amazing what you can learn with a Google search. Your prob‐
lem is very likely one that someone else has faced, solved, and written about on the
internet. Often you’ll find sample code that you can paste into your project and
adapt.

Apple’s own online resources go beyond the formal documentation. There are
WWDC videos (https://developer.apple.com/videos) from the current and previous
years. Apple also hosts developer forums (https://developer.apple.com/forums); some
interesting discussions take place in these forums, and they are patrolled by helpful
Apple employees.

Other online resources have sprung up spontaneously as iOS programming has
become more popular, and lots of iOS and Cocoa programmers post tutorials or blog
about their experiences. Stack Overflow (http://www.stackoverflow.com) is a site that
I’m particularly fond of; it’s a general programming question-and-answer site, not
devoted exclusively to iOS programming, but with lots of iOS programmers hanging
out there; questions are answered succinctly and correctly, and the interface lets you
focus on the right answer quickly and easily.

Internet Resources | 419

https://developer.apple.com/videos
https://developer.apple.com/forums
http://www.stackoverflow.com

CHAPTER 9

Life Cycle of a Project

This chapter surveys some of the main stages in the life cycle of an Xcode project,
from inception to submission at the App Store. The survey will provide an opportu‐
nity to discuss some additional features of the Xcode development environment as
well as various tasks you’ll typically perform as you work on your app, including edit‐
ing, debugging, and testing your code, running your app on a device, profiling, locali‐
zation, and releasing to the public.

Environmental Dependencies
It may be useful to have your app behave differently depending on the environment
in which it finds itself when compiling or running:

Buildtime dependencies
These are choices made at build time. They affect the build process, including
what the compiler does. Typical dependencies are:

• The version of Swift under which we’re compiling.
• The type of destination for which we’re compiling — a simulator or a real

device.
• A custom compilation condition defined for the current build configuration

in the build settings.
• The action that causes the build — for instance, whether we’re building to

run or to archive.

Runtime dependencies
These are choices made depending on what the app discovers its environment to
be when it runs. Typical dependencies are the type of device we turn out to be
running on (iPad vs. iPhone) and the system version installed on this device:

421

• Should the app be permitted to run under this environment?
• Should the app do different things, or load different resources, depending on

the environment?
• Should the app respond to the presence of an argument or environment

variable injected by Xcode?

Conditional Compilation
Stretches of code that might or might not be compiled into your built app depending
on the compile-time environment are fenced off by #if...#endif directives, as
shown in Example 9-1.

Example 9-1. Swift conditional compilation

#if condition
 statements
#elseif condition
 statements
#else
 statements
#endif

The #elseif and #else sections can be omitted, and there can be multiple #elseif
sections. There are no curly braces, and the statements will not in fact be indented by
the code editor.

The conditions are treated as Bools, so they can be combined with the usual Boolean
logic operators. However, they are not Swift code expressions! They must come from
a limited predefined set of reserved words. The ones you are most likely to use are:

swift(>=5.3), compiler(>=5.3) (or some other version number)
The version of the Swift language or compiler under which we’re building. The
only legal operators are < and >=. The swift version depends on the Swift Lan‐
guage Version build setting, but the compiler version depends on the Xcode ver‐
sion. Under Xcode 12, if the Swift Language Version is Swift 4.2, then swift is
less than 5, but compiler is not.

targetEnvironment(simulator)

Whether we’re building for a simulator or device destination. This can allow an
app to run coherently on the simulator even though the simulator lacks certain
capabilities, such as the camera.

canImport(UIKit) (or some other module name)
Whether the module in question is available on the platform for which we’re
building.

422 | Chapter 9: Life Cycle of a Project

Figure 9-1. Compilation conditions in the build settings

Custom compilation condition
A name that you enter in the Active Compilation Conditions build setting will
yield true for purposes of conditional compilation.

The statements enclosed in each block will not be compiled at all unless the appro‐
priate condition is met, as this (very silly) example demonstrates:

#if swift(>=5.3)
print("howdy")
#else
Hey! Ba-Ba-Re-Bop
#endif

That code compiles without complaint in a plain vanilla project built from the iOS
App template in Xcode 12. The statement Hey! Ba-Ba-Re-Bop is not a legal Swift
expression, but the compiler doesn’t care, because our Swift version is Swift 5.3, so
the compiler never even examines the #else block.

An #if condition can distinguish between build configurations by way of the Active
Compilation Conditions build setting. In fact, your project already comes with one
such condition by default: the DEBUG condition is defined for the Debug configuration
but not for the Release configuration (Figure 9-1). This means that for a Debug build,
but not for a Release build, the test #if DEBUG will succeed.

A useful technique is to define a configuration, define an Active Compilation Condi‐
tions setting for that configuration, and make a scheme that builds using that config‐
uration, or have different actions of one scheme use different configurations.

For instance, if the Run action uses the Debug build configuration but the Test action
uses your custom Testing build configuration, you can define Active Compilation
Conditions for the Testing configuration that will be present only when testing; in
this way, you can use conditional compilation to apply to testing only. I often make a
private method public during testing only, just so that method can be tested. (I’ll talk
more about testing later in this chapter.)

Build Action
The Development Assets build setting (introduced in Xcode 11) lets you specify one
or more paths for resources that won’t be included in an archive build — meaning a

Environmental Dependencies | 423

build to be distributed to other users, as I’ll explain later in this chapter. In this way
your app can include resources such as default data during development and testing,
while guaranteeing that those resources won’t pollute the ultimately released built
app.

The paths that you specify can designate individual resources, entire asset catalogs, or
even folders. A neat approach is a folder-linked group in the Project navigator: put
your development-only resources into that group, and specify the path to the corre‐
sponding folder in Development Assets.

If you combine the Development Assets build setting with the target-

Environment(simulator) compilation condition, you have the makings of a
simulator-only test bed — code that is present only on the simulator, along with
ancillary files that won’t be present when you ultimately distribute the app to others.

For example, my Albumen app is all about displaying the contents of the user’s music
library. The Simulator doesn’t really have a music library, so I use conditional compi‐
lation with #if targetEnvironment(simulator); on the simulator, I have the app
load some preconfigured data from a text file, and the app displays that data instead.
But I don’t want that text file to be present in the App Store release, so I list it in the
Development Assets.

Permissible Runtime Environment
Under what environments should this app be permitted to run? The choices are
determined by build settings, but you can configure them through a more convenient
interface:

Device Type
The device type(s) on which your app will run natively. This is the app target’s
Targeted Device Family build setting; to set, edit the app target, switch to the
General pane, and use the Device checkboxes (under Deployment Info):

iPhone
The app will run on an iPhone or iPod touch. It can also run on an iPad, but
not as a native iPad app; it runs in a reduced enlargeable window (Apple
sometimes refers to this as “compatibility mode”).

iPad
The app will run only on an iPad.

Both
The app will run natively on both kinds of device; it is a universal app (and
the Targeted Device Family setting will be Universal).

424 | Chapter 9: Life Cycle of a Project

iOS Deployment Target
The earliest system your app can run on: in Xcode 12, this can be any major iOS
system as far back as iOS 9.0. To set, edit the app target, switch to the General
pane, and choose from the Target pop-up menu (under Deployment Info). There
is also a drop-down list when you edit the project, in the Info pane.

Backward Compatibility
Writing an app whose iOS Deployment Target system version is lower than the cur‐
rent system version — that is, an app that is backward compatible to an earlier system
— can be challenging. With each new system, Apple adds new features. You’ll want
to take advantage of these. But your app will crash if execution encounters features
not supported by the system on which it is actually running!

Fortunately, when the compiler knows that a feature is unsupported by an earlier sys‐
tem, it will prevent you from accidentally using that feature on that system. Here’s a
line of code where we prepare to draw a small image:

let r = UIGraphicsImageRenderer(size:CGSize(width:10,height:10))

The UIGraphicsImageRenderer class exists only in iOS 10.0 and later. If your deploy‐
ment target is iOS 9, the compiler will stop you with an error: “UIGraphicsImage‐
Renderer is only available on iOS 10.0 or newer.”

How does the compiler know we’ve got a potential problem here? It’s because a term
(a type or a member) states its availability in its declaration. The UIGraphicsImage‐
Renderer class declaration is preceded (in Swift) with this annotation:

@available(iOS 10.0, *)

The details of the notation are not very important (if you’re interested, consult the
Attributes chapter of Apple’s Swift Reference Manual). The important thing is that
the annotation tells the compiler — and you — that this class isn’t present until iOS
10 and later.

When you encounter this kind of issue, you cannot proceed until you guarantee to
the compiler that this code will run only on a system that supports it. Luckily,
Xcode’s Fix-it feature (discussed later in this chapter) will help you do exactly that.
Here, it offers to surround that line with an availability check:

if #available(iOS 10.0, *) {
 let r = UIGraphicsImageRenderer(size:CGSize(width:10,height:10))
} else {
 // Fallback on earlier versions
}

The if #available condition tests the current system at runtime. It needs to match
the @available annotation, and Xcode’s Fix-it will make sure that it does. You can
use #available in an if construct or a guard construct.

Environmental Dependencies | 425

https://docs.swift.org/swift-book/ReferenceManual/Attributes.html

You can also annotate your own type and member declarations with an @available
attribute. If you do, your own code will then have to use an availability check in order
to refer to that type or that member. If your method is declared @available(iOS
14.0, *), then when the deployment target is earlier than iOS 14, you can’t call that
method without an availability check that matches it: if #available(iOS 14.0, *).
Within such a method, you don’t need the availability check, because you’ve already
guaranteed that this method won’t run on a system earlier than iOS 14.

A case in point is the built-in iOS App template. This template is not very backward
compatible, because it uses a scene delegate (Chapter 6). Scene delegates and the
related classes were introduced in iOS 13; they don’t exist in iOS 12 and before, and
the launch process is different without them. To make a project generated from the
template backward compatible, you need to mark the entire SceneDelegate class, and
any methods in the AppDelegate class that refer to UISceneSession, with an availabil‐
ity annotation: @available(iOS 13.0, *).

Your code now compiles, and it runs on iOS 12. But it doesn’t actually work on iOS
12. To fix that, you also need to declare a window property in the AppDelegate class:

var window : UIWindow?

The result is that when this app runs in iOS 13 or later, the scene delegate has the
window, but when it runs in iOS 12 or before, the app delegate has the window — and
your other code may then need to take account of that in order to be backward
compatible.

A more insidious problem arises when the very same method or property does exist
on different systems, but behaves differently. Often this is because Apple introduces a
bug, or fixes a bug, or both. For example, setting UIProgressView’s progressImage
property worked in iOS 7.0, didn’t work at all from iOS 7.1 through iOS 8.4, and then
started working again in iOS 9 and later. When that sort of thing happens, the com‐
piler can’t help you, and you usually have no way of knowing about it other than trial
and error (and working around the problem coherently can be tricky).

To test your app on an earlier system, you’ll need a destination that runs that earlier
system. You can download an earlier Simulator SDK going back as far as iOS 10.3.1
through Xcode’s Components preference pane (see Chapter 6). To test on an earlier
system than that, you’ll need an older version of Xcode, and probably an older device.
This can be difficult to configure, and may not be worth the trouble.

Device Type
An app might need to respond differently depending on the hardware on which it
finds itself running. A universal app might need to behave differently depending on
whether it is running on an iPad or an iPhone, different devices have different screen
resolutions that might call for using different images, and so on.

426 | Chapter 9: Life Cycle of a Project

You can learn in code whether we’re running on an iPhone or an iPad. The current
UIDevice (UIDevice.current), or the traitCollection of any UIViewController or
UIView in the hierarchy, will tell you the current device’s type as its userInterface-
Idiom, which will be a UIUserInterfaceIdiom, either .phone or .pad.

When it comes to loading resources, there are some built-in shortcuts. Image files to
be loaded from the top level of the app bundle can be distinguished automatically by
using the same name but different suffixes, such as @2x and @3x to indicate the screen
resolution, or ~iphone and ~ipad to indicate the device type. Or you can use an asset
catalog (see “Resources in an asset catalog” on page 363), which allows you to specify
different images for different runtime environments just by putting them in the cor‐
rect slot. Either way, the runtime will automatically choose the image variant appro‐
priate to the current environment.

Certain Info.plist settings come with name suffixes as well. For example, it is usual for
a universal app to adopt one set of possible orientations on iPhone and another set
on iPad: typically, the iPhone version permits a limited set of orientations while the
iPad version permits all orientations. You configure this using two groups of “Sup‐
ported interface orientations” settings in the Info.plist:

UISupportedInterfaceOrientations

A general set of orientations.

UISupportedInterfaceOrientations~ipad

An iPad-only set that overrides the general set when the app runs on an iPad.

The clearest and most reliable way to make these configurations is to edit the
Info.plist directly. Alternatively, there are some checkboxes you can use, in the Gen‐
eral pane when you edit the target, under Deployment Info:

1. Uncheck iPad, check iPhone, and check the desired Device Orientation check‐
boxes for the iPhone.

2. Uncheck iPhone, check iPad, and check the desired Device Orientation check‐
boxes for the iPad.

3. Check both iPad and iPhone. Even though you’re now seeing just one set of ori‐
entations, both sets are remembered.

(That is surely one of Xcode’s least intuitive bits of interface!)

Similarly, your app can load different nib files and display different interfaces
depending on the device type. If the nib comes from a .xib file, use the image file
naming convention: a nib file by the same name with ~ipad appended will load auto‐
matically if we are running on an iPad. If you want to have two different main story‐
boards, use the Info.plist naming convention: configure two “Main storyboard file
base name” keys, UIMainStoryboardFile and UIMainStoryboardFile~ipad — or,

Environmental Dependencies | 427

Figure 9-2. The Arguments tab of the scheme’s Run action

with window scenes under iOS 13 and later, configure two “Application Scene Mani‐
fest” keys, UIApplicationSceneManifest and UIApplicationSceneManifest~ipad,
that specify different UISceneStoryboardFile values.

Arguments and Environment Variables
You can inject key–value pairs into the environment, making them available to your
code, when running the app from Xcode. Edit the scheme and go to the Arguments
tab of the Run action. There are two categories (Figure 9-2); to add a key–value pair,
click the Plus button under the desired category and enter a name and value:

Arguments Passed On Launch
The name of the argument must be preceded by a hyphen, and followed with a
space and the value. This allows you to inject key–value pairs into user defaults.
If an argument is -TEST1 1, then you can say:

if UserDefaults.standard.integer(forKey: "TEST1") == 1 {

Environment Variables
There’s a Name column and a Value column (which is always a string). To
retrieve an environment variable, use the ProcessInfo class. If the name is TEST2
and the value is 2, then you can say:

if let t = ProcessInfo.processInfo.environment["TEST2"], t == "2" {

A configured pair can be toggled on or off for subsequent builds by clicking the
checkbox to its left. So you don’t have to delete a configured pair just because you
don’t want to use it at the moment.

428 | Chapter 9: Life Cycle of a Project

Arguments and environment variables configured for the Run action are present
when you build and run, but not when you are testing. But the Test action has its
own arguments and environment variables, which are present only when you are test‐
ing. That gives your code a way to detect that it is under test. For example, you might
conditionally substitute a “mock” version of a class or struct during testing.

These arguments and environment variables are present only when you build and
run from Xcode; a user who launches your app on a device will be unaffected by them.
So you can take advantage of this feature during development without worrying that
its effects will leak out into the real world.

Version Control
Sooner rather than later in the life of any real app, you should consider putting your
project under version control. Version control is a way of taking periodic snapshots
(technically called commits) of your project. Its purpose might be:

Security
Version control can store your commits in a repository offsite, so that your code
isn’t lost in case of a local computer glitch or some equivalent “hit by a bus”
scenario.

Publication
You might want to make your project’s source publicly available through an
online site such as GitHub.

Collaboration
Version control affords multiple developers ready, rational access to the same
code.

Confidence
Progress on your code may require changes in many files, possibly over many
days, before a new feature can be tested. Version control tracks and lists those
changes, and if things go badly, helps to pinpoint what’s gone wrong, and lets
you withdraw the changes altogether if necessary. You can confidently embark
on a programmatic experiment whose result may not be apparent until much
later.

Xcode’s version control facilities are geared primarily to Git (http://git-scm.com). You
can use a different version control system with your projects, but not in an integrated
fashion from inside Xcode. Even with Git, it is possible to ignore Xcode’s integrated
version control and rely on the Terminal command line or a specialized third-party
GUI front end such as Sourcetree (http://www.sourcetreeapp.com). In that case, you
might turn off Xcode’s version control integration by unchecking Enable Source
Control in the Source Control preference pane. If you check Enable Source Control,

Version Control | 429

http://git-scm.com
http://www.sourcetreeapp.com

additional checkboxes spring to life so that you can configure what automatic behav‐
iors you want. In this discussion, I’ll assume that Enable Source Control is checked.

When you create a new project, the Save dialog includes a checkbox that offers to
place a Git repository into your project folder from the outset. If you have no reason
to decide otherwise, I suggest that you check that checkbox! If you don’t, and if you
change your mind later and want to add a Git repository to an existing project, open
the project and choose Source Control → New Git Repositories. Conversely, to
download a working copy of an existing project from a remote server, choose Source
Control → Clone and enter the required information.

When you open an existing project, if that project is already managed with Git,
Xcode detects this and displays version control information in its interface. Files in
the Project navigator are marked with their status. You can distinguish modified files
(M), new untracked files (?), and new files added to the index (A).

Version control management commands are available in these places:

• The Source Control menu
• The file’s contextual menu, in the Source Control submenu (Control-click the

file’s listing in the Project navigator)
• The change bars in a source editor pane
• The Source Control navigator (Command-2) and Source Control inspector

(Command-Option-4)
• The Code Review editor
• The History inspector (Command-Option-2)

To commit changes for a single file, choose Source Control → Commit [Filename] in
the contextual menu for that file; to commit changes for all files, choose Source Con‐
trol → Commit from the menu bar. These commands summon a comparison view of
the changes; each change can be excluded from this commit (or reverted entirely), so
related file hunks can be grouped into meaningful commits. You can discard
changes, push, and pull using the Source Control menu. Cherry-pick and stashing
commands are also present.

Branches, stashes, tags, and remotes are handled in the Source Control navigator.
Selecting an item here causes relevant information to be displayed in the Source Con‐
trol inspector; selecting a branch displays its corresponding remote, and selecting a
remote displays its URL. Selecting a branch also shows the log of its commits in the
editor. The list of commits is filterable through a search field at the top of the editor.
Selecting a commit in this list displays in the inspector its branches, its commit mes‐
sage, and its involved files. Double-click a commit to see its involved files and their
differences from the previous commit in a comparison view.

430 | Chapter 9: Life Cycle of a Project

Figure 9-3. Version comparison

Other relevant commands appear in the contextual menu for items in the Source
Control navigator. To add a remote, Control-click the Remotes listing. To make a
new branch, check out a branch, tag a branch, delete a branch, or merge a branch,
Control-click the branch listing.

To see a comparison view for the file currently being edited, display the Code Review
editor: choose View → Show Code Review (Command-Option-Shift-Return), or click
the Code Review button in the project window toolbar. This editor fills the entire edi‐
tor area, covering all individual editor panes. You can switch target files using the
Project navigator or jump bar while the Code Review editor is showing.

In Figure 9-3, I’m using a comparison view to see that in the more recent version of
this file (on the left) I’ve changed my titleTextAttributes dictionary (because the
Swift language changed). The jump bar at the bottom permits me to view any com‐
mit’s version of the current file. In the contextual menu I can choose Copy Source
Changes to capture the corresponding diff text (a patch file) on the clipboard.

The History inspector (Command-Option-2) lists the commit log from the current
branch for any file, without having to show the comparison view. Click a commit to
summon a popover containing the full commit message along with buttons to show
the commit and its files, switch to the Code Review editor, or address an email to the
commit’s author.

For similar information in a source editor pane, choose Editor → Authors, or choose
Authors from the Editor Options pop-up menu at the top right of the pane. The file
is divided into hunks corresponding to the individual commits, with the commit
author and date listed at the right (a Git “blame” view). Click a commit to summon
the popover. Or, to get information on just a given line of code, select it and choose
Editor → Show Last Change For Line (or the contextual menu).

If you’ve checked Show Source Control Changes in the Source Control preferences
pane, change bars appear in the source editor pane, in the gutter at the left, showing
what you’ve changed since the last commit (Figure 9-4). In my opinion, this is

Version Control | 431

Figure 9-4. An uncommitted change marked in the gutter

Xcode’s most valuable Git integration feature. By Command-clicking on a change
bar, you can display both the old committed text and the new uncommitted text
simultaneously. You can also click a change bar to see a menu that lets you discard an
individual change (be careful not to do that by mistake).

If you have an account with any of three popular online sites that allow ready man‐
agement of code submitted through version control — GitHub (https://github.com),
Bitbucket (https://bitbucket.org), and GitLab (https://gitlab.com) — you can enter
your authentication information into Xcode’s Accounts preference pane. Once
you’ve done that:

Create a remote repository
If your project is already under Git control locally, switch to the Source Control
navigator, Control-click Remotes, and choose Create [Project Name] Remote. A
dialog lets you choose a remote site and upload to it.

Clone a remote repository
When you choose Source Control → Clone, your repositories on those sites are
listed in a dialog and you can clone one of them directly. Also, when you’re in a
web browser looking at a GitHub repository consisting of an Xcode project, if
you click the Code button, there’s an option to Open with Xcode; the repository
is cloned and the project is opened, in a single move.

Editing and Navigating Your Code
Many aspects of Xcode’s editing environment can be modified to suit your tastes.

Your first step should be to go to Xcode’s Themes preference pane and choose a
theme and a Source Editor font face and size. Nothing is so important as being able to
read and write code comfortably! I like a pleasant monospaced font. SF Mono is
included and is the default; I think it’s very nice. Other possibilities might be Menlo
or Consolas, or the freeware Inconsolata (http://levien.com/type/myfonts) or Source
Code Pro (https://github.com/adobe-fonts/source-code-pro). I also like a largish size
(13, 14, or even 16).

You also get a choice of line spacing (leading) and cursor. You can change the theme
and font size on the fly with the Editor → Font Size and Editor → Theme hierarchical
menus.

432 | Chapter 9: Life Cycle of a Project

https://github.com
https://bitbucket.org
https://gitlab.com
http://levien.com/type/myfonts
https://github.com/adobe-fonts/source-code-pro

Text Editing Preferences
The exact look and behavior of the source code editor depends upon your settings in
the three tabs of Xcode’s Text Editing preference pane — Display, Editing, and
Indentation. I like to check just about everything here. Here are some particularly
interesting Text Editing settings.

Display
With “Line numbers” checked, line numbers appear in the gutter to the left of source
code text. Visible line numbers are useful when debugging.

Code folding lets you collapse the text between matching curly braces. With “Code
folding ribbon” checked, code folding bars appear to the left of your code (at the right
of the gutter), displaying your code’s hierarchical structure and allowing you to col‐
lapse and expand just by clicking the bars. I’m not fond of code folding, and I don’t
want to trigger it accidentally, so I leave that checkbox unchecked. If I need code
folding, it remains available through the Editor → Code Folding hierarchical menu.

A divider line for a MARK: comment (discussed later in this chapter) can appear in
your code, above the comment; check “Mark separators.”

With Editor Overscroll turned on, Xcode pretends that your file ends with some extra
whitespace, so that when you scroll to the end, the last line appears in the middle of
the editor pane rather than at the bottom. Since the bottom of the editor pane is usu‐
ally the bottom of your screen, this let you keep your eyes focused more or less
straight ahead as you work; also, you can append lines without the editor constantly
scrolling to accommodate them.

Editing
The first two checkboxes under Editing have to do with autocompletion; I’ll discuss
them separately in a moment.

With “Enable type-over completions” checked, Xcode helps balance delimiters. Let’s
say I intend to make a UIView by calling its initializer init(frame:). I type as far as
this:

let v = UIView(fr

Xcode automatically appends the closing right parenthesis, with the insertion point
still positioned before it:

let v = UIView(fr)
// I have typed ^

When I finish typing the parameter and then type a right parenthesis, I don’t end up
with two adjacent right parentheses; instead, Xcode moves the insertion point
through the existing right parenthesis:

Editing and Navigating Your Code | 433

let v = UIView(frame:r)
// I have typed ^

With “Enclose selection in matching delimiters” checked, if you select some text and
type a left delimiter (such as a quotation mark or a left parenthesis), the selected text
is not replaced; rather, it is surrounded with left and right delimiters. I find this natu‐
ral and convenient.

Indentation
I like to have just about everything checked under Indentation; I find the way Xcode
lays out code to be excellent with these settings. If a line of code isn’t indenting itself
correctly, select the problematic area and choose Editor → Structure → Re-Indent
(Control-I). Pasted code is not indented automatically unless you’ve checked “Re-
Indent on paste.”

Whether to indent case labels in a switch statement in Swift is a subject of semi‐
religious warfare. I’m not about to get involved.

Multiple Selection
You probably know from experience how to use the mouse and keyboard to select
text. In addition to the familiar forms of selection, Xcode lets you set multiple simul‐
taneous selections in your code. With a multiple selection, your edits, including typ‐
ing and keyboard navigation, are performed at each selection site simultaneously,
which is useful when you have many parallel changes to make. Some ways to get a
multiple selection are:

• Option-click and drag to create a rectangular selection.
• Control-Shift-click (and perhaps drag, double-click, and so on) to add a selection

to the existing selection.
• Select a symbol and choose Editor → Selection → Select All Symbols; each occur‐

rence of that symbol is selected simultaneously. (Alternatively, Editor → Edit All
In Scope selects all occurrences of the currently selected term within the same
scope.)

• Select any text and choose Find → Select Next Occurrence.
• Press Command-F to bring up the search field at the top of the editor, enter a

search term, and choose Find → Find and Select Next, or Find → Select All Find
Matches.

• Select a stretch of code consisting of multiple lines, and choose Editor → Selec‐
tion → Split Selection By Lines.

434 | Chapter 9: Life Cycle of a Project

Figure 9-5. The autocompletion menu

Autocompletion and Placeholders
As you write code, you’ll want to take advantage of Xcode’s autocompletion feature.
Type names and member names can be astonishingly verbose, and whatever reduces
your time and effort typing will be a relief. Autocompletion behavior is governed by
two checkboxes in the Editing pane of the Text Editing preferences:

Suggest completions while typing
If this is checked, autocompletion is basically on all the time.

Use Escape key to show completion suggestions
If this is checked, you can ask for autocompletion manually by pressing Esc.

I like to have the first checkbox unchecked and the second checkbox checked. That
way, I get autocompletion on demand.

Suppose I want my code to create an alert. I type as far as let alert = UIAl and
press Esc. A menu pops up, listing completions, including UIAlertController. You
can navigate this menu, dismiss it, or accept the selection, using the mouse or the
keyboard alone. I like to use the keyboard. I arrow down to UIAlertController and
hit Return, and UIAlertController is entered in my code.

Now I type a left parenthesis, so that I’ve got UIAlertController(, and again I press
Esc. Now the menu pops up listing the initializers appropriate to a UIAlertController
(Figure 9-5). The last one is the one I want, so I arrow down to it and hit Return.

At this point, the template for the method call is entered in my code (I’ve broken it
into multiple lines here):

let alert = UIAlertController(
 title: <#T##String?#>,
 message: <#T##String?#>,
 preferredStyle: <#T##UIAlertController.Style#>)

The expressions in <#...#> are placeholders, showing the type of each parameter.
They appear in Xcode as cartouche-like “text tokens” to prevent them from being

Editing and Navigating Your Code | 435

edited accidentally. To navigate among placeholders, press Tab or choose Navigate →
Jump to Next Placeholder (Control-/). In this way, you can select each placeholder in
turn, typing to replace it with the actual argument you wish to pass and then tabbing
to the next placeholder. To convert a placeholder to a normal string without the
delimiters, select it and press Return, or double-click it.

When you’re entering a declaration for a method that’s inherited from a superclass or
defined in an adopted protocol, you don’t need to type the initial func; just type the
first few letters of the method’s name. In my app delegate class I might type:

app

If I then press Esc, I see a list of methods such as application(_:didFinish-
LaunchingWithOptions:); these are methods that might be sent to my app delegate
(by virtue of its being the app delegate, as discussed in Chapter 11). When I choose
one, the entire declaration is filled in for me, including the curly braces:

func application(_ application: UIApplication,
 didFinishLaunchingWithOptions
 launchOptions: [UIApplication.LaunchOptionsKey : Any]?) -> Bool {
 <#code#>
}

A placeholder for the code appears between the curly braces, and it is selected, ready
for me to start entering the body of the function. If a function needs an override
designation, Xcode’s code completion provides it.

What you type in connection with autocompletion doesn’t have to be the literal start
of a symbol. In the preceding example, I can get application(_:didFinish-
LaunchingWithOptions:) to be the only thing in the code completion menu if I start
by typing launch.

Snippets
Autocompletion is supplemented by code snippets. A code snippet is a bit of text
with an abbreviation. Code snippets are kept in the Snippets library, which appears
when you summon the Library floating window (Command-Shift-L) while editing
code. With the Library showing, you can double-click or drag to insert a snippet into
your code. But the real point is that a code snippet’s abbreviation is available to code
completion, which means you can insert a snippet without showing the library: you
type the abbreviation and the snippet’s name is included among the completions.

For example, to enter a class declaration at the top level of a file, I would type class
and press Esc to get autocompletion, and choose Class — Subclass. The template for
a class declaration appears in my code: the class name and superclass name are place‐
holders, the curly braces are provided, and the body of the declaration (between the
curly braces) is another placeholder.

436 | Chapter 9: Life Cycle of a Project

In the Library, single-click on a snippet to see its details: its expansion, its language,
its platform(s), its code completion abbreviation (labeled Completion), and the scope
where it applies (labeled Availability). If the details don’t appear, click the Details
button at the top right of the Library floating window.

You can add your own snippets to the Snippets library. These will be categorized as
user snippets and will appear first. Unlike built-in snippets, user snippets can be edi‐
ted and deleted.

To create a user snippet, select some text and choose Editor → Create Code Snippet.
The Library floating window will appear, with the new snippet’s details ready for
editing. Provide a name, a description, and an abbreviation; the Availability pop-up
menu lets you narrow the scope in which the snippet will be available through code
completion. In the text of the snippet, use the <#...#> construct to form any desired
placeholders.

I’ve created an outlet snippet (Chapter 7), with an availability scope of Class Imple‐
mentation, defined like this:

@IBOutlet private var <#name#> : <#type#>!

And I’ve created an action snippet, defined like this:

@IBAction private func <#name#> (_ sender: Any) {
 <#code#>
}

My other snippets constitute a personal library of utility functions that I’ve devel‐
oped. My delay snippet inserts my DispatchQueue.main.asyncAfter wrapper func‐
tion (see Chapter 11), and has an availability scope of Top Level.

Refactoring and Structure Editing
Refactoring is an intelligent form of code reorganization. To use it, select within your
code and then choose from the Editor → Refactor hierarchical menu, or Control-
click and choose from the Refactor hierarchical menu in the contextual menu. Here
are some of the refactoring commands you’re most likely to use:

Rename
The selected symbol’s declaration and all references to it are changed, through‐
out your code. This also allows you to change the name of an outlet property or
action method without breaking the connection from the nib (Chapter 7).

Extract to Method
Creates a new method and moves the selected lines of code into the body of that
method, replacing the original lines with a call to that method. The method name
and the new call to it are then selected, ready for you to supply a meaningful
name.

Editing and Navigating Your Code | 437

Extract to Variable
Creates a new variable and assigns the selected code expression to that variable,
replacing the original expression with a reference to the variable. If the same
expression appears multiple times and you choose Extract All Occurrences, they
are all replaced with a reference to the variable. The variable name and the new
reference(s) to it are then selected, ready for you to supply a meaningful name.

Add Missing Protocol Requirements
In a type declaration, when the type name is selected, if the type declares adop‐
tion of a protocol and does not in fact conform to the protocol’s requirements,
inserts stubs declaring the missing required members.

Generate Memberwise Initializer
In a type declaration, when the type name is selected, synthesizes an initializer
based on the instance property names. This is a great convenience for classes,
because they, unlike structs, have no implicit memberwise initializer. It can also
be useful for structs, because if you add an initializer to a struct, you lose the
implicit memberwise initializer — so this is a way to regain it.

Expand Switch Cases
In a switch statement where the tag is an enum, when the keyword switch is
selected, adds any missing cases.

Wrap in NSLocalizedString
When the selection is inside a literal string, replaces the literal string with a call to
NSLocalizedString where the literal string is the key. This is useful when localiz‐
ing your app, as I’ll explain later in this chapter.

Another way to refactor is to Command-click (or, depending on your Navigation
preferences, Command-Control click) in a keyword that introduces curly braces. A
popover appears containing menu items that let you edit the structure of your code.
Some of the popover menu commands are like the refactoring commands I’ve just
listed. Others let you insert templates for standard structural components associated
with that keyword:

A class or struct declaration (click class or struct)
Add Method and Add Property

A method declaration (click func)
Add Parameter and Add Return Type

An if construct (click if)
Add “else” Statement and Add “else if” Statement

A switch statement (click switch)
Add “case” Statement and Add “default” Statement

438 | Chapter 9: Life Cycle of a Project

Figure 9-6. A compile error with a Fix-it suggestion

Fix-it and Live Syntax Checking
Xcode’s Fix-it feature allows the compiler to make and implement positive sugges‐
tions on how to avert a problem that has arisen as a warning or compile error. In
effect, you’re getting the compiler to edit your code for you.

Here’s an example. Figure 9-6, at the top, shows that I’ve accidentally forgotten the
parentheses after a method call. This causes a compile error. But the stop-sign icon
next to the error tells me that Fix-it has a suggestion. I click the stop-sign icon, and
Figure 9-6, at the bottom, shows what happens: a dialog pops up, not only showing
the full error message but also telling me how Fix-it proposes to fix the problem — by
inserting the parentheses. If I click the Fix button in the dialog, Xcode does insert the
parentheses — and the error vanishes, because the problem is solved.

The intelligence of Fix-it is sometimes the same as the intelligence of refactoring. If a
switch statement’s tag is an enum and you omit cases, Fix-it will add them. If a type
adopts a protocol and fails to implement required members, Fix-it will insert stubs
for those members.

If you’re confident that Fix-it will do the right thing, you can have it implement
all suggestions simultaneously: choose Editor → Fix All Issues.

Live syntax checking is like continual compilation, emitting a warning or error even
if you don’t actually compile. This feature can be toggled on or off using the “Show
live issues” checkbox in Xcode’s General preference pane. I keep it turned off,
because I find it intrusive. My code is almost never valid while I’m in the middle of
typing, because things are always half-finished; that’s what it means to be typing!
Merely typing let and pausing will likely cause the live syntax checker to complain.

Navigation
Developing an Xcode project involves editing code in many files. You’ll need to leap
nimbly from file to file; you might want to see multiple files simultaneously. Fortu‐
nately, Xcode provides numerous ways to navigate your code, some of which have
been mentioned already in Chapters 6 and 8:

Editing and Navigating Your Code | 439

The Project navigator
Lists all your project’s files by name. If you know something about the name of a
file, you can find it quickly in the Project navigator by typing into the search field
in the filter bar at the bottom of the navigator (Edit → Filter → Filter in Naviga‐
tor, Command-Option-J). For example, type story to see just your .storyboard
files.

The Symbol navigator
If you highlight the first two icons in the filter bar (so that they are filled), the
Symbol navigator lists your project’s object types and their members. Click a
symbol to navigate to its declaration in the editor. As with the Project navigator,
the filter bar’s search field can help get you where you want to go.

The jump bar
Every path component of an editor pane’s jump bar is a menu:

The bottom level
At the jump bar’s bottom level (the rightmost menu, Control-6) is a list of
your file’s object and member declarations, in the order in which they
appear. Hold Command while choosing the menu to see them in alphabeti‐
cal order instead. To filter what the menu displays, start typing while the
menu is open.

Another useful trick is to inject section titles into this menu; to do so, put a
comment in your code whose first word is MARK:, TODO:, or FIXME:, followed
by the section title. To make a divider line in the menu, put a hyphen:

// MARK: - View lifecycle

Higher levels
Higher-level path components are hierarchical menus; you can use any of
them to work your way down the file hierarchy and reach any file without
using the project navigator. These menus can also be filtered.

History
Each editor pane remembers the names of files you’ve edited in it. The Back
and Forward indicators are buttons as well as pop-up menus (or choose
Navigate → Go Back and Navigate → Go Forward, Command-Control-Left
and Command-Control-Right).

Related items
The leftmost button in the jump bar summons the Related Items menu, a
hierarchical menu of files related to the current file, such as superclasses and
adopted protocols. This list even includes functions that call or are called by
the currently selected function.

440 | Chapter 9: Life Cycle of a Project

Editor panes
Using multiple editor panes allows you to work in two places at once.

Assistant pane
The assistant pane lets you walk through all places that relate to your code in a
specific way, such as all callers of a selected method.

Document tabs
Using document tabs allows a single editor pane to be switched between specific
places where you want to work.

Window tabs and windows
You can work in two places at once by opening a window tab or a separate win‐
dow.

Jump to definition
Navigate → Jump to Definition (Command-Control-J, Command-Control-click)
lets you jump from a selected or clicked symbol in your code to its declaration.

Open quickly
File → Open Quickly (Command-Shift-O) opens a dialog where you can search
for a symbol in your code and in the framework headers.

Breakpoints
The Breakpoint navigator lists all breakpoints in your code. Xcode lacks code
bookmarks, but you can misuse a breakpoint as a bookmark. Breakpoints are dis‐
cussed later in this chapter.

Minimap
The minimap helps you navigate a single large source code file. To see it, choose
Editor → Minimap, or use the Editor Options pop-up menu at the top right of
the editor pane. The minimap displays the entire file in miniature — too small to
read, but indicating the structure of the code, including MARK: comments, along
with transients such as warnings and errors, change bars, breakpoints, and Find
results. Drag the shaded area to scroll. Hover the mouse to display structure and
symbols; hold Command while hovering to display all symbols (Figure 9-7).
Click a symbol to navigate to it.

Finding
Finding is a form of navigation. Xcode has both an editor level find and a global find.
You’ll want to configure your search with find options:

Editing and Navigating Your Code | 441

Figure 9-7. The minimap

Editor level find (Find → Find, Command-F)
Appears in a bar at the top of the editor pane. A button at the right end of the
search field toggles case-sensitive search; a pop-up menu lets you specify con‐
tainment, word exact match, word start, word end, or regular expression search.

Global find (Find → Find in Project, Command-Shift-F)
Appears in the Find navigator. The options appear above and below the search
field. Above the search field, you can choose between Text, References (where a
symbol is used), Definitions (where a symbol is defined), Regular Expression,
and Call Hierarchy (tracing call stacks backward); you can search by word con‐
tents, word exact match, word start, or word end. Below the search field, you can
toggle case sensitivity, and you can specify a scope determining which files will
be searched: click the current scope to see the Search Scopes panel, where you
can select a different scope or create a custom scope.

Globally finding the Call Hierarchy is one of Xcode’s best, yet least-known, fea‐
tures. It displays hierarchically the complete call stack, tracing all the paths by
which the search target is accessed. When you’re struggling to understand how
your code works (or doesn’t), this display is magic. There’s even a shortcut: select
a term and choose Find → Find Call Hierarchy.

To find and replace:

Editor level find and replace
Next to the magnifying glass icon, click Find and choose Replace to toggle the
visibility of the With field. You can perform a Find and then click Replace to
replace that instance, or click All to replace all occurrences (hold Option to
change it to All in Selection).

442 | Chapter 9: Life Cycle of a Project

Global find and replace
Above the left end of the search bar, click Find and choose Replace. You can
replace all occurrences (Replace All), or select particular find results in the Find
navigator and replace only those (Replace); conversely, you can press Delete to
remove a find result from the Find navigator, to protect it from being affected by
Replace All.

Running in the Simulator
When you build and run with a simulator as the destination, you run in the Simula‐
tor application. A Simulator window represents a specific type of device. Depending
on your app target’s Deployment Target and Targeted Device Family build settings,
and on what SDKs you have installed, you may have choices about the device type
and system as you specify your destination before running (see Chapter 6).

The Simulator can display multiple windows, representing different devices. You can
run different projects simultaneously, in the same Simulator window or different
Simulator windows. When you choose from the Simulator’s File → Open Simulator
hierarchical menu, you switch to the window representing the chosen device, launch‐
ing that device’s simulator if needed.

A Simulator window can display the bezel surrounding the device’s screen. Choose
Window → Show Device Bezels to toggle this feature (for all windows). Displaying
the bezel allows you to press hardware buttons (Home button, volume buttons,
screen lock button) by clicking the mouse; also, certain gestures, such as swiping
from the screen edge, become easier to perform. On the other hand, hiding the bezel
is arguably neater, and all those hardware buttons are still available through menu
commands.

A Simulator window can be resized by dragging an edge or corner. You also have a
choice of three standard sizes (you might have to uncheck Show Device Bezels to
enable them all):

Window → Physical Size
The device screen displayed on your computer monitor is the size of the screen
of the physical device. If you hold up the physical device next to the Simulator
window on the monitor, the screen dimensions will match perfectly.

Window → Point Accurate
One point on the device screen is one point on the computer monitor. An
iPhone 6s screen is 375 points wide, so it occupies 375 points of computer screen
width.

Running in the Simulator | 443

Window → Pixel Accurate
One pixel on the device screen is one pixel on the computer monitor. My com‐
puter monitor is single-resolution, but an iPhone 6s is double-resolution, so it
occupies 750 pixels of computer screen width. If your computer monitor resolu‐
tion matches the resolution of the device, Pixel Accurate and Point Accurate are
the same.

New in Xcode 12, you can also maximize the Simulator window with Window → Fit
Screen; you can float the Simulator window in front of all other applications, includ‐
ing Xcode; and you can tile it into fullscreen mode, which is useful for splitting the
screen between just the Simulator and Xcode.

You can interact with the Simulator in some of the same basic ways as you would a
device. Using the mouse, you can tap on the device’s screen; hold Option to make the
mouse represent two fingers moving symmetrically around their common center,
and Option-Shift to represent two fingers moving in parallel.

For an iPad, you can also capture the keyboard or (new in Xcode 12) the keyboard
and pointer; buttons for toggling this appear above the Simulator window. That
means you’re simulating a hardware keyboard or mouse being connected; a captured
pointer belongs entirely to the Simulator, so now you can’t use your mouse to do
anything else until you end capture mode by pressing Esc (or whichever keyboard
shortcut you’ve specified in the Simulator preferences).

Items in the Device menu let you perform hardware gestures such as rotating the
device, shaking it, locking its screen, and clicking the Home button; starting in Xcode
11.4, buttons for clicking Home and rotating the device are visible above the simula‐
tor window as well.

Items in the Features menu let you test your app by simulating special situations such
the arrival of a phone call or the user switching between light and dark mode (Toggle
Appearance).

The Debug menu in the Simulator is useful for detecting problems with animations
and drawing. Slow Animations, if checked, makes animations unfold in slow motion
so that you can see in detail what’s happening. The four menu items whose names
begin with Color reveal possible sources of inefficiency in screen drawing. Simulate
Memory Warning lets you pretend your app is running low on memory.

The Simulator application supports “side-loading” of apps. This means you can get
an app onto a simulator without launching it from Xcode. To do so, drag a built .app
file from the Finder onto an open simulator window. Various other types of resource,
such as images and push notification payloads, can be side-loaded as well.

While running your app from Xcode in the Simulator, you can change certain user
settings on the simulated device without passing through the Settings app. In the

444 | Chapter 9: Life Cycle of a Project

debug bar, click the Environment Overrides button to summon a popover where you
can switch between light and dark modes, change the dynamic text size, and alter var‐
ious accessibility settings.

Another powerful way to control a simulator is from the command line. In the Ter‐
minal, type xcrun simctl to see a list of things you can do. Among other things, in
addition to side-loading files, you can change your app’s privacy permissions, manip‐
ulate its keychain, and send it an external URL (such as a universal link).

In Xcode 11 and before, closing a Simulator window stops the corresponding simula‐
tor; to use that simulator again later, it must be rebooted. New in Xcode 12, the Pref‐
erences let you elect to keep simulators running when closed and even when the
Simulator app isn’t running.

Debugging
Debugging is the art of figuring out what’s wrong with the behavior of your app as it
runs. I divide this art into two main techniques: caveman debugging and pausing
your running app.

Caveman Debugging
Caveman debugging consists of altering your code, usually temporarily. Typically,
you’ll add code to produce informative messages that you’ll read in the Xcode con‐
sole in the project window’s Debug pane as your app runs.

The simplest Swift command for sending a message to the Xcode console is the print
function. You might print a string saying where the path of execution is:

print("view did load")

You might output a value:

print("i is", i)

When you print an object, the output comes from that object’s description prop‐
erty. Cocoa objects generally have a useful built-in description property implemen‐
tation:

print(self.view)

The output in the console reads something like this (I’ve formatted it for clarity here):

<UIView: 0x79121d40;
 frame = (0 0; 320 480);
 autoresize = RM+BM;
 layer = <CALayer: 0x79121eb0>>

We learn the object’s class, its address in memory (useful for confirming whether two
instances are in fact the same instance), and the values of some additional properties.

Debugging | 445

In your own object types, you can adopt CustomStringConvertible and implement
the description property as desired (Chapter 4).

Instead of print, you might like to use dump. Its console output describes an object
along with its class inheritance and its instance properties, by way of a Mirror object:

dump(self)

If self is a view controller of class ViewController with a didInitialSetup instance
property, the console output looks like this:

* ViewController
 - super: UIViewController
 - super: UIResponder
 - super: NSObject
 - didInitialSetup: true

In your own object types, you can adopt CustomReflectable and implement the
customMirror property as desired (Chapter 5).

An important feature of print and dump is that they are effectively suppressed when
the app is launched independently of Xcode. That’s good, because it means you’re
free to pepper your code with print statements and they’ll have no effect on your app
in the real world. But what if you want to send yourself messages when you’re run‐
ning the app independently of Xcode?

The traditional solution is to import Foundation (which, in real-life iOS program‐
ming, you’re already doing) and call the NSLog C function. It takes an NSString which
operates as a format string, followed by the format arguments. A format string is a
string containing symbols called format specifiers, for which values (the format argu‐
ments) will be substituted at runtime. See “String Format Specifiers” in Apple’s String
Programming Guide in the documentation archive. All format specifiers begin with a
percent sign (%), so the only way to enter a literal percent sign in a format string is as
a double percent sign (%%). The character(s) following the percent sign specify the
type of value that will be supplied at runtime. The most common format specifiers
are %@ (an object reference), %d (an int), %ld (a long), and %f (a double):

NSLog("the view: %@", self.view)

In that example, self.view is the first (and only) format argument, so its value will
be substituted for the first (and only) format specifier, %@, when the format string is
printed in the console:

2015-01-26 10:43:35.314 Empty Window[23702:809945]
 the view: <UIView: 0x7c233b90;
 frame = (0 0; 320 480);
 autoresize = RM+BM;
 layer = <CALayer: 0x7c233d00>>

446 | Chapter 9: Life Cycle of a Project

Over the past several years, NSLog has gradually been superseded by a new unified
logging system, OSLog. It still uses format specifiers, but it adds some specialized effi‐
ciencies and lifts some limits on the length of a message. New in iOS 14 and Swift 5.3,
a Swift native type, Logger, acts as a comfortable façade for OSLog. To use Logger,
import os and create a Logger object, typically as an instance property or global:

import os
let mylog = Logger(subsystem: "com.neuburg.matt", category: "testing")

The subsystem and category strings are arbitrary but useful, because you can refer to
them to focus on the particular log messages that interest you. To send a log message,
call a method of your Logger instance; to start with, you can use log:

mylog.log("this is a test")

The argument has to be a literal string, but it can include string interpolations.
Behind the scenes, your interpolations are turned into NSLog format specifiers and
arguments, and are evaluated efficiently at runtime outside of your app’s process, so
that they don’t slow down the app itself:

mylog.log("this is a test of \(self)")

When you run the app from Xcode, log messages from NSLog, OSLog, and Logger
appear in the Xcode console, and are tagged with the current time and date, along
with the process name, process ID, and thread ID (useful for determining whether
two logging statements are called on the same thread). With Logger, the category
from your Logger configuration is also present, in square brackets; this gives you
something to filter on so that only the desired messages appear.

Even more important, these log messages appear even when the app is running out‐
side of Xcode. To view them, use the Console application. In the Sources pane at the
left, under Devices, are shown all running simulators and any devices currently visi‐
ble to the computer. Select the desired device and exercise the app, while watching
the Console output. To eliminate unwanted output, set up a filter in the toolbar
search field. You can filter by the name of the process (that is, the name of your app);
even better, you can filter by the subsystem and category you configured when creat‐
ing your Logger object. You can specify what information to show by choosing the
columns that appear, such as the Time, Process, Thread ID, Category, Subsystem,
and Type columns.

But perhaps you didn’t have the Console application configured and ready at the
time you ran your app? Then there’s another option: you can read your log messages
after the fact. To do so, use the log command-line tool. Suppose I say this in the
Terminal:

% sudo log collect --device-name "TheMattPhone" --last 1h

Debugging | 447

The result is that my home directory now contains a file called system_logs.logarchive.
I can open this file with the Console application and explore it with filtering in
exactly the same way as I’ve just described for a live logging stream. Alternatively, I
can filter in the Terminal with another log command:

% log show --predicate 'category == "testing"' system_logs.logarchive

Bear in mind that what you can do, the user can do. The user can see your logging
messages just as well as you can. For this reason, string interpolations are redacted by
default when your app is running independently of Xcode. If you want an interpola‐
tion to be always legible in the Console or the system log, you have to specify that it is
public, using a Swift 5 string interpolation parameter:

mylog.log("this is a test of \(self, privacy: .public)")

You can also use string interpolation parameters to perform various sorts of string
formatting that you would otherwise have had to perform using NSLog format specifi‐
ers, such as dictating the number of digits after the decimal point and other sorts of
padding and alignment:

mylog.log("the number is \(i, format: .decimal(minDigits: 5))") // e.g. 00001

Another way to mediate between public and private logging is by specifying the log‐
ging level at which messages are to be sent. To do so, call a Logger instance method
that specifies the level: the methods are debug, info, notice (same as log), error,
and fault. The significance of logging levels is:

Noisiness
What you’re categorizing is how bad the situation is. fault means that, if we log
this at all, there is an unexpected bug in the program.

Persistence
A debug message is not written into the log file and doesn’t propagate to the
Console application. So it works more like print: only you can see it, and only
while running the app from Xcode. The others are written into the log file, and
the level reflects how hard the message will resist being expunged as time elapses
and further data is accumulated.

Lagginess
A debug message has the least overhead, because there is no need to talk to the
file-writing mechanism, and on the user’s device the format specifier arguments
won’t even be evaluated, so the expense is effectively zero.

Interface
The levels correspond to markings in the Console application. A fault message
calls attention to itself with a red filled dot.

448 | Chapter 9: Life Cycle of a Project

Another useful form of caveman debugging is deliberately aborting your app because
something has gone seriously wrong. See the discussion of assert, precondition,
and fatalError in Chapter 5. precondition and fatalError work even in a Release
build. By default, assert is inoperative in a Release build, so it is safe to leave it in
your code when your app is ready to ship; by that time, of course, you should be con‐
fident that the bad situation your assert was intended to detect has been debugged
and will never actually occur.

Purists may scoff at caveman debugging, but I use it heavily: it’s easy, informative,
and lightweight. And sometimes it’s the only way. Unlike the debugger, console log‐
ging works with any build configuration (Debug or Release) and wherever your app
runs (in the Simulator or on a device). It works when pausing is impossible (because
of threading issues, for instance). It even works on someone else’s device, such as a
tester to whom you’ve distributed your app.

Swift defines four special literals, particularly useful when logging because they
describe their own location within the source code: #file, #line, #column, and
#function.

The Xcode Debugger
When Xcode is running your app, you can pause in the debugger and use Xcode’s
debugging facilities. The important thing, if you want to use the debugger, is that the
app should be built with the Debug build configuration (the default for a scheme’s
Run action). The debugger is not very helpful against an app built with the Release
build configuration, not least because compiler optimizations can destroy the corre‐
spondence between steps in the compiled code and lines in your source code.

Breakpoints
There isn’t a strong difference between running and debugging in Xcode; the main
distinction is whether breakpoints are effective or ignored. The effectiveness of
breakpoints can be toggled at two levels:

Globally (active vs. inactive)
Breakpoints as a whole are either active or inactive. If breakpoints are inactive,
we won’t pause at any breakpoints.

Individually (enabled vs. disabled)
A given breakpoint is either enabled or disabled. Even if breakpoints are active,
we won’t pause at this one if it is disabled. Disabling a breakpoint allows you to
leave in place a breakpoint that you might need later without pausing at it every
time it’s encountered.

Debugging | 449

Figure 9-8. A breakpoint

To create a breakpoint, select in the editor the line where you want to pause, and
choose Debug → Breakpoints → Add/Remove Breakpoint at Current Line
(Command-\). This menu item toggles between adding and removing a breakpoint
for the current line. Alternatively, a simple click in the gutter adds a breakpoint. The
breakpoint is symbolized by an arrow in the gutter (Figure 9-8, first). To remove a
breakpoint gesturally, drag the arrow out of the gutter.

To disable a breakpoint at the current line, click the breakpoint in the gutter to toggle
its enabled status. Alternatively, select in the line and choose Debug → Breakpoints
→ Enable/Disable Breakpoint at Current Line; or Control-click the breakpoint and
choose Enable/Disable Breakpoint in the contextual menu. A dark breakpoint is
enabled; a light breakpoint is disabled (Figure 9-8, second).

To toggle the active status of breakpoints as a whole, click the Breakpoints button in
the debug bar, or choose Debug → Activate/Deactivate Breakpoints (Command-Y).
If breakpoints are inactive, they are simply ignored en masse, and no pausing at
breakpoints takes place. Breakpoint arrows are a solid color if breakpoints are active,
gray if they are inactive (Figure 9-8, third). The active status of breakpoints as a
whole doesn’t affect the enabled or disabled status of any breakpoints.

Once you have some breakpoints in your code, you’ll want to survey and manage
them. That’s what the Breakpoint navigator is for. Here you can navigate to a break‐
point, enable or disable a breakpoint by clicking on its arrow in the navigator, and
delete a breakpoint.

You can also configure a breakpoint’s behavior. Control-click the breakpoint, in the
gutter or in the Breakpoint navigator, and choose Edit Breakpoint; or double-click
the breakpoint. You can have a breakpoint pause only under a certain condition or
after it has been encountered a certain number of times, and you can have a break‐
point perform one or more actions when it is encountered, such as issuing a debug‐
ger command, logging, playing a sound, speaking text, or running a script. A
breakpoint whose behavior has been configured is badged (Figure 9-8, fourth).

A breakpoint can be configured to continue automatically after performing its action
when it is encountered. A breakpoint that logs and continues can be an excellent
alternative to caveman debugging. By definition, such a breakpoint operates only

450 | Chapter 9: Life Cycle of a Project

when you’re actively debugging the project; it won’t dump any messages into the
console when the app runs independently, because breakpoints exist only in Xcode.

Certain special kinds of breakpoint (event breakpoints) can be created in the Break‐
point navigator — click the Plus button at the bottom of the navigator and choose
from its pop-up menu — or by choosing from the Debug → Breakpoints hierarchical
menu. Here are the ones you’re most likely to use:

Swift error breakpoint
Pauses when your code says throw.

Exception breakpoint
Pauses when an Objective-C exception is thrown or caught, without regard to
whether the exception would crash your app later. An exception breakpoint that
pauses on all exceptions when they are thrown gives the best view of the call
stack and variable values at the moment of the exception.

(Sometimes Apple’s code will throw an exception and catch it, deliberately. This
isn’t a crash, and nothing has gone wrong; but if you’ve created an exception
breakpoint, your app will pause at it, which can be confusing. If this happens to
you, choose Debug → Continue to resume your app; if it keeps happening, you
might need to disable the exception breakpoint.)

Symbolic breakpoint
Pauses when a certain method or function is called, regardless of what object
called it. The method doesn’t have to be your method! A symbolic breakpoint
can help you probe Cocoa’s behavior. A method may be specified in one of two
ways:

Using Objective-C method notation
The instance method or class method symbol (- or +) followed by square
brackets containing the class name and the method name:

-[UIApplication beginReceivingRemoteControlEvents]

By Objective-C method name
The Objective-C method name alone. The debugger will resolve this for you
into all possible class–method pairs, as if you had entered them using the
Objective-C notation that I just described:

beginReceivingRemoteControlEvents

If you enter the method specification incorrectly, the symbolic breakpoint won’t
do anything; however, you might be assisted by code completion, and in general
you’ll know if you got things right, because you’ll see the resolved breakpoint(s)
listed hierarchically below yours (though resolution may not take place until you
actually run the project).

Debugging | 451

Figure 9-9. Paused at a breakpoint

Breakpoints come in three levels of exposure:

Local to you and a project
The default. The breakpoint appears in this project on this machine.

Global to you
Use the contextual menu to say Move Breakpoint To → User. The breakpoint
now appears in all your projects on this machine. Symbolic and exception break‐
points are particularly good candidates for this level.

Shared with others
Use the contextual menu to say Share Breakpoint. The breakpoint is now visible
in this project to others with whom you share the project.

Paused at a breakpoint
When the app runs with breakpoints active and an enabled breakpoint is encoun‐
tered (and assuming its conditions are met, and so on), the app pauses. In the active
project window, the editor shows the file containing the point of execution, which
will usually be the file containing the breakpoint. We are paused at the line that is
about to be executed, which is shown by the instruction pointer (Figure 9-9). Depend‐
ing on the settings for Running → Pauses in the Behaviors preference pane, the
Debug navigator and the Debug pane may also appear.

Here are some things you might like to do while paused at a breakpoint:

See where you are
One common reason for setting a breakpoint is to make sure that the path of exe‐
cution is passing through a certain line. Functions listed in the call stack in the
Debug navigator with a User icon are yours; click one to see where you are
paused in that function. (Other listings are functions and methods for which you
have no source code, so there would be little point clicking one unless you know
something about assembly language.) You can also view and navigate the call
stack using the jump bar in the debug bar.

Study variable values
In the Debug pane, variable values for the current scope (corresponding to
what’s selected in the call stack) are visible in the variables list. You can see addi‐
tional object features, such as collection elements, properties, and even some pri‐
vate information, by opening disclosure indicators.

452 | Chapter 9: Life Cycle of a Project

Figure 9-10. A data tip

You can use the search field to filter variables by name or value. If a formatted
summary isn’t sufficiently helpful, you can send description (or, if this object
adopts CustomDebugStringConvertible, debugDescription) to an object vari‐
able and view the output in the console: choose Print Description of [Variable]
from the contextual menu, or select the variable and click the Info button below
the variables list.

You can also view a variable’s value graphically: select the variable and click the
Quick Look button (an eye icon) below the variables list, or press the space bar.
For example, in the case of a CGRect, the graphical representation is a correctly
proportioned rectangle. You can make instances of your own custom class view‐
able in the same way; declare the following method and return an instance of one
of the permitted types (see Apple’s Quick Look for Custom Types in the Xcode
Debugger in the documentation archive):

@objc func debugQuickLookObject() -> Any {
 // ... create and return your graphical object here ...
}

You can also inspect a variable’s value in place in your code, by examining its
data tip. To see a data tip, hover the mouse over the name of a variable in your
code. The data tip is much like the display of this value in the variables list:
there’s a disclosure indicator that you can open to see more information, plus an
Info button that displays the value description here and in the console, and a
Quick Look button for showing a value graphically (Figure 9-10).

Set a watchpoint
A watchpoint is like a breakpoint, but instead of depending on a certain line of
code it depends on a variable’s value: the debugger pauses whenever the vari‐
able’s value changes. You can set a watchpoint only while paused in the debug‐
ger. Control-click the variable in the variables list and choose Watch [Variable].
Watchpoints, once created, are listed and managed in the Breakpoint navigator.

Debugging | 453

Inspect your view hierarchy
You can study the view hierarchy while paused in the debugger. Click the Debug
View Hierarchy button in the debug bar, or choose Debug → View Debugging →
Capture View Hierarchy. Views are listed in an outline in the Debug navigator.
The editor displays your views; this is a three-dimensional projection that you
can rotate. The Object inspector and the Size inspector display information
about the currently selected view.

Inspect your object graph
Using the Memory Debugger, you can study the object graph (what objects
you’ve created and how they refer to one another) while paused in the debugger.
I’ll talk more about that later in this chapter.

Manage expressions
An expression is code to be added to the variables list and evaluated every time
we pause. Choose Add Expression from the contextual menu in the variables list.
The expression is evaluated within the current context in your code, so be careful
of side effects.

Talk to the debugger
You can communicate directly with the debugger through the console. Xcode’s
debugger interface is a front end to the real debugger, LLDB (http://
lldb.llvm.org); by talking directly to LLDB, you can do everything that you can do
through the Xcode debugger interface, and more. Common commands are:

ty loo (short for type lookup)
Followed by a type name, dumps a full declaration for the type, listing all its
members (properties and methods). For Cocoa classes, you might get better
information by performing the lookup in Objective-C:

(lldb) ty loo -l objc -- ClassName

v (or fr v, short for frame variable)
Alone, prints out all variables locally in scope, similar to the display in the
variables list. Alternatively, can be followed by the name of a variable you
want to examine. Fast and lightweight because it reaches right into the stack
and grabs the value, but it has some limitations; for obvious reasons, it
doesn’t work for computed properties.

p (or expression, expr, or simply e)
Compiles and executes, in the current context, any expression in the current
language. Be careful of your expression’s side effects! This is more heavy‐
weight than v.

454 | Chapter 9: Life Cycle of a Project

http://lldb.llvm.org
http://lldb.llvm.org

po (meaning “print object”)
Like p, but displays the value of the executed expression in accordance with
its description or debugDescription (similar to Print Description). It is
actually an alias for expr -O, meaning “object description.” Twice as expen‐
sive as p because it has to be compiled and executed twice.

Fiddle with breakpoints
You are free to create, destroy, edit, enable and disable, and otherwise manage
breakpoints even while your app is running, which is useful because where you’d
like to pause next might depend on what you learn while you’re paused here.
Indeed, this is one of the main advantages of breakpoints over caveman debug‐
ging. To change your caveman debugging, you have to stop the app, edit it,
rebuild it, and start running the app all over again. But to fiddle with break‐
points, you don’t have to be stopped; you don’t even have to be paused! An oper‐
ation that went wrong, if it doesn’t crash your app, can probably be repeated in
real time, so you can just add a breakpoint and try again. If tapping a button pro‐
duces the wrong results, you can add a breakpoint to the action method and tap
the button again; you pass through the same code, and this time you pause and
can work out what the trouble is.

Continue or step
To proceed with your paused app, you can either resume running or take one
step and pause again. The commands are in the Debug menu, or you can click
the convenient buttons in the debug bar:

Continue
Resume running (until a breakpoint is encountered).

Step Over
Pause at the next line.

Step Into
Pause in your function that the current line calls, if there is one; otherwise,
pause at the next line.

Step Out
Pause when we return from the current function.

Start over, or abort
To kill the running app, click Stop in the toolbar (Product → Stop, Command-
Period). Clicking the Home button in the Simulator (Hardware → Home) or on
the device does not stop the running app.

You can make changes to your code while the app is running or paused in the Simu‐
lator or on a device, but those changes are not magically communicated to the

Debugging | 455

running app. To see your changes in action, you must stop the running app, build,
run, and launch the app all over again.

However, you can inject changes into your code by means of an expr command,
given either at the LLDB console or through a custom-configured breakpoint. More‐
over, you can skip a line of code by dragging the instruction pointer down; if you
combine that with expr, you’ve effectively replaced one line of code with another. So
it may be possible to modify your app’s logic and test a proposed change to your code
without rebuilding and relaunching.

Local variable values can exist even if, at the point where you are paused, those
variables have not yet been initialized; but such values are meaningless, so ignore
them. This applies to the variables list, data tips, and so forth. Forgetting this is a
common beginner mistake.

Testing
A test is code that isn’t part of your app target; its purpose is to exercise your app and
make sure that it works as expected. Tests can be broadly of two kinds:

Unit tests
A unit test exercises your app internally, from the point of view of its code. A unit
test might call some method in your code, handing it various parameters and
looking to see if the expected result is returned each time, not just under normal
conditions but also when incorrect or extreme inputs are supplied.

Interface (UI) tests
An interface test exercises your app externally, from the point of view of a user.
Such a test guides your app through use case scenarios by effectively tapping but‐
tons with a ghost finger, watching to make sure that the interface behaves as
expected.

(You may sometimes hear a third type of test distinguished, an integration test. In
Xcode, an integration test is a higher-level form of unit test.)

Tests — especially unit tests — should ideally be written and run constantly as you
develop your app. It can even be useful to write unit tests before writing the real code,
as a way of developing a working algorithm. Having initially ascertained that your
code passes your tests, you continue to run those tests to detect whether a bug has
been introduced during the course of development (when that happens, it’s called a
regression).

Tests are bundled in a separate target (see Chapter 6). The app templates give you an
opportunity to add test targets at the time you create your project. Alternatively, you
can easily create a new test target at any time: make a new target and specify iOS →
Test → Unit Testing Bundle or UI Testing Bundle.

456 | Chapter 9: Life Cycle of a Project

A test class is a subclass of XCTestCase, which is itself a subclass of XCTest. A test
method is an instance method of a test class, returning no value and taking no
parameters, whose name starts with test. A test method does not run — indeed, it is
not even compiled — until you explicitly ask it to do so. The test target has a depend‐
ency upon the main target that it tests (usually, your app target); this means that
when a test class is to be compiled and built, the main target will be compiled and
built automatically first. But building the main target (with Product → Build,
Command-B, or Product → Run, Command-R) does not build the test target! To
build a test target so as to learn whether its code compiles successfully, but without
running a test method, choose Product → Build For → Testing (Command-Shift-U).

Each test method that runs may succeed or fail; more precisely, it succeeds if it
doesn’t fail. A test method can fail in two ways:

Assertions
A test method may call one or more assertions. These are global functions whose
names begin with XCTAssert; for a list, see the XCTest class documentation. If
any assertion fails, the test method fails.

By default, a test method continues running after an assertion fails. That might
not be what you want; arguably, failure puts the test method in a bad state. To
prevent it, set the continueAfterFailure property of your XCTestCase to false
beforehand.

Throws
A test method can be declared with throws. In that case, throwing an error in the
body of the method counts as the test failing. Throwing aborts the test method
immediately.

Alternatively, rather than succeeding or failing, a test method declared with throws
may be skipped. The idea is that you skip a test based on conditions discovered at
runtime (for instance, perhaps this test makes sense only on a certain kind of device).
To test those conditions, you can call a global function, either XCTSkipIf or XCTSkip-
Unless; these are throwing functions, so the call is preceded by try, and what they
throw is an XCTSkip instance. Or you can test the conditions yourself, and construct
and throw your own XCTSkip instance. When an XCTSkip instance is thrown, the
test method is aborted and neither succeeds nor fails.

A test class may contain utility methods that are called by the test methods; their
names do not begin with test. New in Xcode 12, a utility method can behave like a
test method — that is, it can fail through an assertion or by throwing — and the call
stack is traced to point the finger at the right spot.

To accompany your test methods, you can override any of these special methods
inherited from XCTestCase:

Testing | 457

setUp class method
Called once before all test methods in the class.

setUp instance method
Called before each test method. Starting in Swift 5.2, there’s a throwing alterna‐
tive: setUpWithError. If you implement both setUp and setUpWithError, the
error method is executed first.

tearDown instance method
Called after each test method. Starting in Swift 5.2, there’s a throwing alternative:
tearDownWithError. If you implement both tearDown and tearDownWithError,
the error method is executed last.

tearDown class method
Called once after all test methods in the class.

Each test method runs in its own separate XCTestCase instance. So if your
XCTestCase has instance properties, there is no need to use setUp or tearDown
just to reinitialize them; they are automatically initialized before each test
method is called.

As an alternative to the tearDown instance method, you can use a teardown block. To
do so, call self.addTeardownBlock(_:) with a function (typically an anonymous
function) to be called at teardown time; self here is the XCTestCase instance. When
the teardown block is called depends on where it is added; if you call addTeardown-
Block within a test method, the block is called only on exit from that method, but if
you call it in the setUp instance method, the block is called after every test method,
because the block was added freshly before every test method.

Running a test also runs the app. The test target’s product is a bundle; a unit test bun‐
dle is loaded into the app as it launches, whereas an interface test bundle is loaded
into a special test runner app generated for you by Xcode. Resources, such as test
data, can be included in the bundle. You might use setUp to load such resources; you
can get a reference to the bundle by way of the test class, by saying
Bundle(for:Self.self).

Unit Tests
Unit tests need to see into the target to be tested, so the test target must import the
target to be tested, as a module. To overcome privacy restrictions, the import state‐
ment should be preceded by the @testable attribute; this attribute temporarily
changes internal (explicit or implicit) to public throughout the imported module.
A private or fileprivate method is not directly testable, but you can work around

458 | Chapter 9: Life Cycle of a Project

that by providing an internal trampoline method that exists only during testing
thanks to conditional compilation (as I described earlier).

As an example of writing and running a unit test method, we can use our Empty
Window project. Let’s give the ViewController class a (nonsensical) instance method
dogMyCats:

func dogMyCats(_ s:String) -> String {
 return ""
}

The method dogMyCats is supposed to receive any string and return the string
"dogs". At the moment, though, it doesn’t; it returns an empty string instead. That’s
a bug. Now we’ll write a test method to ferret out this bug.

First, we’ll need a unit test target:

1. In the Empty Window project, choose File → New → Target and specify iOS →
Test → Unit Testing Bundle.

2. Call the product EmptyWindowTests; observe that the target to be tested is the
app target.

3. Click Finish.
In the Project navigator, a new group has been created, EmptyWindowTests, con‐
taining a single test file, EmptyWindowTests.swift. It contains a test class Empty‐
WindowTests, including stubs for two test methods, testExample and
testPerformanceExample. Comment out those two methods. We’re going to replace
them with a test method that calls dogMyCats and makes an assertion about the
result:

1. At the top of EmptyWindowTests.swift, where we are importing XCTest, we must
also import the target to be tested, which is the app target:

@testable import Empty_Window

2. Prepare an instance property in the declaration of the EmptyWindowTests class
to store our ViewController instance:

var viewController = ViewController()

3. Write the test method. Its name must start with test! Let’s call it testDogMyCats.
It has access to the ViewController instance as self.viewController:

func testDogMyCats() {
 let input = "cats"
 let output = "dogs"
 XCTAssertEqual(output,
 self.viewController.dogMyCats(input),
 "Failed to produce \(output) from \(input)")
}

Testing | 459

Figure 9-11. The Report navigator reports a test failure

We are now ready to run our test. There are many ways to do this. Switch to the Test
navigator, and you’ll see that it lists our test target, our test class, and our test method.
You can run a test method, or the whole class suite, using the contextual menu or
with Run buttons that appear when you hover the mouse over a listing. In addition,
in EmptyWindowTests.swift itself, there are diamond-shaped indicators in the gutter
to the left of the class declaration and the test method name; when you hover the
mouse over one of them, it changes to a Run button. You can click that button to run,
respectively, all tests in this class or an individual test. Or, to run all tests in all test
classes, you can choose Product → Test.

After running a test, to run just that test again, choose Product → Perform
Action → Run [Test] Again. To run multiple individual tests, Command-click in
the Test navigator to select just those tests; then choose Product → Perform
Action → Run [n] Test Methods (or use the contextual menu).

So now let’s run testDogMyCats. The app target is compiled and built; the test target
is compiled and built. (If any of those steps fails, we can’t test, and we’ll be back on
familiar ground with a compile error or a build error.) The app launches in the Simu‐
lator, and the test runs.

The test fails! (Well, we knew that was going to happen, didn’t we?) The error is
described in a banner next to the assertion that failed in our code; moreover, red X
marks appear everywhere — at the top of the project window, in the Test navigator
next to testDogMyCats, and in EmptyWindowTests.swift next to the first line of test-
DogMyCats.

The best place to survey what went wrong is the Report navigator. Typically, what
you’ll want to look at is the summary report; this is what you see in the editor when
you select the line that says Test in the Report navigator (Figure 9-11).

The failure is automatically tied to the place in your code where it took place. Hover
the mouse over the failure line in the report; a button with an arrow appears at the
right. Click it to jump to your code. Alternatively, a button with two linked rings also
appears at the right (new in Xcode 12); click it to open your code in an assistant pane,
so that you can view the report and the code simultaneously. Select any failure in the
report pane to see the corresponding code in the code pane.

460 | Chapter 9: Life Cycle of a Project

Figure 9-12. The Report navigator details a test failure

Occasionally you might need to view further details. To do so, choose Test → Log
from the jump bar at the top of the editor (Figure 9-12); by expanding transcripts,
you can see the full console output from the test run, including any caveman debug‐
ging messages that you may have sent from your test code (to show them, click the
little horizontal lines icon at the far right).

Now let’s fix our code. In ViewController.swift, modify dogMyCats to return "dogs"
instead of an empty string. Now run the test again. It passes!

When a test failure occurs, you might like to pause at the point where the assertion is
about to fail. To do so, in the Breakpoint navigator, click the Plus button at the bot‐
tom and choose Test Failure Breakpoint. This is like an Exception breakpoint, paus‐
ing on the assertion line in your test method just before it reports failure. You could
then switch to the method being tested and debug it, examining its variables and so
forth, to work out the reason for the impending failure. Don’t forget to continue run‐
ning afterward, so that the test can finish and generate the report.

Xcode’s code coverage feature lets you assess how much of your app target’s code is
being exercised by your unit tests. To switch it on, edit the Test action in your scheme
and check Code Coverage in the Options pane. Run your tests. Afterward, the Report
navigator has a Coverage section displaying statistics (Figure 9-13); you can also
choose Editor → Code Coverage (or use the Editor Options pop-up menu at the top
right of the editor pane) to reveal a gutter at the right of your code calling attention to
stretches of code that didn’t run during the tests.

Here are two further features of unit tests worth knowing about:

Asynchronous testing
Asynchronous testing allows a test method to wait for a time-consuming opera‐
tion to finish. Asynchronous code must use asynchronous testing if you want to
make an assertion there. Here’s a typical pattern of usage:

Testing | 461

Figure 9-13. The Report navigator displays code coverage statistics

let expect = XCTestExpectation()
doSomethingAsynchronous { ok in
 XCTAssert(ok, "got wrong asynchronous result")
 expect.fulfill()
}
let result = XCTWaiter().wait(for: [expect], timeout: 0.5)
XCTAssert(result == .completed, "did not complete properly")

We begin by forming an expectation — in effect, something to wait for. The first
assert checks the asynchronous result; we then call fulfill so that the code can
proceed after XCTWaiter().wait. The second assert checks that the expectation
was fulfilled within the time limit.

Performance testing
Performance testing lets you check that the speed of an operation has not fallen
off by running that operation repeatedly and timing the result. Call the XCTest‐
Case instance method measure; it takes a function whose execution time will be
recorded. The first time you run a performance test, you establish a baseline
measurement, and on subsequent runs, it fails if the standard deviation of the
times is too far from the baseline, or if the average time has grown too much.

Starting in Xcode 11, in addition to measuring elapsed time, your performance
tests can measure things like CPU and memory usage. Call measure(metrics:)
with an array of XCTMetric objects, such as XCTCPUMetric. A performance test
can also exercise launching your app and report whether it launches as quickly as
it should.

For realistic performance testing you should run a release build without the
debugger attached and with all sanitizers and diagnostics turned off. You can
manage that with a custom scheme (and possibly a test plan, as I’ll explain a bit
later).

462 | Chapter 9: Life Cycle of a Project

Interface Tests
Now let’s experiment with interface testing. I’m going to assume that you still have
(from Chapter 7) a button in the Empty Window interface with an action connection
to a ViewController method that summons an alert. We’ll write a test that taps that
button and makes sure that the alert is summoned. Add a UI Testing Bundle to the
project; call it EmptyWindowUITests.

Interface test code is based on accessibility, a feature that allows the screen interface
to be described verbally and to be manipulated programmatically. It revolves around
three classes: XCUIElement, XCUIApplication (an XCUIElement subclass), and
XCUIElementQuery. In the long run, it’s best to learn about these classes and write
your own UI test code; but to help you get started, accessibility actions are recordable,
meaning that you can generate code automatically by performing the actual actions
that constitute the test. Let’s try it:

1. In the testExample stub method, create a new empty line and leave the insertion
point within it.

2. Choose Editor → Start Recording UI Test. (Alternatively, there’s a Record button
in the debug bar.) The app launches in the Simulator.

3. In the Simulator, tap the button in the interface. When the alert appears, tap OK
to dismiss it.

4. Return to Xcode and choose Editor → Stop Recording UI Test. Also choose
Product → Stop to stop running in the Simulator.

The following code, or something similar, has been generated:

let app = XCUIApplication()
app.staticTexts["Hello"].tap()
app.alerts["Howdy!"].scrollViews.otherElements.buttons["OK"].tap()

The app object, obviously, is an XCUIApplication instance. Properties such as static-
Texts and alerts return XCUIElementQuery objects. Subscripting such an object
returns an XCUIElement, which can then be sent action methods such as tap.

Now run the test by clicking in the diamond in the gutter at the left of the test-
Example declaration. The app launches in the Simulator, and a ghost finger performs
the same actions we performed, tapping first the button in the interface and then,
when the alert appears, the OK button that dismisses it. The test ends and the app
stops running in the simulator. The test passes!

More important, if the interface stops looking and behaving as it does now, the test
will not pass. To see this, in Main.storyboard, select the button and, under Control in
the Attributes inspector, uncheck Enabled. The button is still there, but it can’t be
tapped; we’ve broken the interface. Run the test. The test fails, and the Report

Testing | 463

Figure 9-14. The Report navigator displays a failed UI test

navigator explains why (Figure 9-14): when we came to the Tap “OK” Button step,
we first had to Find the “OK” Button, and we failed because there was no alert.

Ingeniously, the report also supplies lots of information about the view hierarchy,
along with a screenshot, so that we can inspect the state of the interface during the
test. Under Find the “OK” Button, you can double-click Automatic Screenshot to
learn what the screen looked like at that moment: it’s easy to see the disabled inter‐
face button (and no alert).

Persisting screenshots
Screenshots such as those taken automatically during the UI test I just described can
be useful for other purposes. You might like to retain a more permanent record of
how your interface looks under various circumstances — as marketing materials, for
submission to the App Store, to help with localization, and so on. In fact, you might
construct some of your UI tests for no other purpose than to take screenshots!

To this end, you can have your UI test deliberately take a screenshot and make it per‐
sist. To do so, call the XCUIElement (or XCUIScreen) screenshot method, turn the
resulting XCUIScreenshot object into an XCTAttachment, and call the XCTestCase
add method to retain the actual screenshot. Along the way, be sure to extend the
lifetime of the attachment so that it persists even if the test succeeds; you can also
give the screenshot a convenient name:

let screenshot = XCUIApplication().screenshot()
let attachment = XCTAttachment(screenshot: screenshot)
attachment.lifetime = .keepAlways
attachment.name = "OpeningScreen"
self.add(attachment)

464 | Chapter 9: Life Cycle of a Project

Figure 9-15. The Report navigator displays a persisting screenshot

In the Report navigator, our screenshot is displayed under the name we assigned to it
(Figure 9-15).

Interface testing and accessibility
During interface testing, your app is in effect being viewed from the outside, as a
human being would view it. As I’ve already said, that depends upon accessibility.
Standard interface objects are accessible, but other interface that you create might not
be. Select an interface element in the nib editor to view its accessibility characteristics
in the Identity inspector. Run the app in the Simulator and choose Xcode → Open
Developer Tool → Accessibility Inspector to explore in real time the accessibility
characteristics of whatever is under the cursor.

Another useful trick is to put a breakpoint in a UI test method, run the test, pause,
and tell the debugger to po XCUIApplication() to see the full view hierarchy as
accessibility sees it. To see fewer results, form a query specifying the type of entity
you’re interested in, such as po XCUIApplication().buttons.

Referring to an interface object by its visible title, as in our code app.static-
Texts["Hello"], is poor practice. If the title changes, or if the app is localized for
another language (discussed later in this chapter), the reference breaks. Instead, we
should give our button a fixed accessibility identifier, either in code or in the Identity
inspector in the nib editor. If the Hello button’s accessibility identifier is Greeting-
Button, we can refer to it as app.buttons["GreetingButton"] instead.

For more about adding useful accessibility to your interface objects, see Apple’s
Accessibility Programming Guide for iOS in the documentation archive.

Test Plans
When you’ve built up several suites of tests, you’ll want a way to configure what tests
should be run under what conditions on a given occasion. Before Xcode 11, such
configuration was confined to a scheme. By editing a scheme’s Test action, you could
determine the complete set of tests that would run when you chose Product → Test.
If you wanted more than one set of tests, you needed multiple schemes.

Testing | 465

Starting in Xcode 11, this scheme-based architecture has been superseded by test
plans. A test plan is a text file (in JSON format), but you won’t have to deal with it as
text; you edit it in a dedicated editor, similar to how an Info.plist is treated. To create
a test plan, choose Product → Test Plan → New Test Plan. The test plan should not
be part of any target, and you’ll probably put it at the top level of your project. Edit
the new test plan. Click the Plus button and select the targets containing the tests you
want to use.

In the Tests pane of the test plan, you can specify individual test classes and test
methods to be run. In the Configurations pane, you can specify the behavior of your
tests, including various choices you would previously have made in the scheme editor
and elsewhere: arguments and environment variables, system language, simulated
location, screenshot policy, diagnostics, whether to use code coverage, and whether
tests should run in random order (which can help unmask hidden dependencies
between tests).

You can make configuration choices on two levels, a set of shared settings and indi‐
vidual named configurations that inherit the shared settings and can override them.
It’s important to give each named configuration a meaningful name, because this
name is the identifier that will be displayed in the test report.

Having created one or more test plans, you still can’t use them for anything until you
convert your scheme to use test plans. To do so, choose Product → Scheme → Con‐
vert Scheme to Use Test Plans. (I presume that some day test plans will be the default
and this step will no longer be needed.) The Test action of your scheme will now
point to the test plans you’ve added to it. These should include every test plan you
might ever want to use with this scheme.

Your scheme may now have multiple test plans, but only one test plan is current at
any given moment. When you choose Product → Test, it is the current test plan that
runs. Here’s how the current test plan is determined:

In the Test navigator
At the top, the Test navigator has a pop-up menu letting you pick a test plan
from among those attached to the current scheme. Whatever test plan is cur‐
rently displayed here is the current test plan. If the current test plan doesn’t
include a test, that test is dimmed and you can’t run it from the Test navigator
(though of course you can select it and run it from the test source).

In the Product menu
The Product → Test Plan hierarchical menu lists the test plans attached to the
current scheme. Whatever test plan is checked here is the current test plan.

466 | Chapter 9: Life Cycle of a Project

Figure 9-16. A test report with an activity

If the current test plan has more than one configuration, then whenever you run
a test method, it runs by default under all configurations successively. That can
come as a surprise. If it isn’t what you want, Control-click to summon the con‐
textual menu; it lets you specify a configuration for this run.

Massaging the Report
Nothing is more important after running your tests than understanding what hap‐
pened. Your key source of information is the report. XCTest includes powerful fea‐
tures that give you a lot of control over what goes into the report.

One simple but effective trick is to group the report output into meaningful activities.
To do so, in your test method call XCTContext.runActivity(named:). In addition to
the name, which should be some explanatory string, it takes a function; that function
is where you’ll do your testing and call your assertions. The outcome is that, in the
test report summary, the activity name appears as a line in the report, and the test
results are grouped hierarchically under that line (Figure 9-16).

Another useful device is attachments. We’ve already seen that you can attach a screen
shot to your report. But an attachment can be any kind of data. XCTAttachment has
initializers for attaching a string, an image, the contents of a file or a directory, a Data
object, and more. As we’ve seen, you can call self.add (where self is the XCTest) to
get your attachment into the test report. A call to XCTContext.runActivity is also a
great place to add an attachment: the function parameter hands you an XCTActivity
object, and you call add with your attachment.

It’s possible that a test will hang — perhaps there’s a threading deadlock — or just
take too long. You don’t want to come back from running your tests overnight and
discover that they’re still incomplete because of a hang. New in Xcode 12, an XCTest‐
Case or a test plan can declare an execution time allowance. If a test takes longer than
that, it fails, and a spindump file is attached to the test report.

Finally, new in Xcode 12, the entire report mechanism relies upon an XCTIssue
object that is passed into the XCTestCase record method to contribute to the report.
You can intervene in this mechanism! Instead of throwing or calling a built-in assert,
you can create your own XCTIssue, populate it, and record it, like this:

Testing | 467

let loc = XCTSourceCodeLocation(filePath: #file, lineNumber: #line)
var issue = XCTIssue(type: .assertionFailure, compactDescription: "oh darn")
issue.add(XCTAttachment(string:"yipes"))
issue.sourceCodeContext = XCTSourceCodeContext(location: loc)
self.record(issue)

At an even deeper level, you can override record and modify the incoming XCTIssue
before calling super — or don’t call super and thus suppress the failure entirely.

Clean
From time to time, during repeated testing and debugging, and before making a dif‐
ferent sort of build (switching from Debug to Release, or running on a device instead
of the Simulator), it’s a good idea to clean your target. This means that existing builds
will be removed and caches will be cleared, so that all code will be considered to be in
need of compilation and you can build your app from scratch.

Cleaning removes the cruft, quite literally. Suppose you have been including a certain
resource in your app, and you decide it is no longer needed. You can remove it from
the Copy Bundle Resources build phase (or from your project as a whole), but that
doesn’t necessarily remove it from your built app. This sort of leftover resource can
cause all kinds of mysterious trouble. The wrong version of a nib may seem to appear
in your interface. Code that you’ve edited may seem to behave as it did before the
edit. Cleaning removes the built app and all the intermediate build products that
Xcode caches in order to construct it, and very often solves the problem.

You can choose Product → Clean Build Folder, which removes the entire build folder
for this project. For an even more extensive cleaning, quit Xcode, open your user
~/Library/Developer/Xcode/DerivedData folder, and move all its contents to the trash.
This is a complete clean for every project you’ve opened recently — plus the module
cache. Removing the module cache can reset Swift itself, causing occasional mysteri‐
ous compilation, code completion, or syntax coloring issues to go away.

In addition to cleaning your project, you should also remove your app from the Sim‐
ulator. This is for the same reason as cleaning the project: when a new build of the
app is copied to the Simulator, existing resources inside the old build may not be
removed (in order to save time), and this may cause the app to behave oddly. To
clean out the current simulator while running the Simulator, choose Hardware →
Erase All Content and Settings. To clean out all simulators, quit the Simulator and
then say, in the Terminal:

% xcrun simctl erase all

468 | Chapter 9: Life Cycle of a Project

Running on a Device
Eventually, you’ll want to progress from running and testing and debugging in the
Simulator to running and testing and debugging on a real device. The Simulator is
nice, but it’s only a simulation; there are many differences between the Simulator and
a real device. The Simulator is really your computer, which is fast and has lots of
memory, so problems with memory management and speed won’t be exposed until
you run on a device. User interaction with the Simulator is limited to what can be
done with a mouse: you can click, you can drag, you can hold Option to simulate use
of two fingers, but more elaborate gestures can be performed only on an actual
device. And many iOS facilities, such as the accelerometer and access to the music
library, are not present on the Simulator at all, so that testing an app that uses them is
possible only on a device.

Running your app on a device requires a Developer Program membership, which in
turn requires an annual fee. You may balk initially, but sooner or later you’re going to
get over it and accept that this fee is worth paying. (The temporary ability to run your
app on a device without a paid Developer Program membership is very limited and
I’m not going to discuss it.)

Obtaining a Developer Program Membership
To obtain a Developer Program membership, go to the Apple Developer Program
web page (https://developer.apple.com/programs) and initiate the enrollment process.
When you’re starting out, the Individual program is sufficient. The Organization
program costs no more, but adds the ability to privilege additional team members in
various roles; you do not need the Organization program merely to distribute your
built app to other users for testing.

Your Developer Program membership involves two things:

An Apple ID
The user ID that identifies you at Apple’s site (along with the corresponding
password). You’ll use your Developer Program Apple ID for all kinds of things.
In addition to letting you prepare an app to run on a device, this same Apple ID
lets you post on Apple’s development forums, download Xcode beta versions,
and so forth.

A team name
You, under a single Apple ID, can belong to more than one team. On each team,
you will have one or more roles dictating your privileges. If you are the head (or
sole member) of the team, you are the team agent, meaning that you can do
everything: you can develop apps, run them on your device, submit apps to the
App Store, and receive the money for any paid apps that sell copies there.

Running on a Device | 469

https://developer.apple.com/programs

Having established your Developer Program Apple ID, you should enter it into the
Accounts preference pane in Xcode. Click the Plus button at the bottom left and
select Apple ID as the type of account to add. Provide the Apple ID and password.
From now on, Xcode will identify you through the team name(s) associated with this
Apple ID; you shouldn’t need to tell Xcode this password again.

Signing an App
Running an app on a device is a remarkably complicated business. You will need to
sign the app as you build it. An app that is not properly signed for a device will not
run on that device (assuming you haven’t jailbroken the device). Signing an app
requires two things:

An identity
An identity represents Apple’s permission for a given team to develop, on this
computer, apps that can run on a device. It consists of two parts:

A private key
The private key is stored in the keychain on the computer. It identifies a
computer where this team can potentially develop device-targeted apps.

A certificate
A certificate is a virtual permission slip from Apple. It contains the public
key matching the private key (because you told Apple the public key when
you asked for the certificate). With a copy of this certificate, any machine
holding the private key can actually be used to develop device-targeted apps
under the name of this team.

A provisioning profile
A provisioning profile is a virtual permission slip from Apple, uniting four
things:

• An identity.
• An app, identified by its bundle identifier.
• A list of eligible devices, identified by their unique device identifiers

(UDIDs).
• A list of entitlements. An entitlement is a special privilege that not every app

needs, such as the ability to talk to iCloud. You won’t concern yourself with
entitlements unless you write an app that needs one.

A provisioning profile is therefore sufficient for signing an app as you build it. It
says that on this computer it is permitted to build this app such that it will run on
these devices.

470 | Chapter 9: Life Cycle of a Project

There are two types of identity, and hence two types of certificate and provisioning
profile: development and distribution (a distribution certificate is also called a produc‐
tion certificate). We are concerned here with the development identity, certificate,
and profile; I’ll talk about the distribution side later.

The only thing that belongs entirely to you is the private key in your computer’s key‐
chain. Apple is the ultimate keeper of all other information: your certificates, your
provisioning profiles, what apps and what devices you’ve registered. Your communi‐
cation with Apple, when you need to verify or obtain a copy of this information, will
take place through one of two means:

The developer member center
A set of web pages at https://developer.apple.com/account. Having logged in with
your Apple ID, you can click Certificates, Identifiers & Profiles (or go directly to
https://developer.apple.com/account/resources) to access all features and informa‐
tion to which you are entitled by your membership type and role. (This is the
area of Apple’s site formerly referred to as the Portal.)

Xcode
Just about everything you would need to do at the developer member center can
be done through Xcode instead. When all goes well, using Xcode is a lot simpler!
If there’s a problem, you can head for the developer member center to iron it out.

Automatic Signing
Apple provides two distinct ways of obtaining and managing certificates and profiles
in connection with a project — automatic signing, and manual signing. For new
projects, automatic signing is the default. This is indicated by the fact that the “Auto‐
matically manage signing” checkbox is checked in the Signing & Capabilities pane
when you edit your project’s app target (Figure 9-20).

To see just how automatic Xcode’s signing management can be, let’s start at a stage
where as yet you have neither a development certificate in your computer’s keychain
nor a development profile for any app. But you do have a Developer Program Apple
ID, and you’ve entered it into Xcode’s Accounts preference pane. Then, when you
create a new project (File → New → Project), you’ll see on the second screen
(“Choose options for your new project”) a pop-up menu listing all the teams with
which your Apple ID is associated. Specify the desired team here.

When you then create the project on disk and the project window opens, everything
happens automatically. Your computer’s keychain creates a private key for a develop‐
ment certificate. The public key is sent to Apple. The actual development certificate is
created at the developer member center, and is downloaded and installed into your
computer’s keychain. With no conscious effort, you’ve obtained a development
identity!

Running on a Device | 471

https://developer.apple.com/account
https://developer.apple.com/account/resources

Figure 9-17. Xcode knows of no devices

Figure 9-18. Xcode offers to register a device

If you’ve never run on any device before, and if you haven’t manually registered any
devices at the developer member center, that might be as far as Xcode can go for now.
If so, you’ll see some warnings in the Signing & Capabilities pane, similar to
Figure 9-17.

Now connect a device via USB to your computer and select it as the destination,
either under Product → Destination or in the Scheme pop-up menu in the project
window toolbar. Try to build. This causes a dialog to appear, offering to register the
device (Figure 9-18). Click Register Device!

The problem is resolved; the error vanishes. You can switch to the Report navigator
to learn what just happened (Figure 9-19).

As the Report navigator tells us, the device has been registered — and a development
provisioning profile has been created and downloaded (and has been stored in your
~/Library/MobileDevice/Provisioning Profiles folder). This is a universal iOS Team
Provisioning Profile — also known as a wildcard or XC wildcard profile — and that is
all you need in order to run any basic app on any device. Figure 9-20 shows the
resulting display in the Signing & Capabilities pane.

472 | Chapter 9: Life Cycle of a Project

Figure 9-19. Xcode has registered a device for us

Figure 9-20. Xcode manages signing credentials automatically

You are now almost ready to run this project on this device. There may, however, be
one further step: you might have to disconnect the device from USB and connect it
again. This is so that Xcode can recognize the device afresh and prepare for debug‐
ging on it. This process is rather time-consuming; a progress indication is shown at
the top of the project window, and in the Devices and Simulators window.

The good news is that once you already have a development certificate, and once
Xcode has already generated and downloaded a universal iOS Team Provisioning
Profile, and once your device is already registered with Apple and prepared by Xcode
for debugging, none of that will be necessary ever again. When you create a new
project, you supply your team name. Xcode now knows everything it needs to know!
The development certificate is valid for this computer, the universal iOS Team Provi‐
sioning Profile is universal, and the device is registered with Apple and prepared for
debugging. Therefore, you should from now on be able to create a project and run it
on this device immediately.

You can confirm your possession of a universal development provisioning profile by
clicking the “i” button at the right of the Provisioning Profile (Figure 9-20): a pop‐
over displays information about the provisioning profile, as shown in Figure 9-21.

The asterisk (*) in that popover tells you that this is a universal profile, not restricted
to one particular app ID. The universal development profile allows you to run any
app on the targeted device for testing purposes, provided that the app doesn’t require
special entitlements (such as using iCloud). If you turn on any entitlements for an
app target (which you would do by adding a capability from the Signing & Capabili‐
ties pane when you edit the app target), and if you’re using automatic signing, Xcode

Running on a Device | 473

Figure 9-21. A universal development profile

will communicate with the developer member center to attach those entitlements to
your registered app; then it will create a new provisioning profile that includes those
entitlements, download it, and use it for this project.

Manual Signing
If you don’t want a project’s signing to be managed automatically by Xcode, simply
uncheck the “Automatically manage signing” checkbox. This causes Xcode to take its
hands off completely. Xcode won’t automatically generate or choose a development
certificate or a provisioning profile; you will have to do it all yourself.

If you need to obtain a development certificate manually, there are two possible
approaches:

The Accounts preference pane
In Xcode’s Accounts preference pane, select your team name and click Manage
Certificates to summon the “Signing certificates” dialog. Click the Plus button at
the lower left, and choose Apple Development. Xcode will communicate with the
developer member center and a development certificate will be created and
installed on your computer.

Keychain Access and the developer member center
Go to Certificates at the developer member center, click the Plus button, ask for
an Apple Development certificate, click Continue, and follow the instructions
that the page links to:

1. You begin by generating the private key in your computer’s keychain.
Launch the Keychain Access application and choose Keychain Access →
Certificate Assistant → Request a Certificate From a Certificate Authority.
Click the “Saved to disk” radio button and save the certificate signing request
file onto your computer.

2. At the developer member center, upload the certificate signing request file.
The actual certificate is generated; download it, and double-click to install it
into the keychain. (You can then throw away both the certificate request file
and the downloaded certificate.)

474 | Chapter 9: Life Cycle of a Project

Figure 9-22. A valid development certificate

Figure 9-22 shows what a valid development certificate looks like in Keychain Access.

Once you have a development certificate, you can use the developer member center
to create a development profile manually, if necessary:

1. The device must be registered at the developer member center. Look under Devi‐
ces to see if it is. If it isn’t, click the Plus button and enter a name for this device
along with its UDID. You can copy the device’s UDID from its listing in Xcode’s
Devices and Simulators window.

2. The app must be registered at the developer member center. Look under Identifi‐
ers to see if it is. If it isn’t, add it: Click Plus. Choose App IDs. Choose App. Enter
a description for this app (such as its name). Ignore the App ID Prefix field. Copy
the Bundle Identifier from the Signing & Capabilities pane and paste it into the
bundle identifier field, and register the app.
(If your app uses special entitlements, this step is also where you’d associate
those entitlements manually with the app.)

3. Under Profiles, click Plus. Ask for an iOS App Development profile. On the next
screen, choose the App ID for this app (presumably the one you just created in
the previous step). On the next screen, check your development certificate. On
the next screen, select the device(s) you want to run on. On the next screen, give
this profile a name, and generate the profile. You are now offered a chance to
download the profile, but you don’t have to do that, because Xcode can do it for
you.

4. In Xcode, in the Signing & Capabilities pane, in the Provisioning Profile pop-up
menu, choose Download Profile. The profile you created at the developer
member center is listed here! Select it. The profile is downloaded and develop‐
ment provisioning is enabled for this project (Figure 9-23).

Running the App
Once you have a development profile applicable to an app and a device, you can con‐
nect the device via USB, choose it as the destination in the Scheme pop-up menu, and
build and run the app. (If you’re asked for permission to access your keychain, you
should grant it.)

Running on a Device | 475

Figure 9-23. Manual code signing

The app is built, loaded onto your device, and launched. As long as you launch the
app from Xcode, everything is just as when running in the Simulator. You can run
and you can debug. The running app is in communication with Xcode, so that you
can stop at breakpoints, read messages in the console, profile your app with Instru‐
ments, and so on. The outward difference is that to interact physically with the app,
you use the device, not the Simulator.

You can also configure your device to allow Xcode to build and run apps on it
without a USB connection. To do so, start with the device connected via USB; locate
the device in the Devices and Simulators window and check “Connect via network.”
The device can now be used as a build and run destination wirelessly, provided it is
connected via WiFi to the local network or to some other network that your com‐
puter can access by its IP address. You can build and run from Xcode, pausing at
breakpoints and receiving console messages, even though the device is not physically
attached to your computer. This would be useful particularly if the app you’re testing
requires the device to be manipulated in ways that are difficult when the device is
tethered by a USB cable.

Managing Development Certificates and Devices
You’re allowed to have more than one development certificate, so there should be no
problem running your project on a device from another computer. Just do what you
did on the first computer! If you’re using automatic signing, a new certificate will be
generated for you, and it won’t conflict with the existing certificate for the first
computer.

When a device is attached to the computer, it appears in Xcode’s Devices and Simula‐
tors window. If this device has never been prepared for development, you can ask
Xcode to prepare it for development. You can then build and run onto the device. If
the device isn’t registered at the member center, a dialog appears offering to let you
register it; click Register Device, and now the device is registered. Your automatically
generated provisioning profile is modified to include this device, and you are now
able to build and run on it.

476 | Chapter 9: Life Cycle of a Project

The Devices and Simulators window can be used to communicate in other ways with
a connected device. Using the contextual menu, you can copy the device’s UDID, and
you can view and manage provisioning profiles on the device. In the main part of the
window, you can see (and delete) apps that have been installed for development using
Xcode, and you can view and download their sandboxes. You can take screenshots.
You can view the device’s stored logs. You can open the Console application to view
the device’s console output in real time.

Profiling
Xcode provides tools for probing the internal behavior of your app graphically and
numerically, and you should keep an eye on those tools. The gauges in the Debug
navigator allow you to monitor key indicators, such as CPU and memory usage, any
time you run your app. Memory debugging gives you a graphical view of your app’s
objects and their ownership chains, and can even reveal memory leaks. And Instru‐
ments, a sophisticated and powerful utility application, collects profiling data that can
help track down problems and provide the numeric information you need to
improve your app’s performance and responsiveness.

Gauges
The gauges in the Debug navigator are operating whenever you build and run your
app. Click a gauge to see further detail displayed in the editor. The gauges do not pro‐
vide highly detailed information, but they are extremely lightweight and always
active, so they are an easy way to get a general sense of your running app’s behavior
at any time. If there’s a problem, such as a prolonged period of unexpectedly high
CPU usage or a relentless unchecked increase in memory usage, you can spot it in the
gauges and then use Instruments to help track it down.

There are four basic gauges: CPU, Memory, Disk, and Network. Depending on the
circumstances, you may see additional gauges. An Energy Impact gauge appears
when running on a device, and for certain devices, a GPU gauge may appear as well.

In Figure 9-24, I’ve been heavily exercising my app for a few moments, repeating the
most calculation- and memory-intensive actions I expect the user to perform. These
actions do cause some spikes in energy usage, but that’s to be expected; this is a user-
initiated action, and the user won’t perform it very often. Meanwhile, my app’s mem‐
ory usage remains level. So I don’t suspect any issues.

Note that Figure 9-24 is the result of running on a device. Running in the Simula‐
tor might give completely different — and misleading — results.

Profiling | 477

Figure 9-24. The Debug gauges

Figure 9-25. A memory graph

Memory Debugging
Memory debugging lets you pause your app and view a graphical display of your
object hierarchy at that moment. This is valuable not only for detecting problems but
also for understanding your app’s object structure.

To use memory debugging, run the app and click the Debug Memory Graph button
in the debug bar (Figure 9-25). The app pauses, and you are shown a drawing of your
app’s objects, linked by their chains of ownership. The Debug navigator lists your
objects hierarchically; click an object to see a different part of the graph. Double-click
an object in the graph to refocus the graph on that object.

In my app, the root view controller is a ViewController whose view’s subviews
include a MyBoard view whose tilesInOrder property is an array of Tile views.
Figure 9-25 displays that situation.

At the cost of some additional overhead, you can enable the malloc stack before run‐
ning your app: edit the scheme’s Run action and under Diagnostics check Malloc
Stack Logging with the pop-up menu set to All Allocation and Free History. When
you run the app, selecting an object in the memory graph provides a backtrace in the

478 | Chapter 9: Life Cycle of a Project

Figure 9-26. The memory graph displays a leak

Memory inspector that tells you how each object came into being. If the backtrace is
collapsed, hover the mouse over the word Backtrace and click the Expand button that
appears. Hover over a line of the backtrace and click the right-arrow button to jump
to that line of your code.

Memory debugging also detects memory leaks. Such leaks will cause an error icon to
appear, and are listed in the Runtime pane of the Issue navigator. Suppose we run the
example from Chapter 5 where I have a Dog class instance and a Cat class instance
with strong references to one another and no other references to either instance, so
they are both leaking. The leaking Cat and Dog are listed in the Issue navigator, and
clicking one them displays a graph of the problem: the Cat and the Dog are retaining
one another (Figure 9-26).

Instruments
To get started with Instruments, first set the desired destination in the Scheme pop-
up menu in the project window toolbar. The destination should be a device if possi‐
ble; Instruments on the Simulator does not reflect the reality you’re trying to
measure. Now choose Product → Profile. Your app builds using the Profile action for
your scheme; by default, this uses the Release build configuration, which is what you
want. Instruments launches; if your scheme’s Instrument pop-up menu for the Pro‐
file action is set to Ask on Launch (the default), Instruments presents a dialog where
you choose a template.

Alternatively, click Profile In Instruments in a Debug navigator gauge editor; this is
convenient when the gauges have suggested a possible problem, and you want to
reproduce that problem under the more detailed monitoring of Instruments. Instru‐
ments launches, selecting the appropriate template for you. A dialog offers two
options: Restart stops your app and relaunches it with Instruments, whereas Profile
keeps your app running and hooks Instruments into it.

Once the Instruments main window appears, if you chose Product → Profile, you’ll
probably have to click the Record button, or choose File → Record Trace, to get your
app running. Now you should interact with your app like a user; Instruments will
record its statistics.

Figure 9-27 shows me doing much the same thing in Instruments that I did with the
Debug navigator gauges in Figure 9-24. I’ve set the destination to my device. I choose

Profiling | 479

Figure 9-27. Instruments graphs memory usage over time

Figure 9-28. Instruments describes a retain cycle

Product → Profile; when Instruments launches, I choose the Allocations template.
With my app running under Instruments, I exercise it for a while and then pause
Instruments, which meanwhile has charted my memory usage. Examining the chart,
I find that there are spikes up to about 21MB, but the app always settles back down to
a much lower level (around 6MB). Those are very gentle and steady memory usage
figures, so I’m happy.

The Leaks template can help you detect memory leaks (similar to the memory graph
leak detection I discussed earlier). In Figure 9-28, I’ve again run the retain cycle code
from Chapter 5, profiling the app using the Leaks template. Instruments has detected
the leak, and has diagrammed the issue.

In the next example, I’m curious as to whether I can shorten the time it takes my app
to load a photo image. I’ve set the destination to a device, because that’s where speed
matters and needs to be measured. I choose Product → Profile. Instruments launches,
and I choose the Time Profiler template. When the app launches under Instruments
on the device, I load new images repeatedly to exercise this part of my code for about
ten seconds.

In Figure 9-29, I’ve paused Instruments, and am looking at what it’s telling me.
Opening the disclosure indicators in the lower portion of the window, I can drill
down to my own code, indicated by the user icon.

By double-clicking the listing of that line, I can see my own code, time-profiled
(Figure 9-30). The profiler is drawing my attention to the call to CGImageSource-

480 | Chapter 9: Life Cycle of a Project

Figure 9-29. Drilling down into the time profile

Figure 9-30. My code, time-profiled

CreateThumbnailAtIndex; this is where we’re spending most of our CPU time. That
call is in the ImageIO framework; it isn’t my code, so I can’t make it run any faster. It
may be, however, that I could load the image another way; at the expense of some
temporary memory usage, perhaps I could load the image at full size and scale it
down by redrawing it myself. If I’m concerned about speed here, I could spend a little
time experimenting. The point is that now I know what the experiment should be.
This is just the sort of focused, fact-based numerical analysis at which Instruments
excels.

You can inject custom messages into your Instruments graphs in the form of sign‐
posts. For instance, based on the first Instruments example, I may suspect that my
highest memory spikes are taking place within my newGame method. To confirm this,
I’ll add some signposts. I import os and configure an OSLog object called mylog with
a .pointsOfInterest category:

let mylog = OSLog(subsystem: "diabelli", category: .pointsOfInterest)

Then I instrument the start and end of my newGame method with os_signpost calls:

Profiling | 481

Figure 9-31. Signposts in Instruments

private func newGame(imageSource: Any, song: String) {
 os_signpost(.begin, log: mylog, name: "newgame")
 // ...
 os_signpost(.end, log: mylog, name: "newgame")
}

To prepare my Instruments template, I start with the Allocations template; then I
choose View → Show Library to bring up the instrument chooser, and add the Points
of Interest instrument to my template. When I run the app, Instruments displays the
"newgame" signposts — and sure enough, they surround the memory spikes
(Figure 9-31).

Those examples barely scratch the surface. Use of Instruments is an advanced topic;
an entire book could be written about Instruments alone. The Instruments applica‐
tion comes with online help that’s definitely worth studying. Many WWDC videos
from current and prior years are about Instruments; look particularly for sessions
with “Instruments” or “Performance” in their names.

Localization
A device or an individual app can be set by the user to prefer a certain language as its
primary language. You might like your app’s interface to respond to this situation by
appearing in that language. This is achieved by localizing the app for that language.
You will probably want to implement localization relatively late in the development
of the app, after the app has achieved its final form, in preparation for distribution.

Localization operates through localization folders with an .lproj extension in your
project folder and in the built app bundle (Figure 6-6). When your app obtains a
resource, if it is running on a system whose language corresponds to a localization

482 | Chapter 9: Life Cycle of a Project

folder, if that localization folder contains a version of that resource, that’s the version
that is loaded.

Any type of resource can live in these localization folders; you will be particularly
concerned with text that is to appear in your interface. Such text must be maintained
in specially formatted .strings files, with special names:

• To localize your Info.plist file, use InfoPlist.strings.
• To localize your Main.storyboard, use Main.strings.
• To localize your code strings, use Localizable.strings.

Fortunately, you don’t have to create or maintain these files manually! Instead, you
work with exported XML files in the standard .xliff format. Xcode will generate .xliff
files automatically, based on the structure and content of your project; it will also
read them and will turn them automatically into the various localized .strings files.

Creating Localized Content
To experiment with localization, our app needs some localizable content:

1. Edit the target and enter a value in the Display Name text field in the General
pane. Our Empty Window app already says “Empty Window” here, but it’s in
gray, indicating that this is merely an automatic display name; enter “Empty
Window” explicitly (and press Tab), to make this an actual display name. You
have now created a “Bundle display name” key (CFBundleDisplayName) in the
Info.plist file. That key will be localized.

2. Edit Main.storyboard and confirm that it contains a button whose title is “Hello.”
That title will be localized. (It will help the example if you also widen the button
to about 100 points.)

3. Edit ViewController.swift. The code here contains some string literals, such as
"Howdy!":

@IBAction func buttonPressed(_ sender: Any) {
 let alert = UIAlertController(
 title: "Howdy!", message: "You tapped me!",
 preferredStyle: .alert)
 alert.addAction(
 UIAlertAction(title: "OK", style: .cancel))
 self.present(alert, animated: true)
}

That code won’t be localized, unless we modify it. Your code needs to call the
global NSLocalizedString function; you’ll usually supply these parameters:

key (first parameter, no label)
The first parameter is the key into a .strings file.

Localization | 483

value

The default string if there’s no .strings file for the current language.

comment

An explanatory comment.

So modify our buttonPressed method to look like this:

@IBAction func buttonPressed(_ sender: Any) {
 let alert = UIAlertController(
 title: NSLocalizedString(
 "Greeting", value:"Howdy!", comment:"Say hello"),
 message: NSLocalizedString(
 "Tapped", value:"You tapped me!",
 comment:"User tapped button"),
 preferredStyle: .alert)
 alert.addAction(UIAlertAction(
 title: NSLocalizedString(
 "Accept", value:"OK", comment:"Dismiss"),
 style: .cancel))
 self.present(alert, animated: true)
}

Exporting
Now we’re going to give our project an actual localization, and we’ll export an edita‐
ble .xliff file expressing the details of that localization. For my localization language,
I’ll choose French:

1. Edit the project. In the Info pane, under Localizations, click the Plus button. In
the pop-up menu that appears, choose French. In the dialog, click Finish.

2. Still editing the project, choose Editor → Export For Localization. In the dialog
that appears, check French. You’re about to create a folder, so call it something
like Empty Window Localization and save it to the desktop.

The result is an .xcloc bundle called fr.xcloc (for French). It’s an ordinary folder con‐
taining subfolders, along with a contents.json file describing the output (Figure 9-32).

The heart of this output is an XML file called fr.xliff (inside the Localized Contents
subfolder). Examining this file, you’ll observe that our app’s localizable strings have
all been discovered and have been turned into <file> elements. Looking at the
original attribute, you can see what files these represent. The InfoPlist.strings file
localizes our Info.plist; the Main.storyboard file localizes our main storyboard; and
the Localizable.strings file localizes our code.

484 | Chapter 9: Life Cycle of a Project

Figure 9-32. An exported xcloc bundle

Editing
Now let’s pretend that you are the French translator, tasked with creating the French
localization of this app. Your job is to modify the fr.xliff file by supplying a <target>
tag for every <source> tag that is to be translated into French. Your edited file might
contain, at the appropriate places, translations like this (note that the id and Object-
ID attributes will be different in your actual fr.xliff file):

<trans-unit id="RoQ-mP-swT.normalTitle">
 <source>Hello</source>
 <target>Bonjour</target>
 <note>Class="UIButton"; normalTitle="Hello"; ObjectID="RoQ-mP-swT";</note>
</trans-unit>

<trans-unit id="CFBundleDisplayName">
 <source>Empty Window</source>
 <target>Fenêtre Vide</target>
</trans-unit>
<trans-unit id="CFBundleName">
 <source>Empty Window</source>
 <target>Empty Window</target>
</trans-unit>

<trans-unit id="Accept">
 <source>OK</source>
 <target>OK</target>
 <note>Dismiss</note>
</trans-unit>
<trans-unit id="Greeting">
 <source>Howdy!</source>
 <target>Bonjour!</target>
 <note>Say hello</note>
</trans-unit>
<trans-unit id="Tapped">

Localization | 485

 <source>You tapped me!</source>
 <target>Vous m'avez tapé!</target>
 <note>User tapped button</note>
</trans-unit>

Other types of localizable resources may have been exported automatically as well.
For example, images in the asset catalog are localizable, and these are exported too (in
Localized Contents). If an asset catalog was exported for localization, the translator
can edit or replace the localized version of an image directly.

In addition, the original versions of our localizable material were exported (in Source
Contents); and your export can include screenshots taken during interface testing
(described earlier in this chapter). These can give the translator valuable context as to
the usage of the terms to be translated.

Importing
The French translator, having edited the fr.xliff file and any exported localizable asset
catalog images, returns the fr.xcloc folder to us. We proceed to incorporate it back
into our project:

1. Edit the project.
2. Choose Editor → Import Localizations; in the dialog, locate and open the fr.xcloc

folder.
Xcode parses the .xcloc folder, locates the fr.xliff file inside it, opens and reads it, and
creates the corresponding files in the project. In particular, the project folder now
contains a fr.lproj folder containing .strings files in the correct format, namely key–
value pairs like this:

/* Optional comments are C-style comments */
"key" = "value";

The .strings files in our fr.lproj folder include the following:

• An InfoPlist.strings file, localized for French, corresponding to our Info.plist file.
It reads like this:

/* Bundle display name */
"CFBundleDisplayName" = "Fenêtre Vide";

/* Bundle name */
"CFBundleName" = "Empty Window";

• A Main.strings file, localized for French, corresponding to Main.storyboard. It
will be similar to this:

/* Class="UIButton"; normalTitle="Hello"; ObjectID="RoQ-mP-swT"; */
"RoQ-mP-swT.normalTitle" = "Bonjour";

486 | Chapter 9: Life Cycle of a Project

• A Localizable.strings file, localized for French, localizing the strings in our code.
It looks like this:

/* Dismiss */
"Accept" = "OK";

/* Say hello */
"Greeting" = "Bonjour!";

/* User tapped button */
"Tapped" = "Vous m'avez tapé!";

If the translator has edited any exported asset catalog images, they will be incorpora‐
ted into the appropriate slots in our asset catalog.

Testing Localization
Build and run the project in the Simulator. The project runs in English, so the button
title is still “Hello,” and the alert that it summons when you tap it still contains
“Howdy!”, “You tapped me!”, and “OK.” Stop the project in Xcode.

Now we’re going to transport ourselves magically to France! Edit the scheme. In the
scheme’s Run action, under the Options pane, change the Application Language to
French. Then build and run again. Presto! The button in the interface has the title
Bonjour. When we tap it, the alert contains “Bonjour!”, “Vous m’avez tapé!”, and
“OK.”

That doesn’t prove, however, that our Info.plist localizations are working. To test
that, in the Simulator, use the Settings app to change the system language to French
(under General → Language and Region). You’ll see that, in the Springboard, our
app’s title has changed to Fenêtre Vide.

In real life, preparing your nib files to deal with localization will take some additional
work. In particular, you’ll want to use autolayout, configuring your interface so that
interface objects containing text have room to grow and shrink to compensate for the
change in the length of their text in different languages.

To view your interface under different localizations, you can preview your localized
nib files within Xcode, without running the app. Edit a .storyboard or .xib file and
choose Editor → Preview (or choose Preview from the Editor Options pop-up menu
at the top right of the editor pane). In the preview pane, a pop-up menu at the lower
right lists localizations; choose from the menu to switch between them. A “double-
length pseudolanguage” stress-tests your interface with really long localized replace‐
ment text.

Test plans (discussed earlier in this chapter) let you create multiple configurations,
each of which can have a different system language and region. When you run a test,

Localization | 487

it runs under all of the current test plan’s configurations in succession. This provides
an automated way to check that your app behaves correctly under all localizations.

Distribution
Distribution means sharing your built app with users (other than members of your
team) for running on their devices. There are two primary kinds of distribution:

Ad Hoc distribution
You are providing a copy of your app to a limited set of known users so that they
can try it on specific devices and report bugs, make suggestions, and so forth.

App Store distribution
You are providing the app to the App Store. This could be for one of two reasons:

TestFlight testing
You are providing access to the app temporarily to certain users for testing
through TestFlight.

Sale
You are providing the app to the App Store to be listed publicly, so that any‐
one can download it and run it, possibly for a fee.

Making an Archive
To create a copy of your app for distribution, you need first to build an archive of
your app. An archive is basically a preserved build. It has three main purposes:

Distribution
An archive will serve as the basis for subsequent distribution of the app; the dis‐
tributed app will be exported from the archive.

Reproduction
Every time you build, conditions can vary, so the resulting app might behave
slightly differently. But every distribution from a particular archive contains an
identical binary and will behave the same way. If a bug report arrives based on an
app distributed from a particular archive, you can distribute that archive to your‐
self and run it, knowing that you are testing exactly the same app.

Symbolication
The archive includes a .dSYM file that allows Xcode to accept a crash log and
report the crash’s location in your code. This helps you to deal with crash reports
from users.

488 | Chapter 9: Life Cycle of a Project

Here’s how to build an archive of your app:

1. Set the destination in the Scheme pop-up menu in the project window toolbar to
Any iOS Device. Until you do this, the Product → Archive menu item will be dis‐
abled. You do not have to have a device connected; you are not building to run
on a particular device, but saving an archive that will run on some device.

2. If you like, edit the scheme to confirm that the Release build configuration will
be used for the Archive action. This is the default, but it does no harm to double-
check.

3. Choose Product → Archive. The app is compiled and built. The archive itself is
stored in a date folder within your user ~/Library/Developer/Xcode/Archives
folder. Also, it is listed in Xcode’s Organizer window (Window → Organizer)
under the Empty Window app’s Products → Archives entry; this window may
open spontaneously to show the archive you’ve just created. You can add a
description here; you can also change the archive’s name (this won’t affect the
name of the app).

You’ve just signed your archive with a development profile; that’s good, because it
means you can run the archived build directly on your device. However, a develop‐
ment profile can’t be used to make an Ad Hoc or App Store build of your app; there‐
fore, when you export the archive to form an Ad Hoc or App Store build, Xcode will
embed the appropriate distribution profile instead. So now, in order to export from
your archive, you need a distribution certificate and a distribution profile.

The Distribution Certificate
A distribution certificate (sometimes called a production certificate) is essential for
distributing your app to other users. There are three ways to obtain a distribution
certificate, parallel to the three ways of obtaining a development certificate described
earlier in this chapter:

Automatic signing
If you’re using automatic signing, and if you have no distribution certificate, then
when you first export the archive to the App Store (as I’ll describe later in this
chapter), Xcode will offer to create and download a distribution certificate for
you, automatically, along with a distribution profile.

The Accounts preference pane
You can request a distribution certificate through Xcode’s Accounts preference
pane: select your Apple ID, choose your team, click Manage Certificates to show
the “Signing certificates” dialog, click the Plus button at the bottom left, and ask
for an Apple Distribution certificate.

Distribution | 489

Keychain Access and the developer member center
You can obtain a distribution certificate manually using the Keychain Access
application and the developer member center, exactly as I described earlier for
obtaining a development certificate manually.

Once you’ve obtained a distribution certificate, you’ll see it in your keychain. It will
look just like Figure 9-22, except that it will say “Distribution” instead of “Develop‐
ment.”

There is an important difference between distribution certificates and development
certificates: There’s a fixed limit on how many distribution certificates a team can
have. (For a while, that limit was one, but it may have been raised subsequently to
three.) This means that you can run out of distribution certificates — especially if you
are trying to distribute from more than one computer.

Let’s say your distribution certificate is in the keychain of your first computer. On
your second computer, Xcode reports the existence of the distribution certificate (in
the Accounts preference pane, under Manage Certificates), but tells you that it isn’t in
the keychain of this computer. You’d like to install a copy of your existing distribution
certificate. But you can’t simply go to the developer member center and download a
copy of the existing distribution certificate, because the existing distribution certifi‐
cate is matched to a private key, and won’t work without it — and that private key is
still sitting in the keychain of the first computer.

The solution is to return to the first computer, and, in the Accounts preference pane,
under Manage Certificates, Control-click that certificate and choose Export Certifi‐
cate from the contextual menu. You’ll be asked to save the resulting file, securing it
with a password. The password is needed because this file, a .p12 file, contains the
private key from your keychain. Now copy the .p12 file to the second computer. (You
could email it to yourself.) On that computer, open the exported file, using the pass‐
word. The private key and the certificate are imported into the keychain of the sec‐
ond computer. You can then throw away all copies of the .p12 file; it has done its job.

The Distribution Profile
Obtaining a distribution profile is like obtaining a development profile. If you’re
using automatic signing for this project, Xcode will probably be able to create an
appropriate distribution profile for you automatically when you export your archive.

You can also obtain a distribution profile manually, at the developer member center,
under Certificates, Identifiers & Profiles. The procedure is similar to obtaining a
development profile manually, with a few slight differences:

1. If this is to be an Ad Hoc distribution profile, collect the UDIDs of all the devices
where this build is to run, and make sure you’ve added each of them at the

490 | Chapter 9: Life Cycle of a Project

developer member center under Devices. (For an App Store distribution profile,
omit this step.)

2. Make sure that the app is registered at the developer member center under Iden‐
tifiers, as I described earlier in this chapter.

3. Under Profiles, click the Plus button to ask for a new profile. Choose an Ad Hoc
or App Store profile. On the next screen, choose your app from the pop-up
menu. On the next screen, choose your distribution certificate. On the next
screen, for an Ad Hoc profile only, specify the devices you want this app to run
on. On the next screen, give the profile a name.
Be careful about the profile’s name, as you might need to be able to recognize it
later from within Xcode! My own practice is to assign a name containing the
term “AdHoc” or “AppStore” and the name of the app.

4. Click Done. You should subsequently be able to download the profile from
within Xcode (and if not, you can click Download at the developer member
center).

Distribution for Testing
There are two ways to distribute your app for testing: Ad Hoc distribution and Test‐
Flight distribution. I’ll briefly describe each of them.

Ad Hoc distribution
Here are the steps for creating an Ad Hoc distribution file from an archive:

1. In the Organizer window, under Archives, select the archive and click Distribute
App at the upper right. A dialog appears. Here, you are to specify a method;
choose Ad Hoc. Click Next.

2. In the next screen, you may be offered various options:

App Thinning
This means that multiple copies of the app can be created, each containing
resources appropriate only to one type of device, simulating what the App
Store will do when the user downloads the app to a device. There would nor‐
mally be no need for this, though it might be interesting to learn the size of
your thinned app.

Rebuild from Bitcode
Bitcode allows the App Store to regenerate your app to incorporate future
optimizations. If you’re going to be using bitcode when you upload to the
App Store, you might like to use it when you perform your Ad Hoc build.
Personally, I avoid bitcode, so I would uncheck this checkbox.

Distribution | 491

3. In the next screen, you may be offered a choice between automatic and manual
signing. An automatically generated Ad Hoc distribution profile will be config‐
ured to run on all devices registered for your team at the developer member cen‐
ter. If you choose manual signing, you’ll see another screen where you can
specify the certificate and choose an Ad Hoc distribution profile, either from the
member center or (if you’ve downloaded the distribution profile already) from
your computer.

4. The archive is prepared, and a summary window is displayed. The name of the
provisioning profile is shown, so you can tell that the right thing is happening.
Click Export.

5. You are shown a dialog for saving a folder. The file will be inside that folder, with
the suffix .ipa (“iPhone app”), accompanied by property list and log files describ‐
ing the export process.

6. Locate in the Finder the .ipa file you just saved. Provide this file to your users
with instructions.

How should a user who has received the .ipa file copy it onto a registered device?
Starting with macOS 10.15 Catalina, it’s ridiculously easy: use the Finder! The user
attaches the device to the computer (clicking the various Trust buttons if necessary),
selects the device in a Finder window sidebar, and just drags the app right onto the
device’s window.

If there’s any difficulty, another reliable way is to download the Apple Configurator
application from the Mac App Store. Attach the device to the computer and launch
Apple Configurator. An image of the device’s screen appears in the Configurator
window. Drag the .ipa file from the Finder onto that image, and it will be copied onto
the device.

TestFlight distribution
The number of Ad Hoc testers is limited to 100 devices per year per developer (not
per app). Devices used for development are counted against this limit. You can work
around this limit, and provide your betas more conveniently to testers, by using Test‐
Flight beta testing instead.

TestFlight has many advantages over Ad Hoc testing. It lifts the limit of 100 devices
to a limit of 10000 testers. It is far more convenient for your testers than Ad Hoc dis‐
tribution, because they download and install prerelease versions of your app directly
from the App Store onto their devices, through the TestFlight app. Communication
between you and your testers is handled seamlessly: TestFlight emails invitations to
testers, allows testers to provide feedback comments, collects crash logs, notifies test‐
ers when you update the app, and so forth.

492 | Chapter 9: Life Cycle of a Project

Configuration is performed at the App Store Connect site; a prerelease version uploa‐
ded to App Store Connect must be exported as if for App Store distribution (see the
discussion of App Store submission later in this chapter). See the “Test a beta ver‐
sion” chapter of Apple’s App Store Connect Help document (Help → App Store Con‐
nect Help).

Prerelease versions of your app intended for distribution to beta testers require
review by Apple. Basically, the rule is that if your app’s minor version number increa‐
ses, you can expect a delay while Apple performs the review. On the other hand,
internal testers (team members who have direct access to your App Store Connect
account) can download new versions immediately. That includes you! I often use
TestFlight as a way of distributing a build to myself so that I can test on a device
under real-world conditions.

Final App Preparations
As the big day approaches when you’re thinking of submitting your app to the App
Store, don’t become so excited by the prospect of huge fame and massive profits that
you rush the all-important final stages of app preparation. Apple has a lot of require‐
ments, and failure to meet them can cause your app to be rejected. Take your time.
Make a checklist and go through it carefully. See Apple’s App Store Connect Help and
the “Icons and Images” chapter of the iOS Human Interface Guidelines.

Icons in the app
The best way to provide your app with icons is to use the asset catalog (Figure 9-33).
The image sizes needed are listed in the asset catalog itself. To determine which slots
should be displayed, use the checkboxes in the Attributes inspector when you select
the icon set. To add an image, drag it from the Finder into the appropriate slot.

An icon file must be a PNG file, without alpha transparency. It should be a full
square; the rounding of the corners will be added for you. Apple seems nowadays to
prefer simple, cartoony images with a few bright colors and possibly a gentle gradient
background.

App icon sizes have changed over the years. If your app is to be backward compatible
to earlier systems, you may need additional icons in additional sizes, corresponding
to the expectations of those earlier systems. Conversely, new devices can come along,
bringing with them new icon size requirements (this happened when the iPad Pro
appeared on the scene). Again, this is exactly the sort of thing the asset catalog will
help you with.

Optionally, you may elect to include smaller versions of your icon to appear when the
user does a search on the device, as well as in the Settings app if you include a settings

Distribution | 493

Figure 9-33. Icon slots in the asset catalog

Figure 9-34. Marketing icon slot in the asset catalog

bundle. However, I never include those icons; the system’s scaled-down versions of
my app icons look fine to me.

Marketing icon
To submit an app to the App Store, you will need to supply a 1024×1024 PNG or
high-quality JPEG icon to be displayed at the App Store (the marketing icon). Apple’s
guidelines say that it should not merely be a scaled-up version of your app’s icon; but
it must not differ perceptibly from your app’s icon, either, or your app will be rejec‐
ted (I know this from bitter experience).

The marketing icon should be included in the asset catalog. There’s a slot for it, along
with the slots for the real app icons (Figure 9-34).

Launch images
There is a delay between the moment when the user taps your app’s icon to launch it
and the moment when your app is up and running and displaying its initial window.

494 | Chapter 9: Life Cycle of a Project

To cover this delay and give the user a visible indication that something is happening,
a launch image needs to be displayed during that interval.

The launch image needn’t be detailed; in fact, it probably should not be. It might be
just a blank depiction of the main elements or regions of the interface that will be
present when the app has finished launching. In this way, when the app does finish
launching, those elements or regions appear to be filled in as the launch image fades
away to reveal the real app.

To prepare the launch image, you use a launch nib file — a .xib or .storyboard file
containing a single view. You construct this view using subviews and autolayout. The
view is automatically reconfigured to match the screen size and orientation of the
device on which the app is launching, and label and button text can be localized. The
launch image will be a snapshot of this view.

By default, a new app project comes with a LaunchScreen.storyboard file. This is
where you design your launch image. The Info.plist points to this file as the value of
its “Launch screen interface file base name” key (UILaunchStoryboardName). You can
configure the Info.plist, if necessary, by editing the target and setting the Launch
Screen File field (under App Icons and Launch Images).

Custom fonts included in your app bundle cannot be displayed in a launch nib file.
This is because they have not yet been loaded at the time the launch screen needs to
be displayed. Also, code cannot run in association with the display of the launch
screen; by definition, your app is launching and its code has not yet started to run.
None of those limitations should be a concern. Keep the launch screen simple and
minimal. Don’t try to misuse it as some kind of introductory splash screen. If you
want a splash screen, configure a real view controller to display its view when the app
has finished launching.

Screenshots and Video Previews
When you submit your app to the App Store, you will be asked for one or more
screenshots of your app in action to be displayed at the App Store. These screenshots
must demonstrate actual user experience of the app, or your app may be rejected by
Apple’s review team. You should take them beforehand and be prepared to provide
them during the app submission process. You can provide a screenshot correspond‐
ing to the screen size and resolution of every device on which your app can run, or
you can reuse a larger-size screenshot for smaller sizes.

You can obtain screenshots either from the Simulator or from a device connected to
the computer:

Simulator
Run the app in the Simulator with the desired device type as your destination.
Choose File → Save Screen. Alternatively, click the Save Screen button above the

Distribution | 495

simulator window. New in Xcode 12, a miniature screenshot window appears;
Control-click it to choose an option for disposing of the screenshot. By default, it
is saved to the Desktop. You can also generate a screenshot from the command-
line. For instance:

% xcrun simctl io booted screenshot myscreenshot.png

That command saves a screenshot as myscreenshot.png in my home directory
(because that’s where I was in the Terminal when I gave the command).

Device
In Xcode, in the Devices and Simulators window, locate your connected device
under Devices and click Take Screenshot. Alternatively, choose Debug → View
Debugging → Take Screenshot of [Device].

You can also take a screenshot directly on a device. If the device has a Home but‐
ton, click the screen lock button and the Home button simultaneously. If not,
click the screen lock button and the Volume Up button simultaneously. Now the
screenshot is saved in the Photos app, and you can communicate it to your com‐
puter in any convenient way (such as by emailing it to yourself).

You probably don’t have devices with every size you need in order to submit screen‐
shots to the App Store. The Simulator supplies every needed device size. It may be,
however, that your app doesn’t run properly on the Simulator, because it uses fea‐
tures that exist only on a device. I frequently solve this problem by supplying artificial
data to my app, on the simulator only (as I described earlier, “Build Action” on page
423), so that its interface works sufficiently to let me capture screenshots.

You can also submit to the App Store a video preview showing your app in action; it
can be up to 30 seconds long, in H.264 or Apple ProRes format. One way to capture
the video preview is with your device and QuickTime Player:

1. Connect the device to the computer and launch QuickTime Player. Choose File
→ New Movie Recording.

2. If necessary, set the Camera and Microphone to the device, using the pop-up
menu next to the Record button that appears when you hover the mouse over the
QuickTime Player window.

3. Start recording, and exercise the app on the device. When you’re finished, stop
recording and save. The resulting movie file can be edited to prepare it for sub‐
mission to the App Store.

You can also capture a video preview from a simulator, using the command-line. I
might say this in the Terminal:

% xcrun simctl io booted recordVideo --codec=h264 mymovie.mov

496 | Chapter 9: Life Cycle of a Project

The video preview begins recording, and continues until I press Control-C in the
Terminal.

For more details, see the “App preview specifications” section of the Reference chap‐
ter of Apple’s App Store Connect Help.

Property List Settings
A number of settings in the Info.plist are crucial to the proper behavior of your app.
You should peruse Apple’s Information Property List Key Reference for full informa‐
tion. Most of the required keys are created as part of the template, and are given rea‐
sonable default values, but you should check them anyway. The following are
particularly worthy of attention:

Bundle display name (CFBundleDisplayName)
The name that appears under your app’s icon on the device screen; this name
needs to be short in order to avoid truncation. I talked earlier in this chapter
about how to localize the display name. You can enter this value directly in the
General pane when you edit your app target.

Supported interface orientations (UISupportedInterfaceOrientations)
This key designates the totality of orientations in which the app is ever permitted
to appear. I talked earlier in this chapter about the interface for making these set‐
tings with checkboxes in the General pane of the target editor, but you get better
fine tuning by editing the Info.plist directly. For example, it might be necessary to
reorder the orientations (because on an iPhone the first orientation listed may be
the one into which the app will actually launch).

Required device capabilities (UIRequiredDeviceCapabilities)
You should set this key if the app requires capabilities that are not present on all
devices. But don’t use this key unless it makes no sense for your app to run at all
on a device lacking the specified capabilities.

Bundle version
Your app needs a version number. The best place to set it is the General pane of
the target editor. Things are a little confusing here because there are two fields:

Version
Corresponds in the Info.plist to “Bundle versions string, short” (CFBundle-
ShortVersionString). This is a user-facing string and needs to be a version
string, such as "1.0". It will be displayed at the App Store, distinguishing
one release from another. Failure to increment the version string when sub‐
mitting an update will cause the update to be rejected.

Distribution | 497

Build
Corresponds in the Info.plist to “Bundle version” (CFBundleVersion). The
user never sees this value. I treat it as an independent integer value. It is legal
to increment the Build number without incrementing the Version number,
and that is what I do when I submit several successive builds of the same
prospective release during TestFlight testing.

The interplay between TestFlight versions and App Store versions is a little
tricky. If you’re satisfied with a TestFlight version, you can submit the very same
binary, which is already present at App Store Connect, for distribution by the
App Store. But once you have submitted a version to the App Store, the next
build that you submit, even if it is just for TestFlight, must have a higher version
string; upping the build number is not sufficient.

Version strings don’t work like decimal numbers! Each component of the string
is treated as an integer. A short version string "1.4" is not “higher” than a ver‐
sion string "1.32" — because 4 is smaller than 32. As usual, I learned this lesson
the hard way.

Submission to the App Store
When you’re satisfied that your app works well, and you’ve installed or collected all
the necessary resources, you’re ready to submit your app to the App Store for distri‐
bution. To do so, you’ll need to make preparations at the App Store Connect site
(https://appstoreconnect.apple.com).

The first time you visit App Store Connect, you should go to the Contracts sec‐
tion and complete submission of your contract. You can’t offer any apps for sale
until you do, and even free apps require completion of a contractual form.

I’m not going to recite all the steps you have to go through to tell App Store Connect
about your app, as these are described thoroughly in Apple’s App Store Connect Help
document, which is the final word on such matters. But here are some of the main
pieces of information you will sooner or later have to supply (and see also https://
developer.apple.com/app-store/product-page):

Your app’s name
This is the name that will appear at the App Store; it need not be identical to the
short name that will appear under the app’s icon on the device, dictated by the
“Bundle display name” setting in your Info.plist file. Apple now requires that this
name be 30 characters or fewer. You can get a rude shock when you submit your
app’s information to App Store Connect and discover that the name you wanted
is already taken. There is no reliable way to learn this in advance, and such a dis‐
covery can necessitate a certain amount of last-minute scrambling on your part.
(Can you guess how I know that?)

498 | Chapter 9: Life Cycle of a Project

https://appstoreconnect.apple.com
https://developer.apple.com/app-store/product-page
https://developer.apple.com/app-store/product-page

Subtitle
A description of the app, 30 characters or fewer, that will appear below the name
at the App Store.

Description
You must supply a description of fewer than 4,000 characters; Apple recom‐
mends fewer than 580 characters, and the first paragraph is the most important,
because this may be all that users see at first when they visit the App Store. It
must be pure text, with no HTML or character styling.

Promotional text
Optional; 170 characters or fewer. The significance of the promotional text is that
you can change it for an existing app, without uploading a new build.

Keywords
A comma-separated list, shorter than 100 characters. These keywords will be
used, in addition to your app’s name, to help users discover your app through the
Search feature of the App Store.

Privacy policy
The URL of a web page describing your privacy policy.

Support
The URL of a web site where users can find more information about your app.

Copyright
Do not include a copyright symbol in this string; it will be added for you at the
App Store.

SKU number
This is arbitrary, so don’t get nervous about it. It’s just an identifier that’s unique
within the world of your own apps. It’s convenient if it has something to do with
your app’s name. It needn’t be a number; it can actually be any string.

Price
You don’t get to make up a price. You have to choose from a list of pricing
“tiers.”

Availability Date
There’s an option to make the app available as soon as it is approved, and this
will typically be your choice.

As you submit information, click Save often! If the connection goes down and
you haven’t explicitly saved, all your work can be lost. (Can you guess how I
know that?)

Distribution | 499

Once your app is initially registered at App Store Connect, and when you have an
archived build ready for distribution, you can export and upload it. The export pro‐
cess is similar to what I described earlier for Ad Hoc distribution. Select the archived
build in the Organizer and click Distribute App; on the next screen, select App Store
Connect. Subsequent options are slightly different from the options for an Ad Hoc
distribution: you won’t see anything about app thinning, because that depends on
how the user obtains the app; you’ll see the bitcode checkbox; and there’s a checkbox
for uploading symbols, which should make it easier to analyze crash reports. Eventu‐
ally, a screen is displayed summarizing the .ipa content, and you can now upload to
App Store Connect or save to disk:

Upload to App Store Connect
The upload is performed within Xcode, and the app will be validated at the far
end.

Save to disk
You can perform the upload later using Transporter, available from the App
Store (https://apps.apple.com/us/app/transporter/id1450874784).

After uploading the archive, you have one final step to perform. Wait for the binary
to be processed at Apple’s end. (You should receive an email when processing has
completed.) Then return to App Store Connect, where you submitted your app infor‐
mation. You will now be able to select the binary, save, and submit the app for
review.

You will subsequently receive notifications from Apple informing you of your app’s
status as it passes through various stages: “Waiting For Review,” “In Review,” and
finally, if all has gone well, “Ready For Sale” (even if it’s a free app). Your app will
then appear at the App Store.

Once your app is registered at the App Store, you do not need to make further prepa‐
rations merely to upload a new build. Simply increase the build number or version
string, as I described earlier, and upload the build. If this build is for TestFlight, and if
this version has already been reviewed for TestFlight, the new build becomes avail‐
able for testing immediately. If this build is for the App Store, you can upload it first
and register the new version at App Store Connect later.

500 | Chapter 9: Life Cycle of a Project

https://apps.apple.com/us/app/transporter/id1450874784

PART III

Cocoa

The Cocoa Touch frameworks provide the general capabilities needed by any iOS
application. Buttons can be tapped, text can be read, screens of interface can succeed
one another, because Cocoa makes it so. To use the framework, you must learn to let
the framework use you. You must put your code in the right place so that it will be
called at the right time. You must fulfill certain obligations that Cocoa expects of you.
You master Cocoa by being Cocoa’s obedient servant. In this part of the book, that’s
what you’ll learn to do.

• Chapter 10 describes how Cocoa is organized and structured through such
Objective-C language features as subclassing, categories, and protocols. Then
some important built-in Cocoa object types are introduced. The chapter con‐
cludes with a description of Cocoa key–value coding and a look at how the root
NSObject class is organized.

• Chapter 11 presents Cocoa’s event-driven model of activity, along with its major
design patterns and event-related features — notifications, delegation, data sour‐
ces, target–action, the responder chain, and key–value observing. The chapter
concludes with some words of wisdom about managing the barrage of events
Cocoa will be throwing at you, and how to escape that barrage momentarily with
delayed performance.

• Chapter 12 is about Cocoa memory management. I’ll explain how memory man‐
agement of reference types works. Then some special memory management sit‐
uations are described: autorelease pools, retain cycles, notifications and timers,
nib loading, and CFTypeRefs. The chapter concludes with a discussion of Cocoa

property memory management, and advice on how to debug memory manage‐
ment issues.

• Chapter 13 discusses the question of how your objects are going to see and com‐
municate with one another within the confines of the Cocoa-based world. It con‐
cludes with a look at two new ways of managing object communications, the
Combine framework and SwiftUI.

Finally, don’t forget to read Appendix A for more detail about how Objective-C and
Swift interact and cooperate.

CHAPTER 10

Cocoa Classes

When you program iOS through Foundation and UIKit, you’re programming Cocoa.
The Cocoa API is written mostly in Objective-C, and Cocoa itself consists mostly of
Objective-C classes, derived from the root class, NSObject.

This chapter introduces Cocoa’s class structure and explains how Cocoa is conceptu‐
ally organized, in terms of its underlying Objective-C features, along with a survey of
some of the most commonly encountered Cocoa utility classes. The chapter then dis‐
cusses Objective-C instance properties and Cocoa key–value coding, and concludes
with a description of the Cocoa root class and its features, which are inherited by all
Cocoa classes.

Subclassing
Cocoa supplies a large repertory of objects that already know how to behave in cer‐
tain desirable ways. A UIButton knows how to draw itself and how to respond when
the user taps it; a UITextField knows how to display editable text, how to summon
the keyboard, and how to accept keyboard input. When the default behavior or
appearance of an object supplied by Cocoa isn’t quite what you’re after, you’ll want to
customize it.

But that does not necessarily mean you need to subclass! In fact, subclassing is one of
the rarer ways in which your code will relate to Cocoa. Most built-in Cocoa Touch
classes will never need subclassing (and some, in their documentation, downright
forbid it).

Instead, Cocoa classes are often heavily endowed with methods that you can call and
properties that you can set precisely in order to customize an instance, and these will
be your first resort. Always study the documentation for a Cocoa class to see whether
instances can already be made to do what you want. The UIButton class

503

documentation shows that you can set a button’s title, title color, internal image,
background image, and many other features and behaviors, without subclassing.

In addition, many built-in classes use delegation (Chapter 11) as the preferred way of
letting you customize their behavior. You wouldn’t subclass UITextField just in order
to respond in some special way when the user types text, because the delegate mecha‐
nism and the UITextFieldDelegate protocol provide ways to do that.

Nevertheless, sometimes setting properties and calling methods and using delegation
won’t suffice to customize an instance the way you want to. In such cases, a Cocoa
class may provide methods that are called by the runtime at key moments in the life
of the instance, allowing you to customize that class’s behavior by subclassing and
overriding. In fact, certain Cocoa Touch classes are subclassed routinely, constituting
the exception that proves the rule.

A case in point is UIViewController. Every Cocoa app uses view controllers, but a
plain vanilla UIViewController, not subclassed, is very rare. A Cocoa iOS app
without at least one UIViewController subclass would be practically impossible. Sub‐
classing is how you inject your functionality into a view controller. Much of your
code will probably revolve around UIViewController subclasses that you have writ‐
ten.

Another case in point is UIView. Cocoa Touch is full of built-in UIView subclasses
that behave and draw themselves as needed (UIButton, UITextField, and so on), and
you will rarely need to subclass any of them. On the other hand, you might create
your own UIView subclass, whose job would be to draw itself in some completely
new way.

You don’t actually draw a UIView; rather, when a UIView needs drawing, its
draw(_:) method is called so that the view can draw itself. So the way to draw a cus‐
tom UIView is to subclass UIView and implement draw(_:) in the subclass. As the
documentation says, “Subclasses that … draw their view’s content should override
this method and implement their drawing code there.” The documentation is saying
that you need to subclass UIView in order to draw custom content.

Suppose we want our window to contain a horizontal line. There is no horizontal line
interface widget built into Cocoa, so we’ll just have to roll our own — a UIView that
draws itself as a horizontal line. Let’s try it:

1. In our Empty Window example project, choose File → New → File and specify
iOS → Source → Cocoa Touch Class, and in particular a subclass of UIView. Call
the class MyHorizLine. Xcode creates MyHorizLine.swift. Make sure it’s part of
the app target.

2. In MyHorizLine.swift, replace the contents of the class declaration with this
(without further explanation):

504 | Chapter 10: Cocoa Classes

required init?(coder: NSCoder) {
 super.init(coder:coder)
 self.backgroundColor = .clear
}
override func draw(_ rect: CGRect) {
 let c = UIGraphicsGetCurrentContext()!
 c.move(to:CGPoint(x: 0, y: 0))
 c.addLine(to:CGPoint(x: self.bounds.size.width, y: 0))
 c.strokePath()
}

3. Edit the storyboard. Find UIView in the Library (it is called simply “View”) and
drag it into the View object in the canvas. You may resize it to be less tall.

4. Select the UIView that you just dragged into the canvas and use the Identity
inspector to change its class to MyHorizLine.

Build and run the app in the Simulator. You’ll see a horizontal line corresponding to
the location of the top of the MyHorizLine instance in the nib. Our view has drawn
itself as a horizontal line, because we subclassed it to do so.

In that example, we started with a bare UIView that had no drawing functionality of
its own. But you might also be able to subclass a built-in UIView subclass to modify
the way it already draws itself. In the UILabel class documentation, the discussions of
both drawText(in:) and textRect(forBounds:limitedToNumberOfLines:) refer
explicitly to overriding these methods. The implication is that these are methods that
will be called for us, automatically, by Cocoa, as a label draws itself; we can subclass
UILabel and implement these methods in our subclass to modify how a particular
label draws itself.

In one of my own apps, I subclass UILabel and override drawText(in:) to make a
label that draws its own rectangular border and has its content inset somewhat from
that border. As the documentation tells us: “In your overridden method, you can
configure the current context further and then invoke super to do the actual drawing
[of the text].” Let’s try it:

1. In the Empty Window project, make a new class file, a UILabel subclass; call the
class MyBoundedLabel.

2. In MyBoundedLabel.swift, insert this code into the body of the class declaration:

override func drawText(in rect: CGRect) {
 let context = UIGraphicsGetCurrentContext()!
 context.stroke(self.bounds.insetBy(dx: 1.0, dy: 1.0))
 super.drawText(in: rect.insetBy(dx: 5.0, dy: 5.0))
}

3. Edit the storyboard, add a UILabel to the interface, and change its class in the
Identity inspector to MyBoundedLabel.

Subclassing | 505

Build and run the app. As you can see, the rectangle is drawn and the label’s text is
inset within it.

Categories and Extensions
A category is an Objective-C language feature that allows code to reach right into an
existing class and inject additional methods. This is comparable to a Swift extension
(Chapter 4), so I’ll start by reminding you how extensions are used, and then I’ll
describe how Cocoa uses categories.

Objective-C categories have names, and you may see references to these names
in the headers, the documentation, and so forth. However, the names are effec‐
tively meaningless, so don’t worry about them.

How Swift Uses Extensions
In the Swift standard library header, many native object type declarations consist of
an initial declaration followed by a series of extensions. After declaring the generic
struct Array<Element>, the header proceeds to declare some dozen extensions on
the Array struct. Some of these add protocol adoptions; all of them add declarations
of properties or methods. These extensions are not, for the most part, functionally
significant. The header could have declared the Array struct with all of those proper‐
ties and methods within the body of a single declaration. Instead, it breaks things up
into multiple extensions as a way of clumping related functionality together, organiz‐
ing this object type’s members so as to make them easier for human readers to
understand.

In the Swift Core Graphics header, on the other hand, extensions are functionally sig‐
nificant — and just about everything is an extension — because Swift is adapting
types that are already defined elsewhere. It adapts Swift numeric types for use with
Core Graphics and CGFloat, and it adapts C structs such as CGPoint and CGRect for
use as Swift object types.

How You Use Extensions
For the sake of object-oriented encapsulation, you will often want to write a function
that you inject, as a method, into an existing object type. To do so, you’ll write an
extension. Subclassing merely to add a method or two is heavy-handed — and
besides, it often wouldn’t help you do what you need to do.

Suppose you wanted to add a method to Cocoa’s UIView class. You could subclass
UIView and declare your method, but then it would be present only in your UIView
subclass and in subclasses of that subclass. It would not be present in UIButton,
UILabel, and all the other built-in UIView subclasses, because they are subclasses of

506 | Chapter 10: Cocoa Classes

UIView, not of your subclass. An extension solves the problem beautifully: you inject
your method into UIView, and it is inherited by all built-in UIView subclasses as
well.

For more fine-grained injection of functionality, you can use protocol extensions.
Suppose I want UIButton and UIBarButtonItem — which is not a UIView, but does
have button-like behavior — to share a certain method. I can declare a protocol with
a method, implement that method in a protocol extension, and then use extensions to
make UIButton and UIBarButtonItem adopt that protocol and acquire that method:

protocol ButtonLike {
 func behaveInButtonLikeWay()
}
extension ButtonLike {
 func behaveInButtonLikeWay() {
 // ...
 }
}
extension UIButton : ButtonLike {}
extension UIBarButtonItem : ButtonLike {}

How Cocoa Uses Categories
Cocoa uses categories as an organizational tool much as Swift uses extensions. The
declaration of a class will often be divided by functionality into multiple categories;
these can even appear in separate header files.

A good example is NSString. NSString is defined as part of the Foundation frame‐
work, and its basic methods are declared in NSString.h. Here we find that NSString
itself, aside from its initializers, has just two members, length and character(at:),
because these are regarded as the minimum functionality that a string needs in order
to be a string.

Additional NSString methods — those that create a string, deal with a string’s encod‐
ing, split a string, search in a string, and so on — are clumped into categories. These
are shown in the Swift translation of the header as extensions. After the declaration
for the NSString class itself, we find this in the Swift translation of the header:

extension NSString {
 func substring(from: Int) -> String
 func substring(to: Int) -> String
 // ...
}

That is actually Swift’s translation of this Objective-C code:

Categories and Extensions | 507

@interface NSString (NSStringExtensionMethods)
- (NSString *)substringFromIndex:(NSUInteger)from;
- (NSString *)substringToIndex:(NSUInteger)to;
// ...
@end

That notation — the keyword @interface, followed by a class name, followed by
another name in parentheses — is an Objective-C category.

Moreover, although the declarations for some of Cocoa’s NSString categories appear
in this same file, NSString.h, many of them appear elsewhere:

• A string may serve as a file pathname, so we also find a category on NSString in
NSPathUtilities.h, where methods and properties such as pathComponents are
declared for splitting a pathname string into its constituents and the like.

• In NSURL.h, which is devoted primarily to declaring the NSURL class (and its
categories), there is also another NSString category, declaring methods for deal‐
ing with percent encoding in a URL string, such as addingPercent-

Encoding(withAllowedCharacters:).
• Off in a completely different framework (UIKit), NSStringDrawing.h adds two

further NSString categories, with methods like draw(at:withAttributes:) hav‐
ing to do with drawing a string in a graphics context.

This organization means that the NSString methods are not gathered in a single
header file. In general, fortunately, this won’t matter to you as a programmer,
because an NSString is an NSString, no matter how it acquires its methods.

Protocols
Objective-C has protocols, and these are generally comparable to and compatible
with Swift protocols (see Chapter 4). Since classes are the only Objective-C object
type, all Objective-C protocols are seen by Swift as class protocols. Conversely, Swift
protocols marked as @objc are implicitly class protocols and can be seen by
Objective-C. Cocoa makes extensive use of protocols.

A case in point is how Cocoa objects are copied. Some objects can be copied; some
can’t. This has nothing to do with an object’s class heritage. Yet we would like a uni‐
form method to which any object that can be copied will respond. So Cocoa defines a
protocol named NSCopying, which declares just one required method, copyWith-
Zone:. Here’s how NSObject.h declares the NSCopying protocol:

@protocol NSCopying
- (id)copyWithZone:(nullable NSZone *)zone;
@end

508 | Chapter 10: Cocoa Classes

That’s translated into Swift:

protocol NSCopying {
 func copy(with zone: NSZone? = nil) -> Any
}

The NSCopying protocol declaration in NSObject.h, however, is not a statement that
NSObject itself conforms to NSCopying. Indeed, NSObject does not conform to
NSCopying! This doesn’t compile:

let obj = NSObject().copy(with:nil) // compile error

But this does compile, because NSString does conform to NSCopying:

let s = ("hello" as NSString).copy(with: nil)

Far and away the most pervasive use of protocols in Cocoa is in connection with the
delegation pattern. I’ll discuss this pattern in detail in Chapter 11, but you can readily
see an example in our handy Empty Window project: the AppDelegate class provided
by the project template is declared like this:

class AppDelegate: UIResponder, UIApplicationDelegate { // ...

AppDelegate’s chief purpose on earth is to serve as the shared application’s delegate.
The shared application object is a UIApplication, and UIApplication’s delegate
property is declared like this (I’ll explain the unsafe modifier in Chapter 12):

unowned(unsafe) var delegate: UIApplicationDelegate?

The UIApplicationDelegate type is a protocol. UIApplication is saying: “I don’t care
what class my delegate belongs to, but whatever it is, it should conform to the
UIApplicationDelegate protocol.” Such conformance constitutes a promise that the
delegate will implement instance methods declared by the protocol, such as
application(_:didFinishLaunchingWithOptions:). The AppDelegate class offi‐
cially announces its role by explicitly adopting the UIApplicationDelegate protocol.

A Cocoa protocol has its own documentation page. When the UIApplication class
documentation tells you that the delegate property is typed as UIApplication‐
Delegate, it’s implicitly telling you that if you want to know what messages the appli‐
cation’s delegate might receive, you need to look in the UIApplicationDelegate
protocol documentation. application(_:didFinishLaunchingWithOptions:) isn’t
mentioned anywhere in the UIApplication class documentation page; it’s in the
UIApplicationDelegate protocol documentation page.

Optional Members
Objective-C protocols, and Swift protocols marked as @objc, can have optional mem‐
bers (see “Optional Protocol Members” on page 197). The UIApplicationDelegate
protocol method application(_:didFinishLaunchingWithOptions:) is a case in

Protocols | 509

point; it’s optional. But how, in practice, is an optional member feasible? We know
that if a message is sent to an object and the object can’t handle that message, an
exception is raised and your app will likely crash. How does Objective-C prevent that
from happening?

The answer is that Objective-C is both dynamic and introspective. Objective-C can
ask an object whether it can deal with a message without actually sending it that mes‐
sage. The key method here is NSObject’s responds(to:) method (Objective-C
respondsToSelector:), which takes a selector parameter (see Chapter 2) and returns
a Bool. Thus it is possible to send a message to an object conditionally — that is, only
if it would be safe to do so.

Demonstrating responds(to:) in Swift is generally a little tricky, because Swift, with
its strict type checking, doesn’t want to let us send an object a message to which it
might not respond. In this artificial example, I start by defining, at top level, a class
that derives from NSObject, because otherwise we can’t send responds(to:) to it,
along with an @objc protocol to declare the message that I want to send
conditionally:

class MyClass : NSObject {
}
@objc protocol Dummy {
 func woohoo()
}

Now I can say this:

let mc = MyClass()
if mc.responds(to: #selector(Dummy.woohoo)) {
 (mc as AnyObject).woohoo()
}

Note the cast of mc to AnyObject. This causes Swift to abandon its strict type check‐
ing (see “Suppressing type checking” on page 225); we can now send this object any
message that Swift knows about, provided it is susceptible to Objective-C introspec‐
tion — that’s why I marked my protocol declaration as @objc to start with. As you
know, Swift provides a shorthand for sending a message conditionally: append a
question mark to the name of the message. I could have written this:

let mc = MyClass()
(mc as AnyObject).woohoo?()

Behind the scenes, those two approaches are exactly the same; the latter is syntactic
sugar for the former. In response to the question mark, Swift is calling
responds(to:) for us, and will refrain from sending woohoo to this object if it doesn’t
respond to this selector.

510 | Chapter 10: Cocoa Classes

That explains how optional protocol members work. It is no coincidence that Swift
treats optional protocol members like AnyObject members. Here’s the example I
gave in Chapter 4:

@objc protocol Flier {
 @objc optional var song : String {get}
 @objc optional func sing()
}

When you call sing?() on an object typed as Flier, responds(to:) is called behind
the scenes to determine whether this call is safe. That is also why optional protocol
members work only on @objc protocols and classes derived from NSObject: Swift is
relying here on a purely Objective-C feature.

You wouldn’t want to send a message optionally, or call responds(to:) explicitly,
before sending just any old message, because it isn’t generally necessary except with
optional methods, and it slows things down a little. But Cocoa does in fact call
responds(to:) on your objects as a matter of course. To see that this is true, imple‐
ment responds(to:) on the AppDelegate class in our Empty Window project and
instrument it with logging:

override func responds(to aSelector: Selector) -> Bool {
 print(aSelector)
 return super.responds(to:aSelector)
}

The output on my machine, as the Empty Window app launches, includes the
following:

application:handleOpenURL:
application:openURL:sourceApplication:annotation:
application:openURL:options:
applicationDidReceiveMemoryWarning:
applicationWillTerminate:
applicationSignificantTimeChange:
application:willChangeStatusBarOrientation:duration:
application:didChangeStatusBarOrientation:
application:willChangeStatusBarFrame:
application:didChangeStatusBarFrame:
application:deviceAccelerated:
application:deviceChangedOrientation:
applicationDidBecomeActive:
applicationWillResignActive:
applicationDidEnterBackground:
applicationWillEnterForeground:
applicationWillSuspend:
application:didResumeWithOptions:
application:shouldSaveApplicationState:
application:shouldSaveSecureApplicationState:
application:supportedInterfaceOrientationsForWindow:
application:defaultWhitePointAdaptivityStyleForWindow:

Protocols | 511

application:configurationForConnectingSceneSession:options:
application:didDiscardSceneSessions:
application:performFetchWithCompletionHandler:
application:didReceiveRemoteNotification:fetchCompletionHandler:
application:willFinishLaunchingWithOptions:
application:didFinishLaunchingWithOptions:

That’s Cocoa, checking to see which optional UIApplicationDelegate protocol meth‐
ods are actually implemented by our AppDelegate instance. Cocoa checks all the
optional protocol methods once, when it first meets the object in question, and pre‐
sumably stores the results; the app is slowed a tiny bit by this one-time initial bom‐
bardment of responds(to:) calls, but now Cocoa knows all the answers and won’t
have to perform any of these same checks on the same object later. The entire pattern
of a delegate with optional delegate members depends upon this technique.

Informal Protocols
You may occasionally see, online or in the Cocoa documentation, a reference to an
informal protocol. An informal protocol isn’t really a protocol at all; it’s just an
Objective-C trick for providing the compiler with a knowledge of a method name so
that it will allow a message to be sent without complaining.

There are two complementary ways to implement an informal protocol. One is to
define a category on NSObject; this makes any object eligible to receive the messages
listed in the category. The other is to define a protocol to which no class formally
conforms; instead, messages listed in the protocol are sent only to objects typed as id
(AnyObject), suppressing any objections from the compiler.

These techniques were widespread in Cocoa before Objective-C protocols could
declare methods as optional; now they are largely unnecessary, and are also mildly
dangerous. Nowadays, very few informal protocols remain, but they do exist. NSKey‐
ValueCoding (discussed later in this chapter) is an informal protocol; you may see
the term NSKeyValueCoding in the documentation and elsewhere, but there isn’t
actually any such type — it’s a category on NSObject.

Some Foundation Classes
The Foundation classes of Cocoa provide basic data types and utilities that will form
the basis of your communication with Cocoa. In this section, I’ll survey those that
you’ll probably want to be aware of initially. For more information, start with Apple’s
list of the Foundation classes in the Foundation framework documentation page.

In many situations, you can use Foundation classes implicitly by way of Swift classes.
That’s because of Swift’s ability to bridge between its own classes and those of Foun‐
dation. There are two kinds of bridging to be distinguished here:

512 | Chapter 10: Cocoa Classes

Native Swift types
Certain purely native Swift types are bridged to Objective-C types for purposes of
interoperability. For instance, String and Array are native Swift types, with an
independent existence. String is bridged to NSString (Chapter 3), and Array is
bridged to NSArray (Chapter 4), so a String and an NSString can be cast to one
another, and an Array and an NSArray can be cast to one another. But in fact
you’ll rarely need to cast, because wherever the Objective-C API expects you to
pass an NSString or an NSArray, these will be typed in the Swift translation of
that API as a String or an Array. And when you use String or Array in the pres‐
ence of Foundation, many NSString and NSArray properties and methods spring
to life.

Foundation overlay types
The Swift Foundation overlay puts a native Swift interface in front of many
Foundation types. The Swift interface is distinguished by dropping the “NS” pre‐
fix that marks Foundation class names. These are not native Swift types; they are
façades for Objective-C types, meaning that you cannot use them except in the
presence of Cocoa’s Foundation framework. For instance, Objective-C NSData is
accessed through Swift Data, and Objective-C NSDate is accessed through Swift
Date — though you can still use NSData and NSDate directly if you really want
to. The Swift and Objective-C types are bridged to one another, and the API
shows the Swift type, so casting and passing both work as you would expect. The
Swift types provide many conveniences that the Objective-C types do not: they
may declare adoption of appropriate Swift protocols such as Equatable, Hasha‐
ble, and Comparable, and, in some cases, they may be value types (structs) where
the Objective-C types are reference types (classes).

NSRange
NSRange is a C struct (see Appendix A). Its components are integers, location and
length. An NSRange whose location is 1 starts at the second element of something
(because element counting is always zero-based), and if its length is 2 it designates
this element and the next.

A Swift Range and a Cocoa NSRange are constructed very differently from one
another. A Swift Range is defined by two endpoints. A Cocoa NSRange is defined by
a starting point and a length. Nevertheless, Swift goes to some lengths (in the Foun‐
dation overlay) to help you work with an NSRange:

• NSRange is endowed with Range-like members such as lowerBound, upperBound,
and contains(_:).

• You can coerce a Swift Range whose Bound type (the type of its endpoints) is Int
(or any other integer type) to an NSRange.

Some Foundation Classes | 513

• You can coerce from an NSRange to a Swift Range — resulting in an Optional
wrapping a Range, for reasons I’ll explain in a moment.

For example:

// Range to NSRange
let r = 2..<4
let nsr = NSRange(r) // (2,2), an NSRange
// NSRange to Range
let nsr2 = NSRange(location: 2, length: 2)
let r2 = Range(nsr2) // Optional wrapping Range 2..<4

But what about strings? A Swift String’s range Bound type is not Int; it is
String.Index. Meanwhile, on the Cocoa side, an NSString still uses an NSRange
whose components are integers. Not only is there a type mismatch, there’s also a
value mismatch, because (as I explained in Chapter 3) a String is indexed on its char‐
acters, meaning its graphemes, but an NSString is indexed on its Unicode codepoints.

Sometimes, Swift will solve the problem by crossing the bridge for you in both direc‐
tions; here’s an example I’ve already used:

let s = "hello"
let range = s.range(of:"ell") // Optional wrapping Range 1..<4

The range(of:) method in that code is actually a Cocoa method. Swift has cast the
String s to an NSString for us, called a Foundation method that returns an NSRange,
and coerced the NSRange to a Swift Range (wrapped in an Optional), adjusting its
value as needed, entirely behind the scenes.

On other occasions, you will want to perform that coercion explicitly. For this pur‐
pose, Range has an initializer init(_:in:), taking an NSRange and the String to
which the resulting range is to apply:

let range = NSRange(location: 1, length: 3)
let r = Range(range, in:"hello") // Optional wrapping 1..<4 of String.Index

And NSRange has the converse initializer init(_:in:), taking a Range of
String.Index and the String to which it applies:

let s = "hello"
let range = NSRange(s.range(of:"ell")!, in: s) // (1,3), an NSRange

Sometimes, however, you actively want to operate in the Cocoa Foundation world,
without bridging back to Swift. You can do that by casting:

let s = "Hello"
let range = (s as NSString).range(of: "ell") // NSRange
let mas = NSMutableAttributedString(string:s)
mas.addAttributes([.foregroundColor:UIColor.red], range: range)

In that code, we cast a String to an NSString so as to be able to call NSString’s
range(of:) and get an NSRange, because that is what NSMutableAttributedString’s

514 | Chapter 10: Cocoa Classes

addAttributes(_:range:) wants as its second parameter. It would be wasteful and
time-consuming to call range(of:) on a Swift String, which crosses into the Founda‐
tion world, gets the range, and brings it back to the Swift world, only to convert it
back to an NSRange again.

NSNotFound
NSNotFound is a constant integer indicating that some requested element was not
found. The true numeric value of NSNotFound is of no concern; you always compare
against NSNotFound itself to learn whether a result is meaningful. If you ask for the
index of a certain object in an NSArray and the object isn’t present, the result is
NSNotFound:

let arr = ["hey"] as NSArray
let ix = arr.index(of:"ho")
if ix == NSNotFound {
 print("it wasn't found")
}

Why does Cocoa resort to an integer value with a special meaning in this way?
Because it has to. The result could not be 0 to indicate the absence of the object,
because 0 would indicate the first element of the array. Nor could it be -1, because an
NSArray index value is always positive. Nor could it be nil, because Objective-C
can’t return nil when an integer is expected (and even if it could, it would be seen as
another way of saying 0). Contrast Swift, whose Array firstIndex(of:) method
returns an Int wrapped in an Optional, precisely so that it can return nil to indicate
that the target object wasn’t found.

If a search returns an NSRange and the thing sought is not present, the location
component of the result will be NSNotFound. This means that, when you turn an
NSRange into a Swift Range, the NSRange’s location might be NSNotFound, and
Swift needs to be able to express that as a nil Range. That’s why the initializers for
coercing an NSRange to a Range are failable. It is also why, when you call NSString’s
range(of:) method on a Swift String, the result is an Optional:

let s = "hello"
let r = s.range(of:"ha") // nil; an Optional wrapping a Swift Range

NSString and Friends
NSString is the Cocoa object version of a string. NSString and Swift String are
bridged to one another, and you will often move between them without thinking,
passing a Swift String to Cocoa, calling Cocoa NSString methods on a Swift String,
and so forth:

let s = "hello"
let s2 = s.capitalized

Some Foundation Classes | 515

In that code, s is a Swift String and s2 is a Swift String, but the capitalized property
actually belongs to Cocoa. In the course of that code, a Swift String has been bridged
to NSString and passed to Cocoa, which has processed it to get the capitalized string;
the capitalized string is an NSString, but it has been bridged back to a Swift String. In
all likelihood, you are not conscious of the bridging; capitalized feels like a native
String property, but it isn’t — as you can readily prove by trying to use it in an envi‐
ronment where Foundation is not imported.

In some cases, Swift may fail to cross the bridge implicitly for you, and you will need
to cast explicitly. If s is a Swift string, you can’t call appendingPathExtension on it
directly:

let s = "MyFile"
let s2 = s.appendingPathExtension("txt") // compile error

You have to cast explicitly to NSString:

let s2 = (s as NSString).appendingPathExtension("txt")

Similarly, to use NSString’s substring(to:), you must cast the String to an NSString
beforehand:

let s2 = (s as NSString).substring(to:4)

In this situation, however, we can stay entirely within the Swift world by calling
prefix, which is a native Swift method, not a Foundation method; delightfully, it
takes an Int, not a String.Index:

let s2 = s.prefix(4)

However, those two calls are not equivalent: they can give different answers! The rea‐
son is that String and NSString have fundamentally different notions of what consti‐
tutes an element of a string (see “The String–NSString Element Mismatch” on page
97). A String must resolve its elements into characters, which means that it must walk
the string, coalescing any combining codepoints; an NSString behaves as if it were an
array of UTF-16 codepoints. On the Swift side, each increment in a String.Index cor‐
responds to a true character, but access by index or range requires walking the string;
on the Cocoa side, access by index or range is extremely fast, but might not corre‐
spond to character boundaries. (See the “Characters and Grapheme Clusters” chapter
of Apple’s String Programming Guide in the documentation archive.)

Another important difference between a Swift String and a Cocoa NSString is that an
NSString is immutable. This means that, with NSString, you can do things such as
obtain a new string based on the first — as capitalized and substring(to:) do —
but you can’t change the string in place. To do that, you need another class, a subclass
of NSString, NSMutableString. Swift String isn’t bridged to NSMutableString, so you
can’t get from String to NSMutableString merely by casting. To obtain an
NSMutableString, you’ll have to make one. The simplest way to do that is with

516 | Chapter 10: Cocoa Classes

NSMutableString’s initializer init(string:), which expects an NSString — meaning
that you can pass a Swift String. Coming back the other way, you can cast all the way
from NSMutableString to a Swift String in one move, because an NSMutableString is
an NSString:

let s = "hello"
let ms = NSMutableString(string:s)
ms.deleteCharacters(in:NSRange(location: ms.length-1, length:1))
let s2 = (ms as String) + "ion" // now s2 is a Swift String, "hellion"

As I said in Chapter 3, native Swift String methods are thin on the ground. All the
real string-processing power lives over on the Cocoa side of the bridge. So you’re
going to be crossing that bridge a lot! And this will not be only for the power of the
NSString and NSMutableString classes. Many other useful classes are associated with
them. Suppose you want to search a string for some substring; all the best ways come
from Cocoa:

• An NSString can be searched using various range methods, with numerous
options such as ignoring diacriticals, ignoring case, and searching backward.

• Perhaps you don’t know exactly what you’re looking for: you need to describe it
structurally. A Scanner (Objective-C NSScanner) lets you walk through a string
looking for pieces that fit certain criteria; for example, with Scanner (and Char‐
acterSet, Objective-C NSCharacterSet) you can skip past everything in a string
that precedes a number and then extract the number.

• By specifying the .regularExpression search option, you can search using a reg‐
ular expression. Regular expressions are also supported as a separate class,
NSRegularExpression, which in turn uses NSTextCheckingResult to describe
match results.

• More sophisticated automated textual analysis is supported by some additional
classes, such as NSDataDetector, an NSRegularExpression subclass that effi‐
ciently finds certain types of string expression such as a URL or a phone number.

In this example, our goal is to replace all occurrences of the word “hell” with the
word “heaven.” We don’t want to replace mere occurrences of the substring “hell” —
the word “hello” should be left intact. Clearly our search needs some intelligence as to
what constitutes a word boundary. That sounds like a job for a regular expression.
Swift doesn’t have regular expressions, so the work has to be done by Cocoa:

var s = "hello world, go to hell"
let r = try! NSRegularExpression(
 pattern: #"\bhell\b"#,
 options: .caseInsensitive)
s = r.stringByReplacingMatches(

Some Foundation Classes | 517

 in: s,
 range: NSRange(s.startIndex..., in:s),
 withTemplate: "heaven")
// s is "hello world, go to heaven"

NSString also has convenience utilities for working with a file path string, and is
often used in conjunction with URL (Objective-C NSURL), which is another Foun‐
dation type worth looking into, along with its companion types, URLComponents
(Objective-C NSURLComponents) and URLQueryItem (Objective-C NSURLQuery‐
Item). In addition, NSString — like some other classes discussed in this section —
provides methods for writing out to a file’s contents or reading in a file’s contents; the
file can be specified either as a string file path or as a URL.

An NSString carries no font and size information. Interface objects that display
strings (such as UILabel) have a font property that is a UIFont; but this determines
the single font and size in which the string will display. If you want styled text —
where different runs of text have different style attributes (size, font, color, and so
forth) — you need to use NSAttributedString, along with its supporting classes
NSMutableAttributedString, NSParagraphStyle, and NSMutableParagraphStyle.
These allow you to style text and paragraphs easily in sophisticated ways. The built-in
interface objects that display text can display an attributed string.

String drawing in a graphics context can be performed with methods provided
through the NSStringDrawing category on NSString and on NSAttributedString.

NSDate and Friends
A Date (Objective-C NSDate) is a date and time, represented internally as a number
of seconds since some reference date. Calling Date’s initializer init() — that is, say‐
ing Date() — gives you a Date object for the current date and time. Many date
operations will also involve the use of DateComponents (Objective-C NSDate‐
Components), and conversions between Date and DateComponents require use of a
Calendar (Objective-C NSCalendar). Here’s an example of constructing a date based
on its calendrical values:

let greg = Calendar(identifier:.gregorian)
let comp = DateComponents(calendar: greg,
 year: 2020, month: 8, day: 10, hour: 15)
let d = comp.date // Optional wrapping Date

Similarly, DateComponents provides the correct way to do date arithmetic. Here’s
how to add one month to a given date:

let d = Date() // or whatever
let comp = DateComponents(month:1)
let greg = Calendar(identifier:.gregorian)
let d2 = greg.date(byAdding: comp, to:d) // Optional wrapping Date

518 | Chapter 10: Cocoa Classes

Because a Date is essentially a wrapper for a TimeInterval (a Double), Swift can over‐
load the arithmetic operators so that you can do arithmetic directly on a Date:

let d = Date()
let d2 = d + 4 // 4 seconds later

You can express the range between two dates as a DateInterval (Objective-C NSDate‐
Interval). DateIntervals can be compared, intersected, and checked for containment:

let greg = Calendar(identifier:.gregorian)
let d1 = DateComponents(calendar: greg,
 year: 2020, month: 1, day: 1, hour: 0).date!
let d2 = DateComponents(calendar: greg,
 year: 2020, month: 8, day: 10, hour: 15).date!
let di = DateInterval(start: d1, end: d2)
if di.contains(Date()) { // are we currently between those two dates?

You will also likely be concerned with dates represented as strings. If you don’t take
explicit charge of a date’s string representation, it is represented by a string whose
format may surprise you. If you simply print a Date, you are shown the date in the
GMT timezone, which can be confusing if that isn’t where you live. A simple solution
when you’re just logging to the console is to call description(with:), whose param‐
eter is a Locale (Objective-C NSLocale) comprising the user’s current time zone, lan‐
guage, region format, and calendar settings:

print(d)
// 2020-08-10 22:00:00 +0000
print(d.description(with:Locale.current))
// Monday, August 10, 2020 at 3:00:00 PM Pacific Daylight Time

For full control over date strings, especially when presenting them to the user, use
DateFormatter (Objective-C NSDateFormatter), which takes a format string describ‐
ing how the date string is laid out:

let df = DateFormatter()
df.dateFormat = "M/d/y"
let s = df.string(from: Date())
// 7/6/2020

For the date format string notation, see Appendix F of Unicode Technical Report 35.

DateFormatter knows how to make a date string that conforms to the user’s local
conventions. In this example, we call the class method dateFormat(from-

Template:options:locale:) with the current locale as configured on the user’s
device. The template: is a string listing the date components to be used, but their
order, punctuation, and language are left up to the locale:

Some Foundation Classes | 519

https://www.unicode.org/reports/tr35/tr35-29.html#Date_Format_Patterns

let df = DateFormatter()
let format = DateFormatter.dateFormat(
 fromTemplate:"dMMMMyyyyhmmaz", options:0,
 locale:Locale.current)
df.dateFormat = format
let s = df.string(from:Date())

The result is that the date is shown in the user’s time zone and language, using the
correct linguistic conventions. That involves a combination of region format and lan‐
guage, which are two separate settings:

• On my device, the result might be “July 9, 2020, 12:34 PM PDT.”
• If I change my device’s region to France, it might be “9 July 2020 at 12:34 pm

GMT-7.”
• If I also change my device’s language to French, and if my app is localized for

French, it might be “9 juillet 2020 à 12:34 PM UTC−7.”
DateFormatter can also parse a date string into a Date — but be sure that the date
format is correct. This attempt to parse a string will fail, because the date format
doesn’t match the way the string is constructed:

let df = DateFormatter()
df.locale = Locale(identifier: "en_US_POSIX")
df.dateFormat = "M/d/y"
let d = df.date(from: "14/7/2020") // nil; should have been "d/M/y"

Setting the Locale to "en_US_POSIX" guarantees that we will override the device’s
settings. Forgetting to do this, and then wondering why parsing a string into a
Date fails on some devices, is a common beginner error, particularly when you
were expecting 12-hour vs. 24-hour time formatting.

NSNumber
An NSNumber is an object that wraps a numeric value. The wrapped value can be
any standard Objective-C numeric type (including BOOL, the Objective-C equivalent
of Swift Bool). In Swift, everything is an object — a number is a Struct instance — so
it comes as a surprise to Swift users that NSNumber is needed. But an ordinary num‐
ber in Objective-C is a scalar, not an object, so it cannot be used where an object is
expected; and an object cannot be used where a number is expected. Thus, NSNum‐
ber solves an important problem for Objective-C, converting a number into an object
and back again.

Swift does its best to shield you from having to deal directly with NSNumber. It
bridges Swift numeric types to Objective-C in two different ways:

As a scalar
If Objective-C expects an ordinary number, a Swift number is bridged to an ordi‐
nary number (a scalar):

520 | Chapter 10: Cocoa Classes

UIView.animate(withDuration: 1,
 animations: whatToAnimate, completion: whatToDoLater)

Objective-C animateWithDuration:animations:completion: takes a C double
as its first parameter. The Swift numeric object that you supply as the first argu‐
ment to animate(withDuration:animations:completion:) becomes a C
double.

As an NSNumber
If Objective-C expects an object, a Swift numeric type is bridged to an NSNum‐
ber (including Bool, because NSNumber can wrap an Objective-C BOOL):

UserDefaults.standard.set(1, forKey:"Score")

Objective-C setObject:forKey: takes an Objective-C object as its first parame‐
ter. The Swift numeric object that you supply as the first argument to set(_:for-
Key:) becomes an NSNumber.

Naturally, if you need to cross the bridge explicitly, you can. You can cast a Swift
number to an NSNumber:

let n = 1 as NSNumber

Coming back from Objective-C to Swift, an NSNumber (or an Any that is actually an
NSNumber) can be unwrapped by casting it down to a numeric type — provided the
wrapped numeric value matches the type. To illustrate, I’ll fetch the NSNumber that I
created in UserDefaults by bridging a moment ago:

let n = UserDefaults.standard.value(forKey:"Score")
// n is an Optional<Any> containing an NSNumber
let i = n as! Int // legal
let d = n as! Double // legal

An NSNumber object is just a wrapper and no more. It can’t be used directly for
numeric calculations; it isn’t a number. It wraps a number. One way or another, if
you want a number, you have to extract it from the NSNumber.

An NSNumber subclass, NSDecimalNumber, on the other hand, can be used in cal‐
culations, thanks to a bunch of arithmetic methods:

let dec1 = 4.0 as NSDecimalNumber
let dec2 = 5.0 as NSDecimalNumber
let sum = dec1.adding(dec2) // 9.0

Underlying NSDecimalNumber is the Decimal struct (Objective-C NSDecimal); it is
an NSDecimalNumber’s decimalValue. In Objective-C, NSDecimal comes with C
functions that are faster than NSDecimalNumber methods. In Swift, things are even
better, because the arithmetic operators are overloaded to allow you to do Decimal
arithmetic; you are likely to prefer working with Decimal rather than NSDecimal‐
Number:

Some Foundation Classes | 521

let dec1 = Decimal(4.0)
let dec2 = Decimal(5.0)
let sum = dec1 + dec2

Why does Decimal exist? Well, a computer thinks in binary, and native numeric
types are stored in a base-2 representation. When there are digits after the decimal
point, the results of an arithmetic operation may not appear quite as you would
expect:

let d1 = 0.2222
let d2 = 0.2221
let diff = d1 - d2 // 0.0001000000000000167

(The reasons for that kind of result are explained in a classic exposition entitled What
Every Computer Scientist Should Know About Floating-Point Arithmetic.)

Decimal, on the other hand, represents base-10 numbers, and its operations are
base-10 operations:

let dec1 = Decimal(d1) // 0.2222
let dec2 = Decimal(d2) // 0.2221
let decDiff = dec1 - dec2 // 0.0001
let diff = NSDecimalNumber(decimal: decDiff).doubleValue // 0.0001

But of course Decimal operations are much slower than normal arithmetic opera‐
tions! So you’ll use them only when you have to.

NSValue
NSValue is NSNumber’s superclass. It is used for wrapping nonnumeric C values,
such as C structs, where an object is expected. The problem being solved here is par‐
allel to the problem solved by NSNumber: a Swift struct is an object, but a C struct is
not, so a struct cannot be used in Objective-C where an object is expected, and vice
versa.

Convenience methods provided through the NSValueUIGeometryExtensions cate‐
gory on NSValue allow easy wrapping and unwrapping of such common structs as
CGPoint, CGSize, CGRect, CGAffineTransform, UIEdgeInsets, and UIOffset:

let pt = self.oldButtonCenter // a CGPoint
let val = NSValue(cgPoint:pt)

Additional categories allow easy wrapping and unwrapping of NSRange,
CATransform3D, CMTime, CMTimeMapping, CMTimeRange, MKCoordinate, and
MKCoordinateSpan (and you are unlikely to need to store any other kind of C value
in an NSValue, but if you do need to, you can).

But you will rarely need to deal with NSValue explicitly, because Swift will wrap any
of those common structs in an NSValue for you as it crosses the bridge from Swift to
Objective-C. Here’s an example from my own real-life code:

522 | Chapter 10: Cocoa Classes

https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html

let pt = CGPoint(
 x: screenbounds.midX + r * cos(rads),
 y: screenbounds.midY + r * sin(rads)
)
// apply an animation of ourself to that point
let anim = CABasicAnimation(keyPath:"position")
anim.fromValue = self.position
anim.toValue = pt

In that code, self.position and pt are both CGPoints. The CABasicAnimation
properties fromValue and toValue need to be Objective-C objects (that is, class
instances) so that Cocoa can obey them to perform the animation. It is therefore nec‐
essary to wrap self.position and pt as NSValue objects. But you don’t have to do
that; Swift wraps those CGPoints as NSValue objects for you, Cocoa is able to inter‐
pret and obey them, and the animation works correctly.

The same thing is true of an array of common structs. Again, animation is a case in
point. If you assign an array of CGPoint to a CAKeyframeAnimation’s values prop‐
erty, the animation will work properly, without your having to map the CGPoints to
NSValues first. That’s because Swift maps them for you as the array crosses the
bridge.

NSData
Data (Objective-C NSData) is a general sequence of bytes (UInt8); basically, it’s just a
buffer, a chunk of memory. In Objective-C, NSData is immutable; the mutable ver‐
sion is its subclass NSMutableData. In Swift, however, where Data is a bridged value
type imposed in front of NSData, a Data object is mutable if it was declared with var,
just like any other value type. Moreover, because a Data object represents a byte
sequence, Swift makes it a Collection (and therefore a Sequence), causing Swift fea‐
tures such as enumeration with for...in, subscripting, and append(_:) to spring to
life. Thus, although you can work with NSData and NSMutableData if you want to
(by casting to cross the bridge), you are much more likely to prefer Data.

In practice, Data tends to arise in two main ways:

When downloading from the internet
URLSession (Objective-C NSURLSession) supplies whatever it retrieves from the
internet as Data. Transforming it from there into (let’s say) a string, specifying
the correct encoding, would then be up to you.

When serializing an object
A typical use case is that you’re storing an object as a file or in user preferences
(UserDefaults). You can’t store a UIColor value directly into user preferences. So
if the user has made a color choice and you need to save it, you transform the
UIColor into a Data object (using NSKeyedArchiver) and save that:

Some Foundation Classes | 523

let ud = UserDefaults.standard
let c = UIColor.blue
let cdata = try! NSKeyedArchiver.archivedData(
 withRootObject: c, requiringSecureCoding: true)
ud.set(cdata, forKey: "myColor")

NSMeasurement and Friends
The Measurement type (Objective-C NSMeasurement) embodies the notion of a
measurement by some unit (Unit, Objective-C NSUnit). A unit may be along some
dimension that can be expressed in different units convertible to one another; by
reducing values in different units of the same dimension to a base unit, a Measure‐
ment permits you to perform arithmetic operations and conversions.

The dimensions, which are all subclasses of the (abstract) Dimension class
(Objective-C NSDimension, an NSUnit subclass), have names like UnitAngle and
UnitLength (Objective-C NSUnitAngle, NSUnitLength), and have class properties
vending an instance corresponding to a particular unit type; UnitAngle has class
properties degrees and radians and others, UnitLength has class properties miles
and kilometers, and so on.

To illustrate, I’ll add 5 miles to 6 kilometers:

let m1 = Measurement(value:5, unit: UnitLength.miles)
let m2 = Measurement(value:6, unit: UnitLength.kilometers)
let total = m1 + m2

The answer, total, is 14046.7 meters under the hood, because meters are the base
unit of length. But it can be converted to any length unit:

let totalFeet = total.converted(to: .feet).value // 46084.9737532808

If your goal is to output a measurement as a user-facing string, use a Measurement‐
Formatter (Objective-C NSMeasurementFormatter). Its behavior is locale-dependent
by default, expressing the value and the units as the user would expect:

let mf = MeasurementFormatter()
let s = mf.string(from:total) // "8.728 mi"

My code says nothing about miles, but the MeasurementFormatter outputs "8.728
mi" because my device is set to United States (region) and English (language). If my
device is set to France (region) and French (language), the very same code outputs
"14,047 km" — using the French decimal point notation and the French preferred
unit of distance measurement.

Equality, Hashability, and Comparison
In Swift, the equality and comparison operators can be overridden for an object type
that adopts Equatable and Comparable (“Operators” on page 299). But Objective-C

524 | Chapter 10: Cocoa Classes

operators are applicable only to scalars. Objective-C therefore performs comparison
of object instances in a special way, and it can be useful to know about this when
working with Cocoa classes.

To permit determination of whether two objects are “equal” — whatever that may
mean for this object type — an Objective-C class must implement isEqual(_:),
which is inherited from NSObject. Swift will help out by treating NSObject as Equat‐
able and by permitting the use of the == operator, implicitly converting it to an
isEqual(_:) call. Thus, if a class derived from NSObject implements isEqual(_:),
ordinary Swift comparison will work. If an NSObject subclass doesn’t implement
isEqual(_:), it inherits NSObject’s implementation, which compares the two objects
for identity (like Swift’s === operator).

These two Dog objects can be compared with the == operator, even though Dog does
not adopt Equatable, because they derive from NSObject. Dog doesn’t implement
isEqual(_:), so == defaults to using NSObject’s identity comparison:

class Dog : NSObject {
 var name : String
 var license : Int
 init(name:String, license:Int) {
 self.name = name
 self.license = license
 }
}
let d1 = Dog(name:"Fido", license:1)
let d2 = Dog(name:"Fido", license:1)
let ok = d1 == d2 // false

If we wanted two Dogs with the same name and license to be considered equal, we’d
need to implement isEqual(_:), like this:

class Dog : NSObject {
 var name : String
 var license : Int
 init(name:String, license:Int) {
 self.name = name
 self.license = license
 }
 override func isEqual(_ object: Any?) -> Bool {
 if let otherdog = object as? Dog {
 return (otherdog.name == self.name &&
 otherdog.license == self.license)
 }
 return false
 }
}
let d1 = Dog(name:"Fido", license:1)
let d2 = Dog(name:"Fido", license:1)
let ok = d1 == d2 // true

Some Foundation Classes | 525

At this point, you might be saying (thinking of “Synthesized Protocol Implementa‐
tions” on page 313): “But wait, why don’t you just declare Dog to adopt Equatable
and get autosynthesis of equatability based on its properties?” But you can’t do that.
Autosynthesis of Equatable conformance doesn’t work for classes, and in any case
Dog is already Equatable by virtue of being an NSObject subclass. Besides, Equatable
is about how to implement ==, whereas what we need to implement here is isEqual:.

Foundation types implement isEqual(_:) in a sensible way, so Swift equatability
works as you would expect. NSNumber implements isEqual(_:) by comparing the
underlying numbers; thus, you can use NSNumber where a Swift Equatable is
expected, and, because a Swift number will be cast automatically to an NSNumber if
needed, you can even compare an NSNumber to a Swift number:

let n1 = 1 as NSNumber
let n2 = 2 as NSNumber
let n3 = 3 as NSNumber
let ok = n2 == 2 // true
let ix = [n1,n2,n3].firstIndex(of:2) // Optional wrapping 1

By the same token, for an NSObject subclass to work properly where hashability is
required — as a dictionary key or a set member, even if this is a Swift Dictionary or
Set — it must conform to the NSObject notion of hashability, namely, an implemen‐
tation of isEqual(_:) plus a corresponding override of the NSObject hash property,
meaning that two equal objects should have equal hash values. If we wanted our Dog
from the previous code to be usable in a Set, we’d need to override hash; that would
be tricky to implement on our own, but fortunately the Hasher struct (introduced in
Swift 4.2) makes it easy:

class Dog : NSObject {
 var name : String
 var license : Int
 init(name:String, license:Int) {
 self.name = name
 self.license = license
 }
 override func isEqual(_ object: Any?) -> Bool {
 if let otherdog = object as? Dog {
 return (otherdog.name == self.name &&
 otherdog.license == self.license)
 }
 return false
 }
 override var hash: Int {
 var h = Hasher()
 h.combine(self.name)
 h.combine(self.license)
 return h.finalize()
 }
}

526 | Chapter 10: Cocoa Classes

var set = Set<Dog>()
set.insert(Dog(name:"Fido", license:1))
set.insert(Dog(name:"Fido", license:1))
print(set.count) // 1

Foundation types come with a built-in hash implementation (and the Swift overlay
types are all both Equatable and Hashable as well).

In Objective-C it is also up to individual classes to supply ordered comparison meth‐
ods. The standard method is compare(_:), which returns one of three cases of
ComparisonResult (Objective-C NSComparisonResult):

.orderedAscending

The receiver is less than the argument.

.orderedSame

The receiver is equal to the argument.

.orderedDescending

The receiver is greater than the argument.

Swift comparison operators (< and so forth) do not magically call compare(_:) for
you. You can’t compare two NSNumber values directly:

let n1 = 1 as NSNumber
let n2 = 2 as NSNumber
let ok = n1 < n2 // compile error

You will typically fall back on calling compare(_:) yourself:

let n1 = 1 as NSNumber
let n2 = 2 as NSNumber
let ok = n1.compare(n2) == .orderedAscending // true

On the other hand, a Swift Foundation overlay type can adopt Comparable, and in
that case comparison operators do work. You can’t use the < operator to compare two
NSDate values, but you can use it to compare two Date values.

NSArray and NSMutableArray
NSArray is Objective-C’s array object type. It is fundamentally similar to Swift Array,
and they are bridged to one another; but NSArray elements must be objects (classes
and class instances), and they don’t have to be of a single type. For a full discussion of
how to bridge back and forth between Swift Array and Objective-C NSArray, implic‐
itly and by casting, see “Swift Array and Objective-C NSArray” on page 243.

An NSArray’s length is its count, and an element can be obtained by index number
using object(at:). The index of the first element, as with a Swift Array, is zero, so
the index of the last element is count minus one.

Some Foundation Classes | 527

Instead of calling object(at:), you can use subscripting with an NSArray. This is
not because NSArray is bridged to Swift Array, but because NSArray implements an
Objective-C method, objectAtIndexedSubscript:, which is the Objective-C equiva‐
lent of a Swift subscript getter. In fact, when you examine the NSArray header file
translated into Swift, that method is shown as a subscript declaration!

You can seek an object within an array with index(of:) or indexOfObject-
Identical(to:); the former’s idea of equality is to call isEqual(_:), whereas the lat‐
ter uses object identity (like Swift’s ===). If the object is not found in the array, the
result is NSNotFound.

Like an Objective-C NSString, an NSArray is immutable. This doesn’t mean you can’t
mutate any of the objects it contains; it means that once the NSArray is formed you
can’t remove an object from it, insert an object into it, or replace an object at a given
index. To do those things while staying in the Objective-C world, you can derive a
new array consisting of the original array plus or minus some objects, or use
NSArray’s subclass, NSMutableArray.

Swift Array is not bridged to NSMutableArray; if you want an NSMutableArray, you
must create it. The simplest way is with the NSMutableArray initializers, init() or
init(array:). Once you have an NSMutableArray, you can call methods such as
insert(_:at:) and replaceObject(at:with:). You can also assign into an
NSMutableArray using subscripting. Again, this is because NSMutableArray imple‐
ments a special Objective-C method, setObject:atIndexedSubscript:; Swift recog‐
nizes this as equivalent to a subscript setter.

Coming back the other way, you can cast an NSMutableArray down to a Swift array:

let marr = NSMutableArray()
marr.add(1) // an NSNumber
marr.add(2) // an NSNumber
let arr = marr as NSArray as! [Int]

Cocoa provides ways to sort an array, as well as to search or filter an array by passing
a function. You might prefer to perform those kinds of operation in the Swift Array
world, but it can be useful to know how to do them the Cocoa way:

let pep = ["Manny", "Moe", "Jack"] as NSArray
let ems = pep.objects(
 at: pep.indexesOfObjects { obj, idx, stop -> Bool in
 return (obj as! NSString).range(
 of: "m", options:.caseInsensitive
).location == 0
 }
) // ["Manny", "Moe"]

528 | Chapter 10: Cocoa Classes

NSDictionary and NSMutableDictionary
NSDictionary is Objective-C’s dictionary object type. It is fundamentally similar to
Swift Dictionary, and they are bridged to one another. But NSDictionary keys and
values must be objects (classes and class instances), and they don’t have to be of a
single type; the keys must conform to NSCopying and must be hashable. See “Swift
Dictionary and Objective-C NSDictionary” on page 251 for a full discussion of how
to bridge back and forth between Swift Dictionary and Objective-C NSDictionary,
including casting.

An NSDictionary is immutable; its mutable subclass is NSMutableDictionary. Swift
Dictionary is not bridged to NSMutableDictionary; you can most easily make an
NSMutableDictionary with an initializer, init() or init(dictionary:), and you can
cast an NSMutableDictionary down to a Swift Dictionary type.

The keys of an NSDictionary are distinct (using isEqual(_:) for comparison). If you
add a key–value pair to an NSMutableDictionary, then if that key is not already
present, the pair is simply added, but if the key is already present, then the corre‐
sponding value is replaced. This is parallel to the behavior of Swift Dictionary.

The fundamental use of an NSDictionary is to request an entry’s value by key (using
object(forKey:)); if no such key exists, the result is nil. In Objective-C, nil is not
an object and cannot be a value in an NSDictionary, so the meaning of this response
is unambiguous. Swift handles this by treating the result of object(forKey:) as an
Optional wrapping an Any.

Subscripting is possible on an NSDictionary or an NSMutableDictionary, for similar
reasons to an NSArray or an NSMutableArray. NSDictionary implements objectFor-
KeyedSubscript:, and Swift understands this as equivalent to a subscript getter. In
addition, NSMutableDictionary implements setObject:forKeyedSubscript:, and
Swift understands this as equivalent to a subscript setter.

Like a Swift Dictionary, an NSDictionary is unordered. You can get from an NSDic‐
tionary a list of keys (allKeys), a list of values (allValues), or a list of keys sorted by
value. You can also walk through the key–value pairs, and you can even filter an
NSDictionary by a test against its values.

NSSet and Friends
An NSSet is an unordered collection of distinct objects. Swift Set is bridged to NSSet,
and the Swift Foundation overlay even allows you to initialize an NSSet from a Swift
array literal. But NSSet elements must be objects (classes and class instances), and
they don’t have to be of a single type. For details, see “Swift Set and Objective-C
NSSet” on page 257.

Some Foundation Classes | 529

“Distinct” for an NSSet means that no two objects in a set can return true when they
are compared using isEqual(_:). Learning whether an object is present in a set is
much more efficient than seeking it in an array (because a set’s elements are hasha‐
ble), and you can ask whether one set is a subset of, or intersects, another set. You can
walk through (enumerate) a set with the for...in construct, though the order is of
course undefined. You can filter a set, as you can an NSArray. Indeed, much of what
you can do with a set is parallel to what you can do with an array, except that you
can’t do anything with a set that involves the notion of ordering.

To transcend that restriction, you can use an ordered set. An ordered set
(NSOrderedSet) is very like an array, and the methods for working with it are similar
to the methods for working with an array — you can even fetch an element by sub‐
scripting (because it implements objectAtIndexedSubscript:). But an ordered set’s
elements must be distinct. An ordered set provides many of the advantages of sets: as
with an NSSet, learning whether an object is present in an ordered set is much more
efficient than for an array, and you can readily take the union, intersection, or differ‐
ence with another set. Since the distinctness restriction will often prove no restriction
at all (because the elements were going to be distinct anyway), it can be worthwhile to
use NSOrderedSet instead of NSArray where possible.

An NSSet is immutable. You can derive one NSSet from another by adding or remov‐
ing elements, or you can use its subclass, NSMutableSet. Similarly, NSOrderedSet has
its mutable counterpart, NSMutableOrderedSet (which you can insert into by sub‐
scripting, because it implements setObject:atIndexedSubscript:). There is no
penalty for adding to a set an object that the set already contains; nothing is added
(and so the distinctness rule is enforced), but there’s no error.

NSCountedSet, a subclass of NSMutableSet, is a mutable unordered collection of
objects that are not necessarily distinct (this concept is often referred to as a bag). It is
implemented as a set plus a count of how many times each element has been added.

NSMutableSet, NSCountedSet, NSOrderedSet, and NSMutableOrderedSet are easily
formed from a set or an array using an initializer. Coming back the other way, you
can cast an NSMutableSet or NSCountedSet down to a Swift Set. Because of their spe‐
cial behaviors, however, you are much more likely to leave an NSCountedSet or
NSOrderedSet in its Objective-C form for as long as you’re working with it.

NSIndexSet
IndexSet (Objective-C NSIndexSet) represents a collection of unique whole numbers;
its purpose is to express element numbers of an ordered collection, such as an array.
For instance, to retrieve multiple elements simultaneously from an NSArray, you
specify the desired indexes as an IndexSet. It is also used with other things that are
array-like; for example, you pass an IndexSet to a UITableView to indicate what sec‐
tions to insert or delete.

530 | Chapter 10: Cocoa Classes

NSIndexSet is immutable; it has a mutable subclass, NSMutableIndexSet. But Index‐
Set is a value type, so it is mutable if the declaration uses var. And, as with other Swift
types imposed in front of Foundation types, IndexSet gets to do all sorts of conve‐
nient Swift magic. Comparison and arithmetic operators work directly with IndexSet
values. Even more important, an IndexSet acts like a Set: it adopts the SetAlgebra
protocol, and methods like contains(_:) and intersection(_:) spring to life. You
probably won’t need NSMutableIndexSet at all.

To take a specific example, let’s say you want to speak of the elements at indexes 1, 2,
3, 4, 8, 9, and 10 of an array. IndexSet expresses this notion in some compact imple‐
mentation that can be readily queried. The actual implementation is opaque, but you
can imagine that this IndexSet might consist of two Ranges, 1...4 and 8...10, and
IndexSet’s methods actually invite you to think of it as a Set of Ranges:

let arr = ["zero", "one", "two", "three", "four", "five",
 "six", "seven", "eight", "nine", "ten"]
var ixs = IndexSet()
ixs.insert(integersIn: 1...4)
ixs.insert(integersIn: 8...10)
let arr2 = (arr as NSArray).objects(at:ixs)
// ["one", "two", "three", "four", "eight", "nine", "ten"]

To walk through (enumerate) the index values specified by an IndexSet, you can use
for...in; alternatively, you can walk through an IndexSet’s indexes or ranges by call‐
ing various enumerate methods that let you pass a function returning a Bool.

A Swift Array cannot access elements by way of IndexSet; IndexSet is ultimately
a façade for NSIndexSet, and applies only to NSArray. As of this writing, though,
there’s a Swift Evolution proposal for adding a true native Swift type, RangeSet,
that will allow subscripting into a native Swift collection. You can try it out by
way of the Standard Library Preview package, https://github.com/apple/swift-
standard-library-preview.

NSNull
The NSNull class does nothing but supply a pointer to a singleton object, NSNull().
This singleton object is used to stand for nil in situations where an actual Objective-
C object is required and nil is not permitted. You can’t use nil as the value of an
element of an Objective-C collection (such as NSArray, NSDictionary, or NSSet), so
you’d use NSNull() instead.

NSNull() makes it possible for a Swift Array of Optional to be handed to Objective-
C. The Swift Array might contain nil, which is illegal in Objective-C. But Swift will
bridge the Array of Optional for you, as it crosses into Objective-C, by substituting
NSNull() for any nil elements. And, coming back the other way, Swift will perform

Some Foundation Classes | 531

https://github.com/apple/swift-standard-library-preview
https://github.com/apple/swift-standard-library-preview

the inverse operation when you cast an NSArray down to an Array of Optional, sub‐
stituting nil for any NSNull() elements.

You can test an object for equality against NSNull() using the ordinary equality oper‐
ator (==), because it falls back on NSObject’s isEqual(_:), which is identity compari‐
son. This is a singleton instance, and therefore identity comparison works.

Immutable and Mutable
Cocoa Foundation has a pattern of class pairs where the superclass is immutable and
the subclass is mutable; I’ve given many examples already, such as NSString and
NSMutableString, or NSArray and NSMutableArray. This is similar to the Swift dis‐
tinction between a constant (let) and a true variable (var). An NSArray being
immutable means that you can’t append or insert into this array, or replace or delete
an element of this array; but if its elements are reference types — and of course, for
an NSArray, they are reference types — you can mutate an element in place. That’s
just like the behavior of a Swift Array referred to with let.

The reason why Cocoa needs these immutable/mutable pairs is to prevent unauthor‐
ized mutation. An NSString object, say, is an ordinary class instance — a reference
type. If NSString were mutable, an NSString property of a class could be mutated by
some other object, behind this class’s back. To prevent that from happening, a class
will work internally and temporarily with a mutable instance, but then store and vend
to other classes an immutable instance, protecting the value from being changed by
anyone else. Swift doesn’t face the same issue, because its fundamental built-in object
types such as String, Array, and Dictionary are structs, and therefore are value types,
which cannot be mutated in place; they can be changed only by being replaced, and
that is something that can be guarded against, or detected through a setter observer.
NSString isn’t a value type, but as far as mutability is concerned, it displays value
semantics (“Value Types and Reference Types” on page 153).

The documentation may not make it completely obvious that the mutable classes
obey and, if appropriate, override the methods of their immutable superclasses. Doz‐
ens of NSMutableArray methods are not listed on NSMutableArray’s class documen‐
tation page, because they are inherited from NSArray. And when such methods are
inherited by the mutable subclass, they may be overridden to fit the mutable subclass.
NSArray’s init(array:) generates an immutable array, but NSMutableArray’s
init(array:) — which isn’t even listed on the NSMutableArray documentation
page, because it is inherited from NSArray — generates a mutable array.

That fact also answers the question of how to make an immutable array mutable, and
vice versa. This single method, init(array:), can transform an array between
immutable and mutable in either direction. You can also use copy (produces an
immutable copy) and mutableCopy (produces a mutable copy), both inherited from

532 | Chapter 10: Cocoa Classes

NSObject; but these are not as convenient because they yield an Any which must then
be cast.

These immutable/mutable class pairs are all implemented as class clusters, which
means that Cocoa uses a secret class, different from the documented class you
work with. You may discover this by peeking under the hood; an NSString, for
instance, might be characterized as an NSTaggedPointerString or an
NSCFString. You should not spend any time wondering about this secret class.
It’s a mere implementation detail, and is subject to change without notice; you
should never have looked at it in the first place.

Property Lists
A property list is a string (XML) representation of data. The Foundation classes
NSString, NSData, NSArray, and NSDictionary are the only Cocoa classes that can be
expressed directly in a property list. Moreover, an NSArray or NSDictionary can be
expressed in a property list only if its elements are instances of those classes, along
with NSDate and NSNumber. Those are the property list types.

(That is why, as I mentioned earlier, you must convert a UIColor into a Data object
in order to store it in user defaults; the user defaults storage is a property list, and
UIColor is not a property list type. But Data is a property list type, because it is
bridged to NSData.)

The primary use of a property list is as a way of serializing a value — saving it to disk
in a form from which it can be reconstructed. NSArray and NSDictionary provide
write methods that generate property list files; conversely, they also provide initializ‐
ers that create an NSArray object or an NSDictionary object based on the property
list contents of a given file. (The NSString and NSData write methods just write the
data out as a file directly, not as a property list.)

Here I’ll create an array of strings and write it out to disk as a property list file:

let arr = ["Manny", "Moe", "Jack"]
let fm = FileManager.default
let temp = fm.temporaryDirectory
let f = temp.appendingPathComponent("pep.plist")
try! (arr as NSArray).write(to: f)

The result is a file that looks like this:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"
 "http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<array>
 <string>Manny</string>

Some Foundation Classes | 533

 <string>Moe</string>
 <string>Jack</string>
</array>
</plist>

When you reconstruct an NSArray or NSDictionary object from a property list file in
this way, the collections, string objects, and data objects in the collection are all
immutable. If you want them to be mutable, or if you want to convert an instance of
one of the other property list classes to a property list, you’ll use the PropertyList‐
Serialization class (Objective-C NSPropertyListSerialization; see the Property List
Programming Guide in the documentation archive).

Codable
Property lists are a Cocoa Objective-C construct, useful for serializing objects. But in
Swift you can serialize an object without crossing the bridge into the Objective-C
world, provided it adopts the Codable protocol. In effect, every native Swift type and
every Foundation overlay type does adopt the Codable protocol! This means, among
other things, that enums and structs can easily be serialized.

There are three main use cases, involving three pairs of classes to serialize the object
and extract it again later; what you’re encoding to and decoding from is a Data object:

Property lists
Use PropertyListEncoder and PropertyListDecoder.

JSON
Use JSONEncoder and JSONDecoder.

NSCoder
Use NSKeyedArchiver and NSKeyedUnarchiver.

To illustrate, let’s rewrite the previous example, serializing an array of strings to a
property list, without casting it to an NSArray. This works because both Swift Array
and Swift String adopt Codable; indeed, thanks to conditional conformance (Chap‐
ter 4), an Array is Codable only just in case its element type is Codable:

let arr = ["Manny", "Moe", "Jack"]
let fm = FileManager.default
let temp = fm.temporaryDirectory
let f = temp.appendingPathComponent("pep.plist")
let penc = PropertyListEncoder()
penc.outputFormat = .xml
let d = try! penc.encode(arr)
try! d.write(to: f)

The resulting file looks like this:

534 | Chapter 10: Cocoa Classes

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"
 "http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<array>
 <string>Manny</string>
 <string>Moe</string>
 <string>Jack</string>
</array>
</plist>

That example doesn’t do anything that we couldn’t have done with NSArray. But
now consider, for instance, an index set. You can’t write an NSIndexSet directly into
a property list using Objective-C, because NSIndexSet is not a property list type. But
the Swift Foundation overlay type, IndexSet, is Codable:

let penc = PropertyListEncoder()
penc.outputFormat = .xml
let d = try! penc.encode(IndexSet([1,2,3]))

And here’s the result:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"
 "http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 <key>indexes</key>
 <array>
 <dict>
 <key>length</key>
 <integer>3</integer>
 <key>location</key>
 <integer>1</integer>
 </dict>
 </array>
</dict>
</plist>

Notice how cleverly Swift has encoded this object. You can’t put an IndexSet into a
property list — but this property list doesn’t contain any IndexSet! It is composed
entirely of legal property list types — a dictionary containing an array of dictionaries
whose values are numbers. And Swift can extract the encoded object from the prop‐
erty list:

let ix = try! PropertyListDecoder().decode(IndexSet.self, from: d)
// [1,2,3]

Your own custom types can adopt Codable and make themselves encodable in the
same way. In fact, in the simplest case, adopting Codable is all you have to do! If the
type’s properties are themselves Codable, the right thing will happen automatically.
The Codable protocol has two required methods, but we don’t have to implement

Some Foundation Classes | 535

them because default implementations are synthesized (see “Synthesized Protocol
Implementations” on page 313) — though we could implement them if we wanted to
customize the details of encoding and decoding.

Here’s a simple Person struct:

struct Person : Codable {
 let firstName : String
 let lastName : String
}

Person adopts Codable, so with no further effort we can turn a Person into a property
list:

let p = Person(firstName: "Matt", lastName: "Neuburg")
let penc = PropertyListEncoder()
penc.outputFormat = .xml
let d = try! penc.encode(p)

Here’s our encoded Person:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"
 "http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 <key>firstName</key>
 <string>Matt</string>
 <key>lastName</key>
 <string>Neuburg</string>
</dict>
</plist>

Observe that this would work just as well for, say, an array of Person, or a dictionary
with Person values, or any Codable struct with a Person property.

UserDefaults is a property list, so an object that isn’t a property list type must be
archived to a Data object in order to store it in UserDefaults. A PropertyListEncoder
creates a Data object, so we can use it to store a Person object in UserDefaults:

let ud = UserDefaults.standard
let p = Person(firstName: "Matt", lastName: "Neuburg")
let pdata = try! PropertyListEncoder().encode(p)
ud.set(pdata, forKey: "person")

Encoding as JSON is similar to encoding as a property list:

let p = Person(firstName: "Matt", lastName: "Neuburg")
let jenc = JSONEncoder()
jenc.outputFormatting = .prettyPrinted
let d = try! jenc.encode(p)
print(String(data:d, encoding:.utf8)!)
/*
{

536 | Chapter 10: Cocoa Classes

 "firstName" : "Matt",
 "lastName" : "Neuburg"
}
*/

The final use case is encoding or decoding through an NSCoder. There are various
situations where Cocoa lends you an NSCoder object and invites you to put some
data into it or pull some data out of it. The NSCoder in question will be either an
NSKeyedArchiver, when you’re encoding, or an NSKeyedUnarchiver, when you’re
decoding. These subclasses, respectively, provide methods encodeEncodable(_:for-
Key:), which takes a Codable object, and decodeDecodable(_:forKey:), which pro‐
duces a Codable object. Thus, your Codable adopters can pass into and out of an
archive by way of NSCoder.

As I mentioned earlier, your Codable adopter can take more control of the encoding
and decoding process. You can map between your object’s property names and the
encoded key names by adding a CodingKeys enum, and you can provide an explicit
implementation of the encode(to:) and decode(from:) methods instead of letting
them be synthesized for you. For more information, consult the help document
“Encoding and Decoding Custom Types.”

Accessors, Properties, and Key–Value Coding
An Objective-C instance variable is structurally similar to a Swift instance property:
it’s a variable that accompanies each instance of a class, with a lifetime and value
associated with that particular instance. An Objective-C instance variable, however, is
usually private, in the sense that instances of other classes can’t see it (and Swift can’t
see it). If an instance variable is to be made public, an Objective-C class will typically
implement accessor methods: a getter method and (if this instance variable is to be
publicly writable) a setter method. This is such a common thing to do that there are
naming conventions:

The getter method
A getter should have the same name as the instance variable (without an initial
underscore if the instance variable has one). If the instance variable is named
myVar (or _myVar), the getter method should be named myVar.

The setter method
A setter method’s name should start with set, followed by a capitalized version
of the instance variable’s name (without an initial underscore if the instance vari‐
able has one). The setter should take one parameter — the new value to be
assigned to the instance variable. If the instance variable is named myVar (or
_myVar), the setter should be named setMyVar:.

Accessors, Properties, and Key–Value Coding | 537

This pattern — a getter method, possibly accompanied by an appropriately named
setter method — is so common that the Objective-C language provides a shorthand:
a class can declare a property, using the keyword @property and a name. Here’s a line
from the UIView class declaration in Objective-C (ignore the material in the
parentheses):

@property(nonatomic) CGRect frame;

This declaration constitutes a promise that there is a getter accessor method frame
returning a CGRect, along with a setter accessor method setFrame: that takes a
CGRect parameter.

When Objective-C formally declares a @property in this way, Swift sees it as a Swift
property. UIView’s frame property declaration is translated directly into a Swift dec‐
laration of an instance property frame of type CGRect:

var frame: CGRect

An Objective-C property name, however, is mere syntactic sugar; Objective-C objects
do not really “have” properties. When you apparently set a UIView’s frame property,
you are actually calling its setFrame: setter method, and when you apparently get a
UIView’s frame property, you are actually calling its frame getter method. In
Objective-C, use of the property is optional; Objective-C code can, and often does,
call the setFrame: and frame methods directly. But you can’t do that in Swift! If an
Objective-C class has a formal @property declaration, the accessor methods are hid‐
den from Swift.

An Objective-C property declaration can include the word readonly in the parenthe‐
ses. This indicates that there is a getter but no setter:

@property(nonatomic,readonly,strong) CALayer *layer;

(Ignore the other material in the parentheses.) Swift will reflect this restriction with
{get} after the declaration, as if this were a computed read-only property; the com‐
piler will not permit you to assign to such a property:

var layer: CALayer { get }

Although Objective-C accessor methods may literally be ways of accessing an invisi‐
ble instance variable, they don’t have to be. When you set a UIView’s frame property
and the setFrame: accessor method is called, you have no way of knowing what that
method is really doing: it might be setting an instance variable called frame or
_frame, but who knows? In this sense, accessors and properties are a façade, hiding
the underlying implementation. This is similar to how, within Swift, you can set a
variable without knowing or caring whether it is a stored variable or a computed vari‐
able (and, if it is a computed variable, without knowing what its getter and setter
functions really do).

538 | Chapter 10: Cocoa Classes

Swift Accessors
Just as Objective-C properties are actually a shorthand for accessor methods, so
Objective-C treats Swift properties as a shorthand for accessor methods — even
though no such methods are formally present. If you, in Swift, declare that a class has
a property prop, Objective-C can call a prop method to get its value or a setProp:
method to set its value, even though you have not implemented such methods. Those
calls are routed to your property through implicit accessor methods.

In Swift, you should not write explicit accessor methods for a property; the compiler
will stop you if you attempt to do so. If you need to implement an accessor method
explicitly and formally, use a computed property. Here I’ll add to my UIView‐
Controller subclass a computed color property with a getter and a setter:

class ViewController: UIViewController {
 @objc var color : UIColor {
 get {
 print("someone called the getter")
 return .red
 }
 set {
 print("someone called the setter")
 }
 }
}

Objective-C code can now call explicitly the implicit setColor: and color accessor
methods — and when it does, the computed property’s setter and getter methods are
in fact called:

ViewController* vc = [ViewController new];
[vc setColor:[UIColor redColor]]; // "someone called the setter"
UIColor* c = [vc color]; // "someone called the getter"

This proves that, in Objective-C’s mind, you have provided setColor: and color
accessor methods.

You can even change the Objective-C names of accessor methods! To do so, follow
the @objc attribute with the Objective-C name in parentheses. You can add it to a
computed property’s setter and getter methods, or you can add it to a property itself:

@objc(hue) var color : UIColor?

Objective-C code can now call hue and setHue: accessor methods directly.

If, in speaking to Objective-C, you need to pass a selector for an accessor method,
precede the contents of the #selector expression with getter: or setter:. For
example, #selector(setter:color) is "setHue:" if we have modified our color
property’s Objective-C name with @objc(hue) (or "setColor:" if we have not).

Accessors, Properties, and Key–Value Coding | 539

If all you want to do is add functionality to the setter, use a setter observer. To add
functionality to the Objective-C setFrame: method in your UIView subclass, you can
override the frame property and write a didSet observer:

class MyView: UIView {
 override var frame : CGRect {
 didSet {
 print("the frame setter was called: \(super.frame)")
 }
 }
}

Key–Value Coding
Cocoa can dynamically call an accessor method, or access an instance variable, based
on a string name specified at runtime, through a mechanism called key–value coding
(KVC). The string name is the key; what is passed or returned is the value. The basis
for key–value coding is the NSKeyValueCoding protocol, an informal protocol; it is
actually a category injected into NSObject. A Swift class, to be susceptible to key–
value coding, must therefore be derived from NSObject.

The fundamental Cocoa key–value coding methods are setValue(_:forKey:) and
value(forKey:). When one of these methods is called on an object, the object is
introspected. In simplified terms, first the appropriate accessor method is sought; if it
doesn’t exist, the instance variable is accessed directly. The value can be an
Objective-C object of any type, so its Objective-C type is id; therefore it is typed in
Swift as Any. Whatever you pass into setValue(_:forKey:) will cross the bridge
from Swift to Objective-C. Coming back the other way, when calling value(for-
Key:), you’ll receive an Optional wrapping an Any; you’ll want to cast this down
safely to its expected type.

A class is key–value coding compliant (or KVC compliant) on a given key if it provides
the accessor methods, or possesses the instance variable, required for access through
that key. An attempt to access a key for which a class is not key–value coding compli‐
ant will likely cause a crash at runtime. It is useful to be familiar with the message
you’ll get when such a crash occurs, so let’s cause it deliberately:

let obj = NSObject()
obj.setValue("hello", forKey:"keyName") // crash

The console says: “This class is not key value coding-compliant for the key key‐
Name.” The last word in that error message is the key string that caused the trouble.

What would it take for that method call not to crash? The class of the object to which
it is sent would need to have a setKeyName: setter method, or a keyName or _keyName
instance variable. In Swift, as I demonstrated in the previous section, an instance
property implies the existence of accessor methods. So we can use Cocoa key–value

540 | Chapter 10: Cocoa Classes

coding on an instance of any NSObject subclass that has a declared property, pro‐
vided the key string is the string name of that property. Let’s try it! Here is such a
class:

class Dog : NSObject {
 @objc var name : String = ""
}

And here’s our test:

let d = Dog()
d.setValue("Fido", forKey:"name") // no crash!
print(d.name) // "Fido" - it worked!

How Outlets Work
Key–value coding lies at the heart of how outlet connections work (Chapter 7). Sup‐
pose that you have a class Dog with an @IBOutlet property master typed as Person,
and you’ve drawn a "master" outlet from a Dog object in the nib to a Person object
in the nib. The name of that outlet, "master", is just a string. When the nib loads, the
outlet name "master" is translated through key–value coding to the accessor method
name setMaster:, and your Dog instance’s setMaster: implicit accessor method is
called with the Person instance as its parameter, setting the value of your Dog
instance’s master property to the Person instance (Figure 7-8).

If something goes wrong with the match between the outlet name in the nib and the
name of the property in the class, then at runtime, when the nib loads, Cocoa’s
attempt to use key–value coding to set a value in your object based on the name of
the outlet will fail, and your app will crash — with an error message complaining
(you guessed it) that the class is not key–value coding compliant for the key. (The key
here is the outlet name.) A likely way for this to happen is that you formed the outlet
correctly but then later changed the name of (or deleted) the property in the class; see
“Misconfigured Outlets” on page 393.

Cocoa Key Paths
A Cocoa key path allows you to chain keys in a single expression. If an object is key–
value coding compliant for a certain key, and if the value of that key is itself an object
that is key–value coding compliant for another key, you can chain those keys by call‐
ing value(forKeyPath:) and setValue(_:forKeyPath:).

A key path string looks like a succession of key names joined using dot-notation.
valueForKeyPath("key1.key2") effectively calls value(forKey:) on the message
receiver, with "key1" as the key, and then takes the object returned from that call and
calls value(forKey:) on that object, with "key2" as the key.

Accessors, Properties, and Key–Value Coding | 541

To illustrate, here are two classes that form a chain of properties — a DogOwner that
has a dog property which is a Dog that has a name property:

class Dog : NSObject {
 @objc var name : String = ""
}
class DogOwner : NSObject {
 @objc var dog : Dog?
}

Now let’s configure an actual chain:

let owner = DogOwner()
let dog = Dog()
dog.name = "Fido"
owner.dog = dog

Now we can use key–value coding with a key path to work our way down the chain:

if let name = owner.value(forKeyPath:"dog.name") as? String {

We retrieve the value as an Optional wrapping an Any which is actually a string, and
we cast down safely to retrieve the real value, "Fido".

Uses of Key–Value Coding
Cocoa key–value coding allows you, in effect, to decide at runtime, based on a string,
what accessor to call. In the simplest case, you’re using a string to access a dynami‐
cally specified property. That’s useful in Objective-C code; but such unfettered intro‐
spective dynamism is contrary to the spirit of Swift, and in translating my own
Objective-C code into Swift I have generally found myself accomplishing the same
ends by other means.

Nevertheless, key–value coding remains useful in programming iOS, especially
because a number of built-in Cocoa classes permit you to use it in special ways:

• If you send value(forKey:) to an NSArray, it sends value(forKey:) to each of
its elements and returns a new array consisting of the results, an elegant short‐
hand. NSSet behaves similarly.

• NSDictionary implements value(forKey:) as an alternative to object(forKey:)
(useful particularly if you have an NSArray of dictionaries). Similarly,
NSMutableDictionary treats setValue(_:forKey:) as a synonym for set(_:for-
Key:), except that the first parameter can be nil, in which case remove-
Object(forKey:) is called.

• NSSortDescriptor sorts an NSArray by sending value(forKey:) to each of its
elements. This makes it easy to sort an array of dictionaries on the value of a par‐
ticular dictionary key, or an array of objects on the value of a particular property.

542 | Chapter 10: Cocoa Classes

• NSManagedObject, used in conjunction with Core Data, is guaranteed to be key–
value coding compliant for attributes you’ve configured in the entity model. It’s
common to access those attributes with value(forKey:) and setValue(_:for-
Key:).

• CALayer and CAAnimation permit you to use key–value coding to define and
retrieve the values for arbitrary keys, as if they were a kind of dictionary; they are,
in effect, key–value coding compliant for every key. This is extremely helpful for
attaching extra information to an instance of one of these classes.

Also, many Cocoa APIs use key–value coding indirectly: you supply a key string, and
Cocoa applies it for you. For example, a CABasicAnimation must be initialized with a
keyPath string parameter:

let anim = CABasicAnimation(keyPath:"transform")

What you’re really doing here is telling the animation that you’re going to want to
animate a CALayer’s transform property. Similarly, the AV Foundation framework,
used in conjunction with videos, takes string keys to specify properties whose value
you’re going to be interested in:

let url = Bundle.main.url(forResource:"ElMirage", withExtension:"mp4")!
let asset = AVURLAsset(url:url)
asset.loadValuesAsynchronously(forKeys:["tracks"]) {

That works because an AVURLAsset has a tracks property.

KeyPath Notation
Using key–value coding can be dangerous, because you risk using a key for which the
target object is not key–value coding compliant. But Swift can often provide some
measure of safety. Instead of forming the key string yourself, you ask the Swift com‐
piler to form it for you. To do so, use #keyPath notation.

#keyPath notation is similar to #selector syntax (Chapter 2): you’re asking the Swift
compiler to form the key string for you, and it will refuse if it can’t confirm that the
key in question is legal. We crashed by saying this:

let obj = NSObject()
obj.setValue("hello", forKey:"keyName") // crash

But if we had used #keyPath notation, our code wouldn’t have crashed — because it
wouldn’t even have compiled:

let obj = NSObject()
obj.setValue("howdy", forKey: #keyPath(NSObject.keyName)) // compile error

Now return to our Dog with a name property:

Accessors, Properties, and Key–Value Coding | 543

class Dog : NSObject {
 @objc var name : String = ""
}

This compiles, because Swift knows that Dog has a name property:

let d = Dog()
d.setValue("Fido", forKey:#keyPath(Dog.name))

But that code will not compile if Dog is not an NSObject subclass, or if its name prop‐
erty is not exposed to Objective-C. Thus the Swift compiler can often help to save us
from ourselves. Some of my earlier examples can be rewritten more safely using #key-
Path notation, and in real life, this is how I would write them:

let anim = CABasicAnimation(keyPath: #keyPath(CALayer.transform))

And:

let url = Bundle.main.url(forResource:"ElMirage", withExtension:"mp4")!
let asset = AVURLAsset(url:url)
let tracks = #keyPath(AVURLAsset.tracks)
asset.loadValuesAsynchronously(forKeys:[tracks]) {

But the compiler can’t always save us from ourselves. There are situations where you
can’t form a string indirectly using #keyPath notation, and you’ll just have to hand
Cocoa a string that you form yourself. For example (self is a CALayer):

self.rotationLayer.setValue(.pi/4.0, forKeyPath:"transform.rotation.y")

You can’t rewrite that using #keyPath(CALayer.transform.rotation.y), because
the compiler won’t let you form that key path. The problem is that the compiler is
unaware of any rotation property of a CALayer transform — because there is no
such property. That sort of key path works by a special dispensation within Cocoa:
CATransform3D (the type of a CALayer’s transform) is key–value coding compliant
for a repertoire of keys and key paths that don’t correspond to any actual properties,
and Swift has no way of knowing that.

You may be wondering how all of this relates to Swift’s own key path mechanism
(Chapter 5). If a Dog has a name property, you can say:

let d = Dog()
d[keyPath:\.name] = "Rover"

That is a completely different mechanism! You’ll surely prefer to use the Swift mech‐
anism where possible. It provides complete safety, along with type information; a
Swift KeyPath object is strongly typed, because it is a generic, specified to the type of
the corresponding property. But that won’t help you when you’re talking to Cocoa.
Objective-C key–value coding uses string keys, and a Swift KeyPath object cannot be
magically transformed into a string key.

544 | Chapter 10: Cocoa Classes

Cocoa key–value coding is a powerful technology with many ramifications
beyond what I’ve described here; see Apple’s Key-Value Coding Programming
Guide in the documentation archive for full information.

The Secret Life of NSObject
Every Objective-C class inherits from NSObject, which is constructed in a rather
elaborate way:

• It defines some native class methods and instance methods having mostly to do
with the basics of instantiation and of method sending and resolution.

• It adopts the NSObject protocol. This protocol declares instance methods having
mostly to do with memory management, the relationship between an instance
and its class, and introspection. Because all the NSObject protocol methods are
required, the NSObject class implements them all. In Swift, the NSObject proto‐
col is called NSObjectProtocol, to avoid name clash.

• It implements convenience methods related to the NSCopying, NSMutable‐
Copying, and NSCoding protocols, without formally adopting those protocols.
NSObject intentionally doesn’t adopt these protocols because this would cause all
other classes to adopt them, which would be wrong. But thanks to this architec‐
ture, if a class does adopt one of these protocols, you can call the corresponding
convenience method. For instance, NSObject implements the copy instance
method, so you can call copy on any instance, but you’ll crash unless the
instance’s class also adopts the NSCopying protocol and implements
copy(with:).

• A large number of methods are injected into NSObject by more than two dozen
categories on NSObject, scattered among various header files. For example,
awakeFromNib (see Chapter 7) comes from the UINibLoadingAdditions category
on NSObject, declared in UINibLoading.h.

• A class object is an object. Therefore all Objective-C classes, which are objects of
type Class, inherit from NSObject. Therefore, any instance method of NSObject
can be called on a class object as a class method! For example, responds(to:) is
defined as an instance method by the NSObject protocol, but it can (therefore) be
treated also as a class method and sent to a class object.

Taken as a whole, the NSObject methods may be roughly classified as follows:

Creation, destruction, and memory management
Methods for creating an instance, such as alloc and copy, along with methods
for learning when something is happening in the lifetime of an object, such as
initialize and dealloc, plus methods that manage memory.

The Secret Life of NSObject | 545

Class relationships
Methods for learning an object’s class and inheritance, such as superclass,
isKind(of:), and isMember(of:).

Object introspection and comparison
Methods for asking what would happen if an object were sent a certain message,
such as responds(to:), for representing an object as a string (description), and
for comparing objects (isEqual(_:)).

Message response
Methods for meddling with what does happen when an object is sent a certain
message, such as doesNotRecognizeSelector(_:). If you’re curious, see the
Objective-C Runtime Programming Guide in the documentation archive.

Message sending
Methods for sending a message dynamically. For example, perform(_:) takes a
selector as parameter, and sending it to an object tells that object to perform that
selector. This might seem identical to just sending that message to that object,
but what if you don’t know what message to send until runtime? Moreover, var‐
iants on perform allow you to send a message on a specified thread, or to send a
message after a certain amount of time has passed (perform(_:with:after-
Delay:) and similar).

546 | Chapter 10: Cocoa Classes

CHAPTER 11

Cocoa Events

All of your app’s executable code lies in its functions. The impetus for a function
being called must come from somewhere. One of your functions may call another,
but who will call the first function in the first place? How, ultimately, will any of your
code ever run?

After your app has completely finished launching, none of your code runs.
UIApplicationMain (see “How an App Gets Going” on page 370) just sits and loops
— the event loop — waiting for something to happen. In general, the user needs to do
something, such as touching the screen, or switching away from your app. When
something does happen, the runtime detects it and informs your app, and Cocoa can
call your code.

But Cocoa can call your code only if your code is there to be called. Your code is like
a panel of buttons, ready for Cocoa to press one. If something happens that Cocoa
feels your code needs to know about and respond to, it presses the right button — if
the right button is there. Cocoa wants to send your code a message, but your code
must have ears to hear.

The art of Cocoa programming lies in knowing what messages Cocoa would like to
send your app. You organize your code, right from the start, with those messages in
mind. Cocoa makes certain promises about how and when it will dispatch messages
to your code. These are Cocoa’s events. Your job is to know what those events are and
how they will arrive; armed with that knowledge, you can arrange for your code to
respond to them.

Reasons for Events
Broadly speaking, the reasons you might receive an event may be divided informally
into four categories. These categories are not official; I made them up. Often it isn’t

547

completely clear which of these categories an event fits into. But they are still gener‐
ally useful for visualizing how and why Cocoa interacts with your code:

User events
The user does something interactive, and an event is triggered directly. Obvious
examples are events that you get when the user taps or swipes the screen, or types
a key on the keyboard.

Lifetime events
These are events notifying you of the arrival of a stage in the life of the app, such
as the fact that the app is starting up or is about to go into the background, or of
a component of the app, such as the fact that a UIViewController’s view has just
loaded or is about to be removed from the screen.

Functional events
Cocoa is about to do something by calling its own code, and is willing to let you
subclass and override that code so as to modify its behavior. I would put into this
category UIView’s draw(_:) (your chance to have a view draw itself), with which
we experimented in Chapter 10.

Query events
Cocoa turns to you to ask a question; its behavior will depend upon your answer.
The way data appears in a table (a UITableView) is that Cocoa asks you how
many rows the table should have, and then, for each row, asks you for the corre‐
sponding cell.

Subclassing
A built-in Cocoa class may define methods that Cocoa itself will call if you override
them in a subclass, so that your custom behavior, and not (merely) the default behav‐
ior, will take place. As I explained in Chapter 10, this is not a commonly used archi‐
tecture in Cocoa, but for many classes it’s there if you need it, and for certain classes
it is downright essential. UIView and UIViewController are the best examples.

UIView’s draw(_:) is what I call a functional event. By default it does nothing, but by
overriding it in a UIView subclass, you dictate how a view draws itself. You don’t
know exactly when this method will be called, and you don’t care; when it is, you
draw, and this guarantees that the view will always appear the way you want it to.

UIViewController is a class meant for subclassing, and is probably the only Cocoa
class that you will regularly subclass. Of the methods listed in the UIViewController
class documentation, just about all are methods you might have reason to override. If
you create a UIViewController subclass in Xcode, you’ll see that the template already
includes some method overrides to get you started. viewDidLoad is called to let you
know that your view controller has obtained its main view (its view), so that you can

548 | Chapter 11: Cocoa Events

perform initializations; it’s an obvious example of a lifetime event. And UIView‐
Controller has many other lifetime events that you can and will override in order to
get fine control over what happens when.

Not only methods but also properties may be overridden in order to get an event. A
case in point is UIViewController’s supportedInterfaceOrientations. You’ll over‐
ride this property as a computed variable in order to receive what I call a query event.
Whenever Cocoa wants to know what orientations your view can appear in, it fetches
the value of this property; your getter is a function that is called at that moment, and
its job is to return a bitmask (“Option sets” on page 255) providing the answer to that
question. You trust Cocoa to trigger this call at the appropriate moments, so that if
the user rotates the device, your app’s interface will or won’t be rotated to compen‐
sate, depending on what value you return.

When you’re looking for events that you can receive through subclassing, be sure to
look upward though the inheritance hierarchy. If you’re wondering how to get an
event when your custom UILabel subclass is embedded into another view, you won’t
find the answer in the UILabel class documentation; a UILabel receives the appropri‐
ate event by virtue of being a UIView. In the UIView class documentation, you’ll
learn that you can override didMoveToSuperview to be informed when this happens.

By the same token, look upward through adopted protocols as well. If you’re wonder‐
ing how to get an event when your view controller’s view is about to undergo app
rotation, you won’t find out by looking in the UIViewController class documenta‐
tion; a UIViewController receives the appropriate event by virtue of adopting the
UIContentContainer protocol. In the UIContentContainer protocol documentation,
you’ll learn that you can override viewWillTransition(to:with:).

Notifications
Cocoa provides your app with a single NotificationCenter instance (Objective-C
NSNotificationCenter), available as NotificationCenter.default. This instance, the
notification center, is the basis of a mechanism for sending and receiving messages
called notifications. A notification is a Notification instance (Objective-C NSNotifica‐
tion).

Think of a notification as having a topic and a sender. The topic is some subject mat‐
ter that might be of interest to others; the sender is some object that others might be
interested in hearing from. The notification center functions as a kind of broker for
message transmission:

1. A potential recipient of messages can register with the notification center, saying:
“Hey, if any messages on this topic or from this sender arrive, please pass them
on to me.”

Notifications | 549

2. A sender does in fact hand the notification center a message to send out; this is
called posting a notification.

3. When the notification center receives a posting on a certain topic or from a cer‐
tain sender, it looks through its list of registered recipients and passes along the
message to any recipients that match.

More than one recipient can register for messages with the same topic or sender. The
notification mechanism is well described as a dispatching or broadcasting mecha‐
nism. It lets the poster send a message without knowing or caring whether there are
recipients or, if there are, who or how many they may be. And it lets the recipient
arrange to receive the message without being in direct contact with the sender (possi‐
bly without even knowing who the sender is).

Who can post a notification? Anyone who cares to! There are two main posters of
notifications to consider — Cocoa and you:

Cocoa
Cocoa posts notifications through the notification center, and your code can reg‐
ister to receive them. Notifications are a way for your code to receive events from
Cocoa. You’ll find a separate Notifications section in the documentation for a
class that provides them.

You
You can post notifications yourself as a way of communicating with your own
code. This relieves your app’s architecture from the formal responsibility of
somehow hooking up instances just so a message can pass from one to the other
(which can sometimes be quite tricky or onerous, as I’ll discuss in Chapter 13).
When objects are conceptually “distant” from one another, notifications can be a
fairly lightweight way of permitting one to message the other.

A Notification instance has three pieces of information associated with it, which can
be retrieved through properties:

name

The topic of the notification. It’s a string, but it has been wrapped up in a Notifi‐
cation.Name, a struct adopting RawRepresentable with a String rawValue. Built-
in Cocoa notification names are vended as static/class Notification.Name
properties, either of Notification.Name itself or of the class that sends them.

object

An instance associated with the notification; typically, the sender who posted it.

userInfo

An Optional dictionary; if not nil, it contains additional information associated
with the notification. What information it will contain, and under what keys,
depends on the particular notification; you have to consult the documentation.

550 | Chapter 11: Cocoa Events

When you post a notification yourself, you can put anything you like into the
userInfo for the notification’s recipient(s) to retrieve. Do not misuse a notifica‐
tion’s object as a way of passing along a value. That’s what the userInfo is for.

Receiving a Notification
To register to receive notifications, you send one of two messages to the notification
center.

Selector-based registration

One way to register for notifications is to call the notification center’s add-
Observer(_:selector:name:object:). The parameters are:

observer:

The first parameter is the instance to which the notification is to be sent. This
will typically be self; it would be quite unusual for one instance to register a dif‐
ferent instance as the receiver of a notification.

selector:

The message to be sent to the observer instance when the notification occurs.
The designated method should take one parameter, which will be the Notifica‐
tion instance. The selector must specify correctly a method that is exposed to
Objective-C; Swift’s #selector syntax will help you with that (see Chapter 2).

name:

The name (topic) of the notification you’d like to receive. If this is nil, you’re ask‐
ing to receive all notifications associated with the object designated in the
object: parameter.

object:

The object (sender) of the notification you’re interested in. If this is nil, you’re
asking to receive all notifications with the name designated in the name: parame‐
ter. (If both the name: and object: parameters are nil, you’re asking to receive
all notifications!)

Here’s a real-life example. There is a music player belonging to the MPMusicPlayer‐
Controller class; this class promises to post a notification whenever the music player
starts playing a different song. (To find this out, I look under Notifications in the
MPMusicPlayerController class documentation; the notification in question is called
MPMusicPlayerControllerNowPlayingItemDidChange.) In my app, I want to receive
that notification and change my interface accordingly.

Here’s how I register myself to receive the desired playback notification:

Notifications | 551

NotificationCenter.default.addObserver(self,
 selector: #selector(nowPlayingItemChanged),
 name: .MPMusicPlayerControllerNowPlayingItemDidChange,
 object: nil)

As a result, whenever an .MPMusicPlayerControllerNowPlayingItemDidChange
notification is posted, my nowPlayingItemChanged method will be called. Note that
this method must be marked @objc so that Objective-C can see it (the Swift compiler
will help out by ensuring this when you use #selector syntax):

@objc func nowPlayingItemChanged (_ n:Notification) {
 self.updateNowPlayingItem()
 // ... and so on ...
}

Function-based registration

Heavy use of addObserver(_:selector:name:object:) means that your code ends
up peppered with methods that exist solely in order to be called by the notification
center. There is nothing about these methods that tells you what they are for — you
may want to use explicit comments to remind yourself — and the methods are sepa‐
rate from the registration call, which can make your code rather confusing.

One way to solve that problem is to use the other way of registering to receive a noti‐
fication, addObserver(forName:object:queue:using:). The parameters are:

• The name: and object: parameters are just like those of the add-

Observer(_:selector:name:object:) method.
• Instead of providing an observer and a selector, you provide (as the using:

parameter) a function consisting of the actual code to be executed when the noti‐
fication arrives. This function should take one parameter — the Notification
itself. You can use an anonymous function, and typically you will.

• The queue: is the OperationQueue on which your using: function will be called.
It will usually be nil. (Explaining what a non-nil queue would mean is outside
the scope of this book.)

• This method also returns a value, which is in fact the observer that has been reg‐
istered with the notification center. I’ll talk more about that in a moment.

The outcome is that your registration for a notification and your response when the
notification arrives are encapsulated in a single call:

let ob = NotificationCenter.default.addObserver(
 forName: .MPMusicPlayerControllerNowPlayingItemDidChange,
 object: nil, queue: nil) { _ in
 self.updateNowPlayingItem()
 // ... and so on ...
 }

552 | Chapter 11: Cocoa Events

That can be a much cleaner way of dealing with notifications. Unfortunately, using
addObserver(forName:...) correctly is a little more complicated than that, because
you still need to unregister the observer, as I’ll discuss in the next section.

Unregistering
To unregister an object as a recipient of notifications, call the notification center’s
removeObserver(_:) method. Alternatively, you can unregister an object for just a
specific set of notifications with removeObserver(_:name:object:). The object
passed as the first argument is the object that is no longer to receive notifications.
What object that is depends on how you registered it in the first place:

You called addObserver(_:selector:name:object:)
You supplied an observer originally, as the first argument; that is the observer
you will now unregister. This will typically be self.

You called addObserver(forName:object:queue:using:)
The call returned an observer token object typed as an NSObjectProtocol (its real
class and nature are undocumented); that is the observer you will now unregister.

In the old days, if you failed to unregister an object as a notification recipient and that
object went out of existence, your app would crash the next time the notification was
sent — because the runtime was trying to send a message to an object that was now
missing in action. But in iOS 9, Apple introduced a safety check. Nowadays, if the
notification center tries to send a message to a nonexistent object, there is no crash,
and the notification center helpfully unregisters the object for you.

What you need to do as you go out of existence depends, once again, on how you
registered in the first place:

You called addObserver(_:selector:name:object:)
You probably don’t need to unregister the object passed as the first argument. If
that object goes out of existence, and if the notification is posted subsequently,
there won’t be any crash.

You called addObserver(forName:object:queue:using:)
You do need to unregister the observer, because otherwise the notification center
keeps it alive and can continue to send notifications to it (which means that the
attached function will continue to be called).

So the question now boils down to how you’re going to unregister the observer
returned by a call to addObserver(forName:object:queue:using:). If you only need
to receive a notification once, you can unregister from within the anonymous func‐
tion that runs when the notification is received (because the observer is in scope
within the anonymous function). Otherwise, you’ll have to keep a separate persistent
reference to the observer object so that you can unregister it later.

Notifications | 553

What’s a good way to do that? Let’s assume you’re going to be calling add-
Observer(forName:object:queue:using:) many times from within the same class.
Then you’re going to end up receiving many observer tokens, and you’ll need to pre‐
serve a reference to all of them. One obvious approach is to store the observers in an
instance property that is a mutable collection. My favored approach is a Set property:

var observers = Set<NSObject>()

So now, each time I register for a notification by calling addObserver(for-
Name:object:queue:using:), I capture the result and add it to the set:

let ob = NotificationCenter.default.addObserver(
 forName: .MPMusicPlayerControllerNowPlayingItemDidChange,
 object: nil, queue: nil) { _ in
 self.updateNowPlayingItem()
 // ... and so on ...
 }
self.observers.insert(ob as! NSObject)

When it’s time to unregister all observers, I enumerate the set and empty it:

for ob in self.observers {
 NotificationCenter.default.removeObserver(ob)
}
self.observers.removeAll()

Use of addObserver(forName:...) can also involve you in some memory man‐
agement complications that I’ll talk about in Chapter 12.

Posting a Notification
Notifications can be a way of communicating between your own objects. You post a
notification yourself (in one object) and receive it yourself (in another object). This is
probably not a good way to compensate for a failure to devise proper lines of com‐
munication between objects, but it can be appropriate when the objects are
conceptually distant or independent from one another, or when you need the flexibil‐
ity of broadcasting to multiple recipients.

To post a notification, send post(name:object:userInfo:) to the notification cen‐
ter. For the name:, you’ll have to coerce a string into a Notification.Name. There are
two main places to do this:

In the name: argument
You perform the coercion directly in the method call; for example, you might say
Notification.Name("someName"). That’s simple but error-prone: you’ll need to
perform the same coercion twice (to post the notification and to register to
receive it), and the repeated string literal is an invitation to make a typing mis‐
take and have things mysteriously go wrong.

554 | Chapter 11: Cocoa Events

As a globally available constant
You define a namespaced constant beforehand, and use it both when posting the
notification and when registering for it. This approach localizes the coercion in a
single place; it’s a little more work than the first approach, but it’s more correct
and you should use it.

For example, one of my apps is a simple card game. The game needs to know when a
card is tapped. But a card knows nothing about the game; when it is tapped, it simply
emits a virtual shriek by posting a notification. I’ve defined my notification name by
extending my Card class:

extension Card {
 static let tappedNotification = Notification.Name("cardTapped")
}

When a card is tapped, it responds like this:

NotificationCenter.default.post(name: Self.tappedNotification, object: self)

The game object has registered for Card.tappedNotification, so it hears about this
and retrieves the notification’s object; now it knows what card was tapped and can
proceed appropriately.

The notification center has no API for introspecting it in code, but you can
introspect it while paused in the debugger; enter po Notification-

Center.default to see a list of registered notifications, with the name, object,
recipient, and options for each. The object and recipient are listed as memory
addresses, but you can learn more from such an address by entering expr -l
objc -O -- followed by the address.

Timer
A Timer (Objective-C NSTimer) is not a notification, but it behaves quite similarly. It
gives off a signal (fires) after the lapse of a certain time interval. Thus you can arrange
to get an event when a certain time has elapsed. The timing is not perfectly accurate,
nor is it intended to be, but it’s good enough for most purposes.

A timer that is actively watching the clock is said to be scheduled. A timer may fire
once, or it may be a repeating timer. To stop a timer, it must be invalidated. A timer
that is set to fire once is invalidated automatically after it fires; a repeating timer
repeats until you invalidate it by sending it the invalidate message. An invalidated
timer should be regarded as dead: you cannot revive it or use it for anything further,
and you should probably not send any messages to it.

For example, one of my apps is a game with a score; I want to penalize the user by
diminishing the score for every ten seconds that elapses after each move without the
user making a further move. So I create and schedule a repeating timer whose time

Notifications | 555

interval is ten seconds. Whenever the timer fires, I diminish the score. Whenever the
user moves, I invalidate the existing timer and start over with a new repeating timer.

The simplest way to create a timer is with a class method that also schedules the
timer, so that it begins watching the clock immediately:

scheduledTimer(timeInterval:target:selector:userInfo:repeats:)

The target: and selector: determine what message will be sent to what object
when the timer fires; the method in question should take one parameter, which
will be a reference to the timer. The userInfo: is just like the userInfo: of a
notification.

scheduledTimer(withTimeInterval:repeats:block:)

You provide a function to be called when the timer fires; the function should take
one parameter, which will be a reference to the timer.

A repeating Timer is often maintained as an instance property, so that you can inva‐
lidate it later on. But be careful! There is a temptation to call scheduledTimer(time-
Interval:target:selector:userInfo:repeats:) directly as the initializer in your
declaration of a Timer instance property, like this:

class ViewController : UIViewController {
 var timer = Timer.scheduledTimer(timeInterval: 1, target: self,
 selector: #selector(timerFired), userInfo: nil, repeats: true)

If the target is self, that won’t work, because self doesn’t exist yet at the time
you’re initializing the instance property. (In my opinion, Swift should warn you
about this, and I regard its failure to do so as a bug.) Use deferred initialization
instead (“Deferred initialization of properties” on page 126):

class ViewController: UIViewController {
 var timer : Timer!
 override func viewDidLoad() {
 super.viewDidLoad()
 self.timer = Timer.scheduledTimer(timeInterval: 1, target: self,
 selector: #selector(timerFired), userInfo: nil, repeats: true)
 }

Timers have some memory management implications that I’ll be discussing in
Chapter 12.

Delegation
Delegation is an object-oriented design pattern, a relationship between two objects in
which a primary object’s behavior is customized or assisted by a secondary object.
The secondary object is the primary object’s delegate. No subclassing is involved, and
indeed the primary object is agnostic about the delegate’s class.

556 | Chapter 11: Cocoa Events

The class of the primary object can be Cocoa’s class or your class. As with notifica‐
tions, you’ll want to understand Cocoa’s delegation pattern because it’s an important
way of getting events from Cocoa; plus, you might want to implement the pattern
yourself as a useful way of communicating between your own objects.

Cocoa Delegation
As implemented by Cocoa, here’s how delegation works:

1. A built-in Cocoa class has an instance property, usually called delegate (it will
certainly have delegate in its name).

2. The Cocoa class promises that at certain moments it will turn to its delegate for
instructions by sending it a certain message.

3. One of those moments arrives! If the Cocoa instance finds that its delegate is not
nil, and that its delegate is prepared to receive that message, the Cocoa instance
sends the message to the delegate.

Delegation is one of Cocoa’s main uses of protocols (Chapter 10). In the old days,
delegate methods were listed in the Cocoa class’s documentation, and their names
were made known to the compiler through an informal protocol (a category on
NSObject). Nowadays, a class’s delegate methods are usually listed in a genuine pro‐
tocol with its own documentation. There are over 70 Cocoa delegate protocols; that
shows how heavily Cocoa relies on delegation. Most delegate methods are optional,
but in a few cases you’ll discover some that are required.

To take advantage of Cocoa delegation, you’ll have one of your classes adopt a Cocoa
delegate protocol, and you’ll set some Cocoa object’s delegate (typed as that
protocol) to an instance of your class. You might form the connection in code; alter‐
natively, you might do it in a nib by connecting an object’s delegate outlet to an
appropriate object within the nib. Now you are the delegate, and you get to help
determine the Cocoa object’s behavior.

Your delegate class will probably do other things besides serving as this instance’s
delegate. Indeed, one of the nice things about delegation is that it leaves you free to
slot delegate code into your class architecture however you like; the delegate type is a
protocol, so the actual delegate can be an instance of any class.

Here’s a typical example. I want to ensure that my app’s root view controller, a
UINavigationController, should appear only in portrait orientation when this view
controller is in charge. But UINavigationController isn’t my class; my class is a differ‐
ent view controller, a UIViewController subclass, which acts as the UINavigation‐
Controller’s child. How can the child tell the parent how to rotate?

Delegation to the rescue! UINavigationController has a delegate property, typed as
UINavigationControllerDelegate (a protocol). It promises to send this delegate the

Delegation | 557

navigationControllerSupportedInterfaceOrientations(_:) message when it
needs to know how to rotate. So my view controller, very early in its lifetime, sets
itself as the UINavigationController’s delegate. It also implements the navigation-
ControllerSupportedInterfaceOrientations(_:) method. Presto, the problem is
solved:

class ViewController : UIViewController, UINavigationControllerDelegate {
 override func viewDidLoad() {
 super.viewDidLoad()
 self.navigationController?.delegate = self
 }
 func navigationControllerSupportedInterfaceOrientations(
 _ nav: UINavigationController) -> UIInterfaceOrientationMask {
 return .portrait
 }
}

When you’re searching the documentation for how you can be notified of a certain
event, be sure to consult the corresponding delegate protocol, if there is one. Suppose
you’d like to know when the user taps in a UITextField to start editing it. You won’t
find anything relevant in the UITextField class documentation; what you’re after is
textFieldDidBeginEditing(_:) in the UITextFieldDelegate protocol.

You might be tempted to try to inject a method into a class that adopts a Cocoa
delegate protocol by extending the protocol and implementing the delegate
method in the protocol extension. That isn’t going to work, because Objective-C
can’t see Swift protocol extensions (see Appendix A). You can call such a method
from Swift, but Cocoa is never going to call it, because it doesn’t know that the
method implementation exists.

Implementing Delegation
The Cocoa protocol-and-delegate pattern is very useful, and you’ll probably want to
adopt it in your own code. Setting up the pattern takes some practice, and can be a
little time-consuming. But it’s a clean solution to the problem of apportioning knowl‐
edge and responsibilities among your objects. I’ll demonstrate with an example from
one of my apps.

The app declares a view controller, a UIViewController subclass called ColorPicker‐
Controller; its view contains three sliders that the user can move to choose a color.
Some other view controller will create and present the ColorPickerController
instance, displaying its view. When the user taps Done or Cancel, the view should be
dismissed and the ColorPickerController instance can go out of existence; but first, I
need to send a message from the ColorPickerController instance back to the view
controller that presented it, reporting what color the user chose.

558 | Chapter 11: Cocoa Events

Here’s the declaration for the message that I want the ColorPickerController to send
before it goes out of existence:

func colorPicker(_ picker:ColorPickerController,
 didSetColorNamed theName:String?,
 to theColor:UIColor?)

The question is: where and how should this method be declared?

Now, it happens that in my app I know the class of the instance that will in fact
present the ColorPickerController: it is a SettingsController. So I could simply
declare this method in SettingsController and stop. But that would mean that the
ColorPickerController, in order to send this message to the SettingsController, must
know that the instance that presented it is a SettingsController. That’s wrong. Surely
it is a mere contingent fact that the instance being sent this message is a Settings‐
Controller; it should be open to any class to present and dismiss a ColorPicker‐
Controller.

Therefore we want ColorPickerController itself to declare the method that it itself is
going to call; and we want it to send that message blindly to some receiver, without
regard to the class of that receiver. That’s what a protocol is for!

The solution, then, is for ColorPickerController to define a protocol, with this
method as part of that protocol, and for the class that presents a ColorPicker‐
Controller to conform to that protocol. ColorPickerController will also need an
appropriately typed delegate instance property; this provides the channel of com‐
munication, and tells the compiler that sending this message is legal:

protocol ColorPickerDelegate : AnyObject {
 // color == nil on cancel
 func colorPicker(_ picker:ColorPickerController,
 didSetColorNamed theName:String?,
 to theColor:UIColor?)
}
class ColorPickerController : UIViewController {
 weak var delegate: ColorPickerDelegate?
 // ...
}

(For the weak attribute and the AnyObject designation, see Chapter 5.) When my
SettingsController instance creates and configures and presents a ColorPicker‐
Controller instance, it also sets itself as that ColorPickerController’s delegate —
which it can do, because it adopts the protocol:

extension SettingsController : ColorPickerDelegate {
 func showColorPicker() {
 let colorName = // ...
 let c = // ...
 let cpc = ColorPickerController(colorName:colorName, color:c)
 cpc.delegate = self

Delegation | 559

 self.present(cpc, animated: true)
 }
 func colorPicker(_ picker:ColorPickerController,
 didSetColorNamed theName:String?,
 to theColor:UIColor?) {
 // ...
 }
}

When the user picks a color, the ColorPickerController knows to whom it should
send colorPicker(_:didSetColorNamed:to:) — namely, its delegate! And the com‐
piler allows this, because the delegate has adopted the ColorPickerDelegate protocol:

@IBAction func dismissColorPicker(_ sender : Any?) { // user tapped Done
 let c : UIColor? = self.color
 self.delegate?.colorPicker(self, didSetColorNamed: self.colorName, to: c)
}

Data Sources
A data source is like a delegate, except that its methods supply the data for another
object to display. The chief Cocoa classes with data sources are UITableView, UICol‐
lectionView, UIPickerView, and UIPageViewController. In each case, the data source
must formally adopt a data source protocol with required methods.

It comes as a surprise to some beginners that a data source is necessary at all. Why
isn’t a table’s data just a property of the table? The reason is that such an architecture
would violate generality. A view displays data; the structure and management of that
data is a separate matter, and is up to the data source. The only requirement is that
the data source must be able to supply information quickly, because it will be asked
for it in real time when the data needs displaying.

Another surprise is that the data source is different from the delegate. But this again
is only for generality; it’s an option, not a requirement. There is no reason why the
data source and the delegate should not be the same object, and most of the time they
probably will be.

In this example from one of my apps, I implement a UIPickerView that allows the
user to configure a game by saying how many stages it should consist of (“1 Stage,”
“2 Stages,” and so on). The first two methods are UIPickerView data source methods;
the third method is a UIPickerView delegate method. It takes all three methods to
supply the picker view’s content:

extension NewGameController: UIPickerViewDataSource, UIPickerViewDelegate {
 func numberOfComponents(in pickerView: UIPickerView) -> Int {
 return 1
 }
 func pickerView(_ pickerView: UIPickerView,
 numberOfRowsInComponent component: Int) -> Int {

560 | Chapter 11: Cocoa Events

 return 9
 }
 func pickerView(_ pickerView: UIPickerView,
 titleForRow row: Int, forComponent component: Int) -> String? {
 return "\(row+1) Stage" + (row > 0 ? "s" : "")
 }
}

Actions
An action is a message emitted by an instance of a UIControl subclass (a control)
reporting a significant user event taking place in that control. The UIControl sub‐
classes are all simple interface objects that the user can interact with directly, such as
a button (UIButton) or a segmented control (UISegmentedControl).

The significant user events (control events) are listed under UIControl.Event in the
Constants section of the UIControl class documentation. Different controls imple‐
ment different control events: a segmented control’s Value Changed event signifies
that the user has tapped a segment, but a button’s Touch Up Inside event signifies
that the user has tapped the button. Of itself, a control event has no external effect;
the control responds visually (a tapped button looks tapped), but it doesn’t automati‐
cally share the information that the event has taken place. If you want to know when
a control event takes place, so that you can respond to it in your code, you must
arrange for that control event to trigger an action message.

Here’s how it works. A control maintains an internal dispatch table: for each control
event, there can be any number of target–action pairs, in each of which the action is a
selector designating the name of a method, and the target is an object on which that
method is to be called. When a control event occurs, the control consults its dispatch
table, finds all the target–action pairs associated with that control event, and sends
each action message to the corresponding target (Figure 11-1).

There are two ways to manipulate a control’s action dispatch table:

Action connection
You can configure an action connection in a nib. I described in Chapter 7 how to
do this, but I didn’t completely explain the underlying mechanism. Now all is
revealed: an action connection formed in the nib editor is a visual way of config‐
uring a control’s action dispatch table.

Code
Your code can directly configure the control’s action dispatch table. The key
method here is the UIControl instance method addTarget(_:action:for:),
where the target: is an object, the action: is a selector, and the for: parameter
is a UIControl.Event bitmask (“Option sets” on page 255).

Actions | 561

Figure 11-1. The target–action architecture

Recall the example of a control and its action from Chapter 7. We have a button-
Pressed(_:) method:

@IBAction func buttonPressed(_ sender: Any) {
 let alert = UIAlertController(
 title: "Howdy!", message: "You tapped me!", preferredStyle: .alert)
 alert.addAction(
 UIAlertAction(title: "OK", style: .cancel))
 self.present(alert, animated: true)
}

That sort of method is an action handler. Its purpose is to be called when the user
taps a certain button in the interface. In Chapter 7, we arranged for that to happen by
setting up an action connection in the nib: we connected the button’s Touch Up
Inside event to the ViewController buttonPressed(_:) method. In reality, we were
forming a target–action pair and adding that target–action pair to the button’s dis‐
patch table for the Touch Up Inside control event.

562 | Chapter 11: Cocoa Events

Instead of making that arrangement in the nib, we could have done the same thing in
code. Suppose we had never drawn that action connection. And suppose that, instead,
we have an outlet connection from the view controller to the button, called
self.button. Then the view controller, after the nib loads, can configure the button’s
dispatch table like this:

self.button.addTarget(self,
 action: #selector(buttonPressed),
 for: .touchUpInside)

The signature for the action selector can be in any of three forms:

• The fullest form takes two parameters:
▪ The control.
▪ The UIEvent that generated the control event. This will rarely be needed. (I’ll

talk more about UIEvents in the next section.)
• A shorter form, the one most commonly used, omits the second parameter.
buttonPressed(_:) is an example; it takes one parameter. When button-
Pressed(_:) is called through an action message emanating from the button, its
parameter will be a reference to the button.

• There is a still shorter form that omits both parameters.
Curiously, none of the action selector parameters provide any way to learn which
control event triggered the current action selector call! To distinguish a Touch Up
Inside control event from a Touch Up Outside control event, their corresponding
target–action pairs must specify two different action handlers; if you dispatch them
to the same action handler, that handler cannot discover which control event
occurred.

New in iOS 14, a UIControl’s target and action can be expressed by attaching to the
UIControl a UIAction instance encapsulating the action as a function — probably an
anonymous function. In this way, there is no explicit target and no separate action
method. This is a very nice notation, but behind the scenes it is still the target–action
architecture.

A control event can have multiple target–action pairs. You might configure it
this way intentionally, but it is also possible to do so accidentally. Unintention‐
ally giving a control event a target–action pair without removing its existing
target-action pair is an easy mistake to make, and can cause some very mysteri‐
ous behavior. If you form an action connection in the nib and configure the dis‐
patch table in code, a tap on the button will cause the action handler method to
be called twice.

Actions | 563

The Responder Chain
Whenever the user does something with a finger (sets it down on the screen, moves
it, raises it from the screen), a touch object (UITouch) is used to represent that finger.
UIEvents are the lowest-level objects charged with communication of touch objects
to your app; a UIEvent is basically a timestamp (a Double) along with a collection
(Set) of touch objects. As I said in the previous section, you can receive a UIEvent
along with a control event, but you will rarely need to do so.

A responder is an object that knows how to receive UIEvents directly. It is an instance
of UIResponder or a UIResponder subclass. If you examine the Cocoa class hierar‐
chy, you’ll find that just about any class that has anything to do with display on the
screen is a responder. A UIView is a responder. A UIWindow is a responder. A
UIViewController is a responder. Even a UIApplication is a responder. Even the app
delegate is a responder!

A UIResponder has four low-level methods for receiving touch-related UIEvents:

• touchesBegan(_:with:)

• touchesMoved(_:with:)

• touchesEnded(_:with:)

• touchesCancelled(_:with:)

These methods — the touch methods — are called to notify a responder that a touch
event has occurred: the user has placed, moved, or lifted a finger from the screen. No
matter how your code ultimately hears about a user-related touch event — indeed,
even if your code never hears about a touch event directly — the touch was initially
communicated to a responder through one of the touch methods.

The mechanism for this communication starts by deciding which responder the user
touched. The UIView methods hitTest(_:with:) and point(inside:with:) are
called until the correct view (the hit-test view) is located. Then UIApplication’s send-
Event(_:) method is called, which calls UIWindow’s sendEvent(_:), which now
wants to call the correct touch method in some responder.

So now the runtime starts looking for a responder that implements the correct touch
method, so that the touch event can be reported by calling it. That responder need
not be the hit-test view! The hit-test view is just the starting place for the search. The
search depends upon the fact that your app’s responders participate in a responder
chain, which essentially links them up through the view hierarchy.

The responder chain, from bottom to top, looks roughly like this:

1. The UIView that we start with (here, the hit-test view).
2. If this UIView is a UIViewController’s view, that UIViewController.

564 | Chapter 11: Cocoa Events

3. The UIView’s superview.
4. Go back to step 2 and repeat! Keep repeating until we reach…
5. The UIWindow (and the UIWindowScene).
6. The UIApplication.
7. The UIApplication’s delegate.

The next responder up the responder chain is a responder’s next responder, which is
obtained from a responder through its next property (which returns an Optional
wrapping a UIResponder). Thus the responder chain can be walked upward from any
responder to the top of the chain.

Nil-Targeted Actions
A nil-targeted action is a UIControl target–action pair in which the target is nil.
There is no designated target object, so the following rule is used: starting with the
hit-test view (the view with which the user is interacting), Cocoa walks up the res‐
ponder chain looking for an object that can respond to the action message:

• If a responder is found that handles this message, that method is called on that
responder, and that’s the end.

• If we get all the way to the top of the responder chain without finding a res‐
ponder to handle this message, nothing happens; the message goes unhandled,
with no penalty.

Here’s a UIButton subclass that configures itself to call a nil-targeted action when
tapped:

override func awakeFromNib() {
 super.awakeFromNib()
 class Dummy {
 @objc func buttonPressed(_:Any) {}
 }
 self.addTarget(nil, // nil-targeted
 action: #selector(Dummy.buttonPressed),
 for: .touchUpInside)
}

That’s a nil-targeted action. So what happens when the user taps the button? First,
Cocoa looks in the UIButton itself to see whether it responds to buttonPressed. If
not, it looks in the UIView that is its superview. And so on, up the responder chain.
There is surely a view controller that owns the view that contains the button; if the
view controller is the first responder encountered in the search whose class imple‐
ments buttonPressed, tapping the button will cause the view controller’s button-
Pressed to be called — even though the view controller is not the target!

Actions | 565

The declaration for your action handler method (such as buttonPressed) must
be marked @objc (or @IBAction). Otherwise, Cocoa won’t be able to find it as it
walks up the responder chain.

It’s obvious how to construct a nil-targeted action in code: you set up a target–action
pair where the target is nil, as in the preceding example. But how do you construct a
nil-targeted action in a nib? The answer is: you form a connection to the First Res‐
ponder proxy object (in the dock). That’s what the First Responder proxy object is
for! The First Responder isn’t a real object with a known class, so before you can con‐
nect an action to it, you have to define the action message within the First Responder
proxy object, like this:

1. Select the First Responder proxy in the nib, and switch to the Attributes
inspector.

2. You’ll see a table (probably empty) of user-defined nil-targeted First Responder
actions. Click the Plus button and give the new action a name; it must take a sin‐
gle parameter (so that its name will end with a colon).

3. Now you can Control-drag from a control, such as a UIButton, to the First Res‐
ponder proxy to specify a nil-targeted action with the name you specified.

Key–Value Observing
Key–value observing, or KVO, is rather like a target–action mechanism that works
between any two objects. One object (the observer) registers directly with another
object (the observed) so as to be notified when a value in the observed object changes.
The observed object doesn’t actually have to do anything; when the value in the
observed object changes, the observer is automatically notified.

The process of using KVO may be broken down into stages:

Registration
The observer — that is, the object that desires to hear about future changes in a
value belonging to the observed object — must register with that observed object.

Change
A change takes place in the value belonging to the observed object, and it must
take place in a special way — a KVO compliant way. Typically, this means using
a key–value coding compliant accessor to make the change. Setting a property
passes through a key–value coding compliant accessor.

Notification
The observer is automatically notified that the value in the observed object has
changed.

566 | Chapter 11: Cocoa Events

Unregistration
The observer eventually unregisters to prevent the arrival of further notifications
about the observed value of the observed object.

As with notifications and delegation, you can use KVO with Cocoa objects or you can
implement it as a form of communication between your own objects. When you use
KVO with Cocoa:

• The observer will be your object; you will write the code that will respond when
the observer is notified of the change for which it has registered.

• The observed object will be Cocoa’s object. Many Cocoa objects promise to
behave in a KVO compliant way. Certain frameworks, such as the AVFounda‐
tion framework, don’t implement delegation or notifications very much; instead,
they expect you to use KVO to hear about what they are doing. Thus, KVO can
be an important form of Cocoa event.

When you use KVO with your own observed object, you have to configure that object
to be KVO compliant for one or more values. I’ll explain later how to do that.

Registration and Notification
There are two different ways to configure KVO registration and notification. The first
way is the Cocoa way; it basically just translates the Objective-C API directly into
Swift. The second way is provided by Swift; it uses the Cocoa way under the hood,
but it shields you from some of the messy details.

I’ll first describe the Cocoa way, just so that you understand the mess that the Swift
way shields you from:

1. In the Cocoa way, you call addObserver(_:forKeyPath:options:context:) on
the object whose property you want to observe, using a Cocoa key path (Chap‐
ter 10).

2. Subsequently, the observer’s observeValue(forKeyPath:of:change:context:)
is called for every change for which this observer has been registered.

There are two problems here. First, step 1 and step 2 happen in two different places;
there’s a disconnect between the two steps. And second, this observer might be
observing more than one property, possibly in more than one observed object, so
there can be many repetitions of step 1; but no matter how many times step 1 hap‐
pens, there is only one step 2. There is just one single observer method, through which
all observation calls must flow — which constitutes a nasty bottleneck. That’s what
the Swift way protects you from.

Here’s how the Swift way works. You register by calling observe(_:options:change-
Handler:) on the object whose property you want to observe, with these parameters:

Key–Value Observing | 567

keyPath:

The first parameter is a Swift key path (Chapter 5), not a Cocoa key path.

options:

An NSKeyValueObservingOptions bitmask (an option set) specifying such
things as when you want to be notified (only when the observed value changes,
or now as well) and what information you want included in the notification (the
old value, the new value, or both).

changeHandler:

A function to be called as a way of sending the notification. It will typically be an
anonymous function, making it part of the registration. It should take two
parameters:

The object
This will be the observed object with which we are registered.

The change
An NSKeyValueObservedChange object. Its properties give you information
such as the old value and the new value if you requested them in the
options: argument.

The call to observe(_:options:changeHandler:) also returns a value, an NSKey‐
ValueObservation instance. That is the registered observer.

The Swift key–value observing API is a language feature, not an SDK feature. It puts a
convenient mechanism in front of the Cocoa API, but it still uses the Cocoa API.
When you call observe(_:options:changeHandler:), Swift calls add-

Observer(_:forKeyPath:options:context:) to register the observer with the
observed object. And the NSKeyValueObservation object implements the bottleneck
method observeValue(forKeyPath:of:change:context:) to receive notification
messages, which it passes on to you.

Unregistering
Unregistration is performed through a message to the observed object, namely
removeObserver(_:forKeyPath:context:). If the observer goes out of existence
without unregistering, the observed object might later try to send a message to a non‐
existent observer, resulting in a crash. So the observer needs to maintain a reference
to the observed object and, at the latest, must unregister itself when going out of
existence.

That can be a daunting responsibility — and is yet another thing that the Swift API
helps you with. The NSKeyValueObservation object returned from the call to
observe(_:options:changeHandler:) maintains a reference to the observed object,

568 | Chapter 11: Cocoa Events

so you don’t have to; and it will unregister itself, by calling removeObserver(_:for-
KeyPath:context:) on the observed object, either if you send it the invalidate mes‐
sage or automatically when it itself is about to go out of existence.

Your job is to capture the NSKeyValueObservation object and maintain it, probably
in an instance property of the observer. That’s all, because this means it will go out of
existence, at the latest, when the observer does — and at that moment will unregister
itself in good order. But you must capture and maintain that object somehow! If you
don’t, it will go out of existence and unregister itself immediately — before a notifica‐
tion is ever sent — and you’ll never get any notifications in the first place.

Another problem is what happens if the observed object goes out of existence when
observers are still registered on it. There are two cases:

In iOS 10 and before
Your app will crash immediately. To prevent that, if the observed object is about
to go out of existence while the observer continues to exist, you must unregister
the NSKeyValueObservation object explicitly, yourself, by sending it the
invalidate message.

In iOS 11 and later
There are no bad consequences. There is no crash, and the NSKeyValueObserva‐
tion object sends itself the invalidate message.

Key–Value Observing Example
To demonstrate KVO, I’ll declare classes to play both roles, the observer and the
observed.

First, the observed. My Observed class has a value instance property that we want
other objects to be able to observe:

class Observed : NSObject {
 @objc dynamic var value : Bool = false
}

The observed object’s class must derive from NSObject; otherwise, you won’t be
able to call observe(_:options:changeHandler:) on it. That’s because the
mechanism for being observed is a feature of NSObject.

The property to be observed must be declared @objc in order to expose it to
Objective-C — and it must also be declared dynamic. That’s because KVO works
by swizzling the accessor methods; Cocoa needs to be able to reach right in and
change this object’s code, and it can’t do that unless the property is dynamic.

The Observer class contains code that registers with an Observed to hear about
changes in its value property:

Key–Value Observing | 569

class Observer {
 var obs = Set<NSKeyValueObservation>()
 func register(with observed:Observed) {
 let opts : NSKeyValueObservingOptions = [.old, .new]
 let ob = observed.observe(\.value, options: opts) { obj,change in
 if let oldValue = change.oldValue {
 print("old value was \(oldValue)")
 }
 if let newValue = change.newValue {
 print("new value is \(newValue)")
 }
 }
 obs.insert(ob)
 }
}

Observer has an instance property for maintaining NSKeyValueObservation
objects. As with Notification observer tokens (discussed earlier in this chapter), I
like to use a Set for this purpose.

Observer (in its register(with:) method) will register with an Observed
instance by calling observe(_:options:changeHandler:), using a Swift key path
to specify the value property. I’ve illustrated the use of NSKeyValueObserving‐
Options by asking for both the old and new values of the observed property
when a notification arrives. That information will arrive into the notification
function inside an NSKeyValueObservedChange object.

The call to observe(_:options:changeHandler:) returns an NSKeyValueOb‐
servation object. It is crucial to ensure the continued existence of this object;
otherwise, it will go out of existence and unregister itself before the notification
can ever arrive. Therefore, I immediately store it in the Set instance property that
was declared for this purpose.

Presume now that we have a persistent Observer instance, observer, and that its
register(with:) has been called with argument observed, an Observed instance
that is also persistent:

observer.register(with: observed)

So much for registration!

Now let’s talk about change and notification. Somehow, someone sets observed’s
value property to true. That changes it in a KVO compliant way. So, at that
moment, the notification is sent and the anonymous function is called! The following
appears in the console:

old value was false
new value is true

570 | Chapter 11: Cocoa Events

Finally, let’s talk about unregistering. As long as we are running in iOS 11 or later,
there is nothing to talk about! It doesn’t matter whether observed or observer goes
out of existence first; everything happens automatically and in good order:

• If observed goes out of existence first, there is no crash and there will be no fur‐
ther notifications.

• When observer goes out of existence, the obs property is destroyed, and so the
NSKeyValueObservation object is destroyed — and at that moment, if observed
still exists, the NSKeyValueObservation object unregisters itself (and if observed
no longer exists, nothing bad happens).

In general your real-life use of KVO in programming iOS will likely be as simple as
that. Cocoa key–value observing, however, is a deep and complex mechanism; con‐
sult Apple’s Key-Value Observing Programming Guide in the documentation archive
for full information.

Swamped by Events
Cocoa has the potential to send lots of events, telling you what the user has done,
informing you of each stage in the lifetime of your app and its objects, asking for your
input on how to proceed. To receive the events that you need to hear about, your
code is peppered with entry points — methods that you have written with just the
right name and in just the right class so that they can be called as Cocoa events. In
fact, it is easy to imagine that in many cases your code for a class will consist almost
entirely of entry points.

Arranging all those entry points is one of your primary challenges as a Cocoa pro‐
grammer. You know what you want to do, but you don’t get to “just do it.” You have
to divide up your app’s functionality and allocate it in accordance with when and
how Cocoa is going to call into your code. You know the events that Cocoa is going
to want to send you, and you need to be prepared to receive them. Before you’ve writ‐
ten a single line of your own code, the skeleton structure of a class is likely to have
been largely mapped out for you.

Suppose that your iPhone app presents an interface consisting of a table view. You’ll
probably subclass UITableViewController (a built-in UIViewController subclass); an
instance of your subclass will own and control the table view, and you’ll probably use
it as the table view’s data source and delegate as well. In this single class, then, you’re
likely to want to implement at a minimum the following methods:

init(coder:) or init(nibName:bundle:)
UIViewController lifetime method, where you perform instance initializations.

Swamped by Events | 571

viewDidLoad

UIViewController lifetime method, where you perform view-related initializa‐
tions and deferred initializations.

viewDidAppear

UIViewController lifetime method, where you set up states that need to apply
only while your view is onscreen. If you’re going to register for a notification or
set up a timer, this is a likely place to do it.

viewDidDisappear

UIViewController lifetime method, where you reverse what you did in viewDid-
Appear. This would be a likely place to unregister for a notification or invalidate
a repeating timer that you set up in viewDidAppear.

supportedInterfaceOrientations

UIViewController query method, where you specify what device orientations are
allowed for this view controller’s main view.

numberOfSections(in:)

tableView(_:numberOfRowsInSection:)

tableView(_:cellForRowAt:)

UITableView data source query methods, where you specify the contents of the
table.

tableView(_:didSelectRowAt:)

UITableView delegate user action method, where you respond when the user
taps a row of the table.

deinit

Swift class instance lifetime method, where you perform end-of-life cleanup.

Suppose, further, that you do in fact use viewDidAppear to register for a notification
and to set up a timer, using the target–selector architecture; then you must also
implement the methods specified by those selectors.

We already have, then, about a dozen methods whose presence is effectively boiler‐
plate. These are not your methods; you are never going to call them. They are Cocoa’s
methods, which you have placed here so that each can be called at the appropriate
moment in the life story of your app.

A Cocoa program consists of numerous disconnected entry points, each with its own
meaning, each called at its own set moment. The logic of such a program is far from
obvious; a Cocoa program, even your program, even while you’re writing it, is hard to
read and hard to understand. To figure out what our hypothetical class does, you
have to know already such things as when viewDidAppear is called and how it is typi‐
cally used; otherwise, you don’t know what this method is for. Moreover, because of

572 | Chapter 11: Cocoa Events

your code’s object-oriented structure, multiple methods in this class (and perhaps
others) will be managing the same instance properties; your program’s logic is divi‐
ded between methods and even across different classes.

Your challenges are compounded by surprises involving the order of events. Begin‐
ners (and even experienced programmers) are often mystified when their program
doesn’t work as expected, because they have wrong expectations about when an entry
point will be called, or what the state of an instance will be when it is called. To make
matters worse, the order of events isn’t even reliable; my apps often break when I
upgrade them from one iOS version to the next, because the new version of iOS is
sending certain events in a different order from the old version.

How will you find your way through the swamp of events that a Cocoa program con‐
sists of? There’s no easy solution, but here’s some simple advice:

Write comments
Comment every method, quite heavily if need be, saying what that method does
and under what circumstances you expect it to be called — especially if it is an
entry point, where it is Cocoa itself that will do the calling.

Debug
Instrument your code heavily during development with caveman debugging (see
Chapter 9). As you test your code, keep an eye on the console output and check
whether the messages make sense. You may be surprised at what you discover. If
things don’t work as expected, add breakpoints and run the app again so you can
see the order of execution and watch the variables and properties as they change.

Perhaps the most common kind of mistake in writing a Cocoa app is not that there’s
a bug in your code itself, but that you’ve put the code in the wrong place. Your code
isn’t running, or it’s running at the wrong time, or the pieces are running in the
wrong order. I see questions about this sort of thing all the time on the various online
user forums (these are all actual examples that appeared over the course of just two
days):

• There’s a delay between the time when my view appears and when my button takes
on its correct title.
That’s because you put the code that sets the button’s title in viewDidAppear.
That’s too late; your code needs to run earlier, perhaps in viewWillAppear.

• My subviews are positioned in code and they’re turning out all wrong.
That’s because you put the code that positions your subviews in viewDidLoad.
That’s too early; your code needs to run later, when your view’s dimensions have
been determined.

Swamped by Events | 573

• My view is rotating even though my view controller’s supportedInterface-
Orientations says not to.
That’s because you implemented supportedInterfaceOrientations in the
wrong class. Only the topmost view controller in the view controller hierarchy is
consulted through this property.

• I set up an action connection for Value Changed on a text field, but my code isn’t
being called when the user edits.
That’s because you connected the wrong control event; a text field emits Editing
Changed, not Value Changed.

Delayed Performance
Your code is executed in response to some event; but your code in turn may trigger a
new event or chain of events. Sometimes this causes bad things to happen: there
might be a crash, or Cocoa might appear not to have done what you said to do. To
solve this problem, perhaps you just need to step outside Cocoa’s own chain of events
for a moment and wait for everything to settle down before proceeding.

The technique for doing this is called delayed performance. You tell Cocoa to do
something, not right this moment, but in a little while, when things have settled
down. Perhaps you need only a very short delay, just to let Cocoa finish doing some‐
thing, such as laying out the interface. Technically, you’re allowing the current run
loop to finish, completing and unwinding the entire current call stack, before pro‐
ceeding further with your own code.

When you program Cocoa, you’re likely to be using delayed performance a lot more
than you might expect. With experience, you’ll develop a kind of sixth sense for when
delayed performance might be the solution to your difficulties.

The main way to get delayed performance is by calling DispatchQueue’s
after(when:execute:) method. It takes a function stating what should happen after
the specified time has passed. Here’s a utility function that encapsulates the call:

func delay(_ delay:Double, closure:@escaping () -> ()) {
 let when = DispatchTime.now() + delay
 DispatchQueue.main.asyncAfter(deadline: when, execute: closure)
}

That utility function is so important that I routinely paste it at the top level of the
AppDelegate class file in every app I write. To use it, I call delay with a delay time
(usually a very small number of seconds such as 0.1) and an anonymous function
saying what to do after the delay. Note that what you propose to do in this anony‐
mous function will be done later on; you’re deliberately breaking out of your own

574 | Chapter 11: Cocoa Events

code’s line-by-line sequence of execution. So a delayed performance call will typically
be the last call in its own surrounding function, and cannot return any value.

In this example from one of my own apps, the user has tapped a row of a table, and
my code responds by creating and showing a new view controller:

override func tableView(_ tableView: UITableView,
 didSelectRowAt indexPath: IndexPath) {
 let t = TracksViewController(
 mediaItemCollection: self.albums[indexPath.row])
 self.navigationController?.pushViewController(t, animated: true)
}

Unfortunately, the innocent-looking call to my TracksViewController initializer
init(mediaItemCollection:) can take a moment to complete, so the app comes to a
stop with the table row highlighted — very briefly, but just long enough to startle the
user. To cover this delay with a sense of activity, I’ve rigged my UITableViewCell
subclass to show a spinning activity indicator when it’s selected:

override func setSelected(_ selected: Bool, animated: Bool) {
 if selected {
 self.activityIndicator.startAnimating()
 } else {
 self.activityIndicator.stopAnimating()
 }
 super.setSelected(selected, animated: animated)
}

But there’s a problem: the spinning activity indicator never appears and never spins.
The reason is that the events are stumbling over one another here. UITableViewCell’s
setSelected(_:animated:) isn’t called until the UITableView delegate method
tableView(_:didSelectRowAt:) has finished. But the delay we’re trying to paper
over is during tableView(_:didSelectRowAt:); the whole problem is that it doesn’t
finish fast enough.

Delayed performance to the rescue! I’ll rewrite tableView(_:didSelectRowAt:) so
that it finishes immediately — triggering setSelected(_:animated:) immediately
and causing the activity indicator to appear and spin — and I’ll use delayed perfor‐
mance to call init(mediaItemCollection:) later on, when the interface has ironed
itself out:

override func tableView(_ tableView: UITableView,
 didSelectRowAt indexPath: IndexPath) {
 delay(0.1) {
 let t = TracksViewController(
 mediaItemCollection: self.albums[indexPath.row])
 self.navigationController?.pushViewController(t, animated: true)
 }
}

Delayed Performance | 575

CHAPTER 12

Memory Management

Classes, both in Swift and in Objective-C, are reference types (see “Value Types and
Reference Types” on page 153). Behind the scenes, Swift and Objective-C memory
management for reference types works essentially the same way. Such memory man‐
agement, as I pointed out in Chapter 5, can be a tricky business.

Fortunately, Swift uses ARC (automatic reference counting), so you don’t have to
manage the memory for every reference type object explicitly and individually, as was
once necessary in Objective-C. Thanks to ARC, you are far less likely to make a
memory management mistake, and more of your time is liberated to concentrate on
what your app actually does instead of dealing with memory management concerns.

Still, even in Swift, and even with ARC, it is possible to make a memory management
mistake, or to be caught unawares by Cocoa’s memory management behavior. A
memory management mistake can lead to runaway excessive memory usage, crashes,
or mysterious misbehavior of your app. Cocoa memory management can be surpris‐
ing in individual cases, and can mislead you into making a memory management
mistake; so you need to understand, and prepare for, what Cocoa is going to do.

Principles of Cocoa Memory Management
The reason why reference type memory must be managed at all is that references to
reference type objects are merely pointers to the actual object, and there can be multi‐
ple references (pointers) to the very same object. This means that every reference
must deal carefully with that object, out of consideration for the needs of other possi‐
ble references. At the very latest, the object should go out of existence when there are
no pointers to it. But so long as there are any pointers to it, the object must not go out
of existence.

577

To illustrate, imagine three objects, Manny, Moe, and Jack, where both Manny and
Moe have references to Jack. Jack is the object whose memory we are concerned to
manage:

The object must not go out of existence too late
If both Manny and Moe go out of existence, and if no other object has a reference
to Jack, Jack should go out of existence too. An object without a pointer to it is
useless; it is occupying memory, but no other object has, or can ever get, a refer‐
ence to it. This is a memory leak.

The object must not go out of existence too soon
If both Manny and Moe have a pointer to Jack, and if Manny somehow causes
Jack to go out of existence, poor old Moe is left with a pointer to nothing (or
worse, to garbage). A pointer whose object has been destroyed behind the
pointer’s back is a dangling pointer. If Moe subsequently uses that dangling
pointer to send a message to the object that he thinks is there, the app will crash.

To prevent both memory leakage and dangling pointers, there is a policy of manual
memory management based on a number, maintained by every reference type object,
called its retain count. The rule is that other objects can increment or decrement an
object’s retain count — and that’s all they are allowed to do. As long as an object’s
retain count is positive, the object will persist. No object has the direct power to tell
another object to be destroyed; rather, as soon as an object’s retain count is decre‐
mented to zero, it is destroyed automatically.

By this policy, every object that needs Jack to persist should increment Jack’s retain
count, and should decrement it once again when it no longer needs Jack to persist. As
long as all objects are well-behaved in accordance with this policy, the problem of
manual memory management is effectively solved:

• There cannot be any dangling pointers, because any object that has a pointer to
Jack has incremented Jack’s retain count, ensuring that Jack persists.

• There cannot be any memory leaks, because any object that no longer needs Jack
decrements Jack’s retain count. If every object that doesn’t need Jack any longer
behaves this way, then when no object needs Jack any longer, Jack’s retain count
will reach zero and Jack will go out of existence.

Rules of Cocoa Memory Management
An object is well-behaved with respect to memory management as long as it adheres
to certain very simple, well-defined rules in conformity with the basic concepts of
memory management. The underlying ethic is that each object that has a reference to
a reference type object is responsible solely for its own memory management of that
object, in accordance with these rules. If all objects that ever get a reference to this

578 | Chapter 12: Memory Management

reference type object behave correctly with respect to these rules, the object’s memory
will be managed correctly and it will go out of existence exactly when it is no longer
needed:

• If Manny or Moe explicitly instantiates Jack — by directly calling an initializer —
then the initializer increments Jack’s retain count.

• If Manny or Moe makes a copy of Jack — by calling copy or mutableCopy or any
other method with copy in its name — then the copy method increments the
retain count of this new, duplicate Jack.

• If Manny or Moe acquires a reference to Jack (not through explicit instantiation
or copying), and needs Jack to persist — long enough to work with Jack in code,
or long enough to be the value of an instance property — then he himself incre‐
ments Jack’s retain count. (This is called retaining Jack.)

• If and only if Manny or Moe has done any of those things — that is, if Manny or
Moe has ever directly or indirectly caused Jack’s retain count to be incremented
— then when he himself no longer needs his reference to Jack, before letting go
of that reference, he decrements Jack’s retain count to balance exactly all previous
increments that he himself has performed. (This is called releasing Jack.) Having
released Jack, Manny or Moe should then assume that Jack no longer exists,
because if this causes Jack’s retain count to drop to zero, Jack will no longer exist.
This is the golden rule of memory management — the rule that makes memory
management work coherently and correctly.

A general way to understand the golden rule of memory management is in terms of
ownership. If Manny has created, copied, or retained Jack — that is, if Manny has
ever incremented Jack’s retain count — Manny has asserted ownership of Jack. Both
Manny and Moe can own Jack at the same time, but each is responsible only for man‐
aging his own ownership of Jack correctly. It is the responsibility of an owner of Jack
eventually to decrement Jack’s retain count — to release Jack, resigning ownership of
Jack. The owner says: “Jack may or may not persist after this, but as for me, I’m done
with Jack, and Jack can go out of existence as far as I’m concerned.” At the same time,
a nonowner of Jack must never release Jack. As long as all objects behave this way
with respect to Jack, Jack will not leak nor will any pointer to Jack be left dangling.

What ARC Is and What It Does
Once upon a time, retaining and releasing an object was a matter of you, the pro‐
grammer, literally sending retain and release messages to it. NSObject still imple‐
ments retain and release, but under ARC (and in Swift) you can’t call them. That’s
because ARC is calling them for you! That’s ARC’s job — to do for you what you
would have had to do if memory management were still up to the programmer.

What ARC Is and What It Does | 579

ARC is implemented as part of the compiler. The compiler is literally modifying your
code by inserting retain and release calls behind the scenes. When you receive a
reference type object by calling some method, ARC immediately retains it so that it
will persist for as long as this same code continues to run; then ARC releases it when
the code comes to an end. Similarly, when you create or copy a reference type object,
ARC knows that its retain count has been incremented, and releases it when the code
comes to an end.

ARC is very conservative, but also very accurate. In effect, ARC retains at every junc‐
ture that might have the slightest implications for memory management: it retains
when an object is received as an argument, it retains when an object is assigned to a
variable, and so forth. It may even insert temporary variables, behind the scenes, to
enable it to refer sufficiently early to an object so that it can retain it. But of course it
eventually also releases to match.

How Cocoa Objects Manage Memory
Built-in Cocoa objects will take ownership of objects that you hand to them, by
retaining them, if it makes sense for them to do so, and will of course then balance
that retain with a release later. Indeed, this is so generally true that if a Cocoa object is
not going to retain an object you hand it, there will be a note to that effect in the
documentation.

A collection, such as an array or dictionary, is a particularly obvious case in point. An
object can hardly be an element of a collection if that object can go out of existence at
any time; so when you add an element to a collection, the collection asserts owner‐
ship of the object by retaining it. Thereafter, the collection acts as a well-behaved
owner. If this is a mutable collection, then if an element is removed from it, the col‐
lection releases that element. If the collection object goes out of existence, it releases
all its elements.

Prior to ARC, removing an object from a mutable collection constituted a potential
trap. Consider the following Objective-C code:

id obj = myMutableArray[0]; // an NSMutableArray
[myMutableArray removeObjectAtIndex: 0]; // bad idea in non-ARC code!
// ... could crash here by referring to obj ...

As I just said, when you remove an object from a mutable collection, the collection
releases it. So, without ARC, the second line of that code involves an implicit release
of the object that used to be the first element of myMutableArray. If this reduces the
object’s retain count to zero, it will be destroyed. The pointer obj will then be a dan‐
gling pointer, and a crash may be in our future when we try to use it as if it were a
real object.

580 | Chapter 12: Memory Management

With ARC, however, that sort of danger doesn’t exist. Assigning a reference type
object to a variable retains it! But we did assign this object to a variable, obj, before we
removed it from the collection. Therefore, that code is perfectly safe, and so is its
Swift equivalent:

let obj = myMutableArray[0] // retain
myMutableArray.removeObject(at:0) // release
// ... safe to refer to obj ...

The first line retains the object. The second line releases the object, but that release
balances the retain that was placed on the object when the object was placed in the
collection originally. The object’s retain count is still more than zero, and it continues
to exist for the duration of this code.

Autorelease Pool
When a method creates an instance and returns that instance, some memory man‐
agement hanky-panky has to take place. Consider this simple code:

func makeImage() -> UIImage? {
 if let im = UIImage(named:"myImage") {
 return im
 }
 return nil
}

Think about the retain count of im, the UIImage we are returning. This retain count
has been incremented by our call to the UIImage initializer UIImage(named:).
According to the golden rule of memory management, as we pass im out of our own
control by returning it, we should decrement the retain count of im, balancing the
increment and surrendering ownership. But when can we possibly do that? If we do it
before the line return im, the retain count of im will be zero and it will vanish in a
puff of smoke; we will be returning a dangling pointer. But we can’t do it after the
line return im, because when that line is executed, our code comes to an end.

Clearly, we need a way to vend this object without decrementing its retain count now
— so that it stays in existence long enough for the caller to receive and work with it
— while ensuring that at some future time we will decrement its retain count, so as to
balance our init(named:) call and fulfill our own management of this object’s mem‐
ory. The solution is something midway between releasing the object and not releasing
it — autoreleasing it.

Here’s how autoreleasing works. Your code runs in the presence of something called
an autorelease pool. When ARC autoreleases an object, that object is placed in the
autorelease pool, and a number is incremented saying how many times this object
has been placed in this autorelease pool. From time to time, when nothing else is
going on, the autorelease pool is automatically drained. This means that the

Autorelease Pool | 581

Figure 12-1. Memory usage grows during a loop

autorelease pool releases each of its objects, the same number of times as that object
was placed in this autorelease pool, and empties itself of all objects. If that causes an
object’s retain count to be zero, so be it; the object is destroyed in the usual way. So
autoreleasing an object is just like releasing it, but with a proviso, “later, not right this
second.”

In general, autoreleasing and the autorelease pool are merely an implementation
detail. You can’t see them; they are just part of how ARC works. But sometimes, on
very rare occasions, you might want to drain the autorelease pool yourself. Consider
the following code (it’s slightly artificial, but that’s because demonstrating the need to
drain the autorelease pool isn’t easy):

func test() {
 let path = Bundle.main.path(forResource:"001", ofType: "png")!
 for j in 0 ..< 50 {
 for i in 0 ..< 100 {
 let im = UIImage(contentsOfFile: path)
 }
 }
}

That method does something that looks utterly innocuous; it loads an image. But it
loads it repeatedly in a loop. As the loop runs, memory climbs constantly
(Figure 12-1); by the time our method comes to an end, our app’s memory usage has
reached almost 34MB. This is not because the images aren’t being released each time
through the loop; it’s because a lot of intermediate objects — things you’ve never even
heard of, such as NSPathStore2 objects — are secondarily generated by our call to
init(contentsOfFile:) and are autoreleased. As we keep looping, those objects are
all sitting there, piling up in the autorelease pool by the tens of thousands, waiting for
the pool to be drained. When our code finally comes to an end, the autorelease pool
is drained, and our memory usage drops precipitately back down to almost nothing.

Granted, 34MB isn’t exactly a massive amount of memory. But you may imagine that
a more elaborate inner loop might generate more and larger autoreleased objects, and
that our memory usage could potentially rise quite significantly. It would be nice to
have a way to drain the autorelease pool manually now and then during the course of
a loop with many iterations. Swift provides such a way — the global
autoreleasepool function, which takes a single argument that you’ll supply as an
anonymous function using trailing closure syntax. Before the anonymous function is
called, a special temporary autorelease pool is created, and is used for all autoreleased

582 | Chapter 12: Memory Management

Figure 12-2. Memory usage holds steady with an autorelease pool

objects thereafter. After the anonymous function exits, the temporary autorelease
pool is drained and goes out of existence. Here’s the same method with an
autoreleasepool call wrapping the inner loop:

func test() {
 let path = Bundle.main.path(forResource:"001", ofType: "png")!
 for j in 0 ..< 50 {
 autoreleasepool {
 for i in 0 ..< 100 {
 let im = UIImage(contentsOfFile: path)
 }
 }
 }
}

The difference in memory usage is dramatic: memory holds roughly steady at less
than 2MB (Figure 12-2). Setting up and draining the temporary autorelease pool
probably involves some overhead, so if possible you may want to divide your loop
into an outer and an inner loop, as shown in the example, so that the autorelease pool
is not set up and torn down on every iteration.

Memory Management of Instance Properties
Before ARC, managing memory for instance properties (Objective-C instance vari‐
ables, Chapter 10) was one of the trickiest parts of Cocoa programming. The correct
behavior is to retain a reference type object when you assign it to a property, and then
release it when either of these things happens:

• You assign a different value to the same property.
• The instance whose instance property this is goes out of existence.

Memory management for a property therefore had to be distributed in two places:

The setter method for the property
The setter must release whatever object is currently the value of the property, and
must retain whatever object is being assigned to that property. The exact details
can be quite tricky (what if they are the same object?), and before ARC it was
easy for programmers to get them wrong.

Memory Management of Instance Properties | 583

The owner’s dealloc method
This is the Objective-C equivalent of deinit. This method must be implemented
to release every object being retained as the value of a property, or the object will
leak when the owner goes out of existence.

Fortunately, ARC understands all that, and in Swift the memory of instance proper‐
ties, like the memory of all variables, is managed correctly for you.

That fact also gives us a clue as to how to release an object on demand when you are
holding it in an instance property. This is a valuable thing to be able to do, because an
object may be using a lot of memory. You don’t want to put too great a strain on the
device’s memory, so you want to release the object as soon as you’re done with it.
Also, when your app goes into the background and is suspended, the Watchdog pro‐
cess will terminate it in the background if it is found to be using too much memory;
so you might want to release this object when you are notified that the app is about to
be backgrounded.

You can’t call release explicitly, so you need another way to do it, some way that is
consonant with the design and behavior of ARC. The solution is to assign something
else — something small — to this property. That causes the object that was previously
the value of this property to be released. A commonly used approach is to type this
property as an Optional. This means that nil can be assigned to it, purely as a way of
replacing the object that is the instance property’s current value and releasing it.

Retain Cycles and Weak References
As I explained in Chapter 5, you can get yourself into a retain cycle where two refer‐
ence type objects have references to one another: for example, each is the value of the
other’s instance property. If such a situation is allowed to persist until no other
objects have a reference to either of these objects, then neither can go out of exis‐
tence, because each has a retain count greater than zero and neither will “go first” and
release the other. Since these two objects, ex hypothesi, can no longer be referred to by
any object except one another, this situation can now never be remedied — these
objects are leaking.

The solution is to step in and modify how the memory is managed for one of these
references. By default, a reference is a strong reference: assigning to it retains the
assigned value. In Swift, you can declare a reference type variable as weak or as
unowned to change the way its memory is managed:

weak

When a reference is weak, ARC does not retain the object assigned to it. This
seems dangerous, because it means that the object might go out of existence
behind our backs, leaving us with a dangling pointer and leading to a potential

584 | Chapter 12: Memory Management

crash later on. But ARC is very clever about this. A reference marked as weak
must be a var reference to an Optional. ARC keeps track of all weak references
and all objects assigned to them. When such an object’s retain count drops to
zero and the object is about to be destroyed, just before the object’s deinit is
called, ARC sneaks in and assigns nil to the reference. Provided you handle the
Optional coherently (by coping with the fact that it might suddenly be nil),
nothing bad can happen.

unowned

An unowned reference is a different kettle of fish. When you mark a reference as
unowned, you’re telling ARC to take its hands off completely: it does no memory
management at all when something is assigned to this reference. This really is
dangerous — if the object referred to goes out of existence, you really can be left
with a dangling pointer and you really can crash. That is why you must never use
unowned unless you know that the object referred to will not go out of existence:
unowned is safe, provided the object referred to will outlive the object that refers
to it. So an unowned reference should point at all times to some single independ‐
ent object, retained in some other way, without which the referrer cannot exist at
all.

A weak reference is commonly used to connect an object to its delegate (Chapter 11):

class ColorPickerController : UIViewController {
 weak var delegate: ColorPickerDelegate?
 // ...
}

A delegate is an independent entity; there is usually no reason why an object needs to
claim ownership of its delegate. Indeed, an object is usually its delegate’s servant, not
its owner, and ownership, if there is any, runs the other way; Object A might create
and retain Object B, and make itself Object B’s delegate:

let cpc = ColorPickerController(colorName:colorName, color:c)
cpc.delegate = self
self.present(cpc, animated: true) // retains cpc

There’s no danger of a retain cycle in that code, because the delegate property is
weak. This view controller (self) is not somehow retaining itself.

Very rarely, you may encounter properties of built-in Cocoa classes that keep weak
references as non-ARC weak references (because they are old and backward compati‐
ble, whereas ARC is new). Such properties are declared in Objective-C using the key‐
word assign. NSCache’s delegate property is declared like this:

@property (nullable, assign) id<NSCacheDelegate> delegate;

Retain Cycles and Weak References | 585

Figure 12-3. A crash from messaging a dangling pointer

In Swift, that declaration is translated like this:

unowned(unsafe) var delegate: NSCacheDelegate?

The Swift term unowned and the Objective-C term assign are synonyms; they tell you
that there’s no ARC memory management here. The unsafe designation is a further
warning inserted by Swift; unlike your own code, where you won’t use unowned
unless it is safe, Cocoa’s unowned is potentially dangerous and you need to exercise
caution.

A reference such as an NSCache’s delegate can end up as a dangling pointer, point‐
ing at garbage, if the object to which that reference was pointing has gone out of exis‐
tence. If anyone tries to send a message by way of such a reference, the app will then
crash. This is the delegate, so what usually happens is that Cocoa tries to send it a
delegate message. The tell-tale sign of such a crash is that EXC_BAD_ACCESS is reported
somewhere in objc_msgSend (Figure 12-3).

Figuring out the cause of a crash like that can be quite difficult, especially since the
crash itself typically takes place long after the point where the real mistake occurred,
namely that some object went out of existence while a reference to it continued to
exist. You might not even know what object went out of existence. (This is the sort of
situation in which you might need to “turn on zombies” in order to debug, as I’ll
describe at the end of this chapter.)

Non-ARC weak references of this kind are few and far between in Cocoa nowadays;
but they were once relatively common, so the earlier the iOS version on which you’re
running, the more likely you are to encounter one. Fortunately, it’s easy to avoid a
dangling pointer by making sure there is always something to point to. With an
NSCache’s delegate, if the delegate object is about to go out of existence at a time
when the NSCache instance still exists, we would assign nil (or some other object) to
the delegate property, rendering it harmless.

Unusual Memory Management Situations
This section discusses some situations that call for some special memory manage‐
ment handling on your part.

586 | Chapter 12: Memory Management

Notification Observers
Recall the example I gave in Chapter 11, where you register with the notification cen‐
ter by calling addObserver(forName:object:queue:using:), like this:

let ob = NotificationCenter.default.addObserver(
 forName: .MPMusicPlayerControllerNowPlayingItemDidChange,
 object: nil, queue: nil) { _ in
 self.updateNowPlayingItem()
 // ... and so on ...
 }
self.observers.insert(ob as! NSObject)

I didn’t tell you at the time, but that code has the potential to cause a serious memory
leak. The reason is that the observer token object (ob) returned from the registration
call is retained by the notification center until you unregister it. (I regard this as some‐
thing of a dirty trick on the notification center’s part; I think I understand Apple’s
reasoning in designing things this way, but I also think they reasoned incorrectly.)

So the observer token object is likely to leak — but that isn’t the serious part. The
serious part is that the observer token object is also retaining the view controller
(self) through the anonymous function. The reason is that functions are closures,
and this function refers to self. So the view controller is leaking along with the
observer token. That’s bad. A view controller together with its properties, including
its view, constitutes a heavyweight object and needs to go out existence when it is no
longer needed. You cannot solve the problem merely by unregistering the observer in
the view controller’s deinit, because ex hypothesi deinit isn’t going to be called; that
is what leaking means.

The solution to the leakage of self is to mark self as weak or (preferably) unowned in
the anonymous function. Now deinit will be called and the view controller can go
out of existence in good order. But we must still remember to unregister the observer
token object, because otherwise the observer token itself will still leak, and its func‐
tion can be called again even though self no longer exists (and if we marked self as
unowned, the app will crash at that moment with a dangling pointer). A complete sol‐
ution looks something like this:

var observers = Set<NSObject>()
override func viewDidLoad() {
 super.viewDidLoad()
 let ob = NotificationCenter.default.addObserver(
 forName: .MPMusicPlayerControllerNowPlayingItemDidChange,
 object: nil, queue: nil) { [unowned self] _ in
 self.updateNowPlayingItem()
 // ... and so on ...
 }
 self.observers.insert(ob as! NSObject)
}

Unusual Memory Management Situations | 587

deinit {
 for ob in self.observers {
 NotificationCenter.default.removeObserver(ob)
 }
}

If you omit unowned self, then self will leak (and deinit will never be called).

If you omit removeObserver, then any observers will leak, and we can crash if the
notification center later sends a notification to an observer with an unowned ref‐
erence to a self that no longer exists.

KVO Observers
The NSKeyValueObservation observer object that you get when you call
observe(_:options:changeHandler:) (Chapter 11) is quite similar to the observer
token object you get from the notification center. You maintain a reference to the
observer object, because otherwise the notification message won’t arrive. And you’ll
probably want to let the observer object just go out of existence when you yourself go
out of existence, because it will then unregister itself automatically, which is exactly
what you want.

The problem is that if your notification function refers to self, that’s a retain cycle,
because you are retaining an observer whose function is also retaining you. Therefore
you won’t go out of existence, so the observer won’t go out of existence either and
won’t be automatically unregistered. The solution, once again, is to mark self as
unowned in the notification function:

var obs = Set<NSKeyValueObservation>()
func registerWith(_ mc:MyClass1) {
 let opts : NSKeyValueObservingOptions = [.old, .new]
 let ob = mc.observe(\.value, options: opts) {
 [unowned self] obj, change in
 print(self) // potential leak
 }
 obs.insert(ob)
}

Timers
The class documentation for Timer (Chapter 10) says that “run loops maintain
strong references to their timers”; it then says of scheduledTimer(time-

Interval:target:selector:userInfo:repeats:) that “The timer maintains a
strong reference to target until it (the timer) is invalidated.” This should set off
alarm bells in your head: “Danger, Will Robinson, danger!” The documentation is
warning you that as long as a repeating timer has not been invalidated, the target is
being retained by the run loop; the only way to stop this is to send the invalidate

588 | Chapter 12: Memory Management

message to the timer. (With a non-repeating timer, the problem arises less starkly,
because the timer invalidates itself immediately after firing.)

Moreover, the target: argument is probably self. This means that you (self) are
being retained, and cannot go out of existence until you invalidate the timer. So when
will you that? You can’t do it in your deinit implementation, because as long as the
timer is repeating and has not been sent the invalidate message, deinit won’t be
called. You therefore need to find another appropriate moment for sending
invalidate to the timer, such as viewDidDisappear:

var timer : Timer!
override func viewWillAppear(_ animated: Bool) {
 super.viewWillAppear(animated)
 self.timer = Timer.scheduledTimer(timeInterval: 1, target: self,
 selector: #selector(fired), userInfo: nil, repeats: true)
 self.timer.tolerance = 0.1
}
@objc func fired(_ t:Timer) {
 print("timer fired")
}
override func viewDidDisappear(_ animated: Bool) {
 super.viewDidDisappear(animated)
 self.timer.invalidate()
}

Instead, a more flexible approach is to call the scheduledTimer(withTime-

Interval:repeats:block:) class method. Now there is no retained target: — but
there is a retained function. If the timer is a repeating timer, you are retaining it so
that you can invalidate it later, but the timer is retaining the function, and if that
function involves a reference to self, it will retain self, causing a retain cycle. But
we know what to do about that! Mark self as weak or unowned in the function. Now
you can invalidate the timer in deinit. This is similar to the two-part solution I
described earlier for notification observer token objects:

var timer : Timer!
override func viewDidLoad() {
 super.viewDidLoad()
 self.timer = Timer.scheduledTimer(withTimeInterval: 1, repeats: true) {
 [unowned self] t in // *
 self.fired(t)
 }
}
func fired(_ t:Timer) {
 print("timer fired")
}
deinit {
 self.timer.invalidate() // *
}

Unusual Memory Management Situations | 589

Other Unusual Situations
Other Cocoa objects with unusual memory management behavior will usually be
called out clearly in the documentation. A CAAnimation object retains its delegate;
this is exceptional and can cause serious trouble if you’re not conscious of it (as usual,
I speak from bitter experience). There are also situations where the documentation
fails to warn of any special memory management considerations, but you can wind
up with a retain cycle anyway. Discovering the problem can be tricky. Areas of Cocoa
that have given me trouble include UIKit Dynamics (a UIDynamicBehavior’s action
handler) and WebKit (a WKWebKit’s WKScriptMessageHandler).

Three Foundation collection classes — NSPointerArray, NSHashTable, and NSMap‐
Table — are similar respectively to NSMutableArray, NSMutableSet, and
NSMutableDictionary, except that (among other things) their memory management
policy is up to you. An NSHashTable created with the weakObjects class method
maintains ARC-weak references to its elements, meaning that they are replaced by
nil if the retain count of the object to which they were pointing has dropped to zero.
You may find uses for these classes as a way of avoiding retain cycles.

Nib Loading and Memory Management
When a nib loads, it instantiates its nib objects (Chapter 7). What happens to these
instantiated objects? A view retains its subviews, but what about the top-level objects,
which are not subviews of any view? They do not have elevated retain counts; if
someone doesn’t immediately retain them, they’ll simply vanish in a puff of smoke.

If you don’t want that to happen — and if you did, why would you be loading this nib
in the first place? — you need to capture a reference to the top-level objects instanti‐
ated from the nib. There are two ways of doing that.

The first approach is to capture the result of the nib-loading code. When a nib is
loaded by calling Bundle’s loadNibNamed(_:owner:options:) or UINib’s
instantiate(withOwner:options:), an array is returned consisting of the top-level
objects instantiated by the nib-loading mechanism. So it’s sufficient to retain this
array, or the objects in it. We did that in Chapter 7 when we loaded a nib and
assigned the result to a variable, like this:

let arr = Bundle.main.loadNibNamed("View", owner: nil)!
let v = arr[0] as! UIView
self.view.addSubview(v)

The other possibility is to configure the nib owner with outlets that will retain the
nib’s top-level objects when they are instantiated. We did that in Chapter 7 when we
set up an outlet like this:

590 | Chapter 12: Memory Management

class ViewController: UIViewController {
 @IBOutlet var coolview : UIView!

We then loaded the nib with this view controller as owner:

Bundle.main.loadNibNamed("View", owner: self)
self.view.addSubview(self.coolview)

In the first line, the nib-loading mechanism instantiates the top-level view from the
nib and assigns it to self.coolview. Since self.coolview is a strong reference, it
retains the view, and the view is still there when we insert it into the interface in the
second line.

In real life, @IBOutlet properties that will be set by the loading of a nib are usually
marked weak. Such outlet properties work properly as long as the object referred to
will be retained by someone else — for instance, because it’s already a subview of
your view controller’s main view. A view controller retains its main view, and a view
is retained by its superview, so the nib-loading process will cause this view to be
retained, and there is no need for your @IBOutlet property to retain it as well.

Memory Management of CFTypeRefs
A CFTypeRef is a pure C analog to an Objective-C object. In Objective-C, CFTypeRef
types are distinguished by the suffix Ref at the end of their name; in Swift, this Ref
suffix is dropped. For instance, a CGContextRef is a CFTypeRef, and is known in
Swift as a CGContext.

A CFTypeRef is a pointer to an opaque C struct (see Appendix A), where “opaque”
means that the struct has no directly accessible components. This struct acts as a
pseudo-object; a CFTypeRef is analogous to an object type. In Objective-C, the fact
that this thing is not an object is particularly obvious, because the code that operates
upon a CFTypeRef is not object-oriented. A CFTypeRef has no properties or
methods, and you do not send any messages to it; you work with CFTypeRefs entirely
through global C functions. In Swift’s Core Graphics overlay, however, those global C
functions are hand-tweaked to look like methods; for instance, the CGContextDraw-
LinearGradient C function is called, in Swift, by sending drawLinear-

Gradient(_:start:end:options:) to a CGContext pseudo-object, just as if a
CGContext were an object and drawLinearGradient were an instance method.

Here’s some actual Swift code for drawing a gradient; con is a CGContext, sp is a
CGColorSpace, and grad is a CGGradient (all of them being CFTypeRefs):

let con = UIGraphicsGetCurrentContext()!
let locs : [CGFloat] = [0.0, 0.5, 1.0]
let colors : [CGFloat] = [
 0.8, 0.4, // starting color, transparent light gray
 0.1, 0.5, // intermediate color, darker less transparent gray

Memory Management of CFTypeRefs | 591

 0.8, 0.4, // ending color, transparent light gray
]
let sp = CGColorSpaceCreateDeviceGray()
let grad = CGGradient(colorSpace: sp,
 colorComponents: colors, locations: locs, count: 3)!
con.drawLinearGradient(grad,
 start: CGPoint(x:89,y:0), end: CGPoint(x:111,y:0), options:[])

Despite being only a pseudo-object, a CFTypeRef is a reference type, and its memory
must be managed in just the same way as that of a real object. Therefore, a CFType‐
Ref pseudo-object has a retain count! And this retain count works exactly as for a
true object, in accordance with the golden rule of memory management. A CFType‐
Ref must be retained when it comes within the sphere of influence of an owner who
wants it to persist, and it must be released when that owner no longer needs it.

In Objective-C, the golden rule, as applied to CFTypeRefs, is that if you obtained a
CFTypeRef object through a function whose name contains the word Create or Copy,
its retain count has been incremented. In addition, if you are worried about the
object persisting, you’ll retain it explicitly by calling the CFRetain function to incre‐
ment its retain count. To balance your Create, Copy, or CFRetain call, you must
eventually release the object. By default, you’ll do that by calling the CFRelease func‐
tion; some CFTypeRefs, however, have their own dedicated object release functions
— for CGPath, for instance, there’s a dedicated CGPathRelease function. There’s no
ARC management of CFTypeRefs in Objective-C, so you have to do all of this your‐
self, explicitly.

In Swift, however, you will never need to call CFRetain, or any form of CFRelease;
indeed, you cannot. Swift will do it for you, behind the scenes, automatically.

Think of CFTypeRefs as living in two worlds: the CFTypeRef world of pure C, and
the memory-managed object-oriented world of Swift. When you obtain a CFTypeRef
pseudo-object, it crosses the bridge from the CFTypeRef world into the Swift world.
From that moment on, until you are done with it, it needs memory management.
Swift is aware of this, and for the most part, Swift itself will use the golden rule and
will apply correct memory management. The code I showed earlier for drawing a gra‐
dient is in fact memory-management complete. In Objective-C, we would have to
release sp and grad, because they arrived into our world through Create calls; if we
failed to do this, they would leak. In Swift, however, there is no need, because Swift
will do it for us. (See Appendix A for more about how objects move between the
CFTypeRef world and the memory-managed object world.)

Working with CFTypeRefs in Swift, then, is much easier than in Objective-C. In
Swift, you can treat CFTypeRef pseudo-objects as actual objects! You can assign a
CFTypeRef to a property in Swift, or pass it as an argument to a Swift function, and
its memory will be managed correctly; in Objective-C, those are tricky things to do.

592 | Chapter 12: Memory Management

It is still possible, though, to receive a CFTypeRef through some API that lacks mem‐
ory management information. Such a value will come forcibly to your attention,
because it will arrive into Swift, not as a CFTypeRef, but as an Unmanaged generic
wrapping the actual CFTypeRef. That situation alerts you to the fact that Swift does
not know how to proceed with the memory management of this pseudo-object. You
will be unable to use the CFTypeRef until you extract it by calling the Unmanaged
object’s takeRetainedValue or takeUnretainedValue method. You will call
whichever method tells Swift how to manage the memory for this object correctly.
For a CFTypeRef with an incremented retain count (usually acquired through a func‐
tion with Create or Copy in its name), call takeRetainedValue; otherwise, call take-
UnretainedValue.

Property Memory Management Policies
In Objective-C, a @property declaration (see Chapter 10) includes a statement of the
memory management policy implemented by the corresponding setter accessor
method. It is useful to be aware of this and to know how such policy statements are
translated into Swift.

Earlier I said that a UIViewController retains its view (its main view). How do I
know this? Because the @property declaration tells me so:

@property(null_resettable, nonatomic, strong) UIView *view;

The term strong means that the setter retains the incoming UIView object. The Swift
translation of this declaration doesn’t add any attribute to the variable:

var view: UIView!

The default in Swift is that a variable referring to a reference object type is a strong
reference. This means that it retains the object. You can safely conclude from this
declaration that a UIViewController retains its view.

The possible memory management policies for a Cocoa property are:

strong, retain (no Swift equivalent term)
The default. The two terms are pure synonyms; retain is the term inherited
from pre-ARC days. Assignment to this property releases the existing value (if
any) and retains the incoming value.

copy (Swift @NSCopying)
The same as strong or retain, except that the setter copies the incoming value
by sending copy to it; the incoming value must be an object of a type that adopts
NSCopying, to ensure that this is possible. The copy, which has an increased
retain count already, becomes the new value.

Property Memory Management Policies | 593

weak (Swift weak)
An ARC-weak reference. The incoming object value is not retained, but if it goes
out of existence behind our back, ARC will magically substitute nil as the value
of this property, which must be typed as an Optional declared with var.

assign (Swift unowned(unsafe))
No memory management. This policy is inherited from pre-ARC days, and is
inherently unsafe (hence the additional unsafe warning in the Swift translation
of the name): if the object referred to goes out of existence, this reference will
become a dangling pointer and can cause a crash if you subsequently try to use it.

The copy policy is used by Cocoa particularly when an immutable class has a mutable
subclass (such as NSString and NSMutableString, or NSArray and NSMutableArray;
see Chapter 10). The idea is to deal with the danger of the setter’s caller passing an
object of the mutable subclass. This is possible because, in accordance with the sub‐
stitution principle of polymorphism (Chapter 4), wherever an instance of a class is
expected, an instance of its subclass can be used instead. It would be bad if this were
to happen, because now the caller might keep a reference to the incoming value and,
since it is in fact mutable, could later mutate it behind our back. To prevent this, the
setter calls copy on the incoming object; this creates a new instance, separate from the
object provided — and belonging to the immutable class.

In Swift, this problem is unlikely to arise with strings and arrays, because on the Swift
side these are value types (structs) and are effectively copied when assigned, passed as
an argument, or received as a return value. Cocoa’s NSString and NSArray property
declarations, when translated into Swift as String and Array property declarations,
don’t show any special marking corresponding to Objective-C copy. But Cocoa types
that are not bridged to Swift value types do show a marking: @NSCopying. The decla‐
ration of the attributedText property of a UILabel appears like this in Swift:

@NSCopying var attributedText: NSAttributedString?

NSAttributedString has a mutable subclass, NSMutableAttributedString. You’ve
probably configured this attributed string as an NSMutableAttributedString, and now
you’re assigning it as a UILabel’s attributedText. The UILabel doesn’t want you
keeping a reference to this mutable string and mutating it in place, since that would
change the value of the property without passing through the setter. It copies the
incoming value to ensure that what it has is a separate immutable NSAttributed‐
String.

You’ll want to do the same thing in your own code, and you can. Simply mark your
property with the @NSCopying attribute; Swift will enforce the copy policy and will
take care of the actual copying for you whenever this property is assigned to:

594 | Chapter 12: Memory Management

class StringDrawer {
 @NSCopying var attributedString : NSAttributedString!
 // ...
}

If, as is sometimes the case, your own class wants the internal ability to mutate the
value of this property while preventing a mutable value from arriving from outside,
put a private computed property façade in front of it whose getter transforms it to the
corresponding mutable type:

class StringDrawer {
 @NSCopying var attributedString : NSAttributedString!
 private var mutableAttributedString : NSMutableAttributedString! {
 get {
 if self.attributedString == nil {return nil}
 return NSMutableAttributedString(
 attributedString:self.attributedString)
 }
 set {
 self.attributedString = newValue
 }
 }
 // ...
}

@NSCopying can be used only for instance properties of classes, not of structs or
enums — and only in the presence of Foundation, because that is where the NSCopy‐
ing protocol is defined, which the type of a variable marked as @NSCopying must
adopt.

Debugging Memory Management Mistakes
Though far less likely to occur under ARC (and Swift), memory management mis‐
takes can still occur, especially because a programmer is apt to assume that they can’t.
Experience suggests that you should use every tool at your disposal to ferret out pos‐
sible mistakes. Here are some of those tools (and see Chapter 9):

• The memory gauge in the Debug navigator charts memory usage whenever your
app runs, allowing you to observe possible memory leakage or other unwarran‐
ted heavy memory use. Note that memory management in the Simulator is not
necessarily indicative of reality! Always observe the memory gauge with the app
running on a device before making a judgment.

• Instruments (Product → Profile) has excellent tools for discerning leaks and
tracking memory management of individual objects (Leaks, Allocations).

• Good old caveman debugging can help confirm that your objects are behaving as
you want them to. Implement deinit with a print call. If it isn’t called, your

Debugging Memory Management Mistakes | 595

object is not going out of existence. This technique can reveal problems that even
Instruments will not directly expose.

• Memory graphing (“Memory Debugging” on page 478) will draw you a picture
of the ownership relations between your objects; circular references are usually
easy to spot. In conjunction with Malloc Stack Logging, you can trace object
ownership through the actual retain calls.

• Dangling pointers are particularly difficult to track down, but they can often be
located by “turning on zombies.” This is easy in Instruments with the Zombies
template (on a device). Alternatively, edit the Run action in your scheme, switch
to the Diagnostics tab, and check Enable Zombie Objects. The result is that an
object that goes out of existence is replaced by a “zombie” that will report to the
console if a message is sent to it (“message sent to deallocated instance”). More‐
over, the zombie knows what kind of object it replaces, so you can learn what got
deallocated. Be sure to turn zombies back off when you’ve finished tracking
down your dangling pointers. Don’t use zombies with the Leaks instrument:
zombies are leaks.

• The Address Sanitizer (also in the scheme’s Run action’s Diagnostics tab) lets
you debug even more subtle forms of memory misuse. Here we’re doing a Very
Bad Thing, writing directly into memory that doesn’t belong to us:

let b = UnsafeMutablePointer<CGFloat>.allocate(capacity:3)
b.initializeFrom([0.1, 0.2, 0.3])
b[4] = 0.4

That code probably won’t crash; it corrupts memory silently, which is even
worse. But if we run our app under Address Sanitizer, it detects the problem and
reports a heap buffer overflow.

596 | Chapter 12: Memory Management

CHAPTER 13

Communication Between Objects

As soon as an app grows to more than a few objects, puzzling questions can arise
about how to send a message or communicate data between one object and another.
It may require some planning to construct your code so that all the pieces fit together
and information can be shared as needed at the right moment. This chapter presents
some organizational considerations that will help you arrange for coherent commu‐
nication between objects.

Visibility Through an Instance Property
One object’s ability to communicate with another often comes down to one object
being able to see another. If the object Manny needs to be able to find the object Jack
repeatedly and reliably over the long term so as to be able to send Jack messages,
Manny will presumably need a way of seeing Jack in the first place.

One obvious solution is an instance property of Manny whose value is Jack. An
instance property is appropriate particularly when Manny and Jack share certain
responsibilities or supplement one another’s functionality. Here are some commonly
occurring cases where one object needs to have an instance property pointing at
another:

• The application object and its delegate
• A table view and its data source
• A view controller and the view that it controls

Manny may have an instance property pointing to Jack, but this does not necessarily
imply that Manny needs to assert ownership of Jack as a matter of memory manage‐
ment policy (see Chapter 12). Here are some common situations in which one object
has a property pointing to another object, but does not retain that object:

597

• An object does not typically retain its delegate or its data source.
• An object that implements the target–action pattern, such as a UIControl, does

not retain its target.
By using a weak reference and typing the property as an Optional, and then treating
the Optional coherently and safely, Manny can keep a reference to Jack without own‐
ing Jack (while coping with the possibility that his supposed reference to Jack will
turn out to be nil). On the other hand, sometimes ownership is appropriate and cru‐
cial. A view controller is useless without a view to control, and its view truly belongs
to the view controller and to no one else; once a view controller has a view, it will
retain it, releasing it only when it itself goes out of existence.

Objects can perform two-way communication without both of them holding refer‐
ences to one another. It may be sufficient for one of them to have a reference to the
other — because the former, as part of a message to the latter, can include a reference
to himself. Manny might send a message to Jack where one of the parameters is a ref‐
erence to Manny; this might merely constitute a form of identification, or an invita‐
tion to Jack to send a message back to Manny if Jack needs further information while
doing whatever this method does. Manny makes himself, as it were, momentarily
visible to Jack; Jack should not wantonly retain Manny (especially since there’s an
obvious risk of a retain cycle). Again, this is a common pattern:

• The parameter of the delegate message textFieldShouldBeginEditing(_:) is a
reference to the UITextField that sent the message.

• The first parameter of a target–action message is a reference to the control that
sent the message.

Visibility by Instantiation
Every instance comes from somewhere and at someone’s behest: some object sent a
message commanding this instance to come into existence in the first place. The
commanding object therefore has a reference to the new instance at the moment of
instantiation. When Manny creates Jack, Manny has a reference to Jack.

That simple fact can serve as the starting point for establishing future communica‐
tion. If Manny creates Jack and knows that he (Manny) will need a reference to Jack
later on, Manny can keep the reference that he obtained by creating Jack in the first
place.

Or it might be the other way around: Manny creates Jack and knows that Jack will
need a reference to Manny later on, so Manny can supply that reference immediately
after creating Jack, and Jack will then keep it. Delegation is a case in point. Manny
may create Jack and immediately make himself Jack’s delegate, as in my example
code in Chapter 11:

598 | Chapter 13: Communication Between Objects

let cpc = ColorPickerController(colorName:colorName, color:c)
cpc.delegate = self

When Manny creates Jack, it might not be a reference to Manny himself that Jack
needs, but to something that Manny knows or has. You will presumably endow Jack
with a method or property so that Manny can hand over that information. In fact, if
Jack simply cannot live without the information, it might be reasonable to endow
Jack with an initializer that requires this information as part of the very act of
creation.

This example (Chapter 11) comes from a table view controller. The user has tapped a
row of the table. In response, we create a secondary table view controller, a Tracks‐
ViewController instance; we hand it the data it will need, and display the secondary
table view:

override func tableView(_ tableView: UITableView,
 didSelectRowAt indexPath: IndexPath) {
 delay(0.1) {
 let t = TracksViewController(
 mediaItemCollection: self.albums[indexPath.row])
 self.navigationController?.pushViewController(t, animated: true)
 }
}

In that code, I instantiate the TracksViewController by calling its initializer,
init(mediaItemCollection:), which requires me to hand over the media item col‐
lection that the view controller will need as the basis of its table view. And where did
this initializer come from? I made it up! I have deliberately devised TracksViewCon‐
troller to have a designated initializer init(mediaItemCollection:), making it virtu‐
ally obligatory for a TracksViewController to have access, from the moment it comes
into existence, to the data it needs.

A similar situation is when a segue in a storyboard is triggered. There are two view
controllers that may need to meet — the view controllers at the two ends of the segue,
the source view controller and the destination view controller. This is parallel to the
situation where one view controller creates another view controller and presents it,
but there’s an important difference: with a triggered segue, the source view controller
doesn’t create the destination view controller. But it probably still needs a reference to
the destination view controller, very early in the life of the latter, so that it can hand
over any needed information. How will it get that reference?

At the moment the segue is triggered, the source view controller already exists, and
the segue knows what view controller it is; and the segue itself instantiates the desti‐
nation view controller. So the segue immediately turns to the source view controller
and hands it a reference to the destination view controller — for example, by calling
the source view controller’s prepare(for:sender:) method. This is the source view
controller’s chance to obtain a reference to the newly instantiated destination view

Visibility by Instantiation | 599

controller — and to make itself the destination view controller’s delegate, or hand it
any needed information, and so forth.

In the first situation, one view controller creates another view controller instance. In
the second situation, the source view controller of a segue is brought together with
the destination view controller by the prepare(for:sender:) event. In each case, the
first view controller, for one brief shining moment, has a reference to the second view
controller. Therefore it takes advantage of that moment to hand the second view con‐
troller instance the information it needs. There will be no better moment to do this.
Knowing the moment, and taking care not to miss it, is part of the art of data com‐
munication.

Getting a Reference
So much for what happens when another object first comes into existence. But some‐
times you know that another object already exists somewhere out there, but you
don’t know how to refer to it. That kind of situation can be a particular source of
frustration.

Let’s say you’re a view controller and there’s some other view controller you need to
talk to. But you didn’t instantiate the other view controller, and you are not the
source view controller for the segue that instantiated the other view controller. You
may know a lot about this other view controller — you know what its class is, and
you can probably see its view sitting there in the interface when you run the app —
but you cannot get hold of it in code.

Here’s what not to do in that situation: You know the class of the view controller
you’re looking for, so you make an instance of that class. That won’t do you any
good! The instance you want to talk to is a particular instance that already exists.
There’s no point making another instance. If you lose your car in a parking lot, the
solution is not to build another car of the same model; the solution is to find your car.

For example, in a real-life iOS app, you will have a root view controller, which will be
an instance of some type of UIViewController. Let’s say it’s an instance of the View‐
Controller class. Once your app is up and running, this instance already exists. Now
suppose we are in some other view controller, and we want to talk to the View‐
Controller instance that is serving as the root view controller of the app. It would be
counterproductive to try to speak to the root view controller by instantiating the
ViewController class:

let theVC = ViewController() // legal but pointless

All that does is to make a second, different instance of the ViewController class, and
your messages to that instance will be wasted, as it is not the instance of View‐
Controller that you wanted to talk to. That particular instance already exists; what

600 | Chapter 13: Communication Between Objects

you want is to get a reference to that already existing instance. But how? Here are
some considerations that will help you.

Visibility by Relationship
It is not the class of an already existing object that will get you a reference to that
object, but rather the relationship between you and that object. Objects may acquire
the ability to see one another automatically by virtue of their position in a containing
structure. Before worrying about how to supply one object with a reference to
another, consider whether there may already be a chain of references leading from
one to the other.

A subview can see its superview, through its superview property. A superview can
see all its subviews, through its subviews property, and can pick out a specific sub‐
view through that subview’s tag property, by calling the viewWithTag(_:) method. A
subview in a window can see its window, through its window property. Working your
way up or down the view hierarchy by means of these properties, it may be possible
to obtain the desired reference.

A view controller can see its view through its view property, and from there can work
its way down to subviews to which it may not have an outlet. What about going in the
other direction? A responder (Chapter 11) can see the next object up the responder
chain, through the next property — which also means, because of the structure of the
responder chain, that a view controller’s main view can see the view controller.

View controllers are themselves part of a hierarchy and therefore can see one
another. If a view controller is currently presenting a view through a second view
controller, the latter is the former’s presentedViewController, and the former is the
latter’s presentingViewController. If a view controller is the child of a
UINavigationController, the latter is its navigationController. A UINavigation‐
Controller’s visible view is controlled by its visibleViewController. And so forth.

Global Visibility
Some objects are globally visible — that is, they are visible to all other objects. Object
types themselves are an important example. As I pointed out in Chapter 4, it is per‐
fectly reasonable to use a Swift struct with static members as a way of providing glob‐
ally available namespaced constants (“Struct as Namespace” on page 152).

Classes sometimes have class methods or properties that vend singleton instances.
Some of these singletons, in turn, have properties pointing to other objects, making
those other objects likewise globally visible. Any object can see the singleton UIAp‐
plication instance as UIApplication.shared. So any object can also see the app’s pri‐
mary window, because that is the first element of the singleton UIApplication
instance’s windows property. And any object can see the app delegate, because that is

Getting a Reference | 601

the application’s delegate property. And the chain continues: any object can see the
app’s root view controller, because that is the primary window’s rootView-

Controller — and from there, as I said in the previous section, we can navigate the
view controller hierarchy and the view hierarchy.

So now we know how to solve the problem I posed earlier of getting a reference to the
app’s root view controller. We start with the globally visible shared application
instance:

let app = UIApplication.shared

From there we can get the window:

let window = app.windows.first

That window owns the root view controller, and will hand us a reference to it
through its rootViewController property:

let vc = window?.rootViewController

And voilà — a reference to our app’s root view controller. To obtain the reference to
this persistent instance, we have created, in effect, a chain leading from the known to
the unknown, from a globally available class to the particular desired instance.

You can make your own objects globally visible by attaching them to a globally visible
object. For example, a public property of the app delegate, which you are free to cre‐
ate, is globally visible by virtue of the app delegate being globally visible (by virtue of
the shared application being globally visible).

Another globally visible object is the shared defaults object obtained as User-
Defaults.standard. This object is the gateway to storage and retrieval of user
defaults, which is similar to a dictionary (a collection of values named by keys). The
user defaults are automatically saved when your application quits and are automati‐
cally available when your application is launched again later, so they are one of the
ways in which your app maintains information between launches. But, being globally
visible, they are also a conduit for communicating values within your app.

In one of my apps there’s a preference setting I call Default.hazyStripy. This deter‐
mines whether a certain visible interface object (a card in a game) is drawn with a
hazy fill or a stripy fill. This is a setting that the user can change, so there is a prefer‐
ences interface allowing the user to make this change. When the user displays this
preferences interface, I examine the Default.hazyStripy setting in the user defaults
to configure the preferences interface to reflect it in a segmented control (called
self.hazyStripy):

602 | Chapter 13: Communication Between Objects

func setHazyStripy () {
 let hs = UserDefaults.standard
 .object(forKey:Default.hazyStripy) as! Int
 self.hazyStripy.selectedSegmentIndex = hs
}

Conversely, if the user interacts with the preferences interface, tapping the hazy-
Stripy segmented control to change its setting, I respond by changing the actual
Default.hazyStripy setting in the user defaults:

@IBAction func hazyStripyChange(_ sender: Any) {
 let hs = self.hazyStripy.selectedSegmentIndex
 UserDefaults.standard.set(hs, forKey: Default.hazyStripy)
}

But here’s the really interesting part. The preferences interface is not the only object
that uses the Default.hazyStripy setting in the user defaults; the drawing code that
actually draws the hazy-or-stripy-filled card also uses it, so as to know how the card
should draw itself! When the user leaves the preferences interface and the card game
reappears, the cards are redrawn — consulting the Default.hazyStripy setting in
UserDefaults in order to do so:

override func draw(_ rect: CGRect) {
 let hazy : Bool = UserDefaults.standard
 .integer(forKey:Default.hazyStripy) == HazyStripy.hazy.rawValue
 CardPainter.shared.drawCard(self.card, hazy:hazy)
}

There is no need for the card object and the view controller object that manages the
preferences interface to be able to see one another, because they can both see this
common object, the Default.hazyStripy user default. UserDefaults becomes, in
itself, a global conduit for communicating information from one part of my app to
another.

Notifications and Key–Value Observing
Notifications (Chapter 11) can be a way to communicate between objects that are
conceptually distant from one another without bothering to provide any way for one
to see the other. All they really need to have in common is a knowledge of the name
of the notification. Every object can see the notification center — it is a globally visi‐
ble object — so every object can arrange to post or receive a notification.

Using a notification in this way may seem lazy, an evasion of your responsibility to
architect your objects sensibly. But sometimes one object doesn’t need to know, and
indeed shouldn’t know, what object (or objects) it is sending a message to.

Recall the example I gave in Chapter 11. In a simple card game app, the game needs
to know when a card is tapped. A card, when it is tapped, knowing nothing about the

Notifications and Key–Value Observing | 603

game, simply emits a virtual shriek by posting a notification; the game object has reg‐
istered for this notification and takes over from there:

NotificationCenter.default.post(name: Self.tappedNotification, object: self)

Here’s another example, taking advantage of the fact that notifications are a broad‐
cast mechanism. In one of my apps, the app delegate may detect a need to tear down
the interface and build it back up again from scratch. If this is to happen without
causing memory leaks (and all sorts of other havoc), every view controller that is cur‐
rently running a repeating Timer needs to invalidate that timer (Chapter 12). Rather
than my having to work out what view controllers those might be, and endowing
every view controller with a method that can be called, I simply have the app delegate
shout “Everybody stop timers!” by posting a notification. All my view controllers that
run timers have registered for this notification, and they know what to do when they
receive it.

By the same token, Cocoa itself provides notification versions of many delegate and
action messages. The app delegate has a method for being told when the app goes
into the background, but other objects might need to know this too; those objects can
register for the corresponding notification.

Similarly, key–value observing can be used to keep two conceptually distant objects
synchronized with one another: a property of one object changes, and the other
object hears about the change. As I said in Chapter 11, entire areas of Cocoa routinely
expect you to use KVO when you want to be notified of a change in an object prop‐
erty. You can configure the same sort of thing with your own objects.

The Combine Framework
There is some commonality between mechanisms such as the notification center and
key–value observing. In both cases, you register with some other object to receive a
certain message whenever that other object cares to send it. Basically, you’re opening
and configuring a pipeline of communication, and leaving it in place until you no
longer need it. Looked at in that way, notifications and key–value observing seem
closely related to one another. In fact, the target–action mechanism of reporting con‐
trol events seems related as well. So does a Timer. So does delayed performance.

The Combine framework, introduced in Swift 5.1 and iOS 13, offers to unify these
architectures (and others) under a single head. At its heart, Combine depends upon
an abstract notion of publish-and-subscribe, and reifies that abstraction with two
protocols, Publisher and Subscriber:

Publisher
A publisher promises to provide a certain kind of a value, perhaps repeatedly, at
some time in the future.

604 | Chapter 13: Communication Between Objects

Subscriber
A Subscriber registers itself with (subscribes to) a Publisher to receive its value
whenever that value may come along.

When a Subscriber subscribes to a Publisher, here’s what happens:

1. The Publisher responds by handing the Subscriber a Subscription (yet another
protocol).

2. The Subscriber can then use the Subscription to ask the Publisher for a value.
3. The Publisher can respond by sending, whenever it cares to, a value to the Sub‐

scriber. It can do this as many times as it likes.
4. In some situations, the entire connection can be cancelled when the Subscriber

no longer wishes to receive values.
That’s a rather elaborate-sounding dance, but in most cases you won’t experience it
that way. You won’t experience the dance at all! Instead, you’ll just hook up a built-in
subscriber directly to a built-in publisher and all the right things will happen.

To illustrate, I’ll start with a trivial example. One of the simplest forms of publisher is
a Subject. Every time you call send(_:) on a Subject, handing it a value, it sends that
value to its subscribers. There are just two kinds of Subject:

PassthroughSubject
Produces the value sent to it with send.

CurrentValueSubject
Like a PassthroughSubject, except that it has a value at the outset, and produces it
to any new subscriber.

Let’s make a Subject:

let pass = PassthroughSubject<String,Never>()
pass.send("howdy")

That compiles and runs, but we don’t know that anything happened because we have
no subscriber. There are just two built-in independent subscribers, and each can be
created with a convenience method sent to a publisher; the method subscribes the
subscriber to the publisher and returns it:

sink

Takes a function to be called whenever a value is received. The function takes a
single parameter, namely the value.

assign

Takes a Swift key path and an object. Whenever a value is received, assigns that
value to the property of that object designated by the key path.

So here’s a complete publish-and-subscribe example:

The Combine Framework | 605

let pass = PassthroughSubject<String,Never>()
let sink = pass.sink {
 print($0)
}
pass.send("howdy") // howdy

That works, in the sense that "howdy" appears in the console; but it still isn’t a very
realistic example. In real life, we’re never going to make a publisher, subscribe to it,
and make it publish, all within the immediate local scope of a single series of com‐
mands. In a realistic scenario:

• The publisher belongs to, and is vended by, one object.
• The subscriber is created and attached to the publisher by a different object.
• If the publisher publishes at all, that will happen at some unknown future time.

Therefore the subscriber needs to persist long enough to wait for the publisher to
publish.

To simulate that, let’s store our publisher and subscriber in instance properties, and
let’s make the publisher publish only after a delay:

let pass = PassthroughSubject<String,Never>()
var storage = Set<AnyCancellable>()
override func viewDidLoad() {
 super.viewDidLoad()
 let sink = self.pass.sink {
 print($0)
 }
 sink.store(in: &self.storage)
 delay(1) {
 self.pass.send("howdy") // howdy
 }
}

In that code, the Subject publisher persists long enough for us to make it publish one
second later, because it is assigned to an instance property. And the sink subscriber is
also assigned to an instance property; in particular, it is added to a Set of AnyCancel‐
lable, using the store(in:) method. The result is that when we come along one sec‐
ond later and tell the Subject publisher to publish, the sink subscriber still exists,
inside the storage Set, and receives the published value and prints it.

To help you take advantage of the Combine framework in your Cocoa code, a num‐
ber of Foundation and Cocoa types vend Combine publishers, such as:

• The notification center
• A KVO compliant property
• A computed property declared with the @Published property wrapper
• The Timer class

606 | Chapter 13: Communication Between Objects

• A Scheduler (used for delayed performance; DispatchQueue, OperationQueue,
and RunLoop are all Schedulers)

• A URLSession (for obtaining a value via the network)
Besides publishers and subscribers, there are also operators. An operator is a pub‐
lisher that is somewhat like a subscriber, in that it can be attached to another pub‐
lisher. The real power of the Combine framework lies in the operators. By chaining
operators, you construct a pipeline that passes along only the information you’re
really interested in; the logic of analyzing, filtering, and transforming that informa‐
tion is pushed up into the pipeline itself.

To illustrate, I’ll use the notification center as my source of data. Let’s go back to my
example of a Card view that emits a virtual shriek when it is tapped by posting a
notification:

static let tapped = Notification.Name("tapped")
@objc func tapped() {
 NotificationCenter.default.post(name: Self.tapped, object: self)
}

Now let’s say, for purposes of the example, that what the game is interested in when it
receives one of these notifications is the string value of the name property of the Card
that posted the notification. Getting that information is a two-stage process. First, we
have to register to receive notifications at all:

NotificationCenter.default.addObserver(self,
 selector: #selector(cardTapped), name: Card.tapped, object: nil)

Then, when we receive a notification, we have to look to see that its object really is a
Card, and if it is, fetch its name property and do something with it:

@objc func cardTapped(_ n:Notification) {
 if let card = n.object as? Card {
 let name = card.name
 print(name) // or something
 }
}

Now let’s do the same thing using the Combine framework. We obtain a publisher
from the notification center by calling its publisher method. But we don’t stop there.
We don’t want to receive a notification if the object isn’t a Card, so we use the
compactMap operator to cast it safely to Card — and if it isn’t a Card, the pipeline just
stops as if nothing had happened. And we only want the Card’s name, so we use the
map operator to get it. Here’s the result:

let cardTappedCardNamePublisher =
 NotificationCenter.default.publisher(for: Card.tapped)
 .compactMap {$0.object as? Card}
 .map {$0.name}

The Combine Framework | 607

Let’s say that cardTappedCardNamePublisher is an instance property of our view
controller. Then what we now have in this instance property is a publisher that pub‐
lishes the string name of a Card if that Card posts the tapped notification, and other‐
wise does nothing. Do you see what I mean when I say that the logic is pushed up
into the pipeline?

Finally, let’s arrange to receive that string, by subscribing to the publisher:

let sink = self.cardTappedCardNamePublisher.sink {
 print($0)
}
sink.store(in: &self.storage)

Here’s another example. You may have noticed that I didn’t list controls (UIControl)
among the built-in publishers. This means we can’t automatically replace the control
target–action mechanism using the Combine framework. However, with just a little
modification, we can turn a control into a publisher. I’ll demonstrate with a switch
control (UISwitch). It has an isOn property, which is changed when the user toggles
the switch on or off. The target–action way to learn that this has happened is through
the switch’s .valueChanged control event. Let’s write a UISwitch subclass where we
vend a publisher and funnel the isOn value through it (I’ll use the new iOS 14
UIAction notation):

class MySwitch : UISwitch {
 @Published var isOnPublisher = false
 required init?(coder: NSCoder) {
 super.init(coder:coder)
 self.isOnPublisher = self.isOn
 let action = UIAction {[unowned self] _ in
 self.isOnPublisher = self.isOn
 }
 self.addAction(action, for: .valueChanged)
 }
}

That code illustrates the @Published property wrapper. This creates a publisher
behind the scenes, and vends it through the property wrapper’s dollar-sign
projectedValue (“Property Wrappers” on page 322). With our subclass, the way to
be kept informed about changes to the switch’s isOn property is to subscribe to its
publisher, namely $isOnPublisher.

So let’s subscribe to it! Suppose we are the view controller that ultimately owns this
switch. And suppose we have an outlet to the switch:

@IBOutlet var mySwitch : MySwitch!

Then we, the view controller, can subscribe to that publisher:

608 | Chapter 13: Communication Between Objects

let sink = self.mySwitch.$isOnPublisher.sink {
 print($0)
}
sink.store(in: &self.storage)

But wait — doesn’t that look awfully familiar? Yes, it does — and that’s the point.
Using Combine, we’ve effectively reduced the notification center mechanism and the
control target–action mechanism to the same mechanism.

Even more of the power of the Combine framework emerges when we build complex
pipelines. To illustrate, let’s combine (sorry about that) the notification center pipe‐
line and the switch pipeline. Imagine that our interface consists of Cards along with a
switch. When the switch is on, the cards are interactive: the user can tap one, and we
hear about it. When the switch is off, the user’s taps do nothing.

To implement this, we can put the notification center publisher and the switch pub‐
lisher together into a single pipeline. The Combine publisher that does that is
CombineLatest:

lazy var combination =
 Publishers.CombineLatest(
 self.cardTappedCardNamePublisher,
 self.mySwitch.$isOnPublisher
)

What we now have is a publisher that channels the pipelines from our other two pub‐
lishers into one. It remembers every value that last arrived from either source, and
when it gets a new value, it emits a tuple consisting of both values. In our case, that’s
a (String,Bool).

However, that’s not what we actually want to have coming down the pipeline at us.
We still want just the string name of the tapped card. So we’ll use the map operator to
extract it:

lazy var combination =
 Publishers.CombineLatest(
 self.cardTappedCardNamePublisher,
 self.mySwitch.$isOnPublisher
)
 .map { $0.0 }

Now we’re getting just the string name, but we’re getting too many string names; the
switch isn’t having any effect. The pipeline is emitting values in response to user taps
even when the switch is off! The whole idea of combining these two publishers was to
eliminate any output when the switch is off. So we’ll interpose the filter operator to
block any tuples whose Bool is false:

The Combine Framework | 609

lazy var combination =
 Publishers.CombineLatest(
 self.cardTappedCardNamePublisher,
 self.mySwitch.$isOnPublisher
)
 .filter { $0.1 }
 .map { $0.0 }

This is looking much better. If the user taps while the switch is on, we get the card
name. If the user taps while the switch is off, nothing happens. But there’s still one
little problem. The CombineLatest publisher publishes if it gets a value from either of
its source publishers. That means we don’t just get a value when the user taps a Card;
we also get a value when the user toggles the switch. We don’t want that value to
come out the end of the pipeline; we just want to use it to allow or prevent the arrival
of the Card name.

What we want to do here is compare two values: the new tuple coming down the
pipeline, and the previous tuple that came down the pipeline most recently. If the dif‐
ference between the new tuple and the old tuple is merely that the Bool changed, we
don’t want to emit a value from the pipeline. The way to obtain both the current
value and the previous value is with the scan operator. I’ll use that operator to pass
both the old switch value and the new switch value down the pipeline. Then, in the
filter operator, I’ll block any value unless both the old switch value and the new
switch value are true:

lazy var combination =
 Publishers.CombineLatest(
 self.cardTappedCardNamePublisher,
 self.mySwitch.$isOnPublisher
)
 .scan(("",true,true)) { ($1.0, $0.2, $1.1) }
 .filter { $0.1 && $0.2 }
 .map { $0.0 }

Our goal is accomplished. If the user taps a Card while the switch is on, the pipeline
produces its name. If the user taps a Card while the switch is off, or toggles the
switch, nothing happens.

These examples have only scratched the surface of what the Combine framework can
do; but they demonstrate its spirit. And the potential benefits are profound. In Chap‐
ter 11 I complained that the event-driven nature of the Cocoa framework means that
you’re bombarded with events through different entry points at different times, so
that state has to be maintained in shared instance properties, and understanding the
implications of any single entry point method call can be difficult. The Combine
framework offers the potential of funneling events into pipelines whose logic can be
manipulated internally, so that what comes out is just the information you need
when you need it.

610 | Chapter 13: Communication Between Objects

There isn’t room in this book for a full discussion of the Combine framework;
for more, see https://www.apeth.com/UnderstandingCombine/, where I’ve written
an online tutorial about Combine.

Alternative Architectures
In real life, one way to improve communication between objects in an app of any
complexity is to plan the internal architecture of the app appropriately. My goal in
this section is not to recommend this or that alternative architecture, but rather to
make you aware of some of the possibilities and how they can ease the pain of com‐
municating between objects in your app.

Model–View–Controller
The naïve standard architecture implied by Cocoa’s classes is called Model–View–
Controller (MVC). In this terminology, model is the data; view is what the user sees
and interacts with; and controller is the code that mediates between them, deciding
what data to display to the user and how, and responding to the user’s actions by
modifying the data.

The name view controller implies that a UIViewController is a controller. Each scene
of the app corresponds to one view controller, and the view controllers do all the
work of moving data around the app. If one view controller pushes or presents
another, it hands the needed data “forward” to that view controller. When a pushed
or presented view controller goes out of existence, it hands the needed data “back” to
the view controller that pushed or presented it.

Simple MVC, on its own, has some unfortunate consequences. As soon as an app
consists of more than one or two view controllers, or if there is a need to access data
that cannot easily be handed back and forth in this way, we get into the sort of diffi‐
culties that I’ve been describing in this chapter. Moreover, this architecture has a ten‐
dency to lead to very large view controller classes, which can make the code hard to
read — because functionality is hard to find and trace and understand — and hard to
maintain. It can also make the code hard to test.

Router and Data Space
The fact is that view controllers exist; we’re stuck with them (unless you opt to drop
UIKit programming altogether and go with SwiftUI, as I’ll describe in the next sec‐
tion). One key step towards making view controllers tractable is to get the business of
navigation from one view controller to another out of the hands of the view control‐
lers themselves. The idea here is that no view controller should know about the exis‐
tence of any other view controller. Such knowledge constitutes a leakage of
responsibility. Instead, we need some centralized mechanism to which we can turn

Alternative Architectures | 611

https://www.apeth.com/UnderstandingCombine/

and ask to go to a different scene, whatever that may turn out to mean. This mecha‐
nism is usually called the router; some architectures refer to it as the coordinator, or
flow coordinator. (For a basic example, take a look at URLNavigator on GitHub.)

Using a router means you’re almost certainly going to have to abandon storyboard
segues, or at least automatic segues. That may be disappointing, but such is the price
that must be paid for separation of responsibilities. The whole idea is that all naviga‐
tion must be performed by way of the central mechanism; an automatically triggered
segue would go behind the router’s back. Indeed, a complication arises because UIKit
wants to perform “back” navigation automatically. Both a navigation controller’s
Back button and dismissal of a presented view controller threaten to take place
without consulting our code at all; you might have to take definite steps to make sure
that that doesn’t happen.

When a view controller doesn’t know anything about other view controllers, it
doesn’t know what data the next view controller needs. The router therefore also has
the responsibility for communicating any needed data to the next view controller. We
can imagine the router turning to the first view controller and asking it for the data
and passing it along to the next view controller; but at that point we may start to
wonder why a view controller is maintaining any real data in the first place. Why isn’t
there just the data belonging to the app as a whole?

The idea here is that perhaps we could put the data in some centralized global loca‐
tion, where anyone can access it. I call this centralized location the data space. The
Combine framework is a great way to organize access to the data space. The data
space can use Combine pipelines to vend an automatic messaging mechanism. If
something changes the data, all subscribers hear about it instantly, and the state of
the app remains synchronized everywhere.

Model–View–Presenter
A further key insight is the realization that, in the Model–View–Controller division
of responsibilities, a view controller should perhaps be considered View, not Control‐
ler. (Your eyes will be opened to this notion if you watch a wonderful YouTube video
by Dave DeLong.) On this basis, all the logic for deciding what to show the user and
how to respond to user actions can be moved out of the view controller into another
class, which we may call the Presenter. The Presenter knows nothing of the details of
the visible interface, and the view controller knows nothing of the Model. The
Presenter is the one that knows about and talks to the Model; at the same time, the
Presenter and the view controller communicate with one another solely in terms of
intent.

For example, let’s say the data represents a bank account. The Presenter might con‐
sult the Model and then say to the view controller: “Here is a number. Display it to
the user, as being the user’s current balance.” The Presenter knows nothing of how

612 | Chapter 13: Communication Between Objects

https://github.com/devxoul/URLNavigator
https://www.youtube.com/watch?v=YWVzCd5FYbs

the view controller will do that. The view controller, meanwhile, is responsible for
making that number visible to the user, and no more. The view controller knows that
the interface has a UILabel for this purpose, and it formats the number and displays it
in the label. It knows nothing of where the number came from.

Going the other way, when the user does something, such as tapping a button, the
view controller will interpret that button in terms of intent, and will say to the Pre‐
senter: “Here is what the user wants to do.” The Presenter is then responsible for the
action logic of deciding how to proceed, which might involve consulting or changing
the Model.

This approach has many advantages. The view controller is pared down to the status
of an intermediary; it musters the visible interface and communicates with the Pre‐
senter, and that’s all it does. So view controllers are smaller and simpler. It is now far
easier for you to find your code, because it will be readily evident what are view con‐
troller concerns and what are Presenter concerns. Moreover, the Presenter is testable:
given a certain intent as input, does it respond correctly as output? Your unit tests
can ask questions like that, without involving the any interface.

Another sign of the Presenter’s power is that, when used in conjunction with a
router, the Presenter usually doesn’t have to import UIKit. It knows nothing of views
or view controllers! It embodies the pure logic of a scene’s behavior without reference
to anything extraneous.

However, the app as a whole has now become more elaborate. Every scene consists of
a little cluster of instances. In addition to the view controller, there is a corresponding
Presenter. Every time the router creates and configures a new view controller, it must
also create the corresponding Presenter and hook the two together correctly. The
need for this assembly step is part of the price that must be paid for the resulting sim‐
plicity and testability.

Protocols and Reactive Programming
In my discussion of Model–View–Presenter, I have avoided specifying the exact
mechanism by which the View (meaning the view controller) and the corresponding
Presenter will communicate with one another. The most obvious approach is that
each of them has methods that the other is allowed to call. To make this contract
explicit, as well as to facilitate testing, it’s probably a good idea to express these public
interfaces as protocols — one stating what the view controller is allowed to say to the
Presenter, and another stating what the Presenter is allowed to say to the view con‐
troller.

It might also be nice to make this communication more automatic. For instance, we
could put a setter observer on some property of the view controller, so that when a
user action changes that property, the change is relayed directly to the Presenter.

Alternative Architectures | 613

Similarly, a change in some property of the Presenter could be relayed directly to the
view controller.

One can then imagine going even further and replacing the property observers with a
“reactive” mechanism. Before iOS 13, this mechanism typically comes from some
third-party library; nowadays, we can use the Combine framework. If we make the
same sort of connection between the Presenter and the data, we end up with a kind of
automatic data flow throughout the app. Ideally, the interface should depend directly
on the data.

VIPER
An even more extreme separation of responsibilities is the VIPER architecture, which
stands for View–Interactor–Presenter–Entity–Router. Despite the alphabet soup, this
architecture is really just a separation of the Presenter into multiple objects. The Pre‐
senter itself communicates with the view controller and maintains local state; it does
no “real work.” The Interactor is the Presenter’s conduit to the data, and there is a
wireframe that is the Presenter’s conduit to the router.

VIPER is arguably too much of a good thing, and in my experience it is more a reli‐
gious aspiration than a practical tool. Still, used correctly, it makes finding your code
dead easy. For a good introduction to VIPER, see https://github.com/infinum/iOS-
VIPER-Xcode-Templates.

SwiftUI
The SwiftUI framework is a wholesale alternative to Cocoa. It operates on a program‐
ming paradigm that’s completely different from Cocoa’s, and offers the promise of
writing iOS apps in a totally different way — not to mention that the same code
might be reusable on Apple TV, Apple Watch, and desktop Macs. SwiftUI as a whole
is outside the scope of this book; it needs a book of its own. The subject here is how
objects see and communicate with one another.

To illustrate how SwiftUI deals with communication, let’s start with the prototypical
“Hello World” app:

struct ContentView : View {
 var body: some View {
 Text("Hello World")
 }
}

That code puts the text “Hello World” in the middle of the screen. But how? It
doesn’t seem to contain any runnable code. Well, actually it does: body is a computed
property, and the curly braces that surround Text("Hello World") are its getter
(with return omitted). The interface is constructed in code and returned. But that’s

614 | Chapter 13: Communication Between Objects

https://github.com/infinum/iOS-VIPER-Xcode-Templates
https://github.com/infinum/iOS-VIPER-Xcode-Templates

not quite accurate; it isn’t the interface that’s returned — it’s a description of the
interface.

In SwiftUI, there is no storyboard; there are no nibs; there are no outlets. There is no
UIViewController; there isn’t even a UIView. Text is a mere struct, and View is just a
protocol. A SwiftUI View is extremely lightweight, and is barely persistent. There are
no entry points other than the body property getter, which is merely the answer to an
occasional question, “What should this view look like at this moment?”

The most pervasive object-oriented pattern in SwiftUI is that one View instantiates
another View. Our simple “Hello World” app consists entirely of our ContentView
instantiating a Text object in its body getter. This is the same pattern of visibility by
instantiation that I discussed at the start of this chapter: when Manny creates Jack,
Manny has a reference to Jack and can hand Jack any information that Jack needs in
order to do his job. We do not have to get a reference to something in order to cus‐
tomize its appearance; we customize its appearance as part of its initialization. There
is no need for the ContentView to get a reference to the Text in order to tell it what
its visible content (“Hello World”) should be; the ContentView creates the Text with
that content.

Function Builders and Modifiers
SwiftUI’s syntax for constructing interfaces is declarative and functional rather than
imperative and sequential. To illustrate, I’ll add a button to the interface. I’ll declare
the button without giving it any functionality:

struct ContentView : View {
 var body: some View {
 HStack {
 Text("Hello World")
 Spacer()
 Button("Tap Me") {
 // does nothing
 }
 }.frame(width: 200)
 }
}

The Text object returned by the body getter has been replaced by an HStack, which
lines up views horizontally. Inside the HStack’s curly braces are three objects in ser‐
ies: a Text, a Spacer, and a Button. That seems impossible syntactically. What’s hap‐
pening? The curly braces after HStack are the body of an anonymous function,
supplied using trailing closure syntax as a parameter to HStack’s initializer. That ini‐
tializer is allowed to “list” three objects because it is fed to a ViewBuilder, which is a
function builder (“Function Builders” on page 329); the ViewBuilder wraps up those
objects in a TupleView, and that is what is returned from the anonymous function.

SwiftUI | 615

The frame method being called on the HStack determines the width of the HStack on
the screen. What’s interesting about it is that it is a method. Instead of getting a refer‐
ence to the HStack object and setting a property of that object, we apply a method
directly to that object. This sort of method is called a modifier, and it returns in effect
the very same instance to which it was sent. The modified instance is of a more com‐
plex type, but this complexity is hidden from us by type erasure and ultimately by the
body reverse generic return type some View (see “Reverse Generics” on page 327).
And modifiers can be chained, just like operators in the Combine framework; the
effect is that we describe the object in more and more detail. If we wanted our text-
and-button HStack to have a yellow background with 20-pixel margins, we could
write:

HStack {
 Text("Hello World")
 Spacer()
 Button("Tap Me") {
 // does nothing
 }
}.frame(width: 200)
.padding(20)
.background(Color.yellow)

State Properties
At this point, you may be saying: “Fine, I see how visibility by instantiation is suffi‐
cient when all you want to do is create the app’s initial interface; you configure a
view’s initial appearance in its initializer. But what about when the interface needs to
change over the course of the app’s lifetime?” Amazingly, the answer is the same:
SwiftUI still handles everything through a view’s initializer. But how can that be?

To demonstrate, let’s give our button some functionality. In particular, the user
should be able to tap the button to toggle the text between “Hello World” and “Good‐
bye World.” Here’s how to do that:

struct ContentView : View {
 @State var isHello = true
 var greeting : String {
 self.isHello ? "Hello" : "Goodbye"
 }
 var body: some View {
 HStack {
 Text(self.greeting + " World")
 Spacer()
 Button("Tap Me") {
 self.isHello.toggle()
 }
 }.frame(width: 200)

616 | Chapter 13: Communication Between Objects

 .padding(20)
 .background(Color.yellow)
 }
}

We have declared an isHello instance property on which the interface depends
— in this case, whether the text should read “Hello World” or “Goodbye World.”
Crucially, this instance property is declared with the @State property wrapper.
This means that if the value of isHello changes, whatever depends upon it will
be recalculated. So in our code, whenever isHello changes, the body getter will be
called again.

For simplicity and clarity, we also declare a computed instance property
greeting that translates the Bool of the @State property isHello into a corre‐
sponding string.

The button’s action — what it should do when tapped — is supplied as an anony‐
mous function, using trailing closure syntax, as part of its initializer. That action
changes the value of the @State property isHello. When the @State property
isHello changes in response to the tapping of the button, the body getter is
called again — and the Text content is freshly calculated and takes on its new
value. The new result is returned and displayed, and so we have achieved what
we set out to accomplish: tapping the button changes the text displayed on the
screen.

Notice what did not happen in that example:

• The button did not use a target–action architecture: there is no separate target to
send a message to, and there is no separate action function. Instead, the action
function is part of the button.

• The action function did not talk to the Text to change what it displays; it talked
only to the @State property.

• The @State property has no setter observer that talks to the Text. Instead, the
change in the @State property effectively flows “downhill” to the body of the
View, automatically.

In that code, there are no event handlers, no events, and no action handlers. And
there are no references from one object to another! There is no problem of communi‐
cating data from one object to another, because objects don’t try to communicate
with one another. There is just a View and its state at any given moment.

Moreover, view state in SwiftUI can be maintained only through @State properties. A
View stored property can’t be settable; a view is a struct and isn’t mutable. A @State
property, on the other hand, is a computed property backed by a property wrapper

SwiftUI | 617

whose underlying State struct is mutable. In this way, SwiftUI forces you to clarify the
locus of state throughout your app.

Another important lesson of our code is that View objects are ephemeral. A View’s
body getter can be called at any time; it generates some Views, like our Text, that
describe the interface and are then thrown away. You never know how often a View’s
body may be called; you never know how often a View struct like our ContentView
will be created anew. And you don’t need to know! All that matters is that you can
instantly describe the interface based on the state.

Bindings
Some views have even tighter coupling with a @State. To illustrate, I’ll replace the
Button in our example with a Toggle:

struct ContentView : View {
 @State var isHello = true
 var greeting : String {
 self.isHello ? "Hello" : "Goodbye"
 }
 var body: some View {
 VStack {
 Text(self.greeting + " World")
 Spacer()
 Toggle("Friendly", isOn: $isHello) // *
 }.frame(width: 150, height: 100)
 .padding(20)
 .background(Color.yellow)
 }
}

A Toggle is drawn as a labeled UISwitch. When the user changes the switch, the Text
changes in the interface. But how?

A Toggle takes a Binding in its initializer. The State property wrapper vends a Bind‐
ing property as its dollar-sign projectedValue. Our @State property is isHello, so
its binding is $isHello. We handed that binding to the Toggle when we initialized it.
When the user changes the UISwitch value, that binding’s value is toggled. That
change takes place in the @State property, and so, once again, the Text changes
accordingly.

That is somewhat similar to what we did in the earlier discussion of the Combine
framework, where we modified a UISwitch to vend a Publisher of its own isOn value
— except that in SwiftUI, the communication between the @State property and the
Toggle is two-way and automatic by way of the binding. Our Toggle has no action
function, and doesn’t need one, because it is tightly integrated with a Bool property
through a binding.

618 | Chapter 13: Communication Between Objects

Passing Data Downhill
So far, the only objects our ContentView has created are instances of built-in types —
Text, Button, Spacer, Toggle. But what if you wanted to create an instance of a custom
type? How would you pass data from the View that does the creating to the View that
is created? In exactly the same way that we’ve been doing it up to now! You give your
custom type a property, and you set that property as part of the custom type’s
initialization.

That is legal, even though a View is an immutable struct whose stored properties can‐
not be set, because we are not mutating the struct; we are initializing it. It is also easy,
because a View is just a struct. Typically, you won’t even bother to write an initializer
for your custom View; the implicit memberwise initializer will be sufficient.

In this example, we present modally a secondary view, an instance of a Greeting
struct that we ourselves have defined:

struct ContentView : View {
 @State var isHello = true
 var greeting : String {
 self.isHello ? "Hello" : "Goodbye"
 }
 @State var showSheet = false
 var body: some View {
 VStack {
 Button("Show Message") {
 self.showSheet.toggle()
 }.sheet(isPresented: $showSheet) {
 Greeting(greeting: self.greeting) // *
 }
 Spacer()
 Toggle("Friendly", isOn: $isHello)
 }.frame(width: 150, height: 100)
 .padding(20)
 .background(Color.yellow)
 }
}
struct Greeting : View {
 let greeting : String
 var body: some View {
 Text(greeting + " World")
 }
}

The sheet modifier is the SwiftUI equivalent of a Cocoa presented view controller. It
describes a view that we intend to present modally. Whether it is actively presenting
that view modally depends upon a binding to a Bool, which we have supplied by
adding a @State property called showSheet. The Button toggles showSheet to true,
and the binding $showSheet toggles to true in response, and causes the view to be
presented.

SwiftUI | 619

The view we want to present is a wrapper for a Text that will display the “Hello
World” or “Goodbye World” greeting; we have named that wrapper view Greeting,
and we instantiate it in an anonymous function that we supply as the last parameter
to the sheet modifier, using trailing closure syntax. When we instantiate Greeting,
we must also configure the Greeting instance we are creating. We do that through the
Greeting initializer. The Greeting struct belongs to us, so we’re free to give it a
greeting property, and Swift synthesizes the memberwise initializer with a
greeting: parameter. All we have to do is set that property as we create the Greeting.
Once again, the data flows “downhill.”

Passing Data Uphill
What about when the data needs to flow “uphill” out of the secondary view back to
the view that presented it? This is the sort of problem that you’d solve in Cocoa pro‐
gramming using the protocol-and-delegate pattern (“Implementing Delegation” on
page 558). In SwiftUI, you simply “lend” the secondary view the binding from a
@State property.

Suppose our Greeting view is to contain a text field (SwiftUI TextField) in which is to
be entered the user’s name, and that this information is to be communicated back to
our ContentView. Then ContentView would contain another @State property:

@State var name = ""

And Greeting would contain a @Binding property:

@Binding var username : String

When ContentView initializes Greeting, the memberwise initializer now has a
username: parameter that takes a string Binding; we hand it the binding from the
@State property:

Button("Show Message") {
 self.showSheet.toggle()
}.sheet(isPresented: $showSheet) {
 Greeting(greeting: self.greeting,
 username: self.$name)
}

And Greeting’s TextField is initialized with that binding:

TextField("Your Name", text:$username)
 .frame(width:200)
 .textFieldStyle(RoundedBorderTextFieldStyle())

Whatever the user types in this text field in the Greeting view flows “uphill” through
the username binding, which is the @State property name binding, and changes the
value of the @State property name back in the ContentView. And now the data flows

620 | Chapter 13: Communication Between Objects

“downhill” once more: the ContentView body getter will be called again, and all views
that depend upon this @State property will change to match.

Once again, what’s most significant in that example is what we didn’t do. We didn’t
get a reference from the Greeting back to the ContentView. The Greeting didn’t call
any method of the ContentView. It didn’t set a property of the ContentView. It set its
own property, username. Communication between objects takes place through bind‐
ings in SwiftUI. They are like little pipelines from one object to another — and the
object at one end (our Greeting) doesn’t have to know anything about what’s at the
other end.

Custom State Objects
You can construct your own state object by writing a custom class that conforms to
the ObservableObject protocol. For example, your app’s data might reside in, or be
accessed through, an ObservableObject. To use it, you can assign an instance of your
class into a @StateObject property. Then you can access its properties directly. Any
properties of an ObservableObject that are marked with the @Published attribute will
behave like @State properties: when a @Published property changes, your body getter
that references it is called again, and you can access an associated binding through
the dollar-sign projectedValue of the underlying StateObject property wrapper
struct.

To illustrate, suppose we want the name entered into the text field by the user to per‐
sist between launches. We can implement that functionality using an ObservableOb‐
ject. To get started, I’ll write a simple NameSaver class with a username property:

class NameSaver : ObservableObject {
 @Published var username: String = ""
 // ...
}

An ObservableObject has an objectWillChange property that is a Publisher; in fact,
it is a Subject, as I described in the earlier discussion of the Combine framework. The
objectWillChange property is synthesized automatically, so we don’t have to declare
it (though we can if we want to). Being a Subject, it notifies its subscribers whenever
its send method is called. A @Published property of an ObservableObject automati‐
cally calls that send method. It is also itself a Publisher — or rather, its dollar-sign
projectedValue is a Publisher. So if our Views refer to a NameSaver instance in a
@StateObject property, they will automatically be updated when the NameSaver’s
username changes. Our NameSaver will be the ultimate “source of truth” for the
username.

SwiftUI | 621

In our ContentView, there is no longer a @State String property called name; it is
replaced by a @StateObject NameSaver property called nameSaver, which is the new
“source of truth”:

@StateObject var nameSaver = NameSaver()

When we need to access the value of the NameSaver username property, we do so
directly:

Text(self.nameSaver.username.isEmpty ? "" :
 greeting + ", " + self.nameSaver.username)

When we need a binding to the NameSaver username property, we pass through the
binding from nameSaver, namely $nameSaver:

Button("Show Message") {
 self.showSheet.toggle()
}.sheet(isPresented: $showSheet) {
 Greeting(greeting: self.greeting,
 username: self.$nameSaver.username)
}

The app now works exactly as it did before. But if that was all we wanted, why did we
create NameSaver in the first place? We did it so that we can give NameSaver further
functionality — namely, to save the username to disk. Let’s add that functionality to
NameSaver now.

The idea here is to back the username property with a file on disk. When a Name‐
Saver is initialized, I’ll have it read the username value from disk. And when the
username value changes, I want it to be written to disk. To ensure that, I’ll construct a
Combine pipeline that subscribes to the username publisher and responds to changes
by saving the new value.

Here’s a slightly simplified version of the resulting code:

var storage = Set<AnyCancellable>()
var fileURL : URL? { /* return URL of text file on disk */ }
init() {
 self.username = self.read() ?? ""
 self.$username
 .sink { self.save($0) }
 .store(in: &self.storage)
}
func read() -> String? {
 if let url = self.fileURL {
 return try? String(contentsOf: url, encoding: .utf8)
 }
 return nil
}

622 | Chapter 13: Communication Between Objects

func save(_ newName: String) {
 if let url = self.fileURL {
 try? newName.write(to: url, atomically: true, encoding: .utf8)
 }
}

Presto! The username that the user types in the TextField is now saved to disk and
persists between launches.

SwiftUI | 623

APPENDIX A

C, Objective-C, and Swift

The APIs for Cocoa and its associated frameworks are written in Objective-C or its
underlying base language, C. Messages that you send to Cocoa using Swift are being
translated for you into Objective-C. Objects that you send and receive back and forth
across the Swift/Objective-C bridge are Objective-C objects. Some objects that you
send from Swift to Objective-C are even being translated for you into other object
types, or into nonobject types.

This appendix summarizes the relevant linguistic features of C and Objective-C, and
describes how Swift interfaces with those features. I do not explain here how to write
Objective-C! For example, I’ll talk about Objective-C methods and method declara‐
tions, because you need to know how to call an Objective-C method from Swift; but
I’m not going to explain how to call an Objective-C method using Objective-C.

The C Language
Objective-C is a superset of C; to put it another way, C provides the linguistic under‐
pinnings of Objective-C. Everything that is true of C is true also of Objective-C. It is
possible, and often necessary, to write long stretches of Objective-C code that are, in
effect, pure C. Some of the Cocoa APIs are written in C. Therefore, in order to know
about Objective-C, it is necessary to know about C.

The C language was evolved during the early 1970s at Bell Labs in conjunction with
the creation of Unix. The reference manual, The C Language by Brian Kernighan and
Dennis M. Ritchie, was published in 1978, and remains one of the best computer
books ever written.

C statements, including declarations, must end in a semicolon. Variables must be
declared before use. A variable declaration consists of a data type name followed by
the variable name, optionally followed by assignment of an initial value:

625

int i;
double d = 3.14159;

The C typedef statement starts with an existing type name and defines a new
synonym for it:

typedef double NSTimeInterval;

C Data Types
C is not an object-oriented language; its data types are not objects (they are scalars).
The basic built-in C data types are all numeric: char (one byte), int (four bytes), float
and double (floating-point numbers), and varieties such as short (short integer), long
(long integer), unsigned short, and so on. Objective-C adds NSInteger, NSUInteger
(unsigned), and CGFloat. The C bool type is actually a numeric, with zero represent‐
ing false; Objective-C adds BOOL, which is also a numeric. Even the C native text
type (string) is actually a null-terminated array of char, and I’ll discuss it later.

Swift supplies numeric types that interface directly with C numeric types, even
though Swift’s types are objects and C’s types are not. Swift type aliases provide
names that correspond to the C type names: a Swift CBool (Bool) is a C bool, a Swift
CChar (Int8) is a C char, a Swift CInt (Int32) is a C int, a Swift CFloat (Float) is a C
float, and so on. Swift Int interchanges with NSInteger; Swift UInt interchanges with
NSUInteger. CGFloat is adopted as a Swift type name. Swift ObjCBool represents
Objective-C BOOL, but it is not a Bool; to derive the Bool, take its boolValue. (You
can, however, assign a Swift Bool literal where an ObjCBool is expected, because
ObjCBool adopts ExpressibleByBooleanLiteral.)

A major difference between C and Swift is that C (and therefore Objective-C) implic‐
itly coerces when values of different numeric types are assigned, passed, compared to,
or combined with one another; Swift doesn’t, so you must coerce explicitly to make
types match exactly, as I described in Chapter 3.

C Enums
A C enum is numeric; values are some sort of integer, and can be implicit (starting
from 0) or explicit. Enums arrive in various forms into Swift, depending on how they
are declared.

Old-fashioned C enum
This is the simplest and oldest form:

enum State {
 kDead,
 kAlive
};
typedef enum State State;

626 | Appendix A: C, Objective-C, and Swift

(The typedef in the last line merely allows C programs to use the term State as the
name of this type instead of the more verbose enum State.) In C, the enumerand
names kDead and kAlive are not “cases” of anything; they are not namespaced. They
are constants, and as they are not explicitly initialized, they represent 0 and 1 respec‐
tively. An enum declaration can specify the integer type further; this one doesn’t, so
the values are typed in Swift as UInt32.

This old-fashioned sort of C enum arrives as a Swift struct adopting the RawRepre‐
sentable protocol, and its enumerands (here, kDead and kAlive) arrive into Swift as
synonyms for instances of the State struct with an appropriate rawValue (here, 0 and
1 respectively). The result is that you can use the enumerand names as a medium of
interchange wherever a State enum arrives from or is expected by C. If a C function
setState takes a State enum parameter, you can call it with one of the State enumer‐
and names:

setState(kDead)

Observe that there are no namespaces in this story! The enumerands are bare names,
not members of the State struct; you say kDead, not State.kDead. If you are curious
about what integer is represented by the name kDead, you have to take its rawValue.
You can also create an arbitrary State value by calling its init(rawValue:) initializer
— there is no check to see whether this value is one of the defined constants. But you
aren’t expected to do either of those things.

NS_ENUM

Starting back in Xcode 4.4, a C enum notation was introduced that uses the NS_ENUM
macro:

typedef NS_ENUM(NSInteger, UIStatusBarAnimation) {
 UIStatusBarAnimationNone,
 UIStatusBarAnimationFade,
 UIStatusBarAnimationSlide,
};

That notation both specifies the integer type and associates a type name with this
enum as a whole. Swift imports an enum declared this way as a Swift enum with the
name and raw value type intact; the enumerand names become namespaced case
names, with the common prefix subtracted:

enum UIStatusBarAnimation : Int {
 case none
 case fade
 case slide
}

Going the other way, a Swift enum with an Int raw value type can be exposed to
Objective-C using the @objc attribute:

C, Objective-C, and Swift | 627

@objc enum Star : Int {
 case blue
 case white
 case yellow
 case red
}

Objective-C sees that as an enum with type NSInteger and enumerand names Star-
Blue, StarWhite, and so on.

In the special case where the NS_ENUM type name ends in Error, it arrives into Swift as
a struct conforming to Error. Here’s the start of an enum declaration from the Core
Location framework:

typedef NS_ENUM(NSInteger, CLError) {
 kCLErrorLocationUnknown = 0,
 kCLErrorDenied,
 kCLErrorNetwork,
 // ...
};

The result is that when Objective-C throws an NSError whose domain is kCLError-
Domain and whose code is kCLErrorLocationUnknown, Swift can catch it by saying
catch CLError.locationUnknown.

A knotty problem arises when you write a Swift switch statement that exhausts a C
enum tag’s cases. What if, in a future release, the C code is changed to add a case to
this enum? If that happens, and if your “exhaustive” switch receives an unknown
case, you’ll crash. But Swift is ready with a solution:

• When you compile your code, you’ll be warned by the compiler that this enum
“may have additional unknown values.” To remove the warning, you add a
default case. Normally, the compiler would warn you that your default case
will never be executed, because your switch is exhaustive; but in this situation,
your switch might not be exhaustive some day, so that warning doesn’t appear.

• In addition, you mark the default case with the @unknown attribute. This tells the
compiler that you think your switch is exhaustive (without the default), and
you’d like to be warned if it isn’t. If your switch isn’t exhaustive, you’ll get the
warning now; if some day a new case is added to the enum, you’ll get the warning
then, and you can silence it by adding the new case to your switch.

Let’s demonstrate. Here’s a C enum:

typedef NS_ENUM(NSInteger, TestEnum) {
 TestEnumOne
 TestEnumTwo
};

628 | Appendix A: C, Objective-C, and Swift

This arrives into Swift as an enum called TestEnum. Here’s an exhaustive switch over
a TestEnum:

switch test { // test is a TestEnum
case .one : break
case .two : break
} // compiler warns

We get a warning from the compiler. Our switch looks exhaustive, but in the future it
might not be. So we add an @unknown default case, and the warning goes away:

switch test { // test is a TestEnum
case .one : break
case .two : break
@unknown default: break
}

Suppose the C enum later acquires another case (case .three). No problem! Our
Swift switch is crash-proof, because there’s a default case. Even better, when we
compile against the C code, our Swift switch will get another warning, telling us that
the switch is no longer exhaustive.

If the Objective-C code is our own, and if we’re sure that the C enum will never
acquire a new case, we can mark it with NS_CLOSED_ENUM instead of NS_ENUM; this will
cause Swift to treat TestEnum like an ordinary Swift enum.

Some enums in the Swift standard library and Foundation overlays are marked
as open to future additional cases in the same way as NS_ENUM.

NS_OPTIONS

Another variant of C enum notation, using the NS_OPTIONS macro, is suitable for
bitmasks:

typedef NS_OPTIONS(NSUInteger, UIViewAutoresizing) {
 UIViewAutoresizingNone = 0,
 UIViewAutoresizingFlexibleLeftMargin = 1 << 0,
 UIViewAutoresizingFlexibleWidth = 1 << 1,
 UIViewAutoresizingFlexibleRightMargin = 1 << 2,
 UIViewAutoresizingFlexibleTopMargin = 1 << 3,
 UIViewAutoresizingFlexibleHeight = 1 << 4,
 UIViewAutoresizingFlexibleBottomMargin = 1 << 5
};

An enum declared like that arrives into Swift as a struct adopting the OptionSet pro‐
tocol. The OptionSet protocol adopts the RawRepresentable protocol, so this is a
struct with a rawValue instance property holding the underlying integer. The C enum
case names are represented by static properties, each of whose values is an instance of
this struct; the names of these static properties are imported with the common prefix

C, Objective-C, and Swift | 629

subtracted. In Swift, this struct is namespaced by nesting it into the UIView class as
UIView.AutoresizingMask:

struct AutoresizingMask : OptionSet {
 init(rawValue: UInt)
 static var flexibleLeftMargin: UIView.AutoresizingMask { get }
 static var flexibleWidth: UIView.AutoresizingMask { get }
 static var flexibleRightMargin: UIView.AutoresizingMask { get }
 static var flexibleTopMargin: UIView.AutoresizingMask { get }
 static var flexibleHeight: UIView.AutoresizingMask { get }
 static var flexibleBottomMargin: UIView.AutoresizingMask { get }
}

When you say something like UIView.AutoresizingMask.flexibleLeftMargin, it
looks as if you are initializing a case of a Swift enum, but in fact this is an instance of
the UIView.AutoresizingMask struct, whose rawValue property has been set to the
value declared by the original C enum — which, for .flexibleLeftMargin, is 1<<0.
Because a static property of this struct is an instance of the same struct, you can, as I
explained in “Inference of Type Name with Static/Class Members” on page 141, omit
the struct name when supplying a static property name where the struct is expected:

self.view.autoresizingMask = .flexibleWidth

Because this is an OptionSet struct, you can represent and manipulate the bitmask as
if it were a Set:

self.view.autoresizingMask = [.flexibleWidth, .flexibleHeight]

In Objective-C, where an NS_OPTIONS enum is expected, you pass 0 to indicate
that no options are provided. In Swift, where a corresponding struct is expected,
you pass [] (an empty set) or omit the options: parameter entirely. Some
NS_OPTIONS enums have an explicit option that means 0; Swift sometimes won’t
bother to import its name, because passing [] means the same thing. To set a
UIView.AutoresizingMask value to UIViewAutoresizingNone in Swift, set it to
[] (not .none).

Global string constants
The names of many Objective-C global string constants (referred to jokingly by
Apple as stringly typed) are namespaced by importing them into Swift as static struct
properties. This is accomplished by means of the NS_STRING_ENUM and
NS_EXTENSIBLE_STRING_ENUM Objective-C macros. For example, the names of the
NSAttributedString attribute keys used to be simple global string constants (type
NSString*):

NSString* const NSFontAttributeName;
NSString* const NSParagraphStyleAttributeName;
NSString* const NSForegroundColorAttributeName;
// ... and so on ...

630 | Appendix A: C, Objective-C, and Swift

This meant that they were global string constants in Swift as well. Now, however,
they are typed as NSAttributedStringKey values:

NSAttributedStringKey const NSFontAttributeName;
NSAttributedStringKey const NSParagraphStyleAttributeName;
NSAttributedStringKey const NSForegroundColorAttributeName;
// ... and so on ...

NSAttributedStringKey, in Objective-C, is just a synonym for NSString, but it is
marked with the NS_EXTENSIBLE_STRING_ENUM macro:

typedef NSString * NSAttributedStringKey NS_EXTENSIBLE_STRING_ENUM;

The result is that these names are imported into Swift as namespaced static properties
of an NSAttributedString.Key struct with names like .name, .paragraphStyle, and so
on. Moreover, a dictionary that expects these keys has a key type of NSAttributed‐
String.Key, so you can write compact code like this:

self.navigationController?.navigationBar.titleTextAttributes = [
 .font: UIFont(name: "ChalkboardSE-Bold", size: 20)!,
 .foregroundColor: UIColor.darkText
]

C Structs
A C struct is a compound type whose elements can be accessed by name using dot-
notation after a reference to the struct:

struct CGPoint {
 CGFloat x;
 CGFloat y;
};
typedef struct CGPoint CGPoint;

After that declaration, it becomes possible to talk like this in C:

CGPoint p;
p.x = 100;
p.y = 200;

A C struct arrives wholesale into Swift as a Swift struct, which is thereupon endowed
with Swift struct features. CGPoint in Swift has CGFloat instance properties x and y,
but it also magically acquires the implicit memberwise initializer! In addition, a zero‐
ing initializer with no parameters is injected; saying CGPoint() makes a CGPoint
whose x and y are both 0. Extensions can supply additional features, and the Swift
CoreGraphics header adds a few to CGPoint:

extension CGPoint {
 static var zero: CGPoint { get }
 init(x: Int, y: Int)
 init(x: Double, y: Double)
}

C, Objective-C, and Swift | 631

As you can see, a Swift CGPoint has additional initializers accepting Int or Double
arguments, along with another way of making a zero CGPoint, CGPoint.zero.
CGSize is treated similarly. CGRect is particularly well endowed with added methods
and properties in Swift.

The fact that a Swift struct is an object, while a C struct is not, does not pose any
problems of communication. You can assign or pass a Swift CGPoint where a C
CGPoint is expected, because CGPoint came from C in the first place. The fact that
Swift has endowed CGPoint with object methods and properties doesn’t matter; C
doesn’t see them. All C cares about are the x and y elements of this CGPoint, which
are communicated from Swift to C without difficulty.

C Pointers
A C pointer is an integer designating the location in memory (the address) where the
real data resides. Allocating and disposing of that memory is a separate matter. The
declaration for a pointer to a data type is written with an asterisk after the data type
name; a space can appear on either or both sides of the asterisk. These are equivalent
declarations of a pointer-to-int:

int *intPtr1;
int* intPtr2;
int * intPtr3;

The type name itself is int* (or, with a space, int *). Objective-C, for reasons that
I’ll explain later, uses C pointers heavily, so you’re going to be seeing that asterisk a
lot if you look at any Objective-C.

A C pointer arrives into Swift as an UnsafePointer or, if writable, an UnsafeMutable‐
Pointer; this is a generic, and is specified to the actual type of data pointed to. (A
pointer is “unsafe” because Swift isn’t managing the memory for, and can’t even
guarantee the integrity of, what is pointed to.)

To illustrate, here’s an Objective-C UIColor method declaration; I haven’t discussed
this syntax yet, but just concentrate on the types in parentheses:

- (BOOL) getRed: (CGFloat *) red
 green: (CGFloat *) green
 blue: (CGFloat *) blue
 alpha: (CGFloat *) alpha;

CGFloat is a basic numeric type. The type CGFloat * states (despite the space) that
these parameters are all CGFloat* — that is, pointer-to-CGFloat.

The Swift translation of that declaration looks, in effect, like this:

632 | Appendix A: C, Objective-C, and Swift

func getRed(_ red: UnsafeMutablePointer<CGFloat>,
 green: UnsafeMutablePointer<CGFloat>,
 blue: UnsafeMutablePointer<CGFloat>,
 alpha: UnsafeMutablePointer<CGFloat>) -> Bool

UnsafeMutablePointer in this context is used like a Swift inout parameter: you
declare and initialize a var of the appropriate type beforehand, and then pass its
address as argument by way of the & prefix operator. When you pass the address of a
reference in this way, you are in fact creating and passing a pointer:

var r : CGFloat = 0
var g : CGFloat = 0
var b : CGFloat = 0
var a : CGFloat = 0
c.getRed(&r, green: &g, blue: &b, alpha: &a)

It’s fine to take the address of a variable reference and hand it to a C function that
returns immediately, as we are doing here; but do not persist such an address your‐
self. If r is a CGFloat, saying let rPtr = &r would be a really bad idea; the compiler
will warn, and in future this warning is slated to be promoted to be an error. If you
need to do that sort of thing, call some form of withUnsafePointer, which takes an
anonymous function within which the pointer is valid.

In C, to access the memory pointed to by a pointer, you use an asterisk before the
pointer’s name: *intPtr is “the thing pointed to by the pointer intPtr.” In Swift, you
use the pointer’s pointee property. In this example, we receive a stop parameter
typed originally as a BOOL*, a pointer-to-BOOL; in Swift, it’s an UnsafeMutable-
Pointer<ObjCBool>. To set the BOOL at the far end of this pointer, we set the
pointer’s pointee:

// mas is an NSMutableAttributedString, r is an NSRange, f is a UIFont
mas.enumerateAttribute(.font, in: r) { value, r, stop in
 if let value = value as? UIFont, value == f {
 // ...
 stop.pointee = true
 }
}

The most general type of C pointer is pointer-to-void (void*), also known as the
generic pointer. The term void here means that no type is specified; it is legal in C to
use a generic pointer wherever a specific type of pointer is expected, and vice versa. In
effect, pointer-to-void casts away type checking as to what’s at the far end of the
pointer. This will appear in Swift as a “raw” pointer, either UnsafeRawPointer or
UnsafeMutableRawPointer.

Raw pointers are even more unsafe than normal pointers; not only the lifetime and
extent of the memory pointed to, but also the type of what’s in that memory, is now
your responsibility. As far as the pointer is concerned, what the memory contains is

C, Objective-C, and Swift | 633

just bytes. You can cast a typed unsafe pointer to a raw unsafe pointer, but not the
other way. Instead, starting with a raw pointer, you can load an object from an
address within the memory, or you can bind the memory to derive a typed pointer to
the same memory:

// buff is a CVImageBuffer
if let baseAddress = CVPixelBufferGetBaseAddress(buff) {
 // baseAddress is an UnsafeMutableRawPointer
 let addrptr = baseAddress.assumingMemoryBound(to: UInt8.self) // *
 // addrptr is an UnsafeMutablePointer<UInt8>
 // ...
}

C Arrays
A C array contains a fixed number of elements of a single data type. Under the hood,
it is a contiguous block of memory sized to accommodate this number of elements of
this data type. For this reason, the name of an array in C is the name of a pointer to
the first element of the array. If arr has been declared as an array of int, the term arr
can be used wherever a value of type int* (a pointer-to-int) is expected. The C lan‐
guage will indicate an array type either by appending square brackets to a reference
or as a pointer.

For example, the C function CGContextStrokeLineSegments is declared like this:

void CGContextStrokeLineSegments(CGContextRef c,
 const CGPoint points[],
 size_t count
);

The square brackets in the second line tell you that the second parameter is a C array
of CGPoints. A C array carries no information about how many elements it contains,
so to pass this C array to this function, you must also tell the function how many ele‐
ments the array contains; that’s what the third parameter is for. A C array of CGPoint
is a pointer to a CGPoint, so this function’s declaration is translated into Swift like
this:

func __strokeLineSegments(
 between points: UnsafePointer<CGPoint>?,
 count: Int)

Now, you’re not really expected to call that function. The CGContext Swift overlay
provides a pure Swift version, strokeLineSegments, which takes a Swift array of
CGPoint with no need to provide a count; and the original CGContextStrokeLine-
Segments has been marked NS_REFINED_FOR_SWIFT to generate the two underscores
and hide it from you. But let’s say you wanted to call __strokeLineSegments anyway.
How would you do it?

634 | Appendix A: C, Objective-C, and Swift

To call __strokeLineSegments and pass it a C array of CGPoints, it would appear
that you need to make a C array of CGPoints. A C array is not, by any stretch of the
imagination, a Swift array; so how on earth will you do this? Surprise! You don’t have
to. Even though a Swift array is not a C array, you can pass a pointer to a Swift array
here. In this example, you don’t even need to pass a pointer; you can pass a reference
to a Swift array itself. And since this is not a mutable pointer, you can declare the
array with let; indeed, you can even pass a Swift array literal! No matter which
approach you choose, Swift will convert to a C array for you as the argument crosses
the bridge from Swift to C:

let c = UIGraphicsGetCurrentContext()!
let arr = [
 CGPoint(x:0,y:0),
 CGPoint(x:50,y:50),
 CGPoint(x:50,y:50),
 CGPoint(x:0,y:100),
]
c.__strokeLineSegments(between: arr, count: arr.count)

However, you can form a C array if you really want to. This is where the “Unsafe” in
an unsafe pointer really comes into play: you must manage the memory yourself,
explicitly, and getting it right is entirely up to you. First, you set aside the block of
memory by declaring an UnsafeMutablePointer of the desired type and calling the
class method allocate(capacity:) with the desired number of elements. Then you
populate (technically, initialize) that memory. You will also be responsible for undo‐
ing all of that later; you deinitialize the memory and deallocate it. The best way to
ensure that is to configure the block of memory and then immediately complete the
memory management in a defer block:

let ptr = UnsafeMutablePointer<CGPoint>.allocate(capacity:4)
ptr.initialize(repeating: .zero, count: 4)
defer {
 ptr.deinitialize(count:4)
 ptr.deallocate()
}

Now that memory management is configured, you can manipulate the element val‐
ues. In this instance, we want to write real CGPoint values into the memory block.
You could do this by manipulating the pointee, but you can also use subscripting,
which might be a lot more convenient. Be careful to stay within the block of memory
you have configured! There’s no range checking, and writing outside memory you
own can mysteriously wreck your program later:

ptr[0] = CGPoint(x:0,y:0)
ptr[1] = CGPoint(x:50,y:50)
ptr[2] = CGPoint(x:50,y:50)
ptr[3] = CGPoint(x:0,y:100)

C, Objective-C, and Swift | 635

Finally, since the UnsafeMutablePointer is a pointer, you pass it, not a pointer to it, as
argument:

let c = UIGraphicsGetCurrentContext()!
c.__strokeLineSegments(between: ptr, count: 4)

The same convenient subscripting is available when you receive a C array. In this
example, col is a UIColor; comp is typed as an UnsafePointer to CGFloat. That is
really a C array of CGFloat, and so you can access its elements by subscripting:

if let comp = col.cgColor.__unsafeComponents,
 let sp = col.cgColor.colorSpace,
 sp.model == .rgb {
 let red = comp[0]
 let green = comp[1]
 let blue = comp[2]
 let alpha = comp[3]
 // ...
}

C Strings
The native C string type is not a distinct type; it is a null-terminated array of char.
Therefore it may be typed in Swift as [Int8] or [CChar], because CChar is Int8, or as
UnsafePointer<Int8> or UnsafePointer<CChar>, because a C array is a pointer to
the first element of the array. These representations are effectively interchangeable.

A C string can’t be formed as a literal in Swift, but you can pass a Swift String where a
C string is expected; in this example, takeCString is a C function that takes a C
string:

let s = "hello"
takeCString("hello") // fine
takeCString(s) // fine too

If you have to, you can form a real C string in Swift. The Swift Foundation overlay
provides the cString(using:) method:

let arrayOfCChar : [CChar]? = s.cString(using: .utf8)
takeCString(arrayOfCChar!)

Swift String provides the utf8CString property, a ContiguousArray<CChar>; you can
turn that into a pointer with the withUnsafeBufferPointer method:

let contiguousArrayOfCChar : ContiguousArray<CChar> = s.utf8CString
contiguousArrayOfCChar.withUnsafeBufferPointer { ptr -> Void in
 takeCString(ptr.baseAddress!)
}

More simply, you can call the String withCString method:

636 | Appendix A: C, Objective-C, and Swift

s.withCString { ptr -> Void in
 takeCString(ptr)
}

In the other direction, a UTF-8 C string can be rendered into a Swift String by way of
a Swift String initializer such as init(cString:) or init?(validatingUTF8:). To
specify some other encoding, call the static method decodeCString(_:as:). In this
example, returnCString is a C function that returns a C string:

let result : UnsafePointer<Int8> = returnCString()
let resultString : String = String(cString: result)

C Functions
A C function declaration starts with the return type (which might be void, meaning
no returned value), followed by the function name, followed by a parameter list —
parentheses containing comma-separated pairs consisting of the type followed by the
parameter name. The parameter names are purely internal. C functions are global,
and Swift can call them directly.

Here’s the C declaration for an Audio Services function:

OSStatus AudioServicesCreateSystemSoundID(
 CFURLRef inFileURL,
 SystemSoundID* outSystemSoundID)

An OSStatus is basically an Int32. A CFURLRef is a CFTypeRef (“Memory Manage‐
ment of CFTypeRefs” on page 591) and is called CFURL in Swift. A SystemSoundID
is a UInt32, and the * makes this a C pointer, as we already know. The whole thing
translates directly into Swift:

func AudioServicesCreateSystemSoundID(
 _ inFileURL: CFURL,
 _ outSystemSoundID: UnsafeMutablePointer<SystemSoundID>) -> OSStatus

CFURL is (for reasons that I’ll explain later) interchangeable with NSURL and Swift
URL; so here we are, calling this C function in Swift:

let sndurl = Bundle.main.url(forResource: "test", withExtension: "aif")!
var snd : SystemSoundID = 0
AudioServicesCreateSystemSoundID(sndurl as CFURL, &snd)

Struct functions
Most of the commonly used C global functions in Cocoa operate on a struct; they
have the name of that struct as the first element of their name, and have that struct
itself as their first parameter. In Swift, where structs are objects, these functions are
often transformed into methods on the struct.

C, Objective-C, and Swift | 637

For example, in Objective-C, the way to construct a CGRect from scratch is with the
CGRectMake function, and the way to divide a CGRect is with the CGRectDivide
function:

CGRect rect = CGRectMake(10,10,100,100);
CGRect arrow;
CGRect body;
CGRectDivide(rect, &arrow, &body, arrowHeight, CGRectMinYEdge);

In Swift, CGRectMake is overshadowed by the CGRect struct initializer
init(x:y:width:height:), and CGRectDivide is overshadowed by the CGRect
divided method:

let rect = CGRect(x: 10, y: 10, width: 100, height: 100)
let (arrow, body) = rect.divided(atDistance: arrowHeight, from: .minYEdge)

Pointer-to-function
In C, a function has a type based on its signature, and the name of a function is a
reference to the function, and so it is possible to pass a function — sometimes termed
a pointer-to-function — by using the function’s name where a function of that type is
expected.

Here’s the declaration for a C function from the Audio Toolbox framework:

OSStatus AudioServicesAddSystemSoundCompletion(SystemSoundID inSystemSoundID,
 CFRunLoopRef __nullable inRunLoop,
 CFStringRef __nullable inRunLoopMode,
 AudioServicesSystemSoundCompletionProc inCompletionRoutine,
 void * __nullable inClientData)

(I’ll explain the term __nullable later.) What’s an AudioServicesSystemSoundCom‐
pletionProc? Here’s how it’s declared:

typedef void (*AudioServicesSystemSoundCompletionProc)(
 SystemSoundID ssID,
 void* __nullable clientData);

In the first line, the asterisk and name in parentheses means that this is the name of a
pointer-to-function. A SystemSoundID is a UInt32. So this declaration means that an
AudioServicesSystemSoundCompletionProc is a pointer to a function taking two
parameters (typed UInt32 and pointer-to-void) and returning no result.

Amazingly, you can pass a Swift function where a C pointer-to-function is expected!
As always when passing a function, you can define the function separately and pass
its name, or you can form the function inline as an anonymous function. If you’re
going to define the function separately, it cannot be a method. A function defined at
the top level of a file is fine; so is a function defined locally within a function.

So here’s my AudioServicesSystemSoundCompletionProc, declared at the top level of
a file:

638 | Appendix A: C, Objective-C, and Swift

func soundFinished(_ snd:UInt32, _ c:UnsafeMutableRawPointer?) {
 AudioServicesRemoveSystemSoundCompletion(snd)
 AudioServicesDisposeSystemSoundID(snd)
}

And here’s my code for playing a sound file as a system sound, including a call to
AudioServicesAddSystemSoundCompletion:

let sndurl = Bundle.main.url(forResource: "test", withExtension: "aif")!
var snd : SystemSoundID = 0
AudioServicesCreateSystemSoundID(sndurl as CFURL, &snd)
AudioServicesAddSystemSoundCompletion(snd, nil, nil, soundFinished, nil)
AudioServicesPlaySystemSound(snd)

Objective-C
Objective-C is built on top of C. It adds some syntax and features, but it continues at
the same time to use C syntax and data types, and remains C under the hood.

The Objective-C language was created by Brad Cox and Tom Love in the early 1980s
to furnish C with the object-oriented capabilities of Smalltalk. Its adoption by NeXT,
under the leadership of Steve Jobs, drove the evolution toward the mature form of the
language during the late 1980s, spearheaded by Steve Naroff. In 1997, when Jobs had
returned to Apple and Apple acquired NeXT, Objective-C became the language of
Mac OS X Cocoa. Cocoa Touch, created for the iPhone a decade later, still uses
Objective-C; that’s why your use of Swift in programming iOS and UIKit depends
upon Swift’s interoperability with Objective-C.

Unlike Swift, Objective-C has no namespaces. For this reason, different frameworks
distinguish their contents by starting the names of types, functions, and constants
with distinct prefixes. The “CG” in “CGFloat” stands for Core Graphics, because it is
declared in the Core Graphics framework. The “NS” in “NSString” stands for NeXT‐
Step, the framework that later became Cocoa.

Objective-C Objects and C Pointers
All the data types and syntax of C are part of Objective-C. But Objective-C is object-
oriented, so it needs a way of adding objects to C. It does this by taking advantage of
C pointers. C pointers accommodate having anything at all at the far end of the
pointer; management of whatever is pointed to is a separate matter, and that’s just
what Objective-C takes care of. Objective-C object types are expressed using C
pointer syntax.

Here’s the Objective-C declaration for the addSubview: method:

- (void)addSubview:(UIView *)view;

C, Objective-C, and Swift | 639

I haven’t discussed Objective-C method declaration syntax yet, but focus on the type
declaration for the view parameter, in parentheses: it is UIView*. This appears to
mean “a pointer to a UIView.” It does mean that — and it doesn’t. What’s at the far
end of the pointer is certainly a UIView instance. But all Objective-C object refer‐
ences are pointers. The fact that this is a pointer is merely a consequence of the fact
that it’s an object.

The Swift translation of this method declaration doesn’t appear to involve any
pointers:

func addSubview(_ view: UIView)

In general, in Swift, you will simply pass a reference to a class instance where
Objective-C expects a class instance; the asterisk used in Objective-C to express the
fact that this is an object won’t matter. What you pass as argument when calling add-
Subview(_:) from Swift is a UIView instance — which is exactly what Objective-C
expects. There is, of course, a sense in which you are passing a pointer when you pass
a class instance — because classes are reference types! A class instance is actually seen
the same way by both Swift and Objective-C; the difference is that Swift doesn’t use
pointer notation.

Objective-C’s id type is a general pointer to an object — the object equivalent of C
pointer-to-void. Any object type can be assigned or cast to or from an id. Because id
is itself a pointer, a reference declared as id doesn’t use an asterisk; it is rare (though
not impossible) to encounter an id*.

Objective-C Objects and Swift Objects
Objective-C objects are classes and instances of classes. They arrive into Swift more
or less intact. You won’t have any trouble subclassing Objective-C classes or working
with instances of Objective-C classes. (For how Swift sees Objective-C properties and
accessors, see Chapter 10.)

Going the other way, when Objective-C expects an object, it expects a class or an
instance of a class, and Swift can provide it. But what Objective-C means by a class, in
general, is a subclass of NSObject. Every other kind of object known to Swift has to be
bridged or boxed in order to survive the journey into Objective-C’s world. Moreover,
many features of Swift are meaningless to Objective-C, and those features are invisi‐
ble to Objective-C. Objective-C can’t see any of the following:

• Swift enums, except for an @objc enum with an Int raw value
• Swift structs, except for structs that come ultimately from C or that are bridged

to Objective-C classes
• Swift classes not derived from NSObject
• Swift protocols not marked @objc

640 | Appendix A: C, Objective-C, and Swift

• Protocol extensions
• Generics
• Tuples
• Nested types

Nothing in that list can be directly exposed to Objective-C — and, by implication,
nothing that involves anything in that list can be exposed to Objective-C. Suppose we
have a class MyClass not derived from NSObject. Then if your UIViewController
subclass has a property typed as MyClass, that property cannot be exposed to
Objective-C; and if your UIViewController subclass has a method that receives or
returns a value typed as MyClass, that method cannot be exposed to Objective-C.

Nevertheless, you are perfectly free to use such properties and methods, even in a
class (such as a UIViewController subclass) that is exposed to Objective-C. Objective-
C simply won’t be able to see those aspects of the class that would be meaningless to
it.

Exposure of Swift to Objective-C
Since Swift 4, invisibility of Swift code to Objective-C is the norm. With a few excep‐
tions, even if Objective-C can theoretically see a thing, it won’t see it unless you
explicitly expose it to Objective-C. You do that with the @objc attribute.

Let’s talk first about the exceptions. These are things in your Swift code that
Objective-C will be able to see automatically, without an explicit @objc attribute:

• A class derived from NSObject. Such a class will be declared in Swift either as
subclassing NSObject itself or as subclassing some NSObject subclass, typically a
class defined by Cocoa (such as UIViewController).

• Within such a class, an override of a method defined in Objective-C (such as
UIViewController’s viewDidLoad) or defined in Swift but marked @objc.

• Within such a class, an implementation of a member of a protocol adopted by
the class, if the protocol is defined in Objective-C (such as NSCoding’s
init(coder:)) or defined in Swift but marked @objc.

• Within such a class, an instance property marked @IBOutlet or @IBInspectable
or @NSManaged, or a method marked @IBAction (see Chapter 7).

Otherwise, to expose to Objective-C a property, method, or protocol, mark it with
@objc. The compiler will stop you if you try to expose to Objective-C something that
it is unable to see (such as a property whose type Objective-C cannot see or cannot
understand). A protocol marked as @objc automatically becomes a class protocol.

A useful trick, if you have several methods that you need to expose explicitly to
Objective-C, is to clump them into an extension that is itself marked @objc; there is

C, Objective-C, and Swift | 641

then no need to mark those methods individually with @objc. If most or all of a
class’s members are to be exposed to Objective-C, you can mark the class @objc-
Members; again, there is then no need to mark those members individually with
@objc. Conversely, if a class member would be exposed to Objective-C and you want
to prevent this, you can mark it @nonobjc.

There are two additional uses of @objc:

Expose a member of a nonObjective-C class
Even if a class is not exposed to Objective-C, it can be useful to mark a member
of that class with @objc so that your Swift code can take advantage of Objective-
C language features with regard to that member. A Timer using the target–action
pattern (Chapter 11) can have a method of a nonObjective-C class as its action,
but only if that method is marked @objc, because the method is specified with a
selector (Chapter 2) and selectors are an Objective-C feature.

Change the Objective-C name of something
When you mark something with @objc, you can add parentheses containing the
name by which you want Objective-C to see this thing. You are free to do this
even for a class or a class member that Objective-C can see already. An example
appeared in Chapter 10 when I changed the name by which Objective-C sees a
property accessor. When using this feature, you bypass Swift’s behind-the-scenes
name mangling designed to prevent clashes with any existing Objective-C names,
so you must take responsibility for avoiding such a clash yourself.

Class members marked @objc, @IBAction, and @IBOutlet can be marked
private to speed up compilation and reduce the footprint of the class’s exposure
to Objective-C. However, as I mentioned in Chapter 5, you shouldn’t do that
with an implementation of an optional member of an adopted Objective-C
protocol.

Bridged Types and Boxed Types
Swift will convert certain native nonclass types to their Objective-C class equivalents
for you. The following native Swift structs are bridged to Objective-C class types:

• String to NSString
• Numbers (and Bool) to NSNumber
• Array to NSArray
• Dictionary to NSDictionary
• Set to NSSet

Bridging has two immediate practical consequences for your code:

642 | Appendix A: C, Objective-C, and Swift

Parameter passing
You can pass an instance of the Swift struct where the Objective-C class is
expected. In fact, in general you’ll rarely even encounter the Objective-C class,
because the Swift rendering of the API will display it as the Swift struct: if an
Objective-C method takes an NSString, you’ll see it in Swift as taking a String,
and so on.

Casting
You can cast between the Swift struct and the Objective-C class. When casting
from Swift to Objective-C, this is not a downcast, so the bare as operator is all
you need. But casting from Objective-C to Swift, except for NSString to String,
involves adding type information — NSNumber wraps some specific numeric
type, and the collection types contain elements of some specific type — so you
might need to cast down with as! or as? in order to specify that type.

Also, certain common Objective-C structs that can easily be wrapped by NSValue in
Objective-C are bridged to NSValue in Swift. The common structs are CGPoint,
CGSize, CGRect, CGAffineTransform, UIEdgeInsets, UIOffset, NSRange, CATrans‐
form3D, CMTime, CMTimeMapping, CMTimeRange, MKCoordinate, and
MKCoordinateSpan.

In addition, various Cocoa Foundation classes are overlaid by Swift types whose
names are the same but without the “NS” prefix. Often, extra functionality is injected
to make the type behave in a more Swift-like way; and, where appropriate, the Swift
type may be a struct, allowing you to take advantage of Swift value type semantics.
NSMutableData, for instance, becomes otiose, because Data, the overlay for
Objective-C NSData, is a struct with mutating methods and can be declared with let
or var. And Date, the overlay for Objective-C NSDate, adopts Equatable and Compa‐
rable, so that an NSDate method like earlierDate: can be replaced by the min
function.

The Swift overlay types are all bridged to their Foundation counterparts. The Swift
rendering of an Objective-C API will show you the Swift overlay type rather than the
Objective-C type: a Cocoa method that takes or returns an NSDate in Objective-C
will take or return a Date in Swift, and so on. If necessary, you can cast between
bridged types; for example, you can turn a Date into an NSDate with as.

Objective-C id is rendered as Any in Swift. This means that wherever an Objective-C
API accepts an id parameter, that parameter is typed in Swift as Any and can be
passed any Swift value whatever. If that value is of a bridged type, the bridge is crossed
automatically, just as if you had cast explicitly with as. A String becomes an
NSString, an Array becomes an NSArray, a number is wrapped in an NSNumber, a
CGPoint or other common struct is wrapped in an NSValue, a Data becomes an
NSData, and so forth.

C, Objective-C, and Swift | 643

The same rule applies when you pass a Swift collection to Objective-C, with regard to
the collection’s elements. If an element is of a bridged type, the bridge is crossed auto‐
matically. The typical case in point is when you pass a Swift array to Objective-C: an
array of Int becomes an NSArray of NSNumbers; an array of CGPoint becomes an
NSArray of NSValues; for an array with an Optional element type, any nil elements
become NSNull instances (Chapter 10).

What happens when an object tries to cross the bridge from Swift to Objective-C, but
that instance is not of a bridged type? (Such an object might be an enum, a struct of a
nonbridged type, or a class that doesn’t derive from NSObject.) On the one hand,
Objective-C can’t do anything with this object. On the other hand, the object needs to
be allowed to cross the bridge somehow, especially because you, on the Swift side,
might ask for the object back again later, and it needs to be returned to you intact.

To illustrate, suppose Person is a struct with a firstName and a lastName property.
Then you might need to be able to do something like this:

// lay is a CALayer
let p = Person(firstName: "Matt", lastName: "Neuburg")
lay.setValue(p, forKey: "person")
// ... time passes ...
if let p2 = lay.value(forKey: "person") as? Person {
 print(p2.firstName, p2.lastName) // Matt Neuburg
}

Amazingly, this works. How? The answer, in a nutshell, is that Swift boxes this object
into something that Objective-C can see as an object, even though Objective-C can’t
do anything with that object other than store and retrieve it. How Swift does this is
irrelevant; it’s an implementation detail, and none of your business. It happens that
in this case the Person object is wrapped up in a _SwiftValue, but that name is unim‐
portant; what’s important is that it is an Objective-C object, wrapping the value we
provided. In this way, Objective-C is able to store the object for us, in its box, and
hand it back to us intact upon request. Like Pandora, Objective-C will cope perfectly
well as long as it doesn’t look in the box!

Objective-C Methods
In Objective-C, method parameters can (and nearly always do) have external names,
and the name of a method as a whole is not distinct from the external names of the
parameters: the parameter names are part of the method name, with a colon appear‐
ing where each parameter would need to go. Here’s a typical Objective-C method
declaration from Cocoa’s NSString class:

- (NSString *)stringByReplacingOccurrencesOfString:(NSString *)target
 withString:(NSString *)replacement

644 | Appendix A: C, Objective-C, and Swift

The Objective-C name of that method is:

stringByReplacingOccurrencesOfString:withString:

A declaration for an Objective-C method has three parts:

• Either + or -, meaning that the method is a class method or an instance method,
respectively.

• The data type of the return value, in parentheses. It might be void, meaning no
returned value.

• The name of the method, split after each colon so as to make room for the
parameters. Following each colon is the data type of the parameter, in parenthe‐
ses, followed by a placeholder (internal) name for the parameter.

Renamification
When Swift calls an Objective-C method, there’s an obvious mismatch between the
rules and conventions of the two languages:

Swift method names
A Swift method is a function; the base name of the function is followed by paren‐
theses, and if the function’s parameters have external names (labels), they appear
inside the parentheses, like this: swiftFunction(parameter:).

Objective-C method names
An Objective-C method name involves no parentheses and has no separate base
name. If the method takes parameters, the parameter names, each followed by a
colon, constitute the name of the method; the first thing in the name is just the
name of the first parameter, like this: objCMethodWithParameter:. (If it takes no
parameters, its name is just its name with no colon.)

To cope with this mismatch, Swift renders the Objective-C method’s name more
Swift-like by a process called renamification, which is performed by a component
called the Clang importer, mediating between the two languages. The renamification
rules are rather elaborate, but you don’t need to know the details; you can get a gen‐
eral sense of how they behave from an example. Here’s how the renamification rules
transform the stringByReplacingOccurrencesOfString:withString: method into
a Swift function:

1. Swift prunes redundant initial type names. We’re starting with a string, and it’s
obvious from the return type that a string is returned, so there’s no point saying
string at the start. We are left with byReplacingOccurrencesOfString:with-
String:.

C, Objective-C, and Swift | 645

2. Swift prunes initial by. That’s a common Cocoa locution, but Swift finds it
merely verbose. Now we’re down to replacingOccurrencesOfString:with-
String:.

3. Swift prunes redundant final type names. It’s obvious that the parameters are
strings, so there’s no point saying string at the end of the parameter names.
That leaves replacingOccurrencesOf:with:.

4. Finally, Swift decides where to split the first parameter name into the Swift base
name and the external first parameter name. Here, Swift sees that the first
parameter name now ends with a known preposition, of, so it splits before that
preposition.

Here’s the resulting renamification of that method:

func replacingOccurrences(of target:String, with replacement:String)

And here’s an actual example of calling it:

let s = "hello"
let s2 = s.replacingOccurrences(of: "ell", with:"ipp")
// s2 is now "hippo"

If the Objective-C method being renamified belongs to you, you can intervene man‐
ually and tell Swift how to renamify this method, by appending NS_SWIFT_NAME(...)
to the declaration (before the semicolon), where what’s inside the parentheses is a
Swift function reference. Here’s an example:

- (void) triumphOverThing: (Thing*) otherThing NS_SWIFT_NAME(triumph(over:));

The Clang importer would normally renamify that in Swift as:

func triumphOverThing(_ otherThing: Thing)

Presumably that’s because the importer doesn’t understand over as a preposition.
But by intervening manually, we’ve told it to use this instead:

func triumph(over otherThing: Thing)

Internal parameter names
When you call an Objective-C method from Swift, Objective-C’s internal names for
the parameters don’t matter; you don’t use them, and you don’t need to know or care
what they are. The internal names do appear in the Swift declaration of the method,
and they might even help you understand what the method does; but they are not
involved in the call. This is the Objective-C declaration of a method:

- (NSString *)stringByReplacingOccurrencesOfString:(NSString *)target
 withString:(NSString *)replacement

And this is the Swift translation of that declaration:

func replacingOccurrences(of target:String, with replacement:String)

646 | Appendix A: C, Objective-C, and Swift

But the call site looks like this:

let s2 = s.replacingOccurrences(of: "ell", with: "ipp")

When you override an Objective-C method in Swift, code completion will suggest
internal names corresponding to the Objective-C internal names, but you are free to
change them. Here’s the Objective-C declaration of the UIViewController prepare-
ForSegue:sender: instance method:

- (void)prepareForSegue:(UIStoryboardSegue *)segue sender:(nullable id)sender;

When you override that method in your UIViewController subclass, the suggested
template, in accordance with the renamification rules, looks like this:

override func prepare(for segue: UIStoryboardSegue, sender: Any?) {
 // ...
}

But the internal names are local variable names for your use inside the function body,
and Objective-C doesn’t care about them; so you can change them. This is a valid
(but weird) override of prepareForSegue:sender: in Swift:

override func prepare(for war: UIStoryboardSegue, sender bow: Any?) {
 // ...
}

Reverse renamification
Now let’s talk about what happens going the other way: How does Objective-C see
methods declared in Swift? The simplest case is when the first parameter has no
external name. Here’s a Swift method intended as the action method of a button in
the interface:

@IBAction func doButton(_ sender: Any?) {
 // ...
}

That method is seen by Objective-C as doButton:. That is the canonical form for an
action method with one parameter, and for that reason I like to declare my action
methods along those lines.

If a Swift method’s first parameter does have an external name, then, as seen by
Objective-C, that external name is appended to the Swift base name following an
inserted preposition with. Here’s a Swift method:

func makeHash(ingredients stuff:[String]) {
 // ...
}

That method is seen by Objective-C as makeHashWithIngredients:.

C, Objective-C, and Swift | 647

But if the external name of the first parameter is a preposition, then it is appended
directly to the Swift base name. Here’s another Swift method:

func makeHash(of stuff:[String]) {
 // ...
}

That method is seen by Objective-C as makeHashOf:.

Overloading
Unlike Swift, Objective-C does not permit overloading of methods. Two View‐
Controller instance methods called myMethod: returning no result, one taking a
CGFloat parameter and one taking an NSString parameter, would be illegal in
Objective-C. Therefore, two such Swift methods, though legal as far as Swift is con‐
cerned, would be illegal if they were both visible to Objective-C.

So if methods are overloads of one another in Swift, don’t expose more than one of
those methods to Objective-C.

Variadics
Objective-C has its own version of a variadic parameter. The NSArray instance
method arrayWithObjects: is declared like this:

+ (id)arrayWithObjects:(id)firstObj, ... ;

Unlike Swift, such methods in Objective-C must somehow be told explicitly how
many arguments are being supplied. Many such methods, including arrayWith-
Objects:, use a nil terminator; that is, the caller supplies nil after the last argument,
and the callee knows when it has reached the last argument because it encounters
nil. A call to arrayWithObjects: in Objective-C would look something like this:

NSArray* pep = [NSArray arrayWithObjects: manny, moe, jack, nil];

Objective-C cannot call (or see) a Swift method that takes a variadic parameter. Swift,
however, can call an Objective-C method that takes a variadic parameter, provided it
is marked NS_REQUIRES_NIL_TERMINATION. And in fact, arrayWithObjects: is
marked in this way, so you can say NSArray(objects:1, 2, 3) and Swift will supply
the missing nil terminator.

Initializers and factories
Objective-C initializer methods are instance methods; actual instantiation is per‐
formed using the NSObject class method alloc, for which Swift has no equivalent
(and doesn’t need one), and the initializer message is sent to the instance that results.
Here’s how you create a UIColor instance by supplying red, green, blue, and alpha
values in Objective-C:

648 | Appendix A: C, Objective-C, and Swift

UIColor* col = [[UIColor alloc] initWithRed:0.5 green:0.6 blue:0.7 alpha:1];

The name of that initializer, in Objective-C, is initWithRed:green:blue:alpha:. It’s
declared like this:

- (UIColor *)initWithRed:(CGFloat)red green:(CGFloat)green
 blue:(CGFloat)blue alpha:(CGFloat)alpha;

In short, an initializer method, to all outward appearances, is just an instance method
like any other in Objective-C.

Swift, nevertheless, is able to detect that an Objective-C initializer is an initializer,
because the name is special — it starts with init! Therefore, Swift is able to translate
an Objective-C initializer into a Swift initializer. The word init is stripped from the
start of the method name, and the preposition with, if it appears, is stripped as well.
What’s left is the external name of the first parameter.

So Swift translates the initializer initWithRed:green:blue:alpha: from Objective-C
into the Swift initializer init(red:green:blue:alpha:), which is declared like this:

init(red: CGFloat, green: CGFloat, blue: CGFloat, alpha: CGFloat)

And you’d call it like this:

let col = UIColor(red: 0.5, green: 0.6, blue: 0.7, alpha: 1.0)

The same principle operates in reverse: a Swift initializer init(value:) is visible to
and callable by Objective-C under the name initWithValue:.

If you’re in charge of the Objective-C header being imported into Swift, be sure
to mark your designated initializers as NS_DESIGNATED_INITIALIZER so that
Swift can distinguish them. To block an initializer explicitly from being imported
into Swift, mark it NS_UNAVAILABLE.

There is a second way to create an instance in Objective-C. Very commonly, a class
will supply a class method that is a factory for instances. For example, the UIColor
class has a class factory method colorWithRed:green:blue:alpha:, declared as
follows:

+ (UIColor*) colorWithRed: (CGFloat) red green: (CGFloat) green
 blue: (CGFloat) blue alpha: (CGFloat) alpha;

Swift detects a factory method of this kind by some pattern-matching rules — a class
method that returns an instance of the class, and whose name begins with the name
of the class, stripped of its prefix — and translates it as an initializer, stripping the
class name (and the with) from the start of the first parameter name. If the resulting
initializer exists already, as it does in this example, then Swift treats the factory
method as superfluous and suppresses it completely! The Objective-C class method
colorWithRed:green:blue:alpha: isn’t callable from Swift, because it would be
identical to init(red:green:blue:alpha:) which already exists.

C, Objective-C, and Swift | 649

Error pointers
There’s a specialized pattern in Objective-C where a method returning a BOOL or an
object takes an NSErrorPointer parameter — that is, an NSError**, the Objective-C
equivalent of an inout Error. The idea is that if there’s an exception, the method
returns false or nil respectively, and sets the NSError parameter by indirection.
This is Objective-C’s way of solving the problem that it can return only one value
(there are no tuples).

For example, NSString has an initializer declared in Objective-C like this:

- (instancetype)initWithContentsOfFile:(NSString *)path
 encoding:(NSStringEncoding)enc
 error:(NSError **)error;

And here is some Objective-C code that calls that initializer:

NSError* err;
NSString* s = [[NSString alloc] initWithContentsOfFile:f
 encoding:NSUTF8StringEncoding
 error:&err];
if (s == nil) {
 NSLog(@"%@", err);
}

As you can see, the whole procedure really is a lot like using a Swift inout parameter.
An NSError variable is prepared beforehand, and its address is passed to the initial‐
izer as the error: argument. After the call, we test the initializer’s result for nil
explicitly, to see whether the initialization succeeded; if it didn’t, we can examine the
NSError variable to see what the error was. This is an annoyingly elaborate but neces‐
sary dance in Objective-C.

In Swift, an Objective-C method that takes an NSError** and returns a nullable
object or a BOOL is automatically recast to take advantage of the error mechanism.
The error: parameter is stripped from the Swift translation of the declaration, and is
replaced by a throws marker:

init(contentsOfFile path: String, encoding enc: String.Encoding) throws

If there are no other parameters besides the NSError** and the parameter name ends
withError:, those words are stripped to form the base name of the Swift method,
which takes no parameters.

If you call a throws method that belongs to Objective-C and the Objective-C method
returns nil or false, Swift sees that as a throw and throws the error that the
Objective-C method returned by indirection. If the Objective-C method gets the pat‐
tern wrong and returns nil or false but forgets to set the NSError, Swift just makes
up an error (_GenericObjCError.nilError) and throws it anyway. If the Objective-C

650 | Appendix A: C, Objective-C, and Swift

method returns a BOOL, Swift portrays it as returning no result, as the presence or
absence of an error is dispositive.

The same method bridging works also in reverse: a Swift throws method that is
exposed to Objective-C is seen as taking an NSError** parameter.

Selectors
A Cocoa Objective-C method will sometimes expect as parameter the name of a
method that Cocoa is to call later. Such a name is called a selector. For example, the
Objective-C UIControl addTarget:action:forControlEvents: method can be
called as a way of telling a button in the interface, “From now on, whenever you are
tapped, send this message to this object.” The object is the target: parameter. The
message, the action: parameter, is a selector. The target object implements this
method; Cocoa will call this method on the target object.

You may imagine that, if this were a Swift method, you’d be passing a function here.
But a selector is not the same as a function. It’s just a name. Objective-C, unlike Swift,
is so dynamic that it is able at runtime to construct and send an arbitrary message to
an arbitrary object based on the name alone. Still, a selector is not exactly a string,
either; it’s a separate object type, designated in Objective-C declarations as SEL and
in Swift declarations as Selector.

You can create a Selector by calling the Selector initializer, which takes a string. In the
following examples, b is a UIButton:

b.addTarget(self, action: Selector("doNewGame:"), for: .touchUpInside)

As a shorthand, you can even pass a string literal where a Selector is expected, even
though a Selector is not a string:

b.addTarget(self, action: "doNewGame:", for: .touchUpInside)

But don’t do either of those things! Forming a literal selector string by hand is an
invitation to form the string incorrectly, resulting in a selector that at best will fail to
work, and at worst will cause your app to crash. Swift solves this problem by provid‐
ing #selector syntax (described in Chapter 2):

b.addTarget(self, action: #selector(doNewGame), for: .touchUpInside)

The use of #selector syntax has numerous advantages. In addition to translating the
method name to a selector for you, the compiler can check for the existence of the
method in question, and can stop you from telling Objective-C to use a selector to
call a method that isn’t exposed to Objective-C (which would cause a crash at
runtime).

C, Objective-C, and Swift | 651

Indeed, #selector syntax means that you will probably never need to form a selector
from a string! Nevertheless, you can do so if you really want to. The rules for deriving
an Objective-C name string from a Swift method name are completely mechanical:

1. The string starts with everything that precedes the left parenthesis in the method
name (the base name).

2. If the method takes no parameters, stop. That’s the end of the string.
3. If the method’s first parameter has an external parameter name, append With

and a capitalized version of that name, unless it is a preposition, in which case
append a capitalized version of it directly.

4. Add a colon.
5. If the method takes exactly one parameter, stop. That’s the end of the string.
6. If the method takes more than one parameter, add the external names of all

remaining parameters, with a colon after each external parameter name.
Observe that this means that if the method takes any parameters, its Objective-C
name string will end with a colon. Capitalization counts, and the name should con‐
tain no spaces or other punctuation except for the colons.

To illustrate, here are some Swift method declarations, with their Objective-C name
strings given in a comment:

func sayHello() -> String // "sayHello"
func say(_ s:String) // "say:"
func say(string s:String) // "sayWithString:"
func say(of s:String) // "sayOf:"
func say(_ s:String, times n:Int) // "say:times:"

CFTypeRefs
A CFTypeRef is a pointer to an opaque struct that acts as a pseudo-object. (I talked
about CFTypeRef pseudo-objects and their memory management in Chapter 12.)
CFTypeRef functions are global C functions. Swift can call C functions, and before
Swift 3 introduced renamification, CFTypeRef code looked almost as if Swift were C:

// before Swift 3:
let con = UIGraphicsGetCurrentContext()!
let sp = CGColorSpaceCreateDeviceGray()
// ... colors and locs are arrays of CGFloat ...
let grad = CGGradientCreateWithColorComponents (sp, colors, locs, 3)
CGContextDrawLinearGradient (
 con, grad, CGPointMake(89,0), CGPointMake(111,0), [])

Notice that the “subject” of each function call appears at the start of the name:

CGColorSpaceCreateDeviceGray creates a CGColorSpace pseudo-object.

652 | Appendix A: C, Objective-C, and Swift

CGGradientCreateWithColorComponents creates a CGGradient pseudo-object;
the first parameter is the CGColorSpace pseudo-object.

CGContextDrawLinearGradient draws a gradient in a CGContext pseudo-object;
the first parameter is the CGContext pseudo-object, and the second parameter is
the CGGradient pseudo-object.

Nowadays, as part of renamification, many commonly used CFTypeRef functions,
especially in the Core Graphics framework, are recast as if the “subject” CFTypeRef
objects were genuine class instances, with the functions themselves as initializers and
instance methods. Those lines are recast in Swift like this (thanks to the mighty
power of NS_SWIFT_NAME):

let con = UIGraphicsGetCurrentContext()!
let sp = CGColorSpaceCreateDeviceGray()
// ... colors and locs are arrays of CGFloat ...
let grad = CGGradient(colorSpace: sp,
 colorComponents: colors, locations: locs, count: 3)
con.drawLinearGradient(grad,
 start: CGPoint(x:89,y:0), end: CGPoint(x:111,y:0), options:[])

In that code:

CGColorSpaceCreateDeviceGray is unchanged.

CGGradientCreateWithColorComponents is turned into a CGGradient pseudo-
object initializer, with external parameter names.

CGContextDrawLinearGradient is turned into an instance property of a CGCon‐
text pseudo-object, with external parameter names.

Many CFTypeRefs are toll-free bridged to corresponding Objective-C object types.
CFString and NSString, CFNumber and NSNumber, CFArray and NSArray, CFDic‐
tionary and NSDictionary are all toll-free bridged (and there are many others). Such
pairs are interchangeable by casting. This is much easier in Swift than in Objective-C.
In Objective-C, ARC memory management doesn’t apply to CFTypeRefs; therefore
you must perform a bridging cast, to tell Objective-C how to manage this object’s
memory as it crosses between the memory-managed world of Objective-C objects
and the unmanaged world of C and CFTypeRefs. But in Swift, CFTypeRefs are
memory-managed, and so there is no need for a bridging cast; you can just cast, plain
and simple.

In this code from one of my apps, I’m using the ImageIO framework. This frame‐
work has a C API (which has not been renamified) and uses CFTypeRefs. CGImage-
SourceCopyPropertiesAtIndex returns a CFDictionary whose keys are CFStrings.
The easiest way to obtain a value from a dictionary is by subscripting, but you can’t
do that with a CFDictionary, because it isn’t an object — so I cast it to a Swift

C, Objective-C, and Swift | 653

dictionary. The key kCGImagePropertyPixelWidth is a CFString, and yet when I try
to use it directly in a subscript, Swift allows me to do so:

let d = CGImageSourceCopyPropertiesAtIndex(src, 0, nil) as! [AnyHashable:Any]
let width = d[kCGImagePropertyPixelWidth] as! CGFloat

Similarly, in this code, I form a dictionary d using CFString keys — and then I pass it
to the CGImageSourceCreateThumbnailAtIndex function where a CFDictionary is
expected:

let d : [AnyHashable:Any] = [
 kCGImageSourceShouldAllowFloat : true,
 kCGImageSourceCreateThumbnailWithTransform : true,
 kCGImageSourceCreateThumbnailFromImageAlways : true,
 kCGImageSourceThumbnailMaxPixelSize : w
]
let imref = CGImageSourceCreateThumbnailAtIndex(src, 0, d as CFDictionary)!

A CFTypeRef is a pointer (to a pseudo-object), so it is interchangeable with C
pointer-to-void. This can result in a perplexing situation in Swift. If a C API casts a
CFTypeRef as a pointer-to-void, Swift will see it as an UnsafeRawPointer. How can
you cast between this and the actual CFTypeRef? You cannot use the memory bind‐
ing technique that I used earlier to turn an UnsafeRawPointer into an UnsafePointer
generic, because the CFTypeRef does not lie at the far end of the pointer; it is the
pointer.

We might simply call the global unsafeBitCast function, but that’s dangerous (as the
name suggests), because it gives the resulting CFTypeRef no memory management.
The correct approach is to pass through an Unmanaged generic to apply memory
management; its fromOpaque static method takes an UnsafeRawPointer, and its
toOpaque instance method yields an UnsafeMutableRawPointer. (I owe this
technique to Martin R.; see http://stackoverflow.com/a/33310021/1187415.)

To illustrate, I’ll repeat the earlier example where I called CGImageSourceCopy-
PropertiesAtIndex, but this time I won’t cast to a Swift dictionary; I’ll work with the
result as a CFDictionary to extract the value of its kCGImagePropertyPixelWidth key.
To do so, I’ll call CFDictionaryGetValue, which takes an UnsafeRawPointer parame‐
ter and returns an UnsafeRawPointer result. To form the parameter, I’ll cast a
CFString to an UnsafeMutableRawPointer; to work with the result, I’ll cast an Unsafe‐
RawPointer to a CFNumber. No one in his right mind would ever write this code, but
it does work:

let result = CGImageSourceCopyPropertiesAtIndex(src, 0, nil)!
let key = kCGImagePropertyPixelWidth // CFString
let p1 = Unmanaged.passUnretained(key).toOpaque() // UnsafeMutableRawPointer
let p2 = CFDictionaryGetValue(result, p1) // UnsafeRawPointer
let n = Unmanaged<CFNumber>.fromOpaque(p2!).takeUnretainedValue() // CFNumber
var width : CGFloat = 0
CFNumberGetValue(n, .cgFloatType, &width) // width is now 640.0

654 | Appendix A: C, Objective-C, and Swift

http://stackoverflow.com/a/33310021/1187415

Blocks
A block is a C language feature introduced by Apple starting in iOS 4. It is very like a
C function, but it behaves as a closure and can be passed around as a reference type.
A block, in fact, is parallel to a Swift function, and the two are interchangeable: you
can pass a Swift function where a block is expected, and when a block is handed to
you by Cocoa it appears as a function.

In C and Objective-C, a block declaration is signified by the caret character (^), which
appears where an asterisk would appear in a C pointer-to-function declaration. The
NSArray instance method sortedArrayUsingComparator: takes an NSComparator
parameter, which is defined through a typedef like this:

typedef NSComparisonResult (^NSComparator)(id obj1, id obj2);

That says: “An NSComparator is a block taking two id parameters and returning an
NSComparisonResult.” In Swift, therefore, that typedef is translated as the function
signature (Any, Any) -> ComparisonResult. It is then trivial to supply a function of
the required type as argument when you call sortedArray(comparator:) in Swift:

let arr = ["Mannyz", "Moey", "Jackx"]
let arr2 = (arr as NSArray).sortedArray { s1, s2 in
 let c1 = String((s1 as! String).last!)
 let c2 = String((s2 as! String).last!)
 return c1.compare(c2)
} // [Jackx, Moey, Mannyz]

In many cases, there won’t be a typedef, and the type of the block will appear directly
in a method declaration. Here’s the Objective-C declaration for a UIView class
method that takes two block parameters:

+ (void)animateWithDuration:(NSTimeInterval)duration
 animations:(void (^)(void))animations
 completion:(void (^ __nullable)(BOOL finished))completion;

In that declaration, animations: is a block taking no parameters (void) and return‐
ing no value, and completion: is a block taking one BOOL parameter and returning
no value. Here’s the Swift translation:

class func animate(withDuration duration: TimeInterval,
 animations: @escaping () -> Void,
 completion: ((Bool) -> Void)? = nil)

That’s a method that you would call, passing a function as argument where a block
parameter is expected (and see Chapter 2 for an example of actually doing so). Here’s
a method that you would implement, where a function is passed to you. This is the
Objective-C declaration:

C, Objective-C, and Swift | 655

- (void)webView:(WKWebView *)webView
 decidePolicyForNavigationAction:(WKNavigationAction *)navigationAction
 decisionHandler:(void (^)(WKNavigationActionPolicy))decisionHandler;

You implement this method, and it is called when the user taps a link in a web view,
so that you can decide how to respond. The third parameter is a block that takes one
parameter — a WKNavigationActionPolicy, which is an enum — and returns no
value. The block is passed to you as a Swift function, and you respond by calling the
function to report your decision:

func webView(_ webView: WKWebView,
 decidePolicyFor navigationAction: WKNavigationAction,
 decisionHandler: @escaping (WKNavigationActionPolicy) -> Void) {
 // ...
 decisionHandler(.allow)
}

A C function is not a block, but you can also use a Swift function where a C function
is expected, as I demonstrated earlier. Going in the other direction, to declare a type
as a C pointer-to-function, mark the type as @convention(c). Here are two Swift
method declarations:

func blockTaker(_ f:() -> ()) {}
func functionTaker(_ f:@convention(c)() -> ()) {}

Objective-C sees the first as taking a block, and the second as taking a pointer-to-
function.

API Markup
In the early days of Swift, its static strict typing was a poor match for Objective-C’s
dynamic loose typing, and this made the Swift versions of Objective-C methods ugly
and unpleasant:

Too many Optionals
In Objective-C, any object instance reference can be nil. But in Swift, only an
Optional can be nil. The default solution was to use implicitly unwrapped
Optionals as the medium of object interchange between Objective-C and Swift.
But this was ugly, and a blunt instrument, especially because most objects arriv‐
ing from Objective-C were never in fact going to be nil.

Too many umbrella collections
In Objective-C, a collection type such as NSArray can contain elements of multi‐
ple object types, and the collection itself is agnostic as to what types of elements it
contains. But a Swift collection type can contain elements of just one type, and is
itself typed according to that element type. The default solution was for every
collection to arrive from Objective-C typed as having AnyObject elements; it
then had to be cast down explicitly on the Swift side. This was infuriating.

656 | Appendix A: C, Objective-C, and Swift

You would ask for a view’s subviews and get back an Array of AnyObject, which
then had to be cast down to an Array of UIView — when nothing could be more
obvious than that a view’s subviews would in fact all be UIView objects.

These problems were subsequently solved by modifying the Objective-C language to
permit markup of declarations in such a way as to communicate to Swift a more spe‐
cific knowledge of what to expect.

Nullability

An Objective-C object type can be marked as nullable or nonnull, to specify,
respectively, that it might or will never be nil. In the same way, C pointer types can
be marked __nullable or __nonnull. Using these markers generally obviates the
need for implicitly unwrapped Optionals as a medium of interchange; every type can
be either a normal type or a simple Optional, and if it’s an Optional, there’s a good
reason for it. Implicitly unwrapped Optionals are a rare sight in the Cocoa APIs
nowadays.

If you’re writing an Objective-C header file and you don’t mark up any of it as to
nullability, you’ll return to the bad old days: Swift will see your types as implicitly
unwrapped Optionals. Here’s an Objective-C method declaration:

- (NSString*) badMethod: (NSString*) s;

In the absence of markup, Swift sees that as:

func badMethod(_ s: String!) -> String!

Clearly our Objective-C needs some markup! As soon as your header file contains
any markup, the Objective-C compiler will complain until it is completely marked up.
As a shortcut, you can mark an entire stretch of your header file with a default
nonnull setting, so that only the exceptional nullable types will need explicit
markup, like this:

NS_ASSUME_NONNULL_BEGIN
- (NSString*) badMethod: (NSString*) s;
- (nullable NSString*) goodMethod: (NSString*) s;
NS_ASSUME_NONNULL_END

Swift sees that with no implicitly unwrapped Optionals:

func badMethod(_ s: String) -> String
func goodMethod(_ s: String) -> String?

You can use the Clang analyzer (Product → Analyze) to help audit the correctness of
your nullability markup, but in the end it’s your responsibility to tell the truth. If you
still want a type to appear as an implicitly unwrapped Optional (perhaps because
you’re just not sure what the truth is), mark it null_unspecified.

C, Objective-C, and Swift | 657

Lightweight generics
To mark an Objective-C collection type as containing a certain type of element, the
element type can appear in angle brackets (<>) between the name of the collection
type and the asterisk. Here’s an Objective-C method that returns an array of strings:

- (NSArray<NSString*>*) pepBoys;

Swift sees the return type of that method as [String], and there will be no need to
cast it down.

In the declaration of an actual Objective-C collection type, a placeholder name stands
for the type in angle brackets. The declaration for NSArray starts like this:

@interface NSArray<ObjectType>
- (NSArray<ObjectType> *)arrayByAddingObject:(ObjectType)anObject;
// ...

The first line says that we’re going to use ObjectType as the placeholder name for the
element type. The second line says that the arrayByAddingObject: method takes an
object of the element type and returns an array of the element type. If a particular
array is declared as NSArray<NSString*>*, the ObjectType placeholder would be
resolved to NSString*. Apple refers to this sort of markup as a lightweight generic,
and you can readily see why.

In Swift, classes marked up as lightweight generics are imported into Swift as actual
generics even if they are not bridged collection types. Suppose I declare my own
Objective-C class, parallel to NSArray:

@interface Thing<ObjectType> : NSObject
- (void) giveMeAThing:(nonnull ObjectType)anObject;
@end

The Thing class arrives into Swift declared as a generic:

class Thing<ObjectType> : NSObject where ObjectType : AnyObject {

Thing has to be instantiated by resolving the generic somehow. Often, it will be
resolved explicitly:

let t = Thing<NSString>()
t.giveMeAThing("howdy") // an Int would be illegal here

Bilingual Targets
It is legal for a target to be a bilingual target — one that contains both Swift files and
Objective-C files. A bilingual target can be useful for various reasons:

• You might want to take advantage of Objective-C language features.
• You might want to incorporate third-party code written in Objective-C.

658 | Appendix A: C, Objective-C, and Swift

• You might want to incorporate your own existing code written in Objective-C.
• Your app itself may have been written in Objective-C originally, and now you

want to migrate part of it (or all of it, in stages) into Swift.
The key question is how, within a single target, Swift and Objective-C hear about one
another’s code in the first place.

Objective-C, unlike Swift, has a visibility problem already: Objective-C files cannot
automatically see one another. Instead, each Objective-C file that needs to see
another Objective-C file must be instructed explicitly to see that file, usually with an
#import directive at the top of the first file:

• In order to prevent unwanted exposure of private information, an Objective-C
class declaration is conventionally spread over two files: a header file (.h) con‐
taining the @interface section, and a code file (.m) containing the
@implementation section.

• Also conventionally, only .h files are ever imported. If declarations of class mem‐
bers, constants, and so forth are to be public, they are placed in a .h file.

Visibility of Swift and Objective-C to one another depends upon those conventions:
it works through .h files. There are two directions of visibility, and they operate sepa‐
rately through two special Objective-C header files:

How Swift sees Objective-C
When you add a Swift file to an Objective-C target, or an Objective-C file to a
Swift target, Xcode offers to create a bridging header. This is a .h file in the
project. Its default name is derived from the target name — such as MyCoolApp-
Bridging-Header.h — but the name is arbitrary and can be changed, provided
you change the target’s Objective-C Bridging Header build setting to match.
(Similarly, if you decline the bridging header and you decide later that you want
one, create a .h file manually and point to it in the target’s Objective-C Bridging
Header build setting.) An Objective-C .h file will then be visible to Swift if you
#import it in this bridging header.

How Objective-C sees Swift
When you build your target, the appropriate top-level declarations of all your
Swift files are automatically translated into Objective-C and are used to construct
a generated interface header within the Intermediates build folder for this target,
deep inside your DerivedData folder. For a target called MyCoolApp, the gener‐
ated interface header is called MyCoolApp-Swift.h. The name may involve some
transformation; a space in the target name is translated into an underscore. You
can examine or change the header name with the target’s Objective-C Generated
Interface Header Name build setting. The generated interface header is how your
Swift code is exposed to Objective-C in general (even in a single-language Swift
project); your own Objective-C files will be able to see your Swift declarations if

C, Objective-C, and Swift | 659

you #import the generated interface header into each Objective-C file that needs
to see them.

To sum up:

• The bridging header is visible in your project navigator; you write an #import
statement here to make your Objective-C declarations visible to Swift.

• The generated interface header is squirreled away in the DerivedData folder; you
#import it to make your Swift declarations visible to your Objective-C code.

Here’s an actual example. Let’s say that I’ve added to my Swift target, called MyCool‐
App, a Thing class written in Objective-C. It is distributed over two files, Thing.h and
Thing.m. Then:

• For Swift code to see the Thing class, I need to #import "Thing.h" in the bridg‐
ing header (MyCoolApp-Bridging-Header.h).

• For Thing class code to see my Swift declarations, I need to #import "MyCool-
App-Swift.h" (the generated bridging header) at the top of Thing.m.

That’s how Objective-C and Swift are able to see one another; but what do Objective-
C and Swift see when they see one another? Xcode makes it easy to find out, using the
code editor’s Related Items menu (Control-1). It contains a Generated Interface hier‐
archical menu:

• In an Objective-C header file (such as Thing.h), the Generated Interface menu
lists the Swift interface. Choose it to see how these Objective-C declarations are
translated into Swift.

• In a Swift file, the Generated Interface menu lists the Objective-C generated
interface header. Choose it to see how your target’s Swift declarations are trans‐
lated into Objective-C.

Before Swift existed, all my iOS apps were written in Objective-C. When Swift came
along, I translated those apps into Swift. I quickly developed a step-by-step procedure
for doing that; here it is:

1. Pick a .m file to be translated into Swift. Objective-C cannot subclass a Swift
class, so if you have defined both a class and its subclass in Objective-C, start
with the subclass. (Leave the app delegate class for last.)

2. Remove that .m file from the target. To do so, select the .m file and use the File
inspector.

3. In every Objective-C file that #imports the corresponding .h file, remove that
#import statement and import in its place the generated interface header (if you
aren’t importing it in this file already).

4. If you were importing the corresponding .h file in the bridging header, remove
the #import statement.

660 | Appendix A: C, Objective-C, and Swift

5. Create the .swift file for this class. Make sure it is added to the target.
6. In the .swift file, declare the class and provide stub declarations for all members

that were being made public in the .h file. If this class needs to adopt Cocoa pro‐
tocols, adopt them; you may have to provide stub declarations of required
protocol methods as well. If this file needs to refer to any other classes that your
target still declares in Objective-C, import their .h files in the bridging header.

7. The project should now compile! It doesn’t work, of course, because you have
not written any real code in the .swift file. But who cares about that? Time for a
beer!

8. Now fill out the code in the .swift file. My technique is to translate more or less
line-by-line from the original Objective-C code at first, even though the outcome
is not particularly idiomatic or Swifty.

9. When the code for this .m file is completely translated into Swift, build and run
and test. If the runtime complains (probably accompanied by crashing) that it
can’t find this class, find all references to it in the nib editor and reenter the
class’s name in the Identity inspector (and press Tab to set the change). Save and
try again.

10. On to the next .m file! Repeat all of the above steps.
11. When all of the other files have been translated, translate the app delegate class.

At this point, if there are no Objective-C files left in the target, you can delete the
main.m file (replacing it with a @main attribute in the app delegate class declara‐
tion) and the .pch (precompiled header) file.

Your app should now run, and is rewritten in pure Swift (or is, at least, as pure as you
intend to make it). Now go back and think about the code, making it more Swifty and
idiomatic. You may well find that things that were clumsy or tricky in Objective-C
can be made much neater and clearer in Swift.

You can also do a partial conversion of an Objective-C class by extending it in Swift.
That can be useful as a stage along the path to total conversion, or you might quite
reasonably write only one or two methods of an Objective-C class in Swift, just
because Swift makes it so much easier to say or understand certain kinds of thing.
However, Swift cannot see the Objective-C class’s members unless they are made
public, so methods and properties that you were previously keeping private in the
Objective-C class’s .m file may have to be declared in its .h file.

C, Objective-C, and Swift | 661

Index

A
ABI stability, 359
aborting, 291
access control (see privacy)
access, exclusive, 312
accessibility, 463, 465
accessors, 537
Accounts preferences, 432, 470, 490
actions, 399, 561

Combine framework, 608
connections, 399
handler, 562
misconfiguring, 403
nil-targeted, 565
selector, 563
target, 561

Ad Hoc distribution, 488, 491
address operator, 36, 633
Address Sanitizer, 596
adopt a protocol, 190
allCases, 143
Allocations instrument, 480
allSatisfy, 239
ampersand (see address operator)
anonymous functions, 44

abbreviated syntax, 46
capture list, 308
define-and-call, 50
inline, 45
parameter list and return type, 44
retain cycles, 307
throws, 284
trailing closures, 47

Any, 223

AnyClass, 227
AnyHashable, 251
AnyObject, 225-227

object identity, 227
suppressing type checking, 225

API, xiv
public, 295
tweaking, 118, 129, 657

app
bundle, 358
delegate, 371
launch process, 369
name, 374, 497, 498

localizing, 483
registering, 475
signing, 470
target, 351
version number, 497
without main storyboard, 372

App Store, 498
distribution, 488

App Store Connect, 493, 498
append, 95, 236
Apple ID, 469
ARC, 577

(see also memory management)
archive

app, 488
documentation, 410
object, 523, 536

arguments, 27
passed on launch, 428

arithmetic operators, 88
Array, 228

663

arrays, 228-244
bridging, 243, 523, 527, 644
C arrays, 634
casting, 230
concatenating, 236
declaration, 229
enumerating, 238
equality, 231
flattening, 237, 241
indexing, 232
initializers, 229
literal, 229
mutating, 232
nested, 233
Optional, 230, 241
properties and methods, 233
randomizing, 238
searching, 235
sorting, 237
subscripting, 232
testing all elements, 239
testing element type, 230
transforming, 239
uniquing, 253

ArraySlice, 232
arrow operator, 26
as, 179, 193, 266
assert, 292
assertion, 457
asset catalog, 359, 363, 493
assignment, 7

compound, 90
conditional, 271
multiple, 104

assistant, 347
associated type, 204

chains, 212
associated value, 141, 267, 273, 276
Attributes inspector, 345, 382
attributes, custom, 77
auditing, 118, 129, 657
authors, 431
autoclosure, 292
autocompletion, 435
automatic signing, 471
automatic variables, 69
autorelease, 581
availability, 412
available, 425

awakeFromNib, 405

B
backslash, 92, 317
backward compatibility, 425
bag, 530
balancing delimiters, 433
base class, 158
base name, 31
Behaviors preferences, 339
beta testing, 492
bilingual target, 659
binary numbers, 84
Binding, 618
binding, conditional, 261, 273, 293
Bitbucket, 432
bitmasks, 255, 629
bitwise operators, 89, 255

(see also option sets)
blame, 431
blocks

C, 44, 655
flow control, 260

body of a function, 26
bookmarking a line of code, 441
Bool, 82
BOOL, 520
Boolean operators, 83
boxing, 644
branching, 260-272

conditional binding, 261
conditional evaluation, 270
if, 260
if case, 270
short-circuiting, 279
switch, 263

break, 279
Breakpoint navigator, 343
breakpoints, 450
bridged types, 512, 642

Any and id, 224, 643
AnyObject and id, 225
Array and NSArray, 243, 527, 644
array elements, 243, 523, 644
casting, 182
CFTypeRefs, 653
Dictionary and NSDictionary, 251
Error and NSError, 287
Foundation, 513, 643

664 | Index

number and NSNumber, 520
Set and NSSet, 530
String and NSString, 97, 515
struct and NSValue, 522, 643

bridging header, 659
build, 4, 337

configurations, 354
phases, 351
settings, 353

bundle
app, 358
display name, 374, 483
framework, 365
identifier, 336
test, 458

C
C, 625-639

(see also Objective-C)
arrays, 634
blocks, 655
data types, 626
enums, 626
functions, 637
numeric types, 86
pointer-to-function, 638, 656
pointer-to-void, 634
pointers, 632
strings, 636
structs, 522, 631

Calendar, 518
call stack, 279, 343, 452
callAsFunction, 319
calling a function, 8, 27
canvas, 377, 380
Capabilities pane, 474
capitalization, 8
capture list, 308
captured variable references, 51

preserving, 57
setting, 57

case
enum, 138
switch statement, 263

CaseIterable, 143
casting, 178-183

safely, 180, 266
categories, 506
caveman debugging, 445

certificate, 470
distribution, 489
exporting, 490
obtaining manually, 474

CFTypeRefs, 652
memory management, 591

chains
associated type, 212
Optional, 112

change bars, 432
Character, 97
character sequence, 97
characters vs. codepoints, 98
characters, escaped, 92
class

changing in nib, 382
clusters, 533
documentation page, 411
members, 17
methods, 133

NSObject, 545
vs. static methods, 173

properties, 68, 130
vs. static properties, 174

protocols, 195
classes, 152-174

(see also object types)
class methods, 173
class properties, 174
deinitializers, 172
documentation, 411
generic, subclassing, 210
hierarchy, 159
inheritance, 159
initializers, 164

inheritance, 167
instances, 153

multiple references, 156
mutating, 38, 154

methods, overriding, 161
extensions, 217
preventing, 163, 298

omitting type name, 142
polymorphism, 174
properties, overriding, 172
reference types, 153
static methods, 173
static properties, 174
subclass and superclass, 158

Index | 665

subclassing, preventing, 160, 298
subscripts, overriding, 163
umbrella type, 223, 227
vs. structs, 152

cleaning, 468
closures, 51-59

(see also anonymous functions)
captured variable references, 51

preserving, 57
setting, 57

escaping, 59, 155
returned from function, 54

Cocoa, 503
actions, 561
categories, 506
data sources, 560
delegation, 556
events, 547
Foundation classes, 512
key–value coding, 540
key–value observing, 566
memory management, 577
notifications, 550
protocols, 508
responder chain, 564
subclassing, 503, 548

Codable, 534
code

bookmarking, 441
change bars, 432
completion, 435
coverage, 461
editing, 433
folding, 433
font, 432
indentation, 434
location, 8, 547, 573
navigating, 439
refactoring, 437
searching, 441
selecting, 434
signing (see signing an app)
snippets, 436
strings, localizing, 483

Code Review editor, 431
codepoints, Unicode, 96

vs. characters, 98
coercion, 85

numeric, 85, 626

Range and NSRange, 514
String and Int, 95

collections
Foundation, 530-533
memory management, 580, 590
Swift, 228-257

colon
adopting protocol, 190
argument label, 31
enum raw value type, 139
generic type constraint, 207
key–value, 245
label, 279
parameter name, 26
superclass, 160
ternary operator, 271
variable type, 70

Combine framework, 604-610
comma

arguments, 27
array literal, 229
condition list, 262
dictionary literal, 245
generic constraints, 214
generic placeholders, 205
parameters, 26
protocol, 190, 193
switch case, 269
tuples, 104
variadics, 34

comments, 4
documentation, 415
MARK, 433, 440

communication, 597
bindings, 618
Combine framework, 604, 621
getting a reference, 600
key–value observing, 604
notifications, 603
SwiftUI, 614
visibility

by instantiation, 598
by relationship, 601
global, 601
through instance property, 597

compactMap, 241
Comparable, 209

synthesizing, 316
compare, 527

666 | Index

comparison operators, 91
ComparisonResult, 527
compatibility, backward, 425
compilation, conditional, 422
compile error, 4

(see also errors, compiler)
Compile Sources build phase, 352
compiler, 4
completion

code, 435
type-over, 433

compliant, key–value coding, 540
Components preferences, 358
composition of protocols, 195
compound assignment operators, 90
computed

properties, 75
property wrappers, 77, 322
variable initialization, 73
variables, 74

concatenating
arrays, 236
strings, 94

condition list, 262
conditional

assignment, 271
binding, 261, 273, 293
compilation, 422
conformance, 222
evaluation, 270
initialization, 71

conditions, 82, 259
configurations, 354
conform to a protocol, 190
connections, 387

action, 399
between nibs, 404
creating, 390, 396, 401
deleting, 395
outlet, 388, 541

Connections inspector, 345, 393, 396
console, 343, 445
Console application, 447
constants, 7, 69, 152

global string, 630
constraints, type, 207

extensions, 221
multiple, 214

contains, 99, 102, 235

continue, 279
control events, 399, 561
control flow (see flow control)
convenience initializers, 164
convention(c), 656
Copy Bundle Resources build phase, 352
copying instances, 156
count, 96, 233, 252
covariant, 177, 211
coverage, code, 461
crash

class not key–value coding compliant, 394,
540, 541

could not cast value, 179
deallocated object, 586
loaded nib but view outlet was not set, 395
not enough bits, 88
simultaneous accesses, 312
unexpectedly found nil, 112, 395
unrecognized selector, 65, 403

creating
action connection, 401
enum, 138
instance, 15, 35, 123
outlet, 396

curly braces, 4, 26, 44, 74, 78, 92, 121, 123, 136,
172, 194, 217, 260

currying, 60
custom attributes, 77
CustomNSError, 287
CustomReflectable, 299
CustomStringConvertible, 192
cycle through a sequence, 274

D
dance, weak–strong, 308
dangling pointers, 578
Data, 523
data sources, 560
data tips, 453
Date, 518
DateComponents, 518
DateFormatter, 519
DateInterval, 519
dates, 518
debug bar, 343
Debug navigator, 342, 452, 477
Debug pane, 343, 452
debugger, Xcode, 449

Index | 667

debugging, 445-456
memory management, 478, 595

Decimal, 521
decimal point, 85
declaration

arrays, 229
dictionaries, 245
enums, 138
extensions, 217
functions, 25
generics, 204
jumping to, 417
object types, 121
operators, 300
protocols, 194
sets, 253
variables, 69

decoding and encoding, 534
default, 264

unknown, 628
defer, 289
deferred initialization, 118, 127
define-and-call, 50
deinit, 172

not called, 303, 587
delayed performance, 574
delegate, 556

memory management, 585
delegating initializers, 128
delegation (see delegate)
deleting an outlet, 395
delimiters, balancing, 433
dependencies, 421
Deployment Target build setting, 425
description, 192
designated initializers, 164, 167
destinations, 357
developer member center, 471
Development Assets build setting, 424
development certificate, 474
development provisioning profile, 473
device

registering, 472, 475
running on, 469
type, 427

Devices and Simulators window, 477
dictionaries, 244-252

casting, 249
creating, 246

declaration, 245
enumerating, 249
equality, 249
keys, 250

hashable, 244
literals, 245
merging, 251
mutating, 247
properties, 249
subscripting, 247
testing type, 249
transformations, 250
unordered, 249
values, 250

Dictionary, 244
didSet, 78
dispatch table, 561
dispatch, dynamic, 178
display name, 374, 483
distributing your app, 488
distribution provisioning profile, 490
do, 288
do...catch, 281
dock, 378
document outline, 378
document tabs, 347
documentation, 409-419

archive, 410
class, 411
comments, 415
delegate, 558
immutable vs. mutable classes, 532
protocols, 509
searching, 410
window, 409

dollar sign, 324, 618
doom, pyramid of, 262
dot-notation, 5, 14

function references, 63
key paths, 541
Optionals, 112
tuples, 105

Double, 84
downcasting (see casting)
drawing

text, 518
view, 504

drop, 240
dropFirst, 99, 236

668 | Index

dropLast, 99, 236
dump, 299, 446
dynamic

dispatch, 178
members, 320
properties, 569

E
early exit, 278
editing

code, 432
project, 351
storyboard, 377
target, 351
xib file, 379

editor, 345
nib, 376
panes, 346

Empty Window example project, 335, 380, 504
encoding and decoding, 534
endIndex, 101, 234
entitlements, 470, 474
entry point

code, 369, 571
storyboard, 379

enumerate a sequence, 274
enumerated, 105, 239, 276
enums, 138-149

(see also object types)
associated value, 141, 267, 273, 276, 314
C enums, 626
cases, 138

enumerating, 143
Comparable, 316
declaration, 138
equality, 139, 143, 314
indirect, 158
initializers, 144
initializing, 138
methods, 146
omitting type name, 139
properties, 145
raw value, 139
subscripts, 148

environment overrides (debug bar), 445
environment variables, 428
equal sign, 7
equality

Objective-C, 525

operators, 91
Swift, 313

Equatable, 143, 223, 235, 245
synthesizing, 313

Error, 280
ErrorPointer, 650
errors, 280-287

catching, 281
Objective-C, 650
throwing, 281

asynchronous, 329
errors, compiler

ambiguous, 33
cannot convert value to specified type, 206
cannot find self in scope, 132
cannot invoke index, 235
cannot use instance member, 131
custom, 341
escaping closure captures mutating self, 155
expected declaration, 8
expressions are not allowed, 8
heterogeneous collection, 229
initializer requirement, 199
initializing from a metatype value, 187
overlapping accesses, 312
protocol can only be used, 209
required initializer must be provided, 200
return from initializer, 126
self used, 127
unable to infer return type, 46
use of unresolved identifier self, 131
value must be unwrapped, 108

escaped characters, 92
escaping, 59, 155
evaluation, conditional, 270
event-based programming, 571
events, 399, 547
exception breakpoint, 451
exclamation mark, 108, 109, 115, 179, 199
exclusive access, 312
exit, early, 278
explicit specialization, 209
explicit variable type, 70
exporting certificates, 490
exporting from an archive, 488
ExpressibleByLiteral, 201
extend (see extensions)
extensions, 217, 506

(see also categories)

Index | 669

declaring, 217
generics, 221

type constraints, 221
object types, 217, 218
overrides, 217
protocols, 219, 507
restrictions on, 217
structs, 218

external parameter names, 30
initializers, 123
methods, 644
subscripts, 136

F
factory

functions, 56
instances, 185
Objective-C class method, 649

failable initializers, 129, 168
fallthrough, 269, 279
false, 82
fatal (see crash)
fatalError, 291
File inspector, 344
file templates, 364
file, Swift, structure, 9
fileprivate, 295
File’s Owner, 389
filter, 239, 250
final, 160, 163
Find navigator, 340, 442
finding, 441

(see also searching)
first, 99, 234
First Responder proxy object, 566
firstIndex, 99, 235
Fix-it, 439
flag, 82
flatMap, 115, 241
flavors (of object type), 6
Float, 87
flow control, 259-294

branching, 260
(see also branching)

jumping, 278
(see also jumping)

looping, 272
(see also looping)

folder-linked group, 350

renaming, 374
folders in an Xcode project, 349, 363
folding, code, 433
font, 518
for, 274
for case, 276
for...in, 274
forced unwrap operator, 108
forEach, 239
format string, 446
Foundation framework, 14, 512
frameworks, 14, 365

creating, 365
linking, 365
Swift, 359

function builders, 329
function in function, 39
functional events, 548
functions, 8, 25-66

anonymous, 44
(see also anonymous functions)

base name, 31
body, 26
C blocks, 655
C functions, 637
calling, 8, 27
closures, 51
curried, 60
declaration, 8, 25
default parameter values, 33
define-and-call, 50
dynamic, 321
external parameter names, 30
generic, 205
global, 9, 15

C, overshadowed, 637
class method instead, 218

ignored parameters, 34
instances as, 319
internal parameter names, 27
local, 39
mathematical, 90
modifiable parameters, 35
overloading, 32
recursion, 40
reference, 61
result, 25

ignoring, 28
rethrows, 286

670 | Index

return type, 26
returned from function, 54
signature, 30
throws, 284

calling, 285
trailing closures, 47
type, 40
values, 40
variadic parameters, 34
where clauses, 222

G
garbage collection, 303
gauges, 343, 477
generated interface, 345

header, 660
generic pointer, 634
generics, 201-216

adopting protocol conditionally, 222
associated type chains, 212
classes, subclassing, 210
declaration, 204
explicit specialization, 209
extensions, 221
functions, 205
object types, 205
polymorphism, 211
protocols, 204

constraining associated type, 215
resolution, 203

contradictory, 206
explicit, 209

reverse, 327
specialization, 203

(see also generics, resolution)
type constraints, 207

extensions, 221
multiple, 214

type, telling compiler, 208
where clauses, 214

extensions, 221
methods, 222

getter, 74
Objective-C, 537, 539

Git, 429
GitHub, 368, 432
GitLab, 432
global

constants, 152

functions, 9, 15
C, overshadowed, 637
class method instead, 218

variables, 9, 67
initialization, 80

globally visible instances, 602
golden rule of memory management, 579
groups, 339, 350

blue, 363
folder-linked, 350
renaming, 374

guard, 292
guard case, 294
guard let, 293

H
hand-tweaking the APIs, 118, 129, 657
handlers, 44

(see also functions)
hash, 526
hash character, 92
hashability

Objective-C objects, 526
Swift objects, 315

Hashable, 244, 252
synthesizing, 315

Hasher, 315, 526
hashValue, 245, 315
hasPrefix, 95
hasSuffix, 95
header files, 417

bridging, 659
Core Graphics, 506
generated interface, 660
jumping to, 417
Objective-C, 659
Swift, 15, 418

heads-up display, 391
hexadecimal number, 84
hierarchy

class, 159
view, 378

History inspector, 344, 431
HUD, 391

I
IBAction, 400
IBInspectable, 406
IBOutlet, 390

Index | 671

weak, 591
icons, 359, 493
id, 223, 640
identifiers and reserved words, 22
Identity inspector, 345, 382
identity operator, 227
identity, developer, 470
if, 260
if case, 270
if let, 261
immutable Objective-C classes, 532
implicit initializer, 123, 149, 164
implicitly unwrapped Optional, 109
import statement, 9, 365
in, 44
index

array, 232
enumerate with, 105, 239, 276
string, 101, 103

IndexSet, 530
indices, 234, 275
indirect, 158
inferred variable type, 70

learning, 87
Info.plist, 359, 361, 497

settings dependent on device type, 427
informal protocols, 512
inheritance, 159
init, 123

with self, 128
with super, 167
with type reference, 185

init(coder:), 200
initialization

properties, 125, 130
deferred, 118, 127
lazy, 131
self, 131

variables, 7, 69
computed, 73
conditional, 71
lazy, 79
Optionals, 111

initializers, 35, 123
class, 164
communication through, 599
convenience, 164
delegating, 128
designated, 164

enum, 144
failable, 129, 168
implicit, 123

class, 164
enum, 138
struct, 149

inheritance, 166
Objective-C, 648
overriding, 167
property wrapper, 323
recursive, 128
required, 171, 185, 199
struct, 149

inout, 36
input, 25
insert, 101, 236
Inspectors pane, 344
instance

methods, 16, 133
properties, 16, 68, 130
variables, Objective-C, 537

instances, 15, 15-20, 600
as functions, 319
communication (see communication)
copying, 156
creation, 16, 35, 123, 600
getting a reference, 600
globally visible, 602
initial, 370
lifetime, 600
literals instead, 201
multiple references, 156
mutating, 38, 154
nib-based, 383

additional configuration, 404
memory management, 590

relationships between, 601
state, 19
type, 175

learning, 183
telling compiler, 178
testing, 180

instantiation, 15, 35, 123, 600
nib-based, 375
visibility by, 598

Instruments, 477, 595
Int, 84
Interface Builder, 376
interface tests, 456

672 | Index

internal, 295
internal identity principle, 174
internal parameter names, 27
internationalization (see localization)
internet as documentation, 419
interpolation, string, 94, 192

custom, 325
interval operators, 102
introspection, 298, 510, 540
iOS Deployment Target build setting, 425
is, 180, 193
isEmpty, 95, 233, 252
isEqual, 525
Issue navigator, 341
issues, live, 439
iteration, 259
iTunes Connect (see App Store Connect)

J
joined, 95, 237
JSON, 536
jump bar, 345, 440

Debug pane, 452
documentation, 411
menu, sections, 440
nib editor, 380
Related Items menu, 345

jumping, 278-294
aborting, 291
break, 279
continue, 279
fallthrough, 279
guard, 292
label, 279
return, 279
throw, 280

K
Key Bindings preferences, 338
key paths

Cocoa, 541
Swift, 316

keyboard shortcuts in Xcode, 338
keys (dictionary), 244
KeyValuePairs, 249
key–value coding, 540
key–value observing, 566

Published instead, 609
retain cycles, 588

key–value pairs, 244
KVC, 540
KVO, 566

L
labels

flow control, 279
function call, 30

(see also external parameter names)
nib editor, 380

changed by outlet, 392
tuples, 105

last, 99, 234
lastIndex, 99, 235
launch images, 494
launch nib, 495
launch process of an app, 369
layer, configuring in the nib, 406
lazy

initialization, 79
instance properties, 131

loading of views, 384
sequence, 278

Leaks instrument, 480
leaks, memory, 303, 477, 479, 578, 584
let, 7, 69, 154
Library, 380
lifetime, 8, 12

(see also scope)
lifetime events, 548
lightweight generics, 244, 658
line, 3
linking, 365
literals

array, 229
dictionary, 245
expressible by, 201
logging, 449
numeric, 84
string, 92

multiline, 93
raw, 92

live issues, 439
LLDB, 454
loading a nib, 375, 383
local variables, 69
Locale, 519
localization, 482-488
LocalizedError, 287

Index | 673

Logger, 447
logging, 446
logical operators, 83
looping, 259, 272-277

for, 274
short-circuiting, 279
while, 272

lowercased, 95

M
main

attribute (@main), 369
function, Objective-C, 369
storyboard, 362, 371

app without, 372
swift file, 9, 370
view of view controller, 378

loaded from nib, 384
mangling, name, 642
map, 115, 240
mapValues, 250
MARK comments, 433, 440
Markdown, 415
marketing icon, 494
math functions, 90
max, 235
Measurement, 524
MeasurementFormatter, 524
member center, 471
members, 13
memberwise initializer, 150, 438
memory graph, 478
memory leaks, 303, 477, 479, 578, 584
memory management, 303-312, 577-596

anonymous functions, 307
ARC, 579
autorelease pool, 581
CFTypeRefs, 591
collections, 580, 590
dangling pointers, 578
debugging, 595
delegates, 585
golden rule, 579
graph, 478
key–value observing, 588
leaks, 303, 479, 578
mutable Objective-C classes, 594
nib-loaded objects, 590
nilifying unsafe references, 586

notifications, 587
ownership, 579
properties, 583

Objective-C, 593
protocol references, 311
retain cycles, 303, 584
retains, unusual, 590
timers, 589
Unmanaged, 593
unowned references, 306, 585
unsafe references, 586
UnsafePointer, 635
weak references, 305, 585

merging dictionaries, 251
messages, 5

Optionals, 112
self, 19
sending optionally, 198, 510

metatype, 187
methods, 13, 133

(see also functions)
class, 133
enums, 146
external parameter names, 644
inheritance, 159
instance, 16, 133

secret life, 135
mutating, 147, 151, 154
Objective-C, 644
omitting type name, 142
optional, 197, 509
overriding, 161

extensions, 217
polymorphism, 175
preventing, 163, 298

selectors, 65
static, 133

vs. class, 173
structs, 151
where clauses, 222

min, 235
minimap, 380, 441
Mirror, 298
Model–View–Controller, 611
Model–View–Presenter, 612
modifiers, 616
modules, 9, 14, 365

privacy, 297
multiple selection, 434

674 | Index

mutable Objective-C classes, 532
NSCopying, 594

mutating
instance, 38, 154
methods, 147, 151, 154

MVC, 611

N
name mangling, 642
namespaces, 13, 137, 152, 218

Objective-C, 639
navigating code, 439
Navigator pane, 339
nested

arrays, 233
scopes, 288
types, 14, 122, 137

Never, 291
NeXTStep, 376
nib editor, 376
nib files, 362, 375-407

dependent on device type, 428
launch, 495
loading, 383
localizing, 483

nib objects, 379
nib owner, 389
nib-based instantiation, 375, 590

additional configuration, 404
nib-loading mechanism, 383
nil, 110

Objective-C collections, 532
signaling failure, 116
signaling no data, 118, 127
unwrapping, 111

nil-coalescing operator, 271
nil-targeted actions, 565
nilifying unsafe references, 586
nonnull, 657
nonobjc, 642
Notification, 549
Notification.Name, 550

forming from string, 554
NotificationCenter, 549
notifications, 550

appropriate, 554, 603
Combine framework, 607
posting, 554
registering, 551

retain cycles, 587
unregistering, 553, 587

NSArray, 243, 527
NSAttributedString, 518
NSCoder, 537
NSCoding, 200
NSCopying, 508, 594
NSCountedSet, 530
NSDecimalNumber, 521
NSDictionary, 251, 529
NSError, 281
NSErrorPointer, 650
NSHashTable, 590
NSKeyedArchiver, 523, 537
NSLog, 446
NSMapTable, 590
NSMutableArray, 243, 528
NSMutableDictionary, 252, 529
NSMutableOrderedSet, 530
NSMutableSet, 530
NSMutableString, 516
NSNotFound, 515
NSNull, 531
NSNumber, 520
NSObject, 159, 545-546

comparison, 527
equality, 525
hashability, 526

NSObjectProtocol, 545
NSOrderedSet, 530
NSPointerArray, 590
NSRange, 513
NSRegularExpression, 517
NSSet, 529
NSString, 97, 515
NSValue, 522
NS_ENUM, 627
NS_OPTIONS, 629
NS_SWIFT_NAME, 646
nullable, 657
numeric

literals, 84
types

C, 86, 626
Swift, 84

O
objc, 66, 197, 226, 297, 311, 539, 627, 641
ObjcBool, 626

Index | 675

objcMembers, 642
object types, 121-174

comparison, 189
declaration, 121
definition over multiple files, 218
extensions, 217
flavors, 6
generic, 205

extensions, 221
initializers, 123
methods, 133
nested, 137
Objective-C, 640
passing or assigning, 187
polymorphism, 184
printing, 183
properties, 130
reference vs. value, 153
references to, 183

Objective-C, 639
scope, 121
subscripts, 134
umbrella types, 223

Objective-C, 625-658
(see also bridged types)
accessors, 76, 537
categories, 506
class factory methods, 649
collections, 530-533, 658
comparison, 527
equality, 525
hashability, 526
header files, 659
id, 223, 640
immutable vs. mutable classes, 532
initializers, 648
instance variables, 537
lightweight generics, 244, 658
methods, 644

internal parameter names, 647
overloading, 648
renamification, 645
variadic parameters, 648

namespaces, 639
object references, 639
object types, 640
Optionals, 116
properties, 538
protocols, 508

selectors, 652
subscripts, 528-530
Swift

class member exposure, 641
invisible features, 640
target, bilingual, 659
translating app into, 660

objects, 5
(see also object types)
communication (see communication)
graphing, 478
same, 227

Objects library, 380
ObservableObject, 621
observers, setter, 78
octal numbers, 84
opaque types, 327
open, 295
operator syntax, 5, 300
operators, 300-303

arithmetic, 88
custom, 301

bitwise, 89, 255
(see also option sets)

Boolean, 83
Combine framework, 607
comparison, 91
compound assignment, 90
creating, 302
declaration, 300
equality, 91

custom, 313
identity, 227
interval, 102
nil-coalescing, 271
overriding, 301
precedence, 90, 300
ternary, 271
unwrap, 108, 112

Optimization Level build setting, 355
optimizing, 477
option sets, 255, 630

empty, 256
optional

message sending, 198, 510
methods, 197, 509
properties, 197
unwrap operator, 112

Optional chains, 112

676 | Index

Optionals, 106-119
array of, 230, 241
casting, 181
chain, 112
comparison, 116
creating, 107
declaration, 107
deferred initialization, 118, 127
double-wrapped, 198, 234
empty, 110
enum, 142, 203
equality, 116
flatMap, 115
implicitly unwrapped, 109, 657
initialization, 111
map, 115
messages to, 112
nil, 110
Objective-C, 116
properties, 127
type, 107

testing, 181
unwrapping, 108, 112, 261, 265, 271, 273,

293
wrapping, 107

OptionSet, 255, 630
organization identifier, 336
Organizer window, 489
orientation of interface, 497
OSLog, 447
outlet collections, 399
outlets, 388

creating, 396
deleting, 395
key–value coding, 541
misconfiguring, 394

output, 25
overflow, 89
overlay, Swift, 513, 643
overloading, 32

Objective-C, 648
overriding, 161

extensions, 217
initializers, 167
polymorphism, 175
preventing, 163, 298

overscroll, 433
owner

memory management, 579

nib, 389

P
packages, Swift, 366
pane, editor, 346

assistant, 347
parameter list, 26

anonymous function, 44
omitting, 48

parameters, 25
default values, 33
external names, 30

initializers, 123
methods, 644
subscripts, 136

functions as, 40
ignoring, 34
internal names, 27
modifiable, 35
variadic, 34

parentheses
calling a function, 27
coercion, 85
declaring a function, 26
instantiating an object type, 16, 35, 123
order of operations, 84, 90
signifying Void, 29, 106
tuples, 104

partial range, 103, 233, 234, 246, 265
patterns, switch statement, 264
persistence (see lifetime)
persisting references, 304
pipeline

Combine framework, 604
SwiftUI binding, 621

placeholders
code, 435
generic, 201

(see also generics)
nib editor (see proxy objects)

pointee, 38, 633
pointer-to-void, 634
pointers, 37, 156, 640, 654

C, 632
dangling, 578
generic, 634
raw, 634

polymorphism, 174
generics, 211

Index | 677

pool, autorelease, 581
popFirst, 236
popLast, 236
Portal, 471
posting a notification, 550
precedence, 300
precondition, 292
prefix, 100, 234, 240
presenter, 612
previews, video, 496
print, 3, 34, 192, 445

(see also logging)
privacy, 20, 294-298
private, 295
product name, 336
production certificate, 489
profile (see provisioning profile)
profiling, 477
project, 335

file, 349
folder, 348, 374
renaming, 374
templates, 335, 426

backward compatible, 426
window, 338

tabs and windows, 347
Project navigator, 339, 440
projected value, 324
properties, 13, 67, 130

(see also variables)
accessors, 539
binding, 618
class, 68, 130
communication through, 597
computed, 75

(see also variables, computed)
property wrappers, 77, 322
self, 131

dynamic, 321, 569
enums, 145
initialization, 125, 131

classes, 164
computed, 73
deferred, 118, 127
lazy, 81

inspectable, 406
instance, 16, 68, 130
memory management, 583
Objective-C, 538

memory management, 593
omitting type name, 142
Optional, 127
optional, 197
overriding, 172
private, 22
releasing, 584
state, 616
static, 68, 130

initialization, 80
struct, 152
vs. class, 174

structs, 151
property list, target (see Info.plist)
property lists, 533
property wrappers, 77, 322

initializing, 323
projected value, 324
wrapped value, 322

protocols, 189-201, 508
adopter, 204
adopting, 190
associated type, 204

chaining, 212
constraining, 215

casting, 193
class, 195
composition, 195
conditional conformance, 222
conforming to, 190
declaration, 194
delegate, 558
documentation, 509
extensions, 219, 507

constraining associated type, 221
invisible to Objective-C, 558

generic, 204
constraining associated type, 215

implicitly required initializers, 199
informal, 512
memory management, 311
Objective-C, 508
optional members, 197, 510
synthesizing, 313
testing type, 193

provisioning profile, 470
development, 473
distribution, 490
universal, 473

678 | Index

proxy objects, 379, 389
public, 295
Published, 608
Publisher, 604
pyramid of doom, 262

Q
query events, 548
question mark, 107, 115, 180, 198, 265, 271
Quick Help, 344, 414
Quick Look a variable, 453
quotes, 92

R
random, 91
randomElement, 238
Range, 102
ranges, 102

coercion to NSRange, 514
indexing with, 103, 232
iterating in reverse, 302
partial, 103, 233, 234, 246, 265
string, 97, 217, 514

raw pointer, 634
raw value, 139
RawRepresentable, 140
read-only variables, 75
Real, 90
recursion, 40
recursive

initializers, 128
references, 158

reduce, 242
refactoring, 437
reference types, 153

memory management, 303
references, 6, 67

functions, 61
getting, 600
object types, 183

Objective-C, 639
persisting, 304
recursive, 158
same object, 156, 227
strong, 304
unowned, 306, 585
unsafe, 586
weak, 305, 585

registering

app, 475
device, 472, 475
for a notification, 551
for key–value observing, 567

regular expressions, 517
Related Items menu, 345
release, 579
releasing a property, 584
remove, 101, 236
removeFirst, 236
removeLast, 236
removeSubrange, 103
removeValue, 248
renamification, 645
renaming a project, 373
replaceSubrange, 103
replacing, 442
Report navigator, 343, 461
required initializers, 171, 185, 199
reserved words, 22
resolution, screen, 427
resolving a generic, 203, 209
resources, 362

app bundle, 362
asset catalog, 363
dependent on build type, 424
dependent on device type, 427
Swift package, 367

responder, 564
chain, 564

responds, 510
Result, 329
result of a function, 25

ignoring, 28
retain, 579
retain count, 578
retain cycles, 303, 584

anonymous functions, 307
key–value observing, 588
notifications, 587
timers, 589

retains, unusual, 590
rethrows, 286
return, 26

function from function, 54
omitting, 27, 48
type

anonymous function, 44
function, 26

Index | 679

reverse generics, 327
reversed, 102, 237
root class, 158
root view controller, 371
router, 612
run, 4, 337

device, 469
Simulator, 443

S
sample code, Apple’s, 418
scalars, 6, 520, 626
Scanner, 517
scene

delegate, 371
dock, 378
storyboard, 378
window, 371, 426

Scheme pop-up menu, 357
schemes, 355

renaming, 374
scientific notation, 85
scope, 12

exiting early, 278
nested, 288
object types, 121
variable, 67

screen resolution, 427
screencasts, 496
screenshots, 464, 495
SDKs, 358, 365

older, 426
searching

arrays, 235
code, 441
documentation, 410
symbols, 416

selection, multiple, 434
Selector, 651
selectors, 65, 651
self, 19

escaping functions, 59, 155, 309
initializers, 127, 166
instance methods, 20, 122
polymorphism, 176
property initialization, 131
static/class methods, 122
type name with, 187
type of, 183

Self, 183, 204, 213
semicolon, 3
sequence

array initializer, 229
character, 97
cycling through, 274
enumerating with index, 105, 276
function, 277
generating, 274
lazy, 278
range indexing, 103
transforming, 276

Sequence, 274
serialization, 533
Set, 252
sets, 252-257, 530

declaration, 253
equality, 254
hashable elements, 252

NSObject, 526
initializers, 253
literals, 253
mutating, 254
operations, 254
option sets, 255, 630
ordered, 530
sampling, 253
transformations, 253
unordered, 252

setter, 74
Objective-C, 537, 539
observers, 78

shared application instance, 371
short-circuiting, 279
shuffle, 238
side effects, 28
signature of a function, 30
signing an app, 470

automatic, 471
manual, 474

signposts, 481
Simulator, 443
singleton, 80
Size inspector, 345, 383
slice, 232
snippets

creating, 437
Snippets library, 436
structural, 438

680 | Index

some, 327
sort, 237
sorted, 237
Source Control navigator, 340, 430
Source Control preferences and menu, 429
specializing a generic, 203, 209
splatting, 34
split, 100, 237
square brackets, 134, 229, 245
stack, call, 279, 343, 452
startIndex, 101, 234
starts, 235
State, 324, 617
state of an instance, 19
statement, 3
static

members, 17
methods, 133

vs. class methods, 173
properties, 68, 130

initialization, 80
struct, 152
vs. class properties, 174

stepping, 455
stored variables, 74
storyboard files, 362

(see also main storyboard)
compiled, 359
dependent on device type, 428
editing, 377
entry point, 379
launch, 495

stride, 276
String, 92
String.Index, 101
stringly typed, 630
strings, 92-103

attributed, 518
C strings, 636
characters, 97
coercion, 95
comparison, 95
concatenating, 94
constants, global, 630
drawing, 518
equality, 95
format, 446
indexing, 101, 103
initializers, 95

interpolation, 94, 192
custom, 325

length, 96, 98
literals, 92

multiline, 93
raw, 92

modifying, 103
notification names, 554
range, 97, 514
searching, 97
substrings, 97-103, 517
Unicode, 96

strong references, 304
structs, 149-152

(see also object types)
bridged to Objective-C classes, 522, 642
C structs, 522, 631
initializers, 149

extensions, 218
methods, 151
omitting type name, 142
properties, 151
static properties, 152
subscripts, 151
vs. classes, 152

styled text, 518
subclass, 158
subclassing

Cocoa, 503, 548
preventing, 160, 298
UILabel, 505
UIView, 504, 548
UIViewController, 504, 549

Subscriber, 604
subscripting, 101, 103, 232, 247

Objective-C, 528-530
subscripts, 134

classes, 163
enums, 148
overriding, 163
structs, 151

subsort, 237
substitution principle, 174
Substring, 100
subview, 378
suffix, 100, 234
super, 163

initializers, 167
superclass, 158

Index | 681

superview, 378
supported interface orientations, 497
swapAt, 238
swapping variables, 104
Swift, 3-312

header, 15
history, xiii
Objective-C bilingual target, 659
overlay (Foundation), 513, 643
packages, 366

Swift Numerics (package), 90
SwiftUI, xvi, 324, 329, 376, 614-623

bindings, 618
Combine framework, 621
function builders, 615
modifiers, 616
state properties, 616
visibility by instantiation, 615

switch, 263, 628
swizzling, 569
Symbol navigator, 340, 440
symbolic breakpoint, 451
symbols, searching for, 416
syntax checking, 439
synthesizing protocols, 313
system version, 425

T
tabs, 347
target, 351

bilingual, 659
framework, 365
test, 456

Targeted Device Family build setting, 424
target–action, 561
team, 469
templates

file, 364
project, 335

backward compatible, 426
ternary operator, 271
test bundle, 458
Test Failure breakpoint, 461
Test navigator, 342, 460
testable, 458
TestFlight, 492
tests, 456-468

asynchronous, 461
performance, 462

report, 467
screenshots, 464
skipping, 457
target, 456
test plans, 465
UI, 463
unit, 458

thinning an app, 491
throw, 281
throws, 284
Time Profiler instrument, 480
timers, 555

retain cycles, 589
times, 518
top level, 9, 15

(see also global)
top-level objects (nib), 378
trailing closures, 47
true, 82
try, 285
tuples, 104
tweaking the APIs, 118, 129, 657
type

checking, suppressing, 225
constraints, 207

multiple, 214
eraser, 251
function, 40
instance vs. variable, 175
name, omitting, 139
of instance, testing, 180
opaque, 327
Optional, 107
placeholders, 201

(see also generics)
references, 183
variable, 7, 70

Type, 187
type alias, 41, 106
type(of:), 183
type-over completions, 433
typecasting (see casting)
types, 121

(see also object types)

U
UDID, 470
UI tests, 456
UIApplication, 371

682 | Index

UIApplicationMain, 371
UIBackgroundTaskIdentifier, 72
UIControl, 399, 561
UILabel, 505
UIPickerView, 560
UIResponder, 564
UISceneSession, 371, 426
UIView, 504, 548

(see also views)
UIViewController, 504, 549

(see also view controller)
UIWindowScene, 371
umbrella types, 223
underflow, 89
underscore

argument label, 31
assignment to, 28, 104
mop-up switch case, 264
parameter name, 34, 62

anonymous function, 47
property wrapper instance, 324

Unicode, 92
UnicodeScalar, 96
unique an array, 253
Unit, 524
unit tests, 456
universal app, 424
universal provisioning profile, 473
unknown default, 628
Unmanaged, 593
unowned references, 306, 585
unregistering

for a notification, 553, 587
for key–value observing, 568, 588

unsafe references, 586
UnsafeMutablePointer, 37, 632
UnsafeMutableRawPointer, 633
UnsafePointer, 632

memory management, 635
UnsafeRawPointer, 633

casting to CFTypeRef, 654
unwrapping an Optional, 108
updateValue, 248
uppercased, 95
URL, 518
User Defined Runtime Attributes, 406
user events, 548
UserDefaults, 152, 602

nonproperty-list types in, 536

UTF-8, UTF-16, UTF-32, 96

V
value types, 153

memory management, 311
values (dictionary), 244
var, 7, 69, 154
variables, 6, 67-82

coercion, 86
computed, 74
declaration, 7, 69

initialization, 69
initialization, computed, 73

façade, 76
functions as value of, 40
global, 9, 67

initialization, 80
initialization, 7

Optional, 111
lazy, 79
lifetime, 8, 67
local, 69
read-only, 75
scope, 67
setter observers, 78
stored, 74
swapping, 104
type, 7, 70

vs. instance type, 175
variables list, 343, 452
variadic parameters, 34

Objective-C, 648
version control, 429
version string, 497
video previews, 496
view controller, 378, 384

initial, 371, 379, 384
view debugging, 454
views, 375

drawing, 504
VIPER, 614
visibility, 12

(see also scope)
by instantiation, 598
by relationship, 601
through instance property, 597

Void, 29, 106
void, 634

Index | 683

W
warnings, compiler, 4

additional unknown values, 267, 628
code will never be executed, 27
custom, 341
result of call is unused, 28
switch must be exhaustive, 628
trailing closure is confusable with the body

of the statement, 278
weak references, 305, 585
weak–strong dance, 308
where, 214, 221, 266, 276
while, 272
while case, 273
while let, 273
wildcard provisioning profile, 473
willSet, 78
window tabs, 347

withUnsafePointer, 633
wrapped value, 322
wrappers, property, 77, 322

X
XC wildcard provisioning profile, 473
xcloc bundle, 484
Xcode, 335-500

(see also nib editor)
xib files, 362

editing, 379
xliff files, 483

Z
zip, 246
zombies, 596

684 | Index

About the Author
Matt Neuburg started programming computers in 1968, when he was 14 years old, as
a member of a literally underground high school club, which met once a week to do
timesharing on a bank of PDP-10s by way of primitive teletype machines. He also
occasionally used Princeton University’s IBM-360/67, but gave it up in frustration
when one day he dropped his punch cards. He majored in Greek at Swarthmore Col‐
lege, and received his PhD from Cornell University in 1981, writing his doctoral dis‐
sertation (about Aeschylus) on a mainframe. He proceeded to teach Classical
languages, literature, and culture at many well-known institutions of higher learning,
most of which now disavow knowledge of his existence, and to publish numerous
scholarly articles unlikely to interest anyone. Meanwhile he obtained an Apple IIc
and became hopelessly hooked on computers again, migrating to a Macintosh in
1990. He wrote some educational and utility freeware, became an early regular con‐
tributor to the online journal TidBITS, and in 1995 left academe to edit MacTech
magazine. In August 1996 he became a freelancer, which means he has been looking
for work ever since. He is the author of Frontier: The Definitive Guide, REALbasic:
The Definitive Guide, and AppleScript: The Definitive Guide, as well as Programming
iOS 14 (all for O’Reilly Media).

Colophon
The animal on the cover of iOS 14 Programming Fundamentals with Swift is a harp
seal (Pagophilus groenlandicus), a scientific name that translates to “ice-lover from
Greenland.” These animals are native to the northern Atlantic and Arctic Oceans,
and spend most of their time in the water, only going onto ice packs to give birth and
molt. As earless (“true”) seals, their streamlined bodies and energy-efficient swim‐
ming style make them well-equipped for aquatic life. While eared seal species like sea
lions are powerful swimmers, they are considered semiaquatic because they mate and
rest on land.

The harp seal has silvery-gray fur, with a large black marking on its back that resem‐
bles a harp or wishbone. They grow to be 5–6 feet long, and weigh 300–400 pounds
as adults. Due to their cold habitat, they have a thick coat of blubber for insulation. A
harp seal’s diet is very varied, including several species of fish and crustaceans. They
can remain underwater for an average of 16 minutes to hunt for food and are able to
dive several hundred feet.

Harp seal pups are born without any protective fat, but are kept warm by their white
coat, which absorbs heat from the sun. After nursing for 12 days, the seal pups are
abandoned, having tripled their weight due to their mother’s high-fat milk. In the
subsequent weeks until they are able to swim off the ice, the pups are very vulnerable

to predators and will lose nearly half of their weight. Those that survive reach matur‐
ity after 4–8 years (depending on their sex) and have an average lifespan of 35 years.

Harp seals are hunted commercially off the coasts of Canada, Norway, Russia, and
Greenland for their meat, oil, and fur. Though some of these governments have regu‐
lations and enforce hunting quotas, it is believed that the number of animals killed
every year is underreported. Public outcry and efforts by conservationists have resul‐
ted in a decline in market demand for seal pelts and other products, however.

Many of the animals on O’Reilly covers are endangered; all of them are important to
the world.

The cover illustration is by Karen Montgomery, based on a black and white engrav‐
ing from Wood’s Animate Creation. The cover fonts are Gilroy Semibold and Guard‐
ian Sans. The text font is Adobe Minion Pro; the heading font is Adobe Myriad
Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

There’s much more
where this came from.
Experience books, videos, live online
training courses, and more from O’Reilly
and our 200+ partners—all in one place.

Learn more at oreilly.com/online-learning

©
20

19
 O

’R
ei

lly
 M

ed
ia

, I
nc

. O
’R

ei
lly

 is
 a

 re
gi

st
er

ed
 tr

ad
em

ar
k

of
 O

’R
ei

lly
 M

ed
ia

, I
nc

. |
 17

5

	Cover
	Copyright
	Table of Contents
	Preface
	The Scope of This Book
	From the Preface to the First Edition (Programming iOS 4)
	Versions
	Acknowledgments
	Conventions Used in This Book
	Using Code Examples
	O’Reilly Online Learning
	How to Contact Us

	Part I. Language
	Chapter 1. The Architecture of Swift
	Ground of Being
	Everything Is an Object?
	Three Flavors of Object Type
	Variables
	Functions
	The Structure of a Swift File
	Scope and Lifetime
	Object Members
	Namespaces
	Modules
	Instances
	Why Instances?
	The Keyword self
	Privacy
	Design

	Chapter 2. Functions
	Function Parameters and Return Value
	Void Return Type and Parameters
	Function Signature

	External Parameter Names
	Overloading
	Default Parameter Values
	Variadic Parameters
	Ignored Parameters
	Modifiable Parameters
	Calling Objective-C with Modifiable Parameters
	Called by Objective-C with Modifiable Parameters
	Reference Type Modifiable Parameters

	Function in Function
	Recursion
	Function as Value
	Anonymous Functions
	Using Anonymous Functions Inline
	Anonymous Function Abbreviated Syntax

	Define-and-Call
	Closures
	How Closures Improve Code
	Function Returning Function
	Closure Setting a Captured Variable
	Closure Preserving Captured Environment
	Escaping Closures

	Curried Functions
	Function References and Selectors
	Function Reference Scope
	Selectors

	Chapter 3. Variables and Simple Types
	Variable Scope and Lifetime
	Variable Declaration
	Computed Variable Initialization
	Computed Variables
	Computed Properties
	Property Wrappers

	Setter Observers
	Lazy Initialization
	Singleton
	Lazy Initialization of Instance Properties

	Built-In Simple Types
	Bool
	Numbers
	String
	Character and String Index
	Range
	Tuple
	Optional

	Chapter 4. Object Types
	Object Type Declarations and Features
	Initializers
	Properties
	Methods
	Subscripts
	Nested Object Types

	Enums
	Raw Values
	Associated Values
	Enum Case Iteration
	Enum Initializers
	Enum Properties
	Enum Methods
	Why Enums?

	Structs
	Struct Initializers
	Struct Properties
	Struct Methods
	Struct as Namespace

	Classes
	Value Types and Reference Types
	Subclass and Superclass
	Class Initializers
	Class Deinitializer
	Class Properties
	Static/Class Members

	Polymorphism
	Casting
	Casting Down
	Type Testing and Casting Down Safely
	Type Testing and Casting Optionals
	Bridging to Objective-C

	Type References
	From Instance to Type
	From self to Type
	Type as Value
	Summary of Type Terminology
	Comparing Types

	Protocols
	Why Protocols?
	Adopting a Library Protocol
	Protocol Type Testing and Casting
	Declaring a Protocol
	Protocol Composition
	Class Protocols
	Optional Protocol Members
	Implicitly Required Initializers
	Expressible by Literal

	Generics
	Generic Declarations
	Contradictory Resolution Is Impossible
	Type Constraints
	Explicit Specialization
	Generic Invariance
	Associated Type Chains
	Where Clauses

	Extensions
	Extending Protocols
	Extending Generics

	Umbrella Types
	Any
	AnyObject
	AnyClass

	Collection Types
	Array
	Dictionary
	Set

	Chapter 5. Flow Control and More
	Flow Control
	Branching
	Loops
	Jumping

	Privacy
	Private and Fileprivate
	Public and Open
	Privacy Rules

	Introspection
	Operators
	Memory Management
	Memory Management of Reference Types
	Exclusive Access to Value Types

	Miscellaneous Swift Language Features
	Synthesized Protocol Implementations
	Key Paths
	Instance as Function
	Dynamic Membership
	Property Wrappers
	Custom String Interpolation
	Reverse Generics
	Function Builders
	Result

	Part II. IDE
	Chapter 6. Anatomy of an Xcode Project
	New Project
	The Project Window
	The Navigator Pane
	The Inspectors Pane
	The Editor

	Project File and Dependents
	Contents of the Project Folder
	Groups

	The Target
	Build Phases
	Build Settings
	Configurations
	Schemes and Destinations

	From Project to Built App
	Build Settings
	Property List Settings
	Nib Files
	Resources
	Code Files
	Frameworks, SDKs, and Packages

	The App Launch Process
	The Entry Point
	How an App Gets Going
	App Without a Storyboard

	Renaming Parts of a Project

	Chapter 7. Nib Files
	The Nib Editor Interface
	Document Outline
	Canvas
	Inspectors

	Loading a Nib
	Loading a View Controller Nib
	Loading a Main View Nib
	Loading a View Nib Manually

	Connections
	Outlets
	The Nib Owner
	Automatically Configured Nibs
	Misconfigured Outlets
	Deleting an Outlet
	More Ways to Create Outlets
	Outlet Collections
	Action Connections
	More Ways to Create Actions
	Misconfigured Actions
	Connections Between Nibs — Not!

	Additional Configuration of Nib-Based Instances

	Chapter 8. Documentation
	The Documentation Window
	Class Documentation Pages
	Quick Help
	Symbol Declarations
	Header Files
	Sample Code
	Internet Resources

	Chapter 9. Life Cycle of a Project
	Environmental Dependencies
	Conditional Compilation
	Build Action
	Permissible Runtime Environment
	Backward Compatibility
	Device Type
	Arguments and Environment Variables

	Version Control
	Editing and Navigating Your Code
	Text Editing Preferences
	Multiple Selection
	Autocompletion and Placeholders
	Snippets
	Refactoring and Structure Editing
	Fix-it and Live Syntax Checking
	Navigation
	Finding

	Running in the Simulator
	Debugging
	Caveman Debugging
	The Xcode Debugger

	Testing
	Unit Tests
	Interface Tests
	Test Plans
	Massaging the Report

	Clean
	Running on a Device
	Obtaining a Developer Program Membership
	Signing an App
	Automatic Signing
	Manual Signing
	Running the App
	Managing Development Certificates and Devices

	Profiling
	Gauges
	Memory Debugging
	Instruments

	Localization
	Creating Localized Content
	Testing Localization

	Distribution
	Making an Archive
	The Distribution Certificate
	The Distribution Profile
	Distribution for Testing
	Final App Preparations
	Screenshots and Video Previews
	Property List Settings
	Submission to the App Store

	Part III. Cocoa
	Chapter 10. Cocoa Classes
	Subclassing
	Categories and Extensions
	How Swift Uses Extensions
	How You Use Extensions
	How Cocoa Uses Categories

	Protocols
	Optional Members
	Informal Protocols

	Some Foundation Classes
	NSRange
	NSNotFound
	NSString and Friends
	NSDate and Friends
	NSNumber
	NSValue
	NSData
	NSMeasurement and Friends
	Equality, Hashability, and Comparison
	NSArray and NSMutableArray
	NSDictionary and NSMutableDictionary
	NSSet and Friends
	NSIndexSet
	NSNull
	Immutable and Mutable
	Property Lists
	Codable

	Accessors, Properties, and Key–Value Coding
	Swift Accessors
	Key–Value Coding
	How Outlets Work
	Cocoa Key Paths
	Uses of Key–Value Coding
	KeyPath Notation

	The Secret Life of NSObject

	Chapter 11. Cocoa Events
	Reasons for Events
	Subclassing
	Notifications
	Receiving a Notification
	Unregistering
	Posting a Notification
	Timer

	Delegation
	Cocoa Delegation
	Implementing Delegation

	Data Sources
	Actions
	The Responder Chain
	Nil-Targeted Actions

	Key–Value Observing
	Registration and Notification
	Unregistering
	Key–Value Observing Example

	Swamped by Events
	Delayed Performance

	Chapter 12. Memory Management
	Principles of Cocoa Memory Management
	Rules of Cocoa Memory Management
	What ARC Is and What It Does
	How Cocoa Objects Manage Memory
	Autorelease Pool
	Memory Management of Instance Properties
	Retain Cycles and Weak References
	Unusual Memory Management Situations
	Notification Observers
	KVO Observers
	Timers
	Other Unusual Situations

	Nib Loading and Memory Management
	Memory Management of CFTypeRefs
	Property Memory Management Policies
	Debugging Memory Management Mistakes

	Chapter 13. Communication Between Objects
	Visibility Through an Instance Property
	Visibility by Instantiation
	Getting a Reference
	Visibility by Relationship
	Global Visibility

	Notifications and Key–Value Observing
	The Combine Framework
	Alternative Architectures
	Model–View–Controller
	Router and Data Space
	Model–View–Presenter
	Protocols and Reactive Programming
	VIPER

	SwiftUI
	Function Builders and Modifiers
	State Properties
	Bindings
	Passing Data Downhill
	Passing Data Uphill
	Custom State Objects

	Appendix A. C, Objective-C, and Swift
	The C Language
	C Data Types
	C Enums
	C Structs
	C Pointers
	C Arrays
	C Strings
	C Functions

	Objective-C
	Objective-C Objects and C Pointers
	Objective-C Objects and Swift Objects
	Exposure of Swift to Objective-C
	Bridged Types and Boxed Types
	Objective-C Methods
	Selectors
	CFTypeRefs
	Blocks
	API Markup

	Bilingual Targets

	Index
	About the Author

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

