

1. 1. Getting Started: Compiling, Running, and Debugging

1. 1.0. Introduction

2. 1.1. Compiling and Running Java: JDK

3. 1.2. Compiling, Running, and Testing with an IDE

4. 1.3. Running Java with JShell

5. 1.4. Using CLASSPATH Effectively

6. 1.5. Downloading and Using the Code Examples

7. 1.6. Automating Dependencies, Compilation, Testing, and
Deployment with Apache Maven

8. 1.7. Automating Dependencies, Compilation, Testing, and
Deployment with Gradle

9. 1.8. Dealing with Deprecation Warnings

10. 1.9. Maintaining Program Correctness with Assertions

11. 1.10. Avoiding the Need for Debuggers with Unit Testing

12. 1.11. Maintaining Your Code with Continuous Integration

13. 1.12. Getting Readable Tracebacks

14. 1.13. Finding More Java Source Code: Programs,
Frameworks, Libraries

2. 2. Interacting with the Environment

1. 2.0. Introduction

2. 2.1. Getting Environment Variables

3. 2.2. Getting Information from System Properties

4. 2.3. Dealing with Java Version and Operating System–
Dependent Variations

5. 2.4. Using Extensions or Other Packaged APIs

6. 2.5. Using the Java Modules System.

3. 3. Strings and Things

1. 3.0. Introduction

2. 3.1. Taking Strings Apart with Substrings or Tokenizing

3. 3.2. Putting Strings Together with StringBuilder

4. 3.3. Processing a String One Character at a Time

5. 3.4. Aligning Strings

6. 3.5. Converting Between Unicode Characters and Strings

7. 3.6. Reversing a String by Word or by Character

8. 3.7. Expanding and Compressing Tabs

9. 3.8. Controlling Case

10. 3.9. Indenting Text Documents

11. 3.10. Entering Nonprintable Characters

12. 3.11. Trimming Blanks from the End of a String

13. 3.12. Program: A Simple Text Formatter

14. 3.13. Program: Soundex Name Comparisons

4. 4. Pattern Matching with Regular Expressions

1. 4.0. Introduction

2. 4.1. Regular Expression Syntax

3. 4.2. Using regexes in Java: Test for a Pattern

4. 4.3. Finding the Matching Text

5. 4.4. Replacing the Matched Text

6. 4.5. Printing All Occurrences of a Pattern

7. 4.6. Printing Lines Containing a Pattern

8. 4.7. Controlling Case in Regular Expressions

9. 4.8. Matching “Accented” or Composite Characters

10. 4.9. Matching Newlines in Text

11. 4.10. Program: Apache Logfile Parsing

12. 4.11. Program: Full Grep

Java Cookbook

FOURTH EDITION

Problems and Solutions for Java Developers

Ian F. Darwin

Java Cookbook

by Ian F. Darwin

Copyright © 2019 O’Reilly Media. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway
North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales
promotional use. Online editions are also available for most titles
(http://oreilly.com). For more information, contact our
corporate/institutional sales department: 800-998-9938 or
corporate@oreilly.com .

Editors: Corbin Collins and Suzanne McQuade

Production Editor: FILL IN PRODUCTION EDITOR

Copyeditor: FILL IN COPYEDITOR

Proofreader: FILL IN PROOFREADER

Indexer: FILL IN INDEXER

Interior Designer: David Futato

Cover Designer: Karen Montgomery

Illustrator: Rebecca Demarest

April 2020: Fourth Edition

http://oreilly.com/

Revision History for the Fourth Edition

2019-10-15: First Early Release

See http://oreilly.com/catalog/errata.csp?isbn=9781492072584 for
release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc.
Java Cookbook, the cover image, and related trade dress are
trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the author(s), and do
not represent the publisher’s views. While the publisher and the
author(s) have used good faith efforts to ensure that the information
and instructions contained in this work are accurate, the publisher and
the author(s) disclaim all responsibility for errors or omissions,
including without limitation responsibility for damages resulting from
the use of or reliance on this work. Use of the information and
instructions contained in this work is at your own risk. If any code
samples or other technology this work contains or describes is subject
to open source licenses or the intellectual property rights of others, it
is your responsibility to ensure that your use thereof complies with
such licenses and/or rights.

978-1-492-07258-4

[FILL IN]

http://oreilly.com/catalog/errata.csp?isbn=9781492072584

Chapter 1. Getting Started:
Compiling, Running, and
Debugging

1.0 Introduction
This chapter covers some entry-level tasks that you need to know
how to do before you can go on—it is said you must crawl before you
can walk, and walk before you can ride a bicycle. Before you can try
out anything in this book, you need to be able to compile and run
your Java code, so I start there, showing several ways: the JDK way,
the Integrated Development Environment (IDE) way, and the build
tools (Ant, Maven, etc.) way. Another issue people run into is setting
CLASSPATH correctly, so that’s dealt with next. Deprecation
warnings follow after that, because you’re likely to encounter them in
maintaining “old” Java code. The chapter ends with some general
information about conditional compilation, unit testing, assertions,
and debugging.

If you don’t already have Java installed, you’ll need to download it.
Be aware that there are several different downloads. The JRE (Java
Runtime Environment) is a smaller download for end users. The JDK
or Java SDK download is the full development environment, which
you’ll want if you’re going to be developing Java software.

Standard downloads for the current release of Java are available at
Oracle’s website.

You can sometimes find prerelease builds of the next major Java
version on http://java.net. The entire (almost) JDK is maintained as
an open source project, and the OpenJDK source tree is used (with
changes and additions) to build the commercial and supported Oracle
JDKs.

If you’re already happy with your IDE, you may wish to skip some or
all of this material. It’s here to ensure that everybody can compile and
debug their programs before we move on.

1.1 Compiling and Running Java: JDK

Problem

You need to compile and run your Java program.

Solution

This is one of the few areas where your computer’s operating system
impinges on Java’s portability, so let’s get it out of the way first.

JDK

Using the command-line Java Development Kit (JDK) may be the
best way to keep up with the very latest improvements in Java.
Assuming you have the standard JDK installed in the standard
location and/or have set its location in your PATH, you should be able

http://bit.ly/TEA7iC
http://java.net/

to run the command-line JDK tools. Use the commands javac to
compile and java to run your program (and, on Windows only, javaw
to run a program without a console window). For example:

C:\javasrc>javac HelloWorld.java

C:\javasrc>java HelloWorld

Hello, World

C:\javasrc>

If the program refers to other classes for which source is available (in
the same directory) and a compiled .class file is not, javac will
automatically compile it for you. Effective with Java 11, for simple
programs that don’t need any such co-compilation, you can combine
the two operations, simply passing the Java source file to the java
command:

java HelloWorld.java

As you can see from the compiler’s (lack of) output, this compiler
works on the Unix “no news is good news” philosophy: if a program
was able to do what you asked it to, it shouldn’t bother nattering at
you to say that it did so. Many people use this compiler or one of its
clones.

There is an optional setting called CLASSPATH, discussed in Recipe
1.4, that controls where Java looks for classes. CLASSPATH, if set, is
used by both javac and java. In older versions of Java, you had to
set your CLASSPATH to include “.”, even to run a simple program

from the current directory; this is no longer true on current Java
implementations.

Sun/Oracle’s javac compiler is the official reference implementation.
There were several alternative open source command-line compilers,
including Jikes and Kaffe but they are, for the most part, no longer
actively maintained.

There have also been some Java runtime clones, including Apache
Harmony, Japhar, the IBM Jikes Runtime (from the same site as
Jikes), and even JNODE, a complete, standalone operating system
written in Java, but since the Sun/Oracle JVM has been open-sourced
(GPL), most of these projects have become unmaintained. Harmony
was retired by Apache in November 2011.

MAC OS X

The JDK is pure command line. At the other end of the spectrum in
terms of keyboard-versus-visual, we have the Apple Macintosh.
Books have been written about how great the Mac user interface is,
and I won’t step into that debate. Mac OS X (Release 10.x of Mac
OS) is built upon a BSD Unix (and “Mach”) base. As such, it has a
regular command line (the Terminal application, hidden away under
/Applications/Utilities), as well as both the traditional Unix
command-line tools and the graphical Mac tools. Mac OS X users
can use the command-line JDK tools as above or any of the modern
build tools. Compiled classes can be packaged into “clickable
applications” using the Jar Packager discussed in [Link to Come].
Mac fans can use one of the many full IDE tools discussed in Recipe

http://bit.ly/1l5jP5I
http://www.kaffe.org/
http://harmony.apache.org/
http://bit.ly/1n72D0b
http://www.jnode.org/

1.2. Apple provides XCode as their IDE, but out of the box it isn’t
very Java-friendly.

GRAALVM

A new VM implementation called GraalVM has just entered public
release. Graal promises to offer better performance, the ability to
mix-and-match programming languages, and the ability to pre-
compile your Java code into executable form for a given platform.
See The Graal VM web site for more information on GraalVM.

1.2 Compiling, Running, and Testing with
an IDE

Problem

It is cumbersome to use several tools for the various development
tasks.

Solution

Use an integrated development environment (IDE), which combines
editing, testing, compiling, running, debugging, and package
management.

Discussion

Many programmers find that using a handful of separate tools—a text
editor, a compiler, and a runner program, not to mention a debugger
—is too many. An IDE integrates all of these into a single toolset

https://www.graalvm.org/

with a graphical user interface. Many IDEs are available, ranging all
the way up to fully integrated tools with their own compilers and
virtual machines. Class browsers and other features of IDEs round
out the ease-of-use feature sets of these tools. It has been argued
many times whether an IDE really makes you more productive or if
you just have more fun doing the same thing. However, today most
developers use an IDE because of the productivity gains. Although I
started as a command-line junkie, I do find that the following IDE
benefits make me more productive:

Code completion

Ian’s Rule here is that I never type more than three characters of
any name that is known to the IDE; let the computer do the
typing!

“Incremental compiling” features

Note and report compilation errors as you type, instead of waiting
until you are finished typing.

Refactoring

The ability to make far-reaching yet behavior-preserving changes
to a code base without having to manually edit dozens of
individual files.

Beyond that, I don’t plan to debate the IDE versus the command-line
process; I use both modes at different times and on different projects.
I’m just going to show a few examples of using a couple of the Java-
based IDEs.

The three most popular Java IDEs, which run on all mainstream
computing platforms and quite a few niche ones, are Eclipse,
NetBeans, and IntelliJ IDEA. Eclipse is the most widely used, but the
others each have a special place in the hearts and minds of some
developers. If you develop for Android, the ADT has traditionally
been developed for Eclipse, but it has now transitioned IntelliJ as the
basis for “Android Studio,” which is the standard IDE for Android,
and for Google’s other mobile platform, Flutter. All three are plug-in
based and offer a wide selection of optional and third-party plugins to
enhance the IDE, such as supporting other programming languages,
frameworks, file types, and so on. While the following shows
creating and running a program with Eclipse, the IntelliJ IDea and
Netbeans IDEs all offer similar capabilities.

Perhaps the most popular cross-platform, open source IDE for Java is
Eclipse, originally from IBM and now shepherded by the Eclipse
Foundation, the home of many software projects including Jakarta,
the follow-on to the Java Enterprise Edition. Eclipse is also used as
the basis of other tools such as SpringSource Tool Suite (STS) and
IBM’s Rational Application Developer (RAD). All IDEs do basically
the same thing for you when getting started; see, for example, the
Eclipse New Java Class Wizard shown in Figure 1-1. Eclipse also
features a number of refactoring capabilities, shown in Figure 1-2.

https://flutter.io/
http://eclipse.org/
https://projects.eclipse.org/projects/ee4j.jakartaee-platform

Figure 1-1. Eclipse: New Java Class Wizard

Figure 1-2. Eclipse: Refactoring

Mac OS X includes Apple’s Developer Tools. The main IDE is
Xcode. Unfortunately, current versions of Xcode do not really
support Java development, so there is little to recommend it for our
purposes; it is primarily for those building non-portable (iOS-only or
OS X–only) applications in the Swiift or Objective-C programming
languages. So even if you are on OS X, to do Java development you
should use one of the three Java IDEs.

How do you choose an IDE? Given that all three major IDEs
(Eclipse, NetBeans, IntelliJ) can be downloaded free, why not try
them all and see which one best fits the kind of development you do?
Regardless of what platform you use to develop Java, if you have a
Java runtime, you should have plenty of IDEs from which to choose.

Figure 1-3. IntelliJ program output

See Also

Each IDE’s web site maintains an up-to-date list of resources,
including books. See Table 1-1 for the website for each.

T
a
b
l
e
1
-
1
.
T
h
e
B
i
g
3
J
a
v
a
I
D
E
s

Product name Project URL Note

Eclipse https://eclipse.org/ Basis of STS, RAD

IntelliJ Idea https://jetbrains.com/idea/ Basis of Android Studio

https://eclipse.org/
https://jetbrains.com/idea/

Netbeans https://netbeans.apache.org Run anywhere JavaSE does

These major IDEs are extensible; see their documentation for a list of
the many, many plug-ins available. Most of them allow you to find
and install plug-ins from within the IDE. For Eclipse, use the Eclipse
Marketplace, near the bottom of the Help menu. As a last resort, if
you need/want to write a plug-in that extends the functionality of
your IDE, you can do that too, and in Java.

For Eclipse, I have some useful information at
https://darwinsys.com/java including a list of shortcuts to aid
developer productivity.

1.3 Running Java with JShell

Problem

You want to try out Java expressions and APIs quickly, without
having to create a file with public class X { public
static void main(String[] args) { … } every time.

Solution

Use JShell, Java’s new REPL (read-evaluate-print-loop) interpreter.

Discussion

Starting with Java 11, jshell is included as a standard part of Java.
Jshell allows you to enter Java statements and have them

https://netbeans.apache.org/
https://darwinsys.com/java

evaluated without the bother of creating a class and a main program.
You can use it for quick calculations, or to try out an API to see how
it works, or almost any purpose; if you find an expression you like,
you can copy it into a regular Java class and make it permanent.
JShell can also be used as a scripting language over Java, but the
overhead of starting the JVM means that it won’t be as fast as awk,
Perl or Python for quick scripting.

REPL programs are very convenient, and hardly a new idea (LISP
languages from the 1950’s included them). You can think of
command line interpreters (CLIs) such as the Bash or Ksh shells on
UNIX/Linux, or Command.com on Microsoft Windows, as REPLs
for the system as a whole. Many interpreted languages like Ruby and
Python can also be used as REPLs. Java finally has its own REPL,
JShell. Here’s an example of using it:

$ jshell

| Welcome to JShell -- Version 11.0.2

| For an introduction type: /help intro

jshell> "Hello"

$1 ==> "Hello"

jshell> System.out.println("Hello");

Hello

jshell> System.out.println("Hello")

Hello

jshell> "Hello" + sqrt(57)

| Error:

| cannot find symbol

| symbol: method sqrt(int)

| "Hello" + sqrt(57)

| ^--^

jshell> "Hello" + Math.sqrt(57)

$2 ==> "Hello7.54983443527075"

jshell> String.format("Hello %6.3f", Math.sqrt(57)

 ...>)

$3 ==> "Hello 7.550"

jshell> String x = Math.sqrt(22/7) + " " + Math.PI +

 ...> " and the end."

x ==> "1.7320508075688772 3.141592653589793 and the end."

jshell>

You can see some obvious simplifications here, and one that’s not
obvious from the above:

The value of an expression is printed, without needing to call
System.out.println every time, but you can call it if you like;

The semicolon at the end of a statment is optional (unless you type
more than one statement on a line);

If you make a mistake, you get a helpful message immediately;

If you do make a mistake, you can use “shell history” (i.e. up-
arrow) to recall the statment so you can repair it;

If you omit a close quote, parenthesis or other punctuation, JShell
will just wait for you, giving a continuation prompt ….

So go ahead and experiment with JShell. Read the built-in
introductory tutorial for more details. When you get something you
like, copy and paste it into a Java program and save it.

1.4 Using CLASSPATH Effectively

Problem

You need to keep your class files in a common directory, or you’re
wrestling with CLASSPATH.

Solution

Set CLASSPATH to the list of directories and/or JAR files that
contain the classes you want.

Discussion

CLASSPATH is one of the more “interesting” aspects of using Java.
You can store your class files in any of a number of directories, JAR
files, or ZIP files. Just like the PATH your system uses for finding
programs, the CLASSPATH is used by the Java runtime to find
classes. Even when you type something as simple as java
HelloWorld, the Java interpreter looks in each of the places named in
your CLASSPATH until it finds a match. Let’s work through an
example.

The CLASSPATH can be set as an environment variable on systems
that support this (Microsoft Windows and Unix, including Mac OS
X). You set it the same way you set other environment variables, such
as your PATH environment variable.

Alternatively, you can specify the CLASSPATH for a given command
on the command line:

C:\> java -classpath c:\ian\classes MyProg

Suppose your CLASSPATH were set to C:\classes;. on Windows or
~/classes:. on Unix (on the Mac, you can set the CLASSPATH with
JBindery). Suppose you had just compiled a file named
HelloWorld.java into HelloWorld.class and tried to run it. On Unix, if
you run one of the kernel tracing tools (trace, strace, truss,
ktrace), you would probably see the Java program open (or
stat, or access) the following files:

Some file(s) in the JDK directory

Then ~/classes/HelloWorld.class, which it probably wouldn’t find

Finally, ./HelloWorld.class, which it would find, open, and read
into memory

The vague “some file(s) in the JDK directory” is release-dependent.
You should not mess with the JDK files, but if you’re curious, you
can find them in the System Properties under
sun.boot.class.path (see Recipe 2.2 for System Properties
information).

Suppose you had also installed the JAR file containing the supporting
classes for programs from this book, darwinsys-api.jar (the actual
filename if you download it may have a version number as part of the
filename). You might then set your CLASSPATH to
C:\classes;C:\classes\darwinsys-api.jar;. on Windows or
~/classes:~/classes/darwinsys-api.jar:. on Unix. Notice that you do
need to list the JAR file explicitly. Unlike a single class file, placing a

JAR file into a directory listed in your CLASSPATH does not suffice
to make it available.

Note that certain specialized programs (such as a web server running
a Java EE Servlet container) may not use either bootpath or
CLASSPATH as shown; these application servers typically provide
their own ClassLoader (see [Link to Come] for information on
class loaders). EE Web containers, for example, set your web app
classpath to include the directory WEB-INF/classes and all the JAR
files found under WEB-INF/lib.

How can you easily generate class files into a directory in your
CLASSPATH? The javac command has a -d dir option, which
specifies where the compiler output should go. For example, using -
d to put the HelloWorld class file into my $HOME/classes directory, I
just type the following (note that from here on I will be using the
package name in addition to the class name, like a good kid):

javac -d $HOME/classes HelloWorld.java

java -cp $HOME/classes starting.HelloWorld

Hello, world!

As long as this directory remains in my CLASSPATH, I can access
the class file regardless of my current directory. That’s one of the key
benefits of using CLASSPATH.

Managing CLASSPATH can be tricky, particularly when you
alternate among several JVMs of different vintages (as I sometimes
do) or when you have multiple directories in which to look for JAR
files. Some Linux distributions have an “alternatives” mechanism for

managing which version of Java to use. Otherwise you may want to
use some sort of batch file or shell script to control this. The
following is part of the shell script that I have used—it was written
for the standard shell on Unix (should work on Bash, Ksh, etc.), but
similar scripts could be written in other shells or as a DOS batch file:

These guys must be present in my classpath...

export CLASSPATH=/home/ian/classes/darwinsys-api.jar:

Now a for loop, testing for .jar/.zip or [-d ...]

OPT_JARS="$HOME/classes $HOME/classes/*.jar

 ${JAVAHOME}/jre/lib/ext/*.jar

 /usr/local/jars/antlr-3.2.0"

for thing in $OPT_JARS

do

 if [-f $thing]; then //must be either a file...

 CLASSPATH="$CLASSPATH:$thing"

 else if [-d $thing]; then //or a directory

 CLASSPATH="$CLASSPATH:$thing"

 fi

done

CLASSPATH="$CLASSPATH:."

This builds a minimum CLASSPATH out of darwinsys-api.jar, then
goes through a list of other files and directories to check that each is
present on this system (I use this script on several machines on a
network), and ends up adding a dot (.) to the end of the CLASSPATH.

WARNING
Note that, on Unix, a shell script executed normally can change environment
variables like CLASSPATH only for itself; the “parent” shell (the one running
commands in your terminal or window) is not affected. Changes that are meant
to be permanent need to be stored in your startup files (.profile, .bashrc, or
whatever you normally use).

Note that Java 9 and later also have a MODULEPATH, which will be
covered in XXX.

1.5 Downloading and Using the Code
Examples

Problem

You want to try out my example code and/or use my utility classes.

Solution

Download the latest archive of the book source files, unpack it, and
run Maven (see Recipe 1.6) to compile the files.

Discussion

The source code used as examples in this book is drawn from several
source code repositories that have been in continuous development
since 1995. These are listed in Table 1-2.

T
a
b
l
e

1
-
2
.
T
h
e

m
a
i
n

s
o
u
r
c
e

r
e
p
o
s
i
t
o
r
i

e
s

Repository
name

Github.com
URL

Package
description

Approx.
size

javasrc http://github.com/IanDarwin/java

src
Java classes from
all APIs

1,200
classes

darwinsys
-api

http://github.com/Iandarwin/dar
winsys-api

A published API 250
classes

A small number of examples are drawn from the older javasrcee
(Java EE) examples, which I split off from javasrc due to the overall
size; this is also on GitHub.

You can download these repositories from the GitHub URLs shown
in Table 1-2. GitHub allows you to download, by use of git
clone, a ZIP file of the entire repository’s current state, or to view
individual files on the web interface. Downloading with git clone
instead of as an archive is preferred because you can then update at
any time with a simple git pull command. And with the amount
of updating this has undergone for the current release of Java, you are
sure to find changes after the book is published.

If you are not familiar with Git, see “CVS, Subversion, Git, Oh My!”.

JAVASRC

http://github.com/IanDarwin/javasrc
http://github.com/Iandarwin/darwinsys-api
https://github.com/IanDarwin/javasrcee

This is the largest repo, and consists primarily of code written to
show a particular feature or API. The files are organized into
subdirectories by topic, many of which correspond more or less to
book chapters—for example, a directory for strings examples
(Chapter 3), regex for regular expressions (Chapter 4), numbers
([Link to Come]), and so on. The archive also contains the index by
name and index by chapter files from the download site, so you can
easily find the files you need.

There are about 80 subdirectories in javasrc (under src/main/java),
too many to list here. They are listed in the file src/main/java/index-
of-directories.txt.

DARWINSYS-API

I have built up a collection of useful stuff, partly by moving some
reusable classes from javasrc into my own API, which I use in my
own Java projects. I use example code from it in this book, and I
import classes from it into many of the other examples. So, if you’re
going to be downloading and compiling the examples individually,
you should first download the file darwinsys-api-1.x.jar (for the latest
value of x) and include it in your CLASSPATH. Note that if you are
going to build the javasrc code with Eclipse or Maven, you can skip
this download because the top-level Maven script starts off by
including the JAR file for this API.

This is the only one of the repos that appears in Maven Central; find
it by searching for darwinsys. The current Maven artifact is:

http://bit.ly/1kRi0bB

<dependency>

 <groupId>com.darwinsys</groupId>

 <artifactId>darwinsys-api</artifactId>

 <version>1.0.3</version>

</dependency>

This API consists of about two dozen com.darwinsys packages,
listed in Table 1-3. You will notice that the structure vaguely parallels
the standard Java API; this is intentional. These packages now
include more than 200 classes and interfaces. Most of them have
javadoc documentation that can be viewed with the source download.

T
a
b
l
e

1
-
3
.
T
h
e

c
o
m
.
d
a
r
w

i
n
s
y
s
p
a
c
k
a
g
e
s

Package name Package description

com.darwinsys.ant A demonstration Ant task

com.darwinsys.csv Classes for comma-separated values files

com.darwinsys.datab
ase

Classes for dealing with databases in a general way

com.darwinsys.diff Comparison utilities

com.darwinsys.gener
icui

Generic GUI stuff

com.darwinsys.geo Classes relating to country codes, provinces/states,
and so on

com.darwinsys.graph
ics

Graphics

com.darwinsys.html Classes (only one so far) for dealing with HTML

com.darwinsys.io Classes for input and output operations, using Java’s
underlying I/O classes

com.darwinsys.jspta
gs

Java EE JSP tags

com.darwinsys.lang Classes for dealing with standard features of Java

com.darwinsys.locks Pessimistic locking API

com.darwinsys.mail Classes for dealing with email, mainly a
convenience class for sending mail

com.darwinsys.model Modeling

com.darwinsys.net Networking

com.darwinsys.preso Presentations

com.darwinsys.refle
ction

Reflection

com.darwinsys.regex Regular expression stuff: an REDemo program, a
Grep variant, and so on

com.darwinsys.secur
ity

Security

com.darwinsys.servl
et

Servlet API helpers

com.darwinsys.sql Classes for dealing with SQL databases

com.darwinsys.swing
ui

Classes for helping construct and use Swing GUIs

com.darwinsys.swing
ui.layout

A few interesting LayoutManager implementations

com.darwinsys.testd
ata

Test data generators

com.darwinsys.testi
ng

Testing tools

com.darwinsys.unix Unix helpers

com.darwinsys.util A few miscellaneous utility classes

com.darwinsys.xml XML utilities

Many of these classes are used as examples in this book; just look for
files whose first line begins:

package com.darwinsys;

You’ll also find that many of the other examples have imports from
the com.darwinsys packages.

GENERAL NOTES

If you are short on time, the majority of the examples are in javasrc,
so cloning or downloading that repo will get you most of the code
from the book. Also, its Maven script refers to a copy of the
darwinsys-api that is in Maven Central, so you could get 90% of the
code compilable, testable and runnable with one git clone, for
javasrc. Your best bet is to use git clone to download a copy of all
three, and do git pull every few months to get updates.

Alternatively, you can download a single intersection set of all three
that is made up almost exclusively of files actually used in the book,
from this book’s catalog page. This archive is made from the sources
that are dynamically included into the book at formatting time, so it
should reflect exactly the examples you see in the book. But it will
not include as many examples as the three individual archives, nor is

http://oreil.ly/java-cookbook-3e

it guaranteed that everything will compile because of missing
dependencies. But if all you want is to copy pieces into a project
you’re working on, this may be the one to get.

You can find links to all of these from my own website for this book;
just follow the Downloads link.

The three separate repositories are each self-contained projects with
support for building both with Eclipse (Recipe 1.2) and with Maven
(Recipe 1.6). Note that Maven will automatically fetch a vast array of
prerequisite libraries when first invoked on a given project, so be sure
you’re online on a high-speed Internet link. However, Maven will
ensure that all prerequisites are installed before building. If you
choose to build pieces individually, look in the file pom.xml for the
list of dependencies. Unfortunately, I will probably not be able to
help you if you are not using either Eclipse or Maven with the control
files included in the download.

If you have a version of Java older than the current Java 12, a few
files will not compile. You can make up “exclusion elements” for the
files that are known not to compile.

All my code in the three projects is released under the least-restrictive
credit-only license, the two-clause BSD license. If you find it useful,
incorporate it into your own software. There is no need to write to ask
me for permission; just use it, with credit.

http://javacook.darwinsys.com/

TIP
Most of the command-line examples refer to source files, assuming you are in
src/main/java, and runnable classes, assuming you are in (or have added to your
classpath) the build directory (e.g., usually target/classes). This will not be
mentioned with each example, as doing so would waste a lot of paper.

CAVEAT LECTOR

The repos have been in development since 1995. This means that you
will find some code that is not up to date, or that no longer reflects
best practices. This is not surprising: any body of code will grow old
if any part of it is not actively maintained. (Thus, at this point, I
invoke Culture Club’s, “Do You Really Want to Hurt Me?”: “Give me
time to realize my crimes.”) Where advice in the book disagrees with
some code you found in the repo, keep this in mind. One of the
practices of Extreme Programming is Continuous Refactoring—the
ability to improve any part of the code base at any time. Don’t be
surprised if the code in the online source directory differs from what
appears in the book; it is a rare week that I don’t make some
improvement to the code, and the results are committed and pushed
quite often. So if there are differences between what’s printed in the
book and what you get from GitHub, be glad, not sad, for you’ll have
received the benefit of hindsight. Also, people can contribute easily
on GitHub via “pull request”; that’s what makes it interesting. If you
find a bug or an improvement, do send me a pull request!

The consolidated archive on oreilly.com will not be updated as
frequently.

CVS, SUBVERSION, GIT, OH MY!

Many distributed version control systems or source code management systems
are available. The ones that have been widely used in open source in recent
years include:

Concurrent Versions System (CVS)

Apache Subversion

Git

As well as others that are used in particular niches (e.g., Mercurial)

Although each has its advantages and disadvantages, the use of Git in the
Linux build process (and projects based on Linux, such as the Android mobile
environment), as well as the availability of sites like github.com and
gitorious.org, give Git a massive momentum over the others. I don’t have
statistics, but I suspect the number of projects in Git repositories probably
exceeds the others combined. Several well-known organizations using Git are
listed on the Git home page.

For this reason, I have been moving my projects to GitHub; see
http://github.com/IanDarwin/. To download the projects and be able to get
updates applied automatically, use Git to download them. Options include:

The command-line Git client. If you are on any modern Unix or Linux
system, Git is either included or available in your ports or packaging or
“developer tools,” but can also be downloaded for MS Windows, Mac,
Linux, and Solaris from the home page under Downloads.

All modern IDEs have Git support built in.

Numerous standalone GUI clients

Even Continuous Integration servers such as Jenkins/Hudson (see Recipe
1.11) have plug-ins available for updating a project with Git (and other
popular SCMs) before building them

You will want to have one or more of these Git clients at your disposal to
download my code examples. You could download them as ZIP archive files
instead, but then you won’t get updates! You can also view or download
individual files from the GitHub page via a web browser.

http://bit.ly/1a1nZCI
http://subversion.apache.org/
http://git-scm.com/
http://github.com/IanDarwin/
http://git-scm.com/
http://git-scm.com/downloads/guis

MAKE VERSUS JAVA BUILD TOOLS

make is the original build tool from the 1970s, used in Unix and C/C++
development. make and the Java-based tools each have advantages; I’ll try to
compare them without too much bias.

The Java build tools work the same on all platforms, as much as possible.
make is rather platform-dependent; there is GNU make, BSD make, Xcode

make, Visual Studio make, and several others, each with slightly different

syntax.

That said, there are many Java build tools to choose from, including:

Apache Ant

Apache Maven

Gradle

Apache Buildr

Makefiles and Buildr/Gradle build files are the shortest. Make just lets you

list the commands you want run and their dependencies. Buildr and Gradle

each have their own language (based on Ruby and Groovy, respectively).
Maven uses XML which is generally more verbose, but with a lot of sensible
defaults and a standard, default workflow. Ant also uses XML, but makes you
specify each task you want performed.

make runs faster for single tasks; most implementations are written in C.
However, the Java tools can run many Java tasks in a single JVM—such as the
built-in Java compiler, jar/war/tar/zip files, and many more—to the extent that it
may be more efficient to run several Java compilations in one JVM process
than to run the same compilations using make. In other words, once the JVM
that is running Ant/Maven/Gradle itself is up and running, it doesn’t take long at
all to run the Java compiler and run the compiled class. This is Java as it was
meant to be!

Java build tool files can do more for you. These tools automatically find all the
*.java files in and under src/main/java. With make, you have to spell such

things out.

The Java tools have special knowledge of CLASSPATH, making it easy to set a
CLASSPATH in various ways for compile time. Maven offers a “scope” of test
for classes and other files that will be on your classpath only when running
tests, for example. You may have to duplicate this in other ways—shell scripts
or batch files—for using make or for manually running or testing your
application.

Maven and Gradle also handle dependency management. You simply list the
API and version that you want, and the tool finds it, downloads it over the
Internet, saves it in a cache folder for future use, and adds it to your classpath
at the right time—all without writing any rules.

Gradle goes further yet, and allows scripting logic in its configuration file (strictly
speaking, Ant and Maven do as well, but Gradle’s is much easier to use).

make is simpler to extend, but harder to do so portably. You can write a one-line
make rule for getting a CVS archive from a remote site, but you may run into
incompatibilities between GNU make, BSD make, Microsoft make, and so on.
There is a built-in Ant task for getting an archive from CVS using Ant; it was
written as a Java source file instead of just a series of command-line
commands.

make has been around much longer. There are probably millions (literally) more
Makefiles than Ant files. Non-Java developers have typically not heard of Ant;
they almost all use make. Most non-Java open source projects use make,
except for programming languages that provide their own build tool (e.g., Ruby
provides Rake and Thor, Haskell provides Cabal, …).

The advantages of the Java tools make more sense on larger projects.
Primarily, make has been used on the really large projects. For example, make
is used for telephone switch source code, which consists of hundreds of
thousands of source files totalling tens or hundreds of millions of lines of source
code. By contrast, Tomcat is about 500,000 lines of code, and the JBoss Java
EE server “WildFly” is about 800,000 lines. Use of the Java tools is growing
steadily, particularly now that most of the widely used Java IDEs (JBuilder,
Eclipse, NetBeans, etc.) have interfaces to Ant, Maven, and/or Gradle.
Effectively all Java open source projects use Maven; some still use Ant, or the
newest kid on that block, Gradle.

make is included with most Unix and Unix-like systems and shipped with many
Windows IDEs. Ant and Maven are not included with any operating system
distribution that I know of, but can be installed as packages on almost all, and
both are available direct from Apache. The same is true for Gradle, but it
installs from http://gradle.org, and Buildr from the Apache website.

To sum up, although make and the Java tools are good, new Java projects
should use one of the newer Java-based tools such as Maven or Gradle.

1.6 Automating Dependencies,
Compilation, Testing, and Deployment
with Apache Maven

Problem

You want a tool that does it all automatically: downloads your
dependencies, compiles your code, compiles and runs your tests,
packages the app, and installs or deploys it.

Solution

Use Apache Maven.

Discussion

Maven is a Java-centric build tool that includes a sophisticated,
distributed dependency management system that also gives it rules
for building application packages such as JAR, WAR, and EAR files
and deploying them to an array of different targets. Whereas older
build tools focus on the how, Maven files focus on the what,
specifying what you want done.

http://gradle.org/
http://buildr.apache.org/

Maven is controlled by a file called pom.xml (for Project Object
Model). A sample pom.xml might look like this:

<project xmlns="http://maven.apache.org/POM/4.0.0"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

 http://maven.apache.org/xsd/maven-

4.0.0.xsd">

 <modelVersion>4.0.0</modelVersion>

 <groupId>com.example</groupId>

 <artifactId>my-se-project</artifactId>

 <version>1.0-SNAPSHOT</version>

 <packaging>jar</packaging>

 <name>my-se-project</name>

 <url>http://com.example/</url>

 <properties>

 <project.build.sourceEncoding>UTF-

8</project.build.sourceEncoding>

 </properties>

 <dependencies>

 <dependency>

 <groupId>junit</groupId>

 <artifactId>junit</artifactId>

 <version>4.8.1</version>

 <scope>test</scope>

 </dependency>

 </dependencies>

</project>

This specifies a project called “my-se-project” (my standard-edition
project) that will be packaged into a JAR file; it depends on the JUnit
4.x framework for unit testing (see Recipe 1.10), but only needs it for

compiling and running tests. If I type mvn install in the directory with
this POM, Maven will ensure that it has a copy of the given version
of JUnit (and anything that JUnit depends on), then compile
everything (setting CLASSPATH and other options for the compiler),
run any and all unit tests, and if they all pass, generate a JAR file for
the program; it will then install it in my personal Maven repo (under
~/.m2/repository) so that other Maven projects can depend on my
new project JAR file. Note that I haven’t had to tell Maven where the
source files live, nor how to compile them—this is all handled by
sensible defaults, based on a well-defined project structure. The
program source is expected to be found in src/main/java, and the tests
in src/test/java; if it’s a web application, the web root is expected to
be in src/main/webapp by default. Of course, you can override these.

Note that even the preceding config file does not have to be, and was
not, written by hand; Maven’s “archteype generation rules” let it
build the starting version of any of several hundred types of projects.
Here is how the file was created:

$ mvn archetype:generate \

 -DarchetypeGroupId=org.apache.maven.archetypes \

 -DarchetypeArtifactId=maven-archetype-quickstart \

 -DgroupId=com.example -DartifactId=my-se-project

\[INFO] Scanning for projects...

Downloading:

http://repo1.maven.org/maven2/org/apache/maven/plugins/

 maven-deploy-plugin/2.5/maven-deploy-plugin-2.5.pom

\[several dozen or hundred lines of downloading POM files

and Jar files...]

\[INFO] Generating project in Interactive mode

\[INFO] Archetype [org.apache.maven.archetypes:maven-

archetype-quickstart:1.1]

 found in catalog remote

\[INFO] Using property: groupId = com.example

\[INFO] Using property: artifactId = my-se-project

Define value for property 'version': 1.0-SNAPSHOT: :

\[INFO] Using property: package = com.example

Confirm properties configuration:

groupId: com.example

artifactId: my-se-project

version: 1.0-SNAPSHOT

package: com.example

 Y: : y

\[INFO] --

\[INFO] Using following parameters for creating project from

Old (1.x) Archetype:

 maven-archetype-quickstart:1.1

\[INFO] --

\[INFO] Parameter: groupId, Value: com.example

\[INFO] Parameter: packageName, Value: com.example

\[INFO] Parameter: package, Value: com.example

\[INFO] Parameter: artifactId, Value: my-se-project

\[INFO] Parameter: basedir, Value: /private/tmp

\[INFO] Parameter: version, Value: 1.0-SNAPSHOT

\[INFO] project created from Old (1.x) Archetype in dir:

/private/tmp/

 my-se-project

\[INFO] --

\[INFO] BUILD SUCCESS

\[INFO] --

\[INFO] Total time: 6:38.051s

\[INFO] Finished at: Sun Jan 06 19:19:18 EST 2013

\[INFO] Final Memory: 7M/81M

\[INFO] --

The IDEs (see Recipe 1.2) have support for Maven. For example, if
you use Eclipse, M2Eclipse (m2e) is an Eclipse plug-in that will
build your Eclipse project dependencies from your POM file; this
plug-in ships by default with current Java Developer builds of
Eclipse, and is also available for some older releases; see the Eclipse
website for plug-in details.

A POM file can redefine any of the standard “goals.” Common
Maven goals (predefined by default to do something sensible)
include:

clean

Removes all generated artifacts

compile

Compiles all source files

test

Compiles and runs all unit tests

package

Builds the package

install

Installs the pom.xml and package into your local Maven
repository for use by your other projects

deploy

Tries to install the package (e.g., on an application server)

http://eclipse.org/m2e

Most of the steps implicitly invoke the previous ones—e.g.,
package will compile any missing .class files, and run the tests if
that hasn’t already been done in this run.

Typically there are application-server–specific targets provided; as a
single example, with the WildFly Application Server (known as
JBoss AS a decade ago), you would install some additional plug-in(s)
as per their documentation, and then deploy to the app server using:

mvn wildfly:deploy

instead of the regular deploy.

MAVEN PROS AND CONS

Maven can handle complex projects and is very configurable. I build
the darwinsys-api and javasrc projects with Maven and let it handle
finding dependencies, making the download of the project source
code smaller (actually, moving the download overhead to the servers
of the projects themselves). The only real downsides to Maven is that
it takes a while to get fully up to speed with it, and the fact that it can
be a bit hard to diagnose when things go wrong. A good web search
engine is your friend when things fail.

One issue I fear is that a hacker could gain access to a project’s site
and modify, or install a new version of, a POM. Maven automatically
fetches updated POM versions. However, it does use hash signatures
to verify that files have not been tampered during the download
process. I am not aware of this having happened, but it still worries
me.

See Also

Start at http://maven.apache.org.

http://maven.apache.org/

MAVEN CENTRAL: MAPPING THE WORLD OF JAVA SOFTWARE

There is an immense collection of software freely available to Maven users just
for adding a <dependency> element or “Maven Artifact” into your pom.xml.
You can search this repository at http://search.maven.org/ or
https://repository.sonatype.org/index.html.

Figure 1-4 shows a search for my darwinsys-api project, and the information it
reveals. Note that the dependency information listed there is all you need to
have the library added to your Maven project; just copy the Dependency
Information section and paste it into the <dependencies> of your POM, and

you’re done! Because Maven Central has become the definitive place to look
for software, many other Java build tools piggyback on Maven Central. To serve
these users, in turn, Maven Central offers to serve up the dependency
information in a form that half a dozen other build tools can directly use in the
same copy-and-paste fashion.

http://search.maven.org/
https://repository.sonatype.org/index.html

Figure 1-4. Maven Central search results

When you get to the stage of having a useful open source project that others
can build upon, you may, in turn, want to share it on Maven Central. The
process is longer than building for yourself but not onerous. Refer to this Maven
guide or Sonatype OSS Maven Repository Usage Guide.

http://bit.ly/1n8FfPQ
http://bit.ly/163Hb0y

1.7 Automating Dependencies,
Compilation, Testing, and Deployment
with Gradle

Problem

You want a build tool that doesn’t make you use a lot of XML in your
configuration file.

Solution

Use Gradle’s simple build file with “strong, yet flexible conventions.”

Discussion

Gradle is the latest in the succession of build tools (make, ant, and
Maven). Gradle bills itself as “the enterprise automation tool,” and
has integration with the other build tools and IDEs.

Unlike the other Java-based tools, Gradle doesn’t use XML as its
scripting language, but rather a domain-specific language (DSL)
based on the JVM-based and Java-based scripting language Groovy.

You can install Gradle by downloading from the Gradle website,
unpacking the ZIP, and adding its bin subdirectory to your path.

Then you can begin to use Gradle. Assuming you use the “standard”
source directory (src/main/java, src/main/test) that is shared by

http://groovy.codehaus.org/
http://gradle.org/

Maven and Gradle among other tools, the example build.gradle file
in Example 1-1 will build your app and run your unit tests.

Example 1-1. Example build.gradle file
Simple Gradle Build for the Java-based DataVis project

apply plugin: 'java'

Set up mappings for Eclipse project too

apply plugin: 'eclipse'

The version of Java to use

sourceCompatibility = 11

The version of my project

version = '1.0.3'

Configure JAR file packaging

jar {

 manifest {

 attributes 'Main-class':

'com.somedomainnamehere.data.DataVis',

 'Implementation-Version': version

 }

}

optional feature: like -Dtesting=true but only when running

tests ("test task")

test {

 systemProperties 'testing': 'true'

}

You can bootstrap the industry’s vast investment in Maven
infrastructure by adding lines like these into your build.gradle:

Tell it to look in Maven Central

repositories {

 mavenCentral()

}

We need darwinsys-api for compiling as well as JUnit for

testing

dependencies {

 compile group: 'com.darwinsys', name: 'darwinsys-api',

version: '1.0.3+'

 testCompile group: 'junit', name: 'junit', version:

'4.+'

}

See Also

There is much more functionality in Gradle. Start at Gradle’s website,
and see the documentation.

1.8 Dealing with Deprecation Warnings

Problem

Your code used to compile cleanly, but now it gives deprecation
warnings.

Solution

You must have blinked. Either live—dangerously—with the
warnings, or revise your code to eliminate them.

Discussion

Each new release of Java includes a lot of powerful new functionality,
but at a price: during the evolution of this new stuff, Java’s
maintainers find some old stuff that wasn’t done right and shouldn’t
be used anymore because they can’t really fix it. In the first major
revision, for example, they realized that the java.util.Date

http://www.gradle.org/
http://www.gradle.org/docs

class had some serious limitations with regard to internationalization.
Accordingly, many of the Date class methods and constructors are
marked “deprecated.” According to the American Heritage
Dictionary, to deprecate something means to “express disapproval of;
deplore.” Java’s developers are therefore disapproving of the old way
of doing things. Try compiling this code:

import java.util.Date;

/** Demonstrate deprecation warning */

public class Deprec {

 public static void main(String[] av) {

 // Create a Date object for May 5, 1986

 @SuppressWarnings("deprecation")

 Date d =

 new Date(86, 04, 05); // EXPECT DEPRECATION

WARNING without @SuppressWarnings

 System.out.println("Date is " + d);

 }

}

What happened? When I compile it, I get this warning:

C:\javasrc>javac Deprec.java

Note: Deprec.java uses or overrides a deprecated API.

Recompile with

"-deprecation" for details.

1 warning

C:\javasrc>

So, we follow orders. For details, recompile with -deprecation
(if using Ant, use <javac deprecation= true…>):

C:\javasrc>javac -deprecation Deprec.java

Deprec.java:10: warning: constructor Date(int,int,int) in

class java.util.Date

has been deprecated

 Date d = new Date(86, 04, 05); //

May 5, 1986

 ^

1 warning

C:\javasrc>

The warning is simple: the Date constructor that takes three integer
arguments has been deprecated. How do you fix it? The answer is, as
in most questions of usage, to refer to the javadoc documentation for
the class. The introduction to the Date page says, in part:

The class Date represents a specific instant in time, with
millisecond precision.
Prior to JDK 1.1, the class Date had two additional functions. It
allowed the interpretation of dates as year, month, day, hour,
minute, and second values. It also allowed the formatting and
parsing of date strings. Unfortunately, the API for these functions
was not amenable to internationalization. As of JDK 1.1, the
Calendar class should be used to convert between dates and
time fields and the DateFormat class should be used to format
and parse date strings. The corresponding methods in Date are
deprecated.

And more specifically, in the description of the three-integer
constructor, the Date javadoc says:

Date(int year, int month, int date)

Deprecated. As of JDK version 1.1, replaced by
Calendar.set(year + 1900, month, date) or
GregorianCalendar(year + 1900, month, date).

As a general rule, when something has been deprecated, you should
not use it in any new code and, when maintaining code, strive to
eliminate the deprecation warnings.

In addition to Date (Java 8 includes a whole new Date and Time
API; see [Link to Come]), the main areas of deprecation warnings in
the standard API are the really ancient “event handling” and some
methods (a few of them important) in the Thread class.

You can also deprecate your own code, when you come up with a
better way of doing things. Put an @Deprecated annotation
immediately before the class or method you wish to deprecate and/or
use a @deprecated tag in a javadoc comment (see [Link to
Come]). The javadoc comment allows you to explain the deprecation,
whereas the annotation is easier for some tools to recognize because
it is present at runtime (so you can use Reflection (see [Link to
Come]).

See Also

Numerous other tools perform extra checking on your Java code. See
my Checking Java Programs web site.

httpd://cjp.darwinsys.com/

1.9 Maintaining Program Correctness
with Assertions

Problem

You want to leave tests in your code but not have runtime checking
overhead until you need it.

Solution

Use the Java assertion mechanism.

Discussion

The Java language assert keyword takes two arguments separated
by a colon (by analogy with the conditional operator): an expression
that is asserted by the developer to be true, and a message to be
included in the exception that is thrown if the expression is false.
Normally, assertions are meant to be left in place (unlike quick-and-
dirty print statements, which are often put in during one test and then
removed). To reduce runtime overhead, assertion checking is not
enabled by default; it must be enabled explicitly with the -
enableassertions (or -ea) command-line flag. Here is a
simple demo program that shows the use of the assertion mechanism:

testing/AssertDemo.java

public class AssertDemo {

 public static void main(String[] args) {

 int i = 4;

 if (args.length == 1) {

 i = Integer.parseInt(args[0]);

 }

 assert i > 0 : "i is non-positive";

 System.out.println("Hello after an assertion");

 }

}

$ javac -d . testing/AssertDemo.java

$ java testing.AssertDemo -1

Hello after an assertion

$ java -ea testing.AssertDemo -1

Exception in thread "main" java.lang.AssertionError: i is

non-positive

 at AssertDemo.main(AssertDemo.java:15)

$

1.10 Avoiding the Need for Debuggers
with Unit Testing

Problem

You don’t want to have to debug your code.

Solution

Use unit testing to validate each class as you develop it.

Discussion

Stopping to use a debugger is time consuming; it’s better to test
beforehand. The methodology of unit testing has been around for a
long time; it is a tried-and-true means of getting your code tested in
small blocks. Typically, in an OO language like Java, unit testing is

applied to individual classes, in contrast to “system” or “integration”
testing where the entire application is tested.

I have long been an advocate of this very basic testing methodology.
Indeed, developers of the software methodology known as Extreme
Programming (XP for short) advocate “Test Driven Development”
(TDD): writing the unit tests before you write the code. They also
advocate running your tests almost every time you build your
application. And they ask one good question: If you don’t have a test,
how do you know your code (still) works? This group of unit-testing
advocates has some well-known leaders, including Erich Gamma of
Design Patterns book fame and Kent Beck of eXtreme Programming
book fame. I definitely go along with their advocacy of unit testing.

Indeed, many of my classes used to come with a “built-in” unit test.
Classes that are not main programs in their own right would often
include a main method that just tests out the functionality of the
class. What surprised me is that, before encountering XP, I used to
think I did this often, but an actual inspection of two projects
indicated that only about a third of my classes had test cases, either
internally or externally. Clearly what is needed is a uniform
methodology. That is provided by JUnit.

JUnit is a Java-centric methodology for providing test cases that
you can download for free. JUnit is a very simple but useful testing
tool. It is easy to use—you just write a test class that has a series of
methods and annotate them with @Test (the older JUnit 3.8
required you to have test methods’ names begin with test). JUnit

http://www.extremeprogramming.org/
http://www.junit.org/

uses introspection (see [Link to Come]) to find all these methods, and
then runs them for you. Extensions to JUnit handle tasks as diverse
as load testing and testing enterprise components; the JUnit website
provides links to these extensions. All modern IDEs provide built-in
support for generating and running JUnit tests.

How do you get started using JUnit? All that’s necessary is to write
a test. Here I have written a simple test of my Person class and
placed it into a class called PersonTest (note the obvious naming
pattern):

public class PersonTest {

 @Test

 public void testNameConcat() {

 Person p = new Person("Ian", "Darwin");

 String f = p.getFullName();

 assertEquals("Name concatenation", "Ian Darwin", f);

 }

}

To run it manually, I compile the test and invoke the command-line
test harness TestRunner:

$ javac PersonTest.java

$ java -classpath junit4.x.x.jar junit.textui.TestRunner

testing.PersonTest

.

Time: 0.188

OK (1 tests)

$

In fact, running that is incredibly tedious, so nowadays I just put my
tests in the “standard directory structure” (i.e., src/test/java/) with the
same package as the code being tested, and run Maven (see Recipe
1.6), which will automatically compile and run all the unit tests, and
halt the build if any test fails, every time you try to build, package or
deploy your application.

All modern IDEs provide built-in support for running JUnit tests; in
Eclipse, you can right-click a project in the Package Explorer and
select Run As→Unit Test to have it find and run all the JUnit tests
in the entire project.

The Hamcrest matchers allow you to write more expressive tests, at
the cost of an additional download. Support for them is built into
JUnit 4 with the assertThat static method, but you need to
download the matchers from Hamcrest or via the Maven artifact.

Here’s an example of using the Hamcrest Matchers:

public class HamcrestDemo {

 @Test

 public void testNameConcat() {

 Person p = new Person("Ian", "Darwin");

 String f = p.getFullName();

 assertThat(f, containsString("Ian"));

 assertThat(f, equalTo("Ian Darwin"));

 assertThat(f, not(containsString("/"))); //

contrived, to show syntax

 }

}

http://hamcrest.org/

See Also

JUnit offers considerable documentation of its own; download it
from the website listed earlier.

An alternative Unit Test framework for Java is TestNG; it got some
early traction by adopting Java annotations before JUnit did, but
since JUnit got with the annotations program, JUnit has remained
the dominant package for Java Unit Testing.

Remember: Test early and often!

1.11 Maintaining Your Code with
Continuous Integration

Problem

You want to be sure that your entire code base compiles and passes its
tests periodically.

Solution

Use a Continuous Integration server such as Jenkins/Hudson.

Discussion

If you haven’t previously used continuous integration, you are going
to wonder how you got along without it. CI is simply the practice of
having all developers on a project periodically integrate (e.g.,
commit) their changes into a single master copy of the project’s

“source.” This might be a few times a day, or every few days, but
should not be more than that, else the integration will likely run into
larger hurdles where multiple developers have modified the same file.

But it’s not just big projects that benefit from CI. Even on a one-
person project, it’s great to have a single button you can click that
will check out the latest version of everything, compile it, link or
package it, run all the automated tests, and give a red or green
pass/fail indicator.

And it’s not just code-based projects that benefit from CI. If you have
a number of small websites, putting them all under CI control is one
of several important steps toward developing an automated, “dev-
ops” culture around website deployment and management.

If you are new to the idea of CI, I can do no better than to plead with
you to read Martin Fowler’s insightful (as ever) paper on the topic.
One of the key points is to automate both the management of the code
and all the other artifacts needed to build your project, and to
automate the actual process of building it, possibly using one of the
build tools discussed earlier in this chapter.

There are many CI servers, both free and commercial. In the open
source world, CruiseControl and Jenkins/Hudson are among the best
known. Jenkins and Hudson began as Hudson, largely written by
Kohsuke Kawaguchi, while working for Sun Microsystems.
Unsurprising, then, that he wrote it in Java. Not too surprising, either,
that when Oracle took over Sun, there were some cultural clashes
over this project, like many other open source projects, with the key

1

2

http://martinfowler.com/articles/continuousIntegration.html
https://cruisecontrol.sourceforge.net/
http://jenkins-ci.org/
http://hudson-ci.org/

players (includine Kohsuke) packing up and moving on, creating a
new “fork” or split of the project. Kohsuke works on the half now
known as Jenkins (for a long time, each project regarded itself as the
real project and the other as the fork). Hereafter, I’ll just use the name
Jenkins, because that’s the one I use, and because it takes too long to
say “Jenkins/Hudson” all the time. But almost everything here
applies to Hudson as well.

Jenkins runs as a web application, either inside a Jakarta EE server or
in its own “standalone” web server. Once it’s started, you can use any
standard web browser as its user interface. Installing and starting
Jenkins can be as simple as unpacking a distribution and invoking it
as follows:

java -jar jenkins.war

If you do that, be sure to enable security if your machine is on the
Internet! This will start up its own tiny web server. Many people find
it more secure to run Jenkins in a full-function Java EE or Java web
server; anything from Tomcat to JBoss to WebSphere or Weblogic
will do the job, and let you impose additional security constraints.

Once Jenkins is up and running and you have enabled security and
are logged in on an account with sufficient privilege, you can create
“jobs.” A job usually corresponds to one project, both in terms of
origin (one source code checkout) and in terms of results (one war
file, one executable, one library, one whatever). Setting up a project is
as simple as clicking the “New Job” button at the top-left of the
dashboard, as shown in Figure 1-5.

Figure 1-5. Jenkins: Dashboard

You can fill in the first few pieces of information: the project’s name
and a brief description. Note that each and every input field has a “?”
Help icon beside it, which will give you hints as you go along. Don’t
be afraid to peek at these hints! Figure 1-6 shows the first few steps
of setting up a new job.

Figure 1-6. Jenkins: Starting a new job

In the next few sections of the form, Jenkins uses dynamic HTML to
make entry fields appear based on what you’ve checked. My demo
project “TooSmallToFail” starts off with no source code management
(SCM) repository, but your real project is probably already in Git,
Subversion, or maybe even CVS or some other SCM. Don’t worry if
yours is not listed; there are hundreds of plug-ins to handle almost

any SCM. Once you’ve chosen your SCM, you will enter the
parameters to fetch the project’s source from that SCM repository,
using text fields that ask for the specifics needed for that SCM: a
URL for Git, a CVSROOT for CVS, and so on.

You also have to tell Jenkins when and how to build (and package,
test, deploy…) your project. For the when, you have several choices
such as building it after another Jenkins project, building it every so
often based on a cron-like schedule, or based on polling the SCM to
see if anything has changed (using the same cron-like scheduler). If
your project is at GitHub (not just a local Git server), or some other
SCMs, you can have the project built whenever somebody pushes
changes up to the repository. It’s all a matter of finding the right plug-
ins and following the documentation for them.

Then the how, or the build process. Again, a few build types are
included with Jenkins, and many more are available as plug-ins: I’ve
used Apache Ant, Apache Maven, Gradle, the traditional Unix make
tool, and even shell or command lines. As before, text fields specific
to your chosen tool will appear once you select the tool. In the toy
example, TooSmallToFail, I just use the shell command
/bin/false (which should be present on any Unix or Linux
system) to ensure that the project does, in fact, fail to build, just so
you can see what that looks like.

You can have zero or more build steps; just keep clicking the Add
button and add additional ones, as shown in Figure 1-7.

Figure 1-7. Jenkins: Dynamic web page for SCM and adding build steps

Once you think you’ve entered all the necessary information, click
the Save button at the bottom of the page, and you’ll go back to the
project’s main page. Here you can click the funny little “build now”
icon at the far left to initiate a build right away. Or if you have set up
build triggers, you could wait until they kick in, but then again,

wouldn’t you rather know right away whether you’ve got it just right?
Figure 1-8 shows the build starting.

Figure 1-8. Jenkins: After a new job is added

Should a job fail to build, you get a red ball instead of a green one.
Actually, a successful build shows a blue ball by default, but most
people prefer green for success, so the optional “Green Ball” plug-in
is usually one of the first to be added to a new installation.

Beside the red or green ball, you will see a “weather report” ranging
from sunny (the last several builds have succeeded), cloudy, rainy, or

stormy (no recent builds have succeeded).

Click the link to the project that failed, and then the link to Console
Output, and figure out what went wrong. The usual workflow is then
to make changes to the project, commit/push them to the source code
repository, and run the Jenkins build again.

As mentioned, there are hundreds of optional plug-ins for Jenkins. To
make your life easier, almost all of them can be installed by clicking
the Manage Jenkins link and then going to Manage Plug-ins. The
Available tab lists all the ones that are available from Jenkins.org;
you just need to click the checkbox beside the ones you want, and
click Apply. You can also find updates here. If your plug-in addtion
or upgrade requires a restart, you’ll see a yellow ball and words to
that effect; otherwise you should see a green (or blue) ball indicating
plug-in success. You can also see the list of plug-ins directly on the
Web.

I mentioned that Jenkins began life under the name Hudson. The
Hudson project still exists, and is hosted at the Eclipse website. Last I
checked, both projects had maintained plug-in compatibility, so many
or most plug-ins from one can be used with the other. In fact, the
most popular plug-ins appear in the Available tab of both, and most of
what’s said in this recipe about Jenkins applies equally to Hudson. If
you use a different CI system, you’ll need to check that system’s
documentation, but the concepts and the benefits will be similar.

1.12 Getting Readable Tracebacks

https://wiki.jenkins-ci.org/display/JENKINS/Plugins

Problem

You’re getting an exception stack trace at runtime, but most of the
important parts don’t have line numbers.

Solution

Be sure you have compiled with debugging enabled.

Discussion

When a Java program throws an exception, the exception propagates
up the call stack until there is a catch clause that matches it. If none
is found, the Java interpreter program that invoked your main()
method catches the exception and prints a stack traceback showing all
the method calls that got from the top of the program to the place
where the exception was thrown. You can print this traceback
yourself in any catch clause: the Throwable class has several
methods called printStackTrace().

The traceback includes line numbers only if they were compiled in.
When using javac, this is the default. When using some of the build
tools, this may not be the default; you must be sure you have enabled
the debug option in your build script.

1.13 Finding More Java Source Code:
Programs, Frameworks, Libraries

Problem

You want to build a large application and need to minimize coding,
avoiding the “Not Invented Here” syndrome.

Solution

Use the Source, Luke. There are thousands of Java apps, frameworks,
and libraries available in open source.

Discussion

Java source code is everywhere. As mentioned in the [Link to Come],
all the code examples from this book can be downloaded from the
book’s catalog page.

Another valuable resource is the source code for the Java API. You
may not have realized it, but the source code for all the public parts of
the Java API are included with each release of the Java Development
Kit. Want to know how java.util.ArrayList actually works?
You have the source code. Got a problem making a JTable behave?
The standard JDK includes the source for all the public classes! Look
for a file called src.zip or src.jar; some versions unzip this and some
do not.

If that’s not enough, you can get the source for the whole JDK for
free over the Internet, just by committing to the Sun Java Community
Source License and downloading a large file. This includes the source
for the public and nonpublic parts of the API, as well as the compiler
(written in Java) and a large body of code written in C/C++ (the
runtime itself and the interfaces to the native library). For example,
java.io.Reader has a method called read(), which reads

http://bit.ly/java-cookbook-3e

bytes of data from a file or network connection. This is written in C
because it actually calls the read() system call for Unix, Windows,
Mac OS, BeOS, or whatever. The JDK source kit includes the source
for all this stuff.

And ever since the early days of Java, a number of websites have
been set up to distribute free software or open source Java, just as
with most other modern “evangelized” languages, such as Perl,
Python, Tk/Tcl, and others. (In fact, if you need native code to deal
with some oddball filesystem mechanism in a portable way, beyond
the material in [Link to Come], the source code for these runtime
systems might be a good place to look.)

Although most of this book is about writing Java code, this recipe is
about not writing code, but about using code written by others. There
are hundreds of good frameworks to add to your Java application—
why reinvent the flat tire when you can buy a perfectly round one?
Many of these frameworks have been around for years and have
become well rounded by feedback from users.

What, though, is the difference between a library and a framework?
It’s sometimes a bit vague, but in general, a framework is “a program
with holes that you fill in,” whereas a library is code you call. It is
roughly the difference between building a car by buying a car almost
complete but with no engine, and building a car by buying all the
pieces and bolting them together yourself.

When considering using a third-party framework, there are many
choices and issues to consider. One is cost, which gets into the issue

of open source versus closed source. Most “open source” tools can be
downloaded for free and used, either without any conditions or with
conditions that you must comply with. There is not the space here to
discuss these licensing issues, so I will refer you to Understanding
Open Source and Free Software Licensing (O’Reilly).

Some well-known collections of open source frameworks and
libraries for Java are listed in Table 1-4. Most of the projects on these
sites are “curated”—that is, judged and found worthy—by some sort
of community process.

T
a
b
l
e

1
-
4
.
R
e
p
u
t
a
b
l
e

o
p

http://shop.oreilly.com/product/9780596005818.do

e
n

s
o
u
r
c
e

J
a
v
a

c
o
l
l
e
c
t
i
o
n
s

Organization URL Notes

Apache Software
Foundation

http://projects.apache.or
g

Not just a web server!

Eclipse Software
Foundation

https://eclipse.org/projec
ts

home of IDE and of
Jakarta EE

Spring framework http://spring.io/projects

http://projects.apache.org/
https://eclipse.org/projects
http://spring.io/projects

JBoss community http://www.jboss.org/proj
ects

Not just a Java EE app
server!

There are also a variety of open source code repositories, which are
not curated—anybody who signs up can create a project there,
regardless of the existing community size (if any). Sites like this that
are successful accumulate too many projects to have a single page
listing them—you have to search. Most are not specific to Java.
Table 1-5 shows some of the open source code repos.

T
a
b
l
e

1
-
5
.
O
p
e
n

s
o
u
r
c
e

http://www.jboss.org/projects

c
o
d
e

r
e
p
o
s
i
t
o
r
i
e
s

Name URL Notes

Sourceforge.net https://sourceforge.net/ One of the oldest

GitHub http://github.com/ “Social Coding”

BitBucket https://bitbucket.org/ GitLab

That is not to disparage these—indeed, the collection of demo
programs for this book is hosted on GitHub—but only to say that you
have to know what you’re looking for, and exercise a bit more care
before deciding on a framework. Is there a community around it, or is
it a dead end?

https://sourceforge.net/
http://github.com/
https://bitbucket.org/

Finally, the author of this book maintains a small Java site, which
may be of value. It includes a listing of Java resources and material
related to this book.

For the Java enterprise or web tier, there are two main frameworks
that also provide “dependency injection”: JavaServer Faces (JSF) and
CDI, and the Spring Framework “SpringMVC” package. JSF and the
built-in CDI (Contexts and Dependency Injection) provides DI as
well as some additional Contexts, such as a very useful Web
Conversation context that holds objects across multiple web page
interactions. The Spring Framework provides dependency injection
and the SpringMVC web-tier helper classes. Table 1-6 shows some
web tier resources.

T
a
b
l
e

1
-
6
.
W
e
b

t
i
e
r

http://www.darwinsys.com/java

r
e
s
o
u
r
c
e
s

Name URL Notes

Ians List of 100 Java Web
Frameworks

http://darwinsys.
com/jwf/

JSF http://bit.ly/1lCL
ULS

Java EE new standard technology
for web pages

Because JSF is a component-based framework, there are many add-
on components that will make your JSF-based website much more
capable (and better looking) than the default JSF components.
Table 1-7 shows some of the JSF add-on libraries.

T
a
b
l
e
1
-
7
.

http://darwinsys.com/jwf/
http://bit.ly/1lCLULS

J
S
F

a
d
d
-
o
n
l
i
b
r
a
r
i
e
s

Name URL Notes

PrimeFaces http://primefaces.org/ Rich components library

RichFaces http://richfaces.org/ Rich components library

OpenFaces http://openfaces.org/ Rich components library

IceFaces http://icefaces.org/ Rich components library

Apache
Deltaspike

http://deltaspike.apache.org
/

Numerous code add-ons for
JSF

JSFUnit http://www.jboss.org/jsfunit
/

JUnit Testing for JSFUnit

http://primefaces.org/
http://richfaces.org/
http://openfaces.org/
http://icefaces.org/
http://deltaspike.apache.org/
http://www.jboss.org/jsfunit/

There are frameworks and libraries for almost everything these days.
If my lists don’t lead you to what you need, a web search probably
will. Try not to reinvent the flat tire!

As with all free software, be sure that you understand the
ramifications of the various licensing schemes. Code covered by the
GPL, for example, automatically transfers the GPL to any code that
uses even a small part of it. Consult a lawyer. Your mileage may vary.
Despite these caveats, the source code is an invaluable resource to the
person who wants to learn more Java.

If the deployment or build includes a step like “Get Smith to process file X on his
desktop and copy to the server,” you aren’t automated.

See also Open Office/Libre Office and MySql/mariadb, both involving Oracle.

1

2

Chapter 2. Interacting with the
Environment

2.0 Introduction
This chapter describes how your Java program can deal with its immediate
surroundings, with what we call the runtime environment. In one sense,
everything you do in a Java program using almost any Java API involves the
environment. Here we focus more narrowly on things that directly surround
your program. Along the way we’ll be introduced to the System class, which
knows a lot about your particular system.

Two other runtime classes deserve brief mention. The first,
java.lang.Runtime, lies behind many of the methods in the System
class. System.exit(), for example, just calls Runtime.exit().
Runtime is technically part of “the environment,” but the only time we use it
directly is to run other programs, which is covered in [Link to Come].

2.1 Getting Environment Variables

Problem

You want to get the value of “environment variables” from within your Java
program.

Solution

Use System.getenv().

Discussion

The seventh edition of Unix, released in 1979, had a new feature known as
environment variables. Environment variables are in all modern Unix systems
(including Mac OS X) and in most later command-line systems, such as the
“DOS” or Command Prompt in Windows, but are not in some older platforms
or other Java runtimes. Environment variables are commonly used for
customizing an individual computer user’s runtime environment, hence the
name. To take one familiar example, on Unix or DOS the environment variable
PATH determines where the system looks for executable programs. So of
course the question comes up: “How do I get at environment variables from
my Java program?”

The answer is that you can do this in all modern versions of Java, but you
should exercise caution in depending on being able to specify environment
variables because some rare operating systems may not provide them. That
said, it’s unlikely you’ll run into such a system because all “standard” desktop
systems provide them at present.

In some very ancient versions of Java, System.getenv() was deprecated
and/or just didn’t work. Nowadays the getenv() method is no longer
deprecated, though it still carries the warning that System Properties (see
Recipe 2.2) should be used instead. Even among systems that support them,
environment variable names are case sensitive on some platforms and case
insensitive on others. The code in Example 2-1 is a short program that uses the
getenv() method.

Example 2-1. environ/GetEnv.java
public class GetEnv {

 public static void main(String[] argv) {

 System.out.println("System.getenv(\"PATH\") = " +

System.getenv("PATH"));

 }

}

Running this code will produce output similar to the following:

C:\javasrc>java environ.GetEnv

System.getenv("PATH") = C:\windows\bin;c:\jdk1.8\bin;c:\documents

 and settings\ian\bin

C:\javasrc>

The no-argument form of the method System.getenv() returns all the
environment variables, in the form of an immutable String Map. You can
iterate through this map and access all the user’s settings or retrieve multiple
environment settings.

Both forms of getenv() require you to have permissions to access the
environment, so they typically do not work in restricted environments such as
applets.

2.2 Getting Information from System
Properties

Problem

You need to get information from the system properties.

Solution

Use System.getProperty() or System.getProperties().

Discussion

What is a property anyway? A property is just a name and value pair stored in
a java.util.Properties object, which we discuss more fully in [Link
to Come].

The System.Properties object controls and describes the Java runtime.
The System class has a static Properties member whose content is the
merger of operating system specifics (os.name, for example), system and

user tailoring (java.class.path), and properties defined on the command
line (as we’ll see in a moment). Note that the use of periods in these names
(like os.arch, os.version, java.class.path, and
java.lang.version) makes it look as though there is a hierarchical
relationship similar to that for class names. The Properties class, however,
imposes no such relationships: each key is just a string, and dots are not
special.

To retrieve one system-provided property, use System.getProperty().
If you want them all, use System.getProperties(). Accordingly, if I
wanted to find out if the System Properties had a property named
"pencil_color", I could say:

 String sysColor = System.getProperty("pencil_color");

But what does that return? Surely Java isn’t clever enough to know about
everybody’s favorite pencil color? Right you are! But we can easily tell Java
about our pencil color (or anything else we want to tell it) using the -D
argument.

The -D option argument is used to predefine a value in the system properties
object. It must have a name, an equals sign, and a value, which are parsed the
same way as in a properties file (see [Link to Come]). You can have more than
one -D definition between the java command and your class name on the
command line. At the Unix or Windows command line, type:

java -D"pencil_color=Deep Sea Green" environ.SysPropDemo

When running this under an IDE, put the variable’s name and value in the
appropriate dialog box, e.g., in Eclipse’s “Run Configuration” dialog under
“Program Arguments”.

The SysPropDemo program has code to extract just one or a few properties,
so you can run it like:

$ java environ.SysPropDemo os.arch

os.arch = x86

Or you can get a complete list by invoking the program with no arguments,
which lists all the properties using this code:

 System.getProperties().list(System.out);

Which reminds me—this is a good time to mention system-dependent code.
Recipe 2.3 talks about os-dependent code and release-dependent code.

See Also

[Link to Come] lists more details on using and naming your own
Properties files. The javadoc page for java.util.Properties lists
the exact rules used in the load() method, as well as other details.

2.3 Dealing with Java Version and Operating
System–Dependent Variations

Problem

You need to write code that adapts to the underlying operating system.

Solution

You can use System.Properties to find out the Java version and the
operating system, and various features in the File class to find out some
platform-dependent features.

Discussion

Some things depend on the version of Java you are running. Use
System.getProperty() with an argument of
java.specification.version.

Alternatively, and with greater generality, you may want to test for the
presence or absence of particular classes. One way to do this is with
Class.forName("class") (see [Link to Come]), which throws an
exception if the class cannot be loaded—a good indication that it’s not present
in the runtime’s library. Here is code for this, from an application wanting to
find out whether the common Swing UI components are available. The
javadoc for the standard classes reports the version of the JDK in which this
class first appeared, under the heading “Since.” If there is no such heading, it
normally means that the class has been present since the beginnings of Java:

starting/CheckForSwing.java

public class CheckForSwing {

 public static void main(String[] args) {

 try {

 Class.forName("javax.swing.JButton");

 } catch (ClassNotFoundException e) {

 String failure =

 "Sorry, but this version of MyApp needs \n" +

 "a Java Runtime with JFC/Swing components\n" +

 "having the final names (javax.swing.*)";

 // Better to make something appear in the GUI. Either a

 // JOptionPane, or: myPanel.add(new Label(failure));

 System.err.println(failure);

 }

 // No need to print anything here - the GUI should work...

 }

}

It’s important to distinguish between testing this at compile time and at
runtime. In both cases, this code must be compiled on a system that includes
the classes you are testing for—JDK >= 1.1 and Swing, respectively. These

tests are only attempts to help the poor backwater Java runtime user trying to
run your up-to-date application. The goal is to provide this user with a message
more meaningful than the simple “class not found” error that the runtime
gives. It’s also important to note that this test becomes unreachable if you write
it inside any code that depends on the code you are testing for. Put the test
early in the main flow of your application, before any GUI objects are
constructed. Otherwise the code just sits there wasting space on newer
runtimes and never gets run on Java systems that don’t include Swing.
Obviously this is a very early example, but you can use the same technique to
test for any runtime feature added at any stage of Java’s evolution (see [Link to
Come] for an outline of the features added in each release of Java). You can
also use this technique to determine whether a needed third-party library has
been successfully added to your classpath.

Also, although Java is designed to be portable, some things aren’t. These
include such variables as the filename separator. Everybody on Unix knows
that the filename separator is a slash character (/) and that a backward slash, or
backslash (\), is an escape character. Back in the late 1970s, a group at
Microsoft was actually working on Unix—their version was called Xenix, later
taken over by SCO—and the people working on DOS saw and liked the Unix
filesystem model. The earliest versions of MS-DOS didn’t have directories, it
just had “user numbers” like the system it was a clone of, Digital Research
CP/M (itself a clone of various other systems). So the Microsoft developers set
out to clone the Unix filesystem organization. Unfortunately, MS-DOS had
already committed the slash character for use as an option delimiter, for which
Unix had used a dash (-); and the PATH separator (:) was also used as a “drive
letter” delimiter, as in C: or A:. So we now have commands like those shown in
Table 2-1.

T
a
b

l
e

2
-
1
.
D
i
r
e
c
t
o
r
y

l
i
s
t
i
n
g

c
o
m
m
a
n
d
s

System Directory list command Meaning Example PATH setting

U
n
i
x

ls
-
R
/

Recursive listing of /, the top-level directory PATH=/bin:/usr/
bin

D
O
S

di
r/
s \

Directory with subdirectories option (i.e., recursive) of \, the top-
level directory (but only of the current drive)

PATH=C:\windo
ws;D:\mybin

Where does this get us? If we are going to generate filenames in Java, we may
need to know whether to put a / or a \ or some other character. Java has two
solutions to this. First, when moving between Unix and Microsoft systems, at
least, it is permissive: either / or \ can be used, and the code that deals with the
operating system sorts it out. Second, and more generally, Java makes the
platform-specific information available in a platform-independent way. First,
for the file separator (and also the PATH separator), the java.io.File
class (see [Link to Come]) makes available some static variables containing
this information. Because the File class manages platform dependent
information, it makes sense to anchor this information here. The variables are
shown in Table 2-2.

T
a
b
l
e

2
-
2
.
F
i
l
e

p
r
o
p

1

e
r
t
i
e
s

Name Type Meaning

separator static

String
The system-dependent filename separator character (e.g., /
or \).

separatorCh
ar

static
char

The system-dependent filename separator character (e.g., /
or \).

pathSeparat
or

static
String

The system-dependent path separator character, represented
as a string for convenience.

pathSeparat
orChar

static
char

The system-dependent path separator character.

Both filename and path separators are normally characters, but they are also
available in String form for convenience.

A second, more general, mechanism is the system Properties object mentioned
in Recipe 2.2. You can use this to determine the operating system you are
running on. Here is code that simply lists the system properties; it can be
informative to run this on several different implementations:

public class SysPropDemo {

 public static void main(String[] argv) throws IOException {

 if (argv.length == 0)

 // tag::sysprops[]

 System.getProperties().list(System.out);

 // end::sysprops[]

 else {

 for (String s : argv) {

 System.out.println(s + " = " +

 System.getProperty(s));

 }

 }

 }

}

Some OSes, for example, provide a mechanism called “the null device” that
can be used to discard output (typically used for timing purposes). Here is code
that asks the system properties for the “os.name” and uses it to make up a
name that can be used for discarding data (if no null device is known for the
given platform, we return the name junk, which means that on such platforms,
we’ll occasionally create, well, junk files; I just remove these files when I
stumble across them):

package com.darwinsys.lang;

import java.io.File;

/** Some things that are System Dependent.

 * All methods are static.

 * @author Ian Darwin

 */

public class SysDep {

 final static String UNIX_NULL_DEV = "/dev/null";

 final static String WINDOWS_NULL_DEV = "NUL:";

 final static String FAKE_NULL_DEV = "jnk";

 /** Return the name of the "Null Device" on platforms which

support it,

 * or "jnk" (to create an obviously well-named temp file)

otherwise.

 * @return The name to use for output.

 */

 public static String getDevNull() {

 if (new File(UNIX_NULL_DEV).exists()) {

 return UNIX_NULL_DEV;

 }

 String sys = System.getProperty("os.name");

 if (sys==null) {

 return FAKE_NULL_DEV;

 }

 if (sys.startsWith("Windows")) {

 return WINDOWS_NULL_DEV;

 }

 return FAKE_NULL_DEV;

 }

}

If /dev/null exists, use it.

If not, ask System.properties if it knows the OS name.

Nope, so give up, return jnk.

We know it’s Microsoft Windows, so use NUL:.

All else fails, go with jnk.

Although Java’s Swing GUI aims to be portable, Apple’s implementation for
Mac OS X does not automatically do “the right thing” for everyone. For
example, a JMenuBar menu container appears by default at the top of the
application window. This is the norm on Windows and on most Unix
platforms, but Mac users expect the menu bar for the active application to
appear at the top of the screen. To enable “normal” behavior, you have to set
the System property apple.laf.useScreenMenuBar to the value true,
before the Swing GUI starts up. You might want to set some other properties
too, such as a short name for your application to appear in the menu bar (the
default is the full class name of your main application class).

There is an example of this in the book’s source code, at
src/main/java/gui/MacOsUiHints.java.

There is probably no point in setting these properties unless you are, in fact,
being run under Mac OS X. How do you tell? Apple’s recommended way is to

check for the system property mrj.runtime and, if so, assume you are on
Mac OS X:

boolean isMacOS = System.getProperty("mrj.version") != null;

if (isMacOS) {

 System.setProperty("apple.laf.useScreenMenuBar", "true");

System.setProperty("com.apple.mrj.application.apple.menu.about.name",

 "My Super App");

}

On the other hand, these properties are likely harmless on non-Mac systems, so
you could just skip the test, and set the two properties unconditionally.

2.4 Using Extensions or Other Packaged APIs

Problem

You have a JAR file of classes you want to use.

Solution

Simply add the JAR to your CLASSPATH.

Discussion

As you build more sophisticated applications, you will need to use more and
more third-party libraries. You can add these to your CLASSPATH.

It used to be recommended that you could drop these JAR files into the Java
Extensions Mechanism directory, typically something like \jdk1.x\jre\lib\ext.,
instead of listing each JAR file in your CLASSPATH variable. However, this is
no longer generally recommended and is no longer available in the latest
JDKs. Instead, you may wish to use build tools like Maven (see Recipe 1.6) or
Gradle as well as IDEs to automate the addition of JAR files to your classpath.

One reason I’ve never been fond of using the extensions directory is that it
requires modifying the installed JDK or JRE, which can lead to maintenance
issues, and problems when a new JDK or JRE is installed.

Java 9 introduced a major change to Java, the Java 9 Modules System for
program modularization, which we discuss in Recipe 2.5.

2.5 Using the Java Modules System.

Problem

You are using Java 9 or later, and need to deal with the Modules mechanism.

Solution

Read on.

Discussion

Java’s Modules System, formerly known as Project Jigsaw, was designed to
handle the need to build large applications out of many small pieces. To an
extent this problem had been solved by tools like Maven and Gradle, but the
Modules system solves a lightly different problem than those tools. Maven or
Gradle will find dependencies, and download them, and install them on your
development and test runtimes, and package them into runnable Jar files. The
modules system is more concerned with the visbility of classes from one chunk
of application code to another, typically provided by different developers who
may not know or trust each other. As such, it is an admission that Java’s
original set of storage modifiers - such as public, private, protected,
and default visibilty - was not sufficient for building large-scale applications.

It should be noted that acceptance of Jigsaw was arguably the single most
contentious change ever made to Java. The internet still rings with the

arguments, such as this one, which in fairness to all sides was made around the
time the near-final draft was rejected by the JCP standards committee, and well
before the updated final version was incorporated into Java 9.

What follows is a brief discussion of using JPMS, the Java Platform Modules
System, to import modules into your application. There is an introduction to
creating your own modules in [Link to Come]. For a more detailed
presentation, you should refer to a book-length treatment such as Java 9
Modularity: Patterns and Practices for Developing Maintainable Applications
by Sander Mak and Paul Bakker (O’Reilly 2017).

One thing to understand at the outset: JPMS is not a replacement for your
existing build tool. Whether you use Maven, Gradle, Ant, or just dump all
needed Jar files into a lib directory, you can still do that. JPMS is about
controlling access and visibility between different parts of the code in an
application, but doesn’t extend to actually providing the class files. Also, don’t
confuse Maven’s modules with JPMS modules; the former is the physical
structuring of a project into sub-projects, the lather is a section of API named
without too much regard to where it is located.

First, for simple cases of self-contained programs, you don’t need to be
concerned with modules. Just put all the necessary Jar files on your classpath
at compile and run time, and all will be well. Probably.

You may see warning messages like this along the way:

Illegal reflective access by com.foo.Bar

 (file:/Users/ian/.m2/repository/com/foo/1.3.1/foo-1.3.1.jar)

 to field java.util.Properties.defaults

Please consider reporting this to the maintainers of com.foo.Bar

Use --illegal-access=warn to enable warnings of further illegal

reflective access operations

All illegal access operations will be denied in a future release

https://developer.jboss.org/blogs/scott.stark/2017/04/14/critical-deficiencies-in-jigsawjsr-376-java-platform-module-system-ec-member-concerns?_sscc=t
https://www.amazon.ca/Java-Modularity-Developing-Maintainable-Applications/dp/1491954167

You can usually ignore them. The message comes from JPMS doing its job,
checking that inter-module accesses are declared. They will go away as all the
libraries and apps get modularized.

Why will all be well “Probably”? If you are using certain classes that were
deprecated over the last few releases, things won’t compile. For that, you must
make the requisite modules available. In the unsafe subdirectory (also a Maven
“module”) under javasrc, there is a source file called LoadAverage. The
load average is a feature of Unix/Linux systems that gives a rough measure of
system load or busy-ness, by reporting the number of processes that are
waiting to be run - there are almost always more processes running than CPU
cores to run them on, so some always have to wait. Higher numbers mean a
busier system, with slower response.

Sun’s unsupported Unsafe class has a method for obtaining the load average,
on systems that support it. The code has to use the Reflection API (see [Link to
Come]) to obtain the Unsafe object; if you try to instantiate it directly you will
get a SecurityException (this was the case before the Modules system).
Once the instance is obtained and casted to Unsafe, you can invoke methods
such as loadAverage().

Example 2-2. Use of Unsafe.java

However this code, which used to compile, no longer will as of Java 9, without
using the modules system. We must create a simple module-info.java
file to tell the compiler and VM that we require use of the module with the
semi-obvious name jdk.unsupported. We’ll say more about the module
file format in [Link to Come]).

module javasrc.unsafe {

 requires jdk.unsupported;

}

Now that we have the code in place, and the module file in the top level of the
source folder, we can build the project, run the program, and compare its
output against the system-level tool for displaying the load average, uptime.

$ mvn compile

[INFO] Scanning for projects...

[INFO]

[INFO] ------------------------< com.darwinsys:XXXXX >----------------

[INFO] Building XXXXX 1.0.0-SNAPSHOT

[INFO] --------------------------------[jar]------------------------

[INFO]

[INFO] --- maven-resources-plugin:2.6:resources (default-resources) @

XXXXX ---

[INFO] Using 'UTF-8' encoding to copy filtered resources.

[INFO]

[INFO] --- maven-compiler-plugin:3.1:compile (default-compile) @ XXXXX

[INFO] Changes detected - recompiling the module!

[INFO] Compiling 2 source files to

/Users/ian/workspace/javasrc/unsafe/target/classes

[WARNING]

/Users/ian/workspace/javasrc/unsafe/src/main/java/unsafe/LoadAverage.java:

[3,16]

 sun.misc.Unsafe is internal proprietary API and may be removed in

a future release

[WARNING]

/Users/ian/workspace/javasrc/unsafe/src/main/java/unsafe/LoadAverage.java:

[11,27]

 sun.misc.Unsafe is internal proprietary API and may be removed in

a future release

[WARNING]

/Users/ian/workspace/javasrc/unsafe/src/main/java/unsafe/LoadAverage.java:

[13,17]

 sun.misc.Unsafe is internal proprietary API and may be removed in

a future release

[WARNING]

/Users/ian/workspace/javasrc/unsafe/src/main/java/unsafe/LoadAverage.java:

[13,34]

 sun.misc.Unsafe is internal proprietary API and may be removed in

a future release

[INFO] ---

[INFO] BUILD SUCCESS

[INFO] ---

[INFO] Total time: 3.522 s

[INFO] Finished at: 2019-09-10T13:33:14-04:00

[INFO] ---

$ java -cp target/classes unsafe/LoadAverage

2.47 2.51 1.97

$ uptime

13:34 up 5 days, 5:26, 6 users, load averages: 2.47 2.51 1.97

$

Thankfully, it works and gives the same numbers as the uptime command. At
least, it works on Java 11. As the warnings imply, it may (e.g., probably will)
be removed in a later release.

If you are building a more complex app, you will probably need to put together
a more complete module-info.java file. But at this stage it’s primarily a matter
of requiring the modules you need. The standard Java API is divided into
several modules, which you can list using the java command:

$ java --list-modules

java.base

java.compiler

java.datatransfer

java.desktop

java.instrument

java.logging

java.management

java.management.rmi

java.naming

java.net.http

java.prefs

java.rmi

java.scripting

java.se

java.security.jgss

java.security.sasl

java.smartcardio

java.sql

java.sql.rowset

java.transaction.xa

java.xml

java.xml.crypto

... plus a bunch of JDK modules ...

Of these, java.base is always available and doesn’t need to be listed,
java.desktop includes AWT and Swing for graphics, java.se includes
basically all of what used to be public API in the Java SDK. If our Load
Average program wanted to display the result in a Swing window, for example,
it would need to add this into its module file:

requires java.desktop;

When your application is big enough to be divided into tiers or layers, you will
probably want to describe these packages. Since that topic comes under the
heading of “packaging”, it is described in [Link to Come].

When compiling strings for use on Windows, remember to double them because \ is an escape
character in most places other than the MS-DOS command line: String rootDir = "C:\\";.

1

Chapter 3. Strings and
Things

3.0 Introduction
Character strings are an inevitable part of just about any
programming task. We use them for printing messages for the user;
for referring to files on disk or other external media; and for people’s
names, addresses, and affiliations. The uses of strings are many,
almost without number (actually, if you need numbers, we’ll get to
them in [Link to Come]).

If you’re coming from a programming language like C, you’ll need to
remember that String is a defined type (class) in Java—that is, a
string is an object and therefore has methods. It is not an array of
characters (though it contains one) and should not be thought of as an
array. Operations like fileName.endsWith(".gif") and
extension.equals(".gif") (and the equivalent
".gif".equals(extension)) are commonplace.

Notice that a given String object, once constructed, is immutable.
In other words, once I have said String s = "Hello" +
yourName;, the contents of the particular object that reference
variable s refers to can never be changed. You can assign s to refer
to a different string, even one derived from the original, as in s =

1

s.trim(). And you can retrieve characters from the original string
using charAt(), but it isn’t called getCharAt() because there is
not, and never will be, a setCharAt() method. Even methods like
toUpperCase() don’t change the String; they return a new
String object containing the translated characters. If you need to
change characters within a String, you should instead create a
StringBuilder (possibly initialized to the starting value of the
String), manipulate the StringBuilder to your heart’s content,
and then convert that to String at the end, using the ubiquitous
toString() method.

How can I be so sure they won’t add a setCharAt() method in the
next release? Because the immutability of strings is one of the
fundamentals of the Java Virtual Machine. Immutable objects are
generally good for software reliability (some languages do not even
allow mutable objects). Immutability avoids conflicts, particularly
where multiple threads are involved, or where software from multiple
organizations has to work together; for example, you can safely pass
immutable objects to a third-party library and expect that the objects
will not be modifed.

It may be possible to tinker with the String’s internal data
structures using the Reflection API, as shown in [Link to Come], but
then all bets are off. Secured environments do not permit access to
the Reflection API, and the Java Modules System from Java 9
requires declaration of modules which are allowed to be looked at
using this API.

2

Remember also that the String is a fundamental type in Java.
Unlike most of the other classes in the core API, the behavior of
strings is not changeable; the class is marked final so it cannot be
subclassed. So you can’t declare your own String subclass. Think
if you could—you could masquerade as a String but provide a
setCharAt() method! Again, they thought of that. If you don’t
believe me, try it out:

public class WolfInStringsClothing

 extends java.lang.String {//EXPECT COMPILE ERROR

 public void setCharAt(int index, char newChar) {

 // The implementation of this method

 // would be left as an exercise for the reader.

 // Hint: compile this code exactly as is before

bothering!

 }

}

Got it? They thought of that!

Of course you do need to be able to modify strings. Some methods
extract part of a String; these are covered in the first few recipes in
this chapter. And StringBuilder is an important set of classes
that deals in characters and strings and has many methods for
changing the contents, including, of course, a toString() method.
Reformed C programmers should note that Java strings are not arrays
of chars as in C (though of course they are so “under the hood”).
Therefore you must use methods for such operations as processing a
string one character at a time; see Recipe 3.3. Figure 3-1 shows an
overview of String, StringBuilder, and C-language strings.

Figure 3-1. String, StringBuilder, and C-language strings

Although we haven’t discussed the details of the java.io package
yet (we will, in [Link to Come]), you need to be able to read text files
for some of these programs. Even if you’re not familiar with
java.io, you can probably see from the examples of reading text
files that a BufferedReader allows you to read “chunks” of data,
and that this class has a very convenient readLine() method.

Going the other way, System.out.println() is normally used
to print strings or other values to the terminal or “standard output.”
String concatenation is commonly used here, as in:

System.out.println("The answer is " + result);

One caveat with string concatenation is that if you are appending a
bunch of things, and a number and a character are concatenated at the
front, they are added before concatenation due to Java’s precedence
rules. So don’t do as I did in this contrived example:

int result = ...;

System.out.println(result + '=' + " the answer.");

Given that result is an integer, then result + '=' (result
added to the equals sign, which is of the numeric type char) is a
valid numeric expression, which will result in a single value of type
int. If the variable result has the value 42, and given that the
character = in a Unicode (or ASCII) code chart has the value 61, this
prints:

103 the answer.

The wrong value and no equals sign! Safer approaches include using
parentheses, using double quotes around the equals sign, using a
StringBuilder (see Recipe 3.2) or a MessageFormat (see
[Link to Come]), or using String.format() (see [Link to
Come]). Of course in this simple example you could just move the =
to be part of the string literal, but the example was chosen to illustrate
the problem of arithmetic on char values being confused with string
contatenation. I won’t show you how to sort an array of strings here;
the more general notion of sorting a collection of objects will be
taken up in [Link to Come].

3.1 Taking Strings Apart with Substrings
or Tokenizing

Problem

You want to break a string apart, either by indexing positions or by
fixed token characters (e.g., break on spaces to get words).

Solution

For substrings, use the String object’s substring() method.

For tokenizing, construct a StringTokenizer around your string
and call its methods hasMoreTokens() and nextToken().

Or, use regular expressions (see Chapter 4).

Discussion

SUBSTRINGS

The substring() method constructs a new String object made
up of a run of characters contained somewhere in the original string,
the one whose substring() you called. The substring method
is overloaded: both forms require a starting index (which is always
zero-based). The one-argument form returns from startIndex to
the end. The two-argument form takes an ending index (not a length,
as in some languages), so that an index can be generated by the
String methods indexOf() or lastIndexOf().

WARNING
Note that the end index is one beyond the last character! Java adopts this “half
open interval” (or inclusive start, exclusive end) policy fairly consistently; there
are good practical reasons for adopting this approach, and some other languages
do likewise.

public class SubStringDemo {

 public static void main(String[] av) {

 String a = "Java is great.";

 System.out.println(a);

 String b = a.substring(5); // b is the String "is

great."

 System.out.println(b);

 String c = a.substring(5,7);// c is the String "is"

 System.out.println(c);

 String d = a.substring(5,a.length());// d is "is

great."

 System.out.println(d);

 }

}

When run, this prints the following:

C:> java strings.SubStringDemo

Java is great.

is great.

is

is great.

C:>

TOKENIZING

The easiest way is to use a regular expression; we’ll discuss these in
Chapter 4, but for now, a string containing a space is a valid regular

expression to match space characters, so you can most easily split a
string into words like this:

for (String word : some_input_string.split(" ")) {

 System.out.println(word);

}

If you need to match multiple spaces, or spaces and tabs, use the
string "\s+".

If you want to split a file, you can try the string "," or use one of
several third-party libraries for CSV files.

Another method is to use StringTokenizer. The
StringTokenizer methods implement the Iterator interface
and design pattern (see [Link to Come]):

StrTokDemo.java

StringTokenizer st = new StringTokenizer("Hello World of

Java");

while (st.hasMoreTokens())

 System.out.println("Token: " + st.nextToken());

StringTokenizer also implements the Enumeration interface
directly (also in [Link to Come]), but if you use the methods thereof
you need to cast the results to String.

A StringTokenizer normally breaks the String into tokens at
what we would think of as “word boundaries” in European languages.

Sometimes you want to break at some other character. No problem.
When you construct your StringTokenizer, in addition to
passing in the string to be tokenized, pass in a second string that lists
the “break characters.” For example:

StrTokDemo2.java

StringTokenizer st = new StringTokenizer("Hello,

World|of|Java", ", |");

while (st.hasMoreElements())

 System.out.println("Token: " + st.nextElement());

It outputs the four words, each on a line by itself, with no
punctuation.

But wait, there’s more! What if you are reading lines like:

FirstName|LastName|Company|PhoneNumber

and your dear old Aunt Begonia hasn’t been employed for the last 38
years? Her “Company” field will in all probability be blank. If you
look very closely at the previous code example, you’ll see that it has
two delimiters together (the comma and the space), but if you run it,
there are no “extra” tokens—that is, the StringTokenizer
normally discards adjacent consecutive delimiters. For cases like the
phone list, where you need to preserve null fields, there is good news
and bad news. The good news is that you can do it: you simply add a
second argument of true when constructing the
StringTokenizer, meaning that you wish to see the delimiters as
tokens. The bad news is that you now get to see the delimiters as

3

tokens, so you have to do the arithmetic yourself. Want to see it? Run
this program:

StrTokDemo3.java

StringTokenizer st =

 new StringTokenizer("Hello, World|of|Java", ", |",

true);

while (st.hasMoreElements())

 System.out.println("Token: " + st.nextElement());

and you get this output:

C:\>java strings.StrTokDemo3

Token: Hello

Token: ,

Token:

Token: World

Token: |

Token: of

Token: |

Token: Java

C:\>

This isn’t how you’d like StringTokenizer to behave, ideally,
but it is serviceable enough most of the time. Example 3-1 processes
and ignores consecutive tokens, returning the results as an array of
Strings.

Example 3-1. StrTokDemo4.java (StringTokenizer)
public class StrTokDemo4 {

 public final static int MAXFIELDS = 5;

 public final static String DELIM = "|";

 /** Processes one String, returns it as an array of

Strings */

 public static String[] process(String line) {

 String[] results = new String[MAXFIELDS];

 // Unless you ask StringTokenizer to give you the

tokens,

 // it silently discards multiple null tokens.

 StringTokenizer st = new StringTokenizer(line, DELIM,

true);

 int i = 0;

 // stuff each token into the current slot in the

array.

 while (st.hasMoreTokens()) {

 String s = st.nextToken();

 if (s.equals(DELIM)) {

 if (i++>=MAXFIELDS)

 // This is messy: See StrTokDemo4b which

uses

 // a List to allow any number of fields.

 throw new IllegalArgumentException("Input

line " +

 line + " has too many fields");

 continue;

 }

 results[i] = s;

 }

 return results;

 }

 public static void printResults(String input, String[]

outputs) {

 System.out.println("Input: " + input);

 for (String s : outputs)

 System.out.println("Output " + s + " was: " + s);

 }

 // Should be a JUnit test but is referred to in the book

text,

 // so I can't move it to "tests" until the next edit.

 public static void main(String[] a) {

 printResults("A|B|C|D", process("A|B|C|D"));

 printResults("A||C|D", process("A||C|D"));

 printResults("A|||D|E", process("A|||D|E"));

 }

}

When you run this, you will see that A is always in Field 1, B (if
present) is in Field 2, and so on. In other words, the null fields are
being handled properly:

Input: A|B|C|D

Output 0 was: A

Output 1 was: B

Output 2 was: C

Output 3 was: D

Output 4 was: null

Input: A||C|D

Output 0 was: A

Output 1 was: null

Output 2 was: C

Output 3 was: D

Output 4 was: null

Input: A|||D|E

Output 0 was: A

Output 1 was: null

Output 2 was: null

Output 3 was: D

Output 4 was: E

See Also

Many occurrences of StringTokenizer may be replaced with
regular expressions (see Chapter 4) with considerably more

flexibility. For example, to extract all the numbers from a String,
you can use this code:

Matcher toke = Pattern.compile("\\d+").matcher(inputString);

while (toke.find()) {

 String courseString = toke.group(0);

 int courseNumber = Integer.parseInt(courseString);

 ...

This allows user input to be more flexible than you could easily
handle with a StringTokenizer. Assuming that the numbers
represent course numbers at some educational institution, the inputs
“471,472,570” or “Courses 471 and 472, 570” or just “471 472 570”
should all give the same results.

3.2 Putting Strings Together with
StringBuilder

Problem

You need to put some String pieces (back) together.

Solution

Use string concatenation: the + operator. The compiler implicitly
constructs a StringBuilder for you and uses its append()
methods (unless all the string parts are known at compile time).

Better yet, construct and use a StringBuilder yourself.

Discussion

An object of one of the StringBuilder classes basically
represents a collection of characters. It is similar to a String
objectfootnote[String and StringBuilder have several
methods that are forced to be identical by their implementation of the
CharSequence interface]. However, as mentioned, Strings are
immutable; StringBuilders are mutable and designed for, well,
building Strings. You typically construct a StringBuilder,
invoke the methods needed to get the character sequence just the way
you want it, and then call toString() to generate a String
representing the same character sequence for use in most of the Java
API, which deals in Strings.

StringBuffer is historical—it’s been around since the beginning
of time. Some of its methods are synchronized (see [Link to Come]),
which involves unneeded overhead in a single-threaded context. In
Java 5, this class was “split” into StringBuffer (which is
synchronized) and StringBuilder (which is not synchronized);
thus, it is faster and preferable for single-threaded use. Another new
class, AbstractStringBuilder, is the parent of both. In the
following discussion, I’ll use “the StringBuilder classes” to
refer to all three because they mostly have the same methods.

The book’s example code provides a StringBuilderDemo and a
StringBufferDemo. Except for the fact that StringBuilder
is not threadsafe, these API classes are identical and can be used
interchangeably, so my two demo programs are almost identical
except that each one uses the appropriate builder class.

The StringBuilder classes have a variety of methods for
inserting, replacing, and otherwise modifying a given
StringBuilder. Conveniently, the append() methods return a
reference to the StringBuilder itself, so “stacked” statements
like .append(…).append(…) are fairly common. This style of
coding is referred to as a “fluent API” because it reads smoothly, like
prose from a native speaker of a human language. You might even see
this style of coding in a toString() method, for example.
Example 3-2 shows three ways of concatenating strings.

Example 3-2. StringBuilderDemo.java
public class StringBuilderDemo {

 public static void main(String[] argv) {

 String s1 = "Hello" + ", " + "World";

 System.out.println(s1);

 // Build a StringBuilder, and append some things to

it.

 StringBuilder sb2 = new StringBuilder();

 sb2.append("Hello");

 sb2.append(',');

 sb2.append(' ');

 sb2.append("World");

 // Get the StringBuilder's value as a String, and

print it.

 String s2 = sb2.toString();

 System.out.println(s2);

 // Now do the above all over again, but in a more

 // concise (and typical "real-world" Java) fashion.

 System.out.println(

 new StringBuilder()

 .append("Hello")

 .append(',')

 .append(' ')

 .append("World"));

 }

}

In fact, all the methods that modify more than one character of a
StringBuilder’s contents (i.e., append(), delete(),
deleteCharAt(), insert(), replace(), and reverse())
return a reference to the builder object to facilitate this “fluent API”
style of coding.

As another example of using a StringBuilder, consider the need
to convert a list of items into a comma-separated list, while avoiding
getting an extra comma after the last element of the list. Code for this
is shown in Example 3-3.

Example 3-3. StringBuilderCommaList.java
 // Method using regexp split

 StringBuilder sb1 = new StringBuilder();

 for (String word : SAMPLE_STRING.split(" ")) {

 if (sb1.length() > 0) {

 sb1.append(", ");

 }

 sb1.append(word);

 }

 System.out.println(sb1);

 // Method using a StringTokenizer

 StringTokenizer st = new

StringTokenizer(SAMPLE_STRING);

 StringBuilder sb2 = new StringBuilder();

 while (st.hasMoreElements()) {

 sb2.append(st.nextToken());

 if (st.hasMoreElements()) {

 sb2.append(", ");

 }

 }

 System.out.println(sb2);

The first method uses the StringBuilder.length() method,
so it will only work correctly when you are starting with an empty
StringBuilder. The second method relies on calling the
informational method hasMoreElements() in the
Enumeration (or hasNext() in an Iterator, as discussed in
[Link to Come]) more than once on each element. An alternative
method, particularly when you aren’t starting with an empty builder,
would be to use a boolean flag variable to track whether you’re at
the beginning of the list.

3.3 Processing a String One Character at
a Time

Problem

You want to process the contents of a string, one character at a time.

Solution

Use a for loop and the String’s charAt() method. Or a “for
each” loop and the String’s toCharArray method.

Discussion

A string’s charAt() method retrieves a given character by index
number (starting at zero) from within the String object. To process
all the characters in a String, one after another, use a for loop
ranging from zero to String.length()-1. Here we process all
the characters in a String:

strings/StrCharAt.java

public class StrCharAt {

 public static void main(String[] av) {

 String a = "A quick bronze fox lept a lazy bovine";

 for (int i=0; i < a.length(); i++) // Don't use

foreach

 System.out.println("Char " + i + " is " +

a.charAt(i));

 }

}

Given that the “for each” loop has been in the language for ages, you
might be excused for expecting to be able to write something like
for (char ch : myString) {…}. Unfortunately, this does
not work. But you can use myString.toCharArray() as in the
following:

public class ForEachChar {

 public static void main(String[] args) {

 String s = "Hello world";

 // for (char ch : s) {...} Does not work, in Java 7

 for (char ch : s.toCharArray()) {

 System.out.println(ch);

 }

 }

}

A “checksum” is a numeric quantity representing and confirming the
contents of a file. If you transmit the checksum of a file separately
from the contents, a recipient can checksum the file—assuming the
algorithm is known—and verify that the file was received intact.
Example 3-4 shows the simplest possible checksum, computed just
by adding the numeric values of each character. Note that on files, it
does not include the values of the newline characters; in order to fix
this, retrieve System.getProperty("line.separator");
and add its character value(s) into the sum at the end of each line. Or
give up on line mode and read the file a character at a time.

Example 3-4. CheckSum.java
 /** CheckSum one text file, given an open BufferedReader.

 * Checksumm does not include line endings, so will give

the

 * same value for given text on any platform. Do not use

 * on binary files!

 */

 public static int process(BufferedReader is) {

 int sum = 0;

 try {

 String inputLine;

 while ((inputLine = is.readLine()) != null) {

 int i;

 for (i=0; i<inputLine.length(); i++) {

 sum += inputLine.charAt(i);

 }

 }

 } catch (IOException e) {

 throw new RuntimeException("IOException: " + e);

 }

 return sum;

 }

3.4 Aligning Strings

Problem

You want to align strings to the left, right, or center.

Solution

Do the math yourself, and use substring (see Recipe 3.1) and a
StringBuilder (see Recipe 3.2). Or, use my StringAlign
class, which is based on the java.text.Format class. For left or
right alignment, use String.format().

Discussion

Centering and aligning text comes up fairly often. Suppose you want
to print a simple report with centered page numbers. There doesn’t
seem to be anything in the standard API that will do the job fully for
you. But I have written a class called StringAlign that will.
Here’s how you might use it:

public class StringAlignSimple {

 public static void main(String[] args) {

 // Construct a "formatter" to center strings.

 StringAlign formatter = new StringAlign(70,

StringAlign.Justify.CENTER);

 // Try it out, for page "i"

 System.out.println(formatter.format("- i -"));

 // Try it out, for page 4. Since this formatter is

 // optimized for Strings, not specifically for page

numbers,

 // we have to convert the number to a String

System.out.println(formatter.format(Integer.toString(4)));

 }

}

If you compile and run this class, it prints the two demonstration line
numbers centered, as shown:

> javac -d . StringAlignSimple.java

> java strings.StringAlignSimple

 - i -

 4

>

Example 3-5 is the code for the StringAlign class. Note that this
class extends the class Format in the package java.text. There
is a series of Format classes that all have at least one method called
format(). It is thus in a family with numerous other formatters,
such as DateFormat, NumberFormat, and others, that we’ll take
a look at in upcoming chapters.

Example 3-5. StringAlign.java
public class StringAlign extends Format {

 private static final long serialVersionUID = 1L;

 public enum Justify {

 /* Constant for left justification. */

 LEFT,

 /* Constant for centering. */

 CENTER,

 /** Constant for right-justified Strings. */

 RIGHT,

 }

 /** Current justification */

 private Justify just;

 /** Current max length */

 private int maxChars;

 /** Construct a StringAlign formatter; length and

alignment are

 * passed to the Constructor instead of each format() call

as the

 * expected common use is in repetitive formatting e.g.,

page numbers.

 * @param maxChars - the maximum length of the output

 * @param just - one of the enum values LEFT, CENTER or

RIGHT

 */

 public StringAlign(int maxChars, Justify just) {

 switch(just) {

 case LEFT:

 case CENTER:

 case RIGHT:

 this.just = just;

 break;

 default:

 throw new IllegalArgumentException("invalid

justification arg.");

 }

 if (maxChars < 0) {

 throw new IllegalArgumentException("maxChars must

be positive.");

 }

 this.maxChars = maxChars;

 }

 /** Format a String.

 * @param input - the string to be aligned.

 * @parm where - the StringBuilder to append it to.

 * @param ignore - a FieldPosition (may be null, not used

but

 * specified by the general contract of Format).

 */

 @Override

 public StringBuffer format(

 Object input, StringBuffer where, FieldPosition

ignore) {

 String s = input.toString();

 String wanted = s.substring(0, Math.min(s.length(),

maxChars));

 // Get the spaces in the right place.

 switch (just) {

 case RIGHT:

 pad(where, maxChars - wanted.length());

 where.append(wanted);

 break;

 case CENTER:

 int toAdd = maxChars - wanted.length();

 pad(where, toAdd/2);

 where.append(wanted);

 pad(where, toAdd - toAdd/2);

 break;

 case LEFT:

 where.append(wanted);

 pad(where, maxChars - wanted.length());

 break;

 }

 return where;

 }

 protected final void pad(StringBuffer to, int howMany) {

 for (int i=0; i<howMany; i++)

 to.append(' ');

 }

 /** Convenience Routine */

 String format(String s) {

 return format(s, new StringBuffer(), null).toString();

 }

 /** ParseObject is required, but not useful here. */

 public Object parseObject (String source, ParsePosition

pos) {

 return source;

 }

}

See Also

The alignment of numeric columns is considered in [Link to Come].

3.5 Converting Between Unicode
Characters and Strings

Problem

You want to convert between Unicode characters and Strings.

Solution

Unicode is an international standard that aims to represent all known
characters used by people in their various languages. Though the
original ASCII character set is a subset, Unicode is huge. At the time
Java was created, Unicode was a 16-bit character set, so it seemed
natural to make Java char values be 16 bits in width, and for years a
char could hold any Unicode character. However, over time,
Unicode has grown, to the point that it now includes over a million
“code points” or characters, more than the 65,525 that could be
represented in 16 bits. Not all possible 16-bit values were defined as
characters in UCS-2, the 16-bit version of Unicode originally used in

4

Java. A few were reserved as “escape characters,” which allows for
multicharacter-length mappings to less common characters.
Fortunately, there is a go-between standard, called UTF-16 (16-bit
Unicode Transformation Format). As the String class
documentation puts it:

A String represents a string in the UTF-16 format in which
supplementary characters are represented by surrogate pairs (see
the section Unicode Character Representations in the Character
class for more information). Index values refer to char code units,
so a supplementary character uses two positions in a String.
The String class provides methods for dealing with Unicode code
points (i.e., characters), in addition to those for dealing with
Unicode code units (i.e., char values).

The charAt() method of String returns the char value for the
character at the specified offset. The StringBuilder append()
method has a form that accepts a char. Because char is an integer
type, you can even do arithmetic on chars, though this is not needed
as frequently as in, say, C. Nor is it often recommended, because the
Character class provides the methods for which these operations
were normally used in languages such as C. Here is a program that
uses arithmetic on chars to control a loop, and also appends the
characters into a StringBuilder (see Recipe 3.2):

 // UnicodeChars.java

 StringBuilder b = new StringBuilder();

 for (char c = 'a'; c<'d'; c++) {

 b.append(c);

 }

 b.append('\u00a5'); // Japanese Yen symbol

 b.append('\u01FC'); // Roman AE with acute accent

 b.append('\u0391'); // GREEK Capital Alpha

 b.append('\u03A9'); // GREEK Capital Omega

 for (int i=0; i<b.length(); i++) {

 System.out.printf(

 "Character #%d (%04x) is %c%n",

 i, (int)b.charAt(i), b.charAt(i));

 }

 System.out.println("Accumulated characters are " +

b);

When you run it, the expected results are printed for the ASCII
characters. On my Unix system, the default fonts don’t include all the
additional characters, so they are either omitted or mapped to
irregular characters:

C:\javasrc\strings>java strings.UnicodeChars

Character #0 is a

Character #1 is b

Character #2 is c

Character #3 is %

Character #4 is |

Character #5 is

Character #6 is)

Accumulated characters are abc%|)

The Windows system used to try this doesn’t have most of those
characters either, but at least it prints the ones it knows are lacking as
question marks (Windows system fonts are more homogenous than
those of the various Unix systems, so it is easier to know what won’t
work). On the other hand, it tries to print the Yen sign as a Spanish
capital Enye (N with a ~ over it). Amusingly, if I capture the console
log under Windows into a file and display it under Unix, the Yen
symbol now appears:

Character #0 is a

Character #1 is b

Character #2 is c

Character #3 is ¥

Character #4 is ?

Character #5 is ?

Character #6 is ?

Accumulated characters are abc¥___

where the “_” characters are unprintable characters, which may
appear as a question mark (“?”).

On a Mac OS X using the standard Terminal application and default
fonts, it looks a bit better:

$ java -cp build strings.UnicodeChars

Character #0 is a

Character #1 is b

Character #2 is c

Character #3 is ¥

Character #4 is Ǽ

Character #5 is Α

Character #6 is Ω

Accumulated characters are abc¥ǼΑΩ

See Also

The Unicode program in this book’s online source displays any
256-character section of the Unicode character set. You can download
documentation listing every character in the Unicode character set
from the Unicode Consortium.

http://www.unicode.org/

3.6 Reversing a String by Word or by
Character

Problem

You wish to reverse a string, a character, or a word at a time.

Solution

You can reverse a string by character easily, using a
StringBuilder. There are several ways to reverse a string a word
at a time. One natural way is to use a StringTokenizer and a
stack. Stack is a class (defined in java.util; see [Link to
Come]) that implements an easy-to-use last-in, first-out (LIFO) stack
of objects.

Discussion

To reverse the characters in a string, use the StringBuilder
reverse() method:

StringRevChar.java

String sh = "FCGDAEB";

System.out.println(sh + " -> " + new

StringBuilder(sh).reverse());

The letters in this example list the order of the sharps in the key
signatures of Western music; in reverse, it lists the order of flats.
Alternatively, of course, you could reverse the characters yourself,
using character-at-a-time mode (see Recipe 3.3).

A popular mnemonic, or memory aid, for the order of sharps and flats
consists of one word for each sharp instead of just one letter, so we
need to reverse this one word at a time. Example 3-6 adds each one to
a Stack (see [Link to Come]), then processes the whole lot in LIFO
order, which reverses the order.

Example 3-6. StringReverse.java
 String s = "Father Charles Goes Down And Ends Battle";

 // Put it in the stack frontwards

 Stack<String> myStack = new Stack<>();

 StringTokenizer st = new StringTokenizer(s);

 while (st.hasMoreTokens()) {

 myStack.push(st.nextToken());

 }

 // Print the stack backwards

 System.out.print('"' + s + '"' + " backwards by word

is:\n\t\"");

 while (!myStack.empty()) {

 System.out.print(myStack.pop());

 System.out.print(' ');

 }

 System.out.println('"');

3.7 Expanding and Compressing Tabs

Problem

You need to convert space characters to tab characters in a file, or
vice versa. You might want to replace spaces with tabs to save space
on disk, or go the other way to deal with a device or program that
can’t handle tabs.

Solution

Use my Tabs class or its subclass EnTab.

Discussion

Example 3-7 is a listing of EnTab, complete with a sample main
program. The program works a line at a time. For each character on
the line, if the character is a space, we see if we can coalesce it with
previous spaces to output a single tab character. This program
depends on the Tabs class, which we’ll come to shortly. The Tabs
class is used to decide which column positions represent tab stops and
which do not. The code also has several Debug printouts; these are
controlled by an environment setting (see the online code in the
com.darwinsys.util.Debug class).

Example 3-7. Entab.java
public class EnTab {

 private static Logger logger =

Logger.getLogger(EnTab.class.getSimpleName());

 /** The Tabs (tab logic handler) */

 protected Tabs tabs;

 /**

 * Delegate tab spacing information to tabs.

 */

 public int getTabSpacing() {

 return tabs.getTabSpacing();

 }

 /**

 * Main program: just create an EnTab object, and pass the

standard input

 * or the named file(s) through it.

 */

 public static void main(String[] argv) throws IOException

{

 EnTab et = new EnTab(8);

 if (argv.length == 0) // do standard input

 et.entab(

 new BufferedReader(new

InputStreamReader(System.in)),

 System.out);

 else

 for (String fileName : argv) { // do each file

 et.entab(

 new BufferedReader(new

FileReader(fileName)),

 System.out);

 }

 }

 /**

 * Constructor: just save the tab values.

 * @param n The number of spaces each tab is to replace.

 */

 public EnTab(int n) {

 tabs = new Tabs(n);

 }

 public EnTab() {

 tabs = new Tabs();

 }

 /**

 * entab: process one file, replacing blanks with tabs.

 * @param is A BufferedReader opened to the file to be

read.

 * @param out a PrintWriter to send the output to.

 */

 public void entab(BufferedReader is, PrintWriter out)

throws IOException {

 // main loop: process entire file one line at a time.

 is.lines().forEach(line -> {

 out.println(entabLine(line));

 });

 }

 /**

 * entab: process one file, replacing blanks with tabs.

 *

 * @param is A BufferedReader opened to the file to be

read.

 * @param out A PrintStream to write the output to.

 */

 public void entab(BufferedReader is, PrintStream out)

throws IOException {

 entab(is, new PrintWriter(out));

 }

 /**

 * entabLine: process one line, replacing blanks with

tabs.

 * @param line the string to be processed

 */

 public String entabLine(String line) {

 int N = line.length(), outCol = 0;

 StringBuilder sb = new StringBuilder();

 char ch;

 int consumedSpaces = 0;

 for (int inCol = 0; inCol < N; inCol++) { // Cannot

use foreach here

 ch = line.charAt(inCol);

 // If we get a space, consume it, don't output it.

 // If this takes us to a tab stop, output a tab

character.

 if (ch == ' ') {

 logger.info("Got space at " + inCol);

 if (!tabs.isTabStop(inCol)) {

 consumedSpaces++;

 } else {

 logger.info("Got a Tab Stop " + inCol);

 sb.append('\t');

 outCol += consumedSpaces;

 consumedSpaces = 0;

 }

 continue;

 }

 // We're at a non-space; if we're just past a tab

stop, we need

 // to put the "leftover" spaces back out, since we

consumed

 // them above.

 while (inCol-1 > outCol) {

 logger.info("Padding space at " + inCol);

 sb.append(' ');

 outCol++;

 }

 // Now we have a plain character to output.

 sb.append(ch);

 outCol++;

 }

 // If line ended with trailing (or only!) spaces,

preserve them.

 for (int i = 0; i < consumedSpaces; i++) {

 logger.info("Padding space at end # " + i);

 sb.append(' ');

 }

 return sb.toString();

 }

}

This code was patterned after a program in Kernighan and Plauger’s
classic work, Software Tools. While their version was in a language
called RatFor (Rational Fortran), my version has since been through
several translations. Their version actually worked one character at a
time, and for a long time I tried to preserve this overall structure.
Eventually, I rewrote it to be a line-at-a-time program.

The program that goes in the opposite direction—putting tabs in
rather than taking them out—is the DeTab class shown in
Example 3-8; only the core methods are shown.

Example 3-8. DeTab.java
public class DeTab {

 Tabs ts;

 public static void main(String[] argv) throws IOException

{

 DeTab dt = new DeTab(8);

 dt.detab(new BufferedReader(new

InputStreamReader(System.in)),

 new PrintWriter(System.out));

 }

 public DeTab(int n) {

 ts = new Tabs(n);

 }

 public DeTab() {

 ts = new Tabs();

 }

 /** detab one file (replace tabs with spaces)

 * @param is - the file to be processed

 * @param out - the updated file

 */

 public void detab(BufferedReader is, PrintWriter out)

throws IOException {

 is.lines().forEach(line -> {

 out.println(detabLine(line));

 });

 }

 /** detab one line (replace tabs with spaces)

 * @param line - the line to be processed

 * @return the updated line

 */

 public String detabLine(String line) {

 char c;

 int col;

 StringBuilder sb = new StringBuilder();

 col = 0;

 for (int i = 0; i < line.length(); i++) {

 // Either ordinary character or tab.

 if ((c = line.charAt(i)) != '\t') {

 sb.append(c); // Ordinary

 ++col;

 continue;

 }

 do { // Tab, expand it, must put >=1 space

 sb.append(' ');

 } while (!ts.isTabStop(++col));

 }

 return sb.toString();

 }

}

The Tabs class provides two methods: settabpos() and
istabstop(). Example 3-9 is the source for the Tabs class.

Example 3-9. Tabs.java
public class Tabs {

 /** tabs every so often */

 public final static int DEFTABSPACE = 8;

 /** the current tab stop setting. */

 protected int tabSpace = DEFTABSPACE;

 /** The longest line that we initially set tabs for. */

 public final static int MAXLINE = 255;

 /** Construct a Tabs object with a given tab stop settings

*/

 public Tabs(int n) {

 if (n <= 0) {

 n = 1;

 }

 tabSpace = n;

 }

 /** Construct a Tabs object with a default tab stop

settings */

 public Tabs() {

 this(DEFTABSPACE);

 }

 /**

 * @return Returns the tabSpace.

 */

 public int getTabSpacing() {

 return tabSpace;

 }

 /** isTabStop - returns true if given column is a tab

stop.

 * @param col - the current column number

 */

 public boolean isTabStop(int col) {

 if (col <= 0)

 return false;

 return (col+1) % tabSpace == 0;

 }

}

3.8 Controlling Case

Problem

You need to convert strings to uppercase or lowercase, or to compare
strings without regard for case.

Solution

The String class has a number of methods for dealing with
documents in a particular case. toUpperCase() and
toLowerCase() each return a new string that is a copy of the
current string, but converted as the name implies. Each can be called
either with no arguments or with a Locale argument specifying the
conversion rules; this is necessary because of internationalization.
Java provides significantly more internationalization and localization
features than ordinary languages, a feature that is covered in [Link to
Come]. Whereas the equals() method tells you if another string is
exactly the same, equalsIgnoreCase() tells you if all
characters are the same regardless of case. Here, you can’t specify an
alternative locale; the system’s default locale is used:

 String name = "Java Cookbook";

 System.out.println("Normal:\t" + name);

 System.out.println("Upper:\t" + name.toUpperCase());

 System.out.println("Lower:\t" + name.toLowerCase());

 String javaName = "java cookBook"; // If it were

Java identifiers :-)

 if (!name.equals(javaName))

 System.err.println("equals() correctly reports

false");

 else

 System.err.println("equals() incorrectly reports

true");

 if (name.equalsIgnoreCase(javaName))

 System.err.println("equalsIgnoreCase() correctly

reports true");

 else

 System.err.println("equalsIgnoreCase()

incorrectly reports false");

If you run this, it prints the first name changed to uppercase and
lowercase, then it reports that both methods work as expected:

C:\javasrc\strings>java strings.Case

Normal: Java Cookbook

Upper: JAVA COOKBOOK

Lower: java cookbook

equals() correctly reports false

equalsIgnoreCase() correctly reports true

See Also

Regular expressions make it simpler to ignore case in string searching
(see Chapter 4).

3.9 Indenting Text Documents

Problem

You need to indent (or “undent” or “dedent”) a text document.

Solution

To indent, either generate a fixed-length string and prepend it to each
output line, or use a for loop and print the right number of spaces:

 while ((inputLine = is.readLine()) != null) {

 for (int i=0; i<nSpaces; i++)

System.out.print(' ');

 System.out.println(inputLine);

 }

A more efficient approach to generating the spaces might be to
construct a long string of spaces and use substring() to get the
number of spaces you need.

To undent, use substring to generate a string that does not include
the leading spaces. Be careful of inputs that are shorter than the
amount you are removing! By popular demand, I’ll give you this one,
too. First, though, here’s a demonstration of an Undent object
created with an undent value of 5, meaning remove up to five spaces
(but don’t lose other characters in the first five positions):

$ java strings.Undent

Hello World

Hello World

 Hello

Hello

 Hello

Hello

 Hello

 Hello

^C

$

I test it by entering the usual test string “Hello World,” which prints
fine. Then “Hello” with one space, and the space is deleted. With five
spaces, exactly the five spaces go. With six or more spaces, only five

spaces go. A blank line comes out as a blank line (i.e., without
throwing an Exception or otherwise going berserk). I think it
works!

 while ((inputLine = is.readLine()) != null) {

 int toRemove = 0;

 for (int i=0; i<nSpaces && i <

inputLine.length() &&

 Character.isWhitespace(inputLine.charAt(i));

i++)

 ++toRemove;

System.out.println(inputLine.substring(toRemove));

 }

3.10 Entering Nonprintable Characters

Problem

You need to put nonprintable characters into strings.

Solution

Use the backslash character and one of the Java string escapes.

Discussion

The Java string escapes are listed in Table 3-1.

T
a
b

l
e

3
-
1
.
S
t
r
i
n
g

e
s
c
a
p
e
s

To get: Use: Notes

Tab \t

Linefeed
(Unix
newline)

\n The call
System.getProperty("line.separator") will
give you the platform’s line end.

Carriage
return

\r

Form feed \f

Backspace \b

Single quote

\'

Double quote \"

Unicode
character

\u
NNN
N

Four hexadecimal digits (no \x as in C/C++). See
http://www.unicode.org for codes.

Octal(!)
character

\
NNN

Who uses octal (base 8) these days?

Backslash \\

Here is a code example that shows most of these in action:

public class StringEscapes {

 public static void main(String[] argv) {

 System.out.println("Java Strings in action:");

 // System.out.println("An alarm or alert: \a");

// not supported

 System.out.println("An alarm entered in Octal:

\007");

 System.out.println("A tab key: \t(what comes

after)");

 System.out.println("A newline: \n(what comes

after)");

 System.out.println("A UniCode character: \u0207");

 System.out.println("A backslash character: \\");

 }

}

If you have a lot of non-ASCII characters to enter, you may wish to
consider using Java’s input methods, discussed briefly in the JDK
online documentation.

http://www.unicode.org/

3.11 Trimming Blanks from the End of a
String

Problem

You need to work on a string without regard for extra leading or
trailing spaces a user may have typed.

Solution

Use the String class trim() method.

Discussion

Example 3-10 uses trim() to strip an arbitrary number of leading
spaces and/or tabs from lines of Java source code in order to look for
the characters //+ and //-. These strings are special Java comments
I previously used to mark the parts of the programs in this book that I
want to include in the printed copy.

Example 3-10. GetMark.java (trimming and comparing strings)
public class GetMark {

 /** the default starting mark. */

 public final String START_MARK = "//+";

 /** the default ending mark. */

 public final String END_MARK = "//-";

 /** Set this to TRUE for running in "exclude" mode (e.g.,

for

 * building exercises from solutions) and to FALSE for

running

 * in "extract" mode (e.g., writing a book and omitting

the

 * imports and "public class" stuff).

 */

 public final static boolean START = true;

 /** True if we are currently inside marks. */

 protected boolean printing = START;

 /** True if you want line numbers */

 protected final boolean number = false;

 /** Get Marked parts of one file, given an open

LineNumberReader.

 * This is the main operation of this class, and can be

used

 * inside other programs or from the main() wrapper.

 */

 public void process(String fileName,

 LineNumberReader is,

 PrintStream out) {

 int nLines = 0;

 try {

 String inputLine;

 while ((inputLine = is.readLine()) != null) {

 if (inputLine.trim().equals(START_MARK)) {

 if (printing)

 // These go to stderr, so you can

redirect the output

 System.err.println("ERROR: START

INSIDE START, " +

 fileName + ':' +

is.getLineNumber());

 printing = true;

 } else if (inputLine.trim().equals(END_MARK))

{

 if (!printing)

 System.err.println("ERROR: STOP WHILE

STOPPED, " +

 fileName + ':' +

is.getLineNumber());

 printing = false;

 } else if (printing) {

 if (number) {

 out.print(nLines);

 out.print(": ");

 }

 out.println(inputLine);

 ++nLines;

 }

 }

 is.close();

 out.flush(); // Must not close - caller may still

need it.

 if (nLines == 0)

 System.err.println("ERROR: No marks in " +

fileName +

 "; no output generated!");

 } catch (IOException e) {

 System.out.println("IOException: " + e);

 }

 }

3.12 Program: A Simple Text Formatter
This program is a very primitive text formatter, representative of what
people used on most computing platforms before the rise of
standalone graphics-based word processors, laser printers, and,
eventually, desktop publishing and desktop office suites. It simply
reads words from a file—previously created with a text editor—and
outputs them until it reaches the right margin, when it calls
println() to append a line ending. For example, here is an input
file:

It's a nice

day, isn't it, Mr. Mxyzzptllxy?

I think we should

go for a walk.

Given the preceding as its input, the Fmt program prints the lines
formatted neatly:

It's a nice day, isn't it, Mr. Mxyzzptllxy? I think we

should go for a

walk.

As you can see, it fits the text we gave it to the margin and discards
all the line breaks present in the original. Here’s the code:

public class Fmt {

 /** The maximum column width */

 public static final int COLWIDTH=72;

 /** The file that we read and format */

 final BufferedReader in;

 /** Where the output goes */

 PrintWriter out;

 /** If files present, format each one, else format the

standard input. */

 public static void main(String[] av) throws IOException

{

 if (av.length == 0)

 new Fmt(System.in).format();

 else for (String name : av) {

 new Fmt(name).format();

 }

 }

 public Fmt(BufferedReader inFile, PrintWriter outFile) {

 this.in = inFile;

 this.out = outFile;

 }

 public Fmt(PrintWriter out) {

 this(new BufferedReader(new

InputStreamReader(System.in)), out);

 }

 /** Construct a Formatter given an open Reader */

 public Fmt(BufferedReader file) throws IOException {

 this(file, new PrintWriter(System.out));

 }

 /** Construct a Formatter given a filename */

 public Fmt(String fname) throws IOException {

 this(new BufferedReader(new FileReader(fname)));

 }

 /** Construct a Formatter given an open Stream */

 public Fmt(InputStream file) throws IOException {

 this(new BufferedReader(new

InputStreamReader(file)));

 }

 /** Format the File contained in a constructed Fmt

object */

 public void format() throws IOException {

 format(in.lines(), out);

 }

 /** Format a Stream of lines, e.g., bufReader.lines() */

 public static void format(Stream<String> s, PrintWriter

out) {

 StringBuilder outBuf = new StringBuilder();

 s.forEachOrdered((line -> {

 if (line.length() == 0) { // null line

 out.println(outBuf); // end current line

 out.println(); // output blank line

 outBuf.setLength(0);

 } else {

 // otherwise it's text, so format it.

 StringTokenizer st = new

StringTokenizer(line);

 while (st.hasMoreTokens()) {

 String word = st.nextToken();

 // If this word would go past the

margin,

 // first dump out anything previous.

 if (outBuf.length() + word.length() >

COLWIDTH) {

 out.println(outBuf);

 outBuf.setLength(0);

 }

 outBuf.append(word).append(' ');

 }

 }

 }));

 if (outBuf.length() > 0) {

 out.println(outBuf);

 } else {

 out.println();

 }

 }

}

A slightly fancier version of this program, Fmt2, is in the online
source for this book. It uses “dot commands”—lines beginning with
periods—to give limited control over the formatting. A family of “dot
command” formatters includes Unix’s roff, nroff, troff, and groff,
which are in the same family with programs called runoff on Digital
Equipment systems. The original for this is J. Saltzer’s runoff, which
first appeared on Multics and from there made its way into various
OSes. To save trees, I did not include Fmt2 here; it subclasses Fmt
and overrides the format() method to include additional
functionality (the source code is in the full javasrc repository for the
book).

3.13 Program: Soundex Name
Comparisons
The difficulties in comparing (American-style) names inspired the
U.S. Census Bureau to develop the Soundex algorithm in the early
1900s. Each of a given set of consonants maps to a particular number,
the effect being to map similar-sounding names together, on the
grounds that in those days many people were illiterate and could not
spell their family names consistently. But it is still useful today—for
example, in a company-wide telephone book application. The names
Darwin and Derwin, for example, map to D650, and Darwent maps to
D653, which puts it adjacent to D650. All of these are believed to be
historical variants of the same name. Suppose we needed to sort lines
containing these names together: if we could output the Soundex
numbers at the beginning of each line, this would be easy. Here is a
simple demonstration of the Soundex class:

public class SoundexSimple {

 /** main */

 public static void main(String[] args) {

 String[] names = {

 "Darwin, Ian",

 "Davidson, Greg",

 "Darwent, William",

 "Derwin, Daemon"

 };

 for (String name : names) {

 System.out.println(Soundex.soundex(name) + ' ' +

name);

 }

 }

}

Let’s run it:

> javac -d . SoundexSimple.java

> java strings.SoundexSimple | sort

D132 Davidson, Greg

D650 Darwin, Ian

D650 Derwin, Daemon

D653 Darwent, William

>

As you can see, the Darwin-variant names (including Daemon
Derwin) all sort together and are distinct from the Davidson (and
Davis, Davies, etc.) names that normally appear between Darwin and
Derwin when using a simple alphabetic sort. The Soundex algorithm
has done its work.

Here is the Soundex class itself—it uses Strings and
StringBuilders to convert names into Soundex codes:

public class Soundex {

 static boolean debug = false;

 /* Implements the mapping

 * from: AEHIOUWYBFPVCGJKQSXZDTLMNR

 * to: 00000000111122222222334556

 */

 public static final char[] MAP = {

 //A B C D E F G H I J K L M

 '0','1','2','3','0','1','2','0','0','2','2','4','5',

 //N O P W R S T U V W X Y Z

 '5','0','1','2','6','2','3','0','1','0','2','0','2'

 };

 /** Convert the given String to its Soundex code.

5

 * @return null If the given string can't be mapped to

Soundex.

 */

 public static String soundex(String s) {

 // Algorithm works on uppercase (mainframe era).

 String t = s.toUpperCase();

 StringBuilder res = new StringBuilder();

 char c, prev = '?', prevOutput = '?';

 // Main loop: find up to 4 chars that map.

 for (int i=0; i<t.length() && res.length() < 4 &&

 (c = t.charAt(i)) != ','; i++) {

 // Check to see if the given character is

alphabetic.

 // Text is already converted to uppercase.

Algorithm

 // only handles ASCII letters, do NOT use

Character.isLetter()!

 // Also, skip double letters.

 if (c>='A' && c<='Z' && c != prev) {

 prev = c;

 // First char is installed unchanged, for

sorting.

 if (i==0) {

 res.append(c);

 } else {

 char m = MAP[c-'A'];

 if (debug) {

 System.out.println(c + " --> " + m);

 }

 if (m != '0' && m != prevOutput) {

 res.append(m);

 prevOutput = m;

 }

 }

 }

 }

 if (res.length() == 0)

 return null;

 for (int i=res.length(); i<4; i++)

 res.append('0');

 return res.toString();

 }

}

There are apparently some nuances of the full Soundex algorithm that
are not implemented by this application. A more complete test using
JUnit (see Recipe 1.10) is also online as SoundexTest.java, in the
src/tests/java/strings directory. The dedicated reader may use this to
provoke failures of such nuances, and send a pull request with
updated versions of the test and the code.

See Also

The Levenshtein string edit distance algorithm can be used for doing
approximate string comparisons in a different fashion. You can find
this in Apache Commons StringUtils. I show a non-Java (Perl)
implementation of this alrorithm in [Link to Come].

The two +.equals()+ calls are “equivalent” with the exception that the first can throw a
+NullPointerException+ while the second cannot.

StringBuilder was added in Java 5. It is functionally equivalent to the older
StringBuffer. We will delve into the details in Recipe 3.2.

Unless, perhaps, you’re as slow at updating personal records as I am.

Indeed, there are so many characters in Unicode that a fad has emerged of displaying
your name upside down using characters that approximate upside-down versions of the
Latin alphabet. Do a web search for “upside down unicode.”

1

2

3

4

5

http://bit.ly/1poDJuf

In Unix terminology, a “daemon” is a server. The old English word has nothing to do
with satanic “demons” but refers to a helper or assistant. Derwin Daemon was actually a
character in Susannah Coleman’s “Source Wars” online comic strip, which long ago was
online at a now-departed site called darby.daemonnews.org.

5

Chapter 4. Pattern Matching
with Regular Expressions

4.0 Introduction
Suppose you have been on the Internet for a few years and have been
faithful about saving all your correspondence, just in case you (or
your lawyers, or the prosecution) need a copy. The result is that you
have a 5 GB disk partition dedicated to saved mail. And let’s further
suppose that you remember that somewhere in there is an email
message from someone named Angie or Anjie. Or was it Angy? But
you don’t remember what you called it or where you stored it.
Obviously, you have to look for it.

But while some of you go and try to open up all 15,000,000
documents in a word processor, I’ll just find it with one simple
command. Any system that provides regular expression support
allows me to search for the pattern in several ways. The simplest to
understand is:

Angie|Anjie|Angy

which you can probably guess means just to search for any of the
variations. A more concise form (“more thinking, less typing”) is:

An[^ dn]

The syntax will become clear as we go through this chapter. Briefly,
the “A” and the “n” match themselves, in effect finding words that
begin with “An”, while the cryptic [^ dn] requires the “An” to be
followed by a character other than (^ means not in this context) a
space (to eliminate the very common English word “an” at the start of
a sentence) or “d” (to eliminate the common word “and”) or “n” (to
eliminate Anne, Announcing, etc.). Has your word processor gotten
past its splash screen yet? Well, it doesn’t matter, because I’ve
already found the missing file. To find the answer, I just typed the
command:

grep 'An[^ dn]' *

Regular expressions, or regexes for short, provide a concise and
precise specification of patterns to be matched in text.

As another example of the power of regular expressions, consider the
problem of bulk-updating hundreds of files. When I started with Java,
the syntax for declaring array references was baseType
arrayVariableName[]. For example, a method with an array
argument, such as every program’s main method, was commonly
written as:

public static void main(String args[]) {

But as time went by, it became clear to the stewards of the Java
language that it would be better to write it as baseType[]
arrayVariableName. For example:

public static void main(String[] args) {

This is better Java style because it associates the “array-ness” of the
type with the type itself, rather than with the local argument name,
and the compiler still accepts both modes. I wanted to change all
occurrences of main written the old way to the new way. I used the
pattern main(String [a-z] with the grep utility described
earlier to find the names of all the files containing old-style main
declarations (i.e., main(String followed by a space and a name
character rather than an open square bracket). I then used another
regex-based Unix tool, the stream editor sed, in a little shell script to
change all occurrences in those files from main(String *([a-
z][a-z]*)[] to main(String[] $1 (the regex syntax used
here is discussed later in this chapter). Again, the regex-based
approach was orders of magnitude faster than doing it interactively,
even using a reasonably powerful editor such as vi or emacs, let
alone trying to use a graphical word processor.

Historically, the syntax of regexes has changed as they get
incorporated into more tools and more languages, so the exact syntax
in the previous examples is not exactly what you’d use in Java, but it
does convey the conciseness and power of the regex mechanism.

As a third example, consider parsing an Apache web server logfile,
where some fields are delimited with quotes, others with square
brackets, and others with spaces. Writing ad-hoc code to parse this is
messy in any language, but a well-crafted regex can break the line
into all its constituent fields in one operation (this example is
developed in Recipe 4.10).

1

These same time gains can be had by Java developers. Regular
expression support has been in the standard Java runtime for ages and
is well integrated (e.g., there are regex methods in the standard class
java.lang.String and in the “new I/O” package). There are a
few other regex packages for Java, and you may occasionally
encounter code using them, but pretty well all code from this century
can be expected to use the built-in package. The syntax of Java
regexes themselves is discussed in Recipe 4.1, and the syntax of the
Java API for using regexes is described in Recipe 4.2. The remaining
recipes show some applications of regex technology in Java.

See Also

Mastering Regular Expressions by Jeffrey Friedl (O’Reilly) is the
definitive guide to all the details of regular expressions. Most
introductory books on Unix and Perl include some discussion of
regexes; Unix Power Tools devotes a chapter to them.

4.1 Regular Expression Syntax

Problem

You need to learn the syntax of Java regular expressions.

Solution

Consult Table 4-1 for a list of the regular expression characters.

Discussion

http://shop.oreilly.com/product/9780596528126.do
http://shop.oreilly.com/product/9780596003302.do

These pattern characters let you specify regexes of considerable
power. In building patterns, you can use any combination of ordinary
text and the metacharacters, or special characters, in Table 4-1. These
can all be used in any combination that makes sense. For example,
a+ means any number of occurrences of the letter a, from one up to a
million or a gazillion. The pattern Mrs?\. matches Mr. or Mrs. And
.* means “any character, any number of times,” and is similar in
meaning to most command-line interpreters’ meaning of the *
alone. The pattern \d+ means any number of numeric digits.
\d{2,3} means a two- or three-digit number.

T
a
b
l
e

4
-
1
.
R
e
g
u
l
a
r

e
x
p

r
e
s
s
i
o
n

m
e
t
a
c
h
a
r
a
c
t
e
r

s
y
n
t
a
x

Subexpression Matches Notes

General

\^ Start of line/string

$ End of line/string

\b Word boundary

\B Not a word boundary

\A Beginning of entire string

\z End of entire string

\Z End of entire string (except
allowable final line terminator)

See Recipe 4.9

. Any one character (except line
terminator)

[…] “Character class”; any one
character from those listed

[\^…] Any one character not from
those listed

See Recipe 4.2

Alternation and
Grouping

(…) Grouping (capture groups) See Recipe 4.3

| Alternation

(?:_re_) Noncapturing parenthesis

\G End of the previous match

\ n Back-reference to capture group
number "n"

Normal (greedy)
quantifiers

{ m,n } Quantifier for “from m to n
repetitions”

See Recipe 4.4

{ m ,} Quantifier for "m or more
repetitions”

{ m } Quantifier for “exactly m
repetitions”

See Recipe 4.10

{,n } Quantifier for 0 up to n
repetitions

* Quantifier for 0 or more
repetitions

Short for {0,}

+ Quantifier for 1 or more
repetitions

Short for {1,}; see
Recipe 4.2

? Quantifier for 0 or 1 repetitions
(i.e., present exactly once, or not
at all)

Short for {0,1}

Reluctant (non-
greedy)
quantifiers

{ m,n }? Reluctant quantifier for “from m
to n repetitions”

{ m ,}? Reluctant quantifier for "m or
more repetitions”

{,n }? Reluctant quantifier for 0 up to n
repetitions

*? Reluctant quantifier: 0 or more

+? Reluctant quantifier: 1 or more See Recipe 4.10

?? Reluctant quantifier: 0 or 1 times

Possessive (very
greedy)
quantifiers

{ m,n }+ Possessive quantifier for “from
m to n repetitions”

{ m ,}+ Possessive quantifier for "m or
more repetitions”

{,n }+ Possessive quantifier for 0 up to
n repetitions

*+ Possessive quantifier: 0 or more

++ Possessive quantifier: 1 or more

?+ Possessive quantifier: 0 or 1
times

Escapes and
shorthands

\ Escape (quote) character: turns
most metacharacters off; turns
subsequent alphabetic into
metacharacters

\Q Escape (quote) all characters up
to \E

\E Ends quoting begun with \Q

\t Tab character

\r Return (carriage return)
character

\n Newline character See Recipe 4.9

\f Form feed

\w Character in a word Use \w+ for a word; see
Recipe 4.10

\W A nonword character

\d Numeric digit Use \d+ for an integer;
see Recipe 4.2

\D A nondigit character

\s Whitespace Space, tab, etc., as

determined by
java.lang.Charact
er.isWhitespace()

\S A nonwhitespace character See Recipe 4.10

Unicode blocks
(representative
samples)

\p{InGreek} A character in the Greek block (Simple block)

\P{InGreek} Any character not in the Greek
block

\p{Lu} An uppercase letter (Simple category)

\p{Sc} A currency symbol

POSIX-style
character classes
(defined only for
US-ASCII)

\p{Alnum} Alphanumeric characters [A-Za-z0-9]

\p{Alpha} Alphabetic characters [A-Za-z]

\p{ASCII} Any ASCII character [\x00-\x7F]

\p{Blank} Space and tab characters

\p{Space} Space characters [\t\n\x0B\f\r]

\p{Cntrl} Control characters [\x00-\x1F\x7F]

\p{Digit} Numeric digit characters [0-9]

\p{Graph} Printable and visible characters
(not spaces or control
characters)

\p{Print} Printable characters Same as \p{Graph}

\p{Punct} Punctuation characters One of
!"#$%&'()*+,-./:
;<=>?@[]\^_`{|}\~

\p{Lower} Lowercase characters [a-z]

\p{Upper} Uppercase characters [A-Z]

\p{XDigit} Hexadecimal digit characters [0-9a-fA-F]

Regexes match anyplace possible in the string. Patterns followed by
greedy quantifiers (the only type that existed in traditional Unix
regexes) consume (match) as much as possible without
compromising any subexpressions that follow; patterns followed by
possessive quantifiers match as much as possible without regard to
following subexpressions; patterns followed by reluctant quantifiers
consume as few characters as possible to still get a match.

Also, unlike regex packages in some other languages, the Java regex
package was designed to handle Unicode characters from the
beginning. And the standard Java escape sequence \u nnnn is used
to specify a Unicode character in the pattern. We use methods of
java.lang.Character to determine Unicode character
properties, such as whether a given character is a space. Again, note
that the backslash must be doubled if this is in a Java string that is
being compiled because the compiler would otherwise parse this as
“backslash-u” followed by some numbers.

To help you learn how regexes work, I provide a little program called
REDemo. The code for REDemo is too long to include in the book;

2

in the online directory regex of the darwinsys-api repo, you will find
REDemo.java, which you can run to explore how regexes work.

In the uppermost text box (see Figure 4-1), type the regex pattern you
want to test. Note that as you type each character, the regex is
checked for syntax; if the syntax is OK, you see a checkmark beside
it. You can then select Match, Find, or Find All. Match means that the
entire string must match the regex, and Find means the regex must be
found somewhere in the string (Find All counts the number of
occurrences that are found). Below that, you type a string that the
regex is to match against. Experiment to your heart’s content. When
you have the regex the way you want it, you can paste it into your
Java program. You’ll need to escape (backslash) any characters that
are treated specially by both the Java compiler and the Java regex
package, such as the backslash itself, double quotes, and others (see
the following sidebar). Once you get a regex the way you want it,
there is a “Copy” button (not shown in these screenshots) to export
the regex to the clipboard, with or without backslash doubling
depending on how you want to use it.

REMEMBER THIS!

Remember that because a regex compiles strings that are also compiled by a
Java compiler, you usually need two levels of escaping for any special
characters, including backslash, double quotes, and so on. For example, the
regex:

"You said it\."

has to be typed like this to be a valid compile-time Java language String:

"\"You said it\\.\""

I can’t tell you how many times I’ve made the mistake of forgetting the extra
backslash in \d+, \w+, and their kin!

In Figure 4-1, I typed qu into the REDemo program’s Pattern box,
which is a syntactically valid regex pattern: any ordinary characters
stand as regexes for themselves, so this looks for the letter q followed
by u. In the top version, I typed only a q into the string, which is not
matched. In the second, I have typed quack and the q of a second
quack. Because I have selected Find All, the count shows one
match. As soon as I type the second u, the count is updated to two, as
shown in the third version.

Regexes can do far more than just character matching. For example,
the two-character regex ^T would match beginning of line (^)
immediately followed by a capital T—that is, any line beginning with
a capital T. It doesn’t matter whether the line begins with Tiny
trumpets, Titanic tubas, or Triumphant twisted trombones, as long as
the capital T is present in the first position.

But here we’re not very far ahead. Have we really invested all this
effort in regex technology just to be able to do what we could already
do with the java.lang.String method startsWith()?
Hmmm, I can hear some of you getting a bit restless. Stay in your
seats! What if you wanted to match not only a letter T in the first
position, but also a vowel (a, e, i, o, or u) immediately after it,
followed by any number of letters in a word, followed by an
exclamation point? Surely you could do this in Java by checking
startsWith("T") and charAt(1) == 'a' ||
charAt(1) == 'e', and so on? Yes, but by the time you did that,
you’d have written a lot of very highly specialized code that you
couldn’t use in any other application. With regular expressions, you
can just give the pattern ^T[aeiou]\w*!. That is, ^ and T as
before, followed by a character class listing the vowels, followed by
any number of word characters (\w*), followed by the exclamation
point.

Figure 4-1. REDemo with simple examples

“But wait, there’s more!” as my late, great boss Yuri Rubinsky used
to say. What if you want to be able to change the pattern you’re
looking for at runtime? Remember all that Java code you just wrote
to match T in column 1, plus a vowel, some word characters, and an
exclamation point? Well, it’s time to throw it out. Because this
morning we need to match Q, followed by a letter other than u,
followed by a number of digits, followed by a period. While some of

you start writing a new function to do that, the rest of us will just
saunter over to the RegEx Bar & Grille, order a ^Q[^u]\d+\..
from the bartender, and be on our way.

OK, if you want an explanation: the [\^u] means match any one
character that is not the character u. The \d+ means one or more
numeric digits. The + is a quantifier meaning one or more
occurrences of what it follows, and \d is any one numeric digit. So
\d+ means a number with one, two, or more digits. Finally, the \.?
Well, . by itself is a metacharacter. Most single metacharacters are
switched off by preceding them with an escape character. Not the Esc
key on your keyboard, of course. The regex “escape” character is the
backslash. Preceding a metacharacter like . with this escape turns off
its special meaning, so we look for a literal period rather than “any
character.” Preceding a few selected alphabetic characters (e.g., n, r,
t, s, w) with escape turns them into metacharacters. Figure 4-2
shows the ^Q[^u]\d+\.. regex in action. In the first frame, I have
typed part of the regex as ^Q[^u and because there is an unclosed
square bracket, the Syntax OK flag is turned off; when I complete the
regex, it will be turned back on. In the second frame, I have finished
typing the regex, and typed the data string as QA577 (which you
should expect to match the $$^Q[^u]\d+$$, but not the period
since I haven’t typed it). In the third frame, I’ve typed the period so
the Matches flag is set to Yes.

Figure 4-2. REDemo with “Q not followed by u” example

One good way to think of regular expressions is as a “little language”
for matching patterns of characters in text contained in strings. Give
yourself extra points if you’ve already recognized this as the design
pattern known as Interpreter. A regular expression API is an
interpreter for matching regular expressions.

So now you should have at least a basic grasp of how regexes work in
practice. The rest of this chapter gives more examples and explains
some of the more powerful topics, such as capture groups. As for how
regexes work in theory—and there are a lot of theoretical details and
differences among regex flavors—the interested reader is referred to
in Mastering Regular Expressions. Meanwhile, let’s start learning
how to write Java programs that use regular expressions.

4.2 Using regexes in Java: Test for a
Pattern

Problem

You’re ready to get started using regular expression processing to
beef up your Java code by testing to see if a given pattern can match
in a given string.

Solution

Use the Java Regular Expressions Package, java.util.regex.

Discussion

The good news is that the Java API for regexes is actually easy to
use. If all you need is to find out whether a given regex matches a
string, you can use the convenient boolean matches() method
of the String class, which accepts a regex pattern in String form
as its argument:

http://shop.oreilly.com/product/9780596528126.do

if (inputString.matches(stringRegexPattern)) {

 // it matched... do something with it...

}

This is, however, a convenience routine, and convenience always
comes at a price. If the regex is going to be used more than once or
twice in a program, it is more efficient to construct and use a
Pattern and its Matcher(s). A complete program constructing a
Pattern and using it to match is shown here:

public class RESimple {

 public static void main(String[] argv) {

 String pattern = "^Q[^u]\\d+\\.";

 String[] input = {

 "QA777. is the next flight. It is on time.",

 "Quack, Quack, Quack!"

 };

 Pattern p = Pattern.compile(pattern);

 for (String in : input) {

 boolean found = p.matcher(in).lookingAt();

 System.out.println("'" + pattern + "'" +

 (found ? " matches '" : " doesn't match '") + in

+ "'");

 }

 }

}

The java.util.regex package contains two classes, Pattern
and Matcher, which provide the public API shown in Example 4-1.

Example 4-1. Regex public API

/** The main public API of the java.util.regex package.

 * Prepared by javap and Ian Darwin.

 */

package java.util.regex;

public final class Pattern {

 // Flags values ('or' together)

 public static final int

 UNIX_LINES, CASE_INSENSITIVE, COMMENTS, MULTILINE,

 DOTALL, UNICODE_CASE, CANON_EQ;

 // No public constructors; use these Factory methods

 public static Pattern compile(String patt);

 public static Pattern compile(String patt, int flags);

 // Method to get a Matcher for this Pattern

 public Matcher matcher(CharSequence input);

 // Information methods

 public String pattern();

 public int flags();

 // Convenience methods

 public static boolean matches(String pattern, CharSequence

input);

 public String[] split(CharSequence input);

 public String[] split(CharSequence input, int max);

}

public final class Matcher {

 // Action: find or match methods

 public boolean matches();

 public boolean find();

 public boolean find(int start);

 public boolean lookingAt();

 // "Information about the previous match" methods

 public int start();

 public int start(int whichGroup);

 public int end();

 public int end(int whichGroup);

 public int groupCount();

 public String group();

 public String group(int whichGroup);

 // Reset methods

 public Matcher reset();

 public Matcher reset(CharSequence newInput);

 // Replacement methods

 public Matcher appendReplacement(StringBuffer where,

String newText);

 public StringBuffer appendTail(StringBuffer where);

 public String replaceAll(String newText);

 public String replaceFirst(String newText);

 // information methods

 public Pattern pattern();

}

/* String, showing only the RE-related methods */

public final class String {

 public boolean matches(String regex);

 public String replaceFirst(String regex, String newStr);

 public String replaceAll(String regex, String newStr);

 public String[] split(String regex);

 public String[] split(String regex, int max);

}

This API is large enough to require some explanation. The normal
steps for regex matching in a production program are:

1. Create a Pattern by calling the static method
Pattern.compile() .

2. Request a Matcher from the pattern by calling
pattern.matcher(CharSequence) for each String
(or other CharSequence) you wish to look through.

3. Call (once or more) one of the finder methods (discussed later
in this section) in the resulting Matcher.

The java.lang.CharSequence interface provides simple read-
only access to objects containing a collection of characters. The
standard implementations are String and
StringBuffer/StringBuilder (described in Chapter 3), and
the “new I/O” class java.nio.CharBuffer.

Of course, you can perform regex matching in other ways, such as
using the convenience methods in Pattern or even in
java.lang.String. For example:

public class StringConvenience {

 public static void main(String[] argv) {

 String pattern = ".*Q[^u]\\d+\\..*";

 String line = "Order QT300. Now!";

 if (line.matches(pattern)) {

 System.out.println(line + " matches \"" +

pattern + "\"");

 } else {

 System.out.println("NO MATCH");

 }

 }

}

But the three-step list just described is the “standard” pattern for
matching. You’d likely use the String convenience routine in a
program that only used the regex once; if the regex were being used
more than once, it is worth taking the time to “compile” it because
the compiled version runs faster.

In addition, the Matcher has several finder methods, which provide
more flexibility than the String convenience routine match().

The Matcher methods are:

match()

Used to compare the entire string against the pattern; this is the
same as the routine in java.lang.String. Because it
matches the entire String, I had to put .* before and after the
pattern.

lookingAt()

Used to match the pattern only at the beginning of the string.

find()

Used to match the pattern in the string (not necessarily at the first
character of the string), starting at the beginning of the string or, if
the method was previously called and succeeded, at the first
character not matched by the previous match.

Each of these methods returns boolean, with true meaning a
match and false meaning no match. To check whether a given
string matches a given pattern, you need only type something like the
following:

Matcher m = Pattern.compile(patt).matcher(line);

if (m.find()) {

 System.out.println(line + " matches " + patt)

}

But you may also want to extract the text that matched, which is the
subject of the next recipe.

The following recipes cover uses of this API. Initially, the examples
just use arguments of type String as the input source. Use of other
CharSequence types is covered in Recipe 4.5.

4.3 Finding the Matching Text

Problem

You need to find the text that the regex matched.

Solution

Sometimes you need to know more than just whether a regex
matched a string. In editors and many other tools, you want to know
exactly what characters were matched. Remember that with
quantifiers such as *, the length of the text that was matched may
have no relationship to the length of the pattern that matched it. Do
not underestimate the mighty .*, which happily matches thousands
or millions of characters if allowed to. As you saw in the previous
recipe, you can find out whether a given match succeeds just by using
find() or matches(). But in other applications, you will want to
get the characters that the pattern matched.

After a successful call to one of the preceding methods, you can use
these “information” methods to get information on the match:

start(), end()

Returns the character position in the string of the starting and
ending characters that matched.

groupCount()

Returns the number of parenthesized capture groups, if any;
returns 0 if no groups were used.

group(int i)

Returns the characters matched by group i of the current match,
if i is greater than or equal to zero and less than or equal to the
return value of groupCount(). Group 0 is the entire match, so
group(0) (or just group()) returns the entire portion of the
input that matched.

The notion of parentheses or “capture groups” is central to regex
processing. Regexes may be nested to any level of complexity. The
group(int) method lets you retrieve the characters that matched a
given parenthesis group. If you haven’t used any explicit parens, you
can just treat whatever matched as “level zero.” Example 4-2 shows
part of REMatch.java.

Example 4-2. Part of REMatch.java
public class REmatch {

 public static void main(String[] argv) {

 String patt = "Q[^u]\\d+\\.";

 Pattern r = Pattern.compile(patt);

 String line = "Order QT300. Now!";

 Matcher m = r.matcher(line);

 if (m.find()) {

 System.out.println(patt + " matches \"" +

 m.group(0) +

 "\" in \"" + line + "\"");

 } else {

 System.out.println("NO MATCH");

 }

 }

}

When run, this prints:

Q[\^u]\d+\. matches "QT300." in "Order QT300. Now!"

An extended version of the REDemo program presented in Recipe
4.2, called REDemo2, provides a display of all the capture groups in
a given regex; one example is shown in Figure 4-3.

Figure 4-3. REDemo2 in action

It is also possible to get the starting and ending indices and the length
of the text that the pattern matched (remember that terms with
quantifiers, such as the \d+ in this example, can match an arbitrary
number of characters in the string). You can use these in conjunction
with the String.substring() methods as follows:

 String patt = "Q[^u]\\d+\\.";

 Pattern r = Pattern.compile(patt);

 String line = "Order QT300. Now!";

 Matcher m = r.matcher(line);

 if (m.find()) {

 System.out.println(patt + " matches \"" +

 line.substring(m.start(0), m.end(0)) +

 "\" in \"" + line + "\"");

 } else {

 System.out.println("NO MATCH");

 }

Suppose you need to extract several items from a string. If the input
is:

Smith, John

Adams, John Quincy

and you want to get out:

John Smith

John Quincy Adams

just use:

public class REmatchTwoFields {

 public static void main(String[] args) {

 String inputLine = "Adams, John Quincy";

 // Construct an RE with parens to "grab" both field1

and field2

 Pattern r = Pattern.compile("(.*), (.*)");

 Matcher m = r.matcher(inputLine);

 if (!m.matches())

 throw new IllegalArgumentException("Bad input");

 System.out.println(m.group(2) + ' ' + m.group(1));

 }

}

4.4 Replacing the Matched Text

As we saw in the previous recipe, regex patterns involving quantifiers
can match a lot of characters with very few metacharacters. We need
a way to replace the text that the regex matched without changing
other text before or after it. We could do this manually using the
String method substring(). However, because it’s such a
common requirement, the Java Regular Expression API provides
some substitution methods. In all these methods, you pass in the
replacement text or “righthand side” of the substitution (this term is
historical: in a command-line text editor’s substitute command, the
lefthand side is the pattern and the righthand side is the replacement
text). The replacement methods are:

replaceAll(newString)

Replaces all occurrences that matched with the new string.

appendReplacement(StringBuffer, newString)

Copies up to before the first match, plus the given newString.

appendTail(StringBuffer)

Appends text after the last match (normally used after
appendReplacement).

Example 4-3 shows use of these three methods.

Example 4-3. ReplaceDemo.java
/**

 * Quick demo of RE substitution: correct U.S. 'favor'

 * to Canadian/British 'favour', but not in "favorite"

 * @author Ian F. Darwin, http://www.darwinsys.com/

 */

public class ReplaceDemo {

 public static void main(String[] argv) {

 // Make an RE pattern to match as a word only (\b=word

boundary)

 String patt = "\\bfavor\\b";

 // A test input.

 String input = "Do me a favor? Fetch my favorite.";

 System.out.println("Input: " + input);

 // Run it from a RE instance and see that it works

 Pattern r = Pattern.compile(patt);

 Matcher m = r.matcher(input);

 System.out.println("ReplaceAll: " +

m.replaceAll("favour"));

 // Show the appendReplacement method

 m.reset();

 StringBuffer sb = new StringBuffer();

 System.out.print("Append methods: ");

 while (m.find()) {

 // Copy to before first match,

 // plus the word "favor"

 m.appendReplacement(sb, "favour");

 }

 m.appendTail(sb); // copy remainder

 System.out.println(sb.toString());

 }

}

Sure enough, when you run it, it does what we expect:

Input: Do me a favor? Fetch my favorite.

ReplaceAll: Do me a favour? Fetch my favorite.

Append methods: Do me a favour? Fetch my favorite.

4.5 Printing All Occurrences of a Pattern

Problem

You need to find all the strings that match a given regex in one or
more files or other sources.

Solution

This example reads through a file one line at a time. Whenever a
match is found, I extract it from the line and print it.

This code takes the group() methods from Recipe 4.3, the
substring method from the CharacterIterator interface,
and the match() method from the regex and simply puts them all
together. I coded it to extract all the “names” from a given file; in
running the program through itself, it prints the words import,
java, until, regex, and so on, each on its own line:

C:\\> javac -d . ReaderIter.java

C:\\> java regex.ReaderIter ReaderIter.java

import

java

util

regex

import

java

io

Print

all

the

strings

that

match

given

pattern

from

file

public

...

C:\\>

I interrupted it here to save paper. This can be written two ways: a
traditional “line at a time” pattern shown in Example 4-4 and a more
compact form using “new I/O” shown in Example 4-5 (the “new I/O”
package is described in [Link to Come]).

Example 4-4. ReaderIter.java
public class ReaderIter {

 public static void main(String[] args) throws IOException

{

 // The RE pattern

 Pattern patt = Pattern.compile("[A-Za-z][a-z]+");

 // A FileReader (see the I/O chapter)

 BufferedReader r = new BufferedReader(new

FileReader(args[0]));

 // For each line of input, try matching in it.

 String line;

 while ((line = r.readLine()) != null) {

 // For each match in the line, extract and print

it.

 Matcher m = patt.matcher(line);

 while (m.find()) {

 // Simplest method:

 // System.out.println(m.group(0));

 // Get the starting position of the text

 int start = m.start(0);

 // Get ending position

 int end = m.end(0);

 // Print whatever matched.

 // Use CharacterIterator.substring(offset,

end);

 System.out.println(line.substring(start,

end));

 }

 }

 r.close();

 }

}

Example 4-5. GrepNIO.java
public class GrepNIO {

 public static void main(String[] args) throws IOException

{

 if (args.length < 2) {

 System.err.println("Usage: GrepNIO patt file

[...]");

 System.exit(1);

 }

 Pattern p=Pattern.compile(args[0]);

 for (int i=1; i<args.length; i++)

 process(p, args[i]);

 }

 static void process(Pattern pattern, String fileName)

throws IOException {

 // Get a FileChannel from the given file.

 FileInputStream fis = new FileInputStream(fileName);

 FileChannel fc = fis.getChannel();

 // Map the file's content

 ByteBuffer buf = fc.map(FileChannel.MapMode.READ_ONLY,

0, fc.size());

 // Decode ByteBuffer into CharBuffer

 CharBuffer cbuf =

 Charset.forName("ISO-8859-

1").newDecoder().decode(buf);

 Matcher m = pattern.matcher(cbuf);

 while (m.find()) {

 System.out.println(m.group(0));

 }

 fis.close();

 }

}

The NIO version shown in Example 4-5 relies on the fact that an NIO
Buffer can be used as a CharSequence. This program is more
general in that the pattern argument is taken from the command-line
argument. It prints the same output as the previous example if
invoked with the pattern argument from the previous program on the
command line:

java regex.GrepNIO "[A-Za-z][a-z]+" ReaderIter.java

You might think of using \w+ as the pattern; the only difference is
that my pattern looks for well-formed capitalized words, whereas
\w+ would include Java-centric oddities like theVariableName,
which have capitals in nonstandard positions.

Also note that the NIO version will probably be more efficient
because it doesn’t reset the Matcher to a new input source on each
line of input as ReaderIter does.

4.6 Printing Lines Containing a Pattern

Problem

You need to look for lines matching a given regex in one or more
files.

Solution

Write a simple grep-like program.

Discussion

As I’ve mentioned, once you have a regex package, you can write a
grep-like program. I gave an example of the Unix grep program
earlier. grep is called with some optional arguments, followed by one
required regular expression pattern, followed by an arbitrary number
of filenames. It prints any line that contains the pattern, differing
from Recipe 4.5, which prints only the matching text itself. For
example:

grep "[dD]arwin" *.txt

The preceding code searches for lines containing either darwin or
Darwin in every line of every file whose name ends in .txt.
Example 4-6 is the source for the first version of a program to do this,
called Grep0. It reads lines from the standard input and doesn’t take
any optional arguments, but it handles the full set of regular
expressions that the Pattern class implements (it is, therefore, not
identical to the Unix programs of the same name). We haven’t
covered the java.io package for input and output yet (see [Link to
Come]), but our use of it here is simple enough that you can probably
intuit it. The online source includes Grep1, which does the same
thing but is better structured (and therefore longer). Later in this

3

chapter, Recipe 4.11 presents a JGrep program that uses my
GetOpt (see [Link to Come]) to parse command-line options.

Example 4-6. Grep0.java
public class Grep0 {

 public static void main(String[] args) throws IOException

{

 BufferedReader is =

 new BufferedReader(new

InputStreamReader(System.in));

 if (args.length != 1) {

 System.err.println("Usage: MatchLines pattern");

 System.exit(1);

 }

 Pattern patt = Pattern.compile(args[0]);

 Matcher matcher = patt.matcher("");

 String line = null;

 while ((line = is.readLine()) != null) {

 matcher.reset(line);

 if (matcher.find()) {

 System.out.println("MATCH: " + line);

 }

 }

 }

}

4.7 Controlling Case in Regular
Expressions

Problem

You want to find text regardless of case.

Solution

Compile the Pattern passing in the flags argument
Pattern.CASE_INSENSITIVE to indicate that matching should
be case-independent (“fold” or ignore differences in case). If your
code might run in different locales (see [Link to Come]) then you
should add Pattern.UNICODE_CASE. Without these flags, the
default is normal, case-sensitive matching behavior. This flag (and
others) are passed to the Pattern.compile() method, as in:

// regex/CaseMatch.java

Pattern reCaseInsens = Pattern.compile(pattern,

Pattern.CASE_INSENSITIVE |

 Pattern.UNICODE_CASE);

reCaseInsens.matches(input); // will match case-

insensitively

This flag must be passed when you create the Pattern; because
Pattern objects are immutable, they cannot be changed once
constructed.

The full source code for this example is online as CaseMatch.java.

PATTERN.COMPILE() FLAGS

Half a dozen flags can be passed as the second argument to
Pattern.compile(). If more than one value is needed, they can be or’d

together using the bitwise or operator |. In alphabetical order, the flags are:

CANON_EQ

Enables so-called “canonical equivalence.” In other words, characters are
matched by their base character, so that the character e followed by the
“combining character mark” for the acute accent (´) can be matched either
by the composite character é or the letter e followed by the character mark
for the accent (see Recipe 4.8).

CASE_INSENSITIVE

Turns on case-insensitive matching (see Recipe 4.7).

COMMENTS

Causes whitespace and comments (from # to end-of-line) to be ignored in
the pattern.

DOTALL

Allows dot (.) to match any regular character or the newline, not just any
regular character other than newline (see Recipe 4.9).

MULTILINE

Specifies multiline mode (see Recipe 4.9).

UNICODE_CASE

Enables Unicode-aware case folding (see Recipe 4.7).

UNIX_LINES

Makes \n the only valid “newline” sequence for MULTILINE mode (see
Recipe 4.9).

4.8 Matching “Accented” or Composite
Characters

Problem

You want characters to match regardless of the form in which they
are entered.

Solution

Compile the Pattern with the flags argument
Pattern.CANON_EQ for “canonical equality.”

Discussion

Composite characters can be entered in various forms. Consider, as a
single example, the letter e with an acute accent. This character may
be found in various forms in Unicode text, such as the single
character é (Unicode character \u00e9) or as the two-character
sequence e´ (e followed by the Unicode combining acute accent,
\u0301). To allow you to match such characters regardless of which
of possibly multiple “fully decomposed” forms are used to enter
them, the regex package has an option for “canonical matching,”
which treats any of the forms as equivalent. This option is enabled by
passing CANON_EQ as (one of) the flags in the second argument to
Pattern.compile(). This program shows CANON_EQ being
used to match several forms:

public class CanonEqDemo {

 public static void main(String[] args) {

 String pattStr = "\u00e9gal"; // egal

 String[] input = {

 "\u00e9gal", // egal - this one had better

match :-)

 "e\u0301gal", // e + "Combining acute

accent"

 "e\u02cagal", // e + "modifier letter acute

accent"

 "e'gal", // e + single quote

 "e\u00b4gal", // e + Latin-1 "acute"

 };

 Pattern pattern = Pattern.compile(pattStr,

Pattern.CANON_EQ);

 for (int i = 0; i < input.length; i++) {

 if (pattern.matcher(input[i]).matches()) {

 System.out.println(

 pattStr + " matches input " + input[i]);

 } else {

 System.out.println(

 pattStr + " does not match input " +

input[i]);

 }

 }

 }

}

This program correctly matches the “combining accent” and rejects
the other characters, some of which, unfortunately, look like the
accent on a printer, but are not considered “combining accent”
characters:

égal matches input égal

égal matches input e?gal

égal does not match input e?gal

égal does not match input e'gal

égal does not match input e´gal

For more details, see the character charts.

4.9 Matching Newlines in Text

http://www.unicode.org/

Problem

You need to match newlines in text.

Solution

Use \n or \r.

See also the flags constant Pattern.MULTILINE, which makes
newlines match as beginning-of-line and end-of-line (\^ and $).

Discussion

Though line-oriented tools from Unix such as sed and grep match
regular expressions one line at a time, not all tools do. The sam text
editor from Bell Laboratories was the first interactive tool I know of
to allow multiline regular expressions; the Perl scripting language
followed shortly after. In the Java API, the newline character by
default has no special significance. The BufferedReader method
readLine() normally strips out whichever newline characters it
finds. If you read in gobs of characters using some method other than
readLine(), you may have some number of \n, \r, or \r\n
sequences in your text string. Normally all of these are treated as
equivalent to \n. If you want only \n to match, use the
UNIX_LINES flag to the Pattern.compile() method.

In Unix, ^ and $ are commonly used to match the beginning or end
of a line, respectively. In this API, the regex metacharacters \^ and $
ignore line terminators and only match at the beginning and the end,
respectively, of the entire string. However, if you pass the

4

MULTILINE flag into Pattern.compile(), these expressions
match just after or just before, respectively, a line terminator; $ also
matches the very end of the string. Because the line ending is just an
ordinary character, you can match it with . or similar expressions,
and, if you want to know exactly where it is, \n or \r in the pattern
match it as well. In other words, to this API, a newline character is
just another character with no special significance. See the sidebar
“Pattern.compile() Flags”. An example of newline matching is shown
in Example 4-7.

Example 4-7. NLMatch.java
public class NLMatch {

 public static void main(String[] argv) {

 String input = "I dream of engines\nmore engines, all

day long";

 System.out.println("INPUT: " + input);

 System.out.println();

 String[] patt = {

 "engines.more engines",

 "ines\nmore",

 "engines$"

 };

 for (int i = 0; i < patt.length; i++) {

 System.out.println("PATTERN " + patt[i]);

 boolean found;

 Pattern p1l = Pattern.compile(patt[i]);

 found = p1l.matcher(input).find();

 System.out.println("DEFAULT match " + found);

 Pattern pml = Pattern.compile(patt[i],

 Pattern.DOTALL|Pattern.MULTILINE);

 found = pml.matcher(input).find();

 System.out.println("MultiLine match " + found);

 System.out.println();

 }

 }

}

If you run this code, the first pattern (with the wildcard character .)
always matches, whereas the second pattern (with $) matches only
when MATCH_MULTILINE is set:

> java regex.NLMatch

INPUT: I dream of engines

more engines, all day long

PATTERN engines

more engines

DEFAULT match true

MULTILINE match: true

PATTERN engines$

DEFAULT match false

MULTILINE match: true

4.10 Program: Apache Logfile Parsing
The Apache web server is the world’s leading web server and has
been for most of the Web’s history. It is one of the world’s best-
known open source projects, and the first of many fostered by the
Apache Foundation. But the name Apache is often claimed to be a
pun on the origins of the server; its developers began with the free
NCSA server and kept hacking at it or “patching” it until it did what
they wanted. When it was sufficiently different from the original, a
new name was needed. Because it was now “a patchy server,” the

name Apache was chosen. Officialdom denies the story, but it’s cute
anyway. One place actual patchiness does show through is in the
logfile format. Consider Example 4-8.

Example 4-8. Apache log file excerpt
123.45.67.89 - - [27/Oct/2000:09:27:09 -0400] "GET

/java/javaResources.html

HTTP/1.0" 200 10450 "-" "Mozilla/4.6 [en] (X11; U; OpenBSD 2.8

i386; Nav)"

The file format was obviously designed for human inspection but not
for easy parsing. The problem is that different delimiters are used:
square brackets for the date, quotes for the request line, and spaces
sprinkled all through. Consider trying to use a StringTokenizer;
you might be able to get it working, but you’d spend a lot of time
fiddling with it. However, this somewhat contorted regular
expression makes it easy to parse:

\^([\d.]+) (\S+) (\S+) \[([\w:/]+\s[+\-]\d{4})\] "(.+?)"

(\d{3}) (\d+) "([\^"]+)"

"([\^"]+)"

You may find it informative to refer back to Table 4-1 and review the
full syntax used here. Note in particular the use of the nongreedy
quantifier +? in \"(.+?)\" to match a quoted string; you can’t just
use .+ because that would match too much (up to the quote at the
end of the line). Code to extract the various fields such as IP address,
request, referrer URL, and browser version is shown in Example 4-9.

Example 4-9. LogRegExp.java
public class LogRegExp {

5

 public static void main(String argv[]) {

 String logEntryPattern =

 "^([\\d.]+) (\\S+) (\\S+) \\

[([\\w:/]+\\s[+-]\\d{4})\\] " +

 "\"(.+?)\" (\\d{3}) (\\d+) \"([^\"]+)\" \"

([^\"]+)\"";

 System.out.println("RE Pattern:");

 System.out.println(logEntryPattern);

 System.out.println("Input line is:");

 String logEntryLine = LogExample.logEntryLine;

 System.out.println(logEntryLine);

 Pattern p = Pattern.compile(logEntryPattern);

 Matcher matcher = p.matcher(logEntryLine);

 if (!matcher.matches() ||

 LogExample.NUM_FIELDS != matcher.groupCount()) {

 System.err.println("Bad log entry (or problem with

regex):");

 System.err.println(logEntryLine);

 return;

 }

 System.out.println("IP Address: " + matcher.group(1));

 System.out.println("UserName: " + matcher.group(3));

 System.out.println("Date/Time: " + matcher.group(4));

 System.out.println("Request: " + matcher.group(5));

 System.out.println("Response: " + matcher.group(6));

 System.out.println("Bytes Sent: " + matcher.group(7));

 if (!matcher.group(8).equals("-"))

 System.out.println("Referer: " +

matcher.group(8));

 System.out.println("User-Agent: " + matcher.group(9));

 }

}

The implements clause is for an interface that just defines the
input string; it was used in a demonstration to compare the regular
expression mode with the use of a StringTokenizer. The source
for both versions is in the online source for this chapter. Running the
program against the sample input from Example 4-8 gives this
output:

Using regex Pattern:

\^([\d.]+) (\S+) (\S+) \[([\w:/]+\s[+\-]\d{4})\] "(.+?)"

(\d{3}) (\d+) "([\^"]+)"

"([\^"]+)"

Input line is:

123.45.67.89 - - [27/Oct/2000:09:27:09 -0400] "GET

/java/javaResources.html

HTTP/1.0" 200 10450 "-" "Mozilla/4.6 [en] (X11; U; OpenBSD

2.8 i386; Nav)"

IP Address: 123.45.67.89

Date&Time: 27/Oct/2000:09:27:09 -0400

Request: GET /java/javaResources.html HTTP/1.0

Response: 200

Bytes Sent: 10450

Browser: Mozilla/4.6 [en] (X11; U; OpenBSD 2.8 i386; Nav)

The program successfully parsed the entire logfile format entry with
one call to matcher.matches().

4.11 Program: Full Grep
Now that we’ve seen how the regular expressions package works, it’s
time to write JGrep, a full-blown version of the line-matching
program with option parsing. Table 4-2 lists some typical command-
line options that a Unix implementation of grep might include.

T
a
b
l
e

4
-
2
.
G
r
e
p

c
o
m
m
a
n
d
-
l
i
n
e

o
p
t
i
o
n
s

Option Meaning

-c Count only: don’t print lines, just count them

-C Context; print some lines above and below each line that matches (not
implemented in this version; left as an exercise for the reader)

-f
patt
ern

Take pattern from file named after -f instead of from command line

-h Suppress printing filename ahead of lines

-i Ignore case

-l List filenames only: don’t print lines, just the names they’re found in

-n Print line numbers before matching lines

-s Suppress printing certain error messages

-v Invert: print only lines that do NOT match the pattern

We discussed the GetOpt class in [Link to Come]. Here we use it to
control the operation of an application program. As usual, because
main() runs in a static context but our application main line does
not, we could wind up passing a lot of information into the
constructor. To save space, this version just uses global variables to
track the settings from the command line. Unlike the Unix grep tool,
this one does not yet handle “combined options,” so -l -r -i is
OK, but -lri will fail, due to a limitation in the GetOpt parser
used.

The program basically just reads lines, matches the pattern in them,
and, if a match is found (or not found, with -v), prints the line (and
optionally some other stuff, too). Having said all that, the code is
shown in Example 4-10.

Example 4-10. JGrep.java
/** A command-line grep-like program. Accepts some command-

line options,

 * and takes a pattern and a list of text files.

 * N.B. The current implementation of GetOpt does not allow

combining short

 * arguments, so put spaces e.g., "JGrep -l -r -i pattern

file..." is OK, but

 * "JGrep -lri pattern file..." will fail. Getopt will

hopefully be fixed soon.

 */

public class JGrep {

 private static final String USAGE =

 "Usage: JGrep pattern [-chilrsnv][-f pattfile]

[filename...]";

 /** The pattern we're looking for */

 protected Pattern pattern;

 /** The matcher for this pattern */

 protected Matcher matcher;

 private boolean debug;

 /** Are we to only count lines, instead of printing? */

 protected static boolean countOnly = false;

 /** Are we to ignore case? */

 protected static boolean ignoreCase = false;

 /** Are we to suppress printing of filenames? */

 protected static boolean dontPrintFileName = false;

 /** Are we to only list names of files that match? */

 protected static boolean listOnly = false;

 /** are we to print line numbers? */

 protected static boolean numbered = false;

 /** Are we to be silent about errors? */

 protected static boolean silent = false;

 /** are we to print only lines that DONT match? */

 protected static boolean inVert = false;

 /** Are we to process arguments recursively if

directories? */

 protected static boolean recursive = false;

 /** Construct a Grep object for the pattern, and run it

 * on all input files listed in args.

 * Be aware that a few of the command-line options are not

 * acted upon in this version - left as an exercise for

the reader!

 * @param args args

 */

 public static void main(String[] args) {

 if (args.length < 1) {

 System.err.println(USAGE);

 System.exit(1);

 }

 String patt = null;

 GetOpt go = new GetOpt("cf:hilnrRsv");

 char c;

 while ((c = go.getopt(args)) != 0) {

 switch(c) {

 case 'c':

 countOnly = true;

 break;

 case 'f': /* External file contains the

pattern */

 try (BufferedReader b =

 new BufferedReader(new

FileReader(go.optarg()))) {

 patt = b.readLine();

 } catch (IOException e) {

 System.err.println(

 "Can't read pattern file " +

go.optarg());

 System.exit(1);

 }

 break;

 case 'h':

 dontPrintFileName = true;

 break;

 case 'i':

 ignoreCase = true;

 break;

 case 'l':

 listOnly = true;

 break;

 case 'n':

 numbered = true;

 break;

 case 'r':

 case 'R':

 recursive = true;

 break;

 case 's':

 silent = true;

 break;

 case 'v':

 inVert = true;

 break;

 case '?':

 System.err.println("Getopts was not

happy!");

 System.err.println(USAGE);

 break;

 }

 }

 int ix = go.getOptInd();

 if (patt == null)

 patt = args[ix++];

 JGrep prog = null;

 try {

 prog = new JGrep(patt);

 } catch (PatternSyntaxException ex) {

 System.err.println("RE Syntax error in " + patt);

 return;

 }

 if (args.length == ix) {

 dontPrintFileName = true; // Don't print filenames

if stdin

 if (recursive) {

 System.err.println("Warning: recursive search

of stdin!");

 }

 prog.process(new InputStreamReader(System.in),

null);

 } else {

 if (!dontPrintFileName)

 dontPrintFileName = ix == args.length - 1; //

Nor if only one file.

 if (recursive)

 dontPrintFileName = false; //

unless a directory!

 for (int i=ix; i<args.length; i++) { // note

starting index

 try {

 prog.process(new File(args[i]));

 } catch(Exception e) {

 System.err.println(e);

 }

 }

 }

 }

 /**

 * Construct a JGrep object.

 * @param patt The regex to look for

 * @throws PatternSyntaxException if pattern is not a

valid regex

 */

 public JGrep(String patt) throws PatternSyntaxException {

 if (debug) {

 System.err.printf("JGrep.JGrep(%s)%n", patt);

 }

 // compile the regular expression

 int caseMode = ignoreCase ?

 Pattern.UNICODE_CASE | Pattern.CASE_INSENSITIVE :

 0;

 pattern = Pattern.compile(patt, caseMode);

 matcher = pattern.matcher("");

 }

 /** Process one command line argument (file or directory)

 * @param file The input File

 * @throws FileNotFoundException If the file doesn't exist

 */

 public void process(File file) throws

FileNotFoundException {

 if (!file.exists() || !file.canRead()) {

 throw new FileNotFoundException(

 "Can't read file " + file.getAbsolutePath());

 }

 if (file.isFile()) {

 process(new BufferedReader(new FileReader(file)),

 file.getAbsolutePath());

 return;

 }

 if (file.isDirectory()) {

 if (!recursive) {

 System.err.println(

 "ERROR: -r not specified but directory

given " +

 file.getAbsolutePath());

 return;

 }

 for (File nf : file.listFiles()) {

 process(nf); // "Recursion, n.: See

Recursion."

 }

 return;

 }

 System.err.println(

 "WEIRDNESS: neither file nor directory: " +

file.getAbsolutePath());

 }

 /** Do the work of scanning one file

 * @param ifile Reader Reader object already open

 * @param fileName String Name of the input file

 */

 public void process(Reader ifile, String fileName) {

 String inputLine;

 int matches = 0;

 try (BufferedReader reader = new

BufferedReader(ifile)) {

 while ((inputLine = reader.readLine()) != null) {

 matcher.reset(inputLine);

 if (matcher.find()) {

 if (listOnly) {

 // -l, print filename on first match,

and we're done

 System.out.println(fileName);

 return;

 }

 if (countOnly) {

 matches++;

 } else {

 if (!dontPrintFileName) {

 System.out.print(fileName + ": ");

 }

 System.out.println(inputLine);

 }

 } else if (inVert) {

 System.out.println(inputLine);

 }

 }

 if (countOnly)

 System.out.println(matches + " matches in " +

fileName);

 } catch (IOException e) {

 System.err.println(e);

 }

 }

}

Non-Unix fans fear not, for you can use tools like grep on Windows systems using one
of several packages. One is an open source package alternately called CygWin (after
Cygnus Software) or GnuWin32. Another is Microsoft’s findstr command for
Windows. Or you can use my Grep program in Recipe 4.6 if you don’t have grep on
your system. Incidentally, the name grep comes from an ancient Unix line editor
command g/RE/p, the command to find the regex globally in all lines in the edit buffer
and print the lines that match—just what the grep program does to lines in files.

REDemo was inspired by (but does not use any code from) a similar program provided
with the now-retired Apache Jakarta Regular Expressions package.

On Unix, the shell or command-line interpreter expands *.txt to all the matching
filenames before running the program, but the normal Java interpreter does this for you
on systems where the shell isn’t energetic or bright enough to do it.

Or a few related Unicode characters, including the next-line (\u0085), line-separator
(\u2028), and paragraph-separator (\u2029) characters.

You might think this would hold some kind of world record for complexity in regex
competitions, but I’m sure it’s been outdone many times.

1

2

3

4

5

http://sources.redhat.com/cygwin

	1. Getting Started: Compiling, Running, and Debugging
	1.0. Introduction
	1.1. Compiling and Running Java: JDK
	1.2. Compiling, Running, and Testing with an IDE
	1.3. Running Java with JShell
	1.4. Using CLASSPATH Effectively
	1.5. Downloading and Using the Code Examples
	1.6. Automating Dependencies, Compilation, Testing, and Deployment with Apache Maven
	1.7. Automating Dependencies, Compilation, Testing, and Deployment with Gradle
	1.8. Dealing with Deprecation Warnings
	1.9. Maintaining Program Correctness with Assertions
	1.10. Avoiding the Need for Debuggers with Unit Testing
	1.11. Maintaining Your Code with Continuous Integration
	1.12. Getting Readable Tracebacks
	1.13. Finding More Java Source Code: Programs, Frameworks, Libraries

	2. Interacting with the Environment
	2.0. Introduction
	2.1. Getting Environment Variables
	2.2. Getting Information from System Properties
	2.3. Dealing with Java Version and Operating System–Dependent Variations
	2.4. Using Extensions or Other Packaged APIs
	2.5. Using the Java Modules System.

	3. Strings and Things
	3.0. Introduction
	3.1. Taking Strings Apart with Substrings or Tokenizing
	3.2. Putting Strings Together with StringBuilder
	3.3. Processing a String One Character at a Time
	3.4. Aligning Strings
	3.5. Converting Between Unicode Characters and Strings
	3.6. Reversing a String by Word or by Character
	3.7. Expanding and Compressing Tabs
	3.8. Controlling Case
	3.9. Indenting Text Documents
	3.10. Entering Nonprintable Characters
	3.11. Trimming Blanks from the End of a String
	3.12. Program: A Simple Text Formatter
	3.13. Program: Soundex Name Comparisons

	4. Pattern Matching with Regular Expressions
	4.0. Introduction
	4.1. Regular Expression Syntax
	4.2. Using regexes in Java: Test for a Pattern
	4.3. Finding the Matching Text
	4.4. Replacing the Matched Text
	4.5. Printing All Occurrences of a Pattern
	4.6. Printing Lines Containing a Pattern
	4.7. Controlling Case in Regular Expressions
	4.8. Matching “Accented” or Composite Characters
	4.9. Matching Newlines in Text
	4.10. Program: Apache Logfile Parsing
	4.11. Program: Full Grep

