

JavaScript for impatient

programmers

Dr. Axel Rauschmayer

2019

JavaScript for impatient

programmers

JavaScript for impatient programmers

1 About this book (ES2019 edition)

1.1 About the content

1.2 Previewing and buying this book

1.3 About the author

1.4 Acknowledgements

2 FAQ: Book and supplementary material

2.1 How to read this book

2.2 I own a digital edition

2.3 I own the print edition

2.4 Notations and conventions

3 Why JavaScript? (bonus)

3.1 The cons of JavaScript

3.2 The pros of JavaScript

3.3 Pro and con of JavaScript: innovation

4 The nature of JavaScript (bonus)

4.1 JavaScript’s influences

4.2 The nature of JavaScript

4.3 Tips for getting started with JavaScript

5 History and evolution of JavaScript

5.1 How JavaScript was created

5.2 Standardizing JavaScript

5.3 Timeline of ECMAScript versions

5.4 Ecma Technical Committee 39 (TC39)

5.5 The TC39 process

5.6 FAQ: TC39 process

5.7 Evolving JavaScript: Don’t break the web

6 FAQ: JavaScript

6.1 What are good references for JavaScript?

6.2 How do I find out what JavaScript features are supported

where?

6.3 Where can I look up what features are planned for

JavaScript?

6.4 Why does JavaScript fail silently so often?

6.5 Why can’t we clean up JavaScript, by removing quirks and

outdated features?

6.6 How can I quickly try out a piece of JavaScript code?

7 The big picture

7.1 What are you learning in this book?

7.2 The structure of browsers and Node.js

7.3 JavaScript references

7.4 Further reading

8 Syntax

8.1 An overview of JavaScript’s syntax

8.2 (Advanced)

8.3 Identifiers

8.4 Statement vs. expression

8.5 Ambiguous syntax

8.6 Semicolons

8.7 Automatic semicolon insertion (ASI)

8.8 Semicolons: best practices

8.9 Strict mode vs. sloppy mode

9 Consoles: interactive JavaScript command lines

9.1 Trying out JavaScript code

9.2 The console.* API: printing data and more

10 Assertion API

10.1 Assertions in software development

10.2 How assertions are used in this book

10.3 Normal comparison vs. deep comparison

10.4 Quick reference: module assert

11 Getting started with quizzes and exercises

11.1 Quizzes

11.2 Exercises

11.3 Unit tests in JavaScript

12 Variables and assignment

12.1 let

12.2 const

12.3 Deciding between const and let

12.4 The scope of a variable

12.5 (Advanced)

12.6 Terminology: static vs. dynamic

12.7 Global variables and the global object

12.8 Declarations: scope and activation

12.9 Closures

12.10 Further reading

13 Values

13.1 What’s a type?

13.2 JavaScript’s type hierarchy

13.3 The types of the language specification

13.4 Primitive values vs. objects

13.5 The operators typeof and instanceof: what’s the type of a

value?

13.6 Classes and constructor functions

13.7 Converting between types

14 Operators

14.1 Making sense of operators

14.2 The plus operator (+)

14.3 Assignment operators

14.4 Equality: == vs. ===

14.5 Ordering operators

14.6 Various other operators

15 The non-values undefined and null

15.1 undefined vs. null

15.2 Occurrences of undefined and null

15.3 Checking for undefined or null

15.4 undefined and null don’t have properties

15.5 The history of undefined and null

16 Booleans

16.1 Converting to boolean

16.2 Falsy and truthy values

16.3 Truthiness-based existence checks

16.4 Conditional operator (? :)

16.5 Binary logical operators: And (x && y), Or (x || y)

16.6 Logical Not (!)

17 Numbers

17.1 JavaScript only has floating point numbers

17.2 Number literals

17.3 Arithmetic operators

17.4 Converting to number

17.5 Error values

17.6 Error value: NaN

17.7 Error value: Infinity

17.8 The precision of numbers: careful with decimal fractions

17.9 (Advanced)

17.10 Background: floating point precision

17.11 Integers in JavaScript

17.12 Bitwise operators

17.13 Quick reference: numbers

18 Math

18.1 Data properties

18.2 Exponents, roots, logarithms

18.3 Rounding

18.4 Trigonometric Functions

18.5 Various other functions

18.6 Sources

19 Unicode – a brief introduction (advanced)

19.1 Code points vs. code units

19.2 Encodings used in web development: UTF-16 and UTF-8

19.3 Grapheme clusters – the real characters

20 Strings

20.1 Plain string literals

20.2 Accessing characters and code points

20.3 String concatenation via +

20.4 Converting to string

20.5 Comparing strings

20.6 Atoms of text: Unicode characters, JavaScript characters,

grapheme clusters

20.7 Quick reference: Strings

21 Using template literals and tagged templates

21.1 Disambiguation: “template”

21.2 Template literals

21.3 Tagged templates

21.4 Raw string literals

21.5 (Advanced)

21.6 Multiline template literals and indentation

21.7 Simple templating via template literals

22 Symbols

22.1 Use cases for symbols

22.2 Publicly known symbols

22.3 Converting symbols

23 Control flow statements

23.1 Conditions of control flow statements

23.2 Controlling loops: break and continue

23.3 if statements

23.4 switch statements

23.5 while loops

23.6 do-while loops

23.7 for loops

23.8 for-of loops

23.9 for-await-of loops

23.10 for-in loops (avoid)

24 Exception handling

24.1 Motivation: throwing and catching exceptions

24.2 throw

24.3 The try statement

24.4 Error classes

25 Callable values

25.1 Kinds of functions

25.2 Ordinary functions

25.3 Specialized functions

25.4 More kinds of functions and methods

25.5 Returning values from functions and methods

25.6 Parameter handling

25.7 Dynamically evaluating code: eval(), new Function()

(advanced)

26 Environments: under the hood of variables (bonus)

26.1 Environment: data structure for managing variables

26.2 Recursion via environments

26.3 Nested scopes via environments

26.4 Closures and environments

27 Modules

27.1 Overview: syntax of ECMAScript modules

27.2 JavaScript source code formats

27.3 Before we had modules, we had scripts

27.4 Module systems created prior to ES6

27.5 ECMAScript modules

27.6 Named exports and imports

27.7 Default exports and imports

27.8 More details on exporting and importing

27.9 npm packages

27.10 Naming modules

27.11 Module specifiers

27.12 Loading modules dynamically via import()

27.13 Preview: import.meta.url

27.14 Polyfills: emulating native web platform features

(advanced)

28 Single objects

28.1 What is an object?

28.2 Objects as records

28.3 Spreading into object literals (...)

28.4 Methods

28.5 Objects as dictionaries (advanced)

28.6 Standard methods (advanced)

28.7 Advanced topics

29 Prototype chains and classes

29.1 Prototype chains

29.2 Classes

29.3 Private data for classes

29.4 Subclassing

29.5 FAQ: objects

30 Synchronous iteration

30.1 What is synchronous iteration about?

30.2 Core iteration constructs: iterables and iterators

30.3 Iterating manually

30.4 Iteration in practice

30.5 Quick reference: synchronous iteration

31 Arrays (Array)

31.1 The two roles of Arrays in JavaScript

31.2 Basic Array operations

31.3 for-of and Arrays

31.4 Array-like objects

31.5 Converting iterable and Array-like values to Arrays

31.6 Creating and filling Arrays with arbitrary lengths

31.7 Multidimensional Arrays

31.8 More Array features (advanced)

31.9 Adding and removing elements (destructively and non-

destructively)

31.10 Methods: iteration and transformation (.find(), .map(),

.filter(), etc.)

31.11 .sort(): sorting Arrays

31.12 Quick reference: Array<T>

32 Typed Arrays: handling binary data (Advanced)

32.1 The basics of the API

32.2 Element types

32.3 More information on Typed Arrays

32.4 Quick references: indices vs. offsets

32.5 Quick reference: ArrayBuffers

32.6 Quick reference: Typed Arrays

32.7 Quick reference: DataViews

33 Maps (Map)

33.1 Using Maps

33.2 Example: Counting characters

33.3 A few more details about the keys of Maps (advanced)

33.4 Missing Map operations

33.5 Quick reference: Map<K,V>

33.6 FAQ: Maps

34 WeakMaps (WeakMap)

34.1 WeakMaps are black boxes

34.2 The keys of a WeakMap are weakly held

34.3 Examples

34.4 WeakMap API

35 Sets (Set)

35.1 Using Sets

35.2 Examples of using Sets

35.3 What Set elements are considered equal?

35.4 Missing Set operations

35.5 Quick reference: Set<T>

35.6 FAQ: Sets

36 WeakSets (WeakSet)

36.1 Example: Marking objects as safe to use with a method

36.2 WeakSet API

37 Destructuring

37.1 A first taste of destructuring

37.2 Constructing vs. extracting

37.3 Where can we destructure?

37.4 Object-destructuring

37.5 Array-destructuring

37.6 Examples of destructuring

37.7 What happens if a pattern part does not match anything?

37.8 What values can’t be destructured?

37.9 (Advanced)

37.10 Default values

37.11 Parameter definitions are similar to destructuring

37.12 Nested destructuring

38 Synchronous generators (advanced)

38.1 What are synchronous generators?

38.2 Calling generators from generators (advanced)

38.3 Background: external iteration vs. internal iteration

38.4 Use case for generators: reusing traversals

38.5 Advanced features of generators

39 Asynchronous programming in JavaScript

39.1 A roadmap for asynchronous programming in JavaScript

39.2 The call stack

39.3 The event loop

39.4 How to avoid blocking the JavaScript process

39.5 Patterns for delivering asynchronous results

39.6 Asynchronous code: the downsides

39.7 Resources

40 Promises for asynchronous programming

40.1 The basics of using Promises

40.2 Examples

40.3 Error handling: don’t mix rejections and exceptions

40.4 Promise-based functions start synchronously, settle

asynchronously

40.5 Promise.all(): concurrency and Arrays of Promises

40.6 Tips for chaining Promises

40.7 Advanced topics

41 Async functions

41.1 Async functions: the basics

41.2 Returning from async functions

41.3 await: working with Promises

41.4 (Advanced)

41.5 Immediately invoked async arrow functions

41.6 Concurrency and await

41.7 Tips for using async functions

42 Asynchronous iteration

42.1 Basic asynchronous iteration

42.2 Asynchronous generators

42.3 Async iteration over Node.js streams

43 Regular expressions (RegExp)

43.1 Creating regular expressions

43.2 Syntax

43.3 Flags

43.4 Properties of regular expression objects

43.5 Methods for working with regular expressions

43.6 Flag /g and its pitfalls

43.7 Techniques for working with regular expressions

44 Dates (Date)

44.1 Best practice: avoid the built-in Date

44.2 Time standards

44.3 Background: date time formats (ISO)

44.4 Time values

44.5 Creating Dates

44.6 Getters and setters

44.7 Converting Dates to strings

45 Creating and parsing JSON (JSON)

45.1 The discovery and standardization of JSON

45.2 JSON syntax

45.3 Using the JSON API

45.4 Customizing stringification and parsing (advanced)

45.5 FAQ

46 Next steps: overview of web development (bonus)

46.1 Tips against feeling overwhelmed

46.2 Things worth learning for web development

46.3 Example: tool-based JavaScript workflow

46.4 An overview of JavaScript tools

46.5 Tools not related to JavaScript

47 Index

JavaScript for impatient

programmers

1 About this book (ES2019

edition)

1.1 About the content

1.1.1 What’s in this book?

1.1.2 What is not covered by this book?

1.1.3 Isn’t this book too long for impatient people?

1.2 Previewing and buying this book

1.2.1 How can I preview the book, the exercises, and the

quizzes?

1.2.2 How can I buy a digital edition of this book?

1.2.3 How can I buy the print edition of this book?

1.3 About the author

1.4 Acknowledgements

1.1 About the content

1.1.1 What’s in this book?

This book makes JavaScript less challenging to learn for newcomers

by offering a modern view that is as consistent as possible.

Highlights:

Get started quickly by initially focusing on modern features.

Test-driven exercises and quizzes available for most chapters.

Covers all essential features of JavaScript, up to and including

ES2019.

Optional advanced sections let you dig deeper.

No prior knowledge of JavaScript is required, but you should know

how to program.

1.1.2 What is not covered by this book?

Some advanced language features are not explained, but

references to appropriate material are provided – for example,

to my other JavaScript books at ExploringJS.com, which are free

to read online.

This book deliberately focuses on the language. Browser-only

features, etc. are not described.

https://exploringjs.com/

1.1.3 Isn’t this book too long for

impatient people?

There are several ways in which you can read this book. One of them

involves skipping much of the content in order to get started quickly.

For details, see §2.1.1 “In which order should I read the content in

this book?”.

1.2 Previewing and buying this

book

1.2.1 How can I preview the book, the

exercises, and the quizzes?

Go to the homepage of this book:

All essential chapters of this book can be read online.

The first half of the test-driven exercises can be downloaded.

The first half of the quizzes can be tried online.

1.2.2 How can I buy a digital edition of

this book?

There are two digital editions of JavaScript for impatient

programmers:

Ebooks: PDF, EPUB, MOBI, HTML (all without DRM)

Ebooks plus exercises and quizzes

The home page of this book describes how you can buy them.

1.2.3 How can I buy the print edition of

this book?

The print edition of JavaScript for impatient programmers is

available on Amazon.

https://exploringjs.com/impatient-js/
https://exploringjs.com/impatient-js/#buy

1.3 About the author

Dr. Axel Rauschmayer specializes in JavaScript and web

development. He has been developing web applications since 1995.

In 1999, he was technical manager at a German internet startup that

later expanded internationally. In 2006, he held his first talk on

Ajax. In 2010, he received a PhD in Informatics from the University

of Munich.

Since 2011, he has been blogging about web development at

2ality.com and has written several books on JavaScript. He has held

trainings and talks for companies such as eBay, Bank of America,

and O’Reilly Media.

He lives in Munich, Germany.

1.4 Acknowledgements

Cover by Fran Caye

Parts of this book were edited by Adaobi Obi Tulton.

Thanks for answering questions, discussing language topics,

etc.:

Allen Wirfs-Brock (@awbjs)

Benedikt Meurer (@bmeurer)

Brian Terlson (@bterlson)

Daniel Ehrenberg (@littledan)

Jordan Harband (@ljharb)

Mathias Bynens (@mathias)

Myles Borins (@MylesBorins)

Rob Palmer (@robpalmer2)

Šime Vidas (@simevidas)

And many others

Thanks for reviewing:

Johannes Weber (@jowe)

[Generated: 2019-08-31 17:39]

http://francaye.net/
http://www.serendipity23editorial.com/
https://twitter.com/awbjs
https://twitter.com/bmeurer
https://twitter.com/bterlson
https://twitter.com/littledan
https://twitter.com/ljharb
https://twitter.com/mathias
https://twitter.com/MylesBorins
https://twitter.com/robpalmer2
https://twitter.com/simevidas
https://twitter.com/jowe

2 FAQ: Book and

supplementary material

2.1 How to read this book

2.1.1 In which order should I read the content in this book?

2.1.2 Why are some chapters and sections marked with

“(advanced)”?

2.1.3 Why are some chapters marked with “(bonus)”?

2.2 I own a digital edition

2.2.1 How do I submit feedback and corrections?

2.2.2 How do I get updates for the downloads I bought at

Payhip?

2.2.3 Can I upgrade from package “Ebooks” to package

“Ebooks + exercises + quizzes”?

2.3 I own the print edition

2.3.1 Can I get a discount for a digital edition?

2.3.2 Can I submit an error or see submitted errors?

2.3.3 Is there an online list with the URLs in this book?

2.4 Notations and conventions

2.4.1 What is a type signature? Why am I seeing static types

in this book?

2.4.2 What do the notes with icons mean?

This chapter answers questions you may have and gives tips for

reading this book.

2.1 How to read this book

2.1.1 In which order should I read the

content in this book?

This book is three books in one:

You can use it to get started with JavaScript as quickly as

possible. This “mode” is for impatient people:

Start reading with §7 “The big picture”.

Skip all chapters and sections marked as “advanced”, and

all quick references.

It gives you a comprehensive look at current JavaScript. In this

“mode”, you read everything and don’t skip advanced content

and quick references.

It serves as a reference. If there is a topic that you are interested

in, you can find information on it via the table of contents or via

the index. Due to basic and advanced content being mixed,

everything you need is usually in a single location.

The quizzes and exercises play an important part in helping you

practice and retain what you have learned.

2.1.2 Why are some chapters and

sections marked with “(advanced)”?

Several chapters and sections are marked with “(advanced)”. The

idea is that you can initially skip them. That is, you can get a quick

working knowledge of JavaScript by only reading the basic (non-

advanced) content.

As your knowledge evolves, you can later come back to some or all of

the advanced content.

2.1.3 Why are some chapters marked

with “(bonus)”?

The bonus chapters are only available in the paid versions of this

book (print and ebook). They are listed in the full table of contents.

https://exploringjs.com/impatient-js/downloads/complete-toc.html

2.2 I own a digital edition

2.2.1 How do I submit feedback and

corrections?

The HTML version of this book (online, or ad-free archive in the paid

version) has a link at the end of each chapter that enables you to give

feedback.

2.2.2 How do I get updates for the

downloads I bought at Payhip?

The receipt email for the purchase includes a link. You’ll always

be able to download the latest version of the files at that

location.

If you opted into emails while buying, you’ll get an email

whenever there is new content. To opt in later, you must contact

Payhip (see bottom of payhip.com).

2.2.3 Can I upgrade from package

“Ebooks” to package “Ebooks + exercises

+ quizzes”?

Yes. The instructions for doing so are on the homepage of this book.

https://exploringjs.com/impatient-js/#upgrades

2.3 I own the print edition

2.3.1 Can I get a discount for a digital

edition?

If you bought the print edition, you can get a discount for a digital

edition. The homepage of the print edition explains how.

Alas, the reverse is not possible: you cannot get a discount for the

print edition if you bought a digital edition.

2.3.2 Can I submit an error or see

submitted errors?

On the homepage of the print edition, you can submit errors and see

submitted errors.

2.3.3 Is there an online list with the URLs

in this book?

The homepage of the print edition has a list with all the URLs that

you see in the footnotes of the print edition.

https://exploringjs.com/impatient-js/es2019/
https://exploringjs.com/impatient-js/es2019/
https://exploringjs.com/impatient-js/es2019/

2.4 Notations and conventions

2.4.1 What is a type signature? Why am I

seeing static types in this book?

For example, you may see:

That is called the type signature of Number.isFinite(). This notation,

especially the static types number of num and boolean of the result, are

not real JavaScript. The notation is borrowed from the compile-to-

JavaScript language TypeScript (which is mostly just JavaScript plus

static typing).

Why is this notation being used? It helps give you a quick idea of how

a function works. The notation is explained in detail in a 2ality blog

post, but is usually relatively intuitive.

2.4.2 What do the notes with icons

mean?

 Reading instructions

Explains how to best read the content.

 External content

Points to additional, external, content.

Number.isFinite(num: number): boolean

https://2ality.com/2018/04/type-notation-typescript.html

 Tip

Gives a tip related to the current content.

 Question

Asks and answers a question pertinent to the current content

(think FAQ).

 Warning

Warns about pitfalls, etc.

 Details

Provides additional details, complementing the current content. It

is similar to a footnote.

 Exercise

Mentions the path of a test-driven exercise that you can do at that

point.

 Quiz

Indicates that there is a quiz for the current (part of a) chapter.

3 Why JavaScript? (bonus)

3.1 The cons of JavaScript

3.2 The pros of JavaScript

3.2.1 Community

3.2.2 Practically useful

3.2.3 Language

3.3 Pro and con of JavaScript: innovation

In this chapter, we examine the pros and cons of JavaScript.

 “ECMAScript 6” and “ES6” refer to versions of

JavaScript

ECMAScript is the name of the language standard; the number

refers to the version of that standard. For more information,

consult §5.2 “Standardizing JavaScript”.

3.1 The cons of JavaScript

Among programmers, JavaScript isn’t always well liked. One reason

is that it has a fair amount of quirks. Some of them are just unusual

ways of doing something. Others are considered bugs. Either way,

learning why JavaScript does something the way it does, helps with

dealing with the quirks and with accepting JavaScript (maybe even

liking it). Hopefully, this book can be of assistance here.

Additionally, many traditional quirks have been eliminated now. For

example:

Traditionally, JavaScript variables weren’t block-scoped. ES6

introduced let and const, which let you declare block-scoped

variables.

Prior to ES6, implementing object factories and inheritance via

function and .prototype was clumsy. ES6 introduced classes,

which provide more convenient syntax for these mechanisms.

Traditionally, JavaScript did not have built-in modules. ES6

added them to the language.

Lastly, JavaScript’s standard library is limited, but:

There are plans for adding more functionality.

Many libraries are easily available via the npm software registry.

https://github.com/tc39/proposal-javascript-standard-library
https://www.npmjs.com/

3.2 The pros of JavaScript

On the plus side, JavaScript offers many benefits.

3.2.1 Community

JavaScript’s popularity means that it’s well supported and well

documented. Whenever you create something in JavaScript, you can

rely on many people being (potentially) interested. And there is a

large pool of JavaScript programmers from which you can hire, if

you need to.

No single party controls JavaScript – it is evolved by TC39, a

committee comprising many organizations. The language is evolved

via an open process that encourages feedback from the public.

3.2.2 Practically useful

With JavaScript, you can write apps for many client platforms. These

are a few example technologies:

Progressive Web Apps can be installed natively on Android and

many desktop operating systems.

Electron lets you build cross-platform desktop apps.

React Native lets you write apps for iOS and Android that have

native user interfaces.

Node.js provides extensive support for writing shell scripts (in

addition to being a platform for web servers).

https://developers.google.com/web/progressive-web-apps/
https://electronjs.org/
https://facebook.github.io/react-native/
https://nodejs.org/

JavaScript is supported by many server platforms and services – for

example:

Node.js (many of the following services are based on Node.js or

support its APIs)

ZEIT Now

Microsoft Azure Functions

AWS Lambda

Google Cloud Functions

There are many data technologies available for JavaScript: many

databases support it and intermediate layers (such as GraphQL)

exist. Additionally, the standard data format JSON (JavaScript

Object Notation) is based on JavaScript and supported by its

standard library.

Lastly, many, if not most, tools for JavaScript are written in

JavaScript. That includes IDEs, build tools, and more. As a

consequence, you install them the same way you install your libraries

and you can customize them in JavaScript.

3.2.3 Language

Many libraries are available, via the de-facto standard in the

JavaScript universe, the npm software registry.

If you are unhappy with “plain” JavaScript, it is relatively easy to

add more features:

You can compile future and modern language features to

current and past versions of JavaScript, via Babel.

https://www.npmjs.com/
https://babeljs.io/

You can add static typing, via TypeScript and Flow.

You can work with ReasonML, which is, roughly, OCaml

with JavaScript syntax. It can be compiled to JavaScript or

native code.

The language is flexible: it is dynamic and supports both object-

oriented programming and functional programming.

JavaScript has become suprisingly fast for such a dynamic

language.

Whenever it isn’t fast enough, you can switch to

WebAssembly, a universal virtual machine built into most

JavaScript engines. It can run static code at nearly native

speeds.

https://www.typescriptlang.org/
https://flow.org/

3.3 Pro and con of JavaScript:

innovation

There is much innovation in the JavaScript ecosystem: new

approaches to implementing user interfaces, new ways of optimizing

the delivery of software, and more. The upside is that you will

constantly learn new things. The downside is that the constant

change can be exhausting at times. Thankfully, things have

somewhat slowed down, recently: all of ES6 (which was a

considerable modernization of the language) is becoming

established, as are certain tools and workflows.

 Quiz

See quiz app.

4 The nature of JavaScript

(bonus)

4.1 JavaScript’s influences

4.2 The nature of JavaScript

4.2.1 JavaScript often fails silently

4.3 Tips for getting started with JavaScript

4.1 JavaScript’s influences

When JavaScript was created in 1995, it was influenced by several

programming languages:

JavaScript’s syntax is largely based on Java.

Self inspired JavaScript’s prototypal inheritance.

Closures and environments were borrowed from Scheme.

AWK influenced JavaScript’s functions (including the keyword

function).

JavaScript’s strings, Arrays, and regular expressions take cues

from Perl.

HyperTalk inspired event handling via onclick in web browsers.

With ECMAScript 6, new influences came to JavaScript:

Generators were borrowed from Python.

The syntax of arrow functions came from CoffeeScript.

C++ contributed the keyword const.

Destructuring was inspired by Lisp’s destructuring bind.

Template literals came from the E language (where they are

called quasi literals).

4.2 The nature of JavaScript

These are a few traits of the language:

Its syntax is part of the C family of languages (curly braces, etc.).

It is a dynamic language: most objects can be changed in various

ways at runtime, objects can be created directly, etc.

It is a dynamically typed language: variables don’t have fixed

static types and you can assign any value to a given (mutable)

variable.

It has functional programming features: first-class functions,

closures, partial application via bind(), etc.

It has object-oriented features: mutable state, objects,

inheritance, classes, etc.

It often fails silently: see the next subsection for details.

It is deployed as source code. But that source code is often

minified (rewritten to require less storage). And there are plans

for a binary source code format.

JavaScript is part of the web platform – it is the language built

into web browsers. But it is also used elsewhere – for example,

in Node.js, for server things, and shell scripting.

https://github.com/tc39/proposal-binary-ast

JavaScript engines often optimize less-efficient language

mechanisms under the hood. For example, in principle,

JavaScript Arrays are dictionaries. But under the hood, engines

store Arrays contiguously if they have contiguous indices.

4.2.1 JavaScript often fails silently

JavaScript often fails silently. Let’s look at two examples.

First example: If the operands of an operator don’t have the

appropriate types, they are converted as necessary.

Second example: If an arithmetic computation fails, you get an error

value, not an exception.

The reason for the silent failures is historical: JavaScript did not have

exceptions until ECMAScript 3. Since then, its designers have tried

to avoid silent failures.

> '3' * '5'

15

> 1 / 0

Infinity

4.3 Tips for getting started with

JavaScript

These are a few tips to help you get started with JavaScript:

Take your time to really get to know this language. The

conventional C-style syntax hides that this is a very

unconventional language. Learn especially the quirks and the

rationales behind them. Then you will understand and

appreciate the language better.

In addition to details, this book also teaches simple rules of

thumb to be safe – for example, “Always use === to

determine if two values are equal, never ==.”

Language tools make it easier to work with JavaScript. For

example:

You can statically type JavaScript via TypeScript or Flow.

You can check for problems and anti-patterns via linters

such as ESLint.

You can format your code automatically via code formatters

such as Prettier.

Get in contact with the community:

Twitter is popular among JavaScript programmers. As a

mode of communication that sits between the spoken and

the written word, it is well suited for exchanging knowledge.

Many cities have regular free meetups where people come

together to learn topics related to JavaScript.

https://www.typescriptlang.org/
https://flow.org/
https://eslint.org/
https://prettier.io/

JavaScript conferences are another convenient way of

meeting other JavaScript programmers.

Read books and blogs. Much material is free online!

5 History and evolution of

JavaScript

5.1 How JavaScript was created

5.2 Standardizing JavaScript

5.3 Timeline of ECMAScript versions

5.4 Ecma Technical Committee 39 (TC39)

5.5 The TC39 process

5.5.1 Tip: Think in individual features and stages, not

ECMAScript versions

5.6 FAQ: TC39 process

5.6.1 How is [my favorite proposed feature] doing?

5.6.2 Is there an official list of ECMAScript features?

5.7 Evolving JavaScript: Don’t break the web

5.1 How JavaScript was created

JavaScript was created in May 1995 in 10 days, by Brendan Eich.

Eich worked at Netscape and implemented JavaScript for their web

browser, Netscape Navigator.

The idea was that major interactive parts of the client-side web were

to be implemented in Java. JavaScript was supposed to be a glue

language for those parts and to also make HTML slightly more

interactive. Given its role of assisting Java, JavaScript had to look

like Java. That ruled out existing solutions such as Perl, Python, TCL,

and others.

Initially, JavaScript’s name changed several times:

Its code name was Mocha.

In the Netscape Navigator 2.0 betas (September 1995), it was

called LiveScript.

In Netscape Navigator 2.0 beta 3 (December 1995), it got its

final name, JavaScript.

5.2 Standardizing JavaScript

There are two standards for JavaScript:

ECMA-262 is hosted by Ecma International. It is the primary

standard.

ISO/IEC 16262 is hosted by the International Organization for

Standardization (ISO) and the International Electrotechnical

Commission (IEC). This is a secondary standard.

The language described by these standards is called ECMAScript, not

JavaScript. A different name was chosen because Sun (now Oracle)

had a trademark for the latter name. The “ECMA” in “ECMAScript”

comes from the organization that hosts the primary standard.

The original name of that organization was ECMA, an acronym for

European Computer Manufacturers Association. It was later

changed to Ecma International (with “Ecma” being a proper name,

not an acronym) because the organization’s activities had expanded

beyond Europe. The initial all-caps acronym explains the spelling of

ECMAScript.

In principle, JavaScript and ECMAScript mean the same thing.

Sometimes the following distinction is made:

The term JavaScript refers to the language and its

implementations.

The term ECMAScript refers to the language standard and

language versions.

Therefore, ECMAScript 6 is a version of the language (its 6th

edition).

5.3 Timeline of ECMAScript

versions

This is a brief timeline of ECMAScript versions:

ECMAScript 1 (June 1997): First version of the standard.

ECMAScript 2 (June 1998): Small update to keep ECMA-262 in

sync with the ISO standard.

ECMAScript 3 (December 1999): Adds many core features –

“[…] regular expressions, better string handling, new control

statements [do-while, switch], try/catch exception handling,

[…]”

ECMAScript 4 (abandoned in July 2008): Would have been a

massive upgrade (with static typing, modules, namespaces, and

more), but ended up being too ambitious and dividing the

language’s stewards.

ECMAScript 5 (December 2009): Brought minor improvements

– a few standard library features and strict mode.

ECMAScript 5.1 (June 2011): Another small update to keep

Ecma and ISO standards in sync.

ECMAScript 6 (June 2015): A large update that fulfilled many of

the promises of ECMAScript 4. This version is the first one

whose official name – ECMAScript 2015 – is based on the year

of publication.

ECMAScript 2016 (June 2016): First yearly release. The shorter

release life cycle resulted in fewer new features compared to the

large ES6.

ECMAScript 2017 (June 2017). Second yearly release.

Subsequent ECMAScript versions (ES2018, etc.) are always

ratified in June.

5.4 Ecma Technical Committee 39

(TC39)

TC39 is the committee that evolves JavaScript. Its member are,

strictly speaking, companies: Adobe, Apple, Facebook, Google,

Microsoft, Mozilla, Opera, Twitter, and others. That is, companies

that are usually fierce competitors are working together for the good

of the language.

Every two months, TC39 has meetings that member-appointed

delegates and invited experts attend. The minutes of those meetings

are public in a GitHub repository.

https://github.com/tc39/tc39-notes/

5.5 The TC39 process

With ECMAScript 6, two issues with the release process used at that

time became obvious:

If too much time passes between releases then features that are

ready early, have to wait a long time until they can be released.

And features that are ready late, risk being rushed to make the

deadline.

Features were often designed long before they were

implemented and used. Design deficiencies related to

implementation and use were therefore discovered too late.

In response to these issues, TC39 instituted the new TC39 process:

ECMAScript features are designed independently and go

through stages, starting at 0 (“strawman”), ending at 4

(“finished”).

Especially the later stages require prototype implementations

and real-world testing, leading to feedback loops between

designs and implementations.

ECMAScript versions are released once per year and include all

features that have reached stage 4 prior to a release deadline.

The result: smaller, incremental releases, whose features have

already been field-tested. Fig. 1 illustrates the TC39 process.

Stage 0: strawman

Stage 1: proposal

Stage 2: draft

Stage 3: candidate

Stage 4: finished

Pick champions

First spec text, 2 implementations

Spec complete

Test 262 acceptance tests

Review at TC39 meeting

TC39 helps

Likely to be standardized

Done, needs feedback from implementations

Ready for standardization

Sketch

Figure 1: Each ECMAScript feature proposal goes through stages that

are numbered from 0 to 4. Champions are TC39 members that

support the authors of a feature. Test 262 is a suite of tests that

checks JavaScript engines for compliance with the language

specification.

ES2016 was the first ECMAScript version that was designed

according to the TC39 process.

5.5.1 Tip: Think in individual features

and stages, not ECMAScript versions

Up to and including ES6, it was most common to think about

JavaScript in terms of ECMAScript versions – for example, “Does

this browser support ES6 yet?”

Starting with ES2016, it’s better to think in individual features: once

a feature reaches stage 4, you can safely use it (if it’s supported by the

JavaScript engines you are targeting). You don’t have to wait until

the next ECMAScript release.

5.6 FAQ: TC39 process

5.6.1 How is [my favorite proposed

feature] doing?

If you are wondering what stages various proposed features are in,

consult the GitHub repository proposals.

5.6.2 Is there an official list of

ECMAScript features?

Yes, the TC39 repo lists finished proposals and mentions in which

ECMAScript versions they were introduced.

https://github.com/tc39/proposals
https://github.com/tc39/proposals/blob/master/finished-proposals.md

5.7 Evolving JavaScript: Don’t

break the web

One idea that occasionally comes up is to clean up JavaScript by

removing old features and quirks. While the appeal of that idea is

obvious, it has significant downsides.

Let’s assume we create a new version of JavaScript that is not

backward compatible and fix all of its flaws. As a result, we’d

encounter the following problems:

JavaScript engines become bloated: they need to support both

the old and the new version. The same is true for tools such as

IDEs and build tools.

Programmers need to know, and be continually conscious of, the

differences between the versions.

You can either migrate all of an existing code base to the new

version (which can be a lot of work). Or you can mix versions

and refactoring becomes harder because you can’t move code

between versions without changing it.

You somehow have to specify per piece of code – be it a file or

code embedded in a web page – what version it is written in.

Every conceivable solution has pros and cons. For example,

strict mode is a slightly cleaner version of ES5. One of the

reasons why it wasn’t as popular as it should have been: it was a

hassle to opt in via a directive at the beginning of a file or a

function.

So what is the solution? Can we have our cake and eat it? The

approach that was chosen for ES6 is called “One JavaScript”:

New versions are always completely backward compatible (but

there may occasionally be minor, hardly noticeable clean-ups).

Old features aren’t removed or fixed. Instead, better versions of

them are introduced. One example is declaring variables via let

– which is an improved version of var.

If aspects of the language are changed, it is done inside new

syntactic constructs. That is, you opt in implicitly. For example,

yield is only a keyword inside generators (which were

introduced in ES6). And all code inside modules and classes

(both introduced in ES6) is implicitly in strict mode.

 Quiz

See quiz app.

6 FAQ: JavaScript

6.1 What are good references for JavaScript?

6.2 How do I find out what JavaScript features are supported

where?

6.3 Where can I look up what features are planned for

JavaScript?

6.4 Why does JavaScript fail silently so often?

6.5 Why can’t we clean up JavaScript, by removing quirks and

outdated features?

6.6 How can I quickly try out a piece of JavaScript code?

6.1 What are good references for

JavaScript?

Please consult §7.3 “JavaScript references”.

6.2 How do I find out what

JavaScript features are supported

where?

This book usually mentions if a feature is part of ECMAScript 5 (as

required by older browsers) or a newer version. For more detailed

information (including pre-ES5 versions), there are several good

compatibility tables available online:

ECMAScript compatibility tables for various engines (by kangax,

webbedspace, zloirock)

Node.js compatibility tables (by William Kapke)

Mozilla’s MDN web docs have tables for each feature that

describe relevant ECMAScript versions and browser support.

“Can I use…” documents what features (including JavaScript

language features) are supported by web browsers.

http://kangax.github.io/compat-table/es5/
https://twitter.com/kangax
https://twitter.com/webbedspace
https://twitter.com/zloirock
https://node.green/
https://twitter.com/williamkapke
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://caniuse.com/

6.3 Where can I look up what

features are planned for

JavaScript?

Please consult the following sources:

§5.5 “The TC39 process” describes how upcoming features are

planned.

§5.6 “FAQ: TC39 process” answers various questions regarding

upcoming features.

6.4 Why does JavaScript fail

silently so often?

JavaScript often fails silently. Let’s look at two examples.

First example: If the operands of an operator don’t have the

appropriate types, they are converted as necessary.

Second example: If an arithmetic computation fails, you get an error

value, not an exception.

The reason for the silent failures is historical: JavaScript did not have

exceptions until ECMAScript 3. Since then, its designers have tried

to avoid silent failures.

> '3' * '5'

15

> 1 / 0

Infinity

6.5 Why can’t we clean up

JavaScript, by removing quirks and

outdated features?

This question is answered in §5.7 “Evolving JavaScript: Don’t break

the web”.

6.6 How can I quickly try out a

piece of JavaScript code?

§9.1 “Trying out JavaScript code” explains how to do that.

7 The big picture

7.1 What are you learning in this book?

7.2 The structure of browsers and Node.js

7.3 JavaScript references

7.4 Further reading

In this chapter, I’d like to paint the big picture: what are you learning

in this book, and how does it fit into the overall landscape of web

development?

7.1 What are you learning in this

book?

This book teaches the JavaScript language. It focuses on just the

language, but offers occasional glimpses at two platforms where

JavaScript can be used:

Web browser

Node.js

Node.js is important for web development in three ways:

You can use it to write server-side software in JavaScript.

You can also use it to write software for the command line (think

Unix shell, Windows PowerShell, etc.). Many JavaScript-related

tools are based on (and executed via) Node.js.

Node’s software registry, npm, has become the dominant way of

installing tools (such as compilers and build tools) and libraries

– even for client-side development.

7.2 The structure of browsers and

Node.js

JavaScript engine Platform core

JS standard
library Platform API

Figure 2: The structure of the two JavaScript platforms web browser

and Node.js. The APIs “standard library” and “platform API” are

hosted on top of a foundational layer with a JavaScript engine and a

platform-specific “core”.

The structures of the two JavaScript platforms web browser and

Node.js are similar (fig. 2):

The foundational layer consists of the JavaScript engine and

platform-specific “core” functionality.

Two APIs are hosted on top of this foundation:

The JavaScript standard library is part of JavaScript proper

and runs on top of the engine.

The platform API are also available from JavaScript – it

provides access to platform-specific functionality. For

example:

In browsers, you need to use the platform-specific API

if you want to do anything related to the user interface:

react to mouse clicks, play sounds, etc.

In Node.js, the platform-specific API lets you read and

write files, download data via HTTP, etc.

7.3 JavaScript references

When you have a question about a JavaScript, a web search usually

helps. I can recommend the following online sources:

MDN web docs: cover various web technologies such as CSS,

HTML, JavaScript, and more. An excellent reference.

Node.js Docs: document the Node.js API.

ExploringJS.com: My other books on JavaScript go into greater

detail than this book and are free to read online. You can look up

features by ECMAScript version:

ES1–ES5: Speaking JavaScript

ES6: Exploring ES6

ES2016–ES2017: Exploring ES2016 and ES2017

Etc.

https://developer.mozilla.org/en-US/
https://nodejs.org/en/docs/
https://exploringjs.com/
http://speakingjs.com/
https://exploringjs.com/es6.html
https://exploringjs.com/es2016-es2017.html

7.4 Further reading

§46 “Next steps: overview of web development” provides a more

comprehensive look at web development.

8 Syntax

8.1 An overview of JavaScript’s syntax

8.1.1 Basic syntax

8.1.2 Modules

8.1.3 Legal variable and property names

8.1.4 Casing styles

8.1.5 Capitalization of names

8.1.6 More naming conventions

8.1.7 Where to put semicolons?

8.2 (Advanced)

8.3 Identifiers

8.3.1 Valid identifiers (variable names, etc.)

8.3.2 Reserved words

8.4 Statement vs. expression

8.4.1 Statements

8.4.2 Expressions

8.4.3 What is allowed where?

8.5 Ambiguous syntax

8.5.1 Same syntax: function declaration and function

expression

8.5.2 Same syntax: object literal and block

8.5.3 Disambiguation

8.6 Semicolons

8.6.1 Rule of thumb for semicolons

8.6.2 Semicolons: control statements

8.7 Automatic semicolon insertion (ASI)

8.7.1 ASI triggered unexpectedly

8.7.2 ASI unexpectedly not triggered

8.8 Semicolons: best practices

8.9 Strict mode vs. sloppy mode

8.9.1 Switching on strict mode

8.9.2 Improvements in strict mode

8.1 An overview of JavaScript’s

syntax

8.1.1 Basic syntax

Comments:

Primitive (atomic) values:

An assertion describes what the result of a computation is expected

to look like and throws an exception if those expectations aren’t

correct. For example, the following assertion states that the result of

the computation 7 plus 1 must be 8:

// single-line comment

/*

Comment with

multiple lines

*/

// Booleans

true

false

// Numbers (JavaScript only has a single type for numbers)

-123

1.141

// Strings (JavaScript has no type for characters)

'abc'

"abc"

assert.equal(7 + 1, 8);

assert.equal() is a method call (the object is assert, the method is

.equal()) with two arguments: the actual result and the expected

result. It is part of a Node.js assertion API that is explained later in

this book.

Logging to the console of a browser or Node.js:

Operators:

Declaring variables:

// Printing a value to standard out (another method call)

console.log('Hello!');

// Printing error information to standard error

console.error('Something went wrong!');

// Operators for booleans

assert.equal(true && false, false); // And

assert.equal(true || false, true); // Or

// Operators for numbers

assert.equal(3 + 4, 7);

assert.equal(5 - 1, 4);

assert.equal(3 * 4, 12);

assert.equal(9 / 3, 3);

// Operators for strings

assert.equal('a' + 'b', 'ab');

assert.equal('I see ' + 3 + ' monkeys', 'I see 3 monkeys');

// Comparison operators

assert.equal(3 < 4, true);

assert.equal(3 <= 4, true);

assert.equal('abc' === 'abc', true);

assert.equal('abc' !== 'def', true);

Control flow statements:

Ordinary function declarations:

Arrow function expressions (used especially as arguments of

function calls and method calls):

The previous code contains the following two arrow functions (the

terms expression and statement are explained later in this chapter):

let x; // declaring x (mutable)

x = 3 * 5; // assign a value to x

let y = 3 * 5; // declaring and assigning

const z = 8; // declaring z (immutable)

// Conditional statement

if (x < 0) { // is x less than zero?

 x = -x;

}

// add1() has the parameters a and b

function add1(a, b) {

 return a + b;

}

// Calling function add1()

assert.equal(add1(5, 2), 7);

const add2 = (a, b) => { return a + b };

// Calling function add2()

assert.equal(add2(5, 2), 7);

// Equivalent to add2:

const add3 = (a, b) => a + b;

// An arrow function whose body is a code block

(a, b) => { return a + b }

Objects:

Arrays (Arrays are also objects):

8.1.2 Modules

Each module is a single file. Consider, for example, the following two

files with modules in them:

// An arrow function whose body is an expression

(a, b) => a + b

// Creating a plain object via an object literal

const obj = {

 first: 'Jane', // property

 last: 'Doe', // property

 getFullName() { // property (method)

 return this.first + ' ' + this.last;

 },

};

// Getting a property value

assert.equal(obj.first, 'Jane');

// Setting a property value

obj.first = 'Janey';

// Calling the method

assert.equal(obj.getFullName(), 'Janey Doe');

// Creating an Array via an Array literal

const arr = ['a', 'b', 'c'];

// Getting an Array element

assert.equal(arr[1], 'b');

// Setting an Array element

arr[1] = 'β';

file-tools.mjs

main.mjs

The module in file-tools.mjs exports its function isTextFilePath():

The module in main.mjs imports the whole module path and the

function isTextFilePath():

8.1.3 Legal variable and property names

The grammatical category of variable names and property names is

called identifier.

Identifiers are allowed to have the following characters:

Unicode letters: A–Z, a–z (etc.)

$, _

Unicode digits: 0–9 (etc.)

Variable names can’t start with a digit

Some words have special meaning in JavaScript and are called

reserved. Examples include: if, true, const.

Reserved words can’t be used as variable names:

export function isTextFilePath(filePath) {

 return filePath.endsWith('.txt');

}

// Import whole module as namespace object `path`

import * as path from 'path';

// Import a single export of module file-tools.mjs

import {isTextFilePath} from './file-tools.mjs';

But they are allowed as names of properties:

8.1.4 Casing styles

Common casing styles for concatenating words are:

Camel case: threeConcatenatedWords

Underscore case (also called snake case):

three_concatenated_words

Dash case (also called kebab case): three-concatenated-words

8.1.5 Capitalization of names

In general, JavaScript uses camel case, except for constants.

Lowercase:

Functions, variables: myFunction

Methods: obj.myMethod

CSS:

CSS entity: special-class

Corresponding JavaScript variable: specialClass

Uppercase:

const if = 123;

 // SyntaxError: Unexpected token if

> const obj = { if: 123 };

> obj.if

123

Classes: MyClass

Constants: MY_CONSTANT

Constants are also often written in camel case: myConstant

8.1.6 More naming conventions

The following naming conventions are popular in JavaScript.

If the name of a parameter starts with an underscore (or is an

underscore) it means that this parameter is not used – for example:

If the name of a property of an object starts with an underscore then

that property is considered private:

8.1.7 Where to put semicolons?

At the end of a statement:

But not if that statement ends with a curly brace:

arr.map((_x, i) => i)

class ValueWrapper {

 constructor(value) {

 this._value = value;

 }

}

const x = 123;

func();

while (false) {

 // ···

} // no semicolon

However, adding a semicolon after such a statement is not a syntax

error – it is interpreted as an empty statement:

 Quiz: basic

See quiz app.

function func() {

 // ···

} // no semicolon

// Function declaration followed by empty statement:

function func() {

 // ···

};

8.2 (Advanced)

All remaining sections of this chapter are advanced.

8.3 Identifiers

8.3.1 Valid identifiers (variable names,

etc.)

First character:

Unicode letter (including accented characters such as é and ü

and characters from non-latin alphabets, such as α)

$

_

Subsequent characters:

Legal first characters

Unicode digits (including Eastern Arabic numerals)

Some other Unicode marks and punctuations

Examples:

8.3.2 Reserved words

Reserved words can’t be variable names, but they can be property

names.

const ε = 0.0001;

const строка = '';

let _tmp = 0;

const $foo2 = true;

All JavaScript keywords are reserved words:

await break case catch class const continue debugger default

delete do else export extends finally for function if import in

instanceof let new return static super switch this throw try

typeof var void while with yield

The following tokens are also keywords, but currently not used in the

language:

enum implements package protected interface private public

The following literals are reserved words:

true false null

Technically, these words are not reserved, but you should avoid

them, too, because they effectively are keywords:

Infinity NaN undefined async

You shouldn’t use the names of global variables (String, Math, etc.)

for your own variables and parameters, either.

8.4 Statement vs. expression

In this section, we explore how JavaScript distinguishes two kinds of

syntactic constructs: statements and expressions. Afterward, we’ll

see that that can cause problems because the same syntax can mean

different things, depending on where it is used.

 We pretend there are only statements and

expressions

For the sake of simplicity, we pretend that there are only

statements and expressions in JavaScript.

8.4.1 Statements

A statement is a piece of code that can be executed and performs

some kind of action. For example, if is a statement:

One more example of a statement: a function declaration.

8.4.2 Expressions

let myStr;

if (myBool) {

 myStr = 'Yes';

} else {

 myStr = 'No';

}

function twice(x) {

 return x + x;

}

An expression is a piece of code that can be evaluated to produce a

value. For example, the code between the parentheses is an

expression:

The operator _?_:_ used between the parentheses is called the

ternary operator. It is the expression version of the if statement.

Let’s look at more examples of expressions. We enter expressions

and the REPL evaluates them for us:

8.4.3 What is allowed where?

The current location within JavaScript source code determines which

kind of syntactic constructs you are allowed to use:

The body of a function must be a sequence of statements:

let myStr = (myBool ? 'Yes' : 'No');

> 'ab' + 'cd'

'abcd'

> Number('123')

123

> true || false

true

function max(x, y) {

 if (x > y) {

 return x;

 } else {

 return y;

 }

}

The arguments of a function call or a method call must be

expressions:

However, expressions can be used as statements. Then they are

called expression statements. The opposite is not true: when the

context requires an expression, you can’t use a statement.

The following code demonstrates that any expression bar() can be

either expression or statement – it depends on the context:

console.log('ab' + 'cd', Number('123'));

function f() {

 console.log(bar()); // bar() is expression

 bar(); // bar(); is (expression) statement

}

8.5 Ambiguous syntax

JavaScript has several programming constructs that are syntactically

ambiguous: the same syntax is interpreted differently, depending on

whether it is used in statement context or in expression context. This

section explores the phenomenon and the pitfalls it causes.

8.5.1 Same syntax: function declaration

and function expression

A function declaration is a statement:

A function expression is an expression (right-hand side of =):

8.5.2 Same syntax: object literal and

block

In the following code, {} is an object literal: an expression that

creates an empty object.

This is an empty code block (a statement):

function id(x) {

 return x;

}

const id = function me(x) {

 return x;

};

const obj = {};

8.5.3 Disambiguation

The ambiguities are only a problem in statement context: If the

JavaScript parser encounters ambiguous syntax, it doesn’t know if

it’s a plain statement or an expression statement. For example:

If a statement starts with function: Is it a function declaration or

a function expression?

If a statement starts with {: Is it an object literal or a code block?

To resolve the ambiguity, statements starting with function or { are

never interpreted as expressions. If you want an expression

statement to start with either one of these tokens, you must wrap it

in parentheses:

In this code:

1. We first create a function via a function expression:

2. Then we invoke that function: ('abc')

The code fragment shown in (1) is only interpreted as an expression

because we wrap it in parentheses. If we didn’t, we would get a

{

}

(function (x) { console.log(x) })('abc');

// Output:

// 'abc'

function (x) { console.log(x) }

syntax error because then JavaScript expects a function declaration

and complains about the missing function name. Additionally, you

can’t put a function call immediately after a function declaration.

Later in this book, we’ll see more examples of pitfalls caused by

syntactic ambiguity:

Assigning via object destructuring

Returning an object literal from an arrow function

8.6 Semicolons

8.6.1 Rule of thumb for semicolons

Each statement is terminated by a semicolon:

except statements ending with blocks:

The following case is slightly tricky:

The whole const declaration (a statement) ends with a semicolon,

but inside it, there is an arrow function expression. That is, it’s not

the statement per se that ends with a curly brace; it’s the embedded

arrow function expression. That’s why there is a semicolon at the

end.

8.6.2 Semicolons: control statements

const x = 3;

someFunction('abc');

i++;

function foo() {

 // ···

}

if (y > 0) {

 // ···

}

const func = () => {}; // semicolon!

The body of a control statement is itself a statement. For example,

this is the syntax of the while loop:

The body can be a single statement:

But blocks are also statements and therefore legal bodies of control

statements:

If you want a loop to have an empty body, your first option is an

empty statement (which is just a semicolon):

Your second option is an empty block:

while (condition)

 statement

while (a > 0) a--;

while (a > 0) {

 a--;

}

while (processNextItem() > 0);

while (processNextItem() > 0) {}

8.7 Automatic semicolon insertion

(ASI)

While I recommend to always write semicolons, most of them are

optional in JavaScript. The mechanism that makes this possible is

called automatic semicolon insertion (ASI). In a way, it corrects

syntax errors.

ASI works as follows. Parsing of a statement continues until there is

either:

A semicolon

A line terminator followed by an illegal token

In other words, ASI can be seen as inserting semicolons at line

breaks. The next subsections cover the pitfalls of ASI.

8.7.1 ASI triggered unexpectedly

The good news about ASI is that – if you don’t rely on it and always

write semicolons – there is only one pitfall that you need to be aware

of. It is that JavaScript forbids line breaks after some tokens. If you

do insert a line break, a semicolon will be inserted, too.

The token where this is most practically relevant is return. Consider,

for example, the following code:

return

{

This code is parsed as:

That is:

Return statement without operand: return;

Start of code block: {

Expression statement 'jane'; with label first:

End of code block: }

Empty statement: ;

Why does JavaScript do this? It protects against accidentally

returning a value in a line after a return.

8.7.2 ASI unexpectedly not triggered

In some cases, ASI is not triggered when you think it should be. That

makes life more complicated for people who don’t like semicolons

because they need to be aware of those cases. The following are three

examples. There are more.

Example 1: Unintended function call.

 first: 'jane'

};

return;

{

 first: 'jane';

}

;

a = b + c

(d + e).print()

Parsed as:

Example 2: Unintended division.

Parsed as:

Example 3: Unintended property access.

Executed as:

a = b + c(d + e).print();

a = b

/hi/g.exec(c).map(d)

a = b / hi / g.exec(c).map(d);

someFunction()

['ul', 'ol'].map(x => x + x)

const propKey = ('ul','ol'); // comma operator

assert.equal(propKey, 'ol');

someFunction()[propKey].map(x => x + x);

8.8 Semicolons: best practices

I recommend that you always write semicolons:

I like the visual structure it gives code – you clearly see when a

statement ends.

There are less rules to keep in mind.

The majority of JavaScript programmers use semicolons.

However, there are also many people who don’t like the added visual

clutter of semicolons. If you are one of them: Code without them is

legal. I recommend that you use tools to help you avoid mistakes.

The following are two examples:

The automatic code formatter Prettier can be configured to not

use semicolons. It then automatically fixes problems. For

example, if it encounters a line that starts with a square bracket,

it prefixes that line with a semicolon.

The static checker ESLint has a rule that you tell your preferred

style (always semicolons or as few semicolons as possible) and

that warns you about critical issues.

https://prettier.io/
https://eslint.org/
https://eslint.org/docs/rules/semi

8.9 Strict mode vs. sloppy mode

Starting with ECMAScript 5, JavaScript has two modes in which

JavaScript can be executed:

Normal “sloppy” mode is the default in scripts (code fragments

that are a precursor to modules and supported by browsers).

Strict mode is the default in modules and classes, and can be

switched on in scripts (how, is explained later). In this mode,

several pitfalls of normal mode are removed and more

exceptions are thrown.

You’ll rarely encounter sloppy mode in modern JavaScript code,

which is almost always located in modules. In this book, I assume

that strict mode is always switched on.

8.9.1 Switching on strict mode

In script files and CommonJS modules, you switch on strict mode for

a complete file, by putting the following code in the first line:

The neat thing about this “directive” is that ECMAScript versions

before 5 simply ignore it: it’s an expression statement that does

nothing.

You can also switch on strict mode for just a single function:

'use strict';

8.9.2 Improvements in strict mode

Let’s look at three things that strict mode does better than sloppy

mode. Just in this one section, all code fragments are executed in

sloppy mode.

8.9.2.1 Sloppy mode pitfall: changing an undeclared

variable creates a global variable

In non-strict mode, changing an undeclared variable creates a global

variable.

Strict mode does it better and throws a ReferenceError. That makes

it easier to detect typos.

function functionInStrictMode() {

 'use strict';

}

function sloppyFunc() {

 undeclaredVar1 = 123;

}

sloppyFunc();

// Created global variable `undeclaredVar1`:

assert.equal(undeclaredVar1, 123);

function strictFunc() {

 'use strict';

 undeclaredVar2 = 123;

}

assert.throws(

 () => strictFunc(),

 {

 name: 'ReferenceError',

 message: 'undeclaredVar2 is not defined',

 });

The assert.throws() states that its first argument, a function, throws

a ReferenceError when it is called.

8.9.2.2 Function declarations are block-scoped in strict

mode, function-scoped in sloppy mode

In strict mode, a variable created via a function declaration only

exists within the innermost enclosing block:

In sloppy mode, function declarations are function-scoped:

8.9.2.3 Sloppy mode doesn’t throw exceptions when

changing immutable data

function strictFunc() {

 'use strict';

 {

 function foo() { return 123 }

 }

 return foo(); // ReferenceError

}

assert.throws(

 () => strictFunc(),

 {

 name: 'ReferenceError',

 message: 'foo is not defined',

 });

function sloppyFunc() {

 {

 function foo() { return 123 }

 }

 return foo(); // works

}

assert.equal(sloppyFunc(), 123);

In strict mode, you get an exception if you try to change immutable

data:

In sloppy mode, the assignment fails silently:

 Further reading: sloppy mode

For more information on how sloppy mode differs from strict

mode, see MDN.

 Quiz: advanced

See quiz app.

function strictFunc() {

 'use strict';

 true.prop = 1; // TypeError

}

assert.throws(

 () => strictFunc(),

 {

 name: 'TypeError',

 message: "Cannot create property 'prop' on boolean 'true'",

 });

function sloppyFunc() {

 true.prop = 1; // fails silently

 return true.prop;

}

assert.equal(sloppyFunc(), undefined);

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Strict_mode

9 Consoles: interactive

JavaScript command lines

9.1 Trying out JavaScript code

9.1.1 Browser consoles

9.1.2 The Node.js REPL

9.1.3 Other options

9.2 The console.* API: printing data and more

9.2.1 Printing values: console.log() (stdout)

9.2.2 Printing error information: console.error() (stderr)

9.2.3 Printing nested objects via JSON.stringify()

9.1 Trying out JavaScript code

You have many options for quickly running pieces of JavaScript

code. The following subsections describe a few of them.

9.1.1 Browser consoles

Web browsers have so-called consoles: interactive command lines to

which you can print text via console.log() and where you can run

pieces of code. How to open the console differs from browser to

browser. Fig. 3 shows the console of Google Chrome.

To find out how to open the console in your web browser, you can do

a web search for “console «name-of-your-browser»”. These are pages

for a few commonly used web browsers:

Apple Safari

Google Chrome

Microsoft Edge

Mozilla Firefox

https://developer.apple.com/safari/tools/
https://developers.google.com/web/tools/chrome-devtools/console/
https://docs.microsoft.com/en-us/microsoft-edge/devtools-guide/console
https://developer.mozilla.org/en-US/docs/Tools/Web_Console/Opening_the_Web_Console

Figure 3: The console of the web browser “Google Chrome” is open

(in the bottom half of window) while visiting a web page.

9.1.2 The Node.js REPL

REPL stands for read-eval-print loop and basically means command

line. To use it, you must first start Node.js from an operating system

command line, via the command node. Then an interaction with it

looks as depicted in fig. 4: The text after > is input from the user;

everything else is output from Node.js.

Figure 4: Starting and using the Node.js REPL (interactive command

line).

 Reading: REPL interactions

I occasionally demonstrate JavaScript via REPL interactions. Then

I also use greater-than symbols (>) to mark input – for example:

9.1.3 Other options

Other options include:

There are many web apps that let you experiment with

JavaScript in web browsers – for example, Babel’s REPL.

There are also native apps and IDE plugins for running

JavaScript.

 Consoles often run in non-strict mode

In modern JavaScript, most code (e.g., modules) is executed in

strict mode. However, consoles often run in non-strict mode.

Therefore, you may occasionally get slightly different results when

using a console to execute code from this book.

> 3 + 5

8

https://babeljs.io/repl

9.2 The console.* API: printing data

and more

In browsers, the console is something you can bring up that is

normally hidden. For Node.js, the console is the terminal that

Node.js is currently running in.

The full console.* API is documented on MDN web docs and on the

Node.js website. It is not part of the JavaScript language standard,

but much functionality is supported by both browsers and Node.js.

In this chapter, we only look at the following two methods for

printing data (“printing” means displaying in the console):

console.log()

console.error()

9.2.1 Printing values: console.log()

(stdout)

There are two variants of this operation:

9.2.1.1 Printing multiple values

The first variant prints (text representations of) values on the

console:

console.log(...values: any[]): void

console.log(pattern: string, ...values: any[]): void

https://developer.mozilla.org/en-US/docs/Web/API/console
https://nodejs.org/api/console.html

At the end, console.log() always prints a newline. Therefore, if you

call it with zero arguments, it just prints a newline.

9.2.1.2 Printing a string with substitutions

The second variant performs string substitution:

These are some of the directives you can use for substitutions:

%s converts the corresponding value to a string and inserts it.

%o inserts a string representation of an object.

%j converts a value to a JSON string and inserts it.

%% inserts a single %.

console.log('abc', 123, true);

// Output:

// abc 123 true

console.log('Test: %s %j', 123, 'abc');

// Output:

// Test: 123 "abc"

console.log('%s %s', 'abc', 123);

// Output:

// abc 123

console.log('%o', {foo: 123, bar: 'abc'});

// Output:

// { foo: 123, bar: 'abc' }

console.log('%j', {foo: 123, bar: 'abc'});

// Output:

// {"foo":123,"bar":"abc"}

9.2.2 Printing error information:

console.error() (stderr)

console.error() works the same as console.log(), but what it logs is

considered error information. For Node.js, that means that the

output goes to stderr instead of stdout on Unix.

9.2.3 Printing nested objects via

JSON.stringify()

JSON.stringify() is occasionally useful for printing nested objects:

Output:

{

 "first": "Jane",

 "last": "Doe"

}

console.log('%s%%', 99);

// Output:

// 99%

console.log(JSON.stringify({first: 'Jane', last: 'Doe'}, null, 2

10 Assertion API

10.1 Assertions in software development

10.2 How assertions are used in this book

10.2.1 Documenting results in code examples via assertions

10.2.2 Implementing test-driven exercises via assertions

10.3 Normal comparison vs. deep comparison

10.4 Quick reference: module assert

10.4.1 Normal equality

10.4.2 Deep equality

10.4.3 Expecting exceptions

10.4.4 Another tool function

10.1 Assertions in software

development

In software development, assertions state facts about values or

pieces of code that must be true. If they aren’t, an exception is

thrown. Node.js supports assertions via its built-in module assert –

for example:

This assertion states that the expected result of 3 plus 5 is 8. The

import statement uses the recommended strict version of assert.

import {strict as assert} from 'assert';

assert.equal(3 + 5, 8);

https://nodejs.org/api/assert.html#assert_strict_mode

10.2 How assertions are used in

this book

In this book, assertions are used in two ways: to document results in

code examples and to implement test-driven exercises.

10.2.1 Documenting results in code

examples via assertions

In code examples, assertions express expected results. Take, for

example, the following function:

id() returns its parameter. We can show it in action via an assertion:

In the examples, I usually omit the statement for importing assert.

The motivation behind using assertions is:

You can specify precisely what is expected.

Code examples can be tested automatically, which ensures that

they really work.

10.2.2 Implementing test-driven

exercises via assertions

function id(x) {

 return x;

}

assert.equal(id('abc'), 'abc');

The exercises for this book are test-driven, via the test framework

AVA. Checks inside the tests are made via methods of assert.

The following is an example of such a test:

For more information, consult §11 “Getting started with quizzes and

exercises”.

// For the exercise, you must implement the function hello().

// The test checks if you have done it properly.

test('First exercise', t => {

 assert.equal(hello('world'), 'Hello world!');

 assert.equal(hello('Jane'), 'Hello Jane!');

 assert.equal(hello('John'), 'Hello John!');

 assert.equal(hello(''), 'Hello !');

});

10.3 Normal comparison vs. deep

comparison

The strict equal() uses === to compare values. Therefore, an object is

only equal to itself – even if another object has the same content

(because === does not compare the contents of objects, only their

identities):

deepEqual() is a better choice for comparing objects:

This method works for Arrays, too:

assert.notEqual({foo: 1}, {foo: 1});

assert.deepEqual({foo: 1}, {foo: 1});

assert.notEqual(['a', 'b', 'c'], ['a', 'b', 'c']);

assert.deepEqual(['a', 'b', 'c'], ['a', 'b', 'c']);

10.4 Quick reference: module

assert

For the full documentation, see the Node.js docs.

10.4.1 Normal equality

function equal(actual: any, expected: any, message?:

string): void

actual === expected must be true. If not, an AssertionError is

thrown.

function notEqual(actual: any, expected: any, message?:

string): void

actual !== expected must be true. If not, an AssertionError is

thrown.

The optional last parameter message can be used to explain what is

asserted. If the assertion fails, the message is used to set up the

AssertionError that is thrown.

assert.equal(3+3, 6);

assert.notEqual(3+3, 22);

let e;

try {

 const x = 3;

 assert.equal(x, 8, 'x must be equal to 8')

} catch (err) {

 assert.equal(

https://nodejs.org/api/assert.html

10.4.2 Deep equality

function deepEqual(actual: any, expected: any, message?:

string): void

actual must be deeply equal to expected. If not, an

AssertionError is thrown.

function notDeepEqual(actual: any, expected: any, message?:

string): void

actual must not be deeply equal to expected. If it is, an

AssertionError is thrown.

10.4.3 Expecting exceptions

If you want to (or expect to) receive an exception, you need throws():

This function calls its first parameter, the function block, and only

succeeds if it throws an exception. Additional parameters can be

used to specify what that exception must look like.

function throws(block: Function, message?: string): void

 String(err),

 'AssertionError [ERR_ASSERTION]: x must be equal to 8');

}

assert.deepEqual([1,2,3], [1,2,3]);

assert.deepEqual([], []);

// To .equal(), an object is only equal to itself:

assert.notEqual([], []);

assert.notDeepEqual([1,2,3], [1,2]);

function throws(block: Function, error: Function, message?:

string): void

function throws(block: Function, error: RegExp, message?:

string): void

function throws(block: Function, error: Object, message?:

string): void

10.4.4 Another tool function

assert.throws(

 () => {

 null.prop;

 }

);

assert.throws(

 () => {

 null.prop;

 },

 TypeError

);

assert.throws(

 () => {

 null.prop;

 },

 /^TypeError: Cannot read property 'prop' of null$/

);

assert.throws(

 () => {

 null.prop;

 },

 {

 name: 'TypeError',

 message: `Cannot read property 'prop' of null`,

 }

);

function fail(message: string | Error): never

Always throws an AssertionError when it is called. That is

occasionally useful for unit testing.

 Quiz

See quiz app.

try {

 functionThatShouldThrow();

 assert.fail();

} catch (_) {

 // Success

}

11 Getting started with

quizzes and exercises

11.1 Quizzes

11.2 Exercises

11.2.1 Installing the exercises

11.2.2 Running exercises

11.3 Unit tests in JavaScript

11.3.1 A typical test

11.3.2 Asynchronous tests in AVA

Throughout most chapters, there are quizzes and exercises. These

are a paid feature, but a comprehensive preview is available. This

chapter explains how to get started with them.

11.1 Quizzes

Installation:

Download and unzip impatient-js-quiz.zip

Running the quiz app:

Open impatient-js-quiz/index.html in a web browser

You’ll see a TOC of all the quizzes.

11.2 Exercises

11.2.1 Installing the exercises

To install the exercises:

Download and unzip impatient-js-code.zip

Follow the instructions in README.txt

11.2.2 Running exercises

Exercises are referred to by path in this book.

For example: exercises/quizzes-

exercises/first_module_test.mjs

Within each file:

The first line contains the command for running the

exercise.

The following lines describe what you have to do.

11.3 Unit tests in JavaScript

All exercises in this book are tests that are run via the test framework

AVA. This section gives a brief introduction.

11.3.1 A typical test

Typical test code is split into two parts:

Part 1: the code to be tested.

Part 2: the tests for the code.

Take, for example, the following two files:

id.mjs (code to be tested)

id_test.mjs (tests)

11.3.1.1 Part 1: the code

The code itself resides in id.mjs:

The key thing here is: everything you want to test must be exported.

Otherwise, the test code can’t access it.

11.3.1.2 Part 2: the tests

export function id(x) {

 return x;

}

https://github.com/avajs/ava

 Don’t worry about the exact details of tests

You don’t need to worry about the exact details of tests: They are

always implemented for you. Therefore, you only need to read

them, but not write them.

The tests for the code reside in id_test.mjs:

The core of this test file is line E – an assertion: assert.equal()

specifies that the expected result of id('abc') is 'abc'.

As for the other lines:

The comment at the very beginning shows the shell command

for running the test.

Line A: We import the test framework.

Line B: We import the assertion library. AVA has built-in

assertions, but module assert lets us remain compatible with

plain Node.js.

Line C: We import the function to test.

Line D: We define a test. This is done by calling the function

test():

First parameter: the name of the test.

// npm t demos/quizzes-exercises/id_test.mjs

import test from 'ava'; // (A)

import {strict as assert} from 'assert'; // (B)

import {id} from './id.mjs'; // (C)

test('My test', t => { // (D)

 assert.equal(id('abc'), 'abc'); // (E)

});

Second parameter: the test code, which is provided via an

arrow function. The parameter t gives us access to AVA’s

testing API (assertions, etc.).

To run the test, we execute the following in a command line:

npm t demos/quizzes-exercises/id_test.mjs

The t is an abbreviation for test. That is, the long version of this

command is:

npm test demos/quizzes-exercises/id_test.mjs

 Exercise: Your first exercise

The following exercise gives you a first taste of what exercises are

like:

exercises/quizzes-exercises/first_module_test.mjs

11.3.2 Asynchronous tests in AVA

 Reading

You can postpone reading this section until you get to the chapters

on asynchronous programming.

Writing tests for asynchronous code requires extra work: The test

receives its results later and has to signal to AVA that it isn’t finished

yet when it returns. The following subsections examine three ways of

doing so.

11.3.2.1 Asynchronicity via callbacks

If we call test.cb() instead of test(), AVA switches to callback-

based asynchronicity. When we are done with our asynchronous

work, we have to call t.end():

11.3.2.2 Asynchronicity via Promises

If a test returns a Promise, AVA switches to Promise-based

asynchronicity. A test is considered successful if the Promise is

fulfilled and failed if the Promise is rejected.

11.3.2.3 Async functions as test “bodies”

Async functions always return Promises. Therefore, an async

function is a convenient way of implementing an asynchronous test.

The following code is equivalent to the previous example.

test.cb('divideCallback', t => {

 divideCallback(8, 4, (error, result) => {

 if (error) {

 t.end(error);

 } else {

 assert.strictEqual(result, 2);

 t.end();

 }

 });

});

test('dividePromise 1', t => {

 return dividePromise(8, 4)

 .then(result => {

 assert.strictEqual(result, 2);

 });

});

You don’t need to explicitly return anything: The implicitly returned

undefined is used to fulfill the Promise returned by this async

function. And if the test code throws an exception, then the async

function takes care of rejecting the returned Promise.

test('dividePromise 2', async t => {

 const result = await dividePromise(8, 4);

 assert.strictEqual(result, 2);

 // No explicit return necessary!

});

12 Variables and assignment

12.1 let

12.2 const

12.2.1 const and immutability

12.2.2 const and loops

12.3 Deciding between const and let

12.4 The scope of a variable

12.4.1 Shadowing variables

12.5 (Advanced)

12.6 Terminology: static vs. dynamic

12.6.1 Static phenomenon: scopes of variables

12.6.2 Dynamic phenomenon: function calls

12.7 Global variables and the global object

12.7.1 globalThis

12.8 Declarations: scope and activation

12.8.1 const and let: temporal dead zone

12.8.2 Function declarations and early activation

12.8.3 Class declarations are not activated early

12.8.4 var: hoisting (partial early activation)

12.9 Closures

12.9.1 Bound variables vs. free variables

12.9.2 What is a closure?

12.9.3 Example: A factory for incrementors

12.9.4 Use cases for closures

12.10 Further reading

These are JavaScript’s main ways of declaring variables:

let declares mutable variables.

const declares constants (immutable variables).

Before ES6, there was also var. But it has several quirks, so it’s best

to avoid it in modern JavaScript. You can read more about it in

Speaking JavaScript.

http://speakingjs.com/es5/ch16.html

12.1 let

Variables declared via let are mutable:

You can also declare and assign at the same time:

let i;

i = 0;

i = i + 1;

assert.equal(i, 1);

let i = 0;

12.2 const

Variables declared via const are immutable. You must always

initialize immediately:

12.2.1 const and immutability

In JavaScript, const only means that the binding (the association

between variable name and variable value) is immutable. The value

itself may be mutable, like obj in the following example.

const i = 0; // must initialize

assert.throws(

 () => { i = i + 1 },

 {

 name: 'TypeError',

 message: 'Assignment to constant variable.',

 }

);

const obj = { prop: 0 };

// Allowed: changing properties of `obj`

obj.prop = obj.prop + 1;

assert.equal(obj.prop, 1);

// Not allowed: assigning to `obj`

assert.throws(

 () => { obj = {} },

 {

 name: 'TypeError',

 message: 'Assignment to constant variable.',

 }

);

12.2.2 const and loops

You can use const with for-of loops, where a fresh binding is created

for each iteration:

In plain for loops, you must use let, however:

const arr = ['hello', 'world'];

for (const elem of arr) {

 console.log(elem);

}

// Output:

// 'hello'

// 'world'

const arr = ['hello', 'world'];

for (let i=0; i<arr.length; i++) {

 const elem = arr[i];

 console.log(elem);

}

12.3 Deciding between const and let

I recommend the following rules to decide between const and let:

const indicates an immutable binding and that a variable never

changes its value. Prefer it.

let indicates that the value of a variable changes. Use it only

when you can’t use const.

 Exercise: const

exercises/variables-assignment/const_exrc.mjs

12.4 The scope of a variable

The scope of a variable is the region of a program where it can be

accessed. Consider the following code.

Scope A is the (direct) scope of x.

Scopes B and C are inner scopes of scope A.

Scope A is an outer scope of scope B and scope C.

Each variable is accessible in its direct scope and all scopes nested

within that scope.

{ // // Scope A. Accessible: x

 const x = 0;

 assert.equal(x, 0);

 { // Scope B. Accessible: x, y

 const y = 1;

 assert.equal(x, 0);

 assert.equal(y, 1);

 { // Scope C. Accessible: x, y, z

 const z = 2;

 assert.equal(x, 0);

 assert.equal(y, 1);

 assert.equal(z, 2);

 }

 }

}

// Outside. Not accessible: x, y, z

assert.throws(

 () => console.log(x),

 {

 name: 'ReferenceError',

 message: 'x is not defined',

 }

);

The variables declared via const and let are called block-scoped

because their scopes are always the innermost surrounding blocks.

12.4.1 Shadowing variables

You can’t declare the same variable twice at the same level:

 Why eval()?

eval() delays parsing (and therefore the SyntaxError), until the

callback of assert.throws() is executed. If we didn’t use it, we’d

already get an error when this code is parsed and assert.throws()

wouldn’t even be executed.

You can, however, nest a block and use the same variable name x

that you used outside the block:

assert.throws(

 () => {

 eval('let x = 1; let x = 2;');

 },

 {

 name: 'SyntaxError',

 message: "Identifier 'x' has already been declared",

 });

const x = 1;

assert.equal(x, 1);

{

 const x = 2;

 assert.equal(x, 2);

}

assert.equal(x, 1);

Inside the block, the inner x is the only accessible variable with that

name. The inner x is said to shadow the outer x. Once you leave the

block, you can access the old value again.

 Quiz: basic

See quiz app.

12.5 (Advanced)

All remaining sections are advanced.

12.6 Terminology: static

vs. dynamic

These two adjectives describe phenomena in programming

languages:

Static means that something is related to source code and can be

determined without executing code.

Dynamic means at runtime.

Let’s look at examples for these two terms.

12.6.1 Static phenomenon: scopes of

variables

Variable scopes are a static phenomenon. Consider the following

code:

x is statically (or lexically) scoped. That is, its scope is fixed and

doesn’t change at runtime.

Variable scopes form a static tree (via static nesting).

12.6.2 Dynamic phenomenon: function

calls

function f() {

 const x = 3;

 // ···

}

Function calls are a dynamic phenomenon. Consider the following

code:

Whether or not the function call in line A happens, can only be

decided at runtime.

Function calls form a dynamic tree (via dynamic calls).

function g(x) {}

function h(y) {

 if (Math.random()) g(y); // (A)

}

12.7 Global variables and the

global object

JavaScript’s variable scopes are nested. They form a tree:

The outermost scope is the root of the tree.

The scopes directly contained in that scope are the children of

the root.

And so on.

The root is also called the global scope. In web browsers, the only

location where one is directly in that scope is at the top level of a

script. The variables of the global scope are called global variables

and accessible everywhere. There are two kinds of global variables:

Global declarative variables are normal variables.

They can only be created while at the top level of a script,

via const, `let, and class declarations.

Global object variables are stored in properties of the so-called

global object.

They are created in the top level of a script, via var and

function declarations.

The global object can be accessed via the global variable

globalThis. It can be used to create, read, and delete global

object variables.

Other than that, global object variables work like normal

variables.

The following HTML fragment demonstrates globalThis and the two

kinds of global variables.

Each ECMAScript module has its own scope. Therefore, variables

that exist at the top level of a module are not global. Fig. 5 illustrates

how the various scopes are related.

Object variables

Global scope

Module scope 1 ···

Declarative variables

Top level of scripts:

var, function declarations

const, let, class declarations

Module scope 2

Figure 5: The global scope is JavaScript’s outermost scope. It has two

kinds of variables: object variables (managed via the global object)

and normal declarative variables. Each ECMAScript module has its

own scope which is contained in the global scope.

<script>

 const declarativeVariable = 'd';

 var objectVariable = 'o';

</script>

<script>

 // All scripts share the same top-level scope:

 console.log(declarativeVariable); // 'd'

 console.log(objectVariable); // 'o'

 // Not all declarations create properties of the global object

 console.log(globalThis.declarativeVariable); // undefined

 console.log(globalThis.objectVariable); // 'o'

</script>

12.7.1 globalThis

 globalThis is new

globalThis is a new feature. Be sure that the JavaScript engines

you are targeting support it. If they don’t, switch to one of the

alternatives mentioned below.

The global variable globalThis is the new standard way of accessing

the global object. It got its name from the fact that it has the same

value as this in global scope.

 globalThis does not always directly point to the global

object

For example, in browsers, there is an indirection. That indirection

is normally not noticable, but it is there and can be observed.

12.7.1.1 Alternatives to globalThis

Older ways of accessing the global object depend on the platform:

Global variable window: is the classic way of referring to the

global object. But it doesn’t work in Node.js and in Web

Workers.

Global variable self: is available in Web Workers and browsers

in general. But it isn’t supported by Node.js.

Global variable global: is only available in Node.js.

12.7.1.2 Use cases for globalThis

https://2ality.com/2019/08/global-this.html#window-proxy

The global object is now considered a mistake that JavaScript can’t

get rid of, due to backward compatibility. It affects performance

negatively and is generally confusing.

ECMAScript 6 introduced several features that make it easier to

avoid the global object – for example:

const, let, and class declarations don’t create global object

properties when used in global scope.

Each ECMAScript module has its own local scope.

It is usually better to access global object variables via variables and

not via properties of globalThis. The former has always worked the

same on all JavaScript platforms.

Tutorials on the web occasionally access global variables globVar via

window.globVar. But the prefix “window.” is not necessary and I

recommend to omit it:

Therefore, there are relatively few use cases for globalThis – for

example:

Polyfills that add new features to old JavaScript engines.

Feature detection, to find out what features a JavaScript engine

supports.

window.encodeURIComponent(str); // no

encodeURIComponent(str); // yes

12.8 Declarations: scope and

activation

These are two key aspects of declarations:

Scope: Where can a declared entity be seen? This is a static trait.

Activation: When can I access an entity? This is a dynamic trait.

Some entities can be accessed as soon as we enter their scopes.

For others, we have to wait until execution reaches their

declarations.

Tbl. 1 summarizes how various declarations handle these aspects.

Table 1: Aspects of declarations. “Duplicates” describes if a

declaration can be used twice with the same name (per scope).

“Global prop.” describes if a declaration adds a property to the global

object, when it is executed in the global scope of a script. TDZ means

temporal dead zone (which is explained later). (*) Function

declarations are normally block-scoped, but function-scoped in

sloppy mode.

Scope Activation Duplicates
Global

prop.

const Block decl. (TDZ) ✘ ✘

let Block decl. (TDZ) ✘ ✘

function Block (*) start ✔ ✔

class Block decl. (TDZ) ✘ ✘

import Module same as

export

✘ ✘

Scope Activation Duplicates
Global

prop.

var Function start,

partially

✔ ✔

import is described in §27.5 “ECMAScript modules”. The following

sections describe the other constructs in more detail.

12.8.1 const and let: temporal dead zone

For JavaScript, TC39 needed to decide what happens if you access a

constant in its direct scope, before its declaration:

Some possible approaches are:

1. The name is resolved in the scope surrounding the current

scope.

2. You get undefined.

3. There is an error.

Approach 1 was rejected because there is no precedent in the

language for this approach. It would therefore not be intuitive to

JavaScript programmers.

Approach 2 was rejected because then x wouldn’t be a constant – it

would have different values before and after its declaration.

{

 console.log(x); // What happens here?

 const x;

}

let uses the same approach 3 as const, so that both work similarly

and it’s easy to switch between them.

The time between entering the scope of a variable and executing its

declaration is called the temporal dead zone (TDZ) of that variable:

During this time, the variable is considered to be uninitialized

(as if that were a special value it has).

If you access an uninitialized variable, you get a ReferenceError.

Once you reach a variable declaration, the variable is set to

either the value of the initializer (specified via the assignment

symbol) or undefined – if there is no initializer.

The following code illustrates the temporal dead zone:

The next example shows that the temporal dead zone is truly

temporal (related to time):

if (true) { // entering scope of `tmp`, TDZ starts

 // `tmp` is uninitialized:

 assert.throws(() => (tmp = 'abc'), ReferenceError);

 assert.throws(() => console.log(tmp), ReferenceError);

 let tmp; // TDZ ends

 assert.equal(tmp, undefined);

}

if (true) { // entering scope of `myVar`, TDZ starts

 const func = () => {

 console.log(myVar); // executed later

 };

 // We are within the TDZ:

 // Accessing `myVar` causes `ReferenceError`

Even though func() is located before the declaration of myVar and

uses that variable, we can call func(). But we have to wait until the

temporal dead zone of myVar is over.

12.8.2 Function declarations and early

activation

 More information on functions

In this section, we are using functions – before we had a chance to

learn them properly. Hopefully, everything still makes sense.

Whenever it doesn’t, please see §25 “Callable values”.

A function declaration is always executed when entering its scope,

regardless of where it is located within that scope. That enables you

to call a function foo() before it is declared:

The early activation of foo() means that the previous code is

equivalent to:

If you declare a function via const or let, then it is not activated

early. In the following example, you can only use bar() after its

declaration.

 let myVar = 3; // TDZ ends

 func(); // OK, called outside TDZ

}

assert.equal(foo(), 123); // OK

function foo() { return 123; }

function foo() { return 123; }

assert.equal(foo(), 123);

12.8.2.1 Calling ahead without early activation

Even if a function g() is not activated early, it can be called by a

preceding function f() (in the same scope) if we adhere to the

following rule: f() must be invoked after the declaration of g().

The functions of a module are usually invoked after its complete

body is executed. Therefore, in modules, you rarely need to worry

about the order of functions.

Lastly, note how early activation automatically keeps the

aforementioned rule: when entering a scope, all function

declarations are executed first, before any calls are made.

12.8.2.2 A pitfall of early activation

If you rely on early activation to call a function before its declaration,

then you need to be careful that it doesn’t access data that isn’t

activated early.

assert.throws(

 () => bar(), // before declaration

 ReferenceError);

const bar = () => { return 123; };

assert.equal(bar(), 123); // after declaration

const f = () => g();

const g = () => 123;

// We call f() after g() was declared:

assert.equal(f(), 123);

The problem goes away if you make the call to funcDecl() after the

declaration of MY_STR.

12.8.2.3 The pros and cons of early activation

We have seen that early activation has a pitfall and that you can get

most of its benefits without using it. Therefore, it is better to avoid

early activation. But I don’t feel strongly about this and, as

mentioned before, often use function declarations because I like their

syntax.

12.8.3 Class declarations are not

activated early

Even though they are similar to function declarations in some ways,

class declarations are not activated early:

funcDecl();

const MY_STR = 'abc';

function funcDecl() {

 assert.throws(

 () => MY_STR,

 ReferenceError);

}

assert.throws(

 () => new MyClass(),

 ReferenceError);

class MyClass {}

assert.equal(new MyClass() instanceof MyClass, true);

Why is that? Consider the following class declaration:

The operand of extends is an expression. Therefore, you can do

things like this:

Evaluating such an expression must be done at the location where it

is mentioned. Anything else would be confusing. That explains why

class declarations are not activated early.

12.8.4 var: hoisting (partial early

activation)

var is an older way of declaring variables that predates const and let

(which are preferred now). Consider the following var declaration.

This declaration has two parts:

Declaration var x: The scope of a var-declared variable is the

innermost surrounding function and not the innermost

surrounding block, as for most other declarations. Such a

variable is already active at the beginning of its scope and

initialized with undefined.

Assignment x = 123: The assignment is always executed in

place.

class MyClass extends Object {}

const identity = x => x;

class MyClass extends identity(Object) {}

var x = 123;

The following code demonstrates the effects of var:

function f() {

 // Partial early activation:

 assert.equal(x, undefined);

 if (true) {

 var x = 123;

 // The assignment is executed in place:

 assert.equal(x, 123);

 }

 // Scope is function, not block:

 assert.equal(x, 123);

}

12.9 Closures

Before we can explore closures, we need to learn about bound

variables and free variables.

12.9.1 Bound variables vs. free variables

Per scope, there is a set of variables that are mentioned. Among these

variables we distinguish:

Bound variables are declared within the scope. They are

parameters and local variables.

Free variables are declared externally. They are also called non-

local variables.

Consider the following code:

In the body of func(), x and y are bound variables. z is a free variable.

12.9.2 What is a closure?

What is a closure then?

A closure is a function plus a connection to the variables that

exist at its “birth place”.

function func(x) {

 const y = 123;

 console.log(z);

}

What is the point of keeping this connection? It provides the values

for the free variables of the function – for example:

funcFactory returns a closure that is assigned to func. Because func

has the connection to the variables at its birth place, it can still access

the free variable value when it is called in line A (even though it

“escaped” its scope).

 All functions in JavaScript are closures

Static scoping is supported via closures in JavaScript. Therefore,

every function is a closure.

12.9.3 Example: A factory for

incrementors

The following function returns incrementors (a name that I just

made up). An incrementor is a function that internally stores a

number. When it is called, it updates that number by adding the

argument to it and returns the new value.

function funcFactory(value) {

 return () => {

 return value;

 };

}

const func = funcFactory('abc');

assert.equal(func(), 'abc'); // (A)

function createInc(startValue) {

 return (step) => { // (A)

 startValue += step;

 return startValue;

We can see that the function created in line A keeps its internal

number in the free variable startValue. This time, we don’t just read

from the birth scope, we use it to store data that we change and that

persists across function calls.

We can create more storage slots in the birth scope, via local

variables:

12.9.4 Use cases for closures

What are closures good for?

For starters, they are simply an implementation of static

scoping. As such, they provide context data for callbacks.

They can also be used by functions to store state that persists

across function calls. createInc() is an example of that.

 };

}

const inc = createInc(5);

assert.equal(inc(2), 7);

function createInc(startValue) {

 let index = -1;

 return (step) => {

 startValue += step;

 index++;

 return [index, startValue];

 };

}

const inc = createInc(5);

assert.deepEqual(inc(2), [0, 7]);

assert.deepEqual(inc(2), [1, 9]);

assert.deepEqual(inc(2), [2, 11]);

And they can provide private data for objects (produced via

literals or classes). The details of how that works are explained

in Exploring ES6.

 Quiz: advanced

See quiz app.

https://exploringjs.com/es6/ch_classes.html#_private-data-via-constructor-environments

12.10 Further reading

For more information on how variables are handled under the hood

(as described in the ECMAScript specification), consult §26.4

“Closures and environments”.

13 Values

13.1 What’s a type?

13.2 JavaScript’s type hierarchy

13.3 The types of the language specification

13.4 Primitive values vs. objects

13.4.1 Primitive values (short: primitives)

13.4.2 Objects

13.5 The operators typeof and instanceof: what’s the type of a

value?

13.5.1 typeof

13.5.2 instanceof

13.6 Classes and constructor functions

13.6.1 Constructor functions associated with primitive

types

13.7 Converting between types

13.7.1 Explicit conversion between types

13.7.2 Coercion (automatic conversion between types)

In this chapter, we’ll examine what kinds of values JavaScript has.

 Supporting tool: ===

In this chapter, we’ll occasionally use the strict equality operator. a

=== b evaluates to true if a and b are equal. What exactly that

means is explained in §14.4.2 “Strict equality (=== and !==)”.

13.1 What’s a type?

For this chapter, I consider types to be sets of values – for example,

the type boolean is the set { false, true }.

13.2 JavaScript’s type hierarchy

(any)

(object)(primitive value)

boolean

number

string

symbol

undefined

null

Object

Array

Map

Set

Function

RegExp

Date

Figure 6: A partial hierarchy of JavaScript’s types. Missing are the

classes for errors, the classes associated with primitive types, and

more. The diagram hints at the fact that not all objects are instances

of Object.

Fig. 6 shows JavaScript’s type hierarchy. What do we learn from that

diagram?

JavaScript distinguishes two kinds of values: primitive values

and objects. We’ll see soon what the difference is.

The diagram differentiates objects and instances of class Object.

Each instance of Object is also an object, but not vice versa.

However, virtually all objects that you’ll encounter in practice

are instances of Object – for example, objects created via object

literals. More details on this topic are explained in §29.4.3.4

“Objects that aren’t instances of Object”.

13.3 The types of the language

specification

The ECMAScript specification only knows a total of seven types. The

names of those types are (I’m using TypeScript’s names, not the

spec’s names):

undefined with the only element undefined

null with the only element null

boolean with the elements false and true

number the type of all numbers (e.g., -123, 3.141)

string the type of all strings (e.g., 'abc')

symbol the type of all symbols (e.g., Symbol('My Symbol'))

object the type of all objects (different from Object, the type of

all instances of class Object and its subclasses)

13.4 Primitive values vs. objects

The specification makes an important distinction between values:

Primitive values are the elements of the types undefined, null,

boolean, number, string, symbol.

All other values are objects.

In contrast to Java (that inspired JavaScript here), primitive values

are not second-class citizens. The difference between them and

objects is more subtle. In a nutshell:

Primitive values: are atomic building blocks of data in

JavaScript.

They are passed by value: when primitive values are

assigned to variables or passed to functions, their contents

are copied.

They are compared by value: when comparing two

primitive values, their contents are compared.

Objects: are compound pieces of data.

They are passed by identity (my term): when objects are

assigned to variables or passed to functions, their identities

(think pointers) are copied.

They are compared by identity (my term): when comparing

two objects, their identities are compared.

Other than that, primitive values and objects are quite similar: they

both have properties (key-value entries) and can be used in the same

locations.

Next, we’ll look at primitive values and objects in more depth.

13.4.1 Primitive values (short:

primitives)

13.4.1.1 Primitives are immutable

You can’t change, add, or remove properties of primitives:

13.4.1.2 Primitives are passed by value

Primitives are passed by value: variables (including parameters)

store the contents of the primitives. When assigning a primitive

value to a variable or passing it as an argument to a function, its

content is copied.

13.4.1.3 Primitives are compared by value

Primitives are compared by value: when comparing two primitive

values, we compare their contents.

let str = 'abc';

assert.equal(str.length, 3);

assert.throws(

 () => { str.length = 1 },

 /^TypeError: Cannot assign to read only property 'length'/

);

let x = 123;

let y = x;

assert.equal(y, 123);

To see what’s so special about this way of comparing, read on and

find out how objects are compared.

13.4.2 Objects

Objects are covered in detail in §28 “Single objects” and the

following chapter. Here, we mainly focus on how they differ from

primitive values.

Let’s first explore two common ways of creating objects:

Object literal:

The object literal starts and ends with curly braces {}. It creates

an object with two properties. The first property has the key

'first' (a string) and the value 'Jane'. The second property has

the key 'last' and the value 'Doe'. For more information on

object literals, consult §28.2.1 “Object literals: properties”.

Array literal:

The Array literal starts and ends with square brackets []. It

creates an Array with two elements: 'foo' and 'bar'. For more

assert.equal(123 === 123, true);

assert.equal('abc' === 'abc', true);

const obj = {

 first: 'Jane',

 last: 'Doe',

};

const arr = ['foo', 'bar'];

information on Array literals, consult §31.2.1 “Creating, reading,

writing Arrays”.

13.4.2.1 Objects are mutable by default

By default, you can freely change, add, and remove the properties of

objects:

13.4.2.2 Objects are passed by identity

Objects are passed by identity (my term): variables (including

parameters) store the identities of objects.

The identity of an object is like a pointer (or a transparent reference)

to the object’s actual data on the heap (think shared main memory of

a JavaScript engine).

When assigning an object to a variable or passing it as an argument

to a function, its identity is copied. Each object literal creates a fresh

object on the heap and returns its identity.

const obj = {};

obj.foo = 'abc'; // add a property

assert.equal(obj.foo, 'abc');

obj.foo = 'def'; // change a property

assert.equal(obj.foo, 'def');

const a = {}; // fresh empty object

// Pass the identity in `a` to `b`:

const b = a;

// Now `a` and `b` point to the same object

JavaScript uses garbage collection to automatically manage

memory:

Now the old value { prop: 'value' } of obj is garbage (not used

anymore). JavaScript will automatically garbage-collect it (remove it

from memory), at some point in time (possibly never if there is

enough free memory).

 Details: passing by identity

“Passing by identity” means that the identity of an object (a

transparent reference) is passed by value. This approach is also

called “passing by sharing”.

13.4.2.3 Objects are compared by identity

Objects are compared by identity (my term): two variables are only

equal if they contain the same object identity. They are not equal if

they refer to different objects with the same content.

// (they “share” that object):

assert.equal(a === b, true);

// Changing `a` also changes `b`:

a.foo = 123;

assert.equal(b.foo, 123);

let obj = { prop: 'value' };

obj = {};

const obj = {}; // fresh empty object

assert.equal(obj === obj, true); // same identity

assert.equal({} === {}, false); // different identities, same co

https://en.wikipedia.org/wiki/Evaluation_strategy#Call_by_sharing

13.5 The operators typeof and

instanceof: what’s the type of a

value?

The two operators typeof and instanceof let you determine what

type a given value x has:

How do they differ?

typeof distinguishes the 7 types of the specification (minus one

omission, plus one addition).

instanceof tests which class created a given value.

 Rule of thumb: typeof is for primitive values; instanceof

is for objects

13.5.1 typeof

Table 2: The results of the typeof

operator.

x typeof x

undefined 'undefined'

null 'object'

Boolean 'boolean'

Number 'number'

if (typeof x === 'string') ···

if (x instanceof Array) ···

x typeof x

String 'string'

Symbol 'symbol'

Function 'function'

All other objects 'object'

Tbl. 2 lists all results of typeof. They roughly correspond to the 7

types of the language specification. Alas, there are two differences,

and they are language quirks:

typeof null returns 'object' and not 'null'. That’s a bug.

Unfortunately, it can’t be fixed. TC39 tried to do that, but it

broke too much code on the web.

typeof of a function should be 'object' (functions are objects).

Introducing a separate category for functions is confusing.

 Exercises: Two exercises on typeof

exercises/values/typeof_exrc.mjs

Bonus: exercises/values/is_object_test.mjs

13.5.2 instanceof

This operator answers the question: has a value x been created by a

class C?

For example:

x instanceof C

Primitive values are not instances of anything:

 Exercise: instanceof

exercises/values/instanceof_exrc.mjs

> (function() {}) instanceof Function

true

> ({}) instanceof Object

true

> [] instanceof Array

true

> 123 instanceof Number

false

> '' instanceof String

false

> '' instanceof Object

false

13.6 Classes and constructor

functions

JavaScript’s original factories for objects are constructor functions:

ordinary functions that return “instances” of themselves if you

invoke them via the new operator.

ES6 introduced classes, which are mainly better syntax for

constructor functions.

In this book, I’m using the terms constructor function and class

interchangeably.

Classes can be seen as partitioning the single type object of the

specification into subtypes – they give us more types than the limited

7 ones of the specification. Each class is the type of the objects that

were created by it.

13.6.1 Constructor functions associated

with primitive types

Each primitive type (except for the spec-internal types for undefined

and null) has an associated constructor function (think class):

The constructor function Boolean is associated with booleans.

The constructor function Number is associated with numbers.

The constructor function String is associated with strings.

The constructor function Symbol is associated with symbols.

Each of these functions plays several roles – for example, Number:

You can use it as a function and convert values to numbers:

Number.prototype provides the properties for numbers – for

example, method .toString():

Number is a namespace/container object for tool functions for

numbers – for example:

Lastly, you can also use Number as a class and create number

objects. These objects are different from real numbers and

should be avoided.

13.6.1.1 Wrapping primitive values

The constructor functions related to primitive types are also called

wrapper types because they provide the canonical way of converting

primitive values to objects. In the process, primitive values are

“wrapped” in objects.

assert.equal(Number('123'), 123);

assert.equal((123).toString, Number.prototype.toString);

assert.equal(Number.isInteger(123), true);

assert.notEqual(new Number(123), 123);

assert.equal(new Number(123).valueOf(), 123);

const prim = true;

assert.equal(typeof prim, 'boolean');

assert.equal(prim instanceof Boolean, false);

const wrapped = Object(prim);

Wrapping rarely matters in practice, but it is used internally in the

language specification, to give primitives properties.

assert.equal(typeof wrapped, 'object');

assert.equal(wrapped instanceof Boolean, true);

assert.equal(wrapped.valueOf(), prim); // unwrap

13.7 Converting between types

There are two ways in which values are converted to other types in

JavaScript:

Explicit conversion: via functions such as String().

Coercion (automatic conversion): happens when an operation

receives operands/parameters that it can’t work with.

13.7.1 Explicit conversion between types

The function associated with a primitive type explicitly converts

values to that type:

You can also use Object() to convert values to objects:

13.7.2 Coercion (automatic conversion

between types)

For many operations, JavaScript automatically converts the

operands/parameters if their types don’t fit. This kind of automatic

> Boolean(0)

false

> Number('123')

123

> String(123)

'123'

> typeof Object(123)

'object'

conversion is called coercion.

For example, the multiplication operator coerces its operands to

numbers:

Many built-in functions coerce, too. For example, parseInt() coerces

its parameter to string (parsing stops at the first character that is not

a digit):

 Exercise: Converting values to primitives

exercises/values/conversion_exrc.mjs

 Quiz

See quiz app.

> '7' * '3'

21

> parseInt(123.45)

123

14 Operators

14.1 Making sense of operators

14.1.1 Operators coerce their operands to appropriate types

14.1.2 Most operators only work with primitive values

14.2 The plus operator (+)

14.3 Assignment operators

14.3.1 The plain assignment operator

14.3.2 Compound assignment operators

14.3.3 A list of all compound assignment operators

14.4 Equality: == vs. ===

14.4.1 Loose equality (== and !=)

14.4.2 Strict equality (=== and !==)

14.4.3 Recommendation: always use strict equality

14.4.4 Even stricter than ===: Object.is()

14.5 Ordering operators

14.6 Various other operators

14.6.1 Comma operator

14.6.2 void operator

14.1 Making sense of operators

JavaScript’s operators may seem quirky. With the following two

rules, they are easier to understand:

Operators coerce their operands to appropriate types

Most operators only work with primitive values

14.1.1 Operators coerce their operands to

appropriate types

If an operator gets operands that don’t have the proper types, it

rarely throws an exception. Instead, it coerces (automatically

converts) the operands so that it can work with them. Let’s look at

two examples.

First, the multiplication operator can only work with numbers.

Therefore, it converts strings to numbers before computing its result.

Second, the square brackets operator ([]) for accessing the

properties of an object can only handle strings and symbols. All other

values are coerced to string:

> '7' * '3'

21

const obj = {};

obj['true'] = 123;

// Coerce true to the string 'true'

assert.equal(obj[true], 123);

14.1.2 Most operators only work with

primitive values

As mentioned before, most operators only work with primitive

values. If an operand is an object, it is usually coerced to a primitive

value – for example:

Why? The plus operator first coerces its operands to primitive

values:

Next, it concatenates the two strings:

> [1,2,3] + [4,5,6]

'1,2,34,5,6'

> String([1,2,3])

'1,2,3'

> String([4,5,6])

'4,5,6'

> '1,2,3' + '4,5,6'

'1,2,34,5,6'

14.2 The plus operator (+)

The plus operator works as follows in JavaScript:

First, it converts both operands to primitive values. Then it

switches to one of two modes:

String mode: If one of the two primitive values is a string,

then it converts the other one to a string, concatenates both

strings, and returns the result.

Number mode: Otherwise, It converts both operands to

numbers, adds them, and returns the result.

String mode lets us use + to assemble strings:

Number mode means that if neither operand is a string (or an object

that becomes a string) then everything is coerced to numbers:

Number(true) is 1.

> 'There are ' + 3 + ' items'

'There are 3 items'

> 4 + true

5

14.3 Assignment operators

14.3.1 The plain assignment operator

The plain assignment operator is used to change storage locations:

Initializers in variable declarations can also be viewed as a form of

assignment:

14.3.2 Compound assignment operators

Given an operator op, the following two ways of assigning are

equivalent:

myvar op= value

myvar = myvar op value

If, for example, op is +, then we get the operator += that works as

follows.

x = value; // assign to a previously declared variable

obj.propKey = value; // assign to a property

arr[index] = value; // assign to an Array element

const x = value;

let y = value;

let str = '';

str += '';

str += 'Hello!';

str += '';

assert.equal(str, 'Hello!');

14.3.3 A list of all compound assignment

operators

Arithmetic operators:

+= -= *= /= %= **=

+= also works for string concatenation

Bitwise operators:

<<= >>= >>>= &= ^= |=

14.4 Equality: == vs. ===

JavaScript has two kinds of equality operators: loose equality (==)

and strict equality (===). The recommendation is to always use the

latter.

 Other names for == and ===

== is also called double equals. Its official name in the

language specification is abstract equality comparison.

=== is also called triple equals.

14.4.1 Loose equality (== and !=)

Loose equality is one of JavaScript’s quirks. It often coerces

operands. Some of those coercions make sense:

Others less so:

Objects are coerced to primitives if (and only if!) the other operand is

primitive:

> '123' == 123

true

> false == 0

true

> '' == 0

true

> [1, 2, 3] == '1,2,3'

true

https://tc39.github.io/ecma262/#sec-abstract-equality-comparison

If both operands are objects, they are only equal if they are the same

object:

Lastly, == considers undefined and null to be equal:

14.4.2 Strict equality (=== and !==)

Strict equality never coerces. Two values are only equal if they have

the same type. Let’s revisit our previous interaction with the ==

operator and see what the === operator does:

An object is only equal to another value if that value is the same

object:

> ['1', '2', '3'] == '1,2,3'

true

> [1, 2, 3] == ['1', '2', '3']

false

> [1, 2, 3] == [1, 2, 3]

false

> const arr = [1, 2, 3];

> arr == arr

true

> undefined == null

true

> false === 0

false

> '123' === 123

false

> [1, 2, 3] === '1,2,3'

false

> ['1', '2', '3'] === '1,2,3'

The === operator does not consider undefined and null to be equal:

14.4.3 Recommendation: always use

strict equality

I recommend to always use ===. It makes your code easier to

understand and spares you from having to think about the quirks of

==.

Let’s look at two use cases for == and what I recommend to do

instead.

14.4.3.1 Use case for ==: comparing with a number or a

string

== lets you check if a value x is a number or that number as a string –

with a single comparison:

false

> [1, 2, 3] === ['1', '2', '3']

false

> [1, 2, 3] === [1, 2, 3]

false

> const arr = [1, 2, 3];

> arr === arr

true

> undefined === null

false

if (x == 123) {

 // x is either 123 or '123'

I prefer either of the following two alternatives:

You can also convert x to a number when you first encounter it.

14.4.3.2 Use case for ==: comparing with undefined or null

Another use case for == is to check if a value x is either undefined or

null:

The problem with this code is that you can’t be sure if someone

meant to write it that way or if they made a typo and meant === null.

I prefer either of the following two alternatives:

A downside of the second alternative is that it accepts values other

than undefined and null, but it is a well-established pattern in

JavaScript (to be explained in detail in §16.3 “Truthiness-based

existence checks”).

The following three conditions are also roughly equivalent:

}

if (x === 123 || x === '123') ···

if (Number(x) === 123) ···

if (x == null) {

 // x is either null or undefined

}

if (x === undefined || x === null) ···

if (!x) ···

if (x != null) ···

if (x !== undefined && x !== null) ···

if (x) ···

14.4.4 Even stricter than ===: Object.is()

Method Object.is() compares two values:

It is even stricter than ===. For example, it considers NaN, the error

value for computations involving numbers, to be equal to itself:

That is occasionally useful. For example, you can use it to implement

an improved version of the Array method .indexOf():

myIndexOf() finds NaN in an Array, while .indexOf() doesn’t:

The result -1 means that .indexOf() couldn’t find its argument in the

Array.

> Object.is(123, 123)

true

> Object.is(123, '123')

false

> Object.is(NaN, NaN)

true

> NaN === NaN

false

const myIndexOf = (arr, elem) => {

 return arr.findIndex(x => Object.is(x, elem));

};

> myIndexOf([0,NaN,2], NaN)

1

> [0,NaN,2].indexOf(NaN)

-1

14.5 Ordering operators

Table 3: JavaScript’s ordering

operators.

Operator name

< less than

<= Less than or equal

> Greater than

>= Greater than or equal

JavaScript’s ordering operators (tbl. 3) work for both numbers and

strings:

<= and >= are based on strict equality.

 The ordering operators don’t work well for human

languages

The ordering operators don’t work well for comparing text in a

human language, e.g., when capitalization or accents are involved.

The details are explained in §20.5 “Comparing strings”.

> 5 >= 2

true

> 'bar' < 'foo'

true

14.6 Various other operators

Operators for booleans, strings, numbers, objects: are covered

elsewhere in this book.

The next two subsections discuss two operators that are rarely used.

14.6.1 Comma operator

The comma operator has two operands, evaluates both of them and

returns the second one:

For more information on this operator, see Speaking JavaScript.

14.6.2 void operator

The void operator evaluates its operand and returns undefined:

For more information on this operator, see Speaking JavaScript.

 Quiz

See quiz app.

> 'a', 'b'

'b'

> void (3 + 2)

undefined

http://speakingjs.com/es5/ch09.html#comma_operator
http://speakingjs.com/es5/ch09.html#void_operator

15 The non-values undefined

and null

15.1 undefined vs. null

15.2 Occurrences of undefined and null

15.2.1 Occurrences of undefined

15.2.2 Occurrences of null

15.3 Checking for undefined or null

15.4 undefined and null don’t have properties

15.5 The history of undefined and null

Many programming languages have one “non-value” called null. It

indicates that a variable does not currently point to an object – for

example, when it hasn’t been initialized yet.

In contrast, JavaScript has two of them: undefined and null.

15.1 undefined vs. null

Both values are very similar and often used interchangeably. How

they differ is therefore subtle. The language itself makes the

following distinction:

undefined means “not initialized” (e.g., a variable) or “not

existing” (e.g., a property of an object).

null means “the intentional absence of any object value” (a

quote from the language specification).

Programmers may make the following distinction:

undefined is the non-value used by the language (when

something is uninitialized, etc.).

null means “explicitly switched off”. That is, it helps implement

a type that comprises both meaningful values and a meta-value

that stands for “no meaningful value”. Such a type is called

option type or maybe type in functional programming.

https://tc39.github.io/ecma262/#sec-null-value
https://en.wikipedia.org/wiki/Option_type

15.2 Occurrences of undefined and

null

The following subsections describe where undefined and null appear

in the language. We’ll encounter several mechanisms that are

explained in more detail later in this book.

15.2.1 Occurrences of undefined

Uninitialized variable myVar:

Parameter x is not provided:

Property .unknownProp is missing:

If you don’t explicitly specify the result of a function via a return

statement, JavaScript returns undefined for you:

15.2.2 Occurrences of null

let myVar;

assert.equal(myVar, undefined);

function func(x) {

 return x;

}

assert.equal(func(), undefined);

const obj = {};

assert.equal(obj.unknownProp, undefined);

function func() {}

assert.equal(func(), undefined);

The prototype of an object is either an object or, at the end of a chain

of prototypes, null. Object.prototype does not have a prototype:

If you match a regular expression (such as /a/) against a string (such

as 'x'), you either get an object with matching data (if matching was

successful) or null (if matching failed):

The JSON data format does not support undefined, only null:

> Object.getPrototypeOf(Object.prototype)

null

> /a/.exec('x')

null

> JSON.stringify({a: undefined, b: null})

'{"b":null}'

15.3 Checking for undefined or null

Checking for either:

Does x have a value?

Is x either undefined or null?

Truthy means “is true if coerced to boolean”. Falsy means “is false

if coerced to boolean”. Both concepts are explained properly in §16.2

“Falsy and truthy values”.

if (x === null) ···

if (x === undefined) ···

if (x !== undefined && x !== null) {

 // ···

}

if (x) { // truthy?

 // x is neither: undefined, null, false, 0, NaN, ''

}

if (x === undefined || x === null) {

 // ···

}

if (!x) { // falsy?

 // x is: undefined, null, false, 0, NaN, ''

}

15.4 undefined and null don’t have

properties

undefined and null are the two only JavaScript values where you get

an exception if you try to read a property. To explore this

phenomenon, let’s use the following function, which reads (“gets”)

property .foo and returns the result.

If we apply getFoo() to various values, we can see that it only fails for

undefined and null:

function getFoo(x) {

 return x.foo;

}

> getFoo(undefined)

TypeError: Cannot read property 'foo' of undefined

> getFoo(null)

TypeError: Cannot read property 'foo' of null

> getFoo(true)

undefined

> getFoo({})

undefined

15.5 The history of undefined and

null

In Java (which inspired many aspects of JavaScript), initialization

values depend on the static type of a variable:

Variables with object types are initialized with null.

Each primitive type has its own initialization value. For

example, int variables are initialized with 0.

In JavaScript, each variable can hold both object values and

primitive values. Therefore, if null means “not an object”, JavaScript

also needs an initialization value that means “neither an object nor a

primitive value”. That initialization value is undefined.

 Quiz

See quiz app.

16 Booleans

16.1 Converting to boolean

16.2 Falsy and truthy values

16.2.1 Checking for truthiness or falsiness

16.3 Truthiness-based existence checks

16.3.1 Pitfall: truthiness-based existence checks are

imprecise

16.3.2 Use case: was a parameter provided?

16.3.3 Use case: does a property exist?

16.4 Conditional operator (? :)

16.5 Binary logical operators: And (x && y), Or (x || y)

16.5.1 Logical And (x && y)

16.5.2 Logical Or (||)

16.5.3 Default values via logical Or (||)

16.6 Logical Not (!)

The primitive type boolean comprises two values – false and true:

> typeof false

'boolean'

> typeof true

'boolean'

16.1 Converting to boolean

 The meaning of “converting to [type]”

“Converting to [type]” is short for “Converting arbitrary values to

values of type [type]”.

These are three ways in which you can convert an arbitrary value x to

a boolean.

Boolean(x)

Most descriptive; recommended.

x ? true : false

Uses the conditional operator (explained later in this chapter).

!!x

Uses the logical Not operator (!). This operator coerces its

operand to boolean. It is applied a second time to get a non-

negated result.

Tbl. 4 describes how various values are converted to boolean.

Table 4: Converting values to booleans.

x Boolean(x)

undefined false

null false

boolean value x (no change)

number value 0 → false, NaN → false

x Boolean(x)

other numbers → true

string value '' → false

other strings → true

object value always true

16.2 Falsy and truthy values

When checking the condition of an if statement, a while loop, or a

do-while loop, JavaScript works differently than you may expect.

Take, for example, the following condition:

In many programming languages, this condition is equivalent to:

However, in JavaScript, it is equivalent to:

That is, JavaScript checks if value is true when converted to boolean.

This kind of check is so common that the following names were

introduced:

A value is called truthy if it is true when converted to boolean.

A value is called falsy if it is false when converted to boolean.

Each value is either truthy or falsy. Consulting tbl. 4, we can make an

exhaustive list of falsy values:

undefined, null

false

0, NaN

''

if (value) {}

if (value === true) {}

if (Boolean(value) === true) {}

All other values (including all objects) are truthy:

16.2.1 Checking for truthiness or

falsiness

The conditional operator that is used in the last line, is explained

later in this chapter.

 Exercise: Truthiness

exercises/booleans/truthiness_exrc.mjs

> Boolean('abc')

true

> Boolean([])

true

> Boolean({})

true

if (x) {

 // x is truthy

}

if (!x) {

 // x is falsy

}

if (x) {

 // x is truthy

} else {

 // x is falsy

}

const result = x ? 'truthy' : 'falsy';

16.3 Truthiness-based existence

checks

In JavaScript, if you read something that doesn’t exist (e.g., a

missing parameter or a missing property), you usually get undefined

as a result. In these cases, an existence check amounts to comparing

a value with undefined. For example, the following code checks if

object obj has the property .prop:

Due to undefined being falsy, we can shorten this check to:

16.3.1 Pitfall: truthiness-based existence

checks are imprecise

Truthiness-based existence checks have one pitfall: they are not very

precise. Consider this previous example:

The body of the if statement is skipped if:

if (obj.prop !== undefined) {

 // obj has property .prop

}

if (obj.prop) {

 // obj has property .prop

}

if (obj.prop) {

 // obj has property .prop

}

obj.prop is missing (in which case, JavaScript returns

undefined).

However, it is also skipped if:

obj.prop is undefined.

obj.prop is any other falsy value (null, 0, '', etc.).

In practice, this rarely causes problems, but you have to be aware of

this pitfall.

16.3.2 Use case: was a parameter

provided?

A truthiness check is often used to determine if the caller of a

function provided a parameter:

On the plus side, this pattern is established and short. It correctly

throws errors for undefined and null.

On the minus side, there is the previously mentioned pitfall: the code

also throws errors for all other falsy values.

An alternative is to check for undefined:

function func(x) {

 if (!x) {

 throw new Error('Missing parameter x');

 }

 // ···

}

if (x === undefined) {

 throw new Error('Missing parameter x');

16.3.3 Use case: does a property exist?

Truthiness checks are also often used to determine if a property

exists:

This pattern is also established and has the usual caveat: it not only

throws if the property is missing, but also if it exists and has any of

the falsy values.

If you truly want to check if the property exists, you have to use the

in operator:

}

function readFile(fileDesc) {

 if (!fileDesc.path) {

 throw new Error('Missing property: .path');

 }

 // ···

}

readFile({ path: 'foo.txt' }); // no error

if (! ('path' in fileDesc)) {

 throw new Error('Missing property: .path');

}

16.4 Conditional operator (? :)

The conditional operator is the expression version of the if

statement. Its syntax is:

«condition» ? «thenExpression» : «elseExpression»

It is evaluated as follows:

If condition is truthy, evaluate and return thenExpression.

Otherwise, evaluate and return elseExpression.

The conditional operator is also called ternary operator because it

has three operands.

Examples:

The following code demonstrates that whichever of the two branches

“then” and “else” is chosen via the condition, only that branch is

evaluated. The other branch isn’t.

> true ? 'yes' : 'no'

'yes'

> false ? 'yes' : 'no'

'no'

> '' ? 'yes' : 'no'

'no'

const x = (true ? console.log('then') : console.log('else'));

// Output:

// 'then'

16.5 Binary logical operators: And

(x && y), Or (x || y)

The operators && and || are value-preserving and short-circuiting.

What does that mean?

Value-preservation means that operands are interpreted as booleans

but returned unchanged:

Short-circuiting means if the first operand already determines the

result, then the second operand is not evaluated. The only other

operator that delays evaluating its operands is the conditional

operator. Usually, all operands are evaluated before performing an

operation.

For example, logical And (&&) does not evaluate its second operand if

the first one is falsy:

If the first operand is truthy, console.log() is executed:

> 12 || 'hello'

12

> 0 || 'hello'

'hello'

const x = false && console.log('hello');

// No output

const x = true && console.log('hello');

// Output:

// 'hello'

16.5.1 Logical And (x && y)

The expression a && b (“a And b”) is evaluated as follows:

1. Evaluate a.

2. Is the result falsy? Return it.

3. Otherwise, evaluate b and return the result.

In other words, the following two expressions are roughly equivalent:

Examples:

16.5.2 Logical Or (||)

The expression a || b (“a Or b”) is evaluated as follows:

1. Evaluate a.

2. Is the result truthy? Return it.

3. Otherwise, evaluate b and return the result.

a && b

!a ? a : b

> false && true

false

> false && 'abc'

false

> true && false

false

> true && 'abc'

'abc'

> '' && 'abc'

''

In other words, the following two expressions are roughly equivalent:

Examples:

16.5.3 Default values via logical Or (||)

Sometimes you receive a value and only want to use it if it isn’t either

null or undefined. Otherwise, you’d like to use a default value, as a

fallback. You can do that via the || operator:

The following code shows a real-world example:

If there are one or more matches for regex inside str then .match()

returns an Array. If there are no matches, it unfortunately returns

a || b

a ? a : b

> true || false

true

> true || 'abc'

true

> false || true

true

> false || 'abc'

'abc'

> 'abc' || 'def'

'abc'

const valueToUse = valueReceived || defaultValue;

function countMatches(regex, str) {

 const matchResult = str.match(regex); // null or Array

 return (matchResult || []).length;

}

null (and not the empty Array). We fix that via the || operator.

 Exercise: Default values via the Or operator (||)

exercises/booleans/default_via_or_exrc.mjs

16.6 Logical Not (!)

The expression !x (“Not x”) is evaluated as follows:

1. Evaluate x.

2. Is it truthy? Return false.

3. Otherwise, return true.

Examples:

 Quiz

See quiz app.

> !false

true

> !true

false

> !0

true

> !123

false

> !''

true

> !'abc'

false

17 Numbers

17.1 JavaScript only has floating point numbers

17.2 Number literals

17.2.1 Integer literals

17.2.2 Floating point literals

17.2.3 Syntactic pitfall: properties of integer literals

17.3 Arithmetic operators

17.3.1 Binary arithmetic operators

17.3.2 Unary plus (+) and negation (-)

17.3.3 Incrementing (++) and decrementing (--)

17.4 Converting to number

17.5 Error values

17.6 Error value: NaN

17.6.1 Checking for NaN

17.6.2 Finding NaN in Arrays

17.7 Error value: Infinity

17.7.1 Infinity as a default value

17.7.2 Checking for Infinity

17.8 The precision of numbers: careful with decimal fractions

17.9 (Advanced)

17.10 Background: floating point precision

17.10.1 A simplified representation of floating point

numbers

17.11 Integers in JavaScript

17.11.1 Converting to integer

17.11.2 Ranges of integers in JavaScript

17.11.3 Safe integers

17.12 Bitwise operators

17.12.1 Internally, bitwise operators work with 32-bit

integers

17.12.2 Binary bitwise operators

17.12.3 Bitwise Not

17.12.4 Bitwise shift operators

17.12.5 b32(): displaying unsigned 32-bit integers in binary

notation

17.13 Quick reference: numbers

17.13.1 Global functions for numbers

17.13.2 Static properties of Number

17.13.3 Static methods of Number

17.13.4 Methods of Number.prototype

17.13.5 Sources

This chapter covers JavaScript’s single type for numbers, number.

17.1 JavaScript only has floating

point numbers

You can express both integers and floating point numbers in

JavaScript:

However, there is only a single type for all numbers: they are all

doubles, 64-bit floating point numbers implemented according to the

IEEE Standard for Floating-Point Arithmetic (IEEE 754).

Integers are simply floating point numbers without a decimal

fraction:

Note that, under the hood, most JavaScript engines are often able to

use real integers, with all associated performance and storage size

benefits.

98

123.45

> 98 === 98.0

true

17.2 Number literals

Let’s examine literals for numbers.

17.2.1 Integer literals

Several integer literals let you express integers with various bases:

17.2.2 Floating point literals

Floating point numbers can only be expressed in base 10.

Fractions:

Exponent: eN means ×10
N

// Binary (base 2)

assert.equal(0b11, 3);

// Octal (base 8)

assert.equal(0o10, 8);

// Decimal (base 10):

assert.equal(35, 35);

// Hexadecimal (base 16)

assert.equal(0xE7, 231);

> 35.0

35

> 3e2

300

> 3e-2

17.2.3 Syntactic pitfall: properties of

integer literals

Accessing a property of an integer literal entails a pitfall: If the

integer literal is immediately followed by a dot, then that dot is

interpreted as a decimal dot:

7.toString(); // syntax error

There are four ways to work around this pitfall:

0.03

> 0.3e2

30

7.0.toString()

(7).toString()

7..toString()

7 .toString() // space before dot

17.3 Arithmetic operators

17.3.1 Binary arithmetic operators

Tbl. 5 lists JavaScript’s binary arithmetic operators.

Table 5: Binary arithmetic operators.

Operator Name Example

n + m Addition ES1 3 + 4 → 7

n - m Subtraction ES1 9 - 1 → 8

n * m Multiplication ES1 3 * 2.25 → 6.75

n / m Division ES1 5.625 / 5 → 1.125

n % m Remainder ES1 8 % 5 → 3

-8 % 5 → -3

n ** m Exponentiation ES2016 4 ** 2 → 16

17.3.1.1 % is a remainder operator

% is a remainder operator, not a modulo operator. Its result has the

sign of the first operand:

For more information on the difference between remainder and

modulo, see the blog post “Remainder operator vs. modulo operator

> 5 % 3

2

> -5 % 3

-2

https://2ality.com/2019/08/remainder-vs-modulo.html

(with JavaScript code)” on 2ality.

17.3.2 Unary plus (+) and negation (-)

Tbl. 6 summarizes the two operators unary plus (+) and negation

(-).

Table 6: The operators unary plus (+) and negation

(-).

Operator Name Example

+n Unary plus ES1 +(-7) → -7

-n Unary negation ES1 -(-7) → 7

Both operators coerce their operands to numbers:

Thus, unary plus lets us convert arbitrary values to numbers.

17.3.3 Incrementing (++) and

decrementing (--)

The incrementation operator ++ exists in a prefix version and a suffix

version. In both versions, it destructively adds one to its operand.

Therefore, its operand must be a storage location that can be

changed.

> +'5'

5

> +'-12'

-12

> -'9'

-9

https://2ality.com/2019/08/remainder-vs-modulo.html

The decrementation operator -- works the same, but subtracts one

from its operand. The next two examples explain the difference

between the prefix and the suffix version.

Tbl. 7 summarizes the incrementation and decrementation

operators.

Table 7: Incrementation operators and decrementation

operators.

Operator Name Example

v++ Increment ES1 let v=0; [v++, v] → [0, 1]

++v Increment ES1 let v=0; [++v, v] → [1, 1]

v-- Decrement ES1 let v=1; [v--, v] → [1, 0]

--v Decrement ES1 let v=1; [--v, v] → [0, 0]

Next, we’ll look at examples of these operators in use.

Prefix ++ and prefix -- change their operands and then return them.

Suffix ++ and suffix -- return their operands and then change them.

let foo = 3;

assert.equal(++foo, 4);

assert.equal(foo, 4);

let bar = 3;

assert.equal(--bar, 2);

assert.equal(bar, 2);

let foo = 3;

assert.equal(foo++, 3);

assert.equal(foo, 4);

let bar = 3;

17.3.3.1 Operands: not just variables

You can also apply these operators to property values:

And to Array elements:

 Exercise: Number operators

exercises/numbers-math/is_odd_test.mjs

assert.equal(bar--, 3);

assert.equal(bar, 2);

const obj = { a: 1 };

++obj.a;

assert.equal(obj.a, 2);

const arr = [4];

arr[0]++;

assert.deepEqual(arr, [5]);

17.4 Converting to number

These are three ways of converting values to numbers:

Number(value)

+value

parseFloat(value) (avoid; different than the other two!)

Recommendation: use the descriptive Number(). Tbl. 8 summarizes

how it works.

Table 8: Converting values to numbers.

x Number(x)

undefined NaN

null 0

boolean false → 0, true → 1

number x (no change)

string '' → 0

other → parsed number, ignoring leading/trailing

whitespace

object configurable (e.g. via .valueOf())

Examples:

assert.equal(Number(123.45), 123.45);

assert.equal(Number(''), 0);

assert.equal(Number('\n 123.45 \t'), 123.45);

assert.equal(Number('xyz'), NaN);

How objects are converted to numbers can be configured – for

example, by overriding .valueOf():

 Exercise: Converting to number

exercises/numbers-math/parse_number_test.mjs

> Number({ valueOf() { return 123 } })

123

17.5 Error values

Two number values are returned when errors happen:

NaN

Infinity

17.6 Error value: NaN

NaN is an abbreviation of “not a number”. Ironically, JavaScript

considers it to be a number:

When is NaN returned?

NaN is returned if a number can’t be parsed:

NaN is returned if an operation can’t be performed:

NaN is returned if an operand or argument is NaN (to propagate

errors):

17.6.1 Checking for NaN

> typeof NaN

'number'

> Number('$$$')

NaN

> Number(undefined)

NaN

> Math.log(-1)

NaN

> Math.sqrt(-1)

NaN

> NaN - 3

NaN

> 7 ** NaN

NaN

NaN is the only JavaScript value that is not strictly equal to itself:

These are several ways of checking if a value x is NaN:

In the last line, we use the comparison quirk to detect NaN.

17.6.2 Finding NaN in Arrays

Some Array methods can’t find NaN:

Others can:

Alas, there is no simple rule of thumb. You have to check for each

method how it handles NaN.

const n = NaN;

assert.equal(n === n, false);

const x = NaN;

assert.equal(Number.isNaN(x), true); // preferred

assert.equal(Object.is(x, NaN), true);

assert.equal(x !== x, true);

> [NaN].indexOf(NaN)

-1

> [NaN].includes(NaN)

true

> [NaN].findIndex(x => Number.isNaN(x))

0

> [NaN].find(x => Number.isNaN(x))

NaN

17.7 Error value: Infinity

When is the error value Infinity returned?

Infinity is returned if a number is too large:

Infinity is returned if there is a division by zero:

17.7.1 Infinity as a default value

Infinity is larger than all other numbers (except NaN), making it a

good default value:

17.7.2 Checking for Infinity

> Math.pow(2, 1023)

8.98846567431158e+307

> Math.pow(2, 1024)

Infinity

> 5 / 0

Infinity

> -5 / 0

-Infinity

function findMinimum(numbers) {

 let min = Infinity;

 for (const n of numbers) {

 if (n < min) min = n;

 }

 return min;

}

assert.equal(findMinimum([5, -1, 2]), -1);

assert.equal(findMinimum([]), Infinity);

These are two common ways of checking if a value x is Infinity:

 Exercise: Comparing numbers

exercises/numbers-math/find_max_test.mjs

const x = Infinity;

assert.equal(x === Infinity, true);

assert.equal(Number.isFinite(x), false);

17.8 The precision of numbers:

careful with decimal fractions

Internally, JavaScript floating point numbers are represented with

base 2 (according to the IEEE 754 standard). That means that

decimal fractions (base 10) can’t always be represented precisely:

You therefore need to take rounding errors into consideration when

performing arithmetic in JavaScript.

Read on for an explanation of this phenomenon.

 Quiz: basic

See quiz app.

> 0.1 + 0.2

0.30000000000000004

> 1.3 * 3

3.9000000000000004

> 1.4 * 100000000000000

139999999999999.98

17.9 (Advanced)

All remaining sections of this chapter are advanced.

17.10 Background: floating point

precision

In JavaScript, computations with numbers don’t always produce

correct results – for example:

To understand why, we need to explore how JavaScript represents

floating point numbers internally. It uses three integers to do so,

which take up a total of 64 bits of storage (double precision):

Component Size Integer range

Sign 1 bit [0, 1]

Fraction 52 bits [0, 2
52

−1]

Exponent 11 bits [−1023, 1024]

The floating point number represented by these integers is computed

as follows:

(–1)
sign

 × 0b1.fraction × 2
exponent

This representation can’t encode a zero because its second

component (involving the fraction) always has a leading 1. Therefore,

a zero is encoded via the special exponent −1023 and a fraction 0.

17.10.1 A simplified representation of

floating point numbers

> 0.1 + 0.2

0.30000000000000004

To make further discussions easier, we simplify the previous

representation:

Instead of base 2 (binary), we use base 10 (decimal) because

that’s what most people are more familiar with.

The fraction is a natural number that is interpreted as a fraction

(digits after a point). We switch to a mantissa, an integer that is

interpreted as itself. As a consequence, the exponent is used

differently, but its fundamental role doesn’t change.

As the mantissa is an integer (with its own sign), we don’t need a

separate sign, anymore.

The new representation works like this:

mantissa × 10
exponent

Let’s try out this representation for a few floating point numbers.

For the integer −123, we mainly need the mantissa:

For the number 1.5, we imagine there being a point after the

mantissa. We use a negative exponent to move that point one

digit to the left:

For the number 0.25, we move the point two digits to the left:

> -123 * (10 ** 0)

-123

> 15 * (10 ** -1)

1.5

> 25 * (10 ** -2)

0.25

Representations with negative exponents can also be written as

fractions with positive exponents in the denominators:

These fractions help with understanding why there are numbers that

our encoding cannot represent:

1/10 can be represented. It already has the required format: a

power of 10 in the denominator.

1/2 can be represented as 5/10. We turned the 2 in the

denominator into a power of 10 by multiplying the numerator

and denominator by 5.

1/4 can be represented as 25/100. We turned the 4 in the

denominator into a power of 10 by multiplying the numerator

and denominator by 25.

1/3 cannot be represented. There is no way to turn the

denominator into a power of 10. (The prime factors of 10 are 2

and 5. Therefore, any denominator that only has these prime

factors can be converted to a power of 10, by multiplying both

the numerator and denominator by enough twos and fives. If a

denominator has a different prime factor, then there’s nothing

we can do.)

To conclude our excursion, we switch back to base 2:

> 15 * (10 ** -1) === 15 / (10 ** 1)

true

> 25 * (10 ** -2) === 25 / (10 ** 2)

true

0.5 = 1/2 can be represented with base 2 because the

denominator is already a power of 2.

0.25 = 1/4 can be represented with base 2 because the

denominator is already a power of 2.

0.1 = 1/10 cannot be represented because the denominator

cannot be converted to a power of 2.

0.2 = 2/10 cannot be represented because the denominator

cannot be converted to a power of 2.

Now we can see why 0.1 + 0.2 doesn’t produce a correct result:

internally, neither of the two operands can be represented precisely.

The only way to compute precisely with decimal fractions is by

internally switching to base 10. For many programming languages,

base 2 is the default and base 10 an option. For example, Java has

the class BigDecimal and Python has the module decimal. There are

tentative plans to add something similar to JavaScript: the

ECMAScript proposal “Decimal” is currently at stage 0.

https://docs.oracle.com/javase/8/docs/api/java/math/BigDecimal.html
https://docs.python.org/3/library/decimal.html
https://github.com/tc39/proposals/blob/master/stage-0-proposals.md

17.11 Integers in JavaScript

JavaScript doesn’t have a special type for integers. Instead, they are

simply normal (floating point) numbers without a decimal fraction:

In this section, we’ll look at a few tools for working with these

pseudo-integers.

17.11.1 Converting to integer

The recommended way of converting numbers to integers is to use

one of the rounding methods of the Math object:

Math.floor(n): returns the largest integer i ≤ n

Math.ceil(n): returns the smallest integer i ≥ n

Math.round(n): returns the integer that is “closest” to n with __.5

being rounded up – for example:

> 1 === 1.0

true

> Number.isInteger(1.0)

true

> Math.floor(2.1)

2

> Math.floor(2.9)

2

> Math.ceil(2.1)

3

> Math.ceil(2.9)

3

Math.trunc(n): removes any decimal fraction (after the point)

that n has, therefore turning it into an integer.

For more information on rounding, consult §18.3 “Rounding”.

17.11.2 Ranges of integers in JavaScript

These are important ranges of integers in JavaScript:

Safe integers: can be represented “safely” by JavaScript (more

on what that means in the next subsection)

Precision: 53 bits plus sign

Range: (−2
53

, 2
53

)

Array indices

Precision: 32 bits, unsigned

Range: [0, 2
32

−1) (excluding the maximum length)

Typed Arrays have a larger range of 53 bits (safe and

unsigned)

Bitwise operators (bitwise Or, etc.)

Precision: 32 bits

Range of unsigned right shift (>>>): unsigned, [0, 2
32

)

Range of all other bitwise operators: signed, [−2
31

, 2
31

)

> Math.round(2.4)

2

> Math.round(2.5)

3

> Math.trunc(2.1)

2

> Math.trunc(2.9)

2

17.11.3 Safe integers

This is the range of integers that are safe in JavaScript (53 bits plus a

sign):

[–2
53

–1, 2
53

–1]

An integer is safe if it is represented by exactly one JavaScript

number. Given that JavaScript numbers are encoded as a fraction

multiplied by 2 to the power of an exponent, higher integers can also

be represented, but then there are gaps between them.

For example (18014398509481984 is 2
54

):

The following properties of Number help determine if an integer is

safe:

> 18014398509481984

18014398509481984

> 18014398509481985

18014398509481984

> 18014398509481986

18014398509481984

> 18014398509481987

18014398509481988

assert.equal(Number.MAX_SAFE_INTEGER, (2 ** 53) - 1);

assert.equal(Number.MIN_SAFE_INTEGER, -Number.MAX_SAFE_INTEGER);

assert.equal(Number.isSafeInteger(5), true);

assert.equal(Number.isSafeInteger('5'), false);

assert.equal(Number.isSafeInteger(5.1), false);

assert.equal(Number.isSafeInteger(Number.MAX_SAFE_INTEGER), true

assert.equal(Number.isSafeInteger(Number.MAX_SAFE_INTEGER+1), fa

 Exercise: Detecting safe integers

exercises/numbers-math/is_safe_integer_test.mjs

17.11.3.1 Safe computations

Let’s look at computations involving unsafe integers.

The following result is incorrect and unsafe, even though both of its

operands are safe:

The following result is safe, but incorrect. The first operand is

unsafe; the second operand is safe:

Therefore, the result of an expression a op b is correct if and only if:

That is, both operands and the result must be safe.

> 9007199254740990 + 3

9007199254740992

> 9007199254740995 - 10

9007199254740986

isSafeInteger(a) && isSafeInteger(b) && isSafeInteger(a op b)

17.12 Bitwise operators

17.12.1 Internally, bitwise operators work

with 32-bit integers

Internally, JavaScript’s bitwise operators work with 32-bit integers.

They produce their results in the following steps:

Input (JavaScript numbers): The 1–2 operands are first

converted to JavaScript numbers (64-bit floating point

numbers) and then to 32-bit integers.

Computation (32-bit integers): The actual operation processes

32-bit integers and produces a 32-bit integer.

Output (JavaScript number): Before returning the result, it is

converted back to a JavaScript number.

17.12.1.1 The types of operands and results

For each bitwise operator, this book mentions the types of its

operands and its result. Each type is always one of the following two:

Type Description Size Range

Int32 signed 32-bit integer 32 bits incl. sign [−2
31

, 2
31

)

Uint32 unsigned 32-bit integer 32 bits [0, 2
32

)

Considering the previously mentioned steps, I recommend to

pretend that bitwise operators internally work with unsigned 32-bit

integers (step “computation”) and that Int32 and Uint32 only affect

how JavaScript numbers are converted to and from integers (steps

“input” and “output”).

17.12.1.2 Displaying JavaScript numbers as unsigned 32-bit

integers

While exploring the bitwise operators, it occasionally helps to display

JavaScript numbers as unsigned 32-bit integers in binary notation.

That’s what b32() does (whose implementation is shown later):

17.12.2 Binary bitwise operators

Table 9: Binary bitwise operators.

Operation Name Type signature

num1 & num2 Bitwise And Int32 × Int32 → Int32 ES1

num1 ¦ num2 Bitwise Or Int32 × Int32 → Int32 ES1

num1 ^ num2 Bitwise Xor Int32 × Int32 → Int32 ES1

The binary bitwise operators (tbl. 9) combine the bits of their

operands to produce their results:

assert.equal(

 b32(-1),

 '11111111111111111111111111111111');

assert.equal(

 b32(1),

 '00000000000000000000000000000001');

assert.equal(

 b32(2 ** 31),

 '10000000000000000000000000000000');

17.12.3 Bitwise Not

Table 10: The bitwise Not operator.

Operation Name
Type

signature

~num Bitwise Not, ones’

complement

Int32 → Int32 ES1

The bitwise Not operator (tbl. 10) inverts each binary digit of its

operand:

17.12.4 Bitwise shift operators

Table 11: Bitwise shift operators.

Operation Name Type signature

num <<

count

Left shift Int32 × Uint32 → Int32 ES1

num >>

count

Signed right shift Int32 × Uint32 → Int32 ES1

num >>>

count

Unsigned right

shift

Uint32 × Uint32 →

Uint32

ES1

> (0b1010 & 0b0011).toString(2).padStart(4, '0')

'0010'

> (0b1010 | 0b0011).toString(2).padStart(4, '0')

'1011'

> (0b1010 ^ 0b0011).toString(2).padStart(4, '0')

'1001'

> b32(~0b100)

'11111111111111111111111111111011'

The shift operators (tbl. 11) move binary digits to the left or to the

right:

>> preserves highest bit, >>> doesn’t:

17.12.5 b32(): displaying unsigned 32-bit

integers in binary notation

We have now used b32() a few times. The following code is an

implementation of it:

n >>> 0 means that we are shifting n zero bits to the right. Therefore,

in principle, the >>> operator does nothing, but it still coerces n to an

unsigned 32-bit integer:

> (0b10 << 1).toString(2)

'100'

> b32(0b10000000000000000000000000000010 >> 1)

'11000000000000000000000000000001'

> b32(0b10000000000000000000000000000010 >>> 1)

'01000000000000000000000000000001'

/**

* Return a string representing n as a 32-bit unsigned integer,

* in binary notation.

*/

function b32(n) {

 // >>> ensures highest bit isn’t interpreted as a sign

 return (n >>> 0).toString(2).padStart(32, '0');

}

assert.equal(

 b32(6),

 '00000000000000000000000000000110');

> 12 >>> 0

12

> -12 >>> 0

4294967284

> (2**32 + 1) >>> 0

1

17.13 Quick reference: numbers

17.13.1 Global functions for numbers

JavaScript has the following four global functions for numbers:

isFinite()

isNaN()

parseFloat()

parseInt()

However, it is better to use the corresponding methods of Number

(Number.isFinite(), etc.), which have fewer pitfalls. They were

introduced with ES6 and are discussed below.

17.13.2 Static properties of Number

.EPSILON: number
[ES6]

The difference between 1 and the next representable floating

point number. In general, a machine epsilon provides an upper

bound for rounding errors in floating point arithmetic.

Approximately: 2.2204460492503130808472633361816 ×

10
-16

.MAX_SAFE_INTEGER: number
[ES6]

https://en.wikipedia.org/wiki/Machine_epsilon

The largest integer that JavaScript can represent unambiguously

(2
53

−1).

.MAX_VALUE: number
[ES1]

The largest positive finite JavaScript number.

Approximately: 1.7976931348623157 × 10
308

.MIN_SAFE_INTEGER: number
[ES6]

The smallest integer that JavaScript can represent

unambiguously (−2
53

+1).

.MIN_VALUE: number
[ES1]

The smallest positive JavaScript number. Approximately 5 ×

10
−324

.

.NaN: number
[ES1]

The same as the global variable NaN.

.NEGATIVE_INFINITY: number
[ES1]

The same as -Number.POSITIVE_INFINITY.

.POSITIVE_INFINITY: number
[ES1]

The same as the global variable Infinity.

17.13.3 Static methods of Number

.isFinite(num: number): boolean
[ES6]

Returns true if num is an actual number (neither Infinity nor -

Infinity nor NaN).

.isInteger(num: number): boolean
[ES6]

Returns true if num is a number and does not have a decimal

fraction.

.isNaN(num: number): boolean
[ES6]

Returns true if num is the value NaN:

> Number.isFinite(Infinity)

false

> Number.isFinite(-Infinity)

false

> Number.isFinite(NaN)

false

> Number.isFinite(123)

true

> Number.isInteger(-17)

true

> Number.isInteger(33)

true

> Number.isInteger(33.1)

false

> Number.isInteger('33')

false

> Number.isInteger(NaN)

false

> Number.isInteger(Infinity)

false

> Number.isNaN(NaN)

true

> Number.isNaN(123)

.isSafeInteger(num: number): boolean
[ES6]

Returns true if num is a number and unambiguously represents

an integer.

.parseFloat(str: string): number
[ES6]

Coerces its parameter to string and parses it as a floating point

number. For converting strings to numbers, Number() (which

ignores leading and trailing whitespace) is usually a better

choice than Number.parseFloat() (which ignores leading

whitespace and illegal trailing characters and can hide

problems).

.parseInt(str: string, radix=10): number
[ES6]

Coerces its parameter to string and parses it as an integer,

ignoring leading whitespace and illegal trailing characters:

The parameter radix specifies the base of the number to be

parsed:

false

> Number.isNaN('abc')

false

> Number.parseFloat(' 123.4#')

123.4

> Number(' 123.4#')

NaN

> Number.parseInt(' 123#')

123

Do not use this method to convert numbers to integers: coercing

to string is inefficient. And stopping before the first non-digit is

not a good algorithm for removing the fraction of a number.

Here is an example where it goes wrong:

It is better to use one of the rounding functions of Math to

convert a number to an integer:

17.13.4 Methods of Number.prototype

(Number.prototype is where the methods of numbers are stored.)

.toExponential(fractionDigits?: number): string
[ES3]

Returns a string that represents the number via exponential

notation. With fractionDigits, you can specify, how many digits

should be shown of the number that is multiplied with the

exponent (the default is to show as many digits as necessary).

Example: number too small to get a positive exponent via

.toString().

> Number.parseInt('101', 2)

5

> Number.parseInt('FF', 16)

255

> Number.parseInt(1e21, 10) // wrong

1

> Math.trunc(1e21) // correct

1e+21

Example: fraction not small enough to get a negative exponent

via .toString().

.toFixed(fractionDigits=0): string
[ES3]

Returns an exponent-free representation of the number,

rounded to fractionDigits digits.

If the number is 10
21

 or greater, even .toFixed() uses an

exponent:

.toPrecision(precision?: number): string
[ES3]

> 1234..toString()

'1234'

> 1234..toExponential() // 3 fraction digits

'1.234e+3'

> 1234..toExponential(5)

'1.23400e+3'

> 1234..toExponential(1)

'1.2e+3'

> 0.003.toString()

'0.003'

> 0.003.toExponential()

'3e-3'

> 0.00000012.toString() // with exponent

'1.2e-7'

> 0.00000012.toFixed(10) // no exponent

'0.0000001200'

> 0.00000012.toFixed()

'0'

> (10 ** 21).toFixed()

'1e+21'

Works like .toString(), but precision specifies how many digits

should be shown. If precision is missing, .toString() is used.

.toString(radix=10): string
[ES1]

Returns a string representation of the number.

By default, you get a base 10 numeral as a result:

If you want the numeral to have a different base, you can specify

it via radix:

> 1234..toPrecision(3) // requires exponential notation

'1.23e+3'

> 1234..toPrecision(4)

'1234'

> 1234..toPrecision(5)

'1234.0'

> 1.234.toPrecision(3)

'1.23'

> 123.456.toString()

'123.456'

> 4..toString(2) // binary (base 2)

'100'

> 4.5.toString(2)

'100.1'

> 255..toString(16) // hexadecimal (base 16)

'ff'

> 255.66796875.toString(16)

'ff.ab'

parseInt() provides the inverse operation: it converts a string

that contains an integer (no fraction!) numeral with a given

base, to a number.

17.13.5 Sources

Wikipedia

TypeScript’s built-in typings

MDN web docs for JavaScript

ECMAScript language specification

 Quiz: advanced

See quiz app.

> 1234567890..toString(36)

'kf12oi'

> parseInt('kf12oi', 36)

1234567890

https://github.com/Microsoft/TypeScript/blob/master/lib/
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://tc39.github.io/ecma262/

18 Math

18.1 Data properties

18.2 Exponents, roots, logarithms

18.3 Rounding

18.4 Trigonometric Functions

18.5 Various other functions

18.6 Sources

Math is an object with data properties and methods for processing

numbers. You can see it as a poor man’s module: It was created long

before JavaScript had modules.

18.1 Data properties

Math.E: number
[ES1]

Euler’s number, base of the natural logarithms, approximately

2.7182818284590452354.

Math.LN10: number
[ES1]

The natural logarithm of 10, approximately

2.302585092994046.

Math.LN2: number
[ES1]

The natural logarithm of 2, approximately

0.6931471805599453.

Math.LOG10E: number
[ES1]

The logarithm of e to base 10, approximately

0.4342944819032518.

Math.LOG2E: number
[ES1]

The logarithm of e to base 2, approximately

1.4426950408889634.

Math.PI: number
[ES1]

The mathematical constant π, ratio of a circle’s circumference to

its diameter, approximately 3.1415926535897932.

Math.SQRT1_2: number
[ES1]

The square root of 1/2, approximately 0.7071067811865476.

Math.SQRT2: number
[ES1]

The square root of 2, approximately 1.4142135623730951.

18.2 Exponents, roots, logarithms

Math.cbrt(x: number): number
[ES6]

Returns the cube root of x.

Math.exp(x: number): number
[ES1]

Returns e
x
 (e being Euler’s number). The inverse of Math.log().

Math.expm1(x: number): number
[ES6]

Returns Math.exp(x)-1. The inverse of Math.log1p(). Very small

numbers (fractions close to 0) are represented with a higher

precision. Therefore, this function returns more precise values

whenever .exp() returns values close to 1.

Math.log(x: number): number
[ES1]

Returns the natural logarithm of x (to base e, Euler’s number).

The inverse of Math.exp().

> Math.cbrt(8)

2

> Math.exp(0)

1

> Math.exp(1) === Math.E

true

> Math.log(1)

0

> Math.log(Math.E)

1

Math.log1p(x: number): number
[ES6]

Returns Math.log(1 + x). The inverse of Math.expm1(). Very

small numbers (fractions close to 0) are represented with a

higher precision. Therefore, you can provide this function with a

more precise argument whenever the argument for .log() is

close to 1.

Math.log10(x: number): number
[ES6]

Returns the logarithm of x to base 10. The inverse of 10 ** x.

Math.log2(x: number): number
[ES6]

Returns the logarithm of x to base 2. The inverse of 2 ** x.

Math.pow(x: number, y: number): number
[ES1]

Returns x
y
, x to the power of y. The same as x ** y.

> Math.log(Math.E ** 2)

2

> Math.log10(1)

0

> Math.log10(10)

1

> Math.log10(100)

2

> Math.log2(1)

0

> Math.log2(2)

1

> Math.log2(4)

2

Math.sqrt(x: number): number
[ES1]

Returns the square root of x. The inverse of x ** 2.

> Math.pow(2, 3)

8

> Math.pow(25, 0.5)

5

> Math.sqrt(9)

3

18.3 Rounding

Rounding means converting an arbitrary number to an integer (a

number without a decimal fraction). The following functions

implement different approaches to rounding.

Math.ceil(x: number): number
[ES1]

Returns the smallest (closest to −∞) integer i with x ≤ i.

Math.floor(x: number): number
[ES1]

Returns the largest (closest to +∞) integer i with i ≤ x.

Math.round(x: number): number
[ES1]

Returns the integer that is closest to x. If the decimal fraction of

x is .5 then .round() rounds up (to the integer closer to positive

infinity):

> Math.ceil(2.1)

3

> Math.ceil(2.9)

3

> Math.floor(2.1)

2

> Math.floor(2.9)

2

> Math.round(2.4)

2

> Math.round(2.5)

3

Math.trunc(x: number): number
[ES6]

Removes the decimal fraction of x and returns the resulting

integer.

Tbl. 12 shows the results of the rounding functions for a few

representative inputs.

Table 12: Rounding functions of Math. Note how

things change with negative numbers because “larger”

always means “closer to positive infinity”.

-2.9 -2.5 -2.1 2.1 2.5 2.9

Math.floor -3 -3 -3 2 2 2

Math.ceil -2 -2 -2 3 3 3

Math.round -3 -2 -2 2 3 3

Math.trunc -2 -2 -2 2 2 2

> Math.trunc(2.1)

2

> Math.trunc(2.9)

2

18.4 Trigonometric Functions

All angles are specified in radians. Use the following two functions to

convert between degrees and radians.

Math.acos(x: number): number
[ES1]

Returns the arc cosine (inverse cosine) of x.

Math.acosh(x: number): number
[ES6]

Returns the inverse hyperbolic cosine of x.

Math.asin(x: number): number
[ES1]

Returns the arc sine (inverse sine) of x.

function degreesToRadians(degrees) {

 return degrees / 180 * Math.PI;

}

assert.equal(degreesToRadians(90), Math.PI/2);

function radiansToDegrees(radians) {

 return radians / Math.PI * 180;

}

assert.equal(radiansToDegrees(Math.PI), 180);

> Math.acos(0)

1.5707963267948966

> Math.acos(1)

0

> Math.asin(0)

0

> Math.asin(1)

1.5707963267948966

Math.asinh(x: number): number
[ES6]

Returns the inverse hyperbolic sine of x.

Math.atan(x: number): number
[ES1]

Returns the arc tangent (inverse tangent) of x.

Math.atanh(x: number): number
[ES6]

Returns the inverse hyperbolic tangent of x.

Math.atan2(y: number, x: number): number
[ES1]

Returns the arc tangent of the quotient y/x.

Math.cos(x: number): number
[ES1]

Returns the cosine of x.

Math.cosh(x: number): number
[ES6]

Returns the hyperbolic cosine of x.

Math.hypot(...values: number[]): number
[ES6]

Returns the square root of the sum of the squares of values

(Pythagoras’ theorem):

> Math.cos(0)

1

> Math.cos(Math.PI)

-1

Math.sin(x: number): number
[ES1]

Returns the sine of x.

Math.sinh(x: number): number
[ES6]

Returns the hyperbolic sine of x.

Math.tan(x: number): number
[ES1]

Returns the tangent of x.

Math.tanh(x: number): number;
[ES6]

Returns the hyperbolic tangent of x.

> Math.hypot(3, 4)

5

> Math.sin(0)

0

> Math.sin(Math.PI / 2)

1

> Math.tan(0)

0

> Math.tan(1)

1.5574077246549023

18.5 Various other functions

Math.abs(x: number): number
[ES1]

Returns the absolute value of x.

Math.clz32(x: number): number
[ES6]

Counts the leading zero bits in the 32-bit integer x. Used in DSP

algorithms.

Math.max(...values: number[]): number
[ES1]

Converts values to numbers and returns the largest one.

Math.min(...values: number[]): number
[ES1]

> Math.abs(3)

3

> Math.abs(-3)

3

> Math.abs(0)

0

> Math.clz32(0b01000000000000000000000000000000)

1

> Math.clz32(0b00100000000000000000000000000000)

2

> Math.clz32(2)

30

> Math.clz32(1)

31

> Math.max(3, -5, 24)

24

Converts values to numbers and returns the smallest one.

Math.random(): number
[ES1]

Returns a pseudo-random number n where 0 ≤ n < 1.

Computing a random integer i where 0 ≤ i < max:

Math.sign(x: number): number
[ES6]

Returns the sign of a number:

> Math.min(3, -5, 24)

-5

function getRandomInteger(max) {

 return Math.floor(Math.random() * max);

}

> Math.sign(-8)

-1

> Math.sign(0)

0

> Math.sign(3)

1

18.6 Sources

Wikipedia

TypeScript’s built-in typings

MDN web docs for JavaScript

ECMAScript language specification

https://github.com/Microsoft/TypeScript/blob/master/lib/
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://tc39.github.io/ecma262/

19 Unicode – a brief

introduction (advanced)

19.1 Code points vs. code units

19.1.1 Code points

19.1.2 Encoding Unicode code points: UTF-32, UTF-16,

UTF-8

19.2 Encodings used in web development: UTF-16 and UTF-8

19.2.1 Source code internally: UTF-16

19.2.2 Strings: UTF-16

19.2.3 Source code in files: UTF-8

19.3 Grapheme clusters – the real characters

Unicode is a standard for representing and managing text in most of

the world’s writing systems. Virtually all modern software that works

with text, supports Unicode. The standard is maintained by the

Unicode Consortium. A new version of the standard is published

every year (with new emojis, etc.). Unicode version 1.0.0 was

published in October 1991.

19.1 Code points vs. code units

Two concepts are crucial for understanding Unicode:

Code points are numbers that represent Unicode characters.

Code units are numbers that encode code points, to store or

transmit Unicode text. One or more code units encode a single

code point. Each code unit has the same size, which depends on

the encoding format that is used. The most popular format,

UTF-8, has 8-bit code units.

19.1.1 Code points

The first version of Unicode had 16-bit code points. Since then, the

number of characters has grown considerably and the size of code

points was extended to 21 bits. These 21 bits are partitioned in 17

planes, with 16 bits each:

Plane 0: Basic Multilingual Plane (BMP), 0x0000–0xFFFF

Contains characters for almost all modern languages (Latin

characters, Asian characters, etc.) and many symbols.

Plane 1: Supplementary Multilingual Plane (SMP), 0x10000–

0x1FFFF

Supports historic writing systems (e.g., Egyptian

hieroglyphs and cuneiform) and additional modern writing

systems.

Supports emojis and many other symbols.

Plane 2: Supplementary Ideographic Plane (SIP), 0x20000–

0x2FFFF

Contains additional CJK (Chinese, Japanese, Korean)

ideographs.

Plane 3–13: Unassigned

Plane 14: Supplementary Special-Purpose Plane (SSP),

0xE0000–0xEFFFF

Contains non-graphical characters such as tag characters

and glyph variation selectors.

Plane 15–16: Supplementary Private Use Area (S PUA A/B),

0x0F0000–0x10FFFF

Available for character assignment by parties outside the

ISO and the Unicode Consortium. Not standardized.

Planes 1-16 are called supplementary planes or astral planes.

Let’s check the code points of a few characters:

The hexadecimal numbers of the code points tell us that the first

three characters reside in plane 0 (within 16 bits), while the emoji

resides in plane 1.

> 'A'.codePointAt(0).toString(16)

'41'

> 'ü'.codePointAt(0).toString(16)

'fc'

> 'π'.codePointAt(0).toString(16)

'3c0'

> '🙂'.codePointAt(0).toString(16)

'1f642'

19.1.2 Encoding Unicode code points:

UTF-32, UTF-16, UTF-8

The main ways of encoding code points are three Unicode

Transformation Formats (UTFs): UTF-32, UTF-16, UTF-8. The

number at the end of each format indicates the size (in bits) of its

code units.

19.1.2.1 UTF-32 (Unicode Transformation Format 32)

UTF-32 uses 32 bits to store code units, resulting in one code unit

per code point. This format is the only one with fixed-length

encoding; all others use a varying number of code units to encode a

single code point.

19.1.2.2 UTF-16 (Unicode Transformation Format 16)

UTF-16 uses 16-bit code units. It encodes code points as follows:

The BMP (first 16 bits of Unicode) is stored in single code units.

Astral planes: The BMP comprises 0x10_000 code points. Given

that Unicode has a total of 0x110_000 code points, we still need

to encode the remaining 0x100_000 code points (20 bits). The

BMP has two ranges of unassigned code points that provide the

necessary storage:

Most significant 10 bits (leading surrogate): 0xD800-

0xDBFF

Least significant 10 bits (trailing surrogate): 0xDC00-

0xDFFF

In other words, the two hexadecimal digits at the end contribute 8

bits. But we can only use those 8 bits if a BMP starts with one of the

following 2-digit pairs:

D8, D9, DA, DB

DC, DD, DE, DF

Per surrogate, we have a choice between 4 pairs, which is where the

remaining 2 bits come from.

As a consequence, each UTF-16 code unit is always either a leading

surrogate, a trailing surrogate, or encodes a BMP code point.

These are two examples of UTF-16-encoded code points:

Code point 0x03C0 (π) is in the BMP and can therefore be

represented by a single UTF-16 code unit: 0x03C0.

Code point 0x1F642 (🙂) is in an astral plane and represented by

two code units: 0xD83D and 0xDE42.

19.1.2.3 UTF-8 (Unicode Transformation Format 8)

UTF-8 has 8-bit code units. It uses 1–4 code units to encode a code

point:

Code

points
Code units

0000–007F 0bbbbbbb (7 bits)

Code

points
Code units

0080–07FF 110bbbbb, 10bbbbbb (5+6 bits)

0800–FFFF 1110bbbb, 10bbbbbb, 10bbbbbb (4+6+6 bits)

10000–

1FFFFF

11110bbb, 10bbbbbb, 10bbbbbb, 10bbbbbb

(3+6+6+6 bits)

Notes:

The bit prefix of each code unit tells us:

Is it first in a series of code units? If yes, how many code

units will follow?

Is it second or later in a series of code units?

The character mappings in the 0000–007F range are the same

as ASCII, which leads to a degree of backward compatibility with

older software.

Three examples:

Character
Code

point
Code units

A 0x0041 01000001

π 0x03C0 11001111, 10000000

🙂 0x1F642 11110000, 10011111, 10011001,

10000010

19.2 Encodings used in web

development: UTF-16 and UTF-8

The Unicode encoding formats that are used in web development

are: UTF-16 and UTF-8.

19.2.1 Source code internally: UTF-16

The ECMAScript specification internally represents source code as

UTF-16.

19.2.2 Strings: UTF-16

The characters in JavaScript strings are based on UTF-16 code units:

For more information on Unicode and strings, consult §20.6 “Atoms

of text: Unicode characters, JavaScript characters, grapheme

clusters”.

19.2.3 Source code in files: UTF-8

HTML and JavaScript are almost always encoded as UTF-8 these

days.

> const smiley = '🙂';

> smiley.length

2

> smiley === '\uD83D\uDE42' // code units

true

For example, this is how HTML files usually start now:

For HTML modules loaded in web browsers, the standard encoding

is also UTF-8.

<!doctype html>

<html>

<head>

 <meta charset="UTF-8">

···

https://html.spec.whatwg.org/multipage/webappapis.html#fetch-a-single-module-script

19.3 Grapheme clusters – the real

characters

The concept of a character becomes remarkably complex once you

consider many of the world’s writing systems.

On one hand, there are Unicode characters, as represented by code

points.

On the other hand, there are grapheme clusters. A grapheme cluster

corresponds most closely to a symbol displayed on screen or paper. It

is defined as “a horizontally segmentable unit of text”. Therefore,

official Unicode documents also call it a user-perceived character.

One or more code point characters are needed to encode a grapheme

cluster.

For example, the Devanagari kshi is encoded by 4 code points. We

use spreading (...) to split a string into an Array with code point

characters (for details, consult §20.6.1 “Working with code points”):

Flag emojis are also grapheme clusters and composed of two code

point characters – for example, the flag of Japan:

 More information on grapheme clusters

https://unicode.org/reports/tr29/#Grapheme_Cluster_Boundaries

For more information, consult “Let’s Stop Ascribing Meaning to

Code Points” by Manish Goregaokar.

 Quiz

See quiz app.

https://manishearth.github.io/blog/2017/01/14/stop-ascribing-meaning-to-unicode-code-points/

20 Strings

20.1 Plain string literals

20.1.1 Escaping

20.2 Accessing characters and code points

20.2.1 Accessing JavaScript characters

20.2.2 Accessing Unicode code point characters via for-of

and spreading

20.3 String concatenation via +

20.4 Converting to string

20.4.1 Stringifying objects

20.4.2 Customizing the stringification of objects

20.4.3 An alternate way of stringifying values

20.5 Comparing strings

20.6 Atoms of text: Unicode characters, JavaScript characters,

grapheme clusters

20.6.1 Working with code points

20.6.2 Working with code units (char codes)

20.6.3 Caveat: grapheme clusters

20.7 Quick reference: Strings

20.7.1 Converting to string

20.7.2 Numeric values of characters

20.7.3 String operators

20.7.4 String.prototype: finding and matching

20.7.5 String.prototype: extracting

20.7.6 String.prototype: combining

20.7.7 String.prototype: transforming

20.7.8 Sources

Strings are primitive values in JavaScript and immutable. That is,

string-related operations always produce new strings and never

change existing strings.

20.1 Plain string literals

Plain string literals are delimited by either single quotes or double

quotes:

Single quotes are used more often because it makes it easier to

mention HTML, where double quotes are preferred.

The next chapter covers template literals, which give you:

String interpolation

Multiple lines

Raw string literals (backslash has no special meaning)

20.1.1 Escaping

The backslash lets you create special characters:

Unix line break: '\n'

Windows line break: '\r\n'

Tab: '\t'

Backslash: '\\'

The backslash also lets you use the delimiter of a string literal inside

that literal:

const str1 = 'abc';

const str2 = "abc";

assert.equal(str1, str2);

assert.equal(

 'She said: "Let\'s go!"',

 "She said: \"Let's go!\"");

20.2 Accessing characters and

code points

20.2.1 Accessing JavaScript characters

JavaScript has no extra data type for characters – characters are

always represented as strings.

20.2.2 Accessing Unicode code point

characters via for-of and spreading

Iterating over strings via for-of or spreading (...) visits Unicode

code point characters. Each code point character is encoded by 1–2

JavaScript characters. For more information, see §20.6 “Atoms of

text: Unicode characters, JavaScript characters, grapheme clusters”.

This is how you iterate over the code point characters of a string via

for-of:

const str = 'abc';

// Reading a character at a given index

assert.equal(str[1], 'b');

// Counting the characters in a string:

assert.equal(str.length, 3);

for (const ch of 'x🙂y') {

 console.log(ch);

}

// Output:

And this is how you convert a string into an Array of code point

characters via spreading:

// 'x'

// '🙂'

// 'y'

assert.deepEqual([...'x🙂y'], ['x', '🙂', 'y']);

20.3 String concatenation via +

If at least one operand is a string, the plus operator (+) converts any

non-strings to strings and concatenates the result:

The assignment operator += is useful if you want to assemble a string,

piece by piece:

 Concatenating via + is efficient

Using + to assemble strings is quite efficient because most

JavaScript engines internally optimize it.

 Exercise: Concatenating strings

exercises/strings/concat_string_array_test.mjs

assert.equal(3 + ' times ' + 4, '3 times 4');

let str = ''; // must be `let`!

str += 'Say it';

str += ' one more';

str += ' time';

assert.equal(str, 'Say it one more time');

20.4 Converting to string

These are three ways of converting a value x to a string:

String(x)

''+x

x.toString() (does not work for undefined and null)

Recommendation: use the descriptive and safe String().

Examples:

Pitfall for booleans: If you convert a boolean to a string via String(),

you generally can’t convert it back via Boolean():

The only string for which Boolean() returns false, is the empty

string.

20.4.1 Stringifying objects

assert.equal(String(undefined), 'undefined');

assert.equal(String(null), 'null');

assert.equal(String(false), 'false');

assert.equal(String(true), 'true');

assert.equal(String(123.45), '123.45');

> String(false)

'false'

> Boolean('false')

true

Plain objects have a default string representation that is not very

useful:

Arrays have a better string representation, but it still hides much

information:

Stringifying functions, returns their source code:

20.4.2 Customizing the stringification of

objects

You can override the built-in way of stringifying objects by

implementing the method toString():

> String({a: 1})

'[object Object]'

> String(['a', 'b'])

'a,b'

> String(['a', ['b']])

'a,b'

> String([1, 2])

'1,2'

> String(['1', '2'])

'1,2'

> String([true])

'true'

> String(['true'])

'true'

> String(true)

'true'

> String(function f() {return 4})

'function f() {return 4}'

20.4.3 An alternate way of stringifying

values

The JSON data format is a text representation of JavaScript values.

Therefore, JSON.stringify() can also be used to convert values to

strings:

The caveat is that JSON only supports null, booleans, numbers,

strings, Arrays, and objects (which it always treats as if they were

created by object literals).

Tip: The third parameter lets you switch on multiline output and

specify how much to indent – for example:

This statement produces the following output:

{

 "first": "Jane",

 "last": "Doe"

}

const obj = {

 toString() {

 return 'hello';

 }

};

assert.equal(String(obj), 'hello');

> JSON.stringify({a: 1})

'{"a":1}'

> JSON.stringify(['a', ['b']])

'["a",["b"]]'

console.log(JSON.stringify({first: 'Jane', last: 'Doe'}, null, 2

20.5 Comparing strings

Strings can be compared via the following operators:

< <= > >=

There is one important caveat to consider: These operators compare

based on the numeric values of JavaScript characters. That means

that the order that JavaScript uses for strings is different from the

one used in dictionaries and phone books:

Properly comparing text is beyond the scope of this book. It is

supported via the ECMAScript Internationalization API (Intl).

> 'A' < 'B' // ok

true

> 'a' < 'B' // not ok

false

> 'ä' < 'b' // not ok

false

https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Intl

20.6 Atoms of text: Unicode

characters, JavaScript characters,

grapheme clusters

Quick recap of §19 “Unicode – a brief introduction”:

Unicode characters are represented by code points – numbers

which have a range of 21 bits.

In JavaScript strings, Unicode is implemented via code units

based on the encoding format UTF-16. Each code unit is a 16-bit

number. One to two of code units are needed to encode a single

code point.

Therefore, each JavaScript character is represented by a

code unit. In the JavaScript standard library, code units are

also called char codes. Which is what they are: numbers for

JavaScript characters.

Grapheme clusters (user-perceived characters) are written

symbols, as displayed on screen or paper. One or more Unicode

characters are needed to encode a single grapheme cluster.

The following code demonstrates that a single Unicode character

comprises one or two JavaScript characters. We count the latter via

.length:

// 3 Unicode characters, 3 JavaScript characters:

assert.equal('abc'.length, 3);

// 1 Unicode character, 2 JavaScript characters:

assert.equal('🙂'.length, 2);

The following table summarizes the concepts we have just explored:

Entity
Numeric

representation
Size

Encoded

via

Grapheme

cluster

1+ code

points

Unicode

character

Code point 21

bits

1–2 code

units

JavaScript

character

UTF-16 code unit 16

bits

–

20.6.1 Working with code points

Let’s explore JavaScript’s tools for working with code points.

A code point escape lets you specify a code point hexadecimally. It

produces one or two JavaScript characters.

String.fromCodePoint() converts a single code point to 1–2

JavaScript characters:

.codePointAt() converts 1–2 JavaScript characters to a single code

point:

> '\u{1F642}'

'🙂'

> String.fromCodePoint(0x1F642)

'🙂'

> '🙂'.codePointAt(0).toString(16)

'1f642'

You can iterate over a string, which visits Unicode characters (not

JavaScript characters). Iteration is described later in this book. One

way of iterating is via a for-of loop:

Spreading (...) into Array literals is also based on iteration and

visits Unicode characters:

That makes it a good tool for counting Unicode characters:

20.6.2 Working with code units (char

codes)

Indices and lengths of strings are based on JavaScript characters (as

represented by UTF-16 code units).

To specify a code unit hexadecimally, you can use a code unit escape:

const str = '🙂a';

assert.equal(str.length, 3);

for (const codePointChar of str) {

 console.log(codePointChar);

}

// Output:

// '🙂'

// 'a'

> [...'🙂a']

['🙂', 'a']

> [...'🙂a'].length

2

> '🙂a'.length

3

And you can use String.fromCharCode(). Char code is the standard

library’s name for code unit:

To get the char code of a character, use .charCodeAt():

20.6.3 Caveat: grapheme clusters

When working with text that may be written in any human language,

it’s best to split at the boundaries of grapheme clusters, not at the

boundaries of Unicode characters.

TC39 is working on Intl.Segmenter, a proposal for the ECMAScript

Internationalization API to support Unicode segmentation (along

grapheme cluster boundaries, word boundaries, sentence

boundaries, etc.).

Until that proposal becomes a standard, you can use one of several

libraries that are available (do a web search for “JavaScript

grapheme”).

> '\uD83D\uDE42'

'🙂'

> String.fromCharCode(0xD83D) + String.fromCharCode(0xDE42)

'🙂'

> '🙂'.charCodeAt(0).toString(16)

'd83d'

https://github.com/tc39/proposal-intl-segmenter

20.7 Quick reference: Strings

Strings are immutable; none of the string methods ever modify their

strings.

20.7.1 Converting to string

Tbl. 13 describes how various values are converted to strings.

Table 13: Converting values to strings.

x String(x)

undefined 'undefined'

null 'null'

Boolean value false → 'false', true → 'true'

Number value Example: 123 → '123'

String value x (input, unchanged)

An object Configurable via, e.g., toString()

20.7.2 Numeric values of characters

Char code: represents a JavaScript character numerically.

JavaScript’s name for Unicode code unit.

Size: 16 bits, unsigned

Convert number to character: String.fromCharCode()
[ES1]

Convert character to number: string method .charCodeAt()

[ES1]

Code point: represents a Unicode character numerically.

Size: 21 bits, unsigned (17 planes, 16 bits each)

Convert number to character: String.fromCodePoint()
[ES6]

Convert character to number: string method .codePointAt()

[ES6]

20.7.3 String operators

20.7.4 String.prototype: finding and

matching

(String.prototype is where the methods of strings are stored.)

.endsWith(searchString: string, endPos=this.length):

boolean
[ES6]

Returns true if the string would end with searchString if its

length were endPos. Returns false otherwise.

.includes(searchString: string, startPos=0): boolean
[ES6]

// Access characters via []

const str = 'abc';

assert.equal(str[1], 'b');

// Concatenate strings via +

assert.equal('a' + 'b' + 'c', 'abc');

assert.equal('take ' + 3 + ' oranges', 'take 3 oranges');

> 'foo.txt'.endsWith('.txt')

true

> 'abcde'.endsWith('cd', 4)

true

Returns true if the string contains the searchString and false

otherwise. The search starts at startPos.

.indexOf(searchString: string, minIndex=0): number
[ES1]

Returns the lowest index at which searchString appears within

the string or -1, otherwise. Any returned index will

beminIndex` or higher.

.lastIndexOf(searchString: string, maxIndex=Infinity):

number
[ES1]

Returns the highest index at which searchString appears within

the string or -1, otherwise. Any returned index will

bemaxIndex` or lower.

> 'abc'.includes('b')

true

> 'abc'.includes('b', 2)

false

> 'abab'.indexOf('a')

0

> 'abab'.indexOf('a', 1)

2

> 'abab'.indexOf('c')

-1

> 'abab'.lastIndexOf('ab', 2)

2

> 'abab'.lastIndexOf('ab', 1)

0

> 'abab'.lastIndexOf('ab')

2

[1 of 2] .match(regExp: string | RegExp): RegExpMatchArray |

null
[ES3]

If regExp is a regular expression with flag /g not set, then

.match() returns the first match for regExp within the string. Or

null if there is no match. If regExp is a string, it is used to create

a regular expression (think parameter of new RegExp()) before

performing the previously mentioned steps.

The result has the following type:

Numbered capture groups become Array indices (which is why

this type extends Array). Named capture groups (ES2018)

become properties of .groups. In this mode, .match() works like

RegExp.prototype.exec().

Examples:

[2 of 2] .match(regExp: RegExp): string[] | null
[ES3]

interface RegExpMatchArray extends Array<string> {

 index: number;

 input: string;

 groups: undefined | {

 [key: string]: string

 };

}

> 'ababb'.match(/a(b+)/)

{ 0: 'ab', 1: 'b', index: 0, input: 'ababb', groups: undefin

> 'ababb'.match(/a(?<foo>b+)/)

{ 0: 'ab', 1: 'b', index: 0, input: 'ababb', groups: { foo:

> 'abab'.match(/x/)

null

If flag /g of regExp is set, .match() returns either an Array with

all matches or null if there was no match.

.search(regExp: string | RegExp): number
[ES3]

Returns the index at which regExp occurs within the string. If

regExp is a string, it is used to create a regular expression (think

parameter of new RegExp()).

.startsWith(searchString: string, startPos=0): boolean
[ES6]

Returns true if searchString occurs in the string at index

startPos. Returns false otherwise.

20.7.5 String.prototype: extracting

.slice(start=0, end=this.length): string
[ES3]

> 'ababb'.match(/a(b+)/g)

['ab', 'abb']

> 'ababb'.match(/a(?<foo>b+)/g)

['ab', 'abb']

> 'abab'.match(/x/g)

null

> 'a2b'.search(/[0-9]/)

1

> 'a2b'.search('[0-9]')

1

> '.gitignore'.startsWith('.')

true

> 'abcde'.startsWith('bc', 1)

true

Returns the substring of the string that starts at (including)

index start and ends at (excluding) index end. If an index is

negative, it is added to .length before it is used (-1 becomes

this.length-1, etc.).

.split(separator: string | RegExp, limit?: number):

string[]
[ES3]

Splits the string into an Array of substrings – the strings that

occur between the separators. The separator can be a string:

It can also be a regular expression:

The last invocation demonstrates that captures made by groups

in the regular expression become elements of the returned

Array.

Warning: .split('') splits a string into JavaScript

characters. That doesn’t work well when dealing with astral

> 'abc'.slice(1, 3)

'bc'

> 'abc'.slice(1)

'bc'

> 'abc'.slice(-2)

'bc'

> 'a | b | c'.split('|')

['a ', ' b ', ' c']

> 'a : b : c'.split(/ *: */)

['a', 'b', 'c']

> 'a : b : c'.split(/(*):(*)/)

['a', ' ', ' ', 'b', ' ', ' ', 'c']

Unicode characters (which are encoded as two JavaScript

characters). For example, emojis are astral:

Instead, it is better to use spreading:

.substring(start: number, end=this.length): string
[ES1]

Use .slice() instead of this method. .substring() wasn’t

implemented consistently in older engines and doesn’t support

negative indices.

20.7.6 String.prototype: combining

.concat(...strings: string[]): string
[ES3]

Returns the concatenation of the string and strings.

'a'.concat('b') is equivalent to 'a'+'b'. The latter is much

more popular.

.padEnd(len: number, fillString=' '): string
[ES2017]

Appends (fragments of) fillString to the string until it has the

desired length len. If it already has or exceeds len, then it is

returned without any changes.

> '🙂X🙂'.split('')

['\uD83D', '\uDE42', 'X', '\uD83D', '\uDE42']

> [...'🙂X🙂']

['🙂', 'X', '🙂']

> 'ab'.concat('cd', 'ef', 'gh')

'abcdefgh'

.padStart(len: number, fillString=' '): string
[ES2017]

Prepends (fragments of) fillString to the string until it has the

desired length len. If it already has or exceeds len, then it is

returned without any changes.

.repeat(count=0): string
[ES6]

Returns the string, concatenated count times.

20.7.7 String.prototype: transforming

.normalize(form: 'NFC'|'NFD'|'NFKC'|'NFKD' = 'NFC'): string

[ES6]

Normalizes the string according to the Unicode Normalization

Forms.

> '#'.padEnd(2)

'# '

> 'abc'.padEnd(2)

'abc'

> '#'.padEnd(5, 'abc')

'#abca'

> '#'.padStart(2)

' #'

> 'abc'.padStart(2)

'abc'

> '#'.padStart(5, 'abc')

'abca#'

> '*'.repeat()

''

> '*'.repeat(3)

'***'

https://unicode.org/reports/tr15/

[1 of 2] .replace(searchValue: string | RegExp, replaceValue:

string): string
[ES3]

Replace matches of searchValue with replaceValue. If

searchValue is a string, only the first verbatim occurrence is

replaced. If searchValue is a regular expression without flag /g,

only the first match is replaced. If searchValue is a regular

expression with /g then all matches are replaced.

Special characters in replaceValue are:

$$: becomes $

$n: becomes the capture of numbered group n (alas, $0

stands for the string '$0', it does not refer to the complete

match)

$&: becomes the complete match

$`: becomes everything before the match

$': becomes everything after the match

Examples:

> 'x.x.'.replace('.', '#')

'x#x.'

> 'x.x.'.replace(/./, '#')

'#.x.'

> 'x.x.'.replace(/./g, '#')

'####'

> 'a 2020-04 b'.replace(/([0-9]{4})-([0-9]{2})/, '|$2|')

'a |04| b'

> 'a 2020-04 b'.replace(/([0-9]{4})-([0-9]{2})/, '|$&|')

'a |2020-04| b'

> 'a 2020-04 b'.replace(/([0-9]{4})-([0-9]{2})/, '|$`|')

'a |a | b'

Named capture groups (ES2018) are supported, too:

$<name> becomes the capture of named group name

Example:

[2 of 2] .replace(searchValue: string | RegExp, replacer:

(...args: any[]) => string): string
[ES3]

If the second parameter is a function, occurrences are replaced

with the strings it returns. Its parameters args are:

matched: string. The complete match

g1: string|undefined. The capture of numbered group 1

g2: string|undefined. The capture of numbered group 2

(Etc.)

offset: number. Where was the match found in the input

string?

input: string. The whole input string

Named capture groups (ES2018) are supported, too. If there are

any, an argument is added at the end with an object whose

properties contain the captures:

assert.equal(

 'a 2020-04 b'.replace(

 /(?<year>[0-9]{4})-(?<month>[0-9]{2})/, '|$<month>|'),

 'a |04| b');

const regexp = /([0-9]{4})-([0-9]{2})/;

const replacer = (all, year, month) => '|' + all + '|';

assert.equal(

 'a 2020-04 b'.replace(regexp, replacer),

 'a |2020-04| b');

.toUpperCase(): string
[ES1]

Returns a copy of the string in which all lowercase alphabetic

characters are converted to uppercase. How well that works for

various alphabets, depends on the JavaScript engine.

.toLowerCase(): string
[ES1]

Returns a copy of the string in which all uppercase alphabetic

characters are converted to lowercase. How well that works for

various alphabets, depends on the JavaScript engine.

.trim(): string
[ES5]

Returns a copy of the string in which all leading and trailing

whitespace (spaces, tabs, line terminators, etc.) is gone.

const regexp = /(?<year>[0-9]{4})-(?<month>[0-9]{2})/;

const replacer = (...args) => {

 const groups=args.pop();

 return '|' + groups.month + '|';

};

assert.equal(

 'a 2020-04 b'.replace(regexp, replacer),

 'a |04| b');

> '-a2b-'.toUpperCase()

'-A2B-'

> 'αβγ'.toUpperCase()

'ΑΒΓ'

> '-A2B-'.toLowerCase()

'-a2b-'

> 'ΑΒΓ'.toLowerCase()

'αβγ'

.trimEnd(): string
[ES2019]

Similar to .trim() but only the end of the string is trimmed:

.trimStart(): string
[ES2019]

Similar to .trim() but only the beginning of the string is

trimmed:

20.7.8 Sources

TypeScript’s built-in typings

MDN web docs for JavaScript

ECMAScript language specification

 Exercise: Using string methods

exercises/strings/remove_extension_test.mjs

 Quiz

See quiz app.

> '\r\n#\t '.trim()

'#'

> ' abc '.trim()

'abc'

> ' abc '.trimEnd()

' abc'

> ' abc '.trimStart()

'abc '

https://github.com/Microsoft/TypeScript/blob/master/lib/
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://tc39.github.io/ecma262/

21 Using template literals

and tagged templates

21.1 Disambiguation: “template”

21.2 Template literals

21.3 Tagged templates

21.3.1 Cooked vs. raw template strings (advanced)

21.3.2 Tag function library: lit-html

21.3.3 Tag function library: re-template-tag

21.3.4 Tag function library: graphql-tag

21.4 Raw string literals

21.5 (Advanced)

21.6 Multiline template literals and indentation

21.6.1 Fix: template tag for dedenting

21.6.2 Fix: .trim()

21.7 Simple templating via template literals

21.7.1 A more complex example

21.7.2 Simple HTML-escaping

Before we dig into the two features template literal and tagged

template, let’s first examine the multiple meanings of the term

template.

21.1 Disambiguation: “template”

The following three things are significantly different despite all

having template in their names and despite all of them looking

similar:

A text template is a function from data to text. It is frequently

used in web development and often defined via text files. For

example, the following text defines a template for the library

Handlebars:

This template has two blanks to be filled in: title and body. It is

used like this:

A template literal is similar to a string literal, but has additional

features – for example, interpolation. It is delimited by

backticks:

<div class="entry">

 <h1>{{title}}</h1>

 <div class="body">

 {{body}}

 </div>

</div>

// First step: retrieve the template text, e.g. from a text

const tmplFunc = Handlebars.compile(TMPL_TEXT); // compile s

const data = {title: 'My page', body: 'Welcome to my page!'}

const html = tmplFunc(data);

const num = 5;

assert.equal(`Count: ${num}!`, 'Count: 5!');

https://handlebarsjs.com/

Syntactically, a tagged template is a template literal that follows

a function (or rather, an expression that evaluates to a function).

That leads to the function being called. Its arguments are

derived from the contents of the template literal.

Note that getArgs() receives both the text of the literal and the

data interpolated via ${}.

const getArgs = (...args) => args;

assert.deepEqual(

 getArgs`Count: ${5}!`,

 [['Count: ', '!'], 5]);

21.2 Template literals

A template literal has two new features compared to a normal string

literal.

First, it supports string interpolation: if you put a dynamically

computed value inside a ${}, it is converted to a string and inserted

into the string returned by the literal.

Second, template literals can span multiple lines:

Template literals always produce strings.

const MAX = 100;

function doSomeWork(x) {

 if (x > MAX) {

 throw new Error(`At most ${MAX} allowed: ${x}!`);

 }

 // ···

}

assert.throws(

 () => doSomeWork(101),

 {message: 'At most 100 allowed: 101!'});

const str = `this is

a text with

multiple lines`;

21.3 Tagged templates

The expression in line A is a tagged template. It is equivalent to

invoking tagFunc() with the arguments listed in the Array in line B.

The function tagFunc before the first backtick is called a tag function.

Its arguments are:

Template strings (first argument): an Array with the text

fragments surrounding the interpolations ${}.

In the example: ['Setting ', ' is ', '!']

Substitutions (remaining arguments): the interpolated values.

In the example: 'dark mode' and true

The static (fixed) parts of the literal (the template strings) are kept

separate from the dynamic parts (the substitutions).

A tag function can return arbitrary values.

function tagFunc(...args) {

 return args;

}

const setting = 'dark mode';

const value = true;

assert.deepEqual(

 tagFunc`Setting ${setting} is ${value}!`, // (A)

 [['Setting ', ' is ', '!'], 'dark mode', true] // (B)

);

21.3.1 Cooked vs. raw template strings

(advanced)

So far, we have only seen the cooked interpretation of template

strings. But tag functions actually get two interpretations:

A cooked interpretation where backslashes have special

meaning. For example, \t produces a tab character. This

interpretation of the template strings is stored as an Array in the

first argument.

A raw interpretation where backslashes do not have special

meaning. For example, \t produces two characters – a backslash

and a t. This interpretation of the template strings is stored in

property .raw of the first argument (an Array).

The following tag function cookedRaw uses both interpretations:

function cookedRaw(templateStrings, ...substitutions) {

 return {

 cooked: [...templateStrings], // copy just the Array element

 raw: templateStrings.raw,

 substitutions,

 };

}

assert.deepEqual(

 cookedRaw`\tab${'subst'}\newline\\`,

 {

 cooked: ['\tab', '\newline\\'],

 raw: ['\\tab', '\\newline\\\\'],

 substitutions: ['subst'],

 });

The raw interpretation enables raw string literals via String.raw

(described later) and similar applications.

Tagged templates are great for supporting small embedded

languages (so-called domain-specific languages). We’ll continue

with a few examples.

21.3.2 Tag function library: lit-html

lit-html is a templating library that is based on tagged templates and

used by the frontend framework Polymer:

repeat() is a custom function for looping. Its 2nd parameter

produces unique keys for the values returned by the 3rd parameter.

Note the nested tagged template used by that parameter.

21.3.3 Tag function library: re-template-

tag

import {html, render} from 'lit-html';

const template = (items) => html`

 ${

 repeat(items,

 (item) => item.id,

 (item, index) => html`${index}. ${item.name}`

)

 }

`;

https://github.com/Polymer/lit-html
https://www.polymer-project.org/

re-template-tag is a simple library for composing regular

expressions. Templates tagged with re produce regular expressions.

The main benefit is that you can interpolate regular expressions and

plain text via ${} (line A):

21.3.4 Tag function library: graphql-tag

The library graphql-tag lets you create GraphQL queries via tagged

templates:

Additionally, there are plugins for pre-compiling such queries in

Babel, TypeScript, etc.

const RE_YEAR = re`(?<year>[0-9]{4})`;

const RE_MONTH = re`(?<month>[0-9]{2})`;

const RE_DAY = re`(?<day>[0-9]{2})`;

const RE_DATE = re`/${RE_YEAR}-${RE_MONTH}-${RE_DAY}/u`; // (A)

const match = RE_DATE.exec('2017-01-27');

assert.equal(match.groups.year, '2017');

import gql from 'graphql-tag';

const query = gql`

 {

 user(id: 5) {

 firstName

 lastName

 }

 }

 `;

https://github.com/rauschma/re-template-tag
https://github.com/apollographql/graphql-tag

21.4 Raw string literals

Raw string literals are implemented via the tag function String.raw.

They are string literals where backslashes don’t do anything special

(such as escaping characters, etc.):

This helps whenever data contains backslashes – for example, strings

with regular expressions:

All three regular expressions are equivalent. With a normal string

literal, you have to write the backslash twice, to escape it for that

literal. With a raw string literal, you don’t have to do that.

Raw string literals are also useful for specifying Windows filename

paths:

assert.equal(String.raw`\back`, '\\back');

const regex1 = /^\./;

const regex2 = new RegExp('^\\.');

const regex3 = new RegExp(String.raw`^\.`);

const WIN_PATH = String.raw`C:\foo\bar`;

assert.equal(WIN_PATH, 'C:\\foo\\bar');

21.5 (Advanced)

All remaining sections are advanced

21.6 Multiline template literals and

indentation

If you put multiline text in template literals, two goals are in conflict:

On one hand, the template literal should be indented to fit inside the

source code. On the other hand, the lines of its content should start

in the leftmost column.

For example:

Due to the indentation, the template literal fits well into the source

code. Alas, the output is also indented. And we don’t want the return

at the beginning and the return plus two spaces at the end.

function div(text) {

 return `

 <div>

 ${text}

 </div>

 `;

}

console.log('Output:');

console.log(

 div('Hello!')

 // Replace spaces with mid-dots:

 .replace(/ /g, '·')

 // Replace \n with #\n:

 .replace(/\n/g, '#\n')

);

Output:

#

····<div>#

······Hello!#

There are two ways to fix this: via a tagged template or by trimming

the result of the template literal.

21.6.1 Fix: template tag for dedenting

The first fix is to use a custom template tag that removes the

unwanted whitespace. It uses the first line after the initial line break

to determine in which column the text starts and shortens the

indentation everywhere. It also removes the line break at the very

beginning and the indentation at the very end. One such template tag

is dedent by Desmond Brand:

This time, the output is not indented:

21.6.2 Fix: .trim()

····</div>#

··

import dedent from 'dedent';

function divDedented(text) {

 return dedent`

 <div>

 ${text}

 </div>

 `.replace(/\n/g, '#\n');

}

console.log('Output:');

console.log(divDedented('Hello!'));

Output:

<div>#

 Hello!#

</div>

https://github.com/dmnd/dedent

The second fix is quicker, but also dirtier:

The string method .trim() removes the superfluous whitespace at

the beginning and at the end, but the content itself must start in the

leftmost column. The advantage of this solution is that you don’t

need a custom tag function. The downside is that it looks ugly.

The output is the same as with dedent:

function divDedented(text) {

 return `

<div>

 ${text}

</div>

 `.trim().replace(/\n/g, '#\n');

}

console.log('Output:');

console.log(divDedented('Hello!'));

Output:

<div>#

 Hello!#

</div>

21.7 Simple templating via

template literals

While template literals look like text templates, it is not immediately

obvious how to use them for (text) templating: A text template gets

its data from an object, while a template literal gets its data from

variables. The solution is to use a template literal in the body of a

function whose parameter receives the templating data – for

example:

21.7.1 A more complex example

As a more complex example, we’d like to take an Array of addresses

and produce an HTML table. This is the Array:

The function tmpl() that produces the HTML table looks as follows:

const tmpl = (data) => `Hello ${data.name}!`;

assert.equal(tmpl({name: 'Jane'}), 'Hello Jane!');

const addresses = [

 { first: '<Jane>', last: 'Bond' },

 { first: 'Lars', last: '<Croft>' },

];

onst tmpl = (addrs) => `

table>

${addrs.map(

 (addr) => `

 <tr>

 <td>${escapeHtml(addr.first)}</td>

 <td>${escapeHtml(addr.last)}</td>

 </tr>

This code contains two templating functions:

The first one (line 1) takes addrs, an Array with addresses, and

returns a string with a table.

The second one (line 4) takes addr, an object containing an

address, and returns a string with a table row. Note the .trim()

at the end, which removes unnecessary whitespace.

The first templating function produces its result by wrapping a table

element around an Array that it joins into a string (line 10). That

Array is produced by mapping the second templating function to

each element of addrs (line 3). It therefore contains strings with table

rows.

The helper function escapeHtml() is used to escape special HTML

characters (line 6 and line 7). Its implementation is shown in the

next subsection.

Let us call tmpl() with the addresses and log the result:

The output is:

 `.trim()

).join('')}

/table>

.trim();

console.log(tmpl(addresses));

<table>

 <tr>

 <td><Jane></td>

 <td>Bond</td>

 </tr><tr>

 <td>Lars</td>

21.7.2 Simple HTML-escaping

The following function escapes plain text so that it is displayed

verbatim in HTML:

 Exercise: HTML templating

Exercise with bonus challenge: exercises/template-

literals/templating_test.mjs

 Quiz

See quiz app.

 <td><Croft></td>

 </tr>

</table>

function escapeHtml(str) {

 return str

 .replace(/&/g, '&') // first!

 .replace(/>/g, '>')

 .replace(/</g, '<')

 .replace(/"/g, '"')

 .replace(/'/g, ''')

 .replace(/`/g, '`')

 ;

}

assert.equal(

 escapeHtml('Rock & Roll'), 'Rock & Roll');

assert.equal(

 escapeHtml('<blank>'), '<blank>');

22 Symbols

22.1 Use cases for symbols

22.1.1 Symbols: values for constants

22.1.2 Symbols: unique property keys

22.2 Publicly known symbols

22.3 Converting symbols

Symbols are primitive values that are created via the factory function

Symbol():

The parameter is optional and provides a description, which is

mainly useful for debugging.

On one hand, symbols are like objects in that each value created by

Symbol() is unique and not compared by value:

On the other hand, they also behave like primitive values. They have

to be categorized via typeof:

And they can be property keys in objects:

const mySymbol = Symbol('mySymbol');

> Symbol() === Symbol()

false

const sym = Symbol();

assert.equal(typeof sym, 'symbol');

const obj = {

 [sym]: 123,

};

22.1 Use cases for symbols

The main use cases for symbols, are:

Values for constants

Unique property keys

22.1.1 Symbols: values for constants

Let’s assume you want to create constants representing the colors

red, orange, yellow, green, blue, and violet. One simple way of doing

so would be to use strings:

On the plus side, logging that constant produces helpful output. On

the minus side, there is a risk of mistaking an unrelated value for a

color because two strings with the same content are considered

equal:

We can fix that problem via symbols:

Let’s use symbol-valued constants to implement a function:

const COLOR_BLUE = 'Blue';

const MOOD_BLUE = 'Blue';

assert.equal(COLOR_BLUE, MOOD_BLUE);

const COLOR_BLUE = Symbol('Blue');

const MOOD_BLUE = Symbol('Blue');

assert.notEqual(COLOR_BLUE, MOOD_BLUE);

22.1.2 Symbols: unique property keys

The keys of properties (fields) in objects are used at two levels:

The program operates at a base level. The keys at that level

reflect the problem that the program solves.

Libraries and ECMAScript operate at a meta-level. The keys at

that level are used by services operating on base-level data and

code. One such key is 'toString'.

const COLOR_RED = Symbol('Red');

const COLOR_ORANGE = Symbol('Orange');

const COLOR_YELLOW = Symbol('Yellow');

const COLOR_GREEN = Symbol('Green');

const COLOR_BLUE = Symbol('Blue');

const COLOR_VIOLET = Symbol('Violet');

function getComplement(color) {

 switch (color) {

 case COLOR_RED:

 return COLOR_GREEN;

 case COLOR_ORANGE:

 return COLOR_BLUE;

 case COLOR_YELLOW:

 return COLOR_VIOLET;

 case COLOR_GREEN:

 return COLOR_RED;

 case COLOR_BLUE:

 return COLOR_ORANGE;

 case COLOR_VIOLET:

 return COLOR_YELLOW;

 default:

 throw new Exception('Unknown color: '+color);

 }

}

assert.equal(getComplement(COLOR_YELLOW), COLOR_VIOLET);

The following code demonstrates the difference:

Properties .x and .y exist at the base level. They hold the coordinates

of the point represented by pt and are used to solve a problem –

computing with points. Method .toString() exists at a meta-level. It

is used by JavaScript to convert this object to a string.

Meta-level properties must never interfere with base-level

properties. That is, their keys must never overlap. That is difficult

when both language and libraries contribute to the meta-level. For

example, it is now impossible to give new meta-level methods simple

names, such as toString because they might clash with existing base-

level names. Python’s solution to this problem is to prefix and suffix

special names with two underscores: __init__, __iter__, __hash__,

etc. However, even with this solution, libraries can’t have their own

meta-level properties because those might be in conflict with future

language properties.

Symbols, used as property keys, help us here: Each symbol is unique

and a symbol key never clashes with any other string or symbol key.

22.1.2.1 Example: a library with a meta-level method

const pt = {

 x: 7,

 y: 4,

 toString() {

 return `(${this.x}, ${this.y})`;

 },

};

assert.equal(String(pt), '(7, 4)');

As an example, let’s assume we are writing a library that treats

objects differently if they implement a special method. This is what

defining a property key for such a method and implementing it for an

object would look like:

The square brackets in line A enable us to specify that the method

must have the key specialMethod. More details are explained in

§28.5.2 “Computed property keys”.

const specialMethod = Symbol('specialMethod');

const obj = {

 _id: 'kf12oi',

 [specialMethod]() { // (A)

 return this._id;

 }

};

assert.equal(obj[specialMethod](), 'kf12oi');

22.2 Publicly known symbols

Symbols that play special roles within ECMAScript are called

publicly known symbols. Examples include:

Symbol.iterator: makes an object iterable. It’s the key of a

method that returns an iterator. For more information on this

topic, see §30 “Synchronous iteration”.

Symbol.hasInstance: customizes how instanceof works. If an

object implements a method with that key, it can be used at the

right-hand side of that operator. For example:

Symbol.toStringTag: influences the default .toString() method.

Note: It’s usually better to override .toString().

 Exercises: Publicly known symbols

Symbol.toStringTag:

exercises/symbols/to_string_tag_test.mjs

const PrimitiveNull = {

 [Symbol.hasInstance](x) {

 return x === null;

 }

};

assert.equal(null instanceof PrimitiveNull, true);

> String({})

'[object Object]'

> String({ [Symbol.toStringTag]: 'is no money' })

'[object is no money]'

Symbol.hasInstance:

exercises/symbols/has_instance_test.mjs

22.3 Converting symbols

What happens if we convert a symbol sym to another primitive type?

Tbl. 14 has the answers.

Table 14: The results of converting symbols to other primitive types.

Convert

to

Explicit

conversion

Coercion (implicit

conv.)

boolean Boolean(sym) → OK !sym → OK

number Number(sym) →

TypeError

sym*2 → TypeError

string String(sym) → OK ''+sym → TypeError

sym.toString() → OK `${sym}` → TypeError

One key pitfall with symbols is how often exceptions are thrown

when converting them to something else. What is the thinking

behind that? First, conversion to number never makes sense and

should be warned about. Second, converting a symbol to a string is

indeed useful for diagnostic output. But it also makes sense to warn

about accidentally turning a symbol into a string (which is a different

kind of property key):

The downside is that the exceptions make working with symbols

more complicated. You have to explicitly convert symbols when

const obj = {};

const sym = Symbol();

assert.throws(

 () => { obj['__'+sym+'__'] = true },

 { message: 'Cannot convert a Symbol value to a string' });

assembling strings via the plus operator:

 Quiz

See quiz app.

> const mySymbol = Symbol('mySymbol');

> 'Symbol I used: ' + mySymbol

TypeError: Cannot convert a Symbol value to a string

> 'Symbol I used: ' + String(mySymbol)

'Symbol I used: Symbol(mySymbol)'

23 Control flow statements

23.1 Conditions of control flow statements

23.2 Controlling loops: break and continue

23.2.1 break

23.2.2 break plus label: leaving any labeled statement

23.2.3 continue

23.3 if statements

23.3.1 The syntax of if statements

23.4 switch statements

23.4.1 A first example of a switch statement

23.4.2 Don’t forget to return or break!

23.4.3 Empty case clauses

23.4.4 Checking for illegal values via a default clause

23.5 while loops

23.5.1 Examples of while loops

23.6 do-while loops

23.7 for loops

23.7.1 Examples of for loops

23.8 for-of loops

23.8.1 const: for-of vs. for

23.8.2 Iterating over iterables

23.8.3 Iterating over [index, element] pairs of Arrays

23.9 for-await-of loops

23.10 for-in loops (avoid)

This chapter covers the following control flow statements:

if statement (ES1)

switch statement (ES3)

while loop (ES1)

do-while loop (ES3)

for loop (ES1)

for-of loop (ES6)

for-await-of loop (ES2018)

for-in loop (ES1)

Before we get to the actual control flow statements, let’s take a look

at two operators for controlling loops.

23.1 Conditions of control flow

statements

if, while, and do-while have conditions that are, in principle,

boolean. However, a condition only has to be truthy (true if coerced

to boolean) in order to be accepted. In other words, the following two

control flow statements are equivalent:

This is a list of all falsy values:

undefined, null

false

0, NaN

''

All other values are truthy. For more information, see §16.2 “Falsy

and truthy values”.

if (value) {}

if (Boolean(value) === true) {}

23.2 Controlling loops: break and

continue

The two operators break and continue can be used to control loops

and other statements while you are inside them.

23.2.1 break

There are two versions of break: one with an operand and one

without an operand. The latter version works inside the following

statements: while, do-while, for, for-of, for-await-of, for-in and

switch. It immediately leaves the current statement:

23.2.2 break plus label: leaving any

labeled statement

break with an operand works everywhere. Its operand is a label.

Labels can be put in front of any statement, including blocks. break

foo leaves the statement whose label is foo:

for (const x of ['a', 'b', 'c']) {

 console.log(x);

 if (x === 'b') break;

 console.log('---')

}

// Output:

// 'a'

// '---'

// 'b'

In the following example, we use break with a label to leave a loop

differently when we succeeded (line A). Then we skip what comes

directly after the loop, which is where we end up if we failed.

23.2.3 continue

foo: { // label

 if (condition) break foo; // labeled break

 // ···

}

function findSuffix(stringArray, suffix) {

 let result;

 search_block: {

 for (const str of stringArray) {

 if (str.endsWith(suffix)) {

 // Success:

 result = str;

 break search_block; // (A)

 }

 } // for

 // Failure:

 result = '(Untitled)';

 } // search_block

 return { suffix, result };

 // Same as: {suffix: suffix, result: result}

}

assert.deepEqual(

 findSuffix(['foo.txt', 'bar.html'], '.html'),

 { suffix: '.html', result: 'bar.html' }

);

assert.deepEqual(

 findSuffix(['foo.txt', 'bar.html'], '.mjs'),

 { suffix: '.mjs', result: '(Untitled)' }

);

continue only works inside while, do-while, for, for-of, for-await-

of, and for-in. It immediately leaves the current loop iteration and

continues with the next one – for example:

const lines = [

 'Normal line',

 '# Comment',

 'Another normal line',

];

for (const line of lines) {

 if (line.startsWith('#')) continue;

 console.log(line);

}

// Output:

// 'Normal line'

// 'Another normal line'

23.3 if statements

These are two simple if statements: one with just a “then” branch

and one with both a “then” branch and an “else” branch:

Instead of the block, else can also be followed by another if

statement:

You can continue this chain with more else ifs.

23.3.1 The syntax of if statements

if (cond) {

 // then branch

}

if (cond) {

 // then branch

} else {

 // else branch

}

if (cond1) {

 // ···

} else if (cond2) {

 // ···

}

if (cond1) {

 // ···

} else if (cond2) {

 // ···

} else {

 // ···

}

The general syntax of if statements is:

So far, the then_statement has always been a block, but we can use

any statement. That statement must be terminated with a semicolon:

That means that else if is not its own construct; it’s simply an if

statement whose else_statement is another if statement.

if (cond) «then_statement»

else «else_statement»

if (true) console.log('Yes'); else console.log('No');

23.4 switch statements

A switch statement looks as follows:

switch («switch_expression») {

 «switch_body»

}

The body of switch consists of zero or more case clauses:

case «case_expression»:

 «statements»

And, optionally, a default clause:

default:

 «statements»

A switch is executed as follows:

It evaluates the switch expression.

It jumps to the first case clause whose expression has the same

result as the switch expression.

Otherwise, if there is no such clause, it jumps to the default

clause.

Otherwise, if there is no default clause, it does nothing.

23.4.1 A first example of a switch

statement

Let’s look at an example: The following function converts a number

from 1–7 to the name of a weekday.

23.4.2 Don’t forget to return or break!

At the end of a case clause, execution continues with the next case

clause, unless you return or break – for example:

function dayOfTheWeek(num) {

 switch (num) {

 case 1:

 return 'Monday';

 case 2:

 return 'Tuesday';

 case 3:

 return 'Wednesday';

 case 4:

 return 'Thursday';

 case 5:

 return 'Friday';

 case 6:

 return 'Saturday';

 case 7:

 return 'Sunday';

 }

}

assert.equal(dayOfTheWeek(5), 'Friday');

function englishToFrench(english) {

 let french;

 switch (english) {

 case 'hello':

 french = 'bonjour';

 case 'goodbye':

 french = 'au revoir';

 }

 return french;

}

// The result should be 'bonjour'!

assert.equal(englishToFrench('hello'), 'au revoir');

That is, our implementation of dayOfTheWeek() only worked because

we used return. We can fix englishToFrench() by using break:

23.4.3 Empty case clauses

The statements of a case clause can be omitted, which effectively

gives us multiple case expressions per case clause:

function englishToFrench(english) {

 let french;

 switch (english) {

 case 'hello':

 french = 'bonjour';

 break;

 case 'goodbye':

 french = 'au revoir';

 break;

 }

 return french;

}

assert.equal(englishToFrench('hello'), 'bonjour'); // ok

function isWeekDay(name) {

 switch (name) {

 case 'Monday':

 case 'Tuesday':

 case 'Wednesday':

 case 'Thursday':

 case 'Friday':

 return true;

 case 'Saturday':

 case 'Sunday':

 return false;

 }

}

assert.equal(isWeekDay('Wednesday'), true);

assert.equal(isWeekDay('Sunday'), false);

23.4.4 Checking for illegal values via a

default clause

A default clause is jumped to if the switch expression has no other

match. That makes it useful for error checking:

 Exercises: switch

exercises/control-flow/number_to_month_test.mjs

Bonus: exercises/control-

flow/is_object_via_switch_test.mjs

function isWeekDay(name) {

 switch (name) {

 case 'Monday':

 case 'Tuesday':

 case 'Wednesday':

 case 'Thursday':

 case 'Friday':

 return true;

 case 'Saturday':

 case 'Sunday':

 return false;

 default:

 throw new Error('Illegal value: '+name);

 }

}

assert.throws(

 () => isWeekDay('January'),

 {message: 'Illegal value: January'});

23.5 while loops

A while loop has the following syntax:

while («condition») {

 «statements»

}

Before each loop iteration, while evaluates condition:

If the result is falsy, the loop is finished.

If the result is truthy, the while body is executed one more time.

23.5.1 Examples of while loops

The following code uses a while loop. In each loop iteration, it

removes the first element of arr via .shift() and logs it.

If the condition always evaluates to true, then while is an infinite

loop:

const arr = ['a', 'b', 'c'];

while (arr.length > 0) {

 const elem = arr.shift(); // remove first element

 console.log(elem);

}

// Output:

// 'a'

// 'b'

// 'c'

while (true) {

 if (Math.random() === 0) break;

}

23.6 do-while loops

The do-while loop works much like while, but it checks its condition

after each loop iteration, not before.

prompt() is a global function that is available in web browsers. It

prompts the user to input text and returns it.

let input;

do {

 input = prompt('Enter text:');

 console.log(input);

} while (input !== ':q');

https://developer.mozilla.org/en-US/docs/Web/API/Window/prompt

23.7 for loops

A for loop has the following syntax:

for («initialization»; «condition»; «post_iteration») {

 «statements»

}

The first line is the head of the loop and controls how often the body

(the remainder of the loop) is executed. It has three parts and each of

them is optional:

initialization: sets up variables, etc. for the loop. Variables

declared here via let or const only exist inside the loop.

condition: This condition is checked before each loop iteration.

If it is falsy, the loop stops.

post_iteration: This code is executed after each loop iteration.

A for loop is therefore roughly equivalent to the following while

loop:

«initialization»

while («condition») {

 «statements»

 «post_iteration»

}

23.7.1 Examples of for loops

As an example, this is how to count from zero to two via a for loop:

This is how to log the contents of an Array via a for loop:

If you omit all three parts of the head, you get an infinite loop:

for (let i=0; i<3; i++) {

 console.log(i);

}

// Output:

// 0

// 1

// 2

const arr = ['a', 'b', 'c'];

for (let i=0; i<arr.length; i++) {

 console.log(arr[i]);

}

// Output:

// 'a'

// 'b'

// 'c'

for (;;) {

 if (Math.random() === 0) break;

}

23.8 for-of loops

A for-of loop iterates over an iterable – a data container that

supports the iteration protocol. Each iterated value is stored in a

variable, as specified in the head:

for («iteration_variable» of «iterable») {

 «statements»

}

The iteration variable is usually created via a variable declaration:

But you can also use a (mutable) variable that already exists:

23.8.1 const: for-of vs. for

Note that in for-of loops you can use const. The iteration variable

can still be different for each iteration (it just can’t change during the

iteration). Think of it as a new const declaration being executed each

time in a fresh scope.

const iterable = ['hello', 'world'];

for (const elem of iterable) {

 console.log(elem);

}

// Output:

// 'hello'

// 'world'

const iterable = ['hello', 'world'];

let elem;

for (elem of iterable) {

 console.log(elem);

}

In contrast, in for loops you must declare variables via let or var if

their values change.

23.8.2 Iterating over iterables

As mentioned before, for-of works with any iterable object, not just

with Arrays – for example, with Sets:

23.8.3 Iterating over [index, element]

pairs of Arrays

Lastly, you can also use for-of to iterate over the [index, element]

entries of Arrays:

With [index, element], we are using destructuring to access Array

elements.

 Exercise: for-of

exercises/control-flow/array_to_string_test.mjs

const set = new Set(['hello', 'world']);

for (const elem of set) {

 console.log(elem);

}

const arr = ['a', 'b', 'c'];

for (const [index, elem] of arr.entries()) {

 console.log(`${index} -> ${elem}`);

}

// Output:

// '0 -> a'

// '1 -> b'

// '2 -> c'

23.9 for-await-of loops

for-await-of is like for-of, but it works with asynchronous iterables

instead of synchronous ones. And it can only be used inside async

functions and async generators.

for-await-of is described in detail in the chapter on asynchronous

iteration.

for await (const item of asyncIterable) {

 // ···

}

23.10 for-in loops (avoid)

 Recommendation: don’t use for-in loops

for-in has several pitfalls. Therefore, it is usually best to avoid it.

This is an example of using for-in properly, which involves

boilerplate code (line A):

We can implement the same functionality without for-in, which is

almost always better:

function getOwnPropertyNames(obj) {

 const result = [];

 for (const key in obj) {

 if ({}.hasOwnProperty.call(obj, key)) { // (A)

 result.push(key);

 }

 }

 return result;

}

assert.deepEqual(

 getOwnPropertyNames({ a: 1, b:2 }),

 ['a', 'b']);

assert.deepEqual(

 getOwnPropertyNames(['a', 'b']),

 ['0', '1']); // strings!

function getOwnPropertyNames(obj) {

 const result = [];

 for (const key of Object.keys(obj)) {

 result.push(key);

 }

 return result;

}

 Quiz

See quiz app.

24 Exception handling

24.1 Motivation: throwing and catching exceptions

24.2 throw

24.2.1 Options for creating error objects

24.3 The try statement

24.3.1 The try block

24.3.2 The catch clause

24.3.3 The finally clause

24.4 Error classes

24.4.1 Properties of error objects

This chapter covers how JavaScript handles exceptions.

 Why doesn’t JavaScript throw exceptions more

often?

JavaScript didn’t support exceptions until ES3. That explains why

they are used sparingly by the language and its standard library.

24.1 Motivation: throwing and

catching exceptions

Consider the following code. It reads profiles stored in files into an

Array with instances of class Profile:

Let’s examine what happens in line B: An error occurred, but the best

place to handle the problem is not the current location, it’s line A.

There, we can skip the current file and move on to the next one.

Therefore:

function readProfiles(filePaths) {

 const profiles = [];

 for (const filePath of filePaths) {

 try {

 const profile = readOneProfile(filePath);

 profiles.push(profile);

 } catch (err) { // (A)

 console.log('Error in: '+filePath, err);

 }

 }

}

function readOneProfile(filePath) {

 const profile = new Profile();

 const file = openFile(filePath);

 // ··· (Read the data in `file` into `profile`)

 return profile;

}

function openFile(filePath) {

 if (!fs.existsSync(filePath)) {

 throw new Error('Could not find file '+filePath); // (B)

 }

 // ··· (Open the file whose path is `filePath`)

}

In line B, we use a throw statement to indicate that there was a

problem.

In line A, we use a try-catch statement to handle the problem.

When we throw, the following constructs are active:

readProfiles(···)

 for (const filePath of filePaths)

 try

 readOneProfile(···)

 openFile(···)

 if (!fs.existsSync(filePath))

 throw

One by one, throw exits the nested constructs, until it encounters a

try statement. Execution continues in the catch clause of that try

statement.

24.2 throw

This is the syntax of the throw statement:

Any value can be thrown, but it’s best to throw an instance of Error

or its subclasses.

24.2.1 Options for creating error objects

Use class Error. That is less limiting in JavaScript than in a more

static language because you can add your own properties to

instances:

Use one of JavaScript’s subclasses of Error (which are listed

later).

Subclass Error yourself.

throw «value»;

throw new Error('Problem!');

const err = new Error('Could not find the file');

err.filePath = filePath;

throw err;

class MyError extends Error {

}

function func() {

 throw new MyError('Problem!');

}

assert.throws(

 () => func(),

 MyError);

24.3 The try statement

The maximal version of the try statement looks as follows:

You can combine these clauses as follows:

try-catch

try-finally

try-catch-finally

Since ECMAScript 2019, you can omit the catch parameter (error),

if you are not interested in the value that was thrown.

24.3.1 The try block

The try block can be considered the body of the statement. This is

where we execute the regular code.

24.3.2 The catch clause

If an exception reaches the try block, then it is assigned to the

parameter of the catch clause and the code in that clause is executed.

try {

 «try_statements»

} catch (error) {

 «catch_statements»

} finally {

 «finally_statements»

}

Next, execution normally continues after the try statement. That

may change if:

There is a return, break, or throw inside the catch block.

There is a finally clause (which is always executed before the

try statement ends).

The following code demonstrates that the value that is thrown in line

A is indeed caught in line B.

24.3.3 The finally clause

The code inside the finally clause is always executed at the end of a

try statement – no matter what happens in the try block or the catch

clause.

Let’s look at a common use case for finally: You have created a

resource and want to always destroy it when you are done with it, no

matter what happens while working with it. You’d implement that as

follows:

const errorObject = new Error();

function func() {

 throw errorObject; // (A)

}

try {

 func();

} catch (err) { // (B)

 assert.equal(err, errorObject);

}

const resource = createResource();

try {

24.3.3.1 finally is always executed

The finally clause is always executed, even if an error is thrown (line

A):

And even if there is a return statement (line A):

 // Work with `resource`. Errors may be thrown.

} finally {

 resource.destroy();

}

let finallyWasExecuted = false;

assert.throws(

 () => {

 try {

 throw new Error(); // (A)

 } finally {

 finallyWasExecuted = true;

 }

 },

 Error

);

assert.equal(finallyWasExecuted, true);

let finallyWasExecuted = false;

function func() {

 try {

 return; // (A)

 } finally {

 finallyWasExecuted = true;

 }

}

func();

assert.equal(finallyWasExecuted, true);

24.4 Error classes

Error is the common superclass of all built-in error classes. It has the

following subclasses (I’m quoting the ECMAScript specification):

RangeError: Indicates a value that is not in the set or range of

allowable values.

ReferenceError: Indicate that an invalid reference value has

been detected.

SyntaxError: Indicates that a parsing error has occurred.

TypeError: is used to indicate an unsuccessful operation when

none of the other NativeError objects are an appropriate

indication of the failure cause.

URIError: Indicates that one of the global URI handling

functions was used in a way that is incompatible with its

definition.

24.4.1 Properties of error objects

Consider err, an instance of Error:

Two properties of err are especially useful:

.message: contains just the error message.

const err = new Error('Hello!');

assert.equal(String(err), 'Error: Hello!');

assert.equal(err.message, 'Hello!');

https://tc39.github.io/ecma262/#sec-native-error-types-used-in-this-standard

.stack: contains a stack trace. It is supported by all mainstream

browsers.

 Exercise: Exception handling

exercises/exception-handling/call_function_test.mjs

 Quiz

See quiz app.

assert.equal(

err.stack,

`

Error: Hello!

 at ch_exception-handling.mjs:1:13

`.trim());

25 Callable values

25.1 Kinds of functions

25.2 Ordinary functions

25.2.1 Parts of a function declaration

25.2.2 Roles played by ordinary functions

25.2.3 Names of ordinary functions

25.3 Specialized functions

25.3.1 Specialized functions are still functions

25.3.2 Recommendation: prefer specialized functions

25.3.3 Arrow functions

25.4 More kinds of functions and methods

25.5 Returning values from functions and methods

25.6 Parameter handling

25.6.1 Terminology: parameters vs. arguments

25.6.2 Terminology: callback

25.6.3 Too many or not enough arguments

25.6.4 Parameter default values

25.6.5 Rest parameters

25.6.6 Named parameters

25.6.7 Simulating named parameters

25.6.8 Spreading (...) into function calls

25.7 Dynamically evaluating code: eval(), new Function()

(advanced)

25.7.1 eval()

25.7.2 new Function()

25.7.3 Recommendations

25.1 Kinds of functions

JavaScript has two categories of functions:

An ordinary function can play several roles:

Real function

Method

Constructor function

A specialized function can only play one of those roles – for

example:

An arrow function can only be a real function.

A method can only be a method.

A class can only be a constructor function.

The next two sections explain what all of those things mean.

25.2 Ordinary functions

The following code shows three ways of doing (roughly) the same

thing: creating an ordinary function.

As we have seen in §12.8 “Declarations: scope and activation”,

function declarations are activated early, while variable declarations

(e.g., via const) are not.

The syntax of function declarations and function expressions is very

similar. The context determines which is which. For more

information on this kind of syntactic ambiguity, consult §8.5

“Ambiguous syntax”.

25.2.1 Parts of a function declaration

Let’s examine the parts of a function declaration via an example:

// Function declaration (a statement)

function ordinary1(a, b, c) {

 // ···

}

// const plus anonymous function expression

const ordinary2 = function (a, b, c) {

 // ···

};

// const plus named function expression

const ordinary3 = function myName(a, b, c) {

 // `myName` is only accessible in here

};

add is the name of the function declaration.

add(x, y) is the head of the function declaration.

x and y are the parameters.

The curly braces ({ and }) and everything between them are the

body of the function declaration.

The return statement explicitly returns a value from the

function.

25.2.2 Roles played by ordinary functions

Consider the following function declaration from the previous

section:

This function declaration creates an ordinary function whose name is

add. As an ordinary function, add() can play three roles:

Real function: invoked via a function call.

Method: stored in property, invoked via a method call.

function add(x, y) {

 return x + y;

}

function add(x, y) {

 return x + y;

}

assert.equal(add(2, 1), 3);

const obj = { addAsMethod: add };

assert.equal(obj.addAsMethod(2, 4), 6); // (A)

In line A, obj is called the receiver of the method call. It can be

accessed via this inside the method.

Constructor function/class: invoked via new.

(As an aside, the names of classes normally start with capital

letters.)

 Ordinary function vs. real function

In JavaScript, we distinguish:

The entity ordinary function

The role real function, as played by an ordinary function

In many other programming languages, the entity function only

plays one role – function. Therefore, the same name function can

be used for both.

25.2.3 Names of ordinary functions

The name of a function expression is only accessible inside the

function, where the function can use it to refer to itself (e.g., for self-

recursion):

const inst = new add();

assert.equal(inst instanceof add, true);

const func = function funcExpr() { return funcExpr };

assert.equal(func(), func);

// The name `funcExpr` only exists inside the function:

assert.throws(() => funcExpr(), ReferenceError);

In contrast, the name of a function declaration is accessible inside

the current scope:

function funcDecl() { return funcDecl }

// The name `funcDecl` exists in the current scope

assert.equal(funcDecl(), funcDecl);

25.3 Specialized functions

Specialized functions are single-purpose versions of ordinary

functions. Each one of them specializes in a single role:

The purpose of an arrow function is to be a real function:

The purpose of a method is to be a method:

The purpose of a class is to be a constructor function:

Apart from nicer syntax, each kind of specialized function also

supports new features, making them better at their jobs than

ordinary functions.

Arrow functions are explained later in this chapter.

Methods are explained in the chapter on single objects.

Classes are explained in the chapter on classes.

Tbl. 15 lists the capabilities of ordinary and specialized functions.

Table 15: Capabilities of four kinds of functions. “Lexical this”

means that this is defined by the surroundings of an arrow function,

not by method calls.

const arrow = () => { return 123 };

assert.equal(arrow(), 123);

const obj = { method() { return 'abc' } };

assert.equal(obj.method(), 'abc');

class MyClass { /* ··· */ }

const inst = new MyClass();

Function call
Method

call

Constructor

call
Function call

Method

call

Constructor

call

Ordinary

function

(this ===

undefined)

✔ ✔

Arrow

function

✔ (lexical

this)

✘

Method (this ===

undefined)

✔ ✘

Class ✘ ✘ ✔

25.3.1 Specialized functions are still

functions

It’s important to note that arrow functions, methods, and classes are

still categorized as functions:

25.3.2 Recommendation: prefer

specialized functions

Normally, you should prefer specialized functions over ordinary

functions, especially classes and methods. The choice between an

arrow function and an ordinary function is less clear-cut, though:

> (() => {}) instanceof Function

true

> ({ method() {} }.method) instanceof Function

true

> (class SomeClass {}) instanceof Function

true

On one hand, an ordinary function has this as an implicit

parameter. That parameter is set to undefined during function

calls – which is not what you want. An arrow function treats

this like any other variable. For details, see §28.4.6 “Avoiding

the pitfalls of this”.

On the other hand, I like the syntax of a function declaration

(which produces an ordinary function). If you don’t use this

inside it, it is mostly equivalent to const plus arrow function:

25.3.3 Arrow functions

Arrow functions were added to JavaScript for two reasons:

1. To provide a more concise way for creating functions.

2. To make working with real functions easier: You can’t refer to

the this of the surrounding scope inside an ordinary function.

Next, we’ll first look at the syntax of arrow functions and then how

they help with this.

25.3.3.1 The syntax of arrow functions

Let’s review the syntax of an anonymous function expression:

function funcDecl(x, y) {

 return x * y;

}

const arrowFunc = (x, y) => {

 return x * y;

};

const f = function (x, y, z) { return 123 };

The (roughly) equivalent arrow function looks as follows. Arrow

functions are expressions.

Here, the body of the arrow function is a block. But it can also be an

expression. The following arrow function works exactly like the

previous one.

If an arrow function has only a single parameter and that parameter

is an identifier (not a destructuring pattern) then you can omit the

parentheses around the parameter:

That is convenient when passing arrow functions as parameters to

other functions or methods:

This previous example demonstrates one benefit of arrow functions

– conciseness. If we perform the same task with a function

expression, our code is more verbose:

25.3.3.2 Arrow functions: lexical this

Ordinary functions can be both methods and real functions. Alas, the

two roles are in conflict:

const f = (x, y, z) => { return 123 };

const f = (x, y, z) => 123;

const id = x => x;

> [1,2,3].map(x => x+1)

[2, 3, 4]

[1,2,3].map(function (x) { return x+1 });

As each ordinary function can be a method, it has its own this.

The own this makes it impossible to access the this of the

surrounding scope from inside an ordinary function. And that is

inconvenient for real functions.

The following code demonstrates the issue:

In this code, we can observe two ways of handling this:

Dynamic this: In line A, we try to access the this of

.someMethod() from an ordinary function. There, it is shadowed

by the function’s own this, which is undefined (as filled in by the

function call). Given that ordinary functions receive their this

via (dynamic) function or method calls, their this is called

dynamic.

Lexical this: In line B, we again try to access the this of

.someMethod(). This time, we succeed because the arrow function

const person = {

 name: 'Jill',

 someMethod() {

 const ordinaryFunc = function () {

 assert.throws(

 () => this.name, // (A)

 /^TypeError: Cannot read property 'name' of undefined$/)

 };

 const arrowFunc = () => {

 assert.equal(this.name, 'Jill'); // (B)

 };

 ordinaryFunc();

 arrowFunc();

 },

}

does not have its own this. this is resolved lexically, just like

any other variable. That’s why the this of arrow functions is

called lexical.

25.3.3.3 Syntax pitfall: returning an object literal from an

arrow function

If you want the expression body of an arrow function to be an object

literal, you must put the literal in parentheses:

If you don’t, JavaScript thinks, the arrow function has a block body

(that doesn’t return anything):

{a: 1} is interpreted as a block with the label a: and the expression

statement 1. Without an explicit return statement, the block body

returns undefined.

This pitfall is caused by syntactic ambiguity: object literals and code

blocks have the same syntax. We use the parentheses to tell

JavaScript that the body is an expression (an object literal) and not a

statement (a block).

For more information on shadowing this, consult §28.4.5 “this

pitfall: accidentally shadowing this”.

const func1 = () => ({a: 1});

assert.deepEqual(func1(), { a: 1 });

const func2 = () => {a: 1};

assert.deepEqual(func2(), undefined);

25.4 More kinds of functions and

methods

 This section is a summary of upcoming content

This section mainly serves as a reference for the current and

upcoming chapters. Don’t worry if you don’t understand

everything.

So far, all (real) functions and methods, that we have seen, were:

Single-result

Synchronous

Later chapters will cover other modes of programming:

Iteration treats objects as containers of data (so-called iterables)

and provides a standardized way for retrieving what is inside

them. If a function or a method returns an iterable, it returns

multiple values.

Asynchronous programming deals with handling a long-

running computation. You are notified when the computation is

finished and can do something else in between. The standard

pattern for asynchronously delivering single results is called

Promise.

These modes can be combined – for example, there are synchronous

iterables and asynchronous iterables.

Several new kinds of functions and methods help with some of the

mode combinations:

Async functions help implement functions that return Promises.

There are also async methods.

Synchronous generator functions help implement functions

that return synchronous iterables. There are also synchronous

generator methods.

Asynchronous generator functions help implement functions

that return asynchronous iterables. There are also asynchronous

generator methods.

That leaves us with 4 kinds (2 × 2) of functions and methods:

Synchronous vs. asynchronous

Generator vs. single-result

Tbl. 16 gives an overview of the syntax for creating these 4 kinds of

functions and methods.

Table 16: Syntax for creating functions and methods. The last

column specifies how many values are produced by an entity.

Result Values

Sync function Sync method

function f() {} { m() {} } value 1

f = function () {}

f = () => {}

Sync generator

function

Sync gen.

method

function* f() {} { * m() {} } iterable 0+

Result Values

f = function* () {}

Async function Async method

async function f()

{}

{ async m() {}

}

Promise 1

f = async function

() {}

f = async () => {}

Async generator

function

Async gen.

method

async function* f()

{}

{ async * m()

{} }

async

iterable

0+

f = async function*

() {}

25.5 Returning values from

functions and methods

(Everything mentioned in this section applies to both functions and

methods.)

The return statement explicitly returns a value from a function:

Another example:

If, at the end of a function, you haven’t returned anything explicitly,

JavaScript returns undefined for you:

function func() {

 return 123;

}

assert.equal(func(), 123);

function boolToYesNo(bool) {

 if (bool) {

 return 'Yes';

 } else {

 return 'No';

 }

}

assert.equal(boolToYesNo(true), 'Yes');

assert.equal(boolToYesNo(false), 'No');

function noReturn() {

 // No explicit return

}

assert.equal(noReturn(), undefined);

25.6 Parameter handling

Once again, I am only mentioning functions in this section, but

everything also applies to methods.

25.6.1 Terminology: parameters

vs. arguments

The term parameter and the term argument basically mean the

same thing. If you want to, you can make the following distinction:

Parameters are part of a function definition. They are also called

formal parameters and formal arguments.

Arguments are part of a function call. They are also called actual

parameters and actual arguments.

25.6.2 Terminology: callback

A callback or callback function is a function that is an argument of a

function or method call.

The following is an example of a callback:

const myArray = ['a', 'b'];

const callback = (x) => console.log(x);

myArray.forEach(callback);

// Output:

// 'a'

// 'b'

 JavaScript uses the term callback broadly

In other programming languages, the term callback often has a

narrower meaning: it refers to a pattern for delivering results

asynchronously, via a function-valued parameter. In this meaning,

the callback (or continuation) is invoked after a function has

completely finished its computation.

Callbacks as an asynchronous pattern, are described in the chapter

on asynchronous programming.

25.6.3 Too many or not enough

arguments

JavaScript does not complain if a function call provides a different

number of arguments than expected by the function definition:

Extra arguments are ignored.

Missing parameters are set to undefined.

For example:

function foo(x, y) {

 return [x, y];

}

// Too many arguments:

assert.deepEqual(foo('a', 'b', 'c'), ['a', 'b']);

// The expected number of arguments:

assert.deepEqual(foo('a', 'b'), ['a', 'b']);

25.6.4 Parameter default values

Parameter default values specify the value to use if a parameter has

not been provided – for example:

undefined also triggers the default value:

25.6.5 Rest parameters

A rest parameter is declared by prefixing an identifier with three dots

(...). During a function or method call, it receives an Array with all

remaining arguments. If there are no extra arguments at the end, it is

an empty Array – for example:

// Not enough arguments:

assert.deepEqual(foo('a'), ['a', undefined]);

function f(x, y=0) {

 return [x, y];

}

assert.deepEqual(f(1), [1, 0]);

assert.deepEqual(f(), [undefined, 0]);

assert.deepEqual(

 f(undefined, undefined),

 [undefined, 0]);

function f(x, ...y) {

 return [x, y];

}

assert.deepEqual(

 f('a', 'b', 'c'),

 ['a', ['b', 'c']]);

assert.deepEqual(

25.6.5.1 Enforcing a certain number of arguments via a

rest parameter

You can use a rest parameter to enforce a certain number of

arguments. Take, for example, the following function:

This is how we force callers to always provide two arguments:

In line A, we access the elements of args via destructuring.

25.6.6 Named parameters

When someone calls a function, the arguments provided by the caller

are assigned to the parameters received by the callee. Two common

ways of performing the mapping are:

1. Positional parameters: An argument is assigned to a parameter

if they have the same position. A function call with only

positional arguments looks as follows.

 f(),

 [undefined, []]);

function createPoint(x, y) {

 return {x, y};

 // same as {x: x, y: y}

}

function createPoint(...args) {

 if (args.length !== 2) {

 throw new Error('Please provide exactly 2 arguments!');

 }

 const [x, y] = args; // (A)

 return {x, y};

}

2. Named parameters: An argument is assigned to a parameter if

they have the same name. JavaScript doesn’t have named

parameters, but you can simulate them. For example, this is a

function call with only (simulated) named arguments:

Named parameters have several benefits:

They lead to more self-explanatory code because each argument

has a descriptive label. Just compare the two versions of

selectEntries(): with the second one, it is much easier to see

what happens.

The order of the arguments doesn’t matter (as long as the names

are correct).

Handling more than one optional parameter is more convenient:

callers can easily provide any subset of all optional parameters

and don’t have to be aware of the ones they omit (with positional

parameters, you have to fill in preceding optional parameters,

with undefined).

25.6.7 Simulating named parameters

JavaScript doesn’t have real named parameters. The official way of

simulating them is via object literals:

selectEntries(3, 20, 2)

selectEntries({start: 3, end: 20, step: 2})

function selectEntries({start=0, end=-1, step=1}) {

 return {start, end, step};

This function uses destructuring to access the properties of its single

parameter. The pattern it uses is an abbreviation for the following

pattern:

This destructuring pattern works for empty object literals:

But it does not work if you call the function without any parameters:

You can fix this by providing a default value for the whole pattern.

This default value works the same as default values for simpler

parameter definitions: if the parameter is missing, the default is

used.

25.6.8 Spreading (...) into function calls

If you put three dots (...) in front of the argument of a function call,

then you spread it. That means that the argument must be an

}

{start: start=0, end: end=-1, step: step=1}

> selectEntries({})

{ start: 0, end: -1, step: 1 }

> selectEntries()

TypeError: Cannot destructure property `start` of 'undefined' or

function selectEntries({start=0, end=-1, step=1} = {}) {

 return {start, end, step};

}

assert.deepEqual(

 selectEntries(),

 { start: 0, end: -1, step: 1 });

iterable object and the iterated values all become arguments. In

other words, a single argument is expanded into multiple arguments

– for example:

Spreading and rest parameters use the same syntax (...), but they

serve opposite purposes:

Rest parameters are used when defining functions or methods.

They collect arguments into Arrays.

Spread arguments are used when calling functions or methods.

They turn iterable objects into arguments.

25.6.8.1 Example: spreading into Math.max()

Math.max() returns the largest one of its zero or more arguments.

Alas, it can’t be used for Arrays, but spreading gives us a way out:

function func(x, y) {

 console.log(x);

 console.log(y);

}

const someIterable = ['a', 'b'];

func(...someIterable);

 // same as func('a', 'b')

// Output:

// 'a'

// 'b'

> Math.max(-1, 5, 11, 3)

11

> Math.max(...[-1, 5, 11, 3])

11

> Math.max(-1, ...[-5, 11], 3)

11

25.6.8.2 Example: spreading into Array.prototype.push()

Similarly, the Array method .push() destructively adds its zero or

more parameters to the end of its Array. JavaScript has no method

for destructively appending an Array to another one. Once again, we

are saved by spreading:

 Exercises: Parameter handling

Positional parameters:

exercises/callables/positional_parameters_test.mjs

Named parameters:

exercises/callables/named_parameters_test.mjs

const arr1 = ['a', 'b'];

const arr2 = ['c', 'd'];

arr1.push(...arr2);

assert.deepEqual(arr1, ['a', 'b', 'c', 'd']);

25.7 Dynamically evaluating code:

eval(), new Function() (advanced)

Next, we’ll look at two ways of evaluating code dynamically: eval()

and new Function().

25.7.1 eval()

Given a string str with JavaScript code, eval(str) evaluates that

code and returns the result:

There are two ways of invoking eval():

Directly, via a function call. Then the code in its argument is

evaluated inside the current scope.

Indirectly, not via a function call. Then it evaluates its code in

global scope.

“Not via a function call” means “anything that looks different than

eval(···)”:

eval.call(undefined, '···')

(0, eval)('···') (uses the comma operator)

globalThis.eval('···')

const e = eval; e('···')

Etc.

> eval('2 ** 4')

16

The following code illustrates the difference:

Evaluating code in global context is safer because the code has access

to fewer internals.

25.7.2 new Function()

new Function() creates a function object and is invoked as follows:

The previous statement is equivalent to the next statement. Note that

«param_1», etc., are not inside string literals, anymore.

In the next example, we create the same function twice, first via new

Function(), then via a function expression:

 new Function() creates non-strict mode functions

globalThis.myVariable = 'global';

function func() {

 const myVariable = 'local';

 // Direct eval

 assert.equal(eval('myVariable'), 'local');

 // Indirect eval

 assert.equal(eval.call(undefined, 'myVariable'), 'global');

}

const func = new Function('«param_1»', ···, '«param_n»', '«func_

const func = function («param_1», ···, «param_n») {

 «func_body»

};

const times1 = new Function('a', 'b', 'return a * b');

const times2 = function (a, b) { return a * b };

Functions created via new Function() are sloppy.

25.7.3 Recommendations

Avoid dynamic evaluation of code as much as you can:

It’s a security risk because it may enable an attacker to execute

arbitrary code with the privileges of your code.

It may be switched off – for example, in browsers, via a Content

Security Policy.

Very often, JavaScript is dynamic enough so that you don’t need

eval() or similar. In the following example, what we are doing with

eval() (line A) can be achieved just as well without it (line B).

If you have to dynamically evaluate code:

Prefer new Function() over eval(): it always executes its code in

global context and a function provides a clean interface to the

evaluated code.

Prefer indirect eval over direct eval: evaluating code in global

context is safer.

 Quiz

See quiz app.

const obj = {a: 1, b: 2};

const propKey = 'b';

assert.equal(eval('obj.' + propKey), 2); // (A)

assert.equal(obj[propKey], 2); // (B)

https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP

26 Environments: under the

hood of variables (bonus)

26.1 Environment: data structure for managing variables

26.2 Recursion via environments

26.2.1 Executing the code

26.3 Nested scopes via environments

26.3.1 Executing the code

26.4 Closures and environments

In this chapter, we take a closer look at how the ECMAScript

language specification handles variables.

26.1 Environment: data structure

for managing variables

An environment is the data structure that the ECMAScript

specification uses to manage variables. It is a dictionary whose keys

are variable names and whose values are the values of those

variables. Each scope has its associated environment. Environments

must be able to support the following phenomena related to

variables:

Recursion

Nested scopes

Closures

We’ll use examples to illustrate how that is done for each

phenomenon.

26.2 Recursion via environments

We’ll tackle recursion first. Consider the following code:

For each function call, you need fresh storage space for the variables

(parameters and local variables) of the called function. This is

managed via a stack of so-called execution contexts, which are

references to environments (for the purpose of this chapter).

Environments themselves are stored on the heap. That is necessary

because they occasionally live on after execution has left their scopes

(we’ll see that when exploring closures). Therefore, they themselves

can’t be managed via a stack.

26.2.1 Executing the code

While executing the code, we make the following pauses:

function f(x) {

 return x * 2;

}

function g(y) {

 const tmp = y + 1;

 return f(tmp);

}

assert.equal(g(3), 8);

function f(x) {

 // Pause 3

 return x * 2;

}

function g(y) {

 const tmp = y + 1;

 // Pause 2

 return f(tmp);

This is what happens:

Pause 1 – before calling g() (fig. 7).

Pause 2 – while executing g() (fig. 8).

Pause 3 – while executing f() (fig. 9).

Remaining steps: Every time there is a return, one execution

context is removed from the stack.

0
g function (y) { … }

function (x) { … }f

Lexical environmentsExecution contexts

Figure 7: Recursion, pause 1 – before calling g(): The execution

context stack has one entry, which points to the top-level

environment. In that environment, there are two entries; one for f()

and one for g().

1
0

g function (y) { … }
function (x) { … }f

Lexical environmentsExecution contexts

tmp 4
3y

Figure 8: Recursion, pause 2 – while executing g(): The top of the

execution context stack points to the environment that was created

}

// Pause 1

assert.equal(g(3), 8);

for g(). That environment contains entries for the argument y and

for the local variable tmp.

2
1
0

g function (y) { … }
function (x) { … }f

Lexical environmentsExecution contexts

tmp 4
3y

x 4

Figure 9: Recursion, pause 3 – while executing f(): The top

execution context now points to the environment for f().

26.3 Nested scopes via

environments

We use the following code to explore how nested scopes are

implemented via environments.

Here, we have three nested scopes: The top-level scope, the scope of

f(), and the scope of square(). Observations:

The scopes are connected. An inner scope “inherits” all the

variables of an outer scope (minus the ones it shadows).

Nesting scopes as a mechanism is independent of recursion. The

latter is best managed by a stack of independent environments.

The former is a relationship that each environment has with the

environment “in which” it is created.

Therefore, the environment of each scope points to the environment

of the surrounding scope via a field called outer. When we are

looking up the value of a variable, we first search for its name in the

current environment, then in the outer environment, then in the

outer environment’s outer environment, etc. The whole chain of

function f(x) {

 function square() {

 const result = x * x;

 return result;

 }

 return square();

}

assert.equal(f(6), 36);

outer environments contains all variables that can currently be

accessed (minus shadowed variables).

When you make a function call, you create a new environment. The

outer environment of that environment is the environment in which

the function was created. To help set up the field outer of

environments created via function calls, each function has an

internal property named [[Scope]] that points to its “birth

environment”.

26.3.1 Executing the code

These are the pauses we are making while executing the code:

This is what happens:

Pause 1 – before calling f() (fig. 10).

Pause 2 – while executing f() (fig. 11).

Pause 3 – while executing square() (fig. 12).

After that, return statements pop execution entries off the stack.

function f(x) {

 function square() {

 const result = x * x;

 // Pause 3

 return result;

 }

 // Pause 2

 return square();

}

// Pause 1

assert.equal(f(6), 36);

0 f

Lexical environmentsExecution contexts Functions

[[Scope]]

Figure 10: Nested scopes, pause 1 – before calling f(): The top-level

environment has a single entry, for f(). The birth environment of f()

is the top-level environment. Therefore, f’s [[Scope]] points to it.

1
0 f

square
6x

outer

Lexical environmentsExecution contexts Functions

[[Scope]]

[[Scope]]

f(6)

Figure 11: Nested scopes, pause 2 – while executing f(): There is now

an environment for the function call f(6). The outer environment of

that environment is the birth environment of f() (the top-level

environment at index 0). We can see that the field outer was set to

the value of f’s [[Scope]]. Furthermore, the [[Scope]] of the new

function square() is the environment that was just created.

2
1
0 f

square
6x

outer

Lexical environmentsExecution contexts Functions

[[Scope]]

[[Scope]]

result 36

outer

f(6)

square()

Figure 12: Nested scopes, pause 3 – while executing square(): The

previous pattern was repeated: the outer of the most recent

environment was set up via the [[Scope]] of the function that we just

called. The chain of scopes created via outer, contains all variables

that are active right now. For example, we can access result, square,

and f if we want to. Environments reflect two aspects of variables.

First, the chain of outer environments reflects the nested static

scopes. Second, the stack of execution contexts reflects what function

calls were made, dynamically.

26.4 Closures and environments

To see how environments are used to implement closures, we are

using the following example:

What is going on here? add() is a function that returns a function.

When we make the nested function call add(3)(1) in line B, the first

parameter is for add(), the second parameter is for the function it

returns. This works because the function created in line A does not

lose the connection to its birth scope when it leaves that scope. The

associated environment is kept alive by that connection and the

function still has access to variable x in that environment (x is free

inside the function).

This nested way of calling add() has an advantage: if you only make

the first function call, you get a version of add() whose parameter x is

already filled in:

Converting a function with two parameters into two nested functions

with one parameter each, is called currying. add() is a curried

function.

function add(x) {

 return (y) => { // (A)

 return x + y;

 };

}

assert.equal(add(3)(1), 4); // (B)

const plus2 = add(2);

assert.equal(plus2(5), 7);

Only filling in some of the parameters of a function is called partial

application (the function has not been fully applied yet). Method

.bind() of functions performs partial application. In the previous

example, we can see that partial application is simple if a function is

curried.

26.4.0.1 Executing the code

As we are executing the following code, we are making three pauses:

This is what happens:

Pause 1 – during the execution of add(2) (fig. 13).

Pause 2 – after the execution of add(2) (fig. 14).

Pause 3 – while executing plus2(5) (fig. 15).

[[Scope]]
1
0

(uninit.)plus2
add

2x
outer

Lexical environmentsExecution contexts Functions

[[Scope]]
add(2)

Figure 13: Closures, pause 1 – during the execution of add(2): We can

see that the function returned by add() already exists (see bottom

function add(x) {

 return (y) => {

 // Pause 3: plus2(5)

 return x + y;

 }; // Pause 1: add(2)

}

const plus2 = add(2);

// Pause 2

assert.equal(plus2(5), 7);

right corner) and that it points to its birth environment via its

internal property [[Scope]]. Note that plus2 is still in its temporal

dead zone and uninitialized.

plus2
add0

2x

outer

Lexical environmentsExecution contexts Functions

[[Scope]]

[[Scope]]
Kept alive by closure add(2)

Figure 14: Closures, pause 2 – after the execution of add(2): plus2

now points to the function returned by add(2). That function keeps

its birth environment (the environment of add(2)) alive via its

[[Scope]].

plus2
add

1
0

2x

outer

Lexical environmentsExecution contexts Functions

[[Scope]]

[[Scope]]

5y
outer

add(2)

plus2(5)

Figure 15: Closures, pause 3 – while executing plus2(5): The

[[Scope]] of plus2 is used to set up the outer of the new

environment. That’s how the current function gets access to x.

27 Modules

27.1 Overview: syntax of ECMAScript modules

27.1.1 Exporting

27.1.2 Importing

27.2 JavaScript source code formats

27.2.1 Code before built-in modules was written in

ECMAScript 5

27.3 Before we had modules, we had scripts

27.4 Module systems created prior to ES6

27.4.1 Server side: CommonJS modules

27.4.2 Client side: AMD (Asynchronous Module Definition)

modules

27.4.3 Characteristics of JavaScript modules

27.5 ECMAScript modules

27.5.1 ES modules: syntax, semantics, loader API

27.6 Named exports and imports

27.6.1 Named exports

27.6.2 Named imports

27.6.3 Namespace imports

27.6.4 Named exporting styles: inline versus clause

(advanced)

27.7 Default exports and imports

27.7.1 The two styles of default-exporting

27.7.2 The default export as a named export (advanced)

27.8 More details on exporting and importing

27.8.1 Imports are read-only views on exports

27.8.2 ESM’s transparent support for cyclic imports

(advanced)

27.9 npm packages

27.9.1 Packages are installed inside a directory

node_modules/

27.9.2 Why can npm be used to install frontend libraries?

27.10 Naming modules

27.11 Module specifiers

27.11.1 Categories of module specifiers

27.11.2 ES module specifiers in browsers

27.11.3 ES module specifiers on Node.js

27.12 Loading modules dynamically via import()

27.12.1 Example: loading a module dynamically

27.12.2 Use cases for import()

27.13 Preview: import.meta.url

27.13.1 import.meta.url and class URL

27.13.2 import.meta.url on Node.js

27.14 Polyfills: emulating native web platform features

(advanced)

27.14.1 Sources of this section

27.1 Overview: syntax of

ECMAScript modules

27.1.1 Exporting

27.1.2 Importing

// Named exports

export function f() {}

export const one = 1;

export {foo, b as bar};

// Default exports

export default function f() {} // declaration with optional name

// Replacement for `const` (there must be exactly one value)

export default 123;

// Re-exporting from another module

export * from './some-module.mjs';

export {foo, b as bar} from './some-module.mjs';

// Named imports

import {foo, bar as b} from './some-module.mjs';

// Namespace import

import * as someModule from './some-module.mjs';

// Default import

import someModule from './some-module.mjs';

// Combinations:

import someModule, * as someModule from './some-module.mjs';

import someModule, {foo, bar as b} from './some-module.mjs';

// Empty import (for modules with side effects)

import './some-module.mjs';

27.2 JavaScript source code

formats

The current landscape of JavaScript modules is quite diverse: ES6

brought built-in modules, but the source code formats that came

before them, are still around, too. Understanding the latter helps

understand the former, so let’s investigate. The next sections

describe the following ways of delivering JavaScript source code:

Scripts are code fragments that browsers run in global scope.

They are precursors of modules.

CommonJS modules are a module format that is mainly used on

servers (e.g., via Node.js).

AMD modules are a module format that is mainly used in

browsers.

ECMAScript modules are JavaScript’s built-in module format. It

supersedes all previous formats.

Tbl. 17 gives an overview of these code formats. Note that for

CommonJS modules and ECMAScript modules, two filename

extensions are commonly used. Which one is appropriate depends on

how you want to use a file. Details are given later in this chapter.

Table 17: Ways of delivering JavaScript source code.

Runs on Loaded
Filename

ext.

Script browsers async .js

Runs on Loaded
Filename

ext.

CommonJS

module

servers sync .js .cjs

AMD module browsers async .js

ECMAScript

module

browsers and

servers

async .js .mjs

27.2.1 Code before built-in modules was

written in ECMAScript 5

Before we get to built-in modules (which were introduced with ES6),

all code that you’ll see, will be written in ES5. Among other things:

ES5 did not have const and let, only var.

ES5 did not have arrow functions, only function expressions.

27.3 Before we had modules, we

had scripts

Initially, browsers only had scripts – pieces of code that were

executed in global scope. As an example, consider an HTML file that

loads script files via the following HTML:

The main file is my-module.js, where we simulate a module:

myModule is a global variable that is assigned the result of

immediately invoking a function expression. The function expression

<script src="other-module1.js"></script>

<script src="other-module2.js"></script>

<script src="my-module.js"></script>

var myModule = (function () { // Open IIFE

 // Imports (via global variables)

 var importedFunc1 = otherModule1.importedFunc1;

 var importedFunc2 = otherModule2.importedFunc2;

 // Body

 function internalFunc() {

 // ···

 }

 function exportedFunc() {

 importedFunc1();

 importedFunc2();

 internalFunc();

 }

 // Exports (assigned to global variable `myModule`)

 return {

 exportedFunc: exportedFunc,

 };

})(); // Close IIFE

starts in the first line. It is invoked in the last line.

This way of wrapping a code fragment is called immediately invoked

function expression (IIFE, coined by Ben Alman). What do we gain

from an IIFE? var is not block-scoped (like const and let), it is

function-scoped: the only way to create new scopes for var-declared

variables is via functions or methods (with const and let, you can

use either functions, methods, or blocks {}). Therefore, the IIFE in

the example hides all of the following variables from global scope

and minimizes name clashes: importedFunc1, importedFunc2,

internalFunc, exportedFunc.

Note that we are using an IIFE in a particular manner: at the end, we

pick what we want to export and return it via an object literal. That is

called the revealing module pattern (coined by Christian Heilmann).

This way of simulating modules, has several issues:

Libraries in script files export and import functionality via

global variables, which risks name clashes.

Dependencies are not stated explicitly, and there is no built-in

way for a script to load the scripts it depends on. Therefore, the

web page has to load not just the scripts that are needed by the

page but also the dependencies of those scripts, the

dependencies’ dependencies, etc. And it has to do so in the right

order!

27.4 Module systems created prior

to ES6

Prior to ECMAScript 6, JavaScript did not have built-in modules.

Therefore, the flexible syntax of the language was used to implement

custom module systems within the language. Two popular ones are:

CommonJS (targeting the server side)

AMD (Asynchronous Module Definition, targeting the client

side)

27.4.1 Server side: CommonJS modules

The original CommonJS standard for modules was created for server

and desktop platforms. It was the foundation of the original Node.js

module system, where it achieved enormous popularity.

Contributing to that popularity were the npm package manager for

Node and tools that enabled using Node modules on the client side

(browserify, webpack, and others).

From now on, CommonJS module means the Node.js version of this

standard (which has a few additional features). This is an example of

a CommonJS module:

// Imports

var importedFunc1 = require('./other-module1.js').importedFunc1;

var importedFunc2 = require('./other-module2.js').importedFunc2;

// Body

function internalFunc() {

CommonJS can be characterized as follows:

Designed for servers.

Modules are meant to be loaded synchronously (the importer

waits while the imported module is loaded and executed).

Compact syntax.

27.4.2 Client side: AMD (Asynchronous

Module Definition) modules

The AMD module format was created to be easier to use in browsers

than the CommonJS format. Its most popular implementation is

RequireJS. The following is an example of an AMD module.

 // ···

}

function exportedFunc() {

 importedFunc1();

 importedFunc2();

 internalFunc();

}

// Exports

module.exports = {

 exportedFunc: exportedFunc,

};

define(['./other-module1.js', './other-module2.js'],

 function (otherModule1, otherModule2) {

 var importedFunc1 = otherModule1.importedFunc1;

 var importedFunc2 = otherModule2.importedFunc2;

 function internalFunc() {

 // ···

 }

https://requirejs.org/

AMD can be characterized as follows:

Designed for browsers.

Modules are meant to be loaded asynchronously. That’s a

crucial requirement for browsers, where code can’t wait until a

module has finished downloading. It has to be notified once the

module is available.

The syntax is slightly more complicated.

On the plus side, AMD modules can be executed directly. In contrast,

CommonJS modules must either be compiled before deployment or

custom source code must be generated and evaluated dynamically

(think eval()). That isn’t always permitted on the web.

27.4.3 Characteristics of JavaScript

modules

Looking at CommonJS and AMD, similarities between JavaScript

module systems emerge:

There is one module per file.

Such a file is basically a piece of code that is executed:

 function exportedFunc() {

 importedFunc1();

 importedFunc2();

 internalFunc();

 }

 return {

 exportedFunc: exportedFunc,

 };

 });

Local scope: The code is executed in a local “module scope”.

Therefore, by default, all of the variables, functions, and

classes declared in it are internal and not global.

Exports: If you want any declared entity to be exported, you

must explicitly mark it as an export.

Imports: Each module can import exported entities from

other modules. Those other modules are identified via

module specifiers (usually paths, occasionally full URLs).

Modules are singletons: Even if a module is imported multiple

times, only a single “instance” of it exists.

No global variables are used. Instead, module specifiers serve as

global IDs.

27.5 ECMAScript modules

ECMAScript modules (ES modules or ESM) were introduced with

ES6. They continue the tradition of JavaScript modules and have all

of their aforementioned characteristics. Additionally:

With CommonJS, ES modules share the compact syntax and

support for cyclic dependencies.

With AMD, ES modules share being designed for asynchronous

loading.

ES modules also have new benefits:

The syntax is even more compact than CommonJS’s.

Modules have static structures (which can’t be changed at

runtime). That helps with static checking, optimized access of

imports, dead code elimination, and more.

Support for cyclic imports is completely transparent.

This is an example of ES module syntax:

import {importedFunc1} from './other-module1.mjs';

import {importedFunc2} from './other-module2.mjs';

function internalFunc() {

 ···

}

export function exportedFunc() {

 importedFunc1();

 importedFunc2();

From now on, “module” means “ECMAScript module”.

27.5.1 ES modules: syntax, semantics,

loader API

The full standard of ES modules comprises the following parts:

1. Syntax (how code is written): What is a module? How are

imports and exports declared? Etc.

2. Semantics (how code is executed): How are variable bindings

exported? How are imports connected with exports? Etc.

3. A programmatic loader API for configuring module loading.

Parts 1 and 2 were introduced with ES6. Work on part 3 is ongoing.

 internalFunc();

}

27.6 Named exports and imports

27.6.1 Named exports

Each module can have zero or more named exports.

As an example, consider the following two files:

lib/my-math.mjs

main.mjs

Module my-math.mjs has two named exports: square and LIGHTSPEED.

To export something, we put the keyword export in front of a

declaration. Entities that are not exported are private to a module

and can’t be accessed from outside.

27.6.2 Named imports

Module main.mjs has a single named import, square:

// Not exported, private to module

function times(a, b) {

 return a * b;

}

export function square(x) {

 return times(x, x);

}

export const LIGHTSPEED = 299792458;

import {square} from './lib/my-math.mjs';

assert.equal(square(3), 9);

It can also rename its import:

27.6.2.1 Syntactic pitfall: named importing is not

destructuring

Both named importing and destructuring look similar:

But they are quite different:

Imports remain connected with their exports.

You can destructure again inside a destructuring pattern, but the

{} in an import statement can’t be nested.

The syntax for renaming is different:

Rationale: Destructuring is reminiscent of an object literal

(including nesting), while importing evokes the idea of

renaming.

 Exercise: Named exports

exercises/modules/export_named_test.mjs

27.6.3 Namespace imports

import {square as sq} from './lib/my-math.mjs';

assert.equal(sq(3), 9);

import {foo} from './bar.mjs'; // import

const {foo} = require('./bar.mjs'); // destructuring

import {foo as f} from './bar.mjs'; // importing

const {foo: f} = require('./bar.mjs'); // destructuring

Namespace imports are an alternative to named imports. If we

namespace-import a module, it becomes an object whose properties

are the named exports. This is what main.mjs looks like if we use a

namespace import:

27.6.4 Named exporting styles: inline

versus clause (advanced)

The named export style we have seen so far was inline: We exported

entities by prefixing them with the keyword export.

But we can also use separate export clauses. For example, this is

what lib/my-math.mjs looks like with an export clause:

With an export clause, we can rename before exporting and use

different names internally:

import * as myMath from './lib/my-math.mjs';

assert.equal(myMath.square(3), 9);

assert.deepEqual(

 Object.keys(myMath), ['LIGHTSPEED', 'square']);

function times(a, b) {

 return a * b;

}

function square(x) {

 return times(x, x);

}

const LIGHTSPEED = 299792458;

export { square, LIGHTSPEED }; // semicolon!

function times(a, b) {

 return a * b;

}

function sq(x) {

 return times(x, x);

}

const LS = 299792458;

export {

 sq as square,

 LS as LIGHTSPEED, // trailing comma is optional

};

27.7 Default exports and imports

Each module can have at most one default export. The idea is that

the module is the default-exported value.

 Avoid mixing named exports and default exports

A module can have both named exports and a default export, but

it’s usually better to stick to one export style per module.

As an example for default exports, consider the following two files:

my-func.mjs

main.mjs

Module my-func.mjs has a default export:

Module main.mjs default-imports the exported function:

Note the syntactic difference: the curly braces around named imports

indicate that we are reaching into the module, while a default import

is the module.

 What are use cases for default exports?

const GREETING = 'Hello!';

export default function () {

 return GREETING;

}

import myFunc from './my-func.mjs';

assert.equal(myFunc(), 'Hello!');

The most common use case for a default export is a module that

contains a single function or a single class.

27.7.1 The two styles of default-exporting

There are two styles of doing default exports.

First, you can label existing declarations with export default:

Second, you can directly default-export values. In that style, export

default is itself much like a declaration.

27.7.1.1 Why are there two default export styles?

The reason is that export default can’t be used to label const: const

may define multiple values, but export default needs exactly one

value. Consider the following hypothetical code:

With this code, you don’t know which one of the three values is the

default export.

 Exercise: Default exports

export default function foo() {} // no semicolon!

export default class Bar {} // no semicolon!

export default 'abc';

export default foo();

export default /^xyz$/;

export default 5 * 7;

export default { no: false, yes: true };

// Not legal JavaScript!

export default const foo = 1, bar = 2, baz = 3;

exercises/modules/export_default_test.mjs

27.7.2 The default export as a named

export (advanced)

Internally, a default export is simply a named export whose name is

default. As an example, consider the previous module my-func.mjs

with a default export:

The following module my-func2.mjs is equivalent to that module:

For importing, we can use a normal default import:

Or we can use a named import:

const GREETING = 'Hello!';

export default function () {

 return GREETING;

}

const GREETING = 'Hello!';

function greet() {

 return GREETING;

}

export {

 greet as default,

};

import myFunc from './my-func2.mjs';

assert.equal(myFunc(), 'Hello!');

import {default as myFunc} from './my-func2.mjs';

assert.equal(myFunc(), 'Hello!');

The default export is also available via property .default of

namespace imports:

 Isn’t default illegal as a variable name?

default can’t be a variable name, but it can be an export name and

it can be a property name:

import * as mf from './my-func2.mjs';

assert.equal(mf.default(), 'Hello!');

const obj = {

 default: 123,

};

assert.equal(obj.default, 123);

27.8 More details on exporting and

importing

27.8.1 Imports are read-only views on

exports

So far, we have used imports and exports intuitively, and everything

seems to have worked as expected. But now it is time to take a closer

look at how imports and exports are really related.

Consider the following two modules:

counter.mjs

main.mjs

counter.mjs exports a (mutable!) variable and a function:

main.mjs name-imports both exports. When we use incCounter(), we

discover that the connection to counter is live – we can always access

the live state of that variable:

export let counter = 3;

export function incCounter() {

 counter++;

}

import { counter, incCounter } from './counter.mjs';

// The imported value `counter` is live

assert.equal(counter, 3);

incCounter();

assert.equal(counter, 4);

Note that while the connection is live and we can read counter, we

cannot change this variable (e.g., via counter++).

There are two benefits to handling imports this way:

It is easier to split modules because previously shared variables

can become exports.

This behavior is crucial for supporting transparent cyclic

imports. Read on for more information.

27.8.2 ESM’s transparent support for

cyclic imports (advanced)

ESM supports cyclic imports transparently. To understand how that

is achieved, consider the following example: fig. 16 shows a directed

graph of modules importing other modules. P importing M is the

cycle in this case.

Figure 16: A directed graph of modules importing modules: M

imports N and O, N imports P and Q, etc.

After parsing, these modules are set up in two phases:

Instantiation: Every module is visited and its imports are

connected to its exports. Before a parent can be instantiated, all

of its children must be instantiated.

Evaluation: The bodies of the modules are executed. Once again,

children are evaluated before parents.

This approach handles cyclic imports correctly, due to two features of

ES modules:

Due to the static structure of ES modules, the exports are

already known after parsing. That makes it possible to

instantiate P before its child M: P can already look up M’s

exports.

When P is evaluated, M hasn’t been evaluated, yet. However,

entities in P can already mention imports from M. They just

can’t use them, yet, because the imported values are filled in

later. For example, a function in P can access an import from M.

The only limitation is that we must wait until after the

evaluation of M, before calling that function.

Imports being filled in later is enabled by them being “live

immutable views” on exports.

27.9 npm packages

The npm software registry is the dominant way of distributing

JavaScript libraries and apps for Node.js and web browsers. It is

managed via the npm package manager (short: npm). Software is

distributed as so-called packages. A package is a directory

containing arbitrary files and a file package.json at the top level that

describes the package. For example, when npm creates an empty

package inside a directory foo/, you get this package.json:

Some of these properties contain simple metadata:

name specifies the name of this package. Once it is uploaded to

the npm registry, it can be installed via npm install foo.

version is used for version management and follows semantic

versioning, with three numbers:

Major version: is incremented when incompatible API

changes are made.

{

 "name": "foo",

 "version": "1.0.0",

 "description": "",

 "main": "index.js",

 "scripts": {

 "test": "echo \"Error: no test specified\" && exit 1"

 },

 "keywords": [],

 "author": "",

 "license": "ISC"

}

https://semver.org/

Minor version: is incremented when functionality is added

in a backward compatible manner.

Patch version: is incremented when backward compatible

changes are made.

description, keywords, author make it easier to find packages.

license clarifies how you can use this package.

Other properties enable advanced configuration:

main: specifies the module that “is” the package (explained later

in this chapter).

scripts: are commands that you can execute via npm run. For

example, the script test can be executed via npm run test.

For more information on package.json, consult the npm

documentation.

27.9.1 Packages are installed inside a

directory node_modules/

npm always installs packages inside a directory node_modules. There

are usually many of these directories. Which one npm uses, depends

on the directory where one currently is. For example, if we are inside

a directory /tmp/a/b/, npm tries to find a node_modules in the current

directory, its parent directory, the parent directory of the parent, etc.

In other words, it searches the following chain of locations:

/tmp/a/b/node_modules

/tmp/a/node_modules

/tmp/node_modules

https://docs.npmjs.com/files/package.json

When installing a package foo, npm uses the closest node_modules. If,

for example, we are inside /tmp/a/b/ and there is a node_modules in

that directory, then npm puts the package inside the directory:

/tmp/a/b/node_modules/foo/

When importing a module, we can use a special module specifier to

tell Node.js that we want to import it from an installed package. How

exactly that works, is explained later. For now, consider the following

example:

To find the-module.mjs (Node.js prefers the filename extension .mjs

for ES modules), Node.js walks up the node_module chain and

searches the following locations:

/home/jane/proj/node_modules/the-package/the-module.mjs

/home/jane/node_modules/the-package/the-module.mjs

/home/node_modules/the-package/the-module.mjs

27.9.2 Why can npm be used to install

frontend libraries?

Finding installed modules in node_modules directories is only

supported on Node.js. So why can we also use npm to install libraries

for browsers?

That is enabled via bundling tools, such as webpack, that compile

and optimize code before it is deployed online. During this

// /home/jane/proj/main.mjs

import * as theModule from 'the-package/the-module.mjs';

compilation process, the code in npm packages is adapted so that it

works in browsers.

27.10 Naming modules

There are no established best practices for naming module files and

the variables they are imported into.

In this chapter, I’m using the following naming style:

The names of module files are dash-cased and start with

lowercase letters:

./my-module.mjs

./some-func.mjs

The names of namespace imports are lowercased and camel-

cased:

The names of default imports are lowercased and camel-cased:

What are the rationales behind this style?

npm doesn’t allow uppercase letters in package names (source).

Thus, we avoid camel case, so that “local” files have names that

are consistent with those of npm packages. Using only lowercase

letters also minimizes conflicts between file systems that are

case-sensitive and file systems that aren’t: the former

distinguish files whose names have the same letters, but with

different cases; the latter don’t.

import * as myModule from './my-module.mjs';

import someFunc from './some-func.mjs';

https://docs.npmjs.com/files/package.json#name

There are clear rules for translating dash-cased file names to

camel-cased JavaScript variable names. Due to how we name

namespace imports, these rules work for both namespace

imports and default imports.

I also like underscore-cased module file names because you can

directly use these names for namespace imports (without any

translation):

But that style does not work for default imports: I like underscore-

casing for namespace objects, but it is not a good choice for

functions, etc.

import * as my_module from './my_module.mjs';

27.11 Module specifiers

Module specifiers are the strings that identify modules. They work

slightly differently in browsers and Node.js. Before we can look at the

differences, we need to learn about the different categories of module

specifiers.

27.11.1 Categories of module specifiers

In ES modules, we distinguish the following categories of specifiers.

These categories originated with CommonJS modules.

Relative path: starts with a dot. Examples:

'./some/other/module.mjs'

'../../lib/counter.mjs'

Absolute path: starts with a slash. Example:

'/home/jane/file-tools.mjs'

URL: includes a protocol (technically, paths are URLs, too).

Examples:

'https://example.com/some-module.mjs'

'file:///home/john/tmp/main.mjs'

Bare path: does not start with a dot, a slash or a protocol, and

consists of a single filename without an extension. Examples:

'lodash'

'the-package'

Deep import path: starts with a bare path and has at least one

slash. Example:

'the-package/dist/the-module.mjs'

27.11.2 ES module specifiers in browsers

Browsers handle module specifiers as follows:

Relative paths, absolute paths, and URLs work as expected.

They all must point to real files (in contrast to CommonJS,

which lets you omit filename extensions and more).

The file name extensions of modules don’t matter, as long as

they are served with the content type text/javascript.

How bare paths will end up being handled is not yet clear. You

will probably eventually be able to map them to other specifiers

via lookup tables.

Note that bundling tools such as webpack, which combine modules

into fewer files, are often less strict with specifiers than browsers.

That’s because they operate at build/compile time (not at runtime)

and can search for files by traversing the file system.

27.11.3 ES module specifiers on Node.js

 Support for ES modules on Node.js is still new

You may have to switch it on via a command line flag. See the

Node.js documentation for details.

https://nodejs.org/api/esm.html

Node.js handles module specifiers as follows:

Relative paths are resolved as they are in web browsers –

relative to the path of the current module.

Absolute paths are currently not supported. As a workaround,

you can use URLs that start with file:///. You can create such

URLs via url.pathToFileURL().

Only file: is supported as a protocol for URL specifiers.

A bare path is interpreted as a package name and resolved

relative to the closest node_modules directory. What module

should be loaded, is determined by looking at property "main" of

the package’s package.json (similarly to CommonJS).

Deep import paths are also resolved relatively to the closest

node_modules directory. They contain file names, so it is always

clear which module is meant.

All specifiers, except bare paths, must refer to actual files. That is,

ESM does not support the following CommonJS features:

CommonJS automatically adds missing filename extensions.

CommonJS can import a directory foo if there is a

foo/package.json with a "main" property.

CommonJS can import a directory foo if there is a module

foo/index.js.

All built-in Node.js modules are available via bare paths and have

named ESM exports – for example:

27.11.3.1 Filename extensions on Node.js

Node.js supports the following default filename extensions:

.mjs for ES modules

.cjs for CommonJS modules

The filename extension .js stands for either ESM or CommonJS.

Which one it is is configured via the “closest” package.json (in the

current directory, the parent directory, etc.). Using package.json in

this manner is independent of packages.

In that package.json, there is a property "type", which has two

settings:

"commonjs" (the default): files with the extension .js or without

an extension are interpreted as CommonJS modules.

"module": files with the extension .js or without an extension

are interpreted as ESM modules.

27.11.3.2 Interpreting non-file source code as either

CommonJS or ESM

import * as path from 'path';

import {strict as assert} from 'assert';

assert.equal(

 path.join('a/b/c', '../d'), 'a/b/d');

Not all source code executed by Node.js comes from files. You can

also send it code via stdin, --eval, and --print. The command line

option --input-type lets you specify how such code is interpreted:

As CommonJS (the default): --input-type=commonjs

As ESM: --input-type=module

27.12 Loading modules

dynamically via import()

So far, the only way to import a module has been via an import

statement. That statement has several limitations:

You must use it at the top level of a module. That is, you can’t,

for example, import something when you are inside a block.

The module specifier is always fixed. That is, you can’t change

what you import depending on a condition. And you can’t

assemble a specifier dynamically.

The import() operator changes that. Let’s look at an example of it

being used.

27.12.1 Example: loading a module

dynamically

Consider the following files:

lib/my-math.mjs

main1.mjs

main2.mjs

We have already seen module my-math.mjs:

// Not exported, private to module

function times(a, b) {

 return a * b;

}

export function square(x) {

This is what using import() looks like in main1.mjs:

Method .then() is part of Promises, a mechanism for handling

asynchronous results, which is covered later in this book.

Two things in this code weren’t possible before:

We are importing inside a function (not at the top level).

The module specifier comes from a variable.

Next, we’ll implement the exact same functionality in main2.mjs but

via a so-called async function, which provides nicer syntax for

Promises.

 return times(x, x);

}

export const LIGHTSPEED = 299792458;

const dir = './lib/';

const moduleSpecifier = dir + 'my-math.mjs';

function loadConstant() {

 return import(moduleSpecifier)

 .then(myMath => {

 const result = myMath.LIGHTSPEED;

 assert.equal(result, 299792458);

 return result;

 });

}

const dir = './lib/';

const moduleSpecifier = dir + 'my-math.mjs';

async function loadConstant() {

 const myMath = await import(moduleSpecifier);

 const result = myMath.LIGHTSPEED;

 assert.equal(result, 299792458);

 Why is import() an operator and not a function?

Even though it works much like a function, import() is an

operator: in order to resolve module specifiers relatively to the

current module, it needs to know from which module it is invoked.

A normal function cannot receive this information as implicitly as

an operator can. It would need, for example, a parameter.

27.12.2 Use cases for import()

27.12.2.1 Loading code on demand

Some functionality of web apps doesn’t have to be present when they

start, it can be loaded on demand. Then import() helps because you

can put such functionality into modules – for example:

27.12.2.2 Conditional loading of modules

We may want to load a module depending on whether a condition is

true. For example, a module with a polyfill that makes a new feature

 return result;

}

button.addEventListener('click', event => {

 import('./dialogBox.mjs')

 .then(dialogBox => {

 dialogBox.open();

 })

 .catch(error => {

 /* Error handling */

 })

});

available on legacy platforms:

27.12.2.3 Computed module specifiers

For applications such as internationalization, it helps if you can

dynamically compute module specifiers:

if (isLegacyPlatform()) {

 import('./my-polyfill.mjs')

 .then(···);

}

import(`messages_${getLocale()}.mjs`)

 .then(···);

27.13 Preview: import.meta.url

“import.meta” is an ECMAScript feature proposed by Domenic

Denicola. The object import.meta holds metadata for the current

module.

Its most important property is import.meta.url, which contains a

string with the URL of the current module file. For example:

'https://example.com/code/main.mjs'

27.13.1 import.meta.url and class URL

Class URL is available via a global variable in browsers and on

Node.js. You can look up its full functionality in the Node.js

documentation. When working with import.meta.url, its constructor

is especially useful:

Parameter input contains the URL to be parsed. It can be relative if

the second parameter, base, is provided.

In other words, this constructor lets us resolve a relative path against

a base URL:

new URL(input: string, base?: string|URL)

> new URL('other.mjs', 'https://example.com/code/main.mjs').href

'https://example.com/code/other.mjs'

> new URL('../other.mjs', 'https://example.com/code/main.mjs').h

'https://example.com/other.mjs'

https://github.com/tc39/proposal-import-meta
https://nodejs.org/api/url.html#url_class_url

This is how we get a URL instance that points to a file data.txt that

sits next to the current module:

27.13.2 import.meta.url on Node.js

On Node.js, import.meta.url is always a string with a file: URL –

for example:

'file:///Users/rauschma/my-module.mjs'

27.13.2.1 Example: reading a sibling file of a module

Many Node.js file system operations accept either strings with paths

or instances of URL. That enables us to read a sibling file data.txt of

the current module:

main() is an async function, as explained in §41 “Async functions”.

fs.promises contains a Promise-based version of the fs API, which

can be used with async functions.

27.13.2.2 Converting between file: URLs and paths

const urlOfData = new URL('data.txt', import.meta.url);

import {promises as fs} from 'fs';

async function main() {

 const urlOfData = new URL('data.txt', import.meta.url);

 const str = await fs.readFile(urlOfData, {encoding: 'UTF-8'});

 assert.equal(str, 'This is textual data.\n');

}

main();

https://nodejs.org/api/fs.html#fs_fs_promises_api

The Node.js module url has two functions for converting between

file: URLs and paths:

fileURLToPath(url: URL|string): string

Converts a file: URL to a path.

pathToFileURL(path: string): URL

Converts a path to a file: URL.

If you need a path that can be used in the local file system, then

property .pathname of URL instances does not always work:

Therefore, it is better to use fileURLToPath():

Similarly, pathToFileURL() does more than just prepend 'file://' to

an absolute path.

assert.equal(

 new URL('file:///tmp/with%20space.txt').pathname,

 '/tmp/with%20space.txt');

import * as url from 'url';

assert.equal(

 url.fileURLToPath('file:///tmp/with%20space.txt'),

 '/tmp/with space.txt'); // result on Unix

https://nodejs.org/api/url.html

27.14 Polyfills: emulating native

web platform features (advanced)

 Backends have polyfills, too

This section is about frontend development and web browsers, but

similar ideas apply to backend development.

Polyfills help with a conflict that we are facing when developing a

web application in JavaScript:

On one hand, we want to use modern web platform features that

make the app better and/or development easier.

On the other hand, the app should run on as many browsers as

possible.

Given a web platform feature X:

A polyfill for X is a piece of code. If it is executed on a platform

that already has built-in support for X, it does nothing.

Otherwise, it makes the feature available on the platform. In the

latter case, the polyfilled feature is (mostly) indistinguishable

from a native implementation. In order to achieve that, the

polyfill usually makes global changes. For example, it may

modify global data or configure a global module loader. Polyfills

are often packaged as modules.

The term polyfill was coined by Remy Sharp.

https://remysharp.com/2010/10/08/what-is-a-polyfill

A speculative polyfill is a polyfill for a proposed web platform

feature (that is not standardized, yet).

Alternative term: prollyfill

A replica of X is a library that reproduces the API and

functionality of X locally. Such a library exists independently of

a native (and global) implementation of X.

Replica is a new term introduced in this section. Alternative

term: ponyfill

There is also the term shim, but it doesn’t have a universally

agreed upon definition. It often means roughly the same as

polyfill.

Every time our web applications starts, it must first execute all

polyfills for features that may not be available everywhere.

Afterwards, we can be sure that those features are available natively.

27.14.1 Sources of this section

“What is a Polyfill?” by Remy Sharp

Inspiration for the term replica: The Eiffel Tower in Las Vegas

Useful clarification of “polyfill” and related terms: “Polyfills and

the evolution of the Web”. Edited by Andrew Betts.

 Quiz

See quiz app.

https://remysharp.com/2010/10/08/what-is-a-polyfill
https://en.wikipedia.org/wiki/Paris_Las_Vegas
https://www.w3.org/2001/tag/doc/polyfills/

28 Single objects

28.1 What is an object?

28.1.1 Roles of objects: record vs. dictionary

28.2 Objects as records

28.2.1 Object literals: properties

28.2.2 Object literals: property value shorthands

28.2.3 Getting properties

28.2.4 Setting properties

28.2.5 Object literals: methods

28.2.6 Object literals: accessors

28.3 Spreading into object literals (...)

28.3.1 Use case for spreading: copying objects

28.3.2 Use case for spreading: default values for missing properties

28.3.3 Use case for spreading: non-destructively changing properties

28.4 Methods

28.4.1 Methods are properties whose values are functions

28.4.2 .call(): specifying this via a parameter

28.4.3 .bind(): pre-filling this and parameters of functions

28.4.4 this pitfall: extracting methods

28.4.5 this pitfall: accidentally shadowing this

28.4.6 Avoiding the pitfalls of this

28.4.7 The value of this in various contexts

28.5 Objects as dictionaries (advanced)

28.5.1 Arbitrary fixed strings as property keys

28.5.2 Computed property keys

28.5.3 The in operator: is there a property with a given key?

28.5.4 Deleting properties

28.5.5 Listing property keys

28.5.6 Listing property values via Object.values()

28.5.7 Listing property entries via Object.entries()

28.5.8 Properties are listed deterministically

28.5.9 Assembling objects via Object.fromEntries()

28.5.10 The pitfalls of using an object as a dictionary

28.6 Standard methods (advanced)

28.6.1 .toString()

28.6.2 .valueOf()

28.7 Advanced topics

28.7.1 Object.assign()

28.7.2 Freezing objects

28.7.3 Property attributes and property descriptors

In this book, JavaScript’s style of object-oriented programming (OOP) is

introduced in four steps. This chapter covers step 1; the next chapter covers steps

2–4. The steps are (fig. 17):

1. Single objects (this chapter): How do objects, JavaScript’s basic OOP

building blocks, work in isolation?

2. Prototype chains (next chapter): Each object has a chain of zero or

more prototype objects. Prototypes are JavaScript’s core inheritance

mechanism.

3. Classes (next chapter): JavaScript’s classes are factories for objects. The

relationship between a class and its instances is based on prototypal

inheritance.

4. Subclassing (next chapter): The relationship between a subclass and its

superclass is also based on prototypal inheritance.

ƒmthd

data

__proto__

4

ƒ

data

mthd

4

MyClass
data

mthd

SubClass
subData

subMthd

SuperClass
superData

superMthd

1. Single objects 2. Prototype chains 3. Classes 4. Subclassing

Figure 17: This book introduces object-oriented programming in JavaScript in

four steps.

28.1 What is an object?

In JavaScript:

An object is a set of properties (key-value entries).

A property key can only be a string or a symbol.

28.1.1 Roles of objects: record vs. dictionary

Objects play two roles in JavaScript:

Records: Objects-as-records have a fixed number of properties, whose keys

are known at development time. Their values can have different types.

Dictionaries: Objects-as-dictionaries have a variable number of properties,

whose keys are not known at development time. All of their values have the

same type.

These roles influence how objects are explained in this chapter:

First, we’ll explore objects-as-records. Even though property keys are strings

or symbols under the hood, they will appear as fixed identifiers to us, in this

part of the chapter.

Later, we’ll explore objects-as-dictionaries. Note that Maps are usually better

dictionaries than objects. However, some of the operations that we’ll

encounter, can also be useful for objects-as-records.

28.2 Objects as records

Let’s first explore the role record of objects.

28.2.1 Object literals: properties

Object literals are one way of creating objects-as-records. They are a stand-out

feature of JavaScript: you can directly create objects – no need for classes! This is

an example:

In the example, we created an object via an object literal, which starts and ends

with curly braces {}. Inside it, we defined two properties (key-value entries):

The first property has the key first and the value 'Jane'.

The second property has the key last and the value 'Doe'.

We will later see other ways of specifying property keys, but with this way of

specifying them, they must follow the rules of JavaScript variable names. For

example, you can use first_name as a property key, but not first-name).

However, reserved words are allowed:

In order to check the effects of various operations on objects, we’ll occasionally

use Object.keys() in this part of the chapter. It lists property keys:

28.2.2 Object literals: property value shorthands

const jane = {

 first: 'Jane',

 last: 'Doe', // optional trailing comma

};

const obj = {

 if: true,

 const: true,

};

> Object.keys({a:1, b:2})

['a', 'b']

Whenever the value of a property is defined via a variable name and that name is

the same as the key, you can omit the key.

28.2.3 Getting properties

This is how you get (read) a property (line A):

Getting an unknown property produces undefined:

28.2.4 Setting properties

This is how you set (write to) a property:

We just changed an existing property via setting. If we set an unknown property,

we create a new entry:

function createPoint(x, y) {

 return {x, y};

}

assert.deepEqual(

 createPoint(9, 2),

 { x: 9, y: 2 }

);

const jane = {

 first: 'Jane',

 last: 'Doe',

};

// Get property .first

assert.equal(jane.first, 'Jane'); // (A)

assert.equal(jane.unknownProperty, undefined);

const obj = {

 prop: 1,

};

assert.equal(obj.prop, 1);

obj.prop = 2; // (A)

assert.equal(obj.prop, 2);

const obj = {}; // empty object

assert.deepEqual(

28.2.5 Object literals: methods

The following code shows how to create the method .says() via an object literal:

During the method call jane.says('hello'), jane is called the receiver of the

method call and assigned to the special variable this. That enables method

.says() to access the sibling property .first in line A.

28.2.6 Object literals: accessors

There are two kinds of accessors in JavaScript:

A getter is a method-like entity that is invoked by getting a property.

A setter is a method-like entity that is invoked by setting a property.

28.2.6.1 Getters

A getter is created by prefixing a method definition with the modifier get:

 Object.keys(obj), []);

obj.unknownProperty = 'abc';

assert.deepEqual(

 Object.keys(obj), ['unknownProperty']);

const jane = {

 first: 'Jane', // data property

 says(text) { // method

 return `${this.first} says “${text}”`; // (A)

 }, // comma as separator (optional at end)

};

assert.equal(jane.says('hello'), 'Jane says “hello”');

const jane = {

 first: 'Jane',

 last: 'Doe',

 get full() {

 return `${this.first} ${this.last}`;

 },

};

assert.equal(jane.full, 'Jane Doe');

28.2.6.2 Setters

A setter is created by prefixing a method definition with the modifier set:

 Exercise: Creating an object via an object literal

exercises/single-objects/color_point_object_test.mjs

jane.first = 'John';

assert.equal(jane.full, 'John Doe');

const jane = {

 first: 'Jane',

 last: 'Doe',

 set full(fullName) {

 const parts = fullName.split(' ');

 this.first = parts[0];

 this.last = parts[1];

 },

};

jane.full = 'Richard Roe';

assert.equal(jane.first, 'Richard');

assert.equal(jane.last, 'Roe');

28.3 Spreading into object literals (...)

Inside a function call, spreading (...) turns the iterated values of an iterable

object into arguments.

Inside an object literal, a spread property adds the properties of another object

to the current one:

If property keys clash, the property that is mentioned last “wins”:

All values are spreadable, even undefined and null:

Property .length of strings and of Arrays is hidden from this kind of operation (it

is not enumerable; see §28.7.3 “Property attributes and property descriptors” for

more information).

28.3.1 Use case for spreading: copying objects

You can use spreading to create a copy of an object original:

> const obj = {foo: 1, bar: 2};

> {...obj, baz: 3}

{ foo: 1, bar: 2, baz: 3 }

> const obj = {foo: 1, bar: 2, baz: 3};

> {...obj, foo: true}

{ foo: true, bar: 2, baz: 3 }

> {foo: true, ...obj}

{ foo: 1, bar: 2, baz: 3 }

> {...undefined}

{}

> {...null}

{}

> {...123}

{}

> {...'abc'}

{ '0': 'a', '1': 'b', '2': 'c' }

> {...['a', 'b']}

{ '0': 'a', '1': 'b' }

Caveat – copying is shallow: copy is a fresh object with duplicates of all

properties (key-value entries) of original. But if property values are objects, then

those are not copied themselves; they are shared between original and copy.

Let’s look at an example:

The first level of copy is really a copy: If you change any properties at that level, it

does not affect the original:

However, deeper levels are not copied. For example, the value of .b is shared

between original and copy. Changing .b in the copy also changes it in the

original.

 JavaScript doesn’t have built-in support for deep copying

Deep copies of objects (where all levels are copied) are notoriously difficult to

do generically. Therefore, JavaScript does not have a built-in operation for

them (for now). If you need such an operation, you have to implement it

yourself.

28.3.2 Use case for spreading: default values for

missing properties

If one of the inputs of your code is an object with data, you can make properties

optional by specifying default values that are used if those properties are missing.

One technique for doing so is via an object whose properties contain the default

values. In the following example, that object is DEFAULTS:

const copy = {...original};

const original = { a: 1, b: {foo: true} };

const copy = {...original};

copy.a = 2;

assert.deepEqual(

 original, { a: 1, b: {foo: true} }); // no change

copy.b.foo = false;

assert.deepEqual(

 original, { a: 1, b: {foo: false} });

The result, the object allData, is created by copying DEFAULTS and overriding its

properties with those of providedData.

But you don’t need an object to specify the default values; you can also specify

them inside the object literal, individually:

28.3.3 Use case for spreading: non-destructively

changing properties

So far, we have encountered one way of changing a property .foo of an object:

We set it (line A) and mutate the object. That is, this way of changing a property

is destructive.

With spreading, we can change .foo non-destructively – we make a copy of obj

where .foo has a different value:

 Exercise: Non-destructively updating a property via spreading

(fixed key)

exercises/single-objects/update_name_test.mjs

const DEFAULTS = {foo: 'a', bar: 'b'};

const providedData = {foo: 1};

const allData = {...DEFAULTS, ...providedData};

assert.deepEqual(allData, {foo: 1, bar: 'b'});

const providedData = {foo: 1};

const allData = {foo: 'a', bar: 'b', ...providedData};

assert.deepEqual(allData, {foo: 1, bar: 'b'});

const obj = {foo: 'a', bar: 'b'};

obj.foo = 1; // (A)

assert.deepEqual(obj, {foo: 1, bar: 'b'});

const obj = {foo: 'a', bar: 'b'};

const updatedObj = {...obj, foo: 1};

assert.deepEqual(updatedObj, {foo: 1, bar: 'b'});

28.4 Methods

28.4.1 Methods are properties whose values are

functions

Let’s revisit the example that was used to introduce methods:

Somewhat surprisingly, methods are functions:

Why is that? We learned in the chapter on callable values, that ordinary functions

play several roles. Method is one of those roles. Therefore, under the hood, jane

roughly looks as follows.

28.4.2 .call(): specifying this via a parameter

Remember that each function someFunc is also an object and therefore has

methods. One such method is .call() – it lets you call a function while specifying

this via a parameter:

28.4.2.1 Methods and .call()

const jane = {

 first: 'Jane',

 says(text) {

 return `${this.first} says “${text}”`;

 },

};

assert.equal(typeof jane.says, 'function');

const jane = {

 first: 'Jane',

 says: function (text) {

 return `${this.first} says “${text}”`;

 },

};

someFunc.call(thisValue, arg1, arg2, arg3);

If you make a method call, this is an implicit parameter that is filled in via the

receiver of the call:

The method call in the last line sets up this as follows:

As an aside, that means that there are actually two different dot operators:

1. One for accessing properties: obj.prop

2. One for making method calls: obj.prop()

They are different in that (2) is not just (1) followed by the function call operator

(). Instead, (2) additionally specifies a value for this.

28.4.2.2 Functions and .call()

If you function-call an ordinary function, its implicit parameter this is also

provided – it is implicitly set to undefined:

The method call in the last line sets up this as follows:

this being set to undefined during a function call, indicates that it is a feature that

is only needed during a method call.

const obj = {

 method(x) {

 assert.equal(this, obj); // implicit parameter

 assert.equal(x, 'a');

 },

};

obj.method('a'); // receiver is `obj`

obj.method.call(obj, 'a');

function func(x) {

 assert.equal(this, undefined); // implicit parameter

 assert.equal(x, 'a');

}

func('a');

func.call(undefined, 'a');

Next, we’ll examine the pitfalls of using this. Before we can do that, we need one

more tool: method .bind() of functions.

28.4.3 .bind(): pre-filling this and parameters of

functions

.bind() is another method of function objects. This method is invoked as follows:

.bind() returns a new function boundFunc(). Calling that function invokes

someFunc() with this set to thisValue and these parameters: arg1, arg2, followed

by the parameters of boundFunc().

That is, the following two function calls are equivalent:

28.4.3.1 An alternative to .bind()

Another way of pre-filling this and parameters is via an arrow function:

28.4.3.2 An implementation of .bind()

Considering the previous section, .bind() can be implemented as a real function

as follows:

28.4.3.3 Example: binding a real function

const boundFunc = someFunc.bind(thisValue, arg1, arg2);

boundFunc('a', 'b')

someFunc.call(thisValue, arg1, arg2, 'a', 'b')

const boundFunc2 = (...args) =>

 someFunc.call(thisValue, arg1, arg2, ...args);

function bind(func, thisValue, ...boundArgs) {

 return (...args) =>

 func.call(thisValue, ...boundArgs, ...args);

}

Using .bind() for real functions is somewhat unintuitive because you have to

provide a value for this. Given that it is undefined during function calls, it is

usually set to undefined or null.

In the following example, we create add8(), a function that has one parameter, by

binding the first parameter of add() to 8.

28.4.3.4 Example: binding a method

In the following code, we turn method .says() into the stand-alone function

func():

Setting this to jane via .bind() is crucial here. Otherwise, func() wouldn’t work

properly because this is used in line A.

28.4.4 this pitfall: extracting methods

We now know quite a bit about functions and methods and are ready to take a

look at the biggest pitfall involving methods and this: function-calling a method

extracted from an object can fail if you are not careful.

In the following example, we fail when we extract method jane.says(), store it in

the variable func, and function-call func().

function add(x, y) {

 return x + y;

}

const add8 = add.bind(undefined, 8);

assert.equal(add8(1), 9);

const jane = {

 first: 'Jane',

 says(text) {

 return `${this.first} says “${text}”`; // (A)

 },

};

const func = jane.says.bind(jane, 'hello');

assert.equal(func(), 'Jane says “hello”');

The function call in line A is equivalent to:

So how do we fix this? We need to use .bind() to extract method .says():

The .bind() ensures that this is always jane when we call func().

You can also use arrow functions to extract methods:

28.4.4.1 Example: extracting a method

The following is a simplified version of code that you may see in actual web

development:

const jane = {

 first: 'Jane',

 says(text) {

 return `${this.first} says “${text}”`;

 },

};

const func = jane.says; // extract the method

assert.throws(

 () => func('hello'), // (A)

 {

 name: 'TypeError',

 message: "Cannot read property 'first' of undefined",

 });

assert.throws(

 () => jane.says.call(undefined, 'hello'), // `this` is undefined!

 {

 name: 'TypeError',

 message: "Cannot read property 'first' of undefined",

 });

const func2 = jane.says.bind(jane);

assert.equal(func2('hello'), 'Jane says “hello”');

const func3 = text => jane.says(text);

assert.equal(func3('hello'), 'Jane says “hello”');

class ClickHandler {

 constructor(id, elem) {

 this.id = id;

 elem.addEventListener('click', this.handleClick); // (A)

In line A, we don’t extract the method .handleClick() properly. Instead, we

should do:

 Exercise: Extracting a method

exercises/single-objects/method_extraction_exrc.mjs

28.4.5 this pitfall: accidentally shadowing this

 Accidentally shadowing this is only an issue with ordinary

functions

Arrow functions don’t shadow this.

Consider the following problem: when you are inside an ordinary function, you

can’t access the this of the surrounding scope because the ordinary function has

its own this. In other words, a variable in an inner scope hides a variable in an

outer scope. That is called shadowing. The following code is an example:

In line A, we want to access the this of .prefixStringArray(). But we can’t since

the surrounding ordinary function has its own this that shadows (blocks access

 }

 handleClick(event) {

 alert('Clicked ' + this.id);

 }

}

elem.addEventListener('click', this.handleClick.bind(this));

const prefixer = {

 prefix: '==> ',

 prefixStringArray(stringArray) {

 return stringArray.map(

 function (x) {

 return this.prefix + x; // (A)

 });

 },

};

assert.throws(

 () => prefixer.prefixStringArray(['a', 'b']),

 /^TypeError: Cannot read property 'prefix' of undefined$/);

to) the this of the method. The value of the former this is undefined due to the

callback being function-called. That explains the error message.

The simplest way to fix this problem is via an arrow function, which doesn’t have

its own this and therefore doesn’t shadow anything:

We can also store this in a different variable (line A), so that it doesn’t get

shadowed:

Another option is to specify a fixed this for the callback via .bind() (line A):

Lastly, .map() lets us specify a value for this (line A) that it uses when invoking

the callback:

const prefixer = {

 prefix: '==> ',

 prefixStringArray(stringArray) {

 return stringArray.map(

 (x) => {

 return this.prefix + x;

 });

 },

};

assert.deepEqual(

 prefixer.prefixStringArray(['a', 'b']),

 ['==> a', '==> b']);

prefixStringArray(stringArray) {

 const that = this; // (A)

 return stringArray.map(

 function (x) {

 return that.prefix + x;

 });

},

prefixStringArray(stringArray) {

 return stringArray.map(

 function (x) {

 return this.prefix + x;

 }.bind(this)); // (A)

},

prefixStringArray(stringArray) {

 return stringArray.map(

 function (x) {

 return this.prefix + x;

28.4.6 Avoiding the pitfalls of this

We have seen two big this-related pitfalls:

1. Extracting methods

2. Accidentally shadowing this

One simple rule helps avoid the second pitfall:

“Avoid the keyword function”: Never use ordinary functions, only arrow

functions (for real functions) and method definitions.

Following this rule has two benefits:

It prevents the second pitfall because ordinary functions are never used as

real functions.

this becomes easier to understand because it will only appear inside

methods (never inside ordinary functions). That makes it clear that this is

an OOP feature.

However, even though I don’t use (ordinary) function expressions anymore, I do

like function declarations syntactically. You can use them safely if you don’t refer

to this inside them. The static checking tool ESLint can warn you during

development when you do this wrong via a built-in rule.

Alas, there is no simple way around the first pitfall: whenever you extract a

method, you have to be careful and do it properly – for example, by binding this.

28.4.7 The value of this in various contexts

What is the value of this in various contexts?

 },

 this); // (A)

},

https://eslint.org/docs/rules/no-invalid-this

Inside a callable entity, the value of this depends on how the callable entity is

invoked and what kind of callable entity it is:

Function call:

Ordinary functions: this === undefined (in strict mode)

Arrow functions: this is same as in surrounding scope (lexical this)

Method call: this is receiver of call

new: this refers to newly created instance

You can also access this in all common top-level scopes:

<script> element: this === globalThis

ECMAScript modules: this === undefined

CommonJS modules: this === module.exports

However, I like to pretend that you can’t access this in top-level scopes because

top-level this is confusing and rarely useful.

28.5 Objects as dictionaries (advanced)

Objects work best as records. But before ES6, JavaScript did not have a data

structure for dictionaries (ES6 brought Maps). Therefore, objects had to be used

as dictionaries, which imposed a signficant constraint: keys had to be strings

(symbols were also introduced with ES6).

We first look at features of objects that are related to dictionaries but also useful

for objects-as-records. This section concludes with tips for actually using objects

as dictionaries (spoiler: use Maps if you can).

28.5.1 Arbitrary fixed strings as property keys

So far, we have always used objects as records. Property keys were fixed tokens

that had to be valid identifiers and internally became strings:

As a next step, we’ll go beyond this limitation for property keys: In this section,

we’ll use arbitrary fixed strings as keys. In the next subsection, we’ll dynamically

compute keys.

Two techniques allow us to use arbitrary strings as property keys.

First, when creating property keys via object literals, we can quote property keys

(with single or double quotes):

const obj = {

 mustBeAnIdentifier: 123,

};

// Get property

assert.equal(obj.mustBeAnIdentifier, 123);

// Set property

obj.mustBeAnIdentifier = 'abc';

assert.equal(obj.mustBeAnIdentifier, 'abc');

const obj = {

 'Can be any string!': 123,

Second, when getting or setting properties, we can use square brackets with

strings inside them:

You can also use these techniques for methods:

28.5.2 Computed property keys

So far, property keys were always fixed strings inside object literals. In this

section we learn how to dynamically compute property keys. That enables us to

use either arbitrary strings or symbols.

The syntax of dynamically computed property keys in object literals is inspired by

dynamically accessing properties. That is, we can use square brackets to wrap

expressions:

The main use case for computed keys is having symbols as property keys (line A).

};

// Get property

assert.equal(obj['Can be any string!'], 123);

// Set property

obj['Can be any string!'] = 'abc';

assert.equal(obj['Can be any string!'], 'abc');

const obj = {

 'A nice method'() {

 return 'Yes!';

 },

};

assert.equal(obj['A nice method'](), 'Yes!');

const obj = {

 ['Hello world!']: true,

 ['f'+'o'+'o']: 123,

 [Symbol.toStringTag]: 'Goodbye', // (A)

};

assert.equal(obj['Hello world!'], true);

assert.equal(obj.foo, 123);

assert.equal(obj[Symbol.toStringTag], 'Goodbye');

Note that the square brackets operator for getting and setting properties works

with arbitrary expressions:

Methods can have computed property keys, too:

For the remainder of this chapter, we’ll mostly use fixed property keys again

(because they are syntactically more convenient). But all features are also

available for arbitrary strings and symbols.

 Exercise: Non-destructively updating a property via spreading

(computed key)

exercises/single-objects/update_property_test.mjs

28.5.3 The in operator: is there a property with a

given key?

The in operator checks if an object has a property with a given key:

28.5.3.1 Checking if a property exists via truthiness

assert.equal(obj['f'+'o'+'o'], 123);

assert.equal(obj['==> foo'.slice(-3)], 123);

const methodKey = Symbol();

const obj = {

 [methodKey]() {

 return 'Yes!';

 },

};

assert.equal(obj[methodKey](), 'Yes!');

const obj = {

 foo: 'abc',

 bar: false,

};

assert.equal('foo' in obj, true);

assert.equal('unknownKey' in obj, false);

You can also use a truthiness check to determine if a property exists:

The previous checks work because obj.foo is truthy and because reading a

missing property returns undefined (which is falsy).

There is, however, one important caveat: truthiness checks fail if the property

exists, but has a falsy value (undefined, null, false, 0, "", etc.):

28.5.4 Deleting properties

You can delete properties via the delete operator:

28.5.5 Listing property keys

Table 18: Standard library methods for listing own (non-inherited) property keys.

All of them return Arrays with strings and/or symbols.

enumerable
non-

e.
string symbol

Object.keys() ✔ ✔

Object.getOwnPropertyNames() ✔ ✔ ✔

Object.getOwnPropertySymbols() ✔ ✔ ✔

assert.equal(

 obj.foo ? 'exists' : 'does not exist',

 'exists');

assert.equal(

 obj.unknownKey ? 'exists' : 'does not exist',

 'does not exist');

assert.equal(

 obj.bar ? 'exists' : 'does not exist',

 'does not exist'); // should be: 'exists'

const obj = {

 foo: 123,

};

assert.deepEqual(Object.keys(obj), ['foo']);

delete obj.foo;

assert.deepEqual(Object.keys(obj), []);

enumerable
non-

e.
string symbol

Reflect.ownKeys() ✔ ✔ ✔ ✔

Each of the methods in tbl. 18 returns an Array with the own property keys of the

parameter. In the names of the methods, you can see that the following

distinction is made:

A property key can be either a string or a symbol.

A property name is a property key whose value is a string.

A property symbol is a property key whose value is a symbol.

The next section describes the term enumerable and demonstrates each of the

methods.

28.5.5.1 Enumerability

Enumerability is an attribute of a property. Non-enumerable properties are

ignored by some operations – for example, by Object.keys() (see tbl. 18) and by

spread properties. By default, most properties are enumerable. The next example

shows how to change that. It also demonstrates the various ways of listing

property keys.

const enumerableSymbolKey = Symbol('enumerableSymbolKey');

const nonEnumSymbolKey = Symbol('nonEnumSymbolKey');

// We create enumerable properties via an object literal

const obj = {

 enumerableStringKey: 1,

 [enumerableSymbolKey]: 2,

}

// For non-enumerable properties, we need a more powerful tool

Object.defineProperties(obj, {

 nonEnumStringKey: {

 value: 3,

 enumerable: false,

 },

 [nonEnumSymbolKey]: {

 value: 4,

Object.defineProperties() is explained later in this chapter.

28.5.6 Listing property values via Object.values()

Object.values() lists the values of all enumerable properties of an object:

28.5.7 Listing property entries via

Object.entries()

Object.entries() lists key-value pairs of enumerable properties. Each pair is

encoded as a two-element Array:

 enumerable: false,

 },

});

assert.deepEqual(

 Object.keys(obj),

 ['enumerableStringKey']);

assert.deepEqual(

 Object.getOwnPropertyNames(obj),

 ['enumerableStringKey', 'nonEnumStringKey']);

assert.deepEqual(

 Object.getOwnPropertySymbols(obj),

 [enumerableSymbolKey, nonEnumSymbolKey]);

assert.deepEqual(

 Reflect.ownKeys(obj),

 [

 'enumerableStringKey', 'nonEnumStringKey',

 enumerableSymbolKey, nonEnumSymbolKey,

]);

const obj = {foo: 1, bar: 2};

assert.deepEqual(

 Object.values(obj),

 [1, 2]);

const obj = {foo: 1, bar: 2};

assert.deepEqual(

 Object.entries(obj),

 [

 ['foo', 1],

 ['bar', 2],

]);

 Exercise: Object.entries()

exercises/single-objects/find_key_test.mjs

28.5.8 Properties are listed deterministically

Own (non-inherited) properties of objects are always listed in the following

order:

1. Properties with string keys that contain integer indices (that includes Array

indices):

In ascending numeric order

2. Remaining properties with string keys:

In the order in which they were added

3. Properties with symbol keys:

In the order in which they were added

The following example demonstrates how property keys are sorted according to

these rules:

 The order of properties

The ECMAScript specification describes in more detail how properties are

ordered.

28.5.9 Assembling objects via Object.fromEntries()

Given an iterable over [key, value] pairs, Object.fromEntries() creates an object:

> Object.keys({b:0,a:0, 10:0,2:0})

['2', '10', 'b', 'a']

assert.deepEqual(

 Object.fromEntries([['foo',1], ['bar',2]]),

 {

 foo: 1,

 bar: 2,

 }

);

https://tc39.github.io/ecma262/#sec-ordinaryownpropertykeys

Object.fromEntries() does the opposite of Object.entries().

To demonstrate both, we’ll use them to implement two tool functions from the

library Underscore in the next subsubsections.

28.5.9.1 Example: pick(object, ...keys)

pick returns a copy of object that only has those properties whose keys are

mentioned as arguments:

We can implement pick() as follows:

28.5.9.2 Example: invert(object)

invert returns a copy of object where the keys and values of all properties are

swapped:

const address = {

 street: 'Evergreen Terrace',

 number: '742',

 city: 'Springfield',

 state: 'NT',

 zip: '49007',

};

assert.deepEqual(

 pick(address, 'street', 'number'),

 {

 street: 'Evergreen Terrace',

 number: '742',

 }

);

function pick(object, ...keys) {

 const filteredEntries = Object.entries(object)

 .filter(([key, _value]) => keys.includes(key));

 return Object.fromEntries(filteredEntries);

}

assert.deepEqual(

 invert({a: 1, b: 2, c: 3}),

 {1: 'a', 2: 'b', 3: 'c'}

);

https://underscorejs.org/
https://underscorejs.org/#pick
https://underscorejs.org/#invert

We can implement invert() like this:

28.5.9.3 A simple implementation of Object.fromEntries()

The following function is a simplified version of Object.fromEntries():

28.5.9.4 A polyfill for Object.fromEntries()

The npm package object.fromentries is a polyfill for Object.entries(): it installs

its own implementation if that method doesn’t exist on the current platform.

 Exercise: Object.entries() and Object.fromEntries()

exercises/single-objects/omit_properties_test.mjs

28.5.10 The pitfalls of using an object as a

dictionary

If you use plain objects (created via object literals) as dictionaries, you have to

look out for two pitfalls.

function invert(object) {

 const mappedEntries = Object.entries(object)

 .map(([key, value]) => [value, key]);

 return Object.fromEntries(mappedEntries);

}

function fromEntries(iterable) {

 const result = {};

 for (const [key, value] of iterable) {

 let coercedKey;

 if (typeof key === 'string' || typeof key === 'symbol') {

 coercedKey = key;

 } else {

 coercedKey = String(key);

 }

 result[coercedKey] = value;

 }

 return result;

}

https://github.com/es-shims/Object.fromEntries

The first pitfall is that the in operator also finds inherited properties:

We want dict to be treated as empty, but the in operator detects the properties it

inherits from its prototype, Object.prototype.

The second pitfall is that you can’t use the property key __proto__ because it has

special powers (it sets the prototype of the object):

So how do we avoid these pitfalls?

Whenever you can, use Maps. They are the best solution for dictionaries.

If you can’t, use a library for objects-as-dictionaries that does everything

safely.

If you can’t, use an object without a prototype.

The following code demonstrates using objects without prototypes as

dictionaries:

We avoided both pitfalls: First, a property without a prototype does not inherit

any properties (line A). Second, in modern JavaScript, __proto__ is implemented

via Object.prototype. That means that it is switched off if Object.prototype is not

in the prototype chain.

 Exercise: Using an object as a dictionary

const dict = {};

assert.equal('toString' in dict, true);

const dict = {};

dict['__proto__'] = 123;

// No property was added to dict:

assert.deepEqual(Object.keys(dict), []);

const dict = Object.create(null); // no prototype

assert.equal('toString' in dict, false); // (A)

dict['__proto__'] = 123;

assert.deepEqual(Object.keys(dict), ['__proto__']);

exercises/single-objects/simple_dict_test.mjs

28.6 Standard methods (advanced)

Object.prototype defines several standard methods that can be overridden to

configure how an object is treated by the language. Two important ones are:

.toString()

.valueOf()

28.6.1 .toString()

.toString() determines how objects are converted to strings:

28.6.2 .valueOf()

.valueOf() determines how objects are converted to numbers:

> String({toString() { return 'Hello!' }})

'Hello!'

> String({})

'[object Object]'

> Number({valueOf() { return 123 }})

123

> Number({})

NaN

28.7 Advanced topics

The following subsections give brief overviews of a few advanced topics.

28.7.1 Object.assign()

Object.assign() is a tool method:

This expression assigns all properties of source_1 to target, then all properties of

source_2, etc. At the end, it returns target – for example:

The use cases for Object.assign() are similar to those for spread properties. In a

way, it spreads destructively.

28.7.2 Freezing objects

Object.freeze(obj) makes obj completely immutable: You can’t change

properties, add properties, or change its prototype – for example:

Object.assign(target, source_1, source_2, ···)

const target = { foo: 1 };

const result = Object.assign(

 target,

 {bar: 2},

 {baz: 3, bar: 4});

assert.deepEqual(

 result, { foo: 1, bar: 4, baz: 3 });

// target was modified and returned:

assert.equal(result, target);

const frozen = Object.freeze({ x: 2, y: 5 });

assert.throws(

 () => { frozen.x = 7 },

 {

 name: 'TypeError',

 message: /^Cannot assign to read only property 'x'/,

 });

There is one caveat: Object.freeze(obj) freezes shallowly. That is, only the

properties of obj are frozen but not objects stored in properties.

28.7.3 Property attributes and property

descriptors

Just as objects are composed of properties, properties are composed of

attributes. The value of a property is only one of several attributes. Others

include:

writable: Is it possible to change the value of the property?

enumerable: Is the property considered by Object.keys(), spreading, etc.?

When you are using one of the operations for handling property attributes,

attributes are specified via property descriptors: objects where each property

represents one attribute. For example, this is how you read the attributes of a

property obj.foo:

And this is how you set the attributes of a property obj.bar:

const obj = { foo: 123 };

assert.deepEqual(

 Object.getOwnPropertyDescriptor(obj, 'foo'),

 {

 value: 123,

 writable: true,

 enumerable: true,

 configurable: true,

 });

const obj = {

 foo: 1,

 bar: 2,

};

assert.deepEqual(Object.keys(obj), ['foo', 'bar']);

// Hide property `bar` from Object.keys()

Object.defineProperty(obj, 'bar', {

 enumerable: false,

});

Enumerability is covered in greater detail earlier in this chapter. For more

information on property attributes and property descriptors, consult Speaking

JavaScript.

 Quiz

See quiz app.

assert.deepEqual(Object.keys(obj), ['foo']);

http://speakingjs.com/es5/ch17.html#property_attributes

29 Prototype chains and

classes

29.1 Prototype chains

29.1.1 JavaScript’s operations: all properties vs. own

properties

29.1.2 Pitfall: only the first member of a prototype chain is

mutated

29.1.3 Tips for working with prototypes (advanced)

29.1.4 Sharing data via prototypes

29.2 Classes

29.2.1 A class for persons

29.2.2 Classes under the hood

29.2.3 Class definitions: prototype properties

29.2.4 Class definitions: static properties

29.2.5 The instanceof operator

29.2.6 Why I recommend classes

29.3 Private data for classes

29.3.1 Private data: naming convention

29.3.2 Private data: WeakMaps

29.3.3 More techniques for private data

29.4 Subclassing

29.4.1 Subclasses under the hood (advanced)

29.4.2 instanceof in more detail (advanced)

29.4.3 Prototype chains of built-in objects (advanced)

29.4.4 Dispatched vs. direct method calls (advanced)

29.4.5 Mixin classes (advanced)

29.5 FAQ: objects

29.5.1 Why do objects preserve the insertion order of

properties?

In this book, JavaScript’s style of object-oriented programming

(OOP) is introduced in four steps. This chapter covers steps 2–4, the

previous chapter covers step 1. The steps are (fig. 18):

1. Single objects (previous chapter): How do objects,

JavaScript’s basic OOP building blocks, work in isolation?

2. Prototype chains (this chapter): Each object has a chain of

zero or more prototype objects. Prototypes are JavaScript’s core

inheritance mechanism.

3. Classes (this chapter): JavaScript’s classes are factories for

objects. The relationship between a class and its instances is

based on prototypal inheritance.

4. Subclassing (this chapter): The relationship between a

subclass and its superclass is also based on prototypal

inheritance.

ƒmthd

data

__proto__

4

ƒ

data

mthd

4

MyClass
data

mthd

SubClass
subData

subMthd

SuperClass
superData

superMthd

1. Single objects 2. Prototype chains 3. Classes 4. Subclassing

Figure 18: This book introduces object-oriented programming in

JavaScript in four steps.

29.1 Prototype chains

Prototypes are JavaScript’s only inheritance mechanism: each object

has a prototype that is either null or an object. In the latter case, the

object inherits all of the prototype’s properties.

In an object literal, you can set the prototype via the special property

__proto__:

Given that a prototype object can have a prototype itself, we get a

chain of objects – the so-called prototype chain. That means that

inheritance gives us the impression that we are dealing with single

objects, but we are actually dealing with chains of objects.

Fig. 19 shows what the prototype chain of obj looks like.

const proto = {

 protoProp: 'a',

};

const obj = {

 __proto__: proto,

 objProp: 'b',

};

// obj inherits .protoProp:

assert.equal(obj.protoProp, 'a');

assert.equal('protoProp' in obj, true);

__proto__

protoProp 'a'

proto

. . .

objProp

__proto__

'b'

obj

Figure 19: obj starts a chain of objects that continues with proto and

other objects.

Non-inherited properties are called own properties. obj has one own

property, .objProp.

29.1.1 JavaScript’s operations: all

properties vs. own properties

Some operations consider all properties (own and inherited) – for

example, getting properties:

Other operations only consider own properties – for example,

Object.keys():

> const obj = { foo: 1 };

> typeof obj.foo // own

'number'

> typeof obj.toString // inherited

'function'

> Object.keys(obj)

['foo']

Read on for another operation that also only considers own

properties: setting properties.

29.1.2 Pitfall: only the first member of a

prototype chain is mutated

One aspect of prototype chains that may be counter-intuitive is that

setting any property via an object – even an inherited one – only

changes that very object – never one of the prototypes.

Consider the following object obj:

In the next code snippet, we set the inherited property obj.protoProp

(line A). That “changes” it by creating an own property: When

reading obj.protoProp, the own property is found first and its value

overrides the value of the inherited property.

const proto = {

 protoProp: 'a',

};

const obj = {

 __proto__: proto,

 objProp: 'b',

};

// In the beginning, obj has one own property

assert.deepEqual(Object.keys(obj), ['objProp']);

obj.protoProp = 'x'; // (A)

// We created a new own property:

assert.deepEqual(Object.keys(obj), ['objProp', 'protoProp']);

// The inherited property itself is unchanged:

assert.equal(proto.protoProp, 'a');

The prototype chain of obj is depicted in fig. 20.

protoProp 'a'

__proto__

proto

. . .

'b'

__proto__

objProp

protoProp 'x'

obj

Figure 20: The own property .protoProp of obj overrides the

property inherited from proto.

29.1.3 Tips for working with prototypes

(advanced)

29.1.3.1 Best practice: avoid __proto__, except in object

literals

I recommend to avoid the pseudo-property __proto__: As we will see

later, not all objects have it.

However, __proto__ in object literals is different. There, it is a built-

in feature and always available.

The recommended ways of getting and setting prototypes are:

// The own property overrides the inherited property:

assert.equal(obj.protoProp, 'x');

The best way to get a prototype is via the following method:

The best way to set a prototype is when creating an object – via

__proto__ in an object literal or via:

If you have to, you can use Object.setPrototypeOf() to change

the prototype of an existing object. But that may affect

performance negatively.

This is how these features are used:

29.1.3.2 Check: is an object a prototype of another one?

So far, “p is a prototype of o” always meant “p is a direct prototype of

o”. But it can also be used more loosely and mean that p is in the

prototype chain of o. That looser relationship can be checked via:

For example:

Object.getPrototypeOf(obj: Object) : Object

Object.create(proto: Object) : Object

const proto1 = {};

const proto2 = {};

const obj = Object.create(proto1);

assert.equal(Object.getPrototypeOf(obj), proto1);

Object.setPrototypeOf(obj, proto2);

assert.equal(Object.getPrototypeOf(obj), proto2);

p.isPrototypeOf(o)

const a = {};

const b = {__proto__: a};

29.1.4 Sharing data via prototypes

Consider the following code:

We have two objects that are very similar. Both have two properties

whose names are .name and .describe. Additionally, method

.describe() is the same. How can we avoid duplicating that method?

We can move it to an object PersonProto and make that object a

prototype of both jane and tarzan:

const c = {__proto__: b};

assert.equal(a.isPrototypeOf(b), true);

assert.equal(a.isPrototypeOf(c), true);

assert.equal(a.isPrototypeOf(a), false);

assert.equal(c.isPrototypeOf(a), false);

const jane = {

 name: 'Jane',

 describe() {

 return 'Person named '+this.name;

 },

};

const tarzan = {

 name: 'Tarzan',

 describe() {

 return 'Person named '+this.name;

 },

};

assert.equal(jane.describe(), 'Person named Jane');

assert.equal(tarzan.describe(), 'Person named Tarzan');

const PersonProto = {

 describe() {

The name of the prototype reflects that both jane and tarzan are

persons.

__proto__

name 'Jane' name

__proto__

'Tarzan'

describe function() {···}

jane tarzan

PersonProto

Figure 21: Objects jane and tarzan share method .describe(), via

their common prototype PersonProto.

Fig. 21 illustrates how the three objects are connected: The objects at

the bottom now contain the properties that are specific to jane and

tarzan. The object at the top contains the properties that are shared

between them.

When you make the method call jane.describe(), this points to the

receiver of that method call, jane (in the bottom-left corner of the

diagram). That’s why the method still works. tarzan.describe()

works similarly.

 return 'Person named ' + this.name;

 },

};

const jane = {

 __proto__: PersonProto,

 name: 'Jane',

};

const tarzan = {

 __proto__: PersonProto,

 name: 'Tarzan',

};

assert.equal(jane.describe(), 'Person named Jane');

assert.equal(tarzan.describe(), 'Person named Tarzan');

29.2 Classes

We are now ready to take on classes, which are basically a compact

syntax for setting up prototype chains. Under the hood, JavaScript’s

classes are unconventional. But that is something you rarely see

when working with them. They should normally feel familiar to

people who have used other object-oriented programming languages.

29.2.1 A class for persons

We have previously worked with jane and tarzan, single objects

representing persons. Let’s use a class declaration to implement a

factory for person objects:

jane and tarzan can now be created via new Person():

class Person {

 constructor(name) {

 this.name = name;

 }

 describe() {

 return 'Person named '+this.name;

 }

}

const jane = new Person('Jane');

assert.equal(jane.name, 'Jane');

assert.equal(jane.describe(), 'Person named Jane');

const tarzan = new Person('Tarzan');

assert.equal(tarzan.name, 'Tarzan');

assert.equal(tarzan.describe(), 'Person named Tarzan');

Class Person has two methods:

The normal method .describe()

The special method .constructor() which is called directly after

a new instance has been created and initializes that instance. It

receives the arguments that are passed to the new operator (after

the class name). If you don’t need any arguments to set up a new

instance, you can omit the constructor.

29.2.1.1 Class expressions

There are two kinds of class definitions (ways of defining classes):

Class declarations, which we have seen in the previous section.

Class expressions, which we’ll see next.

Class expressions can be anonymous and named:

The name of a named class expression works similarly to the name of

a named function expression.

This was a first look at classes. We’ll explore more features soon, but

first we need to learn the internals of classes.

29.2.2 Classes under the hood

// Anonymous class expression

const Person = class { ··· };

// Named class expression

const Person = class MyClass { ··· };

There is a lot going on under the hood of classes. Let’s look at the

diagram for jane (fig. 22).

__proto__

name 'Jane'

describe function() {...}

constructor

jane

Person.prototype

prototype

Person

Figure 22: The class Person has the property .prototype that points

to an object that is the prototype of all instances of Person. jane is

one such instance.

The main purpose of class Person is to set up the prototype chain on

the right (jane, followed by Person.prototype). It is interesting to

note that both constructs inside class Person (.constructor and

.describe()) created properties for Person.prototype, not for Person.

The reason for this slightly odd approach is backward compatibility:

prior to classes, constructor functions (ordinary functions, invoked

via the new operator) were often used as factories for objects. Classes

are mostly better syntax for constructor functions and therefore

remain compatible with old code. That explains why classes are

functions:

> typeof Person

'function'

In this book, I use the terms constructor (function) and class

interchangeably.

It is easy to confuse .__proto__ and .prototype. Hopefully, fig. 22

makes it clear how they differ:

.__proto__ is a pseudo-property for accessing the prototype of

an object.

.prototype is a normal property that is only special due to how

the new operator uses it. The name is not ideal: Person.prototype

does not point to the prototype of Person, it points to the

prototype of all instances of Person.

29.2.2.1 Person.prototype.constructor (advanced)

There is one detail in fig. 22 that we haven’t looked at, yet:

Person.prototype.constructor points back to Person:

This setup also exists due to backward compatibility. But it has two

additional benefits.

First, each instance of a class inherits property .constructor.

Therefore, given an instance, you can make “similar” objects using it:

> Person.prototype.constructor === Person

true

const jane = new Person('Jane');

const cheeta = new jane.constructor('Cheeta');

// cheeta is also an instance of Person

// (the instanceof operator is explained later)

assert.equal(cheeta instanceof Person, true);

Second, you can get the name of the class that created a given

instance:

29.2.3 Class definitions: prototype

properties

All constructs in the body of the following class declaration create

properties of Foo.prototype.

Let’s examine them in order:

.constructor() is called after creating a new instance of Foo to

set up that instance.

.protoMethod() is a normal method. It is stored in

Foo.prototype.

.protoGetter is a getter that is stored in Foo.prototype.

The following interaction uses class Foo:

const tarzan = new Person('Tarzan');

assert.equal(tarzan.constructor.name, 'Person');

class Foo {

 constructor(prop) {

 this.prop = prop;

 }

 protoMethod() {

 return 'protoMethod';

 }

 get protoGetter() {

 return 'protoGetter';

 }

}

29.2.4 Class definitions: static properties

All constructs in the body of the following class declaration create so-

called static properties – properties of Bar itself.

The static method and the static getter are used as follows:

29.2.5 The instanceof operator

The instanceof operator tells you if a value is an instance of a given

class:

> const foo = new Foo(123);

> foo.prop

123

> foo.protoMethod()

'protoMethod'

> foo.protoGetter

'protoGetter'

class Bar {

 static staticMethod() {

 return 'staticMethod';

 }

 static get staticGetter() {

 return 'staticGetter';

 }

}

> Bar.staticMethod()

'staticMethod'

> Bar.staticGetter

'staticGetter'

> new Person('Jane') instanceof Person

true

We’ll explore the instanceof operator in more detail later, after we

have looked at subclassing.

29.2.6 Why I recommend classes

I recommend using classes for the following reasons:

Classes are a common standard for object creation and

inheritance that is now widely supported across frameworks

(React, Angular, Ember, etc.). This is an improvement to how

things were before, when almost every framework had its own

inheritance library.

They help tools such as IDEs and type checkers with their work

and enable new features there.

If you come from another language to JavaScript and are used to

classes, then you can get started more quickly.

JavaScript engines optimize them. That is, code that uses classes

is almost always faster than code that uses a custom inheritance

library.

You can subclass built-in constructor functions such as Error.

That doesn’t mean that classes are perfect:

> ({}) instanceof Person

false

> ({}) instanceof Object

true

> [] instanceof Array

true

There is a risk of overdoing inheritance.

There is a risk of putting too much functionality in classes (when

some of it is often better put in functions).

How they work superficially and under the hood is quite

different. In other words, there is a disconnect between syntax

and semantics. Two examples are:

A method definition inside a class C creates a method in the

object C.prototype.

Classes are functions.

The motivation for the disconnect is backward compatibility.

Thankfully, the disconnect causes few problems in practice; you

are usually OK if you go along with what classes pretend to be.

 Exercise: Writing a class

exercises/proto-chains-classes/point_class_test.mjs

29.3 Private data for classes

This section describes techniques for hiding some of the data of an

object from the outside. We discuss them in the context of classes,

but they also work for objects created directly, e.g., via object literals.

29.3.1 Private data: naming convention

The first technique makes a property private by prefixing its name

with an underscore. This doesn’t protect the property in any way; it

merely signals to the outside: “You don’t need to know about this

property.”

In the following code, the properties ._counter and ._action are

private.

class Countdown {

 constructor(counter, action) {

 this._counter = counter;

 this._action = action;

 }

 dec() {

 this._counter--;

 if (this._counter === 0) {

 this._action();

 }

 }

}

// The two properties aren’t really private:

assert.deepEqual(

 Object.keys(new Countdown()),

 ['_counter', '_action']);

With this technique, you don’t get any protection and private names

can clash. On the plus side, it is easy to use.

29.3.2 Private data: WeakMaps

Another technique is to use WeakMaps. How exactly that works is

explained in the chapter on WeakMaps. This is a preview:

This technique offers you considerable protection from outside

access and there can’t be any name clashes. But it is also more

complicated to use.

29.3.3 More techniques for private data

const _counter = new WeakMap();

const _action = new WeakMap();

class Countdown {

 constructor(counter, action) {

 _counter.set(this, counter);

 _action.set(this, action);

 }

 dec() {

 let counter = _counter.get(this);

 counter--;

 _counter.set(this, counter);

 if (counter === 0) {

 _action.get(this)();

 }

 }

}

// The two pseudo-properties are truly private:

assert.deepEqual(

 Object.keys(new Countdown()),

 []);

This book explains the most important techniques for private data in

classes. There will also probably soon be built-in support for it.

Consult the ECMAScript proposal “Class Public Instance Fields &

Private Instance Fields” for details.

A few additional techniques are explained in Exploring ES6.

https://github.com/tc39/proposal-class-fields
https://exploringjs.com/es6/ch_classes.html#sec_private-data-for-classes

29.4 Subclassing

Classes can also subclass (“extend”) existing classes. As an example,

the following class Employee subclasses Person:

Two comments:

class Person {

 constructor(name) {

 this.name = name;

 }

 describe() {

 return `Person named ${this.name}`;

 }

 static logNames(persons) {

 for (const person of persons) {

 console.log(person.name);

 }

 }

}

class Employee extends Person {

 constructor(name, title) {

 super(name);

 this.title = title;

 }

 describe() {

 return super.describe() +

 ` (${this.title})`;

 }

}

const jane = new Employee('Jane', 'CTO');

assert.equal(

 jane.describe(),

 'Person named Jane (CTO)');

Inside a .constructor() method, you must call the super-

constructor via super() before you can access this. That’s

because this doesn’t exist before the super-constructor is called

(this phenomenon is specific to classes).

Static methods are also inherited. For example, Employee

inherits the static method .logNames():

 Exercise: Subclassing

exercises/proto-chains-classes/color_point_class_test.mjs

29.4.1 Subclasses under the hood

(advanced)

Person Person.prototype

Employee Employee.prototype

jane

__proto__

__proto__

prototype

prototype

Object.prototype

__proto__

__proto__

Function.prototype

__proto__

Figure 23: These are the objects that make up class Person and its

subclass, Employee. The left column is about classes. The right

column is about the Employee instance jane and its prototype chain.

> 'logNames' in Employee

true

The classes Person and Employee from the previous section are made

up of several objects (fig. 23). One key insight for understanding how

these objects are related is that there are two prototype chains:

The instance prototype chain, on the right.

The class prototype chain, on the left.

29.4.1.1 The instance prototype chain (right column)

The instance prototype chain starts with jane and continues with

Employee.prototype and Person.prototype. In principle, the

prototype chain ends at this point, but we get one more object:

Object.prototype. This prototype provides services to virtually all

objects, which is why it is included here, too:

29.4.1.2 The class prototype chain (left column)

In the class prototype chain, Employee comes first, Person next.

Afterward, the chain continues with Function.prototype, which is

only there because Person is a function and functions need the

services of Function.prototype.

29.4.2 instanceof in more detail

(advanced)

> Object.getPrototypeOf(Person.prototype) === Object.prototype

true

> Object.getPrototypeOf(Person) === Function.prototype

true

We have not yet seen how instanceof really works. Given the

expression:

How does instanceof determine if x is an instance of C (or a subclass

of C)? It does so by checking if C.prototype is in the prototype chain

of x. That is, the following expression is equivalent:

If we go back to fig. 23, we can confirm that the prototype chain does

lead us to the following correct answers:

29.4.3 Prototype chains of built-in

objects (advanced)

Next, we’ll use our knowledge of subclassing to understand the

prototype chains of a few built-in objects. The following tool function

p() helps us with our explorations.

We extracted method .getPrototypeOf() of Object and assigned it to

p.

29.4.3.1 The prototype chain of {}

x instanceof C

C.prototype.isPrototypeOf(x)

> jane instanceof Employee

true

> jane instanceof Person

true

> jane instanceof Object

true

const p = Object.getPrototypeOf.bind(Object);

Let’s start by examining plain objects:

Object.prototype

{}

__proto__

null

__proto__

Figure 24: The prototype chain of an object created via an object

literal starts with that object, continues with Object.prototype, and

ends with null.

Fig. 24 shows a diagram for this prototype chain. We can see that {}

really is an instance of Object – Object.prototype is in its prototype

chain.

29.4.3.2 The prototype chain of []

What does the prototype chain of an Array look like?

> p({}) === Object.prototype

true

> p(p({})) === null

true

> p([]) === Array.prototype

true

> p(p([])) === Object.prototype

true

> p(p(p([]))) === null

true

Object.prototype

Array.prototype

[]

__proto__

__proto__

null

__proto__

Figure 25: The prototype chain of an Array has these members: the

Array instance, Array.prototype, Object.prototype, null.

This prototype chain (visualized in fig. 25) tells us that an Array

object is an instance of Array, which is a subclass of Object.

29.4.3.3 The prototype chain of function () {}

Lastly, the prototype chain of an ordinary function tells us that all

functions are objects:

29.4.3.4 Objects that aren’t instances of Object

An object is only an instance of Object if Object.prototype is in its

prototype chain. Most objects created via various literals are

instances of Object:

> p(function () {}) === Function.prototype

true

> p(p(function () {})) === Object.prototype

true

Objects that don’t have prototypes are not instances of Object:

Object.prototype ends most prototype chains. Its prototype is null,

which means it isn’t an instance of Object either:

29.4.3.5 How exactly does the pseudo-property .__proto__

work?

The pseudo-property .__proto__ is implemented by class Object via a

getter and a setter. It could be implemented like this:

That means that you can switch .__proto__ off by creating an object

that doesn’t have Object.prototype in its prototype chain (see the

previous section):

> ({}) instanceof Object

true

> (() => {}) instanceof Object

true

> /abc/ug instanceof Object

true

> ({ __proto__: null }) instanceof Object

false

> Object.prototype instanceof Object

false

class Object {

 get __proto__() {

 return Object.getPrototypeOf(this);

 }

 set __proto__(other) {

 Object.setPrototypeOf(this, other);

 }

 // ···

}

29.4.4 Dispatched vs. direct method calls

(advanced)

Let’s examine how method calls work with classes. We are revisiting

jane from earlier:

Fig. 26 has a diagram with jane’s prototype chain.

__proto__

describe function() {···}

Person.prototype

. . .

name

__proto__

'Jane'

jane

Figure 26: The prototype chain of jane starts with jane and continues

with Person.prototype.

> '__proto__' in {}

true

> '__proto__' in { __proto__: null }

false

class Person {

 constructor(name) {

 this.name = name;

 }

 describe() {

 return 'Person named '+this.name;

 }

}

const jane = new Person('Jane');

Normal method calls are dispatched – the method call

jane.describe() happens in two steps:

Dispatch: In the prototype chain of jane, find the first property

whose key is 'describe' and retrieve its value.

Call: Call the value, while setting this to jane.

This way of dynamically looking for a method and invoking it is

called dynamic dispatch.

You can make the same method call directly, without dispatching:

This time, we directly point to the method via

Person.prototype.describe and don’t search for it in the prototype

chain. We also specify this differently via .call().

Note that this always points to the beginning of a prototype chain.

That enables .describe() to access .name.

29.4.4.1 Borrowing methods

Direct method calls become useful when you are working with

methods of Object.prototype. For example,

Object.prototype.hasOwnProperty(k) checks if this has a non-

inherited property whose key is k:

const func = jane.describe;

func.call(jane);

Person.prototype.describe.call(jane)

However, in the prototype chain of an object, there may be another

property with the key 'hasOwnProperty' that overrides the method in

Object.prototype. Then a dispatched method call doesn’t work:

The workaround is to use a direct method call:

This kind of direct method call is often abbreviated as follows:

This pattern may seem inefficient, but most engines optimize this

pattern, so performance should not be an issue.

29.4.5 Mixin classes (advanced)

JavaScript’s class system only supports single inheritance. That is,

each class can have at most one superclass. One way around this

limitation is via a technique called mixin classes (short: mixins).

> const obj = { foo: 123 };

> obj.hasOwnProperty('foo')

true

> obj.hasOwnProperty('bar')

false

> const obj = { hasOwnProperty: true };

> obj.hasOwnProperty('bar')

TypeError: obj.hasOwnProperty is not a function

> Object.prototype.hasOwnProperty.call(obj, 'bar')

false

> Object.prototype.hasOwnProperty.call(obj, 'hasOwnProperty')

true

> ({}).hasOwnProperty.call(obj, 'bar')

false

> ({}).hasOwnProperty.call(obj, 'hasOwnProperty')

true

The idea is as follows: Let’s say we want a class C to inherit from two

superclasses S1 and S2. That would be multiple inheritance, which

JavaScript doesn’t support.

Our workaround is to turn S1 and S2 into mixins, factories for

subclasses:

Each of these two functions returns a class that extends a given

superclass Sup. We create class C as follows:

We now have a class C that extends a class S2 that extends a class S1

that extends Object (which most classes do implicitly).

29.4.5.1 Example: a mixin for brand management

We implement a mixin Branded that has helper methods for setting

and getting the brand of an object:

We use this mixin to implement brand management for a class Car:

const S1 = (Sup) => class extends Sup { /*···*/ };

const S2 = (Sup) => class extends Sup { /*···*/ };

class C extends S2(S1(Object)) {

 /*···*/

}

const Branded = (Sup) => class extends Sup {

 setBrand(brand) {

 this._brand = brand;

 return this;

 }

 getBrand() {

 return this._brand;

 }

};

The following code confirms that the mixin worked: Car has method

.setBrand() of Branded.

29.4.5.2 The benefits of mixins

Mixins free us from the constraints of single inheritance:

The same class can extend a single superclass and zero or more

mixins.

The same mixin can be used by multiple classes.

class Car extends Branded(Object) {

 constructor(model) {

 super();

 this._model = model;

 }

 toString() {

 return `${this.getBrand()} ${this._model}`;

 }

}

const modelT = new Car('Model T').setBrand('Ford');

assert.equal(modelT.toString(), 'Ford Model T');

29.5 FAQ: objects

29.5.1 Why do objects preserve the

insertion order of properties?

In principle, objects are unordered. The main reason for ordering

properties is so that operations that list entries, keys, or values are

deterministic. That helps, e.g., with testing.

 Quiz

See quiz app.

30 Synchronous iteration

30.1 What is synchronous iteration about?

30.2 Core iteration constructs: iterables and iterators

30.3 Iterating manually

30.3.1 Iterating over an iterable via while

30.4 Iteration in practice

30.4.1 Iterating over Arrays

30.4.2 Iterating over Sets

30.5 Quick reference: synchronous iteration

30.5.1 Iterable data sources

30.5.2 Iterating constructs

30.1 What is synchronous iteration

about?

Synchronous iteration is a protocol (interfaces plus rules for using

them) that connects two groups of entities in JavaScript:

Data sources: On one hand, data comes in all shapes and

sizes. In JavaScript’s standard library, you have the linear data

structure Array, the ordered collection Set (elements are ordered

by time of addition), the ordered dictionary Map (entries are

ordered by time of addition), and more. In libraries, you may

find tree-shaped data structures and more.

Data consumers: On the other hand, you have a whole class of

constructs and algorithms that only need to access their input

sequentially: one value at a time, until all values were visited.

Examples include the for-of loop and spreading into function

calls (via ...).

The iteration protocol connects these two groups via the interface

Iterable: data sources deliver their contents sequentially “through

it”; data consumers get their input via it.

Data consumers Interface

for-of loop

Iterable

spreading

Data sources

Arrays

Maps

Strings

Figure 27: Data consumers such as the for-of loop use the interface

Iterable. Data sources such as Arrays implement that interface.

Fig. 27 illustrates how iteration works: data consumers use the

interface Iterable; data sources implement it.

 The JavaScript way of implementing interfaces

In JavaScript, an object implements an interface if it has all the

methods that it describes. The interfaces mentioned in this

chapter only exist in the ECMAScript specification.

Both sources and consumers of data profit from this arrangement:

If you develop a new data structure, you only need to implement

Iterable and a raft of tools can immediately be applied to it.

If you write code that uses iteration, it automatically works with

many sources of data.

30.2 Core iteration constructs:

iterables and iterators

Two roles (described by interfaces) form the core of iteration

(fig. 28):

An iterable is an object whose contents can be traversed

sequentially.

An iterator is the pointer used for the traversal.

[Symbol.iterator]()
···

Iterable:
traversable data structure

next()

Iterator:
pointer for traversing iterable

returns

Figure 28: Iteration has two main interfaces: Iterable and Iterator.

The former has a method that returns the latter.

These are type definitions (in TypeScript’s notation) for the

interfaces of the iteration protocol:

interface Iterable<T> {

 [Symbol.iterator]() : Iterator<T>;

}

interface Iterator<T> {

 next() : IteratorResult<T>;

}

interface IteratorResult<T> {

 value: T;

 done: boolean;

}

The interfaces are used as follows:

You ask an Iterable for an iterator via the method whose key is

Symbol.iterator.

The Iterator returns the iterated values via its method .next().

The values are not returned directly, but wrapped in objects with

two properties:

.value is the iterated value.

.done indicates if the end of the iteration has been reached

yet. It is true after the last iterated value and false

beforehand.

30.3 Iterating manually

This is an example of using the iteration protocol:

30.3.1 Iterating over an iterable via while

The following code demonstrates how to use a while loop to iterate

over an iterable:

const iterable = ['a', 'b'];

// The iterable is a factory for iterators:

const iterator = iterable[Symbol.iterator]();

// Call .next() until .done is true:

assert.deepEqual(

 iterator.next(), { value: 'a', done: false });

assert.deepEqual(

 iterator.next(), { value: 'b', done: false });

assert.deepEqual(

 iterator.next(), { value: undefined, done: true });

function logAll(iterable) {

 const iterator = iterable[Symbol.iterator]();

 while (true) {

 const {value, done} = iterator.next();

 if (done) break;

 console.log(value);

 }

}

logAll(['a', 'b']);

// Output:

// 'a'

// 'b'

 Exercise: Using sync iteration manually

exercises/sync-iteration-use/sync_iteration_manually_exrc.mjs

30.4 Iteration in practice

We have seen how to use the iteration protocol manually, and it is

relatively cumbersome. But the protocol is not meant to be used

directly – it is meant to be used via higher-level language constructs

built on top of it. This section shows what that looks like.

30.4.1 Iterating over Arrays

JavaScript’s Arrays are iterable. That enables us to use the for-of

loop:

Destructuring via Array patterns (explained later) also uses iteration

under the hood:

30.4.2 Iterating over Sets

JavaScript’s Set data structure is iterable. That means for-of works:

const myArray = ['a', 'b', 'c'];

for (const x of myArray) {

 console.log(x);

}

// Output:

// 'a'

// 'b'

// 'c'

const [first, second] = myArray;

assert.equal(first, 'a');

assert.equal(second, 'b');

As does Array-destructuring:

const mySet = new Set().add('a').add('b').add('c');

for (const x of mySet) {

 console.log(x);

}

// Output:

// 'a'

// 'b'

// 'c'

const [first, second] = mySet;

assert.equal(first, 'a');

assert.equal(second, 'b');

30.5 Quick reference: synchronous

iteration

30.5.1 Iterable data sources

The following built-in data sources are iterable:

Arrays

Strings

Maps

Sets

(Browsers: DOM data structures)

To iterate over the properties of objects, you need helpers such as

Object.keys() and Object.entries(). That is necessary because

properties exist at a different level that is independent of the level of

data structures.

30.5.2 Iterating constructs

The following constructs are based on iteration:

Destructuring via an Array pattern:

The for-of loop:

const [x,y] = iterable;

for (const x of iterable) { /*···*/ }

Array.from():

Spreading (via ...) into function calls and Array literals:

new Map() and new Set():

Promise.all() and Promise.race():

yield*:

 Quiz

See quiz app.

const arr = Array.from(iterable);

func(...iterable);

const arr = [...iterable];

const m = new Map(iterableOverKeyValuePairs);

const s = new Set(iterableOverElements);

const promise1 = Promise.all(iterableOverPromises);

const promise2 = Promise.race(iterableOverPromises);

function* generatorFunction() {

 yield* iterable;

}

31 Arrays (Array)

31.1 The two roles of Arrays in JavaScript

31.2 Basic Array operations

31.2.1 Creating, reading, writing Arrays

31.2.2 The .length of an Array

31.2.3 Clearing an Array

31.2.4 Spreading into Array literals

31.2.5 Arrays: listing indices and entries

31.2.6 Is a value an Array?

31.3 for-of and Arrays

31.3.1 for-of: iterating over elements

31.3.2 for-of: iterating over [index, element] pairs

31.4 Array-like objects

31.5 Converting iterable and Array-like values to Arrays

31.5.1 Converting iterables to Arrays via spreading (...)

31.5.2 Converting iterables and Array-like objects to Arrays

via Array.from() (advanced)

31.6 Creating and filling Arrays with arbitrary lengths

31.6.1 Do you need to create an empty Array that you’ll fill

completely later on?

31.6.2 Do you need to create an Array filled with a primitive

value?

31.6.3 Do you need to create an Array filled with objects?

31.6.4 Do you need to create a range of integers?

31.6.5 Use a Typed Array if the elements are all integers or

all floats

31.7 Multidimensional Arrays

31.8 More Array features (advanced)

31.8.1 Array indices are (slightly special) property keys

31.8.2 Arrays are dictionaries and can have holes

31.9 Adding and removing elements (destructively and non-

destructively)

31.9.1 Prepending elements and Arrays

31.9.2 Appending elements and Arrays

31.9.3 Removing elements

31.10 Methods: iteration and transformation (.find(), .map(),

.filter(), etc.)

31.10.1 Callbacks for iteration and transformation methods

31.10.2 Searching elements: .find(), .findIndex()

31.10.3 .map(): copy while giving elements new values

31.10.4 .flatMap(): mapping to zero or more values

31.10.5 .filter(): only keep some of the elements

31.10.6 .reduce(): deriving a value from an Array

(advanced)

31.11 .sort(): sorting Arrays

31.11.1 Customizing the sort order

31.11.2 Sorting numbers

31.11.3 Sorting objects

31.12 Quick reference: Array<T>

31.12.1 new Array()

31.12.2 Static methods of Array

31.12.3 Methods of Array<T>.prototype

31.12.4 Sources

31.1 The two roles of Arrays in

JavaScript

Arrays play two roles in JavaScript:

Tuples: Arrays-as-tuples have a fixed number of indexed

elements. Each of those elements can have a different type.

Sequences: Arrays-as-sequences have a variable number of

indexed elements. Each of those elements has the same type.

In practice, these two roles are often mixed.

Notably, Arrays-as-sequences are so flexible that you can use them as

(traditional) arrays, stacks, and queues (see exercise later in this

chapter).

31.2 Basic Array operations

31.2.1 Creating, reading, writing Arrays

The best way to create an Array is via an Array literal:

The Array literal starts and ends with square brackets []. It creates

an Array with three elements: 'a', 'b', and 'c'.

To read an Array element, you put an index in square brackets

(indices start at zero):

To change an Array element, you assign to an Array with an index:

The range of Array indices is 32 bits (excluding the maximum

length): [0, 2
32

−1)

31.2.2 The .length of an Array

Every Array has a property .length that can be used to both read and

change(!) the number of elements in an Array.

The length of an Array is always the highest index plus one:

const arr = ['a', 'b', 'c'];

assert.equal(arr[0], 'a');

arr[0] = 'x';

assert.deepEqual(arr, ['x', 'b', 'c']);

If you write to the Array at the index of the length, you append an

element:

Another way of (destructively) appending an element is via the Array

method .push():

If you set .length, you are pruning the Array by removing elements:

31.2.3 Clearing an Array

To clear (empty) an Array, you can either set its .length to zero:

or you can assign a new empty Array to the variable storing the

Array:

> const arr = ['a', 'b'];

> arr.length

2

> arr[arr.length] = 'c';

> arr

['a', 'b', 'c']

> arr.length

3

> arr.push('d');

> arr

['a', 'b', 'c', 'd']

> arr.length = 1;

> arr

['a']

const arr = ['a', 'b', 'c'];

arr.length = 0;

assert.deepEqual(arr, []);

The latter approach has the advantage of not affecting other

locations that point to the same Array. If, however, you do want to

reset a shared Array for everyone, then you need the former

approach.

 Exercise: Removing empty lines via .push()

exercises/arrays/remove_empty_lines_push_test.mjs

31.2.4 Spreading into Array literals

Inside an Array literal, a spread element consists of three dots (...)

followed by an expression. It results in the expression being

evaluated and then iterated over. Each iterated value becomes an

additional Array element – for example:

That means that we can use spreading to create a copy of an Array:

Spreading is also convenient for concatenating Arrays (and other

iterables) into Arrays:

let arr = ['a', 'b', 'c'];

arr = [];

assert.deepEqual(arr, []);

> const iterable = ['b', 'c'];

> ['a', ...iterable, 'd']

['a', 'b', 'c', 'd']

const original = ['a', 'b', 'c'];

const copy = [...original];

const arr1 = ['a', 'b'];

const arr2 = ['c', 'd'];

Due to spreading using iteration, it only works if the value is iterable:

 Spreading into Array literals is shallow

Similar to spreading into object literals, spreading into Array

literals creates shallow copies. That is, nested Arrays are not

copied.

31.2.5 Arrays: listing indices and entries

Method .keys() lists the indices of an Array:

.keys() returns an iterable. In line A, we spread to obtain an Array.

Listing Array indices is different from listing properties. The former

produces numbers; the latter produces stringified numbers (in

addition to non-index property keys):

const concatenated = [...arr1, ...arr2, 'e'];

assert.deepEqual(

 concatenated,

 ['a', 'b', 'c', 'd', 'e']);

> [...'abc'] // strings are iterable

['a', 'b', 'c']

> [...123]

TypeError: number 123 is not iterable

> [...undefined]

TypeError: undefined is not iterable

const arr = ['a', 'b'];

assert.deepEqual(

 [...arr.keys()], // (A)

 [0, 1]);

Method .entries() lists the contents of an Array as [index, element]

pairs:

31.2.6 Is a value an Array?

Following are two ways of checking if a value is an Array:

instanceof is usually fine. You need Array.isArray() if a value may

come from another realm. Roughly, a realm is an instance of

JavaScript’s global scope. Some realms are isolated from each other

(e.g., Web Workers in browsers), but there are also realms between

which you can move data – for example, same-origin iframes in

browsers. x instanceof Array checks the prototype chain of x and

therefore returns false if x is an Array from another realm.

typeof categorizes Arrays as objects:

const arr = ['a', 'b'];

arr.prop = true;

assert.deepEqual(

 Object.keys(arr),

 ['0', '1', 'prop']);

const arr = ['a', 'b'];

assert.deepEqual(

 [...arr.entries()],

 [[0, 'a'], [1, 'b']]);

> [] instanceof Array

true

> Array.isArray([])

true

> typeof []

'object'

31.3 for-of and Arrays

We have already encountered the for-of loop. This section briefly

recaps how to use it for Arrays.

31.3.1 for-of: iterating over elements

The following for-of loop iterates over the elements of an Array.

31.3.2 for-of: iterating over [index,

element] pairs

The following for-of loop iterates over [index, element] pairs.

Destructuring (described later), gives us convenient syntax for

setting up index and element in the head of for-of.

for (const element of ['a', 'b']) {

 console.log(element);

}

// Output:

// 'a'

// 'b'

for (const [index, element] of ['a', 'b'].entries()) {

 console.log(index, element);

}

// Output:

// 0, 'a'

// 1, 'b'

31.4 Array-like objects

Some operations that work with Arrays require only the bare

minimum: values must only be Array-like. An Array-like value is an

object with the following properties:

.length: holds the length of the Array-like object.

[0]: holds the element at index 0 (etc.). Note that if you use

numbers as property names, they are always coerced to strings.

Therefore, [0] retrieves the value of the property whose key is

'0'.

For example, Array.from() accepts Array-like objects and converts

them to Arrays:

The TypeScript interface for Array-like objects is:

 Array-like objects are relatively rare in modern

JavaScript

// If you omit .length, it is interpreted as 0

assert.deepEqual(

 Array.from({}),

 []);

assert.deepEqual(

 Array.from({length:2, 0:'a', 1:'b'}),

 ['a', 'b']);

interface ArrayLike<T> {

 length: number;

 [n: number]: T;

}

Array-like objects used to be common before ES6; now you don’t

see them very often.

31.5 Converting iterable and Array-

like values to Arrays

There are two common ways of converting iterable and Array-like

values to Arrays: spreading and Array.from().

31.5.1 Converting iterables to Arrays via

spreading (...)

Inside an Array literal, spreading via ... converts any iterable object

into a series of Array elements. For example:

The conversion works because the DOM collection is iterable.

31.5.2 Converting iterables and Array-

like objects to Arrays via Array.from()

(advanced)

Array.from() can be used in two modes.

// Get an Array-like collection from a web browser’s DOM

const domCollection = document.querySelectorAll('a');

// Alas, the collection is missing many Array methods

assert.equal('map' in domCollection, false);

// Solution: convert it to an Array

const arr = [...domCollection];

assert.deepEqual(

 arr.map(x => x.href),

 ['https://2ality.com', 'https://exploringjs.com']);

31.5.2.1 Mode 1 of Array.from(): converting

The first mode has the following type signature:

Interface Iterable is shown in the chapter on synchronous iteration.

Interface ArrayLike appeared earlier in this chapter.

With a single parameter, Array.from() converts anything iterable or

Array-like to an Array:

31.5.2.2 Mode 2 of Array.from(): converting and mapping

The second mode of Array.from() involves two parameters:

In this mode, Array.from() does several things:

It iterates over iterable.

It calls mapFunc with each iterated value. The optional parameter

thisArg specifies a this for mapFunc.

It applies mapFunc to each iterated value.

It collects the results in a new Array and returns it.

.from<T>(iterable: Iterable<T> | ArrayLike<T>): T[]

> Array.from(new Set(['a', 'b']))

['a', 'b']

> Array.from({length: 2, 0:'a', 1:'b'})

['a', 'b']

.from<T, U>(

 iterable: Iterable<T> | ArrayLike<T>,

 mapFunc: (v: T, i: number) => U,

 thisArg?: any)

 : U[]

In other words: we are going from an iterable with elements of type T

to an Array with elements of type U.

This is an example:

> Array.from(new Set(['a', 'b']), x => x + x)

['aa', 'bb']

31.6 Creating and filling Arrays

with arbitrary lengths

The best way of creating an Array is via an Array literal. However,

you can’t always use one: The Array may be too large, you may not

know its length during development, or you may want to keep its

length flexible. Then I recommend the following techniques for

creating, and possibly filling, Arrays.

31.6.1 Do you need to create an empty

Array that you’ll fill completely later on?

Note that the result has three holes (empty slots) – the last comma in

an Array literal is always ignored.

31.6.2 Do you need to create an Array

filled with a primitive value?

Caveat: If you use .fill() with an object, then each Array element

will refer to this object (sharing it).

> new Array(3)

[, , ,]

> new Array(3).fill(0)

[0, 0, 0]

const arr = new Array(3).fill({});

arr[0].prop = true;

assert.deepEqual(

The next subsection explains how to fix this.

31.6.3 Do you need to create an Array

filled with objects?

31.6.4 Do you need to create a range of

integers?

Here is an alternative, slightly hacky technique for creating integer

ranges that start at zero:

 arr, [

 {prop: true},

 {prop: true},

 {prop: true},

]);

> Array.from({length: 3}, () => ({}))

[{}, {}, {}]

function createRange(start, end) {

 return Array.from({length: end-start}, (_, i) => i+start);

}

assert.deepEqual(

 createRange(2, 5),

 [2, 3, 4]);

/** Returns an iterable */

function createRange(end) {

 return new Array(end).keys();

}

assert.deepEqual(

 [...createRange(4)],

 [0, 1, 2, 3]);

This works because .keys() treats holes like undefined elements and

lists their indices.

31.6.5 Use a Typed Array if the elements

are all integers or all floats

If you are dealing with Arrays of integers or floats, consider Typed

Arrays, which were created for this purpose.

31.7 Multidimensional Arrays

JavaScript does not have real multidimensional Arrays; you need to

resort to Arrays whose elements are Arrays:

function initMultiArray(...dimensions) {

 function initMultiArrayRec(dimIndex) {

 if (dimIndex >= dimensions.length) {

 return 0;

 } else {

 const dim = dimensions[dimIndex];

 const arr = [];

 for (let i=0; i<dim; i++) {

 arr.push(initMultiArrayRec(dimIndex+1));

 }

 return arr;

 }

 }

 return initMultiArrayRec(0);

}

const arr = initMultiArray(4, 3, 2);

arr[3][2][1] = 'X'; // last in each dimension

assert.deepEqual(arr, [

 [[0, 0], [0, 0], [0, 0]],

 [[0, 0], [0, 0], [0, 0]],

 [[0, 0], [0, 0], [0, 0]],

 [[0, 0], [0, 0], [0, 'X']],

]);

31.8 More Array features

(advanced)

In this section, we look at phenomena you don’t encounter often

when working with Arrays.

31.8.1 Array indices are (slightly special)

property keys

You’d think that Array elements are special because you are

accessing them via numbers. But the square brackets operator [] for

doing so is the same operator that is used for accessing properties. It

coerces any value (that is not a symbol) to a string. Therefore, Array

elements are (almost) normal properties (line A) and it doesn’t

matter if you use numbers or strings as indices (lines B and C):

To make matters even more confusing, this is only how the language

specification defines things (the theory of JavaScript, if you will).

Most JavaScript engines optimize under the hood and do use actual

integers to access Array elements (the practice of JavaScript, if you

will).

const arr = ['a', 'b'];

arr.prop = 123;

assert.deepEqual(

 Object.keys(arr),

 ['0', '1', 'prop']); // (A)

assert.equal(arr[0], 'a'); // (B)

assert.equal(arr['0'], 'a'); // (C)

Property keys (strings!) that are used for Array elements are called

indices. A string str is an index if converting it to a 32-bit unsigned

integer and back results in the original value. Written as a formula:

ToString(ToUint32(str)) === str

31.8.1.1 Listing indices

When listing property keys, indices are treated specially – they

always come first and are sorted like numbers ('2' comes before

'10'):

Note that .length, .entries() and .keys() treat Array indices as

numbers and ignore non-index properties:

We used a spread element (...) to convert the iterables returned by

.keys() and .entries() to Arrays.

31.8.2 Arrays are dictionaries and can

have holes

const arr = [];

arr.prop = true;

arr[1] = 'b';

arr[0] = 'a';

assert.deepEqual(

 Object.keys(arr),

 ['0', '1', 'prop']);

assert.equal(arr.length, 2);

assert.deepEqual(

 [...arr.keys()], [0, 1]);

assert.deepEqual(

 [...arr.entries()], [[0, 'a'], [1, 'b']]);

https://tc39.github.io/ecma262/#integer-index

We distinguish two kinds of Arrays in JavaScript:

An Array arr is dense if all indices i, with 0 ≤ i < arr.length,

exist. That is, the indices form a contiguous range.

An Array is sparse if the range of indices has holes in it. That is,

some indices are missing.

Arrays can be sparse in JavaScript because Arrays are actually

dictionaries from indices to values.

 Recommendation: avoid holes

So far, we have only seen dense Arrays and it’s indeed

recommended to avoid holes: They make your code more

complicated and are not handled consistently by Array methods.

Additionally, JavaScript engines optimize dense Arrays, making

them faster.

31.8.2.1 Creating holes

You can create holes by skipping indices when assigning elements:

In line A, we are using Object.keys() because arr.keys() treats holes

as if they were undefined elements and does not reveal them.

const arr = [];

arr[0] = 'a';

arr[2] = 'c';

assert.deepEqual(Object.keys(arr), ['0', '2']); // (A)

assert.equal(0 in arr, true); // element

assert.equal(1 in arr, false); // hole

Another way of creating holes is to skip elements in Array literals:

You can also delete Array elements:

31.8.2.2 How do Array operations treat holes?

Alas, there are many different ways in which Array operations treat

holes.

Some Array operations remove holes:

Some Array operations ignore holes:

Some Array operations ignore but preserve holes:

Some Array operations treat holes as undefined elements:

const arr = ['a', , 'c'];

assert.deepEqual(Object.keys(arr), ['0', '2']);

const arr = ['a', 'b', 'c'];

assert.deepEqual(Object.keys(arr), ['0', '1', '2']);

delete arr[1];

assert.deepEqual(Object.keys(arr), ['0', '2']);

> ['a',,'b'].filter(x => true)

['a', 'b']

> ['a', ,'a'].every(x => x === 'a')

true

> ['a',,'b'].map(x => 'c')

['c', , 'c']

> Array.from(['a',,'b'], x => x)

['a', undefined, 'b']

Object.keys() works differently than .keys() (strings vs. numbers,

holes don’t have keys):

There is no rule to remember here. If it ever matters how an Array

operation treats holes, the best approach is to do a quick test in a

console.

> [...['a',,'b'].entries()]

[[0, 'a'], [1, undefined], [2, 'b']]

> [...['a',,'b'].keys()]

[0, 1, 2]

> Object.keys(['a',,'b'])

['0', '2']

31.9 Adding and removing

elements (destructively and non-

destructively)

JavaScript’s Array is quite flexible and more like a combination of

array, stack, and queue. This section explores ways of adding and

removing Array elements. Most operations can be performed both

destructively (modifying the Array) and non-destructively

(producing a modified copy).

31.9.1 Prepending elements and Arrays

In the following code, we destructively prepend single elements to

arr1 and an Array to arr2:

Spreading lets us unshift an Array into arr2.

Non-destructive prepending is done via spread elements:

const arr1 = ['a', 'b'];

arr1.unshift('x', 'y'); // prepend single elements

assert.deepEqual(arr1, ['x', 'y', 'a', 'b']);

const arr2 = ['a', 'b'];

arr2.unshift(...['x', 'y']); // prepend Array

assert.deepEqual(arr2, ['x', 'y', 'a', 'b']);

const arr1 = ['a', 'b'];

assert.deepEqual(

 ['x', 'y', ...arr1], // prepend single elements

 ['x', 'y', 'a', 'b']);

assert.deepEqual(arr1, ['a', 'b']); // unchanged!

31.9.2 Appending elements and Arrays

In the following code, we destructively append single elements to

arr1 and an Array to arr2:

Spreading lets us push an Array into arr2.

Non-destructive appending is done via spread elements:

31.9.3 Removing elements

const arr2 = ['a', 'b'];

assert.deepEqual(

 [...['x', 'y'], ...arr2], // prepend Array

 ['x', 'y', 'a', 'b']);

assert.deepEqual(arr2, ['a', 'b']); // unchanged!

const arr1 = ['a', 'b'];

arr1.push('x', 'y'); // append single elements

assert.deepEqual(arr1, ['a', 'b', 'x', 'y']);

const arr2 = ['a', 'b'];

arr2.push(...['x', 'y']); // append Array

assert.deepEqual(arr2, ['a', 'b', 'x', 'y']);

const arr1 = ['a', 'b'];

assert.deepEqual(

 [...arr1, 'x', 'y'], // append single elements

 ['a', 'b', 'x', 'y']);

assert.deepEqual(arr1, ['a', 'b']); // unchanged!

const arr2 = ['a', 'b'];

assert.deepEqual(

 [...arr2, ...['x', 'y']], // append Array

 ['a', 'b', 'x', 'y']);

assert.deepEqual(arr2, ['a', 'b']); // unchanged!

These are three destructive ways of removing Array elements:

.splice() is covered in more detail in the quick reference at the end

of this chapter.

Destructuring via a rest element lets you non-destructively remove

elements from the beginning of an Array (destructuring is covered

later).

Alas, a rest element must come last in an Array. Therefore, you can

only use it to extract suffixes.

 Exercise: Implementing a queue via an Array

exercises/arrays/queue_via_array_test.mjs

// Destructively remove first element:

const arr1 = ['a', 'b', 'c'];

assert.equal(arr1.shift(), 'a');

assert.deepEqual(arr1, ['b', 'c']);

// Destructively remove last element:

const arr2 = ['a', 'b', 'c'];

assert.equal(arr2.pop(), 'c');

assert.deepEqual(arr2, ['a', 'b']);

// Remove one or more elements anywhere:

const arr3 = ['a', 'b', 'c', 'd'];

assert.deepEqual(arr3.splice(1, 2), ['b', 'c']);

assert.deepEqual(arr3, ['a', 'd']);

const arr1 = ['a', 'b', 'c'];

// Ignore first element, extract remaining elements

const [, ...arr2] = arr1;

assert.deepEqual(arr2, ['b', 'c']);

assert.deepEqual(arr1, ['a', 'b', 'c']); // unchanged!

31.10 Methods: iteration and

transformation (.find(), .map(),

.filter(), etc.)

In this section, we take a look at Array methods for iterating over

Arrays and for transforming Arrays.

31.10.1 Callbacks for iteration and

transformation methods

All iteration and transformation methods use callbacks. The former

feed all iterated values to their callbacks; the latter ask their callbacks

how to transform Arrays.

These callbacks have type signatures that look as follows:

That is, the callback gets three parameters (it is free to ignore any of

them):

value is the most important one. This parameter holds the

iterated value that is currently being processed.

index can additionally tell the callback what the index of the

iterated value is.

array points to the current Array (the receiver of the method

call). Some algorithms need to refer to the whole Array – e.g., to

callback: (value: T, index: number, array: Array<T>) => boolean

search it for answers. This parameter lets you write reusable

callbacks for such algorithms.

What the callback is expected to return depends on the method it is

passed to. Possibilities include:

.map() fills its result with the values returned by its callback:

.find() returns the first Array element for which its callback

returns true:

Both of these methods are described in more detail later.

31.10.2 Searching elements: .find(),

.findIndex()

.find() returns the first element for which its callback returns a

truthy value (and undefined if it can’t find anything):

.findIndex() returns the index of the first element for which its

callback returns a truthy value (and -1 if it can’t find anything):

> ['a', 'b', 'c'].map(x => x + x)

['aa', 'bb', 'cc']

> ['a', 'bb', 'ccc'].find(str => str.length >= 2)

'bb'

> [6, -5, 8].find(x => x < 0)

-5

> [6, 5, 8].find(x => x < 0)

undefined

> [6, -5, 8].findIndex(x => x < 0)

1

.findIndex() can be implemented as follows:

31.10.3 .map(): copy while giving elements

new values

.map() returns a modified copy of the receiver. The elements of the

copy are the results of applying map’s callback to the elements of the

receiver.

All of this is easier to understand via examples:

.map() can be implemented as follows:

> [6, 5, 8].findIndex(x => x < 0)

-1

function findIndex(arr, callback) {

 for (const [i, x] of arr.entries()) {

 if (callback(x, i, arr)) {

 return i;

 }

 }

 return -1;

}

> [1, 2, 3].map(x => x * 3)

[3, 6, 9]

> ['how', 'are', 'you'].map(str => str.toUpperCase())

['HOW', 'ARE', 'YOU']

> [true, true, true].map((_x, index) => index)

[0, 1, 2]

function map(arr, mapFunc) {

 const result = [];

 for (const [i, x] of arr.entries()) {

 result.push(mapFunc(x, i, arr));

 }

 Exercise: Numbering lines via .map()

exercises/arrays/number_lines_test.mjs

31.10.4 .flatMap(): mapping to zero or

more values

The type signature of Array<T>.prototype.flatMap() is:

Both .map() and .flatMap() take a function callback as a parameter

that controls how an input Array is translated to an output Array:

With .map(), each input Array element is translated to exactly

one output element. That is, callback returns a single value.

With .flatMap(), each input Array element is translated to zero

or more output elements. That is, callback returns an Array of

values (it can also return non-Array values, but that is rare).

This is .flatMap() in action:

 return result;

}

.flatMap<U>(

 callback: (value: T, index: number, array: T[]) => U|Array<U>,

 thisValue?: any

): U[]

> ['a', 'b', 'c'].flatMap(x => [x,x])

['a', 'a', 'b', 'b', 'c', 'c']

> ['a', 'b', 'c'].flatMap(x => [x])

['a', 'b', 'c']

> ['a', 'b', 'c'].flatMap(x => [])

[]

31.10.4.1 A simple implementation

You could implement .flatMap() as follows. Note: This

implementation is simpler than the built-in version, which, for

example, performs more checks.

What is .flatMap() good for? Let’s look at use cases!

31.10.4.2 Use case: filtering and mapping at the same time

The result of the Array method .map() always has the same length as

the Array it is invoked on. That is, its callback can’t skip Array

elements it isn’t interested in. The ability of .flatMap() to do so is

useful in the next example.

We will use the following function processArray() to create an Array

that we’ll then filter and map via .flatMap():

function flatMap(arr, mapFunc) {

 const result = [];

 for (const [index, elem] of arr.entries()) {

 const x = mapFunc(elem, index, arr);

 // We allow mapFunc() to return non-Arrays

 if (Array.isArray(x)) {

 result.push(...x);

 } else {

 result.push(x);

 }

 }

 return result;

}

function processArray(arr, callback) {

 return arr.map(x => {

 try {

 return { value: callback(x) };

Next, we create an Array results via processArray():

We can now use .flatMap() to extract just the values or just the

errors from results:

31.10.4.3 Use case: mapping to multiple values

The Array method .map() maps each input Array element to one

output element. But what if we want to map it to multiple output

elements?

 } catch (e) {

 return { error: e };

 }

 });

}

const results = processArray([1, -5, 6], throwIfNegative);

assert.deepEqual(results, [

 { value: 1 },

 { error: new Error('Illegal value: -5') },

 { value: 6 },

]);

function throwIfNegative(value) {

 if (value < 0) {

 throw new Error('Illegal value: '+value);

 }

 return value;

}

const values = results.flatMap(

 result => result.value ? [result.value] : []);

assert.deepEqual(values, [1, 6]);

const errors = results.flatMap(

 result => result.error ? [result.error] : []);

assert.deepEqual(errors, [new Error('Illegal value: -5')]);

That becomes necessary in the following example:

We want to convert an Array of strings to an Array of Unicode

characters (code points). The following function achieves that via

.flatMap():

 Exercises: .flatMap()

exercises/arrays/convert_to_numbers_test.mjs

exercises/arrays/replace_objects_test.mjs

31.10.5 .filter(): only keep some of the

elements

The Array method .filter() returns an Array collecting all elements

for which the callback returns a truthy value.

For example:

.filter() can be implemented as follows:

> stringsToCodePoints(['many', 'a', 'moon'])

['m', 'a', 'n', 'y', 'a', 'm', 'o', 'o', 'n']

function stringsToCodePoints(strs) {

 return strs.flatMap(str => [...str]);

}

> [-1, 2, 5, -7, 6].filter(x => x >= 0)

[2, 5, 6]

> ['a', 'b', 'c', 'd'].filter((_x,i) => (i%2)===0)

['a', 'c']

 Exercise: Removing empty lines via .filter()

exercises/arrays/remove_empty_lines_filter_test.mjs

31.10.6 .reduce(): deriving a value from

an Array (advanced)

Method .reduce() is a powerful tool for computing a “summary” of

an Array arr. A summary can be any kind of value:

A number. For example, the sum of all elements of arr.

An Array. For example, a copy of arr, where each element is

twice the original element.

Etc.

reduce is also known as foldl (“fold left”) in functional programming

and popular there. One caveat is that it can make code difficult to

understand.

.reduce() has the following type signature (inside an Array<T>):

function filter(arr, filterFunc) {

 const result = [];

 for (const [i, x] of arr.entries()) {

 if (filterFunc(x, i, arr)) {

 result.push(x);

 }

 }

 return result;

}

.reduce<U>(

 callback: (accumulator: U, element: T, index: number, array: T

 init?: U)

 : U

T is the type of the Array elements, U is the type of the summary. The

two may or may not be different. accumulator is just another name

for “summary”.

To compute the summary of an Array arr, .reduce() feeds all Array

elements to its callback one at a time:

callback combines the previously computed summary (stored in its

parameter accumulator) with the current Array element and returns

the next accumulator. The result of .reduce() is the final accumulator

– the last result of callback after it has visited all elements.

In other words: callback does most of the work; .reduce() just

invokes it in a useful manner.

You could say that the callback folds Array elements into the

accumulator. That’s why this operation is called “fold” in functional

programming.

31.10.6.1 A first example

Let’s look at an example of .reduce() in action: function addAll()

computes the sum of all numbers in an Array arr.

const accumulator_0 = callback(init, arr[0]);

const accumulator_1 = callback(accumulator_0, arr[1]);

const accumulator_2 = callback(accumulator_1, arr[2]);

// Etc.

function addAll(arr) {

 const startSum = 0;

 const callback = (sum, element) => sum + element;

In this case, the accumulator holds the sum of all Array elements that

callback has already visited.

How was the result 6 derived from the Array in line A? Via the

following invocations of callback:

callback(0, 1) --> 1

callback(1, 2) --> 3

callback(3, 3) --> 6

Notes:

The first parameters are the current accumulators (starting with

parameter init of .reduce()).

The second parameters are the current Array elements.

The results are the next accumulators.

The last result of callback is also the result of .reduce().

Alternatively, we could have implemented addAll() via a for-of loop:

It’s hard to say which of the two implementations is “better”: the one

based on .reduce() is a little more concise, while the one based on

 return arr.reduce(callback, startSum);

}

assert.equal(addAll([1, 2, 3]), 6); // (A)

assert.equal(addAll([7, -4, 2]), 5);

function addAll(arr) {

 let sum = 0;

 for (const element of arr) {

 sum = sum + element;

 }

 return sum;

}

for-of may be a little easier to understand – especially if you are not

familiar with functional programming.

31.10.6.2 Example: finding indices via .reduce()

The following function is an implementation of the Array method

.indexOf(). It returns the first index at which the given searchValue

appears inside the Array arr:

One limitation of .reduce() is that you can’t finish early (in a for-of

loop, you can break). Here, we always immediately return the result

once we have found it.

31.10.6.3 Example: doubling Array elements

Function double(arr) returns a copy of inArr whose elements are all

multiplied by 2:

const NOT_FOUND = -1;

function indexOf(arr, searchValue) {

 return arr.reduce(

 (result, elem, index) => {

 if (result !== NOT_FOUND) {

 // We have already found something: don’t change anythin

 return result;

 } else if (elem === searchValue) {

 return index;

 } else {

 return NOT_FOUND;

 }

 },

 NOT_FOUND);

}

assert.equal(indexOf(['a', 'b', 'c'], 'b'), 1);

assert.equal(indexOf(['a', 'b', 'c'], 'x'), -1);

We modify the initial value [] by pushing into it. A non-destructive,

more functional version of double() looks as follows:

This version is more elegant but also slower and uses more memory.

 Exercises: .reduce()

map() via .reduce():

exercises/arrays/map_via_reduce_test.mjs

filter() via .reduce():

exercises/arrays/filter_via_reduce_test.mjs

countMatches() via .reduce():

exercises/arrays/count_matches_via_reduce_test.mjs

function double(inArr) {

 return inArr.reduce(

 (outArr, element) => {

 outArr.push(element * 2);

 return outArr;

 },

 []);

}

assert.deepEqual(

 double([1, 2, 3]),

 [2, 4, 6]);

function double(inArr) {

 return inArr.reduce(

 // Don’t change `outArr`, return a fresh Array

 (outArr, element) => [...outArr, element * 2],

 []);

}

assert.deepEqual(

 double([1, 2, 3]),

 [2, 4, 6]);

31.11 .sort(): sorting Arrays

.sort() has the following type definition:

By default, .sort() sorts string representations of the elements.

These representations are compared via <. This operator compares

lexicographically (the first characters are most significant). You can

see that when sorting numbers:

When sorting human-language strings, you need to be aware that

they are compared according to their code unit values (char codes):

As you can see, all unaccented uppercase letters come before all

unaccented lowercase letters, which come before all accented letters.

Use Intl, the JavaScript internationalization API, if you want proper

sorting for human languages.

Note that .sort() sorts in place; it changes and returns its receiver:

sort(compareFunc?: (a: T, b: T) => number): this

> [200, 3, 10].sort()

[10, 200, 3]

> ['pie', 'cookie', 'éclair', 'Pie', 'Cookie', 'Éclair'].sort()

['Cookie', 'Pie', 'cookie', 'pie', 'Éclair', 'éclair']

> const arr = ['a', 'c', 'b'];

> arr.sort() === arr

true

> arr

['a', 'b', 'c']

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Intl

31.11.1 Customizing the sort order

You can customize the sort order via the parameter compareFunc,

which must return a number that is:

negative if a < b

zero if a === b

positive if a > b

 Tip for remembering these rules

A negative number is less than zero (etc.).

31.11.2 Sorting numbers

You can use this helper function to sort numbers:

The following is a quick and dirty alternative.

function compareNumbers(a, b) {

 if (a < b) {

 return -1;

 } else if (a === b) {

 return 0;

 } else {

 return 1;

 }

}

assert.deepEqual(

 [200, 3, 10].sort(compareNumbers),

 [3, 10, 200]);

> [200, 3, 10].sort((a,b) => a - b)

[3, 10, 200]

The downsides of this approach are:

It is cryptic.

There is a risk of numeric overflow or underflow, if a-b becomes

a large positive or negative number.

31.11.3 Sorting objects

You also need to use a compare function if you want to sort objects.

As an example, the following code shows how to sort objects by age.

 Exercise: Sorting objects by name

exercises/arrays/sort_objects_test.mjs

const arr = [{age: 200}, {age: 3}, {age: 10}];

assert.deepEqual(

 arr.sort((obj1, obj2) => obj1.age - obj2.age),

 [{ age: 3 }, { age: 10 }, { age: 200 }]);

31.12 Quick reference: Array<T>

Legend:

R: method does not change the Array (non-destructive).

W: method changes the Array (destructive).

31.12.1 new Array()

new Array(n) creates an Array of length n that contains n holes:

new Array() creates an empty Array. However, I recommend to

always use [] instead.

31.12.2 Static methods of Array

Array.from<T>(iterable: Iterable<T> | ArrayLike<T>): T[]

[ES6]

Array.from<T,U>(iterable: Iterable<T> | ArrayLike<T>,

mapFunc: (v: T, k: number) => U, thisArg?: any): U[]
[ES6]

Converts an iterable or an Array-like object to an Array.

Optionally, the input values can be translated via mapFunc before

they are added to the output Array.

// Trailing commas are always ignored.

// Therefore: number of commas = number of holes

assert.deepEqual(new Array(3), [,,,]);

Examples:

Array.of<T>(...items: T[]): T[]
[ES6]

This static method is mainly useful for subclasses of Array,

where it serves as a custom Array literal:

31.12.3 Methods of Array<T>.prototype

.concat(...items: Array<T[] | T>): T[]
[R, ES3]

Returns a new Array that is the concatenation of the receiver

and all items. Non-Array parameters (such as 'b' in the

following example) are treated as if they were Arrays with single

elements.

.copyWithin(target: number, start: number,

end=this.length): this
[W, ES6]

Copies the elements whose indices range from (including) start

to (excluding) end to indices starting with target. Overlapping is

> Array.from(new Set(['a', 'b'])) // iterable

['a', 'b']

> Array.from({length: 2, 0:'a', 1:'b'}) // Array-like object

['a', 'b']

class MyArray extends Array {}

assert.equal(

 MyArray.of('a', 'b') instanceof MyArray, true);

> ['a'].concat('b', ['c', 'd'])

['a', 'b', 'c', 'd']

handled correctly.

If start or end is negative, then .length is added to it.

.entries(): Iterable<[number, T]>
[R, ES6]

Returns an iterable over [index, element] pairs.

.every(callback: (value: T, index: number, array: Array<T>)

=> boolean, thisArg?: any): boolean
[R, ES5]

Returns true if callback returns a truthy value for every

element. Otherwise, it returns false. It stops as soon as it

receives a falsy value. This method corresponds to universal

quantification (“for all”, ∀) in mathematics.

Related method: .some() (“exists”).

.fill(value: T, start=0, end=this.length): this
[W, ES6]

Assigns value to every index between (including) start and

(excluding) end.

> ['a', 'b', 'c', 'd'].copyWithin(0, 2, 4)

['c', 'd', 'c', 'd']

> Array.from(['a', 'b'].entries())

[[0, 'a'], [1, 'b']]

> [1, 2, 3].every(x => x > 0)

true

> [1, -2, 3].every(x => x > 0)

false

> [0, 1, 2].fill('a')

['a', 'a', 'a']

Caveat: Don’t use this method to fill an Array with an object obj;

then each element will refer to obj (sharing it). In this case, it’s

better to use Array.from().

.filter(callback: (value: T, index: number, array:

Array<T>) => any, thisArg?: any): T[]
[R, ES5]

Returns an Array with only those elements for which callback

returns a truthy value.

.find(predicate: (value: T, index: number, obj: T[]) =>

boolean, thisArg?: any): T | undefined
[R, ES6]

The result is the first element for which predicate returns a

truthy value. If there is no such element, the result is undefined.

.findIndex(predicate: (value: T, index: number, obj: T[])

=> boolean, thisArg?: any): number
[R, ES6]

The result is the index of the first element for which predicate

returns a truthy value. If there is no such element, the result is

-1.

> [1, -2, 3].filter(x => x > 0)

[1, 3]

> [1, -2, 3].find(x => x < 0)

-2

> [1, 2, 3].find(x => x < 0)

undefined

> [1, -2, 3].findIndex(x => x < 0)

1

> [1, 2, 3].findIndex(x => x < 0)

-1

.flat(depth = 1): any[]
[R, ES2019]

“Flattens” an Array: It descends into the Arrays that are nested

inside the input Array and creates a copy where all values it

finds at level depth or lower are moved to the top level.

.flatMap<U>(callback: (value: T, index: number, array: T[])

=> U|Array<U>, thisValue?: any): U[]
[R, ES2019]

The result is produced by invoking callback() for each element

of the original Array and concatenating the Arrays it returns.

.forEach(callback: (value: T, index: number, array:

Array<T>) => void, thisArg?: any): void
[R, ES5]

Calls callback for each element.

> [1,2, [3,4], [[5,6]]].flat(0) // no change

[1, 2, [3,4], [[5,6]]]

> [1,2, [3,4], [[5,6]]].flat(1)

[1, 2, 3, 4, [5,6]]

> [1,2, [3,4], [[5,6]]].flat(2)

[1, 2, 3, 4, 5, 6]

> ['a', 'b', 'c'].flatMap(x => [x,x])

['a', 'a', 'b', 'b', 'c', 'c']

> ['a', 'b', 'c'].flatMap(x => [x])

['a', 'b', 'c']

> ['a', 'b', 'c'].flatMap(x => [])

[]

['a', 'b'].forEach((x, i) => console.log(x, i))

// Output:

A for-of loop is usually a better choice: it’s faster, supports

break and can iterate over arbitrary iterables.

.includes(searchElement: T, fromIndex=0): boolean
[R, ES2016]

Returns true if the receiver has an element whose value is

searchElement and false, otherwise. Searching starts at index

fromIndex.

.indexOf(searchElement: T, fromIndex=0): number
[R, ES5]

Returns the index of the first element that is strictly equal to

searchElement. Returns -1 if there is no such element. Starts

searching at index fromIndex, visiting higher indices next.

.join(separator = ','): string
[R, ES1]

Creates a string by concatenating string representations of all

elements, separating them with separator.

// 'a', 0

// 'b', 1

> [0, 1, 2].includes(1)

true

> [0, 1, 2].includes(5)

false

> ['a', 'b', 'a'].indexOf('a')

0

> ['a', 'b', 'a'].indexOf('a', 1)

2

> ['a', 'b', 'a'].indexOf('c')

-1

.keys(): Iterable<number>
[R, ES6]

Returns an iterable over the keys of the receiver.

.lastIndexOf(searchElement: T, fromIndex=this.length-1):

number
[R, ES5]

Returns the index of the last element that is strictly equal to

searchElement. Returns -1 if there is no such element. Starts

searching at index fromIndex, visiting lower indices next.

.map<U>(mapFunc: (value: T, index: number, array: Array<T>)

=> U, thisArg?: any): U[]
[R, ES5]

Returns a new Array, in which every element is the result of

mapFunc being applied to the corresponding element of the

receiver.

> ['a', 'b', 'c'].join('##')

'a##b##c'

> ['a', 'b', 'c'].join()

'a,b,c'

> [...['a', 'b'].keys()]

[0, 1]

> ['a', 'b', 'a'].lastIndexOf('a')

2

> ['a', 'b', 'a'].lastIndexOf('a', 1)

0

> ['a', 'b', 'a'].lastIndexOf('c')

-1

> [1, 2, 3].map(x => x * 2)

[2, 4, 6]

> ['a', 'b', 'c'].map((x, i) => i)

[0, 1, 2]

.pop(): T | undefined
[W, ES3]

Removes and returns the last element of the receiver. That is, it

treats the end of the receiver as a stack. The opposite of .push().

.push(...items: T[]): number
[W, ES3]

Adds zero or more items to the end of the receiver. That is, it

treats the end of the receiver as a stack. The return value is the

length of the receiver after the change. The opposite of .pop().

.reduce<U>(callback: (accumulator: U, element: T, index:

number, array: T[]) => U, init?: U): U
[R, ES5]

This method produces a summary of the receiver: it feeds all

Array elements to callback, which combines a current summary

(in parameter accumulator) with the current Array element and

returns the next accumulator:

> const arr = ['a', 'b', 'c'];

> arr.pop()

'c'

> arr

['a', 'b']

> const arr = ['a', 'b'];

> arr.push('c', 'd')

4

> arr

['a', 'b', 'c', 'd']

const accumulator_0 = callback(init, arr[0]);

const accumulator_1 = callback(accumulator_0, arr[1]);

const accumulator_2 = callback(accumulator_1, arr[2]);

// Etc.

The result of .reduce() is the last result of callback after it has

visited all Array elements.

If no init is provided, the Array element at index 0 is used and

the element at index 1 is visited first. Therefore, the Array must

have at least length 1.

.reduceRight<U>(callback: (accumulator: U, element: T,

index: number, array: T[]) => U, init?: U): U
[R, ES5]

Works like .reduce(), but visits the Array elements backward,

starting with the last element.

.reverse(): this
[W, ES1]

Rearranges the elements of the receiver so that they are in

reverse order and then returns the receiver.

.shift(): T | undefined
[W, ES3]

> [1, 2, 3].reduce((accu, x) => accu + x, 0)

6

> [1, 2, 3].reduce((accu, x) => accu + String(x), '')

'123'

> [1, 2, 3].reduceRight((accu, x) => accu + String(x), '')

'321'

> const arr = ['a', 'b', 'c'];

> arr.reverse()

['c', 'b', 'a']

> arr

['c', 'b', 'a']

Removes and returns the first element of the receiver. The

opposite of .unshift().

.slice(start=0, end=this.length): T[]
[R, ES3]

Returns a new Array containing the elements of the receiver

whose indices are between (including) start and (excluding)

end.

Negative indices are allowed and added to .length:

.some(callback: (value: T, index: number, array: Array<T>)

=> boolean, thisArg?: any): boolean
[R, ES5]

Returns true if callback returns a truthy value for at least one

element. Otherwise, it returns false. It stops as soon as it

receives a truthy value. This method corresponds to existential

quantification (“exists”, ∃) in mathematics.

> const arr = ['a', 'b', 'c'];

> arr.shift()

'a'

> arr

['b', 'c']

> ['a', 'b', 'c', 'd'].slice(1, 3)

['b', 'c']

> ['a', 'b'].slice() // shallow copy

['a', 'b']

> ['a', 'b', 'c'].slice(-2)

['b', 'c']

> [1, 2, 3].some(x => x < 0)

false

Related method: .every() (“for all”).

.sort(compareFunc?: (a: T, b: T) => number): this
[W, ES1]

Sorts the receiver and returns it. By default, it sorts string

representations of the elements. It does so lexicographically and

according to the code unit values (char codes) of the characters:

You can customize the sort order via compareFunc, which returns

a number that is:

negative if a < b

zero if a === b

positive if a > b

Trick for sorting numbers (with a risk of numeric overflow or

underflow):

 .sort() is stable

Since ECMAScript 2019, sorting is guaranteed to be stable: if

elements are considered equal by sorting, then sorting does

> [1, -2, 3].some(x => x < 0)

true

> ['pie', 'cookie', 'éclair', 'Pie', 'Cookie', 'Éclair'].sor

['Cookie', 'Pie', 'cookie', 'pie', 'Éclair', 'éclair']

> [200, 3, 10].sort()

[10, 200, 3]

> [200, 3, 10].sort((a, b) => a - b)

[3, 10, 200]

not change the order of those elements (relative to each

other).

.splice(start: number, deleteCount=this.length-start,

...items: T[]): T[]
[W, ES3]

At index start, it removes deleteCount elements and inserts the

items. It returns the deleted elements.

start can be negative and is added to .length if it is:

.toString(): string
[R, ES1]

Converts all elements to strings via String(), concatenates them

while separating them with commas, and returns the result.

.unshift(...items: T[]): number
[W, ES3]

Inserts the items at the beginning of the receiver and returns its

length after this modification.

> const arr = ['a', 'b', 'c', 'd'];

> arr.splice(1, 2, 'x', 'y')

['b', 'c']

> arr

['a', 'x', 'y', 'd']

> ['a', 'b', 'c'].splice(-2, 2)

['b', 'c']

> [1, 2, 3].toString()

'1,2,3'

> ['1', '2', '3'].toString()

'1,2,3'

> [].toString()

''

.values(): Iterable<T>
[R, ES6]

Returns an iterable over the values of the receiver.

31.12.4 Sources

TypeScript’s built-in typings

MDN web docs for JavaScript

ECMAScript language specification

 Quiz

See quiz app.

> const arr = ['c', 'd'];

> arr.unshift('e', 'f')

4

> arr

['e', 'f', 'c', 'd']

> [...['a', 'b'].values()]

['a', 'b']

https://github.com/Microsoft/TypeScript/blob/master/lib/
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://tc39.github.io/ecma262/

32 Typed Arrays: handling

binary data (Advanced)

32.1 The basics of the API

32.1.1 Use cases for Typed Arrays

32.1.2 The core classes: ArrayBuffer, Typed Arrays,

DataView

32.1.3 Using Typed Arrays

32.1.4 Using DataViews

32.2 Element types

32.2.1 Handling overflow and underflow

32.2.2 Endianness

32.3 More information on Typed Arrays

32.3.1 The static method «ElementType»Array.from()

32.3.2 Typed Arrays are iterable

32.3.3 Typed Arrays vs. normal Arrays

32.3.4 Converting Typed Arrays to and from normal Arrays

32.3.5 Concatenating Typed Arrays

32.4 Quick references: indices vs. offsets

32.5 Quick reference: ArrayBuffers

32.5.1 new ArrayBuffer()

32.5.2 Static methods of ArrayBuffer

32.5.3 Properties of ArrayBuffer.prototype

32.6 Quick reference: Typed Arrays

32.6.1 Static methods of TypedArray<T>

32.6.2 Properties of TypedArray<T>.prototype

32.6.3 new «ElementType»Array()

32.6.4 Static properties of «ElementType»Array

32.6.5 Properties of «ElementType»Array.prototype

32.7 Quick reference: DataViews

32.7.1 new DataView()

32.7.2 Properties of DataView.prototype

32.1 The basics of the API

Much data on the web is text: JSON files, HTML files, CSS files,

JavaScript code, etc. JavaScript handles such data well via its built-in

strings.

However, before 2011, it did not handle binary data well. The Typed

Array Specification 1.0 was introduced on February 8, 2011 and

provides tools for working with binary data. With ECMAScript 6,

Typed Arrays were added to the core language and gained methods

that were previously only available for normal Arrays (.map(),

.filter(), etc.).

32.1.1 Use cases for Typed Arrays

The main uses cases for Typed Arrays, are:

Processing binary data: managing image data, manipulating

binary files, handling binary network protocols, etc.

Interacting with native APIs: Native APIs often receive and

return data in a binary format, which you could neither store nor

manipulate well in pre-ES6 JavaScript. That meant that

whenever you were communicating with such an API, data had

to be converted from JavaScript to binary and back for every

call. Typed Arrays eliminate this bottleneck. One example of

communicating with native APIs is WebGL, for which Typed

Arrays were initially created. Section “History of Typed Arrays”

https://www.khronos.org/registry/typedarray/specs/1.0/
http://www.html5rocks.com/en/tutorials/webgl/typed_arrays/#toc-history

of the article “Typed Arrays: Binary Data in the Browser” (by

Ilmari Heikkinen for HTML5 Rocks) has more information.

32.1.2 The core classes: ArrayBuffer, Typed

Arrays, DataView

The Typed Array API stores binary data in instances of ArrayBuffer:

An ArrayBuffer itself is a black box: if you want to access its data, you

must wrap it in another object – a view object. Two kinds of view

objects are available:

Typed Arrays: let you access the data as an indexed sequence of

elements that all have the same type. Examples include:

Uint8Array: Elements are unsigned 8-bit integers. Unsigned

means that their ranges start at zero.

Int16Array: Elements are signed 16-bit integers. Signed

means that they have a sign and can be negative, zero, or

positive.

Float32Array: Elements are 32-bit floating point numbers.

DataViews: let you interpret the data as various types (Uint8,

Int16, Float32, etc.) that you can read and write at any byte

offset.

Fig. 29 shows a class diagram of the API.

const buf = new ArrayBuffer(4); // length in bytes

 // buf is initialized with zeros

http://www.html5rocks.com/en/tutorials/webgl/typed_arrays/#toc-history

Figure 29: The classes of the Typed Array API.

32.1.3 Using Typed Arrays

Typed Arrays are used much like normal Arrays with a few notable

differences:

Typed Arrays store their data in ArrayBuffers.

All elements are initialized with zeros.

All elements have the same type. Writing values to a Typed

Array coerces them to that type. Reading values produces

normal numbers.

The length of a Typed Array is immutable; it can’t be changed.

Typed Arrays can’t have holes.

32.1.3.1 Creating Typed Arrays

The following code shows three different ways of creating the same

Typed Array:

32.1.3.2 The wrapped ArrayBuffer

32.1.3.3 Getting and setting elements

32.1.4 Using DataViews

This is how DataViews are used:

// Argument: Typed Array or Array-like object

const ta1 = new Uint8Array([0, 1, 2]);

const ta2 = Uint8Array.of(0, 1, 2);

const ta3 = new Uint8Array(3); // length of Typed Array

ta3[0] = 0;

ta3[1] = 1;

ta3[2] = 2;

assert.deepEqual(ta1, ta2);

assert.deepEqual(ta1, ta3);

const typedArray = new Int16Array(2); // 2 elements

assert.equal(typedArray.length, 2);

assert.deepEqual(

 typedArray.buffer, new ArrayBuffer(4)); // 4 bytes

const typedArray = new Int16Array(2);

assert.equal(typedArray[1], 0); // initialized with 0

typedArray[1] = 72;

assert.equal(typedArray[1], 72);

const dataView = new DataView(new ArrayBuffer(4));

assert.equal(dataView.getInt16(0), 0);

assert.equal(dataView.getUint8(0), 0);

dataView.setUint8(0, 5);

32.2 Element types

Table 19: Element types supported by the Typed Array API.

Element Typed Array Bytes Description

Int8 Int8Array 1 8-bit signed

integer

ES6

Uint8 Uint8Array 1 8-bit unsigned

integer

ES6

Uint8C Uint8ClampedArray 1 8-bit unsigned

integer

ES6

(clamped

conversion)

ES6

Int16 Int16Array 2 16-bit signed

integer

ES6

Uint16 Uint16Array 2 16-bit unsigned

integer

ES6

Int32 Int32Array 4 32-bit signed

integer

ES6

Uint32 Uint32Array 4 32-bit unsigned

integer

ES6

Float32 Float32Array 4 32-bit floating

point

ES6

Float64 Float64Array 8 64-bit floating

point

ES6

Tbl. 19 lists the available element types. These types (e.g., Int32)

show up in two locations:

They are the types of the elements of Typed Arrays. For

example, all elements of a Int32Array have the type Int32. The

element type is the only aspect of Typed Arrays that differs.

They are the lenses through which an ArrayBuffer accesses its

DataView when you use methods such as .getInt32() and

.setInt32().

The element type Uint8C is special: it is not supported by DataView

and only exists to enable Uint8ClampedArray. This Typed Array is

used by the canvas element (where it replaces CanvasPixelArray) and

should otherwise be avoided. The only difference between Uint8C and

Uint8 is how overflow and underflow are handled (as explained in the

next subsection).

32.2.1 Handling overflow and underflow

Normally, when a value is out of the range of the element type,

modulo arithmetic is used to convert it to a value within range. For

signed and unsigned integers that means that:

The highest value plus one is converted to the lowest value (0 for

unsigned integers).

The lowest value minus one is converted to the highest value.

The following function helps illustrate how conversion works:

function setAndGet(typedArray, value) {

 typedArray[0] = value;

 return typedArray[0];

}

Modulo conversion for unsigned 8-bit integers:

Modulo conversion for signed 8-bit integers:

Clamped conversion is different:

All underflowing values are converted to the lowest value.

All overflowing values are converted to the highest value.

const uint8 = new Uint8Array(1);

// Highest value of range

assert.equal(setAndGet(uint8, 255), 255);

// Overflow

assert.equal(setAndGet(uint8, 256), 0);

// Lowest value of range

assert.equal(setAndGet(uint8, 0), 0);

// Underflow

assert.equal(setAndGet(uint8, -1), 255);

const int8 = new Int8Array(1);

// Highest value of range

assert.equal(setAndGet(int8, 127), 127);

// Overflow

assert.equal(setAndGet(int8, 128), -128);

// Lowest value of range

assert.equal(setAndGet(int8, -128), -128);

// Underflow

assert.equal(setAndGet(int8, -129), 127);

const uint8c = new Uint8ClampedArray(1);

// Highest value of range

assert.equal(setAndGet(uint8c, 255), 255);

// Overflow

assert.equal(setAndGet(uint8c, 256), 255);

32.2.2 Endianness

Whenever a type (such as Uint16) is stored as a sequence of multiple

bytes, endianness matters:

Big endian: the most significant byte comes first. For example,

the Uint16 value 0x4321 is stored as two bytes – first 0x43, then

0x21.

Little endian: the least significant byte comes first. For example,

the Uint16 value 0x4321 is stored as two bytes – first 0x21, then

0x43.

Endianness tends to be fixed per CPU architecture and consistent

across native APIs. Typed Arrays are used to communicate with

those APIs, which is why their endianness follows the endianness of

the platform and can’t be changed.

On the other hand, the endianness of protocols and binary files

varies, but is fixed per format, across platforms. Therefore, we must

be able to access data with either endianness. DataViews serve this

use case and let you specify endianness when you get or set a value.

Quoting Wikipedia on Endianness:

// Lowest value of range

assert.equal(setAndGet(uint8c, 0), 0);

// Underflow

assert.equal(setAndGet(uint8c, -1), 0);

https://en.wikipedia.org/wiki/Endianness

Big-endian representation is the most common convention in

data networking; fields in the protocols of the Internet protocol

suite, such as IPv4, IPv6, TCP, and UDP, are transmitted in big-

endian order. For this reason, big-endian byte order is also

referred to as network byte order.

Little-endian storage is popular for microprocessors in part due

to significant historical influence on microprocessor designs by

Intel Corporation.

Other orderings are also possible. Those are generically called

middle-endian or mixed-endian.

32.3 More information on Typed

Arrays

In this section, «ElementType»Array stands for Int8Array, Uint8Array,

etc. ElementType is Int8, Uint8, etc.

32.3.1 The static method

«ElementType»Array.from()

This method has the type signature:

.from() converts source into an instance of this (a Typed Array).

For example, normal Arrays are iterable and can be converted with

this method:

Typed Arrays are also iterable:

source can also be an Array-like object:

.from<S>(

 source: Iterable<S>|ArrayLike<S>,

 mapfn?: S => ElementType, thisArg?: any)

 : «ElementType»Array

assert.deepEqual(

 Uint16Array.from([0, 1, 2]),

 Uint16Array.of(0, 1, 2));

assert.deepEqual(

 Uint16Array.from(Uint8Array.of(0, 1, 2)),

 Uint16Array.of(0, 1, 2));

The optional mapfn lets you transform the elements of source before

they become elements of the result. Why perform the two steps

mapping and conversion in one go? Compared to mapping

separately via .map(), there are two advantages:

1. No intermediate Array or Typed Array is needed.

2. When converting between Typed Arrays with different

precisions, less can go wrong.

Read on for an explanation of the second advantage.

32.3.1.1 Pitfall: mapping while converting between Typed

Array types

The static method .from() can optionally both map and convert

between Typed Array types. Less can go wrong if you use that

method.

To see why that is, let us first convert a Typed Array to a Typed Array

with a higher precision. If we use .from() to map, the result is

automatically correct. Otherwise, you must first convert and then

map.

assert.deepEqual(

 Uint16Array.from({0:0, 1:1, 2:2, length: 3}),

 Uint16Array.of(0, 1, 2));

const typedArray = Int8Array.of(127, 126, 125);

assert.deepEqual(

 Int16Array.from(typedArray, x => x * 2),

 Int16Array.of(254, 252, 250));

assert.deepEqual(

If we go from a Typed Array to a Typed Array with a lower precision,

mapping via .from() produces the correct result. Otherwise, we must

first map and then convert.

The problem is that if we map via .map(), then input type and output

type are the same. In contrast, .from() goes from an arbitrary input

type to an output type that you specify via its receiver.

32.3.2 Typed Arrays are iterable

Typed Arrays are iterable. That means that you can use the for-of

loop and other iteration-based mechanisms:

 Int16Array.from(typedArray).map(x => x * 2),

 Int16Array.of(254, 252, 250)); // OK

assert.deepEqual(

 Int16Array.from(typedArray.map(x => x * 2)),

 Int16Array.of(-2, -4, -6)); // wrong

assert.deepEqual(

 Int8Array.from(Int16Array.of(254, 252, 250), x => x / 2),

 Int8Array.of(127, 126, 125));

assert.deepEqual(

 Int8Array.from(Int16Array.of(254, 252, 250).map(x => x / 2)),

 Int8Array.of(127, 126, 125)); // OK

assert.deepEqual(

 Int8Array.from(Int16Array.of(254, 252, 250)).map(x => x / 2),

 Int8Array.of(-1, -2, -3)); // wrong

const ui8 = Uint8Array.of(0, 1, 2);

for (const byte of ui8) {

 console.log(byte);

}

// Output:

// 0

ArrayBuffers and DataViews are not iterable.

32.3.3 Typed Arrays vs. normal Arrays

Typed Arrays are much like normal Arrays: they have a .length,

elements can be accessed via the bracket operator [], and they have

most of the standard Array methods. They differ from normal Arrays

in the following ways:

Typed Arrays have buffers. The elements of a Typed Array ta are

not stored in ta, they are stored in an associated ArrayBuffer

that can be accessed via ta.buffer:

Typed Arrays are initialized with zeros:

new Array(4) creates a normal Array without any elements.

It only has four holes (indices less than the .length that

have no associated elements).

new Uint8Array(4) creates a Typed Array whose four

elements are all 0.

All of the elements of a Typed Array have the same type:

// 1

// 2

const ta = new Uint16Array(2); // 2 elements

assert.deepEqual(

 ta.buffer, new ArrayBuffer(4)); // 4 bytes

assert.deepEqual(new Uint8Array(4), Uint8Array.of(0, 0, 0, 0

Setting elements converts values to that type.

Getting elements returns numbers.

The .length of a Typed Array is derived from its ArrayBuffer and

never changes (unless you switch to a different ArrayBuffer).

Normal Arrays can have holes; Typed Arrays can’t.

32.3.4 Converting Typed Arrays to and

from normal Arrays

To convert a normal Array to a Typed Array, you pass it to a Typed

Array constructor (which accepts Array-like objects and Typed

Arrays) or to «ElementType»Array.from() (which accepts iterables

and Array-like objects). For example:

To convert a Typed Array to a normal Array, you can use spreading

or Array.from() (because Typed Arrays are iterable):

const ta = new Uint8Array(1);

ta[0] = 257;

assert.equal(ta[0], 1); // 257 % 256 (overflow)

ta[0] = '2';

assert.equal(ta[0], 2);

const ta = new Uint8Array(1);

assert.equal(ta[0], 0);

assert.equal(typeof ta[0], 'number');

const ta1 = new Uint8Array([0, 1, 2]);

const ta2 = Uint8Array.from([0, 1, 2]);

assert.deepEqual(ta1, ta2);

32.3.5 Concatenating Typed Arrays

Typed Arrays don’t have a method .concat(), like normal Arrays do.

The workaround is to use their overloaded method .set():

It copies the existing typedArray or arrayLike into the receiver, at

index offset. TypedArray is a fictitious abstract superclass of all

concrete Typed Array classes.

The following function uses that method to copy zero or more Typed

Arrays (or Array-like objects) into an instance of resultConstructor:

assert.deepEqual(

 [...Uint8Array.of(0, 1, 2)], [0, 1, 2]);

assert.deepEqual(

 Array.from(Uint8Array.of(0, 1, 2)), [0, 1, 2]);

.set(typedArray: TypedArray, offset=0): void

.set(arrayLike: ArrayLike<number>, offset=0): void

function concatenate(resultConstructor, ...arrays) {

 let totalLength = 0;

 for (const arr of arrays) {

 totalLength += arr.length;

 }

 const result = new resultConstructor(totalLength);

 let offset = 0;

 for (const arr of arrays) {

 result.set(arr, offset);

 offset += arr.length;

 }

 return result;

}

assert.deepEqual(

 concatenate(Uint8Array, Uint8Array.of(1, 2), [3, 4]),

 Uint8Array.of(1, 2, 3, 4));

32.4 Quick references: indices

vs. offsets

In preparation for the quick references on ArrayBuffers, Typed

Arrays, and DataViews, we need learn the differences between

indices and offsets:

Indices for the bracket operator []: You can only use non-

negative indices (starting at 0).

In normal Arrays, writing to negative indices creates properties:

In Typed Arrays, writing to negative indices is ignored:

Indices for methods of ArrayBuffers, Typed Arrays, and

DataViews: Every index can be negative. If it is, it is added to the

length of the entity to produce the actual index. Therefore, -1

refers to the last element, -2 to the second-last, etc. Methods of

normal Arrays work the same way.

const arr = [6, 7];

arr[-1] = 5;

assert.deepEqual(

 Object.keys(arr), ['0', '1', '-1']);

const tarr = Uint8Array.of(6, 7);

tarr[-1] = 5;

assert.deepEqual(

 Object.keys(tarr), ['0', '1']);

const ui8 = Uint8Array.of(0, 1, 2);

assert.deepEqual(ui8.slice(-1), Uint8Array.of(2));

Offsets passed to methods of Typed Arrays and DataViews: must

be non-negative – for example:

Whether a parameter is an index or an offset can only be determined

by looking at documentation; there is no simple rule.

const dataView = new DataView(new ArrayBuffer(4));

assert.throws(

 () => dataView.getUint8(-1),

 {

 name: 'RangeError',

 message: 'Offset is outside the bounds of the DataView',

 });

32.5 Quick reference: ArrayBuffers

ArrayBuffers store binary data, which is meant to be accessed via

Typed Arrays and DataViews.

32.5.1 new ArrayBuffer()

The type signature of the constructor is:

Invoking this constructor via new creates an instance whose capacity

is length bytes. Each of those bytes is initially 0.

You can’t change the length of an ArrayBuffer; you can only create a

new one with a different length.

32.5.2 Static methods of ArrayBuffer

ArrayBuffer.isView(arg: any)

Returns true if arg is an object and a view for an ArrayBuffer

(i.e., if it is a Typed Array or a DataView).

32.5.3 Properties of ArrayBuffer.prototype

get .byteLength(): number

Returns the capacity of this ArrayBuffer in bytes.

new ArrayBuffer(length: number)

.slice(startIndex: number, endIndex=this.byteLength)

Creates a new ArrayBuffer that contains the bytes of this

ArrayBuffer whose indices are greater than or equal to

startIndex and less than endIndex. start and endIndex can be

negative (see §32.4 “Quick references: indices vs. offsets”).

32.6 Quick reference: Typed

Arrays

The properties of the various Typed Array objects are introduced in

two steps:

1. TypedArray: First, we look at the abstract superclass of all Typed

Array classes (which was shown in the class diagram at the

beginning of this chapter). I’m calling that superclass

TypedArray, but it is not directly accessible from JavaScript.

TypedArray.prototype houses all methods of Typed Arrays.

2. «ElementType»Array: The concrete Typed Array classes are called

Uint8Array, Int16Array, Float32Array, etc. These are the classes

that you use via new, .of, and .from().

32.6.1 Static methods of TypedArray<T>

Both static TypedArray methods are inherited by its subclasses

(Uint8Array, etc.). TypedArray is abstract. Therefore, you always use

these methods via the subclasses, which are concrete and can have

direct instances.

.from<S>(source: Iterable<S>|ArrayLike<S>, mapfn?: S => T,

thisArg?: any) : instanceof this

Converts an iterable (including Arrays and Typed Arrays) or an

Array-like object to an instance of this (instanceof this is my

invention to express that fact).

The optional mapfn lets you transform the elements of source

before they become elements of the result.

.of(...items: number[]): instanceof this

Creates a new instance of this whose elements are items

(coerced to the element type).

32.6.2 Properties of

TypedArray<T>.prototype

Indices accepted by Typed Array methods can be negative (they work

like traditional Array methods that way). Offsets must be non-

negative. For details, see §32.4 “Quick references: indices vs. offsets”.

32.6.2.1 Properties specific to Typed Arrays

The following properties are specific to Typed Arrays; normal Arrays

don’t have them:

get .buffer(): ArrayBuffer

assert.deepEqual(

 Uint16Array.from([0, 1, 2]),

 Uint16Array.of(0, 1, 2));

assert.deepEqual(

 Int16Array.from(Int8Array.of(127, 126, 125), x => x * 2),

 Int16Array.of(254, 252, 250));

assert.deepEqual(

 Int16Array.of(-1234, 5, 67),

 new Int16Array([-1234, 5, 67]));

Returns the buffer backing this Typed Array.

get .length(): number

Returns the length in elements of this Typed Array’s buffer.

get .byteLength(): number

Returns the size in bytes of this Typed Array’s buffer.

get .byteOffset(): number

Returns the offset where this Typed Array “starts” inside its

ArrayBuffer.

.set(typedArray: TypedArray, offset=0): void

.set(arrayLike: ArrayLike<number>, offset=0): void

Copies all elements of the first parameter to this Typed Array.

The element at index 0 of the parameter is written to index

offset of this Typed Array (etc.). For more information on

Array-like objects, consult §31.4 “Array-like objects”.

.subarray(startIndex=0, endIndex=this.length):

TypedArray<T>

Returns a new Typed Array that has the same buffer as this

Typed Array, but a (generally) smaller range. If startIndex is

non-negative then the first element of the resulting Typed Array

is this[startIndex], the second this[startIndex+1] (etc.). If

startIndex in negative, it is converted appropriately.

32.6.2.2 Array methods

The following methods are basically the same as the methods of

normal Arrays:

.copyWithin(target: number, start: number,

end=this.length): this
[W, ES6]

.entries(): Iterable<[number, T]>
[R, ES6]

.every(callback: (value: T, index: number, array:

TypedArray<T>) => boolean, thisArg?: any): boolean
[R, ES5]

.fill(value: T, start=0, end=this.length): this
[W, ES6]

.filter(callback: (value: T, index: number, array:

TypedArray<T>) => any, thisArg?: any): T[]
[R, ES5]

.find(predicate: (value: T, index: number, obj: T[]) =>

boolean, thisArg?: any): T | undefined
[R, ES6]

.findIndex(predicate: (value: T, index: number, obj: T[])

=> boolean, thisArg?: any): number
[R, ES6]

.forEach(callback: (value: T, index: number, array:

TypedArray<T>) => void, thisArg?: any): void
[R, ES5]

.includes(searchElement: T, fromIndex=0): boolean
[R, ES2016]

.indexOf(searchElement: T, fromIndex=0): number
[R, ES5]

.join(separator = ','): string
[R, ES1]

.keys(): Iterable<number>
[R, ES6]

.lastIndexOf(searchElement: T, fromIndex=this.length-1):

number
[R, ES5]

.map<U>(mapFunc: (value: T, index: number, array:

TypedArray<T>) => U, thisArg?: any): U[]
[R, ES5]

.reduce<U>(callback: (accumulator: U, element: T, index:

number, array: T[]) => U, init?: U): U
[R, ES5]

.reduceRight<U>(callback: (accumulator: U, element: T,

index: number, array: T[]) => U, init?: U): U
[R, ES5]

.reverse(): this
[W, ES1]

.slice(start=0, end=this.length): T[]
[R, ES3]

.some(callback: (value: T, index: number, array:

TypedArray<T>) => boolean, thisArg?: any): boolean
[R, ES5]

.sort(compareFunc?: (a: T, b: T) => number): this
[W, ES1]

.toString(): string
[R, ES1]

.values(): Iterable<number>
[R, ES6]

For details on how these methods work, please consult §31.12.3

“Methods of Array<T>.prototype”.

32.6.3 new «ElementType»Array()

Each Typed Array constructor has a name that follows the pattern

«ElementType»Array, where «ElementType» is one of the element types

in the table at the beginning. That means that there are nine

constructors for Typed Arrays:

Float32Array, Float64Array

Int8Array, Int16Array, Int32Array

Uint8Array, Uint8ClampedArray, Uint16Array, Uint32Array

Each constructor has four overloaded versions – it behaves

differently depending on how many arguments it receives and what

their types are:

new «ElementType»Array(buffer: ArrayBuffer, byteOffset=0,

length=0)

Creates a new «ElementType»Array whose buffer is buffer. It

starts accessing the buffer at the given byteOffset and will have

the given length. Note that length counts elements of the Typed

Array (with 1–8 bytes each), not bytes.

new «ElementType»Array(length=0)

Creates a new «ElementType»Array with the given length and the

appropriate buffer. The buffer’s size in bytes is:

new «ElementType»Array(source: TypedArray)

Creates a new instance of «ElementType»Array whose elements

have the same values as the elements of source, but coerced to

ElementType.

new «ElementType»Array(source: ArrayLike<number>)

Creates a new instance of «ElementType»Array whose elements

have the same values as the elements of source, but coerced to

ElementType. For more information on Array-like objects,

consult §31.4 “Array-like objects”.

32.6.4 Static properties of

«ElementType»Array

«ElementType»Array.BYTES_PER_ELEMENT: number

Counts how many bytes are needed to store a single element:

length * «ElementType»Array.BYTES_PER_ELEMENT

32.6.5 Properties of

«ElementType»Array.prototype

.BYTES_PER_ELEMENT: number

The same as «ElementType»Array.BYTES_PER_ELEMENT.

> Uint8Array.BYTES_PER_ELEMENT

1

> Int16Array.BYTES_PER_ELEMENT

2

> Float64Array.BYTES_PER_ELEMENT

8

32.7 Quick reference: DataViews

32.7.1 new DataView()

new DataView(buffer: ArrayBuffer, byteOffset=0,

byteLength=buffer.byteLength-byteOffset)

Creates a new DataView whose data is stored in the ArrayBuffer

buffer. By default, the new DataView can access all of buffer.

The last two parameters allow you to change that.

32.7.2 Properties of DataView.prototype

In the remainder of this section, «ElementType» refers to either:

Float32, Float64

Int8, Int16, Int32

Uint8, Uint16, Uint32

These are the properties of DataView.prototype:

get .buffer()

Returns the ArrayBuffer of this DataView.

get .byteLength()

Returns how many bytes can be accessed by this DataView.

get .byteOffset()

Returns at which offset this DataView starts accessing the bytes

in its buffer.

.get«ElementType»(byteOffset: number, littleEndian=false)

Reads a value from the buffer of this DataView.

.set«ElementType»(byteOffset: number, value: number,

littleEndian=false)

Writes value to the buffer of this DataView.

33 Maps (Map)

33.1 Using Maps

33.1.1 Creating Maps

33.1.2 Copying Maps

33.1.3 Working with single entries

33.1.4 Determining the size of a Map and clearing it

33.1.5 Getting the keys and values of a Map

33.1.6 Getting the entries of a Map

33.1.7 Listed in insertion order: entries, keys, values

33.1.8 Converting between Maps and Objects

33.2 Example: Counting characters

33.3 A few more details about the keys of Maps (advanced)

33.3.1 What keys are considered equal?

33.4 Missing Map operations

33.4.1 Mapping and filtering Maps

33.4.2 Combining Maps

33.5 Quick reference: Map<K,V>

33.5.1 Constructor

33.5.2 Map<K,V>.prototype: handling single entries

33.5.3 Map<K,V>.prototype: handling all entries

33.5.4 Map<K,V>.prototype: iterating and looping

33.5.5 Sources of this section

33.6 FAQ: Maps

33.6.1 When should I use a Map, and when should I use an

object?

33.6.2 When would I use an object as a key in a Map?

33.6.3 Why do Maps preserve the insertion order of

entries?

33.6.4 Why do Maps have a .size, while Arrays have a

.length?

Before ES6, JavaScript didn’t have a data structure for dictionaries

and (ab)used objects as dictionaries from strings to arbitrary values.

ES6 brought Maps, which are dictionaries from arbitrary values to

arbitrary values.

33.1 Using Maps

An instance of Map maps keys to values. A single key-value mapping

is called an entry.

33.1.1 Creating Maps

There are three common ways of creating Maps.

First, you can use the constructor without any parameters to create

an empty Map:

Second, you can pass an iterable (e.g., an Array) over key-value

“pairs” (Arrays with two elements) to the constructor:

Third, the .set() method adds entries to a Map and is chainable:

33.1.2 Copying Maps

const emptyMap = new Map();

assert.equal(emptyMap.size, 0);

const map = new Map([

 [1, 'one'],

 [2, 'two'],

 [3, 'three'], // trailing comma is ignored

]);

const map = new Map()

 .set(1, 'one')

 .set(2, 'two')

 .set(3, 'three');

As we’ll see later, Maps are also iterables over key-value pairs.

Therefore, you can use the constructor to create a copy of a Map.

That copy is shallow: keys and values are the same; they are not

duplicated.

33.1.3 Working with single entries

.set() and .get() are for writing and reading values (given keys).

.has() checks if a Map has an entry with a given key. .delete()

removes entries.

const original = new Map()

 .set(false, 'no')

 .set(true, 'yes');

const copy = new Map(original);

assert.deepEqual(original, copy);

const map = new Map();

map.set('foo', 123);

assert.equal(map.get('foo'), 123);

// Unknown key:

assert.equal(map.get('bar'), undefined);

// Use the default value '' if an entry is missing:

assert.equal(map.get('bar') || '', '');

const map = new Map([['foo', 123]]);

assert.equal(map.has('foo'), true);

assert.equal(map.delete('foo'), true)

assert.equal(map.has('foo'), false)

33.1.4 Determining the size of a Map and

clearing it

.size contains the number of entries in a Map. .clear() removes all

entries of a Map.

33.1.5 Getting the keys and values of a

Map

.keys() returns an iterable over the keys of a Map:

We can use spreading (...) to convert the iterable returned by

.keys() to an Array:

const map = new Map()

 .set('foo', true)

 .set('bar', false)

;

assert.equal(map.size, 2)

map.clear();

assert.equal(map.size, 0)

const map = new Map()

 .set(false, 'no')

 .set(true, 'yes')

;

for (const key of map.keys()) {

 console.log(key);

}

// Output:

// false

// true

.values() works like .keys(), but for values instead of keys.

33.1.6 Getting the entries of a Map

.entries() returns an iterable over the entries of a Map:

Spreading (...) converts the iterable returned by .entries() to an

Array:

Map instances are also iterables over entries. In the following code,

we use destructuring to access the keys and values of map:

assert.deepEqual(

 [...map.keys()],

 [false, true]);

const map = new Map()

 .set(false, 'no')

 .set(true, 'yes')

;

for (const entry of map.entries()) {

 console.log(entry);

}

// Output:

// [false, 'no']

// [true, 'yes']

assert.deepEqual(

 [...map.entries()],

 [[false, 'no'], [true, 'yes']]);

for (const [key, value] of map) {

 console.log(key, value);

}

// Output:

// false, 'no'

// true, 'yes'

33.1.7 Listed in insertion order: entries,

keys, values

Maps record in which order entries were created and honor that

order when listing entries, keys, or values:

33.1.8 Converting between Maps and

Objects

As long as a Map only uses strings and symbols as keys, you can

convert it to an object (via Object.fromEntries()):

You can also convert an object to a Map with string or symbol keys

(via Object.entries()):

const map1 = new Map([

 ['a', 1],

 ['b', 2],

]);

assert.deepEqual(

 [...map1.keys()], ['a', 'b']);

const map2 = new Map([

 ['b', 2],

 ['a', 1],

]);

assert.deepEqual(

 [...map2.keys()], ['b', 'a']);

const map = new Map([

 ['a', 1],

 ['b', 2],

]);

const obj = Object.fromEntries(map);

assert.deepEqual(

 obj, {a: 1, b: 2});

const obj = {

 a: 1,

 b: 2,

};

const map = new Map(Object.entries(obj));

assert.deepEqual(

 map, new Map([['a', 1], ['b', 2]]));

33.2 Example: Counting characters

countChars() returns a Map that maps characters to numbers of

occurrences.

function countChars(chars) {

 const charCounts = new Map();

 for (let ch of chars) {

 ch = ch.toLowerCase();

 const prevCount = charCounts.get(ch) || 0;

 charCounts.set(ch, prevCount+1);

 }

 return charCounts;

}

const result = countChars('AaBccc');

assert.deepEqual(

 [...result],

 [

 ['a', 2],

 ['b', 1],

 ['c', 3],

]

);

33.3 A few more details about the

keys of Maps (advanced)

Any value can be a key, even an object:

33.3.1 What keys are considered equal?

Most Map operations need to check whether a value is equal to one

of the keys. They do so via the internal operation SameValueZero,

which works like === but considers NaN to be equal to itself.

As a consequence, you can use NaN as a key in Maps, just like any

other value:

Different objects are always considered to be different. That is

something that can’t be changed (yet – configuring key equality is on

const map = new Map();

const KEY1 = {};

const KEY2 = {};

map.set(KEY1, 'hello');

map.set(KEY2, 'world');

assert.equal(map.get(KEY1), 'hello');

assert.equal(map.get(KEY2), 'world');

> const map = new Map();

> map.set(NaN, 123);

> map.get(NaN)

123

http://www.ecma-international.org/ecma-262/6.0/#sec-samevaluezero

TC39’s long-term roadmap).

> new Map().set({}, 1).set({}, 2).size

2

33.4 Missing Map operations

33.4.1 Mapping and filtering Maps

You can .map() and .filter() an Array, but there are no such

operations for a Map. The solution is:

1. Convert the Map into an Array of [key, value] pairs.

2. Map or filter the Array.

3. Convert the result back to a Map.

I’ll use the following Map to demonstrate how that works.

Mapping originalMap:

Filtering originalMap:

const originalMap = new Map()

.set(1, 'a')

.set(2, 'b')

.set(3, 'c');

const mappedMap = new Map(// step 3

 [...originalMap] // step 1

 .map(([k, v]) => [k * 2, '_' + v]) // step 2

);

assert.deepEqual([...mappedMap],

 [[2,'_a'], [4,'_b'], [6,'_c']]);

const filteredMap = new Map(// step 3

 [...originalMap] // step 1

 .filter(([k, v]) => k < 3) // step 2

);

assert.deepEqual([...filteredMap],

 [[1,'a'], [2,'b']]);

Step 1 is performed by spreading (...) in the Array literal.

33.4.2 Combining Maps

There are no methods for combining Maps, which is why we must

use a workaround that is similar to the one from the previous

section.

Let’s combine the following two Maps:

To combine map1 and map2, we turn them into Arrays via spreading

(...) and concatenate those Arrays. Afterward, we convert the result

back to a Map. All of that is done in line A.

 Exercise: Combining two Maps

const map1 = new Map()

 .set(1, '1a')

 .set(2, '1b')

 .set(3, '1c')

;

const map2 = new Map()

 .set(2, '2b')

 .set(3, '2c')

 .set(4, '2d')

;

const combinedMap = new Map([...map1, ...map2]); // (A)

assert.deepEqual(

 [...combinedMap], // convert to Array for comparison

 [[1, '1a'],

 [2, '2b'],

 [3, '2c'],

 [4, '2d']]

);

exercises/maps/combine_maps_test.mjs

33.5 Quick reference: Map<K,V>

Note: For the sake of conciseness, I’m pretending that all keys have

the same type K and that all values have the same type V.

33.5.1 Constructor

new Map<K, V>(entries?: Iterable<[K, V]>)
[ES6]

If you don’t provide the parameter entries, then an empty Map

is created. If you do provide an iterable over [key, value] pairs,

then those pairs are added as entries to the Map. For example:

33.5.2 Map<K,V>.prototype: handling single

entries

.get(key: K): V
[ES6]

Returns the value that key is mapped to in this Map. If there is

no key key in this Map, undefined is returned.

const map = new Map([

 [1, 'one'],

 [2, 'two'],

 [3, 'three'], // trailing comma is ignored

]);

const map = new Map([[1, 'one'], [2, 'two']]);

assert.equal(map.get(1), 'one');

assert.equal(map.get(5), undefined);

.set(key: K, value: V): this
[ES6]

Maps the given key to the given value. If there is already an

entry whose key is key, it is updated. Otherwise, a new entry is

created. This method returns this, which means that you can

chain it.

.has(key: K): boolean
[ES6]

Returns whether the given key exists in this Map.

.delete(key: K): boolean
[ES6]

If there is an entry whose key is key, it is removed and true is

returned. Otherwise, nothing happens and false is returned.

33.5.3 Map<K,V>.prototype: handling all

entries

const map = new Map([[1, 'one'], [2, 'two']]);

map.set(1, 'ONE!')

 .set(3, 'THREE!');

assert.deepEqual(

 [...map.entries()],

 [[1, 'ONE!'], [2, 'two'], [3, 'THREE!']]);

const map = new Map([[1, 'one'], [2, 'two']]);

assert.equal(map.has(1), true); // key exists

assert.equal(map.has(5), false); // key does not exist

const map = new Map([[1, 'one'], [2, 'two']]);

assert.equal(map.delete(1), true);

assert.equal(map.delete(5), false); // nothing happens

assert.deepEqual(

 [...map.entries()],

 [[2, 'two']]);

get .size: number
[ES6]

Returns how many entries this Map has.

.clear(): void
[ES6]

Removes all entries from this Map.

33.5.4 Map<K,V>.prototype: iterating and

looping

Both iterating and looping happen in the order in which entries were

added to a Map.

.entries(): Iterable<[K,V]>
[ES6]

Returns an iterable with one [key, value] pair for each entry in

this Map. The pairs are Arrays of length 2.

const map = new Map([[1, 'one'], [2, 'two']]);

assert.equal(map.size, 2);

const map = new Map([[1, 'one'], [2, 'two']]);

assert.equal(map.size, 2);

map.clear();

assert.equal(map.size, 0);

const map = new Map([[1, 'one'], [2, 'two']]);

for (const entry of map.entries()) {

 console.log(entry);

}

// Output:

// [1, 'one']

// [2, 'two']

.forEach(callback: (value: V, key: K, theMap: Map<K,V>) =>

void, thisArg?: any): void
[ES6]

The first parameter is a callback that is invoked once for each

entry in this Map. If thisArg is provided, this is set to it for each

invocation. Otherwise, this is set to undefined.

.keys(): Iterable<K>
[ES6]

Returns an iterable over all keys in this Map.

.values(): Iterable<V>
[ES6]

Returns an iterable over all values in this Map.

[Symbol.iterator](): Iterable<[K,V]>
[ES6]

const map = new Map([[1, 'one'], [2, 'two']]);

map.forEach((value, key) => console.log(value, key));

// Output:

// 'one', 1

// 'two', 2

const map = new Map([[1, 'one'], [2, 'two']]);

for (const key of map.keys()) {

 console.log(key);

}

// Output:

// 1

// 2

const map = new Map([[1, 'one'], [2, 'two']]);

for (const value of map.values()) {

 console.log(value);

}

// Output:

// 'one'

// 'two'

The default way of iterating over Maps. Same as .entries().

33.5.5 Sources of this section

TypeScript’s built-in typings

const map = new Map([[1, 'one'], [2, 'two']]);

for (const [key, value] of map) {

 console.log(key, value);

}

// Output:

// 1, 'one'

// 2, 'two'

https://github.com/Microsoft/TypeScript/blob/master/lib/

33.6 FAQ: Maps

33.6.1 When should I use a Map, and

when should I use an object?

If you need a dictionary-like data structure with keys that are neither

strings nor symbols, you have no choice: you must use a Map.

If, however, your keys are either strings or symbols, you must decide

whether or not to use an object. A rough general guideline is:

Is there a fixed set of keys (known at development time)?

Then use an object obj and access the values via fixed keys:

Can the set of keys change at runtime?

Then use a Map map and access the values via keys stored in

variables:

33.6.2 When would I use an object as a

key in a Map?

You normally want Map keys to be compared by value (two keys are

considered equal if they have the same content). That excludes

const value = obj.key;

const theKey = 123;

map.get(theKey);

objects. However, there is one use case for objects as keys: externally

attaching data to objects. But that use case is served better by

WeakMaps, where entries don’t prevent keys from being garbage-

collected (for details, consult the next chapter).

33.6.3 Why do Maps preserve the

insertion order of entries?

In principle, Maps are unordered. The main reason for ordering

entries is so that operations that list entries, keys, or values are

deterministic. That helps, for example, with testing.

33.6.4 Why do Maps have a .size, while

Arrays have a .length?

In JavaScript, indexable sequences (such as Arrays and strings) have

a .length, while unindexed collections (such as Maps and Sets) have

a .size:

.length is based on indices; it is always the highest index plus

one.

.size counts the number of elements in a collection.

 Quiz

See quiz app.

34 WeakMaps (WeakMap)

34.1 WeakMaps are black boxes

34.2 The keys of a WeakMap are weakly held

34.2.1 All WeakMap keys must be objects

34.2.2 Use case: attaching values to objects

34.3 Examples

34.3.1 Caching computed results via WeakMaps

34.3.2 Keeping private data in WeakMaps

34.4 WeakMap API

WeakMaps are similar to Maps, with the following differences:

They are black boxes, where a value can only be accessed if you

have both the WeakMap and the key.

The keys of a WeakMap are weakly held: if an object is a key in a

WeakMap, it can still be garbage-collected. That lets us use

WeakMaps to attach data to objects.

The next two sections examine in more detail what that means.

34.1 WeakMaps are black boxes

It is impossible to inspect what’s inside a WeakMap:

For example, you can’t iterate or loop over keys, values or

entries. And you can’t compute the size.

Additionally, you can’t clear a WeakMap either – you have to

create a fresh instance.

These restrictions enable a security property. Quoting Mark Miller:

The mapping from weakmap/key pair value can only be

observed or affected by someone who has both the weakmap and

the key. With clear(), someone with only the WeakMap

would’ve been able to affect the WeakMap-and-key-to-value

mapping.

https://github.com/tc39/tc39-notes/blob/master/meetings/2014-11/nov-19.md#412-should-weakmapweakset-have-a-clear-method-markm

34.2 The keys of a WeakMap are

weakly held

The keys of a WeakMap are said to be weakly held: Normally if one

object refers to another one, then the latter object can’t be garbage-

collected as long as the former exists. With a WeakMap, that is

different: If an object is a key and not referred to elsewhere, it can be

garbage-collected while the WeakMap still exists. That also leads to

the corresponding entry being removed (but there is no way to

observe that).

34.2.1 All WeakMap keys must be objects

All WeakMap keys must be objects. You get an error if you use a

primitive value:

With primitive values as keys, WeakMaps wouldn’t be black boxes

anymore. But given that primitive values are never garbage-

collected, you don’t profit from weakly held keys anyway, and can

just as well use a normal Map.

34.2.2 Use case: attaching values to

objects

> const wm = new WeakMap();

> wm.set(123, 'test')

TypeError: Invalid value used as weak map key

This is the main use case for WeakMaps: you can use them to

externally attach values to objects – for example:

In line A, we attach a value to obj. In line B, obj can already be

garbage-collected, even though wm still exists. This technique of

attaching a value to an object is equivalent to a property of that

object being stored externally. If wm were a property, the previous

code would look as follows:

const wm = new WeakMap();

{

 const obj = {};

 wm.set(obj, 'attachedValue'); // (A)

}

// (B)

{

 const obj = {};

 obj.wm = 'attachedValue';

}

34.3 Examples

34.3.1 Caching computed results via

WeakMaps

With WeakMaps, you can associate previously computed results with

objects without having to worry about memory management. The

following function countOwnKeys() is an example: it caches previous

results in the WeakMap cache.

If we use this function with an object obj, you can see that the result

is only computed for the first invocation, while a cached value is used

for the second invocation:

34.3.2 Keeping private data in

WeakMaps

const cache = new WeakMap();

function countOwnKeys(obj) {

 if (cache.has(obj)) {

 return [cache.get(obj), 'cached'];

 } else {

 const count = Object.keys(obj).length;

 cache.set(obj, count);

 return [count, 'computed'];

 }

}

> const obj = { foo: 1, bar: 2};

> countOwnKeys(obj)

[2, 'computed']

> countOwnKeys(obj)

[2, 'cached']

In the following code, the WeakMaps _counter and _action are used

to store the values of virtual properties of instances of Countdown:

This is how Countdown is used:

 Exercise: WeakMaps for private data

exercises/weakmaps/weakmaps_private_data_test.mjs

const _counter = new WeakMap();

const _action = new WeakMap();

class Countdown {

 constructor(counter, action) {

 _counter.set(this, counter);

 _action.set(this, action);

 }

 dec() {

 let counter = _counter.get(this);

 counter--;

 _counter.set(this, counter);

 if (counter === 0) {

 _action.get(this)();

 }

 }

}

// The two pseudo-properties are truly private:

assert.deepEqual(

 Object.keys(new Countdown()),

 []);

let invoked = false;

const cd = new Countdown(3, () => invoked = true);

cd.dec(); assert.equal(invoked, false);

cd.dec(); assert.equal(invoked, false);

cd.dec(); assert.equal(invoked, true);

34.4 WeakMap API

The constructor and the four methods of WeakMap work the same as

their Map equivalents:

new WeakMap<K, V>(entries?: Iterable<[K, V]>)
[ES6]

.delete(key: K) : boolean
[ES6]

.get(key: K) : V
[ES6]

.has(key: K) : boolean
[ES6]

.set(key: K, value: V) : this
[ES6]

 Quiz

See quiz app.

35 Sets (Set)

35.1 Using Sets

35.1.1 Creating Sets

35.1.2 Adding, removing, checking membership

35.1.3 Determining the size of a Set and clearing it

35.1.4 Iterating over Sets

35.2 Examples of using Sets

35.2.1 Removing duplicates from an Array

35.2.2 Creating a set of Unicode characters (code points)

35.3 What Set elements are considered equal?

35.4 Missing Set operations

35.4.1 Union (a ∪ b)

35.4.2 Intersection (a ∩ b)

35.4.3 Difference (a \ b)

35.4.4 Mapping over Sets

35.4.5 Filtering Sets

35.5 Quick reference: Set<T>

35.5.1 Constructor

35.5.2 Set<T>.prototype: single Set elements

35.5.3 Set<T>.prototype: all Set elements

35.5.4 Set<T>.prototype: iterating and looping

35.5.5 Symmetry with Map

35.6 FAQ: Sets

35.6.1 Why do Sets have a .size, while Arrays have a

.length?

Before ES6, JavaScript didn’t have a data structure for sets. Instead,

two workarounds were used:

The keys of an object were used as a set of strings.

Arrays were used as sets of arbitrary values. The downside is

that checking membership (if an Array contains a value) is

slower.

Since ES6, JavaScript has the data structure Set, which can contain

arbitrary values and performs membership checks quickly.

35.1 Using Sets

35.1.1 Creating Sets

There are three common ways of creating Sets.

First, you can use the constructor without any parameters to create

an empty Set:

Second, you can pass an iterable (e.g., an Array) to the constructor.

The iterated values become elements of the new Set:

Third, the .add() method adds elements to a Set and is chainable:

35.1.2 Adding, removing, checking

membership

.add() adds an element to a Set.

.has() checks if an element is a member of a Set.

const emptySet = new Set();

assert.equal(emptySet.size, 0);

const set = new Set(['red', 'green', 'blue']);

const set = new Set()

.add('red')

.add('green')

.add('blue');

const set = new Set();

set.add('red');

.delete() removes an element from a Set.

35.1.3 Determining the size of a Set and

clearing it

.size contains the number of elements in a Set.

.clear() removes all elements of a Set.

35.1.4 Iterating over Sets

Sets are iterable and the for-of loop works as you’d expect:

assert.equal(set.has('red'), true);

assert.equal(set.delete('red'), true); // there was a deletion

assert.equal(set.has('red'), false);

const set = new Set()

 .add('foo')

 .add('bar');

assert.equal(set.size, 2)

set.clear();

assert.equal(set.size, 0)

const set = new Set(['red', 'green', 'blue']);

for (const x of set) {

 console.log(x);

}

// Output:

// 'red'

// 'green'

// 'blue'

As you can see, Sets preserve insertion order. That is, elements are

always iterated over in the order in which they were added.

Given that Sets are iterable, you can use spreading (...) to convert

them to Arrays:

const set = new Set(['red', 'green', 'blue']);

const arr = [...set]; // ['red', 'green', 'blue']

35.2 Examples of using Sets

35.2.1 Removing duplicates from an

Array

Converting an Array to a Set and back, removes duplicates from the

Array:

35.2.2 Creating a set of Unicode

characters (code points)

Strings are iterable and can therefore be used as parameters for new

Set():

assert.deepEqual(

 [...new Set([1, 2, 1, 2, 3, 3, 3])],

 [1, 2, 3]);

assert.deepEqual(

 new Set('abc'),

 new Set(['a', 'b', 'c']));

35.3 What Set elements are

considered equal?

As with Map keys, Set elements are compared similarly to ===, with

the exception of NaN being equal to itself.

As with ===, two different objects are never considered equal (and

there is no way to change that at the moment):

> const set = new Set([NaN, NaN, NaN]);

> set.size

1

> set.has(NaN)

true

> const set = new Set();

> set.add({});

> set.size

1

> set.add({});

> set.size

2

35.4 Missing Set operations

Sets are missing several common operations. Such an operation can

usually be implemented by:

Converting the input Sets to Arrays by spreading into Array

literals.

Performing the operation on Arrays.

Converting the result to a Set and returning it.

35.4.1 Union (a ∪ b)

Computing the union of two Sets a and b means creating a Set that

contains the elements of both a and b.

35.4.2 Intersection (a ∩ b)

Computing the intersection of two Sets a and b means creating a Set

that contains those elements of a that are also in b.

const a = new Set([1,2,3]);

const b = new Set([4,3,2]);

// Use spreading to concatenate two iterables

const union = new Set([...a, ...b]);

assert.deepEqual([...union], [1, 2, 3, 4]);

const a = new Set([1,2,3]);

const b = new Set([4,3,2]);

const intersection = new Set(

 [...a].filter(x => b.has(x)));

35.4.3 Difference (a \ b)

Computing the difference between two Sets a and b means creating a

Set that contains those elements of a that are not in b. This operation

is also sometimes called minus (−).

35.4.4 Mapping over Sets

Sets don’t have a method .map(). But we can borrow the one that

Arrays have:

35.4.5 Filtering Sets

We can’t directly .filter() Sets, so we need to use the corresponding

Array method:

assert.deepEqual([...intersection], [2, 3]);

const a = new Set([1,2,3]);

const b = new Set([4,3,2]);

const difference = new Set(

 [...a].filter(x => !b.has(x)));

assert.deepEqual([...difference], [1]);

const set = new Set([1, 2, 3]);

const mappedSet = new Set([...set].map(x => x * 2));

// Convert mappedSet to an Array to check what’s inside it

assert.deepEqual([...mappedSet], [2, 4, 6]);

const set = new Set([1, 2, 3, 4, 5]);

const filteredSet = new Set([...set].filter(x => (x % 2) === 0))

assert.deepEqual([...filteredSet], [2, 4]);

35.5 Quick reference: Set<T>

35.5.1 Constructor

new Set<T>(values?: Iterable<T>)
[ES6]

If you don’t provide the parameter values, then an empty Set is

created. If you do, then the iterated values are added as

elements to the Set. For example:

35.5.2 Set<T>.prototype: single Set

elements

.add(value: T): this
[ES6]

Adds value to this Set. This method returns this, which means

that it can be chained.

.delete(value: T): boolean
[ES6]

Removes value from this Set. Returns true if something was

deleted and false, otherwise.

const set = new Set(['red', 'green', 'blue']);

const set = new Set(['red']);

set.add('green').add('blue');

assert.deepEqual([...set], ['red', 'green', 'blue']);

const set = new Set(['red', 'green', 'blue']);

assert.equal(set.delete('red'), true); // there was a deleti

assert.deepEqual([...set], ['green', 'blue']);

.has(value: T): boolean
[ES6]

Checks whether value is in this Set.

35.5.3 Set<T>.prototype: all Set elements

get .size: number
[ES6]

Returns how many elements there are in this Set.

.clear(): void
[ES6]

Removes all elements from this Set.

35.5.4 Set<T>.prototype: iterating and

looping

.values(): Iterable<T>
[ES6]

Returns an iterable over all elements of this Set.

const set = new Set(['red', 'green']);

assert.equal(set.has('red'), true);

assert.equal(set.has('blue'), false);

const set = new Set(['red', 'green', 'blue']);

assert.equal(set.size, 3);

const set = new Set(['red', 'green', 'blue']);

assert.equal(set.size, 3);

set.clear();

assert.equal(set.size, 0);

[Symbol.iterator](): Iterable<T>
[ES6]

Default way of iterating over Sets. Same as .values().

.forEach(callback: (value: T, key: T, theSet: Set<T>) =>

void, thisArg?: any): void
[ES6]

Feeds each element of this Set to callback(). value and key both

contain the current element. This redundancy was introduced so

that this callback has the same type signature as the callback of

Map.prototype.forEach().

You can specify the this of callback via thisArg. If you omit it,

this is undefined.

const set = new Set(['red', 'green']);

for (const x of set.values()) {

 console.log(x);

}

// Output:

// 'red'

// 'green'

const set = new Set(['red', 'green']);

for (const x of set) {

 console.log(x);

}

// Output:

// 'red'

// 'green'

const set = new Set(['red', 'green']);

set.forEach(x => console.log(x));

// Output:

// 'red'

// 'green'

35.5.5 Symmetry with Map

The following two methods mainly exist so that Sets and Maps have

similar interfaces. Each Set element is handled as if it were a Map

entry whose key and value are both the element.

Set.prototype.entries(): Iterable<[T,T]>
[ES6]

Set.prototype.keys(): Iterable<T>
[ES6]

.entries() enables you to convert a Set to a Map:

const set = new Set(['a', 'b', 'c']);

const map = new Map(set.entries());

assert.deepEqual(

 [...map.entries()],

 [['a','a'], ['b','b'], ['c','c']]);

35.6 FAQ: Sets

35.6.1 Why do Sets have a .size, while

Arrays have a .length?

The answer to this question is given in §33.6.4 “Why do Maps have a

.size, while Arrays have a .length?”.

 Quiz

See quiz app.

36 WeakSets (WeakSet)

36.1 Example: Marking objects as safe to use with a method

36.2 WeakSet API

WeakSets are similar to Sets, with the following differences:

They can hold objects without preventing those objects from

being garbage-collected.

They are black boxes: we only get any data out of a WeakSet if

we have both the WeakSet and a value. The only methods that

are supported are .add(), .delete(), .has(). Consult the section

on WeakMaps as black boxes for an explanation of why

WeakSets don’t allow iteration, looping, and clearing.

Given that we can’t iterate over their elements, there are not that

many use cases for WeakSets. They do enable us to mark objects.

36.1 Example: Marking objects as

safe to use with a method

Domenic Denicola shows how a class Foo can ensure that its methods

are only applied to instances that were created by it:

const foos = new WeakSet();

class Foo {

 constructor() {

 foos.add(this);

 }

 method() {

 if (!foos.has(this)) {

 throw new TypeError('Incompatible object!');

 }

 }

}

const foo = new Foo();

foo.method(); // works

assert.throws(

 () => {

 const obj = {};

 Foo.prototype.method.call(obj); // throws an exception

 },

 TypeError

);

https://mail.mozilla.org/pipermail/es-discuss/2015-June/043027.html

36.2 WeakSet API

The constructor and the three methods of WeakSet work the same as

their Set equivalents:

new WeakSet<T>(values?: Iterable<T>)
[ES6]

.add(value: T): this
[ES6]

.delete(value: T): boolean
[ES6]

.has(value: T): boolean
[ES6]

37 Destructuring

37.1 A first taste of destructuring

37.2 Constructing vs. extracting

37.3 Where can we destructure?

37.4 Object-destructuring

37.4.1 Property value shorthands

37.4.2 Rest properties

37.4.3 Syntax pitfall: assigning via object destructuring

37.5 Array-destructuring

37.5.1 Array-destructuring works with any iterable

37.5.2 Rest elements

37.6 Examples of destructuring

37.6.1 Array-destructuring: swapping variable values

37.6.2 Array-destructuring: operations that return Arrays

37.6.3 Object-destructuring: multiple return values

37.7 What happens if a pattern part does not match anything?

37.7.1 Object-destructuring and missing properties

37.7.2 Array-destructuring and missing elements

37.8 What values can’t be destructured?

37.8.1 You can’t object-destructure undefined and null

37.8.2 You can’t Array-destructure non-iterable values

37.9 (Advanced)

37.10 Default values

37.10.1 Default values in Array-destructuring

37.10.2 Default values in object-destructuring

37.11 Parameter definitions are similar to destructuring

37.12 Nested destructuring

37.1 A first taste of destructuring

With normal assignment, you extract one piece of data at a time – for

example:

With destructuring, you can extract multiple pieces of data at the

same time via patterns in locations that receive data. The left-hand

side of = in the previous code is one such location. In the following

code, the square brackets in line A are a destructuring pattern:

This code does the same as the previous code.

Note that the pattern is “smaller” than the data: we are only

extracting what we need.

const arr = ['a', 'b', 'c'];

const x = arr[0]; // extract

const y = arr[1]; // extract

const arr = ['a', 'b', 'c'];

const [x, y] = arr; // (A)

assert.equal(x, 'a');

assert.equal(y, 'b');

37.2 Constructing vs. extracting

In order to understand what destructuring is, consider that

JavaScript has two kinds of operations that are opposites:

You can construct compound data, for example, by setting

properties and via object literals.

You can extract data out of compound data, for example, by

getting properties.

Constructing data looks as follows:

Extracting data looks as follows:

// Constructing: one property at a time

const jane1 = {};

jane1.first = 'Jane';

jane1.last = 'Doe';

// Constructing: multiple properties

const jane2 = {

 first: 'Jane',

 last: 'Doe',

};

assert.deepEqual(jane1, jane2);

const jane = {

 first: 'Jane',

 last: 'Doe',

};

// Extracting: one property at a time

const f1 = jane.first;

const l1 = jane.last;

The operation in line A is new: we declare two variables f2 and l2

and initialize them via destructuring (multivalue extraction).

The following part of line A is a destructuring pattern:

Destructuring patterns are syntactically similar to the literals that are

used for multivalue construction. But they appear where data is

received (e.g., at the left-hand side of assignments), not where data is

created (e.g., at the right-hand side of assignments).

assert.equal(f1, 'Jane');

assert.equal(l1, 'Doe');

// Extracting: multiple properties (NEW!)

const {first: f2, last: l2} = jane; // (A)

assert.equal(f2, 'Jane');

assert.equal(l2, 'Doe');

{first: f2, last: l2}

37.3 Where can we destructure?

Destructuring patterns can be used at “data sink locations” such as:

Variable declarations:

Assignments:

Parameter definitions:

Note that variable declarations include const and let declarations in

for-of loops:

In the next two sections, we’ll look deeper into the two kinds of

destructuring: object-destructuring and Array-destructuring.

const [a] = ['x'];

assert.equal(a, 'x');

let [b] = ['y'];

assert.equal(b, 'y');

let b;

[b] = ['z'];

assert.equal(b, 'z');

const f = ([x]) => x;

assert.equal(f(['a']), 'a');

const arr = ['a', 'b'];

for (const [index, element] of arr.entries()) {

 console.log(index, element);

}

// Output:

// 0, 'a'

// 1, 'b'

37.4 Object-destructuring

Object-destructuring lets you batch-extract values of properties via

patterns that look like object literals:

You can think of the pattern as a transparent sheet that you place

over the data: the pattern key 'street' has a match in the data.

Therefore, the data value 'Evergreen Terrace' is assigned to the

pattern variable s.

You can also object-destructure primitive values:

And you can object-destructure Arrays:

Why does that work? Array indices are also properties.

const address = {

 street: 'Evergreen Terrace',

 number: '742',

 city: 'Springfield',

 state: 'NT',

 zip: '49007',

};

const { street: s, city: c } = address;

assert.equal(s, 'Evergreen Terrace');

assert.equal(c, 'Springfield');

const {length: len} = 'abc';

assert.equal(len, 3);

const {0:x, 2:y} = ['a', 'b', 'c'];

assert.equal(x, 'a');

assert.equal(y, 'c');

37.4.1 Property value shorthands

Object literals support property value shorthands and so do object

patterns:

 Exercise: Object-destructuring

exercises/destructuring/object_destructuring_exrc.mjs

37.4.2 Rest properties

In object literals, you can have spread properties. In object patterns,

you can have rest properties (which must come last):

A rest property variable, such as remaining (line A), is assigned an

object with all data properties whose keys are not mentioned in the

pattern.

remaining can also be viewed as the result of non-destructively

removing property a from obj.

37.4.3 Syntax pitfall: assigning via object

destructuring

const { street, city } = address;

assert.equal(street, 'Evergreen Terrace');

assert.equal(city, 'Springfield');

const obj = { a: 1, b: 2, c: 3 };

const { a: propValue, ...remaining } = obj; // (A)

assert.equal(propValue, 1);

assert.deepEqual(remaining, {b:2, c:3});

If we object-destructure in an assignment, we are facing a pitfall

caused by syntactic ambiguity – you can’t start a statement with a

curly brace because then JavaScript thinks you are starting a block:

 Why eval()?

eval() delays parsing (and therefore the SyntaxError) until the

callback of assert.throws() is executed. If we didn’t use it, we’d

already get an error when this code is parsed and assert.throws()

wouldn’t even be executed.

The workaround is to put the whole assignment in parentheses:

let prop;

assert.throws(

 () => eval("{prop} = { prop: 'hello' };"),

 {

 name: 'SyntaxError',

 message: 'Unexpected token =',

 });

let prop;

({prop} = { prop: 'hello' });

assert.equal(prop, 'hello');

37.5 Array-destructuring

Array-destructuring lets you batch-extract values of Array elements

via patterns that look like Array literals:

You can skip elements by mentioning holes inside Array patterns:

The first element of the Array pattern in line A is a hole, which is why

the Array element at index 0 is ignored.

37.5.1 Array-destructuring works with

any iterable

Array-destructuring can be applied to any value that is iterable, not

just to Arrays:

const [x, y] = ['a', 'b'];

assert.equal(x, 'a');

assert.equal(y, 'b');

const [, x, y] = ['a', 'b', 'c']; // (A)

assert.equal(x, 'b');

assert.equal(y, 'c');

// Sets are iterable

const mySet = new Set().add('a').add('b').add('c');

const [first, second] = mySet;

assert.equal(first, 'a');

assert.equal(second, 'b');

// Strings are iterable

const [a, b] = 'xyz';

assert.equal(a, 'x');

assert.equal(b, 'y');

37.5.2 Rest elements

In Array literals, you can have spread elements. In Array patterns,

you can have rest elements (which must come last):

A rest element variable, such as remaining (line A), is assigned an

Array with all elements of the destructured value that were not

mentioned yet.

const [x, y, ...remaining] = ['a', 'b', 'c', 'd']; // (A)

assert.equal(x, 'a');

assert.equal(y, 'b');

assert.deepEqual(remaining, ['c', 'd']);

37.6 Examples of destructuring

37.6.1 Array-destructuring: swapping

variable values

You can use Array-destructuring to swap the values of two variables

without needing a temporary variable:

37.6.2 Array-destructuring: operations

that return Arrays

Array-destructuring is useful when operations return Arrays, as does,

for example, the regular expression method .exec():

let x = 'a';

let y = 'b';

[x,y] = [y,x]; // swap

assert.equal(x, 'b');

assert.equal(y, 'a');

// Skip the element at index 0 (the whole match):

const [, year, month, day] =

 /^([0-9]{4})-([0-9]{2})-([0-9]{2})$/

 .exec('2999-12-31');

assert.equal(year, '2999');

assert.equal(month, '12');

assert.equal(day, '31');

37.6.3 Object-destructuring: multiple

return values

Destructuring is very useful if a function returns multiple values –

either packaged as an Array or packaged as an object.

Consider a function findElement() that finds elements in an Array:

Its second parameter is a function that receives the value and index

of an element and returns a boolean indicating if this is the element

the caller is looking for.

We are now faced with a dilemma: Should findElement() return the

value of the element it found or the index? One solution would be to

create two separate functions, but that would result in duplicated

code because both functions would be very similar.

The following implementation avoids duplication by returning an

object that contains both index and value of the element that is

found:

findElement(array, (value, index) => «boolean expression»)

function findElement(arr, predicate) {

 for (let index=0; index < arr.length; index++) {

 const value = arr[index];

 if (predicate(value)) {

 // We found something:

 return { value, index };

 }

 }

 // We didn’t find anything:

 return { value: undefined, index: -1 };

}

Destructuring helps us with processing the result of findElement():

As we are working with property keys, the order in which we mention

value and index doesn’t matter:

The kicker is that destructuring also serves us well if we are only

interested in one of the two results:

All of these conveniences combined make this way of handling

multiple return values quite versatile.

const arr = [7, 8, 6];

const {value, index} = findElement(arr, x => x % 2 === 0);

assert.equal(value, 8);

assert.equal(index, 1);

const {index, value} = findElement(arr, x => x % 2 === 0);

const arr = [7, 8, 6];

const {value} = findElement(arr, x => x % 2 === 0);

assert.equal(value, 8);

const {index} = findElement(arr, x => x % 2 === 0);

assert.equal(index, 1);

37.7 What happens if a pattern

part does not match anything?

What happens if there is no match for part of a pattern? The same

thing that happens if you use non-batch operators: you get

undefined.

37.7.1 Object-destructuring and missing

properties

If a property in an object pattern has no match on the right-hand

side, you get undefined:

37.7.2 Array-destructuring and missing

elements

If an element in an Array pattern has no match on the right-hand

side, you get undefined:

const {prop: p} = {};

assert.equal(p, undefined);

const [x] = [];

assert.equal(x, undefined);

37.8 What values can’t be

destructured?

37.8.1 You can’t object-destructure

undefined and null

Object-destructuring only fails if the value to be destructured is

either undefined or null. That is, it fails whenever accessing a

property via the dot operator would fail too.

37.8.2 You can’t Array-destructure non-

iterable values

Array-destructuring demands that the destructured value be iterable.

Therefore, you can’t Array-destructure undefined and null. But you

assert.throws(

 () => { const {prop} = undefined; },

 {

 name: 'TypeError',

 message: "Cannot destructure property `prop` of " +

 "'undefined' or 'null'.",

 }

);

assert.throws(

 () => { const {prop} = null; },

 {

 name: 'TypeError',

 message: "Cannot destructure property `prop` of " +

 "'undefined' or 'null'.",

 }

);

can’t Array-destructure non-iterable objects either:

 Quiz: basic

See quiz app.

assert.throws(

 () => { const [x] = {}; },

 {

 name: 'TypeError',

 message: '{} is not iterable',

 }

);

37.9 (Advanced)

All of the remaining sections are advanced.

37.10 Default values

Normally, if a pattern has no match, the corresponding variable is set

to undefined:

If you want a different value to be used, you need to specify a default

value (via =):

In line A, we specify the default value for p to be 123. That default is

used because the data that we are destructuring has no property

named prop.

37.10.1 Default values in Array-

destructuring

Here, we have two default values that are assigned to the variables x

and y because the corresponding elements don’t exist in the Array

that is destructured.

The default value for the first element of the Array pattern is 1; the

default value for the second element is 2.

const {prop: p} = {};

assert.equal(p, undefined);

const {prop: p = 123} = {}; // (A)

assert.equal(p, 123);

const [x=1, y=2] = [];

assert.equal(x, 1);

assert.equal(y, 2);

37.10.2 Default values in object-

destructuring

You can also specify default values for object-destructuring:

Neither property key first nor property key last exist in the object

that is destructured. Therefore, the default values are used.

With property value shorthands, this code becomes simpler:

const {first: f='', last: l=''} = {};

assert.equal(f, '');

assert.equal(l, '');

const {first='', last=''} = {};

assert.equal(first, '');

assert.equal(last, '');

37.11 Parameter definitions are

similar to destructuring

Considering what we have learned in this chapter, parameter

definitions have much in common with an Array pattern (rest

elements, default values, etc.). In fact, the following two function

declarations are equivalent:

function f1(«pattern1», «pattern2») {

 // ···

}

function f2(...args) {

 const [«pattern1», «pattern2»] = args;

 // ···

}

37.12 Nested destructuring

Until now, we have only used variables as assignment targets (data

sinks) inside destructuring patterns. But you can also use patterns as

assignment targets, which enables you to nest patterns to arbitrary

depths:

Inside the Array pattern in line A, there is a nested object pattern at

index 1.

Nested patterns can become difficult to understand, so they are best

used in moderation.

 Quiz: advanced

See quiz app.

const arr = [

 { first: 'Jane', last: 'Bond' },

 { first: 'Lars', last: 'Croft' },

];

const [, {first}] = arr;

assert.equal(first, 'Lars');

38 Synchronous generators

(advanced)

38.1 What are synchronous generators?

38.1.1 Generator functions return iterables and fill them via

yield

38.1.2 yield pauses a generator function

38.1.3 Why does yield pause execution?

38.1.4 Example: Mapping over iterables

38.2 Calling generators from generators (advanced)

38.2.1 Calling generators via yield*

38.2.2 Example: Iterating over a tree

38.3 Background: external iteration vs. internal iteration

38.4 Use case for generators: reusing traversals

38.4.1 The traversal to reuse

38.4.2 Internal iteration (push)

38.4.3 External iteration (pull)

38.5 Advanced features of generators

38.1 What are synchronous

generators?

Synchronous generators are special versions of function definitions

and method definitions that always return synchronous iterables:

Asterisks (*) mark functions and methods as generators:

Functions: The pseudo-keyword function* is a combination of

the keyword function and an asterisk.

Methods: The * is a modifier (similar to static and get).

// Generator function declaration

function* genFunc1() { /*···*/ }

// Generator function expression

const genFunc2 = function* () { /*···*/ };

// Generator method definition in an object literal

const obj = {

 * generatorMethod() {

 // ···

 }

};

// Generator method definition in a class definition

// (class declaration or class expression)

class MyClass {

 * generatorMethod() {

 // ···

 }

}

38.1.1 Generator functions return

iterables and fill them via yield

If you call a generator function, it returns an iterable (actually, an

iterator that is also iterable). The generator fills that iterable via the

yield operator:

38.1.2 yield pauses a generator function

Using a generator function involves the following steps:

Function-calling it returns an iterator iter (that is also an

iterable).

Iterating over iter repeatedly invokes iter.next(). Each time,

we jump into the body of the generator function until there is a

yield that returns a value.

function* genFunc1() {

 yield 'a';

 yield 'b';

}

const iterable = genFunc1();

// Convert the iterable to an Array, to check what’s inside:

assert.deepEqual([...iterable], ['a', 'b']);

// You can also use a for-of loop

for (const x of genFunc1()) {

 console.log(x);

}

// Output:

// 'a'

// 'b'

Therefore, yield does more than just add values to iterables – it also

pauses and exits the generator function:

Like return, a yield exits the body of the function and returns a

value (via .next()).

Unlike return, if you repeat the invocation (of .next()),

execution resumes directly after the yield.

Let’s examine what that means via the following generator function.

In order to use genFunc2(), we must first create the iterator/iterable

iter. genFunc2() is now paused “before” its body.

iter implements the iteration protocol. Therefore, we control the

execution of genFunc2() via iter.next(). Calling that method

resumes the paused genFunc2() and executes it until there is a yield.

Then execution pauses and .next() returns the operand of the yield:

let location = 0;

function* genFunc2() {

 location = 1; yield 'a';

 location = 2; yield 'b';

 location = 3;

}

const iter = genFunc2();

// genFunc2() is now paused “before” its body:

assert.equal(location, 0);

assert.deepEqual(

 iter.next(), {value: 'a', done: false});

// genFunc2() is now paused directly after the first `yield`:

assert.equal(location, 1);

Note that the yielded value 'a' is wrapped in an object, which is how

iterators always deliver their values.

We call iter.next() again and execution continues where we

previously paused. Once we encounter the second yield, genFunc2()

is paused and .next() returns the yielded value 'b'.

We call iter.next() one more time and execution continues until it

leaves the body of genFunc2():

This time, property .done of the result of .next() is true, which

means that the iterator is finished.

38.1.3 Why does yield pause execution?

What are the benefits of yield pausing execution? Why doesn’t it

simply work like the Array method .push() and fill the iterable with

values without pausing?

Due to pausing, generators provide many of the features of

coroutines (think processes that are multitasked cooperatively). For

example, when you ask for the next value of an iterable, that value is

assert.deepEqual(

 iter.next(), {value: 'b', done: false});

// genFunc2() is now paused directly after the second `yield`:

assert.equal(location, 2);

assert.deepEqual(

 iter.next(), {value: undefined, done: true});

// We have reached the end of genFunc2():

assert.equal(location, 3);

computed lazily (on demand). The following two generator functions

demonstrate what that means.

Note that the yield in numberLines() appears inside a for-of loop.

yield can be used inside loops, but not inside callbacks (more on that

later).

Let’s combine both generators to produce the iterable numberedLines:

The key benefit of using generators here is that everything works

incrementally: via numberedLines.next(), we ask numberLines() for

/**

* Returns an iterable over lines

*/

function* genLines() {

 yield 'A line';

 yield 'Another line';

 yield 'Last line';

}

/**

* Input: iterable over lines

* Output: iterable over numbered lines

*/

function* numberLines(lineIterable) {

 let lineNumber = 1;

 for (const line of lineIterable) { // input

 yield lineNumber + ': ' + line; // output

 lineNumber++;

 }

}

const numberedLines = numberLines(genLines());

assert.deepEqual(

 numberedLines.next(), {value: '1: A line', done: false});

assert.deepEqual(

 numberedLines.next(), {value: '2: Another line', done: false})

only a single numbered line. In turn, it asks genLines() for only a

single unnumbered line.

This incrementalism continues to work if, for example, genLines()

reads its lines from a large text file: If we ask numberLines() for a

numbered line, we get one as soon as genLines() has read its first

line from the text file.

Without generators, genLines() would first read all lines and return

them. Then numberLines() would number all lines and return them.

We therefore have to wait much longer until we get the first

numbered line.

 Exercise: Turning a normal function into a generator

exercises/sync-generators/fib_seq_test.mjs

38.1.4 Example: Mapping over iterables

The following function mapIter() is similar to the Array method

.map(), but it returns an iterable, not an Array, and produces its

results on demand.

function* mapIter(iterable, func) {

 let index = 0;

 for (const x of iterable) {

 yield func(x, index);

 index++;

 }

}

const iterable = mapIter(['a', 'b'], x => x + x);

assert.deepEqual([...iterable], ['aa', 'bb']);

 Exercise: Filtering iterables

exercises/sync-generators/filter_iter_gen_test.mjs

38.2 Calling generators from

generators (advanced)

38.2.1 Calling generators via yield*

yield only works directly inside generators – so far we haven’t seen a

way of delegating yielding to another function or method.

Let’s first examine what does not work: in the following example,

we’d like foo() to call bar(), so that the latter yields two values for

the former. Alas, a naive approach fails:

Why doesn’t this work? The function call bar() returns an iterable,

which we ignore.

What we want is for foo() to yield everything that is yielded by bar().

That’s what the yield* operator does:

function* bar() {

 yield 'a';

 yield 'b';

}

function* foo() {

 // Nothing happens if we call `bar()`:

 bar();

}

assert.deepEqual(

 [...foo()], []);

function* bar() {

 yield 'a';

 yield 'b';

}

In other words, the previous foo() is roughly equivalent to:

Note that yield* works with any iterable:

38.2.2 Example: Iterating over a tree

yield* lets us make recursive calls in generators, which is useful

when iterating over recursive data structures such as trees. Take, for

example, the following data structure for binary trees.

function* foo() {

 yield* bar();

}

assert.deepEqual(

 [...foo()], ['a', 'b']);

function* foo() {

 for (const x of bar()) {

 yield x;

 }

}

function* gen() {

 yield* [1, 2];

}

assert.deepEqual(

 [...gen()], [1, 2]);

class BinaryTree {

 constructor(value, left=null, right=null) {

 this.value = value;

 this.left = left;

 this.right = right;

 }

 /** Prefix iteration: parent before children */

 * [Symbol.iterator]() {

 yield this.value;

Method [Symbol.iterator]() adds support for the iteration protocol,

which means that we can use a for-of loop to iterate over an instance

of BinaryTree:

 Exercise: Iterating over a nested Array

exercises/sync-generators/iter_nested_arrays_test.mjs

 if (this.left) {

 // Same as yield* this.left[Symbol.iterator]()

 yield* this.left;

 }

 if (this.right) {

 yield* this.right;

 }

 }

}

const tree = new BinaryTree('a',

 new BinaryTree('b',

 new BinaryTree('c'),

 new BinaryTree('d')),

 new BinaryTree('e'));

for (const x of tree) {

 console.log(x);

}

// Output:

// 'a'

// 'b'

// 'c'

// 'd'

// 'e'

38.3 Background: external

iteration vs. internal iteration

In preparation for the next section, we need to learn about two

different styles of iterating over the values “inside” an object:

External iteration (pull): Your code asks the object for the values

via an iteration protocol. For example, the for-of loop is based

on JavaScript’s iteration protocol:

Internal iteration (push): You pass a callback function to a

method of the object and the method feeds the values to the

callback. For example, Arrays have the method .forEach():

The next section has examples for both styles of iteration.

for (const x of ['a', 'b']) {

 console.log(x);

}

// Output:

// 'a'

// 'b'

['a', 'b'].forEach((x) => {

 console.log(x);

});

// Output:

// 'a'

// 'b'

38.4 Use case for generators:

reusing traversals

One important use case for generators is extracting and reusing

traversals.

38.4.1 The traversal to reuse

As an example, consider the following function that traverses a tree

of files and logs their paths (it uses the Node.js API for doing so):

Consider the following directory:

mydir/

 a.txt

 b.txt

 subdir/

 c.txt

Let’s log the paths inside mydir/:

function logPaths(dir) {

 for (const fileName of fs.readdirSync(dir)) {

 const filePath = path.resolve(dir, fileName);

 console.log(filePath);

 const stats = fs.statSync(filePath);

 if (stats.isDirectory()) {

 logPaths(filePath); // recursive call

 }

 }

}

logPaths('mydir');

https://nodejs.org/en/docs/

How can we reuse this traversal and do something other than logging

the paths?

38.4.2 Internal iteration (push)

One way of reusing traversal code is via internal iteration: Each

traversed value is passsed to a callback (line A).

38.4.3 External iteration (pull)

// Output:

// 'mydir/a.txt'

// 'mydir/b.txt'

// 'mydir/subdir'

// 'mydir/subdir/c.txt'

function visitPaths(dir, callback) {

 for (const fileName of fs.readdirSync(dir)) {

 const filePath = path.resolve(dir, fileName);

 callback(filePath); // (A)

 const stats = fs.statSync(filePath);

 if (stats.isDirectory()) {

 visitPaths(filePath, callback);

 }

 }

}

const paths = [];

visitPaths('mydir', p => paths.push(p));

assert.deepEqual(

 paths,

 [

 'mydir/a.txt',

 'mydir/b.txt',

 'mydir/subdir',

 'mydir/subdir/c.txt',

]);

Another way of reusing traversal code is via external iteration: We

can write a generator that yields all traversed values (line A).

function* iterPaths(dir) {

 for (const fileName of fs.readdirSync(dir)) {

 const filePath = path.resolve(dir, fileName);

 yield filePath; // (A)

 const stats = fs.statSync(filePath);

 if (stats.isDirectory()) {

 yield* iterPaths(filePath);

 }

 }

}

const paths = [...iterPaths('mydir')];

38.5 Advanced features of

generators

The chapter on generators in Exploring ES6 covers two features that

are beyond the scope of this book:

yield can also receive data, via an argument of .next().

Generators can also return values (not just yield them). Such

values do not become iteration values, but can be retrieved via

yield*.

https://exploringjs.com/es6/ch_generators.html

39 Asynchronous

programming in JavaScript

39.1 A roadmap for asynchronous programming in JavaScript

39.1.1 Synchronous functions

39.1.2 JavaScript executes tasks sequentially in a single

process

39.1.3 Callback-based asynchronous functions

39.1.4 Promise-based asynchronous functions

39.1.5 Async functions

39.1.6 Next steps

39.2 The call stack

39.3 The event loop

39.4 How to avoid blocking the JavaScript process

39.4.1 The user interface of the browser can be blocked

39.4.2 How can we avoid blocking the browser?

39.4.3 Taking breaks

39.4.4 Run-to-completion semantics

39.5 Patterns for delivering asynchronous results

39.5.1 Delivering asynchronous results via events

39.5.2 Delivering asynchronous results via callbacks

39.6 Asynchronous code: the downsides

39.7 Resources

This chapter explains the foundations of asynchronous programming

in JavaScript.

39.1 A roadmap for asynchronous

programming in JavaScript

This section provides a roadmap for the content on asynchronous

programming in JavaScript.

 Don’t worry about the details!

Don’t worry if you don’t understand everything yet. This is just a

quick peek at what’s coming up.

39.1.1 Synchronous functions

Normal functions are synchronous: the caller waits until the callee is

finished with its computation. divideSync() in line A is a

synchronous function call:

39.1.2 JavaScript executes tasks

sequentially in a single process

function main() {

 try {

 const result = divideSync(12, 3); // (A)

 assert.equal(result, 4);

 } catch (err) {

 assert.fail(err);

 }

}

By default, JavaScript tasks are functions that are executed

sequentially in a single process. That looks like this:

This loop is also called the event loop because events, such as

clicking a mouse, add tasks to the queue.

Due to this style of cooperative multitasking, we don’t want a task to

block other tasks from being executed while, for example, it waits for

results coming from a server. The next subsection explores how to

handle this case.

39.1.3 Callback-based asynchronous

functions

What if divide() needs a server to compute its result? Then the

result should be delivered in a different manner: The caller shouldn’t

have to wait (synchronously) until the result is ready; it should be

notified (asynchronously) when it is. One way of delivering the result

asynchronously is by giving divide() a callback function that it uses

to notify the caller.

while (true) {

 const task = taskQueue.dequeue();

 task(); // run task

}

function main() {

 divideCallback(12, 3,

 (err, result) => {

 if (err) {

 assert.fail(err);

 } else {

 assert.equal(result, 4);

 }

When there is an asynchronous function call:

Then the following steps happen:

divideCallback() sends a request to a server.

Then the current task main() is finished and other tasks can be

executed.

When a response from the server arrives, it is either:

An error err: Then the following task is added to the queue.

A result r: Then the following task is added to the queue.

39.1.4 Promise-based asynchronous

functions

Promises are two things:

A standard pattern that makes working with callbacks easier.

The mechanism on which async functions (the topic of the next

subsection) are built.

Invoking a Promise-based function looks as follows.

 });

}

divideCallback(x, y, callback)

taskQueue.enqueue(() => callback(err));

taskQueue.enqueue(() => callback(null, r));

39.1.5 Async functions

One way of looking at async functions is as better syntax for Promise-

based code:

The dividePromise() we are calling in line A is the same Promise-

based function as in the previous section. But we now have

synchronous-looking syntax for handling the call. await can only be

used inside a special kind of function, an async function (note the

keyword async in front of the keyword function). await pauses the

current async function and returns from it. Once the awaited result is

ready, the execution of the function continues where it left off.

39.1.6 Next steps

In this chapter, we’ll see how synchronous function calls work.

We’ll also explore JavaScript’s way of executing code in a single

process, via its event loop.

function main() {

 dividePromise(12, 3)

 .then(result => assert.equal(result, 4))

 .catch(err => assert.fail(err));

}

async function main() {

 try {

 const result = await dividePromise(12, 3); // (A)

 assert.equal(result, 4);

 } catch (err) {

 assert.fail(err);

 }

}

Asynchronicity via callbacks is also described in this chapter.

The following chapters cover Promises and async functions.

This series of chapters on asynchronous programming

concludes with the chapter on asynchronous iteration, which is

similar to synchronous iteration, but iterated values are

delivered asynchronously.

39.2 The call stack

Whenever a function calls another function, we need to remember

where to return to after the latter function is finished. That is

typically done via a stack – the call stack: the caller pushes onto it

the location to return to, and the callee jumps to that location after it

is done.

This is an example where several calls happen:

Initially, before running this piece of code, the call stack is empty.

After the function call f(3) in line 11, the stack has one entry:

Line 12 (location in top-level scope)

After the function call g(x + 1) in line 9, the stack has two entries:

Line 10 (location in f())

Line 12 (location in top-level scope)

unction h(z) {

const error = new Error();

console.log(error.stack);

unction g(y) {

h(y + 1);

unction f(x) {

g(x + 1);

(3);

/ done

After the function call h(y + 1) in line 6, the stack has three entries:

Line 7 (location in g())

Line 10 (location in f())

Line 12 (location in top-level scope)

Logging error in line 3, produces the following output:

Error:

 at h (demos/async-js/stack_trace.mjs:2:17)

 at g (demos/async-js/stack_trace.mjs:6:3)

 at f (demos/async-js/stack_trace.mjs:9:3)

 at demos/async-js/stack_trace.mjs:11:1

This is a so-called stack trace of where the Error object was created.

Note that it records where calls were made, not return locations.

Creating the exception in line 2 is yet another call. That’s why the

stack trace includes a location inside h().

After line 3, each of the functions terminates and each time, the top

entry is removed from the call stack. After function f is done, we are

back in top-level scope and the stack is empty. When the code

fragment ends then that is like an implicit return. If we consider the

code fragment to be a task that is executed, then returning with an

empty call stack ends the task.

39.3 The event loop

By default, JavaScript runs in a single process – in both web

browsers and Node.js. The so-called event loop sequentially executes

tasks (pieces of code) inside that process. The event loop is depicted

in fig. 30.

onDoneonClick onClick

Task sources:
• DOM manipulation
• User interaction
• Networking
• History traversal
• …

Event loop ↺

Task queue

Call stack

func1

onTimeout

func2

func3 running

Figure 30: Task sources add code to run to the task queue, which is

emptied by the event loop.

Two parties access the task queue:

Task sources add tasks to the queue. Some of those sources run

concurrently to the JavaScript process. For example, one task

source takes care of user interface events: if a user clicks

somewhere and a click listener was registered, then an

invocation of that listener is added to the task queue.

The event loop runs continuously inside the JavaScript process.

During each loop iteration, it takes one task out of the queue (if

the queue is empty, it waits until it isn’t) and executes it. That

task is finished when the call stack is empty and there is a

return. Control goes back to the event loop, which then retrieves

the next task from the queue and executes it. And so on.

The following JavaScript code is an approximation of the event loop:

while (true) {

 const task = taskQueue.dequeue();

 task(); // run task

}

39.4 How to avoid blocking the

JavaScript process

39.4.1 The user interface of the browser

can be blocked

Many of the user interface mechanisms of browsers also run in the

JavaScript process (as tasks). Therefore, long-running JavaScript

code can block the user interface. Let’s look at a web page that

demonstrates that. There are two ways in which you can try out that

page:

You can run it online.

You can open the following file inside the repository with the

exercises: demos/async-js/blocking.html

The following HTML is the page’s user interface:

The idea is that you click “Block” and a long-running loop is executed

via JavaScript. During that loop, you can’t click the button because

the browser/JavaScript process is blocked.

A simplified version of the JavaScript code looks like this:

Block

<div id="statusMessage"></div>

<button>Click me!</button>

document.getElementById('block')

 .addEventListener('click', doBlock); // (A)

http://rauschma.github.io/async-examples/blocking.html

These are the key parts of the code:

Line A: We tell the browser to call doBlock() whenever the

HTML element is clicked whose ID is block.

doBlock() displays status information and then calls sleep() to

block the JavaScript process for 5000 milliseconds (line B).

sleep() blocks the JavaScript process by looping until enough

time has passed.

displayStatus() displays status messages inside the <div> whose

ID is statusMessage.

39.4.2 How can we avoid blocking the

browser?

There are several ways in which you can prevent a long-running

operation from blocking the browser:

function doBlock(event) {

 // ···

 displayStatus('Blocking...');

 // ···

 sleep(5000); // (B)

 displayStatus('Done');

}

function sleep(milliseconds) {

 const start = Date.now();

 while ((Date.now() - start) < milliseconds);

}

function displayStatus(status) {

 document.getElementById('statusMessage')

 .textContent = status;

}

The operation can deliver its result asynchronously: Some

operations, such as downloads, can be performed concurrently

to the JavaScript process. The JavaScript code triggering such

an operation registers a callback, which is invoked with the

result once the operation is finished. The invocation is handled

via the task queue. This style of delivering a result is called

asynchronous because the caller doesn’t wait until the results

are ready. Normal function calls deliver their results

synchronously.

Perform long computations in separate processes: This can be

done via so-called Web Workers. Web Workers are heavyweight

processes that run concurrently to the main process. Each one of

them has its own runtime environment (global variables, etc.).

They are completely isolated and must be communicated with

via message passing. Consult MDN web docs for more

information.

Take breaks during long computations. The next subsection

explains how.

39.4.3 Taking breaks

The following global function executes its parameter callback after a

delay of ms milliseconds (the type signature is simplified –

setTimeout() has more features):

function setTimeout(callback: () => void, ms: number): any

https://developer.mozilla.org/en-US/docs/Web/API/Web_Workers_API

The function returns a handle (an ID) that can be used to clear the

timeout (cancel the execution of the callback) via the following global

function:

setTimeout() is available on both browsers and Node.js. The next

subsection shows it in action.

 setTimeout() lets tasks take breaks

Another way of looking at setTimeout() is that the current task

takes a break and continues later via the callback.

39.4.4 Run-to-completion semantics

JavaScript makes a guarantee for tasks:

Each task is always finished (“run to completion”) before the

next task is executed.

As a consequence, tasks don’t have to worry about their data being

changed while they are working on it (concurrent modification).

That simplifies programming in JavaScript.

The following example demonstrates this guarantee:

function clearTimeout(handle?: any): void

console.log('start');

setTimeout(() => {

 console.log('callback');

}, 0);

console.log('end');

setTimeout() puts its parameter into the task queue. The parameter

is therefore executed sometime after the current piece of code (task)

is completely finished.

The parameter ms only specifies when the task is put into the queue,

not when exactly it runs. It may even never run – for example, if

there is a task before it in the queue that never terminates. That

explains why the previous code logs 'end' before 'callback', even

though the parameter ms is 0.

// Output:

// 'start'

// 'end'

// 'callback'

39.5 Patterns for delivering

asynchronous results

In order to avoid blocking the main process while waiting for a long-

running operation to finish, results are often delivered

asynchronously in JavaScript. These are three popular patterns for

doing so:

Events

Callbacks

Promises

The first two patterns are explained in the next two subsections.

Promises are explained in the next chapter.

39.5.1 Delivering asynchronous results

via events

Events as a pattern work as follows:

They are used to deliver values asynchronously.

They do so zero or more times.

There are three roles in this pattern:

The event (an object) carries the data to be delivered.

The event listener is a function that receives events via a

parameter.

The event source sends events and lets you register event

listeners.

Multiple variations of this pattern exist in the world of JavaScript.

We’ll look at three examples next.

39.5.1.1 Events: IndexedDB

IndexedDB is a database that is built into web browsers. This is an

example of using it:

indexedDB has an unusual way of invoking operations:

Each operation has an associated method for creating request

objects. For example, in line A, the operation is “open”, the

method is .open(), and the request object is openRequest.

The parameters for the operation are provided via the request

object, not via parameters of the method. For example, the event

listeners (functions) are stored in the properties .onsuccess and

.onerror.

The invocation of the operation is added to the task queue via

the method (in line A). That is, we configure the operation after

its invocation has already been added to the queue. Only run-to-

const openRequest = indexedDB.open('MyDatabase', 1); // (A)

openRequest.onsuccess = (event) => {

 const db = event.target.result;

 // ···

};

openRequest.onerror = (error) => {

 console.error(error);

};

completion semantics saves us from race conditions here and

ensures that the operation runs after the current code fragment

is finished.

39.5.1.2 Events: XMLHttpRequest

The XMLHttpRequest API lets us make downloads from within a web

browser. This is how we download the file

http://example.com/textfile.txt:

With this API, we first create a request object (line A), then configure

it, then activate it (line E). The configuration consists of:

Specifying which HTTP request method to use (line B): GET,

POST, PUT, etc.

Registering a listener (line C) that is notified if something could

be downloaded. Inside the listener, we still need to determine if

const xhr = new XMLHttpRequest(); // (A)

xhr.open('GET', 'http://example.com/textfile.txt'); // (B)

xhr.onload = () => { // (C)

 if (xhr.status == 200) {

 processData(xhr.responseText);

 } else {

 assert.fail(new Error(xhr.statusText));

 }

};

xhr.onerror = () => { // (D)

 assert.fail(new Error('Network error'));

};

xhr.send(); // (E)

function processData(str) {

 assert.equal(str, 'Content of textfile.txt\n');

}

the download contains what we requested or informs us of an

error. Note that some of the result data is delivered via the

request object xhr. (I’m not a fan of this kind of mixing of input

and output data.)

Registering a listener (line D) that is notified if there was a

network error.

39.5.1.3 Events: DOM

We have already seen DOM events in action in §39.4.1 “The user

interface of the browser can be blocked”. The following code also

handles click events:

We first ask the browser to retrieve the HTML element whose ID is

'my-link' (line A). Then we add a listener for all click events (line

B). In the listener, we first tell the browser not to perform its default

action (line C) – going to the target of the link. Then we log to the

console if the shift key is currently pressed (line D).

39.5.2 Delivering asynchronous results

via callbacks

const element = document.getElementById('my-link'); // (A)

element.addEventListener('click', clickListener); // (B)

function clickListener(event) {

 event.preventDefault(); // (C)

 console.log(event.shiftKey); // (D)

}

Callbacks are another pattern for handling asynchronous results.

They are only used for one-off results and have the advantage of

being less verbose than events.

As an example, consider a function readFile() that reads a text file

and returns its contents asynchronously. This is how you call

readFile() if it uses Node.js-style callbacks:

There is a single callback that handles both success and failure. If the

first parameter is not null then an error happened. Otherwise, the

result can be found in the second parameter.

 Exercises: Callback-based code

The following exercises use tests for asynchronous code, which are

different from tests for synchronous code. Consult §11.3.2

“Asynchronous tests in AVA” for more information.

From synchronous to callback-based code: exercises/async-

js/read_file_cb_exrc.mjs

Implementing a callback-based version of .map():

exercises/async-js/map_cb_test.mjs

readFile('some-file.txt', {encoding: 'utf8'},

 (error, data) => {

 if (error) {

 assert.fail(error);

 return;

 }

 assert.equal(data, 'The content of some-file.txt\n');

 });

39.6 Asynchronous code: the

downsides

In many situations, on either browsers or Node.js, you have no

choice, you must use asynchronous code. In this chapter, we have

seen several patterns that such code can use. All of them have two

disadvantages:

Asynchronous code is more verbose than synchronous code.

If you call asynchronous code, your code must become

asynchronous too. That’s because you can’t wait synchronously

for an asynchronous result. Asynchronous code has an

infectious quality.

The first disadvantage becomes less severe with Promises (covered in

the next chapter) and mostly disappears with async functions

(covered in the chapter after next).

Alas, the infectiousness of async code does not go away. But it is

mitigated by the fact that switching between sync and async is easy

with async functions.

39.7 Resources

“Help, I’m stuck in an event-loop” by Philip Roberts (video).

“Event loops”, section in HTML5 spec.

https://vimeo.com/96425312
https://www.w3.org/TR/html5/webappapis.html#event-loops

40 Promises for

asynchronous programming

40.1 The basics of using Promises

40.1.1 Using a Promise-based function

40.1.2 What is a Promise?

40.1.3 Implementing a Promise-based function

40.1.4 States of Promises

40.1.5 Promise.resolve(): create a Promise fulfilled with a

given value

40.1.6 Promise.reject(): create a Promise rejected with a

given value

40.1.7 Returning and throwing in .then() callbacks

40.1.8 .catch() and its callback

40.1.9 Chaining method calls

40.1.10 Advantages of promises

40.2 Examples

40.2.1 Node.js: Reading a file asynchronously

40.2.2 Browsers: Promisifying XMLHttpRequest

40.2.3 Node.js: util.promisify()

40.2.4 Browsers: Fetch API

40.3 Error handling: don’t mix rejections and exceptions

40.4 Promise-based functions start synchronously, settle

asynchronously

40.5 Promise.all(): concurrency and Arrays of Promises

40.5.1 Sequential execution vs. concurrent execution

40.5.2 Concurrency tip: focus on when operations start

40.5.3 Promise.all() is fork-join

40.5.4 Asynchronous .map() via Promise.all()

40.6 Tips for chaining Promises

40.6.1 Chaining mistake: losing the tail

40.6.2 Chaining mistake: nesting

40.6.3 Chaining mistake: more nesting than necessary

40.6.4 Not all nesting is bad

40.6.5 Chaining mistake: creating Promises instead of

chaining

40.7 Advanced topics

In this chapter, we explore Promises, yet another pattern for

delivering asynchronous results.

 Recommended reading

This chapter builds on the previous chapter with background on

asynchronous programming in JavaScript.

40.1 The basics of using Promises

Promises are a pattern for delivering results asynchronously.

40.1.1 Using a Promise-based function

The following code is an example of using the Promise-based

function addAsync() (whose implementation is shown soon):

Promises are similar to the event pattern: There is an object (a

Promise), where we register callbacks:

Method .then() registers callbacks that handle results.

Method .catch() registers callbacks that handle errors.

A Promise-based function returns a Promise and sends it a result or

an error (if and when it is done). The Promise passes it on to the

relevant callbacks.

In contrast to the event pattern, Promises are optimized for one-off

results:

A result (or an error) is cached so that it doesn’t matter if we

register a callback before or after the result (or error) was sent.

addAsync(3, 4)

 .then(result => { // success

 assert.equal(result, 7);

 })

 .catch(error => { // failure

 assert.fail(error);

 });

We can chain the Promise methods .then() and .catch()

because they both return Promises. That helps with sequentially

invoking multiple asynchronous functions. More on that later.

40.1.2 What is a Promise?

What is a Promise? There are two ways of looking at it:

On one hand, it is a placeholder or container for the final result

that will eventually be delivered.

On the other hand, it is an object with which we can register

listeners.

40.1.3 Implementing a Promise-based

function

This is an implementation of a Promise-based function that adds two

numbers x and y:

addAsync() immediately invokes the Promise constructor. The actual

implementation of that function resides in the callback that is passed

function addAsync(x, y) {

 return new Promise(

 (resolve, reject) => { // (A)

 if (x === undefined || y === undefined) {

 reject(new Error('Must provide two parameters'));

 } else {

 resolve(x + y);

 }

 });

}

to that constructor (line A). That callback is provided with two

functions:

resolve is used for delivering a result (in case of success).

reject is used for delivering an error (in case of failure).

40.1.4 States of Promises

Pending Fulfilled

Rejected

Settled

Figure 31: A Promise can be in either one of three states: pending,

fulfilled, or rejected. If a Promise is in a final (non-pending) state, it

is called settled.

Fig. 31 depicts the three states a Promise can be in. Promises

specialize in one-off results and protect us against race conditions

(registering too early or too late):

If we register a .then() callback or a .catch() callback too early,

it is notified once a Promise is settled.

Once a Promise is settled, the settlement value (result or error)

is cached. Thus, if .then() or .catch() are called after the

settlement, they receive the cached value.

Additionally, once a Promise is settled, its state and settlement value

can’t change anymore. That helps make code predictable and

enforces the one-off nature of Promises.

 Some Promises are never settled

It is possible that a Promise is never settled. For example:

40.1.5 Promise.resolve(): create a Promise

fulfilled with a given value

Promise.resolve(x) creates a Promise that is fulfilled with the value

x:

If the parameter is already a Promise, it is returned unchanged:

Therefore, given an arbitrary value x, we can use Promise.resolve(x)

to ensure we have a Promise.

Note that the name is resolve, not fulfill, because .resolve()

returns a rejected Promise if its Parameter is a rejected Promise.

40.1.6 Promise.reject(): create a Promise

rejected with a given value

new Promise(() => {})

Promise.resolve(123)

 .then(x => {

 assert.equal(x, 123);

 });

const abcPromise = Promise.resolve('abc');

assert.equal(

 Promise.resolve(abcPromise),

 abcPromise);

Promise.reject(err) creates a Promise that is rejected with the value

err:

40.1.7 Returning and throwing in .then()

callbacks

.then() handles Promise fulfillments. It also returns a fresh Promise.

How that Promise is settled depends on what happens inside the

callback. Let’s look at three common cases.

40.1.7.1 Returning a non-Promise value

First, the callback can return a non-Promise value (line A).

Consequently, the Promise returned by .then() is fulfilled with that

value (as checked in line B):

40.1.7.2 Returning a Promise

const myError = new Error('My error!');

Promise.reject(myError)

 .catch(err => {

 assert.equal(err, myError);

 });

Promise.resolve('abc')

 .then(str => {

 return str + str; // (A)

 })

 .then(str2 => {

 assert.equal(str2, 'abcabc'); // (B)

 });

Second, the callback can return a Promise p (line A). Consequently, p

“becomes” what .then() returns. In other words: the Promise that

.then() has already returned is effectively replaced by p.

Why is that useful? We can return the result of a Promise-based

operation and process its fulfillment value via a “flat” (non-nested)

.then(). Compare:

40.1.7.3 Throwing an exception

Promise.resolve('abc')

 .then(str => {

 return Promise.resolve(123); // (A)

 })

 .then(num => {

 assert.equal(num, 123);

 });

// Flat

asyncFunc1()

 .then(result1 => {

 /*···*/

 return asyncFunc2();

 })

 .then(result2 => {

 /*···*/

 });

// Nested

asyncFunc1()

 .then(result1 => {

 /*···*/

 asyncFunc2()

 .then(result2 => {

 /*···*/

 });

 });

Third, the callback can throw an exception. Consequently, the

Promise returned by .then() is rejected with that exception. That is,

a synchronous error is converted into an asynchronous error.

40.1.8 .catch() and its callback

The only difference between .then() and .catch() is that the latter is

triggered by rejections, not fulfillments. However, both methods turn

the actions of their callbacks into Promises in the same manner. For

example, in the following code, the value returned by the .catch()

callback in line A becomes a fulfillment value:

40.1.9 Chaining method calls

const myError = new Error('My error!');

Promise.resolve('abc')

 .then(str => {

 throw myError;

 })

 .catch(err => {

 assert.equal(err, myError);

 });

const err = new Error();

Promise.reject(err)

 .catch(e => {

 assert.equal(e, err);

 // Something went wrong, use a default value

 return 'default value'; // (A)

 })

 .then(str => {

 assert.equal(str, 'default value');

 });

.then() and .catch() always return Promises. That enables us to

create arbitrary long chains of method calls:

Due to chaining, the return in line A returns the result of the last

.then().

In a way, .then() is the asynchronous version of the synchronous

semicolon:

.then() executes two asynchronous operations sequentially.

The semicolon executes two synchronous operations

sequentially.

We can also add .catch() into the mix and let it handle multiple

error sources at the same time:

function myAsyncFunc() {

 return asyncFunc1() // (A)

 .then(result1 => {

 // ···

 return asyncFunc2(); // a Promise

 })

 .then(result2 => {

 // ···

 return result2 || '(Empty)'; // not a Promise

 })

 .then(result3 => {

 // ···

 return asyncFunc4(); // a Promise

 });

}

asyncFunc1()

 .then(result1 => {

 // ···

 return asyncFunction2();

 })

40.1.10 Advantages of promises

These are some of the advantages of Promises over plain callbacks

when it comes to handling one-off results:

The type signatures of Promise-based functions and methods

are cleaner: if a function is callback-based, some parameters are

about input, while the one or two callbacks at the end are about

output. With Promises, everything output-related is handled via

the returned value.

Chaining asynchronous processing steps is more convenient.

Promises handle both asynchronous errors (via rejections) and

synchronous errors: Inside the callbacks for new Promise(),

.then(), and .catch(), exceptions are converted to rejections. In

contrast, if we use callbacks for asynchronicity, exceptions are

normally not handled for us; we have to do it ourselves.

Promises are a single standard that is slowly replacing several,

mutually incompatible alternatives. For example, in Node.js,

many functions are now available in Promise-based versions.

And new asynchronous browser APIs are usually Promise-

based.

 .then(result2 => {

 // ···

 })

 .catch(error => {

 // Failure: handle errors of asyncFunc1(), asyncFunc2()

 // and any (sync) exceptions thrown in previous callbacks

 });

One of the biggest advantages of Promises involves not working with

them directly: they are the foundation of async functions, a

synchronous-looking syntax for performing asynchronous

computations. Asynchronous functions are covered in the next

chapter.

40.2 Examples

Seeing Promises in action helps with understanding them. Let’s look

at examples.

40.2.1 Node.js: Reading a file

asynchronously

Consider the following text file person.json with JSON data in it:

Let’s look at two versions of code that reads this file and parses it

into an object. First, a callback-based version. Second, a Promise-

based version.

40.2.1.1 The callback-based version

The following code reads the contents of this file and converts it to a

JavaScript object. It is based on Node.js-style callbacks:

{

 "first": "Jane",

 "last": "Doe"

}

import * as fs from 'fs';

fs.readFile('person.json',

 (error, text) => {

 if (error) { // (A)

 // Failure

 assert.fail(error);

 } else {

 // Success

 try { // (B)

fs is a built-in Node.js module for file system operations. We use the

callback-based function fs.readFile() to read a file whose name is

person.json. If we succeed, the content is delivered via the parameter

text as a string. In line C, we convert that string from the text-based

data format JSON into a JavaScript object. JSON is an object with

methods for consuming and producing JSON. It is part of

JavaScript’s standard library and documented later in this book.

Note that there are two error-handling mechanisms: the if in line A

takes care of asynchronous errors reported by fs.readFile(), while

the try in line B takes care of synchronous errors reported by

JSON.parse().

40.2.1.2 The Promise-based version

The following code uses readFileAsync(), a Promise-based version of

fs.readFile() (created via util.promisify(), which is explained

later):

 const obj = JSON.parse(text); // (C)

 assert.deepEqual(obj, {

 first: 'Jane',

 last: 'Doe',

 });

 } catch (e) {

 // Invalid JSON

 assert.fail(e);

 }

 }

 });

readFileAsync('person.json')

 .then(text => { // (A)

 // Success

 const obj = JSON.parse(text);

Function readFileAsync() returns a Promise. In line A, we specify a

success callback via method .then() of that Promise. The remaining

code in then’s callback is synchronous.

.then() returns a Promise, which enables the invocation of the

Promise method .catch() in line B. We use it to specify a failure

callback.

Note that .catch() lets us handle both the asynchronous errors of

readFileAsync() and the synchronous errors of JSON.parse() because

exceptions inside a .then() callback become rejections.

40.2.2 Browsers: Promisifying

XMLHttpRequest

We have previously seen the event-based XMLHttpRequest API for

downloading data in web browsers. The following function

promisifies that API:

 assert.deepEqual(obj, {

 first: 'Jane',

 last: 'Doe',

 });

 })

 .catch(err => { // (B)

 // Failure: file I/O error or JSON syntax error

 assert.fail(err);

 });

function httpGet(url) {

 return new Promise(

 (resolve, reject) => {

 const xhr = new XMLHttpRequest();

 xhr.onload = () => {

 if (xhr.status === 200) {

Note how the results and errors of XMLHttpRequest are handled via

resolve() and reject():

A successful outcome leads to the returned Promise being

fullfilled with it (line A).

An error leads to the Promise being rejected (lines B and C).

This is how to use httpGet():

 Exercise: Timing out a Promise

exercises/promises/promise_timeout_test.mjs

40.2.3 Node.js: util.promisify()

 resolve(xhr.responseText); // (A)

 } else {

 // Something went wrong (404, etc.)

 reject(new Error(xhr.statusText)); // (B)

 }

 }

 xhr.onerror = () => {

 reject(new Error('Network error')); // (C)

 };

 xhr.open('GET', url);

 xhr.send();

 });

}

httpGet('http://example.com/textfile.txt')

 .then(content => {

 assert.equal(content, 'Content of textfile.txt\n');

 })

 .catch(error => {

 assert.fail(error);

 });

util.promisify() is a utility function that converts a callback-based

function f into a Promise-based one. That is, we are going from this

type signature:

f(arg_1, ···, arg_n, (err: Error, result: T) => void) : void

To this type signature:

f(arg_1, ···, arg_n) : Promise<T>

The following code promisifies the callback-based fs.readFile()

(line A) and uses it:

 Exercises: util.promisify()

Using util.promisify():

exercises/promises/read_file_async_exrc.mjs

Implementing util.promisify() yourself:

exercises/promises/my_promisify_test.mjs

40.2.4 Browsers: Fetch API

import * as fs from 'fs';

import {promisify} from 'util';

const readFileAsync = promisify(fs.readFile); // (A)

readFileAsync('some-file.txt', {encoding: 'utf8'})

 .then(text => {

 assert.equal(text, 'The content of some-file.txt\n');

 })

 .catch(err => {

 assert.fail(err);

 });

All modern browsers support Fetch, a new Promise-based API for

downloading data. Think of it as a Promise-based version of

XMLHttpRequest. The following is an excerpt of the API:

That means we can use fetch() as follows:

 Exercise: Using the fetch API

exercises/promises/fetch_json_test.mjs

interface Body {

 text() : Promise<string>;

 ···

}

interface Response extends Body {

 ···

}

declare function fetch(str) : Promise<Response>;

fetch('http://example.com/textfile.txt')

 .then(response => response.text())

 .then(text => {

 assert.equal(text, 'Content of textfile.txt\n');

 });

https://fetch.spec.whatwg.org/#fetch-api

40.3 Error handling: don’t mix

rejections and exceptions

Rule for implementing functions and methods:

Don’t mix (asynchronous) rejections and (synchronous)

exceptions.

This makes our synchronous and asynchronous code more

predictable and simpler because we can always focus on a single

error-handling mechanism.

For Promise-based functions and methods, the rule means that they

should never throw exceptions. Alas, it is easy to accidentally get this

wrong – for example:

The problem is that if an exception is thrown in line A, then

asyncFunc() will throw an exception. Callers of that function only

expect rejections and are not prepared for an exception. There are

three ways in which we can fix this issue.

We can wrap the whole body of the function in a try-catch statement

and return a rejected Promise if an exception is thrown:

// Don’t do this

function asyncFunc() {

 doSomethingSync(); // (A)

 return doSomethingAsync()

 .then(result => {

 // ···

 });

}

Given that .then() converts exceptions to rejections, we can execute

doSomethingSync() inside a .then() callback. To do so, we start a

Promise chain via Promise.resolve(). We ignore the fulfillment value

undefined of that initial Promise.

Lastly, new Promise() also converts exceptions to rejections. Using

this constructor is therefore similar to the previous solution:

// Solution 1

function asyncFunc() {

 try {

 doSomethingSync();

 return doSomethingAsync()

 .then(result => {

 // ···

 });

 } catch (err) {

 return Promise.reject(err);

 }

}

// Solution 2

function asyncFunc() {

 return Promise.resolve()

 .then(() => {

 doSomethingSync();

 return doSomethingAsync();

 })

 .then(result => {

 // ···

 });

}

// Solution 3

function asyncFunc() {

 return new Promise((resolve, reject) => {

 doSomethingSync();

 resolve(doSomethingAsync());

 })

 .then(result => {

 // ···

 });

}

40.4 Promise-based functions start

synchronously, settle

asynchronously

Most Promise-based functions are executed as follows:

Their execution starts right away, synchronously (in the current

task).

But the Promise they return is guaranteed to be settled

asynchronously (in a later task) – if ever.

The following code demonstrates that:

function asyncFunc() {

 console.log('asyncFunc');

 return new Promise(

 (resolve, _reject) => {

 console.log('new Promise()');

 resolve();

 });

}

console.log('START');

asyncFunc()

 .then(() => {

 console.log('.then()'); // (A)

 });

console.log('END');

// Output:

// 'START'

// 'asyncFunc'

// 'new Promise()'

// 'END'

// '.then()'

We can see that the callback of new Promise() is executed before the

end of the code, while the result is delivered later (line A).

Benefits of this approach:

Starting synchronously helps avoid race conditions because we

can rely on the order in which Promise-based functions begin.

There is an example in the next chapter, where text is written to

a file and race conditions are avoided.

Chaining Promises won’t starve other tasks of processing time

because before a Promise is settled, there will always be a break,

during which the event loop can run.

Promise-based functions always return results asynchronously;

we can be sure that there is never a synchronous return. This

kind of predictability makes code easier to work with.

 More information on this approach

“Designing APIs for Asynchrony” by Isaac Z. Schlueter

http://blog.izs.me/post/59142742143/designing-apis-for-asynchrony

40.5 Promise.all(): concurrency and

Arrays of Promises

40.5.1 Sequential execution

vs. concurrent execution

Consider the following code:

Using .then() in this manner executes Promise-based functions

sequentially: only after the result of asyncFunc1() is settled will

asyncFunc2() be executed.

The static method Promise.all() helps execute Promise-based

functions more concurrently:

Its type signature is:

const asyncFunc1 = () => Promise.resolve('one');

const asyncFunc2 = () => Promise.resolve('two');

asyncFunc1()

 .then(result1 => {

 assert.equal(result1, 'one');

 return asyncFunc2();

 })

 .then(result2 => {

 assert.equal(result2, 'two');

 });

Promise.all([asyncFunc1(), asyncFunc2()])

 .then(arr => {

 assert.deepEqual(arr, ['one', 'two']);

 });

The parameter promises is an iterable of Promises. The result is a

single Promise that is settled as follows:

If and when all input Promises are fulfilled, the output Promise

is fulfilled with an Array of the fulfillment values.

As soon as at least one input Promise is rejected, the output

Promise is rejected with the rejection value of that input

Promise.

In other words: We go from an iterable of Promises to a Promise for

an Array.

40.5.2 Concurrency tip: focus on when

operations start

Tip for determining how “concurrent” asynchronous code is: Focus

on when asynchronous operations start, not on how their Promises

are handled.

For example, each of the following functions executes asyncFunc1()

and asyncFunc2() concurrently because they are started at nearly the

same time.

Promise.all<T>(promises: Iterable<Promise<T>>): Promise<T[]>

function concurrentAll() {

 return Promise.all([asyncFunc1(), asyncFunc2()]);

}

function concurrentThen() {

 const p1 = asyncFunc1();

 const p2 = asyncFunc2();

On the other hand, both of the following functions execute

asyncFunc1() and asyncFunc2() sequentially: asyncFunc2() is only

invoked after the Promise of asyncFunc1() is fulfilled.

40.5.3 Promise.all() is fork-join

Promise.all() is loosely related to the concurrency pattern “fork

join” – for example:

httpGet() is the promisified version of XMLHttpRequest that we

implemented earlier.

 return p1.then(r1 => p2.then(r2 => [r1, r2]));

}

function sequentialThen() {

 return asyncFunc1()

 .then(r1 => asyncFunc2()

 .then(r2 => [r1, r2]));

}

function sequentialAll() {

 const p1 = asyncFunc1();

 const p2 = p1.then(() => asyncFunc2());

 return Promise.all([p1, p2]);

}

Promise.all([

 // Fork async computations

 httpGet('http://example.com/file1.txt'),

 httpGet('http://example.com/file2.txt'),

])

 // Join async computations

 .then(([text1, text2]) => {

 assert.equal(text1, 'Content of file1.txt\n');

 assert.equal(text2, 'Content of file2.txt\n');

 });

40.5.4 Asynchronous .map() via

Promise.all()

Array transformation methods such as .map(), .filter(), etc., are

made for synchronous computations – for example:

What happens if the callback of .map() is a Promise-based function

(a function that maps normal values to Promises)? Then the result of

.map() is an Array of Promises. Alas, that is not data that normal

code can work with. Thankfully, we can fix that via Promise.all(): It

converts an Array of Promises into a Promise that is fulfilled with an

Array of normal values.

40.5.4.1 A more realistic example

The following code is a more realistic example: in the section on

fork-join, there was an example where we downloaded two resources

identified by two fixed URLs. Let’s turn that code fragment into a

function timesTwoSync(x) {

 return 2 * x;

}

const arr = [1, 2, 3];

const result = arr.map(timesTwoSync);

assert.deepEqual(result, [2, 4, 6]);

function timesTwoAsync(x) {

 return new Promise(resolve => resolve(x * 2));

}

const arr = [1, 2, 3];

const promiseArr = arr.map(timesTwoAsync);

Promise.all(promiseArr)

 .then(result => {

 assert.deepEqual(result, [2, 4, 6]);

 });

function that accepts an Array of URLs and downloads the

corresponding resources:

 Exercise: Promise.all() and listing files

exercises/promises/list_files_async_test.mjs

function downloadTexts(urls) {

 const promisedTexts = urls.map(httpGet);

 return Promise.all(promisedTexts);

}

downloadTexts([

 'http://example.com/file1.txt',

 'http://example.com/file2.txt',

])

 .then(texts => {

 assert.deepEqual(

 texts, [

 'Content of file1.txt\n',

 'Content of file2.txt\n',

]);

 });

40.6 Tips for chaining Promises

This section gives tips for chaining Promises.

40.6.1 Chaining mistake: losing the tail

Problem:

Computation starts with the Promise returned by asyncFunc(). But

afterward, computation continues and another Promise is created via

.then(). foo() returns the former Promise, but should return the

latter. This is how to fix it:

40.6.2 Chaining mistake: nesting

Problem:

// Don’t do this

function foo() {

 const promise = asyncFunc();

 promise.then(result => {

 // ···

 });

 return promise;

}

function foo() {

 const promise = asyncFunc();

 return promise.then(result => {

 // ···

 });

}

The .then() in line A is nested. A flat structure would be better:

40.6.3 Chaining mistake: more nesting

than necessary

This is another example of avoidable nesting:

We can once again get a flat structure:

// Don’t do this

asyncFunc1()

 .then(result1 => {

 return asyncFunc2()

 .then(result2 => { // (A)

 // ···

 });

 });

asyncFunc1()

 .then(result1 => {

 return asyncFunc2();

 })

 .then(result2 => {

 // ···

 });

// Don’t do this

asyncFunc1()

 .then(result1 => {

 if (result1 < 0) {

 return asyncFuncA()

 .then(resultA => 'Result: ' + resultA);

 } else {

 return asyncFuncB()

 .then(resultB => 'Result: ' + resultB);

 }

 });

40.6.4 Not all nesting is bad

In the following code, we actually benefit from nesting:

We are receiving an asynchronous result in line A. In line B, we are

nesting so that we have access to variable connection inside the

callback and in line C.

40.6.5 Chaining mistake: creating

Promises instead of chaining

Problem:

asyncFunc1()

 .then(result1 => {

 return result1 < 0 ? asyncFuncA() : asyncFuncB();

 })

 .then(resultAB => {

 return 'Result: ' + resultAB;

 });

db.open()

 .then(connection => { // (A)

 return connection.select({ name: 'Jane' })

 .then(result => { // (B)

 // Process result

 // Use `connection` to make more queries

 })

 // ···

 .finally(() => {

 connection.close(); // (C)

 });

 })

// Don’t do this

class Model {

 insertInto(db) {

In line A, we are creating a Promise to deliver the result of

db.insert(). That is unnecessarily verbose and can be simplified:

The key idea is that we don’t need to create a Promise; we can return

the result of the .then() call. An additional benefit is that we don’t

need to catch and re-reject the failure of db.insert(). We simply pass

its rejection on to the caller of .insertInto().

 return new Promise((resolve, reject) => { // (A)

 db.insert(this.fields)

 .then(resultCode => {

 this.notifyObservers({event: 'created', model: this});

 resolve(resultCode);

 }).catch(err => {

 reject(err);

 })

 });

 }

 // ···

}

class Model {

 insertInto(db) {

 return db.insert(this.fields)

 .then(resultCode => {

 this.notifyObservers({event: 'created', model: this});

 return resultCode;

 });

 }

 // ···

}

40.7 Advanced topics

In addition to Promise.all(), there is also Promise.race(), which

is not used often and described in Exploring ES6.

Exploring ES6 has a section that shows a very simple

implementation of Promises. That may be helpful if you want a

deeper understanding of how Promises work.

https://exploringjs.com/es6/ch_promises.html#_timing-out-via-promiserace
https://exploringjs.com/es6/ch_promises.html#sec_demo-promise

41 Async functions

41.1 Async functions: the basics

41.1.1 Async constructs

41.2 Returning from async functions

41.2.1 Async functions always return Promises

41.2.2 Returned Promises are not wrapped

41.2.3 Executing async functions: synchronous start,

asynchronous settlement (advanced)

41.3 await: working with Promises

41.3.1 await and fulfilled Promises

41.3.2 await and rejected Promises

41.3.3 await is shallow (we can’t use it in callbacks)

41.4 (Advanced)

41.5 Immediately invoked async arrow functions

41.6 Concurrency and await

41.6.1 await: running asynchronous functions sequentially

41.6.2 await: running asynchronous functions concurrently

41.7 Tips for using async functions

41.7.1 We don’t need await if we “fire and forget”

41.7.2 It can make sense to await and ignore the result

Roughly, async functions provide better syntax for code that uses

Promises. In order to use async functions, we should therefore

understand Promises. They are explained in the previous chapter.

41.1 Async functions: the basics

Consider the following async function:

The previous, rather synchronous-looking code is equivalent to the

following code that uses Promises directly:

A few observations about the async function fetchJsonAsync():

Async functions are marked with the keyword async.

Inside the body of an async function, we write Promise-based

code as if it were synchronous. We only need to apply the await

operator whenever a value is a Promise. That operator pauses

the async function and resumes it once the Promise is settled:

async function fetchJsonAsync(url) {

 try {

 const request = await fetch(url); // async

 const text = await request.text(); // async

 return JSON.parse(text); // sync

 }

 catch (error) {

 assert.fail(error);

 }

}

function fetchJsonViaPromises(url) {

 return fetch(url) // async

 .then(request => request.text()) // async

 .then(text => JSON.parse(text)) // sync

 .catch(error => {

 assert.fail(error);

 });

}

If the Promise is fulfilled, await returns the fulfillment

value.

If the Promise is rejected, await throws the rejection value.

The result of an async function is always a Promise:

Any value that is returned (explicitly or implicitly) is used to

fulfill the Promise.

Any exception that is thrown is used to reject the Promise.

Both fetchJsonAsync() and fetchJsonViaPromises() are called in

exactly the same way, like this:

 Async functions are as Promise-based as functions

that use Promises directly

From the outside, it is virtually impossible to tell the difference

between an async function and a function that returns a Promise.

41.1.1 Async constructs

JavaScript has the following async versions of synchronous callable

entities. Their roles are always either real function or method.

fetchJsonAsync('http://example.com/person.json')

.then(obj => {

 assert.deepEqual(obj, {

 first: 'Jane',

 last: 'Doe',

 });

});

// Async function declaration

async function func1() {}

 Asynchronous functions vs. async functions

The difference between the terms asynchronous function and

async function is subtle, but important:

An asynchronous function is any function that delivers its

result asynchronously – for example, a callback-based

function or a Promise-based function.

An async function is defined via special syntax, involving the

keywords async and await. It is also called async/await due to

these two keywords. Async functions are based on Promises

and therefore also asynchronous functions (which is

somewhat confusing).

// Async function expression

const func2 = async function () {};

// Async arrow function

const func3 = async () => {};

// Async method definition in an object literal

const obj = { async m() {} };

// Async method definition in a class definition

class MyClass { async m() {} }

41.2 Returning from async

functions

41.2.1 Async functions always return

Promises

Each async function always returns a Promise.

Inside the async function, we fulfill the result Promise via return

(line A):

As usual, if we don’t explicitly return anything, undefined is returned

for us:

We reject the result Promise via throw (line A):

async function asyncFunc() {

 return 123; // (A)

}

asyncFunc()

.then(result => {

 assert.equal(result, 123);

});

async function asyncFunc() {

}

asyncFunc()

.then(result => {

 assert.equal(result, undefined);

});

41.2.2 Returned Promises are not

wrapped

If we return a Promise p from an async function, then p becomes the

result of the function (or rather, the result “locks in” on p and

behaves exactly like it). That is, the Promise is not wrapped in yet

another Promise.

Recall that any Promise q is treated similarly in the following

situations:

resolve(q) inside new Promise((resolve, reject) => { ··· })

return q inside .then(result => { ··· })

return q inside .catch(err => { ··· })

41.2.3 Executing async functions:

synchronous start, asynchronous

async function asyncFunc() {

 throw new Error('Problem!'); // (A)

}

asyncFunc()

.catch(err => {

 assert.deepEqual(err, new Error('Problem!'));

});

async function asyncFunc() {

 return Promise.resolve('abc');

}

asyncFunc()

.then(result => assert.equal(result, 'abc'));

settlement (advanced)

Async functions are executed as follows:

The Promise p for the result is created when the async function

is started.

Then the body is executed. There are two ways in which

execution can leave the body:

Execution can leave permanently while settling p:

A return fulfills p.

A throw rejects p.

Execution can also leave temporarily when awaiting the

settlement of another Promise q via await. The async

function is paused and execution leaves it. It is resumed

once q is settled.

Promise p is returned after execution has left the body for the

first time (permanently or temporarily).

Note that the notification of the settlement of the result p happens

asynchronously, as is always the case with Promises.

The following code demonstrates that an async function is started

synchronously (line A), then the current task finishes (line C), then

the result Promise is settled – asynchronously (line B).

async function asyncFunc() {

 console.log('asyncFunc() starts'); // (A)

 return 'abc';

}

asyncFunc().

then(x => { // (B)

 console.log(`Resolved: ${x}`);

});

console.log('Task ends'); // (C)

// Output:

// 'asyncFunc() starts'

// 'Task ends'

// 'Resolved: abc'

41.3 await: working with Promises

The await operator can only be used inside async functions and async

generators (which are explained in §42.2 “Asynchronous

generators”). Its operand is usually a Promise and leads to the

following steps being performed:

The current async function is paused and returned from. This

step is similar to how yield works in sync generators.

Eventually, the current task is finished and processing of the

task queue continues.

When and if the Promise is settled, the async function is

resumed in a new task:

If the Promise is fulfilled, await returns the fulfillment

value.

If the Promise is rejected, await throws the rejection value.

Read on to find out more about how await handles Promises in

various states.

41.3.1 await and fulfilled Promises

If its operand ends up being a fulfilled Promise, await returns its

fulfillment value:

Non-Promise values are allowed, too, and simply passed on

(synchronously, without pausing the async function):

assert.equal(await Promise.resolve('yes!'), 'yes!');

41.3.2 await and rejected Promises

If its operand is a rejected Promise, then await throws the rejection

value:

Instances of Error (including instances of its subclasses) are treated

specially and also thrown:

 Exercise: Fetch API via async functions

exercises/async-functions/fetch_json2_test.mjs

41.3.3 await is shallow (we can’t use it in

callbacks)

If we are inside an async function and want to pause it via await, we

must do so directly within that function; we can’t use it inside a

nested function, such as a callback. That is, pausing is shallow.

assert.equal(await 'yes!', 'yes!');

try {

 await Promise.reject(new Error());

 assert.fail(); // we never get here

} catch (e) {

 assert.equal(e instanceof Error, true);

}

try {

 await new Error();

 assert.fail(); // we never get here

} catch (e) {

 assert.equal(e instanceof Error, true);

}

For example, the following code can’t be executed:

The reason is that normal arrow functions don’t allow await inside

their bodies.

OK, let’s try an async arrow function then:

Alas, this doesn’t work either: Now .map() (and therefore

downloadContent()) returns an Array with Promises, not an Array

with (unwrapped) values.

One possible solution is to use Promise.all() to unwrap all Promises:

Can this code be improved? Yes it can: in line A, we are unwrapping

a Promise via await, only to re-wrap it immediately via return. If we

omit await, we don’t even need an async arrow function:

async function downloadContent(urls) {

 return urls.map((url) => {

 return await httpGet(url); // SyntaxError!

 });

}

async function downloadContent(urls) {

 return urls.map(async (url) => {

 return await httpGet(url);

 });

}

async function downloadContent(urls) {

 const promiseArray = urls.map(async (url) => {

 return await httpGet(url); // (A)

 });

 return await Promise.all(promiseArray);

}

For the same reason, we can also omit await in line B.

 Exercise: Mapping and filtering asynchronously

exercises/async-functions/map_async_test.mjs

async function downloadContent(urls) {

 const promiseArray = urls.map(

 url => httpGet(url));

 return await Promise.all(promiseArray); // (B)

}

41.4 (Advanced)

All remaining sections are advanced.

41.5 Immediately invoked async

arrow functions

If we need an await outside an async function (e.g., at the top level of

a module), then we can immediately invoke an async arrow function:

The result of an immediately invoked async arrow function is a

Promise:

(async () => { // start

 const promise = Promise.resolve('abc');

 const value = await promise;

 assert.equal(value, 'abc');

})(); // end

const promise = (async () => 123)();

promise.then(x => assert.equal(x, 123));

41.6 Concurrency and await

In the next two subsections, we’ll use the helper function paused():

41.6.1 await: running asynchronous

functions sequentially

If we prefix the invocations of multiple asynchronous functions with

await, then those functions are executed sequentially:

/**

* Resolves after `ms` milliseconds

*/

function delay(ms) {

 return new Promise((resolve, _reject) => {

 setTimeout(resolve, ms);

 });

}

async function paused(id) {

 console.log('START ' + id);

 await delay(10); // pause

 console.log('END ' + id);

 return id;

}

async function sequentialAwait() {

 const result1 = await paused('first');

 assert.equal(result1, 'first');

 const result2 = await paused('second');

 assert.equal(result2, 'second');

}

// Output:

// 'START first'

// 'END first'

That is, paused('second') is only started after paused('first') is

completely finished.

41.6.2 await: running asynchronous

functions concurrently

If we want to run multiple functions concurrently, we can use the

tool method Promise.all():

Here, both asynchronous functions are started at the same time.

Once both are settled, await gives us either an Array of fulfillment

values or – if at least one Promise is rejected – an exception.

Recall from §40.5.2 “Concurrency tip: focus on when operations

start” that what counts is when we start a Promise-based

computation; not how we process its result. Therefore, the following

code is as “concurrent” as the previous one:

// 'START second'

// 'END second'

async function concurrentPromiseAll() {

 const result = await Promise.all([

 paused('first'), paused('second')

]);

 assert.deepEqual(result, ['first', 'second']);

}

// Output:

// 'START first'

// 'START second'

// 'END first'

// 'END second'

async function concurrentAwait() {

 const resultPromise1 = paused('first');

 const resultPromise2 = paused('second');

 assert.equal(await resultPromise1, 'first');

 assert.equal(await resultPromise2, 'second');

}

// Output:

// 'START first'

// 'START second'

// 'END first'

// 'END second'

41.7 Tips for using async functions

41.7.1 We don’t need await if we “fire and

forget”

await is not required when working with a Promise-based function;

we only need it if we want to pause and wait until the returned

Promise is settled. If we only want to start an asynchronous

operation, then we don’t need it:

In this code, we don’t await .write() because we don’t care when it is

finished. We do, however, want to wait until .close() is done.

Note: Each invocation of .write() starts synchronously. That

prevents race conditions.

41.7.2 It can make sense to await and

ignore the result

It can occasionally make sense to use await, even if we ignore its

result – for example:

async function asyncFunc() {

 const writer = openFile('someFile.txt');

 writer.write('hello'); // don’t wait

 writer.write('world'); // don’t wait

 await writer.close(); // wait for file to close

}

await longRunningAsyncOperation();

console.log('Done!');

Here, we are using await to join a long-running asynchronous

operation. That ensures that the logging really happens after that

operation is done.

42 Asynchronous iteration

42.1 Basic asynchronous iteration

42.1.1 Protocol: async iteration

42.1.2 Using async iteration directly

42.1.3 Using async iteration via for-await-of

42.2 Asynchronous generators

42.2.1 Example: creating an async iterable via an async

generator

42.2.2 Example: converting a sync iterable to an async

iterable

42.2.3 Example: converting an async iterable to an Array

42.2.4 Example: transforming an async iterable

42.2.5 Example: mapping over asynchronous iterables

42.3 Async iteration over Node.js streams

42.3.1 Node.js streams: async via callbacks (push)

42.3.2 Node.js streams: async via async iteration (pull)

42.3.3 Example: from chunks to lines

 Required knowledge

For this chapter, you should be familiar with:

Promises

Async functions

42.1 Basic asynchronous iteration

42.1.1 Protocol: async iteration

To understand how asynchronous iteration works, let’s first revisit

synchronous iteration. It comprises the following interfaces:

An Iterable is a data structure whose contents can be accessed

via iteration. It is a factory for iterators.

An Iterator is a factory for iteration results that we retrieve by

calling the method .next().

Each IterationResult contains the iterated .value and a boolean

.done that is true after the last element and false before.

For the protocol for asynchronous iteration, we only want to change

one thing: the values produced by .next() should be delivered

asynchronously. There are two conceivable options:

The .value could contain a Promise<T>.

.next() could return Promise<IteratorResult<T>>.

interface Iterable<T> {

 [Symbol.iterator]() : Iterator<T>;

}

interface Iterator<T> {

 next() : IteratorResult<T>;

}

interface IteratorResult<T> {

 value: T;

 done: boolean;

}

In other words, the question is whether to wrap just values or whole

iterator results in Promises.

It has to be the latter because when .next() returns a result, it starts

an asynchronous computation. Whether or not that computation

produces a value or signals the end of the iteration can only be

determined after it is finished. Therefore, both .done and .value need

to be wrapped in a Promise.

The interfaces for async iteration look as follows.

The only difference to the synchronous interfaces is the return type

of .next() (line A).

42.1.2 Using async iteration directly

The following code uses the asynchronous iteration protocol directly:

interface AsyncIterable<T> {

 [Symbol.asyncIterator]() : AsyncIterator<T>;

}

interface AsyncIterator<T> {

 next() : Promise<IteratorResult<T>>; // (A)

}

interface IteratorResult<T> {

 value: T;

 done: boolean;

}

const asyncIterable = syncToAsyncIterable(['a', 'b']); // (A)

const asyncIterator = asyncIterable[Symbol.asyncIterator]();

// Call .next() until .done is true:

asyncIterator.next() // (B)

.then(iteratorResult => {

In line A, we create an asynchronous iterable over the value 'a' and

'b'. We’ll see an implementation of syncToAsyncIterable() later.

We call .next() in line B, line C and line D. Each time, we use

.next() to unwrap the Promise and assert.deepEqual() to check the

unwrapped value.

We can simplify this code if we use an async function. Now we

unwrap Promises via await and the code looks almost like we are

doing synchronous iteration:

 assert.deepEqual(

 iteratorResult,

 { value: 'a', done: false });

 return asyncIterator.next(); // (C)

})

.then(iteratorResult => {

 assert.deepEqual(

 iteratorResult,

 { value: 'b', done: false });

 return asyncIterator.next(); // (D)

})

.then(iteratorResult => {

 assert.deepEqual(

 iteratorResult,

 { value: undefined, done: true });

})

;

async function f() {

 const asyncIterable = syncToAsyncIterable(['a', 'b']);

 const asyncIterator = asyncIterable[Symbol.asyncIterator]();

 // Call .next() until .done is true:

 assert.deepEqual(

 await asyncIterator.next(),

 { value: 'a', done: false });

 assert.deepEqual(

 await asyncIterator.next(),

42.1.3 Using async iteration via for-await-

of

The asynchronous iteration protocol is not meant to be used directly.

One of the language constructs that supports it is the for-await-of

loop, which is an asynchronous version of the for-of loop. It can be

used in async functions and async generators (which are introduced

later in this chapter). This is an example of for-await-of in use:

for-await-of is relatively flexible. In addition to asynchronous

iterables, it also supports synchronous iterables:

And it supports synchronous iterables over values that are wrapped

in Promises:

 { value: 'b', done: false });

 assert.deepEqual(

 await asyncIterator.next(),

 { value: undefined, done: true });

}

for await (const x of syncToAsyncIterable(['a', 'b'])) {

 console.log(x);

}

// Output:

// 'a'

// 'b'

for await (const x of ['a', 'b']) {

 console.log(x);

}

// Output:

// 'a'

// 'b'

 Exercise: Convert an async iterable to an Array

Warning: We’ll soon see the solution for this exercise in this

chapter.

exercises/async-

iteration/async_iterable_to_array_test.mjs

const arr = [Promise.resolve('a'), Promise.resolve('b')];

for await (const x of arr) {

 console.log(x);

}

// Output:

// 'a'

// 'b'

42.2 Asynchronous generators

An asynchronous generator is two things at the same time:

An async function (input): We can use await and for-await-of to

retrieve data.

A generator that returns an asynchronous iterable (output): We

can use yield and yield* to produce data.

 Asynchronous generators are very similar to

synchronous generators

Due to async generators and sync generators being so similar, I

don’t explain how exactly yield and yield* work. Please consult

§38 “Synchronous generators” if you have doubts.

Therefore, an asynchronous generator has:

Input that can be:

synchronous (single values, sync iterables) or

asynchronous (Promises, async iterables).

Output that is an asynchronous iterable.

This looks as follows:

async function* asyncGen() {

 // Input: Promises, async iterables

 const x = await somePromise;

 for await (const y of someAsyncIterable) {

 // ···

 }

42.2.1 Example: creating an async

iterable via an async generator

Let’s look at an example. The following code creates an async iterable

with three numbers:

Does the result of yield123() conform to the async iteration

protocol?

 // Output

 yield someValue;

 yield* otherAsyncGen();

}

async function* yield123() {

 for (let i=1; i<=3; i++) {

 yield i;

 }

}

(async () => {

 const asyncIterable = yield123();

 const asyncIterator = asyncIterable[Symbol.asyncIterator]();

 assert.deepEqual(

 await asyncIterator.next(),

 { value: 1, done: false });

 assert.deepEqual(

 await asyncIterator.next(),

 { value: 2, done: false });

 assert.deepEqual(

 await asyncIterator.next(),

 { value: 3, done: false });

 assert.deepEqual(

 await asyncIterator.next(),

 { value: undefined, done: true });

})();

We wrapped the code in an immediately invoked async arrow

function.

42.2.2 Example: converting a sync

iterable to an async iterable

The following asynchronous generator converts a synchronous

iterable to an asynchronous iterable. It implements the function

syncToAsyncIterable() that we have used previously.

Note: The input is synchronous in this case (no await is needed).

42.2.3 Example: converting an async

iterable to an Array

The following function is a solution to a previous exercise. It converts

an async iterable to an Array (think spreading, but for async iterables

instead of sync iterables).

async function* syncToAsyncIterable(syncIterable) {

 for (const elem of syncIterable) {

 yield elem;

 }

}

async function asyncIterableToArray(asyncIterable) {

 const result = [];

 for await (const value of asyncIterable) {

 result.push(value);

 }

 return result;

}

Note that we can’t use an async generator in this case: We get our

input via for-await-of and return an Array wrapped in a Promise.

The latter requirement rules out async generators.

This is a test for asyncIterableToArray():

Note the await in line A, which is needed to unwrap the Promise

returned by asyncIterableToArray(). In order for await to work, this

code fragment must be run inside an async function.

42.2.4 Example: transforming an async

iterable

Let’s implement an async generator that produces a new async

iterable by transforming an existing async iterable.

To test this function, we use asyncIterableToArray() from the

previous section.

async function* createAsyncIterable() {

 yield 'a';

 yield 'b';

}

const asyncIterable = createAsyncIterable();

assert.deepEqual(

 await asyncIterableToArray(asyncIterable), // (A)

 ['a', 'b']

);

async function* timesTwo(asyncNumbers) {

 for await (const x of asyncNumbers) {

 yield x * 2;

 }

}

 Exercise: Async generators

Warning: We’ll soon see the solution for this exercise in this

chapter.

exercises/async-iteration/number_lines_test.mjs

42.2.5 Example: mapping over

asynchronous iterables

As a reminder, this is how to map over synchronous iterables:

The asynchronous version looks as follows:

async function* createAsyncIterable() {

 for (let i=1; i<=3; i++) {

 yield i;

 }

}

assert.deepEqual(

 await asyncIterableToArray(timesTwo(createAsyncIterable())),

 [2, 4, 6]

);

function* mapSync(iterable, func) {

 let index = 0;

 for (const x of iterable) {

 yield func(x, index);

 index++;

 }

}

const syncIterable = mapSync(['a', 'b', 'c'], s => s.repeat(3));

assert.deepEqual(

 [...syncIterable],

 ['aaa', 'bbb', 'ccc']);

Note how similar the sync implementation and the async

implementation are. The only two differences are the async in line A

and the await in line B. That is comparable to going from a

synchronous function to an asynchronous function – we only need to

add the keyword async and the occasional await.

To test mapAsync(), we use the helper function

asyncIterableToArray() (shown earlier in this chapter):

Once again, we await to unwrap a Promise (line A) and this code

fragment must run inside an async function.

 Exercise: filterAsyncIter()

exercises/async-iteration/filter_async_iter_test.mjs

async function* mapAsync(asyncIterable, func) { // (A)

 let index = 0;

 for await (const x of asyncIterable) { // (B)

 yield func(x, index);

 index++;

 }

}

async function* createAsyncIterable() {

 yield 'a';

 yield 'b';

}

const mapped = mapAsync(

 createAsyncIterable(), s => s.repeat(3));

assert.deepEqual(

 await asyncIterableToArray(mapped), // (A)

 ['aaa', 'bbb']);

42.3 Async iteration over Node.js

streams

42.3.1 Node.js streams: async via

callbacks (push)

Traditionally, reading asynchronously from Node.js streams is done

via callbacks:

That is, the stream is in control and pushes data to the reader.

42.3.2 Node.js streams: async via async

iteration (pull)

Starting with Node.js 10, we can also use asynchronous iteration to

read from streams:

function main(inputFilePath) {

 const readStream = fs.createReadStream(inputFilePath,

 { encoding: 'utf8', highWaterMark: 1024 });

 readStream.on('data', (chunk) => {

 console.log('>>> '+chunk);

 });

 readStream.on('end', () => {

 console.log('### DONE ###');

 });

}

async function main(inputFilePath) {

 const readStream = fs.createReadStream(inputFilePath,

 { encoding: 'utf8', highWaterMark: 1024 });

This time, the reader is in control and pulls data from the stream.

42.3.3 Example: from chunks to lines

Node.js streams iterate over chunks (arbitrarily long pieces) of data.

The following asynchronous generator converts an async iterable

over chunks to an async iterable over lines:

Let’s apply chunksToLines() to an async iterable over chunks (as

produced by chunkIterable()):

 for await (const chunk of readStream) {

 console.log('>>> '+chunk);

 }

 console.log('### DONE ###');

}

/**

* Parameter: async iterable of chunks (strings)

* Result: async iterable of lines (incl. newlines)

*/

async function* chunksToLines(chunksAsync) {

 let previous = '';

 for await (const chunk of chunksAsync) { // input

 previous += chunk;

 let eolIndex;

 while ((eolIndex = previous.indexOf('\n')) >= 0) {

 // line includes the EOL (Windows '\r\n' or Unix '\n')

 const line = previous.slice(0, eolIndex+1);

 yield line; // output

 previous = previous.slice(eolIndex+1);

 }

 }

 if (previous.length > 0) {

 yield previous;

 }

}

Now that we have an asynchronous iterable over lines, we can use

the solution of a previous exercise, numberLines(), to number those

lines:

async function* chunkIterable() {

 yield 'First\nSec';

 yield 'ond\nThird\nF';

 yield 'ourth';

}

const linesIterable = chunksToLines(chunkIterable());

assert.deepEqual(

 await asyncIterableToArray(linesIterable),

 [

 'First\n',

 'Second\n',

 'Third\n',

 'Fourth',

]);

async function* numberLines(linesAsync) {

 let lineNumber = 1;

 for await (const line of linesAsync) {

 yield lineNumber + ': ' + line;

 lineNumber++;

 }

}

const numberedLines = numberLines(chunksToLines(chunkIterable())

assert.deepEqual(

 await asyncIterableToArray(numberedLines),

 [

 '1: First\n',

 '2: Second\n',

 '3: Third\n',

 '4: Fourth',

]);

43 Regular expressions

(RegExp)

43.1 Creating regular expressions

43.1.1 Literal vs. constructor

43.1.2 Cloning and non-destructively modifying regular

expressions

43.2 Syntax

43.2.1 Syntax characters

43.2.2 Basic atoms

43.2.3 Unicode property escapes
[ES2018]

43.2.4 Character classes

43.2.5 Groups

43.2.6 Quantifiers

43.2.7 Assertions

43.2.8 Disjunction (|)

43.3 Flags

43.3.1 Flag: Unicode mode via /u

43.4 Properties of regular expression objects

43.4.1 Flags as properties

43.4.2 Other properties

43.5 Methods for working with regular expressions

43.5.1 In general, regular expressions match anywhere in a

string

43.5.2 regExp.test(str): is there a match?
[ES3]

43.5.3 str.search(regExp): at what index is the match?

[ES3]

43.5.4 regExp.exec(str): capturing groups
[ES3]

43.5.5 str.match(regExp): return all matching substrings

[ES3]

43.5.6 str.replace(searchValue, replacementValue)
[ES3]

43.5.7 Other methods for working with regular expressions

43.6 Flag /g and its pitfalls

43.6.1 Pitfall: You can’t inline a regular expression with flag

/g

43.6.2 Pitfall: Removing /g can break code

43.6.3 Pitfall: Adding /g can break code

43.6.4 Pitfall: Code can break if .lastIndex isn’t zero

43.6.5 Dealing with /g and .lastIndex

43.7 Techniques for working with regular expressions

43.7.1 Escaping arbitrary text for regular expressions

43.7.2 Matching everything or nothing

 Availability of features

Unless stated otherwise, each regular expression feature has been

available since ES3.

43.1 Creating regular expressions

43.1.1 Literal vs. constructor

The two main ways of creating regular expressions are:

Literal: compiled statically (at load time).

Constructor: compiled dynamically (at runtime).

Both regular expressions have the same two parts:

The body abc – the actual regular expression.

The flags u and i. Flags configure how the pattern is interpreted.

For example, i enables case-insensitive matching. A list of

available flags is given later in this chapter.

43.1.2 Cloning and non-destructively

modifying regular expressions

There are two variants of the constructor RegExp():

new RegExp(pattern : string, flags = '')
[ES3]

A new regular expression is created as specified via pattern. If

flags is missing, the empty string '' is used.

/abc/ui

new RegExp('abc', 'ui')

new RegExp(regExp : RegExp, flags = regExp.flags)
[ES6]

regExp is cloned. If flags is provided, then it determines the

flags of the clone.

The second variant is useful for cloning regular expressions,

optionally while modifying them. Flags are immutable and this is the

only way of changing them – for example:

function copyAndAddFlags(regExp, flagsToAdd='') {

 // The constructor doesn’t allow duplicate flags;

 // make sure there aren’t any:

 const newFlags = [...new Set(regExp.flags + flagsToAdd)].join(

 return new RegExp(regExp, newFlags);

}

assert.equal(/abc/i.flags, 'i');

assert.equal(copyAndAddFlags(/abc/i, 'g').flags, 'gi');

43.2 Syntax

43.2.1 Syntax characters

At the top level of a regular expression, the following syntax

characters are special. They are escaped by prefixing a backslash (\).

\ ^ $. * + ? () [] { } |

In regular expression literals, you must escape slashs:

In the argument of new RegExp(), you don’t have to escape slashes:

43.2.2 Basic atoms

Atoms are the basic building blocks of regular expressions.

Pattern characters are all characters except syntax characters

(^, $, etc.). Pattern characters match themselves. Examples: A b

%

. matches any character. You can use the flag /s (dotall) to

control if the dot matches line terminators or not (more below).

Character escapes (each escape matches a single fixed

character):

Control escapes (for a few control characters):

> /\//.test('/')

true

> new RegExp('/').test('/')

true

\f: form feed (FF)

\n: line feed (LF)

\r: carriage return (CR)

\t: character tabulation

\v: line tabulation

Arbitrary control characters: \cA (Ctrl-A), …, \cZ (Ctrl-Z)

Unicode code units: \u00E4

Unicode code points (require flag /u): \u{1F44D}

Character class escapes (each escape matches one out of a set of

characters):

\d: digits (same as [0-9])

\D: non-digits

\w: “word” characters (same as [A-Za-z0-9_], related to

identifiers in programming languages)

\W: non-word characters

\s: whitespace (space, tab, line terminators, etc.)

\S: non-whitespace

Unicode property escapes
[ES2018]

: \p{White_Space},

\P{White_Space}, etc.

Require flag /u.

Described in the next subsection.

43.2.3 Unicode property escapes

[ES2018]

43.2.3.1 Unicode character properties

In the Unicode standard, each character has properties – metadata

describing it. Properties play an important role in defining the nature

of a character. Quoting the Unicode Standard, Sect. 3.3, D3:

The semantics of a character are determined by its identity,

normative properties, and behavior.

These are a few examples of properties:

Name: a unique name, composed of uppercase letters, digits,

hyphens, and spaces – for example:

A: Name = LATIN CAPITAL LETTER A

🙂: Name = SLIGHTLY SMILING FACE

General_Category: categorizes characters – for example:

x: General_Category = Lowercase_Letter

$: General_Category = Currency_Symbol

White_Space: used for marking invisible spacing characters, such

as spaces, tabs and newlines – for example:

\t: White_Space = True

π: White_Space = False

Age: version of the Unicode Standard in which a character was

introduced – for example: The Euro sign € was added in version

2.1 of the Unicode standard.

€: Age = 2.1

Block: a contiguous range of code points. Blocks don’t overlap

and their names are unique. For example:

S: Block = Basic_Latin (range U+0000..U+007F)

🙂: Block = Emoticons (range U+1F600..U+1F64F)

http://www.unicode.org/versions/Unicode9.0.0/ch03.pdf

Script: is a collection of characters used by one or more writing

systems.

Some scripts support several writing systems. For example,

the Latin script supports the writing systems English,

French, German, Latin, etc.

Some languages can be written in multiple alternate writing

systems that are supported by multiple scripts. For

example, Turkish used the Arabic script before it

transitioned to the Latin script in the early 20th century.

Examples:

α: Script = Greek

Д: Script = Cyrillic

43.2.3.2 Unicode property escapes

Unicode property escapes look like this:

1. \p{prop=value}: matches all characters whose property prop has

the value value.

2. \P{prop=value}: matches all characters that do not have a

property prop whose value is value.

3. \p{bin_prop}: matches all characters whose binary property

bin_prop is True.

4. \P{bin_prop}: matches all characters whose binary property

bin_prop is False.

Comments:

You can only use Unicode property escapes if the flag /u is set.

Without /u, \p is the same as p.

Forms (3) and (4) can be used as abbreviations if the property is

General_Category. For example, the following two escapes are

equivalent:

\p{Lowercase_Letter}

\p{General_Category=Lowercase_Letter}

Examples:

Checking for whitespace:

Checking for Greek letters:

Deleting any letters:

Deleting lowercase letters:

Further reading:

Lists of Unicode properties and their values: “Unicode Standard

Annex #44: Unicode Character Database” (Editors: Mark Davis,

Laurențiu Iancu, Ken Whistler)

43.2.4 Character classes

> /^\p{White_Space}+$/u.test('\t \n\r')

true

> /^\p{Script=Greek}+$/u.test('μετά')

true

> '1π2ü3é4'.replace(/\p{Letter}/ug, '')

'1234'

> 'AbCdEf'.replace(/\p{Lowercase_Letter}/ug, '')

'ACE'

https://unicode.org/reports/tr44/#Properties

A character class wraps class ranges in square brackets. The class

ranges specify a set of characters:

[«class ranges»] matches any character in the set.

[^«class ranges»] matches any character not in the set.

Rules for class ranges:

Non-syntax characters stand for themselves: [abc]

Only the following four characters are special and must be

escaped via slashes:

^ \ -]

^ only has to be escaped if it comes first.

- need not be escaped if it comes first or last.

Character escapes (\n, \u{1F44D}, etc.) have the usual meaning.

Watch out: \b stands for backspace. Elsewhere in a regular

expression, it matches word boundaries.

Character class escapes (\d, \p{White_Space}, etc.) have the

usual meaning.

Ranges of characters are specified via dashes: [a-z]

43.2.5 Groups

Positional capture group: (#+)

Backreference: \1, \2, etc.

Named capture group
[ES2018]

: (?<hashes>#+)

Backreference: \k<hashes>

Noncapturing group: (?:#+)

43.2.6 Quantifiers

By default, all of the following quantifiers are greedy (they match as

many characters as possible):

?: match never or once

*: match zero or more times

+: match one or more times

{n}: match n times

{n,}: match n or more times

{n,m}: match at least n times, at most m times.

To make them reluctant (so that they match as few characters as

possible), put question marks (?) after them:

43.2.7 Assertions

^ matches only at the beginning of the input

$ matches only at the end of the input

\b matches only at a word boundary

\B matches only when not at a word boundary

43.2.7.1 Lookahead

> /".*"/.exec('"abc"def"')[0] // greedy

'"abc"def"'

> /".*?"/.exec('"abc"def"')[0] // reluctant

'"abc"'

Positive lookahead: (?=«pattern») matches if pattern matches

what comes next.

Example: sequences of lowercase letters that are followed by an X.

Note that the X itself is not part of the matched substring.

Negative lookahead: (?!«pattern») matches if pattern does not

match what comes next.

Example: sequences of lowercase letters that are not followed by an

X.

43.2.7.2 Lookbehind
[ES2018]

Positive lookbehind: (?<=«pattern») matches if pattern matches

what came before.

Example: sequences of lowercase letters that are preceded by an X.

Negative lookbehind: (?<!«pattern») matches if pattern does not

match what came before.

Example: sequences of lowercase letters that are not preceded by an

X.

> 'abcX def'.match(/[a-z]+(?=X)/g)

['abc']

> 'abcX def'.match(/[a-z]+(?!X)/g)

['ab', 'def']

> 'Xabc def'.match(/(?<=X)[a-z]+/g)

['abc']

Example: replace “.js” with “.html”, but not in “Node.js”.

43.2.8 Disjunction (|)

Caveat: this operator has low precedence. Use groups if necessary:

^aa|zz$ matches all strings that start with aa and/or end with zz.

Note that | has a lower precedence than ^ and $.

^(aa|zz)$ matches the two strings 'aa' and 'zz'.

^a(a|z)z$ matches the two strings 'aaz' and 'azz'.

> 'Xabc def'.match(/(?<!X)[a-z]+/g)

['bc', 'def']

> 'Node.js: index.js and main.js'.replace(/(?<!Node)\.js/g, '.ht

'Node.js: index.html and main.html'

43.3 Flags

Table 20: These are the regular expression flags supported by

JavaScript.

Literal

flag

Property

name
ES Description

g global ES3 Match multiple times

i ignoreCase ES3 Match case-insensitively

m multiline ES3 ^ and $ match per line

s dotall ES2018 Dot matches line

terminators

u unicode ES6 Unicode mode

(recommended)

y sticky ES6 No characters between

matches

The following regular expression flags are available in JavaScript

(tbl. 20 provides a compact overview):

/g (.global): fundamentally changes how the following methods

work.

RegExp.prototype.test()

RegExp.prototype.exec()

String.prototype.match()

How, is explained in §43.6 “Flag /g and its pitfalls”. In a

nutshell, without /g, the methods only consider the first match

for a regular expression in an input string. With /g, they

consider all matches.

/i (.ignoreCase): switches on case-insensitive matching:

/m (.multiline): If this flag is on, ^ matches the beginning of

each line and $ matches the end of each line. If it is off, ^

matches the beginning of the whole input string and $ matches

the end of the whole input string.

/u (.unicode): This flag switches on the Unicode mode for a

regular expression. That mode is explained in the next

subsection.

/y (.sticky): This flag mainly makes sense in conjunction with

/g. When both are switched on, any match must directly follow

the previous one (that is, it must start at index .lastIndex of the

regular expression object). Therefore, the first match must be at

index 0.

> /a/.test('A')

false

> /a/i.test('A')

true

> 'a1\na2\na3'.match(/^a./gm)

['a1', 'a2', 'a3']

> 'a1\na2\na3'.match(/^a./g)

['a1']

> 'a1a2 a3'.match(/a./gy)

['a1', 'a2']

> '_a1a2 a3'.match(/a./gy) // first match must be at index 0

null

The main use case for /y is tokenization (during parsing).

/s (.dotall): By default, the dot does not match line

terminators. With this flag, it does:

Workaround if /s isn’t supported: Use [^] instead of a dot.

43.3.1 Flag: Unicode mode via /u

The flag /u switches on a special Unicode mode for regular

expressions. That mode enables several features:

In patterns, you can use Unicode code point escapes such as

\u{1F42A} to specify characters. Code unit escapes such as

\u03B1 only have a range of four hexadecimal digits (which

corresponds to the basic multilingual plane).

In patterns, you can use Unicode property escapes such as

\p{White_Space}.

Many escapes are now forbidden. For example: \a \- \:

> 'a1a2 a3'.match(/a./g)

['a1', 'a2', 'a3']

> '_a1a2 a3'.match(/a./g)

['a1', 'a2', 'a3']

> /./.test('\n')

false

> /./s.test('\n')

true

> /[^]/.test('\n')

true

Pattern characters always match themselves:

Without /u, there are some pattern characters that still match

themselves if you escape them with backslashes:

With /u:

\p starts a Unicode property escape.

The remaining “self-matching” escapes are forbidden. As a

consequence, they can now be used for new features in the

future.

The atomic units for matching are Unicode characters (code

points), not JavaScript characters (code units).

The following subsections explain the last item in more detail. They

use the following Unicode character to explain when the atomic units

are Unicode characters and when they are JavaScript characters:

I’m only switching between 🙂 and \uD83D\uDE42, to illustrate how

JavaScript sees things. Both are equivalent and can be used

interchangeably in strings and regular expressions.

> /pa-:/.test('pa-:')

true

> /\p\a\-\:/.test('pa-:')

true

const codePoint = '🙂';

const codeUnits = '\uD83D\uDE42'; // UTF-16

assert.equal(codePoint, codeUnits); // same string!

43.3.1.1 Consequence: you can put Unicode characters in

character classes

With /u, the two code units of 🙂 are treated as a single character:

Without /u, 🙂 is treated as two characters:

Note that ^ and $ demand that the input string have a single

character. That’s why the first result is false.

43.3.1.2 Consequence: the dot operator (.) matches

Unicode characters, not JavaScript characters

With /u, the dot operator matches Unicode characters:

.match() plus /g returns an Array with all the matches of a regular

expression.

Without /u, the dot operator matches JavaScript characters:

> /^[🙂]$/u.test('🙂')

true

> /^[\uD83D\uDE42]$/.test('\uD83D\uDE42')

false

> /^[\uD83D\uDE42]$/.test('\uDE42')

true

> '🙂'.match(/./gu).length

1

> '\uD83D\uDE80'.match(/./g).length

2

43.3.1.3 Consequence: quantifiers apply to Unicode

characters, not JavaScript characters

With /u, a quantifier applies to the whole preceding Unicode

character:

Without /u, a quantifier only applies to the preceding JavaScript

character:

> /^🙂{3}$/u.test('🙂🙂🙂')

true

> /^\uD83D\uDE80{3}$/.test('\uD83D\uDE80\uDE80\uDE80')

true

43.4 Properties of regular

expression objects

Noteworthy:

Strictly speaking, only .lastIndex is a real instance property. All

other properties are implemented via getters.

Accordingly, .lastIndex is the only mutable property. All other

properties are read-only. If you want to change them, you need

to copy the regular expression (consult §43.1.2 “Cloning and

non-destructively modifying regular expressions” for details).

43.4.1 Flags as properties

Each regular expression flag exists as a property with a longer, more

descriptive name:

This is the complete list of flag properties:

.dotall (/s)

.global (/g)

.ignoreCase (/i)

.multiline (/m)

.sticky (/y)

.unicode (/u)

> /a/i.ignoreCase

true

> /a/.ignoreCase

false

43.4.2 Other properties

Each regular expression also has the following properties:

.source
[ES3]

: The regular expression pattern

.flags
[ES6]

: The flags of the regular expression

.lastIndex
[ES3]

: Used when flag /g is switched on. Consult §43.6

“Flag /g and its pitfalls” for details.

> /abc/ig.source

'abc'

> /abc/ig.flags

'gi'

43.5 Methods for working with

regular expressions

43.5.1 In general, regular expressions

match anywhere in a string

Note that, in general, regular expressions match anywhere in a

string:

You can change that by using assertions such as ^ or by using the flag

/y:

43.5.2 regExp.test(str): is there a match?

[ES3]

The regular expression method .test() returns true if regExp

matches str:

> /a/.test('__a__')

true

> /^a/.test('__a__')

false

> /^a/.test('a__')

true

> /bc/.test('ABCD')

false

> /bc/i.test('ABCD')

true

> /\.mjs$/.test('main.mjs')

true

With .test() you should normally avoid the /g flag. If you use it, you

generally don’t get the same result every time you call the method:

The results are due to /a/ having two matches in the string. After all

of those were found, .test() returns false.

43.5.3 str.search(regExp): at what index is

the match?
[ES3]

The string method .search() returns the first index of str at which

there is a match for regExp:

43.5.4 regExp.exec(str): capturing groups

[ES3]

43.5.4.1 Getting a match object for the first match

Without the flag /g, .exec() returns the captures of the first match

for regExp in str:

> const r = /a/g;

> r.test('aab')

true

> r.test('aab')

true

> r.test('aab')

false

> '_abc_'.search(/abc/)

1

> 'main.mjs'.search(/\.mjs$/)

4

The result is a match object with the following properties:

[0]: the complete substring matched by the regular expression

[1]: capture of positional group 1 (etc.)

.index: where did the match occur?

.input: the string that was matched against

.groups: captures of named groups

43.5.4.2 Named capture groups
[ES2018]

The previous example contained a single positional group. The

following example demonstrates named groups:

In the result of .exec(), you can see that a named group is also a

positional group – its capture exists twice:

assert.deepEqual(

 /(a+)b/.exec('ab aab'),

 {

 0: 'ab',

 1: 'a',

 index: 0,

 input: 'ab aab',

 groups: undefined,

 }

);

assert.deepEqual(

 /(?<as>a+)b/.exec('ab aab'),

 {

 0: 'ab',

 1: 'a',

 index: 0,

 input: 'ab aab',

 groups: { as: 'a' },

 }

);

Once as a positional capture (property '1').

Once as a named capture (property groups.as).

43.5.4.3 Looping over multiple matches

If you want to retrieve all matches of a regular expression (not just

the first one), you need to switch on the flag /g. Then you can call

.exec() multiple times and get one match each time. After the last

match, .exec() returns null.

Therefore, you can loop over all matches as follows:

Sharing regular expressions with /g has a few pitfalls, which are

explained later.

> const regExp = /(a+)b/g;

> regExp.exec('ab aab')

{ 0: 'ab', 1: 'a', index: 0, input: 'ab aab', groups: undefined

> regExp.exec('ab aab')

{ 0: 'aab', 1: 'aa', index: 3, input: 'ab aab', groups: undefine

> regExp.exec('ab aab')

null

const regExp = /(a+)b/g;

const str = 'ab aab';

let match;

// Check for null via truthiness

// Alternative: while ((match = regExp.exec(str)) !== null)

while (match = regExp.exec(str)) {

 console.log(match[1]);

}

// Output:

// 'a'

// 'aa'

 Exercise: Extract quoted text via .exec()

exercises/regexps/extract_quoted_test.mjs

43.5.5 str.match(regExp): return all

matching substrings
[ES3]

Without /g, .match() works like .exec() – it returns a single match

object.

With /g, .match() returns all substrings of str that match regExp:

If there is no match, .match() returns null:

You can use the Or operator to protect yourself against null:

43.5.6 str.replace(searchValue,

replacementValue)
[ES3]

.replace() is overloaded – it works differently, depending on the

types of its parameters:

If searchValue is:

> 'ab aab'.match(/(a+)b/g)

['ab', 'aab']

> 'xyz'.match(/(a+)b/g)

null

const numberOfMatches = (str.match(regExp) || []).length;

Regular expression without /g: Replace first match of this

regular expression.

Regular expression with /g: Replace all matches of this

regular expression.

String: Replace first occurrence of this string (the string is

interpreted verbatim, not as a regular expression). Alas,

there is no way to replace every occurrence of a string. Later

in this chapter, we’ll see a tool function that converts a

string into a regular expression that matches this string

(e.g., '*' becomes /*/).

If replacementValue is:

String: Replace matches with this string. The character $

has special meaning and lets you insert captures of groups

and more (read on for details).

Function: Compute strings that replace matches via this

function.

The next two subsubsections assume that a regular expression with

/g is being used.

43.5.6.1 replacementValue is a string

If the replacement value is a string, the dollar sign has special

meaning – it inserts text matched by the regular expression:

Text Result

$$ single $

$& complete match

Text Result

$` text before match

$' text after match

$n capture of positional group n (n > 0)

$<name> capture of named group name
[ES2018]

Example: Inserting the text before, inside, and after the matched

substring.

Example: Inserting the captures of positional groups.

Example: Inserting the captures of named groups.

43.5.6.2 replacementValue is a function

If the replacement value is a function, you can compute each

replacement. In the following example, we multiply each non-

negative integer that we find by two.

> 'a1 a2'.replace(/a/g, "($`|$&|$')")

'(|a|1 a2)1 (a1 |a|2)2'

> const regExp = /^([A-Za-z]+): (.*)$/ug;

> 'first: Jane'.replace(regExp, 'KEY: $1, VALUE: $2')

'KEY: first, VALUE: Jane'

> const regExp = /^(?<key>[A-Za-z]+): (?<value>.*)$/ug;

> 'first: Jane'.replace(regExp, 'KEY: $<key>, VALUE: $<value>')

'KEY: first, VALUE: Jane'

assert.equal(

 '3 cats and 4 dogs'.replace(/[0-9]+/g, (all) => 2 * Number(all

 '6 cats and 8 dogs'

);

The replacement function gets the following parameters. Note how

similar they are to match objects. These parameters are all

positional, but I’ve included how one might name them:

all: complete match

g1: capture of positional group 1

Etc.

index: where did the match occur?

input: the string in which we are replacing

groups
[ES2018]

: captures of named groups (an object)

 Exercise: Change quotes via .replace() and a named

group

exercises/regexps/change_quotes_test.mjs

43.5.7 Other methods for working with

regular expressions

String.prototype.split() is described in the chapter on strings. Its

first parameter of String.prototype.split() is either a string or a

regular expression. If it is the latter, then captures of groups appear

in the result:

> 'a:b : c'.split(':')

['a', 'b ', ' c']

> 'a:b : c'.split(/ *: */)

['a', 'b', 'c']

> 'a:b : c'.split(/(*):(*)/)

['a', '', '', 'b', ' ', ' ', 'c']

43.6 Flag /g and its pitfalls

The following two regular expression methods work differently if /g

is switched on:

RegExp.prototype.exec()

RegExp.prototype.test()

Then they can be called repeatedly and deliver all matches inside a

string. Property .lastIndex of the regular expression is used to track

the current position inside the string – for example:

The next subsections explain the pitfalls of using /g. They are

followed by a subsection that explains how to work around those

pitfalls.

43.6.1 Pitfall: You can’t inline a regular

expression with flag /g

const r = /a/g;

assert.equal(r.lastIndex, 0);

assert.equal(r.test('aa'), true); // 1st match?

assert.equal(r.lastIndex, 1); // after 1st match

assert.equal(r.test('aa'), true); // 2nd match?

assert.equal(r.lastIndex, 2); // after 2nd match

assert.equal(r.test('aa'), false); // 3rd match?

assert.equal(r.lastIndex, 0); // start over

A regular expression with /g can’t be inlined. For example, in the

following while loop, the regular expression is created fresh, every

time the condition is checked. Therefore, its .lastIndex is always

zero and the loop never terminates.

43.6.2 Pitfall: Removing /g can break

code

If code expects a regular expression with /g and has a loop over the

results of .exec() or .test(), then a regular expression without /g

can cause an infinite loop:

Why? Because .exec() always returns the first result, a match object,

and never null.

43.6.3 Pitfall: Adding /g can break code

let count = 0;

// Infinite loop

while (/a/g.test('babaa')) {

 count++;

}

function countMatches(regExp) {

 let count = 0;

 // Infinite loop

 while (regExp.exec('babaa')) {

 count++;

 }

 return count;

}

countMatches(/a/); // Missing: flag /g

With .test(), there is another caveat: if you want to check exactly

once if a regular expression matches a string, then the regular

expression must not have /g. Otherwise, you generally get a different

result every time you call .test():

Normally, you won’t add /g if you intend to use .test() in this

manner. But it can happen if, for example, you use the same regular

expression for testing and for replacing.

43.6.4 Pitfall: Code can break if .lastIndex

isn’t zero

If you match a regular expression multiple times via .exec() or

.test(), the current position inside the input string is stored in the

regular expression property .lastIndex. Therefore, code that

matches multiple times may break if .lastIndex is not zero:

function isMatching(regExp) {

 return regExp.test('Xa');

}

const myRegExp = /^X/g;

assert.equal(isMatching(myRegExp), true);

assert.equal(isMatching(myRegExp), false);

function countMatches(regExp) {

 let count = 0;

 while (regExp.exec('babaa')) {

 count++;

 }

 return count;

}

const myRegExp = /a/g;

myRegExp.lastIndex = 4;

assert.equal(countMatches(myRegExp), 1); // should be 3

Note that .lastIndex is always zero in newly created regular

expressions, but it may not be if the same regular expression is used

multiple times.

43.6.5 Dealing with /g and .lastIndex

As an example of dealing with /g and .lastIndex, we will implement

the following function:

It counts how often regExp has a match inside str. How do we

prevent a wrong regExp from breaking our code? Let’s look at three

approaches.

First, we can throw an exception if /g isn’t set or .lastIndex isn’t

zero:

Second, we can clone the parameter. That has the added benefit that

regExp won’t be changed.

countMatches(regExp, str)

function countMatches(regExp, str) {

 if (!regExp.global) {

 throw new Error('Flag /g of regExp must be set');

 }

 if (regExp.lastIndex !== 0) {

 throw new Error('regExp.lastIndex must be zero');

 }

 let count = 0;

 while (regExp.test(str)) {

 count++;

 }

 return count;

}

Third, we can use .match() to count occurrences, which doesn’t

change or depend on .lastIndex.

function countMatches(regExp, str) {

 const cloneFlags = regExp.flags + (regExp.global ? '' : 'g');

 const clone = new RegExp(regExp, cloneFlags);

 let count = 0;

 while (clone.test(str)) {

 count++;

 }

 return count;

}

function countMatches(regExp, str) {

 if (!regExp.global) {

 throw new Error('Flag /g of regExp must be set');

 }

 return (str.match(regExp) || []).length;

}

43.7 Techniques for working with

regular expressions

43.7.1 Escaping arbitrary text for regular

expressions

The following function escapes an arbitrary text so that it is matched

verbatim if you put it inside a regular expression:

In line A, we escape all syntax characters. We have to be selective

because the regular expression flag /u forbids many escapes – for

example: \a \: \-

The regular expression method .replace() only lets you replace plain

text once. With escapeForRegExp(), we can work around that

limitation and replace plain text multiple times:

43.7.2 Matching everything or nothing

function escapeForRegExp(str) {

 return str.replace(/[\\^$.*+?()[\]{}|]/g, '\\$&'); // (A)

}

assert.equal(escapeForRegExp('[yes?]'), String.raw`\[yes\?\]`);

assert.equal(escapeForRegExp('_g_'), String.raw`_g_`);

const plainText = ':-)';

const regExp = new RegExp(escapeForRegExp(plainText), 'ug');

assert.equal(

 ':-) :-) :-)'.replace(regExp, '🙂'), '🙂 🙂 🙂');

Sometimes, you may need a regular expression that matches

everything or nothing – for example, as a default value.

Match everything: /(?:)/

The empty group () matches everything. We make it non-

capturing (via ?:), to avoid unnecessary work.

Match nothing: /.^/

^ only matches at the beginning of a string. The dot moves

matching beyond the first character and now ^ doesn’t match

anymore.

> /(?:)/.test('')

true

> /(?:)/.test('abc')

true

> /.^/.test('')

false

> /.^/.test('abc')

false

44 Dates (Date)

44.1 Best practice: avoid the built-in Date

44.1.1 Things to look for in a date library

44.2 Time standards

44.2.1 Background: UTC vs. Z vs. GMT

44.2.2 Dates do not support time zones

44.3 Background: date time formats (ISO)

44.3.1 Tip: append a Z to make date parsing deterministic

44.4 Time values

44.4.1 Creating time values

44.4.2 Getting and setting time values

44.5 Creating Dates

44.5.1 Creating dates via numbers

44.5.2 Parsing dates from strings

44.5.3 Other ways of creating dates

44.6 Getters and setters

44.6.1 Time unit getters and setters

44.7 Converting Dates to strings

44.7.1 Strings with times

44.7.2 Strings with dates

44.7.3 Strings with dates and times

44.7.4 Other methods

This chapter describes JavaScript’s API for working with dates – the

class Date.

44.1 Best practice: avoid the built-

in Date

The JavaScript Date API is cumbersome to use. Hence, it’s best to

rely on a library for anything related to dates. Popular libraries

include:

Moment.js

Day.js

Luxon

js-joda

date-fns

Consult the blog post “Why you shouldn’t use Moment.js…” for the

pros and cons of these libraries.

Additionally, TC39 is working on a new date API for JavaScript:

temporal.

44.1.1 Things to look for in a date library

Two things are important to keep in mind:

Tree-shaking can considerably reduce the size of a library. It is a

technique of only deploying those exports of a library to a web

server that are imported somewhere. Functions are much more

amenable to tree-shaking than classes.

https://momentjs.com/
https://github.com/iamkun/dayjs
https://moment.github.io/luxon/
https://js-joda.github.io/js-joda/
https://github.com/date-fns/date-fns
https://inventi.studio/en/blog/why-you-shouldnt-use-moment-js
https://github.com/maggiepint/proposal-temporal

Support for time zones: As explained later, Date does not

support time zones, which introduces a number of pitfalls and is

a key weakness. Make sure that your date library supports them.

44.2 Time standards

44.2.1 Background: UTC vs. Z vs. GMT

UTC, Z, and GMT are ways of specifying time that are similar, but

subtly different:

UTC (Coordinated Universal Time) is the time standard that all

times zones are based on. They are specified relative to it. That

is, no country or territory has UTC as its local time zone.

Z (Zulu Time Zone) is a military time zone that is often used in

aviation and the military as another name for UTC+0.

GMT (Greenwich Mean Time) is a time zone used in some

European and African countries. It is UTC plus zero hours and

therefore has the same time as UTC.

Sources:

“The Difference Between GMT and UTC” at TimeAndDate.com

“Z – Zulu Time Zone (Military Time)” at TimeAndDate.com

44.2.2 Dates do not support time zones

Dates support the following time standards:

The local time zone (which depends on the current location)

UTC

https://www.timeanddate.com/time/gmt-utc-time.html
https://www.timeanddate.com/time/zones/z

Time offsets (relative to UTC)

Depending on the operation, only some of those options are

available. For example, when converting dates to strings or

extracting time units such as the day of the month, you can only

choose between the local time zone and UTC.

Internally, Dates are stored as UTC. When converting from or to the

local time zone, the necessary offsets are determined via the date. In

the following example, the local time zone is Europe/Paris:

Whenever you create or convert dates, you need to be mindful of the

time standard being used – for example: new Date() uses the local

time zone while .toISOString() uses UTC.

Dates interpret 0 as January. The day of the month is 27 in the local

time zone, but 26 in UTC.

 Documenting the time standards supported by each

operation

In the remainder of this chapter, the supported time standards are

noted for each operation.

// CEST (Central European Summer Time)

assert.equal(

 new Date('2122-06-29').getTimezoneOffset(), -120);

// CET (Central European Time)

assert.equal(

 new Date('2122-12-29').getTimezoneOffset(), -60);

> new Date(2077, 0, 27).toISOString()

'2077-01-26T23:00:00.000Z'

44.2.2.1 The downsides of not being able to specify time

zones

Not being able to specify time zones has two downsides:

It makes it impossible to support multiple time zones.

It can lead to location-specific bugs. For example, the previous

example produces different results depending on where it is

executed. To be safe:

Use UTC-based operations whenever possible

Use Z or a time offset when parsing strings (see the next

section for more information).

44.3 Background: date time

formats (ISO)

Date time formats describe:

The strings accepted by:

Date.parse()

new Date()

The strings returned by (always longest format):

Date.prototype.toISOString()

The following is an example of a date time string returned by

.toISOString():

Date time formats have the following structures:

Date formats: Y=year; M=month; D=day

YYYY-MM-DD

YYYY-MM

YYYY

Time formats: T=separator (the string 'T'); H=hour;

m=minute; s=second and millisecond; Z=Zulu Time Zone (the

string 'Z')

THH:mm:ss.sss

THH:mm:ss.sssZ

THH:mm:ss

THH:mm:ssZ

'2033-05-28T15:59:59.123Z'

THH:mm

THH:mmZ

Date time formats: are date formats followed by time formats.

For example (longest): YYYY-MM-DDTHH:mm:ss.sssZ

Instead of Z (which is UTC+0), we can also specify time offsets

relative to UTC:

THH:mm+HH:mm (etc.)

THH:mm-HH:mm (etc.)

44.3.1 Tip: append a Z to make date

parsing deterministic

If you add a Z to the end of a string, date parsing doesn’t produce

different results at different locations:

Without Z: Input is January 27 (in the Europe/Paris time zone),

output is January 26 (in UTC).

With Z: Input is January 27, output is January 27.

> new Date('2077-01-27T00:00').toISOString()

'2077-01-26T23:00:00.000Z'

> new Date('2077-01-27T00:00Z').toISOString()

'2077-01-27T00:00:00.000Z'

44.4 Time values

A time value represents a date via the number of milliseconds since 1

January 1970 00:00:00 UTC.

Time values can be used to create Dates:

Coercing a Date to a number returns its time value:

Ordering operators coerce their operands to numbers. Therefore, you

can use these operators to compare Dates:

44.4.1 Creating time values

The following methods create time values:

Date.now(): number (UTC)

Returns the current time as a time value.

const timeValue = 0;

assert.equal(

 new Date(timeValue).toISOString(),

 '1970-01-01T00:00:00.000Z');

> Number(new Date(123))

123

assert.equal(

 new Date('1972-05-03') < new Date('2001-12-23'), true);

// Internally:

assert.equal(73699200000 < 1009065600000, true);

Date.parse(dateTimeStr: string): number (local time zone,

UTC, time offset)

Parses dateTimeStr and returns the corresponding time value.

Date.UTC(year, month, date?, hours?, minutes?, seconds?,

milliseconds?): number (UTC)

Returns the time value for the specified UTC date time.

44.4.2 Getting and setting time values

Date.prototype.getTime(): number (UTC)

Returns the time value corresponding to the Date.

Date.prototype.setTime(timeValue) (UTC)

Sets this to the date encoded by timeValue.

44.5 Creating Dates

44.5.1 Creating dates via numbers

new Date(year: number, month: number, date?: number, hours?:

number, minutes?: number, seconds?: number, milliseconds?:

number) (local time zone)

Two of the parameters have pitfalls:

For month, 0 is January, 1 is February, etc.

If 0 ≤ year ≤ 99, then 1900 is added:

That’s why, elsewhere in this chapter, we avoid the time unit

year and always use fullYear. But in this case, we have no

choice.

Example:

Note that the input hours (21) are different from the output hours

(20). The former refer to the local time zone, the latter to UTC.

44.5.2 Parsing dates from strings

new Date(dateTimeStr: string) (local time zone, UTC, time offset)

> new Date(12, 1, 22, 19, 11).getFullYear()

1912

> new Date(2077,0,27, 21,49).toISOString() // CET (UTC+1)

'2077-01-27T20:49:00.000Z'

If there is a Z at the end, UTC is used:

If there is not Z or time offset at the end, the local time zone is used:

If a string only contains a date, it is interpreted as UTC:

44.5.3 Other ways of creating dates

new Date(timeValue: number) (UTC)

new Date() (UTC)

The same as new Date(Date.now()).

> new Date('2077-01-27T00:00Z').toISOString()

'2077-01-27T00:00:00.000Z'

> new Date('2077-01-27T00:00').toISOString() // CET (UTC+1)

'2077-01-26T23:00:00.000Z'

> new Date('2077-01-27').toISOString()

'2077-01-27T00:00:00.000Z'

> new Date(0).toISOString()

'1970-01-01T00:00:00.000Z'

44.6 Getters and setters

44.6.1 Time unit getters and setters

Dates have getters and setters for time units – for example:

Date.prototype.getFullYear()

Date.prototype.setFullYear(num)

These getters and setters conform to the following patterns:

Local time zone:

Date.prototype.get«Unit»()

Date.prototype.set«Unit»(num)

UTC:

Date.prototype.getUTC«Unit»()

Date.prototype.setUTC«Unit»(num)

These are the time units that are supported:

Date

FullYear

Month: month (0–11). Pitfall: 0 is January, etc.

Date: day of the month (1–31)

Day (getter only): day of the week (0–6, 0 is Sunday)

Time

Hours: hour (0–23)

Minutes: minutes (0–59)

Seconds: seconds (0–59)

Milliseconds: milliseconds (0–999)

There is one more getter that doesn’t conform to the previously

mentioned patterns:

Date.prototype.getTimezoneOffset()

Returns the time difference between local time zone and UTC in

minutes. For example, for Europe/Paris, it returns -120 (CEST,

Central European Summer Time) or -60 (CET, Central European

Time):

> new Date('2122-06-29').getTimezoneOffset()

-120

> new Date('2122-12-29').getTimezoneOffset()

-60

44.7 Converting Dates to strings

Example Date:

44.7.1 Strings with times

Date.prototype.toTimeString() (local time zone)

44.7.2 Strings with dates

Date.prototype.toDateString() (local time zone)

44.7.3 Strings with dates and times

Date.prototype.toString() (local time zone)

Date.prototype.toUTCString() (UTC)

const d = new Date(0);

> d.toTimeString()

'01:00:00 GMT+0100 (Central European Standard Time)'

> d.toDateString()

'Thu Jan 01 1970'

> d.toString()

'Thu Jan 01 1970 01:00:00 GMT+0100 (Central European Standar

> d.toUTCString()

'Thu, 01 Jan 1970 00:00:00 GMT'

Date.prototype.toISOString() (UTC)

44.7.4 Other methods

The following three methods are not really part of ECMAScript, but

rather of the ECMAScript internationalization API. That API has

much functionality for formatting dates (including support for time

zones), but not for parsing them.

Date.prototype.toLocaleTimeString()

Date.prototype.toLocaleDateString()

Date.prototype.toLocaleString()

 Exercise: Creating a date string

exercises/dates/create_date_string_test.mjs

> d.toISOString()

'1970-01-01T00:00:00.000Z'

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Intl

45 Creating and parsing

JSON (JSON)

45.1 The discovery and standardization of JSON

45.1.1 JSON’s grammar is frozen

45.2 JSON syntax

45.3 Using the JSON API

45.3.1 JSON.stringify(data, replacer?, space?)

45.3.2 JSON.parse(text, reviver?)

45.3.3 Example: converting to and from JSON

45.4 Customizing stringification and parsing (advanced)

45.4.1 .stringfy(): specifying which properties of objects

to stringify

45.4.2 .stringify() and .parse(): value visitors

45.4.3 Example: visiting values

45.4.4 Example: stringifying unsupported values

45.4.5 Example: parsing unsupported values

45.5 FAQ

45.5.1 Why doesn’t JSON support comments?

JSON (“JavaScript Object Notation”) is a storage format that uses

text to encode data. Its syntax is a subset of JavaScript expressions.

As an example, consider the following text, stored in a file jane.json:

{

 "first": "Jane",

JavaScript has the global namespace object JSON that provides

methods for creating and parsing JSON.

 "last": "Porter",

 "married": true,

 "born": 1890,

 "friends": ["Tarzan", "Cheeta"]

}

45.1 The discovery and

standardization of JSON

A specification for JSON was published by Douglas Crockford in

2001, at json.org. He explains:

I discovered JSON. I do not claim to have invented JSON

because it already existed in nature. What I did was I found it, I

named it, I described how it was useful. I don’t claim to be the

first person to have discovered it; I know that there are other

people who discovered it at least a year before I did. The earliest

occurrence I’ve found was, there was someone at Netscape who

was using JavaScript array literals for doing data

communication as early as 1996, which was at least five years

before I stumbled onto the idea.

Later, JSON was standardized as ECMA-404:

1st edition: October 2013

2nd edition: December 2017

45.1.1 JSON’s grammar is frozen

Quoting the ECMA-404 standard:

Because it is so simple, it is not expected that the JSON

grammar will ever change. This gives JSON, as a foundational

notation, tremendous stability.

http://json.org/
https://www.ecma-international.org/publications/standards/Ecma-404.htm

Therefore, JSON will never get improvements such as optional

trailing commas, comments, or unquoted keys – independently of

whether or not they are considered desirable. However, that still

leaves room for creating supersets of JSON that compile to plain

JSON.

45.2 JSON syntax

JSON consists of the following parts of JavaScript:

Compound:

Object literals:

Property keys are double-quoted strings.

Property values are JSON values.

No trailing commas are allowed.

Array literals:

Elements are JSON values.

No holes or trailing commas are allowed.

Atomic:

null (but not undefined)

Booleans

Numbers (excluding NaN, +Infinity, -Infinity)

Strings (must be double-quoted)

As a consequence, you can’t (directly) represent cyclic structures in

JSON.

45.3 Using the JSON API

The global namespace object JSON contains methods for working with

JSON data.

45.3.1 JSON.stringify(data, replacer?,

space?)

.stringify() converts JavaScript data to a JSON string. In this

section, we are ignoring the parameter replacer; it is explained in

§45.4 “Customizing stringification and parsing”.

45.3.1.1 Result: a single line of text

If you only provide the first argument, .stringify() returns a single

line of text:

45.3.1.2 Result: a tree of indented lines

If you provide a non-negative integer for space, then .stringify()

returns one or more lines and indents by space spaces per level of

nesting:

assert.equal(

 JSON.stringify({foo: ['a', 'b']}),

 '{"foo":["a","b"]}');

assert.equal(

JSON.stringify({foo: ['a', 'b']}, null, 2),

`{

 "foo": [

45.3.1.3 Details on how JavaScript data is stringified

Primitive values:

Supported primitive values are stringified as expected:

Unsupported numbers: 'null'

Other unsupported primitive values are not stringified; they

produce the result undefined:

Objects:

If an object has a method .toJSON(), then the result of that

method is stringified:

 "a",

 "b"

]

}`);

> JSON.stringify('abc')

'"abc"'

> JSON.stringify(123)

'123'

> JSON.stringify(null)

'null'

> JSON.stringify(NaN)

'null'

> JSON.stringify(Infinity)

'null'

> JSON.stringify(undefined)

undefined

> JSON.stringify(Symbol())

undefined

Dates have a method .toJSON() that returns a string:

Wrapped primitive values are unwrapped and stringified:

Arrays are stringified as Array literals. Unsupported Array

elements are stringified as if they were null:

All other objects – except for functions – are stringified as object

literals. Properties with unsupported values are omitted:

Functions are not stringified:

45.3.2 JSON.parse(text, reviver?)

.parse() converts a JSON text to a JavaScript value. In this section,

we are ignoring the parameter reviver; it is explained §45.4

> JSON.stringify({toJSON() {return true}})

'true'

> JSON.stringify(new Date(2999, 11, 31))

'"2999-12-30T23:00:00.000Z"'

> JSON.stringify(new Boolean(true))

'true'

> JSON.stringify(new Number(123))

'123'

> JSON.stringify([undefined, 123, Symbol()])

'[null,123,null]'

> JSON.stringify({a: Symbol(), b: true})

'{"b":true}'

> JSON.stringify(() => {})

undefined

“Customizing stringification and parsing”.

This is an example of using .parse():

45.3.3 Example: converting to and from

JSON

The following class implements conversions from (line A) and to

(line B) JSON.

Converting JSON to a point: We use the static method

Point.fromJson() to parse JSON and create an instance of Point.

> JSON.parse('{"foo":["a","b"]}')

{ foo: ['a', 'b'] }

class Point {

 static fromJson(jsonObj) { // (A)

 return new Point(jsonObj.x, jsonObj.y);

 }

 constructor(x, y) {

 this.x = x;

 this.y = y;

 }

 toJSON() { // (B)

 return {x: this.x, y: this.y};

 }

}

assert.deepEqual(

 Point.fromJson(JSON.parse('{"x":3,"y":5}')),

 new Point(3, 5));

Converting a point to JSON: JSON.stringify() internally calls

the previously mentioned method .toJSON().

 Exercise: Converting an object to and from JSON

exercises/json/to_from_json_test.mjs

assert.equal(

 JSON.stringify(new Point(3, 5)),

 '{"x":3,"y":5}');

45.4 Customizing stringification

and parsing (advanced)

Stringification and parsing can be customized as follows:

JSON.stringify(data, replacer?, space?)

The optional parameter replacer contains either:

An Array with names of properties. If a value in data is

stringified as an object literal, then only the mentioned

properties are considered. All other properties are ignored.

A value visitor, a function that can transform JavaScript

data before it is stringified.

JSON.parse(text, reviver?)

The optional parameter reviver contains a value visitor that can

transform the parsed JSON data before it is returned.

45.4.1 .stringfy(): specifying which

properties of objects to stringify

If the second parameter of .stringify() is an Array, then only object

properties, whose names are mentioned there, are included in the

result:

const obj = {

 a: 1,

 b: {

45.4.2 .stringify() and .parse(): value

visitors

What I call a value visitor is a function that transforms JavaScript

data:

JSON.stringify() lets the value visitor in its parameter replacer

transform JavaScript data before it is stringified.

JSON.parse() lets the value visitor in its parameter reviver

transform parsed JavaScript data before it is returned.

In this section, JavaScript data is considered to be a tree of values. If

the data is atomic, it is a tree that only has a root. All values in the

tree are fed to the value visitor, one at a time. Depending on what the

visitor returns, the current value is omitted, changed, or preserved.

A value visitor has the following type signature:

The parameters are:

value: The current value.

this: Parent of current value. The parent of the root value r is

{'': r}.

 c: 2,

 d: 3,

 }

};

assert.equal(

 JSON.stringify(obj, ['b', 'c']),

 '{"b":{"c":2}}');

type ValueVisitor = (key: string, value: any) => any;

Note: this is an implicit parameter and only available if the

value visitor is an ordinary function.

key: Key or index of the current value inside its parent. The key

of the root value is ''.

The value visitor can return:

value: means there won’t be any change.

A different value x: leads to value being replaced with x in the

output tree.

undefined: leads to value being omitted in the output tree.

45.4.3 Example: visiting values

The following code shows in which order a value visitor sees values:

const log = [];

function valueVisitor(key, value) {

 log.push({this: this, key, value});

 return value; // no change

}

const root = {

 a: 1,

 b: {

 c: 2,

 d: 3,

 }

};

JSON.stringify(root, valueVisitor);

assert.deepEqual(log, [

 { this: { '': root }, key: '', value: root },

 { this: root , key: 'a', value: 1 },

 { this: root , key: 'b', value: root.b },

 { this: root.b , key: 'c', value: 2 },

As we can see, the replacer of JSON.stringify() visits values top-

down (root first, leaves last). The rationale for going in that direction

is that we are converting JavaScript values to JSON values. And a

single JavaScript object may be expanded into a tree of JSON-

compatible values.

In contrast, the reviver of JSON.parse() visits values bottom-up

(leaves first, root last). The rationale for going in that direction is

that we are assembling JSON values into JavaScript values.

Therefore, we need to convert the parts before we can convert the

whole.

45.4.4 Example: stringifying

unsupported values

JSON.stringify() has no special support for regular expression

objects – it stringifies them as if they were plain objects:

We can fix that via a replacer:

 { this: root.b , key: 'd', value: 3 },

]);

const obj = {

 name: 'abc',

 regex: /abc/ui,

};

assert.equal(

 JSON.stringify(obj),

 '{"name":"abc","regex":{}}');

function replacer(key, value) {

 if (value instanceof RegExp) {

 return {

45.4.5 Example: parsing unsupported

values

To JSON.parse() the result from the previous section, we need a

reviver:

 __type__: 'RegExp',

 source: value.source,

 flags: value.flags,

 };

 } else {

 return value; // no change

 }

}

assert.equal(

JSON.stringify(obj, replacer, 2),

`{

 "name": "abc",

 "regex": {

 "__type__": "RegExp",

 "source": "abc",

 "flags": "iu"

 }

}`);

function reviver(key, value) {

 // Very simple check

 if (value && value.__type__ === 'RegExp') {

 return new RegExp(value.source, value.flags);

 } else {

 return value;

 }

}

const str = `{

 "name": "abc",

 "regex": {

 "__type__": "RegExp",

 "source": "abc",

 "flags": "iu"

 }

}`;

assert.deepEqual(

 JSON.parse(str, reviver),

 {

 name: 'abc',

 regex: /abc/ui,

 });

45.5 FAQ

45.5.1 Why doesn’t JSON support

comments?

Douglas Crockford explains why in a Google+ post from 1 May 2012:

I removed comments from JSON because I saw people were

using them to hold parsing directives, a practice which would

have destroyed interoperability. I know that the lack of

comments makes some people sad, but it shouldn’t.

Suppose you are using JSON to keep configuration files, which

you would like to annotate. Go ahead and insert all the

comments you like. Then pipe it through JSMin [a minifier for

JavaScript] before handing it to your JSON parser.

https://web.archive.org/web/20190308024153/https://plus.google.com/+DouglasCrockfordEsq/posts/RK8qyGVaGSr

46 Next steps: overview of

web development (bonus)

46.1 Tips against feeling overwhelmed

46.2 Things worth learning for web development

46.2.1 Keep an eye on WebAssembly (Wasm)!

46.3 Example: tool-based JavaScript workflow

46.4 An overview of JavaScript tools

46.4.1 Building: getting from the JavaScript you write to

the JavaScript you deploy

46.4.2 Static checking

46.4.3 Testing

46.4.4 Package managers

46.4.5 Libraries

46.5 Tools not related to JavaScript

You now know most of the JavaScript language. This chapter gives

an overview of web development and describes next steps. It answers

questions such as:

What should I learn next for web development?

What JavaScript-related tools should I know about?

46.1 Tips against feeling

overwhelmed

Web development has become a vast field: Between JavaScript, web

browsers, server-side JavaScript, JavaScript libraries, and JavaScript

tools, there is a lot to know. Additionally, everything is always

changing: some things go out of style, new things are invented, etc.

How can you avoid feeling overwhelmed when faced with this

constantly changing vastness of knowledge?

Focus on the web technologies that you work with most often

and learn them well. If you do frontend development, that may

be JavaScript, CSS, SVG, or something else.

For JavaScript: Know the language, but also try out one tool in

each of the following categories (which are covered in more

detail later).

Compilers: compile future JavaScript or supersets of

JavaScript to normal JavaScript.

Bundlers: combine all modules used by a web app into a

single file (a script or a module). That makes loading faster

and enables dead code elimination.

Static checkers. For example:

Linters: check for anti-patterns, style violations, and

more.

Type checkers: type JavaScript statically and report

errors.

Test libraries and tools

Version control (usually git)

 Trust in your ability to learn on demand

It is commendable to learn something out of pure curiosity. But

I’m wary of trying to learn everything and spreading yourself too

thin. That also induces an anxiety of not knowing enough (because

you never will). Instead, trust in your ability to learn things on

demand!

46.2 Things worth learning for

web development

These are a few things worth learning for web development:

Browser APIs such as the Document Object Model (DOM), the

browsers’ representation of HTML in memory. They are the

foundations of any kind of frontend development.

JavaScript-adjacent technologies such as HTML and CSS.

Frontend frameworks: When you get started with web

development, it can be instructive to write user interfaces

without any libraries. Once you feel more confident, frontend

frameworks make many things easier, especially for larger apps.

Popular frameworks include React, Angular, Vue, Ember, Svelte.

Node.js is the most popular platform for server-side JavaScript.

But it also lets you run JavaScript in the command line. Most

JavaScript-related tools (even compilers!) are implemented in

Node.js-based JavaScript and installed via npm. A good way to

get started with Node.js, is to use it for shell scripting.

JavaScript tooling: Modern web development involves many

tools. Later in this chapter, there is an overview of the current

tooling ecosystem.

Progressive web apps: The driving idea behind progressive web

apps is to give web apps features that, traditionally, only native

apps had – for example: native installation on mobile and

desktop operating systems; offline operation; showing

notifications to users. Google has published a checklist detailing

what makes a web app progressive. The minimum requirements

are:

The app must be served over HTTPS (not the unsecure

HTTP).

The app must have a Web App Manifest file, specifying

metadata such as app name and icon (often in multiple

resolutions). The file(s) of the icon must also be present.

The app must have a service worker: a base layer of the app

that runs in the background, in a separate process

(independently of web pages). One of its responsibilities is

to keep the app functioning when there is no internet

connection. Among others, two mechanisms help it do that:

It is a local proxy that supervises all of the web resource

requests of the app. And it has access to a browser’s cache.

Therefore, it can use the cache to fulfill requests when the

app is offline – after initially caching all critical resources.

Other capabilities of service workers include synchronizing

data in the background; receiving server-sent push

messages; and the aforementioned showing notifications to

users.

One good resource for learning web development – including and

beyond JavaScript – is MDN web docs.

https://developers.google.com/web/progressive-web-apps/checklist
https://developer.mozilla.org/en-US/docs/Learn

46.2.1 Keep an eye on WebAssembly

(Wasm)!

WebAssembly is a universal virtual machine that is built into most

JavaScript engines. You get the following distribution of work:

JavaScript is for dynamic, higher-level code.

WebAssembly is for static, lower-level code.

For static code, WebAssembly is quite fast: C/C++ code, compiled to

WebAssembly, is about 50% as fast as the same code, compiled to

native (source). Use cases include support for new video formats,

machine learning, gaming, etc.

WebAssembly works well as a compilation target for various

languages. Does this mean JavaScript will be compiled to

WebAssembly or replaced by another language?

46.2.1.1 Will JavaScript be compiled to WebAssembly?

JavaScript engines perform many optimizations for JavaScript’s

highly dynamic features. If you wanted to compile JavaScript to

WebAssembly, you’d have to implement these optimizations on top

of WebAssembly. The result would be slower than current engines

and have a similar code base. Therefore, you wouldn’t gain anything.

46.2.1.2 Will JavaScript be replaced by another language?

Does WebAssembly mean that JavaScript is about to be replaced by

another language? WebAssembly does make it easier to support

https://webassembly.org/
https://arxiv.org/abs/1901.09056

languages other than JavaScript in web browsers. But those

languages face several challenges on that platform:

All browser APIs are based on JavaScript.

The runtimes (standard library, etc.) of other languages incur an

additional memory overhead, whereas JavaScript’s runtime is

already built into web browsers.

JavaScript is well-known, has many libraries and tools, etc.

Additionally, many parts of the WebAssembly ecosystem (e.g.,

debugging) are works in progress.

For dynamic code, JavaScript is comparatively fast. Therefore, for

the foreseeable future, it will probably remain the most popular

choice for high-level code. For low-level code, compiling more static

languages (such as Rust) to WebAssembly is an intriguing option.

Given that it is just a virtual machine, there are not that many

practically relevant things to learn about WebAssembly. But it is

worth keeping an eye on its evolving role in web development. It is

also becoming popular as a stand-alone virtual machine; e.g.,

supported by the WebAssembly System Interface.

https://github.com/WebAssembly/WASI

46.3 Example: tool-based

JavaScript workflow

<script src="code.js">
<script src="library.js">

loads loads

Figure 32: A classic, very simple web app: An HTML file refers to a

JavaScript file code.js, which imbues the former with interactivity.

code.js uses the library library.js, which must also be loaded by the

HTML file.

Fig. 32 depicts a classic web app – when web development was less

sophisticated (for better and for worse):

index.html contains the HTML file that is opened in web

browsers.

code.js contains the JavaScript code loaded and used by

index.html.

That code depends on the library library.js, a file that was

downloaded manually and put next to code.js. It is accessed via

a global variable. Note that the HTML file needs to load the

dependency library.js for code.js. code.js can’t do that itself.

Since then, JavaScript workflows have become more complex.

Fig. 33 shows such a workflow – one that is based on the JavaScript

bundler webpack.

Entry

Output

importsimports

<script src="bundle.js">

compiled to compiled to

loads

added to

added to

added to

Figure 33: This is the workflow when developing a web app with the

bundler webpack. Our web app consists of multiple modules. We tell

webpack, in which one execution starts (the so-called entry point). It

then analyzes the imports of the entry point, the imports of the

imports, etc., to determine what code is needed to run the app. All of

that code is put into a single script file.

Let’s examine the pieces (data, tools, technologies) involved in this

workflow:

The app itself consists of multiple modules, written in

TypeScript – a language that is a statically typed superset of

JavaScript. Each file is an ECMAScript module, plus static type

annotations.

The library used by the app is now downloaded and installed via

the npm package manager. It also transparently handles

transitive dependencies – if this package depends on other

packages, etc.

All TypeScript files are compiled to plain JS via a loader, a

plugin for webpack.

The tool webpack combines all plain JavaScript files into a

single JavaScript script file. This process is called bundling.

Bundling is done for two reasons:

Downloading a single file is usually faster in web browsers.

During bundling, you can perform various optimizations,

such as leaving out code that isn’t used.

The basic structure is still the same: the HTML file loads a JavaScript

script file via a <script> element. However:

The code is now modular without the HTML file having to know

the modules.

bundle.js only includes the code that is needed to run the app

(vs. all of library.js).

We used a package manager to install the libraries that our code

depends on.

The libraries aren’t accessed via global variables but via ES

module specifiers.

In modern browsers, you can also deliver the bundle as a module

(vs. as a script file).

46.4 An overview of JavaScript

tools

Now that we have seen one workflow, let’s look at various categories

of tools that are popular in the world of JavaScript. You’ll see

categories of tools and lots of names of specific tools. The former are

much more important. The names change, as tools come into and out

of style, but I wanted you to see at least some of them.

46.4.1 Building: getting from the

JavaScript you write to the JavaScript

you deploy

Building JavaScript means getting from the JavaScript you write to

the JavaScript you deploy. The following tools are often involved in

this process:

Transpilers: A transpiler is a compiler that compiles source code

to source code. Two transpilers that are popular in the

JavaScript community are:

Babel compiles upcoming and modern JavaScript features

to older versions of the language. That means you can use

new features in your code and still run it on older browsers.

TypeScript is a superset of JavaScript. Roughly, it is the

latest version of JavaScript plus static typing.

Minifiers: A minifier compiles JavaScript to equivalent, smaller

(as in fewer characters) JavaScript. It does so by renaming

variables, removing comments, removing whitespace, etc.

For example, given the following input:

A minifier might produce:

Popular minifiers include: UglifyJS, babel-minify, Terser,

and Closure Compiler.

Bundlers: compile and optimize the code of a JavaScript app.

The input of a bundler is many files – all of the app’s code plus

the libraries it uses. A bundler combines these input files to

produce fewer output files (which tends to improve

performance).

A bundler minimizes the size of its output via techniques such as

tree-shaking. Tree-shaking is a form of dead code elimination:

only those module exports are put in the output that are

imported somewhere (across all code, while considering

transitive imports).

It is also common to perform compilation steps such as

transpiling and minification while bundling. In these cases, a

let numberOfOccurrences = 5;

if (Math.random()) {

 // Math.random() is not zero

 numberOfOccurrences++

}

let a=5;Math.random()&&a++;

http://lisperator.net/uglifyjs/
https://github.com/babel/minify
https://github.com/terser-js/terser
https://developers.google.com/closure/compiler/
https://medium.com/@asyncmax/the-right-way-to-bundle-your-assets-for-faster-sites-over-http-2-437c37efe3ff

bundler relies on the previously mentioned tools, packaged as

libraries.

Popular bundlers include webpack, browserify, Rollup, and

Parcel.

All of these tools and build steps are usually coordinated via so-called

task runners (think “make” in Unix). There are:

Dedicated task runners: grunt, gulp, broccoli, etc.

Tools that can be used as simple task runners: npm (via its

“scripts”) and webpack (via plugins).

46.4.2 Static checking

Static checking means analyzing source code statically (without

running it). It can be used to detect a variety of problems. Tools

include:

Linters: check the source code for problematic patterns, unused

variables, etc. Linters are especially useful if you are still

learning the language because they point out if you are doing

something wrong.

Popular linters include JSLint, JSHint, ESLint

Code style checkers: check if code is formatted properly. They

consider indentation, spaces after brackets, spaces after

commas, etc.

Example: JSCS (JavaScript Code Style checker)

Code formatters: automatically format your code for you,

according to rules that you can customize.

Example: Prettier

Type checkers: add static type checking to JavaScript.

Popular type checkers: TypeScript (which is also a

transpiler), Flow.

46.4.3 Testing

JavaScript has many testing frameworks – for example:

Unit testing: Jasmine, Mocha, AVA, Jest, Karma, etc.

Integration testing: Jenkins, Travis CI, etc.

User interface testing: CasperJS, Protractor, Nightwatch.js,

TestCafé, etc.

46.4.4 Package managers

The most popular package manager for JavaScript is npm. It started

as a package manager for Node.js but has since also become

dominant for client-side web development and tools of any kind.

There are alternatives to npm, but they are all based in one way or

another on npm’s software registry:

Yarn is a different take on npm; some of the features it

pioneered are now also supported by npm.

pnpm focuses on saving space when installing packages locally.

46.4.5 Libraries

https://yarnpkg.com/en/
https://github.com/pnpm/pnpm

Various helpers: lodash (which was originally based on the

Underscore.js library) is one of the most popular general helper

libraries for JavaScript.

Data structures: The following libraries are two examples among

many.

Immutable.js provides immutable data structures for

JavaScript.

Immer is an interesting lightweight alternative to

Immutable.js. It also doesn’t mutate the data it operates on,

but it works with normal objects and Arrays.

Date libraries: JavaScript’s built-in support for dates is limited

and full of pitfalls. The chapter on dates lists libraries that you

can use instead.

Internationalization: In this area, ECMAScript’s standard library

is complemented by the ECMAScript Internationalization API

(ECMA-402). It is accessed via the global variable Intl and

available in most modern browsers.

Implementing and accessing services: The following are two

popular options that are supported by a variety of libraries and

tools.

REST (Representative State Transfer) is one popular option

for services and based on HTTP(S).

GraphQL is more sophisticated (for example, it can

combine multiple data sources) and supports a query

language.

https://github.com/facebook/immutable-js/
https://github.com/mweststrate/immer
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Intl
https://graphql.org/

46.5 Tools not related to

JavaScript

Given that JavaScript is just one of several kinds of artifacts involved

in web development, more tools exist. These are but a few examples:

CSS:

Minifiers: reduce the size of CSS by removing comments,

etc.

Preprocessors: let you write compact CSS (sometimes

augmented with control flow constructs, etc.) that is

expanded into deployable, more verbose CSS.

Frameworks: provide help with layout, decent-looking user

interface components, etc.

Images: Automatically optimizing the size of bitmap images, etc.

47 Index

Symbol

!x

++x

x++

+x

, (comma operator)

--x

x--

-x

x && y

x + y

x - y

x / y

x << y

x === y

x >>> y

x >> y

x & y

x ** y

x * y

x ^ y

x ¦ y

x ¦¦ y

x ٪ y

=

c ? t : e

__proto__

~x

A

accessor (object literal)

addition

AMD module

anonymous function expression

argument

argument vs. parameter

Array

Array hole

Array index

Array literal

Array, dense

Array, multidimensional

Array, roles of an

Array, sparse

Array-destructuring

Array-like object

ArrayBuffer

arrow function

ASI (automatic semicolon insertion)

assert (module)

assertion

assignment operator

async

async function

async function*

async-await

asynchronous generator

asynchronous iterable

asynchronous iteration

asynchronous iterator

asynchronous programming

attribute of a property

automatic semicolon insertion (ASI)

await (async function)

await (asynchronous generator)

B

big endian

binary integer literal

binding (variable)

bitwise And

bitwise Not

bitwise Or

bitwise Xor

boolean

Boolean()

bound variable

break

bundler

bundling

C

call stack

callback (asynchronous pattern)

callback function

camel case

catch

class

class

class declaration

class definition

class expression

class, mixin

classes, private data for

closure

code point

code unit

coercion

comma operator

CommonJS module

comparing by identity

comparing by value

computed property key

concatenating strings

conditional operator

console

console.error()

console.log()

const

constant

constructor function (role of an ordinary function)

continue

Converting to [type]

Coordinated Universal Time (UTC)

copy object deeply

copy object shallowly

currying

D

dash case

DataView

date

date time format

decimal floating point literal

decimal integer literal

decrementation operator (prefix)

decrementation operator (suffix)

deep copy of an object

default export

default value (destructuring)

default value (parameter)

delete

deleting a property

dense Array

descriptor of a property

destructive operation

destructuring

destructuring an Array

destructuring an object

dictionary (role of an object)

direct method call

dispatched method call

divided by operator

division

do-while

dynamic this

dynamic vs. static

E

early activation

Ecma

ECMA-262

ECMAScript

ECMAScript module

Eich, Brendan

endianness (Typed Arrays)

enumerability

enumerable (property attribute)

environment (variables)

equality operator

ES module

escaping HTML

eval()

evaluating an expression

event (asynchronous pattern)

event loop

exception

exercises, getting started with

exponentiation

export

export default

export, default

export, named

expression

extends

external iteration

extracting a method

F

false

falsiness

falsy

finally

flags (regular expression)

Float32Array

Float64Array

floating point literal

for

for-await-of

for-in

for-of

free variable

freezing an object

fulfilled (Promise state)

function declaration

function expression, anonymous

function expression, named

function, arrow

function, ordinary

function, roles of an ordinary

function, specialized

function*

G

garbage collection

generator, asynchronous

generator, synchronous

getter (object literal)

global

global object

global scope

global variable

globalThis

GMT (Greenwich Mean Time)

grapheme cluster

Greenwich Mean Time (GMT)

H

heap

hexadecimal integer literal

hoisting

hole in an Array

I

identifier

identity of an object

if

IIFE (immediately invoked function expression)

immediately invoked function expression (IIFE)

import

import()

import, named

import, namespace

in

incrementation operator (prefix)

incrementation operator (suffix)

index of an Array

Infinity

inheritance, multiple

inheritance, single

instanceof

instanceof

Int16Array

Int32Array

Int8Array

integer

integer, safe

internal iteration

iterable (asynchronous)

iterable (synchronous)

iteration, asynchronous

iteration, external

iteration, internal

iteration, synchronous

iterator (asynchronous)

iterator (synchronous)

J

JSON (data format)

JSON (namespace object)

K

kebab case

keyword

L

label

left shift operator

let

lexical this

listing properties

little endian

logical And

logical Not

logical Or

M

Map

Map

Map vs. object

Math (namespace object)

method

method (object literal)

method (role of an ordinary function)

method call, direct

method call, dispatched

method, extracting a

minification

minifier

minus operator (binary)

minus operator (unary)

mixin class

module specifier

module, AMD

module, CommonJS

multidimensional Array

multiple inheritance

multiple return values

multiplication

N

named export

named function expression

named import

named parameter

namespace import

NaN

node_modules

npm

npm package

null

number

Number()

O

object

object literal

object vs. Map

object vs. primitive value

Object()

object, copy deeply

object, copy shallowly

object, freezing an

object, identity of an

object, roles of an

object-destructuring

Object.is()

octal integer literal

ordinary function

ordinary function, roles of an

override a property

P

package, npm

package.json

parameter

parameter default value

parameter vs. argument

partial application

passing by identity

passing by value

pattern (regular expression)

pending (Promise state)

plus operator (binary)

plus operator (unary)

polyfill

polyfill, speculative

ponyfill

primitive value

primitive value vs. object

private data for classes

progressive web app

prollyfill

Promise

Promise, states of a

properties, listing

property (object)

property attribute

property descriptor

property key

property key, computed

property key, quoted

property name

property symbol

property value shorthand

property, deleting a

prototype

prototype chain

publicly known symbol

Q

quizzes, getting started with

quoted property key

R

real function (role of an ordinary function)

receiver

record (role of an object)

RegExp

regular expression

regular expression literal

rejected (Promise state)

remainder operator

REPL

replica

RequireJS

reserved word

rest element (Array-destructuring)

rest parameter (function call)

rest property (object-destructuring)

return values, multiple

revealing module pattern

roles of an Array

roles of an object

roles of an ordinary function

run-to-completion semantics

S

safe integer

scope of a variable

script

self

sequence (role of an Array)

Set

Set

setter (object literal)

settled (Promise state)

shadowing

shallow copy of an object

shim

signed right shift operator

single inheritance

sloppy mode

snake case

sparse Array

specialized function

specifier, module

speculative polyfill

spreading (...) into a function call

spreading into an Array literal

spreading into an object literal

statement

states of a Promise

static

static vs. dynamic

strict mode

string

String()

subclass

subtraction

switch

symbol

symbol, publicly known

synchronous generator

synchronous iterable

synchronous iteration

synchronous iterator

syntax

T

tagged template

task queue

task runner

TC39

TC39 process

TDZ (temporal dead zone)

Technical Committee 39

template literal

temporal dead zone

ternary operator

this

this, dynamic

this, lexical

this, pitfalls of

this, values of

throw

time value

times operator

to the power of operator

transpilation

transpiler

tree-shaking

true

truthiness

truthy

try

tuple (role of an Array)

type

type hierarchy

type signature

Typed Array

typeof

TypeScript

U

Uint16Array

Uint32Array

Uint8Array

Uint8ClampedArray

undefined

underscore case

Unicode

Unicode Transformation Format (UTF)

unit test

unsigned right shift operator

UTC (Coordinated Universal Time)

UTF (Unicode Transformation Format)

UTF-16

UTF-32

UTF-8

V

variable, bound

variable, free

variable, scope of a

void operator

W

Wasm (WebAssembly)

WeakMap

WeakMap

WeakSet

WeakSet

Web Worker

WebAssembly

while

window

wrapper types (for primitive types)

Y

yield (asynchronous generator)

yield (synchronous generator)

yield* (asynchronous generator)

yield* (synchronous generator)

Z

Z (Zulu Time Zone)

Zulu Time Zone (Z)

	JavaScript for impatient programmers
	JavaScript for impatient programmers
	About this book (ES2019 edition)
	About the content
	Previewing and buying this book
	About the author
	Acknowledgements

	FAQ: Book and supplementary material
	How to read this book
	I own a digital edition
	I own the print edition
	Notations and conventions

	Why JavaScript? (bonus)
	The cons of JavaScript
	The pros of JavaScript
	Pro and con of JavaScript: innovation

	The nature of JavaScript (bonus)
	JavaScript’s influences
	The nature of JavaScript
	Tips for getting started with JavaScript

	History and evolution of JavaScript
	How JavaScript was created
	Standardizing JavaScript
	Timeline of ECMAScript versions
	Ecma Technical Committee 39 (TC39)
	The TC39 process
	FAQ: TC39 process
	Evolving JavaScript: Don’t break the web

	FAQ: JavaScript
	What are good references for JavaScript?
	How do I find out what JavaScript features are supported where?
	Where can I look up what features are planned for JavaScript?
	Why does JavaScript fail silently so often?
	Why can’t we clean up JavaScript, by removing quirks and outdated features?
	How can I quickly try out a piece of JavaScript code?

	The big picture
	What are you learning in this book?
	The structure of browsers and Node.js
	JavaScript references
	Further reading

	Syntax
	An overview of JavaScript’s syntax
	(Advanced)
	Identifiers
	Statement vs. expression
	Ambiguous syntax
	Semicolons
	Automatic semicolon insertion (ASI)
	Semicolons: best practices
	Strict mode vs. sloppy mode

	Consoles: interactive JavaScript command lines
	Trying out JavaScript code
	The console.* API: printing data and more

	Assertion API
	Assertions in software development
	How assertions are used in this book
	Normal comparison vs. deep comparison
	Quick reference: module assert

	Getting started with quizzes and exercises
	Quizzes
	Exercises
	Unit tests in JavaScript

	Variables and assignment
	let
	const
	Deciding between const and let
	The scope of a variable
	(Advanced)
	Terminology: static vs. dynamic
	Global variables and the global object
	Declarations: scope and activation
	Closures
	Further reading

	Values
	What’s a type?
	JavaScript’s type hierarchy
	The types of the language specification
	Primitive values vs. objects
	The operators typeof and instanceof: what’s the type of a value?
	Classes and constructor functions
	Converting between types

	Operators
	Making sense of operators
	The plus operator (+)
	Assignment operators
	Equality: == vs. ===
	Ordering operators
	Various other operators

	The non-values undefined and null
	undefined vs. null
	Occurrences of undefined and null
	Checking for undefined or null
	undefined and null don’t have properties
	The history of undefined and null

	Booleans
	Converting to boolean
	Falsy and truthy values
	Truthiness-based existence checks
	Conditional operator (? :)
	Binary logical operators: And (x && y), Or (x || y)
	Logical Not (!)

	Numbers
	JavaScript only has floating point numbers
	Number literals
	Arithmetic operators
	Converting to number
	Error values
	Error value: NaN
	Error value: Infinity
	The precision of numbers: careful with decimal fractions
	(Advanced)
	Background: floating point precision
	Integers in JavaScript
	Bitwise operators
	Quick reference: numbers

	Math
	Data properties
	Exponents, roots, logarithms
	Rounding
	Trigonometric Functions
	Various other functions
	Sources

	Unicode – a brief introduction (advanced)
	Code points vs. code units
	Encodings used in web development: UTF-16 and UTF-8
	Grapheme clusters – the real characters

	Strings
	Plain string literals
	Accessing characters and code points
	String concatenation via +
	Converting to string
	Comparing strings
	Atoms of text: Unicode characters, JavaScript characters, grapheme clusters
	Quick reference: Strings

	Using template literals and tagged templates
	Disambiguation: “template”
	Template literals
	Tagged templates
	Raw string literals
	(Advanced)
	Multiline template literals and indentation
	Simple templating via template literals

	Symbols
	Use cases for symbols
	Publicly known symbols
	Converting symbols

	Control flow statements
	Conditions of control flow statements
	Controlling loops: break and continue
	if statements
	switch statements
	while loops
	do-while loops
	for loops
	for-of loops
	for-await-of loops
	for-in loops (avoid)

	Exception handling
	Motivation: throwing and catching exceptions
	throw
	The try statement
	Error classes

	Callable values
	Kinds of functions
	Ordinary functions
	Specialized functions
	More kinds of functions and methods
	Returning values from functions and methods
	Parameter handling
	Dynamically evaluating code: eval(), new Function() (advanced)

	Environments: under the hood of variables (bonus)
	Environment: data structure for managing variables
	Recursion via environments
	Nested scopes via environments
	Closures and environments

	Modules
	Overview: syntax of ECMAScript modules
	JavaScript source code formats
	Before we had modules, we had scripts
	Module systems created prior to ES6
	ECMAScript modules
	Named exports and imports
	Default exports and imports
	More details on exporting and importing
	npm packages
	Naming modules
	Module specifiers
	Loading modules dynamically via import()
	Preview: import.meta.url
	Polyfills: emulating native web platform features (advanced)

	Single objects
	What is an object?
	Objects as records
	Spreading into object literals (...)
	Methods
	Objects as dictionaries (advanced)
	Standard methods (advanced)
	Advanced topics

	Prototype chains and classes
	Prototype chains
	Classes
	Private data for classes
	Subclassing
	FAQ: objects

	Synchronous iteration
	What is synchronous iteration about?
	Core iteration constructs: iterables and iterators
	Iterating manually
	Iteration in practice
	Quick reference: synchronous iteration

	Arrays (Array)
	The two roles of Arrays in JavaScript
	Basic Array operations
	for-of and Arrays
	Array-like objects
	Converting iterable and Array-like values to Arrays
	Creating and filling Arrays with arbitrary lengths
	Multidimensional Arrays
	More Array features (advanced)
	Adding and removing elements (destructively and non-destructively)
	Methods: iteration and transformation (.find(), .map(), .filter(), etc.)
	.sort(): sorting Arrays
	Quick reference: Array<T>

	Typed Arrays: handling binary data (Advanced)
	The basics of the API
	Element types
	More information on Typed Arrays
	Quick references: indices vs. offsets
	Quick reference: ArrayBuffers
	Quick reference: Typed Arrays
	Quick reference: DataViews

	Maps (Map)
	Using Maps
	Example: Counting characters
	A few more details about the keys of Maps (advanced)
	Missing Map operations
	Quick reference: Map<K,V>
	FAQ: Maps

	WeakMaps (WeakMap)
	WeakMaps are black boxes
	The keys of a WeakMap are weakly held
	Examples
	WeakMap API

	Sets (Set)
	Using Sets
	Examples of using Sets
	What Set elements are considered equal?
	Missing Set operations
	Quick reference: Set<T>
	FAQ: Sets

	WeakSets (WeakSet)
	Example: Marking objects as safe to use with a method
	WeakSet API

	Destructuring
	A first taste of destructuring
	Constructing vs. extracting
	Where can we destructure?
	Object-destructuring
	Array-destructuring
	Examples of destructuring
	What happens if a pattern part does not match anything?
	What values can’t be destructured?
	(Advanced)
	Default values
	Parameter definitions are similar to destructuring
	Nested destructuring

	Synchronous generators (advanced)
	What are synchronous generators?
	Calling generators from generators (advanced)
	Background: external iteration vs. internal iteration
	Use case for generators: reusing traversals
	Advanced features of generators

	Asynchronous programming in JavaScript
	A roadmap for asynchronous programming in JavaScript
	The call stack
	The event loop
	How to avoid blocking the JavaScript process
	Patterns for delivering asynchronous results
	Asynchronous code: the downsides
	Resources

	Promises for asynchronous programming
	The basics of using Promises
	Examples
	Error handling: don’t mix rejections and exceptions
	Promise-based functions start synchronously, settle asynchronously
	Promise.all(): concurrency and Arrays of Promises
	Tips for chaining Promises
	Advanced topics

	Async functions
	Async functions: the basics
	Returning from async functions
	await: working with Promises
	(Advanced)
	Immediately invoked async arrow functions
	Concurrency and await
	Tips for using async functions

	Asynchronous iteration
	Basic asynchronous iteration
	Asynchronous generators
	Async iteration over Node.js streams

	Regular expressions (RegExp)
	Creating regular expressions
	Syntax
	Flags
	Properties of regular expression objects
	Methods for working with regular expressions
	Flag /g and its pitfalls
	Techniques for working with regular expressions

	Dates (Date)
	Best practice: avoid the built-in Date
	Time standards
	Background: date time formats (ISO)
	Time values
	Creating Dates
	Getters and setters
	Converting Dates to strings

	Creating and parsing JSON (JSON)
	The discovery and standardization of JSON
	JSON syntax
	Using the JSON API
	Customizing stringification and parsing (advanced)
	FAQ

	Next steps: overview of web development (bonus)
	Tips against feeling overwhelmed
	Things worth learning for web development
	Example: tool-based JavaScript workflow
	An overview of JavaScript tools
	Tools not related to JavaScript

	Index

