
JavaScript Frameworks
for Modern Web
Development

The Essential Frameworks, Libraries,
and Tools to Learn Right Now
—
Second Edition
—
Sufyan bin Uzayr
Nicholas Cloud
Tim Ambler

JavaScript Frameworks for
Modern Web Development
The Essential Frameworks, Libraries,

and Tools to Learn Right Now

Second Edition

Sufyan bin Uzayr
Nicholas Cloud
Tim Ambler

JavaScript Frameworks for Modern Web Development

ISBN-13 (pbk): 978-1-4842-4994-9			 ISBN-13 (electronic): 978-1-4842-4995-6
https://doi.org/10.1007/978-1-4842-4995-6

Copyright © 2019 by Sufyan bin Uzayr, Nicholas Cloud, Tim Ambler

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Louise Corrigan
Development Editor: James Markham
Coordinating Editor: Nancy Chen

Cover designed by eStudioCalamar

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484249949. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Sufyan bin Uzayr
Al Manama, United Arab Emirates

Tim Ambler
Nashville, TN, USA

Nicholas Cloud
Florissant, MO, USA

https://doi.org/10.1007/978-1-4842-4995-6

For Anza

—Sufyan bin Uzayr

v

Table of Contents

Part I: Development Tools�� 1

Chapter 1: Grunt�� 3

Installing Grunt��� 4

How Grunt Works��� 4

Gruntfile.js�� 5

Tasks�� 7

Plugins�� 8

Configuration�� 8

Adding Grunt to Your Project�� 8

Maintaining a Sane Grunt Structure��� 9

Working with Tasks�� 12

Managing Configuration��� 12

Task Descriptions��� 13

Asynchronous Tasks��� 14

Task Dependencies��� 15

Multi-Tasks��� 16

Multi-Task Options�� 18

Configuration Templates��� 19

Command-Line Options�� 20

Providing Feedback�� 21

Handling Errors��� 22

About the Authors���xv

About the Technical Reviewer��xvii

Acknowledgments���xix

Introduction���xxi

vi

Interacting with the File System�� 22

Source-Destination Mappings�� 23

Watching for File Changes�� 26

Creating Plugins��� 31

Getting Started��� 31

Creating the Task�� 32

Publishing to npm��� 36

Summary��� 36

Related Resources��� 37

Chapter 2: Yeoman��� 39

Installing Yeoman��� 40

Creating Your First Project��� 40

Subcommands�� 44

Creating Your First Generator��� 45

Yeoman Generators Are Node Modules�� 46

Sub-generators��� 47

Defining Secondary Commands��� 55

Composability��� 57

Summary��� 59

Related Resources�� 59

Chapter 3: PM2�� �61

Installation��� 61

Working with Processes�� 62

Recovering from Errors�� 65

Responding to File Changes��� 67

Monitoring Logs��� 68

Monitoring Resource Usage��� 70

Monitoring Local Resources��� 70

Monitoring Remote Resources��� 71

Table of Contents

vii

Advanced Process Management�� 75

JSON Application Declarations��� 75

Load Balancing Across Multiple Processors�� 81

Zero Downtime Deployments��� 84

Summary��� 87

Related Resources��� 87

Part II: Module Loaders��� 89

Chapter 4: RequireJS��� 91

Running the Examples��� 93

Working with RequireJS��� 94

Installation�� 94

Configuration�� 95

Application Modules and Dependencies�� 99

Paths and Aliases��� 104

Shims��� 108

Loader Plugins�� 114

Cache Busting�� 124

RequireJS Optimizer�� 126

Configuring r.js��� 126

Running the r.js Command��� 128

Summary��� 131

Chapter 5: Browserify�� 133

The AMD API vs. CommonJS�� 134

Installing Browserify�� 135

Creating Your First Bundle��� 136

Visualizing the Dependency Tree��� 138

Creating New Bundles As Changes Occur�� 139

Watching for File Changes with Grunt�� 139

Watching for File Changes with Watchify��� 140

Table of Contents

viii

Using Multiple Bundles�� 142

The Node Way�� 147

Module Resolution and the NODE_PATH Environment Variable�� 147

Dependency Management�� 152

Defining Browser-Specific Modules��� 153

Extending Browserify with Transforms�� 155

brfs��� 155

folderify�� 156

bulkify��� 157

Browserify-Shim��� 158

Summary��� 160

Related Resources��� 160

Part III: Client-Side Frameworks��� 161

Chapter 6: Knockout�� 163

Views, Models, and View Models��� 164

The Recipe List��� 167

Recipe Details��� 171

Binding View Models to the DOM��� 175

View Models and Forms��� 177

Switching to “Edit” Mode��� 178

Changing the Recipe Title�� 182

Updating Recipe Servings and Cooking Time�� 183

Adding and Removing Ingredients��� 187

Instructions�� 193

Citation��� 195

Custom Components�� 196

The Input List View Model�� 197

The Input List Template�� 199

Registering the Input List Tag��� 201

Table of Contents

ix

Subscribables: Cheap Messaging�� 204

Summary��� 208

Resources�� 208

Chapter 7: Angular�� 209

Differences Between Angular and AngularJS�� 209

Getting Started with Angular�� 211

Installation�� 211

Creating a Workspace in Angular��� 213

Directory Structure��� 215

Serving the App�� 216

Customizing the App��� 217

Dependency Injection in Angular��� 221

Creating and Registering an Injection Service��� 222

Conclusion��� 223

Part IV: Server-Side Frameworks�� 225

Chapter 8: Kraken�� 227

Environment-Aware Configuration��� 229

Shortstop Handlers��� 234

Configuration-Based Middleware Registration�� 239

Event Notifications��� 243

Structured Route Registration�� 244

Index Configuration�� 245

Directory Configuration�� 247

Routes Configuration�� 249

Dust Templates�� 251

Context and References��� 252

Sections�� 256

Iteration�� 256

Conditionality�� 258

Partials��� 259

Table of Contents

x

Blocks��� 261

Filters��� 262

Context Helpers�� 264

Dust Helpers��� 275

Let’s Get Kraken��� 281

Summary��� 306

Related Resources��� 306

Part V: Managing Database Interaction��� 307

Chapter 9: Mongoose��� 309

Basic MongoDB Concepts�� 309

A Simple Mongoose Example��� 314

Creating a Mongoose Schema for JSON Data�� 314

Importing Data with Mongoose�� 317

Querying Data with Mongoose��� 320

Working with Schemas�� 323

Data Types�� 323

Nested Schemas��� 325

Default Property Values�� 326

Required Properties�� 327

Secondary Indexes��� 328

Schema Validation�� 329

Schema References��� 334

Schema Middleware��� 340

Working with Models and Documents��� 343

Document Instance Methods�� 347

Document Virtuals�� 350

Static Model Methods��� 352

Working with Queries��� 354

Model.find( )�� 355

Model.findById( )��� 357

Model.findByIdAndUpdate( )��� 360

Table of Contents

xi

Model.findByIdAndRemove( )�� 361

Model.count( )��� 362

Query.Populate( )��� 363

Finding Documents with Query Operators�� 365

Summary��� 375

Chapter 10: Knex and Bookshelf��� 377

Knex��� 378

Installing the Command-Line Utility��� 379

Adding Knex to Your Project��� 379

Configuring Knex�� 380

The SQL Query Builder��� 381

Migration Scripts�� 392

Seed Scripts��� 398

Bookshelf��� 400

What Is Object-Relational Mapping?�� 401

Creating Your First Bookshelf Model�� 402

Relationships�� 413

Summary��� 426

Related Resources��� 426

Part VI: Managing Control Flow��� 427

Chapter 11: Async.js�� 429

Sequential Flow��� 431

Parallel Flow�� 434

Pipeline Flow�� 437

Reusing a Pipeline�� 440

Loop Flow��� 443

Looping While Some Condition Remains True�� 443

Looping Until Some Condition Becomes False��� 446

Retry Loops�� 449

Infinite Loops�� 451

Table of Contents

xii

Batch Flow��� 452

Asynchronous Queue�� 453

Asynchronous Cargo��� 455

Summary��� 458

Part VII: Further Useful Libraries��� 461

Chapter 12: Underscore and Lodash�� 463

Installation and Usage�� 465

Aggregation and Indexing�� 466

countBy()�� 467

groupBy()�� 468

indexBy()��� 470

Being Choosy��� 472

Selecting Data from Collections��� 472

Selecting Data from Objects��� 475

Chaining��� 481

Function Timing��� 485

defer()��� 486

debounce()�� 488

throttle()�� 490

Templates��� 493

Loops and Other Arbitrary JavaScript in Templates�� 495

Living Without Gator Tags��� 497

Accessing the Data Object Within a Template�� 499

Default Template Data�� 501

Summary��� 503

Related Resources��� 503

Table of Contents

xiii

Part VIII: Front-End Development�� 505

Chapter 13: React�� 507

React Overview�� 507

What Makes React Special?��� 508

Getting Started with React��� 509

How to Add React to Web Pages?��� 509

Installation�� 510

Building a To-Do Application�� 514

Summary��� 520

Chapter 14: Vue.js��� 523

Vue.js Overview�� 523

What Is Vue.js?��� 523

What Is Vue Meant For?�� 524

Getting Started with Vue.js��� 526

Installation�� 526

Building Our First Vue App�� 528

Digging Deeper�� 532

Directory Structure��� 532

src/main.js File��� 533

src/App.vue File�� 534

components/HelloWorld.vue File�� 535

public/index.html File��� 538

Summary��� 539

Next Steps�� 539

�Index�� 541

Table of Contents

xv

About the Authors

Sufyan bin Uzayr is a web developer with over 10 years of

experience in the industry. He specializes in a wide variety

of technologies, including JavaScript, WordPress, Drupal,

PHP, and UNIX/Linux shell and server management, and

is the author of five previous books. Sufyan is the Director

of Parakozm, a multinational design and development

consultancy firm that offers customized solutions to a

global clientele. He is also the CTO at Samurai Servers, a

server management and security company catering mainly

to enterprise-scale audience. He takes a keen interest in

technology, politics, literature, history, and sports, and in

his spare time he enjoys teaching coding and English to students. Read more about his

works at www.sufyanism.com.  

Nicholas Cloud is a software developer who lives in the very

humid city of St. Louis. For over a decade, he has forged

his skills into a successful career. He has developed web

applications, web services, and desktop software on diverse

platforms with JavaScript, C#, and PHP. A strong proponent

of open source software, Nicholas contributes to userland

projects and has written several of his own open source

libraries. He speaks at a variety of user groups and conferences

and writes books, technical articles, and blog posts in his spare

time. He opines on Twitter at @nicholascloud. 

http://www.sufyanism.com

xvi

Tim Ambler is a software engineer from Nashville,

Tennessee. His passion for programming follows in the

footsteps of his father, who introduced him to computers at a

young age with a Commodore 64. Tim is the author of several

popular open source projects, one of which (whenLive) has

been featured by GitHub’s staff. An occasional conference

speaker and frequent writer, Tim has been referenced

multiple times in online publications such as JavaScript

Weekly and Node Weekly. He currently lives in the 12 South

area with his wife, Laura, and two cats. You can follow him

on Twitter at @tkambler.  

About the Authors

xvii

About the Technical Reviewer

Aleemullah Samiullah is a seasoned developer with over

10+ years of experience in front-end technologies. He is a

senior engineer at Software AG and has previously worked at

Publicis Sapient and Infosys, gaining considerable expertise,

working with major brands such as Tesco, Target, and Holt

Renfrew. He enjoys crafting digital experiences based on

human-centered design, with a keen focus on usability and

accessibility. In his career, Aleem has used various JavaScript

libraries, including React, Angular, Backbone, ExtJS, jQuery,

and so on. He is passionate about the latest technologies and actively participates in JS

meetups and conferences. When he’s not coding, he likes to travel, write blog posts, and

spend time with family. 

Aleem can be found on LinkedIn at www.linkedin.com/in/aleemullah/.

https://www.linkedin.com/in/aleemullah/

xix

Acknowledgments

There are several people who deserve to be on this page because this book would not

have come into existence without their support. That said, some names deserve a special

mention, and I am genuinely grateful to

•	 My mom and dad, for everything they have done for me

•	 Faisal Fareed and Sadaf Fareed, my siblings, for helping with things

back home

•	 Nancy Chen, Content Development Editor for this book, for keeping

track of everything and for being very patient as I kept missing one

deadline or the other

•	 The Apress team, especially Louise Corrigan, Jade Scard, and James

Markham, for ensuring that the book’s content, layout, formatting,

and everything else remains perfect throughout

•	 The coauthors of this book’s first edition and the tech reviewer, for

going through the manuscript and providing his insight and feedback

•	 Typesetters, cover designers, printers, and everyone else, for their

part in the development of this book

•	 All the folks associated with Parakozm, either directly or indirectly,

for their help and support

•	 The JavaScript community at large, for all their hard work and efforts

—Sufyan bin Uzayr

xxi

Introduction

They tell me we’re living in an information age, but none of it seems to be
the information I need or brings me closer to what I want to know. In fact
(I’m becoming more and more convinced) all this electronic wizardry only
adds to our confusion, delivering inside scoops and verdicts about events
that have hardly begun: a torrent of chatter moving at the speed of light,
making it nearly impossible for any of the important things to be heard.

—Matthew Flaming, The Kingdom of Ohio

The notion that “technology moves quickly” is a well-worn aphorism, and with good

reason: technology does move quickly. But at this moment, JavaScript in particular is

moving very quickly indeed—much like that “torrent of chatter moving at the speed of

light” that Matthew Flaming refers to in The Kingdom of Ohio. The language is in the

midst of what many have called a renaissance, brought about by the rapidly increasing

sophistication of browser-based applications and the rising popularity of JavaScript on

the server, thanks to Node.js.

An almost feverish pace of innovation is occurring within the JavaScript community

that, while endlessly fascinating to follow, also presents some unique challenges

of its own. JavaScript’s ecosystem of libraries, frameworks, and utilities has grown

dramatically. Where once a small number of solutions for any given problem existed,

many can now be found, and the options continue to grow by the day. As a result,

developers find themselves faced with the increasingly difficult task of choosing the

appropriate tools from among many seemingly good options.

If you’ve ever found yourself wondering why JavaScript seems to be attracting

so much attention, as we have, it’s worth stopping for a moment to consider the fact

that JavaScript, a language that was created by one person in 10 days, now serves as

the foundation upon which much of the Web as we know it sits. A language that was

originally created to solve relatively simple problems is now being applied in new and

innovative ways that were not originally foreseen. What’s more, JavaScript is a beautifully

expressive language, but it’s not without its share of rough edges and potential pitfalls.

xxii

While flexible, efficient, and ubiquitous, JavaScript concepts such as the event loop

and prototypal inheritance can prove particularly challenging for those coming to the

language for the first time.

For these and many other reasons, the development community at large is still

coming to terms with how best to apply the unique features that JavaScript brings to

the table. We've no doubt only scratched the surface of what the language and the

community behind it are capable of. For those with an insatiable appetite for knowledge

and a desire to create, now is the perfect time to be a JavaScript developer.

We have written JavaScript Frameworks for Modern Web Development to serve as

your guide to a wide range of popular JavaScript tools that solve difficult problems at

both ends of the development stack: in the browser and on the server. The tutorials and

downloadable code examples contained within this book illustrate the usage of tools that

manage dependencies, structure code in a modular fashion, automate repetitive build

tasks, create specialized servers, structure client-side applications, facilitate horizontal

scaling, perform event logging, and interact with disparate data stores.

The libraries and frameworks covered include Grunt, Yeoman, PM2, RequireJS,

Browserify, Knockout, Angular, Kraken, Mongoose, Knex, Bookshelf, Async.js,

Underscore, Lodash, React, and Vue.js.

In writing JavaScript Frameworks for Modern Web Development, our goal was to

create a filter for the “torrent of chatter” that often seems to surround JavaScript and, in

so doing, to allow what we believe are some important things to be heard. We hope the

information contained within these pages proves as useful to you as it has to us.

�Who This Book Is For
This book is intended for web developers who are already confident with JavaScript,

but also frustrated with the sheer number of solutions that exist for seemingly every

problem. This book helps lift the fog, providing the reader with an in-depth guide to

specific libraries and frameworks that well-known organizations are using right now

with great success. Topics pertaining to both client-side and server-side development are

covered. As a result, readers will gain the most benefit from this book if they already have

at least an intermediate familiarity with both the web browser Document Object Model

(DOM), common client-side libraries like jQuery, and Node.js.

Introduction

xxiii

�How This Book Is Structured
This book covers a wide selection of JavaScript tools that are applicable throughout the

entire development process, from a project’s first commit to its first release and beyond.

To that end, the chapters have been grouped into the following parts.

�Part 1: Development Tools
�Grunt

Larry Wall, the creator of Perl, describes the three virtues of a great programmer as

laziness, impatience, and hubris. In this chapter, we’ll focus on a tool that will help you

strengthen the virtue of laziness—Grunt. This popular task runner provides developers

with a framework for creating command-line utilities that automate repetitive build tasks

such as running tests, concatenating files, compiling SASS/LESS stylesheets, checking

for JavaScript errors, and more. After reading this chapter, you’ll know how to use several

popular Grunt plugins as well as how to go about creating and sharing your own plugins

with the community.

�Yeoman

Yeoman provides JavaScript developers with a mechanism for creating reusable

templates (“generators”) that describe the overall structure of a project (initially required

dependencies, Grunt tasks, etc.) in a way that can be easily reused over and over. Broad

community support also allows you to take advantage of a wide variety of preexisting

templates. In this chapter, we’ll walk through the process of installing Yeoman and using

several popular preexisting generators. Finally, we’ll take a look at how we can create

and share our own templates with the community.

�PM2

In this chapter, we will close out our discussion of development tools by taking a

look at PM2, a command-line utility that simplifies many of the tasks associated with

running Node applications, monitoring their status, and efficiently scaling them to meet

increasing demand.

Introduction

xxiv

�Part 2: Module Loaders
�RequireJS and Browserify

JavaScript lacks a native method for loading external dependencies in the browser—a

frustrating oversight for developers. Fortunately, the community has stepped in to fill

this gap with two very different and competing standards: the Asynchronous Module

Definition (AMD) API and CommonJS. We’ll dive into the details of both and take a look

at widely used implementations of each: RequireJS and Browserify. Each has its merits,

which we’ll discuss in detail, but both can have a profoundly positive impact on the way

in which you go about structuring your applications.

�Part 3: Client-Side Frameworks
�Knockout and Angular

In recent years, web developers have witnessed a sharp rise in popularity of so-called

“single-page apps.” Such applications exhibit behavior once available only on the

desktop, but at the expense of increased code complexity within the browser. In this

section, we’ll dive into two widely used front-end frameworks that help minimize that

complexity by providing proven patterns for solving frequently encountered problems:

Knockout and Angular. Knockout focuses on the relationship between view and data,

but otherwise leaves the application architecture and plumbing to the developer’s

discretion. Angular takes a more prescriptive approach, covering the view, data transfer,

Dependency Injection, and so on.

�Part 4: Server-Side Frameworks
�Kraken

Client-side applications aren’t very useful without a server with which to interact. In

this chapter, we’ll take a look at one popular framework that supports developers in the

creation of back-end applications: Kraken.

Introduction

xxv

�Part 5: Managing Database Interaction
�Mongoose, Knex, and Bookshelf

At the core of every application lies the most important component of any development

stack—the data that our users seek. In this section, we’ll become familiar with two

libraries that help simplify some of the complexity that’s often experienced when

interacting with popular storage platforms such as MongoDB, MySQL, PostgreSQL, and

SQLite. After reading this section, you’ll be comfortable defining schemas, associations,

lifecycle “hooks,” and more.

�Part 6: Managing Control Flow
�Async.js

The asynchronous nature of JavaScript provides developers with a significant degree

of flexibility—as opposed to forcing developers to execute their code in a linear

fashion, JavaScript allows developers to orchestrate multiple actions simultaneously.

Unfortunately, along with this flexibility comes a significant degree of additional

complexity—what many developers refer to as “callback hell” or the “pyramid of doom.”

�Part 7: Further Useful Libraries
A number of wonderfully useful libraries exist that this book would be remiss not to

cover, but for which additional parts are not necessarily warranted. This part will cover

such libraries.

�Underscore and Lodash

Underscore (and its successor, Lodash) is an incredibly useful collection of functions

that simplifies many frequently used patterns that can be tedious to implement

otherwise. This brief chapter will bring these libraries to your attention, along with some

of the more popular extensions that can also be included to enhance their usefulness

even further. Examples are included that highlight some of the most frequently used

portions of these libraries.

Introduction

xxvi

�Part 8: Front-End Development
React and Vue.js

In this section, we will cover JavaScript frameworks that are geared for front-end

development, such as React and Vue.js.

React, having the backing of Facebook, has risen in popularity in a very short span of

time and continues to be a preferred choice for many developers.

On the other hand, Vue.js is a slightly less popular name in the field, but it has been

gaining a steady and very loyal following, primarily due to its ease of use and simplicity.

�Downloading the Code
Each chapter in this book contains many examples, the source code for which may be

downloaded from www.apress.com/9781484249949 in zipped form.

Most examples are run with the Node.js runtime, which may be obtained from

https://nodejs.org. Chapters with additional prerequisites will explain the necessary

procedures for downloading and installing the examples. (For example, MongoDB is

necessary to run examples in Chapter 9, which covers Mongoose.)

Any additional steps necessary for running code examples (e.g., executing curl

requests) or interacting with a running example (e.g., opening a web browser and

navigating to a specific URL) are explained alongside each listing.

Introduction

http://www.apress.com/9781484249949
https://nodejs.org/

PART I

Development Tools

3
© Sufyan bin Uzayr, Nicholas Cloud, Tim Ambler 2019
S. bin Uzayr et al., JavaScript Frameworks for Modern Web Development,
https://doi.org/10.1007/978-1-4842-4995-6_1

CHAPTER 1

Grunt

I’m lazy. But it’s the lazy people who invented the wheel and the bicycle
because they didn’t like walking or carrying things.

—Lech Walesa, former president of Poland

In his book Programming Perl, Larry Wall (the well-known creator of the language) puts

forth the idea that all successful programmers share three important characteristics:

laziness, impatience, and hubris. At first glance, these traits all sound quite negative, but

dig a little deeper, and you’ll find the hidden meaning in his statement:

Laziness: Lazy programmers hate to repeat themselves. As a

result, they tend to put a lot of effort into creating useful tools that

perform repetitive tasks for them. They also tend to document

those tools well, to spare themselves the trouble of answering

questions about them later.

Impatience: Impatient programmers have learned to expect much

from their tools. This expectation teaches them to create software

that doesn’t just react to the needs of its users, but that actually

attempts to anticipate those needs.

Hubris: Good programmers take great pride in their work. It is this

pride that compels them to write software that others won’t want

to criticize—the type of work that we should all be striving for.

In this chapter, we’ll focus on the first of these three characteristics, laziness, along

with Grunt, a popular JavaScript “task runner” that supports developers in nurturing this

trait by providing them with a toolkit for automating the repetitive build tasks that often

accompany software development, such as

4

•	 Script and stylesheet compilation and minification

•	 Testing

•	 Linting

•	 Database migrations

•	 Deployments

In other words, Grunt helps developers who strive to work smarter, not harder. If that

idea appeals to you, read on. After you have finished this chapter, you will be well on

your way toward mastering Grunt. You’ll learn how to do the following in this chapter:

•	 Create configurable tasks that automate the repetitive aspects of

software development that accompany nearly every project

•	 Interact with the file system using simple yet powerful abstractions

provided by Grunt

•	 Publish Grunt plugins from which other developers can benefit and

to which they can contribute

•	 Take advantage of Grunt’s preexisting library of community-

supported plugins

�Installing Grunt
Before continuing, you should ensure that you have installed Grunt’s command-line

utility. Available as an npm package, the installation process is shown in Listing 1-1.

Listing 1-1.  Installing the grunt Command-Line Utility via npm

$ npm install -g grunt-cli

$ grunt –version

grunt-cli v1.3.2

�How Grunt Works
Grunt provides developers with a toolkit for creating command-line utilities that

perform repetitive project tasks. Examples of such tasks include the minification of

JavaScript code and the compilation of Sass stylesheets, but there’s no limit to how Grunt

Chapter 1 Grunt

5

can be put to work. Grunt can be used to create simple tasks that address the specific

needs of a single project—tasks that you don’t intend to share or reuse—but Grunt’s

true power derives from its ability to package tasks as reusable plugins that can then be

published, shared, used, and improved upon by others.

Four core components make Grunt tick, which we will now cover.

�Gruntfile.js
At Grunt’s core lies the Gruntfile, a Node module saved as Gruntfile.js (see Listing 1-2)

at the root of your project. It’s within this file that we can load Grunt plugins, create our

own custom tasks, and configure them according to the needs of our project. Each time

Grunt is run, its first order of business is to retrieve its marching orders from this module.

Listing 1-2.  Sample Gruntfile

// example-starter/Gruntfile.js

module.exports = function(grunt) {

 /**
 * Configure the various tasks and plugins that we'll be using

 */

 grunt.initConfig({

 /* Grunt's 'file' API provides developers with helpful abstractions for

 �interacting with the file system. We'll take a look at these in

greater detail later in the chapter. */

 'pkg': grunt.file.readJSON('package.json'),

 'uglify': {

 'development': {

 'files': {

 'build/app.min.js': ['src/app.js', 'src/lib.js']

 }

 }

 }

 });

Chapter 1 Grunt

6

 /**
 * �Grunt plugins exist as Node packages, published via npm. Here, we

load the

 * '�grunt-contrib-uglify' plugin, which provides a task for merging and

minifying

 * a project's source code in preparation for deployment.

 */

 grunt.loadNpmTasks('grunt-contrib-uglify');

 /**
 * �Here we create a Grunt task named 'default' that does nothing more

than call

 * the 'uglify' task. In other words, this task will serve as an alias to

 * �'uglify'. Creating a task named 'default' tells Grunt what to do

when it is

 * �run from the command line without any arguments. In this example,

our 'default'

 * �task calls a single, separate task, but we could just as easily have

called

 * �multiple tasks (to be run in sequence) by adding multiple entries to

the array

 * that is passed.

 */

 grunt.registerTask('default', ['uglify']);

 /**
 * �Here we create a custom task that prints a message to the console

(followed by

 * �a line break) using one of Grunt's built-in methods for providing

user feedback.

 * We'll look at these in greater detail later in the chapter.

 */

 grunt.registerTask('hello-world', function() {

 grunt.log.writeln('Hello, world.');

 });

};

Chapter 1 Grunt

7

�Tasks
Tasks are the basic building blocks of Grunt and are nothing more than functions that

are registered with assigned names via Grunt’s registerTask() method. In Listing 1-2, a

simple hello-world task is shown that prints a message to the console. This task can be

called from the command line as shown in Listing 1-3.

Listing 1-3.  Running the hello-world Task Shown in Listing 1-2

$ grunt hello-world

Running "hello-world" task

Hello, world.

Done, without errors.

Multiple Grunt tasks can also be run in sequence with a single command, as shown

in Listing 1-4. Each task will be run in the order in which it was passed.

Listing 1-4.  Running Multiple Grunt Tasks in Sequence

$ grunt hello-world uglify

Running "hello-world" task

Hello, world.

Running "uglify:development" (uglify) task

>> 1 file created.

Done, without errors.

The hello-world task that we’ve just seen serves as an example of a basic, stand-

alone Grunt task. Such tasks can be used to implement simple actions specific to the

needs of a single project that you don’t intend to reuse or share. Most of the time,

however, you will find yourself interacting not with stand-alone tasks, but instead with

tasks that have been packaged as Grunt plugins and published to npm so that others can

reuse them and contribute to them.

Chapter 1 Grunt

8

�Plugins
A Grunt plugin is a collection of configurable tasks (published as an npm package) that can

be reused across multiple projects. Thousands of such plugins exist. In Listing 1-2, Grunt’s

loadNpmTasks() method is used to load the grunt-contrib-uglify Node module, a

Grunt plugin that merges a project’s JavaScript code into a single, minified file that is

suitable for deployment.

Note  A list of all available Grunt plugins can be found at http://gruntjs.
com/plugins. Plugins whose names are prefixed with contrib- are officially
maintained by the developers behind Grunt. In the repository, officially maintained
plugins are now also marked by a “star” icon, making them easier to differentiate
from third-party developers’ plugins.

�Configuration
Grunt is known for emphasizing “configuration over code”: the creation of tasks and

plugins whose functionality is tailored by configuration that is specified within each

project. It is this separation of code from configuration that allows developers to create

plugins that are easily reusable by others. Later in the chapter, we’ll take a look at the

various ways in which Grunt plugins and tasks can be configured.

�Adding Grunt to Your Project
Earlier in the chapter, we installed Grunt’s command-line utility by installing the grunt-

cli npm package as a global module. We should now have access to the grunt utility

from the command line, but we still need to add a local grunt dependency to each

project we intend to use it with. The command to be called from within the root folder of

your project is shown next. This example assumes that npm has already been initialized

within the project and that a package.json file already exists.

$ npm install grunt --save-dev

Our project’s package.json file should now contain a grunt entry similar to that

shown in Listing 1-5.

Chapter 1 Grunt

http://gruntjs.com/plugins
http://gruntjs.com/plugins

9

Listing 1-5.  Our Project’s Updated package.json File

// example-tasks/package.json

{

 "name": "example-tasks",

 "version": "1.0.0",

 "devDependencies": {

 "grunt": "1.0.3"

 }

}

The final step toward integrating Grunt with our project is the creation of a Gruntfile

(see Listing 1-6), which should be saved within the root folder of the project. Within our

Gruntfile, a single method is called, loadTasks(), which is discussed in the upcoming

section.

Listing 1-6.  Contents of Our Project’s Gruntfile

// example-tasks/Gruntfile.js

module.exports = function(grunt) {

 grunt.loadTasks('tasks');

};

�Maintaining a Sane Grunt Structure
We hope that by the time you have finished this chapter, you will have found Grunt to be

a worthwhile tool for automating many of the repetitive, tedious tasks that you encounter

during the course of your daily workflow. That said, we’d be lying if we told you that our

initial reaction to Grunt was positive. In fact, we were quite turned off by the tool at first.

To help explain why, let’s take a look at the Gruntfile that is prominently displayed within

Grunt’s official documentation (see Listing 1-7).

Chapter 1 Grunt

10

Listing 1-7.  Example Gruntfile Provided by Grunt’s Official Documentation

module.exports = function(grunt) {

 grunt.initConfig({

 pkg: grunt.file.readJSON('package.json'),

 concat: {

 options: {

 separator: ';'

 },

 dist: {

 src: ['src/**/*.js'],

 dest: 'dist/<%= pkg.name %>.js'

 }

 },

 uglify: {

 options: {

 banner: '/*! <%= grunt.template.today("dd-mm-yyyy") %> */\n'

 },

 dist: {

 files: {

 'dist/<%= pkg.name %>.min.js': ['<%= concat.dist.dest %>']

 }

 }

 },

 qunit: {

 files: ['test/**/*.html']

 },

 jshint: {

 files: ['Gruntfile.js', 'src/**/*.js', 'test/**/*.js'],

 options: {

 // options here to override JSHint defaults

 globals: {

 jQuery: true,

 console: true,

 module: true,

Chapter 1 Grunt

11

 document: true

 }

 }

 },

 watch: {

 files: ['<%= jshint.files %>'],

 tasks: ['jshint', 'qunit']

 }

 });

 grunt.loadNpmTasks('grunt-contrib-uglify');

 grunt.loadNpmTasks('grunt-contrib-jshint');

 grunt.loadNpmTasks('grunt-contrib-qunit');

 grunt.loadNpmTasks('grunt-contrib-watch');

 grunt.loadNpmTasks('grunt-contrib-concat');

 grunt.registerTask('test', ['jshint', 'qunit']);

 grunt.registerTask('default', ['jshint', 'qunit', 'concat', 'uglify']);

};

The Gruntfile shown in Listing 1-7 is for a relatively simple project. We already find

this example to be slightly unwieldy, but within larger projects we have seen this file

balloon to many times this size. The result is an unreadable and difficult-to-maintain

mess. Experienced developers would never write their code in a way that combines

functionality from across unrelated areas into a single, monolithic file, so why should we

approach our task runner any differently?

The secret to maintaining a sane Grunt structure lies with Grunt’s loadTasks()

function, as shown in Listing 1-6. In this example, the tasks argument refers to a tasks

folder relative to our project’s Gruntfile. Once this method is called, Grunt will load

and execute each Node module it finds within this folder, passing along a reference to

the grunt object each time. This behavior provides us with the opportunity to organize

our project’s Grunt configuration as a series of separate modules, each responsible

for loading and configuring a single task or plugin. An example of one of these smaller

modules is shown in Listing 1-8. This task can be executed by running grunt uglify

from the command line.

Chapter 1 Grunt

12

Listing 1-8.  Example Module (uglify.js) Within Our New tasks Folder

// example-tasks/tasks/uglify.js

module.exports = function(grunt) {

 grunt.loadNpmTasks('grunt-contrib-uglify');

 grunt.config('uglify', {

 'options': {

 'banner': '/*! <%= grunt.template.today("dd-mm-yyyy") %> */\n'

 },

 'dist': {

 'files': {

 'dist/app.min.js': ['src/index.js']

 }

 }

 });

};

�Working with Tasks
As previously mentioned, tasks serve as the foundation on which Grunt is built—

everything begins here. A Grunt plugin, as you’ll soon discover, is nothing more than

one or more tasks that have been packaged into a Node module and published via npm.

We’ve already seen a few examples that demonstrate the creation of basic Grunt tasks, so

let’s take a look at some additional features that can help us get the most out of them.

�Managing Configuration
Grunt’s config() method serves as both a “getter” and a “setter” for configuration. In

Listing 1-9, we see how a basic Grunt task can access its configuration through the use of

this method.

Chapter 1 Grunt

13

Listing 1-9.  Managing Configuration Within a Basic Grunt Task

module.exports = function(grunt) {

 grunt.config('basic-task', {

 'message': 'Hello, world.'

 });

 grunt.registerTask('basic-task', function() {

 grunt.log.writeln(grunt.config('basic-task.message'));

 });

};

Note  In Listing 1-9, “dot notation” is used for accessing nested configuration
values. In the same way, dot notation can be used to set nested configuration
values. If at any point Grunt encounters a path within the configuration object that
does not exist, Grunt will create a new, empty object without throwing an error.

�Task Descriptions
Over time, projects have a tendency to grow in complexity. With this additional

complexity often come new Grunt tasks. As new tasks are added, it’s often easy to lose

track of what tasks are available, what they do, and how they are called. Fortunately,

Grunt provides us with a way to address this problem by assigning descriptions to our

tasks, as shown in Listing 1-10.

Listing 1-10.  Assigning a Description to a Grunt Task

// example-task-description/Gruntfile.js

module.exports = function(grunt) {

 grunt.config('basic-task', {

 'message': 'Hello, world.'

 });

 grunt.registerTask('basic-task', 'This is an example task.', function() {

Chapter 1 Grunt

14

 grunt.log.writeln(grunt.config('basic-task.message'));

 });

 grunt.registerTask('default', 'This is the default task.', ['basic-task']);

};

By passing an additional argument to the registerTask() method, Grunt allows

us to provide a description for the task being created. Grunt helpfully provides this

information when help is requested from the command line, as shown in Listing 1-11,

which includes an excerpt of the information Grunt provides.

Listing 1-11.  Requesting Help from the Command Line

$ grunt –help

...

Available tasks

 basic-task This is an example task.

 default This is the default task.

...

�Asynchronous Tasks
By default, Grunt tasks are expected to run synchronously. As soon as a task’s function

returns, it is considered finished. There will be times, however, when you find yourself

interacting with other asynchronous methods within a task, which must first complete

before your task can hand control back over to Grunt. The solution to this problem is

shown in Listing 1-12. Within a task, a call to the async() method will notify Grunt that

it executes asynchronously. The method will return a callback function to be called

when our task has completed. Until this is done, Grunt will hold the execution of any

additional tasks.

Listing 1-12.  Asynchronous Grunt Task

// example-async/tasks/list-files.js

var glob = require('glob');

module.exports = function(grunt) {

Chapter 1 Grunt

15

 grunt.registerTask('list-files', function() {

 /**
 * �Grunt will wait until we call the `done()` function to indicate

that our

 * asynchronous task is complete.

 */

 var done = this.async();

 glob('*', function(err, files) {

 if (err) {

 grunt.fail.fatal(err);

 }

 grunt.log.writeln(files);

 done();

 });

 });

};

�Task Dependencies
Complicated Grunt workflows are best thought of as a series of steps that work together

to produce a final result. In such situations, it can often be helpful to specify that a task

requires one or more separate tasks to precede it, as shown in Listing 1-13.

Listing 1-13.  Declaring a Task Dependency

// example-task-dependency/tasks/step-two.js

module.exports = function(grunt) {

 grunt.registerTask('step-two', function() {

 grunt.task.requires('step-one');

 });

};

Chapter 1 Grunt

16

In this example, the step-two task requires that the step-one task run first before

it can proceed. Any attempt to call step-two directly will result in an error, as shown in

Listing 1-14.

Listing 1-14.  Grunt Reporting an Error When a Task Is Called Before Any Tasks

on Which It Depends Have Run

$ grunt step-two

Running "step-two" task

Warning: Required task "step-one" must be run first. Use --force to continue.

Aborted due to warnings.

�Multi-Tasks
In addition to basic tasks, Grunt offers support for what it calls “multi-tasks.” Multi-tasks

are easily the most complicated aspect of Grunt, so if you find yourself confused at first,

you’re not alone. After reviewing a few examples, however, their purpose should start to

come into focus—at which point you’ll be well on your way toward mastering Grunt.

Before we go any further, let’s take a look at a brief example (see Listing 1-15) that

shows a Grunt multi-task, along with its configuration.

Listing 1-15.  Grunt Multi-Task

// example-list-animals/tasks/list-animals.js

module.exports = function(grunt) {

 /**
 * Our multi-task's configuration object. In this example, 'mammals'

 * and 'birds' each represent what Grunt refers to as a 'target.'

 */

 grunt.config('list-animals', {

 'mammals': {

 'animals': ['Cat', 'Zebra', 'Koala', 'Kangaroo']

 },

 'birds': {

 'animals': ['Penguin', 'Sparrow', 'Eagle', 'Parrot']

Chapter 1 Grunt

17

 }

 });

 grunt.registerMultiTask('list-animals', function() {

 grunt.log.writeln('Target:', this.target);

 grunt.log.writeln('Data:', this.data);

 });

};

Multi-tasks are extremely flexible, in that they are designed to support multiple

configurations (referred to as “targets”) within a single project. The multi-task shown in

Listing 1-15 has two targets: mammals and birds. This task can be run against a specific

target as shown in Listing 1-16.

Listing 1-16.  Running the Grunt Multi-Task Shown in Listing 1-15 Against a

Specific Target

$ grunt list-animals:mammals

Running "list-animals:mammals" (list-animals) task

Target: mammals

Data: { animals: ['Cat', 'Zebra', 'Koala', 'Kangaroo'] }

Done, without errors.

Multi-tasks can also be called without any arguments, in which case they are

executed multiple times, once for each available target. Listing 1-17 shows the result of

calling this task without specifying a target.

Listing 1-17.  Running the Multi-Task Shown in Listing 1-15 Without Specifying a

Target

$ grunt list-animals

Running "list-animals:mammals" (list-animals) task

Target: mammals

Data: { animals: ['Cat', 'Zebra', 'Koala', 'Kangaroo'] }

Running "list-animals:birds" (list-animals) task

Target: birds

Data: { animals: ['Penguin', 'Sparrow', 'Eagle', 'Parrot'] }

Chapter 1 Grunt

18

In this example, our multi-task ran twice, once for each available target (mammals and

birds). Notice in Listing 1-15 that within our multi-task we referenced two properties:

this.target and this.data. These properties allow our multi-task to fetch information

about the target that it is currently running against.

�Multi-Task Options
Within a multi-task’s configuration object, any values stored under the options key (see

Listing 1-18) receive special treatment.

Listing 1-18.  Grunt Multi-Task with Configuration Options

// example-list-animals-options/tasks/list-animals.js

module.exports = function(grunt) {

 grunt.config('list-animals', {

 'options': {

 'format': 'array'

 },

 'mammals': {

 'options': {

 'format': 'json'

 },

 'animals': ['Cat', 'Zebra', 'Koala', 'Kangaroo']

 },

 'birds': {

 'animals': ['Penguin', 'Sparrow', 'Eagle', 'Parrot']

 }

 });

 grunt.registerMultiTask('list-animals', function() {

 var options = this.options();

 switch (options.format) {

 case 'array':

 grunt.log.writeln(this.data.animals);

 break;

Chapter 1 Grunt

19

 case 'json':

 grunt.log.writeln(JSON.stringify(this.data.animals));

 break;

 default:

 grunt.fail.fatal('Unknown format: ' + options.format);

 break;

 }

 });

};

Multi-task options provide developers with a mechanism for defining global options

for a task, which can then be overridden at the target level. In this example, a global

format in which to list animals ('array') is defined at the task level. The mammals target

has chosen to override this value ('json'), while the birds task has not. As a result,

mammals will be displayed as JSON, while birds will be shown as an array due to its

inheritance of the global option.

The vast majority of Grunt plugins that you will encounter are configurable as

multi-tasks. The flexibility afforded by this approach allows you to apply the same

task differently under different circumstances. A frequently encountered scenario

involves the creation of separate targets for each build environment. For example, when

compiling an application, you may want to modify the behavior of a task based on

whether you are compiling for a local development environment or in preparation for

release to production.

�Configuration Templates
Grunt configuration objects support the embedding of template strings, which can

then be used to reference other configuration values. The template format favored by

Grunt follows that of the Lodash and Underscore utility libraries, which are covered in

further detail in a later chapter. For an example of how this feature can be put to use,

see Listings 1-19 and 1-20.

Chapter 1 Grunt

20

Listing 1-19.  Sample Gruntfile That Stores the Contents of Its Project’s package.

json File Under the pkg Key Within Grunt’s Configuration Object

// example-templates/Gruntfile.js

module.exports = function(grunt) {

 grunt.initConfig({

 'pkg': grunt.file.readJSON('package.json')

 });

 grunt.loadTasks('tasks');

 grunt.registerTask('default', ['test']);

};

Listing 1-20.  A Subsequently Loaded Task with Its Own Configuration That Is

Able to Reference Other Configuration Values Through the Use of Templates

// example-templates/tasks/test.js

module.exports = function(grunt) {

 grunt.config('test', {

 'banner': '<%= pkg.name %>-<%= pkg.version %>'

 });

 grunt.registerTask('test', function() {

 grunt.log.writeln(grunt.config('test.banner'));

 });

};

Listing 1-19 shows a sample Gruntfile that loads the contents of the project’s package.

json file using one of several built-in methods for interacting with the file system that are

discussed in further detail later in the chapter. The contents of this file are then stored

under the pkg key of Grunt’s configuration object. In Listing 1-20, we see a task that is able

to directly reference this information through the use of configuration templates.

�Command-Line Options
Additional options can be passed to Grunt using the following format:

$ grunt count --count=5

Chapter 1 Grunt

21

The example shown in Listing 1-21 demonstrates how a Grunt task can access this

information via the grunt.option() method. The result of calling this task is shown in

Listing 1-22.

Listing 1-21.  Simple Grunt Task That Counts to the Specified Number

// example-options/tasks/count.js

module.exports = function(grunt) {

 grunt.registerTask('count', function() {

 var limit = parseInt(grunt.option('limit'), 10);

 �if (isNaN(limit)) grunt.fail.fatal('A limit must be provided (e.g.

--limit=10)');

 console.log('Counting to: %s', limit);

 for (var i = 1; i <= limit; i++) console.log(i);

 });

};

Listing 1-22.  Result of Calling the Task Shown in Listing 1-21

$ grunt count --limit=5

Running "count" task

Counting to: 5

1

2

3

4

5

Done, without errors.

�Providing Feedback
Grunt provides a number of built-in methods for providing feedback to users during the

execution of tasks, a few of which you have already seen used throughout this chapter.

While we won’t list all of them here, several useful examples can be found in Table 1-1.

Chapter 1 Grunt

22

�Handling Errors
During the course of task execution, errors can occur. When they do, it’s important to

know how to appropriately handle them. When faced with an error, developers should

make use of Grunt’s error API, which is easy to use, as it provides just two methods,

shown in Table 1-2.

Table 1-1.  Useful Grunt Methods for Displaying Feedback to the User

Method Description

grunt.log.write() Prints a message to the console

grunt.log.writeln() Prints a message to the console, followed by a newline character

grunt.log.oklns() Prints a success message to the console, followed by a newline character

grunt.log.error() Prints an error message to the console, followed by a newline character

grunt.log.subhead() Prints a bold message to the console, followed by a newline character

grunt.log.debug() Prints a message to the console only if the --debug flag was passed

Table 1-2.  Methods Available via Grunt’s error API

Method Description

grunt.fail.warn() Displays a warning and aborts Grunt immediately. Tasks will continue to

run if the --force option is passed

grunt.fail.fatal() Displays a warning and aborts Grunt immediately

�Interacting with the File System
As a build tool, it comes as no surprise that the majority of Grunt’s plugins interact with

the file system in one way or another. Given its importance, Grunt provides helpful

abstractions that allow developers to interact with the file system with a minimal amount

of boilerplate code.

While we won’t list all of them here, Table 1-3 shows several of the most frequently

used methods within Grunt’s file API.

Chapter 1 Grunt

23

�Source-Destination Mappings
Many Grunt tasks that interact with the file system rely heavily on the concept of

source-destination mappings, a format that describes a set of files to be processed and

a corresponding destination for each. Such mappings can be tedious to construct, but

thankfully Grunt provides helpful shortcuts that address this need.

Imagine for a moment that you are working on a project with a public folder located

at its root. Within this folder are the files to be served over the Web once the project is

deployed, as shown in Listing 1-23.

Listing 1-23.  Contents of an Imaginary Project’s public Folder

// example-iterate1

.

└── public
 └── images
 ├── cat1.jpg
 ├── cat2.jpg
 └── cat3.png

Table 1-3.  Useful Grunt Methods for Interacting with the File System

Method Description

grunt.file.read() Reads and returns file’s contents

grunt.file.readJSON() Reads a file’s contents, parsing the data as JSON, and returns the result

grunt.file.write() Writes the specified contents to a file, creating intermediate

directories, if necessary

grunt.file.copy() Copies a source file to a destination path, creating intermediate

directories, if necessary

grunt.file.delete() Deletes the specified file path; deletes files and folders recursively

grunt.file.mkdir() Creates a directory, along with any missing intermediate directories

grunt.file.recurse() Recurses into a directory, executing a callback for every file that is found

Chapter 1 Grunt

24

As you can see, our project has an images folder containing three files. Knowing this,

let’s take a look at a few ways in which Grunt can help us iterate through these files.

In Listing 1-24, we find a Grunt multi-task similar to those we’ve recently been

introduced to. The key difference here is the presence of an src key within our task’s

configuration. Grunt gives special attention to multi-task configurations that contain this

key, as we’ll soon see. When the src key is present, Grunt provides a this.files property

within our task that provides an array containing paths to every matching file that is found

via the node-glob module. The output from this task is shown in Listing 1-25.

Listing 1-24.  Grunt Multi-Task with a Configuration Object Containing an src Key

// example-iterate1/tasks/list-files.js

module.exports = function(grunt) {

 grunt.config('list-files', {

 'images': {

 'src': ['public/**/*.jpg', 'public/**/*.png']

 }

 });

 grunt.registerMultiTask('list-files', function() {

 this.files.forEach(function(files) {

 grunt.log.writeln('Source:', files.src);

 });

 });

};

Listing 1-25.  Output from the Grunt Task Shown in Listing 1-24

$ grunt list-files

Running "list-files:images" (list-files) task

Source: ['public/images/cat1.jpg',

 'public/images/cat2.jpg',

 'public/images/cat3.png']

Done, without errors.

Chapter 1 Grunt

25

The combination of the src configuration property and the this.files multi-task

property provides developers with a concise syntax for iterating over multiple files. The

contrived example that we’ve just looked at is fairly simple, but Grunt also provides

additional options for tackling more complex scenarios. Let’s take a look.

As opposed to the src key that was used to configure our task in Listing 1-24, the

example in Listing 1-26 demonstrates the use of the files array—a slightly more verbose,

but more powerful format for selecting files. This format accepts additional options that

allow us to more finely tune our selection. Of particular importance is the expand option,

as you’ll see in Listing 1-27. Pay close attention to how the output differs from that of

Listing 1-26, due to the use of the expand option.

Listing 1-26.  Iterating Through Files Using the “Files Array” Format

// example-iterate2/tasks/list-files.js

module.exports = function(grunt) {

 grunt.config('list-files', {

 'images': {

 'files': [

 {

 'cwd': 'public',

 'src': ['**/*.jpg', '**/*.png'],

 'dest': 'tmp',

 'expand': true

 }

]

 }

 });

 grunt.registerMultiTask('list-files', function() {

 this.files.forEach(function(files) {

 grunt.log.writeln('Source:', files.src);

 grunt.log.writeln('Destination:', files.dest);

 });

 });

};

Chapter 1 Grunt

26

Listing 1-27.  Output from the Grunt Task Shown in Listing 1-26

$ grunt list-files

Running "list-files:images" (list-files) task

Source: ['public/images/cat1.jpg']

Destination: tmp/images/cat1.jpg

Source: ['public/images/cat2.jpg']

Destination: tmp/images/cat2.jpg

Done, without errors.

The expand option, when paired with the dest option, instructs Grunt to iterate

through our task’s this.files.forEach loop once for every entry it finds, within which

we can find a corresponding dest property. Using this approach, we can easily create

source-destination mappings that can be used to copy (or move) files from one location

to another.

�Watching for File Changes
One of Grunt’s most popular plugins, grunt-contrib-watch, gives Grunt the ability to

run predefined tasks whenever files that match a specified pattern are created, modified,

or deleted. When combined with other tasks, grunt-contrib-watch enables developers

to create powerful workflows that automate actions such as

•	 Checking JavaScript code for errors (i.e., “linting”)

•	 Compiling Sass stylesheets

•	 Running unit tests

Let’s take a look at a few examples that demonstrate such workflows put into action.

�Automated JavaScript Linting

Listing 1-28 shows a basic Grunt setup similar to those already shown in this chapter.

A default task is registered which serves as an alias to the watch task, allowing us to

start watching for changes within our project by simply running $ grunt from the

command line. In this example, Grunt will watch for changes within the src folder. As

they occur, the jshint task is triggered, which will scan our project’s src folder in search

of JavaScript errors.

Chapter 1 Grunt

27

Listing 1-28.  Automatically Checking for JavaScript Errors As Changes Occur

// example-watch-hint/Gruntfile.js

module.exports = function(grunt) {

 grunt.loadTasks('tasks');

 grunt.registerTask('default', ['watch']);

};

// example-watch-hint/tasks/jshint.js

module.exports = function(grunt) {

 grunt.loadNpmTasks('grunt-contrib-jshint');

 grunt.config('jshint', {

 'options': {

 'globalstrict': true,

 'node': true,

 'scripturl': true,

 'browser': true,

 'jquery': true

 },

 'all': [

 'src/**/*.js'

]

 });

};

// example-watch-hint/tasks/watch.js

module.exports = function(grunt) {

 grunt.loadNpmTasks('grunt-contrib-watch');

 grunt.config('watch', {

 'js': {

 'files': [

 'src/**/*'

Chapter 1 Grunt

28

],

 'tasks': ['jshint'],

 'options': {

 'spawn': true

 }

 }

 });

};

�Automated Sass Stylesheet Compilation

Listing 1-29 shows an example in which Grunt is instructed to watch our project for

changes. This time, however, instead of watching our JavaScript, Grunt is configured

to watch our project’s Sass stylesheets. As changes occur, the grunt-contrib-compass

plugin is called, which compiles our stylesheets into their final form.

Listing 1-29.  Automatically Compiling Sass Stylesheets As Changes Occur

// example-watch-sass/Gruntfile.js

module.exports = function(grunt) {

 grunt.loadTasks('tasks');

 grunt.registerTask('default', ['watch']);

};

// example-watch-sass/tasks/compass.js

module.exports = function(grunt) {

 grunt.loadNpmTasks('grunt-contrib-compass');

 grunt.config('compass', {

 'all': {

 'options': {

 'httpPath': '/',

 'cssDir': 'public/css',

 'sassDir': 'scss',

 'imagesDir': 'public/images',

 'relativeAssets': true,

Chapter 1 Grunt

29

 'outputStyle': 'compressed'

 }

 }

 });

};

// example-watch-compass/tasks/watch.js

module.exports = function(grunt) {

 grunt.loadNpmTasks('grunt-contrib-watch');

 grunt.config('watch', {

 'scss': {

 'files': [

 'scss/**/*'

],

 'tasks': ['compass'],

 'options': {

 'spawn': true

 }

 }

 });

};

Note  In order for this example to function, you must install Compass, an open
source CSS authoring framework. You can find additional information on how to
install Compass at http://compass-style.org/install.

�Automated Unit Testing

Our final example regarding grunt-contrib-watch concerns unit testing. In Listing 1-30,

we see a Gruntfile that watches our project’s JavaScript for changes. As these changes

occur, our project’s unit tests are immediately triggered with the help of Grunt’s grunt-

mocha-test plugin.

Chapter 1 Grunt

http://compass-style.org/install

30

Listing 1-30.  Automatically Running Unit Tests As Changes Occur

// example-watch-test/Gruntfile.js

module.exports = function(grunt) {

 grunt.loadTasks('tasks');

 grunt.registerTask('default', ['watch']);

};

// example-watch-test/tasks/mochaTest.js

module.exports = function(grunt) {

 grunt.loadNpmTasks('grunt-mocha-test');

 grunt.config('mochaTest', {

 'test': {

 'options': {

 'reporter': 'spec'

 },

 'src': ['test/**/*.js']

 }

 });

};

// example-watch-test/tasks/watch.js

module.exports = function(grunt) {

 grunt.loadNpmTasks('grunt-contrib-watch');

 grunt.config('watch', {

 'scss': {

 'files': [

 'src/**/*.js'

],

 'tasks': ['mochaTest'],

 'options': {

 'spawn': true

Chapter 1 Grunt

31

 }

 }

 });

};

�Creating Plugins
A large library of community-supported plugins is what makes Grunt truly shine—a

library that will allow you to start benefitting from Grunt immediately, without the need

to create complex tasks from scratch. If you need to automate a build process within your

project, there’s a good chance that someone has already done the “grunt” work (zing!)

for you.

In this section, you’ll discover how you can contribute back to the community with

Grunt plugins of your own creation.

�Getting Started
One of the first things you’ll want to do is create a public GitHub repository in which

to store your new plugin. The example that we will be referencing is included with the

source code that accompanies this book.

Once your new repository is ready, clone it to your computer. Next, initialize Grunt

within it by following the same steps that were outlined earlier in this chapter’s “Adding

Grunt to Your Project” section. Afterward, the file structure of your new Grunt plugin

should resemble that shown in Listing 1-31.

Listing 1-31.  File Structure of Your New Grunt Plugin

.

├── Gruntfile.js
├── README.md
├── package.json
└── tasks

Chapter 1 Grunt

32

Note T he most important point to note here is that there is no special structure
or knowledge required (apart from what has already been covered in this chapter)
for the creation of Grunt plugins. The process mirrors that of integrating Grunt into
an existing project—the creation of a Gruntfile that loads tasks, along with the
tasks themselves. Once published to npm, other Grunt projects will be able to load
your plugin in the same way that other plugins have been referenced throughout
this chapter.

�Creating the Task
By way of an example, let’s create a Grunt plugin capable of generating a report that

details the type, size, and number of files contained within a project. An example

demonstrating the configuration for this plugin is shown in Listing 1-32.

Listing 1-32.  Example Demonstrating the Configuration of Our Plugin

// example-plugin/Gruntfile.js

module.exports = function(grunt) {

 grunt.config('file-report', {

 'options': {

 },

 'public': {

 'src': ['public/**/*']

 },

 'images': {

 'src': ['public/**/*.jpg', 'public/**/*.png', 'public/**/*.gif']

 }

 });

 grunt.loadNpmTasks('grunt-file-reporter');

 grunt.registerTask('default', ['file-report']);

};

Chapter 1 Grunt

33

The source code for our plugin is shown in Listing 1-33. Within our plugin, a Grunt

multi-task named file-report is registered. When called, the task will iterate through

the various target files that were specified in Listing 1-32. As it does so, the plugin will

compile a report that details the type, number, and size of the files it finds.

Listing 1-33.  Source Code for Our Plugin

// example-plugin/node_modules/grunt-file-reporter/Gruntfile.js

var fs = require('fs');

var filesize = require('filesize');

var _ = require('lodash');

_.mixin(require('underscore.string'));

module.exports = function(grunt) {

 var mime = require('mime');

 var Table = require('cli-table');

 �grunt.registerMultiTask('file-report', 'Generates a report of file

types & sizes used within a project', function() {

 var report = {

 'mimeTypes': {},

 'largest': null,

 'smallest': null

 };

 var table = new Table({

 'head': ['Content Type', 'Files Found', 'Total Size',

 'Average Size', 'Largest', 'Smallest']

 });

 var addFile = function(file) {

 if (grunt.file.isDir(file)) return;

 var mimeType = mime.lookup(file);

 if (!report.mimeTypes[mimeType]) {

 report.mimeTypes[mimeType] = {

 'count': 0,

 'sizes': [],

Chapter 1 Grunt

34

 'largest': null,

 'smallest': null,

 'oldest': null,

 'newest': null

 };

 }

 var details = report.mimeTypes[mimeType];

 details.count++;

 var stats = fs.statSync(file);

 details.sizes.push(stats.size);

 if (!details.largest || stats.size > details.largest.size) {

 details.largest = { 'file': file, 'size': stats.size };

 }

 if (!report.largest || stats.size > report.largest.size) {

 report.largest = { 'file': file, 'size': stats.size };

 }

 if (!details.smallest || stats.size < details.smallest.size) {

 details.smallest = { 'file': file, 'size': stats.size };

 }

 if (!report.smallest || stats.size < report.smallest.size) {

 report.smallest = { 'file': file, 'size': stats.size };

 }

 };

 var sum = function(arr) {

 return arr.reduce(function(a, b) {

 return a + b;

 });

 };

 var displayReport = function() {

 var totalSum = 0;

 var totalFiles = 0;

 var totalSizes = [];

 _.each(report.mimeTypes, function(data, mType) {

 var fileSum = sum(data.sizes);

Chapter 1 Grunt

35

 totalSum += fileSum;

 totalFiles += data.sizes.length;

 totalSizes = totalSizes.concat(data.sizes);

 table.push([mType, data.count, filesize(fileSum),

 filesize(fileSum / data.sizes.length),

 �_.sprintf('%s (%s)', data.largest.file, filesize(data.

largest.size)),

 �_.sprintf('%s (%s)', data.smallest.file, filesize(data.

smallest.size)),

]);

 });

 table.push(['-', totalFiles, filesize(totalSum),

 filesize(totalSum / totalSizes.length),

 �_.sprintf('%s (%s)', report.largest.file, filesize(report.

largest.size)),

 �_.sprintf('%s (%s)', report.smallest.file, filesize(report.

smallest.size)),

]);

 console.log(table.toString());

 };

 this.files.forEach(function(files) {

 files.src.forEach(addFile);

 });

 displayReport();

 });

};

The output generated by our plugin’s file-report task is shown in Figure 1-1.

Chapter 1 Grunt

36

�Publishing to npm
Once our plugin is ready and our Git repository is updated with the latest code, the final

step toward making it available to others is publishing it via npm:

$ npm publish

Note  If this is your first time publishing a module to npm, you will be asked to
create an account.

�Summary
In this chapter, we’ve looked at how Grunt provides developers with a powerful toolkit

for automating many of the repetitive, tedious tasks that often accompany software

development. You’ve discovered

•	 What makes Grunt tick (tasks, plugins, and configuration objects)

•	 How to configure tasks and plugins

Figure 1-1.  The output generated by the file-report task

Chapter 1 Grunt

37

•	 How to use many of the helpful built-in utilities that Grunt makes

available for providing user feedback and interacting with the file

system

•	 How to create and share your own Grunt plugins

�Related Resources
•	 Grunt: http://gruntjs.com

•	 JSHint: http://jshint.com

•	 grunt-contrib-watch: https://github.com/gruntjs/grunt-

contrib-watch

•	 grunt-contrib-jshint: https://github.com/gruntjs/grunt-

contrib-jshint

•	 grunt-contrib-uglify: https://github.com/gruntjs/grunt-

contrib-uglify

•	 grunt-contrib-compass: https://github.com/gruntjs/grunt-

contrib-compass

•	 grunt-mocha-test: https://github.com/pghalliday/grunt-

mocha-test

•	 Syntactically Awesome Stylesheets (Sass): http://sass-lang.com

•	 Compass: http://compass-style.org

Chapter 1 Grunt

http://gruntjs.com
http://jshint.com
https://github.com/gruntjs/grunt-contrib-watch
https://github.com/gruntjs/grunt-contrib-watch
https://github.com/gruntjs/grunt-contrib-jshint
https://github.com/gruntjs/grunt-contrib-jshint
https://github.com/gruntjs/grunt-contrib-uglify
https://github.com/gruntjs/grunt-contrib-uglify
https://github.com/gruntjs/grunt-contrib-compass
https://github.com/gruntjs/grunt-contrib-compass
https://github.com/pghalliday/grunt-mocha-test
https://github.com/pghalliday/grunt-mocha-test
http://sass-lang.com
http://compass-style.org

39
© Sufyan bin Uzayr, Nicholas Cloud, Tim Ambler 2019
S. bin Uzayr et al., JavaScript Frameworks for Modern Web Development,
https://doi.org/10.1007/978-1-4842-4995-6_2

CHAPTER 2

Yeoman

One only needs two tools in life: WD-40 to make things go, and duct tape to
make them stop.

—G. Weilacher

The development community has witnessed a role reversal of sorts take place in

recent years. Web applications, once considered by many to be second-class citizens

in comparison to their native counterparts, have largely supplanted traditional

desktop applications, thanks in large part to the widespread adoption of modern web

development technologies and the rise of the mobile Web. But as web applications have

grown increasingly sophisticated, so too have the tools on which they rely and the steps

required to bootstrap them into existence.

The topic of this chapter, Yeoman, is a popular project “scaffolding” tool that helps

to alleviate this problem by automating the tedious tasks associated with bootstrapping

new applications off the ground. Yeoman provides a mechanism for creating reusable

templates that describe a project’s initial file structure, HTML, third-party libraries,

and task runner configurations. These templates, which can be shared with the wider

development community via npm, allow developers to bootstrap new projects that

follow agreed-upon best practices in a matter of minutes.

In this chapter, you will learn how to

•	 Install Yeoman

•	 Take advantage of Yeoman generators that have already been

published by the community

•	 Contribute back to the community with your own Yeoman generators

40

�Installing Yeoman
Yeoman’s command-line utility, yo, is available via npm. If you have not already installed

Yeoman, you should do so before you continue, as shown in Listing 2-1.

Listing 2-1.  Installing the yo Command-Line Utility via npm

$ npm install -g yo

$ yo –version

2.0.5

�Creating Your First Project
Yeoman allows developers to quickly create the initial structure of an application

through the use of reusable templates, which Yeoman refers to as “generators.” To better

understand how this process can improve your workflow, let’s create a new project

with the help of the modernweb generator that was created specifically for this chapter.

Afterward, we will look at how this generator was created, providing you with the

knowledge you need to create and share your own custom Yeoman generators with the

wider development community.

The generator we will be using will create the initial foundations of a project that

uses the following tools and libraries:

•	 Grunt

•	 Bower

•	 jQuery

•	 AngularJS

•	 Browserify

•	 Compass

Yeoman generators are installed as global npm modules. That being the case, the

command for installing our generator should look familiar:

$ npm install -g generator-modernweb

Chapter 2 Yeoman

41

Note T his generator’s name is prefixed with generator-, which is an important
convention that all Yeoman generators must follow. At runtime, Yeoman will
determine what (if any) generators have been installed by searching for global
modules whose names follow this format.

With our generator now installed, we can move forward with setting up our first

project. First, we create a new folder to contain it. Afterward, we instruct Yeoman to create

a new project based on the generator that we just installed. Listing 2-2 shows these steps in

action, along with several questions the generator is designed to prompt you with.

Listing 2-2.  Creating Our First Project with the modernweb Generator

$ mkdir my-app

$ cd my-app

$ yo modernweb

? Project Title: My Project

? Package Name: my-project

? Project Description: My awesome project

? Project Author: John Doe

? Express Port: 7000

After responding to the generator’s questions (you can safely accept the defaults),

Yeoman will move forward with creating the project. Afterward, we can easily build and

launch it using the project’s default Grunt task, which our generator has conveniently set

up for us (see Listing 2-3).

Listing 2-3.  Our New Project’s Default Grunt Task Will Trigger Various Build

Steps and Open the Project Within Our Browser

$ grunt

Running "concat:app" (concat) task

File public/dist/libs.js created.

Running "compass:app" (compass) task

unchanged scss/style.scss

Compilation took 0.002s

Chapter 2 Yeoman

42

Running "browserify" task

Running "concurrent:app" (concurrent) task

Running "watch" task

Waiting...

Running "open:app" (open) task

Running "server" task

Server is now listening on port: 7000

Done, without errors.

As you can see, our new project’s default Grunt task executes several additional build

steps for us:

•	 JavaScript libraries are compiled into a single, minified script.

•	 Sass stylesheets are compiled.

•	 The source code of the application itself is compiled via Browserify.

•	 An instance of Express is created to serve our project.

•	 Various watch scripts are initialized that will automatically recompile

our project as changes are made.

The final action of our project’s default Grunt task will be to launch our project

within a new browser window, as shown in Figure 2-1.

Figure 2-1.  Our new project’s home page, opened for us by the default Grunt task

Chapter 2 Yeoman

43

Now that our new project is ready for further development, let’s take a few moments

to become familiar with the various templates, scripts, and Grunt tasks that our

generator has put in place for us, paying special attention to the contents of these files:

•	 bower.json

•	 Gruntfile.js

•	 package.json

•	 public/index.html

With the help of Yeoman’s support for user prompts and templates (which we will

discuss in more detail in the next section), the generator has merged our answers to its

initial questions with the contents of our project’s files, where appropriate. For instance,

the values for name, description, and author within our project’s package.json file have

been set for us (see Listing 2-4).

Listing 2-4.  Contents of Our Project’s package.json File

// package.json

{

 "name": "my-project",

 "description": "My awesome project",

 "author": "John Doe",

 "files": [],

 "keywords": [],

 "dependencies": {},

 "browserify": {

 "transform": [

 "brfs",

 "bulkify",

 "folderify"

]

 },

 "browser": {}

}

Chapter 2 Yeoman

44

�Subcommands
In their simplest form, generators act as configurable project templates that simplify the

creation of new projects, but that’s not their only purpose. In addition to assisting with

the initial creation of new projects, generators can also include other commands that

project maintainers will find useful throughout development.

In Listing 2-2, we used the modernweb generator to create a new single-page

application built using the AngularJS framework. If you are unfamiliar with Angular,

don’t worry—the particulars of this framework are unimportant for now. What is

important, however, is the contents of the project’s public/app/routes folder. Notice

that a single folder, dashboard, has been created for us at this location. The contents of

this folder are shown in Listing 2-5.

Listing 2-5.  Contents of Our Project’s public/app/routes/dashboard Folder

.

├── index.js
└── template.html

// public/app/routes/dashboard/index.js

module.exports = {

 'route': '/dashboard',

 'controller': function() {

 },

 'templateUrl': '/app/routes/dashboard/template.html',

 'resolve': {}

};

// public/app/routes/dashboard/template.html

<div class="well">

 Welcome to the "/dashboard" route.

</div>

Chapter 2 Yeoman

45

This project has been set up such that each folder within public/app/routes defines

a different “hashbang” route within the application. In this example, the project’s

dashboard folder defines a route that can be accessed at http://localhost:7000/#/

dashboard. Knowing this, suppose that we wanted to add a new users route to our

application. To do so, we could manually create the necessary files at the appropriate

location. Alternatively, we could use an additional command provided by our generator

that simplifies this process (see Listing 2-6).

Listing 2-6.  Example of Calling the route Sub-generator to Automate the

Process of Creating New Routes Within Our Angular Application

$ yo modernweb:route users

 create public/app/routes/users/index.js

 create public/app/routes/users/template.html

Route `users` created.

After running this command, refer to the project’s /public/app/routes folder

and note the existence of a new folder named users. Within this folder, our Yeoman

generator has taken care of creating the appropriate files for us. If you happen to still

have the server that we created in Listing 2-3 running, you should also be able to see that

the watch scripts that were started for us have detected this change and automatically

recompiled our application (see Listing 2-7).

Listing 2-7.  Grunt Automatically Recompiles Application As Changes Are Made

>> File "public/app/routes/users" added.

Running "browserify" task

Done, without errors.

�Creating Your First Generator
The remainder of this chapter will focus on the creation of a custom Yeoman generator—

the same one used in the previous section to bootstrap a new project built around

AngularJS (among other tools). Afterward, you will be well prepared to begin creating

your own generators that will allow you to quickly get up and running with workflows

that meet your specific needs.

Chapter 2 Yeoman

46

�Yeoman Generators Are Node Modules
A Yeoman generator is nothing more than a simple Node module that follows Yeoman’s

prescribed guidelines. As such, the first step in creating a generator is the creation of a

new Node module. Listing 2-8 shows the required commands, along with the resulting

package.json file.

Listing 2-8.  Creating a New Node Module to Contain the Contents of Our First

Yeoman Generator

$ mkdir generator-example

$ cd generator-example

$ npm init

// generator-example/package.json

{

 "name": "generator-example",

 "version": "1.0.0",

 "description": "An example Yeoman generator",

 "files": [],

 "keywords": [

 "yeoman-generator"

],

 "dependencies": {}

}

Note A lthough we are following the same steps that were used to create the
modernweb generator that was referenced earlier in this chapter, we are assigning
a different name to our new module, so as not to conflict with the one that has
already been installed. Also note the inclusion of yeoman-generator within our
module’s list of keywords. Yeoman’s web site maintains a list of every generator
available within npm, making it easy for developers to find preexisting generators
to suit their needs. If a generator is to be included within this list, it must include
this keyword, along with a description in its package.json file.

Chapter 2 Yeoman

47

Yeoman generators have the option of relying on external dependencies, as is the

case with any other Node module. At a bare minimum, however, every generator must

specify the yeoman-generator module as a local dependency. This module will provide

us with the core functionality provided by Yeoman for creating user interactions,

interacting with the file system, and other important tasks. This module is installed as a

local dependency using the following command:

$ npm install yeoman-generator --save

�Sub-generators
Yeoman generators consist of one or more commands, each of which can be called

separately from the command line. These commands, which Yeoman refers to as “sub-

generators,” are defined within folders that exist at the root level of the module. For some

additional context, refer back to Listing 2-2, in which we created a new project based

off of the modernweb generator by running $ yo modernweb from the command line. In

that example, we did not specify a command—we simply passed Yeoman the name of

a generator. As a result, Yeoman executed that generator’s default sub-generator, which

by convention is always named app. We could have accomplished the same thing by

running this command:

$ yo modernweb:app

To better understand how this works, let’s move forward with creating our

generator’s default app sub-generator. We do so in four steps:

	 1.	 Create a folder named app at the root level of our module.

	 2.	 Create a folder named templates within our new app folder.

	 3.	 Place various files within our templates folder that we want to

copy into the target project (e.g., HTML files, Grunt tasks, etc.).

	 4.	 Create the script shown in Listing 2-9, which is responsible for

driving the functionality for this command.

Chapter 2 Yeoman

48

Listing 2-9.  Contents of Our Generator’s Default app Command (“Sub-generator”)

// generator-example/app/index.js

var generators = require('yeoman-generator');

/**
 * We create our generator by exporting a class that extends

 * from Yeoman's `Base` class.

 */

module.exports = generators.Base.extend({

 'prompting': function() {

 /**
 * Indicates that this function will execute asynchronously. Yeoman

 * will wait until we call the `done()` function before continuing.

 */

 var done = this.async();

 /**
 * Our generator's `prompt` method (inherited from Yeoman's `Base`

 * class) allows us to define a series of questions to prompt the

 * user with.

 */

 this.prompt([

 {

 'type': 'input',

 'name': 'title',

 'message': 'Project Title',

 'default': 'My Project',

 'validate': function(title) {

 return (title.length > 0);

 }

 },

 {

 'type': 'input',

 'name': 'package_name',

Chapter 2 Yeoman

49

 'message': 'Package Name',

 'default': 'my-project',

 'validate': function(name) {

 return (name.length > 0 && /^[a-z0-9\-]+$/i.test(name));

 },

 'filter': function(name) {

 return name.toLowerCase();

 }

 },

 {

 'type': 'input',

 'name': 'description',

 'message': 'Project Description',

 'default': 'My awesome project',

 'validate': function(description) {

 return (description.length > 0);

 }

 },

 {

 'type': 'input',

 'name': 'author',

 'message': 'Project Author',

 'default': 'John Doe',

 'validate': function(author) {

 return (author.length > 0);

 }

 },

 {

 'type': 'input',

 'name': 'port',

 'message': 'Express Port',

 'default': 7000,

 'validate': function(port) {

 port = parseInt(port, 10);

 return (!isNaN(port) && port > 0);

Chapter 2 Yeoman

50

 }

 }

], function(answers) {

 this._answers = answers;

 done();

 }.bind(this));

 },

 'writing': function() {

 /**
 * Copies files from our sub-generator's `templates` folder to the target

 * project. The contents of each file is processed as a Lodash template

 * before being written to the disk.

 */

 this.fs.copyTpl(

 this.templatePath('**/*'),

 this.destinationPath(),

 this._answers

);

 this.fs.copyTpl(

 this.templatePath('pkg.json'),

 this.destinationPath('package.json'),

 this._answers

);

 this.fs.delete(this.destinationPath('pkg.json'));

 this.fs.copyTpl(

 this.templatePath('.bowerrc'),

 this.destinationPath('.bowerrc'),

 this._answers

);

Chapter 2 Yeoman

51

 /**
 * Writes a Yeoman configuration file to the target project's folder.

 */

 this.config.save();

 },

 'install': function() {

 /**
 * Installs various npm modules within the project folder and updates

 * `package.json` accordingly.

 */

 this.npmInstall([

 'express', 'lodash', 'underscore.string', 'browserify',

 'grunt', 'grunt-contrib-concat', 'grunt-contrib-watch',

 'grunt-contrib-compass', 'grunt-concurrent', 'bulk-require',

 'brfs', 'bulkify', 'folderify', 'grunt-open'

], {

 'saveDev': false

 });

 /**
 * Installs dependencies defined within `bower.json`.

 */

 this.bowerInstall();

 },

 'end': function() {

 this.log('Your project is ready.');

 }

});

The contents of our generator’s app folder are shown in Figure 2-2.

Chapter 2 Yeoman

52

In Listing 2-9, our generator’s default app command is created by exporting a class

that extends from Yeoman’s Base class. Within this class, four instance methods are defined:

•	 prompting()

•	 writing()

•	 install()

•	 end()

These method names play an important role during execution (they were not

arbitrarily chosen). When Yeoman runs a generator, it searches for prototype methods

whose names match those listed here:

•	 initializing(): Initialization methods (checking project state,

getting configs).

•	 prompting(): Prompting the user for information.

•	 configuring(): Saving configuration files.

Figure 2-2.  The contents of our generator’s app folder. The contents of the
templates folder will be copied into the target project.

Chapter 2 Yeoman

53

•	 default(): Prototype methods with names not included within this

list will be executed during this step.

•	 writing(): Write operations specific to this generator occur here.

•	 conflicts(): Conflicts are handled here (used internally by Yeoman).

•	 install(): Installation procedures occur here (npm, bower).

•	 end(): Last function to be called. Cleanup/closing messages.

Once Yeoman has compiled a list of the various prototype methods that exist within

our generator, it will execute them in the priority shown in the preceding list.

�Lodash Templates

In Listing 2-9, Yeoman’s fs.copyTpl() method was used to copy files from our

sub-generator’s templates folder to the target project. This method differs from

Yeoman’s fs.copy() method, in that it also processes each file it finds as a Lodash

template. Listing 2-10 shows the contents of our sub-generator’s templates/pkg.json

file, which will be processed in this way before being saved to the folder of the new

project as package.json.

Listing 2-10.  Contents of Our Sub-generator’s templates/pkg.json File

// generator-example/app/templates/pkg.json

{

 "name": "<%= package_name %>",

 "description": "<%= description %>",

 "author": "<%= author %>",

 "files": [],

 "keywords": [],

 "dependencies": {},

 "browserify": {

 "transform": [

 "brfs",

 "bulkify",

 "folderify"

]

Chapter 2 Yeoman

54

 },

 "browser": {}

}

Note T he process by which Yeoman generators can modify their behavior and
alter the contents of templates based on a user’s answers to prompts opens up
a lot of exciting possibilities. It allows for the creation of new projects that are
dynamically configured according to a user’s specific needs. It’s this aspect of
Yeoman, more than any other, that makes the tool truly useful.

We’re now ready to create our first project using our new generator. To do so, open

a new terminal window and create a folder to contain it. Next, move into the new folder

and run the generator, as shown in Listing 2-11.

Listing 2-11.  Running Our New Generator for the First Time

$ mkdir new-project

$ cd new-project

$ yo example

Error example

You don't seem to have a generator with the name example installed.

You can see available generators with npm search yeoman-generator and then

install the

with npm install [name].

Obviously, this isn’t the result we were hoping for. To understand what caused this

error, recall from earlier in the chapter that when Yeoman is called, it locates generators

by searching for modules whose names begin with generator- that have been installed

in the global context. As a result, Yeoman is currently unaware of the existence of our

new generator. Fortunately, npm provides a handy command that will solve this problem

for us. The npm link command creates a symbolic link (symlink) between our new

module and Node’s global modules folder. The command is executed at the root level of

our new module (see Listing 2-12).

Chapter 2 Yeoman

55

Listing 2-12.  Creating a Symbolic Link with the npm link Command

$ npm link

/Users/tim/.nvm/v0.10.33/lib/node_modules/generator-example -> /opt/

generator-example

Npm’s link command creates a symbolic link between the folder in which it is run

and the folder in which globally installed Node modules are stored. By running this

command, we place a reference to our new generator in a location that Yeoman can find.

With this link in place, let’s run our generator again (see Listing 2-13).

Listing 2-13.  Successfully Running Our New Generator for the First Time

$ yo example

? Project Title: My Project

? Package Name: my-project

? Project Description: My awesome project

? Project Author: John Doe

? Express Port: 7000

After responding to the generator’s questions, Yeoman will move forward with

building our new project, just as it did with the modernweb generator that we used in

the first half of this chapter. Once this process is finished, run Grunt’s default task—$

grunt—to build and launch the project.

�Defining Secondary Commands
In the first half of this chapter, you learned that multiple commands can be included

with Yeoman generators—commands whose usefulness can extend well beyond

the initial creation of a new project. The modernweb generator demonstrated this by

including a route command that automated the process of creating new routes within

an Angular application (refer to Listing 2-6 earlier in the chapter). The steps involved in

creating this command closely follow those we took when we created our generator’s

default app command:

	 1.	 Create a folder named route at the root level of our module.

	 2.	 Create a folder named templates within our new route folder.

Chapter 2 Yeoman

56

	 3.	 Place various files within our templates folder that we want to

copy into the target project.

	 4.	 Create the script shown in Listing 2-14, which is responsible for

driving the functionality for the route command.

Listing 2-14.  A route Sub-generator That Automates the Creation of New

Angular Routes

// generator-example/route/index.js

var generators = require('yeoman-generator');

/*
Our generator's default `app` command was created by extending Yeoman's

`Base` class. In this example, we extend the `NamedBase` class, instead.

Doing so alerts Yeoman to the fact that this command expects one or more

arguments. For example: $ yo example:route my-new-route

*/

module.exports = generators.NamedBase.extend({

 'constructor': function(args) {

 this._opts = {

 'route': args[0]

 };

 generators.NamedBase.apply(this, arguments);

 },

 'writing': function() {

 this.fs.copyTpl(

 this.templatePath('index.js'),

 �this.destinationPath('public/app/routes/' + this._opts.route +

'/index.js'),

 this._opts

);

 this.fs.copyTpl(

 this.templatePath('template.html'),

Chapter 2 Yeoman

57

 �this.destinationPath('public/app/routes/' + this._opts.route +

'/template.html'),

 this._opts

);

 },

 'end': function() {

 this.log('Route `' + this._opts.route + '` created.');

 }

});

The script shown in Listing 2-14 looks very similar to that shown in Listing 2-9,

the primary difference being the use of Yeoman’s NamedBase class. By creating a sub-

generator that extends from NamedBase, we alert Yeoman to the fact that this command

expects to receive one or more arguments.

Listing 2-15 demonstrates the use of our generator’s new route command.

Listing 2-15.  Creating a New Angular Route Using Our Generator’s route Command

$ yo example:route users

 create public/app/routes/users/index.js

 create public/app/routes/users/template.html

Route `users` created.

�Composability
When creating Yeoman generators, it is not uncommon to encounter situations in which

having the ability to execute one sub-generator from within another would be useful.

For example, consider the generator that we just created. It’s easy to imagine a scenario

in which we might want our generator to automatically create several default routes

when run. To accomplish that goal, it would be helpful if we had the ability to call our

generator’s route command from within its app command. Yeoman’s composeWith()

method exists for this very reason (see Listing 2-16).

Chapter 2 Yeoman

58

Listing 2-16.  Yeoman’s composeWith() Method Allows One Sub-generator to

Call Another

// generator-example/app/index.js (excerpt)

'writing': function() {

 this.fs.copyTpl(

 this.templatePath('**/*'),

 this.destinationPath(),

 this._answers

);

 this.fs.copy(

 this.templatePath('.bowerrc'),

 this.destinationPath('.bowerrc'),

 this._answers

);

 /*
 Yeoman's `composeWith` method allows us to execute external generators.

 Here, we trigger the creation of a new route named "dashboard".

 */

 this.composeWith('example:route', {

 'args': ['dashboard']

 });

 this.config.save();

}

With the help of Yeoman’s composeWith() method, simple sub-generators can be

combined (i.e., “composed”) with one another to create fairly sophisticated workflows.

By taking advantage of this method, developers can create complex, multicommand

generators while avoiding the use of duplicate code across commands.

Lastly, it is worth noting that if you are stuck somewhere when developing with

Yeoman, or, let us say, your Yeoman generator does not seem to be functioning as

desired, there is a built-in troubleshooting command that you can make use of to

diagnose and figure out code issues, compatibility issues, and more:

yo doctor

Chapter 2 Yeoman

59

�Summary
Yeoman is a simple but powerful tool that automates the tedious tasks associated with

bootstrapping new applications into existence, speeding up the process by which

developers can move from concept to prototype. When used, it allows developers to

focus their attention where it matters most—on the applications themselves.

Thousands of Yeoman generators have been published to npm, making it easy for

developers to experiment with a wide variety of tools, libraries, frameworks, and design

patterns (e.g., Bower, Grunt, AngularJS, Knockout, React) with which they may not have

experience.

�Related Resources
•	 Yeoman: http://yeoman.io/

•	 Yeoman on npm: www.npmjs.com/package/yo

Chapter 2 Yeoman

http://yeoman.io/
https://www.npmjs.com/package/yo

61
© Sufyan bin Uzayr, Nicholas Cloud, Tim Ambler 2019
S. bin Uzayr et al., JavaScript Frameworks for Modern Web Development,
https://doi.org/10.1007/978-1-4842-4995-6_3

CHAPTER 3

PM2

Do not wait; the time will never be “just right.” Start where you stand, and
work with whatever tools you may have at your command, and better tools
will be found as you go along.

—George Herbert

The previous chapters within this section have covered a variety of useful web

development tools, with our primary focus placed on client-side development. In this

chapter, we will round out our coverage of development tools by shifting our focus to

the server. We will be exploring PM2, a command-line utility that simplifies many of the

tasks associated with running Node applications, monitoring their status, and efficiently

scaling them to meet increasing demand. Topics covered include

•	 Working with processes

•	 Monitoring logs

•	 Monitoring resource usage

•	 Advanced process management

•	 Load balancing across multiple processors

•	 Zero downtime deployments

�Installation
PM2’s command-line utility, pm2, is available via npm. If you have not already installed

PM2, you should do so before you continue, as shown in Listing 3-1.

62

Listing 3-1.  Installing the pm2 Command-Line Utility via npm

$ npm install -g pm2

$ pm2 --version

3.2.9

Note  Node’s package manager (npm) allows users to install packages in one of
two contexts: locally or globally. In this example, pm2 is installed within the global
context, which is typically reserved for command-line utilities.

�Working with Processes
Listing 3-2 shows the contents of a simple Node application that will form the basis

of our first several interactions with PM2. When accessed, it does nothing more than

display the message “Hello, world.” to users.

Listing 3-2.  Simple Express Application

// my-app/index.js

var express = require('express');

var morgan = require('morgan');

var app = express();

app.use(morgan('combined'));

app.get('/', function(req, res, next) {

 res.send('Hello, world.\n');

});

app.listen(8000);

Figure 3-1 demonstrates the process by which we can launch this application with

the help of the pm2 command-line utility. In this example, we instruct PM2 to start our

application by executing its index.js script. We also provide PM2 with an optional name

for our application (my-app), making it easier for us to reference it at a later time. Before

doing so, be sure you install the project’s dependencies by running $ npm install.

Chapter 3 PM2

63

After calling PM2’s start command, PM2 helpfully displays a table containing

information about every Node application it is currently aware of before returning us

to the command prompt. The meaning of the columns that we see in this example is

summarized in Table 3-1.

Figure 3-1.  Launching the application shown in Listing 3-2 with PM2

Table 3-1.  Summary of Columns Shown in Figure 3-1

Heading Description

App name The name of the process. Defaults to the name of the script that was executed.

id A unique ID assigned to the process by PM2. Processes can be referenced by

name or ID.

mode The method of execution (fork or cluster). Defaults to fork. Explored in more

detail later in the chapter.

pid A unique number assigned by the operating system to the process.

status The current status of the process (e.g., online, stopped, etc.).

restart The number of times the process has been restarted by PM2.

uptime The length of time the process has been running since last being restarted.

memory The amount of memory consumed by the process.

watching Indicates whether PM2 will automatically restart the process when it detects

changes within a project’s file structure. Particularly useful during development.

Defaults to disabled.

Chapter 3 PM2

64

As indicated by the output provided by PM2 in Listing 3-3, our application is now

online and ready for use. We can verify this by calling our application’s sole route using

the curl command-line utility, as shown in Figure 3-2.

Figure 3-2.  Accessing the sole route defined by our Express application

Table 3-2.  Frequently Used Commands for Interacting with PM2 Processes

Command Description

list Displays an up-to-date version of the table shown in Listing 3-4

stop Stops the process, without removing it from PM2’s list

restart Restarts the process

delete Stops the process and removes it from PM2’s list

show Displays details regarding the specified process

Note  Figure 3-2 assumes the existence of the curl command-line utility within
your environment. If you happen to be working in an environment where this utility
is not available, you could also verify the status of this application by opening it
directly within your web browser.

In addition to the start command, PM2 also provides a number of useful

commands for interacting with processes that PM2 is already aware of, the most

common of which are shown in Table 3-2.

Simple commands such as stop, start, and delete require no additional

commentary. Figure 3-3, on the other hand, shows the information you can expect

to receive when requesting information about a specific PM2 process via the show

command.

Chapter 3 PM2

65

�Recovering from Errors
At this point, you are now familiar with some of the basic steps involved in interacting

with PM2. You’ve learned how to create new processes with the help of PM2’s start

command. You’ve also discovered how you can subsequently manage running processes

with the help of commands such as list, stop, restart, delete, and show. We’ve yet

to discuss, however, much of the real value that PM2 brings to the table in regard to

managing Node processes. We’ll begin that discussion by discovering how PM2 can

assist Node applications in automatically recovering from fatal errors.

Listing 3-3 shows a modified version of the application we originally saw in Listing 3-2.

In this version, however, an uncaught exception is thrown at a regular interval.

Listing 3-3.  Modified Version of Our Original Application That Throws an

Uncaught Exception Every 4 Seconds

// my-bad-app/index.js

var express = require('express');

Figure 3-3.  Viewing details for a specific PM2 process

Chapter 3 PM2

66

var morgan = require('morgan');

var app = express();

app.use(morgan('combined'));

app.get('/', function(req, res, next) {

 res.send('Hello, world.\n');

});

setInterval(function() {

 throw new Error('Uh oh.');

}, 4000);

app.listen(8000);

If we were to start this application without the help of PM2 by passing it directly to

the node executable, we would quickly find ourselves out of luck the moment our first

error was thrown. Node would simply print the error message to the console before

dumping us back to the command prompt, as shown in Figure 3-4.

Figure 3-4.  Output provided by Node after crashing from the error shown in
Listing 3-3

Such behavior won’t get us very far in a real usage scenario. Ideally, an application

that has been released to a production environment should be thoroughly tested and

devoid from such uncaught exceptions. However, in the event of such a crash, an

application should at the very least be able to bring itself back online without requiring

manual intervention. PM2 can help us accomplish this goal.

In Figure 3-5, we remove our existing process from PM2’s list via the delete command

and create a new instance of the poorly written application shown in Listing 3-3.

Afterward, we wait several seconds before requesting an up-to-date process list from PM2.

Chapter 3 PM2

67

Notice anything interesting here? Based on the values within the status, restart,

and uptime columns, we can see that our application has crashed three times already.

Each time, PM2 has helpfully stepped in and restarted it for us. The most recent process

has been running for a total of 2 seconds, which means we can expect another crash

(and automatic restart) 2 seconds from now.

PM2’s ability to assist applications in recovering from fatal errors in a production

environment, while useful, is just one of several useful features the utility provides. PM2

is also equally useful within development environments, as we’ll soon see.

�Responding to File Changes
Imagine a scenario in which you’ve recently begun work on a new Node project. Let’s

assume it’s a web API built with Express. Without the help of additional tools, you must

manually restart the related Node process in order to see the effects of your ongoing

work—a frustrating chore that quickly grows old. PM2 can assist you in this situation by

automatically monitoring the file structure of your project. As changes are detected, PM2

can automatically restart your application for you, if you instruct it to do so.

Figure 3-6 demonstrates this process. In this example, we first remove our currently

running instance of my-bad-app. Next, we create a new instance of the application that

was shown in our original example (see Listing 3-2). This time, however, we pass an

additional flag, --watch, which instructs PM2 to monitor our project for changes and to

respond accordingly.

Figure 3-5.  PM2 helps Node applications recover from fatal errors

Chapter 3 PM2

68

As changes are saved to this project’s files, subsequent calls to PM2’s list command

will indicate how many times PM2 has restarted the application, as seen in a previous

example.

�Monitoring Logs
Refer back to Listing 3-2 and note this application’s use of morgan, a module for

logging incoming HTTP requests. In this example, morgan is configured to print such

information to the console. We can see the result by running our application directly via

the node executable, as shown in Figure 3-7.

Figure 3-6.  Creating a new PM2 process that will automatically restart itself as
changes are detected

Figure 3-7.  Logging incoming requests to Express with morgan

Chapter 3 PM2

69

We recently explored how to allow PM2 to manage the execution of this application

for us via the start command (see Figure 3-1). Doing so provides us with several

benefits, but it also causes us to lose immediate insight into the output being generated

by our application to the console. Fortunately, PM2 provides us with a simple

mechanism for monitoring such output.

In Figure 3-3, we requested information from PM2 regarding a specific process under

its control via the show command. Contained within the provided information were paths

to two log files that PM2 automatically created for this process—one labeled “out log path”

and one labeled “error log path”—to which PM2 will save this process’s standard output

and error messages, respectively. We could view these files directly, but PM2 provides a

much more convenient method for interacting with them, as shown in Figure 3-8.

Figure 3-8.  Monitoring the output from processes under PM2’s control

Here we see how the output from processes under PM2’s control can be monitored

as needed via the logs command. In this example, we monitor the output from all

processes under PM2’s control. Notice how PM2 helpfully prefixes each entry with

information regarding the process from which each line of output originated. This

information is particularly useful when using PM2 to manage multiple processes, which

we will begin doing in the upcoming section. Alternatively, we can also monitor the

output from a specific process by passing the name (or ID) for that process to the logs

command (see Figure 3-9).

Chapter 3 PM2

70

Should you wish to clear out the content of log files generated by PM2 at any point,

you can quickly do so by calling PM2’s flush command. The behavior of the utility’s

logs command can also be tweaked slightly with the use of two optional arguments,

which are listed in Table 3-3.

Figure 3-9.  Monitoring the output from a specific process under PM2’s control

Table 3-3.  Arguments Accepted by PM2’s logs Command

Argument Description

–raw Displays the raw content of log files, stripping prefixed process identifiers in the process

–lines <N> Instructs PM2 to display the last N lines, instead of the default of 20

�Monitoring Resource Usage
In the previous section, you learned how PM2 can assist you in monitoring the standard

output and errors being generated by processes under its control. In much the same way,

PM2 also provides easy-to-use tools for monitoring the health of those processes, as well

as for monitoring the overall health of the server on which they are running.

�Monitoring Local Resources
Figure 3-10 demonstrates the output that is generated when PM2’s monit command is

called. Here we see a continuously updated view that allows us to track the amount of

CPU processing power as well as the amount of RAM consumed by each process being

managed by PM2.

Chapter 3 PM2

71

�Monitoring Remote Resources
The information provided by PM2’s monit command provides us with a quick and easy

method for monitoring the health of its processes. This functionality is particularly

helpful during development, when our primary focus is on the resources being

consumed within our own environment. It’s less helpful, however, as an application

moves into a remote, production environment that could easily consist of multiple

servers, each running its own instance of PM2.

PM2 takes this into account by also providing a built-in JSON API that can be

accessed over the Web on port 9615. Disabled by default, the process for enabling it is

shown in Figure 3-11.

Figure 3-11.  Enabling PM2’s JSON web API

In this example, we enable PM2’s web-accessible JSON API by calling the utility’s

web command. PM2 implements this functionality as part of a separate application that

runs independently of PM2 itself. As a result, we can see that a new process, pm2-http-

interface, is now under PM2’s control. Should we ever wish to disable PM2’s JSON API,

we can do so by removing this process as we would any other, by passing its name (or ID)

to the delete (or stop) commands.

Figure 3-10.  Monitoring CPU and memory usage via PM2’s monit command

Chapter 3 PM2

72

Listing 3-4 shows an excerpt of the output that is provided when a GET request is

made to the server running PM2 over port 9615. As you can see, PM2 provides us with a

number of details regarding each of the processes currently under its control, as well as

the system on which it is running.

Listing 3-4.  Excerpt of the Information Provided by PM2’s JSON API

{

 "system_info": {

 "hostname": "iMac.local",

 "uptime": 2186

 },

 "monit": {

 "loadavg": [1.39794921875],

 "total_mem": 8589934592,

 "free_mem": 2832281600,

 "cpu": [{

 "model": "Intel(R) Core(TM) i5-4590 CPU @ 3.30GHz",

 "speed": 3300,

 "times": {

 "user": 121680,

 "nice": 0,

 "sys": 176220,

 "idle": 1888430,

 "irq": 0

 }

 }],

 "interfaces": {

 "lo0": [{

 "address": "::1",

 "netmask": "ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff",

 "family": "IPv6",

 "mac": "00:00:00:00:00:00",

 "scopeid": 0,

 "internal": true

 }],

Chapter 3 PM2

73

 "en0": [{

 "address": "10.0.1.49",

 "netmask": "255.255.255.0",

 "family": "IPv4",

 "mac": "ac:87:a3:35:9c:72",

 "internal": false

 }]

 }

 },

 "processes": [{

 "pid": 1163,

 "name": "my-app",

 "pm2_env": {

 "name": "my-app",

 "vizion": true,

 "autorestart": true,

 "exec_mode": "fork_mode",

 "exec_interpreter": "node",

 "pm_exec_path": "/opt/my-app/index.js",

 "env": {

 "_": "/usr/local/opt/nvm/versions/node/v0.12.4/bin/pm2",

 "NVM_IOJS_ORG_MIRROR": "https://iojs.org/dist",

 "NVM_BIN": "/usr/local/opt/nvm/versions/node/v0.12.4/bin",

 "LOGNAME": "user",

 "ITERM_SESSION_ID": "w0t0p0",

 "HOME": "/Users/user",

 "COLORFGBG": "7;0",

 "SHLVL": "1",

 "XPC_SERVICE_NAME": "0",

 "XPC_FLAGS": "0x0",

 "ITERM_PROFILE": "Default",

 "LANG": "en_US.UTF-8",

 "PWD": "/opt/my-app",

 "NVM_NODEJS_ORG_MIRROR": "https://nodejs.org/dist",

Chapter 3 PM2

74

 "PATH": "/usr/local/opt/nvm/versions/node/v0.12.4/bin",

 "__CF_USER_TEXT_ENCODING": "0x1F5:0x0:0x0",

 "�SSH_AUTH_SOCK": "/private/tmp/com.apple.launchd.

kEqu8iouDS/Listeners",

 "USER": "user",

 "NVM_DIR": "/usr/local/opt/nvm",

 "NVM_PATH": "/usr/local/opt/nvm/versions/node/v0.12.4/lib/node",

 "TMPDIR": "/var/folders/y3/2fphz1fd6rg9l4cg2t8t7g840000gn/T/",

 "TERM": "xterm",

 "SHELL": "/bin/bash",

 "TERM_PROGRAM": "iTerm.app",

 "�NVM_IOJS_ORG_VERSION_LISTING": "https://iojs.org/dist/

index.tab",

 "pm_cwd": "/opt/my-app"

 },

 "versioning": {

 "type": "git",

 "url": "git@github.com:tkambler/pro-javascript-frameworks.git",

 "revision": "18104d13d14673652ee7a522095fc06dcf87f8ba",

 "update_time": "2015-05-25T20:53:50.000Z",

 "comment": "Merge pull request #28 from tkambler/ordered-build",

 "unstaged": true,

 "branch": "pm2",

 "remotes": ["origin"],

 "remote": "origin",

 "branch_exists_on_remote": false,

 "ahead": false,

 "next_rev": null,

 "prev_rev": "b0e486adab79821d3093c6522eb8a24455bfb051",

 "repo_path": "/Users/user/repos/pro-javascript-frameworks"

 }

 },

Chapter 3 PM2

75

 "pm_id": 0,

 "monit": {

 "memory": 32141312,

 "cpu": 0

 }

 }]

}

�Advanced Process Management
Most of this chapter’s focus so far has revolved around interactions with PM2 that occur

primarily via the command line. On their own, commands such as start, stop, restart,

and delete provide us with simple mechanisms for managing processes in a quick, one-

off fashion. But what about more complex scenarios? Perhaps an application requires

that additional parameters be specified at runtime, or perhaps it expects that one or

more environment variables be set.

�JSON Application Declarations
To meet these needs, additional configuration is needed, and the best way to accomplish

this is with the help of what PM2 refers to as “JSON application configuration” files.

An example configuration file that demonstrates most of the various options that are

available is shown in Listing 3-5.

Listing 3-5.  Sample of the Various Options Available Within a JSON Application

Configuration File

{

 "name" : "my-app",

 "cwd" : "/opt/my-app",

 "args" : ["--argument1=value", "--flag", "value"],

 "script" : "index.js",

 "node_args" : ["--harmony"],

 "log_date_format" : "YYYY-MM-DD HH:mm Z",

 "error_file" : "/var/log/my-app/err.log",

 "out_file" : "/var/log/my-app/out.log",

Chapter 3 PM2

76

 "pid_file" : "pids/my-app.pid",

 "instances" : 1, // or 0 => 'max'

 "max_restarts" : 10, // defaults to 15

 "max_memory_restart": "1M", // 1 megabytes, e.g.: "2G", "10M", "100K"

 "cron_restart" : "1 0 * * *",

 "watch" : false,

 "ignore_watch" : ["node_modules"],

 "merge_logs" : true,

 "exec_mode" : "fork",

 "autorestart" : false,

 "env": {

 "NODE_ENV": "production"

 }

}

JSON application configuration files provide us with a standard format for passing

advanced settings to PM2 in a way that is easily repeatable and that can be shared with

others. Several of the options that you see here should be familiar, based on previous

examples (e.g., name, out_file, error_file, watch, etc.). Others will be touched on later

in the chapter. Descriptions for each are provided in Table 3-4.

Chapter 3 PM2

77

Table 3-4.  Descriptions of the Various Configuration Settings Shown in Listing 3-5

Setting Description

name Name of the application.

cwd Directory from which the application will be launched.

args Command-line arguments to be passed to the application.

script Path to the script with which PM2 will launch the application (relative to cwd).

node_args Command-line arguments to be passed to the node executable.

log_date_format Format with which log timestamps will be generated.

error_file Path to which standard error messages will be logged.

out_file Path to which standout output messages will be logged.

pid_file Path to which the application’s PID (process identifier) will be logged.

instances The number of instances of the application to launch. Discussed in further

detail in the next section.

max_restarts The maximum number of times PM2 will attempt to restart (consecutively)

a failed application before giving up.

max_memory_restart PM2 will automatically restart the application if the amount of memory it

consumes crosses this threshold.

cron_restart PM2 will automatically restart the application on a specified schedule.

watch Whether or not PM2 should automatically restart the application as

changes to its file structure are detected. Defaults to false.

ignore_watch An array of locations for which PM2 should ignore file changes, if

watching is enabled.

merge_logs If multiple instances of a single application are created, PM2 should use a

single output and error log file for all of them.

exec_mode Method of execution. Defaults to fork. Discussed in further detail in the

next section.

autorestart Automatically restarts a crashed or exited application. Defaults to true.

vizon If enabled, PM2 will attempt to read metadata from the application’s

version control files, if they exist. Defaults to true.

env Object containing environment variable keys/values to pass to the application.

Chapter 3 PM2

78

Included with this chapter is a microservices project that provides a working

demonstration of JSON configuration files in action. Contained within this project are

two applications: a weather application with an API that returns random temperature

information for a specified postal code and a main application that generates a request to

the API every 2 seconds and prints the result to the console. The main script for each of

these applications is shown in Listing 3-6.

Listing 3-6.  Source Code for the main and weather Applications

// microservices/main/index.js

var request = require('request');

if (!process.env.WEATHER_API_URL) {

 throw new Error('The `WEATHER_API_URL` environment variable must be set.');

}

setInterval(function() {

 request({

 'url': process.env.WEATHER_API_URL + '/api/weather/37204',

 'json': true,

 'method': 'GET'

 }, function(err, res, result) {

 if (err) throw new Error(err);

 console.log('The temperature is: %s', result.temperature.fahrenheit);

 });

}, 2000);

// microservices/weather/index.js

if (!process.env.PORT) {

 throw new Error('The `PORT` environment variable must be set.');

}

var express = require('express');

var morgan = require('morgan');

var app = express();

app.use(morgan('combined'));

Chapter 3 PM2

79

var random = function(min, max) {

 return Math.floor(Math.random() * (max - min + 1) + min);

};

app.get('/api/weather/:postal_code', function(req, res, next) {

 var fahr = random(70, 110);

 res.send({

 'temperature': {

 'fahrenheit': fahr,

 'celsius': (fahr - 32) * (5/9)

 }

 });

});

app.listen(process.env.PORT);

A single JSON application configuration file is also included with the microservices

project, the content of which is shown in Listing 3-7.

Listing 3-7.  JSON Application Configuration File for This Chapter’s microservices

Projectmicroservices/pm2/development.json

[

 {

 "name" : "main",

 "cwd" : "../microservices",

 "script" : "main/index.js",

 "max_memory_restart": "60M",

 "watch" : true,

 "env": {

 "NODE_ENV": "development",

 "WEATHER_API_URL": "http://localhost:7010"

 }

 },

 {

 "name" : "weather-api",

 "cwd" : "../microservices",

 "script" : "weather/index.js",

Chapter 3 PM2

80

 "max_memory_restart": "60M",

 "watch" : true,

 "env": {

 "NODE_ENV": "development",

 "PORT": 7010

 }

 }

]

The application configuration file shown here provides PM2 with instructions on

how to launch each of the applications included within this project. In this example,

PM2 is instructed to restart each application if changes are detected to either’s file

structure, or if they begin to consume more than 60MB of memory. The file also provides

PM2 with separate environment variables to be passed to each process.

Note  Before running this example, you will need to adjust the values for the
cwd settings within this file so that they reference the absolute path to the
microservices folder on your computer. After making the appropriate adjustments,
launch both applications with a single call to PM2, as shown in Figure 3-12.

Figure 3-12.  Launching the main and weather-api applications with PM2

As expected, PM2 has created two instances for us, one for each of the applications

referenced within our configuration file. As in previous examples, we can monitor the

output that is generated with the help of PM2’s logs command (see Figure 3-13).

Chapter 3 PM2

81

�Load Balancing Across Multiple Processors
The single-threaded, nonblocking nature of Node’s I/O model makes it possible

for developers to create applications capable of handling thousands of concurrent

connections with relative ease. While impressive, the efficiency with which Node is

capable of processing incoming requests comes with one major expense: an inability

to spread computation across multiple CPUs. Thankfully, Node’s core cluster

module provides a method for addressing this limitation. With it, developers can write

applications capable of creating their own child processes—each running on a separate

processor, and each capable of sharing the use of ports with other child processes and

the parent process that launched it.

Before we close out this chapter, let’s take a look at a convenient abstraction of

Node’s cluster module that is provided by PM2. With this functionality, applications

that were not originally written to take advantage of Node’s cluster module can

be launched in a way that allows them to take full advantage of multiprocessor

environments. As a result, developers can quickly scale up their applications to meet

increasing demand without immediately being forced to bring additional servers to bear.

Listing 3-8 shows the source code for a simple Express application that we will be

scaling across multiple processors with the help of PM2, while Listing 3-9 shows the

accompanying JSON application configuration file.

Figure 3-13.  Excerpt of the output generated by PM2’s logs command

Chapter 3 PM2

82

Listing 3-8.  Express Application to Be Scaled Across Multiple CPUs

// multicore/index.js

if (!process.env.port) throw new Error('The port environment variable must

be set');

var express = require('express');

var morgan = require('morgan');

var app = express();

app.use(morgan('combined'));

app.route('/')

 .get(function(req, res, next) {

 res.send('Hello, world.');

 });

app.listen(process.env.port);

Listing 3-9.  JSON Application Configuration File with Which Our Application

Will Be Launched

// multicore/pm2/development.json

{

 "name": "multicore",

 "cwd": "../multicore",

 "max_memory_restart": "60M",

 "watch": false,

 "script": "index.js",

 "instances": 0, // max

 "exec_mode": "cluster",

 "autorestart": true,

 "merge_logs": true,

 "env": {

 "port": 9000

 }

}

Chapter 3 PM2

83

The application configuration file shown in Listing 3-9 contains two key items

of interest. The first is the instances property. In this example, we specify a value of

0, which instructs PM2 to launch a separate process for every CPU that it finds. The

second is the exec_mode property. By specifying a value of cluster, we instruct PM2 to

launch its own parent process, which will in turn launch separate child processes for our

application with the help of Node’s cluster module.

In Figure 3-14, we launch the application by passing the path to our application

configuration file to PM2’s start command. Afterward, PM2 displays a listing of every

known process, as in previous examples. In this instance, we see that PM2 has launched

a separate process for each of the eight CPUs available within our environment. We can

verify this by monitoring CPU usage for each of these new processes using the monit

command, as shown in Figure 3-15.

Figure 3-14.  Launching the application on cluster mode with PM2

Note  When launching applications in cluster mode, PM2 will print a message to
the console warning that this functionality is still a beta feature. According to the
lead developer of PM2, however, this functionality is stable enough for production
environments, so long as Node v0.12.0 or higher is being used.

Chapter 3 PM2

84

Before you continue, you can quickly remove each of the eight processes launched

by this example by running $ pm2 delete multicore.

�Zero Downtime Deployments
After launching an application in cluster mode, PM2 will begin forwarding incoming

requests in a round-robin fashion to each of the eight processes under its control—

providing us with an enormous increase in performance. As an added benefit, having

our application distributed across multiple processors also allows us to release updates

without incurring any downtime, as we will see in a moment.

Imagine a scenario in which an application under PM2’s control is running on one

or more servers. As updates to this application become available, releasing them to the

public will involve two critical steps:

•	 Copying the updated source code to the appropriate server(s)

•	 Restarting each of the processes under PM2’s control

As these steps take place, a brief period of downtime will be introduced, during

which incoming requests to the application will be rejected—unless special precautions

are taken. Fortunately, launching applications with PM2 in cluster mode provides us

with the tools we need to take those precautions.

Figure 3-15.  Monitoring CPU usage with PM2’s monit command

Chapter 3 PM2

85

To avoid any downtime when relaunching the application we previously saw in

Listing 3-8, we will first need to make a minor adjustment to our application’s source

code and application configuration files. The updated versions are shown in Listing 3-10.

Listing 3-10.  Application Designed to Take Advantage of PM2’s gracefulReload

Command

// graceful/index.js

if (!process.env.port) throw new Error('The port environment variable must

be set');

var server;

var express = require('express');

var morgan = require('morgan');

var app = express();

app.use(morgan('combined'));

app.route('/')

 .get(function(req, res, next) {

 res.send('Hello, world.');

 });

process.on('message', function(msg) {

 switch (msg) {

 case 'shutdown':

 server.close();

 break;

 }

});

server = app.listen(process.env.port, function() {

 console.log('App is listening on port: %s', process.env.port);

});

// graceful/pm2/production.json

{

 "name": "graceful",

 "cwd": "../graceful",

Chapter 3 PM2

86

 "max_memory_restart": "60M",

 "watch": false,

 "script": "index.js",

 "instances": 0, // max

 "exec_mode": "cluster",

 "autorestart": true,

 "merge_logs": false,

 "env": {

 "port": 9000,

 "PM2_GRACEFUL_TIMEOUT": 10000

 }

}

Previous examples have demonstrated the use of PM2’s restart command, which

immediately stops and starts a specified process. While this behavior is typically not a

problem within nonproduction environments, issues begin to surface when we consider

the impact it would have on any active requests that our application may be processing

at the moment this command is issued. When stability is of the utmost importance,

PM2’s gracefulReload command serves as a more appropriate alternative.

When called, gracefulReload first sends a shutdown message to each of the

processes under its control, providing them with the opportunity to take any necessary

precautions to ensure that any active connections are not disturbed. Only after a

configurable period of time has passed (specified via the PM2_GRACEFUL_TIMEOUT

environment variable) will PM2 then move forward with restarting the process.

In this example, after receiving the shutdown message, our application responds

by calling the close() method on the HTTP server that was created for us by Express.

This method instructs our server to stop accepting new connections, but allows those

that have already been established to complete. Only after 10 seconds have passed (as

specified via PM2_GRACEFUL_TIMEOUT) will PM2 restart the process, at which point any

connections managed by this process should already have been completed.

Figure 3-16 demonstrates the process by which this application can be started and

subsequently restarted through the use of the gracefulReload command. By doing so,

we are able to release updates without interrupting our application’s users.

Chapter 3 PM2

87

�Summary
PM2 provides developers with a powerful utility for managing Node applications

that is equally at home in both production and nonproduction environments. Simple

aspects, such as the utility’s ability to automatically restart processes under its control

as source code changes occur, serve as convenient timesavers during development.

More advanced features, such as the ability to load balance applications across multiple

processors and to gracefully restart those applications in a way that does not negatively

impact users, also provide critical functionality for using Node in a significant capacity.

�Related Resources
•	 PM2: https://github.com/Unitech/pm2

•	 PM2 Home: http://pm2.keymetrics.io/

Figure 3-16.  Gracefully reloading each of the processes under PM2’s control

Chapter 3 PM2

https://github.com/Unitech/pm2
http://pm2.keymetrics.io/

PART II

Module Loaders

91
© Sufyan bin Uzayr, Nicholas Cloud, Tim Ambler 2019
S. bin Uzayr et al., JavaScript Frameworks for Modern Web Development,
https://doi.org/10.1007/978-1-4842-4995-6_4

CHAPTER 4

RequireJS

It is more productive to think about what is within my control than to worry
and fret about things that are outside of my control. Worrying is not a form
of thinking.

—Peter Saint-Andre

While JavaScript now plays a far more significant role in web applications, the HTML5

specification (and therefore modern browsers) does not specify a means to detect

dependency relationships among scripts or how to load script dependencies in a

particular order. In the simplest scenario, scripts are typically referenced in page

markup with simple <script> tags. These tags are evaluated, loaded, and executed in

order, which means that common libraries or modules are typically included first, then

application scripts follow. (For example, a page might load jQuery and then load an

application script that uses jQuery to manipulate the Document Object Model [DOM].)

Simple web pages with easily traceable dependency hierarchies fit well into this model,

but as the complexity of a web application increases, the number of application scripts

will grow and the Web of dependencies may become difficult, if not impossible, to

manage.

The whole process is made even messier by asynchronous scripts. If a <script>

tag possesses an async attribute, the script content will be loaded over HTTP in the

background and executed as soon as it becomes available. While the script is loading,

the remainder of the page, including any subsequent script tags, will continue to load.

Large dependencies (or dependencies delivered by slow sources) that are loaded

asynchronously may not be available when application scripts are evaluated and

executed. Even if application <script> tags possess async attributes as well, a developer

has no means of controlling the order in which all asynchronous scripts are loaded, and

therefore no way to ensure that the dependency hierarchy is respected.

92

Tip  The HTML5 <script> tag attribute defer is similar to async but delays
script execution until page parsing has finished. Both of these attributes reduce
page rendering delays, thereby improving user experience and page performance.
This is especially important for mobile devices.

RequireJS was created to address this dependency orchestration problem by giving

developers a standard way to write JavaScript modules (“scripts”) that declare their

own dependencies before any module execution occurs. By declaring all dependencies

up front, RequireJS can ensure that the overall dependency hierarchy is loaded

asynchronously while executing modules in the correct order. This pattern, known as

Asynchronous Module Definition (AMD), stands in contrast to the CommonJS module-

loading pattern adopted by Node.js and the Browserify module-loading library. While

there are certainly strong points to be made for using both patterns in a variety of use

cases, RequireJS and AMD were developed to address issues specific to web browsers

and DOM shortcomings. In reality, the concessions that RequireJS and Browserify make

in their implementations are usually mitigated by workflow and community plugins.

For example, RequireJS can create dynamic shims for non-AMD dependencies that

it must load (usually remote libraries on content delivery networks or legacy code).

This is important because RequireJS assumes that scripts in a web application may

come from multiple sources and will not all directly be under a developer’s control. By

default, RequireJS does not concatenate all application scripts (“packing”) into a single

file, opting instead to issue HTTP requests for every script it loads. The RequireJS tool

r.js, discussed later, produces packed bundles for production environments, but can

still load remote, shimmed scripts from other locations. Browserify, on the other hand,

takes a “pack-first” approach. It assumes that all internal scripts and dependencies will

be packed into a single file and that other remote scripts will be loaded separately. This

places remote scripts beyond the control of Browserify, but plugins like bromote work

within the CommonJS model to load remote scripts during the packing process. For

both approaches, the end result is the same: a remote resource is made available to the

application at runtime.

Chapter 4 RequireJS

93

�Running the Examples
This chapter contains a variety of examples that may be run in a modern web browser.

Node.js is necessary to install code dependencies and to run all web server scripts.

To install the example code dependencies, open the code/requirejs directory in a

terminal and execute the command npm install. This command will read the package.

json file and download the few packages necessary to run each example.

Example code blocks throughout the chapter contain a comment at the top to

indicate in which file the source code may be found. The fictitious index.html file in

Listing 4-1, for example, would be found in the example-000/public directory. (This

directory does not really exist, so don’t worry if you can’t find it.)

Listing 4-1.  An Exciting HTML File

<!-- example-000/public/index.html -->

<html>

 <head></head>

 <body><h1>Hello world!</h1></body>

</html>

Unless otherwise specified, assume that all example code directories contain an

index.js file that launches a very basic web server. Listing 4-2 shows how Node.js would

be used in a terminal to run the fictitious web server script example-000/index.js.

Listing 4-2.  Launching an Exciting Web Server

example-000$ node index.js

>> mach web server started on node 0.12.0

>> Listening on :::8080, use CTRL+C to stop

The command output shows that the web server is listening at http://

localhost:8080. In a web browser, navigating to http://localhost:8080/index.html

would render the HTML snippet in Listing 4-1.

Chapter 4 RequireJS

94

�Working with RequireJS
The workflow for using RequireJS in a web application typically includes some common

steps. First, RequireJS must be loaded in an HTML file with a <script> tag. RequireJS

may be referenced as a stand-alone script on a web server or CDN, or it may also be

installed with package managers like Bower and npm, then served from a local web

server. Next, RequireJS must be configured so that it knows where scripts and modules

live, how to shim scripts that are not AMD compliant, which plugins to load, and so

on. Once configuration is complete, RequireJS will load a primary application module

that is responsible for loading the major page components, essentially “kicking off” the

page’s application code. At this point RequireJS evaluates the dependency tree created

by modules and begins asynchronously loading dependency scripts in the background.

Once all modules are loaded, the application code proceeds to do whatever is within its

purview.

Each step in this process is given detailed consideration in the following sections.

The example code used in each section represents the evolution of a simple application

that will show inspirational and humorous quotes by (semi-)famous persons.

�Installation
The RequireJS script may be downloaded directly from http://requirejs.org. It comes

in a few distinct flavors: a vanilla RequireJS script, a vanilla RequireJS script prebundled

with jQuery, and a Node.js package that includes both RequireJS and its packing utility,

r.js. For most examples in this chapter, the vanilla script is used. The prebundled jQuery

script is merely offered as a convenience for developers. If you wish to add RequireJS to

a project that is already using jQuery, the vanilla RequireJS script can accommodate the

existing jQuery installation with no issues, though older versions of jQuery may need to

be shimmed. (Shimmed scripts will be covered later.)

If you are working with CoffeeScript, RequireJS also comes with a plugin for CS

integration. Internationalization plugin is also available and can be downloaded directly

from https://requirejs.org.

Once acquired, the RequireJS script is referenced in the web application with a

<script> tag. Because RequireJS is a module loader, it bears the responsibility of loading

all other JavaScript files and modules that an application may need. It is therefore very

likely that the RequireJS <script> tag will be the only <script> tag that occupies a web

page. A simplified example is given in Listing 4-3.

Chapter 4 RequireJS

http://requirejs.org
https://requirejs.org

95

Listing 4-3.  Including the RequireJS Script on a Web Page

<!-- example-001/public/index.html -->

<body>

 <header>

 <h1>Ponderings</h1>

 </header

 <script src="/scripts/require.js"></script>

</body>

�Configuration
After the RequireJS script is loaded on a page, it looks for a configuration which will

primarily tell RequireJS where script and modules live. Configuration options can be

provided in one of three ways.

First, a global require object may be created before the RequireJS script is loaded.

This object may contain all of the RequireJS configuration options as well as a “kickoff”

callback that will be executed once RequireJS has finished loading all application

modules.

The script block in Listing 4-4 shows a newly minted RequireJS configuration object

stored in the global require variable.

Listing 4-4.  Configuring RequireJS with a Global require Object

<!-- example-001/public/config01.html -->

<body>

 <header>

 <h1>Ponderings</h1>

 </header>

 <section id="quotes"></section>

 <script>

 /*
 * Will be automatically attached to the

 * global window object as window.require.

 */

 var require = {

Chapter 4 RequireJS

96

 // configuration

 baseUrl: '/scripts',

 // kickoff

 deps: ['quotes-view'],

 callback: function (quotesView) {

 �quotesView.addQuote('Lorem ipsum dolor sit amet, consectetur adipiscing

elit.');

 quotesView.addQuote('Nunc non purus faucibus justo tristique porta.');

 }

 };

 </script>

 <script src="/scripts/require.js"></script>

</body>

The most important configuration property on this object, baseUrl, identifies a

path relative to the application root where RequireJS should begin to resolve module

dependencies. The deps array specifies modules that should be loaded immediately after

configuration, and the callback function exists to receive these modules once they are

loaded. This example loads a single module, quotes-view. Once the callback is invoked,

it may access the properties and methods on this module.

The directory tree in Listing 4-5 shows the position of the quotes-view.js file

relative to both config01.html (the page being viewed) and require.js.

Listing 4-5.  Application File Locations

├── config01.html
├── scripts
│ ├── quotes-view.js
│ └── require.js
└── styles
 └── app.css

Notice that the absolute path and file extension for the quotes-view module

is omitted in the deps array. By default, RequireJS assumes that any given module

is located relative to the page being viewed and that it is contained within a single

JavaScript file with the appropriate file extension. In this case the latter assumption is

Chapter 4 RequireJS

97

true but the first is not, which is why specifying a baseUrl property is necessary. When

RequireJS attempts to resolve any module, it will combine any configured baseUrl value

and the module name, then append the .js file extension to produce a full path relative

to the application root.

When the config01.html page loads, the strings passed to the quotesView.

addQuote() method will be displayed on the page.

The second configuration method is similar to the first but uses the RequireJS

API to perform configuration after the RequireJS script is loaded, as demonstrated in

Listing 4-6.

Listing 4-6.  Configuration with the RequireJS API

<!-- example-001/public/config02.html -->

<body>

 <header>

 <h1>Ponderings</h1>

 </header>

 <section id="quotes"></section>

 <script src="/scripts/require.js"></script>

 <script>

 // configuration

 requirejs.config({

 baseUrl: '/scripts'

 });

 // kickoff

 requirejs(['quotes-view'], function (quotesView) {

 �quotesView.addQuote('Lorem ipsum dolor sit amet, consectetur adipiscing

elit.');

 quotesView.addQuote('Nunc non purus faucibus justo tristique porta.');

 });

 </script>

</body>

Chapter 4 RequireJS

98

In this example a <script> block first uses the global requirejs object, created by

the require.js script, to configure RequireJS by invoking its config() method. It then

invokes requirejs to kick off the application. The object passed to the config() method

resembles the global require object from Listing 4-4, but lacks its deps and callback

properties. The requirejs function accepts an array of application dependencies and a

callback function instead, a pattern that will become very familiar when module design

is covered later.

The net effect is the same: RequireJS uses its configuration to load the quotes-view

module, and once loaded, the callback function interacts with it to affect the page.

The third configuration method uses the syntax of the second, but moves the

configuration and kickoff code into its own script. The RequireJS <script> tag in

Listing 4-7 uses the data-main attribute to tell RequireJS where its configuration and

kickoff module live.

Listing 4-7.  Configuring RequireJS with an External Script

<!-- example-001/public/config03.html -->

<body>

 <header>

 <h1>Ponderings</h1>

 </header>

 <section id="quotes"></section>

 <script src="/scripts/require.js" data-main="/scripts/main.js"></script>

</body>

Once RequireJS has loaded, it will look for the data-main attribute and, if found,

asynchronously load the script specified in the attribute. Listing 4-8 shows the content of

main.js, which is identical to the <script> block in Listing 4-6.

Listing 4-8.  The RequireJS Main Module

// example-001/public/scripts/main.js

// configuration

requirejs.config({

 baseUrl: '/scripts'

});

Chapter 4 RequireJS

99

// kickoff

requirejs(['quotes-view'], function (quotesView) {

 quotesView.addQuote('Lorem ipsum dolor sit amet, consectetur adipiscing elit.');

 quotesView.addQuote('Nunc non purus faucibus justo tristique porta.');

});

Tip  Because the data-main script is loaded asynchronously, scripts or
<script> blocks included immediately after RequireJS will likely be run first. If
RequireJS manages all scripts in an application, or if scripts loaded after RequireJS
have no bearing on the application itself (such as advertiser scripts), there will be
no conflicts.

�Application Modules and Dependencies
RequireJS modules are defined by three things:

	 1.	 A module name

	 2.	 A list of dependencies (modules)

	 3.	 A module closure that will accept the output from each

dependency module as function arguments, set up module code,

and potentially return something that other modules can use

Listing 4-9 shows each of these points in a fake module definition. Modules are

created when the global define() function is invoked. This function takes three

arguments, corresponding to the three points earlier.

Listing 4-9.  Module Anatomy

define(/*#1*/'m1', /*#2*/['d1', 'd2'], /*#3*/function (d1, d2) {

 /*
 * Variables declared within the module closure

 * are private to the module, and will not be

 * exposed to other modules

 */

 var privateModuleVariable = "can't touch this";

Chapter 4 RequireJS

100

 /*
 * The returned value (if any) will now be available

 * to any other module if they specify m1 as a

 * dependency.

 */

 return {

 getPrivateModuleVariable: function () {

 return privateModuleVariable;

 }

 };

})

A module’s name is key. In Listing 4-9 a module name, m1, is explicitly declared. If

a module name is omitted (leaving the dependencies and module closure as the only

arguments passed to define()), then RequireJS will assume that the name of the module

is the file name containing the module script, without its .js extension. This is fairly

common in practice, but the module name is shown here for clarity.

Tip  Giving modules specific names can introduce unwanted complexity, as
RequireJS depends on script URL paths for loading modules. If a module is
explicitly named and the file name does not match the module name, then a
module alias that maps the module name to an actual JavaScript file needs to be
defined in the RequireJS configuration. This is covered in the next section.

The dependency list in Listing 4-9 identifies two other modules that RequireJS

should load. The values d1 and d2 are the names of these modules, located in script files

d1.js and d2.js. These scripts look similar to the module definition in Listing 4-9, but

they will load their own dependencies.

Finally, the module closure accepts the output from each dependency module as

function arguments. This output is any value returned from each dependency module’s

closure function. The closure in Listing 4-9 returns its own value, and if another module

were to declare m1 as a dependency, it is this returned value that would be passed to that

module’s closure.

Chapter 4 RequireJS

101

If a module has no dependencies, its dependency array will be empty and it will

receive no arguments to its closure.

Once a module is loaded, it exists in memory until the application is terminated. If

multiple modules declare the same dependency, that dependency is loaded only once.

Whatever value it returns from its closure will be passed to both modules by reference.

The state of a given module, then, is shared among all other modules that use it.

A module may return any valid JavaScript value, or none at all if the module exists

only to manipulate other modules or simply produce side effects in the application.

Listing 4-10 shows the structure of the example-002/public directory. This looks

similar to example-001 but a few additional modules have been added, namely, data/

quotes.js (a module for fetching quote data) and util/dom.js (a module that wraps

the global window object for other modules so that they do not need to access window

directly).

Listing 4-10.  Public Directory Structure for example-002

public

 ├── index.html
 ├── scripts
 │ ├── data
 │ │ └── quotes.js
 │ ├── main.js
 │ ├── quotes-view.js
 │ ├── require.js
 │ └── util
 │ └── dom.js

Recall that a module’s dependencies exist relative to the RequireJS baseUrl value.

When a module specifies dependency paths, it does so relative to the baseUrl path. In

Listing 4-11 the main.js file depends on the data/quotes module (public/scripts/

data/quotes.js), while the quotes-view.js module depends on util/dom (public/

scripts/util/dom.js).

Chapter 4 RequireJS

102

Listing 4-11.  Module Dependency Paths

// example-002/public/scripts/main.js

requirejs(['data/quotes', 'quotes-view'], function (quoteData, quotesView) {

 // ...

});

// example-002/public/scripts/data/quotes.js

define([/*no dependencies*/], function () {

 // ...

});

// example-002/public/scripts/quotes-view.js

define(['util/dom'], function (dom) {

 // ...

});

// example-002/public/scripts/util/dom.js

define([/*no dependencies*/], function () {

 // ...

});

Figure 4-1 shows the logical dependency tree created when these modules are

loaded.

Chapter 4 RequireJS

103

As application dependencies multiply, module pathing can become tedious, but

there are two ways to mitigate this.

First, a module may use leading dot notation to specify dependencies relative to

itself. For example, a module with the declared dependency ./foo would load foo.js

as a sibling file, located on the same URL segment as itself, whereas a module with the

dependency ../bar would load bar.js one URL segment “up” from itself. This greatly

reduces dependency verbosity.

Second, modules may be named with path aliases, defined in the RequireJS

configuration, as described in the next section.

Figure 4-1.  RequireJS dependency tree

Chapter 4 RequireJS

104

�Paths and Aliases
Assigning an alias to a module allows other modules to use the alias as a dependency

name instead of the full module pathname. This can be useful for a variety of reasons

but is commonly used to simplify vendor module paths, eliminate version numbers

from vendor module names, or deal with vendor libraries that declare their own module

names explicitly.

The module in Listing 4-12 depends on the vendor library jQuery. If the jquery

module script was located at /scripts/jquery.js, no module aliasing would be

required to load the dependency; RequireJS would locate the module based on the

configured baseUrl configuration value.

Listing 4-12.  Specifying a jQuery Module Dependency

define(['jquery'], function ($) {

 // ...

});

It is unlikely that jquery lives at the module root defined by the baseUrl

configuration, however. It is more likely that the jquery script would exist within a

vendor directory such as /scripts/vendor/jquery, and that the script name would

contain the jQuery version (e.g., jquery-2.1.3.min), as this is how jQuery scripts are

distributed. To further complicate matters, jQuery explicitly declares its own module

name, jquery. If a module attempted to load jquery using the full path to the jQuery

script, /scripts/vendor/jquery/jquery-2.1.3.min, RequireJS would load the script

over HTTP and then fail to import the module because its declared name is jquery, not

jquery-2.1.3.min.

Tip E xplicitly naming modules is considered bad practice because application
modules must use a module’s declared name, and the script file that contains the
module must either share its name or be aliased in the RequireJS configuration. A
special concession is made for jQuery because it is a fairly ubiquitous library.

Aliases are specified in the RequireJS configuration hash under the paths property.

In Listing 4-13 the alias jquery is assigned to vendor/jquery/jquery-2.1.3.min, a path

which is relative to the baseUrl.

Chapter 4 RequireJS

105

Listing 4-13.  Configuration Module Path Aliases

requirejs.config({

 baseUrl: '/scripts',

 // ... other options ...

 paths: {

 'jquery': 'vendor/jquery/jquery-2.1.3.min'

 }

});

In the paths object, aliases are keys and the scripts to which they are mapped are

values. Once a module alias is defined, it may be used in any other module’s dependency

list. Listing 4-14 shows the jquery alias in use.

Listing 4-14.  Using a Module Alias in a Dependency List

// jquery alias points to vendor/jquery/jquery-2.1.3.min

define(['jquery'], function ($) {

 // ...

});

Because module aliases take precedence over actual module locations, RequireJS

will resolve the location of the jQuery script before attempting to locate it at /scripts/

jquery.js.

Note A nonymous modules (that do not declare their own module names) may be
aliased with any module name, but if named modules are aliased (like jquery),
they must be aliased with their declared module names.

�Loading Plugins with Proxy Modules

Libraries such as jQuery, Underscore, Lodash, Handlebars, and so forth all have plugin

systems that let developers extend the functionality of each. Strategic use of module

aliases can actually help developers load extensions for these libraries all at once,

without having to specify such extensions in every module that makes use of them.

Chapter 4 RequireJS

106

In Listing 4-15 the jQuery script location is aliased with the name jquery, and a

custom module, util/jquery-all, is aliased with the name jquery-all for brevity. All

application modules will load jQuery by specifying jquery-all as a dependency. The

jquery-all module, in turn, loads the normal jquery module and then attaches custom

plugins to it.

Listing 4-15.  Using Module Aliases to Load jQuery Plugins

requirejs.config({

 baseUrl: '/scripts',

 // ... other options ...

 paths: {

 // vendor script

 'jquery': 'vendor/jquery/jquery-2.1.3.min',

 // custom extensions

 'jquery-all': 'util/jquery-all'

 }

});

// example-003/public/scripts/util/jquery-all

define(['jquery'], function ($) {

 $.fn.addQuotes = function () {/*...*/};

 return $;

 // or

 //return $.noConflict(true);

});

The jquery-all proxy module returns the jQuery object itself, which allows modules

that depend on jquery-all to access jquery with the loaded custom extensions. By

default, jQuery registers itself with the global window object, even when it is used as an

AMD module. If all application modules are accessing jQuery through the jquery-all

module (or even the plain jquery module, as most vendor libraries do), then there is no

need for the jQuery global. It may be removed by invoking $.noConflict(true). This

will return the jquery object and is the alternate return value for the jquery-all module

in Listing 4-15.

Chapter 4 RequireJS

107

Because jQuery is now part of the example application, the quotes-view module,

responsible for rendering quote data in the DOM, need no longer rely on the util/dom

module. It can specify jquery-all as a dependency and load jquery and the custom

addQuotes() plugin method all at once. Listing 4-16 shows the changes made to the

quotes-view module.

Listing 4-16.  Loading jQuery and Custom Plugins in the quotes-view Module

// example-003/public/scripts/quotes-view.js

define(['jquery-all'], function ($) {

 var $quotes = $('#quotes');

 return {

 render: function (groupedQuotes) {

 for (var attribution in groupedQuotes) {

 if (!groupedQuotes.hasOwnProperty(attribution)) continue;

 $quotes.addQuotes(attribution, groupedQuotes[attribution]);

 }

 }

 };

});

The advantage to using a module proxy to load jquery is that it eliminates the need

to specify both jquery and custom plugin modules in other modules that depend on

both. Without this technique, for example, application modules would all have multiple

dependencies to ensure that the appropriate jQuery plugins are loaded when needed, as

shown in Listing 4-17.

Listing 4-17.  Loading Plugins Without a Proxy Module

// scripts/util/jquery-plugin-1.js

define(['jquery'], function ($) {

 $.fn.customPlugin1 = function () {/*...*/};

});

// scripts/util/jquery-plugin-2.js

define(['jquery'], function ($) {

 $.fn.customPlugin2 = function () {/*...*/};

});

Chapter 4 RequireJS

108

// scripts/*/module-that-uses-jquery.js

define(['jquery', 'util/jquery-plugins-1', 'util/jquery-plugins-2'],

function ($) {

 // ...

});

In this case, even though jquery-plugin-1 and jquery-plugin-2 do not return

values, they must still be added as dependencies so that their side effects—adding

plugins to the jquery module—still occur.

�Shims
Libraries that support the AMD module format are straightforward to use with

RequireJS. Non-AMD libraries may still be used by configuring RequireJS shims or by

creating shimmed modules manually.

The data/quotes module in example-003 exposes a groupByAttribution() method

that iterates over the collection of quotes. It creates a hash where keys are the names of

people and values are arrays of quotes attributed to them. This grouping functionality

would likely be useful for other collections as well.

Fortunately, a vendor library, undrln, can provide a generalized version of this

functionality, but it is not AMD compatible. A shim would be necessary for other AMD

modules to use undrln as a dependency. Undrln is written as a standard JavaScript

module within a function closure, shown in Listing 4-18. It assigns itself to the global

window object, where it may be accessed by other scripts on a page.

Note  The undrln.js script blatantly mimics a subset of the Lodash API without
AMD module compatibility, exclusively for this chapter’s examples.

Listing 4-18.  The Completely Original Undrln Library

// example-004/public/scripts/vendor/undrln/undrln.js

/**
 * undrln (c) 2015 l33th@x0r

 * MIT license.

 * v0.0.0.0.1-alpha-DEV-theta-r2

 */

Chapter 4 RequireJS

109

(function () {

 var undrln = window._ = {};

 undrln.groupBy = function (collection, key) {

 // ...

 };

}());

Several things must be added to the RequireJS configuration to create a shim. First, a

module alias must be created under paths so that RequireJS knows where the shimmed

module lives. Second, a shim configuration entry must be added to the shim section.

Both are added to the RequireJS configuration in Listing 4-19.

Listing 4-19.  Configuration of a Module Shim

// example-004/public/scripts/main.js

requirejs.config({

 baseUrl: '/scripts',

 paths: {

 jquery: 'vendor/jquery/jquery-2.1.3.min',

 'jquery-all': 'util/jquery-all',

 // giving undrln a module alias

 undrln: 'vendor/undrln/undrln'

 },

 shim: {

 // defining a shim for undrln

 undrln: {

 exports: '_'

 }

 }

});

Chapter 4 RequireJS

110

Each key under the shim section identifies the module alias (or name) to be

shimmed, and the objects assigned to those keys specify details about how the shim

works. Under the hood, RequireJS creates a shim by defining an empty AMD module

that returns the global object created by a script or library. Undrln creates the global

window._ object, and so the name _ is specified in the shim configuration as undrln’s

export. The final, generated RequireJS shim will look something like the module in

Listing 4-20. Note that these shims are created dynamically as modules are loaded and

do not actually exist as “files” on the web server. (One exception to this rule is the r.js

packing utility, discussed later, which writes generated shim output to a bundle file as an

optimization measure.)

Listing 4-20.  Example RequireJS Shim Module

define('undrln', [], function () {

 return window._;

});

The quotes module in Listing 4-21 may now use the undrln shim as a dependency.

Listing 4-21.  Using the Undrln Shim As a Dependency

// example-004/public/scripts/data/quotes.js

define(['undrln'], function (_) {

 //...

 return {

 groupByAttribution: function () {

 return _.groupBy(quoteData, 'attribution');

 },

 //...

 }

});

By shimming non-AMD scripts, RequireJS can use its asynchronous module-loading

capabilities behind the scenes to load non-AMD scripts when they are dependencies

of other AMD modules. Without this capability these scripts would need to be included

on every page with a standard <script> tag and loaded synchronously to ensure

availability.

Chapter 4 RequireJS

111

Running the web application in example-004 and then browsing to http://

localhost:8080/index.html will display a list of quotes. Figure 4-2 shows the rendered

page and Chrome’s Network panel in which all loaded JavaScript modules are listed.

Note that the Initiator column clearly shows that RequireJS is responsible for loading all

modules and that even undrln.js, a non-AMD module, is included in the list.

Figure 4-2.  RequireJS modules shown loaded in Chrome

�Shim Dependencies

It is reasonable to expect shimmed scripts to have dependencies, likely objects in the

global scope. When AMD modules specify dependencies, RequireJS ensures that the

dependencies are loaded first, before the module code is executed. Dependencies for

shimmed scripts are specified in a similar manner within the shim configuration. A

shimmed script may depend on other shimmed scripts, or even AMD modules if those

modules make content available in the global scope (usually a bad idea, but sometimes

necessary).

Chapter 4 RequireJS

112

To enhance the example application, a search field has been added to the quote

page in example-005. Terms entered into the search field appear highlighted in the text

of any quote in which they are found. Up to this point, all examples have used a single

view, quotes-view, to display the rendered markup. Because the application features

are growing, two new modules will be introduced to help manage features: search-view

and quotes-state. The search-view module is responsible for monitoring a text field

for user input. When this field changes, the view informs the quotes-state module that

a search has occurred, passing it the search term. The quotes-state module acts as the

single source of state for all views, and when it receives a new search term, it triggers an

event to which views may subscribe.

Digging through some legacy source code produced the file public/scripts/util/

jquery.highlight.js, a non-AMD jQuery plugin that highlights text in the DOM. When

the quotes-view module receives the search event from the quotes-state module, it

uses this plugin to highlight text in the DOM based on the search term stored in quotes-

state. To use this legacy script, a path and a shim entry are both added to the main.js

configuration. The highlight plugin doesn’t export any values, but it does need jQuery

to be loaded first or the plugin will throw an error when it attempts to access the global

jQuery object.

Dependencies have been added to the highlight shim with the deps property,

shown in Listing 4-22. This property contains an array of module names (or aliases) that

should be loaded before the shim—in this case jQuery.

Listing 4-22.  The highlight Shim Depends on jQuery

// example-005/public/scripts/main.js

requirejs.config({

 baseUrl: '/scripts',

 paths: {

 jquery: 'vendor/jquery/jquery-2.1.3.min',

 'jquery-all': 'util/jquery-all',

 undrln: 'vendor/undrln/undrln',

 ventage: 'vendor/ventage/ventage',

 highlight: 'util/jquery.highlight'

 },

Chapter 4 RequireJS

113

 shim: {

 undrln: {

 exports: '_'

 },

 highlight: {

 deps: ['jquery']

 }

 }

});

Once the highlight plugin has been shimmed, it may be loaded as a dependency of

another module. Since the jquery-all module is responsible for loading custom plugins

anyway, making the highlight module one of its dependencies in Listing 4-23 seems

sensible.

Shimmed scripts should only have two kinds of dependencies:

•	 Other shimmed scripts that execute immediately and potentially

create one or more reusable variables or namespaces in the global

scope

•	 AMD modules that also create reusable variables or namespaces in

the global scope (such as window.jQuery) as a side effect

Because AMD modules typically don’t meddle with the global scope at all, it is

practically useless to use them as dependencies for a shimmed script because there is

no way for the shimmed script to access an AMD module’s API. If an AMD module adds

nothing to the global scope, it is useless to shimmed scripts. Also, AMD modules are

loaded asynchronously, and their closures are executed in a particular order (discussed

in the next section), whereas shimmed scripts will be run as soon as they are loaded.

(Remember: Shimmed scripts are normal scripts that run once they’ve been introduced

into the DOM. A generated shim module simply delivers the global export created by

a non-AMD script to other AMD modules as a dependency.) Even if a shimmed script

could access an AMD module’s API, there is no guarantee that the module would be

available when the shimmed script actually runs.

Chapter 4 RequireJS

114

Listing 4-23.  Loading the highlight Module As a Dependency of Another Module

// example-005/public/scripts/util/jquery-all.js

define(['jquery', 'highlight'], function ($) {

 $.fn.addQuotes = function (attribution, quotes) {

 // ...

 };

 return $;

});

With this arrangement, there are likely two questions that spring to mind immediately:

	 1.	 Since both the highlight and jquery-all modules declare

jquery as a dependency, when is jQuery actually loaded?

	 2.	 Why isn’t a second highlight parameter specified in the jquery-

all module closure function?

First, when RequireJS evaluates dependencies among modules, it creates an

internal dependency tree based on module hierarchy. By doing this it can determine

the optimal time to load any particular module, starting from the leaves and moving

toward the trunk. In this case the “trunk” is the jquery-all module, and the furthest

leaf is the jquery module on which highlight depends. RequireJS will execute module

closures in the following order: jquery, highlight, jquery-all. Because jquery is also

a dependency of jquery-all, RequireJS will simply deliver the same jquery instance

created for the highlight module.

Second, the highlight module returns no value and is used merely for side effects—

for adding a plugin to the jQuery object. No parameter is passed to the jquery-all

module because highlight returns none. Dependencies that are used only for side

effects should always be placed at the end of a module’s dependency list for this reason.

�Loader Plugins
There are several RequireJS loader plugins that are so useful, they find a home in most

projects. A loader plugin is an external script that is used to conveniently load, and

sometimes parse, specific kinds of resources that may then be imported as standard AMD

dependencies, even though the resources themselves may not be actual AMD modules.

Chapter 4 RequireJS

115

�text.js

The RequireJS text plugin can load a plain text resource over HTTP, serialize it as a

string, and deliver it to an AMD module as a dependency. This is commonly used to load

HTML templates or even raw JSON data from HTTP endpoints. To install the plugin, the

text.js script must be copied from the project repository and, by convention, placed in

the same directory as the main.js configuration file. (Alternative installation methods

are listed in the plugin project’s README.)

The quotes-view module in the example application uses a jQuery plugin to

build up the list of quotes, one DOM element at a time. This is not very efficient and

could easily be replaced by a templating solution. The AMD-compatible Handlebars

templating library is a popular choice for such tasks. In Listing 4-24 the library has been

added to the vendor directory in example-006, and a convenient module alias has been

created in the main.js configuration.

Listing 4-24.  Handlebars Module Alias

// example-006/public/scripts/main.js

requirejs.config({

 baseUrl: '/scripts',

 paths: {

 //...

 Handlebars: 'vendor/handlebars/handlebars-v3.0.3'

 },

 //...

});

When the quotes-view module renders itself, it uses quote data in an object hash

where the keys are attributions (i.e., the person credited with each quote) and the values

are arrays of quotes for each. (A given attribution may be associated with one or more

quotes.) Listing 4-25 shows the template that will be bound to this data structure, located

in the public/scripts/templates/quotes.hbs file.

Listing 4-25.  The quotes-view Handlebars Template

<!-- example-006/public/scripts/templates/quotes.hbs -->

{{#each this as |quotes attribution|}}

<section class="multiquote">

Chapter 4 RequireJS

116

 <h2 class="attribution">{{attribution}}</h2>

 {{#each quotes}}

 <blockquote class="quote">

 {{#explode text delim="\n"}}

 <p>{{this}}</p>

 {{/explode}}

 </blockquote>

 {{/each}}

</section>

{{/each}}

It is not necessary to be completely familiar with Handlebars syntax to understand

that this template iterates over the data object, pulling out each attribution and its

associated quotes. It creates an <h2> element for the attribution, then for each quote

builds a <blockquote> element to hold the quote text. A special block helper, #explode,

breaks the quote text apart at the new line (\n) delimiter and then wraps each segment

of the quote text in a <p> tag.

The #explode helper is significant because it is not native to Handlebars. It is defined

and registered as a Handlebars helper in the file public/scripts/util/handlebars-

all.js, as shown in Listing 4-26.

Listing 4-26. #explode Handlebars Helper

// example-006/public/scripts/util/handlebars-all.js

define(['Handlebars'], function (Handlebars) {

 Handlebars.registerHelper('explode', function (context, options) {

 var delimiter = options.hash.delim || ";

 var parts = context.split(delimiter);

 var processed = ";

 while (parts.length) {

 processed += options.fn(parts.shift().trim());

 }

 return processed;

 });

 return Handlebars;

});

Chapter 4 RequireJS

117

Because this module adds helpers and then returns the Handlebars object, the

quotes-view module will import it as a dependency instead of the vanilla Handlebars

module, in much the same way as the jquery-all module is used in lieu of jquery.

The appropriate module alias has been added to the configuration in Listing 4-27.

Listing 4-27. handlebars-all Module Alias

// example-006/public/scripts/main.js

requirejs.config({

 baseUrl: '/scripts',

 paths: {

 //...

 Handlebars: 'vendor/handlebars/handlebars-v3.0.3',

 'handlebars-all': 'util/handlebars-all'

 },

 //...

});

In Listing 4-28, the quotes-view module has been modified to import both

handlebars-all and the quotes.hbs template. The module name for the text template is

very specific: it must begin with the prefix text! followed by the path to the template file

relative to the baseUrl path defined in main.js.

Listing 4-28.  The quotes.hbs Template Imported As a Module Dependency

// example-006/public/scripts/quotes-view.js

define([

 'jquery-all',

 'quotes-state',

 'handlebars-all',

 'text!templates/quote.hbs'

],

function ($, quotesState, Handlebars, quotesTemplate) {

 var bindTemplate = Handlebars.compile(quotesTemplate);

Chapter 4 RequireJS

118

 var view = {

 // ...

 render: function () {

 view.$el.empty();

 var groupedQuotes = quotesState.quotes;

 view.$el.html(bindTemplate(groupedQuotes));

 },

 // ...

 };

 // ...

});

When RequireJS encounters a dependency name with the text! prefix, it

automatically attempts to load the text.js plugin script, which will then load and

serialize the specified file content as a string. The quotesTemplate function argument

in the quotes-view closure will contain the serialized content of the quotes.hbs file,

which is then compiled by Handlebars and used to render the module in the DOM.

�Page Load

When a web page has fully loaded, it triggers a DOMContentLoaded event (in modern

browsers). Scripts that are loaded before the browser has finished building the DOM

often listen for this event to know when it is safe to begin manipulating page elements.

If scripts are loaded just before the ending </body> tag, they may assume that the bulk

of the DOM has already been loaded and that they need not listen for this event. Scripts

anywhere else in the <body> element, or more commonly the <head> element, have no

such luxury, however.

Even though RequireJS is loaded before the closing </body> tag in the application

example, the main.js file (configuration omitted) in Listing 4-29 still passes a function

to jQuery that will be executed once the DOMContentLoaded has fired. If the RequireJS

<script> tag were moved into the document <head>, nothing would break.

Chapter 4 RequireJS

119

Listing 4-29.  Using jQuery to Determine If the DOM Is Fully Loaded

// example-006/public/scripts/main.js

// ...

requirejs(['jquery-all', 'quotes-view', 'search-view'],

 function ($, quotesView) {

 $(function () {

 quotesView.ready();

 });

});

The domReady plugin is a peculiar kind of “loader” in that it simply stalls the

invocation of a module’s closure until the DOM is completely ready. Like the text plugin,

the domReady.js file must be accessible to RequireJS within the baseUrl path defined in

the main.js configuration. By convention it is typically a sibling of main.js.

Listing 4-30 shows a modified version of main.js (configuration omitted) in

which the jquery dependency has been removed and the domReady! plugin has been

appended to the dependency list. The trailing exclamation mark tells RequireJS that this

module acts as a loader plugin rather than a standard module. Unlike the text plugin,

domReady actually loads nothing, so no additional information is required after the

exclamation mark.

Listing 4-30.  Using the domReady Plugin to Determine If the DOM Is Fully

Loaded

// example-007/public/scripts/main.js

// ...

requirejs(['quotes-view', 'search-view', 'domReady!'],

 function (quotesView) {

 quotesView.ready();

});

Chapter 4 RequireJS

120

�i18n

RequireJS supports internationalization via the i18n loader plugin. (i18n is a

numeronym, which means that the number “18” represents the 18 characters between

“i” and “n” in the word “internationalization”.) Internationalization is the act of writing

a web application such that it can adapt its content to a user’s language and locale (also

known as National Language Support, or NLS). The i18n plugin is primarily used for

translating text in a web site’s controls and “chrome”: button labels, headers, hyperlink

text, fieldset legends, and so forth. To demonstrate this plugin’s capabilities, two new

templates have been added to the example application, one for the page title in the

header and one for the search field with placeholder text. The actual quote data will not

be translated because, presumably, it comes from an application server that would be

responsible for rendering the appropriate translation. In this application, though, the

data is hard-coded in the data/quotes module for simplicity and will always appear in

English.

The search.hbs template in Listing 4-31 has also been extracted from the index.

html file and now accepts placeholder text for the search field as its only input. The

search-view module has been adapted to use this template when it renders content in

the DOM.

Listing 4-31.  The search.hbs Template Will Display the Placeholder Translation

<!-- example-008/public/scripts/templates/search.hbs -->

<form>

 <fieldset>

 <input type="text" name="search" placeholder="{{searchPlaceholder}}" />

 </fieldset>

</form>

Listing 4-32 shows the new header.hbs template that will be rendered by the new

header-view module. The template accepts a single input, the page title.

Listing 4-32.  The header.hbs Template Will Display the Page Title Translation

<!-- example-008/public/scripts/templates/header.hbs -->

<h1>{{pageTitle}}</h1>

Chapter 4 RequireJS

121

The header-view module in Listing 4-33 demonstrates not only how the template

dependency is imported with the text plugin but also how a language module

dependency is imported with the i18n plugin. The familiar loader syntax looks nearly

identical: the plugin name followed by an exclamation mark and a module path

relative to the configured baseUrl, in this case nls/lang. When a template is loaded,

its serialized string content is passed to a module’s closure, but the i18n plugin loads a

language module that contains translated text data and passes that module’s object to

the closure. In Listing 4-33 this object will be accessible through the lang parameter.

Listing 4-33.  The header-view Module Depends on the i18n Language Object

// example-008/public/scripts/header-view.js

define([

 'quotes-state',

 'jquery-all',

 'handlebars-all',

 'text!templates/header.hbs',

 'i18n!nls/lang'

], function (quotesState, $, Handlebars, headerTemplate, lang) {

 // ...

});

The language module is a regular AMD module, but instead of passing a list of

dependencies and a closure to define(), a simple object literal is used. This object literal

follows a very specific syntax, shown in Listing 4-34.

Listing 4-34.  Default English Language Module

// example-008/public/scripts/nls/lang.js

define({

 root: {

 pageTitle: 'Ponderings',

 searchPlaceholder: 'search'

 },

 de: true

});

Chapter 4 RequireJS

122

First, a root property holds the key/value pairs that will be used to fetch translated

data when the plugin resolves the language translations. The keys in this object are

simply keys by which the translated text may be accessed programmatically. In the

search template, for example, {{searchPlaceholder}} will be replaced with the string

value at the language object’s key searchPlaceholder when the template is bound to it.

Second, siblings to the root property are the various IETF language tags for active

and inactive translations that should be resolved based on a browser’s language setting.

In this example, the German de language tag is assigned the value true. If a Spanish

translation was made available, an es-es property with the value true could be added.

And for a French translation, an fr-fr property could be added, and so forth for other

languages.

When a new language tag is enabled in the default language module, a directory

corresponding to the language code must be made as a sibling to the module file. The

nls/de directory can be seen in Listing 4-35.

Listing 4-35.  Directory Structure for NLS Modules

├── nls
│ ├── de
│ │ └── lang.js
│ └── lang.js

Once the language-specific directory has been created, a language module file of

the same name as the default language module file must be created within. This new

language module will contain the translated content of the root property in the default

language module only. Listing 4-36 shows the German (de) translation of the pageTitle

and searchPlaceholder properties.

Listing 4-36.  German (de) Translation Module

// example-008/public/scripts/nls/de/lang.js

define({

 pageTitle: 'Grübeleien',

 searchPlaceholder: 'suche'

});

Chapter 4 RequireJS

123

When the default language module is loaded with the i18n plugin, it examines the

browser’s window.navigator.language property to determine what locale and language

translation should be used. If the default language module specifies a compatible,

enabled locale, the i18n plugin loads the locale-specific module and then merges it with

the default language module’s root object. Missing translations in the locale-specific

module will be filled with values from the default language module.

Figure 4-3 shows how the quotes page looks when a Google Chrome browser’s

language has been set to German.

Figure 4-3.  Switching the browser language loads the German translation.

Note  The window.navigator.language property is affected by different
settings in different browsers. For example, in Google Chrome it only reflects
the user’s language setting, whereas in Mozilla Firefox it can be affected by an
Accept-Language header in a page’s HTTP response as well.

Chapter 4 RequireJS

124

�Cache Busting
Application servers often cache resources like script files, images, stylesheets, and so

on to eliminate unnecessary disk access when serving a resource that has not changed

since it was last read. Cached resources are often stored in memory and associated with

some key, usually the URL of the resource. When multiple requests for a given URL occur

within a specified cache period, the resource is fetched from memory using the key

(URL). This can have significant performance benefits in a production environment, but

invalidating cache in development or testing environments every time a code change is

made, or a new resource is introduced, can become tedious.

Certainly caching can be toggled on a per-environment basis, but a simpler solution,

at least for JavaScript (or any resource loaded by RequireJS), might be to utilize the

RequireJS cache-busting feature. Cache busting is the act of mutating the URL for every

resource request in such a way that the resource may still be fetched, but will never be

found in cache because its “key” is always different. This is commonly done by including

a query string parameter that changes whenever a page is reloaded.

A urlArgs property has been added to the configuration script in Listing 4-37. This

will append the query string parameter bust={timestamp} to all requests generated

by RequireJS. The time stamp is recalculated for each page load to ensure that the

parameter value changes, making URLs unique.

Listing 4-37.  The urlArgs Configuration Property Can Be Used to Bust Cache

// example-009/public/scripts/main.js

requirejs.config({

 baseUrl: '/scripts',

 urlArgs: 'bust=' + (new Date().getTime()),

 paths: {

 // ...

 },

 shim: {

 // ...

 }

});

Chapter 4 RequireJS

125

While the usefulness of this feature is evident, it can also create a few problems.

First, RequireJS respects HTTP cache headers, so even if urlArgs is used as a

cache-busting mechanism, RequireJS may still request (and receive) a cached version

of a resource, depending on how cache is implemented. If possible, always serve the

appropriate cache headers in each environment.

Second, be aware that some proxy servers drop query string parameters. If

a development or staging environment includes proxies to mimic a production

environment, a cache-busting query string parameter may be ineffective. Some

developers use urlArgs to specify particular resource versions in a production

environment (e.g., version=v2), but this is generally discouraged for this very reason. It

is an unreliable versioning technique, at best.

Figure 4-4.  The bust parameter is appended to each RequireJS request

Figure 4-4 shows that the bust parameter is indeed applied to each request initiated

by RequireJS, even XHR requests for text resources like header.hbs.

Chapter 4 RequireJS

126

Finally, some browsers treat resources with different URLs as distinct, debuggable

entities. In Chrome and Firefox, for example, if a debug breakpoint is set in the source

code for http://localhost:8080/scripts/quotes-state.js?bust=1432504595280,

it will be removed if the page is refreshed, when the new resource URL becomes

http://localhost:8080/scripts/quotes-state.js?bust=1432504694566. Resetting

breakpoints can become tedious, and though the debugger keyword can be used to

circumvent this problem by forcing the browser to pause execution, it still requires a

diligent developer to ensure that all debugger breakpoints are removed before code is

promoted to production.

�RequireJS Optimizer
The RequireJS optimizer, r.js, is a build tool for RequireJS projects. It can be used to

concatenate all RequireJS modules into a single file, minify source code, copy build

output to a distinct directory, and much more. This section introduces the tool and its

basic configuration. Specific examples for several common scenarios will be covered

next.

The most common way to use r.js involves installing the RequireJS npm package for

Node.js, either as a global package or as a local project package. The examples in this

section will use the local RequireJS installation created when all npm modules were

installed.

�Configuring r.js
A wide array of parameters may be passed as arguments to the r.js tool to control its

behavior. Fortunately these parameters can also be passed to r.js in a regular JavaScript

configuration file, which makes the terminal command significantly shorter. For

nontrivial projects, this is the preferred configuration method and will be the only one

covered in this chapter.

The code files in the example-010 directory have been moved into a standard src

directory, and a new file, rjs-config.js, has been placed in the directory root. This file,

unsurprisingly, contains the r.js configuration. Its contents are shown in Listing 4-38.

Chapter 4 RequireJS

127

Listing 4-38.  r.js Configuration

// example-010/rjs-config.js

({

 // build input directory for application code

 appDir: './src',

 // build output directory for application code

 dir: './build',

 // path relative to build input directory where scripts live

 baseUrl: 'public/scripts',

 // predefined configuration file used to resolve dependencies

 mainConfigFile: './src/public/scripts/main.js',

 // include all text! references as inline modules

 inlineText: true,

 // do not copy files that were combined in build output

 removeCombined: true,

 // specific modules to be built

 modules: [

 {

 name: 'main'

 }

],

 // uglify the output

 optimize: 'uglify'

})

Developers who are familiar with build tools will immediately recognize the input/

output pattern present in the configuration.

The appDir property specifies the project “input” directory, relative to the

configuration file, where uncompiled source code lives.

The dir property specifies the project “output” directory, relative to the configuration

file, where compiled and minified output will be written when the r.js tool runs.

The baseUrl property tells r.js where the project scripts are located relative to the

appDir property. This should not be confused with the baseUrl property in the main.js

file, which tells RequireJS where modules are located relative to the web application root.

Chapter 4 RequireJS

128

The mainConfigFile property points to the actual RequireJS (not r.js)

configuration. This helps r.js understand how modules are related to each other, and

what module aliases and shims exist, if any. It is possible to omit this property and

specify all of these paths in the r.js configuration, though that is beyond the scope of

this example.

Setting the inlineText property to true ensures that all text files referenced with

the text plugin prefix text! will be compiled with RequireJS modules in the final build

output. This option is enabled by default but is explicitly set in this project for clarity.

By default, r.js will minify and copy all scripts (packed and unpacked) to the output

directory. The removeCombined property toggles this behavior. In this case only the

packed, compiled script(s) and any other scripts that could not be included in the packed

output will be copied to the output directory.

The modules array lists all of the top-level modules to be compiled. Because this is a

single-page application, only the actual main module needs to be compiled.

Finally, the optimize property instructs r.js to apply an uglify transform to all scripts,

minimizing all JavaScript code.

�Running the r.js Command
Building the project is simply a matter of running the r.js command in a terminal,

passing it the path to the configuration file via its -o flag as shown in Listing 4-39.

Listing 4-39.  Running the r.js Command

example-010$../node_modules/.bin/r.js -o rjs-config.js

Terminal output shows which files are compiled and copied by r.js during the

build. Examining the build output files in Listing 4-40 shows what, exactly, r.js

optimized and copied.

Listing 4-40.  Build Directory Content

example-010/build$ tree

.

├── build.txt
├── index.js
└── public

Chapter 4 RequireJS

129

 ├── index.html
 ├── scripts
 │ ├── main.js
 │ ├── nls
 │ │ └── de
 │ │ └── lang.js
 │ ├── require.js
 │ ├── templates
 │ │ ├── header.hbs
 │ │ ├── quote.hbs
 │ │ └── search.hbs
 │ └── vendor
 │ └── ventage
 │ ├── LICENSE
 │ ├── README.md
 │ ├── bower.json
 │ ├── package.json
 │ └── test
 │ ├── index.html
 │ ├── main.js
 │ ├── ventage.clear.js
 │ ├── ventage.create.js
 │ ├── ventage.ctor.js
 │ ├── ventage.off.js
 │ ├── ventage.on.js
 │ ├── ventage.pipe.js
 │ ├── ventage.trigger.js
 │ └── ventage.triggerAsync.js
 └── styles
 └── app.css

9 directories, 24 files

Chapter 4 RequireJS

130

Several things immediately stand out in the public/scripts directory.

First, the require.js and main.js scripts are both present. Since these scripts are

the only files referenced in index.html, their presence here is expected. Other scripts

such as the quotes-view.js and quotes-state.js scripts are noticeably absent, but

examining the content of main.js reveals why: they have been packed and minified

according to the r.js build settings.

Second, the localization file nls/lang.js is now missing because it has been

included as part of main.js. The nls/de/lang.js script still remains as part of the build

output, though its contents have been minified. Any user browsing the example web

page in the default locale will receive an optimized experience, as RequireJS will not

have to make an external AJAX call to load the default language translations. Users from

Germany will incur the additional HTTP request because the German localization file

has not been included in the packed output. This is a limitation of the localization plugin

that r.js must respect.

Third, the Handlebars templates, though compiled as part of the build output in

main.js, have also been copied to the public/scripts/templates directory. This

happens because RequireJS plugins currently have no visibility into the build process and

therefore no method of honoring the removeCombined option in the r.js configuration

file. Fortunately, because these templates have been wrapped in AMD modules and

concatenated with main.js, RequireJS will not attempt to load them with AJAX requests.

If deployment size is an issue for this project, a post-build script or task can be created to

remove the templates directory if needed.

Fourth, the vendor/ventage directory has been copied to the build directory even

though its core module, ventage.js, has been concatenated with main.js. While

RequireJS can automatically remove individual module files (like ventage.js) after

compilation, it will not clean up other files associated with a module (in this case, unit

tests and package definition files like package.json and bower.json), so they must be

removed manually or as part of a post-build process.

Chapter 4 RequireJS

131

�Summary
RequireJS is a very pragmatic JavaScript module loader that works well in a browser

environment. Its ability to load and resolve modules asynchronously means that it does

not rely solely on bundling or packing scripts for performance benefits. For further

optimization, though, the r.js optimization tool may be used to combine RequireJS

modules into a single, minified script to minimize the number of HTTP requests

necessary to load modules and other resources.

Though RequireJS modules must be defined in AMD format, RequireJS can shim

non-AMD scripts so that legacy code may be imported by AMD modules where

necessary. Shimmed modules may also have dependencies that can automatically be

loaded by RequireJS.

The text plugin lets modules import external text file dependencies (such as

templates) as strings. These text files are loaded like any other module dependency and

may even be inlined in build output by the r.js optimizer.

Localization is supported by the i18n module loader, which can dynamically load

text translation modules based on a browser’s locale settings. While the primary locale

translation module can be optimized and concatenated with r.js, additional locale

translation modules will always be loaded with HTTP requests.

Module execution can be deferred by the pageLoad plugin, which prevents a

module’s closure from executing until the DOM has been fully rendered. This can be an

effective way to eliminate repeat calls to jQuery’s ready() function, or fumbling through

the cross-browser code necessary to subscribe to the DOMContentLoaded event manually.

Finally, the RequireJS configuration can automatically append query string

parameters to all RequireJS HTTP requests, providing a cheap but effective cache-

busting feature for development environments.

Chapter 4 RequireJS

133
© Sufyan bin Uzayr, Nicholas Cloud, Tim Ambler 2019
S. bin Uzayr et al., JavaScript Frameworks for Modern Web Development,
https://doi.org/10.1007/978-1-4842-4995-6_5

CHAPTER 5

Browserify

Less is more.

—Ludwig Mies van der Rohe

Browserify is a JavaScript module loader that works around the language’s current lack of

support for importing modules within the browser by serving as a “pre-processor” for your

code. In much the same way that CSS extensions such as SASS and LESS have brought

enhanced syntax support to stylesheets, Browserify enhances client-side JavaScript

applications by recursively scanning their source code for calls to a global require()

function. When Browserify finds such calls, it immediately loads the referenced modules

(using the same require() function that is available within Node.js) and combines them

into a single, minified file—a “bundle”—that can then be loaded within the browser.

This simple but elegant approach brings the power and convenience of CommonJS

(the method by which modules are loaded within Node.js) to the browser while also doing

away with the additional complexity and boilerplate code required by Asynchronous

Module Definition (AMD) loaders such as RequireJS (described in Chapter 4).

In this chapter, you will learn how to

•	 Distinguish between AMD and CommonJS module loaders

•	 Create modular front-end JavaScript applications that follow the

simple patterns for module management popularized by tools such

as Node.js

•	 Visualize a project’s dependency tree

•	 Compile your application as quickly as possible—as changes are

made—using Browserify’s sister application, Watchify

•	 Use third-party Browserify plugins (“transforms”) to extend the tool

beyond its core functionality

134

Note  Portions of this chapter discuss concepts already covered in this book’s
previous chapters.

�The AMD API vs. CommonJS
The Asynchronous Module Definition API, covered in Chapter 4, serves as a clever

workaround to JavaScript’s current lack of support for loading external modules inline.

Often referred to as a “browser-first” approach, the AMD API accomplishes its goal

of bringing modules to the browser by requiring that developers wrap each of their

modules within a callback function, which can then be loaded asynchronously (i.e., “lazy

loaded”) as needed. This process is demonstrated by the modules shown in Listing 5-1.

Listing 5-1.  Defining and Requiring an AMD Module

// requirejs-example/public/app/weather.js

define([], function() {

 return {

 'getForecast': function() {

 document.getElementById('forecast').innerHTML = 'Partly cloudy.';

 }

 };

});

// requirejs-example/public/app/index.js

define(['weather'], function(weather) {

 weather.getForecast();

});

The AMD API is both clever and effective, but many developers also find it to be a

bit clumsy and verbose. Ideally, JavaScript applications should be capable of referencing

external modules without the added complexity and boilerplate code that the AMD API

requires. Fortunately, a popular alternative known as CommonJS exists that addresses

this concern.

Chapter 5 Browserify

135

While most people tend to associate JavaScript with web browsers, the truth is

that JavaScript has found widespread use in a number of other environments for quite

some time—well before Node.js came on the scene. Examples of such environments

include Rhino, a server-side runtime environment created by Mozilla, and ActionScript,

a derivative used by Adobe’s once-popular Flash platform that has fallen out of favor in

recent years. Each of these platforms works around JavaScript’s lack of built-in module

support by creating its own approach.

Sensing a need for a standard solution to this problem, a group of developers got

together and proposed what became known as CommonJS, a standardized approach

to defining and using JavaScript modules. Node.js follows a similar approach, as does

the next major update to JavaScript (ECMAScript 6, a.k.a. ES6 Harmony). This approach

can also be used to write modular JavaScript applications that work in all web browsers

in use today, although not without the help of additional tools such as Browserify, the

subject of this chapter.

�Installing Browserify
Before going any further, you should ensure that you have installed Browserify’s

command-line utility. Available as an npm package, the installation process is shown

in Listing 5-2.

Listing 5-2.  Installing the browserify Command-Line Utility via npm

$ npm install -g browserify

$ browserify --version

16.2.3

Note  Node’s package manager (npm) allows users to install packages in one of
two contexts: locally or globally. In this example, browserify is installed within
the global context, which is typically reserved for command-line utilities.

Chapter 5 Browserify

136

�Creating Your First Bundle
Much of Browserify’s appeal lies in its simplicity; JavaScript developers familiar with

CommonJS and Node will find themselves immediately at home. By way of an example,

consider Listing 5-3, which shows the CommonJS-based equivalent of the simple

RequireJS-based application we saw in Listing 5-1.

Listing 5-3.  Front-End Application That Requires Modules via CommonJS

// simple/public/app/index.js

var weather = require('./weather');

weather.getForecast();

// simple/public/app/weather.js

module.exports = {

 'getForecast': function() {

 document.getElementById('forecast').innerHTML = 'Partly cloudy.';

 }

};

Unlike our RequireJS-based example, this application cannot be run directly within

the browser because the browser lacks a built-in mechanism for loading modules

via require(). Before the browser can understand this application, we must first

compile it into a bundle with the help of the browserify command-line utility or via

Browserify’s API.

The command for compiling this application using Browserify’s command-line

utility is as follows:

$ browserify app/index.js -o public/dist/app.js

Here we pass the browserify utility the path to our application’s main file,

public/app/index.js, and specify that the compiled output should be saved to public/

dist/app.js, the script referenced within the project’s HTML (see Listing 5-4).

Chapter 5 Browserify

137

Listing 5-4.  HTML File Referencing Our Compiled Browserify Bundle

// simple/public/index.html

<!DOCTYPE html>

<html>

<head>

 <meta charset="utf-8">

 <meta http-equiv="X-UA-Compatible" content="IE=edge">

 <meta name="viewport" content="width=device-width, initial-scale=1">

 <title>Browserify - Simple Example</title>

</head>

<body>

 <div id="forecast"></div>

 <script src="/dist/app.js"></script>

</body>

</html>

In addition to using Browserify’s command-line utility, we also have the option of

compiling this application programmatically via Browserify’s API. Doing so will allow us

to easily incorporate this step into a larger build process (developed with tools such as

Grunt). Listing 5-5 shows this project’s browserify Grunt task.

Listing 5-5.  Grunt Task That Compiles the Application via Browserify’s API

// simple/tasks/browserify.js

module.exports = function(grunt) {

 grunt.registerTask('browserify', function() {

 var done = this.async();

 var path = require('path');

 var fs = require('fs');

 var src = path.join('public', 'app', 'index.js');

 var target = path.join('public', 'dist', 'app.js');

 var browserify = require('browserify')([src]);

 browserify.bundle(function(err, data) {

 if (err) return grunt.fail.fatal(err);

 grunt.file.mkdir(path.join('public', 'dist'));

Chapter 5 Browserify

138

 fs.writeFileSync(target, data);

 done();

 });

 });

};

�Visualizing the Dependency Tree
If you happen to be more of a visual learner, the chart shown in Figure 5-1 may go a long

way toward conveying what occurs during Browserify’s compilation process. Here we see

a visualization of the various dependencies encountered by Browserify as it compiled

this chapter’s advanced project.

Figure 5-1.  Visualizing the advanced project’s dependency tree

Chapter 5 Browserify

139

Viewing this chart as a static rendering on a page really does not do it justice. For

the full effect, you should compile the project and view the chart within your browser by

running npm start from within the project’s folder. Doing so will allow you to hover your

mouse over the various segments of the chart, each of which represents a dependency

encountered by Browserify during its compilation process. While it is not evident in

Figure 5-1, an in-depth analysis of the chart indicates that our application’s custom

code accounts for only a tiny sliver (9.7kB) of the total size of the bundle generated

by Browserify. The vast majority of this project’s nearly 2MB of code consists of third-

party dependencies (e.g., Angular, jQuery, Lodash, etc.), an important fact that will be

referenced again later in the chapter.

Note Y ou may also be interested in investigating the browserify-graph and
colony command-line utilities (also available via npm), which you can use to
generate additional visualizations of a project’s dependency tree.

�Creating New Bundles As Changes Occur
Projects that take advantage of Browserify cannot be run directly within the browser—

they must first be compiled. In order to make the most efficient use of the tool, it is

important that projects be set up in such a way as to automatically trigger this step as

changes occur within their source code. Let’s take a look at two methods by which this

can be achieved.

�Watching for File Changes with Grunt
In Chapter 1 on Grunt, you discovered how plugins such as grunt-contrib-watch allow

developers to trigger build steps as changes are made within an application’s source

code. It’s easy to see how such tools could be applied to projects using Browserify,

triggering the creation of new bundles as changes are detected. An example of this

process in action can be seen by running the default Grunt task for this chapter’s simple

project, as shown in Listing 5-6.

Chapter 5 Browserify

140

Listing 5-6.  Triggering the Creation of New Browserify Builds with Grunt

$ grunt

Running "browserify" task

Running "concurrent:serve" (concurrent) task

 Running "watch" task

 Waiting...

 Running "server" task

 App is now available at: http://localhost:7000

 >> File "app/index.js" changed.

 Running "browserify" task

 Done, without errors.

 Completed in 0.615s at Fri Jun 26 2015 08:31:25 GMT-0500 (CDT) - Waiting...

In this example, running the default Grunt task triggered three steps:

•	 A Browserify bundle was immediately created.

•	 A web server was launched to host the project.

•	 A watch script was executed that triggers the creation of new

Browserify bundles as source code changes are detected.

This simple approach typically serves most small projects quite well; however, as

small projects gradually evolve into large projects, developers often grow frustrated,

understandably, with the ever-increasing build times that accompany it. Having to

wait several seconds before you can try out each of your updates can quickly destroy

any sense of “flow” that you might hope to achieve. Fortunately, Browserify’s sister

application, Watchify, can help us in these situations.

�Watching for File Changes with Watchify
If Browserify (which compiles applications in their entirety) can be thought of as a

meat cleaver, Watchify can be thought of as a paring knife. When invoked, Watchify

initially compiles a specified application in its entirety; however, rather than exiting

once this process has completed, Watchify continues to run, watching for changes to a

project’s source code. As changes are detected, Watchify recompiles only those files that

have changed, resulting in drastically faster build times. Watchify accomplishes this by

maintaining its own internal caching mechanism throughout each build.

Chapter 5 Browserify

141

As with Browserify, Watchify can be invoked via either the command line or a

provided API. In Listing 5-7, this chapter’s simple project is compiled with the help of

Watchify’s command-line utility. In this example, the -v argument is passed to specify

that Watchify should run in verbose mode. As a result, Watchify notifies us as changes

are detected.

Listing 5-7.  Installing Watchify via npm and Running It Against This Chapter’s

simple Project

$ npm install -g watchify

$ watchify public/app/index.js -o public/dist/app.js -v

778 bytes written to public/dist/app.js (0.03 seconds)

786 bytes written to public/dist/app.js (0.01 seconds)

As with Browserify, Watchify provides a convenient API that allows us to integrate it

into a larger build process (see Listing 5-8). We can do so with just a few small tweaks to

the Browserify task previously shown in Listing 5-7.

Listing 5-8.  Grunt Task Demonstrating the Use of Watchify’s API

// simple/tasks/watchify.js

module.exports = function(grunt) {

 grunt.registerTask('watchify', function() {

 var done = this.async();

 var browserify = require('browserify');

 var watchify = require('watchify');

 var fs = require('fs');

 var path = require('path');

 var src = path.join('public', 'app', 'index.js');

 var target = path.join('public', 'dist', 'app.js');

 var targetDir = path.join('public', 'dist');

 var browserify = browserify({

 'cache': {},

 'packageCache': {}

 });

Chapter 5 Browserify

142

 browserify = watchify(browserify);

 browserify.add(src);

 var compile = function(err, data) {

 if (err) return grunt.log.error(err);

 if (!data) return grunt.log.error('No data');

 grunt.file.mkdir(targetDir);

 fs.writeFileSync(target, data);

 };

 browserify.bundle(compile);

 browserify.on('update', function() {

 browserify.bundle(compile);

 });

 browserify.on('log', function(msg) {

 grunt.log.oklns(msg);

 });

 });

};

In this example, we wrap our browserify instance with watchify. Afterward, we

recompile the project as needed by subscribing to the update event emitted by our

wrapped instance.

�Using Multiple Bundles
In the earlier section “Visualizing the Dependency Tree,” we looked at an interactive

chart that allowed us to visualize the various dependencies encountered by Browserify

as it compiled this chapter’s advanced project (see Figure 5-1). One of the most

important facts that we can take away from this chart is that the project’s custom code

(found in /app) accounts for only a tiny portion (9.7kB) of the bundle’s total size of

1.8MB. In other words, the vast majority of this project’s code consists of third-party

libraries (e.g., Angular, jQuery, Lodash, etc.) that are unlikely to frequently change. Let’s

take a look at how we can use this knowledge to our advantage.

Chapter 5 Browserify

143

This chapter’s extracted project is identical to the advanced project in every way,

with one exception: instead of compiling a single Browserify bundle, the extracted

project’s build process creates two separate bundles:

•	 /dist/vendor.js: Third-party dependencies

•	 /dist/app.js: Custom application code

By taking this approach, browsers can more efficiently access project updates as

they are released. In other words, as changes occur within the project’s custom code,

browsers only need to redownload /dist/app.js. Contrast this approach with that

of the advanced project, in which each update (no matter how small) forces clients to

redownload the project’s nearly 2MB bundle.

Listing 5-9 shows the HTML file for the extracted project. As you can see, here we

reference two separate bundles, /dist/vendor.js and /dist/app.js.

Listing 5-9.  HTML for This Chapter’s extracted Project

// extracted/public/index.html

<!DOCTYPE html>

<html ng-app="app">

<head>

 <meta charset="utf-8">

 <meta http-equiv="X-UA-Compatible" content="IE=edge">

 <meta name="viewport" content="width=device-width, initial-scale=1">

 <title>Browserify - Advanced Example</title>

 <link rel="stylesheet" href="/css/style.css">

</head>

<body class="container">

 <navbar ng-if="user_id"></navbar>

 <div ng-view></div>

 <footer>View this project's dependency tree</footer>

 <script src="/dist/vendor.js"></script>

 <script src="/dist/app.js"></script>

</body>

</html>

Chapter 5 Browserify

144

Listing 5-10 shows the extracted project’s Gruntfile. Take note of a special

configuration value (browserify.vendor_modules) that is being set.

Listing 5-10.  Gruntfile for This Chapter’s extracted Project

// extracted/Gruntfile.js

module.exports = function(grunt) {

 grunt.initConfig({

 'browserify': {

 'vendor_modules': [

 'angular',

 'bootstrap-sass',

 'jquery',

 'angular-route',

 'angular-sanitize',

 'restangular',

 'jquery.cookie',

 'lodash',

 'underscore.string',

 'lodash-deep'

]

 }

 });

 grunt.loadTasks('tasks');

 �grunt.registerTask('default', ['compass', 'browserify', 'browserify-

vendor', 'init-db', 'concurrent']);

};

Listing 5-11 shows the contents of the extracted project’s browserify Grunt task.

This task largely mimics the corresponding task in the advanced project, with one major

exception. In this task, we iterate through the third-party modules that we defined in the

project’s Gruntfile, and for each entry, we instruct Browserify to exclude the referenced

module from the compiled bundle.

Chapter 5 Browserify

145

Listing 5-11.  The extracted Project’s browserify Grunt Task

// extracted/tasks/browserify.js

module.exports = function(grunt) {

 grunt.registerTask('browserify', function() {

 var done = this.async();

 var path = require('path');

 var fs = require('fs');

 var target = path.join('public', 'dist', 'app.js');

 var vendorModules = grunt.config.get('browserify.vendor_modules') || [];

 var browserify = require('browserify')([

 path.join('app', 'index.js')

], {

 'paths': ['app'],

 'fullPaths': true,

 'bundleExternal': true

 });

 vendorModules.forEach(function(vm) {

 �grunt.log.writelns('Excluding module from application bundle:

%s', vm);

 browserify.exclude(vm);

 });

 browserify.bundle(function(err, data) {

 if (err) return grunt.fail.fatal(err);

 grunt.file.mkdir(path.join('public', 'dist'));

 fs.writeFileSync(target, data);

 grunt.task.run('disc');

 done();

 });

 });

};

Chapter 5 Browserify

146

Finally, Listing 5-12 shows the contents of the extracted project’s browserify-

vendor Grunt task. When run, this task will create a separate Browserify bundle

consisting solely of the third-party modules that we defined in Listing 5-10.

Listing 5-12.  The extracted Project’s browserify-vendor Grunt Task

// extracted/tasks/browserify-vendor.js

module.exports = function(grunt) {

 grunt.registerTask('browserify-vendor', function() {

 var done = this.async();

 var path = require('path');

 var fs = require('fs');

 var target = path.join('public', 'dist', 'vendor.js');

 var vendorModules = grunt.config.get('browserify.vendor_modules') || [];

 var browserify = require('browserify')({

 'paths': [

 'app'

],

 'fullPaths': true

 });

 vendorModules.forEach(function(vm) {

 browserify.require(vm);

 });

 browserify.bundle(function(err, data) {

 if (err) return grunt.fail.fatal(err);

 grunt.file.mkdir(path.join('public', 'dist'));

 fs.writeFileSync(target, data);

 done();

 });

 });

};

Chapter 5 Browserify

147

To see this process in action, navigate to the extracted project in your terminal

and run $ npm start. Any missing npm modules will be installed, and the project’s

default Grunt task will be run. As this process occurs, two separate bundles will be

created. The bundle containing the project’s custom code, /dist/app.js, comes in at

only 14kB in size.

�The Node Way
As mentioned in this chapter’s introduction, Browserify compiles a project by recursively

scanning its source code in search of calls to a global require() function. As these calls

are found, Browserify loads the modules they reference via the same require() function

used by Node. Afterward, Browserify merges them into a single bundle that browsers are

capable of understanding.

In this regard, projects that use Browserify are best thought of as client-side Node

applications. Many aspects of Browserify that tend to confuse newcomers are more

readily understood when this concept—along with everything that it entails—is kept

in mind. Let’s take a look at two such aspects now: module resolution and dependency

management.

�Module Resolution and the NODE_PATH Environment
Variable
Node applications have the ability to reference modules in a number of ways. For

example, here we see a simple Node application that requires a module by providing a

relative path to its location:

var animals = require('./lib/animals');

In a similar manner, this example could also have provided the full, absolute path

to this module. Either way, the location at which Node is expected to find this module

is rather obvious. Now consider the following example, in which a module is referenced

solely by name:

var animals = require('animals');

Chapter 5 Browserify

148

In situations such as this, Node will first attempt to locate the referenced module

within its core library. This process can be seen in action when loading modules such

as fs, Node’s file system module. If no match is found, Node will then proceed to search

for folders named node_modules, starting with the location of the module that called

require() and working its way upward through the file system. As these folders are

encountered, Node will check to see if they contain a module (or package) matching that

which was requested. This process will continue until a match is found, and if none is

found, an exception is thrown.

This simple yet powerful method by which module resolution occurs within Node

revolves almost exclusively around the node_modules folder. However, Node provides an

often-overlooked method that allows developers to augment this behavior by defining

additional folders within which Node should be allowed to search for modules, should

the previous steps turn up empty-handed. Let’s take a look at this chapter’s path-env

project, which demonstrates how this can be accomplished.

Listing 5-13 shows an excerpt from this project’s package.json file. Of particular

importance is the start script that has been defined. Based on the settings shown here,

when $ npm start is run within this project, the NODE_PATH environment variable will

be updated to include a reference to this project’s /lib folder before the application is

run. As a result, Node will add this folder to those it uses to resolve the location of named

modules.

Listing 5-13.  This Project’s npm start Script Updates the NODE_PATH

Environment Variable

// path-env/package.json

{

 "name": "path-env",

 "version": "1.0.0",

 "main": "./bin/index.js",

 "scripts": {

 �"start": "export NODE_PATH=$NODE_PATH:./lib && node ./bin/

index.js"

 }

}

Chapter 5 Browserify

149

Note O n OS X and Linux, environment variables are set from the terminal by
running export ENVIRONMENT_VARIABLE=value. The command to be used
within the Windows command line is set ENVIRONMENT_VARIABLE=value.

The significance of setting the NODE_PATH environment variable may not be

obvious at first glance; however, doing so can have a dramatically positive impact on

the cleanliness and maintainability of complex projects. Why? Because when this

approach is used, it essentially allows developers to create a namespace through which

an application’s modules (those that do not exist as independent npm packages) can be

referenced by name, rather than by lengthy relative paths. Listing 5-14 shows a simple

example of what this looks like in practice.

Listing 5-14.  Several of the Modules Contained Within the path-env Project

// path-env/bin/index.js

var api = require('app/api');

// path-env/lib/app/api/index.js

var express = require('express');

var path = require('path');

var app = express();

var animals = require('app/models/animal');

app.use('/', express.static(path.join(__dirname, '..', '..', '..', 'public')));

app.get('/animals', function(req, res, next) {

 res.send(animals);

});

app.listen(7000, function() {

 console.log('App is now available at: http://localhost:7000');

});

module.exports = app;

// path-env/lib/app/models/animal/index.js

module.exports = [

 'Aardvarks', 'Cats', 'Dogs', 'Lemurs', 'Three-Toed Sloths', 'Zebras'

];

Chapter 5 Browserify

150

Take note of this example’s lack of relative module references. For example,

notice how this project’s main script, bin/index.js, is able to load a custom module

responsible for initializing Express via require('app/api');. The alternative would be

to use a relative path: require('../lib/app/api');. Anyone who has worked within

complex Node applications and encountered module references along the line of

require('../../../../models/animal'); will quickly come to appreciate the increase

in code clarity that this approach affords.

Note I t is important to bear in mind that the use of the NODE_PATH environment
variable only makes sense within the context of a Node (or Browserify)
application—not a package. When creating a reusable package that is intended to
be shared with others, you should rely solely on Node’s default module resolution
behavior.

�Taking Advantage of NODE_PATH Within Browserify

Thus far, we have focused on how the NODE_PATH environment variable can have

a positive impact on server-side Node applications. Now that we have laid that

groundwork, let’s see how this concept can be applied within the context of client-side,

browser-based applications compiled with Browserify.

Listing 5-15 shows the browserify Grunt task for this chapter’s advanced project,

which is responsible for compiling the application via Browserify’s API. Of particular

importance is the use of the paths option, which allows us to provide Browserify with an

array of paths that should be appended to the NODE_PATH environment variable before

compilation begins. It is this setting that allows us to easily take advantage of the same

benefits demonstrated in this section’s previous examples.

Listing 5-15.  The browserify Grunt Task for This Chapter’s advanced Project

// advanced/tasks/browserify.js

module.exports = function(grunt) {

 grunt.registerTask('browserify', function() {

 var done = this.async();

 var path = require('path');

 var fs = require('fs');

Chapter 5 Browserify

151

 var target = path.join('public', 'dist', 'app.js');

 var browserify = require('browserify')([

 path.join('app', 'index.js')

], {

 'paths': [

 'app'

],

 'fullPaths': true

 });

 browserify.bundle(function(err, data) {

 if (err) return grunt.fail.fatal(err);

 grunt.file.mkdir(path.join('public', 'dist'));

 fs.writeFileSync(target, data);

 grunt.task.run('disc');

 done();

 });

 });

};

For a simple demonstration of how this approach has positively impacted this

project, consider Listing 5-16. Here we see a small module that is responsible for loading

lodash and integrating two third-party utilities, underscore.string and lodash-deep.

The final, exported value is a single object containing the combined functionality of all

three modules.

Listing 5-16.  Module Responsible for Loading Lodash and Integrating Various

Third-Party Plugins

// advanced/app/utils/index.js

var _ = require('lodash');

_.mixin(require('underscore.string'));

_.mixin(require('lodash-deep'));

module.exports = _;

As a result of the paths value that was provided to Browserify, our application can

now reference this module from any location by simply calling require('app/utils');.

Chapter 5 Browserify

152

�Dependency Management
Up until quite recently, the notion of “dependency management” has (for the most

part) been a foreign concept within the context of client-side, browser-based projects.

The tide has swiftly turned, however, thanks in large part to the rapidly increasing

popularity of Node, along with additional utilities built on top of it—a few of which this

book has already covered (e.g., Grunt and Yeoman). These utilities have helped to bring

desperately needed tooling and guidance to the untamed, “Wild West” that once was

(and largely still is) client-side development.

In regard to dependency management, Bower has helped address this need by

providing client-side developers with an easy-to-use mechanism for managing the

various third-party libraries that applications rely on. For developers who are new to

this concept and are not using client-side compilers such as Browserify, Bower has

always been and continues to be a viable option for managing a project’s dependencies;

however, as developers begin to see the advantages afforded by tools such as Browserify,

Bower has begun to show signs of age. Furthermore, Bower is now almost defunct and is

no longer under rapid development. As such, more and more developers are migrating

away from Bower and turning toward alternative solutions, Browserify being one. Of

course, Bower can still be used and is being used by many JS projects, but relying heavily

on Bower is not something that is recommended.

At the beginning of this section, we mentioned that projects using Browserify are

best thought of as client-side Node applications. In regard to dependency management,

this statement is particularly important. Recall that during Browserify’s compile process,

a project’s source code is scanned for calls to a global require() function. When found,

these calls are executed within Node, and the returned value is subsequently made

available to the client-side application. The important implication here is that when

using Browserify, dependency management is significantly simplified when developers

rely solely on npm, Node’s package manager. While technically, yes, it is possible to

instruct Browserify on how to load packages installed by Bower, more often than not, it’s

simply more trouble than it’s worth.

Chapter 5 Browserify

153

�Defining Browser-Specific Modules
Consider a scenario in which you would like to create a new module, which you intend

to publish and share via npm. You want this module to work both within Node and

within the browser (via Browserify). To facilitate this, Browserify supports the use of a

browser configuration setting within a project’s package.json file. When defined, this

setting allows developers to override the location used to locate a particular module. To

better understand how this works, let’s take a look at two brief examples.

Listing 5-17 shows the contents of a simple package. Within this package, two

modules exist, lib/node.js and lib/browser.js. According to this package’s package.

json file, the main module for this package is lib/node.js. In other words, when this

package is referenced by name within a Node application, this is the module Node

will load. Notice, however, that an additional configuration setting has been defined:

"browser": "./lib/browser.js". As a result of this setting, Browserify will load this

module rather than the one specified by main.

Listing 5-17.  Module Exposing Two Distinct Entry Points: One for Node, the

Other for Browserify

// browser1/package.json

{

 "name": "browser1",

 "version": "1.0.0",

 "main": "./lib/node.js",

 "browser": "./lib/browser.js"

}

// browser1/lib/browser.js

module.exports = {

 'run': function() {

 console.log('I am running within a browser.');

 }

};

Chapter 5 Browserify

154

// browser1/lib/node.js

module.exports = {

 'run': function() {

 console.log('I am running within Node.');

 }

};

As you will see in a moment, Browserify’s browser configuration setting need not be

limited to simply overriding the location of a package’s main module. It can also be used

to override the location of multiple modules within a package. By way of an example,

consider Listing 5-18. In this instance, instead of providing a string for our package.json

file’s browser setting, we provide an object, allowing us to specify multiple, browser-

specific overrides.

Listing 5-18.  Module Exposing Multiple, Distinct Modules for Node and

Browserify

// browser2/package.json

{

 "name": "browser2",

 "version": "1.0.0",

 "main": "./lib/node.js",

 "browser": {

 "./lib/node.js": "./lib/browser.js",

 "./lib/extra.js": "./lib/extra-browser.js"

 }

}

As in Listing 5-17, a module that implements this pattern will expose distinct

entry points into itself: one for Node and a separate one for applications compiled via

Browserify. This example takes this concept a step further, however. As this module

is compiled, should it ever attempt to load the module located at lib/extra.js,

the module located at lib/extra-browser will be substituted instead. In this way,

the browser setting allows us to create modules with behavior that can vary greatly

depending on whether those modules are run within Node or within the browser.

Chapter 5 Browserify

155

�Extending Browserify with Transforms
Developers can build upon Browserify’s core functionality by creating plugins, called

transforms, that tap into the compilation process that occurs as new bundles are created.

Such transforms are installed via npm and are enabled once their names are included

within the browserify.transform array in an application’s package.json file. Let’s take

a look at a few useful examples.

�brfs
The brfs transform simplifies the process of loading file contents inline. It extends

Browserify’s compilation process to search for calls to the fs.readFileSync() method.

When found, the contents of the referenced file are immediately loaded and returned.

Listing 5-19 shows an excerpt from the package.json file for this chapter’s

transforms-brfs project. In this example, the brfs module has been installed and

included within the browserify.transform configuration setting.

Listing 5-19.  Excerpt from the package.json File for This Chapter’s

transforms-brfs Project

// transforms-brfs/package.json

{

 "name": "transforms-brfs",

 "dependencies": {

 "browserify": "^10.2.4",

 "brfs": "^1.4.0"

 },

 "browserify": {

 "transform": [

 "brfs"

]

 }

}

Chapter 5 Browserify

156

Listing 5-20 shows the contents of this project’s /app/index.js module. In this

example, the brfs transform will load the contents of /app/templates/lorem.html,

which is subsequently assigned to the tpl variable.

Listing 5-20.  Loading a Template via fs.readFileSync()

// transforms-brfs/app/index.js

var fs = require('fs');

var $ = require('jquery');

var tpl = fs.readFileSync(__dirname + '/templates/lorem.html', 'utf8');

$('#container').html(tpl);

�folderify
Much like the brfs transform, the folderify transform allows you to load the contents of

files inline. Rather than operating on a single file at a time, however, folderify allows you

to quickly load the contents of multiple files. By way of an example, consider Listing 5-21,

which shows the contents of this chapter’s transforms-folderify application.

Listing 5-21.  Loading the Contents of Multiple Files with folderify

// transforms-folderify/app/index.js

var $ = require('jquery');

var includeFolder = require('include-folder');

var folder = includeFolder(__dirname + '/templates');

for (var k in folder) {

 $('#container').append('<p>' + k + ': ' + folder[k] + '</p>');

}

As in the previous example, the package.json file for this project has been modified

to include folderify within its browserify.transform array. When compiled,

Browserify will search for references to the include-folder module. When the function

it returns is called, Browserify will load the contents of each file it finds within the

specified folder and return them in the form of an object.

Chapter 5 Browserify

157

�bulkify
With the bulkify transform, developers can import multiple modules with a single call.

To better understand how this works, see Listing 5-22, which shows an excerpt of the

contents of the main application file for this chapter’s transforms-bulkify project.

Listing 5-22.  Main Application File for This Chapter’s transforms-bulkify Project

// transforms-bulkify/app/index.js

var bulk = require('bulk-require');

var app = angular.module('app', [

 'ngRoute'

]);

var routes = bulk(__dirname, [

 'routes/**/route.js'

]).routes;

app.config(function($routeProvider) {

 var defaultRoute = 'dashboard';

 _.each(routes, function(route, route_name) {

 route = route.route;

 route.config.resolve = route.config.resolve || {};

 $routeProvider.when(route.route, route.config);

 });

 $routeProvider.otherwise({

 'redirectTo': defaultRoute

 });

});

This particular example demonstrates the use of Browserify within the context of

an Angular application. If you are unfamiliar with Angular (covered in Chapter 7), don’t

worry—the important aspect of this example is the manner in which the bulk() method

allows us to require() multiple modules matching one or more specified patterns (in

this case, routes/**/route.js).

Chapter 5 Browserify

158

Figure 5-2 shows the file structure for this project. As you can see, the app/routes

module contains three folders, each representing a route within our Angular application.

The bulkify transform has allowed us to quickly require() each of these modules with

a single call to bulk(). Afterward, we are able to iterate over the resulting object and pass

each route to Angular.

Figure 5-2.  File structure for this chapter’s transforms-bulkify project

�Browserify-Shim
Developers using Browserify will occasionally find themselves needing to import modules

that do not conform to the CommonJS way of doing things. Consider a third-party Foo

library that, once loaded, assigns itself to the global window.Foo variable (see Listing 5-23).

Such libraries can be imported with the help of the browserify-shim transform.

Chapter 5 Browserify

159

Listing 5-23.  Third-Party Foo Library That Assigns Itself to the Global Foo Variable

// transforms-shim/app/vendor/foo.js

function Foo() {

 console.log('Bar');

}

After installing the browserify-shim module locally via npm, enable it by adding

its name to the list of enabled transforms within a project’s package.json file, as shown

previously in Listing 5-19. Next, create a browserify-shim object at the root level of

your application’s package.json file, which will serve as the configuration object for

this transform (see Listing 5-24). In this example, each key within this object represents

the path to an improperly exposed module, while the corresponding value specifies the

global variable to which the module has assigned itself.

Listing 5-24.  Configuring browserify-shim Within a Project’s package.json File

// transforms-shim/package.json

{

 "name": "transforms-shim",

 "version": "1.0.0",

 "main": "server.js",

 "browserify": {

 "transform": [

 "browserify-shim"

]

 },

 "browserify-shim": {

 "./app/vendor/foo.js": "Foo"

 }

}

With the browserify-shim transform installed and configured, the module located

at app/vendor/foo.js can now be properly imported via require().

Chapter 5 Browserify

160

�Summary
Browserify is a powerful utility that extends the intuitive process by which modules

are created and imported within Node to the browser. With its help, browser-based

JavaScript applications can be organized as a series of small, easy-to-understand, and

tightly focused modules that work together to form a larger and more complicated

whole. What’s more, there is nothing preventing applications that currently have no

module management system in place from putting Browserify to use right away. The

process of refactoring a monolithic application down into smaller components is not an

overnight process and is best taken one step at a time. With the help of Browserify, you

can do just that—as time and resources allow.

�Related Resources
•	 Browserify: http://browserify.org

•	 Browserify transforms: https://github.com/substack/node-

browserify/wiki/list-of-transforms

•	 brfs: https://github.com/substack/brfs

•	 Watchify: https://github.com/substack/watchify

Chapter 5 Browserify

http://browserify.org
https://github.com/substack/node-browserify/wiki/list-of-transforms
https://github.com/substack/node-browserify/wiki/list-of-transforms
https://github.com/substack/brfs
https://github.com/substack/watchify

PART III

Client-Side Frameworks

163
© Sufyan bin Uzayr, Nicholas Cloud, Tim Ambler 2019
S. bin Uzayr et al., JavaScript Frameworks for Modern Web Development,
https://doi.org/10.1007/978-1-4842-4995-6_6

CHAPTER 6

Knockout

Complex systems are characterized by simple elements, acting on local
knowledge with local rules, giving rise to complicated, patterned behavior.

—David West

Knockout is a JavaScript library concerned with binding HTML markup to JavaScript

objects. It is not a full framework. It has no state router, HTTP AJAX capability, internal

message bus, or module loader. Instead, it focuses on two-way data binding between

JavaScript objects and the DOM. When the data in a JavaScript application changes,

HTML elements bound to Knockout views receive automatic updates. Likewise, when

DOM input occurs—through form field manipulation, for example—Knockout captures

the input changes and updates the application state accordingly.

In place of low-level, imperative HTML element manipulation, Knockout uses

specialized objects called observables and a custom binding syntax to express how

application data relates to markup. The internal mechanics are fully customizable

so developers can extend Knockout’s capabilities with custom binding syntax and

behaviors.

As an independent JavaScript library, Knockout has no dependencies. The presence

of other libraries is often required to fulfill the application functions that Knockout does

not perform, however, so it plays well with many other common libraries like jQuery,

Underscore, Q, and so on. The Knockout API represents data binding operations at a

much higher level than strict DOM manipulation, and so places Knockout closer to

Backbone or Angular in terms of abstraction, but its slim, view-oriented feature set

means it has a far smaller footprint.

Knockout is fully functional in all modern browsers and, as of this writing, extends

back to cover Firefox 3.5+, Internet Explorer 6+, and Safari 6+. Its backward compatibility

is especially impressive in light of its newest feature, HTML5-compatible components

164

with custom markup tags. The Knockout team has taken pains to make the Knockout

development experience seamless in a variety of browser environments.

This chapter explores Knockout’s features and API through an example application

that manages kitchen recipes. All chapter code examples will be prefixed with a

comment to indicate in which file the example code actually resides. For example, in

Listing 6-1, the index.js file would be found in the knockout/example-000 directory

distributed with this book’s source code.

Listing 6-1.  Not a Real Example

// example-000/index.js

console.log('this is not a real example');

To run examples, first install Node.js (refer to the Node.js documentation for your

system) and then run npm install in the knockout directory to install all example code

dependencies. Each example directory will contain an index.js file that runs a simple

Node.js web server. To run each example, it will be necessary to launch this server and

then navigate to a specified URL in a web browser. For example, to run the index.js file

in Listing 6-1, navigate to the knockout/example-000 directory at a terminal prompt and

run node index.js.

All example pages include the core Knockout script in a <script> tag reference.

You can download this script from http://knockoutjs.com or from one of a number

of reputable content delivery networks. Knockout can also be installed as a Bower

package or npm module and is both AMD and CommonJS compatible. The Knockout

documentation contains detailed instructions for all of these installation methods.

�Views, Models, and View Models
Knockout distinguishes between two sources of information in an application’s user

interface: the data model, which represents the state of the application, and the view

model, which represents how that state is displayed or communicated to the user. Both of

these models are created in an application as JavaScript objects. Knockout bridges them

by giving view models a way to represent a data model in a view (HTML) friendly way

while establishing bidirectional communication between views and data models so that

input affects application state, and application state affects how a view represents data.

Chapter 6 Knockout

http://knockoutjs.com

165

Since HTML is the technology that represents data in a web browser, Knockout view

models can either bind directly to preexisting HTML document elements or create new

elements with HTML templates. Knockout can even create complete reusable HTML

components (custom HTML tags with their own attributes and behaviors).

The example application included with this chapter, Omnom Recipes, displays

recipe data (“data model”) in a browsable master/detail user interface. Both parts of this

interface—the list of recipes and the details presented for each—are logical components

situated ideally for Knockout view models. Each will have its own view model, and the

application will coordinate the interactions between them. Eventually users will want to

add or edit recipes, so additional HTML markup and view models will be introduced for

that purpose.

Figure 6-1 shows the example application structure in the example-001 directory as

output of the tree command.

public

example-001$ tree --dirsfirst
.

scripts
vendor

jquery-3.3.1.min.js
knockout-3.5.0.js

app.js
recipe-details.js
recipe-list.js

styles
app.css

index.html
index.js
recipes.json

Figure 6-1.  Example application structure

The index.js file is responsible for launching a web server that will service requests

for files in the public directory. When the application’s web page makes an AJAX request

for recipe data, the web server will serialize the data in recipes.json and return it to the

client.

In the public directory, the index.html file will be served up by default when a

user visits http://localhost:8080. This file contains application markup augmented

with Knockout attributes. The index.html file also references the app.css stylesheet

Chapter 6 Knockout

166

in public/styles, the two vendor scripts in public/scripts/vendor, and the three

application scripts in public/scripts.

A Knockout view model can be applied to an entire page or scoped to specific

elements on a page. For nontrivial applications, it is advisable to use multiple view

models to maintain modularity. In the Omnom Recipes application, the user interface

exists as two logical “components”: a list of recipes and a detailed view of a selected

recipe. Instead of using a monolithic view model for the entire page, the application

divides Knockout logic into two JavaScript modules in public/scripts: recipe-list.js

and recipe-details.js. The app.js module consumes both of these view models and

coordinates their activities on the page.

Figure 6-2 shows a screenshot of the rendered application, the recipe list clearly

visible on the left and the recipe details on the right.

Figure 6-2.  Omnom Recipes screenshot

Chapter 6 Knockout

167

Note T o avoid confusion the example application makes use of simple JavaScript
closures instead of client-side frameworks or module-oriented build tools to
organize modules. These closures often assign a single object to a property on
the global window object that will be consumed by other scripts. For example, the
recipe-list.js file creates a global object, window.RecipeList, to be used
in the app.js file. While completely valid, this architectural decision should be
viewed in light of the example application’s simplistic requirements.

�The Recipe List
The index.html file, which contains the full page markup and Knockout templates, is

divided into three key top-level elements:

•	 The <header> element, which contains static HTML content that will

not be manipulated by Knockout

•	 The <nav id="recipe-list"> element, which contains an unordered

list of recipes and will be manipulated by Knockout

•	 The <section id="recipe-details"> element, which displays

recipe information and will also be manipulated by Knockout

Although the recipe list element is small, it contains a number of different Knockout-

specific bindings. The view model for this bit of HTML will be bound to the <nav>

element. With that in mind, there are a number of things that may be inferred about how

Knockout bindings work strictly from examining the markup in Listing 6-2.

Listing 6-2.  Recipe List Markup and Bindings

<!-- example-001/public/index.html -->

<nav id="recipe-list">

 <ul data-bind="foreach: recipes">

 <li data-bind="text: title,

 click: $parent.selectRecipe.bind($parent),

 css: {selected: $parent.isSelected($data)}">

</nav>

Chapter 6 Knockout

168

First, it is apparent that Knockout bindings are applied to HTML elements with the

data-bind attribute. This is not the sole binding method but it is the most common.

Both the element and the element have bindings in the form binding-name:

binding-value.

Second, multiple bindings may be applied to an element as a comma-delimited list,

demonstrated by the element, which has bindings for text, click, and css.

Third, bindings with more complex values, such as the css binding on the

element, use key/value hashes ({key: value, ... }) to define specific binding options.

Finally, binding values may refer to JavaScript primitives, view model properties,

view model methods, or any valid JavaScript expression.

The recipe list Knockout bindings reveal certain things about the Knockout view

model that will be bound to the <nav> element. Developers will immediately recognize

the foreach flow control statement and correctly infer that recipes will be some

collection exposed by the view model over which foreach will loop.

The element within the unordered list has no HTML content of its own, so

it may also be inferred that this element serves as a kind of template element that will

be bound and rendered for each item in the recipes collection. As with most foreach

loops, it is reasonable to expect the object within the loop (the loop’s “context”) to be an

element of the collection. The list item’s text binding references the title property of

the recipe object for the current iteration and will be injected as the text content of the

 element when rendered.

The click and css bindings both reference the special $parent object, which tells

Knockout that the binding values should target the view model bound with foreach and

not the current recipe object. (The view model is the “parent” context and the recipe is

its “child.”)

The click binding invokes the selectRecipe() method on the view model

whenever the list item’s click event is triggered. It binds the method to the view model

specifically, by passing the $parent reference to the method’s bind() function. This

ensures that the value of this within the selectRecipe() method does not refer to the

DOM element on which the handler is attached when it executes (the DOM’s default

behavior).

In contrast, the isSelected() method on the $parent (view model) object is invoked

by the css binding, but Knockout, not the DOM, manages the invocation, ensuring the

value of this within the method refers to the view model and not a DOM element.

Chapter 6 Knockout

169

The css binding instructs Knockout to apply specific CSS classes to a DOM

element whenever specific criteria are met. The css binding value is a hash of selector/

function pairs that Knockout evaluates whenever the DOM element is rendered. If the

isSelected() method returns true, the selected CSS class will be added to the list item

element. Another special variable, $data, is passed to isSelected(). The $data variable

always refers to the current object context in which Knockout is working, in this case

an individual recipe object. Some Knockout bindings, like text, operate on the current

object context by default; others, like foreach, cause a context switch as a side effect.

In Listing 6-3, the context objects and values of each special variable are shown in

HTML comments. Bindings have been abbreviated for clarity.

Listing 6-3.  Changing Contexts with Knockout Bindings

<!-- example-001/public/index.html -->

<nav id="recipe-list">

 <!-- context: viewmodel -->

 <!-- $parent === undefined -->

 <!-- $data === viewmodel -->

 <ul data-bind="foreach: ...">

 <!-- context: recipe -->

 <!-- $parent === viewmodel -->

 <!-- $data === recipe -->

 <li data-bind="text: ...">

</nav>

The recipe list module in Listing 6-4 creates the view model object that Knockout

will bind to the recipe list markup when the page is rendered. The module’s create()

method accepts a list of recipe objects—JSON data loaded from the server—and returns

a view model object with data properties and methods. Nearly all Knockout view models

will need to access helper functions on the global window.ko object, so it is passed to the

module’s closure function as an argument.

Chapter 6 Knockout

170

Listing 6-4.  Recipe List View Model

// example-001/public/scripts/recipe-list.js

'use strict';

window.RecipeList = (function (ko) {

 return {

 create: function (recipes) {

 var viewmodel = {};

 // properties

 viewmodel.recipes = recipes;

 viewmodel.selectedRecipe = ko.observable(recipes[0]);

 // methods

 viewmodel.selectRecipe = function (recipe) {

 this.selectedRecipe(recipe);

 };

 viewmodel.isSelected = function (recipe) {

 return this.selectedRecipe() === recipe;

 };

 return viewmodel;

 }

 };

}(window.ko));

Note T he view model object itself may be created in any manner a developer
chooses. In the example code, each view model is a simple object literal created by
a factory method. It is common to see the JavaScript constructor function pattern
used to create view models in the wild, but view models are merely objects and
may be constructed as a developer sees fit.

Other than the selectedRecipe property, the recipe list view model is wholly

unremarkable. The template’s foreach binding is applied to the recipes property

(an array of plain JavaScript objects), the click binding on each list item invokes

Chapter 6 Knockout

171

the selectRecipe() method (passing it a specific recipe), and when each list item is

rendered, the isSelected() method is called to determine if the recipe being evaluated

has been assigned to the selectedRecipe property or not. Actually, that is not entirely

correct. The value of selectedRecipe is not actually a recipe object, but a function—a

Knockout observable.

An observable is a special kind of function that holds a value and can notify

potential subscribers whenever that value changes. Bindings between HTML

elements and observables automatically create subscriptions that Knockout manages

in the background. Observables are created with special factory functions on the

global ko object. The selectedRecipe observable in Listing 6-5 is created when ko.

observable(recipes[0]) is called. Its initial value is the first element in the recipes

array. When selectedRecipe() is invoked with no argument, it returns the value it

contains (in this case, the object in recipes[0]). Any value passed to selectedRecipe()

will become its new value. Although the selectedRecipe() property is not bound to any

element in the recipe list template, it is manipulated when the user interacts with the

recipe list via the view model’s methods. The changing value of this element will be used

as input for the next page component: recipe details.

�Recipe Details
When a recipe is clicked in the recipe list, the recipe details are displayed in the right

pane (refer to Figure 6-2). The markup in Listing 6-5 shows the HTML elements and

Knockout bindings used to render the recipe details view model in the DOM.

Listing 6-5.  Recipe Details Markup and Bindings

<!-- example-001/public/index.html -->

<section id="recipe-details">

 <h1 data-bind="text: title"></h1>

 <h2>Details</h2>

 <p>Servings: </p>

 <p>Approximate Cook Time: </p>

 <h2>Ingredients</h2>

 <ul data-bind="foreach: ingredients">

 <li data-bind="text: $data">

Chapter 6 Knockout

172

 <h2>Instructions</h2>

 <ol data-bind="foreach: instructions">

 <li data-bind="text: $data">

 <a data-bind="visible: hasCitation,

 attr: {href: citation, title: title}"

 target="_blank">Source

</section>

Some bindings, like the <h1> text binding, read a value from a view model property

and inject its string value into the HTML element.

Because the paragraphs under the “Details” heading have static content (the

text “Servings:” and “Approximate Cook Time:”), tags are used to anchor the

Knockout bindings for the servings and cookingTimes properties at the end of each

paragraph.

The ingredients list iterates over a collection of strings with the foreach binding, so

the context object within each loop is a string represented by the $data variable. Each

string becomes the text content of a list item.

The <a> tag at the bottom links to the recipe’s web site of origin as a citation. If the

recipe has no citation, the anchor will not be displayed. The element’s visible binding

examines the view model’s hasCitation observable and, if the value is empty, hides

the anchor element. Like the css binding used in the recipe list, the attr binding takes

a key/value hash as its binding value. Hash keys (href and title) are the element

attributes to be set on the anchor, and values are properties on the view model that will

be bound to each attribute.

The recipe details view model has many more members than the recipe list view

model. Listing 6-6 shows that the recipe details view model is created in a similar

fashion, by invoking the RecipeDetails.create() function with a specific recipe object

that will be used to add data to the view model. This module uses several functions on

the global ko object, and so, like the recipe list, it is passed as an argument to the module

closure.

Chapter 6 Knockout

173

Listing 6-6.  Recipe Details View Model

// example-001/public/scripts/recipe-details.js

'use strict';

window.RecipeDetails = (function (ko) {

 return {

 create: function (recipe) {

 var viewmodel = {};

 // add properties and methods...

 return viewmodel;

 }

 };

}(window.ko));

For each property on the recipe object, the recipe details view model has a

corresponding observable property, shown in Listing 6-7. Observables are really only

useful if the value they contain is expected to change. If values are expected to be static,

plain JavaScript properties and values may be used instead. Observables are used in

the recipe details view model because there will only be one instance of the view model

bound to the page. When a new recipe is selected in the recipe list, the recipe details

view model will be updated with the new recipe’s values. Because its properties are

observables, the page’s markup will change immediately.

Listing 6-7.  Recipe Details View Model Properties

// example-001/public/scripts/recipe-details.js

// properties

viewmodel.title = ko.observable(recipe.title);

viewmodel.servings = ko.observable(recipe.servings);

viewmodel.hours = ko.observable(recipe.cookingTime.hours);

viewmodel.minutes = ko.observable(recipe.cookingTime.minutes);

viewmodel.ingredients = ko.observableArray(recipe.ingredients);

viewmodel.instructions = ko.observableArray(recipe.instructions);

viewmodel.citation = ko.observable(recipe.citation);

Chapter 6 Knockout

174

viewmodel.cookingTime = ko.computed(function () {

 return '$1 hours, $2 minutes'

 .replace('$1', this.hours())

 .replace('$2', this.minutes());

}, viewmodel);

Listing 6-8 shows two new types of observables: ko.observableArray() and ko.

computed().

Observable arrays monitor their values (normal JavaScript arrays) for additions,

deletions, and index changes, so that if the array mutates, any subscriber to the

observable array is notified. While the ingredients and instructions do not change in

this example, code will be introduced later to manipulate the collections and show the

observable array’s automatic binding updates in action.

Computed observables generate or compute a value based on other values exposed

by observables on the view model. The ko.computed() function accepts callback that

will be invoked to generate the value of the computed observable and optionally a

context object that acts as the value of this within the callback. When referenced by a

template binding, a computed observable’s value will be whatever its callback returns.

The cookingTime property in Listing 6-8 creates a formatted string interpolated with the

values from the hours and minutes observables. If either hours or minutes changes, the

cookingTime computed observable will also update its subscribers.

Note  Because hours and minutes are really functions (though they are treated
as properties in Knockout binding expressions), each must be invoked in the body
of the computed observable in order to retrieve its value.

The recipe details view model methods in Listing 6-8 are fairly straightforward. The

hasCitation() method tests the citation property for a nonempty value, while the

update() method accepts a recipe and updates observable properties on the view model

with new values. This method is not bound to the view, but will be used when a recipe in

the recipe list view model is selected.

Chapter 6 Knockout

175

Listing 6-8.  Recipe Details View Model Methods

// example-001/public/scripts/recipe-details.js

// methods

viewmodel.hasCitation = function () {

 return this.citation() !== ";

};

viewmodel.update = function (recipe) {

 this.title(recipe.title);

 this.servings(recipe.servings);

 this.hours(recipe.cookingTime.hours);

 this.minutes(recipe.cookingTime.minutes);

 this.ingredients(recipe.ingredients);

 this.instructions(recipe.instructions);

 this.citation(recipe.citation);

};

�Binding View Models to the DOM
Both view model factories are attached to the global window object and can be used to

create individual view model instances that will be bound to the page. The app.js file,

shown in Listing 6-9, is the main script that ties both recipe view models together.

Listing 6-9.  Binding View Models to the DOM

// example-001/public/scripts/app.js

(function app ($, ko, RecipeList, RecipeDetails) {

 // #1

 var getRecipes = $.get('/recipes');

 // #2

 $(function () {

 // #3

 getRecipes.then(function (recipes) {

 // #4

 var list = RecipeList.create(recipes);

Chapter 6 Knockout

176

 // #5

 var details = RecipeDetails.create(list.selectedRecipe());

 // #6

 list.selectedRecipe.subscribe(function (recipe) {

 details.update(recipe);

 });

 // #7

 ko.applyBindings(list, document.querySelector('#recipe-list'));

 ko.applyBindings(details, document.querySelector('#recipe-details'));

 }).fail(function () {

 alert('No recipes for you!');

 });

 });

}(window.jQuery, window.ko, window.RecipeList, window.RecipeDetails));

The app module is responsible for loading an initial set of recipe data from the server,

waiting for the DOM to enter a ready state, and then instantiating view model instances

and binding each to the appropriate elements. The following list describes each step

comment (e.g., // #1) shown in Listing 6-10.

	 1.	 A jQuery promise is created that will resolve at some point in the

future, when the data obtained from the GET /recipes request

becomes available.

	 2.	 The function passed to $() will be triggered when the DOM has

been completely initialized to ensure that all Knockout template

elements will be present before any binding attempts.

	 3.	 When the jQuery promise resolves, it passes the list of recipes to

its resolution handler. If the promise fails, an alert is shown to the

user indicating that a problem occurred.

	 4.	 Once the recipe data has been loaded, the list view model is created.

The recipe array is passed as an argument to RecipeList.create().

The return value is the actual recipe list view model object.

Chapter 6 Knockout

177

	 5.	 The recipe details view model is created in a similar fashion.

Its factory function accepts a single recipe, and so the

selectedRecipe property on the recipe list is queried for a value.

(The recipe list view model chooses the very first recipe in its data

array for this value, by default.)

	 6.	 After the recipe details view model has been created, it subscribes

to change notifications on the recipe list’s selectedRecipe

observable. This is the manual equivalent of a DOM subscription

created by Knockout when an observable is bound to an HTML

element. The function provided to the subscribe() method will

be invoked whenever selectedRecipe changes, receiving the

new value as an argument. When the callback fires, the recipe

details view model uses any newly selected recipe to update itself,

thereby changing the values of its own observable properties.

	 7.	 Finally, view models are bound to the DOM when the global

ko.applyBindings() function is invoked. In Listing 6-9 this

function receives two arguments: the view model to be bound

and the DOM element to which the view model will be bound.

Any binding attribute Knockout encounters on this element or

its descendants will be applied to the specified view model. If no

DOM element is specified, Knockout assumes that the view model

applies to the entire page. For simplistic pages this might be

appropriate, but for more complex scenarios, using multiple view

models that encapsulate their own data and behavior is the better

option.

�View Models and Forms
Knockout view model properties may be bound to form controls. Many controls, such as

the <input> elements, share standard bindings like value; but others like <select> have

element-specific bindings. For example, the options binding controls the creation of

<option> elements within a <select> tag. In general, form field bindings behave much

like bindings seen in example code up to this point, but complex forms can be tricky

beasts and sometimes require more creative binding strategies.

Chapter 6 Knockout

178

The examples in this section build on the recipe details template and view model.

Specifically, an “edit” mode is introduced whereby a user viewing a particular recipe

can choose to alter its details through form fields. The same view model is used, but new

form field elements have been added to the recipe details template, adding additional

complexity to both.

�Switching to “Edit” Mode
Three buttons have been added to the top and bottom of the recipe details markup.

Figures 6-3 and 6-4 show how the buttons appear when rendered.

The Edit button switches the page from viewing mode to edit mode (and shows the

appropriate form fields for each part of the recipe being viewed). While in edit mode,

the Edit button itself is hidden, but two other buttons, Save and Cancel, become visible.

Figure 6-3.  In “view” mode, the Edit button is visible

Figure 6-4.  In “edit” mode, the Save and Cancel buttons are visible

Chapter 6 Knockout

179

If the user clicks the Save button, any changes made to the recipe will be persisted;

in contrast, if the user clicks the Cancel button, the edit session will be aborted and the

recipe details will revert to their original states.

The Knockout bindings for each button, shown in Listing 6-10, vary slightly from the

bindings discussed so far.

Listing 6-10.  Editing Button Markup

<!-- example-002/public/index.html -->

<div>

 <!-- in read-only view -->

 <button data-bind="click: edit, visible: !isEditing()">Edit</button>

 <!-- in edit view -->

 <button data-bind="click: save, visible: isEditing">Save</button>

 <button data-bind="click: cancelEdit, visible: isEditing">Cancel</button>

</div>

First, each button has a click event handler that calls a method on the view model:

edit(), save(), and cancelEdit(). But unlike previous examples, these methods do

not use the bind() function to ensure the value of this within the view model. Instead,

all occurrences of the keyword this within the view model have been replaced with

a reference to the object literal viewmodel, shown in Listing 6-11. The new properties

and methods for these buttons have also been added to the recipe details view model.

For brevity, Listing 6-11 omits the portions of recipe-list.js that have not changed.

Listing 6-11.  Methods Reference the viewmodel Object, Not this

// example-002/public/scripts/recipe-details.js

// properties

viewmodel.previousState = null;

viewmodel.isEditing = ko.observable(false);

// methods

viewmodel.edit = function () {

 viewmodel.previousState = ko.mapping.toJS(viewmodel);

 viewmodel.isEditing(true);

};

Chapter 6 Knockout

180

viewmodel.save = function () {

 // TODO save recipe

 viewmodel.isEditing(false);

};

viewmodel.cancelEdit = function () {

 viewmodel.isEditing(false);

 ko.mapping.fromJS(viewmodel.previousState, {}, viewmodel);

};

Because the view model itself is assigned to a variable within the RecipeDetails.

create() closure, its methods may reference it by name. By avoiding this altogether,

event bindings are simplified and potential bugs are avoided.

Second, each button has a visible binding attached to the view model’s isEditing

observable, but only the Edit button invokes the method directly as a function. It also

possesses the only binding that uses a negation (!) operator, which turns the binding

value into an expression. Any observable evaluated within an expression must be

invoked as a function to retrieve its value. If an observable is itself used as the binding

value, as is the case with visible bindings for the Save and Cancel buttons, it will be

invoked automatically when Knockout evaluates the binding.

All three methods, edit(), save(), and cancelEdit(), manipulate the value of the

isEditing observable, which determines which button or buttons are displayed on the

form (and, as shall be demonstrated shortly, which form fields are displayed as well).

Editing begins when the edit() method is called and ends when the user either saves

the recipe or cancels the editing session.

To ensure that changes to the recipe are discarded when a user cancels the

edit session, the view model serializes its state when the editing session begins in

anticipation of possible reversion. If the editing session is canceled, the previous state is

deserialized and the value of each observable property is effectively reset.

The Knockout mapping plugin is used to serialize and deserialize the view model’s

state in the edit() and cancelEdit() methods:

// serializing the view model

viewmodel.previousState = ko.mapping.toJS(viewmodel);

// deserializing the view model

ko.mapping.fromJS(viewmodel.previousState, {}, viewmodel);

Chapter 6 Knockout

181

Tip  Knockout’s mapping plugin is distributed separately from the core Knockout
library. The current version may be downloaded from http://knockoutjs.com/
documentation/plugins-mapping.html. To install the plugin, simply add a
<script> tag reference to the plugin script after the core Knockout <script>
tag on an HTML page. It will automatically create the ko.mapping namespace
property on the global ko object.

The mapping plugin serializes/deserializes objects that possess observable

properties, reading their values during serialization and setting their values during

deserialization. When the edit() method calls ko.mapping.toJS(viewmodel), it receives

a plain JavaScript object literal whose property names are identical to those of the view

model, but contain plain JavaScript data instead of observable functions. To push these

values back into the view model’s own observables when the edit session is cancelled,

the cancelEdit() method invokes ko.mapping.fromJS() with three arguments:

•	 The plain JavaScript object literal that contains the data to be written

to the view model’s observable properties

•	 An object literal that maps properties on the plain JavaScript state

object to observable properties on the view model (if this object

is empty, it is assumed that the properties for both share the same

names)

•	 The view model that will receive the object literal’s data

Note T he Knockout mapper plugin can serialize/deserialize view models as plain
JavaScript object literals with its toJS() and fromJS() functions, or as JSON
strings with its toJSON() and fromJSON() functions. These functions can be
particularly useful for CRUD (create + read + update + delete) view models that
bind JSON data to simple forms.

Although the Save button is present on the form, its method has only been stubbed

in the view model. Its functionality will be added in a later example.

Chapter 6 Knockout

http://knockoutjs.com/documentation/plugins-mapping.html
http://knockoutjs.com/documentation/plugins-mapping.html

182

�Changing the Recipe Title
The recipe title is visible regardless of whether the recipe details view is in edit mode or

read-only mode. When the user clicks the Edit button, a label and input field become

visible beneath the <h1> tag so the user may update the recipe title if necessary. A

visible binding on the containing <div> element controls shows and hides this field

by subscribing to the isEditing observable on the view model. The value of the input

field is bound to the view model’s title observable via the value binding. By default,

the value binding will only refresh data in an observable when the field to which the

observable is bound loses focus. When the title input in Listing 6-12 loses focus, the <h1>

tag’s content will be instantly updated with the new title value because both are bound

to the title observable. The rendered field is shown in Figure 6-5.

Listing 6-12.  Recipe Title Markup

<!-- example-002/public/index.html -->

<h1 data-bind="text: title"></h1>

<!-- in edit view -->

<div data-bind="visible: isEditing" class="edit-field">

 <label for="recipe-title">Title:</label>

 <input data-bind="value: title" name="title" id="recipe-title"

type="text" />

</div>

Figure 6-5.  Editing the recipe title

Chapter 6 Knockout

183

�Updating Recipe Servings and Cooking Time
In Listing 6-13 the recipe’s read-only serving size <p> element is hidden when the form

enters edit mode. In its place a <select> element is displayed with a number of serving

size options from which the user may select. Once again, the isEditing observable is

used to determine which elements are displayed.

Listing 6-13.  Serving Size Markup

<!-- example-002/public/index.html -->

<h2>Details</h2>

<!-- in read-only view -->

<p data-bind="visible: !isEditing()">

 Servings:

</p>

<!-- in edit view -->

<div data-bind="visible: isEditing" class="edit-field">

 <label for="recipe-servings">Servings:</label>

 <select data-bind="options: servingSizes,

 optionsText: 'text',

 optionsValue: 'numeral',

 value: servings,

 optionsCaption: 'Choose...'"

 name="recipeServings"

 id="recipe-servings">

 </select>

</div>

New, element-specific Knockout bindings are declared for the <select> tag in

Listing 6-14 to control the manner in which it uses view model data. The options

binding tells Knockout which property on the view model holds the data set that will be

used to create <option> elements within the tag. The binding value is the name of the

property (in this case servingSizes), a plain array of read-only reference data.

For primitive values, like strings or numbers, the options binding assumes that each

primitive should be both the text and value of its <option> element. For complex objects,

the optionsText and optionsValue bindings tell Knockout which properties on each

object in the array will be used to generate the text and value of each <option> element

Chapter 6 Knockout

184

instead. The serving size objects are defined in Listing 6-14. Notice that the text value

is the name of each number, while the numeral value is a corresponding digit. When a

serving size is selected by the user, the numeral value will be assigned to viewmodel.

servings().

Listing 6-14.  Recipe Serving Size Data in the View Model

// example-002/public/scripts/recipe-details.js

// properties

viewmodel.servings = ko.observable(recipe.servings);

viewmodel.servingSizes = [

 {text: 'one', numeral: 1},

 {text: 'two', numeral: 2},

 {text: 'three', numeral: 3},

 {text: 'four', numeral: 4},

 {text: 'five', numeral: 5},

 {text: 'six', numeral: 6},

 {text: 'seven', numeral: 7},

 {text: 'eight', numeral: 8},

 {text: 'nine', numeral: 9},

 {text: 'ten', numeral: 10}

];

The <select> tag’s value binding ties the selected value of the drop-down to an

observable on the view model. When the <select> tag is rendered, this value will be

automatically selected for the user in the DOM; when the user chooses a new value, the

bound observable will be updated.

Finally, the optionsCaption binding creates a special <option> element in the DOM

that appears at the top of the drop-down options list, but will never be set as the selected

value on the view model. It is a mere cosmetic enhancement that gives some instruction

to the user about how the drop-down is to be used.

Figures 6-6 and 6-7 show a collapsed and expanded serving size drop-down.

Chapter 6 Knockout

185

Figure 6-6.  Servings drop-down with a preselected value

Figure 6-7.  Choosing a new value from the Servings drop-down

The cooking time fields, also shown in Figure 6-5, contain no special bindings. Both

input fields (hours and minutes) shown in Listing 6-15 are number fields that use simple

value bindings to update observables on the view model. They are shown and hidden by

the same visibility mechanism discussed earlier.

Chapter 6 Knockout

186

Listing 6-15.  Cooking Time Markup

<!-- example-002/public/index.html -->

<!-- in read-only view -->

<p data-bind="visible: !isEditing()">

 Approximate Cook Time:

</p>

<!-- in edit view -->

<div data-bind="visible: isEditing" class="edit-field">

 <label for="recipe-hours">Approximate Cook Time:</label>

 <input data-bind="value: hours"

 name="hours"

 id="recipe-hours"

 type="number" />

 <input data-bind="value: minutes"

 name="minutes"

 id="recipe-minutes"

 type="number" />

</div>

Recall that when cooking time is displayed to the user in read-only mode, the

cookingTime computed observable in Listing 6-16 is used, not the hours and minutes

observables. When the values of these observables change based on the input bindings

in Listing 6-16, the computed observable regenerates the formatted string for the view.

Also notice that the computed observable no longer has a context argument, because

inside the observable the view model variable is referenced by name instead of being

resolved with the this keyword.

Listing 6-16.  View Model Hours, Minutes, and Computed Cooking Time

// example-002/public/scripts/recipe-details.js

// properties

viewmodel.hours = ko.observable(recipe.cookingTime.hours);

viewmodel.minutes = ko.observable(recipe.cookingTime.minutes);

viewmodel.cookingTime = ko.computed(function () {

Chapter 6 Knockout

187

 return '$1 hours, $2 minutes'

 .replace('$1', viewmodel.hours())

 .replace('$2', viewmodel.minutes());

});

�Adding and Removing Ingredients
In read-only mode, recipe ingredients are rendered as an unordered list. To maintain

form, when the recipe details view enters edit mode, an input is generated for each item

in the list, shown in Figure 6-8. A minus button next to each ingredient allows the user

to remove any or all ingredients, while an empty input field and a plus button below the

input list may be used to add a new ingredient. Text changes made within any ingredient

input will update the values in the view model’s ingredients array.

Adding a new ingredient is more straightforward than editing existing ingredients in

place. The markup in Listing 6-17 shows part of the changes to the Ingredients section

of the form. The read-only unordered list is present, and below it is a <div> element that

contains all the new form fields. A comment block indicates where the <input> elements

Figure 6-8.  Creating and editing recipe ingredients

Chapter 6 Knockout

188

for existing ingredients will go (discussed in a moment), but the new Ingredients fields

are shown below it.

Listing 6-17.  New Ingredients Markup

<!-- example-002/public/index.html -->

<h2>Ingredients</h2>

<!-- in read-only view -->

<ul data-bind="foreach: ingredients, visible: !isEditing()">

 <li data-bind="text: $data">

<!-- in edit view -->

<div data-bind="visible: isEditing" class="edit-field">

 <!-- ingredient list inputs here... -->

 <input data-bind="value: newIngredient"

 type="text"

 name="new-ingredient"

 id="recipe-new-ingredient"/>

 <button data-bind="click: commitNewIngredient"

 class="fa fa-plus"></button>

</div>

To add a new ingredient, a user enters text into the new ingredient <input> field

and then clicks the plus button next to it. The <input> is bound to the newIngredient

observable on the view model, and the plus button’s click event invokes the

commitNewIngredient() method, both shown in Listing 6-18.

Listing 6-18.  Creating a New Ingredient in the View Model

// example-002/public/scripts/recipe-details.js

// properties

viewmodel.ingredients = ko.observableArray(recipe.ingredients);

viewmodel.newIngredient = ko.observable(");

// methods

viewmodel.commitNewIngredient = function () {

Chapter 6 Knockout

189

 var ingredient = viewmodel.newIngredient();

 if (ingredient === ") return;

 viewmodel.ingredients.push(ingredient);

 viewmodel.newIngredient(");

};

The commitNewIngredient() method evaluates the content of the newIngredient

observable to determine if it is empty or not. If it is, the user has entered no text into the

<input>, and so the method returns prematurely. If not, the value of newIngredient is

pushed into the ingredients observable array and the newIngredient observable is

cleared.

Tip O bservable arrays share a nearly identical API with normal JavaScript arrays.
Most array operations, such as push(), pop(), slice(), splice(), and so
on, are available on observable arrays and will trigger update notifications to the
observable array’s subscribers when called.

When the new ingredient is appended to ingredients, Knockout updates the DOM

to reflect the change. The read-only list, hidden while in edit mode, silently acquires

a new list item element, and the editable list of existing <input> elements, shown in

Listing 6-19, gains a new entry as well.

Listing 6-19.  Ingredients Markup

<!-- example-002/public/index.html -->

<h2>Ingredients</h2>

<!-- in read-only view -->

<ul data-bind="foreach: ingredients, visible: !isEditing()">

 <li data-bind="text: $data">

<!-- in edit view -->

<div data-bind="visible: isEditing" class="edit-field">

 <ul data-bind="foreach: ingredients" class="listless">

 <input data-bind="value: $data,

 valueUpdate: 'input',

Chapter 6 Knockout

190

 attr: {name: 'ingredient-' + $index()},

 event: {input: $parent.changeIngredient.bind($parent, $index())}"

 type="text" />

 �<button data-bind="click: $parent.removeIngredient.bind($parent,

$index())"

 class="fa fa-minus"></button>

 <!-- new ingredient input here... -->

</div>

For each ingredient in the ingredients observable array, an input is rendered

above the new ingredient field. These inputs are nested within an unordered list, and

their values are all bound to specific ingredients in the array, denoted by the $data

variable within the foreach loop. The attr binding is used to give a name to each

<input> element by concatenating the string “ingredient-” with the current index of the

loop, exposed by the special $index observable. Like any observable used in a binding

expression, $index must be invoked to retrieve its value.

It cannot be emphasized enough that the bindings exposed by observable arrays

apply only to the arrays themselves and not to the elements they contain. When each

ingredient is bound to a DOM <input> element, it is wrapped in the $data observable,

but there is no communication between this observable and the containing observable

array. If the value within $data changes because of input, the array will be oblivious and

still contain its own copy of the unchanged data. This is a source of consternation, but

there are several coping strategies that make it bearable.

First, the observable ingredients array could be filled with objects that each

expose the ingredient text as an observable property (something like { ingredient:

ko.observable('20 mushrooms') }). The value binding of each <input> would then use

each object’s $data.ingredient property to establish a two-way binding. The observable

array still remains ignorant of changes to its members, but because each element is an

object that tracks its own data through an observable, this becomes a moot point.

The second approach, taken in Listing 6-19, is to listen for change events on each

<input> element through the valueUpdate and event bindings and then tell the view

model to replace specific ingredient values in the ingredients observable array as

they change. Neither way is “right”—both merely have their own advantages and

disadvantages.

Chapter 6 Knockout

191

The valueUpdate binding first instructs Knockout to change the value of $data

each time the DOM input event fires on each <input> element. (Remember: Knockout

normally updates $data once an element loses focus, not when it receives input.)

Second, a Knockout event binding is added that invokes the changeIngredient()

method on the view model every time the DOM input event fires as well. By default

Knockout submits the current value of $data to changeIngredient(), but since the new

value will replace the old, the view model must know which index in the ingredients

array is being targeted. Using bind(), the value of $index is bound to the method as the

first argument ensuring that the value of $data will be the second.

The code in Listing 6-20 shows that the changeIngredient() method accesses the

actual underlying array within the ingredients observable array in order to replace a

value at a given index.

Listing 6-20.  Changing a Recipe Ingredient in the View Model

// example-002/public/scripts/recipe-details.js

// properties

viewmodel.ingredients = ko.observableArray(recipe.ingredients);

// methods

viewmodel.changeIngredient = function (index, newValue) {

 viewmodel.ingredients()[index] = newValue;

};

Unfortunately, when an observable array’s underlying array structure is changed,

the observable array will not automatically notify any subscribers, which means that

other DOM elements, such as the read-only unordered list that displays the ingredients,

will remain unchanged. To mitigate this, the view model listens to its own isEditing

observable, shown in Listing 6-21. When the value passed to the observable is false

(meaning that the user has either saved changes to the recipe or canceled the editing

session), the view model forcibly notifies any subscribers to the ingredients observable

array by calling its valueHasMutated() method. This ensures that the read-only

unordered list displayed in “view” mode will accurately reflect any changed values in the

ingredients array.

Chapter 6 Knockout

192

Listing 6-21.  Forcing Observable Arrays to Notify Their Subscribers of

Underlying Changes

// example-002/public/scripts/recipe-details.js

// properties

viewmodel.isEditing = ko.observable(false);

viewmodel.isEditing.subscribe(function (isEditing) {

 if (isEditing) return;

 // force refresh

 //

 viewmodel.ingredients.valueHasMutated();

});

Next to each recipe <input> is a minus button used to remove a given

ingredient from the ingredients observable array. Its click event is bound to the

removeIngredient() method which, like changeIngredient(), must also receive the

value of $index so that the view model knows which element to remove. Observable

arrays expose a splice() method, shown in Listing 6-22, that may be used to remove an

element at a specific index. Using this method instead of manipulating the underlying

array directly ensures that subscribers to the ingredients observable array are notified

of the change immediately.

Listing 6-22.  Removing a Recipe Ingredient

// example-002/public/scripts/recipe-details.js

// properties

viewmodel.ingredients = ko.observableArray(recipe.ingredients);

// methods

viewmodel.removeIngredient = function (index) {

 viewmodel.ingredients.splice(index, 1);

};

Chapter 6 Knockout

193

�Instructions
Recipe instructions are very similar to recipe ingredients but differ in two notable ways.

First, instructions are rendered in an ordered list because instructions must be followed step

by step. And second, instructions may be promoted or demoted within the list. Figure 6-9

shows a screenshot of the ordered Instructions fields and the buttons associated with each.

The recipe instruction use cases that overlap with ingredient use cases (creating

an instruction, removing an instruction, updating an existing instruction) will not

be discussed, as the markup, Knockout bindings, and view model structure of both

are essentially the same, but operate on the instructions observable array instead.

Instruction demotion and promotion within the array are new features, however,

represented by the addition of up and down <button> tags in Listing 6-23.

Listing 6-23.  Instructions Markup

<!-- example-002/public/index.html -->

<h2>Instructions</h2>

<!-- in read-only view -->

<ol data-bind="foreach: instructions, visible: !isEditing()">

 <li data-bind="text: $data">

Figure 6-9.  Creating and editing recipe instructions

Chapter 6 Knockout

194

<!-- in edit view -->

<div data-bind="visible: isEditing" class="edit-field">

 <!-- existing instructions -->

 <ul data-bind="foreach: instructions" class="listless">

 <input data-bind="value: $data,

 valueUpdate: 'input',

 attr: {name: 'instruction-' + $index()},

 event: {input: $parent.changeInstruction.bind($parent, $index())}"

 type="text" />

 �<button data-bind="click: $parent.demoteInstruction.bind($parent,

$index())"

 class="fa fa-caret-down"></button>

 �<button data-bind="click: $parent.promoteInstruction.bind($parent,

$index())"

 class="fa fa-caret-up"></button>

 �<button data-bind="click: $parent.removeInstruction.bind($parent,

$index())"

 class="fa fa-minus"></button>

 <!-- new instruction input here... -->

</div>

Like the minus button, both up and down buttons use Knockout click bindings

to invoke methods on the view model, passing the associated item index as an argument

to each.

Listing 6-24 shows how both methods manipulate the instructions observable array.

The promoteInstruction() method evaluates the index and, if it is zero, exits early (the

first instruction cannot be promoted). It then plucks the instruction at the given index

from the observable array using its splice() method, calculates the new index for the

instruction by subtracting one (e.g., going from index 2 to 1 would be a promotion in

the list), and then splices the instruction back into the observable array at its new index.

The demoteInstruction() method does the opposite. It prevents the instruction at the

“end” of the list from being demoted further; otherwise it moves instructions down the

Chapter 6 Knockout

195

list by resplicing the observable array. In both cases any DOM elements bound to the

instructions property are notified of changes automatically.

Listing 6-24.  Promoting and Demoting Recipe Instructions in the View Model

// example-002/public/scripts/recipe-details.js

// properties

viewmodel.instructions = ko.observableArray(recipe.instructions);

viewmodel.promoteInstruction = function (index) {

 if (index === 0) return;

 var instruction = viewmodel.instructions.splice(index, 1);

 var newIndex = index - 1;

 viewmodel.instructions.splice(newIndex, 0, instruction);

};

viewmodel.demoteInstruction = function (index) {

 var lastIndex = (viewmodel.instructions.length - 1);

 if (index === lastIndex) return;

 var instruction = viewmodel.instructions.splice(index, 1);

 var newIndex = index + 1;

 viewmodel.instructions.splice(newIndex, 0, instruction);

};

�Citation
The Citation field addition is a fairly vanilla affair considering the complexities involved

with instructions and ingredients. A single text <input> uses the value binding to update

the view model’s citation observable. The rendered field is shown in Figure 6-9.

Figure 6-10.  Updating a recipe’s citation

Chapter 6 Knockout

196

The visible binding on the citation hyperlink has been changed to a compound

expression. Now, the hyperlink in Listing 6-25 will only be displayed if the recipe details

view is in read-only mode (!isEditing()) and the recipe actually has a citation.

Listing 6-25.  Citation Field Markup

<!-- example-002/public/index.html -->

<a data-bind="visible: hasCitation() && !isEditing(),

 attr: {href: citation, title: title}"

 target="_blank">Source

<div data-bind="visible: isEditing" class="edit-field">

 <label>Citation:</label>

 <input name="citation" type="text" data-bind="value: citation" />

</div>

�Custom Components
With inspiration from the popular webcomponents.js polyfill (http://webcomponents.org),

Knockout provides a custom component system that produces reusable HTML elements

with custom tag names, markup, and behavior.

In the Omnom Recipes application, the recipe details view contains two editable lists,

Ingredients and Instructions, that share many similar characteristics, both in terms of

markup and view model properties and methods. A custom component can, with a little

effort, replace both of these lists in the application. The goal is to reduce the complex

markup and binding expressions in the DOM to new, custom elements, envisioned in

Listing 6-26.

Listing 6-26.  Input List Element

<!-- example-003/public/index.html -->

<!-- editable ingredients list -->

<input-list params="items: ingredients,

 isOrdered: false"></input-list>

<!-- ... -->

Chapter 6 Knockout

http://webcomponents.org

197

<!-- editable instructions list -->

<input-list params="items: instructions,

 isOrdered: true"></input-list>

Knockout components are the intersection of several things:

•	 A factory function that creates a view model for each instance of the

custom component on a page

•	 An HTML template with its own Knockout bindings that will be

injected wherever the component is used

•	 A custom tag registration that tells Knockout where to find the

template and how to instantiate its view model when it encounters

component tags on a page

�The Input List View Model
The recipe details view model already possesses the properties and methods used to

manipulate its ingredients and instructions arrays, but it is necessary to abstract

this code and move it into its own module, input-list.js, so that Knockout can use it

exclusively for the new input list component.

Listing 6-27 shows an abbreviated version of the input list module. It is structured in

the same manner as the other view model factory modules, exposing a create() method

on the global InputList object. This factory method accepts a params parameter that

will be used to pass the input list component a reference to an observable array (params.

items) and a host of optional settings that will determine how the input list will behave

when bound to the rendered template: params.isOrdered, params.enableAdd, params.

enableUpdate, and params.enableRemove.

The defaultTo() function exists as a simple utility function that returns default

values for missing properties on the params object.

Listing 6-27.  Input List View Model

// example-003/public/scripts/input-list.js

'use strict';

window.InputList = (function (ko) {

 function defaultTo(object, property, defaultValue) {/*...*/}

Chapter 6 Knockout

198

 return {

 create: function (params) {

 var viewmodel = {};

 // properties

 viewmodel.items = params.items; // the collection

 viewmodel.newItem = ko.observable(");

 viewmodel.isOrdered = defaultTo(params, 'isOrdered', false);

 viewmodel.enableAdd = defaultTo(params, 'enableAdd', true);

 viewmodel.enableUpdate = defaultTo(params, 'enableUpdate', true);

 viewmodel.enableRemove = defaultTo(params, 'enableRemove', true);

 // methods

 viewmodel.commitNewItem = function () {/*...*/};

 viewmodel.changeItem = function (index, newValue) {/*...*/};

 viewmodel.removeItem = function (index) {/*...*/};

 viewmodel.promoteItem = function (index) {/*...*/};

 viewmodel.demoteItem = function (index) {/*...*/};

 return viewmodel;

 }

 };

}(window.ko));

The params.items and params.isOrdered properties correspond to the binding

attributes in Listing 6-26. When a component is used on a page, the values of its binding

attributes are passed, by reference, to the component’s view model via the params object.

In this scenario, input list components will be given access to the ingredients and

instructions observable arrays on the recipe details view model.

Input list methods have been redacted in Listing 6-27 because they are nearly

identical to their counterparts in Listing 6-24. Instead of referencing ingredients or

instructions, however, these methods reference the abstracted items observable array.

The component populates this array with data it receives from params.items. The

newItem observable holds the value of the new item input, in exactly the same manner as

the newIngredient and newInstruction observables behaved in the recipe-details.js

module. It is not shared with the recipe details view model, however, as it only has

relevance within the input list.

Chapter 6 Knockout

199

Since the input list component will now handle the manipulation of the Ingredients

and Instructions lists on the page, the properties and methods in the recipe details view

model that previously performed these manipulations have been removed.

�The Input List Template
A reusable component needs an abstracted, reusable template, so the markup associated

with editing instructions and ingredients has also been collected into a single HTML

template. Each time an instance of the input list component is created on the page,

Knockout will inject the template into the DOM, then bind a new instance of the input

list view model to it.

Since the input list component can accommodate both ordered and unordered

lists, the template must use Knockout bindings to intelligently decide which kind of list

to display. Only ordered lists will have promotion and demotion buttons, while items

can be added and removed from both kinds of lists. Since the input list view model

exposes boolean properties it receives from its params object, the template can alter

its behavior based on the values of those properties. For example, if the view model

property isOrdered is true, the template will show an ordered list; otherwise it will show

an unordered list. Likewise the fields and buttons associated with adding new items or

removing existing items are toggled by the enableAdd and enableRemove properties,

respectively.

Template markup is typically added to the DOM in nonparsed elements like

<template> or the <script type="text/html"> element. In Listing 6-28, the full

component markup and all bindings are shown within a <template> tag. The element’s

id will be used by Knockout to find the template content within the DOM when the

component is registered with the framework.

Listing 6-28.  Input List Component Template

<!-- example-003/public/index.html -->

<template id="item-list-template">

 <!-- ko if: isOrdered -->

 <!-- #1 THE ORDERED LIST -->

 <ol data-bind="foreach: items" class="listless">

 <input data-bind="value: $data,

Chapter 6 Knockout

200

 valueUpdate: 'input',

 attr: {name: 'item-' + $index()},

 event: {input: $parent.changeItem.bind($parent, $index())}"

 type="text" />

 <button data-bind="click: $parent.demoteItem.bind($parent, $index())"

 class="fa fa-caret-down"></button>

 <button data-bind="click: $parent.promoteItem.bind($parent, $index())"

 class="fa fa-caret-up"></button>

 <button data-bind="click: $parent.removeItem.bind($parent, $index()),

 visible: $parent.enableRemove"

 class="fa fa-minus"></button>

 <!-- /ko -->

 <!-- ko ifnot: isOrdered -->

 <!-- #2 THE UN-ORDERED LIST -->

 <ul data-bind="foreach: items" class="listless">

 <input data-bind="value: $data,

 valueUpdate: 'input',

 attr: {name: 'item-' + $index()},

 �event: {input: $parent.changeItem.bind($parent,

$index())}"

 type="text" />

 <button data-bind="click: $parent.removeItem.bind($parent, $index()),

 visible: $parent.enableRemove"

 class="fa fa-minus"></button>

 <!-- /ko -->

 <!-- ko if: enableAdd -->

 <!-- #3 THE NEW ITEM FIELD -->

 <input data-bind="value: newItem"

 type="text"

Chapter 6 Knockout

201

 name="new-item" />

 <button data-bind="click: commitNewItem"

 class="fa fa-plus"></button>

 <!-- /ko -->

</template>

There is a lot of markup to digest in the input list template, but it is really just the

combination of both the unordered Ingredients list and the ordered Instructions list,

with a shared new item field.

Special binding comments—the ko if and ko ifnot comment blocks—wrap

portions of the template to determine if the elements within the comment blocks should

be added to the page. These comment blocks evaluate properties on the view model

and alter the template processing control flow accordingly. This differs from the visible

element bindings, which merely hide elements that already exist in the DOM.

Tip T he syntax used within ko comment block bindings is known as
containerless control flow syntax.

All fields and buttons in the input list template are bound to properties and methods

on the input list view model. If a demote button is clicked, for example, the input list

view model will manipulate its internal items collection, which is really a reference to

the instructions observable array in the recipe details view model, shared via the items

binding. The template determines which type of list to display based on the isOrdered

property, while the add and remove controls are toggled based on the enableAdd and

enableRemove properties. Because these properties are read from the params object in

the view model, any of them may be added to the <input-list> component tag as a

binding attribute. In this way the component abstracts and encapsulates all operations

made against any collection that can be represented as a list of inputs.

�Registering the Input List Tag
Once a component view model and template have been defined, the component itself

must be registered with Knockout. This tells Knockout how to resolve component

instances when it encounters the component’s custom tag in the DOM and also what

template and view model to use when rendering the component’s contents.

Chapter 6 Knockout

202

The app.js script has been updated in Listing 6-29 to register the input list

component immediately after the DOM becomes ready, but before any Knockout

bindings are applied to the page (with ko.applyBindings()). This ensures that

Knockout has time to render the component’s markup in the DOM so before any view

model is bound to it.

Listing 6-29.  Registering the Input List Component

// example-003/public/scripts/app.js

(function app ($, ko, InputList /*...*/) {

 // ...

 $(function () {

 // register the custom component tag before

 // Knockout bindings are applied to the page

 ko.components.register('input-list', {

 template: {

 element: 'item-list-template'

 },

 viewModel: InputList.create

 });

 // ...

 });

}(window.jQuery, window.ko, window.InputList /*...*/));

In Listing 6-29, the ko.components.register() function receives two arguments:

the name of the new component’s custom tag, input-list, and an options hash that

provides Knockout with the information it needs to construct the component.

Knockout uses the custom tag name to identify the <input-list> element in the

DOM and replace it with the template content specified in the options hash.

Since markup for the input list element has been defined in a <template> element,

the Knockout component system only needs to know what element ID it should use to

find that element in the DOM. The template object in the options hash contains this ID

in its element property. For smaller components, the entire HTML template could be

assigned, as a string, to the template property directly.

Chapter 6 Knockout

203

To construct a view model for the component, a factory function is assigned to the

viewModel property of the options hash. This property can also reference a regular

constructor function, but using factory functions sidesteps potential problems that

arise when event bindings reassign the this keyword within view models. Regardless of

approach, the view model function will receive a params object populated with values

from the template’s binding declarations.

Tip  Knockout can load component templates and view model functions via
RequireJS automatically. Consult the Knockout component documentation for more
details. The RequireJS module loader is covered in Chapter 5.

Now that the input list component is registered with Knockout, the complicated

markup for the editable Ingredients and Instructions lists can be replaced with simple

instances of <input-list>. Listing 6-30 shows the resulting lighter, cleaner page markup.

Listing 6-30.  Editing Instructions and Ingredients with the Input List Component

<!-- example-003/public/index.html -->

<h2>Ingredients</h2>

<!-- in read-only view -->

<ul data-bind="foreach: ingredients, visible: !isEditing()">

 <li data-bind="text: $data">

<!-- in edit view -->

<div data-bind="visible: isEditing" class="edit-field">

 <input-list params="items: ingredients,

 isOrdered: false"></input-list>

</div>

<h2>Instructions</h2>

<!-- in read-only view -->

<ol data-bind="foreach: instructions, visible: !isEditing()">

 <li data-bind="text: $data">

<!-- in edit view -->

Chapter 6 Knockout

204

<div data-bind="visible: isEditing" class="edit-field">

 <input-list params="items: instructions,

 isOrdered: true"></input-list>

</div>

Not only are the complexities of the input list obscured behind the new <input-

list> tag, but aspects of the list, such as the ability to add and remove items, are

controlled through bound attributes. This promotes both flexibility and maintainability

as common behaviors are bundled into a single element.

�Subscribables: Cheap Messaging
At this point the recipe details view model manipulates the recipe data but does nothing

to persist changes. It also fails to communicate recipe changes to the recipe list, so

even if a user modifies a recipe’s title, the recipe list continues to display the recipe’s

original title. From a use case perspective, the recipe list should only be updated if the

recipe details are sent to the server and successfully persisted. A more sophisticated

mechanism is needed to facilitate this workflow.

Knockout observables implement the behavior of a Knockout subscribable, a more

abstract object that does not hold a value but acts as a kind of eventing mechanism to

which other objects may subscribe. Observables take advantage of the subscribable

interface by publishing their own changes through subscribables, to which DOM

bindings (and perhaps even other view models) listen.

Subscribables may be directly attached to view models as properties or passed

around by reference to any object interested in their events. In Listing 6-31 a

subscribable is constructed in the app.js file and passed as an argument to both the

recipe list and recipe details modules. Note that, unlike an observable, subscribables

must be instantiated with the new keyword.

Listing 6-31.  Knockout Subscribable Acting As a Primitive Message Bus

// example-004/public/scripts/app.js

var bus = new ko.subscribable();

var list = RecipeList.create(recipes, bus);

var details = RecipeDetails.create(list.selectedRecipe(), bus);

Chapter 6 Knockout

205

To effectively publish an updated recipe to the subscribable, the recipe details view

model has been modified in several ways.

First, the subscribable is passed to the recipe details factory function as an argument

named bus (shorthand for “poor developer’s message bus”). The recipe details module

will use this subscribable to raise events when recipe details change.

Second, the view model now tracks the recipe’s ID since this value will be used

to update recipe data on the server. The recipe list will also use the ID to replace stale

recipe data after changes have been saved.

Finally, the save() method has been updated to trigger the recipe.saved event

on the bus subscribable, passing the modified recipe data as an argument that will be

delivered to any subscribers. The modified save() method is shown in Listing 6-32.

Listing 6-32.  Recipe Details View Model Saving a Modified Recipe

// example-004/public/scripts/recipe-details.js

viewmodel.save = function () {

 var savedRecipe = {

 id: viewmodel.id,

 title: viewmodel.title(),

 ingredients: viewmodel.ingredients(),

 instructions: viewmodel.instructions(),

 cookingTime: {

 hours: viewmodel.hours(),

 minutes: viewmodel.minutes()

 },

 servings: viewmodel.servings(),

 citation: viewmodel.citation()

 };

 bus.notifySubscribers(savedRecipe, 'recipe.saved');

 viewmodel.isEditing(false);

};

The notifySubscribers() method on a subscribable accepts two arguments—the

data object subscribers will receive and the name of the event being raised. The app.

js module subscribes to the recipe.saved event on the subscribable bus, shown in

Listing 6-33, and initiates an AJAX request to send the modified recipe data to the server.

Because the recipe details view model and the app.js module share a reference to the

Chapter 6 Knockout

206

bus object, any events triggered by the recipe details view model can be handled in the

app.js module.

Listing 6-33.  Saved Recipe Is Persisted to the Server

// example-004/public/scripts/app.js

var bus = new ko.subscribable();

bus.subscribe(function (updatedRecipe) {

 $.ajax({

 method: 'PUT',

 url: '/recipes/' + updatedRecipe.id,

 data: updatedRecipe

 }).then(function () {

 bus.notifySubscribers(updatedRecipe, 'recipe.persisted');

 })

}, null, 'recipe.saved');

The subscribable’s subscribe() method accepts three arguments:

•	 The callback function to be executed when the specified event is

triggered on the subscribable

•	 The context object that will be bound to the this keyword within the

callback function (or null, if the this keyword is never used within

the callback)

•	 The name of the event to which the callback is subscribed (e.g.,

recipe.saved)

If the AJAX update succeeds, the app.js module triggers a recipe.persisted event

on the subscribable to notify listeners. A reference to the bus subscribable has also been

passed to the recipe list view model, which actively listens for the recipe.persisted

event. When the event fires, the recipe list receives the saved data in Listing 6-34 and

updates its internal recipes collection and selected recipe based on the persisted

recipe’s ID.

Chapter 6 Knockout

207

Listing 6-34.  Updating the Recipe List with a Persisted Recipe

// example-004/public/scripts/recipe-list.js

window.RecipeList = (function (ko) {

 return {

 create: function (recipes, bus) {

 var viewmodel = {};

 // properties

 viewmodel.recipes = ko.observableArray(recipes);

 viewmodel.selectedRecipe = ko.observable(recipes[0]);

 // ...

 bus.subscribe(function (updatedRecipe) {

 var recipes = viewmodel.recipes();

 var i = 0,

 count = recipes.length;

 while (i < count) {

 if (recipes[i].id !== updatedRecipe.id) {

 i += 1;

 continue;

 }

 recipes[i] = updatedRecipe;

 viewmodel.recipes(recipes);

 viewmodel.selectRecipe(recipes[i]);

 break;

 }

 }, null, 'recipe.persisted');

 // ...

 }

 };

}(window.ko));

Though subscribables aren’t the only way to raise events in an application, they can

be effective for straightforward use cases, creating a decoupled communication chain

between modules.

Chapter 6 Knockout

208

�Summary
Many front-end frameworks offer suites of compelling features and plugins, but

Knockout really focuses on the interaction between the HTML view and data model in

an application. Knockout’s observables alleviate the pain of manually pulling data from,

and pushing data to, HTML DOM elements. Developers can add data-bind attributes to

any element on a page, gluing the markup to one or more view models through two-way

bindings.

While form data can be directly bound to view model properties, DOM event

bindings can also invoke methods on Knockout view models as well. Any changes these

methods make to view model observable properties are immediately reflected in the

DOM. Bindings like visible and css determine how an element is displayed to the user,

while bindings like text and value determine an element’s content.

Observables are special objects that hold view model data values. When their values

change, observables notify any interested subscribers, including bound DOM elements.

Primitive observables hold single values, while observable arrays hold collections.

Mutations that happen on observable arrays can be tracked and mirrored by HTML

elements that are bound to the collection. The foreach binding is especially useful when

iterating over an observable array’s elements, though special considerations must be

taken if individual members of an observable array are changed or replaced.

Knockout templates and view models can be abstracted into reusable components

with unique HTML tags. These components can be added to a page and bound to

other view model properties, just as any standard HTML elements would be bound.

Encapsulating state and behavior in a component reduces the total markup on a page

and also guarantees that similar portions of an application (e.g., a list of inputs bound to

a collection) behave the same wherever used.

Finally, subscribable objects—the basic building blocks behind observables—can

be used as primitive message busses, notifying subscribers of published events and

potentially delivering payloads of data where needed.

�Resources
•	 Knockout web site: http://knockoutjs.com/

•	 GitHub: https://github.com/knockout/knockout/

Chapter 6 Knockout

http://knockoutjs.com/
https://github.com/knockout/knockout/

209
© Sufyan bin Uzayr, Nicholas Cloud, Tim Ambler 2019
S. bin Uzayr et al., JavaScript Frameworks for Modern Web Development,
https://doi.org/10.1007/978-1-4842-4995-6_7

CHAPTER 7

Angular
In this chapter, we will be turning our attention toward a very popular framework, that

is, Angular. It is one of the world’s most popular frameworks and is a leading name in the

field of JavaScript and web development. In fact, if you have had even a basic amount of

introduction to web development, you might have already heard of Angular as well as

AngularJS.

Basically, Angular is a front-end web application development framework that is

maintained and developed by the Angular Team at Google. Yes, it is backed by the likes

of Google and has a very thriving and active community around the world.

In this chapter, we will be learning about installation, setup, Dependency Injection,

as well as how to get the most out of this web application framework. But before going

any further, we need to understand one key difference.

Did you notice we mentioned Angular and AngularJS separately? Yes, both are two

different frameworks built atop two different, albeit rather closely related, platforms.

Therefore, it is a good idea to first familiarize ourselves with the basic differences

between the two. Web developers of all levels of ability are interested in learning Angular,

especially those working on web apps.

�Differences Between Angular and AngularJS
If we are to speak purely of JavaScript frameworks when comparing Angular with

AngularJS, the latter is the answer. This is because Angular is written in TypeScript,

which happens to be a superscript of JavaScript.

With that out of the way, the differences do not stop there. At the beginning,

AngularJS was the only framework with no existence of Angular. AngularJS was

developed by the team at Google, along with a large community of volunteers, to address

the challenges associated with dynamic app development for the Web, such as Single

Page Apps.

210

In September 2016, AngularJS 2.0 was released, and this is where the stark difference

began. The name was now just “Angular,” (see Figure 7-1) to reflect the steering toward

TypeScript as opposed to JavaScript. Angular in itself is a complete rewrite of AngularJS.

Going forward, all future releases of Angular began to be named just “Angular,” with

Angular 7 being the latest one. Angular 8, however, is likely to be released soon.

To sum it up:

AngularJS is the original release, and it can also be called Angular 1.0.

This particular version of the framework is based on pure JavaScript.

Angular 2.0 and its subsequent versions are based on TypeScript

and do not follow the same nomenclature as version 1.0 (no “JS”).

But this is not where the differences end.

Angular makes use of Components as the basic building blocks of its projects

or apps. AngularJS, on the other hand, relied on Scope or Controllers. Furthermore,

Angular has a module-based approach and makes good leverage of TypeScript features.

As such, Angular can boast of the following aspects:

•	 Support for object-oriented programming

•	 Static types

•	 Lambdas and iterators

Figure 7-1.  Angular is a popular web framework that is used to build progressive
web apps

Chapter 7 Angular

211

•	 For loops

•	 Dynamic loading

•	 A custom set of UI components

•	 Python-style generators

Much of the preceding features are made possible due to the fact that Angular is

based on TypeScript. Having said that, whatever happened to AngularJS? Well, it is still

under active development, albeit under Long Term Support mode (means it receives

only vital and essential updates). The reason is simple—a good number of agencies,

developers, and organizations have long relied on the popular JavaScript framework that

is AngularJS. Migrating away from AngularJS entirely toward Angular requires a good

deal of time and efforts and possibly invites code and compatibility issues.

As such, both AngularJS and Angular continue to be under development, and each

has its own share of community and user base. Considering the fact that Angular is the

newer variant and comes loaded with additional features, it is only natural that more

and more new developers are keen on learning Angular as opposed to AngularJS. In this

chapter, as a result, we will be focusing on Angular.

However, it should also be pointed out that since AngularJS is still being used in the

industry in a large number of enterprise-level projects, it is far from obsolete, and at

times, many developers choose to learn both the frameworks in order to improve their

job prospects. Nevertheless, even the AngularJS web site has a call to action button that

takes visitors to Angular—the new version is the future of this framework.

You can learn more about AngularJS here: https://angularjs.org/

�Getting Started with Angular
Now that we have learned what the major differences are between AngularJS and

Angular, we can safely focus on getting things rolling with Angular development.

The first step, obviously, is to install Angular on our development environment.

�Installation
Angular requires Node.js version 8.x or higher to function. This means if our system does

not already have the latest version of Node.js, we need to first install it.

Chapter 7 Angular

https://angularjs.org/

212

Thankfully, installing Node.js is no rocket science. We can simply head to the Node.js

official web site (see Figure 7-2) and then grab the installer depending on the operating

system and architecture that we are using.

Node.js comes with multiple installers, each suited to a particular family of operating

systems. For Windows users, for instance, the installer is a simple executable file.

Similarly, there are relevant versions available for Linux and Mac users as well. All of

these versions as well as the older and other releases of Node.js are available on the

download page.1

Learn more about Node.js here: https://nodejs.org/en/

Once we have Node.js installed and set up on our system, we are ready to begin

Angular installation. It is noteworthy that npm, the Node Package Manager, will

automatically be installed when we install Node.js

1�Node.js download page: https://nodejs.org/en/download/

Figure 7-2.  Node.js supports multiple operating systems and can be installed on
Windows, Mac, as well as Linux

Chapter 7 Angular

https://nodejs.org/en/
https://nodejs.org/en/download/

213

As such, we can simply run the relevant npm command to do the needful. As first

step it is recommended to install the Angular CLI, which will enable us to create projects

and generate and execute apps in Angular right from the command line. Angular CLI can

perform a multitude of tasks related to testing, building, and deployment of Angular apps.

In order to install the Angular CLI via npm, we need to run the following command:

npm install -g @angular/cli

That is all. If all goes right, Angular CLI will shortly be installed on our system, and

we can get things rolling with Angular app development (see Figure 7-3).

It is very important to ensure that Node.js and npm versions are latest. As can be

seen in the preceding example, npm version is less than the recommended one, and as

such, the engine throws a warning.

�Creating a Workspace in Angular
Now that we have installed Angular CLI, we can start by creating an Angular workspace.

But wait, what exactly is meant by an Angular workspace? Here is how the official

Angular glossary defines a workspace2:

In Angular, a folder that contains projects (i.e., apps and libraries).

The CLI ng new command creates a workspace to contain

projects. Commands that create or operate on apps and libraries

(such as add and generate) must be executed from within a

workspace folder.

2�https://angular.io/guide/glossary#workspace

Figure 7-3.  Installing Angular CLI using npm

Chapter 7 Angular

https://angular.io/guide/glossary#workspace

214

In simpler words, all applications in Angular are made up of files. Now, these files are

contained within a given project, thereby implying that a project will contain files that

are related to a particular app or library.

Now, a workspace is an entity that contains files for one or more project. As such,

we first need to create a workspace, and then build our app, and then modify or tweak

or code its files to suit our purpose. Furthermore, in Angular, a “project” refers to a

collection of set files and libraries that are related to a specific purpose or app.

Therefore, our first step is to create a workspace and an initial project to work with.

To do so, the following command is what we need:

ng new my-first-app

The preceding command creates an app project with the name my-first-app. We will

be prompted with a series of questions about the project—we can customize the answers

or just accept the initial prompt (see Figure 7-4).

Chapter 7 Angular

215

Following that, Angular will install the required dependencies and project files.

�Directory Structure
Once our workspace and project have been set up, we can navigate to the concerned

directory. We will find that the workspace has a root folder named after our app, that is,

my-first-app which contains the files and data related to the project.

The src subdirectory too will have a my-first-app directory, but this is where our

skeleton app project resides. The end-to-end test files will be in the e2e folder.

Figure 7-4.  Creating our first app in Angular

Chapter 7 Angular

216

Here is what a sample Angular app’s directory structure looks like (Figure 7-5),

complete with the various configuration files for the app.

�Serving the App
The app project that we just built contains a sample welcome app. It might be a good

idea to try running it locally first.

To do so, we first need to navigate to the concerned directory:

cd my-first-app

And then serve the app locally:

ng serve --open

In the preceding example, the ng serve command will launch the server and serve

our app and also keep track of any live changes in real time. So if we make changes to the

app files, the output will automatically be updated (Figure 7-6).

Figure 7-5.  Directory structure of an Angular project by default

Chapter 7 Angular

217

The --open append will automatically launch the app. If we so desire, we can omit it

and then manually navigate to localhost:4200 in a web browser.

Figure 7-7 is what the sample Angular app looks like.

�Customizing the App
When we built our first Angular app using the CLI, we also created our first Angular

component.

In Angular, “components” are the fundamental building blocks of apps. Again, to

quote the glossary3:

3�https://angular.io/guide/glossary#component

Figure 7-6.  Launching our Angular app using ng serve command

Figure 7-7.  Angular application running at localhost:4200—any changes will
automatically be reflected upon save

Chapter 7 Angular

https://angular.io/guide/glossary#component

218

An Angular component class is responsible for exposing data and

handling most of the view's display and user-interaction logic

through data binding.

In other words, Angular components are what we use to display data on screen, seek

input from the user, and so on.

In general, most Angular apps have a root component named app-root. In our

sample app, it is the file named app.component.ts in the directory /src/app.

Let us look at the contents of the file in Figure 7-8.

Changing the title here will reflect on the locally served app too. First, in the terminal

as seen in Figure 7-9.

Figure 7-8.  Contents of the App components file

Chapter 7 Angular

219

And then in the browser too as seen in Figure 7-10.

Figure 7-9.  The server automatically updates the output as per the changes

Figure 7-10.  The new title is shown in the browser

Chapter 7 Angular

220

Furthermore, we can see that the app.component.css file is responsible for CSS styles

for our app.

Modifying the app.component.css with some CSS will change the appearance of our

app too. Let us add some sample CSS in Figure 7-11.

Again, the server responds in the terminal as seen in Figure 7-12.

Figure 7-11.  Adding CSS to modify the app heading appearance

Figure 7-12.  Recompiling to reflect the latest saved changes

Chapter 7 Angular

221

And then, the browser output is also modified. Note in Figure 7-13 that we have

added green color for the heading.

At this point, we have learned how to build and serve a basic app in Angular.

Obviously, this is not all that Angular can do. However, from here, we can focus on more

complex app development and dig deeper to see if Angular suits our workflow needs.

�Dependency Injection in Angular
One of the key features of Angular, especially its latest versions, is the fact that it has its

own Dependency Injection framework. As an application design pattern, Dependency

Injection in Angular is used by several apps to implement a modular design workflow.

In web development, we define “dependencies” as simple entities (such as classes,

objects, or actions) that a class needs in order to perform its role. In other words, if all the

dependencies are not met, the class cannot function properly.

In Angular, Dependency Injection framework ensures that all the dependencies are

available when the class is first initiated. This makes it easy to develop flexible and faster

apps, as we do not really need to create bulky and bloated code.

Figure 7-13.  CSS changes reflected in output of Angular app

Chapter 7 Angular

222

�Creating and Registering an Injection Service
The first step, obviously, is to generate a new service class that is injectable. The Angular

CLI can do it for us:

ng generate service example/exam

Now, let us analyze the following sample code, which is basically defining an

injectable service for us:

import { Injectable } from '@angular/core';

@Injectable()

export class falsService {

 constructor() {

 console.log("Ok, now this has been injected!");

 }

 falsPoster(qty) {

 console.log(qty, "Alright, all done!");

 }

}

What does the preceding code do? It simply defines an injectable service for us.

Now, let us inject this service into a Component:

import { Component } from '@angular/core';

import { falsService } from './some.path';

@Component({

 selector: 'app-root',

 templateUrl: './app.component.html',

 styleUrls: ['./app.component.css'],

 providers: [falsService]

})

export class AppComponent {

 constructor(private fals: falsService) {}

 funcDemo(qty) {

 this.fals.falsPoster(qty);

 }

}

Chapter 7 Angular

223

In the preceding code, we are calling the falsPoster() method.

Now, we can make use of our funcDemo() method and use the DI framework within

the injected service.

�Conclusion
In this chapter, we familiarized ourselves with Angular at a basic level. We learned what

this particular TypeScript framework is, how it differs from its other variant, and how to

get started with Angular. Furthermore, we also learned how to install Angular and build

as well as serve a sample app. Finally, we looked at Dependency Injection, one of the key

features of Angular.

At this point, the next step should ideally be to turn toward more complex projects

and delve deeper into Angular. It is, however, noteworthy that Angular, as a framework,

has a very large community and user base. In fact, it is one of the most popular web

frameworks when it comes to building web apps. Naturally, the job market as well as

industry scope is stellar as well.

As a result, it might be a good idea to learn Angular at a more minute scale. The

official documentation is surely a good place to start, but Apress also has a praiseworthy

list of Angular-specific titles that you can make use of to learn more about Angular.

•	 Angular Homepage: https://angular.io/

•	 Angular Documentation: https://angular.io/docs

•	 Progressive Web Apps with Angular: www.apress.com/in/

book/9781484244470

•	 Pro Angular 6: www.apress.com/in/book/9781484236482

Chapter 7 Angular

https://angular.io/
https://angular.io/docs
http://www.apress.com/in/book/9781484244470
http://www.apress.com/in/book/9781484244470
http://www.apress.com/in/book/9781484236482

PART IV

Server-Side Frameworks

227
© Sufyan bin Uzayr, Nicholas Cloud, Tim Ambler 2019
S. bin Uzayr et al., JavaScript Frameworks for Modern Web Development,
https://doi.org/10.1007/978-1-4842-4995-6_8

CHAPTER 8

Kraken

An organization’s ability to learn, and translate that learning into action
rapidly, is the ultimate competitive advantage.

—Jack Welch

As development platforms go, Node is no longer the new kid on the block. But as

many well-known and respected organizations will attest, the benefits afforded by

JavaScript as a server-side language have already had a tremendous impact on the

manner in which they develop and deploy software. Among the many accolades for

Node, Michael Yormark, Project Manager at Dow Jones, has proclaimed “The simple

truth is Node has reinvented the way we create websites. Developers build critical

functionality in days, not weeks.” (www.joyent.com/blog/the-node-firm-and-

joyent-offer-node-js-training)

Kiran Prasad, Director of Mobile Engineering at LinkedIn, has stated “On the server

side, our entire mobile software stack is completely built in Node. One reason was scale.

The second is Node showed us huge performance gains.”

(https://nodejs.org/download/docs/v0.6.7/)

Node is certainly generating some rather large waves in the development

community. All that said, however, let’s be clear: the platform is far from perfect.

JavaScript is beautifully expressive and flexible, but it’s also flexible in a way that

is easily abused. While Node-based projects enjoy rapid development cycles and

impressive performance gains, they frequently suffer at the hands of an overall lack

of convention both within the language itself and throughout the development

http://www.joyent.com/blog/the-node-firm-and-joyent-offer-node-js-training
http://www.joyent.com/blog/the-node-firm-and-joyent-offer-node-js-training

228

community as a whole. While this problem may not be obvious within small,

centralized development teams, it can quickly rear its head as teams grow in size

and distribution—just ask Jeff Harrell, Director of Engineering at PayPal (www.paypal-

engineering.com/2013/11/):

We especially liked the ubiquity of Express, but found it didn’t scale well in
multiple development teams. Express is non-prescriptive and allows you to
set up a server in whatever way you see fit. This is great for flexibility, but
bad for consistency in large teams… Over time we saw patterns emerge as
more teams picked up node.js and turned those into Kraken.js; it’s not a
framework in itself, but a convention layer on top of express that allows it to
scale to larger development organizations. We wanted our engineers to
focus on building their applications and not just focus on setting up their
environments.

This chapter will introduce you to Kraken, a secure and scalable layer for Express-

based applications brought to you by the developers at PayPal. Topics covered within

this chapter include

•	 Environment-aware configuration

•	 Configuration-based middleware registration

•	 Structured route registration

•	 The Dust template engine

•	 Internationalization and localization

•	 Enhanced security techniques

Note  Kraken builds on the already firm foundation of Express, the minimalist web
framework for Node whose API has become the de facto standard for frameworks
in this category. As a result, this chapter assumes the reader already has a basic,
working familiarity with Express. Portions of this chapter also discuss concepts
covered in this book’s chapters on Grunt, Yeoman, and Knex/Bookshelf. If you are
unfamiliar with these subjects, you may wish to read those chapters before you
continue.

Chapter 8 Kraken

http://www.paypal-engineering.com/2013/11/
http://www.paypal-engineering.com/2013/11/

229

�Environment-Aware Configuration
As applications are developed, tested, staged, and deployed, they naturally progress

through a series of corresponding environments, each requiring its own unique set of

configuration rules. For example, consider Figure 8-1, which illustrates the process by

which an application moves through a continuous integration and delivery deployment

pipeline.

As the application in Figure 8-1 progresses through each environment, the settings

that tell it how to connect to the various external services on which it relies must change

accordingly. Kraken’s confit library provides developers with a standard convention for

accomplishing this goal by offering a simple, environment-aware configuration layer for

Node applications.

Confit operates by loading a default JSON configuration file (typically named

config.json). Confit then attempts to load an additional configuration file based on the

value of the NODE_ENV environment variable. If an environment-specific configuration

file is found, any settings it specifies are recursively merged with those defined within the

default configuration.

This chapter’s confit-simple project provides a simple application that relies on

confit for determining its configuration. Listing 8-1 demonstrates the process by which

confit is initialized, while Listing 8-2 shows the contents of the project’s /config folder,

from which confit is instructed to search for configuration files.

Figure 8-1.  Application that requires unique settings based on its
environment

Chapter 8 Kraken

230

Listing 8-1.  Initializing Confit

// confit-simple/index.js

var confit = require('confit');

var prettyjson = require('prettyjson');

var path = require('path');

var basedir = path.join(__dirname, 'config');

confit(basedir).create(function(err, config) {

 if (err) {

 console.log(err);

 process.exit();

 }

 console.log(prettyjson.render({

 'email': config.get('email'),

 'cache': config.get('cache'),

 'database': config.get('database')

 }));

});

Listing 8-2.  Contents of the /config Folder

// Default configuration

// confit-simple/config/config.json

{

 // SMTP server settings

 "email": {

 "hostname": "email.mydomain.com",

 "username": "user",

 "password": "pass",

 "from": "My Application <noreply@myapp.com>"

 },

 "cache": {

 "redis": {

 "hostname": "cache.mydomain.com",

 "password": "redis"

Chapter 8 Kraken

231

 }

 }

}

// Development configuration

// confit-simple/config/development.json

{

 "database": {

 "postgresql": {

 "hostname": "localhost",

 "username": "postgres",

 "password": "postgres",

 "database": "myapp"

 }

 },

 "cache": {

 "redis": {

 "hostname": "localhost",

 "password": "redis"

 }

 }

}

// Production configuration

// confit-simple/config/production.json

{

 "database": {

 "postgresql": {

 "hostname": "db.myapp.com",

 "username": "postgres",

 "password": "super-secret-password",

 "database": "myapp"

 }

 },

Chapter 8 Kraken

232

 "cache": {

 "redis": {

 "hostname": "redis.myapp.com",

 "password": "redis"

 }

 }

}

Before continuing, notice that our project’s default configuration file provides

connection settings for an e-mail server under the email property, while neither of the

project’s environment-specific configuration files provides such information. In contrast,

the default configuration provides connection settings for a Redis cache server under

the nested cache:redis property, while both of the environment-specific configurations

provide overriding information for this property.

Notice also that the default configuration file includes a comment above the email

property. Comments, which are not part of the JSON specification, would normally result

in an error being thrown if we attempted to use Node’s require() method to parse the

contents of this file. Confit, however, will strip out such comments before attempting to

parse the file, allowing us to embed comments within our configuration as needed.

Listing 8-3 shows the output that is logged to the console when the project is run

with the NODE_ENV environment variable set to development.

Listing 8-3.  Running the confit-simple Project in development Mode

$ export NODE_ENV=development && node index

email:

 hostname: email.mydomain.com

 username: user

 password: pass

 from: My Application noreply@myapp.com

cache:

 redis:

 hostname: localhost

 password: redis

Chapter 8 Kraken

233

database:

 postgresql:

 hostname: localhost

 username: postgres

 password: postgres

 database: myapp

Note  In Listing 8-3, $ export NODE_ENV=development is run from the
terminal to set the value of the NODE_ENV environment variable. This command
applies only to Unix and Unix-like systems (including OS X). Windows users will
instead need to run $ set NODE_ENV=development. It’s also important to
remember that if the NODE_ENV environment variable is not set, confit will
assume the application is running in the development environment.

As you can see in Listing 8-3, confit compiled our project’s configuration object

by merging the contents of the config/development.json environment configuration

file with the default config/config.json file, giving priority to any settings specified in

development.json. As a result, our configuration object inherited the email settings that

only exist in config.json, along with the cache and database settings defined within

the configuration file for the development environment. In Listing 8-1, these settings are

accessed through the use of the configuration object’s get() method.

Note  In addition to accessing top-level configuration settings (e.g., database,
as shown in Listing 8-1), our configuration object’s get() method can also be
used to access deeply nested configuration settings using : as a delimiter. For
example, we could have referenced the project’s postgresql settings directly
with config.get('database:postgresql').

In Listing 8-4, we run the confit-simple project again, only this time we set the

NODE_ENV environment variable with a value of production. As expected, the output

shows that our configuration object inherited the email property from config.json

while also inheriting the cache and database properties from production.json.

Chapter 8 Kraken

234

Listing 8-4.  Running the confit-simple Project in production Mode

$ export NODE_ENV=production && node index

email:

 hostname: email.mydomain.com

 username: user

 password: pass

 from: My Application noreply@myapp.com

cache:

 redis:

 hostname: redis.myapp.com

 password: redis

database:

 postgresql:

 hostname: db.myapp.com

 username: postgres

 password: super-secret-password

 database: myapp

�Shortstop Handlers
Confit is designed for processing JSON configuration files, as previous examples have

shown. As a configuration format, JSON is easy to work with, but it can occasionally leave

a bit to be desired in terms of flexibility. Confit helpfully makes up for this shortcoming

with support for plugins that it refers to as “shortstop handlers.” By way of an example,

consider Listing 8-5, in which the two shortstop handlers included within confit's core

library, import and config, are used.

Listing 8-5.  Demonstrating the Use of the import and config Shortstop Handlers

// confit-shortstop/config/config.json

{

 // The `import` handler allows us to set a property's value to the contents

 // of the specified JSON configuration file.

 "app": "import:./app",

 // The `config` handler allows us to set a property's value to that of the

Chapter 8 Kraken

235

 // referenced property. Note the use of the `.` character as a delimiter,

 // in this instance.

 "something_else": "config:app.base_url"

}

// confit-shortstop/config/app.json

{

 // The title of the application

 "title": "My Demo Application",

 // The base URL at which the web client can be reached

 "base_url": "https://myapp.com",

 // The base URL at which the API can be reached

 "base_api_url": https://api.myapp.com

}

Listing 8-6 shows the output that is printed to the console when this chapter’s

confit-shortstop project is run. In this example, the import shortstop handler has

allowed us to populate the app property with the contents of a separate JSON file,

making it possible for us to break down particularly large configuration files into smaller

and more easily manageable components. The config handler has allowed us to set a

configuration value by referencing a preexisting value in another section.

Listing 8-6.  Output of This Chapter’s confit-shortstop Project

$ node index.js

app:

 title: My Demo Application

 base_url: https://myapp.com

 base_api_url: https://api.myapp.com

something_else: https://myapp.com

While confit itself only includes support for the two shortstop handlers that we’ve

just covered (import and config), several additional handlers that are quite useful can

be found in the shortstop-handlers module. Let’s take a look at four examples.

The main script (index.js) from this chapter’s confit-shortstop-extras project is

shown in Listing 8-7. This script largely mirrors the one we’ve already seen in Listing 8-1,

with a few minor differences. In this example, additional handlers are imported from

Chapter 8 Kraken

236

the shortstop-handlers module. Also, instead of instantiating confit by passing the

path to our project’s config folder (basedir), we pass an object of options. Within this

object, we continue to specify a value for basedir, but we also pass a protocols object,

providing confit with references to the additional shortstop handlers we’d like to use.

Listing 8-7.  index.js Script from the confit-shortstop-extras Project

// confit-shortstop-extras/index.js

var confit = require('confit');

var handlers = require('shortstop-handlers');

var path = require('path');

var basedir = path.join(__dirname, 'config');

var prettyjson = require('prettyjson');

confit({

 'basedir': basedir,

 'protocols': {

 �// The `file` handler allows us to set a property's value to the contents

 �// of an external (non-JSON) file. By default, the contents of the file

 // will be loaded as a Buffer.

 �'file': handlers.file(basedir /* Folder from which paths should be

resolved */, {

 'encoding': 'utf8' // Convert Buffers to UTF-8 strings

 }),

 // The `require` handler allows us to set a property's value to that

 // exported from a module.

 'require': handlers.require(basedir),

 // The `glob` handler allows us to set a property's value to an array

 // containing files whose names match a specified pattern

 'glob': handlers.glob(basedir),

 // The path handler allows us to resolve relative file paths

 'path': handlers.path(basedir)

 }

Chapter 8 Kraken

237

}).create(function(err, config) {

 if (err) {

 console.log(err);

 process.exit();

 }

 console.log(prettyjson.render({

 'app': config.get('app'),

 'something_else': config.get('something_else'),

 'ssl': config.get('ssl'),

 'email': config.get('email'),

 'images': config.get('images')

 }));

});

In this example, four additional shortstop handlers (imported from the

shortstop-handlers module) are used:

•	 file: Sets a property using the contents of a specified file

•	 require: Sets a property using the exported value of a Node module

(particularly useful for dynamic values that can only be determined

at runtime)

•	 glob: Sets a property to an array containing files whose names match

a specified pattern

•	 path: Sets a property to the absolute path of a referenced file

Listing 8-8 shows the default configuration file for this project. Finally, Listing 8-9

shows the output that is printed to the console when this project is run.

Listing 8-8.  Default Configuration File for the confit-shortstop-extras Project

// confit-shortstop-extras/config/config.json

{

 "app": "import:./app",

 "something_else": "config:app.base_url",

 "ssl": {

 "certificate": "file:./certificates/server.crt",

Chapter 8 Kraken

238

 "certificate_path": "path:./certificates/server.crt"

 },

 "email": "require:./email",

 "images": "glob:../public/images/**/*.jpg"

}

Listing 8-9.  Output from the confit-shortstop-extras Project

$ export NODE_ENV=development && node index

app:

 title: My Demo Application

 base_url: https://myapp.com

 base_api_url: https://api.myapp.com

something_else: https://myapp.com

ssl:

 �certificate_path: /opt/confit-shortstop-extras/config/certificates/

server.crt

 certificate:

 """

 -----BEGIN CERTIFICATE-----

 MIIDnjCCAoYCCQDy8G1RKCEz4jANBgkqhkiG9w0BAQUFADCBkDELMAkGA1UEBhMC

 VVMxEjAQBgNVBAgTCVRlbm5lc3NlZTESMBAGA1UEBxMJTmFzaHZpbGxlMSEwHwYD

 VQQKExhJbnRlcm5ldCBXaWRnaXRzIFB0eSBMdGQxFDASBgNVBAMUCyoubXlhcHAu

 Y29tMSAwHgYJKoZIhvcNAQkBFhFzdXBwb3J0QG15YXBwLmNvbTAeFw0xNTA0MTkw

 MDA4MzRaFw0xNjA0MTgwMDA4MzRaMIGQMQswCQYDVQQGEwJVUzESMBAGA1UECBMJ

 VGVubmVzc2VlMRIwEAYDVQQHEwlOYXNodmlsbGUxITAfBgNVBAoTGEludGVybmV0

 IFdpZGdpdHMgUHR5IEx0ZDEUMBIGA1UEAxQLKi5teWFwcC5jb20xIDAeBgkqhkiG

 9w0BCQEWEXN1cHBvcnRAbXlhcHAuY29tMIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8A

 MIIBCgKCAQEAyBFxMVlMjP7VCU5w70okfJX/oEytrQIl1ZOAXnErryQQWwZpHOlu

 ZhTuZ8sBJmMBH3jju+rx4C2dFlXxWDRp8nYt+qfd1aiBKjYxMda2QMwXviT0Td9b

 kPFBCaPQpMrzexwTwK/edoaxzqs/IxMs+n1Pfvpuw0uPk6UbwFwWc8UQSWrmbGJw

 UEfs1X9kOSvt85IdrdQ1hQP2fBhHvt/xVVPfi1ZW1yBrWscVHBOJO4RyZSGclayg

 7LP+VHMvkvNm0au/cmCWThHtRt3aXhxAztgkI9IT2G4B9R+7ni8eXw5TLl65bhr1

 Gt7fMK2HnXclPtd3+vy9EnM+XqYXahXFGwIDAQABMA0GCSqGSIb3DQEBBQUAA4IB

 AQDH+QmuWk0Bx1kqUoL1Qxtqgf7s81eKoW5X3Tr4ePFXQbwmCZKHEudC98XckI2j

 qGA/SViBr+nbofq6ptnBhAoYV0IQd4YT3qvO+m3otGQ7NQkO2HwD3OUG9khHe2mG

Chapter 8 Kraken

239

 k8Z7pF0pwu3lbTGKadiJsJSsS1fJGs9hy2vSzRulgOZozT3HJ+2SJpiwy7QAR0aF

 jqMC+HcP38zZkTWj1s045HRCU1HdPjr0U3oJtupiU+HAmNpf+vdQnxS6aM5nzc7G

 tZq74ketSxEYXTU8gjfMlR4gBewfPmu2KGuHNV51GAjWgm9wLfPFvMMYjcIEPB3k

 Mla9+pYx1YvXiyJmOnUwsaop

 -----END CERTIFICATE-----

 """

email:

 hostname: smtp.myapp.com

 username: user

 password: pass

 from: My Application noreply@myapp.com

images:

 - /opt/confit-shortstop-extras/public/images/cat1.jpg

 - /opt/confit-shortstop-extras/public/images/cat2.jpg

 - /opt/confit-shortstop-extras/public/images/cat3.jpg

�Configuration-Based Middleware Registration
Express processes incoming HTTP requests by pushing them through a series of

configurable “middleware” functions, as shown in Figure 8-2.

Figure 8-2.  Series of Express middleware calls

Chapter 8 Kraken

240

At each step of this process, the active middleware function has the ability to

•	 Modify the incoming request object

•	 Modify the outgoing response object

•	 Execute additional code

•	 Close the request-response cycle

•	 Call the next middleware function in the series

By way of an example, consider Listing 8-10, which shows a simple Express

application that relies on three middleware modules: morgan, cookie-parser, and

ratelimit-middleware. As this application processes incoming HTTP requests, the

following steps occur:

	 1.	 The morgan module logs the request to the console.

	 2.	 The cookie-parser module parses data from the request’s Cookie

header and assigns it to the request object’s cookies property.

	 3.	 The ratelimit-middleware module rate-limits clients that

attempt to access the application too frequently.

	 4.	 Finally, the appropriate route handler is called.

Listing 8-10.  Express Application That Relies on Three Middleware Modules

// middleware1/index.js

var express = require('express');

// Logs incoming requests

var morgan = require('morgan');

// Populates `req.cookies` with data parsed from the `Cookie` header

var cookieParser = require('cookie-parser');

// Configurable API rate-limiter

var rateLimit = require('ratelimit-middleware');

var app = express();

app.use(morgan('combined'));

app.use(cookieParser());

Chapter 8 Kraken

241

app.use(rateLimit({

 'burst': 10,

 'rate': 0.5,

 'ip': true

}));

app.get('/animals', function(req, res, next) {

 res.send(['squirrels', 'aardvarks', 'zebras', 'emus']);

});

app.listen(7000);

This approach provides developers with a considerable degree of flexibility, allowing

them to execute their own logic at any point during the request-response cycle. It also

allows Express to maintain a relatively small footprint by delegating responsibility for

performing nonessential tasks to third-party middleware modules. But as flexible as this

approach is, it can also prove troublesome to manage as applications and the teams that

develop them grow in size and complexity.

Kraken’s meddleware module simplifies middleware management by providing a

configuration-based middleware registration process for Express applications. In doing

so, it provides developers with a standardized approach for specifying which middleware

modules an Express application should rely on, in what order they should be loaded,

and the options that should be passed to each. Listing 8-11 shows an updated version of

the previous example, in which the meddleware module manages the registration of all

middleware functions.

Listing 8-11.  Configuration-Based Middleware Registration with the meddleware

Module

// middleware2/index.js

var express = require('express');

var confit = require('confit');

var meddleware = require('meddleware');

var app = express();

var path = require('path');

Chapter 8 Kraken

242

confit(path.join(__dirname, 'config')).create(function(err, config) {

 app.use(meddleware(config.get('middleware')));

 app.get('/animals', function(req, res, next) {

 res.send(['squirrels', 'aardvarks', 'zebras', 'emus']);

 });

 app.listen(7000);

});

// middleware2/config/config.json

{

 "middleware": {

 "morgan": {

 // Toggles the middleware module on / off

 "enabled": true,

 // Specifies the order in which middleware should be registered

 "priority": 10,

 "module": {

 // The name of an installed module (or path to a module file)

 "name": "morgan",

 // Arguments to be passed to the module's factory function

 "arguments": ["combined"]

 }

 },

 "cookieParser": {

 "enabled": true,

 "priority": 20,

 "module": {

 "name": "cookie-parser"

 }

 },

 "rateLimit": {

 "enabled": true,

 "priority": 30,

 "module": {

 "name": "ratelimit-middleware",

Chapter 8 Kraken

243

 "arguments": [{

 "burst": 10,

 "rate": 0.5,

 "ip": true

 }]

 }

 }

 }

}

With the help of Kraken’s meddleware module, all aspects of third-party middleware

management within this application have been moved from code to standardized

configuration files. The result is an application that is not only more organized but also

easier to understand and modify.

�Event Notifications
As middleware functions are registered with Express via the meddleware module,

corresponding events are emitted by the application, providing developers with an easy

method for determining what middleware functions are being loaded and in what order

(see Listing 8-12).

Listing 8-12.  Events Are Emitted As Middleware Registered via the meddleware

Module

var express = require('express');

var confit = require('confit');

var meddleware = require('meddleware');

var app = express();

var path = require('path');

confit(path.join(__dirname, 'config')).create(function(err, config) {

 // Listening to all middleware registrations

 app.on('middleware:before', function(data) {

 console.log('Registering middleware: %s', data.config.name);

 });

Chapter 8 Kraken

244

 // Listening for a specific middleware registration event

 app.on('middleware:before:cookieParser', function(data) {

 console.log('Registering middleware: %s', data.config.name);

 });

 app.on('middleware:after', function(data) {

 console.log('Registered middleware: %s', data.config.name);

 });

 app.on('middleware:after:cookieParser', function(data) {

 console.log('Registered middleware: %s', data.config.name);

 });

 app.use(meddleware(config.get('middleware')));

 app.get('/animals', function(req, res, next) {

 res.send(['squirrels', 'aardvarks', 'zebras', 'emus']);

 });

 app.listen(7000);

});

�Structured Route Registration
In the previous section, you learned how Kraken’s meddleware module can simplify

middleware function registration by moving the logic required for loading and

configuring those functions into standardized JSON configuration files. In much the

same way, Kraken’s enrouten module applies the same concept to bring structure where

there often is none to be found—Express routes.

Simple Express applications with a small number of routes can often make do with

a single module in which every available route is defined. However, as applications

gradually grow in depth and complexity, such an organizational structure (or lack

thereof) can quickly become unwieldy. Enrouten solves this problem by providing three

approaches with which Express routes can be defined in a consistent, structured fashion.

Chapter 8 Kraken

245

�Index Configuration
Using enrouten’s index configuration option, the path to a single module can be

specified. This module will then be loaded and passed an Express Router instance that

has been mounted to the root path. This option provides developers with the simplest

method for defining routes, as it does not enforce any specific type of organizational

structure. While this option provides a good starting point for new applications, care

must be taken not to abuse it. This option is often used in combination with enrouten’s

directory and routes configuration options, which we will cover shortly.

Listing 8-13 shows a simple Express application whose routes are configured with

the help of confit, meddleware, and enrouten, along with the accompanying confit

configuration file. Listing 8-14 shows the contents of the module that is passed to enrouten’s

index option. Subsequent examples within this section will build on this example.

Listing 8-13.  Express Application Configured with confit, meddleware, and enrouten

// enrouten-index/index.js

var express = require('express');

var confit = require('confit');

var handlers = require('shortstop-handlers');

var meddleware = require('meddleware');

var path = require('path');

var configDir = path.join(__dirname, 'config');

var app = express();

confit({

 'basedir': configDir,

 'protocols': {

 'path': handlers.path(configDir),

 'require': handlers.require(configDir)

 }

}).create(function(err, config) {

 app.use(meddleware(config.get('middleware')));

 app.listen(7000);

 console.log('App is available at: http://localhost:7000');

});

Chapter 8 Kraken

246

// enrouten-index/config/config.json

{

 "middleware": {

 "morgan": {

 "enabled": true,

 "priority": 10,

 "module": {

 "name": "morgan",

 "arguments": ["combined"]

 }

 },

 "enrouten": {

 "enabled": true,

 "priority": 30,

 "module": {

 "name": "express-enrouten",

 "arguments": [

 {

 "index": "path:../routes/index"

 }

]

 }

 }

 }

}

Listing 8-14.  Contents of the Module Passed to Enrouten’s index Option

// enrouten-index/routes/index.js

module.exports = function(router) {

 router.route('/')

 .get(function(req, res, next) {

 res.send('Hello, world.');

 });

Chapter 8 Kraken

247

 router.route('/api/v1/colors')

 .get(function(req, res, next) {

 res.send([

 'blue', 'green', 'red', 'orange', 'white'

]);

 });

};

�Directory Configuration
Listing 8-15 demonstrates the use of enrouten’s directory configuration option.

When set, enrouten will recursively scan the contents of the specified folder, searching

for modules that export a function accepting a single argument. For each module it

finds, enrouten will pass an Express Router instance that has been mounted to a path

predetermined by that module’s location within the directory structure—a “convention

over configuration” approach.

Listing 8-15.  Setting Enrouten’s directory Configuration Option

// enrouten-directory/config/config.json

{

 "middleware": {

 "enrouten": {

 "enabled": true,

 "priority": 10,

 "module": {

 "name": "express-enrouten",

 "arguments": [{ "directory": "path:../routes" }]

 }

 }

 }

}

Chapter 8 Kraken

248

Figure 8-3 shows the structure of this project’s /routes folder, while Listing 8-16

shows the contents of the /routes/api/v1/accounts/index.js module. Based on this

module’s location within the /routes folder, the URLs for each route that it defines will

be prefixed with /api/v1/accounts.

Listing 8-16.  The /api/v1/accounts Controller

// enrouten-directory/routes/api/v1/accounts/index.js

var _ = require('lodash');

var path = require('path');

module.exports = function(router) {

 var accounts = require(path.join(APPROOT, 'models', 'accounts'));

 /**
 * @route /api/v1/accounts

 */

 router.route('/')

 .get(function(req, res, next) {

 res.send(accounts);

 });

 /**
 * @route /api/v1/accounts/:account_id

 */

 router.route('/:account_id')

 .get(function(req, res, next) {

 var account = _.findWhere(accounts, {

Figure 8-3.  Structure of this project’s /routes folder

Chapter 8 Kraken

249

 'id': parseInt(req.params.account_id, 10)

 });

 if (!account) return next(new Error('Account not found'));

 res.send(account);

 });

};

�Routes Configuration
Enrouten’s directory configuration option provides an approach that favors

“convention over configuration” by automatically determining the structure of an

application’s API based on the layout of a specified folder. This approach provides a

quick and easy method for structuring Express routes in an organized and consistent

way. However, complex applications may eventually come to find this approach to be

rather confining.

Applications with APIs that feature a number of complex, deeply nested routes will

likely find greater benefit from enrouten’s routes configuration option, which allows

developers to create completely separate modules for each of the application’s routes.

API endpoints, methods, handlers, and route-specific middleware are then specified

within configuration files—an organized approach that allows for the greatest degree of

flexibility, at the expense of being slightly more verbose.

Listing 8-17 shows an excerpt from the configuration file for this chapter’s enrouten-

routes project. Here we pass an array of objects to enrouten’s routes configuration

option, the entries of which describe the various routes to be made available by Express.

Note that in addition to specifying a route, HTTP method, and handler, each entry also

has the option of specifying an array of route-specific middleware functions. As a result,

this application is able to apply a middleware function responsible for authorizing

incoming requests on a route-by-route basis. As shown in Listing 8-17, the auth

middleware function is not applied to the route at which users initially sign in, allowing

them to sign in before making subsequent requests.

Chapter 8 Kraken

250

Listing 8-17.  Specifying Individual Routes via Enrouten’s routes

Configuration Option

// enrouten-routes/config/config.json (excerpt)

"arguments": [{

 "index": "path:../routes",

 "routes": [

 {

 "path": "/api/v1/session",

 "method": "POST",

 "handler": "require:../routes/api/v1/session/create"

 },

 {

 "path": "/api/v1/session",

 "method": "DELETE",

 "handler": "require:../routes/api/v1/session/delete",

 "middleware": [

 "require:../middleware/auth"

]

 },

 {

 "path": "/api/v1/users",

 "method": "GET",

 "handler": "require:../routes/api/v1/users/list",

 "middleware": [

 "require:../middleware/auth"

]

 },

 // ...

]

}]

Listing 8-18 shows the contents of the module responsible for handling incoming

GET requests to this application’s /api/v1/users route. The module exports a single

function, which accepts the standard req, res, next Express route handler signature.

Chapter 8 Kraken

251

Listing 8-18.  The /routes/api/v1/users/list Route Handler

var models = require('../../../../lib/models');

module.exports = function(req, res, next) {

 models.User.fetchAll()

 .then(function(users) {

 res.send(users);

 })

 .catch(next);

};

�Dust Templates
Many popular JavaScript template engines (e.g., Mustache and Handlebars) tout

themselves as being “logic-less”—an attribute that describes their ability to help developers

maintain a clear separation of concerns between an application’s business logic and

its presentation layer. When properly maintained, this separation makes it possible for

significant changes to occur within the interface that users are presented with while

requiring minimal (if any) accompanying changes behind the scenes (and vice versa).

So-called “logic-less” template engines accomplish this goal by enforcing a strict

set of rules that prevents developers from creating what is often referred to as “spaghetti

code,” a tangled mess that combines code with presentation in a way that is hard to

grasp and even harder to unravel. Anyone who has ever had to deal with a PHP script

resembling that shown in Listing 8-19 will immediately grasp the importance of

maintaining a layer of separation between these two concerns.

Listing 8-19.  Spaghetti Code, an Unmaintainable Mess

<?php

print "<!DOCTYPE html><head><title>";

$result = mysql_query("SELECT * FROM settings") or die(mysql_error());

print $result[0]["title"] . "</title></head><body><table>";

print "<thead><tr><th>First Name</th><th>Last Name</th></tr></

thead><tbody>";

Chapter 8 Kraken

252

$users = mysql_query("SELECT * FROM users") or die(mysql_error());

while ($row = mysql_fetch_assoc($users)) {

 print "<tr><td>" . $row["first_name"] . "</td><td>" . $row["last_name"]

. "</td></tr>";

}

print "</tbody></table></body></html>";

?>

Logic-less template engines attempt to prevent developers from creating spaghetti

code by banning the use of logic within an application’s views. Such templates are

typically capable of referencing values within a provided payload of information,

iterating through arrays, and toggling specific portions of their content on and off based

on simple boolean logic.

Unfortunately, this rather heavy-handed approach often brings about the very

problems it hoped to prevent, albeit in an unexpected way. Although logic-less template

engines such as Handlebars prevent the use of logic within templates themselves, they

do not negate the need for that logic to exist in the first place. The logic required for

preparing data for template use must exist somewhere, and more often than not, the use

of logic-less template engines results in presentation-related logic spilling over into the

business layer.

Dust, which is the JavaScript template engine favored by Kraken, seeks to solve this

problem by taking an approach that is better thought of as “less-logic” rather than strictly

“logic-less.” By allowing developers to embed slightly more advanced logic within their

templates in the form of “helpers,” Dust allows presentation logic to remain where it

belongs, in the presentation layer, rather than the business layer.

�Context and References
When using Dust templates, two primary components come into play: the template itself

and an (optional) object literal containing any data to be referenced from within the

template. In Listing 8-20, this process is demonstrated by an Express application that has

specified Dust as its rendering engine. Note the use of the adaro module in this example.

The adaro module serves as a convenient wrapper for Dust, abstracting away some

additional setup that would otherwise be necessary to integrate Dust with Express. It

also includes some convenient helper functions by default that we will be covering later

in the chapter.

Chapter 8 Kraken

253

Listing 8-20.  Express Application Using Dust As Its Rendering Engine

// dust-simple/index.js

var express = require('express');

var adaro = require('adaro');

var app = express();

/**
 * �By default, Dust will cache the contents of an application's templates

as they are

 * loaded. In a production environment, this is usually the preferred behavior.

 * �This behavior will be disabled in this chapter's examples, allowing you

to modify

 * templates and see the result without having to restart Express.

 */

app.engine('dust', adaro.dust({

 'cache': false

}));

app.set('view engine', 'dust');

app.use('/', express.static('./public'));

var data = {

 'report_name': 'North American Countries',

 'languages': ['English', 'Spanish'],

 'misc': {

 'total_population': 565000000

 },

 'countries': [

 {

 'name': 'United States',

 'population': 319999999,

 'english': true,

 'capital': { 'name': 'Washington D.C.', 'population': 660000 }

 },

Chapter 8 Kraken

254

 {

 'name': 'Mexico',

 'population': 118000000,

 'english': false,

 'capital': { 'name': 'Mexico City', 'population': 9000000 }

 },

 {

 'name': 'Canada',

 'population': 35000000,

 'english': true,

 'capital': { 'name': 'Ottawa', 'population': 880000 }

 }

]

};

app.get('/', function(req, res, next) {

 res.render('main', data);

});

app.listen(8000);

In Listing 8-20, an object literal containing an array of North American countries

(referred to by Dust as a “context”) is passed to a Dust template, the content of which is

shown in Listing 8-21. Within this template, data is referenced by wrapping the desired

key within a single pair of curly brackets. Nested properties can also be referenced

through the use of dot notation ({misc.total_population}).

Listing 8-21.  Accompanying main Dust Template

// dust-simple/views/main.dust

<!DOCTYPE html>

<html lang="en">

<head>

 <meta charset="utf-8">

 <meta http-equiv="X-UA-Compatible" content="IE=edge">

 <meta name="viewport" content="width=device-width, initial-scale=1">

 <title>App</title>

 <link href="/css/style.css" rel="stylesheet">

Chapter 8 Kraken

255

</head>

<body>

 �{! Dust comments are created using this format. Data is referenced by

wrapping the

 desired key within a single pair of curly brackets, as shown below. !}

 <h1>{report_name}</h1>

 <table>

 <thead>

 <tr>

 <th>Name</th>

 <th>Population</th>

 <th>Speaks English</th>

 <th>Capital</th>

 <th>Population of Capital</th>

 </tr>

 </thead>

 <tbody>

 {! Templates can loop through iterable objects !}

 {#countries}

 <tr>

 <td>{name}</td>

 <td>{population}</td>

 <td>{?english}Yes{:else}No{/english}</td>

 {#capital}

 <td>{name}</td>

 <td>{population}</td>

 {/capital}

 </tr>

 {/countries}

 </tbody>

 </table>

 <h2>Languages</h2>

 {#languages}

 {.}

 {/languages}

Chapter 8 Kraken

256

 <h2>Total Population: {misc.total_population}</h2>

</body>

</html>

�Sections
As Dust goes about its rendering process, it fetches referenced data by applying one

or more “contexts” to the template in question. The simplest templates have a single

context that references the outermost level of the JSON object that was passed. For

example, consider the template shown in Listing 8-21, in which two references are

used, {report_name} and {misc.total_population}. Dust processes these references

by searching for matching properties (starting at the outermost level) within the object

shown in Listing 8-20.

Dust sections provide a convenient method by which additional contexts can be

created, allowing a template to access nested properties without requiring references

that start at the outermost level. For example, consider Listing 8-22, in which a new

context, {#misc}...{/misc}, is created, allowing nested properties to be accessed using

a shorter syntax.

Listing 8-22.  Creating a New Dust Section

// Template

<h1>{report_name}</h1>

{#misc}

<p>Total Population: {total_population}</p>

{/misc}

// Rendered Output

<h1>Information About North America</h1>

<p>Total Population: 565000000</p>

�Iteration
In the previous example, a new Dust section (and corresponding context) was created.

As a result, the contents of the new section received direct access to the properties of the

object literal that was referenced. In much the same way, Dust sections can also be used to

Chapter 8 Kraken

257

iterate through the entries of an array. Listing 8-23 demonstrates this process by creating

a new section that references the countries array. Unlike the section from the previous

example, which was applied only once, the {#countries} ... {/countries} section will

be applied multiple times, once for each entry within the array that it references.

Listing 8-23.  Iterating Through an Array with Sections

// Template

{#countries}

{! The current position within the iteration can be referenced at `$idx` !}

{! The size of the object through which we are looping can be referenced at

`$len` !}

<tr>

 <td>{name}</td>

 <td>{population}</td>

 <td>{capital.name}</td>

 <td>{capital.population}</td>

</tr>

{/countries}

// Rendered Output

<tr>

 <td>United States</td>

 <td>319999999</td>

 <td>Washington D.C.</td>

 <td>660000</td>

</tr>

<tr>

 <td>Mexico</td>

 <td>118000000</td>

 <td>Mexico City</td>

 <td>9000000</td>

</tr>

Chapter 8 Kraken

258

<tr>

 <td>Canada</td>

 <td>35000000</td>

 <td>Ottawa</td>

 <td>880000</td>

</tr>

Listing 8-24 demonstrates the process by which a template can loop through an array

whose entries are primitive data types (i.e., not objects). For each iteration, the value

itself can be directly referenced via the {.} syntax.

Listing 8-24.  Iterating Through an Array Containing Primitive Data Types

// Template

 {#languages}{.}{/languages}

// Rendered Output

 English

 Spanish

�Conditionality
Dust provides built-in support for conditionally rendering content, based on whether

a simple truth test is passed. The template shown in Listing 8-25 demonstrates this

concept by rendering the text “Yes” or “No” based on whether each country’s english

property references a “truthy” value.

Listing 8-25.  Applying Conditionality Within a Dust Template

// Template

{#countries}

<tr>

 <td>{name}</td>

 <td>{?english}Yes{:else}No{/english}</td>

Chapter 8 Kraken

259

 {!

 The opposite logic can be applied as shown below:

 <td>{^english}No{:else}Yes{/english}</td>

 !}

</tr>

{/countries}

// Rendered Output

<tr>

 <td>United States</td>

 <td>Yes</td>

</tr>

<tr>

 <td>Mexico</td>

 <td>No</td>

</tr>

<tr>

 <td>Canada</td>

 <td>Yes</td>

</tr>

Note  When applying conditionality within a template, it is important to understand
the rules that Dust will apply as it determines the “truthiness” of a property. Empty
strings, boolean false, empty arrays, null, and undefined are all considered to be
false. The number 0, empty objects, and string-based representations for “0,” “null,”
“undefined,” and “false” are all considered to be true.

�Partials
One of Dust’s most powerful features, partials, allows developers to include templates

within other templates. As a result, complex documents can be broken down into

smaller components (i.e., “partials”) that are easier to manage and reuse. A simple

example that demonstrates this process is shown in Listing 8-26.

Chapter 8 Kraken

260

Listing 8-26.  Dust Template That References an External Template (i.e., “Partial”)

// Main Template

<h1>{report_name}</h1>

<p>Total Population: {misc.total_population}</p>

{>"countries"/}

{!

 �In this example, an external template - `countries` - is included by a

parent

 �template which references it by name (using a string literal that is

specified

 �within the template itself). Alternatively, the name of the external

template

 �could have been derived from a value held within the template's

context, using

 Dust's support for "dynamic" partials. To do so, we would have wrapped the

 `countries` string in a pair of curly brackets, as shown here:

 {>"{countries}"/}

!}

// "countries" template

{#countries}

<tr>

 <td>{name}</td>

 <td>{population}</td>

 <td>{capital.name}</td>

 <td>{capital.population}</td>

</tr>

{/countries}

// Rendered Output

<h1>Information About North America</h1>

<p>Total Population: 565000000</p>

<tr>

 <td>United States</td>

 <td>Yes</td>

</tr>

Chapter 8 Kraken

261

<tr>

 <td>Mexico</td>

 <td>No</td>

</tr>

<tr>

 <td>Canada</td>

 <td>Yes</td>

</tr>

�Blocks
Consider a commonly encountered scenario in which a complex web application

consisting of multiple pages is created. Each of these pages displays a unique set of

content while at the same time sharing common elements, such as headers and footers,

with the other pages. With the help of Dust blocks, developers can define these shared

elements in a single location. Afterward, templates that wish to inherit from them can,

while also retaining the ability to overwrite their content when necessary.

Let’s take a look at an example that should help to clarify this point. Listing 8-27

shows the content of a Dust template that defines the overall layout of a site. In this

instance, a default page title is specified, {+title}App{/title}, along with an empty

placeholder for body content.

Listing 8-27.  Dust Block from Which Other Templates Can Inherit

// dust-blocks/views/shared/base.dust

<!DOCTYPE html>

<html lang="en">

<head>

 <meta charset="utf-8">

 <meta http-equiv="X-UA-Compatible" content="IE=edge">

 <meta name="viewport" content="width=device-width, initial-scale=1">

 <title>{+title}App{/title}</title>

 <link href="/css/style.css" rel="stylesheet">

</head>

Chapter 8 Kraken

262

<body>

 {+bodyContent/}

</body>

</html>

Listing 8-28 shows the content of a Dust template that inherits from the example

presented in Listing 8-27. It does so by first embedding the parent template within itself

as a partial ({>"shared/base"/}). Next, it injects content into the {+bodyContent/}

placeholder that was defined, {<bodyContent}...{/bodyContent}. In this instance, our

template chooses not to overwrite the default page title that was specified in our parent

template.

Listing 8-28.  Dust Template Inheriting from a Block

 // dust-blocks/views/main.dust

{>"shared/base"/}

{<bodyContent}

 <p>Hello, world!</p>

{/bodyContent}

�Filters
Dust includes several built-in filters that allow a template to modify a value before it is

rendered. By way of an example, consider the fact that Dust will automatically HTML

escape any values referenced within a template. In other words, if a context were to

contain a content key with a value matching that shown here:

<script>doBadThings();</script>

Dust would automatically render this value as

<script>doBadThings()</script>

While the behavior that we see here is typically desired, it is not uncommon to run

into situations in which this behavior needs to be disabled. This can be accomplished

through the use of a filter:

{content|s}

Chapter 8 Kraken

263

�Creating Custom Filters

In addition to providing several core filters, Dust also makes it easy for developers

to extend this behavior by creating their own custom filters, such as that shown in

Listing 8-29. In this example, a custom formatTS filter is created. When applied, this filter

will convert a referenced timestamp to a human-readable format (e.g., Jul. 4, 1776).

Listing 8-29.  Defining a Custom Dust Filter

// dust-filters/index.js

var express = require('express');

var adaro = require('adaro');

var app = express();

var moment = require('moment');

app.engine('dust', adaro.dust({

 'cache': false,

 'helpers': [

 function(dust) {

 dust.filters.formatTS = function(ts) {

Table 8-1.  List of Built-in Filters Provided by Dust

Filter Description

s Disables HTML escaping

h Forces HTML escaping

j Forces JavaScript escaping

u Encodes with encodeURI()

uc Encodes with encodeURIComponent()

js Stringifies a JSON literal

jp Parses a JSON string

In this example, the |s filter disables auto-escaping for the referenced value.

Table 8-1 contains a list of the built-in filters provided by Dust.

Chapter 8 Kraken

264

 return moment(ts, 'X').format('MMM. D, YYYY');

 };

 }

]

}));

app.set('view engine', 'dust');

app.use('/', express.static('./public'));

app.get('/', function(req, res, next) {

 res.render('main', {

 'events': [

 { 'label': 'Moon Landing', 'ts': -14558400 },

 { 'label': 'Fall of Berlin Wall', 'ts': 626616000 },

 { 'label': 'First Episode of Who\'s the Boss', 'ts': 464529600

}

]

 });

});

// dust-filters/views/main.dist (excerpt)

<tbody>

 {#events}

 <tr>

 <td>{label}</td>

 <td>{ts|formatTS}</td>

 </tr>

 {/events}

</tbody>

�Context Helpers
In addition to storing data, Dust contexts are also capable of storing functions (referred

to as “context helpers”), the output of which can later be referenced by the templates

to which they are passed. In this way, a Dust context can be thought of as more than a

simple payload of raw information, but rather as a view model, a mediator between an

Chapter 8 Kraken

265

application’s business logic and its views, capable of formatting information in the most

appropriate manner along the way.

This feature is demonstrated by the example shown in Listing 8-30, in which an

application presents the user with a table of servers. Each entry displays a name, along

with a message indicating whether each server is online. A header displays the overall

health of the system, which is generated by the systemStatus() context helper. Note

that the template is able to reference our context helper just as it would any other type of

value (e.g., object literals, arrays, numbers, strings).

Listing 8-30.  Dust Context Helper

// dust-context-helpers1/index.js (excerpt)

app.all('/', function(req, res, next) {

 res.render('main', {

 'servers': [

 { 'name': 'Web Server', 'online': true },

 { 'name': 'Database Server', 'online': true },

 { 'name': 'Email Server', 'online': false }

],

 'systemStatus': function(chunk, context, bodies, params) {

 var offlineServers = _.filter(this.servers, { 'online': false });

 return offlineServers.length ? 'Bad' : 'Good';

 }

 });

});

// dust-context-helpers1/views/main.dust (excerpt)

<h1>System Status: {systemStatus}</h1>

<table>

 <thead><tr><th>Server</th><th>Online</th></tr></thead>

 <tbody>

 {#servers}

 <tr>

 <td>{name}</td>

 <td>{?online}Yes{:else}No{/online}</td>

 </tr>

Chapter 8 Kraken

266

 {/servers}

 </tbody>

</table>

As shown in this example, every Dust context helper receives four arguments:

chunk, context, bodies, and params. Let’s take a look at a few examples that demonstrate

their usage.

�chunk

A context helper’s chunk argument provides it with access to the current portion of

the template being rendered—referred to by Dust as a “chunk.” By way of an example,

consider Listing 8-31, in which a context helper is paired with default content that is

defined within the template. In this example, the systemStatus() context helper can

choose to override the chunk’s default content, “Unknown,” with its own value by calling

the chunk.write() method. The helper can indicate that it has chosen to do so by

returning chunk as its value.

Listing 8-31.  Dust Context Helper Paired with Default Content

// dust-context-helpers2/index.js (excerpt)

app.all('/', function(req, res, next) {

 res.render('main', {

 'servers': [

 { 'name': 'Web Server', 'online': true },

 { 'name': 'Database Server', 'online': true },

 { 'name': 'Email Server', 'online': false }

],

 'systemStatus': function(chunk, context, bodies, params) {

 if (!this.servers.length) return;

 if (_.filter(this.servers, { 'online': false }).length) {

 return chunk.write('Bad');

 } else {

 return chunk.write('Good');

 }

 }

 });

Chapter 8 Kraken

267

});

// dust-context-helpers2/views/main.dust (excerpt)

<h1>System Status: {#systemStatus}Unknown{/systemStatus}</h1>

�context

The context argument provides context helpers with convenient access to the

active section of the context, as determined by the template. The template shown in

Listing 8-32 demonstrates this by referencing the isOnline() context helper once for

every server it has been passed. Each time, the isOnline() helper fetches the value of

the active section’s online property via context.get().

Listing 8-32.  The context Argument Provides Context Helpers with Access to

the Active Section

// dust-context-helpers3/index.js (excerpt)

app.all('/', function(req, res, next) {

 res.render('main', {

 'servers': [

 { 'name': 'Web Server', 'online': true },

 { 'name': 'Database Server', 'online': true },

 { 'name': 'Email Server', 'online': false }

],

 'systemStatus': function(chunk, context, bodies, params) {

 �return _.filter(this.servers, { 'online': false }).length ?

'Bad': 'Good';

 },

 'isOnline': function(chunk, context, bodies, params) {

 return context.get('online') ? 'Yes' : 'No';

 }

 });

});

// dust-context-helpers3/views/main.dust (excerpt)

<h1>System Status: {systemStatus}</h1>

Chapter 8 Kraken

268

<table>

 <thead><tr><th>Server</th><th>Online</th></tr></thead>

 <tbody>

 {#servers}

 <tr>

 <td>{name}</td>

 <td>{isOnline}</td>

 </tr>

 {/servers}

 </tbody>

</table>

�bodies

Imagine a scenario in which large portions of a template’s content are determined

by one or more context helpers. Instead of forcing developers to concatenate strings

in an unwieldy fashion, Dust allows such content to remain where it belongs—in the

template—available as options from which a context helper can choose to render.

Listing 8-33 demonstrates this by passing four different bodies of content to the

description() context helper. The helper’s bodies argument provides it with references

to this content, which it can then choose to render by passing the appropriate value to

chunk.render().

Listing 8-33.  Selectively Rendering Portions of a Template via the bodies

Argument

// dust-context-helpers4/index.js (excerpt)

app.all('/', function(req, res, next) {

 res.render('main', {

 'servers': [

 { 'name': 'Web Server', 'online': true },

 { 'name': 'Database Server', 'online': true },

 { 'name': 'Email Server', 'online': false },

 { 'name': 'IRC Server', 'online': true }

],

 'systemStatus': function(chunk, context, bodies, params) {

Chapter 8 Kraken

269

 �return _.filter(this.servers, { 'online': false }).length ?

'Bad': 'Good';

 },

 'isOnline': function(chunk, context, bodies, params) {

 return context.get('online') ? 'Yes' : 'No';

 },

 'description': function(chunk, context, bodies, params) {

 switch (context.get('name')) {

 case 'Web Server':

 return chunk.render(bodies.web, context);

 break;

 case 'Database Server':

 return chunk.render(bodies.database, context);

 break;

 case 'Email Server':

 return chunk.render(bodies.email, context);

 break;

 }

 }

 });

});

// dust-context-helpers4/index.js (excerpt)

<h1>System Status: {systemStatus}</h1>

<table>

�<thead><tr><th>Server</th><th>Online</th><th>Description</th></tr></thead>

 <tbody>

 {#servers}

 <tr>

 <td>{name}</td>

 <td>{isOnline}</td>

 <td>

 {#description}

 {:web}

 A web server serves content over HTTP.

Chapter 8 Kraken

270

 {:database}

 �A database server fetches remotely stored

information.

 {:email}

 An email server sends and receives messages.

 {:else}

 -

 {/description}

 </td>

 </tr>

 {/servers}

 </tbody>

</table>

�params

In addition to referencing properties of the context in which it is called (via context.

get()), a context helper can also access parameters that have been passed to it by a

template. The example shown in Listing 8-34 demonstrates this by passing each server’s

uptime property to the formatUptime() context helper. In this example, the helper

converts the provided value, params.value, into a more easily readable form before

writing it out to the chunk.

Listing 8-34.  Context Helpers Can Receive Parameters via the params Argument

// dust-context-helpers5/index.js (excerpt)

app.all('/', function(req, res, next) {

 res.render('main', {

 'servers': [

 { 'name': 'Web Server', 'online': true, 'uptime': 722383 },

 { 'name': 'Database Server', 'online': true, 'uptime': 9571 },

 { 'name': 'Email Server', 'online': false, 'uptime': null }

],

 'systemStatus': function(chunk, context, bodies, params) {

 �return _.filter(this.servers, { 'online': false }).length ?

'Bad': 'Good';

Chapter 8 Kraken

271

 },

 'formatUptime': function(chunk, context, bodies, params) {

 if (!params.value) return chunk.write('-');

 chunk.write(moment.duration(params.value, 'seconds').humanize());

 }

 });

});

// dust-context-helpers5/views/main.dust (excerpt)

{#servers}

 <tr>

 <td>{name}</td>

 <td>{?online}Yes{:else}No{/online}</td>

 <td>{#formatUptime value=uptime /}</td>

 </tr>

{/servers}

In Listing 8-35, we see a slightly more complex demonstration of context helper

parameters at work. In this example, the parseLocation() helper receives a string

in which context properties are referenced: value="{name} lives in {location}".

In order for these references to be correctly interpreted, the parameter must first be

evaluated with the help of Dust’s helpers.tap() method.

Listing 8-35.  Parameters That Reference Context Properties Must Be Evaluated

// dust-context-helpers6/index.js

var express = require('express');

var adaro = require('adaro');

var app = express();

var morgan = require('morgan');

app.use(morgan('combined'));

var engine = adaro.dust();

var dust = engine.dust;

app.engine('dust', engine);

app.set('view engine', 'dust');

app.use('/', express.static('./public'));

Chapter 8 Kraken

272

app.all('/', function(req, res, next) {

 res.render('main', {

 'people': [

 { 'name': 'Joe', 'location': 'Chicago' },

 { 'name': 'Mary', 'location': 'Denver' },

 { 'name': 'Steve', 'location': 'Oahu' },

 { 'name': 'Laura', 'location': 'Nashville' }

],

 'parseLocation': function(chunk, context, bodies, params) {

 var content = dust.helpers.tap(params.value, chunk, context);

 return chunk.write(content.toUpperCase());

 }

 });

});

app.listen(8000);

// dust-context-helpers6/views/main.dust

{#people}

 {#parseLocation value="{name} lives in {location}" /}

{/people}

�Asynchronous Context Helpers

Helper functions provide Dust with much of its power and flexibility. They allow a

context object to serve as a view model—an intelligent bridge between an application’s

business logic and its user interface, capable of fetching information and formatting

it appropriately for a specific use case before passing it along to one or more views for

rendering. But as useful as this is, we’ve really only begun to scratch the surface in terms

of how these helper functions can be applied to powerful effect.

In addition to returning data directly, Dust helper functions are also capable of

returning data asynchronously, a process that is demonstrated by the example shown

in Listing 8-36. Here we create two context helpers, cars() and trucks(). The former

returns an array, while the latter returns a promise that resolves to an array. From the

template’s perspective, both of these functions are consumed identically.

Chapter 8 Kraken

273

Listing 8-36.  Helper Functions Can Return Promises

// dust-promise1/index.js (excerpt)

app.get('/', function(req, res, next) {

 res.render('main', {

 'cars': function(chunk, context, bodies, params) {

 return ['Nissan Maxima', 'Toyota Corolla', 'Volkswagen Jetta'];

 },

 'trucks': function(chunk, context, bodies, params) {

 return new Promise(function(resolve, reject) {

 resolve(['Chevrolet Colorado', 'GMC Canyon', 'Toyota Tacoma']);

 });

 }

 });

});

// dust-promise1/views/main.dust (excerpt)

<h1>Cars</h1>

{#cars}{.}{/cars}

<h2>Trucks</h1>

{#trucks}{.}{/trucks}

Dust also provides a convenient method for conditionally displaying content, in the

event that a promise is rejected. This process is demonstrated by Listing 8-37.

Listing 8-37.  Handling Rejected Promises

// dust-promise2/index.js (excerpt)

app.get('/', function(req, res, next) {

 res.render('main', {

 'cars': function(chunk, context, bodies, params) {

 return ['Nissan Maxima', 'Toyota Corolla', 'Volkswagen Jetta'];

 },

Chapter 8 Kraken

274

 'trucks': function(chunk, context, bodies, params) {

 return new Promise(function(resolve, reject) {

 reject('Unable to fetch trucks.');

 });

 }

 });

});

// dust-promise2/views/main.dust (excerpt)

<h1>Cars</h1>

{#cars}{.}{/cars}

<h2>Trucks</h1>

{#trucks}

 {.}

 {:error}

 An error occurred. We were unable to get a list of trucks.

{/trucks}

Having the ability to feed information to a template in the form of promises is

useful for a number of reasons, but things begin to get much more interesting when

this functionality is paired with Dust’s streaming interface. To better understand this,

consider Listing 8-38, which largely mirrors our previous example. In this instance,

however, we take advantage of Dust’s streaming interface to push portions of our

template down to the client as they are rendered, rather than waiting for the entire

process to complete.

Listing 8-38.  Streaming a Template to the Client As Data Becomes Available

// dust-promise2/index.js

var Promise = require('bluebird');

var express = require('express');

var adaro = require('adaro');

var app = express();

var engine = adaro.dust();

var dust = engine.dust;

app.engine('dust', engine);

Chapter 8 Kraken

275

app.set('view engine', 'dust');

app.use('/', express.static('./public'));

app.get('/', function(req, res, next) {

 dust.stream('views/main', {

 'cars': ['Nissan Maxima', 'Toyota Corolla', 'Volkswagen Jetta'],

 'trucks': function(chunk, context, bodies, params) {

 return new Promise(function(resolve, reject) {

 setTimeout(function() {

 �resolve(['Chevrolet Colorado', 'GMC Canyon', 'Toyota

Tacoma']);

 }, 4000);

 });

 }

 }).pipe(res);

});

app.listen(8000);

Depending on the complexity of the template in question, the impact this approach

can have on user experience can often be dramatic. Rather than forcing users to wait for

an entire page to load before they can proceed, this approach allows us to push content

down to the client as it becomes available. As a result, the delay that users perceive when

accessing an application can often be reduced significantly.

�Dust Helpers
In the previous section, we explored how context objects can be extended to include

logic that is relevant to a specific view through the use of context helpers. In a similar

manner, Dust allows helper functions to be defined at a global level, making them

available to all templates without being explicitly defined within their contexts.

Dust comes packaged with a number of such helpers. By taking advantage of them,

developers can more easily solve many of the challenges that are often encountered

when working with stricter, logic-less template solutions.

Listing 8-39 shows an excerpt of the JSON data that will be referenced by the rest of

this section’s examples.

Chapter 8 Kraken

276

Listing 8-39.  Excerpt of the JSON Data Passed to a Dust Template

// dust-logic1/people.json (excerpt)

[{

 "name": "Joe", "location": "Chicago", "age": 27,

 "education": "high_school", "employed": false, "job_title": null

}, {

 "name": "Mary", "location": "Denver", "age": 35,

 "education": "college", "employed": true, "job_title": "Chef"

}]

�Logic Helpers

Listing 8-40 demonstrates the usage of a Dust logic helper, @eq, with which we can perform

a strict comparison between two specified values, key and value. In this example, the

first value, job_title, references a property within the current context. The second value,

"Chef", is defined as a literal value from within the template.

Listing 8-40.  Using a Dust Logic Helper to Conditionally Display Content

// dust-logic1/views/main.dust (excerpt)

{#people}

 {@eq key=job_title value="Chef"}

 <p>{name} is a chef. This person definitely knows how to cook.</p>

 {:else}

 �<p>{name} is not a chef. This person may or may not know how to

cook.</p>

 {/eq}

{/people}

Knowing this, imagine a scenario in which we want to perform a strict equality check

between two numbers, one of which is referenced as a context property, while the other

is specified as a literal from within the template. In order to do so, we must cast our literal

value to the appropriate type, as shown in Listing 8-41.

Chapter 8 Kraken

277

�Switch Statements

The frequently used @select helper provides a method by which we can mimic switch

(...) statements, making it possible for a template to specify multiple variations of

content based on a specified value (see Listing 8-42).

Listing 8-42.  Mimicking a switch Statement with the @select Helper

{@gte key=age value=retirement_age}

 <p>{name} has reached retirement age.</p>

 {:else}

 <p>

 {@select key=job_title}

 {@eq value="Chef"}Probably went to culinary school, too.{/eq}

Listing 8-41.  Casting a Literal Value to the Desired Type

{#people}

 {@eq key=age value="27" type="number"}

 <p>{name} is 27 years old.</p>

 {/eq}

{/people}

Dust provides a number of logic helpers with which simple comparisons can be

made. Their names and descriptions are listed in Table 8-2.

Table 8-2.  Logic Helpers Provided by Dust

Logic Helper Description

@eq Strictly equal to

@ne Not strictly equal to

@gt Greater than

@lt Less than

@gte Greater than or equal to

@lte Less than or equal to

Chapter 8 Kraken

278

 {@eq value="Professor"}Smarty pants.{/eq}

 {@eq value="Accountant"}Good with numbers.{/eq}

 {@eq value="Astronaut"}Not afraid of heights.{/eq}

 {@eq value="Pilot"}Travels frequently.{/eq}

 {@eq value="Stunt Double"}Fearless.{/eq}

 {! @none serves as a `default` case !}

 {@none}Not sure what I think.{/none}

 {/select}

 </p>

{/gte}

�Iteration Helpers

Dust provides three useful helpers for tackling problems that are frequently encountered

when dealing with iteration. For example, Listing 8-43 demonstrates the use of the @sep

helper, with which we can define content that will be rendered for every iteration except

the last.

Listing 8-43.  Ignoring Content During a Loop’s Last Iteration with @sep

// dust-logic1/views/main.dust (excerpt)

{#people}{name}{@sep}, {/sep}{/people}

// output

Joe, Mary, Wilson, Steve, Laura, Tim, Katie, Craig, Ryan

Dust provides a total of three helpers for tackling iteration challenges. These are

listed in Table 8-3.

Table 8-3.  Iteration Helpers

Iteration Helper Description

@sep Renders content for every iteration, except the last

@first Renders content only for the first iteration

@last Renders content only for the last iteration

Chapter 8 Kraken

279

�Mathematical Expressions

Using Dust’s @math helper, templates can adjust their content based on the result of

a mathematical expression. Such adjustments can take place in one of two ways. The

first is demonstrated in Listing 8-44, in which the result of a mathematical expression

is referenced directly within a template. The second is demonstrated in Listing 8-45, in

which content is conditionally rendered based on the result of a call to the @math helper.

Listing 8-44.  Directly Referencing the Result of a Mathematical Expression

// dust-logic1/views/main.dust (excerpt)

{#people}

 {@lt key=age value=retirement_age}

 <p>{name} will have reached retirement age in

 �{@math key=retirement_age method="subtract" operand=age /}

year(s).</p>

 {/lt}

{/people}

Listing 8-45.  Conditionally Rendering Content Based on the Result of a Call to

the @math Helper

// dust-logic1/views/main.dust (excerpt)

{#people}

 {@lt key=age value=retirement_age}

 {@math key=retirement_age method="subtract" operand=age}

 {@lte value=10}{name} will reach retirement age fairly soon.{/lte}

 �{@lte value=20}{name} has quite a ways to go before they can

retire.{/lte}

 {@default}{name} shouldn't even think about retiring.{/default}

 {/math}

 {/lt}

{/people}

The various “methods” supported by Dust’s @math helper include add, subtract,

multiply, divide, mod, abs, floor, and ceil.

Chapter 8 Kraken

280

�Context Dump

Useful during development, Dust’s @contextDump helper allows you to quickly render

the current context object (in JSON format), providing insight into the values Dust sees

within the section in which it is called. An example of its usage is shown here:

{#people}<pre>{@contextDump /}</pre>{/people}

�Custom Helpers

Earlier in the chapter, you learned how to create context helpers with which context

objects can be extended to include custom functionality. In the same way, custom Dust

helpers can also be created at the global level. Listing 8-46 provides a demonstration of

how this can be applied.

Listing 8-46.  Creating and Using a Custom Dust Helper

// dust-logic1/index.js (excerpt)

dust.helpers.inRange = function(chunk, context, bodies, params) {

 if (params.key >= params.lower && params.key <= params.upper) {

 return chunk.render(bodies.block, context);

 } else {

 return chunk;

 }

}

// dust-logic1/views/main.dust (excerpt)

{#people}

 {@gte key=age value=20}

 {@lte key=age value=29}<p>This person is in their 20's.</p>{/lte}

 {/gte}

 �{@inRange key=age lower=20 upper=29}<p>This person is in their 20's.

</p>{/inRange}

{/people}

In this example’s template, a loop is created in which we iterate through each person

defined within the context. For each person, a message is displayed if they happen

Chapter 8 Kraken

281

Figure 8-4.  Creating a Kraken application using the Yeoman generator

to fall within the 20-something age bracket. First, this message is displayed using a

combination of preexisting logic helpers, @gte and @lt. Next, the message is displayed

again, using a custom @inRange helper that has been defined at the global level.

Now that you are familiar with many of the fundamental components that Kraken

relies on, let’s move forward with creating our first real Kraken application.

�Let’s Get Kraken
In this book’s first section on development tools, we covered four useful utilities that

help manage many of the tasks associated with web development—among them: Bower,

Grunt, and Yeoman. Kraken relies on each of these tools, along with a Yeoman generator

that will assist us in building out the initial structure of our project. If you have not

already done so, you should install these modules globally via npm, as shown here:

$ npm install -g yo generator-kraken bower grunt-cli

Creating a new Kraken project with Yeoman is an interactive process. In this

example, we pass the generator a name for our new project (app), at which point it

begins to prompt us with questions. Figure 8-4 shows the steps that were taken to create

this chapter’s app project.

Chapter 8 Kraken

282

Once you have answered these questions, the generator will create the project’s

initial file structure and begin installing the necessary dependencies. Afterward, you

should find a new app folder containing the contents of the project, which should

resemble that shown in Figure 8-5.

Kraken’s Yeoman generator has automated the process of creating a new Express

application that is organized using modules that were previously covered in this chapter.

We can immediately launch the project in its current state as shown in Listing 8-47.

Afterward, the project can be accessed at a local address (see Figure 8-6).

Figure 8-5.  Initial file structure for the app project

Chapter 8 Kraken

283

Listing 8-47.  Launching the Project for the First Time

$ npm start

> app@0.1.0 start /Users/tim/temp/app

> node server.js

Server listening on http://localhost:8000

Application ready to serve requests.

Environment: development

As you can see, our project has been preconfigured (with the help of confit and

meddleware) to use a number of helpful middleware modules (e.g., cookieParser,

session, etc.). For some additional insight into how all of this comes together, Listing 8-48

shows the contents of the project’s index.js script.

Listing 8-48.  Contents of Our New Project’s index.js Script

// app/index.js

var express = require('express');

var kraken = require('kraken-js');

var options, app;

/*
 * �Create and configure application. Also exports application instance for

use by tests.

 * �See https://github.com/krakenjs/kraken-js#options for additional

configuration options.

 */

options = {

Figure 8-6.  Viewing the project in the browser for the first time

Chapter 8 Kraken

284

 onconfig: function (config, next) {

 /*
 * �Add any additional config setup or overrides here. `config` is

an initialized

 * `confit` (https://github.com/krakenjs/confit/) configuration object.

 */

 next(null, config);

 }

};

app = module.exports = express();

app.use(kraken(options));

app.on('start', function () {

 console.log('Application ready to serve requests.');

 console.log('Environment: %s', app.kraken.get('env:env'));

});

The kraken-js module, which we see here, is nothing more than a standard Express

middleware library. However, instead of simply augmenting Express with some small bit

of additional functionality, Kraken takes responsibility for configuring a complete Express

application. It will do so with the help of many other modules, including those that have

already been covered in this chapter: confit, meddleware, enrouten, and adaro.

As shown in Listing 8-48, Kraken is passed a configuration object containing an

onconfig() callback function, which will be called after Kraken has taken care of

initializing confit for us. Here we can provide any last-minute overrides that we may not

want to define directly within the project’s JSON configuration files. In this example, no

such overrides are made.

�Controllers, Models, and Tests

In this chapter’s “Structured Route Registration” section, we discovered how enrouten

can help bring order to the often haphazard manner in which Express routes are defined.

By default, a new Kraken project is set up to use enrouten’s directory configuration

option, allowing it to recursively scan the contents of a specified folder, searching for

modules that export a function accepting a single argument (i.e., router). For each

module it finds (referred to as a “controller”), enrouten will pass an Express Router

Chapter 8 Kraken

285

instance that has been mounted to a path predetermined by that module’s location

within the directory structure. We can see this process in action by looking at the default

controller that Kraken has created for our project, shown in Listing 8-49.

Listing 8-49.  Our Project’s Default Controller

// app/controllers/index.js

var IndexModel = require('../models/index');

module.exports = function (router) {

 var model = new IndexModel();

 /**
 * �The default route served for us when we access the app at: http://

localhost:8000

 */

 router.get('/', function (req, res) {

 res.render('index', model);

 });

};

In addition to creating a default controller for our project, Kraken has also taken

care of creating a corresponding model, IndexModel, which you can see referenced in

Listing 8-49. We will discuss Kraken’s relationship with models shortly, but first, let’s

walk through the process of creating a new controller of our own.

Chapter 2, which covered Yeoman, demonstrated that generators have the ability

to provide subcommands capable of providing developers with functionality whose

usefulness extends well beyond the initial creation of a project. Kraken’s Yeoman

generator takes advantage of this by providing a controller subcommand, with

which new controllers can quickly be created. By way of an example, let’s create a new

controller that will be responsible for managing a collection of RSS feeds:

$ yo kraken:controller feeds

Chapter 8 Kraken

286

After specifying our desired path, feeds, to the generator’s controller

subcommand, five new files are automatically created for us:

•	 controllers/feeds.js: Controller

•	 models/feeds.js: Model

•	 test/feeds.js: Test suite

•	 public/templates/feeds.dust: Dust template

•	 locales/US/en/feeds.properties: Internationalization settings

For the moment, let’s place our focus on the first three files listed here, starting with

the model. We’ll take a look at the accompanying Dust template and internalization

settings file in the next section.

The Model

Listing 8-50 shows the initial state of our project’s new feeds model. If you were

expecting something sophisticated, you will likely be disappointed. As you can see, this

file serves as little more than a generic stub that we are expected to replace with our own

persistence layer.

Listing 8-50.  Initial Contents of the feeds Model

// models/feeds.js

module.exports = function FeedsModel() {

 return {

 name: 'feeds'

 };

};

Unlike many other “full-stack” frameworks that attempt to provide developers with

tools that address every conceivable need (including data persistence), Kraken takes

a minimalistic approach that does not attempt to reinvent the wheel. This approach

recognizes that developers already have access to a wide variety of well-supported libraries

for managing data persistence, two of which are covered by this book: Knex/Bookshelf

and Mongoose.

Chapter 8 Kraken

287

By way of an example, let’s update this module so that it exports a Bookshelf model

capable of fetching and storing information within a feeds table stored in a SQLite

database. Listing 8-51 shows the updated contents of the feeds model.

Listing 8-51.  Updated feeds Model That Uses Knex/Bookshelf

// models/feeds.js

var bookshelf = require('../lib/bookshelf');

var Promise = require('bluebird');

var feedRead = require('feed-read');

var Feed = bookshelf.Model.extend({

 'tableName': 'feeds',

 'getArticles': function() {

 var self = this;

 return Promise.fromNode(function(callback) {

 feedRead(self.get('url'), callback);

 });

 }

});

module.exports = Feed;

Note T he updated model shown in Listing 8-51 assumes that you are already
familiar with the Knex and Bookshelf libraries, along with the steps necessary
to configure them. If that is not the case, you may want to read Chapter 10.
Regardless, this chapter’s app project provides a fully functioning demonstration of
the code shown here.

The Controller

Listing 8-52 shows the initial contents of our project’s new feeds controller. As with

the original controller that accompanied our project, this controller references a

corresponding model that Kraken has conveniently created for us, which we have

already seen.

Chapter 8 Kraken

288

Listing 8-52.  Initial Contents of the feeds Controller

// controllers/feeds.js

var FeedsModel = require('../models/feeds');

/**
 * @url http://localhost:8000/feeds

 */

module.exports = function (router) {

 var model = new FeedsModel();

 router.get('/', function (req, res) {

 });

};

In its default state, the feeds controller accomplishes very little. Let’s update this

controller to include a few additional routes that will allow clients to interact with our

application’s Feed model. The updated version of the feeds controller is shown

in Listing 8-53.

Listing 8-53.  Updated feeds Controller

var Feed = require('../models/feeds');

module.exports = function(router) {

 router.param('feed_id', function(req, res, next, id) {

 Feed.where({

 'id': id

 }).fetch({

 'require': true

 }).then(function(feed) {

 req.feed = feed;

 next();

 }).catch(next);

 });

 /**
 * @url http://localhost:8000/feeds

 */

Chapter 8 Kraken

289

 router.route('/')

 .get(function(req, res, next) {

 return Feed.where({})

 .fetchAll()

 .then(function(feeds) {

 if (req.accepts('html')) {

 return res.render('feeds', {

 'feeds': feeds.toJSON()

 });

 } else if (req.accepts('json')) {

 return res.send(feeds);

 } else {

 �throw new Error('Unknown `Accept` value: ' + req.

headers.accept);

 }

 })

 .catch(next);

 });

 /**
 * @url http://localhost:8000/feeds/:feed_id

 */

 router.route('/:feed_id')

 .get(function(req, res, next) {

 res.send(req.feed);

 });

 /**
 * @url http://localhost:8000/feeds/:feed_id/articles

 */

 router.route('/:feed_id/articles')

 .get(function(req, res, next) {

 req.feed.getArticles()

 .then(function(articles) {

 res.send(articles);

 })

Chapter 8 Kraken

290

 .catch(next);

 });

};

With these updates in place, clients now have the ability to

•	 List feeds

•	 Fetch information regarding a specific feed

•	 Fetch articles from a specific feed

In the next section, we will take a look at the test suite that Kraken has created for

this portion of our application. With this test suite, we can verify that the routes we have

defined work as expected.

The Test Suite

Listing 8-54 shows the initial contents of the test suite that Kraken has created for our

new controller. Here we see a single test, which is defined with the help of SuperTest,

which is an extension of SuperAgent, a simple library for making HTTP requests.

Listing 8-54.  Test Suite for the feeds Controller

// test/feeds.js

var kraken = require('kraken-js');

var express = require('express');

var request = require('supertest');

describe('/feeds', function() {

 var app, mock;

 beforeEach(function(done) {

 app = express();

 app.on('start', done);

 app.use(kraken({

 'basedir': process.cwd()

 }));

Chapter 8 Kraken

291

 mock = app.listen(1337);

 });

 afterEach(function (done) {

 mock.close(done);

 });

 it('should say "hello"', function(done) {

 request(mock)

 .get('/feeds')

 .expect(200)

 .expect('Content-Type', /html/)

 .expect(/"name": "index"/)

 .end(function (err, res) {

 done(err);

 });

 });

});

In this example, a GET request is made to our application’s /feeds endpoint, and the

following assertions are made:

•	 The server should respond with an HTTP status code of 200.

•	 The server should respond with a Content-Type header containing

the string html.

•	 The body of the response should contain the string "name": "index".

Given the recent updates that we have made to our new controller, these assertions

no longer apply. Let’s replace them with a few tests that are relevant. Listing 8-55 shows

the updated contents of the test suite.

Listing 8-55.  Updated Contents of the feeds Test Suite

// test/feeds/index.js

var assert = require('assert');

var kraken = require('kraken-js');

var express = require('express');

Chapter 8 Kraken

292

var request = require('supertest');

describe('/feeds', function() {

 var app, mock;

 beforeEach(function(done) {

 app = express();

 app.on('start', done);

 app.use(kraken({'basedir': process.cwd()}));

 mock = app.listen(1337);

 });

 afterEach(function(done) {

 mock.close(done);

 });

 it('should return a collection of feeds', function(done) {

 request(mock)

 .get('/feeds')

 .expect('Content-Type', /json/)

 .expect(200)

 .end(function(err, res) {

 if (err) return done(err);

 assert(res.body instanceof Array, 'Expected an array');

 done();

 });

 });

 it('should return a single feed', function(done) {

 request(mock)

 .get('/feeds/1')

 .expect('Content-Type', /json/)

 .expect(200)

 .end(function(err, res) {

 if (err) return done(err);

 assert.equal(typeof res.body.id, 'number',

 'Expected a numeric `id` property');

Chapter 8 Kraken

293

 done();

 });

 });

 it('should return articles for a specific feed', function(done) {

 request(mock)

 .get('/feeds/1/articles')

 .expect('Content-Type', /json/)

 .expect(200)

 .end(function(err, res) {

 if (err) return done(err);

 assert(res.body instanceof Array, 'Expected an array');

 done();

 });

 });

});

Our updated test suite now contains three tests designed to verify that each of our

new controller’s routes are functioning correctly. Consider the first test, for instance,

which will make a GET request to our application’s /feeds endpoint and make the

following assertions:

•	 The server should respond with an HTTP status code of 200.

•	 The server should respond with a Content-Type header containing

the string json.

•	 The server should return one or more results in the form of an array.

Note R ecall that our application’s Feed model was created with the help of
the Knex and Bookshelf libraries. The data that you see referenced in this project
originates from a Knex “seed” file (seeds/developments/00-feeds.js) with
which we can populate our database with sample data. At any point, this project’s
SQLite database can be reset to its initial state by running $ grunt reset-db
from the command line. If these concepts are unfamiliar to you, you may want to
read Chapter 10.

Chapter 8 Kraken

294

Figure 8-7 shows the output that is printed to the console when our project’s test

Grunt task is called.

�Internationalization and Localization

Kraken provides built-in support for creating applications that are capable of adapting

themselves to meet the unique needs of multiple languages and regions, an important

requirement for most products that hope to see widespread use across multiple, diverse

markets. In this section we’ll take a look at the two steps by which this is accomplished,

internationalization and localization, and how they can be applied within the context of

a Kraken application whose templates are generated on the server.

Internationalization (frequently shortened to i18n) refers to the act of developing

applications that are capable of supporting multiple regions and dialects. In practice,

this is accomplished by avoiding the direct use of locale-specific words, phrases, and

symbols (e.g., currency symbols) within an application’s templates. Placeholders are

instead used, which are later populated at the moment a template is requested, based

on the location or settings of the user who is making the request. By way of an example,

consider the Dust template that is shown in Listing 8-56, which is responsible for

rendering the home page of this chapter’s app project.

Figure 8-7.  Running the test suite

Chapter 8 Kraken

295

Listing 8-56.  Dust Template for the Home Page of app Project

// app/public/templates/index.dust

{>"layouts/master" /}

{<body}

 <div class="panel panel-default">

 <div class="panel-heading">

 <h3 class="panel-title">{@pre type="content" key="greeting" /}</h3>

 </div>

 <div class="panel-body">

 <form method="post" action="/sessions">

 <div class="form-group">

 �<label>{@pre type="content" key="email_address" /}

</label>

 <input type="email" name="email" class="form-control">

 </div>

 <div class="form-group">

 <label>{@pre type="content" key="password" /}</label>

 �<input type="password" name="password" class="form-

control">

 </div>

 <button type="submit" class="btn btn-primary">

 {@pre type="content" key="submit" /}

 </button>

 </form>

 </div>

 </div>

{/body}

The basic semantics at work here should be familiar, based on material that was

previously covered in this chapter’s section on Dust. As you can see, instead of directly

embedding content, this template relies on a special Dust helper provided by Kraken, @pre,

with which we can reference content that is stored in separate, locale-specific content files.

The corresponding content files for this particular template are shown in Listing 8-57.

Chapter 8 Kraken

296

Listing 8-57.  Corresponding Content Files for the Dust Template Shown in

Listing 8-56

// app/locales/US/en/index.properties

Comments are supported

greeting=Welcome to Feed Reader

submit=Submit

email_address=Email Address

password=Password

// app/locales/ES/es/index.properties

greeting=Bienvenida al Feed Reader

submit=Presentar

email_address=Correo Electrónico

password=Contraseña

Note T ake note of the location of this example’s template, public/templates/
index.dust, and the location of its corresponding content property files,
locales/US/en/index.properties and locales/ES/es/index.
properties. Kraken is configured to pair Dust templates with content property
files such as these on a one-to-one basis, by matching them based on their paths
and file names.

In contrast to internationalization (i18n), which is primarily concerned with the

creation of applications that are capable of supporting the injection of localized content,

localization (l10n) refers to the process by which locale- and dialect-specific content

files, such as those shown in this example, are created. The controller shown

in Listing 8-58 demonstrates how Kraken helps developers bring these concepts together

to provide users with content that is tailored to meet their specific needs.

Chapter 8 Kraken

297

Listing 8-58.  Serving a Locale-Specific Version of the Home Page

// app/controllers/index.js

module.exports = function (router) {

 /**
 * The default route served for us when we access the app

 * at http://localhost:8000

 */

 router.get('/', function (req, res) {

 �res.locals.context = { 'locality': { 'language': 'es', 'country':

'ES' } };

 res.render('index');

 });

};

This example is an updated version of the controller that we originally saw in

Listing 8-49, which is responsible for rendering our application’s home page. Here

we specify the country and language to be used for locating content files by assigning

them to the locals.context property of the incoming Express response object. If no

such value is specified, Kraken’s default behavior is to use US English. The English

and Spanish versions of the rendered template are shown in Figure 8-8 and Figure 8-9,

respectively.

Figure 8-8.  English version of the application’s home page

Chapter 8 Kraken

298

Detecting Locality

The example shown in Listing 8-58 demonstrates the process by which specific

regional settings can be manually assigned to an incoming request. What it does not

demonstrate, however, is the process by which a user’s desired localization settings can

be automatically detected.

Listing 8-59 demonstrates a simple method for determining locality based on the

value of the accept-language HTTP request header. In this example, we have removed the

logic for determining a user’s locality from our route and placed it in a more appropriate

location—a middleware function that will be called for every incoming request.

Listing 8-59.  Detecting Locality Based on the Value of the accept-language

HTTP Request Header

// app/lib/middleware/locale.js

var acceptLanguage = require('accept-language');

/**
 * �Express middleware function that automatically determines locality based

on the value

 * of the `accept-language` header.

 */

module.exports = function() {

Figure 8-9.  Spanish version of the application’s home page

Chapter 8 Kraken

299

 return function(req, res, next) {

 var locale = acceptLanguage.parse(req.headers['accept-language']);

 res.locals.context = {

 �'locality': { 'language': locale[0].language, 'country':

locale[0].region }

 };

 next();

 };

};

// app/config/config.json (excerpt)

"middleware":{

 "locale": {

 "module": {

 "name": "path:./lib/middleware/locale"

 },

 "enabled": true

 }

}

Note  While helpful, the accept-language HTTP request header does not
always reflect the desired localization settings of the user making the request.
Always be sure to provide users with a method for manually specifying such
settings on their own (e.g., as part of a “Settings” page).

�Security

Given Kraken’s origins at PayPal, a worldwide online payments processor, it should

come as no surprise that the framework focuses heavily on security. Kraken does so with

the help of Lusca, a library that extends Express with a number of enhanced security

techniques, as suggested by the Open Web Application Security Project (OWASP). These

extensions are provided in the form of multiple, independently configurable middleware

modules. In this section, we will briefly examine two ways in which Kraken can help

secure Express against commonly encountered attacks.

Chapter 8 Kraken

300

Note T his material should by no means be considered exhaustive. It is merely
intended to serve as a starting point for implementing security within the context of
a Kraken/Express application. Readers with a hand in implementing security on the
Web are highly encouraged to delve further into this topic by reading a few of the
many great books that are devoted entirely to this subject.

Defending Against Cross-Site Request Forgery Attacks

To understand the basic premise behind cross-site request forgery (CSRF) attacks, it is

important to understand the method by which most web applications authenticate their

users: cookie-based authentication. This process is illustrated in Figure 8-10.

In a typical scenario, a user will submit their credentials to a web application,

which will then compare them with those it has on file. Assuming the credentials are

valid, the server will then create a new session—essentially, a record representing

the user’s successful sign-in attempt. A unique identifier belonging to this session is

then transmitted to the user in the form of a cookie, which is automatically stored by

the user’s browser. Subsequent requests to the application made by the browser will

automatically attach the information stored in this cookie, allowing the application to

look up the matching session record. As a result, the application has the ability to verify

the user’s identity without requiring the user to resubmit their username and password

along with every request.

A CSRF attack takes advantage of the trusted relationship (i.e., session) that exists

between an application and a user’s browser, by tricking that user into submitting an

unintended request to the application. Let’s take a look at an example that should help

Figure 8-10.  Cookie-based authentication

Chapter 8 Kraken

301

Figure 8-12 shows the welcome screen that the user is presented with after

successfully signing into the application. Here we see some basic information about the

user, including their name and when their account was created.

explain how this works. Figure 8-11 illustrates the process by which a user signs into

a trusted application—in this case, the csrf-server project that is included with this

chapter’s source code.

Figure 8-11.  Signing into a trusted application

Figure 8-12.  Successful sign-in attempt

Chapter 8 Kraken

302

At this point, imagine a scenario in which the user leaves the application (without

signing out) and visits another site, which, unbeknownst to the user, has malicious intent

(see Figure 8-13). A copy of this malicious site can be found in this chapter’s csrf-

attack project. In this example, the malicious site lures the user into clicking a button

with the tempting promise of free candy and butterflies.

Listing 8-60 shows an excerpt from the HTML for this malicious site, which should

help explain what is going to happen when the user clicks this button. As you can see,

clicking the button will trigger the creation of a POST request to the original application’s

/transfer-funds route.

Listing 8-60.  Malicious Web Form

// csrf-attack/views/index.dust (excerpt)

<form method="post" action="http://localhost:7000/transfer-funds">

 <button type="submit" class="btn btn-primary">

 Click Here for Free Candy and Butterflies

 </button>

</form>

After clicking the button, instead of receiving the free candy and butterflies that they

were promised, the user is greeted with a message indicating that all of the funds have

been transferred out of their account, as shown in Figure 8-14.

Figure 8-13.  Malicious web site attempting to convince the user to click a
button

Chapter 8 Kraken

303

Several different steps can be taken to defend against attacks of this nature. The

method by which Kraken defends against them is referred to as the “synchronizer token

pattern.” In this approach, a random string is generated for each incoming request,

which the client can subsequently access as part of a template’s context or via a response

header. Importantly, this string is not stored as a cookie. The next POST, PUT, PATCH,

or DELETE request made by the client must include this string, which the server will

then compare with the one it previously generated. The request will only be allowed to

proceed if a match is made.

Let’s take a look at how this works in practice. Figure 8-15 shows the sign-in page

for this chapter’s app project. Refer back to Listing 8-56 to see the underlying HTML for

this page.

Figure 8-14.  Successful CSRF attack

Figure 8-15.  Sign-in page for this chapter’s app project

Chapter 8 Kraken

304

In its current state, any attempt to sign in using this form will result in the error

shown in Figure 8-16. Here we see an error message from Kraken warning us of a missing

“CSRF token.”

This error can be resolved with the addition of a single, hidden input to our

application’s login form. Listing 8-61 shows an excerpt from our application’s updated

Dust template, along with an excerpt from the rendered output.

Listing 8-61.  Inserting a Hidden _csrf Field into the Sign-In Form

// app/public/templates/index.dust (excerpt)

<form method="post" action="/sessions">

 <input type="hidden" name="_csrf" value="{_csrf}">

 <!-- ... ->

</form>

// Rendered output

<form method="post" action="/sessions">

 �<input type="hidden" name="_csrf" value="OERRGi9AGNPEYnNWj8skkfL9f0JIWJ

p3uKK8g=">

 <!-- ... ->

</form>

Here we create a hidden input with the name _csrf, the value for which Lusca has

automatically passed to our template’s context under a property with the same name. The

value that we see rendered in this example, OERRGi9AGNPEYnNWj8skkfL9f0JIWJp3uKK8g=,

is a random hash that Lusca has generated for us (i.e., the “synchronizer token”). When

we submit this form, Lusca will verify that this value matches the one it previously gave us.

Figure 8-16.  Kraken’s “CSRF token missing” error

Chapter 8 Kraken

305

If they match, the request is allowed to proceed. Otherwise, an error is thrown. This

approach allows applications to defend against CSRF attacks by requiring additional,

identifying information that is not stored as part of a cookie, making it much more difficult

for attackers to trick users into performing unintended actions.

Configuring Content Security Policy Headers

Lusca provides developers with a convenient mechanism for configuring an

application’s Content Security Policy (CSP). These rules provide instructions to

supporting browsers regarding the locations from which various resources (e.g., scripts,

stylesheets, images, etc.) can be loaded. When defined, these rules are conveyed to

browsers in the form of the Content-Security-Policy response header.

By way of an example, see Listing 8-62, in which Lusca’s csp middleware module is

provided with a configuration object specifying that only images may be loaded from any

domain. All other resources must originate from the application’s domain.

Listing 8-62.  Configuring an Application’s Content Security Policy

app.use(lusca({

 'csp': {

 'default-src': '\'self\",

 'img-src': '*'

 }

});

Note  For a full list of the various options that can be configured via the
Content-Security-Policy header, visit the Open Web Application Security
Project (OWASP) at https://owasp.org.

Chapter 8 Kraken

https://owasp.org

306

�Summary
The Node community is heavily influenced by the so-called “Unix philosophy,”

which promotes (among other things) the creation of small, tightly focused modules

that are designed to do one thing well. This approach has allowed Node to thrive as a

development platform by fostering a large ecosystem of open source modules. PayPal

has taken this philosophy to heart by structuring Kraken not as a single, monolithic

framework, but rather as a collection of modules that extends and provides structure to

Express-based applications. By taking this approach, PayPal has managed to contribute

several modules to the Node ecosystem from which developers can benefit, regardless of

whether they choose to use Kraken as a whole.

�Related Resources
•	 Kraken: http://krakenjs.com/

•	 Confit: https://github.com/krakenjs/confit

•	 Meddleware: https://github.com/krakenjs/meddleware

•	 Enrouten: https://github.com/krakenjs/express-enrouten

•	 Dust.js: www.dustjs.com

•	 SuperAgent: https://github.com/visionmedia/superagent

•	 SuperTest: https://github.com/visionmedia/supertest

•	 Mocha: http://mochajs.org

•	 Open Web Application Security Project (OWASP):

https://owasp.org

•	 Lusca: https://github.com/krakenjs/lusca

Chapter 8 Kraken

http://krakenjs.com/
https://github.com/krakenjs/confit
https://github.com/krakenjs/meddleware
https://github.com/krakenjs/express-enrouten
http://www.dustjs.com
https://github.com/visionmedia/superagent
https://github.com/visionmedia/supertest
http://mochajs.org
https://owasp.org
https://github.com/krakenjs/lusca

PART V

Managing Database
Interaction

309
© Sufyan bin Uzayr, Nicholas Cloud, Tim Ambler 2019
S. bin Uzayr et al., JavaScript Frameworks for Modern Web Development,
https://doi.org/10.1007/978-1-4842-4995-6_9

CHAPTER 9

Mongoose

The human mind gets used to strangeness very quickly if [strangeness] does
not exhibit interesting behavior.

—Dan Simmons

MongoDB is a popular cross-platform document database, often lumped into the

“NoSQL” classification with other nonrelational data stores such as CouchDB,

Cassandra, RavenDB, and so forth. It is a popular choice for data storage among Node.js

developers because its “records” are stored as plain JSON objects, and its query interface

and stored functions are written in plain JavaScript.

Storing, accessing, and manipulating data in MongoDB are not terribly complex,

but Node.js libraries such as Mongoose can help application developers map

MongoDB documents onto application objects that have definite schemas, validations,

and behavior—all concepts that are not (by design) parts of MongoDB. Mongoose

implements the query interface native to MongoDB, but also gives developers a

composable, fluent interface that simplifies portions of the query API.

Though MongoDB is not the direct subject of this chapter, it is necessary to establish

a few basic concepts about how MongoDB works before delving into Mongoose. If you’re

familiar with MongoDB already, feel free to skip the next section.

�Basic MongoDB Concepts
A relational database server hosts database schemas (sometimes just called databases),

which encapsulate related entities like tables, views, stored procedures, functions, and

so on. Database tables in turn contain tuples (also known as rows or records). A tuple is

composed of a number of fields, each containing a value of a predetermined data type.

The tuple is one-dimensional, and its definition (the data types its fields can hold) is

310

determined at the table level. All tuples within a table, then, share the same structure,

though their individual field values may differ. The names and data types of a tuple’s

fields are referred to as the tuple’s schema.

MongoDB has a superficially similar data hierarchy, as shown in Table 9-1.

Table 9-1.  Understanding MongoDB

by Analogy to Relational Database Systems

RDBMS MongoDB

Server Server

Schema Database

Table Collection

Tuple Document

Field Property

Table 9-2.  Mongoose Terms and Definitions

Term Definition

Schema Defines the data types, constraints, defaults, validations, and so forth for the properties

of a document instance; enforced at the application level

Model Constructor function that creates or fetches document instances

Document Instance object created or fetched by a Mongoose model; will have Mongoose-specific

properties and methods as well as data properties

JSON

object

Plain JavaScript object that contains only the data properties from a document

Table 9-2 defines the key terms that describe Mongoose components and how they

relate to each other. The code in Listing 9-1 shows how these terms appear in code.

This chapter will cover each in detail, but because many of them are closely related, you

might wish to refer back to this section as the chapter progresses.

Chapter 9 Mongoose

311

Listing 9-1.  Mongoose Terms and Definitions in Code

// albumSchema is a schema

var albumSchema = mongoose.Schema({/*...*/});

// Album is a model

var Album = mongoose.model('Album', albumSchema);

// Album is a model

Album.findById(/*...*/, function (err, album) {

 // album is a document

 console.log(album);

});

// Album is a model

Album.findById(/*...*/)

 .lean(true)

 .exec(function (err, album) {

 // album is a JSON object (because of `lean(true)`)

 console.log(album);

 });

// Album is a model

Album.findById(/*...*/)

 .exec(function (err, album) {

 // album is a document

 // toObject() returns a JSON object

 console.log(album.toObject());

 });

Unlike RDBMS tuples, MongoDB documents are not one-dimensional. They are

complete JSON objects that may contain other objects or arrays. In fact, documents

within the same collection need not even have the same properties, because MongoDB

collections are actually schemaless. A MongoDB collection can hold document

objects of any shape or size (within MongoDB’s storage limits). In practice, though,

collections tend to hold documents of similar “shape,” though some may have optional

properties, or may contain properties that represent some arbitrary data. But in

general, applications usually assume that data exists in particular “shapes,” so although

MongoDB does not enforce document schemas, applications often do.

Chapter 9 Mongoose

312

By default, MongoDB documents are automatically assigned a surrogate primary

key called _id. This key has a special type (MongoDB’s ObjectId type) and is used as

MongoDB’s primary collection index. MongoDB can use a different field as a primary

key if directed. Additional fields can be added to secondary indexes within a collection,

either as simple or compound keys.

MongoDB does not support the notion of foreign keys, a strong feature of RDBMS

databases. Instead, MongoDB relies on the power of nested documents to store data

associations. Consider the classic trinity of all RDBMS examples: customer, postal

address, and shopping cart order. In an RDBMS system, there would likely be foreign

keys from the postal address to the customer (to identify residency), and from the

order to one or more postal addresses (to identify shipping and billing addresses). In a

MongoDB customer document, however, it would be sufficient to simply store the postal

address as a nested object in the customer document as well as the order document.

Consider Listing 9-2.

Listing 9-2.  Duplication Sometimes Acceptable in MongoDB

// customer

{

 "_id": 1001,

 "name": "...",

 "postalAddress" {

 "street": "...",

 "city": "...",

 "state": "...",

 "zip": "..."

 }

}

// order

{

 "_id": 2001,

 "customer": 1001,

 "items": [

 {"sku": 3001, "qty": 2}

],

 "shippingAddress" {

Chapter 9 Mongoose

313

 "street": "...",

 "city": "...",

 "state": "...",

 "zip": "..."

 }

}

There are a number of reasons why this “violation” of referential integrity might be

acceptable from a business point of view:

•	 Perhaps orders are never altered. If there is a mistake in an order—for

example, the shipping address is wrong—the entire order gets re-

created to offset the faulty order. The correct shipping address gets

added to the new order.

•	 If a customer changes a postal address, old orders won’t be updated

with the new address, so there’s no data integrity issue at stake.

•	 Maybe changing a postal address always happens within the

customer domain, never in the order domain.

•	 Perhaps a customer can override a shipping address with a

“temporary” address (shipping a gift) that should not be added to the

customer record.

•	 If different postal metrics are derived from orders than from

customers (e.g., a C-level executive wants to know how many orders

were shipped to Missouri last month regardless of who actually lives

in Missouri this month), that data is already segregated.

•	 Maybe disk space is cheap and the velocity gained by not enforcing

referential integrity outweighs any potential cost.

While foreign keys and referential integrity are critical to RDBMS databases, strong

MongoDB document design can often render the issue moot.

Finally, though MongoDB’s query API may look a bit daunting to SQL practitioners,

it quickly becomes obvious that, for the most part, looking for data involves the same

concepts: selecting (find), filtering (where), applying compound conditions (and, or,

in), aggregating (group), paging (skip, limit), and so on. How queries are composed

and executed differs mostly in syntax.

Chapter 9 Mongoose

314

�A Simple Mongoose Example
Mongoose is an object modeling library for Node.js applications. To develop with

Mongoose (and follow the examples in this chapter), you need to install Node.js

and MongoDB on your platform of choice. The default installation procedure and

configuration for both should be sufficient to run this chapter’s example code.

Note  This chapter assumes that you are familiar with Node.js applications and
modules and that you know how to install them with npm. A working knowledge
of MongoDB will be very helpful, but it is not required to run the examples of this
chapter, since interaction with MongoDB will mostly occur through Mongoose in
the chapter examples. Some examples will demonstrate how to query MongoDB
directly to verify the results of Mongoose operations. It is noteworthy that you need
to have a functional understanding of MongoDB in order to get the most out of
Mongoose for production-level environments.

This section demonstrates basic Mongoose concepts that will be explored in detail later

in this chapter. This example involves three steps:

	 1.	 Create a basic Mongoose schema that reflects the structured data

in a JSON file.

	 2.	 Read the JSON file and import the data into MongoDB with a

Mongoose model.

	 3.	 Run a basic web server that will use a Mongoose model to fetch

data from MongoDB and deliver it to a web browser.

The first line of each listing that follows will show the file path in which the example

code may be found. Subsequent examples will indicate whether a particular example file

should be executed with Node.js in a terminal.

�Creating a Mongoose Schema for JSON Data
Mongoose documents represent the domain data in an application. For this chapter’s

example application, a JSON file of music albums defines the initial set of data to be

added to MongoDB. Listing 9-3 shows the structure of example-001/albums.json:

Chapter 9 Mongoose

315

an array of album objects, each containing information about the composer, title,

publication year, track list, and so forth.

Listing 9-3.  Album JSON Data File

// example-001/albums.json

[

 {

 "composer": "Kerry Muzzey",

 "title": "Renaissance",

 "price": 4.95,

 "releaseDate": "2014-01-13T06:00:00.000Z",

 "inPublication": true,

 "genre": ["Classical", "Trailer Music", "Soundtrack"],

 "tracks": [

 {

 "title": "The Looking Glass",

 "duration": {

 "m": 3,

 "s": 20

 }

 }

 //additional tracks...

]

 }

 //additional albums...

]

Mongoose is an object data mapper (ODM), so at the heart of Mongoose data access

are model functions that can be used to query the MongoDB collections they represent.

A Mongoose model must have a name by which it can be referred and a schema that

enforces the shape of the data it will access and manipulate. The code in Listing 9-4 creates

an album schema that closely matches the JSON data in example-001/albums.json.

Schemas will be covered in detail later, but it should be apparent that a schema defines

the properties and their data types for a given Mongoose model. Finally, a model

Chapter 9 Mongoose

316

function is created by pairing a name (“Album”) with a schema. This model function is

assigned to module.exports in the example-001/album-model.js file so that it can be

imported into other modules as needed in a Node.js application.

Tip A Mongoose schema defines the data structure for a model. The model
function provides the query interface for working with stored document data.
A model must have a name and a schema.

Listing 9-4.  Mongoose Album Schema and Model

// example-001/album-model.js

'use strict';

var mongoose = require('mongoose');

var albumSchema = mongoose.Schema({

 composer: String,

 title: String,

 price: Number,

 releaseDate: Date,

 inPublication: Boolean,

 genre: [String],

 tracks: [

 {

 title: String,

 duration: {

 m: Number,

 s: Number

 }

 }

]

});

var Album = mongoose.model('Album', albumSchema);

module.exports = Album;

Chapter 9 Mongoose

317

�Importing Data with Mongoose
Now that the Album schema and model are defined, a Node.js script can read the data

from albums.json and use the Album model to create documents in MongoDB. The

import script needs to do three things:

	 1.	 Connect to a running MongoDB server with Mongoose.

	 2.	 Read and parse the contents of the albums.json file.

	 3.	 Use the Album model to create documents in MongoDB.

Mongoose connects to MongoDB with a URI that identifies the protocol, server, and

database that Mongoose will use. In Listing 9-5 the URI simply points to the local MongoDB

instance: mongodb://localhost/music. Mongoose will proactively create the database if it

does not already exist on the MongoDB instance, so there is no need to do so manually. If the

MongoDB connection fails, Mongoose will raise an error event, and if it succeeds, Mongoose

will raise an open event. Listing 9-5 demonstrates how both events are handled with callback

functions. Once the open event is emitted, the albums.json file is read and parsed, and the

array of albums is passed to the Album.create() method of the Album model. This creates the

album documents in MongoDB, which may then be queried with the Album model later.

Listing 9-5.  Importing Album Data with Mongoose

// example-001/import-albums.js

'use strict';

var mongoose = require('mongoose');

var Album = require('./album-model');

var file2json = require('./file2json');

var fs = require('fs');

var path = require('path');

// connect to the "music" database on localhost;

// the database will be automatically created

// if it does not exist

mongoose.connect('mongodb://localhost/music');

var db = mongoose.connection;

db.on('error', function (err) {

 console.error(err);

Chapter 9 Mongoose

318

 process.exit(1);

});

db.once('open', function importAlbums() {

 var albumsFile = path.join(__dirname, 'albums.json');

 file2json(albumsFile, 'utf8', function (err, albums) {

 if (err) {

 console.error(err);

 return process.exit(1);

 }

 console.log('creating %d albums', albums.length);

 // use the model to create albums in bulk;

 // the collection will be automatically created

 // if it does not exist

 Album.create(albums, function (err) {

 if (err) {

 console.error(err);

 return process.exit(1);

 }

 process.exit(0);

 });

 });

});

Before running the script, MongoDB needs to be running locally. Some MongoDB

installations will configure MongoDB to start automatically, but others leave that

decision to users. To determine if MongoDB is running, simply execute the mongo

command in your terminal. You should see output similar to Listing 9-6 if MongoDB is

running. You may kill the process at any time by pressing Ctrl+C.

Listing 9-6.  MongoDB Terminal Client, mongo

$ mongo

MongoDB shell version: 2.6.7

connecting to: test

>

Chapter 9 Mongoose

319

If you receive an error, start the MongoDB server manually by executing mongod -f

followed by the location of the default MongoDB configuration file. The location of this file

varies by system, so you may need to consult the MongoDB installation documentation.

On OS X systems with a Homebrew MongoDB installation, for example, the configuration

file may be found at /usr/local/etc/mongod.conf. Listing 9-7 shows how to start the

daemon manually with this configuration file path.

Listing 9-7.  Starting mongod Manually

$ mongod -f /usr/local/etc/mongod.conf

Once the mongod server has been started, you can run the example-001/import-

albums.js script with Node.js. Listing 9-8 shows the output that will be displayed when

the script has imported documents into MongoDB.

Listing 9-8.  Running the Import Script

example-001$ node import-albums.js

creating 3 albums

In Listing 9-9 the mongo terminal client is launched, followed by a series of

commands (after each > prompt) to verify that the music database and albums collection

have been created. The show dbs command displays all databases hosted by the running

MongoDB instance. To see the collections in a database, first switch to that database

context by issuing the use <db> command, where <db> is the name of the database

you are targeting. Next, execute show collections to see a list of collections owned by

the database—in this case, albums and system.indexes (a collection that MongoDB

manages).

Listing 9-9.  Verifying Album Data Has Been Added to MongoDB

$ mongo

MongoDB shell version: 2.6.7

connecting to: test

> show dbs

admin (empty)

local 0.078GB

music 0.078GB

> use music

Chapter 9 Mongoose

320

switched to db music

> show collections

albums

system.indexes

>

With the music database selected, you can issue a few basic queries to see

the album data added during the import. Within a database context, the database

collections are accessed through the db object. Collections exist as properties of the db

object, and operations performed against collections are methods on each collection

object, respectively. To see the number of records within the albums collection, for

example, the db.albums.count() method can be invoked on the collection, as shown

in Listing 9-10. Likewise, to query album records, the db.albums.find() method can be

used with criteria (“where” clause) and projection (“select” clause) arguments to control

what data is returned.

Listing 9-10.  Querying Album Data in the albums Collection

> db.albums.count()

3

> db.albums.find({}, {composer: 1})

{ "_id" : ObjectId("54c537ca46a13e0f4cebda82"), "composer" : "Kerry Muzzey" }

{ "_id" : ObjectId("54c537ca46a13e0f4cebda88"), "composer" : "Audiomachine" }

{ "_id" : ObjectId("54c537ca46a13e0f4cebdaa3"), "composer" : "Jessica Curry" }

Because the criteria argument (the first object passed to db.albums.find()) is empty

in Listing 9-10, all records are returned. The projection object, however, specifies a single

property to be returned by the query: composer. All other properties are excluded except

for _id, which is returned by default and will always be included unless the projection

parameter specifies otherwise.

�Querying Data with Mongoose
Once the album data has been loaded into MongoDB, you can use the same model from

Listing 9-4 to query that data.

The code in Listing 9-11 uses the Node.js http module to create a rudimentary web

server that can receive HTTP requests and return JSON data in response. In this example

the web server returns the same response for any URL query (to keep things simple).

Chapter 9 Mongoose

321

When a request is received, the Album Mongoose model is used to query MongoDB for

album documents. Its find() function is invoked with a criteria argument, a projection

argument, and a callback. With the exception of the callback, this syntax is identical to

the db.albums.find() method used in Listing 9-10 to examine album documents.

Listing 9-11.  Querying MongoDB with Mongoose

// example-001/http-server.js

'use strict';

var mongoose = require('mongoose');

var Album = require('./album-model');

var http = require('http');

var url = require('url');

/*
 * The http server will handle requests and responses

 */

var server = http.createServer(function (req, res) {

 Album.find({}, {composer: 1}, function (err, albums) {

 var statusCode = err ? 500 : 200;

 var payload = err ? err : albums;

 res.writeHead(statusCode, {'Content-Type': 'application/json'});

 res.write(JSON.stringify(payload, null, ' '));

 res.end();

 });

});

/*
 * Connect to the MongoDB instance and report

 * errors if any occur.

 */

mongoose.connect('mongodb://localhost/music');

var db = mongoose.connection;

db.on('error', function (err) {

 console.error(err);

 process.exit(1);

});

Chapter 9 Mongoose

322

db.once('open', function () {

 /*
 * The MongoDB connection is open, start

 * listening for HTTP requests.

 */

 server.listen(8080);

 console.log('listening on port 8080');

});

In Listing 9-12, the web server is launched from the example-001 directory with the

command node http-server.js. Pressing Ctrl+C will stop the server.

Listing 9-12.  Running the HTTP Server

example-001$ node http-server.js

listening on port 8080

The album data fetched from MongoDB may now be viewed in a web browser by

navigating to http://localhost:8080 or by issuing the curl terminal command as

shown in Listing 9-13.

Listing 9-13.  Sending a curl Request to the HTTP Server

$ curl -v http://localhost:8080/

* Hostname was NOT found in DNS cache

* Trying 127.0.0.1...

* Connected to localhost (127.0.0.1) port 8080 (#0)

> GET / HTTP/1.1

> User-Agent: curl/7.37.1

> Host: localhost:8080

> Accept: */*
>

< HTTP/1.1 200 OK

< Content-Type: application/json

< Date: Thu, 29 Jan 2015 01:20:09 GMT

< Connection: keep-alive

< Transfer-Encoding: chunked

<

Chapter 9 Mongoose

323

[

 {

 "_id": "54c7020c342ee81670b261ef",

 "composer": "Kerry Muzzey"

 },

 {

 "_id": "54c7020c342ee81670b261f5",

 "composer": "Audiomachine"

 },

 {

 "_id": "54c7020c342ee81670b26210",

 "composer": "Jessica Curry"

 }

The rest of this chapter will build on this Mongoose schema, model, and album data

stored in the MongoDB database.

�Working with Schemas
Mongoose schemas are simple objects that describe the structure of and data types in a

MongoDB document. While MongoDB itself is schemaless, Mongoose enforces schemas

for documents at the application level. Schemas are defined by invoking the Mongoose

module’s Schema() function, passing it an object hash where the keys represent

document properties and the values represent the data type for each property. The

return value is an object of type Schema with additional helper properties and functions

for expanding or augmenting the schema’s definition.

�Data Types
For scalar properties, Mongoose uses the native JavaScript data types String, Boolean,

Number, and Date, shown in Listing 9-14.

Chapter 9 Mongoose

324

Listing 9-14.  Primitive Types in a Mongoose Schema

// example-001/album-model.js

var albumSchema = mongoose.Schema({

 composer: String,

 title: String,

 price: Number,

 releaseDate: Date,

 inPublication: Boolean

 // other properties...

});

Properties that are object literals or arrays use the literal notation for each type ({}

and []). Nested object literals are written inline, using the same Mongoose schema

types for their own properties. Array types contain only one element, which defines the

type of object that will occupy the array. This type can be any valid Mongoose data type,

including an object literal defined inline as the first element of the array. In Listing 9-15,

genre is declared as an array of strings, while tracks is declared as an array of object

literals.

Listing 9-15.  Complex Types in a Mongoose Schema

// example-001/album-model.js

var albumSchema = mongoose.Schema({

 // ...other properties

 genre: [String],

 tracks: [

 {

 title: String,

 duration: {

 m: Number,

 s: Number

 }

 }

]

});

Mongoose itself provides two special object types: ObjectId and Mixed.

Chapter 9 Mongoose

325

When a document is created in MongoDB, it is assigned an _id property that serves

as a unique identifier for the record. This property uses MongoDB’s own ObjectId

data type. Mongoose exposes this type via mongoose.Schema.Types.ObjectId. This

type is rarely used directly. When querying a document by ID, for example, the string

representation of the identifier is typically used.

Note  When a schema property holds arbitrary data (remember, MongoDB is
schemaless), it may be declared with the type mongoose.Schema.Types.
Mixed. If a property is marked as Mixed, Mongoose will not track changes made
against it. When Mongoose persists a document, it creates a query internally that
only adds or updates properties that have changed, and since a Mixed property
is not tracked, the application must inform Mongoose when it has changed.
Documents created by Mongoose models expose a markModified(path)
method that will force Mongoose to consider the property identified by the path
argument as dirty.

Setting a Mongoose schema property to an empty object literal (one with no
properties) will cause Mongoose to treat it as Mixed.

Finally, because Mongoose is a Node.js library, it takes advantage of Node’s Buffer

type to store large blocks of binary data such as image, audio, or video assets. Because

binary data can be quite large, many applications store URL references to binary assets

located on a content delivery network such as Amazon’s Simple Storage Service (S3)

instead of storing binaries in a data store such as MongoDB. Use cases differ across

applications, however, and Mongoose schemas are flexible enough to support either

approach.

�Nested Schemas
Mongoose schemas may be nested; that is, a schema may reference another schema as

a property type. This can be particularly useful if larger schemas share common custom

data types, such as customer and order schemas sharing a postal address data type. In

Listing 9-16 the album track schema is declared independent of the album schema and

gets assigned as the data type for the albumSchema.tracks property.

Chapter 9 Mongoose

326

Listing 9-16.  Nested Mongoose Schemas

// breaking apart schemas...

var trackSchema = mongoose.Schema({

 title: String,

 duration: {

 m: Number,

 s: Number

 }

});

var albumSchema = mongoose.Schema({

 // ...

 tracks: [trackSchema]

});

�Default Property Values
Adding sensible default values to schema properties instructs Mongoose to fill in missing

data when a document is created. This is useful for document properties that aren’t

optional but typically hold some known value.

In Listing 9-17 the m and s properties (minute and second) of the album schema

default to 0 because it is entirely possible that a track would be less than 1 minute long

or be exactly X minutes and 0 seconds. The releaseDate property in the album schema

also has a default value: the function Date.now. When a default value is a function,

Mongoose will invoke the function, cast its return value to the type of the property, and

then assign that value to the property.

Listing 9-17.  Default Property Values

// adding default property values...

var trackSchema = mongoose.Schema({

 // ...

 duration: {

 m: {type: Number, default: 0},

 s: {type: Number, default: 0}

 }

});

Chapter 9 Mongoose

327

var albumSchema = mongoose.Schema({

 // ...

 price: {type: Number, default: 0.0},

 releaseDate: {type: Date, default: Date.now},

 // ...

});

Adding a default to a property requires that the type assignment look a bit different.

Notice that m: Number has become m: {type: Number, default: 0}. Normally,

assigning an object hash to a property would cause the property to have a Mixed or

object type, but the presence of the type property in the object literal short-circuits

that process and tells Mongoose that the other key/value pairs in the hash are property

settings.

�Required Properties
The required attribute may be used on the type definition of nonoptional properties.

When a document is saved, any missing property that the document schema requires

will raise a validation error, which will be passed to the save operation’s callback. Album

composers, album titles, track titles, and even track duration objects are all required in

Listing 9-18.

Listing 9-18.  Required Properties

// adding required attributes

var trackSchema = mongoose.Schema({

 title: {type: String, required: true},

 duration: {

 required: true,

 type: {

 m: {type: Number, default: 0},

 s: {type: Number, default: 0}

 }

 }

});

Chapter 9 Mongoose

328

var albumSchema = mongoose.Schema({

 composer: {type: String, required: true},

 title: {type: String, required: true},

 // ...

});

If a string is used in place of a boolean value for a required attribute, the string will

be used as the error message if a validation error is raised, as shown in Listing 9-19.

(Document validation will be covered shortly.)

Listing 9-19.  Custom Error Message for a Required Property

var trackSchema = mongoose.Schema({

 title: {type: String, required: 'Missing track title!'},

 // ...

});

�Secondary Indexes
Mongoose documents automatically acquire an indexed _id property when saved

to MongoDB. Secondary indexes can be added to a schema, however, to enhance

performance when querying against other fields.

MongoDB supports both simple (single field) and compound (multifield) indexes. In

Listing 9-20 the following indexes are added to the track and album schemas:

•	 Track title (simple)

•	 Album composer (simple)

•	 Album title (simple)

•	 Album title + album composer (compound)

•	 Album genre (simple)

Listing 9-20.  Adding Secondary Indexes to Schemas

// adding secondary indexes...

var trackSchema = mongoose.Schema({

 title: {type: String, required: true, index: true},

 // ...

Chapter 9 Mongoose

329

});

var albumSchema = mongoose.Schema({

 composer: {type: String, required: true, index: true},

 title: {type: String, required: true, index: true},

 // ...

 genre: {type: [String], index: true},

 // ...

});

albumSchema.index({composer: 1, title: 1});

Simple indexes are added at the property level by appending an index field to

a property type declaration and setting it to true. Compound indexes, on the other

hand, must be defined for the schema as a whole using the Schema.index() method.

The object passed to index() contains property names that correspond to the schema

properties to be indexed and a numeric value that may be either 1 or -1.

MongoDB sorts indexes in either ascending or descending order. Compound indexes

are defined with a numeric value instead of a boolean value (like simple indexes) to

indicate the order in which each field should be indexed. For simple indexes, the order

doesn’t matter because MongoDB can search either way. But for compound indexes,

the order is very important because it limits the kind of sort operations MongoDB can

perform when a query uses a compound index. The MongoDB documentation covers

compound indexing strategies in depth.

In Listing 9-20 a compound index for composer and title is added to the album

schema in addition to simple indexes for both fields. It is entirely likely that a user will

search for an album by composer, title, or both.

�Schema Validation
Mongoose will enforce schema validation rules when documents are persisted. A

validation rule is a function defined for a particular schema property that evaluates

the property’s value and returns a boolean value to indicate validity. Listing 9-21

demonstrates how to attach a property validator to a schema object.

Chapter 9 Mongoose

330

Listing 9-21.  Validating Schema Properties

// adding schema validation...

var trackSchema = mongoose.Schema({/*...*/});

var albumSchema = mongoose.Schema({

 // ...

 tracks: [trackSchema]

});

albumSchema.path('tracks').validate(function (tracks) {

 return tracks.length > 0;

}, 'Album has no tracks.');

The schema’s path() method returns an instance of SchemaType, an object that

encapsulates the definition of a schema’s property—in this case, the tracks property, which

is an array of track objects for the album. The SchemaType.validate() method attaches

a validation function to the schema’s property. The first argument is the actual validation

function, which receives, as its only argument, the value to be validated. The second

argument to validate() is the message that will be used if a validation error is raised.

When an album document is saved, this function will be executed as part of the

Mongoose validation process, evaluating the tracks property to ensure that the album

has at least one track.

Validation rules may also be attached to schema properties as part of the property

definition. The tracks definition in Listing 9-22 includes the validate property. The

value of this property is a two-element array (a tuple) where the validation function is

element 0 and the error message is element 1.

Listing 9-22.  Declaring Property Validators Inline

function validateTrackLength (tracks) {

 return tracks.length > 0;

}

var albumSchema = mongoose.Schema({

 // ...

 tracks: {

Chapter 9 Mongoose

331

 type: [trackSchema],

 validate: [validateTrackLength, 'Album has no tracks.']

 }

});

While the Mongoose validation process is itself asynchronous, simple validation

functions, like those in Listing 9-22, are synchronous. For most cases synchronous

validation is perfectly acceptable, but for other cases asynchronous validators might be

required. An asynchronous validation function accepts a second argument—a callback

called respond (by convention)—that will be invoked when the asynchronous validation

has completed. A true or false value is passed to respond to indicate successful or

failed validation, respectively. Listing 9-23 shows how the validation function for album

tracks could be made asynchronous.

Listing 9-23.  Asynchronous Property Validators

albumSchema.path('tracks').validate(function (tracks, respond) {

 process.nextTick(function () {

 respond(tracks.length > 0);

 });

}, 'Album has no tracks.');

To see the validation function at work, the tracks for each album in example-002/

albums.json can be removed so that the JSON data resembles Listing 9-24.

Listing 9-24.  Albums Without Tracks

// example-002/albums.json

[

 {

 "composer": "Kerry Muzzey",

 "title": "Renaissance",

 "price": 4.95,

 "releaseDate": "2014-01-13T06:00:00.000Z",

 "inPublication": true,

 "genre": ["Classical", "Trailer Music", "Soundtrack"],

 "tracks": []

 },

Chapter 9 Mongoose

332

 {

 "composer": "Audiomachine",

 "title": "Tree of Life",

 "price": 9.49,

 "releaseDate": "2013-07-16T05:00:00.000Z",

 "inPublication": true,

 "genre": ["Classical", "Trailer Music"],

 "tracks": []

 },

 {

 "composer": "Jessica Curry",

 "title": "Dear Esther",

 "price": 6.99,

 "releaseDate": "2012-02-14T06:00:00.000Z",

 "inPublication": true,

 "genre": ["Classical", "Video Game Soundtrack"],

 "tracks": []

 }

]

Validation occurs whenever documents are persisted; that is, whenever Model.

create() is called, or the save() method is called on a document instance. If validation

fails, an error is passed as the first argument to a callback for each of these methods.

(Documents will be discussed in detail later.)

If the import process is run again, the validator will trigger in example-002/import-

albums.js when Album.create() is called to create new Mongoose documents from

the incomplete JSON data. The console output in Listing 9-25 shows the serialized

ValidationError that is raised and the ValidatorError for the tracks property present

in its errors collection.

Listing 9-25.  Console Output when Schema Validation Fails

example-002$ node import-albums.js

creating 3 albums

{ [ValidationError: Validation failed]

 message: 'Validation failed',

Chapter 9 Mongoose

333

 name: 'ValidationError',

 errors:

 { tracks:

 { [ValidatorError: Album has no tracks.]

 message: 'Album has no tracks.',

 name: 'ValidatorError',

 path: 'tracks',

 type: 'user defined',

 value: [] } } }

After breaking apart the album and track schemas and adding default property

values, required attributes, secondary indexes, and validation, the album schema has

changed quite a bit from the simple schema in example-001. Listing 9-26 shows the

more robust version.

Listing 9-26.  More Robust Album Schema

// example-002/album.js

'use strict';

var mongoose = require('mongoose');

var trackSchema = mongoose.Schema({

 title: {type: String, required: true, index: true},

 duration: {

 required: true,

 type: {

 m: {type: Number, default: 0},

 s: {type: Number, default: 0}

 }

 }

});

var albumSchema = mongoose.Schema({

 composer: {type: String, required: true, index: true},

 title: {type: String, required: true, index: true},

 price: {type: Number, default: 0.0},

 releaseDate: {type: Date, default: Date.now},

Chapter 9 Mongoose

334

 inPublication: Boolean,

 genre: {type: [String], index: true},

 tracks: [trackSchema]

});

albumSchema.index({composer: 1, title: 1});

albumSchema.path('tracks').validate(function (tracks) {

 return tracks.length > 0;

}, 'Album has no tracks.');

var Album = mongoose.model('Album', albumSchema);

module.exports = Album;

�Schema References
Though MongoDB is a relationless data store, relationships between documents in

collections can be created through informal references that act as foreign keys. The

integrity enforcement and resolution of these foreign keys to objects is left entirely to the

application, of course. Mongoose builds these informal relationships through population

references—links between schemas that enable automatic eager loading (and manual

lazy loading) of document graphs. To expand on the music application example, it is

very likely that users will create their own personal album libraries. Because album

documents can be large, it might be best to avoid duplicating album data in each library

document. Instead, references will be created from library documents to individual

albums, a kind of many-to-many relationship. When libraries are loaded by Mongoose,

these references can be resolved so that full library object graphs are returned populated

with album documents.

To keep things simple, a single library is defined in example-003/library.json.

This library, shown in Listing 9-27, references albums by composer and title. Each album

will need to be dereferenced to a document ID in a corresponding MongoDB album

document when the data is imported.

Chapter 9 Mongoose

335

Listing 9-27.  Library JSON Data

// example-003/library.json

{

 "owner": "Nicholas Cloud",

 "albums": [

 {

 "composer": "Kerry Muzzey",

 "title": "Renaissance"

 },

 {

 "composer": "Audiomachine",

 "title": "Tree of Life"

 },

 {

 "composer": "Jessica Curry",

 "title": "Dear Esther"

 }

]

}

The library import script is similar to the album import script, as shown in

Listing 9-28, but it performs one additional important step. After the library.json file

is read and turned into a plain JavaScript object, the album data is resolved to the actual

album document objects imported in example-001/import-albums.js.

Listing 9-28.  Importing Library Data into MongoDB

// example-003/import-library.js

'use strict';

var mongoose = require('mongoose');

var Album = require('./album-model');

var Library = require('./library-model');

var file2json = require('./file2json');

var fs = require('fs');

var path = require('path');

Chapter 9 Mongoose

336

function handleError(err) {

 console.error(err);

 process.exit(1);

}

function resolveAlbums(libraryJSON, cb) {

 /*
 * [3] use a compound $or criteria to look up multiple

 * album documents

 */

 var albumCriteria = {

 $or: libraryJSON.albums

 };

 Album.find(albumCriteria, cb);

}

mongoose.connect('mongodb://localhost/music');

var db = mongoose.connection;

db.on('error', handleError);

db.once('open', function importLibrary () {

 /*
 * [1] read the library.json file data and convert it to

 * a normal JS object

 */

 var libraryFile = path.join(__dirname, 'library.json');

 file2json(libraryFile, 'utf8', function (err, libraryJSON) {

 if (err) return handleError(err);

 /*
 * [2] look up album documents that match each composer/title

 * in the library JSON data

 */

 resolveAlbums(libraryJSON, function (err, albumDocuments) {

 if (err) return handleError(err);

 console.log('creating library');

Chapter 9 Mongoose

337

 /*
 * [4] assign the album documents to the library object

 */

 libraryJSON.albums = albumDocuments;

 /*
 * [5] then create a library document from the JSON data and

 * save the document

 */

 var libraryDocument = new Library(libraryJSON);

 libraryDocument.save(function (err) {

 if (err) return handleError(err);

 process.exit(0);

 });

 });

 });

});

Each step in the import flow is annotated in Listing 9-28, but several steps involve

concepts that have not yet been introduced.

In step [3] a compound $or criteria object is created to filter MongoDB album

documents by composer and title. The $or criteria property is covered later in the

chapter, but for now it is sufficient to understand that MongoDB will examine all

documents in the albums collection and determine if the document matches any of

the composer/title pairs in the $or array, shown in Listing 9-29. Since all three albums

previously imported match at least one of the pairs in this criteria, they will all be

returned as results.

Listing 9-29.  Library Import $or Criteria

{ $or:

 [{ composer: 'Kerry Muzzey', title: 'Renaissance' },

 { composer: 'Audiomachine', title: 'Tree of Life' },

 { composer: 'Jessica Curry', title: 'Dear Esther' }] }

Chapter 9 Mongoose

338

In step [4] the found album documents are assigned to the libraryJSON.albums

property, replacing the existing array of composer/title data. When the library document

is saved, Mongoose will enforce the library schema in Listing 9-30. Unlike previous

property descriptions, the albums property is a reference property that will hold an array

of ObjectIds as defined by the type attribute. The ref attribute tells Mongoose that this

field can also be populated with album documents during a query (if specified) or when

a library document is saved.

Listing 9-30.  Library Schema

// example-003/library-model.js

'use strict';

var mongoose = require('mongoose');

var librarySchema = mongoose.Schema({

 owner: String,

 albums: [{type: mongoose.Schema.Types.ObjectId, ref: 'Album'}]

});

var Library = mongoose.model('Library', librarySchema);

module.exports = Library;

Mongoose documents may all be cast to their ObjectIds. Mongoose is smart enough

to perform this cast automatically, so adding album documents to the albums property

will pass the schema check. Alternatively, the import script could pluck the _id property

from each album document and place it into the albums array instead. The result would

be identical.

Finally, in step [5] an individual document instance is created by invoking the

Library constructor and passing in the raw JSON data to assign to each document

property. Documents may also be created with no constructor argument, assigning

data to each property on the instance imperatively, but using the constructor argument

shorthand is common. After the document has been created, its save() method is

invoked with a callback that is passed an error if the persistence process fails. This

differs from the album import script in which multiple album documents were created

in MongoDB at once by using the model’s static create() function. Listing 9-31

demonstrates the difference.

Chapter 9 Mongoose

339

Listing 9-31.  Creating a Single Document and Multiple Documents

// create a single document

var libraryDocument = new Library(plainJSONLibrary);

libraryDocument.save(function (err) {...});

// create multiple documents at once

Albums.create(arrayOfJSONAlbums, function (err) {...});

In Listing 9-32, the library import script is run exactly as the album import script

was run.

Listing 9-32.  Running the Library Import Script

example-003$ node import-library.js

creating library

Once the import has completed, the library data may be verified with the mongo

terminal client. The output in Listing 9-33 reveals that Mongoose did indeed satisfy the

library schema by casting each album object to its identifier. (The next section, “Working

with Models and Documents,” will examine how schema reference properties can be

used to eagerly load referenced documents.)

Listing 9-33.  Verifying the Library Import in MongoDB

example-003$ mongo

MongoDB shell version: 2.6.7

connecting to: test

> use music

switched to db music

> db.libraries.find()

{ "_id" : ObjectId("54ed1dfdb11e8ae7252af342"), "owner" : "Nicholas Cloud",

"albums" : [ObjectId("54ed1dcb6fb525ba25529bd1"), ObjectId("54ed1dcb6fb525

ba25529bd7"), ObjectId("54ed1dcb6fb525ba25529bf2")], "__v" : 0 }

Chapter 9 Mongoose

340

�Schema Middleware
Mongoose raises events on a schema object whenever particular MongoDB documents

are validated, saved, or removed from a document collection. Events are raised before

and after each one of these operations. Subscriptions to these events are assigned with

a schema’s pre() and post() methods, respectively. A subscription is simply a function

or middleware that receives arguments related to each event. Post-event middleware

simply observes the document after the event is complete, but pre-event middleware

may actually interrupt the document life cycle before an event is completely processed.

In Listing 9-34, a duration object has been added to the library schema, identical to

the duration object in each album track. This object, however, will hold the computed

total length of the library as a whole. A pre-event middleware function is attached to

the library schema for the save event. Before the library is saved, this function will

iterate over each album and each track to sum the lengths of all tracks, then assign

the calculated values to properties on the duration object. The middleware function

receives a single argument, the callback function next(). When the duration summation

has completed, next() is invoked to trigger any additional middleware functions

attached to the schema.

Listing 9-34.  Pre-save Middleware

// example-004/library-model.js

'use strict';

var mongoose = require('mongoose');

var librarySchema = mongoose.Schema({

 owner: String,

 albums: [{type: mongoose.Schema.Types.ObjectId, ref: 'Album'}],

 duration: {

 h: {type: Number, default: 0},

 m: {type: Number, default: 0}

 }

});

librarySchema.pre('save', function (next) {

 var hours = 0, mins = 0;

 /*

Chapter 9 Mongoose

341

 * iterate over all albums and add hours

 * and minutes

 */

 this.albums.forEach(function (album) {

 album.tracks.forEach(function (track) {

 hours += track.duration.h;

 mins += track.duration.m;

 });

 });

 /*
 * divide total mins by 60 seconds and

 * add that to hours, then assign remaining

 * minutes back to mins

 */

 hours += (mins / 60);

 mins = (mins % 60);

 this.duration = {h: hours, m: mins};

 next();

});

var Library = mongoose.model('Library', librarySchema);

module.exports = Library;

Pre-event middleware can execute in a synchronous or asynchronous manner.

The code in Listing 9-34 is synchronous, which means that other middleware functions

will be scheduled only after the duration summation has been completed. To change

this behavior and schedule them all immediately, one after the next, the schema’s pre()

method is called with an additional boolean argument that flags the handler function as

asynchronous middleware.

The middleware function itself also receives an additional parameter, the done()

function callback shown in Listing 9-35. In synchronous middleware, control is passed

to the next middleware function when a previous middleware function has finished and

invoked next(). This is still the case with asynchronous middleware, but the done()

Chapter 9 Mongoose

342

function must also be invoked when the asynchronous operation has finished during a

future event loop turn. The order of execution in Listing 9-35 is

	 1.	 Schedule the duration summation process for the next event

loop pass.

	 2.	 Invoke next() to pass control to the next piece of middleware.

	 3.	 At some future point in time, signal that this middleware

operation is complete by invoking done().

Listing 9-35.  Asynchronous Pre-save Middleware

// example-005/library-model.js

// ...

librarySchema.pre('save', true, function (next, done) {

 var hours = 0, mins = 0;

 process.nextTick(function () { // #1

 /*
 * iterate over all albums and add hours

 * and minutes

 */

 this.albums.forEach(function (album) {

 album.tracks.forEach(function (track) {

 hours += track.duration.h;

 mins += track.duration.m;

 });

 });

 /*
 * divide total mins by 60 seconds and

 * add that to hours, then assign remaining

 * minutes back to mins

 */

 hours += (mins / 60);

 mins = (mins % 60);

 this.duration = {h: hours, m: mins};

 done(); // #3

 });

Chapter 9 Mongoose

343

 next(); // #2

});

var Library = mongoose.model('Library', librarySchema);

module.exports = Library;

If an error is raised in a synchronous, pre-event middleware function, it should be

passed as the only argument to next(). Errors raised during asynchronous functions,

however, should be passed to done() instead. Any error passed to these callbacks will

cause the operation that triggered the event to fail and will be delivered to the final

operation callback (e.g., the callback passed to a document’s save() method).

Post-event middleware functions receive no control flow arguments, but instead

receive a copy of the document as it stands after the event’s operation has completed.

�Working with Models and Documents
A Mongoose model is a constructor function that creates document instances. These

instances conform to a Mongoose schema and expose a collection of methods for

document persistence. Models are associated with MongoDB collections. In fact, when a

Mongoose document is saved, the collection to which it corresponds will be created if it

does not already exist. By convention, models are named in the singular form of the noun

they represent (e.g., Album), but collections are named in the plural form (e.g., albums).

A model constructor function is created by invoking mongoose.model() with a

model name and a model schema. All documents created with this constructor function,

either directly in user code or indirectly when Mongoose executes queries and returns

document instances, will conform to the model’s schema. Listing 9-36 shows the code

responsible for creating the Album constructor function used by the import scripts to

create album documents in MongoDB.

Listing 9-36.  Album Model

// example-006/album-model.js

//...schema definition...

var Album = mongoose.model('Album', albumSchema);

module.exports = Album;

Chapter 9 Mongoose

344

When a Mongoose model is registered with the mongoose.model() function,

Mongoose can then resolve that model by name when referenced in relationship

properties. This technique was used earlier to create a reference between the library

schema and the Album model, as shown in Listing 9-37.

Listing 9-37.  Library Schema References Album Model

// example-006/library-model.js

// ...

var librarySchema = mongoose.Schema({

 // ...

 albums: [{type: mongoose.Schema.Types.ObjectId, ref: 'Album'}],

 // ...

});

New documents can be created with a model constructor function or fetched from

a MongoDB data store with model query methods. Each document can save or remove

itself from a MongoDB collection. This is very similar to the ActiveRecord data access

pattern commonly used in RDBMS libraries. In Listing 9-38, a new album document

instance is created with the Album constructor function. Album data is assigned to

each property (with the appropriate data types) defined by the album schema. Finally,

the save() method is called on the document, and its callback is invoked when the

associated document has been created in MongoDB.

Listing 9-38.  Creating and Saving a New Document Instance

// example-006/add-album-instance.js

'use strict';

var mongoose = require('mongoose');

var Album = require('./album-model');

function handleError(err) {

 console.error(err);

 process.exit(1);

}

mongoose.connect('mongodb://localhost/music');

var db = mongoose.connection;

Chapter 9 Mongoose

345

db.on('error', handleError);

db.once('open', function addAlbumInstance() {

 var album = new Album();

 album.composer = 'nervous_testpilot';

 album.title = 'Frozen Synapse';

 album.price = 8.99;

 album.releaseDate = new Date(2012, 8, 6);

 album.inPublication = true;

 album.genre = ['Dance', 'DJ/Electronica', 'Soundtrack'];

 album.tracks = [

 {

 title: 'Welcome to Markov Geist',

 duration: {m: 1, s: 14}

 },

 // ...additional tracks...

];

 album.save(function (err) {

 if (err) return handleError(err);

 console.log('album saved', album);

 process.exit(0);

 });

});

The script output shows the document data after the album has been saved:

example-006$ node add-album-instance.js

album saved { __v: 0,

 inPublication: true,

 title: 'Frozen Synapse',

 composer: 'nervous_testpilot',

 _id: 54f117e4a27cc5375e156c6d... }

MongoDB can be queried to verify that the document was, in fact, created in the

albums collection, as shown in Listing 9-39.

Chapter 9 Mongoose

346

Listing 9-39.  Verifying the Mongoose Document Has Been Created in MongoDB

example-006$ mongo

MongoDB shell version: 2.6.7

connecting to: test

> use music

switched to db music

> db.albums.find({composer: 'nervous_testpilot'}, {_id: 1, composer: 1,

title: 1})

{ "_id" : ObjectId("54f117e4a27cc5375e156c6d"), "title" : "Frozen Synapse",

"composer" : "nervous_testpilot" }

Document instance properties may also be set by passing an object hash directly

to the model constructor. This can be particularly useful when document data already

exists in a plain JavaScript object, such as a deserialized JSON web request body, or

JSON data parsed from a flat file. Listing 9-40 adapts the previous example to load the

new album data from a JSON file, then uses the Album model constructor to create a

document from the new JSON data. Since the JSON data conforms to the album schema

(or, in the case of the releaseDate date string, can be converted directly to the property

type Date), the album instance will be persisted without errors.

Listing 9-40.  Alternative Way to Create a Document with Property Data

// example-007/add-album-instance-alt.js

'use strict';

var mongoose = require('mongoose');

var Album = require('./album-model');

var file2json = require('./file2json');

var path = require('path');

function handleError(err) {

 console.error(err);

 process.exit(1);

}

mongoose.connect('mongodb://localhost/music');

var db = mongoose.connection;

Chapter 9 Mongoose

347

db.on('error', handleError);

db.once('open', function addAlbumInstance() {

 var albumFile = path.join(__dirname, 'album.json');

 file2json(albumFile, 'utf8', function (err, albumJSON) {

 var album = new Album(albumJSON);

 album.save(function (err) {

 if (err) return handleError(err);

 console.log('album saved', album);

 process.exit(0);

 });

 });

});

�Document Instance Methods
Documents are more than just data: they may also include custom behavior. When

document instances are created, Mongoose creates a prototype chain with copies of

functions defined on the schema object’s methods property. Document methods defined

in this way may access particular document instances with the this keyword.

Listing 9-41 shows two instance methods defined on the album schema: one to find

the next album track given the previous track’s title and another that will find similar

albums based on shared genres. The findSimilar() method uses query syntax that will

be covered later in the section “Working with Queries,” but for now you simply need

to know that it effectively finds albums that have genres that overlap with the instance

album and that do not share the same _id as the instance album (so the instance itself is

excluded from the list).

Listing 9-41.  Defining Document Instance Methods in a Schema

// example-008/album-model.js

// ...

var albumSchema = mongoose.Schema({/*...*/});

albumSchema.methods.nextTrack = function (previousTrackTitle) {

 var i = 0, len = this.tracks.length;

Chapter 9 Mongoose

348

 for (i; i < len; i += 1) {

 if (this.tracks[i].title !== previousTrackTitle) {

 continue;

 }

 // return the next track, or, if this is the last track,

 // return the first track

 return this.tracks[i + 1] || this.tracks[0];

 }

 throw new Error('unable to find track ' + previousTrackTitle);

};

albumSchema.methods.findSimilar = function (cb) {

 var criteria = {

 _id: {$ne: this._id},

 genre: {$in: this.genre}

 };

 this.model('Album').find(criteria)

 .exec(cb);

};

var Album = mongoose.model('Album', albumSchema);

module.exports = Album;

The script in Listing 9-42 loads the album titled Renaissance, then calls album.

nextTrack() to determine which track follows “Fall from Grace.” Then it calls album.

findSimilar() to load albums related to Renaissance and prints their titles and genres to

the terminal. The output reveals that there is, indeed, overlapping genres for each album

and that the instance album itself is not included in the results.

Listing 9-42.  Using Document Instance Methods

// example-008/index01.js

'use strict';

var mongoose = require('mongoose');

var Album = require('./album-model');

Chapter 9 Mongoose

349

function handleError(err) {

 console.error(err);

 process.exit(1);

}

mongoose.connect('mongodb://localhost/music');

var db = mongoose.connection;

db.on('error', handleError);

db.once('open', function () {

 Album.findOne({title: 'Renaissance'})

 .exec(function (err, album) {

 if (err) return handleError(err);

 var nextTrack = album.nextTrack('Fall from Grace');

 console.log('next track:', nextTrack.title);

 album.findSimilar(function (err, albums) {

 if (err) return handleError(err);

 console.log('this album:', album.title, album.genre);

 albums.forEach(function (album) {

 console.log('similar album:', album.title, album.genre);

 });

 process.exit(0);

 });

 });

});

example-008$ node index01.js

next track: Fall from Grace (Choir Version)

this album: Renaissance ["Classical","Trailer Music","Soundtrack"]

similar album: Tree of Life ["Classical","Trailer Music"]

similar album: Dear Esther ["Classical","Video Game Soundtrack"]

similar album: Frozen Synapse ["Dance","Electronica","Soundtrack"]

Chapter 9 Mongoose

350

�Document Virtuals
Like instance methods, virtual getter and setter properties can be added to documents

via the schema. These virtual properties act like normal data properties but are not

persisted when the document is saved. They are useful for computing and returning

values based on document data or for parsing data that contains, or can be converted to,

values for other document properties.

A virtual getter and setter have been added to the album schema in Listing 9-43 that

define a property, composerInverse, that will get the inversed version of a composer’s

name (“last, first”) and set the composer’s name correctly (“first last”) given an inverse

form.

Listing 9-43.  Virtual Document Properties

// example-08/album-model.js

var albumSchema = mongoose.Schema({/*...*/});

// ...

albumSchema.virtual('composerInverse').get(function () {

 var parts = this.composer.split(' '); //first last

 if (parts.length === 1) {

 return this.composer;

 }

 return [parts[1], parts[0]].join(', '); //last, first

});

albumSchema.virtual('composerInverse').set(function (inverse) {

 var parts = inverse.split(', '); //last, first

 if (parts.length === 1) {

 this.composer = inverse;

 }

 this.composer = [parts[1], parts[0]].join(' '); //first last

});

// ...

Chapter 9 Mongoose

351

The string argument passed to the Schema.virtual() method defines the document

path where the property will reside once a document instance is created. Document

virtuals may be assigned to subdocuments and nested objects as well by specifying

the full path starting at the root document. For example, if the value of the composer

property was an object with firstName and lastName properties, the virtual might live at

composer.inverse instead.

The script and subsequent output in Listing 9-44 shows the composerInverse

property in action.

Listing 9-44.  Getting and Setting a Virtual Property

// example-008/index02.js

'use strict';

var mongoose = require('mongoose');

var Album = require('./album-model');

function handleError(err) {

 console.error(err);

 process.exit(1);

}

mongoose.connect('mongodb://localhost/music');

var db = mongoose.connection;

db.on('error', handleError);

db.once('open', function () {

 Album.find({}).exec(function (err, albums) {

 if (err) return handleError(err);

 albums.forEach(function (album) {

 console.log('album.composer:', album.composer);

 var inverse = album.composerInverse;

 console.log('album.composerInverse:', inverse);

 album.composerInverse = inverse;

 console.log('album.composer:', album.composer);

 console.log(/*newline*/);

 });

Chapter 9 Mongoose

352

 process.exit(0);

 });

});

example-008$ node index02.js

album.composer: Kerry Muzzey

album.composerInverse: Muzzey, Kerry

album.composer: Kerry Muzzey

album.composer: Audiomachine

album.composerInverse: Audiomachine

album.composer: Audiomachine

album.composer: Jessica Curry

album.composerInverse: Curry, Jessica

album.composer: Jessica Curry

album.composer: nervous_testpilot

album.composerInverse: nervous_testpilot

album.composer: nervous_testpilot

�Static Model Methods
Static methods may also be added to models (not document instances) and are commonly

used to encapsulate complicated criteria construction when querying against a collection.

The inPriceRange() method in Listing 9-45 is attached to the album schema’s statics

property. It receives two numeric arguments that represent the lower and upper bounds of

a price range and finds albums that are priced within that range, inclusively.

Listing 9-45.  Adding a Static Method to a Model

// example-009/album-model.js

var albumSchema = mongoose.Schema({/*...*/});

// ...

albumSchema.statics.inPriceRange = function (lower, upper, cb) {

 var criteria = {

 price: {$gte: lower, $lte: upper}

 };

Chapter 9 Mongoose

353

 this.find(criteria)

 .exec(cb);

};

// ...

When the album model is later created from the schema, any method on statics

will be bound to the model. While the value of this in instance methods is the document

itself, the value of the this keyword in static methods is the model constructor function

(e.g., Album). Any function that can be called on the model, such as find() and

create(), may be accessed in a static method.

The script in Listing 9-46 receives two prices as command-line arguments and then

finds albums within the range of those prices. The inPriceRange() method is called on

the Album model, just as any other static method. Encapsulating queries in this manner

can be a good way to maintain separate concerns, as query logic is isolated to models

and won’t pollute other portions of the application.

Listing 9-46.  Using Static Model Methods

// example-009/index.js

'use strict';

var mongoose = require('mongoose');

var Album = require('./album-model');

var lower = Number(process.argv[2] || 0);

var upper = Number(process.argv[3] || lower + 1);

console.log('finding albums between $%s and $%s', lower.toFixed(2), upper.

toFixed(2));

function handleError(err) {

 console.error(err);

 process.exit(1);

}

mongoose.connect('mongodb://localhost/music');

var db = mongoose.connection;

db.on('error', handleError);

db.once('open', function () {

 Album.inPriceRange(lower, upper, function (err, albums) {

Chapter 9 Mongoose

354

 if (err) return handleError(err);

 console.log('found albums:', albums.length);

 albums.forEach(function (album) {

 console.log(album.title, '$' + album.price.toFixed(2));

 });

 process.exit(0);

 });

});

example-009$ node index.js 5.00 10.00

finding albums between $5.00 and $10.00

found albums: 3

Tree of Life $9.49

Dear Esther $6.99

Frozen Synapse $8.99

example-009$ node index.js 9.00 10.00

finding albums between $9.00 and $10.00

found albums: 1

Tree of Life $9.49

example-009$ node index.js 20.00

finding albums between $20.00 and $21.00

found albums: 0

Note  The query examples in the next section do not use static model methods
for encapsulation. This is done to simplify each example, though in a real
maintainable application, it might be considered bad practice.

�Working with Queries
Mongoose queries are plain objects composed of zero or more properties that specify the

parameters of the query. (An empty query object matches everything.) Properties on these

criteria objects share MongoDB’s native query syntax. Models expose several different

query methods that use criteria objects in order to filter and return Mongoose documents.

Chapter 9 Mongoose

355

For the following examples, a web server provides access to MongoDB data via

Mongoose models. To start the web server, ensure that your MongoDB instance is

running and then execute the command in Listing 9-47 in each example directory.

(A comment at the top of each code example reveals which directory it lives in.) The

script output will inform you that the web server is running on port 8080. All interactions

with the web server will be demonstrated with the cURL terminal utility available for

most platforms, though each example could be run with any standard HTTP client.

Listing 9-47.  Starting the Web Server in Example 10

example-XYZ$ node index.js

listening on port 8080

�Model.find( )
Basic CRUD operations may be conveniently mapped to corresponding Mongoose

model functions with very little effort. The route in Listing 9-48, for example, is a general

route that uses Album.find() to locate album documents that contain properties

matching those in the criteria object. The criteria object gets composer and title

parameters from the URL query string if they have been sent as part of the request. If

one or both of these parameters are set on the criteria object, Mongoose will return only

documents that have matching properties (similar to a where clause in traditional SQL).

If no parameters are sent, the criteria object will remain empty and Mongoose will find

all album documents.

Listing 9-48.  Finding Albums That Match a Given Criteria

// example-010/album-routes.js

/**
 * GET /album(?composer={string}&title={string})

 * @param req

 * @param cb

 */

routes.GET['^\/album(?:\\?.+)?$'] = function (req, cb) {

 cb = httpd.asJSON(cb);

 var criteria = {};

Chapter 9 Mongoose

356

 if (req.query.composer) {

 criteria.composer = req.query.composer;

 }

 if (req.query.title) {

 criteria.title = req.query.title;

 }

 Album.find(criteria)

 .sort({composer: 1, title: 1})

 .lean(true)

 .exec(function (err, albums) {

 if (err) return cb(500, err);

 cb(200, albums);

 });

};

The Album.find() method will return a Mongoose Query object that exposes

additional methods for manipulating the results of the find operation.

Note  Model methods can be invoked in several ways. The first, shown in
Listing 9-48, returns a Query object with a fluent interface that allows query
options to be chained together until the Query.exec() method is called. The
second method avoids the Query object altogether. If a callback is passed as the
last argument to a model’s query method (e.g., find({}, function () {...})),
the underlying query will be executed immediately and the error or result passed
to the callback. For simple queries, the second method is more terse.

The first Query directive is Query.sort(), which accepts an object that uses

MongoDB’s sorting notation. The properties in this object tell MongoDB which

properties in the document should be used for sorts and in which direction each sort

should be ordered (1 for ascending, -1 for descending). When the results in Listing 9-48

are fetched, they will be ordered first by composer, then by album title.

After Query.sort(), the Query.lean() method is invoked to instruct Mongoose

to deliver plain JSON objects instead of Mongoose documents as results. By default,

Mongoose will always fetch documents, which carry Mongoose-specific properties and

methods for validating, persisting, and otherwise managing document objects. Since this

Chapter 9 Mongoose

357

route (and most routes in this file) simply serializes results and returns them to the client,

it is preferable to fetch them as Plain Old JavaScript Objects (or JSON objects) populated

only with data.

Once a query has been prepared, its exec() method is passed a callback to receive

either an error or data from the Album.find() operation. The results will be an array of

album objects that match whatever criteria (if any) was used to perform the query.

Several curl commands are shown in Listing 9-49 with various query string

parameters. In each case the output is a serialized JSON array delivered from the web API.

Note  The following examples use MongoDB identifiers that were generated
on my computer. These identifiers will differ on your computer. You may use
the mongo terminal client to discover the identifiers assigned to your MongoDB
documents, as demonstrated in previous examples.

Listing 9-49.  Using curl to Find Albums with Various Criteria

example-010$ curl -X GET http://localhost:8080/album?composer=Kerry%20Muzzey

[{"_id":"54ed1dcb6fb525ba25529bd1","composer":"Kerry Muzzey","title":"Renai

ssance"...]

example-010$ curl -X GET http://localhost:8080/album?title=Dear%20Esther

[{"_id":"54ed1dcb6fb525ba25529bf2","composer":"Jessica Curry","title":"Dear

Esther"...]

example-010$ curl -X GET "http://localhost:8080/album?composer=Audiomachine

&title=Tree%20of%20Life"

[{"_id":"54ed1dcb6fb525ba25529bd7","composer":"Audiomachine","title":"Tree

of Life"...]

�Model.findById( )
While Album.find() will always fetch an array of documents (even if its criteria specifies

a unique identifier), Album.findById() will only find a single document that matches

a given identifier, if any exist. The route in Listing 9-50 fetches a single album by

Chapter 9 Mongoose

358

albumID—a parameter passed as the last URL segment instead of the query string. The

lean() method is again invoked on the returned Query to eliminate the unnecessary

properties and methods in a full Mongoose document instance.

Listing 9-50.  Finding a Single Album That Matches a Given Criteria

// example-010/album-routes.js

/**
 * GET /album/{id}

 * @param req

 * @param cb

 */

routes.GET['^\/album\/([a-z0-9]+)$'] = function (req, cb) {

 cb = httpd.asJSON(cb);

 var albumID = req.params[0];

 Album.findById(albumID)

 .lean(true)

 .exec(function (err, album) {

 if (err) return cb(500, err);

 cb(200, album);

 });

};

example-010$ curl -X GET http://localhost:8080/

album/54f3a4df056601726f867685

{"_id":"54f3a4df056601726f867685","composer":"nervous_

testpilot","title":"Frozen Synapse"... }

Earlier an additional album was created by the import script example-007/add-

album-instance-alt.js, in which a deserialized JSON object was passed to the Album

constructor to create an album instance. Listing 9-51 demonstrates the same process

within an HTTP POST route. The body of the request is serialized album data that is

first converted to a JSON object, then passed to the Album model constructor. Once the

document instance has been created, the save() method validates the data (with rules

defined in the album schema) and creates the new MongoDB document.

Chapter 9 Mongoose

359

Listing 9-51.  Creating a New Album Document

// example-010/album-routes.js

/**
 * POST /album

 * @param req

 * @param cb

 */

routes.POST['^\/album$'] = function (req, cb) {

 console.log(req.body);

 cb = httpd.asJSON(cb);

 var albumJSON = req.body;

 var album = new Album(albumJSON);

 album.save(function (err) {

 if (err) return cb(500, err);

 cb(201, album.toObject());

 });

};

If validation fails, or if the album otherwise cannot be created, an error will be

passed to the final callback and delivered to the client as an HTTP 500 Internal

Server Error. If the album document is created, the data is passed back to the client

as serialized JSON. Unlike previous routes where Query.lean() was used to ensure that

only data is serialized, the album document returns its own data in JSON format when

its toObject() method is called. This is the manual equivalent of the process that lean()

performs in a query chain.

The curl request in Listing 9-52 reads the content of example-010/new-album.json

and sets it as the request body. The Content-Type informs the web server to deserialize

the payload accordingly.

Listing 9-52.  Creating a New Album with a curl Request

example-010$ curl -X POST http://localhost:8080/album \

> -d @new-album.json \

> -H "Content-Type: application/json"

{"_id":"54f66ed2fa4af12b43fee49b","composer":"Aphelion","title":

"Memento"... }

Chapter 9 Mongoose

360

The album data in example-010/new-album.json lacks a releaseDate property,

a condition that did not cause the schema validation to fail on import because

releaseDate is not required. Indeed, releaseDate defaults to Date.now and, if queried

with the mongo client, will be exactly that. Unfortunately, the album was not, in fact,

released today, so it is necessary to create another route to update the newly minted

album document.

�Model.findByIdAndUpdate( )
An album instance may be updated in a number of ways. The Album.findById()

method could fetch the document, its properties could be set with updated data, then it

could be saved back to the data store. Or the Album.findByIdAndUpdate() method could

be used to do all of that at once and return the newly updated album document, the

exact approach taken in Listing 9-53.

Listing 9-53.  Finding and Updating an Album by ID

// example-010/album-routes.js

/**
 * PUT /album/{id}

 * @param req

 * @param cb

 */

routes.PUT['^\/album\/([a-z0-9]+)$'] = function (req, cb) {

 cb = httpd.asJSON(cb);

 var albumID = req.params[0];

 var updatedFields = req.body;

 Album.findByIdAndUpdate(albumID, updatedFields)

 .lean(true)

 .exec(function (err, album) {

 if (err) return cb(500, err);

 cb(200, album);

 });

};

Chapter 9 Mongoose

361

Like Listing 9-51, a serialized JSON object is sent in the body of an HTTP request.

This request is a PUT request, however, and includes the album identifier in the

URL. The only data sent in the request body are the properties to be updated. It is

unnecessary to send the full document across the wire because Mongoose will apply the

deltas appropriately. Once the request body is deserialized, the album ID and updated

fields are passed to findByIdAndUpdate(). If the update operation succeeds, the

updated document will be passed to the final query callback, assuming no errors occur.

The curl command in Listing 9-54 creates a PUT request with a simple JSON

payload that specifies a new value for releaseDate. When the request finishes, the

printed response shows the updated album data.

Listing 9-54.  Finding and Updating an Album by ID with curl

example-010$ curl -X PUT http://localhost:8080/

album/54f66ed2fa4af12b43fee49b \

> -d '{"releaseDate": "2013-08-15T05:00:00.000Z"}' \

> -H "Content-Type: application/json"

{"_id":"54f66ed2fa4af12b43fee49b"..."releaseDate":"2013-08-

15T05:00:00.000Z"... }

�Model.findByIdAndRemove( )
To remove a document from MongoDB, the DELETE route uses the Album.

findByIdAndRemove() method to look up the MongoDB document and then remove it

from the albums collection. The removed album is passed to the final callback in Listing

9-55 if the operation is successful.

Listing 9-55.  Finding and Removing an Album by ID

// example-010/album-routes.js

/**
 * DELETE /album/{id}

 * @param req

 * @param cb

 */

routes.DELETE['^\/album\/([a-z0-9]+)$'] = function (req, cb) {

Chapter 9 Mongoose

362

 cb = httpd.asJSON(cb);

 var albumID = req.params[0];

 Album.findByIdAndRemove(albumID)

 .lean(true)

 .exec(function (err, album) {

 if (err) return cb(500, err);

 cb(200, album);

 });

};

example-010$ curl -X DELETE http://localhost:8080/

album/54f3aa9447429f44763f2603

{"_id":"54f66ed2fa4af12b43fee49b","composer":"Aphelion","title":"Memento"... }

A document instance also has a remove() method that can be invoked much like

its save() method. In Listing 9-56 an album instance is fetched by ID. Query.lean() is

not called this time because it is the document, not its plain JSON representation, that

will possess a remove() method. Once the instance is fetched, remove() is called with a

callback that will receive an error on failure or a copy of the removed document instance

if successful.

Listing 9-56.  Removing a Document Instance

Album.findById(albumID)

 .exec(function (err, albumInstance) {

 albumInstance.remove(function (err, removedAlbum) {

 // album has been removed

 });

 });

�Model.count( )
Another useful model method is count(), which receives the same type of criteria

objects as the find*() methods, but returns a simple record count instead of full objects.

The HTTP route in Listing 9-57 uses the same query parameters as the general album

search and returns the result count in the HTTP response.

Chapter 9 Mongoose

363

Listing 9-57.  Counting Albums That Match Criteria

// example-011/album-routes.js

/**
 * GET /album/count(?composer={string}&title={string})

 * @param req

 * @param cb

 */

routes.GET['^\/album\/count(?:\\?.+)?$'] = function (req, cb) {

 cb = httpd.asJSON(cb);

 var criteria = {};

 if (req.query.composer) {

 criteria.composer = req.query.composer;

 }

 if (req.query.title) {

 criteria.title = req.query.title;

 }

 Album.count(criteria)

 .exec(function (err, count) {

 if (err) return cb(500, err);

 cb(200, count);

 });

};

example-011$ curl -X GET http://localhost:8080/album/count

4

example-011$ curl -X GET http://localhost:8080/album/

count?composer=Jessica%20Curry

1

�Query.Populate( )
Earlier, in Listing 9-28, a script was used to add a music library to MongoDB. The

library schema defined an array property, albums, that contained references to album

documents, shown in Listing 9-58.

Chapter 9 Mongoose

364

Listing 9-58.  Album References in the Library Schema

var librarySchema = mongoose.Schema({

 // ...

 albums: [{type: mongoose.Schema.Types.ObjectId, ref: 'Album'}],

 // ...

});

Mongoose documents with foreign references can be fetched with or without

resolving those references to other document objects. The route in Listing 9-59 fetches

a library by ID, then calls the Query.populate() method to eagerly fetch the associated

albums for the library. Mongoose is smart enough to know that, even though albums is

technically an array, the objects it contains actually refer to other album documents.

Listing 9-59.  Populating Albums with a Library Model

// example-011/library-routes.js

/**
 * GET /library/(id)

 * @param req

 * @param cb

 */

routes.GET['^\/library\/([a-z0-9]+)$'] = function (req, cb) {

 cb = httpd.asJSON(cb);

 var libraryID = req.params[0];

 Library.findById(libraryID)

 .populate('albums')

 .lean(true)

 .exec(function (err, library) {

 if (err) return cb(500, err);

 if (!library) return cb(404, {

 message: 'no library found for ID ' + libraryID

 });

 cb(200, library);

 });

}

Chapter 9 Mongoose

365

Figure 9-1 shows a formatted version of the HTTP response. Each album in the

albums collection has been fully dereferenced. Because Query.lean() was also called

in the query chain, Mongoose converted the library and album data into plain JSON

objects.

Figure 9-1.  Library population results

�Finding Documents with Query Operators
At this point the album and library routes consist of basic CRUD operations (create, read,

update, and delete) that form the basis of many web APIs, but more could be done to

make the API robust. MongoDB supports a number of helpful query operators that serve

to filter data in specific ways.

�The $lt and $gt Operators

The $lt and $gt operators can be used to find documents with values that are less than

($lt) or greater than ($gt) some value. The route in Listing 9-60 allows clients to search

for albums that have been released on, before, or after a specific date that is passed to the

route as a query parameter.

Chapter 9 Mongoose

366

Listing 9-60.  Finding Albums by Release Date

// example-011/album-routes.js

/**
 * GET /album/released/MM-DD-YYYY

 * GET /album/released/MM-DD-YYYY/before

 * GET /album/released/MM-DD-YYYY/after

 * @param req

 * @param cb

 */

routes.GET['^\/album\/released\/([\\d]{2}-[\\d]{2}-[\\d]{4})(?:\/

(before|after))?$'] = function (req, cb) {

 cb = httpd.asJSON(cb);

 var date = req.params[0];

 var when = req.params[1];

 var criteria = {releaseDate: {}};

 if (when === 'before') {

 criteria.releaseDate.$lt = new Date(date);

 } else if (when === 'after') {

 criteria.releaseDate.$gt = new Date(date);

 } else {

 when = null;

 criteria.releaseDate = new Date(date);

 }

 Album.find(criteria)

 .select('composer title releaseDate')

 .lean(true)

 .exec(function (err, albums) {

 if (err) return cb(500, err);

 if (albums.length === 0) {

 return cb(404, {

 message: 'no albums ' + (when || 'on') + ' release date ' + date

 });

 }

Chapter 9 Mongoose

367

 cb(200, albums);

 });

};

To find albums released on a specific date, a normal criteria object is used to map the

date value to the releaseDate property:

{releaseDate: new Date(...)}

If searching for albums before or after the date, however, the criteria object uses the

$lt or $gt operator, respectively:

{releaseDate: {$lt: new Date(...)} }

// or

{releaseDate: {$gt: new Date(...)} }

To find albums that were released before, and up to, a specific date, the $lte (“less

than or equal”) operator could be used. Likewise, the $gte operator would find albums

released from a specific date onward. To find all albums that were released on any date

but the date provided, the $ne (“not equal”) operator would filter accordingly. Its inverse,

$eq, if used alone is functionally equivalent to setting the releaseDate value on the

criteria object directly.

To keep the response small, the Query.select() method is invoked before the

query is executed. This method limits the properties returned from each result object.

In this case, the query selects only the composer, title, and releaseDate properties, all

included in a space-separated string. All other properties are ignored.

Listing 9-61 shows the filtered JSON data returned for each kind of release date query.

Listing 9-61.  Using curl to Find Albums by Release Date

example-011$ curl -X GET http://localhost:8080/album/released/01-01-2013

{"message":"no albums on release date 01-01-2013"}

example-011$ curl -X GET http://localhost:8080/album/released/01-01-2013/

before

[{"_id":"54ed1dcb6fb525ba25529bf2","composer":"Jessica Curry","title":"Dear

Esther","releaseDate":"2012-02-14T06:00:00.000Z"},{"_id":"54f3a4d

Chapter 9 Mongoose

368

f056601726f867685","composer":"nervous_testpilot","title":"Frozen

Synapse","releaseDate":"2012-09-06T05:00:00.000Z"}]

example-011$ curl -X GET http://localhost:8080/album/released/01-01-2013/after

[{"_id":"54ed1dcb6fb525ba25529bd1","composer":"Kerry Muzzey","title

":"Renaissance","releaseDate":"2014-01-13T06:00:00.000Z"},{"_id":"5

4ed1dcb6fb525ba25529bd7","composer":"Audiomachine","title":"Tree of

Life","releaseDate":"2013-07-16T05:00:00.000Z"}]

Notice that even though the Query.select() filter did not specify the _id property

for inclusion, it is still present in each response. To omit this property, a negation needs

to be added to the select string. Prefixing the _id property with a minus sign will prevent

it from being selected:

Album.find(...)

 .select('-_id composer title releaseDate')

 // ...

Note  The _id property is the only property that may be specified for exclusion
when an inclusive select (one that specifies the properties to be fetched) is
performed. Otherwise, excluded and included properties may not be mixed. A query
is either selecting only specific properties or excluding only specific properties, but
not both. If any property in a Query.select() string is negated (except for _id),
all specified properties must be negated or an error will be raised.

�The $in and $nin Operators

It is often helpful to select documents with property values that match some subset

of possibilities. The $in operator (and its inverse, $nin) tests a document property

value against each element in an array. The document fulfills the criteria if its property

matches at least one of the elements in the array. To find albums from two composers,

for example, the criteria object in Listing 9-62 might be used.

Chapter 9 Mongoose

369

Listing 9-62.  Using the $in Query Operator to Filter by Composer

{composer: {$in: ['Kerry Muzzey', 'Jessica Curry']}}

The $nin operator does the exact opposite: it will match only if the property value is

not included in the specified set.

Both $in and $nin work for properties with scalar values (like strings, numbers,

dates, etc.), but they can also be used to search within collections. The web route in

Listing 9-63 accepts a music genre as a URL parameter and returns related genres in the

HTTP response.

Listing 9-63.  Using the $in Query Operator to Filter by Genre

// example-011/album-routes.js

/**
 * GET /album/genre/(genre)/related

 * @param req

 * @param cb

 */

routes.GET['^\/album\/genre\/([a-zA-Z]+)/related$'] = function (req, cb) {

 cb = httpd.asJSON(cb);

 var principalGenre = req.params[0];

 var criteria = {

 genre: {$in: [principalGenre]}

 };

 Album.find(criteria)

 .lean(true)

 .select('-_id genre')

 .exec(function (err, albums) {

 if (err) return cb(500, err);

 var relatedGenres = [];

 albums.forEach(function (album) {

 album.genre.forEach(function (albumGenre) {

 // don't include the principal genre

 if (albumGenre === principalGenre) return;

 // ensure duplicates are ignored

 if (relatedGenres.indexOf(albumGenre) < 0) {

Chapter 9 Mongoose

370

 relatedGenres.push(albumGenre);

 }

 });

 });

 cb(200, {genre: principalGenre, related: relatedGenres});

 });

};

example-011$ curl -X GET http://localhost:8080/album/genre/Dance/related

{"genre":"Dance","related":["Electronica","Soundtrack"]}

To determine what constitutes a “related” genre, the criteria object selects albums

that have the principal genre as an element in each document’s genre array. It then

compiles a list of all other genres that have been assigned to albums in the result set

and returns that list to the client. Though Album.genre is an array, MongoDB knows to

traverse it for values that match the elements in the $in operator. The Query.select()

method excludes the _id property and includes only the genre property, since it alone

contains the data in which this route is interested.

The $in operator is useful for finding elements in arrays of scalar values, but

a different approach is needed when searching arrays of complex objects. Each

subdocument in Album.tracks has its own properties and values, for example. To search

for albums with tracks that meet some criteria, properties for tracks can be referenced

with their full property paths, starting from the album itself. In Listing 9-64, albums

will be fetched that possess any track with a title property that matches the value for

tracks.title in the criteria object.

Listing 9-64.  Using a Subdocument Path in a Criteria Object

// example-012/album-routes.js

/**
 * GET /album(?composer={string}&title={string}&track={string})

 * @param req

 * @param cb

 */

routes.GET['^\/album(?:\\?.+)?$'] = function (req, cb) {

 cb = httpd.asJSON(cb);

 var criteria = {};

Chapter 9 Mongoose

371

 // ...

 if (req.query.track) {

 criteria['tracks.title'] = req.query.track;

 }

 // ...

 Album.find(criteria)

 .lean(true)

 .exec(function (err, albums) {

 if (err) return cb(500, err);

 cb(200, albums);

 });

};

example-012$ curl -X GET http://localhost:8080/album?track=The%20Looking%20Glass

[{"_id":"54ed1dcb6fb525ba25529bd1","composer":"Kerry Muzzey","title":"Renai

ssance"... }

�The $and and $or Operators

Simple criteria objects can query a property by using normal object notation. For

example, to find an album that is in publication, the simple criteria object in Listing 9-65

would be sufficient.

Listing 9-65.  Simple Criteria Object

Album.find({inPublication: true}, function (err, albums) {/*...*/});

This approach is insufficient for complicated, compound queries, however, such as

the pseudo-query in Listing 9-66.

Listing 9-66.  Painful Pseudo-Query

(select albums that

 (

 (are in publication and were released within the last two years) or

 (are categorized as classical and priced between $9 and $10)

)

)

Chapter 9 Mongoose

372

Fortunately, the $and and $or operators can be used to construct a criteria object

that will produce the desired set of albums. Both operators accept an array of criteria

objects that may contain simple queries or complex queries that also contain $and,

$or, or any other valid query operators. The $and operator performs a logical AND

operation using each criteria object in its array, selecting only documents that match all

specified criteria. In contrast, the $or operator performs a logical OR operation, selecting

documents that match any of its criteria.

In Listing 9-67, the album recommendations route composes a criteria object that

uses both compound operators. Note that whereas the keys in simple criteria objects

are property names, in compound criteria objects the keys are the compound operators

followed by arrays of simple and/or complex criteria objects.

Listing 9-67.  Using $and and $or to Find Album Recommendations

// example-012/album-routes.js

/**
 * GET /album/recommended

 * @param req

 * @param cb

 */

routes.GET['^\/album\/recommended$'] = function (req, cb) {

 cb = httpd.asJSON(cb);

 var nowMS = Date.now();

 var twoYearsMS = (365 * 24 * 60 * 60 * 1000 * 2);

 var twoYearsAgo = new Date(nowMS - twoYearsMS);

 var criteria = {

 $or: [

 // match all of these conditions...

 { $and: [{inPublication: true}, {releaseDate: {$gt: twoYearsAgo}}] },

 // OR

 // match all of these conditions...

 { $and: [{genre: {$in: ['Classical']}}, {price: {$gte: 5, $lte: 10}}] }

]

 };

 Album.find(criteria)

Chapter 9 Mongoose

373

 .lean(true)

 .select('-_id -tracks')

 .exec(function (err, albums) {

 if (err) return cb(500, err);

 cb(200, albums);

 });

};

example-012$ curl -X GET http://localhost:8080/album/recommended

[{"composer":"Kerry Muzzey","title":"Renaissance","price":4.95... },

 {"composer":"Audiomachine","title":"Tree of Life","price":9.49... },

 {"composer":"Jessica Curry","title":"Dear Esther","price":6.99... }]

�The $regex Operator

Often, searching for documents that match a precise text field query yields suboptimal

results. Regular expressions can be used to broaden these searches so that documents

are selected with fields that resemble a particular query parameter. In SQL-based

languages, the like operator can be used for this purpose, but MongoDB favors regular

expressions. The $regex operator adds a regular expression to a criteria object property,

selecting documents that match the regular expression and excluding those that do

not. It is often paired with the $options operator which may contain any valid regular

expression flag such as i (case-insensitive). The route in Listing 9-68 accepts a query

parameter, owner, which is converted to a regular expression and applied against the

owner property of every library document.

Listing 9-68.  Finding a Library with a Regular Expression

// example-012/library-routes.js

/**
 * GET /library?

 * @param req

 * @param cb

 */

routes.GET['^\/library(?:\\?.+)?$'] = function (req, cb) {

 cb = httpd.asJSON(cb);

 var criteria = {};

Chapter 9 Mongoose

374

 if (req.query.owner) {

 criteria.owner = {

 $regex: '^.*' + req.query.owner + '.*$',

 $options: 'i'

 }

 } else {

 return cb(404, {message: 'please specify an owner'});

 }

 Library.find(criteria)

 .populate('albums')

 .exec(function (err, libraries) {

 if (err) return cb(500, err);

 cb(200, libraries);

 });

};

The criteria object specifies the property against which the regular expression

will be applied and an object that includes both the expression (the $regex property)

and any options to apply while matching (the $options property). In Listing 9-69 the

curl command uses the owner cloud as a query string parameter. Since the regular

expression in Listing 9-68 surrounds the query parameter with the regular expression

wildcard .*, and since the regular expression options specify the case-insensitive

option i, the route will return the only library in MongoDB, owned by Nicholas Cloud.

Listing 9-69 shows the curl command and HTTP response output.

Listing 9-69.  Finding a Library by Owner with cURL

 curl -X GET http://localhost:8080/library?owner=cloud

[{"_id":"54ed249312c06b3726d3abcd","owner":"Nicholas Cloud"...]

�Advanced Query Operators

There are many more MongoDB operators that may be used in Mongoose queries,

and while an in-depth analysis of each warrants many more pages, Table 9-3 provides a

high-level overview of additional advanced query operators.

Chapter 9 Mongoose

375

�Summary
MongoDB is schemaless and extremely flexible by design, but application developers

often add constraints on data in application code to enforce business rules, ensure

data integrity, conform to existing application abstractions, or achieve any number of

other goals. Mongoose recognizes and embraces this reality, and rests snugly between

application code and the data store.

Mongoose schemas add constraints to otherwise free-form data. They define the

shape and validity of the data to be stored, enforce constraints, create relationships

between documents, and expose the document life cycle via middleware.

Models provide a full but extensible query interface. Criteria objects that conform

to MongoDB query syntax are used to find specific data. Chainable query methods give

developers control over the property selection, reference population, and whether full

documents or plain JSON objects are retrieved. Custom static methods that encapsulate

complicated criteria objects and more involved queries can be added to models to keep

application concerns properly segregated.

Finally, Mongoose documents can be extended with custom instance methods that

contain domain logic and custom getters and setters that aid in computed property

manipulation.

Table 9-3.  Additional Advanced Query Operators

Operator Description

$not, $nor Negative logical operators that combine query clauses and select documents that

match accordingly

$exists Selects documents where the specified property exists (remember, MongoDB

documents are technically schemaless)

$type Selects documents where the specified property is of a given type

$mod Selects documents where a modulo operator on a specified field returns a specified

result (e.g., select all albums where the price is divisible evenly by 3.00)

$all Selects documents with an array property that contains all specified elements

$size Selects documents with an array property of a given size

$elemMatch Selects documents where a subdocument in an array matches more than

one condition

Chapter 9 Mongoose

377
© Sufyan bin Uzayr, Nicholas Cloud, Tim Ambler 2019
S. bin Uzayr et al., JavaScript Frameworks for Modern Web Development,
https://doi.org/10.1007/978-1-4842-4995-6_10

CHAPTER 10

Knex and Bookshelf

The report of my death was an exaggeration.

—Samuel Langhorne Clemens (Mark Twain)

In this chapter, we will explore two libraries that work together to ease many of the

difficulties that Node.js developers often encounter when working with relational

databases. The first, Knex, provides a flexible and consistent interface for interacting

with several well-known SQL platforms such as MySQL and PostgreSQL. The

second, Bookshelf, builds on this foundation by providing developers with a powerful

object-relational mapping (ORM) library that simplifies the process of modeling

the entities that comprise an application’s data structure, along with the various

relationships that exist between them. Readers who are familiar with Backbone.js and its

emphasis on structuring data within Models and Collections will quickly find themselves

at home with Bookshelf, as the library follows many of the same patterns and provides

many of the same APIs.

In this chapter, you will learn how to do the following:

•	 Create SQL queries with the Knex query builder

•	 Create complex database interactions without resorting to nested

callback functions, with the help of promises

•	 Ensure the integrity of your application’s data through the use of

transactions

•	 Manage changes to your database’s schema with the help of Knex

migration scripts

•	 Bootstrap your database with sample data using Knex seed scripts

378

•	 Define one-to-one, one-to-many, and many-to-many relationships

between Bookshelf models

•	 Use eager loading to efficiently retrieve complex object graphs based

on Bookshelf relationships

Note  Most of the examples in this chapter make heavy use of the promise-based
and Underscore-inspired APIs that both Bookshelf and Knex provide.

�Knex
Knex provides a database abstraction layer (DBAL) for MySQL, PostgreSQL, MariaDB,

and SQLite3, a unified interface through which developers can interact with each

of these Structured Query Language (SQL) databases without having to concern

themselves with minor variations in syntax and response format that exist between each

platform. Applications backed by such relational databases can benefit from a number of

Knex features, including these:

•	 A promise-based interface that allows for cleaner control of

asynchronous processes

•	 A stream interface for efficiently piping data through an application

as needed

•	 Unified interfaces through which queries and schemas for each

supported platform can be created

•	 Transaction support

In addition to the library itself, Knex also provides a command-line utility with which

developers can do the following:

•	 Create, implement, and (when necessary) revert database

migrations, scripted schema changes that can then be committed

with an application’s source code

•	 Create database “seed” scripts, a consistent method by which an

application’s database can be populated with sample data for local

development and testing

Each of these subjects will be covered in more detail throughout this chapter.

Chapter 10 Knex and Bookshelf

379

�Installing the Command-Line Utility
Before going any further, you should ensure that you have installed the command-line

utility provided by Knex. Available as an npm package, the installation process is shown

in Listing 10-1.

Listing 10-1.  Installing the knex Command-Line Utility via npm

$ npm install -g knex

$ knex –version

Knex CLI version: 0.16.3

�Adding Knex to Your Project
In addition to installing the knex command-line utility, you will also need to add the

knex npm module as a local dependency within each project in which you intend to use

it, along with a supported database library, as shown in Listing 10-2.

Listing 10-2.  Installing Knex and a Supported Database Library As a Local

Project Dependency via npm

$ npm install knex --save

Supported database libraries include (be sure to --save):

$ npm install mysql

$ npm install mariasql

$ npm install pg

$ npm install sqlite3

$ npm install mysql2

$ npm install oracle

Note S QLite implements a self-contained, serverless database within a single file
on your disk and requires no additional tools. If you don’t have access to a database
server such as MySQL at the moment, the sqlite3 library will provide you with a
quick and easy way to begin experimenting with Knex without requiring additional
setup. The examples referenced throughout this chapter will use this library.

Chapter 10 Knex and Bookshelf

380

�Configuring Knex
With your dependencies now in place, all that remains is to initialize Knex within your

project. Listing 10-3 shows what that process looks like if you happen to be using MySQL,

PostgreSQL, or MariaDB, while Listing 10-4 shows how to initialize Knex for use with

SQLite3.

Listing 10-3.  Initializing Knex for Use with MySQL, PostgreSQL, or MariaDB

(Substitute mysql for pg or mariasql As Needed)

var knex = require('knex')({

 'client': 'mysql',

 'connection': {

 'host': '127.0.0.1',

 'user': 'user',

 'password': 'password',

 'database': 'database'

 },

 'debug': false // Set this to true to enable debugging for all queries

});

Listing 10-4.  Initializing Knex for Use with SQLite3

// example-sqlite-starter/lib/db.js

var knex = require('knex')({

 'client': 'sqlite3',

 'connection': {

 'filename': 'db.sqlite'

 }

});

As you can see, the configuration settings required for SQLite3 are quite a bit

simpler than those required for other, more full-featured solutions. Instead of providing

connection settings, we simply provide the name of a file (db.sqlite) in which SQLite

will store its data.

Chapter 10 Knex and Bookshelf

381

�The SQL Query Builder
The primary focus of Knex is on providing developers with a unified interface through

which they can interact with multiple, SQL-based databases without having to worry

about minor variations in syntax and response format that exist between each of them.

To that end, Knex provides a number of methods, most of which fall into one of two

categories: query builder methods and interface methods.

�Query Builder Methods

Query builder methods are those that aid developers in the creation of SQL queries.

Examples of such methods include select(), from(), where(), limit(), and groupBy().

At last count, Knex provides more than 40 such methods, with which platform-agnostic

queries can be created. Listing 10-5 shows a simple SQL query, along with an example

demonstrating how such a query can be created using Knex.

Listing 10-5.  Example Demonstrating the Creation of a Simple SQL Query

Using Knex

// example-sqlite-starter/example1.js

// SELECT id, name, postal_code FROM cities;knex.select('id', 'name',

'postal_code').from('cities');

While the example shown in Listing 10-5 demonstrates the basic method by which

SQL queries can be created with Knex, it does little to convey the true value of the

library. That value should start to become more apparent as we take a look at the various

interface methods that Knex provides. It is with these methods that we can begin to

submit our queries and process their resulting data.

�Interface Methods

Knex provides a number of interface methods that allow us to submit and process our

queries in several convenient ways. In this section, we’ll take a look at two of the most

useful approaches that are available to us.

Chapter 10 Knex and Bookshelf

382

Promises

The event-driven nature of JavaScript makes it well suited for efficiently handling

complex, asynchronous tasks. Traditionally, JavaScript developers have managed

asynchronous control flow through the use of callback functions, as shown in Listing 10-6.

Listing 10-6.  Simple Callback Function

var request = require('request');

request({

 'url': 'http://mysite.com',

 'method': 'GET'

}, function(err, response) {

 if (err) throw new Error(err);

 console.log(response);

});

Callback functions allow us to defer the execution of a particular sequence of code

until the appropriate time. Such functions are easy to understand and implement.

Unfortunately, they are also very difficult to manage as applications grow in complexity.

Imagine a scenario in which additional asynchronous processes must run after the initial

response is received in Listing 10-6. To do so would require the use of additional, nested

callback functions. As additional asynchronous steps are added to this code, we begin to

experience what many developers refer to as “callback hell” or the “pyramid of doom,”

terms that describe the unmaintainable mass of spaghetti code that frequently results

from such an approach.

Fortunately, JavaScript promises provide developers with a convenient solution to

this problem—a solution that Knex makes extensive use of through its promise-based

interface for submitting and processing queries. Listing 10-7 shows this API in action.

Listing 10-7.  Demonstration of the Promise-Based API Provided by Knex

// example-sqlite-starter/example2.js

knex.pluck('id').from('cities').where('state_id', '=', 1)

 .then(function(cityIds) {

 return knex.select('id', 'first_name', 'last_name').from('users')

 .whereIn('city_id', cityIds);

 })

Chapter 10 Knex and Bookshelf

383

 .then(function(users) {

 return [

 users,

 �knex.select('*').from('bookmarks').whereIn('user_id',

_.pluck(users, 'id'))

];

 })

 .spread(function(users, bookmarks) {

 _.each(users, function(user) {

 user.bookmarks = _.filter(bookmarks, function(bookmark) {

 return bookmark.user_id = user.id;

 });

 });

 console.log(JSON.stringify(users, null, 4));

 })

 .catch(function(err) {

 console.log(err);

 });

In this example, three queries are submitted in succession:

	 1.	 Cities within a particular state are selected.

	 2.	 Users who live within the returned cities are selected.

	 3.	 Bookmarks for each of the returned users are selected.

After our final query has returned, we then attach each bookmark to the appropriate

user and display the result, which you can see in Listing 10-8.

Listing 10-8.  Data Logged to the Console As a Result of the Code in Listing 10-7

[

 {

 "id": 1,

 "first_name": "Steve",

 "last_name": "Taylor",

 "bookmarks": [

 {

Chapter 10 Knex and Bookshelf

384

 "id": 1,

 "url": "http://reddit.com",

 "label": "Reddit",

 "user_id": 1,

 "created_at": "2015-03-12 12:09:35"

 },

 {

 "id": 2,

 "url": "http://www.theverge.com",

 "label": "The Verge",

 "user_id": 1,

 "created_at": "2015-03-12 12:09:35"

 }

]

 }

]

Thanks to the promise-based interface provided by Knex, at no point does our

code ever reach beyond one level of indentation, thereby ensuring that our application

remains easy to follow. More importantly, should an error occur at any point during this

process, it would be conveniently caught and handled by our final catch statement.

Note  JavaScript promises are a powerful tool for writing complex, asynchronous
code in a manner that is easy to follow and maintain.

Streams

One of the biggest benefits to writing applications with Node.js is the platform’s ability

to execute I/O-intensive procedures in a very efficient manner. Unlike synchronous

languages such as PHP, Python, or Ruby, Node.js is capable of handling thousands

of simultaneous connections within a single thread, allowing developers to write

applications capable of meeting enormous demands, while using minimal resources.

Node.js provides several important tools for accomplishing this feat, one of the most

important of which is streams.

Chapter 10 Knex and Bookshelf

385

Before we take a look at streams, let’s examine another example of a traditional

JavaScript callback function, as shown in Listing 10-9.

Listing 10-9.  JavaScript Callback Function That Accepts the Contents of a

Loaded File

var fs = require('fs');

fs.readFile('data.txt', 'utf8', function(err, data) {

 if (err) throw new Error(err);

 console.log(data);

});

In this example, we use the readFile() method of the native fs library available

within Node.js to read the contents of a file. Once that data is loaded into memory (in its

entirety), it is then passed to our callback function for further processing. This approach

is simple and easily understood. However, it’s not very efficient, as our application

must first load the entire contents of the file into memory before passing it back to us.

This isn’t a terrible problem for smaller files, but larger files may begin to cause issues,

depending on the resources available to the server that happens to be running this

application.

Node.js streams resolve this issue by piping data through one or more functions in

multiple, smaller chunks. By doing so, streams allow developers to avoid dedicating large

portions of a server’s available resources for any single request. The example shown in

Listing 10-10 accomplishes the same goal of our previous example, without loading the

contents of the entire file into memory all at once.

Listing 10-10.  Pair of Node.js Streams Working Together to Efficiently Load and

Display the Contents of a File

// example-read-file-stream/index.js

var fs = require('fs');

var Writable = require('stream').Writable;

var stream = fs.createReadStream('data.txt');

var out = Writable();

Chapter 10 Knex and Bookshelf

386

out._write = function(chunk, enc, next) {

 console.log(chunk.toString());

 next();

};

stream.pipe(out);

Streams are a relatively underutilized feature of Node.js, which is unfortunate,

as they happen to be one of the more powerful aspects of the platform. Fortunately,

Knex provides a streaming interface for consuming query results that allows us to take

advantage of these benefits, as shown in Listing 10-11.

Listing 10-11.  Processing the Results of a Query via the Streaming Interface

Provided by Knex

var Writable = require('stream').Writable;

var ws = Writable();

ws._write = function(chunk, enc, next) {

 console.dir(chunk);

 next();

};

var stream = knex.select('*').from('users').stream();

stream.pipe(ws);

In this example, the results of our query on the users table (which could be quite

large for some applications) are streamed in smaller chunks to our writable stream,

instead of being passed along in their entirety. This approach can also be paired with

the library’s promise interface to create a more robust implementation, as shown in

Listing 10-12.

Listing 10-12.  Combining the Streaming and Promise-Based Interfaces Provided

by Knex for Better Error Handling

var Writable = require('stream').Writable;

var ws = Writable();

ws._write = function(chunk, enc, next) {

 console.dir(chunk);

 next();

};

Chapter 10 Knex and Bookshelf

387

knex.select('*').from('users').stream(function(stream) {

 stream.pipe(ws);

}).then(function() {

 console.log('Done.');

}).catch(function(err) {

 console.log(err);

});

In this example, we combine the power of the streaming and promise-based

interfaces provided by Knex. When a callback function is passed to the library’s stream()

method, that callback function receives the generated promise as opposed to being

returned directly. Instead, a promise is returned, which is resolved once the stream is

complete.

Note T he streaming interface provided by Knex is compatible with MySQL,
PostgreSQL, and MariaDB databases.

Transactions

One of the biggest benefits to using ACID-compliant, relational databases lies in their

ability to group multiple queries into a single unit of work (i.e., a “transaction”) that

will either succeed or fail as a whole. In other words, should a single query within the

transaction fail, any changes that may have occurred as a result of previously run queries

within the transaction would be reverted.

By way of an example, consider a financial transaction that occurs at your bank.

Suppose you wanted to send $25 to your cousin on her birthday. Those funds would first

have to be withdrawn from your account and then inserted into your cousin’s account.

Imagine a scenario in which the application enabling that exchange of funds were to

crash for any number of reasons (e.g., a faulty line of code or a larger system failure) after

those funds were removed from your account, but before they were inserted into your

cousin’s account. Without the safety net provided by transactions, those funds would

have essentially vanished into thin air. Transactions allow developers to ensure that such

processes only ever happen in full—never leaving data in an inconsistent state.

Chapter 10 Knex and Bookshelf

388

Note T he acronym ACID (Atomicity, Consistency, Isolation, Durability) refers to a
set of properties that describe database transactions. Atomicity refers to the fact
that such transactions can either succeed in their entirety or fail as a whole. Such
transactions are said to be “atomic”.

Previous examples within this chapter have demonstrated the process of creating

and submitting database queries with Knex. Before we continue, let’s review another

example that does not take advantage of transactions. Afterward, we’ll update this

example to take advantage of the peace of mind that transactions provide.

In the example shown in Listing 10-13, a moveFunds() function is declared that,

when called, uses the knex object to move the specified amount of funds from one

account to another. This function returns a promise that is either resolved or rejected

once this process completes, depending on the success or failure of the call. A glaring

error exists here—can you spot it?

Listing 10-13.  moveFunds() Function Demonstrating the Process of Moving

Funds from One Account to Another Without the Security of Transactions

// example-financial/bad.js

/**
 * Moves the specified amount of funds from sourceAccountID to destAccountID

 */

var moveFunds = function(sourceAccountID, destAccountID, amount) {

 return knex.select('funds').from('accounts')

 .where('id', sourceAccountID)

 .first(function(result) {

 if (!result) {

 throw new Error('Unable to locate funds for source account');

 }

 if (result.funds < amount) {

 throw new Error('Not enough funds are available in account');

 }

 return knex('accounts').where('id', sourceAccountID).update({

 'funds': result.funds - amount

Chapter 10 Knex and Bookshelf

389

 });

 }).then(function() {

 return knex.select('funds').from('accounts')

 .where('id', destAccountID);

 }).first(function(result) {

 if (!result) {

 �throw new Error('Unable to locate funds for destination

account');

 }

 return knex('accounts').where('id', destAccountID).update({

 'funds': result.funds + amount

 });

 });

};

/* Move $25 from account 1 to account 2. */

moveFunds(1, 2, 25).then(function(result) {

 console.log('Transaction succeeded.', result);

}).catch(function(err) {

 console.log('Transaction failed!', err);

});

In this example, the following steps are required to accomplish the goal of moving

funds from a source account to a destination account:

	 1.	 The total funds currently available within the source account are

determined.

	 2.	 If insufficient funds are available to complete the process, an error

is thrown.

	 3.	 The funds to be transferred are deducted from the source account.

	 4.	 The total funds currently available within the destination account

are determined.

	 5.	 If the destination account cannot be found, an error is thrown.

	 6.	 The funds to be transferred are added to the destination account.

Chapter 10 Knex and Bookshelf

390

If you haven’t spotted the mistake already, a glaring problem presents itself at step 5.

In the event that the destination account cannot be found, an error is thrown, but at this

point the funds to be moved have already been deducted from the source account! We

could attempt to solve this problem in a number of ways. We could catch the error within

our code and then credit the funds back to the source account, but this would still not

account for unforeseen errors that could arise due to network problems or in the event

that our application server were to lose power and completely crash in the middle of this

process.

It is at this point that the power of database transactions starts to become evident. In

Listing 10-14, our moveFunds() function is refactored to wrap this entire procedure into a

single, “atomic” transaction that will either succeed or fail as a whole. Note the creation

of the trx object, from which our transaction-aware queries are built.

Listing 10-14.  Transaction-Aware Implementation of Listing 10-13

// example-financial/index.js

/**
 * Moves the specified amount of funds from sourceAccountID to destAccountID

 */

var moveFunds = function(sourceAccountID, destAccountID, amount) {

 return knex.transaction(function(trx) {

 return trx.first('funds')

 .from('accounts')

 .where('id', sourceAccountID)

 .then(function(result) {

 if (!result) {

 �throw new Error('Unable to locate funds for source

account');

 }

 if (result.funds < amount) {

 �throw new Error('Not enough funds are available in

account');

 }

 return trx('accounts').where('id', sourceAccountID)

 .update({

Chapter 10 Knex and Bookshelf

391

 'funds': result.funds - amount

 });

 })

 .then(function() {

 return trx.first('funds')

 .from('accounts')

 .where('id', destAccountID);

 })

 .then(function(result) {

 if (!result) {

 �throw new Error('Unable to locate funds for destination

account');

 }

 return trx('accounts').where('id', destAccountID)

 .update({

 'funds': result.funds + amount

 });

 });

 });

};

/* Move $25 from account 1 to account 2. */

displayAccounts()

 .then(function() {

 return moveFunds(1, 2, 25);

 }).then(function() {

 console.log('Transaction succeeded.');

 }).catch(function(err) {

 console.log('Transaction failed!', err);

 });

As you can see, the transaction-aware example shown in Listing 10-14 largely

resembles that shown in Listing 10-13, but it does differ in one important way. Instead of

creating our query by calling builder methods directly on the knex object, we first initiate

a transaction by calling knex.transaction(). The callback function that we provide is

Chapter 10 Knex and Bookshelf

392

then passed a “transaction-aware” stand-in (trx) from which we then begin to create

our series of queries. From this point forward, any queries that we create from the trx

object will either succeed or fail as a whole. The knex.transaction() method returns

a promise that will be resolved or rejected once the transaction as a whole is complete,

allowing us to easily integrate this transaction into an even larger series of promise-

based actions.

�Migration Scripts
Just as an application’s source code is destined to change over time, so too is the

structure of the information that it stores. As such changes are made, it is important that

they be implemented in a way that can be repeated, shared, rolled back when necessary,

and tracked over time. Database migration scripts provide developers with a convenient

pattern for accomplishing this goal.

A Knex migration script is composed of two functions, up and down, as shown in

Listing 10-15. The script’s up function is responsible for modifying a database’s structure

in some desired way (e.g., creating a table, adding a column), while its down function is

responsible for restoring the database’s structure to its previous state.

Listing 10-15.  Knex Migration Script with up Function Creating a New Table and

down Function Dropping the Table

// example-sqlite-starter/migrations/20150311082640_states.js

exports.up = function(knex, Promise) {

 return knex.schema.createTable('states', function(table) {

 table.increments().unsigned().primary().notNullable();

 table.string('name').notNullable();

 �table.timestamp('created_at').defaultTo(knex.fn.now()).

notNullable();

 });

};

exports.down = function(knex, Promise) {

 return knex.schema.dropTable('states');

};

Chapter 10 Knex and Bookshelf

393

�Configuring Your Project for Migrations

The Knex command-line utility provides developers with simple tools for creating and

managing migration scripts. To get started, you’ll first need to create a special configuration

file by running the following command within the root folder of your project:

$ knex init

After running this command, a file (knexfile.js) will be created with contents

similar to those shown in Listing 10-16. You should alter the contents of this file as

needed. Whenever a Knex migration script is run, Knex will determine its connection

settings based on the contents of this file and the value of the NODE_ENVIRONMENT

environment variable.

Note O n OS X and Linux, environment variables are set from the terminal by
running export ENVIRONMENT_VARIABLE=value. The command to be used
within the Windows command line is set ENVIRONMENT_VARIABLE=value.

Listing 10-16.  knexfile.js

// example-sqlite-starter/knexfile.js

module.exports = {

 'development': {

 'client': 'sqlite3',

 'connection': {

 'filename': './db.sqlite'

 }

 },

 'seeds': {

 'directory': './seeds'

 }

 },

Chapter 10 Knex and Bookshelf

394

 'staging': {

 'client': 'postgresql',

 'connection': {

 'database': 'my_db',

 'user': 'username',

 'password': 'password'

 },

 'pool': {

 'min': 2,

 'max': 10

 }

 }

 }

};

�Creating Your First Migration

With our Knex configuration file now in place, we can move forward with the creation of

our first migration script. The command for doing so is shown here:

$ knex migrate:make users_table

When creating your own migrations, substitute the users_table portion of the

command with a term that describes the change your migration implements. After

running this command, Knex will create a migration script for you that resembles the

one shown in Listing 10-17.

Listing 10-17.  New Knex Migration Script

exports.up = function(knex, Promise) {

};

exports.down = function(knex, Promise) {

};

After creating your first migration script, your project’s file structure should resemble

that shown in Listing 10-18.

Chapter 10 Knex and Bookshelf

395

Listing 10-18.  Excerpt of Project’s File Structure After Creating First Migration

.

├── knexfile.js
└── migrations
 └── 20141203074309_users_table.js

Note  Knex migration scripts are stored in a migrations folder at the root
level of a project. If this directory does not exist, Knex will create it for you. Knex
automatically prepends a timestamp to the file name of migration scripts, as
shown in Listing 10-18. This ensures that a project’s migrations are always sorted
by the order in which they were created.

It is now up to us to modify the up and down functions within our newly created

migration script. Let’s take a look at two alternative approaches.

Defining Schema Updates with Schema Builder Methods

In addition to providing methods for constructing queries, Knex also provides methods

for defining a database’s underlying structure (schema). With the help of these “schema

builder” methods, developers can create platform-agnostic blueprints that describe

the various tables, columns, indexes, and relationships that make up a database. These

blueprints can then be applied to any supported platform to generate the desired

database. The migration script shown in Listing 10-15 shows the Knex schema builder in

action, while Listing 10-19 shows the query generated by the script’s up method.

Listing 10-19.  SQL Query Generated Through the Use of Schema Builder

Methods, As Shown in Listing 10-15

// example-raw-migration/migrations/20150312083058_states.js

CREATE TABLE states (

 id integer PRIMARY KEY AUTOINCREMENT NOT NULL,

 name varchar(255) NOT NULL,

 created_at datetime NOT NULL DEFAULT(CURRENT_TIMESTAMP)

);

Chapter 10 Knex and Bookshelf

396

Schema builder methods are useful, in that they allow developers to easily define

schemas in a way that can be applied to each of the platforms supported by Knex. They

also require a minimal amount of knowledge regarding raw SQL queries, making it

possible for developers with little experience working directly with SQL databases to get

up and running quickly. That said, schema builder methods are also limiting. To provide

a generic interface for defining database schemas that work across multiple platforms,

Knex must make certain decisions for you—a fact that you may not be comfortable

with. Developers with more experience working directly with SQL databases may wish

to bypass the schema builder methods entirely, opting instead to craft their own SQL

queries. This is easily accomplished, as we are about to see.

Defining Schema Updates with Raw SQL Queries

In Listing 10-20, we see a Knex migration script that creates a new users table through

the use of raw SQL queries. This is accomplished through the use of the knex.schema.

raw() method. When called, this method returns a promise that will be either resolved

or rejected, depending on the success or failure of the query that it receives.

Listing 10-20.  Knex Migration Script Defined with Raw SQL Queries

// example-raw-migration/migrations/20150312083058_states.js

var multiline = require('multiline');

exports.up = function(knex, Promise) {

 var sql = multiline.stripIndent(function() {/*
 CREATE TABLE states (

 id integer PRIMARY KEY AUTOINCREMENT NOT NULL,

 name varchar(255) NOT NULL,

 created_at datetime NOT NULL DEFAULT(CURRENT_TIMESTAMP)

);

 */});

 return knex.schema.raw(sql);

};

Chapter 10 Knex and Bookshelf

397

exports.down = function(knex, Promise) {

 return knex.schema.raw('DROP TABLE states;');

};

Note T he example shown in Listing 10-20 makes use of an additional library that
is unrelated to Knex: multiline. The multiline library is quite useful because
it allows us to define large chunks of text that span multiple lines without requiring
that each line end with a continuation character.

�Running Knex Migrations

With our newly created migration script now defined and ready for use, our only

remaining task is to run the migration, bringing our database up to date with our desired

changes. The command for doing so is shown here:

$ knex migrate:latest

This command will instruct Knex to run all available migration scripts that have not

yet been run, in the order in which they were created. Once complete, our database will

have been brought fully up to date with our desired changes. If you’re curious as to how

Knex keeps track of which migrations have and have not been run, the answer lies in the

knex_migrations table that Knex automatically creates for itself (see Figure 10-1). Within

this table, Knex maintains a running list of which migrations have been implemented.

The name of this table can be changed by modifying the configuration file we created via

the knex init command.

Chapter 10 Knex and Bookshelf

398

�Reverting Knex Migrations

The act of running Knex migration scripts is not a one-way street. They can also be

undone, which is particularly important during development. The command for doing

so is as follows:

$ knex migrate:rollback

This command will instruct Knex to revert all migration scripts that were run as a

result of the most recent execution of knex migrate:latest. To verify the status of your

database in regard to your migration scripts, you can run the following command to

determine your database’s current migration version:

$ knex migrate:currentVersion

�Seed Scripts
In the previous section, you learned how Knex migration scripts can empower you to

script changes to a database’s structure—scripts that can be shared with others, reverted

when necessary, and tracked within version control. Knex seed scripts serve a similar

purpose, but with a focus on data rather than structure. Seed scripts provide a consistent

Figure 10-1.  The knex_migrations table used by Knex to track which migration
scripts have already been applied to your database

Chapter 10 Knex and Bookshelf

399

way in which to specify how a newly created database can be filled with sample data, to

get a new development environment up and running. Listing 10-21 shows the contents

of a seed script included with one of this chapter’s example projects.

Listing 10-21.  Simple Knex Seed Script That Removes All Existing Records from

the states Table and Inserts Two New Ones

// example-sqlite-starter/seeds/01-states.js

exports.seed = function(knex, Promise) {

 return Promise.join(

 knex('states').del(),

 knex('states').insert([

 {

 'id': 1,

 'name': 'Georgia'

 },

 {

 'id': 2,

 'name': 'Tennessee'

 }

]);

);

};

�Creating Seed Scripts

You can instruct Knex to create a new seed script using the following command:

$ knex seed:make users

By default, Knex saves newly created seed scripts to the seeds folder at the root path

of your project. You can customize this folder by modifying the contents of your project’s

knexfile.js configuration file (see Listing 10-16).

Chapter 10 Knex and Bookshelf

400

�Running Seed Scripts

After creating seed scripts for your application, you can populate your database with

them by running this command:

$ knex seed:run

Note S eed scripts are always run in alphabetical order. If the order in which your
seeds are run is important, take care to name them appropriately to ensure they
run in the desired order.

�Bookshelf
Bookshelf builds on the foundation laid by Knex to provide a flexible ORM library that

simplifies the process of creating classes (“models”) to represent the various objects that

make up an application. This section explores the various ways in which developers can

use Bookshelf to accomplish the following:

•	 Create classes (“models”) to represent the various tables used within

an application’s database

•	 Extend models with custom behavior unique to the needs of their

application

•	 Define complex relationships between models (one-to-one, one-to-

many, many-to-many)

•	 Easily navigate through the various relationships that exist between

models without resorting to complex SQL queries, with the help of

“eager loading”

Developers who are familiar with Backbone will quickly find themselves at home

with Bookshelf, as it follows many of the same patterns and implements many of the

same APIs. You could easily describe Bookshelf as “Backbone for the server,” and you

wouldn’t be far off base.

Chapter 10 Knex and Bookshelf

401

What Is Object-Relational Mapping?
Relational databases store information as a series of rows within one or more tables,

each table having one or more columns that describe the various attributes of the

records they contain—just as you might go about structuring information within a

spreadsheet. In most applications, separate tables are created to represent each type

of available entity (e.g., “Account,” “User,” “Comment”). The various relationships that

exist between each of these entities are then defined through the use of “foreign key”

columns, as shown in Figure 10-2.

This approach to storing information is powerful and serves as the predominant

method by which applications store data, for many good reasons (all of which extend

well beyond the scope of this book). Unfortunately, this approach is also at odds with the

object-oriented approach with which most applications tend to view data.

Object-relational mapping (ORM) tools such as Bookshelf allow developers to

interact with the flat tables of information stored within relational databases as a series

of interconnected objects, with which they can interact and navigate through to achieve

some desired goal. In effect, ORM libraries provide developers with a “virtual object

database” that allows them to more easily interact with the flat records contained within

relational database tables.

Figure 10-2.  Here, the relationship between users and accounts (an account
has one or more users, users belong to accounts) is described via the account_id
foreign key column within the users table

Chapter 10 Knex and Bookshelf

402

�Creating Your First Bookshelf Model
A Bookshelf model can be thought of as a class that, when instantiated, represents

a record within a database. In their simplest form, Bookshelf models serve as data

containers, providing built-in functionality for getting and setting attribute (i.e., column)

values and for creating, updating, and destroying records. As we’ll soon see, however,

Bookshelf models become much more useful when we extend them with our own

custom methods and define the relationships that exist between them.

Bookshelf models are defined via the bookshelf.Model.extend() method, as shown

in Listing 10-22. In this simple example, a User model is defined whose records will be

persisted to our database’s users table.

Listing 10-22.  Simple Bookshelf Model That Represents an Application’s Users

// example-bookshelf1/lib/user.js

var knex = require('./db');

var bookshelf = require('bookshelf')(knex);

var User = bookshelf.Model.extend({

 'tableName': 'users',

 'idAttribute': 'id' // The primary key for our table. Defaults to: 'id'

});

module.exports = User;

�Creating New Instances

In Listing 10-23, a new instance of the User model is created, modified, and then saved

to the database.

Listing 10-23.  Saving a New Instance of User to the Database

// example-bookshelf1/create.js

var User = require('./lib/user');

var user = new User();

user.set({

 'first_name': 'Steve',

Chapter 10 Knex and Bookshelf

403

 'last_name': 'Taylor',

 'email': 'steve.taylor@mydomain.com'

});

// Individual attributes can also be set as shown below

// user.set('first_name', 'Steve');

user.save().then(function(user) {

 // user has been saved

 console.log('User saved', user.toJSON());

 /*
 {

 first_name: 'Steve',

 last_name: 'Taylor',

 email: 'steve.taylor@mydomain.com',

 id: 1

 }

 */

});

Bookshelf provides a convenient forge() method that allows us to simplify this

example just a bit, as shown in Listing 10-24. This method does nothing more than

create and return a new instance of User behind the scenes for us, allowing us to forego

the use of the new keyword.

Listing 10-24.  Creating a New Instance of the User Model via the forge() Method

// example-bookshelf1/forge.js

User.forge({

 'id': 1,

 'first_name': 'John'

}).fetch().then(function(user) {

 /* An object containing every attribute / value for

 this model can be retrieved via the 'toJSON' method. */

 console.log(user.toJSON());

});

Chapter 10 Knex and Bookshelf

404

�Fetching Instances

Instances of the User model can be retrieved in a similar manner. In Listing 10-25, a new

instance of User is created with a value of 1 for its id attribute. When fetch() is called,

Bookshelf will use any attributes set on the model to build the query used to fetch the

desired record. In this example, the query used will be

SELECT * FROM users WHERE 'id' = 1;

Listing 10-25.  Retrieving an Instance of the User Model from the Database

// example-bookshelf1/fetch.js

User.where({

 'id': 1

}).fetch().then(function(user) {

 // Individual attributes get be retrieved with the get method

 // console.log('first_name', user.get('first_name'));

 console.log(user.toJSON());

});

�Destroying Instances

Just as model instances can be saved, they can also be deleted via the destroy()

method, as shown in Listing 10-26.

Listing 10-26.  Deleting an Instance of the User Model

// example-bookshelf1/destroy.js

User.where({

 'id': 1

}).fetch().then(function(user) {

 return user.destroy();

}).then(function() {

 console.log('User destroyed.');

});

Chapter 10 Knex and Bookshelf

405

In this example, destroy is called as an instance method on user. We could,

however, instruct Bookshelf to simply seek out and destroy the record without first

fetching the instance ourselves, as shown in Listing 10-27.

Listing 10-27.  Instructing Bookshelf to Destroy the Specified Record

User.where({

 'id': 1

}).destroy().then(function() {

 console.log('User destroyed.');

});

�Fetching Multiple Models (Collections)

In addition to retrieving a single instance of our model via the fetch() method, we can

also retrieve multiple instances via the fetchAll() method, as shown in Listing 10-28.

Listing 10-28.  Fetching All Instances of User with a Value of John for first_name

// example-bookshelf1/fetch-collection.js

User.where({

 'last_name': 'Doe'

}).fetchAll().then(function(users) {

 console.log(JSON.stringify(users.toJSON(), null, 4));

 /*
 [{

 "id": 3,

 "first_name": "John",

 "last_name": "Doe",

 "email": "john.doe@mydomain.com"

 },

 {

 "id": 4,

 "first_name": "Jane",

Chapter 10 Knex and Bookshelf

406

 "last_name": "Doe",

 "email": "jane.doe@mydomain.com"

 }]

 */

});

In this example, our call to fetchAll() returns a promise that resolves to a collection

of multiple users. This collection provides a number of built-in methods specifically

designed for interacting with multiple models. Given Bookshelf’s strong focus on

following Backbone patterns, most of the same methods available within Backbone

collections are also available here. Listing 10-29 demonstrates a few common use cases.

Listing 10-29.  Commonly Used Bookshelf Collection Methods

/* Iterate through a collection */

users.each(function(user, index) {

 console.log(user, index);

});

/* Create an array composed of models matching more specific criteria */

users = users.filter(function(user, index) {

 if (user.get('last_name') === 'Smith') return true;

});

/* �A simpler method for filtering models, when a function call is not

needed */

users = users.where({

 'last_name': 'Smith'

});

/* Return the first entry matching the specified criteria */

var johnSmith = users.find(function(user) {

 if (user.get('last_name') === 'Smith') return true;

});

/* Returns an array containing the first name of every user */

var firstNames = users.pluck('first_name');

Chapter 10 Knex and Bookshelf

407

�Extending with Custom Behavior

In their simplest state, Bookshelf models do little more than serve as containers for

records within a database, providing built-in methods for reading and writing attribute

values and performing save or destroy operations. While this is useful, Bookshelf models

begin to reach their full potential only when we begin to extend them with their own

unique behavior as befitting the needs of our application.

An example of such behavior is demonstrated in Listing 10-30. Here, we update

the User model seen in previous examples to include a sendEmail() method. Doing so

allows us to abstract away the complexity involved with sending e-mail to registered

users of our application.

Listing 10-30.  Extending the User Model with a Method for Sending Outbound

E-mails from Our Application

var Promise = require('bluebird');

var Handlebars = require('handlebars');

var User = bookshelf.Model.extend({

 'tableName': 'users',

 /**
 * Sends an e-mail to the user. Requires an `options` object

 * with values for `subject` and `message`. These values will be

 * compiled as Handlebars templates, passed this user's attributes,

 * and the result(s) will be used to generate the outgoing message.

 */

 'sendEmail': function(options) {

 var self = this;

 return Promise.resolve().then(function() {

 �var subject = Handlebars.compile(options.subject)(self.

toJSON());

 �var message = Handlebars.compile(options.message)(self.

toJSON());

 // Use your e-mail library of choice here, along with the

 // appropriate connection settings. });

 }

});

Chapter 10 Knex and Bookshelf

408

User.where({

 'id': 1

}).fetch().then(function(user) {

 return user.sendEmail({

 'subject': 'Welcome, {{first_name}}',

 �'message': 'We are happy to have you on board, {{first_name}}

{{last_name}}.'

 });

});

In addition to those methods inherited from Backbone, Bookshelf collections

also provide several methods of their own. Listing 10-31 demonstrates the use of the

invokeThen() method, allowing us to easily invoke methods on each of the models

contained within the collection.

Listing 10-31.  Invoking an Imagined sendEmail() Method on Each Model

Contained Within a Collection

// example-bookshelf1/invoke-then.js

User.where({

 'last_name': 'Doe'

}).fetchAll().then(function(users) {

 return users.invokeThen('sendEmail', {

 �'subject': 'Congratulations on having such a great name, {{first_

name}}.',

 �'message': '{{first_name}} really is a great name. Seriously - way

to go.'

 });

}).then(function(users) {

 console.log('%s users were complimented on their name.', users.length);

});

The invokeThen() method demonstrated in this example returns a promise of its

own, which will be resolved only after all the calls to sendEmail() on our collection’s

models have themselves been resolved. This pattern also provides us with a convenient

method for interacting with multiple models simultaneously.

Chapter 10 Knex and Bookshelf

409

�Performing Validation

Those familiar with Backbone will find Bookshelf’s event system quite familiar. In regard

to validation, of particular interest are the saving and destroying events emitted by

Bookshelf. By tapping into these events, Bookshelf models can be customized with

unique behavior to either allow or deny these actions, based on some desired criteria.

Listing 10-32 shows an example in which users with an e-mail address containing the

string “hotmail.com” are prevented from being saved to the database.

Listing 10-32.  Demonstration of Bookshelf’s Event System, Which Allows for

Implementation of Custom Validation Rules

// example-bookshelf1/lib/user.js

var User = bookshelf.Model.extend({

 'tableName': 'users',

 'initialize': function() {

 this.on('saving', this._validateSave);

 },

 '_validateSave': function() {

 var self = this;

 return Promise.resolve().then(function() {

 if (self.get('email').indexOf('hotmail.com') >= 0) {

 throw new Error('Hotmail email addresses are not allowed.');

 }

 });

 }

});

To prevent calls to save or destroy from succeeding, simply tap into the model’s

saving or destroying events, passing a reference to your own custom validation

functions. If an error is thrown, the call will be prevented. Asynchronous validation is

also possible through the use of promises. In Listing 10-33, a custom validation function

returns a promise that is ultimately rejected.

Chapter 10 Knex and Bookshelf

http://hotmail.com

410

Listing 10-33.  Custom Validation Function That Returns a Promise

// example-bookshelf1/validation.js

User.forge({

 'first_name': 'Jane',

 'last_name': 'Doe',

 'email': 'jane.doe@hotmail.com'

}).save().then(function() {

 console.log('Saved.');

}).catch(function(err) {

 /* Our call to `save` will result in an error, due to this user's

 hotmail.com e-mail address. */

 console.log(err);

});

�Customizing the Export Process

Previous examples have shown the use of the toJSON() method, which (by default)

returns an object containing every available attribute/value for the model on which

it is called (or for every available model, if called on a collection). Should you wish to

customize the data returned by this method, you can do so by overriding the toJSON()

method, as shown in Listing 10-34.

Listing 10-34.  Customizing the Data Returned by Our Model’s toJSON() Method

var User = bookshelf.Model.extend({

 'tableName': 'users',

 'toJSON': function() {

 var data = bookshelf.Model.prototype.toJSON.call(this);

 data.middle_name = 'Danger';

 return data;

 }

});

Within this example’s overridden toJSON() method, we first call the prototype’s

toJSON() method, giving us the data that this method would have originally returned,

Chapter 10 Knex and Bookshelf

411

had it not been overwritten. We then strip out the data we wish to hide, add some

additional information of our own, and return it.

A common scenario in which this pattern is often seen involves the use of a User

model, within which sensitive password information is held. Modifying the model’s

toJSON() method to automatically strip out such information, as shown in Listing 10-34,

helps to prevent this information from unintentionally leaking out over an API request.

�Defining Class Properties

Bookshelf’s extend() method, which we’ve seen in previous examples, accepts two

parameters:

•	 An object of instance properties to be inherited by created instances

of the model

•	 An object of class properties to be assigned directly to the model

Previous examples within this chapter have demonstrated the process of assigning

instance properties via extend(), but we have yet to look at an example demonstrating

the use of class properties. Listing 10-35 shows class properties in action.

Listing 10-35.  Defining the getRecent() Class Method on the User Model

// example-bookshelf1/lib/user.js

var User = bookshelf.Model.extend({

 'tableName': 'users'

}, {

 /**
 * Returns a collection containing users who have signed in

 * within the last 24 hours.

 */

 'getRecent': function() {

 �return User.where('last_signin', '>=', knex.raw("date('now',

'-1 day')")).fetch();

 }

});

Chapter 10 Knex and Bookshelf

412

// example-bookshelf1/static.js

User.getRecent().then(function(users) {

 �console.log('%s users have signed in within the past 24 hours.', users.

length);

 console.log(JSON.stringify(users.toJSON(), null, 4));

});

Class-level properties provide a convenient location in which we can define

various helper methods related to the model in question. In this contrived example, the

getRecent() method returns a promise that resolves to a collection containing every

user who has signed in within the last 24 hours.

�Extending with Subclasses

Bookshelf’s extend() method correctly sets up the prototype chain. As a result, in

addition to creating models that inherit directly from Bookshelf’s Model class, developers

can also create models that inherit from each other, as shown in Listing 10-36.

Listing 10-36.  Creating a Base Model That Extends Directly from Bookshelf’s

Model Class, from Which Other Models Can Also Extend

// example-bookshelf-extend/lib/base.js

/**
 * This model serves as a base from which all other models

 * within our application extend.

 *
 * @class Base

 */

var Base = bookshelf.Model.extend({

 'initialize': function() {

 this._initEventBroadcasts();

 },

 'foo': function() {

 console.log('bar', this.toJSON());

 }

});

Chapter 10 Knex and Bookshelf

413

// example-bookshelf-extend/lib/user.js

/**
 * @class User

 */

var User = Base.extend({

 'tableName': 'users'

});

// example-bookshelf-extend/index.js

var User = require('./lib/user');

User.where({

 'id': 1

}).fetch().then(function(user) {

 user.foo();

});

Having the ability to create models that extend across multiple levels of inheritance

provides some useful opportunities. Most of the applications in which we use Bookshelf

follow the lead shown in Listing 10-36, in which a Base model is created from which all

other models within the application extend. By following this pattern, we can easily add

core functionality to all models within our application simply by modifying our Base

class. In Listing 10-36, the User model (along with every other model that extends from

Base) will inherit the Base model’s foo() method.

�Relationships
ORM libraries such as Bookshelf provide convenient, object-oriented patterns for

interacting with data stored in flat, relational database tables. With Bookshelf’s help, we

can specify the relationships that exist between our application’s models. For example,

an account may have many users, or a user may have many bookmarks. Once these

relationships have been defined, Bookshelf models open up new methods that allow us

to more easily navigate through these relationships.

Chapter 10 Knex and Bookshelf

414

Table 10-1 lists some of the more commonly used relationships.

Figure 10-3.  The database schema behind our one-to-one relationships

In the following sections, you will discover the differences between these

relationships, how they are defined, and how they can best be put to use within an

application.

�One-to-One

A one-to-one association is the simplest form available. As its name suggests, a one-to-

one association specifies that a given model is associated with exactly one other model.

That association can take the form of a hasOne relationship or a belongsTo relationship,

based on the direction in which the association is traversed.

The database schema behind the example that we will soon see is shown in

Figure 10-3. In this example, the profiles table has a user_id foreign key column with

which it is related to the users table.

Table 10-1.  Commonly Used Bookshelf Relationships

Association Relationship Type Example

One-to-one hasOne A User has a Profile

One-to-one belongsTo A Profile has a User

One-to-many hasMany An Account has many Users

One-to-many belongsTo A User belongs to an Account

Many-to-many belongsToMany A Book has one or more Authors

Chapter 10 Knex and Bookshelf

415

hasOne and belongsTo

A hasOne relationship specifies that a model “has one” of another model, while the

belongsTo relationship specifies just the opposite, that it is owned by or “belongs

to” another model. In other words, a belongsTo relationship serves as the inverse of

the hasOne relationship. The process by which these relationships are defined with

Bookshelf is shown in Listing 10-37.

Listing 10-37.  Defining the hasOne and belongsTo Bookshelf Relationships

// example-bookshelf-relationships1/lib/user.js

/**
 * @class User

 *
 * A User has one Profile

 */

var User = bookshelf.Model.extend({

 'tableName': 'users',

 /**
 * Bookshelf relationships are defined as model instance

 * methods. Here, we create a 'profile' method that will

 * allow us to access this user's profile. This method

 * could have been named anything, but in this case -

 * 'profile' makes the most sense.

 */

 'profile': function() {

 return this.hasOne(Profile);

 }

});

// example-bookshelf-relationships1/lib/profile.js

/**
 * @class Profile

 *
 * A Profile belongs to one User

 */

Chapter 10 Knex and Bookshelf

416

var Profile = bookshelf.Model.extend({

 'tableName': 'profiles',

 'user': function() {

 return this.belongsTo(User);

 }

});

Bookshelf relationships are defined through the use of special instance methods,

as shown in Listing 10-37. With these relationships defined, we can now begin to use

them in several convenient ways. For starters, see Listing 10-38, which demonstrates the

process of loading a relationship within a model that has already been instantiated. The

output from running this example is shown in Listing 10-39.

Listing 10-38.  Loading a Relationship on a Model That Has Already Been

Instantiated

// example-bookshelf-relationships1/index.js

User.where({

 'id': 1

}).fetch().then(function(user) {

 return user.load('profile');

}).then(function(user) {

 console.log(JSON.stringify(user.toJSON(), null, 4));

});

Listing 10-39.  The Resulting Output from Listing 10-38

{

 "id": 1,

 "first_name": "Steve",

 "last_name": "Taylor",

 "created_at": "2014-10-02"

 "profile": {

 "id": 1,

 "user_id": 1,

 "twitter_handle": "staylor",

 "city": "Portland",

Chapter 10 Knex and Bookshelf

417

 "state": "OR",

 "created_at": "2014-10-02"

 }

}

In Listing 10-38, an instance of the User model is retrieved. When fetched, the

default behavior of a Bookshelf model is to retrieve only information about itself, not

about its related models. As a result, in this example we must first load the model’s

related Profile via the load() method, which returns a promise that is resolved once

the related model has been fetched. Afterward, we can reference this user’s profile via

the user’s related instance method.

Bookshelf relationships become even more useful when we begin to look at the

manner in which they can be “eagerly loaded,” as shown in Listing 10-40. In this

example, we fetch an instance of the User model as well as its related Profile. We can do

so by passing the fetch() method an object of options in which we specify one or more

relationships that we are also interested in. The returned promise resolves to an instance

of User that already has its profile relationship populated.

Listing 10-40.  Using “Eager Loading” to Fetch Our User, and Its Related

Profile, with a Single Call

// example-bookshelf-relationships1/eager.js

User.where({

 'id': 1

}).fetch({

 'withRelated': ['profile']

}).then(function(user) {

 console.log(JSON.stringify(user.toJSON(), null, 4));

});

�One-to-Many

The one-to-many association forms the basis for the most commonly encountered

relationships. This association builds on the simple one-to-one association we just saw,

allowing us to instead associate one model with many other models. These relationships

can take the form of a hasMany or a belongsTo relationship, as we will soon see.

Chapter 10 Knex and Bookshelf

418

The database schema behind the examples we are about to review is shown in

Figure 10-4. In this example, the users table has an account_id foreign key column with

which it is related to the accounts table.

hasMany and belongsTo

A hasMany relationship specifies that a model may have multiple (or none at all) of a

particular model. The belongsTo relationship, which we have already seen in previous

examples, is also applicable in one-to-many associations. The process by which these

relationships are defined with Bookshelf is shown in Listing 10-41. Listing 10-42

demonstrates their usage.

Listing 10-41.  Defining the hasMany and belongsTo Bookshelf Relationships

// example-bookshelf-relationships2/lib/account.js

/**
 * @class Account

 *
 * An Account has one or more instances of User

 */

var Account = bookshelf.Model.extend({

 'tableName': 'accounts',

 'users': function() {

 return this.hasMany(User);

 }

});

Figure 10-4.  The database schema behind our one-to-many relationships

Chapter 10 Knex and Bookshelf

419

// example-bookshelf-relationships2/lib/user.js

/**
 * @class User

 *
 * A User belongs to an Account

 * A User has one Profile

 */

User = bookshelf.Model.extend({

 'tableName': 'users',

 'account': function() {

 return this.belongsTo(Account);

 },

 'profile': function() {

 return this.hasOne(Profile);

 }

});

// example-bookshelf-relationships2/lib/profile.js

/**
 * @class Profile

 *
 * A Profile belongs to one User

 */

Profile = bookshelf.Model.extend({

 'tableName': 'profiles',

 'user': function() {

 return this.belongsTo(User);

 }

});

Chapter 10 Knex and Bookshelf

420

Listing 10-42.  Loading an Instance of the Account Model, Along with All of Its

Related Users

// example-bookshelf-relationships2/index.js

Account.where({

 'id': 1

}).fetch({

 'withRelated': ['users']

}).then(function(account) {

 console.log(JSON.stringify(account.toJSON(), null, 4));

});

{

 "id": 1,

 "name": "Acme Company",

 "created_at": "2014-10-02",

 "users": [

 {

 "id": 1,

 "account_id": 1,

 "first_name": "Steve",

 "last_name": "Taylor",

 "email": "steve.taylor@mydomain.com",

 "created_at": "2014-10-02"

 },

 {

 "id": 2,

 "account_id": 1,

 "first_name": "Sally",

 "last_name": "Smith",

 "email": "sally.smith@mydomain.com",

 "created_at": "2014-10-02"

 }

]

}

Chapter 10 Knex and Bookshelf

421

In Listing 10-42, we see another example of Bookshelf’s “eager loading”

functionality, with which we can fetch a model as well as any of its related models that

we also happen to be interested in. The concept of “eager loading” becomes even more

interesting when we discover that we can also load nested relationships—those that exist

deeper within the object(s) we wish to fetch. Only when we begin to utilize Bookshelf’s

eager loading functionality can we begin to appreciate the “virtual object database” that

it and similar ORM tools provide. The example shown in Listing 10-43 should help to

clarify this concept.

Listing 10-43.  Eagerly Loading an Account, All of Its Users, and the Profile for

Each User

// example-bookshelf-relationships2/nested-eager.js

Account.where({

 'id': 1

}).fetch({

 'withRelated': ['users', 'users.profile']

}).then(function(account) {

 console.log(JSON.stringify(account.toJSON(), null, 4));

});

/*
{

 "id": 1,

 "name": "Acme Company",

 "created_at": "2014-10-02",

 "users": [

 {

 "id": 1,

 "account_id": 1,

 "first_name": "John",

 "last_name": "Doe",

 "email": "john.doe@domain.site",

 "created_at": "2014-10-02",

Chapter 10 Knex and Bookshelf

422

 "profile": {

 "id": 1,

 "user_id": 1,

 "twitter_handle": "john.doe",

 "city": "Portland",

 "state": "OR",

 "created_at": "2014-10-02"

 }

 },

 {

 "id": 2,

 "account_id": 1,

 "first_name": "Sarah",

 "last_name": "Smith",

 "email": "sarah.smith@domain.site",

 "created_at": "2014-10-02",

 "profile": {

 "id": 2,

 "user_id": 2,

 "twitter_handle": "sarah.smith",

 "city": "Asheville",

 "state": "NC",

 "created_at": "2014-10-02"

 }

 }

]

}

*/

�Many-to-Many

Many-to-many associations differ from the one-to-one and one-to-many associations

this chapter has already covered, in that they allow one record to be associated with

one or more records of a different type, and vice versa. To help clarify this point, see

Figure 10-5, which illustrates a commonly cited example involving authors and books.

Chapter 10 Knex and Bookshelf

423

A single foreign key column, as seen in previous examples (see Figure 10-5), would

not suffice here. In order to model this relationship, a third join table (authors_books) is

required, in which multiple relationships for any given record can be stored.

belongsToMany

The database schema shown in Figure 10-5 can be modeled with Bookshelf via the

belongsToMany relationship, as shown in Listing 10-44.

Listing 10-44.  Modeling a belongsToMany Relationship with Bookshelf

// example-bookshelf-relationships3/lib/author.js

var Author = bookshelf.Model.extend({

 'tableName': 'authors',

 'books': function() {

 return this.belongsToMany(require('./book'));

 }

});

// example-bookshelf-relationships3/lib/book.js

var Book = bookshelf.Model.extend({

 'tableName': 'books',

 'authors': function() {

 return this.belongsToMany(require('./author'));

 }

});

Figure 10-5.  A many-to-many association made possible through the use of a
third join table. In this example, an author can write multiple books, and a book
can have multiple authors.

Chapter 10 Knex and Bookshelf

424

It is important to note that when using the belongsToMany relationship, Bookshelf

will automatically make a few assumptions regarding your database schema, unless

specifically told otherwise. Bookshelf will assume the following:

•	 That a third join table exists, which derives its name from that of

the two related tables, separated by an underscore, and ordered

alphabetically. In this example: authors_books

•	 That the column names used within your join table are derived from

the singular versions of the two related tables, followed by _id. In this

example: author_id and book_id

If you prefer to follow a different naming convention, you can do so by modifying the

call to this.belongsToMany as shown in Listing 10-45.

Listing 10-45.  Modeling a belongsToMany Relationship with Bookshelf While

Providing Specific Table and Column Names

var Author = bookshelf.Model.extend({

 'tableName': 'authors',

 'books': function() {

 return this.belongsToMany(

 require('./book'), 'authors_books', 'author_id', 'book_id');

 }

});

var Book = bookshelf.Model.extend({

 'tableName': 'books',

 'authors': function() {

 var Author = require('../author');

 �return this.belongsToMany(Author, 'authors_books', 'book_id',

'author_id');

 }

});

Chapter 10 Knex and Bookshelf

425

The process of using this relationship is shown in Listing 10-46.

Listing 10-46.  Example Usage (and Resulting Output) of Code from Listing 10-45

// example-bookshelf-relationships3/index.js

Book.fetchAll({

 'withRelated': ['authors']

}).then(function(books) {

 console.log(JSON.stringify(books.toJSON(), null, 4));

});

/*
[

 {

 id: 1,

 name: 'Pro JavaScript Frameworks for Modern Web Development',

 authors: [{

 id: 1,

 first_name: 'Tim',

 last_name: 'Ambler',

 _pivot_book_id: 1,

 _pivot_author_id: 1

 }, {

 id: 2,

 first_name: 'Nicholas',

 last_name: 'Cloud',

 _pivot_book_id: 1,

 _pivot_author_id: 2

 }]

 }

]

*/

Chapter 10 Knex and Bookshelf

426

�Summary
If you were to quickly survey the database landscape over the past several years, it would

be easy to walk away with the impression that so-called “NoSQL” storage platforms have

largely supplanted the old guard of relational databases such as MySQL and PostgreSQL,

but nothing could be further from the truth. Much like Mark Twain’s prematurely

reported death in 1897, the death of the relational database is also an exaggeration.

Relational databases offer a number of compelling features, the vast majority of

which lie far outside the scope of this chapter. Many wonderful books are available that

devote themselves entirely to this subject, and we encourage you to read a few of them

before making critical decisions regarding how and where a project stores its information.

That said, a key feature to look for in such systems (and one which was covered earlier

in the chapter) is support for transactions: the process by which multiple queries can

be grouped into a single unit of work that will either succeed or fail as a whole. The

examples involving a financial exchange that we looked at in Listings 10-13 and 10-14

demonstrated the important role this concept has in mission-critical applications.

The platform-agnostic API provided by Knex, combined with its promise-based interface,

transaction support, and migration manager, provides developers with a convenient tool

for interacting with relational databases. When paired with its sister application, Bookshelf,

an ORM that is instantly familiar to those with prior Backbone experience, a powerful

combination is formed that simplifies the process of working with complex data.

�Related Resources
•	 Knex: http://knexjs.org

•	 Bookshelf: http://bookshelfjs.org

•	 Backbone.js: http://backbonejs.org

•	 Underscore.js: http://underscorejs.org

•	 MySQL: www.mysql.com

•	 PostgreSQL: www.postgresql.com

•	 MariaDB: http://mariadb.org

•	 SQLite: www.sqlite.org

•	 Multiline: https://github.com/sindresorhus/multiline

Chapter 10 Knex and Bookshelf

http://knexjs.org
http://bookshelfjs.org
http://backbonejs.org
http://underscorejs.org
http://www.mysql.com
http://www.postgresql.com
http://mariadb.org
http://www.sqlite.org
https://github.com/sindresorhus/multiline

PART VI

Managing Control Flow

429
© Sufyan bin Uzayr, Nicholas Cloud, Tim Ambler 2019
S. bin Uzayr et al., JavaScript Frameworks for Modern Web Development,
https://doi.org/10.1007/978-1-4842-4995-6_11

CHAPTER 11

Async.js

Always something new, always something I didn’t expect, and sometimes it
isn’t horrible.

—Robert Jordan

We are now familiar with libraries and frameworks such as KnexJS and RequireJS, among

many others. This chapter discusses Async.js, a callback-driven JavaScript library that

provides a suite of powerful functions to manage asynchronous collection manipulation

and control flow.

When it comes to asynchronous programming, it is often a standard practice to

adapt a callback-oriented approach. Async.js library too embraces the callback-driven

approach to asynchronous programming, however, but in such a way that many of the

downsides presented by callback-driven code (such as nested callbacks) are avoided.

Many of the Async.js control flow functions follow a similar pattern:

	 1.	 The first argument to each control flow function is typically an

array of functions to be executed as tasks. Task function signatures

will vary a bit based on the exact Async.js control flow function

used, but they will always receive a Node.js-style callback as a last

argument.

	 2.	 The last argument to each control flow function is a final callback

function to be executed when all tasks are complete. The final

control flow function also receives a Node.js-style callback and

may or may not receive additional arguments as well.

430

Note  A Node.js-style callback is simply a callback function that always expects
an error as its first argument. When the callback is invoked, either an error object
is passed as its only argument or null is passed in for the error value and any
further values are passed in as additional arguments.

Listing 11-1 shows how this pattern is typically applied.

Listing 11-1.  Flow Control Function Pattern

var tasks = [

 function (/*0..n args, */ cb) {/*...*/},

 function (/*0..n args, */ cb) {/*...*/},

 function (/*0..n args, */ cb) {/*...*/}

];

function finalCallback (err, result) {/*...*/};

async.someFlowControlFunction(tasks, finalCallback);

The rest of the chapter will examine a number of control flow functions, and how

they vary, if at all, from this general pattern. Since all flows organize tasks and handle

errors and values in a similar way, it becomes easier to understand each by contrast.

Note  The meaning of async in Async.js relates to organizing asynchronous
operations. The library itself does not guarantee that task functions execute
asynchronously. If a developer uses Async.js with synchronous functions, each will
be executed synchronously. There is one semi-exception to this rule. The async.
memoize() function (which has nothing to do with control flow) makes a function
cacheable, so that subsequent invocations won’t actually run the function but
will return a cached result instead. Async.js forces each subsequent invocation
to be asynchronous because it assumes that the original function was itself
asynchronous.

Chapter 11 Async.js

431

�Sequential Flow
A sequential flow is one in which a series of steps must be executed in order. A step may

not start until a preceding step finishes (except for the first step), and if any step fails, the

flow fails as a whole. The functions in Listing 11-2 are the steps for changing a fictitious

user’s password, the same scenario used to introduce sequential flows in Chapter 12.

These steps are slightly different, however.

First, each is wrapped in a factory function that takes some initial data and returns a

callback-based function to be used as a step in the sequential flow.

Second, the first step (the task wrapped in the changePassword() function) actually

passes new credentials to its callback as an operation result. Steps in a sequential flow

are not required to generate results, but if a step does pass a result to its callback, it has

no bearing on the other steps in the sequence. If some (or all) steps rely on results from

previous steps, a pipeline flow is needed. (Pipelines are discussed later in the chapter.)

Listing 11-2.  Sequential Steps

// example-001/async-series.js

'use strict';

var async = require('async');

var userService = require('./user-service');

var emailService = require('./email-service');

var nothingToSeeHere = require('./nothing-to-see-here');

function changePassword(email, password) {

 return function (cb) {

 process.nextTick(function () {

 userService.changePassword(email, password, function (err, hash) {

 // new credentials returned as results

 cb(null, {email: email, passwordHash: hash});

 });

 });

 };

}

function notifyUser(email) {

 return function (cb) {

Chapter 11 Async.js

432

 process.nextTick(function () {

 // the email service invokes the callback with

 // no result

 emailService.notifyPasswordChanged(email, cb);

 });

 };

}

function sendToNSA(email, password) {

 return function (cb) {

 process.nextTick(function () {

 // the nothingToSeeHere service invokes the

 // callback with no result

 nothingToSeeHere.snoop(email, password, cb);

 });

 }

}

In Listing 11-3, each factory function is executed with its initial data, returning task

functions that are added to a steps array. This array becomes the first argument to

async.series(), followed by a final callback that receives any error generated during

the execution of the series, or an array of results populated by each step in the series. If

any results are generated, they are stored according to the order of their corresponding

steps in the steps array. For example, the result from changePassword() will be the first

element in the results array because changePassword() was invoked as the first task.

Listing 11-3.  Sequential Flow

// example-001/async-series.js

var email = 'user@domain.com';

var password = 'foo!1';

var steps = [

 //returns function(cb)

 changePassword(email, password),

 //returns function(cb)

 notifyUser(email),

 //returns function(cb)

Chapter 11 Async.js

433

 sendToNSA(email, password)

];

async.series(steps, function (err, results) {

 if (err) {

 return console.error(err);

 }

 console.log('new credentials:', results[0]);

});

Because these steps are asynchronous, they can’t be invoked one at a time in the

same way that synchronous functions can be called. But Async.js tracks the executing of

each step internally, invoking the next step only when the previous step’s callback has

been invoked, thus creating a sequential flow. If any step in the sequential flow passes

an error to its callback, the series will be aborted and the final series callback will be

invoked with that error. When an error is raised, the results value will be undefined.

The factory functions used in this chapter are convenient ways to pass initial data

to each step, but they are not necessary. The factories could be eliminated in favor of

JavaScript’s native function binding facilities, as in Listing 11-4, but the code becomes

more difficult to read when the steps are actually added to the array. For simple scenarios

in which no initial data or bindings are necessary, anonymous task functions may be

declared directly within the steps array. (It is always a good idea to name your functions

and declare them in a way that promotes readability and maintainability, however.)

Listing 11-4.  Series Steps with Argument Binding

function changePassword(email, password, cb) {/*...*/}

function notifyUser(email, cb) {/*...*/}

function sendToNSA(email, password, cb) {/*...*/}

var steps = [

 changePassword.bind(null, email, password),

 notifyUser.bind(null, email),

 sendToNSA.bind(null, email, password)

];

For the rest of this chapter, we’ll be using factory functions instead of bind(), but

developers are free to choose whatever approach feels most natural to them.

Chapter 11 Async.js

434

�Parallel Flow
Sometimes it is helpful to run independent tasks in parallel and then aggregate results

after all tasks are finished. JavaScript is an asynchronous language, so it has no true

parallelism, but scheduling long, nonblocking operations in succession will release

the event loop to handle other operations (like UI updates in a browser environment

or handling additional requests in a server environment). Multiple asynchronous tasks

can be scheduled in one turn of the event loop, but there is no way to predict at which

future turn each task will complete. This makes it difficult to collect the results from each

task and return them to calling code. Fortunately, the async.parallel() function gives

developers the means to do just that.

Listing 11-5 shows two functions that wrap jQuery GET requests. The first fetches

user data for a given userID, and the second fetches a list of US states. It is easy to

imagine that these functions may be part of a user’s profile page on which the user would

be able to update personal information such as phone numbers, postal addresses, and

so forth. When the page loads, it makes sense to fetch this information all at once. These

are two different API calls, though, so even if they are scheduled simultaneously, the

results need to be handled at some future point in time.

Listing 11-5.  Parallel Steps

// example-002/views/async-parallel.html

function getUser(userID) {

 return function (cb) {

 $.get('/user/' + userID).then(function (user) {

 cb(null, user);

 }).fail(cb);

 };

}

function getUSStates(cb) {

 $.get('/us-states').then(function (states) {

 cb(null, states);

 }).fail(cb);

}

Chapter 11 Async.js

435

In Listing 11-6, Async.js is imported into a fictitious web page with a standard

<script> tag. Tasks are scheduled using the async.parallel() function, which, like

async.series(), accepts an array of task functions to be executed and a final callback

function that will receive an error or the aggregated results. Parallel tasks are simply

functions that accept a single callback argument that should be invoked once the

asynchronous operation within a task function is completed. All callbacks conform to

the Node.js callback convention.

The getUser() function in Listing 11-6 is a factory that accepts a userID argument

and returns a function that accepts a conventional Node.js-style callback. Because

getUSStates() has no actual arguments, it need not be wrapped in a factory function

but is used directly instead.

Both functions fetch data with jQuery’s AJAX API. AJAX promises pass data from

successful AJAX calls to any callback passed to the promise’s then() method, whereas

errors are passed to any callbacks passed to the promise’s fail() method. Because the

signature of a fail() callback accepts a single error argument, the callback passed to

each task from Async.js can also be used as the callback to fail().

Listing 11-6.  Parallel Flow

<!-- example-002/views/async-parallel.html -->

<h1>User Profile</h1>

<form>

 <fieldset>

 <div>

 <label>First Name</label>

 <input type="text" id="first-name" />

 </div>

 <div>

 <label>US States</label>

 <select id="us-states"></select>

 </div>

 </fieldset>

</form>

<script>

(function (async, $) {

Chapter 11 Async.js

436

 function getUser(userID) {

 return function (cb) {

 $.get('/user/' + userID).then(function (user) {

 cb(null, user);

 }).fail(cb);

 };

 }

 function getUSStates(cb) {

 $.get('/us-states').then(function (states) {

 cb(null, states);

 }).fail(cb);

 }

 var userID = 1001;

 async.parallel([

 getUser(userID),

 getUSStates

], function (err, results) {

 if (err) {

 return alert(err.message);

 }

 var user = results[0],

 states = results[1];

 $('#first-name').val(user.firstName);

 // ...

 $('#us-states').append(states.map(function (state) {

 return $('<option></option>')

 .html(state)

 .attr('value', state);

 }));

 });

}(window.async, window.jQuery));

</script>

Chapter 11 Async.js

437

The Async.js library will iterate over each task in the tasks array, scheduling them

one after the other. As each task completes, its data is stored, and once all tasks have

finished, the final callback passed to async.parallel() is invoked.

Results are sorted according to the order of tasks passed to async.parallel(), not

the order in which tasks are actually resolved. If an error occurs in any parallel task, that

error will be passed to the final callback, all unfinished parallel tasks will be ignored once

they complete, and the results argument in the final callback will be undefined.

�Pipeline Flow
When tasks in a series each depend on a value from a preceding task, a pipeline flow

(or waterfall) is needed. Listing 11-7 represents tasks for a fictitious corporate rewards

program in which a user’s age is calculated (based on date of birth), and if the user’s age

meets certain thresholds, the user is awarded a cash prize.

Each function receives some input and then passes some output to its callback. The

output of each function becomes the input for the next function in the series.

	 1.	 The getUser() factory function accepts a userID and returns

another function that, when invoked, looks up a user record. It

passes the user record to its callback.

	 2.	 The calcAge() function accepts a user argument and invokes its

callback with the calculated age of the user.

	 3.	 The reward() function accepts a numeric age argument and

invokes its callback with the selected reward if the age meets

certain thresholds.

Listing 11-7.  Waterfall (Pipeline) Steps

// example-003/callback-waterfall

'use strict';

var db = require('./database');

function getUser(userID, cb) {

 process.nextTick(function () {

 // pass cb directly to find because

 // it has the same signature:

 // (err, user)

Chapter 11 Async.js

438

 db.users.find({id: userID}, cb);

 });

}

function calcAge(user, cb) {

 process.nextTick(function () {

 var now = Date.now(),

 then = user.birthDate.getTime();

 var age = (now - then) / (1000 * 60 * 60 * 24 * 365);

 cb(null, Math.round(age));

 });

}

function reward(age, cb) {

 process.nextTick(function () {

 switch (age) {

 case 25: return cb(null, '$100');

 case 35: return cb(null, '$150');

 case 45: return cb(null, '$200');

 default: return cb(null, '$0');

 }

 });

}

This pipeline would be rather hideous and difficult to maintain if organized with

nested callbacks. If additional steps are ever added to the reward program, the code will

need to be teased apart and restructured to accommodate new steps in the pipeline flow.

Trapping errors and propagating them through callbacks also happen manually. The

example code in Listing 11-8 shows how these tasks would be run without Async.js.

Listing 11-8.  A Waterfall of Nested Callbacks

// example-003/callback-waterfall

function showReward(userID, cb) {

 getUser(userID, function (err, user) {

 if (err) {

 return cb(err);

 }

Chapter 11 Async.js

439

 calcAge(user, function (err, age) {

 if (err) {

 return cb(err);

 }

 reward(age, cb);

 });

 })

}

showReward(123, function (err, reward) {

 if (err) {

 return console.error(err);

 }

 console.log(reward);

});

Fortunately, Async.js makes it relatively painless to organize a pipeline flow that is

both maintainable and handles errors gracefully. The code in Listing 11-9 uses async.

waterfall() to organize the series of tasks to be executed, then provides a final callback

to capture any error raised by pipeline tasks or to receive the final reward value if no

errors occur.

Listing 11-9.  Waterfall (Pipeline) Flow

// example-003/async-waterfall.js

'use strict';

var async = require('async');

var db = require('./database');

function getUser(userID) {

 // using a factory function to pass in

 // the userID argument and return another

 // function that will match the callback

 // signature that async.waterfall expects

 return function (cb) {

 process.nextTick(function () {

 // pass cb directly to find because

 // it has the same signature:

Chapter 11 Async.js

440

 // (err, user)

 db.users.find({id: userID}, cb);

 });

 };

}

// the calcAge and reward functions

// do not change

async.waterfall([

 getUser(1000),

 calcAge,

 reward

], function (err, reward) {

 if (err) {

 return console.error(err);

 }

 console.log('reward:', reward);

});

Like async.series() and async.parallel(), an error passed to a callback in any

waterfall task will immediately halt the pipeline and invoke the final callback with the error.

�Reusing a Pipeline
Pipelines are so helpful for processing data that async.seq() will take a series of

functions, just like async.waterfall(), and combine them into a single, reusable

pipeline function that can be called multiple times. This could be done manually,

of course, by using a closure to wrap async.waterfall(), but async.seq() is a

convenience function that saves developers the trouble.

Listing 11-10 shows a series of functions used to process a make-believe cellular

phone bill. The createBill() function accepts a calling plan and creates a bill object

with both the plan and the normal monthly rate. carrierFee() appends a chunk of

change to this amount just because the phone company can. The prorate() function

then determines if some amount is to be credited to the user (e.g., if the user started

a new plan in the middle of a billing cycle). And finally, govtExtortion() appends a

calculated tax onto the bill before it is delivered.

Chapter 11 Async.js

441

Listing 11-10.  Sequence (Pipeline) Steps

// example-004/async-seq.js

'use strict';

var async = require('async');

var dateUtil = require('./date-util');

function createBill(plan, cb) {

 process.nextTick(function () {

 var bill = {

 plan: plan,

 total: plan.billAmt

 };

 cb(null, bill);

 });

}

function carrierFee(bill, cb) {

 process.nextTick(function () {

 bill.total += 10;

 cb(null, bill);

 });

}

function prorate(bill, cb) {

 if (!bill.plan.isNew) {

 return cb(null, bill);

 }

 process.nextTick(function () {

 bill.plan.isNew = false;

 var days = dateUtil().daysInMonth();

 var amtPerDay = bill.plan.billAmt / days;

 var prorateAmt = ((bill.plan.billDay - 1) * amtPerDay);

 bill.total -= prorateAmt;

 cb(null, bill);

 });

}

Chapter 11 Async.js

442

function govtExtortion(bill, cb) {

 process.nextTick(function () {

 bill.total = bill.total * 1.08;

 cb(null, bill);

 });

}

Creating a pipeline with async.seq() is very similar to using async.waterfall(), as

shown in Listing 11-11. The primary difference is that async.seq() does not invoke the

steps immediately but returns a pipeline() function that will be used to run the tasks

later. The pipeline() function accepts the initial arguments that will be passed to the

first step, eliminating the need for factory functions or binding values to the first step

when the pipeline is defined. Also, unlike most other async functions, async.seq() is

variadic (accepts a varying number of arguments). It does not accept an array of tasks

like async.waterfall(), but instead accepts each task function as an argument.

In Listing 11-11 the pipeline() function is created and then invoked with two

parameters: a plan object, which will be passed to createBill(), and a final callback to

receive either an error or a final bill object for the user.

Listing 11-11.  Sequence (Pipeline) Flow

// example-004/async-seq.js

var pipeline = async.seq(

 createBill,

 carrierFee,

 prorate,

 govtExtortion

);

var plan = {

 type: 'Lots of Cell Minutes Plan!+',

 isNew: true,

 billDay: 15,

 billAmt: 100

};

Chapter 11 Async.js

443

pipeline(plan, function (err, bill) {

 if (err) {

 return console.error(err);

 }

 //bill = govtExtortion(prorate(carrierFee(createBill(plan))))

 console.log('$', bill.total.toFixed(2));

});

�Loop Flow
Flows that repeat until some condition is met are called loops. Async.js has several

looping functions that help coordinate the asynchronous code to be executed and the

conditions to be tested within them.

�Looping While Some Condition Remains True
The first two functions, async.whilst() and async.doWhilst(), parallel the well-known

while and do/while looping constructs in many programming languages. Each loop

runs while some condition evaluates to true. Once the condition evaluates to false, the

loops halt.

The async.whilst() and async.doWhilst() functions are nearly identical, except

that async.whilst() performs the condition evaluation before any code in the loop is

run, whereas async.doWhilst() executes one iteration of the loop before performing

evaluating the condition. Looping code in async.doWhilst() is guaranteed to run at

least once, whereas looping code in async.whilst() may not run at all if the initial

condition is false.

Listing 11-12 shows async.whilst() being used to call an API ten times to get a

random “winner” for some contest. Before the loop runs, an array of names is examined

to determine if ten winners have already been selected. This process is repeated until the

array has a length of ten. If an error occurs during one of the API calls within the loop,

the async.whilst() flow is terminated and the final callback is invoked with the error;

otherwise the final callback will be invoked once the loop condition evaluates to false.

Chapter 11 Async.js

444

Listing 11-12.  Looping While Some Condition Remains True

<!-- example-005/views/async-whilst.html -->

<h1>Winners!</h1>

<ul id="winners">

<script>

(function (async, $) {

 function pickWinners(howMany, cb) {

 var winners = [];

 async.whilst(

 // condition test:

 // continue looping until we have enough winners

 function () { return winners.length < howMany; },

 // looping code

 function (cb) {

 $.get('/employee/random').done(function (employee) {

 var winner = employee.firstName + ' ' + employee.lastName;

 // avoid potential duplicates

 if (winners.indexOf(winner) < 0) {

 winners.push(winner);

 }

 cb(null);

 }).fail(function (err) {

 cb(err);

 });

 },

 // final callback

 function (err) {

 // if there is an error just ignore it

 // and pass back an empty array, otherwise

 // pass the winners

 cb(null, err ? [] : winners);

 }

);

 }

Chapter 11 Async.js

445

 pickWinners(3, function (err, winners) {

 $('ul#winners').append(winners.map(function (winner) {

 return $('').html(winner);

 }));

 });

}(window.async, window.jQuery));

</script>

The code in Listing 11-13 shows an abbreviated modification of the async.whilst()

loop using async.doWhilst() instead. Notice that the order of arguments has changed.

The looping function is now the first argument to async.doWhilst() and the condition

test is the second. This structurally mirrors do/while loop syntax.

Listing 11-13.  Looping Once and Then Continuing While Some Condition

Remains True

<!-- example-005/views/async-dowhilst.html -->

<h1>Winners!</h1>

<ul id="winners">

<script>

(function (async, $) {

 function pickWinners(howMany, cb) {

 var winners = [];

 async.doWhilst(

 // looping code

 function (cb) {

 $.get('/employee/random').done(function (employee) {

 var winner = employee.firstName + ' ' + employee.lastName;

 // avoid potential duplicates

 if (winners.indexOf(winner) < 0) {

 winners.push(winner);

 }

Chapter 11 Async.js

446

 cb(null);

 }).fail(function (err) {

 cb(err);

 });

 },

 // condition test is now the second function

 // argument

 function () { return winners.length < howMany; },

 // final callback

 function (err) {

 // if there is an error just ignore it

 // and pass back an empty array, otherwise

 // pass the winners

 cb(null, err ? [] : winners);

 }

);

 }

 pickWinners(3, function (err, winners) {

 $('ul#winners').append(winners.map(function (winner) {

 return $('').html(winner);

 }));

 });

}(window.async, window.jQuery));

</script>

�Looping Until Some Condition Becomes False
Closely related to the async.whilst() and async.doWhilst() functions are the async.

until() and async.doUntil() functions, which follow similar execution patterns but,

instead of performing a loop when some condition is true, perform loops until some

condition tests false.

The code in Listing 11-14 shows how a simple HTTP heartbeat can be created in the

browser to test an API endpoint for availability. The Heartbeat() constructor function

creates a loop with async.until() that will execute repeatedly until the value of the

Chapter 11 Async.js

447

_isStopped property is set to true. Heartbeat() exposes a stop() method that, when

invoked sometime after the object is created, will prevent the loop from continuing.

Each turn of the loop makes an HTTP request to the server, and if the request succeeds,

the loop sets the isAvailable property to true; if it fails, isAvailable is set to false.

To create a delay between iterations of the loop, a setTimeout() function wraps the

callback invocation within the loop, scheduling future iterations of the loop to run at a

later time (every 3 seconds in this example).

Listing 11-14.  Looping Until Some Condition Becomes False

<!-- example-006/views/async-until.html -->

<section id="output"></section>

<script>

(function (async, $) {

 var output = document.querySelector('#output');

 function write() {

 var pre = document.createElement('pre');

 pre.innerHTML = Array.prototype.join.call(arguments, ' ');

 output.appendChild(pre);

 }

 function Heartbeat(url, interval) {

 var self = this;

 this.isAvailable = false;

 this.isStopped = false;

 this.writeStatus = function () {

 write(

 '> heartbeat [isAvailable: %s, isStopped: %s]'

 .replace('%s', self.isAvailable)

 .replace('%s', self.isStopped)

);

 };

 async.until(

 // test condition

 function () { return self.isStopped; },

Chapter 11 Async.js

448

 // loop

 function (cb) {

 $.get(url).then(function () {

 self.isAvailable = true;

 }).fail(function () {

 self.isAvailable = false;

 }).always(function () {

 self.writeStatus();

 // delay the next loop by scheduling

 // the callback invocation in the

 // future

 setTimeout(function () {

 cb(null);

 }, interval);

 });

 },

 // final callback

 function (/*err*/) {

 self.isAvailable = false;

 self.writeStatus();

 }

);

 }

 Heartbeat.prototype.stop = function () {

 this.isStopped = true;

 };

 var heartbeat = new Heartbeat('/heartbeat', 3000);

 setTimeout(function () {

 // 10 seconds later

 heartbeat.stop();

 }, 10000);

}(window.async, window.jQuery));

</script>

Chapter 11 Async.js

449

The async.doUntil() function behaves like async.doWhilst(): it runs the loop

first before evaluating the test condition. Its signature also swaps the order of the test

condition function and the looping function.

�Retry Loops
A common use case for loops is the retry loop, where a task is attempted up to a given

number of times. If the task fails but hasn’t met the retry limit, it is executed again. If the

retry limit is met, the task is aborted. The async.retry() function simplifies this process

by handling the retry logic for developers. Setting up a loop is as simple as specifying

a retry limit, a task to execute, and a final callback that will handle errors or receive a

result.

Listing 11-15 demonstrates a simple API call for reserving a seat at some concert

or movie. The available seats are listed in an array, most preferable to least preferable.

The execution limit is the length of the array. Each time the task runs, it shifts the array,

removing the first (most preferable) seat from the collection. If the reservation fails, it

continues this process until there are no more seats left.

Listing 11-15.  Retry Loop

<!-- example-007/views/async-retry -->

<section id="output"></section>

<script>

(function (async, $) {

 var output = document.querySelector('#output');

 function write() {

 var pre = document.createElement('pre');

 pre.innerHTML = Array.prototype.join.call(arguments, ' ');

 output.appendChild(pre);

 }

 function reserve(name, availableSeats) {

 console.log(availableSeats);

 return function (cb) {

 var request = {

Chapter 11 Async.js

450

 name: name,

 seat: availableSeats.shift()

 };

 write('posting reservation', JSON.stringify(request));

 $.post('/reservation', request)

 .done(function (confirmation) {

 write('confirmation', JSON.stringify(confirmation));

 cb(null, confirmation);

 }).fail(function (err) {

 cb(err);

 });

 };

 }

 var name = 'Nicholas';

 var availableSeats = ['15A', '22B', '13J', '32K'];

 async.retry(

 availableSeats.length,

 reserve(name, availableSeats),

 function (err, confirmation) {

 if (err) {

 return console.error(err);

 }

 console.log('seat reserved:', confirmation);

 }

);

}(window.async, window.jQuery));

</script>

Each time the task is run, it invokes its callback. If the task succeeds and passes a

value to the callback, the final async.retry() callback is invoked with that value (in

this case, confirmation). If an error occurs, the loop is repeated until it reaches the

loop limit. The last error is passed to the final callback; previous errors are lost unless

accumulated manually. Listing 11-16 demonstrates a potential way to accomplish this

by collecting errors in an array, then passing the array itself as the err argument to the

Chapter 11 Async.js

451

callback. If the retry loop fails, the final callback’s error will be an array of every error

generated during each turn of the loop.

Listing 11-16.  Accumulating Errors in a Retry Loop

function reserve(name, availableSeats) {

 var errors = [];

 return function (cb) {

 // ...

 $.post('/reservation', body)

 .done(function (confirmation) {

 cb(null, confirmation);

 }).fail(function (err) {

 errors.push(err);

 cb(errors);

 });

 };

}

�Infinite Loops
Infinite loops are bad news in synchronous programming because they arrest the CPU

and prevent any other code from executing. But asynchronous infinite loops don’t suffer

from this downside because, like all other code, they are scheduled for future turns of the

event loop by the JavaScript scheduler. Other code that needs to be run can “butt in” and

request to be scheduled.

An infinite loop can be scheduled with async.forever(). This function takes a task

function as its first argument and a final callback as its second. The task will continue

to run indefinitely unless it passes an error to its callback. Scheduling asynchronous

operations back to back using setTimeout() with a wait duration of 0 or setImmediate()

can create near nonresponsive code in a loop, so it is best to pad each asynchronous task

with a longer wait duration, at least in the hundreds of milliseconds.

The loop in Listing 11-17 makes an HTTP GET request during each turn of the

infinite loop, loading stock information for the user’s dashboard. Each time the GET

request succeeds, the stock information is updated and the loop waits for 3 seconds

before executing again. If an error occurs during the loop, the final callback is invoked

with the error and the loop is terminated.

Chapter 11 Async.js

452

Listing 11-17.  Infinite Loop

<!-- example-008/views/async-forever.html -->

<ul id="stocks">

<script>

(function (async, $) {

 $stockList = $('ul#stocks');

 async.forever(function (cb) {

 $.get('/dashboard/stocks')

 .done(function (stocks) {

 // refresh the stock list with new stock

 // information

 $stockList.empty();

 $stockList.append(stocks.map(function (stock) {

 return $('').html(stock.symbol + ' $' + stock.price);

 }));

 // wait three seconds before continuing

 setTimeout(function () {

 cb(null);

 }, 3000);

 }).fail(cb);

 }, function (err) {

 console.error(err.responseText);

 })

}(window.async, window.jQuery));

</script>

�Batch Flow
The last type of control flow this chapter covers is batching. Batches are created by

partitioning some data into chunks, and then operating on each chunk one at a time.

Batches have some threshold that defines how much data can be put into a chunk. Data

added to a batch flow after work has commenced on a chunk is queued until work is

complete, then gets processed in a new chunk.

Chapter 11 Async.js

453

�Asynchronous Queue
An asynchronous queue is one way to process items in a batch flow. A queue can be

created by calling async.queue() with two parameters. The first is a task function that

will be executed for each data item that will be added to the queue. The second is a

number that represents the maximum number of task workers that the queue will schedule

concurrently to process data. In Listing 11-18 a queue is created to make HTTP requests

for any URL added to the queue. The result of each HTTP request will be added to the

results hash when each request has been completed. The maximum number of HTTP

requests that can be running at any one time is three. If additional URLs are added to

the queue while three requests are in progress, they will be held for future processing. As

workers are released (when requests complete), they will be assigned to queued URLs as

needed. There will never be more than three HTTP requests in progress at a given time.

Listing 11-18.  Using Queue for Sequential Batches

// example-009/index.js

'use strict';

var async = require('async');

var http = require('http');

var MAX_WORKERS = 3;

var results = {};

var queue = async.queue(function (url, cb) {

 results[url] = ";

 http.get(url, function (res) {

 �results[url] = res.statusCode + ' Content-Type: ' + res.

headers['content-type'];

 cb(null);

 }).on('error', function (err) {

 cb(err);

 });

}, MAX_WORKERS);

var urls = [// 9 urls

 'http://www.appendto.com',

 'http://www.nodejs.org',

Chapter 11 Async.js

454

 'http://www.npmjs.org',

 'http://www.nicholascloud.com',

 'http://www.devlink.net',

 'http://javascriptweekly.com',

 'http://nodeweekly.com',

 'http://www.reddit.com/r/javascript',

 'http://www.reddit.com/r/node'

];

urls.forEach(function (url) {

 queue.push(url, function (err) {

 if (err) {

 return console.error(err);

 }

 console.log('done processing', url);

 });

});

The queue will emit a number of events at certain points in its life cycle. Functions

may be assigned to corresponding event properties on the queue object to handle these

events. These event handlers are optional; the queue will operate correctly with or

without them.

The first time the queue has reached the maximum number of active workers, it

will invoke any function assigned to queue.saturated. When the queue is handling all

items and no other items are queued, it will call any function assigned to queue.empty.

Finally, when all workers have completed and the queue is empty, any function assigned

to queue.drain will be called. The functions in Listing 11-19 handle each of these raised

events.

Note  The empty and drained events differ subtly. When empty is triggered,
workers may still be active though no items remain in the queue. When drained
is triggered, all workers have ceased and the queue is completely empty.

Chapter 11 Async.js

455

Listing 11-19.  Queue Events

// example-009/index.js

queue.saturated = function () {

 console.log('queue is saturated at ' + queue.length());

};

queue.empty = function () {

 console.log('queue is empty; last task being handled');

};

queue.drain = function () {

 console.log('queue is drained; no more tasks to handle');

 Object.keys(results).forEach(function (url) {

 console.log(url, results[url]);

 });

 process.exit(0);

};

�Asynchronous Cargo
The async.cargo() function is similar to async.queue() in that it queues up items

to be processed by some task function. They differ, however, in how the workload is

divided. async.queue() runs multiple workers up to a maximum concurrency limit—

its saturation point. async.cargo() runs a single worker at a time, but splits up the

queued items to be processed into payloads of a predetermined size. When the worker

is executed, it will be given one payload. When it has completed, it will be given another,

until all payloads have been processed. The saturation point for cargo, then, is when a

full payload is ready to be processed. Any items added to the cargo after the worker has

started will be grouped into the next payload to be processed.

A cargo is created by supplying the task function as the first argument to async.

cargo() and a maximum payload size as the second. The task function will receive an

array of data (with a length up to the maximum payload size) to be processed and a

callback to be invoked once the operation is complete.

The code in Listing 11-20 shows how async.cargo() can be used to package a series

of database updates into a fictitious transaction, one payload at a time. The task function

iterates over the “update” objects supplied to it, converting each into an UPDATE query

Chapter 11 Async.js

456

in some imaginary relational data store. Once all the queries have been added to a

transaction, the transaction is committed and the callback is invoked.

Listing 11-20.  Using Cargo for Parallel Batches

// example-010/index-01.js

'use strict';

var async = require('async');

var db = require('db');

var MAX_PAYLOAD_SIZE = 4;

var UPDATE_QUERY = "UPDATE CUSTOMER SET ? = '?' WHERE id = ?;";

var cargo = async.cargo(function (updates, cb) {

 db.begin(function (trx) {

 updates.forEach(function (update) {

 var query = UPDATE_QUERY.replace('?', update.field)

 .replace('?', update.value)

 .replace('?', update.id);

 trx.add(query);

 });

 trx.commit(cb);

 });

}, MAX_PAYLOAD_SIZE);

var customerUpdates = [// 9 updates to be processed in payloads of 4

 {id: 1000, field: 'firstName', value: 'Sterling'},

 {id: 1001, field: 'phoneNumber', value: '222-333-4444'},

 {id: 1002, field: 'email', value: 'archer@goodisis.com'},

 {id: 1003, field: 'dob', value: '01/22/1973'},

 {id: 1004, field: 'city', value: 'New York'},

 {id: 1005, field: 'occupation', value: 'Professional Troll'},

 {id: 1006, field: 'twitter', value: '@2cool4school'},

 {id: 1007, field: 'ssn', value: '111-22-3333'},

 {id: 1008, field: 'email', value: 'urmom@internet.com'},

 {id: 1009, field: 'pref', value: 'rememberme=false&colorscheme=dark'}

];

Chapter 11 Async.js

457

customerUpdates.forEach(function (update) {

 cargo.push(update, function () {

 console.log('done processing', update.id);

 });

});

The cargo object has the same event properties as the queue object, shown in

Listing 11-21. The main difference is that the cargo’s saturation limit is reached once

a maximum number of payload items has been added, at which point the worker will

commence.

Optional function handlers may be assigned to event properties as needed.

Listing 11-21.  Cargo Events

// example-010/index-01.js

cargo.saturated = function () {

 console.log('cargo is saturated at ' + cargo.length());

};

cargo.empty = function () {

 console.log('cargo is empty; worker needs tasks');

};

cargo.drain = function () {

 console.log('cargo is drained; no more tasks to handle');

};

Note  Both async.queue() and async.cargo() schedule the task function
to run in the next immediate tick of the event loop. If items are added to a queue
or cargo synchronously, one after the other, then the thresholds of each will be
applied as expected; the queue will throttle the maximum number of workers,
and the cargo will divide the maximum number of items to be processed. If items
are added to each asynchronously, however—if items are added after the next
immediate turn of the event loop—the task functions may be invoked at less than
their maximum capacities.

Chapter 11 Async.js

458

The code in Listing 11-22 pulls each update out of the customerUpdates array and

pushes it to the cargo, then schedules the next push to happen 500 milliseconds later, in

a future turn of the event loop. Because cargo schedules its task immediately, the UPDATE

query will run with one—maybe two—updates each time, depending on how long it

takes for a task to finish and for the next task to be scheduled.

Listing 11-22.  Adding Items to Cargo Asynchronously

// example-010/index-02.js

(function addUpdateAsync() {

 if (!customerUpdates.length) return;

 console.log('adding update');

 var update = customerUpdates.shift();

 cargo.push(update, function () {

 console.log('done processing', update.id);

 });

 setTimeout(addUpdateAsync, 500);

}());

To guarantee that the maximum thresholds are met for both queue and cargo, push

items to each synchronously.

�Summary
This chapter has covered a number of common synchronous control flows and

demonstrated how Async.js can be used to adapt these patterns for asynchronous code.

Table 11-1 shows each flow and the corresponding Async.js functions that were covered.

Chapter 11 Async.js

459

Sequential and parallel flows allow developers to execute multiple independent

tasks, then aggregate results as needed. Pipeline flows can be used to chain tasks

together, where the output of each task becomes the input of a succeeding task. To repeat

asynchronous tasks a given number of times, or according to some condition, looping

flows may be used. Finally, batching flows are available to divide data into chunks to be

processed asynchronously, one batch after the next.

By cleverly organizing asynchronous function tasks, coordinating the results of

each task, and delivering errors and/or task results to a final callback, Async.js helps

developers avoid nested callbacks and brings traditional synchronous control flow

operations into the asynchronous world of JavaScript.

Table 11-1.  Flows and Corresponding Async.js Functions

Flow Async.js Function(s)

Sequential async.series()

Parallel async.parallel()

Pipeline async.waterfall(), async.seq()

Loop async.whilst()/async.doWhilst(), async.until()/async.doUntil()

async.retry(), async.forever()

Batch async.queue(), async.cargo()

Chapter 11 Async.js

PART VII

Further Useful Libraries

463
© Sufyan bin Uzayr, Nicholas Cloud, Tim Ambler 2019
S. bin Uzayr et al., JavaScript Frameworks for Modern Web Development,
https://doi.org/10.1007/978-1-4842-4995-6_12

CHAPTER 12

Underscore and Lodash

You must be the kind of [person] who can get things done. But to get things
done, you must love the doing, not the secondary consequences.

—Ayn Rand

JavaScript is a pragmatic utility language, useful in no small part because of its simple

APIs and sparse type system. It is an easy language to learn and master because its

surface area is so small. And while this characteristic lends itself nicely to productivity,

sadly it means that JavaScript types have historically lacked advanced features that

would make the language stronger, such as functional iteration constructs native to

collections and hashes.

To fill this gap, Jeremy Ashkenas created a library in 2009 called Underscore.js, a

collection of over 100 functions used to manipulate, filter, and transform hashes and

collections. Many of these functions, such as map() and reduce(), embody concepts

common to functional languages. Others, like isArguments() and isUndefined(), are

specific to JavaScript.

As the presence of Underscore became ubiquitous in many web applications, two

exciting things happened. First, the ECMAScript 5 specification was published in the same

year. It features a number of Underscore-like methods on native JavaScript objects such

as Array.prototype.map(), Array.prototype.reduce(), and Array.isArray(). While

ECMAScript 5 (and to a lesser degree ECMAScript 6 and 7) expands the APIs of several key

types, it only includes a fraction of the functionality that Underscore.js provides.

Second, Underscore was forked into a new project called Lodash with the goal

of dramatically improving the performance and expanding its API. Since Lodash

implements all of Underscore’s functions while adding its own, Underscore is a subset of

Lodash. All of the corresponding ECMAScript spec functions are part of Lodash as well.

464

Table 12-1 shows Underscore and Lodash functions mapped to their native ECMAScript

counterparts.

Table 12-1.  Underscore and Lodash Functions Compared to Current (and

Proposed) Native JavaScript Implementations

ECMAScript 5 Underscore/Lodash

Array.prototype.every() all()/every()

Array.prototype.filter() select()/filter()

Array.prototype.forEach() each()/forEach()

Array.isArray() isArray()

Object.keys() keys()

Array.prototype.map() map()

Array.prototype.reduce() inject()/foldl()/reduce()

Array.prototype.reduceRight() foldr()/reduceRight()

Array.prototype.some() some()

ECMAScript 6 Underscore/Lodash

Array.prototype.find() find()

Array.prototype.findIndex() findIndex()

Array.prototype.keys() keys()

ECMAScript 7 Underscore/Lodash

Array.prototype.contains() include()/contains()

Because Underscore and Lodash share an API, Lodash can be used as a drop-in

replacement for Underscore. The inverse isn’t necessarily the case, however, because

of the extra functionality that Lodash supplies. For example, while both Underscore

and Lodash have a clone() method, only Lodash implements a cloneDeep() method.

Often developers choose Lodash over Underscore because of these extra features,

but the performance benefit is tangible as well. According to a function-by-function

performance benchmark, Lodash is 35% faster on average than Underscore. It achieves

this performance gain by favoring simple loops over native delegation for functions like

forEach(), map(), reduce(), and so forth.

Chapter 12 Underscore and Lodash

465

This chapter focuses mostly on features of Underscore and Lodash that are not

already (or are scheduled to be) implemented in JavaScript (the functions in Listings 12-1

and 12-2). Mozilla’s excellent documentation covers each of the native functions,

and the Underscore and Lodash API documentation covers each of their

implementations as well.

But Underscore and Lodash offer a great deal more than just a few handy functions

for objects and collections, several of which will be explored in this chapter.

Note  For brevity, the remainder of this chapter simply refers to Underscore,
but understand that, unless otherwise noted, Underscore and Lodash are
interchangeable.

In essence, Lodash provides more consistent iteration support for arrays, strings, and

objects. As compared to Underscore, Lodash is more of a superset—it offers better API

behaviors, features such as AMD support, deep merge, and more.

Other than that, Lodash (also written as Lo-Dash) is more flexible and has been

performance tested to run in Node, PhantomJS, and other libraries/frameworks. If you

are familiar with Backbone.js, it might be a better idea to use Lodash as it comes with

multiple Backbone boilerplates by default.

Lastly, Lodash is more frequently updated as compared to Underscore.

�Installation and Usage
Underscore may be directly imported as a library in the web browser or any server-side

JavaScript environment, such as Node.js. It has no external dependencies.

You can download the Underscore.js script directly from the Underscore web site

(http://underscorejs.org) or install it with a package manager like npm, Bower, or

Component.

In the browser, you can include Underscore directly as a script or load it with an

AMD- or CommonJS-compatible module loader (such as RequireJS or Browserify). In

Node.js the package is simply required as a CommonJS module.

Accessing the Underscore object (on which its utility functions live) depends on

how the library is loaded. When Underscore is loaded in the browser with a script tag,

the library will attach itself to window._. For variables created by module loaders in any

Chapter 12 Underscore and Lodash

http://underscorejs.org

466

environment, it is convention to assign the actual underscore character to the module, as

shown in Listing 12-1.

Listing 12-1.  Loading the Underscore Library in a Node.js Module

// example-001/index.js

'use strict';

var _ = require('underscore');

console.log(_.VERSION);

All Underscore functions live on the _ (“underscore”) object. Because Underscore is

a utility library, it holds no state other than a handful of settings (but we’ll cover more on

that later in the chapter). All functions are idempotent, which means passing a value to

any function multiple times will yield the same result each time. Once the Underscore

object is loaded, it may be used immediately.

Underscore’s utility functions operate mostly on collections (arrays and array-

like objects, such as arguments), object literals, and functions. Underscore is most

commonly used to filter and transform data. Many Underscore functions complement

each other and can work together to create powerful combinations. Because this can be

so useful, Underscore has built-in support for function chains that create terse pipelines

that apply multiple transformations to data at once.

�Aggregation and Indexing
Pieces of data in a collection often share similar schemas, yet have an identifying

attribute that makes each unique. It can be helpful to distinguish these two types of

relationships in a set of data—commonality and individuality—in order to quickly filter

and work with a subset of objects that matches aggregation criteria.

Underscore has a number of functions that perform these tasks, but three specific

functions can be tremendously beneficial when working with collections: countBy(),

groupBy(), and indexBy().

Chapter 12 Underscore and Lodash

467

�countBy()
Counting objects that share some characteristic is a common way to generalize data.

Given a collection of URLs, one can imagine some analytic process that determines

how many URLs belong to specific top-level domains (e.g., .com, .org, .edu, etc.).

Underscore’s countBy() function is an ideal candidate for this task. It invokes a callback

on each element in an array to determine which category the element fits into (in this

example, which top-level domain the URL occupies). The callback returns some string

value that represents this category. The final result is an object with keys that represent

all categories returned from the callback and numeric counts representing the number

of elements that fall into each category. Listing 12-2 shows a primitive implementation

that yields an object with a count of two .org domains and one .com domain.

Listing 12-2.  Counting Elements by Some Criteria

// example-002/index.js

'use strict';

var _ = require('underscore');

var urls = [

 'http://underscorejs.org',

 'http://lodash.com',

 'http://ecmascript.org'

];

var counts = _.countBy(urls, function byTLD(url) {

 if (url.indexOf('.com') >= 0) {

 return '.com';

 }

 if (url.indexOf('.org') >= 0) {

 return '.org';

 }

 return '?';

});

console.log(counts);

// { '.org': 2, '.com': 1 }

Chapter 12 Underscore and Lodash

468

If the items in a collection are objects with properties, and the values for a specific

property represent the data to be counted, an iterator function is not required. The name

of the property to be tested may be used as a substitute. Note that in Listing 12-3 the keys

in the final result will be the values for the property examined on each object.

Listing 12-3.  Counting Elements by Some Property

// example-003/index.js

'use strict';

var _ = require('underscore');

var urls = [

 {scheme: 'http', host: 'underscorejs', domain: '.org'},

 {scheme: 'http', host: 'lodash', domain: '.com'},

 {scheme: 'http', host: 'ecmascript', domain: '.org'},

];

var counts = _.countBy(urls, 'domain');

console.log(counts);

// { '.org': 2, '.com': 1 }

If one or more objects in the collection lack the property to be tested, the final result

object will contain an undefined key paired with the number of those objects as well.

�groupBy()
Underscore’s groupBy() function is similar to countBy(), but instead of reducing results

to numeric counts, groupBy() places elements into categorized collections in the

result object. The URL objects in Listing 12-4 are each placed into collections for each

corresponding top-level domain.

Listing 12-4.  Grouping Elements by Some Property

// example-004/index.js

'use strict';

var _ = require('underscore');

var urls = [

Chapter 12 Underscore and Lodash

469

 {scheme: 'http', host: 'underscorejs', domain: '.org'},

 {scheme: 'http', host: 'lodash', domain: '.com'},

 {scheme: 'http', host: 'ecmascript', domain: '.org'},

];

var grouped = _.groupBy(urls, 'domain');

console.log(grouped);

/*
{

 '.org': [

 { scheme: 'http', host: 'underscorejs', domain: '.org' },

 { scheme: 'http', host: 'ecmascript', domain: '.org' }

],

 '.com': [

 { scheme: 'http', host: 'lodash', domain: '.com' }

]

}

*/

Note T he groupBy() function may also use an iterator function as its second
argument (instead of a property name) if a greater degree of control is required to
categorize elements.

It is worth mentioning that counts may easily be derived from grouped objects by

simply querying the length of each grouped array. It may be advantageous, depending

on application context, to prefer grouping over counting. Listing 12-5 shows how to get

the count for a single set of grouped data as well as a function for creating an object of

counts from groupBy() results.

Chapter 12 Underscore and Lodash

470

Listing 12-5.  Deriving Counts from Grouped Objects

// example-005/index.js

'use strict';

var _ = require('underscore');

var urls = [

 {scheme: 'http', host: 'underscorejs', domain: '.org'},

 {scheme: 'http', host: 'lodash', domain: '.com'},

 {scheme: 'http', host: 'ecmascript', domain: '.org'},

];

var grouped = _.groupBy(urls, 'domain');

var dotOrgCount = grouped['.org'].length;

console.log(dotOrgCount);

// 2

function toCounts(grouped) {

 var counts = {};

 for (var key in grouped) {

 if (grouped.hasOwnProperty(key)) {

 counts[key] = grouped[key].length;

 }

 }

 return counts;

}

console.log(toCounts(grouped));

// { '.org': 2, '.com': 1 }

�indexBy()
It can also be useful to identify differences among data in a collection, especially if those

differences can serve as unique identifiers. Fishing a single object out of a collection

by a known identifier is a pretty common scenario. Done manually, this would require

looping over each element in the collection (perhaps with a while or for loop) and

returning the first that possesses a matching unique identifier.

Chapter 12 Underscore and Lodash

471

Imagine an airline web site on which a customer selects departure and destination

airports. The user chooses each airport via drop-down menus and is then shown

additional data about each airport. This additional data is loaded from airport objects

in an array. The values chosen in each drop-down menu are the unique airport codes,

which are then used by the application to find the full, detailed airport objects.

Fortunately, the developer who created this application used Underscore’s

indexBy() function to create an index object from the airports array, shown in

Listing 12-6.

Listing 12-6.  Indexing Objects by Property

// example-006/index.js

'use strict';

var _ = require('underscore');

var airports = [

 {code: 'STL', city: 'St Louis', timeZone: '-6:00'},

 {code: 'SEA', city: 'Seattle', timeZone: '-8:00'},

 {code: 'JFK', city: 'New York', timeZone: '-5:00'}

];

var selected = 'SEA';

var indexed = _.indexBy(airports, 'code');

console.log(indexed);

/*
{

 STL: {code: 'STL', city: 'St Louis', timeZone: '-6:00'},

 SEA: {code: 'SEA', city: 'Seattle', timeZone: '-8:00'},

 JFK: {code: 'JFK', city: 'New York', timeZone: '-5:00'}

}

*/

var timeZone = indexed[selected].timeZone;

console.log(timeZone);

// -8:00

Chapter 12 Underscore and Lodash

472

The indexBy() function behaves a bit like groupBy(), except that each object has a

unique value for the indexed property, so the final result is an object whose keys (which

must be unique) are the values of each object for a specified property and whose values

are the objects that possess each property. In Listing 12-6 the keys for the indexed object

are each airport code, and the values are the corresponding airport objects.

Keeping an indexed object with relatively stable reference data in memory is a

fundamental caching practice. It incurs a one-time performance penalty (the indexing

process) to avoid multiple iteration penalties (having to traverse the array each time an

object is needed).

�Being Choosy
Developers often extract wanted data, or omit unwanted data, from collections and

objects. This might be done for legibility (when data will be shown to a user), for

performance (when data is to be sent over a network connection), for privacy (when data

returned from an object or module’s API should be sparse), or for some other purpose.

�Selecting Data from Collections
Underscore has a number of utility functions that select one or more elements from a

collection of objects based on some criteria. In some circumstances, this criteria may be

a function that evaluates each element and returns true or false (whether the element

“passes” the criteria test). In other circumstances, the criteria may be a bit of data that

will be compared to each element (or a part of each element) for equality, the success or

failure of which determines whether the element “matches” the criteria used.

�filter()

The filter() function uses the criteria function approach. Given an array of elements

and a function, filter() applies the function to each element and returns an array

consisting only of elements that passed the criteria test. In Listing 12-7 an array of

playing cards is filtered so that only spades are returned.

Chapter 12 Underscore and Lodash

473

Listing 12-7.  Filtering an Array with a Criteria Function

// example-007/index.js

'use strict';

var _ = require('underscore');

var cards = [

 {suite: 'Spades', denomination: 'King'},

 {suite: 'Hearts', denomination: '10'},

 {suite: 'Clubs', denomination: 'Ace'},

 {suite: 'Spades', denomination: 'Ace'},

];

var filtered = _.filter(cards, function (card) {

 return card.suite === 'Spades';

});

console.log(filtered);

/*
[

 { suite: 'Spades', denomination: 'King' },

 { suite: 'Spades', denomination: 'Ace' }

]

*/

�where()

The where() function is similar to filter() but uses the comparison criteria approach

instead. Its first argument is an array of objects, but its second argument is a criteria

object whose keys and values will be compared to the keys and values of each element

in the array. If an element contains all the keys and corresponding values in the criteria

object (using strict equality), the element will be included in the array returned by

where().

In Listing 12-8, a set of board game objects is filtered by an object that specifies a

minimum player count and play time. Pandemic is excluded because it does not match

the playTime value of the criteria object, though it does match the minPlayer value.

Chapter 12 Underscore and Lodash

474

Listing 12-8.  Filtering an Array by Criteria Comparison

// example-008/index.js

'use strict';

var _ = require('underscore');

var boardGames = [

 {title: 'Ticket to Ride', minPlayers: 2, playTime: 45},

 {title: 'Pandemic', minPlayers: 2, playTime: 60},

 {title: 'Munchkin Deluxe', minPlayers: 2, playTime: 45}

];

var filtered = _.where(boardGames, {

 minPlayers: 2,

 playTime: 45

});

console.log(filtered);

/*
[

 { title: 'Ticket to Ride', minPlayers: 2, playTime: 45 },

 { title: 'Munchkin Deluxe', minPlayers: 2, playTime: 45 }

]

*/

�find() and findWhere()

The filter() and where() functions always return collections. If no object passes the

criteria test, each returns an empty set. A developer could use these functions to find

an individual object within a set (e.g., by some unique identifier), but would then have

to fish that object from the result array by using index zero. Fortunately, Underscore

provides find() and findWhere() functions that complement filter() and where().

They each return the first object to pass the criteria check or return undefined if no

objects in the set pass. In Listing 12-9 a collection is searched twice for specific entries.

Note that even though multiple items would fulfill the {what: 'Dagger'} criteria object

passed to findWhere(), only the first match in the collection is returned.

Chapter 12 Underscore and Lodash

475

Listing 12-9.  Finding a Single Item in a Collection

// example-009/index.js

'use strict';

var _ = require('underscore');

var guesses = [

 {who: 'Mrs. Peacock', where: 'Lounge', what: 'Revolver'},

 {who: 'Professor Plum', where: 'Study', what: 'Dagger'},

 {who: 'Miss Scarlet', where: 'Ballroom', what: 'Candlestick'},

 {who: 'Reverend Green', where: 'Conservatory', what: 'Dagger'}

];

var result = _.find(guesses, function (guess) {

 return guess.where === 'Ballroom';

});

console.log(result);

// { who: 'Miss Scarlet', where: 'Ballroom', what: 'Candlestick' }

result = _.findWhere(guesses, {what: 'Dagger'});

console.log(result);

// { who: 'Professor Plum', where: 'Study', what: 'Dagger' }

�Selecting Data from Objects
The Underscore functions covered up to this point all filter larger collections into

focused, smaller ones (or even a single object) when a portion of data is unnecessary

to the application. Objects are also collections of data, indexed by string keys instead of

ordered numbers; and like arrays, filtering data in individual objects can be quite useful.

�pluck()

A developer could get a property’s value from each object in a collection by looping over

each element and capturing the desired property value in an array or by using Array.

prototype.map() (or Underscore’s equivalent, map()). But a faster, more convenient

option is to use Underscore’s pluck() function, which takes an array as its first argument

and the name of the property to lift from each element as its second. The pluck()

Chapter 12 Underscore and Lodash

476

function is used in Listing 12-10 to extract the numbers that landed face up from a roll

of three dice. These values are then summed (with Array.prototype.reduce()) to

determine the total value of the roll.

Listing 12-10.  Plucking Properties from Objects in a Collection

// example-010/index.js

'use strict';

var _ = require('underscore');

var diceRoll = [

 {sides: 6, up: 3},

 {sides: 6, up: 1},

 {sides: 6, up: 5}

];

var allUps = _.pluck(diceRoll, 'up');

console.log(allUps);

// [3, 1, 5]

var total = allUps.reduce(function (prev, next) {

 return prev + next;

}, 0);

console.log(total);

// 9

While pluck() is quite useful for selecting individual properties from objects, it only

operates on collections and is not very useful for dealing with individual objects.

�values()

The ECMAScript 5 specification introduced the keys() function on the Object

constructor, a handy utility for turning the keys of any object literal into an array of

strings. Underscore has a corresponding keys() implementation but also has a values()

function that, sadly, has no counterpart in native JavaScript. The values() function is

used to extract all property values from an object, and is arguably most valuable (dad

joke) for objects that hold a collection of “constants,” or serve as an enumeration would

in another language. Listing 12-11 demonstrates how this extraction takes place.

Chapter 12 Underscore and Lodash

477

Listing 12-11.  Extracting Values from an Object Literal

// example-011/index.js

'use strict';

var _ = require('underscore');

var BOARD_TILES = {

 IND_AVE: 'Indiana Avenue',

 BOARDWALK: 'Boardwalk',

 MARV_GARD: 'Marvin Gardens',

 PK_PLACE: 'Park Place'

};

var propertyNames = _.values(BOARD_TILES);

console.log(propertyNames);

// ['Indiana Avenue', 'Boardwalk', 'Marvin Gardens', 'Park Place']

Reference data (e.g., a hash of US state abbreviations and names) is often

retrieved and cached all at once. This data will typically be dereferenced by key so

that some particular value can be extracted, but sometimes it is useful to work with all

values regardless of key, as the Underscore template in Listing 12-12 demonstrates.

(Underscore templates will be discussed later in this chapter, but Listing 12-12 should

give you enough to grasp basic usage.) Each value in the BOARD_TILES hash (the tile

name) is rendered as a list item in an unordered list. The keys are inconsequential; only

the values matter, a perfect scenario for the values() function.

Listing 12-12.  Extracting Values from an Object Literal

<!-- example-011/index.html -->

<div id="output"></div>

<script id="tiles-template" type="text/x-template">

<ul class="properties">

 <% _.each(_.values(tiles), function (property) { %>

 <%- property %>

 <% }); %>

</script>

Chapter 12 Underscore and Lodash

478

<script>

(function (_) {

 var template = document.querySelector('#tiles-template').innerHTML;

 var bindTemplate = _.template(template);

 var BOARD_TILES = {

 IND_AVE: 'Indiana Avenue',

 BOARDWALK: 'Boardwalk',

 MARV_GARD: 'Marvin Gardens',

 PK_PLACE: 'Park Place'

 };

 var markup = bindTemplate({tiles: BOARD_TILES});

 document.querySelector('#output').innerHTML = markup;

}(window._));

</script>

�pick()

Finally, to whittle an object down to a subset of its keys and values, developers can use

Underscore’s pick() function. When passing in a target object and one or more property

names, pick() will return another object composed solely of those properties (and

their values) from the target. In Listing 12-13 the name and numPlayers properties are

extracted from a larger hash of board game details with pick().

Listing 12-13.  Picking Properties from an Object Literal

// example-012/index.js

'use strict';

var _ = require('underscore');

var boardGame = {

 name: 'Settlers of Catan',

 designer: 'Klaus Teuber',

 numPlayers: [3, 4],

 yearPublished: 1995,

 ages: '10+',

 playTime: '90min',

 subdomain: ['Family', 'Strategy'],

Chapter 12 Underscore and Lodash

479

 category: ['Civilization', 'Negotiation'],

 website: 'http://www.catan.com'

};

var picked = _.pick(boardGame, 'name', 'numPlayers');

console.log(picked);

/*
{

 name: 'Settlers of Catan',

 numPlayers: [3, 4]

}

*/

�omit()

The inverse of pick() is omit(), which returns an object composed of all properties

except the ones specified. The properties designer, numPlayers, yearPublished, ages,

and playTime are all eliminated from the result object created by omit() in Listing 12-14.

Listing 12-14.  Omitting Properties from an Object Literal

// example-013/index.js

'use strict';

var _ = require('underscore');

var boardGame = {

 name: 'Settlers of Catan',

 designer: 'Klaus Teuber',

 numPlayers: [3, 4],

 yearPublished: 1995,

 ages: '10+',

 playTime: '90min',

 subdomain: ['Family', 'Strategy'],

 category: ['Civilization', 'Negotiation'],

 website: 'http://www.catan.com'

};

Chapter 12 Underscore and Lodash

480

var omitted = _.omit(boardGame, 'designer', 'numPlayers',

 'yearPublished', 'ages', 'playTime');

console.log(omitted);

/*
{

 name: 'Settlers of Catan',

 subdomain: ['Family', 'Strategy'],

 category: ['Civilization', 'Negotiation'],

 website: 'http://www.catan.com'

}

*/

In addition to property names, both pick() and omit() accept a predicate that will

evaluate each property and value instead. If the predicate returns true, the property

will be included in the resulting object; if it returns false, the property will be excluded.

The predicate for pick() in Listing 12-15 will only add properties to the result object for

values that are arrays; in this case, the properties numPlayers, subdomain, and category.

Listing 12-15.  Picking Properties from an Object Literal with a Predicate

Function

// example-014/index.js

'use strict';

var _ = require('underscore');

var boardGame = {

 name: 'Settlers of Catan',

 designer: 'Klaus Teuber',

 numPlayers: [3, 4],

 yearPublished: 1995,

 ages: '10+',

 playTime: '90min',

 subdomain: ['Family', 'Strategy'],

 category: ['Civilization', 'Negotiation'],

 website: 'http://www.catan.com'

};

Chapter 12 Underscore and Lodash

481

var picked = _.pick(boardGame, function (value, key, object) {

 return Array.isArray(value);

});

console.log(picked);

/*
{

 numPlayers: [3, 4],

 subdomain: ['Family', 'Strategy'],

 category: ['Civilization', 'Negotiation']

}

*/

�Chaining
Underscore contains a number of utility functions that are frequently used together

to create transformation pipelines for data. To begin a chain, an object or collection is

passed to Underscore’s chain() function. This returns a chain wrapper on which many

Underscore functions may be called in a fluent manner, each compounding the effects of

the preceding function call.

Listing 12-16 shows an array of coffee shops and the hours during which each is

open. The whatIsOpen() function accepts a numeric hour and a period ('AM' or 'PM').

These are then used to evaluate the coffee shops in the collection and return the names

of the coffee shops that are open during that time.

Listing 12-16.  Chaining Functions on a Collection

// example-015/index.js

'use strict';

var _ = require('lodash');

/*
Note that lodash, not underscore, is used for

this example. The cloneDeep() function below

is unique to lodash.

*/

Chapter 12 Underscore and Lodash

482

var coffeeShops = [

 {name: 'Crooked Tree', hours: [6, 22]},

 {name: 'Picasso\'s Coffee House', hours: [6, 24]},

 {name: 'Sump Coffee', hours: [9, 16]}

];

function whatIsOpen(hour, period) {

 return _.chain(coffeeShops)

 .cloneDeep() // #1

 .map(function to12HourFormat (shop) { // #2

 shop.hours = _.map(shop.hours, function (hour) {

 return (hour > 12 ? hour – 12 : hour);

 }

 return shop;

 })

 .filter(function filterByHour (shop) { // #3

 if (period === 'AM') {

 return shop.hours[0] <= hour;

 }

 if (period === 'PM') {

 return shop.hours[1] >= hour;

 }

 return false;

 })

 .map(function toShopName (shop) { // #4

 return shop.name;

 })

 .value(); // #5

}

console.log(whatIsOpen(8, 'AM'));

// ['Crooked Tree', 'Picasso\'s Coffee House']

console.log(whatIsOpen(11, 'PM'));

// ['Picasso\'s Coffee House']

Chapter 12 Underscore and Lodash

483

After chain() wraps the coffeeShops array in a fluent API, the following functions

are called to manipulate and filter the collection until the desired data has been

produced:

	 1.	 cloneDeep() recursively clones the array and all objects and their

properties. In step 2 the array data is actually modified, so the

array is cloned to preserve its original state.

	 2.	 map(function to12HourFormat() {/*...*/}) iterates over each

item in the cloned array and replaces the second 24-hour number

in the hours array with its 12-hour equivalent.

	 3.	 filter(function filterByHour() {/*...*/}) iterates over each

modified coffee shop and evaluates its hours based on the period

('AM' or 'PM') specified: the first element for the opening hour

and the second for the closing hour. The function returns true or

false to indicate whether the coffee shop should be retained or

dropped from the results.

	 4.	 map(function toShopName() {/*...*/}) returns the name of

each remaining coffee shop in the collection. The result is an array

of strings that will be passed to any subsequent steps in the chain.

	 5.	 Finally, value() is called to terminate the chain and return the

final result: the array of names of coffee shops that are open

during the hour and period provided to whatIsOpen() (or an

empty array if none match the criteria).

This may seem like a lot to grasp, but Underscore chains can be reduced to a few

simple principles that are easy to remember:

•	 Chains can be created with any initial value, though object and array

are the most typical starting points.

•	 Any Underscore function that operates on a value is available as a

chained function.

•	 The return value of a chained function becomes the input value of

the next function in the chain.

Chapter 12 Underscore and Lodash

484

•	 The first argument of a chained function is always the value on which

it operates. For example, Underscore’s map() function normally

accepts two arguments, a collection and a callback, but when

invoked as a chained function, it only accepts a callback. This pattern

holds for all chained functions.

•	 Always invoke the value() function to terminate a chain and retrieve

its final, manipulated value. If a chain does not return a value, this is

unnecessary.

Chaining functions for a collection or object might seem natural and obvious, but

Underscore also has a number of functions that work on primitives. Listing 12-17

shows how a chain can wrap the number 100 to eventually generate the lyrics to

“99 Bottles of Beer.”

Listing 12-17.  Chaining Functions on a Primitive

// example-016/index.js

'use strict';

var _ = require('underscore');

_.chain(100)

 .times(function makeLyrics (number) {

 if (number === 0) {

 return ";

 }

 return [

 number + ' bottles of beer on the wall!',

 number + ' bottles of beer!',

 'Take one down, pass it around!',

 (number - 1) + ' bottles of beer on the wall!',

 '♫ ♪ ♫ ♪ ♫ ♪ ♫ ♪ ♫ ♪ ♫',

].join('\n');

 })

 .tap(function orderLyrics (lyrics) {

 // reverse the array so the song is in order

 lyrics.reverse();

 })

Chapter 12 Underscore and Lodash

485

 .map(function makeLoud (lyric) {

 return lyric.toUpperCase();

 })

 .forEach(function printLyrics (lyric) {

 console.log(lyric);

 });

The times() function takes a number as its first argument and a callback to be invoked

for each decremented value of that number. In this example, the callback makeLyrics()

will be invoked starting with the number 99 (not 100) and ending with the number 0, for

100 total iterations. For each invocation, one refrain of “99 Bottles” is returned. This creates

an array of strings, which is then passed to the next function in the chain.

Because the final chained function forEach() creates side effects instead of

returning a value, there is no need to terminate the chain by calling value(). Instead,

Listing 12-18 shows the results that are printed to the console.

Listing 12-18.  The Song to Ruin All Road Trips

99 BOTTLES OF BEER ON THE WALL!

99 BOTTLES OF BEER!

TAKE ONE DOWN, PASS IT AROUND!

98 BOTTLES OF BEER ON THE WALL!

♫ ♪ ♫ ♪ ♫ ♪ ♫ ♪ ♫ ♪ ♫
98 BOTTLES OF BEER ON THE WALL!

98 BOTTLES OF BEER!

TAKE ONE DOWN, PASS IT AROUND!

97 BOTTLES OF BEER ON THE WALL!

♫ ♪ ♫ ♪ ♫ ♪ ♫ ♪ ♫ ♪ ♫
 ...

�Function Timing
Functions execute when they are scheduled on JavaScript’s internal event loop.

Native functions like setTimeout(), setInterval(), and Node’s setImmediate() give

developers a degree of control over when these functions run—which turn of the event

loop will handle their invocations. Underscore augments these primitives with a number

of control functions that add flexibility to function scheduling.

Chapter 12 Underscore and Lodash

486

�defer()
Underscore’s defer() function mimics the behavior of setImmediate() in a Node.

js environment; which is to say, defer() schedules a function to execute on the next

immediate turn of the event loop. This is equivalent to using setTimeout() with a delay

of 0. Since setImmediate() is not a JavaScript standard function, using Underscore’s

defer() in both browser and server environments can provide a greater degree of

consistency than polyfilling setImmediate() in the browser.

The example code in Listing 12-19 demonstrates the value of defer() in a user

interface. It loads a large data set of playing card information for the popular card game

Dominion, then populates an HTML table with card details.

While the data is fetched from the server and then processed, the user sees the

message, “Please be patient while cards are loading!” Once the GET request has

completed, the processCards() handler begins to process almost 200 cards in blocks

of 10. For each block (except the first), the handler defers processing, which has two

beneficial effects. First, it allows the UI time to paint the previous 10 processed rows in

the table, and second, it allows the user to scroll in between window paints. Because the

block size is so small, the scroll speed is relatively normal for the user. If processCards()

attempted to render all table rows at once, the UI would freeze until all DOM elements

had been added to the table.

Listing 12-19.  Deferring a Function

<!-- example-017/views/defer.html -->

<p id="wait-msg">Please be patient while cards are loading!</p>

<table id="cards">

 <thead>

 <tr>

 <th>Name</th>

 <th>Expansion</th>

 <th>Cost</th>

 <th>Benefit</th>

 <th>Description</th>

 </tr>

 </thead>

 <tbody></tbody>

</table>

Chapter 12 Underscore and Lodash

487

<script>

$(function () {

 var $waitMsg = $('#wait-msg');

 var $cards = $('#cards tbody');

 function processCards(cards) {

 var BLOCK_SIZE = 10;

 // process the first chunk of 10 cards

 (function processBlock() {

 if (!cards.length) {

 $waitMsg.addClass('hidden');

 return;

 }

 // take the first 10 cards from the array;

 // splice() will reduce the length of the array

 // by 10 each time

 var block = cards.splice(0, BLOCK_SIZE);

 _.forEach(block, function (card) {

 var $tr = $('<tr></tr>');

 $tr.append($('<td></td>').html(card.name));

 $tr.append($('<td></td>').html(card.expansion));

 $tr.append($('<td></td>').html(card.cost));

 $tr.append($('<td></td>').html(card.benefits.join(', ')));

 $tr.append($('<td></td>').html(card.description));

 $cards.append($tr);

 });

 // defer the next block of 10 cards to

 // allow the user to scroll and the UI to

 // refresh

 _.defer(processBlock);

 }());

 }

Chapter 12 Underscore and Lodash

488

 // kick off the process by loading the data set

 $.get('/cards').then(processCards);

}());

</script>

�debounce()
“Debouncing” is the practice of ignoring duplicate invocations, requests, messages, and

so forth in a system for some period of time. In JavaScript, debouncing a function can

be very helpful if a developer anticipates that duplicate, identical function calls may be

made in quick succession. A common scenario for a debounced function, for example,

is preventing a form’s submit handler from being called more than once when a user

accidentally clicks a Submit button multiple times on a web page.

A custom debounce implementation would require a developer to track the

invocations of a function over a short period of time (perhaps only hundreds of

milliseconds) using setTimeout() and clearTimeout() for each duplicate invocation.

Fortunately, Underscore provides a debounce() function that handles this plumbing for

developers, as demonstrated in Listing 12-20.

Listing 12-20.  Debouncing a Function

<!-- example-018/debounce.html -->

<button id="submit">Quickly Click Me Many Times!</button>

<script>

(function () {

 var onClick = _.debounce(function (e) {

 alert('click handled!');

 }, 300);

 document.getElementById('submit')

 .addEventListener('click', onClick);

}());

</script>

In Listing 12-20 an onClick() function is created by invoking debounce(). The

first argument to debounce() is the function that will actually be run once all duplicate

invocations have stopped. The second argument is a duration, in milliseconds, that must

Chapter 12 Underscore and Lodash

489

elapse between invocations for the callback to finally be triggered. For example, if a user

clicks the #submit button once, and then clicks it again within the 300-millisecond time

span, the first invocation is ignored and the wait timer is restarted. Once the wait period

has timed out, the debounce() callback will be invoked, alerting the user that the click

has been handled.

Note E ach time a debounced function is invoked, its internal timer is reset. The
specified time span represents the minimum time that must pass between the
last invocation and its preceding invocation (if any) before the callback function
executes.

In Figure 12-1, a debounced function with a timeout of 300ms is called three times.

After the first call at point A, 250ms elapse, at which point another call happens at point

B and the wait timer is reset. The interval between B and the next call, C, is shorter:

100ms. Again, the wait timer resets. At point C a third call is made, after which the wait

duration of 300ms is met. At point D the debounced function’s callback is invoked.

The debounced function’s callback will receive any arguments passed to the

debounce() function itself. For example, in Listing 12-20, jQuery’s event object e is

forwarded to the debounced function’s callback. While each invocation may pass

different arguments, it is important to realize that only the arguments passed during the

last invocation within the wait period will actually be forwarded to the callback. The

debounce() function receives an optional third, immediate parameter which may be true

Figure 12-1.  A debounced function invoked multiple times

Chapter 12 Underscore and Lodash

490

or false. Setting this parameter to true will invoke the callback for the first invocation

instead, ignoring all subsequent duplicates for the wait period. If the arguments passed

to the debounced function vary, capturing the first parameters passed instead of the last

might be strategically beneficial.

�throttle()
Underscore’s throttle() function is similar to debounce(). It ignores subsequent

invocations of a function for a specified period of time, but does not reset its internal

timer with each function call. It effectively ensures that only one invocation happens

during a specified period, whereas debounce() guarantees that only one invocation

will happen sometime after the last invocation of a debounced function. Throttling a

function can be particularly useful if a function is likely to be called many times with the

same arguments, or when the granularity of the arguments is such that it is not useful to

account for every invocation of the function.

The in-memory JavaScript message bus, postal.js, is a useful library for routing

messages through an application. Some application modules send messages at a

frequency that might not be useful for human consumption, so any function that

displays these messages to a user might be a good candidate for throttling.

The code in Listing 12-21 demonstrates a simplified version of this scenario. Don’t

worry about understanding the postal.js API entirely—it is sufficient to understand that

postal.publish() will place a message onto the bus, and postal.subscribe() will

invoke a callback when that message is received. In this example a message is published

once every 100ms. The callback attached to the subscription, however, is throttled at

500ms. So, with a little padding for timing inconsistencies (the JavaScript event loop

timer has low precision), the UI will display roughly 20 or 21 updates even though

100 updates have been placed on the message bus (roughly 1 in 5 messages will be

displayed).

Listing 12-21.  Using a Throttled Function to Control Status Updates

<!-- example-019/throttle.html -->

<section id="friends"></section>

<script>

$(function () {

Chapter 12 Underscore and Lodash

491

 var $friends = $('#friends');

 function onStatusUpdate(data) {

 var text = data.name + ' is ' + data.status;

 $friends.append($('<p></p>').html(text));

 }

 /*
 * subscribing to status updates from friends

 * with a throttled callback that will only

 * fire *once* every 500ms

 */

 postal.subscribe({

 channel: 'friends',

 topic: 'status.update',

 callback: _.throttle(onStatusUpdate, 500)

 });

}());

</script>

<script>

 $(function () {

 var i = 1;

 var interval = null;

 /*
 * publishing a status update from a

 * friend every 100ms

 */

 function sendMessage() {

 if (i === 100) {

 return clearInterval(interval);

 }

 i += 1;

 postal.publish({

 channel: 'friends',

 topic: 'status.update',

Chapter 12 Underscore and Lodash

492

 data: {

 name: 'Jim',

 status: 'slinging code'

 }

 });

 }

 setInterval(sendMessage, 100);

 }());

</script>

Figure 12-2 illustrates how throttle() differs from defer(). Once a throttled

function is invoked at point A, it will ignore all further invocations (at points B and C)

until its wait duration has passed—in this case, 300ms. Once elapsed, the next call at

point D will invoke the throttled function.

Figure 12-2.  A throttled function invoked multiple times

Chapter 12 Underscore and Lodash

493

�Templates
Underscore offers a micro-templating system that compiles a template string (typically

HTML) into a function. When this function is invoked with some data, it uses the

template string’s binding expressions to populate the template, returning a new HTML

string. Developers who have used templating tools like Mustache or Handlebars will

be familiar with this process. Unlike these more robust templating libraries, however,

Underscore’s templates have a much smaller feature set and no real template extension

points. Underscore can be a strong choice as a template library when the templates in

an application are fairly trivial and you have no desire or need to incur the overhead of a

template-specific library in an application.

Template systems usually begin with some markup, and Underscore is no exception.

Data binding expressions are added to a template with “gator tags” (so named because

the opening and closing elements, <% and %>, look kind of like alligators). Listing 12-22

shows a simple block of HTML that will later be bound to an object literal containing two

properties, title and synopsis.

Listing 12-22.  Template with “Gator Tags”

<h1><%- title %></h1>

<p class="synopsis"><%- synopsis %></p>

Gator tags come in three varieties. The tags used in Listing 12-22 generate safe HTML

output by escaping any HTML tag sequences. If the movie synopsis contained an HTML

tag such as , it would be converted to . In contrast, the gator tag <%=

may be used to output unescaped strings with HTML markup intact. The third gator tag

is the JavaScript evaluation tag, and it simply begins with <% (more on this tag will be

covered in a bit). All gator tags share the same closing tag, %>.

To turn the HTML in Listing 12-22 into a populated template, the HTML string is first

compiled by passing it to Underscore’s template() function. A reusable binding function

is returned. When a data object is passed to this binding function, any properties that

match the binding expressions in the original template string will be substituted in the

final, computed output. Under the hood Underscore uses JavaScript’s with keyword to

magically bring these properties into the template’s scope. Listing 12-23 demonstrates

how to bind a simple template string to a data object and shows the HTML that is

produced as a result.

Chapter 12 Underscore and Lodash

494

Listing 12-23.  Binding an Underscore Template

<!-- example-020/index.html -->

<div id="output"></div>

<script>

(function (_) {

 var markup =

 '<h1><%- title %></h1>' +

 '<p class="synopsis"><%- synopsis %></p>';

 // compile the string into a function

 var compiledTemplate = _.template(markup);

 // invoke the function with data to

 // get the rendered string

 var rendered = compiledTemplate({

 title: 'Sunshine',

 synopsis: 'A team of scientists are sent to re-ignite a dying sun.'

 });

 document.querySelector('#output').innerHTML = rendered;

}(window._));

</script>

<div id="output">

 <h1>Sunshine</h1>

 �<p class="synopsis">A team of scientists are sent to re-ignite a dying

sun.</p>

</div>

Once a template string is compiled to a function, it may be invoked any number

of times with different data to produce different rendered markup. It is common for

applications to compile template strings into functions during page load (or during

application startup, if Node.js is the runtime environment), then call each as needed

during the lifetime of the application. If template strings do not change, there is no need

to recompile them.

Chapter 12 Underscore and Lodash

495

�Loops and Other Arbitrary JavaScript in Templates
Many templating libraries include shorthand tags for common templating chores like

iterating over a collection. To keep its templating system thin, Underscore forgoes

syntactical sugar and, instead, allows developers to write template loops in plain, valid

JavaScript.

In Listing 12-24 an unordered list of actors is created by using Underscore’s each()

function within the template. There are two important things to note here. First, plain

JavaScript is evaluated within gator tag code blocks. These blocks are created by using

gator tags without a hyphen symbol in the opening tag (e.g., <% %> instead of <%- %>).

Second, the each() loop is split in the middle, where valid templating markup is used to

render the actor variable, created by the loop itself, in a list item element. Finally, the

loop is terminated by a closing brace, parenthesis, and semicolon, as if it were a normal

JavaScript loop.

Listing 12-24.  Looping in a Template

<!-- example-021/index.html -->

<div id="output"></div>

<script>

(function (_) {

 var markup =

 '<h1><%- title %></h1>' +

 '<p class="synopsis"><%- synopsis %></p>' +

 '' +

 '<% _.each(actors, function (actor) { %>' +

 ' <%- actor %>' +

 '<% }); %>' +

 '';

 // compile the string into a function

 var compiledTemplate = _.template(markup);

 // invoke the function with data to

 // get the rendered string

 var rendered = compiledTemplate({

 title: 'Sunshine',

Chapter 12 Underscore and Lodash

496

 synopsis: 'A team of scientists are sent to re-ignite a dying sun.',

 actors: ['Cillian Murphy', 'Hiroyuki Sanada', 'Chris Evans']

 });

 document.querySelector('#output').innerHTML = rendered;

}(window._));

</script>

<div id="output">

 <h1>Sunshine</h1>

 �<p class="synopsis">A team of scientists are sent to re-ignite a dying

sun.</p>

 Cillian Murphy

 Hiroyuki Sanada

 Chris Evans

</div>

JavaScript evaluation tags can also be used to execute arbitrary JavaScript code. The

template in Listing 12-25 calculates a rating percentage for the movie based on X out of Y

stars awarded to it by critics. The template uses Underscore’s internal print() function

to render the result of the calculation in the template output, an alternative to gator tag

interpolation that is sometimes used in more complex expressions.

Listing 12-25.  Arbitrary JavaScript Within a Template

<!-- example-022/index.html -->

<div id="output"></div>

<script>

(function (_) {

 var markup =

 '<p>' +

 '<%- voted %> out of <%- total %> stars!' +

 ' (<% print((voted / total * 100).toFixed(0)) %>%)' +

 '</p>';

Chapter 12 Underscore and Lodash

497

 var compiledTemplate = _.template(markup);

 var rendered = compiledTemplate({

 voted: 4, total: 5

 });

 document.querySelector('#output').innerHTML = rendered;

}(window._));

</script>

<div id="output">

 <p>4 out of 5 stars! (80%)</p>

</div>

Note  Generally it is bad practice to perform calculations in a template (the
application’s “view”). Instead, the actual calculated value should be part of the
data passed to the compiled template function. Listing 12-25 should be considered
for demonstration purposes only.

�Living Without Gator Tags
Gator tags can be a bit unruly in nontrivial templates. Fortunately, Underscore allows

developers to change the syntax of template tags with regular expressions. Setting the

templateSettings property on the Underscore object to a hash of key/value settings

alters the behavior of Underscore for the lifetime of your page (or Node.js process), and

affects all rendered templates.

Listing 12-26 shows how to change Underscore’s gator tag syntax into a more terse

Mustache/Handlebars syntax. In this case, the three different types of tags (evaluation,

interpolation, and escaped interpolation) are each assigned a regular expression on the

global settings object.

Chapter 12 Underscore and Lodash

498

Listing 12-26.  Changing Template Syntax

<!-- example-023/index.html -->

<div id="output"></div>

<script>

(function (_) {

 _.templateSettings = {

 // arbitrary JavaScript code blocks: {{ }}

 evaluate: /\{\{(.+?)\}\}/g,

 // unsafe string interpolation: {{= }}

 interpolate: /\{\{=(.+?)\}\}/g,

 // escaped string interpolation: {{- }}

 escape: /\{\{-(.+?)\}\}/g

 };

 var markup =

 '<h1>{{- title }}</h1>' +

 '<p class="synopsis">{{- synopsis }}</p>' +

 '' +

 '{{ _.each(actors, function (actor) { }}' +

 ' {{- actor }}' +

 '{{ }); }}' +

 '';

 var compiledTemplate = _.template(markup);

 var rendered = compiledTemplate({

 title: 'Sunshine',

 synopsis: 'A team of scientists are sent to re-ignite a dying sun.',

 actors: ['Cillian Murphy', 'Hiroyuki Sanada', 'Chris Evans']

 });

 document.querySelector('#output').innerHTML = rendered;

}(window._));

</script>

Chapter 12 Underscore and Lodash

499

Any markup compiled by the template system must now support the specified

Mustache syntax. Templates that still contain gator tags will not be rendered correctly.

Table 12-2 is a convenient reference for matching template settings to syntax and the

regular expressions that enable each syntax.

Table 12-2.  Global Template Settings

Setting Template Syntax Regular Expression

evaluate {{ ... }} /{{(.+?)}}/g

interpolate {{= ... }} /{{=(.+?)}}/g

escape {{- ... }} /{{-(.+?)}}/g

�Accessing the Data Object Within a Template
As mentioned, Underscore uses JavaScript’s with keyword to evaluate a data object’s

properties in a template’s scope as “first class” variables. But the object itself may also be

referenced through the obj property in the template. To modify a previous example, in

Listing 12-27 the template tests for the data property obj.percent in an if/else block

before attempting to calculate a percentage. If the percent property exists on the data

object, it is rendered; otherwise the calculated value is rendered.

Listing 12-27.  The “obj” Variable

<!-- example-024/index.html -->

<div id="output"></div>

<script>

(function (_) {

 var markup =

 '<%- voted %> out of <%- total %> stars!' +

 '<% if (obj.percent) { %>' +

 ' (<%- obj.percent %>%)' +

 '<% } else { %>' +

 ' (<% print((voted / total * 100).toFixed(0)) %>%)' +

 '<% } %>';

Chapter 12 Underscore and Lodash

500

 var compiledTemplate = _.template(markup);

 var rendered = compiledTemplate({

 voted: 4, total: 5, percent: 80.2

 });

 document.querySelector('#output').innerHTML = rendered;

}(window._));

</script>

As a micro-optimization (and perhaps a security feature), the scoped object can be

given a name so that the with keyword is avoided altogether. This makes the templating

function run slightly faster, but also requires that all properties in the template be

referenced as properties of the named data object. To specify a name for the data object,

an options object may be passed to Underscore’s template() function when compiling

the template. This object’s variable property will assign the data object’s variable name,

which may then be referred to in the template. Listing 12-28 shows this setting in action.

Listing 12-28.  Setting the Data Object’s Variable Name

<!-- example-025/index.html -->

<div id="output"></div>

<script>

(function (_) {

 var markup =

 '<%- movie.voted %> out of <%- movie.total %> stars!' +

 '<% if (movie.percent) { %>' +

 ' (<%- movie.percent %>%)' +

 '<% } else { %>' +

 ' (<% print((movie.voted / movie.total * 100).toFixed(0)) %>%)' +

 '<% } %>';

 var settings = {variable: 'movie'};

 // settings is the *third* parameter

 var compiledTemplate = _.template(markup, null, settings);

Chapter 12 Underscore and Lodash

501

 var rendered = compiledTemplate({

 voted: 4, total: 5, percent: 80.1

 });

 document.querySelector('#output').innerHTML = rendered;

}(window._));

</script>

Note T he variable property may be set in Underscore’s global settings.
However, giving variables good and relevant names is important, so it makes more
sense to name a variable according to its context. Instead of defining some generic
variable like data or item, the examples in this section use the variable name
movie and apply it by passing a settings object to template() when the movie
template is compiled.

�Default Template Data
While not part of its templating system, Underscore’s defaults() function can be used

to ensure that a template always has default data. This will prevent binding failures

in the event that a data object is missing one or more referenced properties. The first

parameter to the defaults() function is an object with potentially missing properties.

Any following arguments may be objects with properties set to default values, which

will fill in any missing properties on the first object. The return value is an object that

represents the “merged” properties of all arguments. Listing 12-29 shows this effect on a

data object that is missing its synopsis property. When the data and DEFAULTS objects

are passed to the defaults() function, the returned object contains the title from data

and the synopsis from DEFAULTS.

Chapter 12 Underscore and Lodash

502

Listing 12-29.  Default Template Values

<!-- example-026/index.html -->

<div id="output"></div>

<script>

(function (_) {

 var markup =

 '<h1><%- title %></h1>' +

 '<p class="synopsis"><%- synopsis %></p>';

 // compile the string into a function

 var compiledTemplate = _.template(markup);

 var DEFAULTS = {

 title: 'A Great Film',

 synopsis: 'An epic hero defeats and evil villain and saves the world!'

 };

 var data = {

 title: 'Lord of the Rings'

 };

 // fill in any missing data values with defaults

 var merged = _.defaults(data, DEFAULTS);

 var rendered = compiledTemplate(merged);

 document.querySelector('#output').innerHTML = rendered;

}(window._));

</script>

If multiple default objects are passed to defaults(), they are evaluated from first

to last. Once a missing property is found on a default object, it will be ignored on any

following default objects.

Chapter 12 Underscore and Lodash

503

�Summary
Modern and future implementations of ECMAScript have given developers a great

many utility functions on primitive types like String, Array, Object, and Function.

Unfortunately, the world moves faster than specifications come to fruition so libraries

like Underscore and Lodash occupy the intersection of developer needs and language

maturity.

With over 100 utility functions and a micro-templating system, Underscore enables

developers to manipulate, transform, and render data in objects and collections.

Underscore can be used in browser and server environments and has no dependencies.

It can be added to a web page with a simple script tag or imported as an AMD or

CommonJS module. Popular package managers like Bower, npm, component, and

NuGet can all download prebuilt Underscore packages for a developer’s platform of

choice.

Underscore’s strong feature set and ubiquitous availability make it an ideal and

unobtrusive Swiss Army knife for JavaScript projects.

�Related Resources
•	 Underscore: http://underscorejs.org/

•	 Lodash: https://lodash.com/

Chapter 12 Underscore and Lodash

http://underscorejs.org/
https://lodash.com/

PART VIII

Front-End Development

507
© Sufyan bin Uzayr, Nicholas Cloud, Tim Ambler 2019
S. bin Uzayr et al., JavaScript Frameworks for Modern Web Development,
https://doi.org/10.1007/978-1-4842-4995-6_13

CHAPTER 13

React
So far in this book, we have covered a diverse selection of JavaScript frameworks. Many

of these frameworks serve a specific purpose and cater to a particular niche. Many

others, on the other hand, have a more diversified plethora of functions and can perform

various tasks and actions.

Similarly, many JavaScript frameworks that we have talked about during the course

of this book have a smaller user base and community. On the contrary, some of the

JavaScript frameworks mentioned in these pages are really popular with a large user

base and dedicated community.

In this chapter, we will be turning our attention toward another rather popular

JavaScript framework that has risen to fame in a comparatively smaller amount of

time—React.

�React Overview
Speaking purely in textbook terms, React is not even a proper “framework” per se.

Instead, it is a JavaScript library meant for building user interfaces.

However, owing to its sheer popularity, and the fact that it is now being used in

projects of diverse nature, React is now almost as large and as component based as any

other framework. This is why it is no longer uncommon to see React being mentioned

wherever JavaScript frameworks are discussed.

In the simplest of words, React is a JavaScript library for building user interfaces

(Figure 13-1). It is maintained by Facebook, alongside a community of developers and

companies.

508

Keeping in mind that React enjoys the backing of Facebook, it has grown in stature

over time. Today, React is often employed by developers to empower user interfaces of

both big and small projects.

Even more so, React has grown beyond the simplified textbook definition of being

a “library” or “framework.” Nowadays, React is often used in assonance with other

technologies and scripting languages to power complex web apps. For instance, even

though its core is in PHP, WordPress has shown a paradigm shift toward React for

powering its new block-based editor (named Gutenberg) as well as its desktop apps for

the WP.com hosted solution.

React was first released in 2013, and since then, it has consistently risen in terms of

popularity.

�What Makes React Special?
React is component based. This implies that parts of the app are wrapped within self-

contained and highly encapsulated modules known as Components. Furthermore, since

the components’ data is written in JavaScript, it is possible for developers to pass rich

data through their apps and keep the state out of the DOM.

Figure 13-1.  React is a JavaScript library for building user interfaces

Chapter 13 React

509

React makes use of one-way binding and Flux control to control the application

workflow. Beyond that, React components, in general, are written using JSX. This makes

for more legible and easier to understand code and is also a less steep learning curve for

many developers.

JSX stands for JavaScript XML, which is an extension to the JavaScript language
syntax. It provides a way to write code in a manner or style that is slightly similar
to HTML, making it easier for many developers to comprehend the syntax within
minutes.

In React, for every DOM object, there is also a corresponding virtual DOM object.

This virtual DOM is a copy or representation of the original DOM, thereby helping out

with one-way binding. The DOM is updated only when a change is detected in virtual

DOM—there is no need to re-render the entire page. It is worth bearing in mind that

manipulating the virtual DOM is faster than actually modifying the original DOM as no

data is drawn onscreen.

React can be used to create highly interactive and very dynamic user interfaces for a

wide variety of purposes, such as web sites, mobile applications, and more. Developers

can create simplified views for various states, and React can update and modify the

relevant components as and when the state changes. Such declarative coding can save a

good deal of time and effort.

Well, that is what React brings to the table. But how do we get started with React?

�Getting Started with React
The first step, obviously, is to add React to our project in order to use its features. There

are more than one way to do it, but the most recommended and simplest method is to

add React to HTML pages by means of a <script> tag.

�How to Add React to Web Pages?
Adding React to our HTML pages is very simple. The first step is to add an empty <div>

tag in the HTML page, right where we want the React component to appear.

Chapter 13 React

510

For example:

<!-- ... some HTML ... -->

<div id="my_react_component"></div>

<!-- ... some HTML ... -->

The next step is to add <script> tags to the same HTML page. These should ideally be

placed just before the closing </body> tag.

For example:

<!-- ... some HTML ... -->

<script src="https://unpkg.com/react@16/umd/react.development.js"

crossorigin></script>

 �<script src="https://unpkg.com/react-dom@16/umd/react-dom.development.js"

crossorigin></script>

 <!-- React component. -->

 <script src="super_react.js"></script>

</body>

Lastly, we create the React component. It is noteworthy that the file name must be

the same as specified in the <script> tag earlier; in our case, it will be super_react.js

The React component file will then pass on the component to the HTML. Voila! We

have successfully added React to our web page, and can now start working with it.

Obviously, this was a fairly simple and theoretical example of adding React. But

before seeing a React app in action, let us also cover the traditional method of installing

React.

�Installation
Sometimes, adding React to an HTML page by means of <script> tags may not suffice.

This is especially true if we are trying to integrate React with an existing workflow, say a

component library or a server-side project, and so on.

Similarly, if we are trying to build a single-page web app, using Create React App

might be a better choice. This will enable us to make use of the latest React features and

also set us up with an environment ideal for building Single Page Apps in React as well as

learning React.

Chapter 13 React

511

To install, we will use npm:

npm install create-react-app

The installation process should not take a lot of time to complete (Figure 13-2).

Create React App requires Node.js 6.0 or higher and npm version

5.2 or hig her.

Thereafter, we can create our React application as under:

create-react-app app_name_comes_here

For example:

create-react-app my-react-one

Figure 13-2.  Installing Create React App using npm

Chapter 13 React

512

The preceding command will create an application name my-react-one, as shown in

Figure 13-3.

And when it’s all done, it will show you the app has been created (Figure 13-4).

Figure 13-3.  Creating a React app from the terminal using create-react-app

Figure 13-4.  App successfully created

Chapter 13 React

513

Once our application is set up, we can launch it to preview in browser.

First, we need to change the directory to navigate to the root folder of the project.

cd my-react-one

And then, we can serve the app as

npm start

This preceding command should inform us of the app’s state when it is ready

(Figure 13-5).

Figure 13-5.  Launching the React app

Furthermore, it will also automatically launch the web browser and open

localhost:3000—that’s where our application is running (Figure 13-6)!

Chapter 13 React

514

Great, we have now successfully created a sample React application.

Now, it is time to do something more with it.

�Building a To-Do Application
Notice that the application tells us to open src/App.js file? Well, that is the main file of the

application.

Here is what its contents look like, by default:

import React, { Component } from 'react';

import logo from './logo.svg';

import './App.css';

class App extends Component {

 render() {

 return (

 <div className="App">

 <header className="App-header">

Figure 13-6.  App successfully running at localhost:3000

Chapter 13 React

515

 <p>

 Edit <code>src/App.js</code> and save to reload.

 </p>

 <a

 className="App-link"

 href="https://reactjs.org"

 target="_blank"

 rel="noopener noreferrer"

 >

 Learn React

 </header>

 </div>

);

 }

}

export default App;

Furthermore, the src/App.js file inherits CSS styling from the src/App.css file. Its

contents are as follows:

.App {

 text-align: center;

}

.App-logo {

 animation: App-logo-spin infinite 20s linear;

 height: 40vmin;

 pointer-events: none;

}

.App-header {

 background-color: #282c34;

 min-height: 100vh;

 display: flex;

 flex-direction: column;

 align-items: center;

 justify-content: center;

Chapter 13 React

516

 font-size: calc(10px + 2vmin);

 color: white;

}

.App-link {

 color: #61dafb;

}

@keyframes App-logo-spin {

 from {

 transform: rotate(0deg);

 }

 to {

 transform: rotate(360deg);

 }

}

We can leave the CSS classes as is and even use them in our application.

Now, let us try building a very simple to-do application in React. Our src/App.js file

uses JSX notation, which we have discussed earlier.1

We can place the following code in the App.js file to replace its existing code:

import React, { Component } from 'react';

import './App.css';

class MyToDoList extends React.Component {

 constructor(props) {

 super(props);

 this.state = { items: [], text: " };

 this.valChange = this.valChange.bind(this);

 this.valSubmit = this.valSubmit.bind(this);

 }

1�Some functions of the to-do app were based on the demo app at ReactJS web site:
https://reactjs.org/

Chapter 13 React

https://reactjs.org/

517

 render() {

 return (

 <div className="App-header">

 <h1>MY FANCY TO DO LIST</h1>

 <TodoList items={this.state.items} />

 <form onSubmit={this.valSubmit}>

 <label htmlFor="new-todo">

 What should we do next....?

 </label>

 <input

 id="new-todo"

 onChange={this.valChange}

 value={this.state.text}

 />

 <button>

 Add #{this.state.items.length + 1}

 </button>

 </form>

 </div>

);

 }

 valChange(e) {

 this.setState({ text: e.target.value });

 }

 valSubmit(e) {

 e.preventDefault();

 if (!this.state.text.length) {

 return;

 }

 const newItem = {

 text: this.state.text,

 id: Date.now()

 };

Chapter 13 React

518

 this.setState(state => ({

 items: state.items.concat(newItem),

 text: "

 }));

 }

}

class TodoList extends React.Component {

 render() {

 return (

 {this.props.items.map(item => (

 <li key={item.id}>{item.text}

))}

);

 }

}

export default MyToDoList;

What does the preceding code do?

•	 First, it imports the necessary components.

•	 Then, it creates a class MyToDoList that makes use of the React

component to generate a to-do handler.

•	 Then, we render the to-do input field and the button, along with an

H1 tag.

•	 Lastly, we are exporting the result to the display.

We can now save the file, and then the app preview at localhost:3000 should refresh

automatically. Figure 13-7 shows how it looks (notice that we have inherited the App.css

styling in the <div> tag).

Chapter 13 React

519

We can also add our tasks, as shown in Figure 13-8.

There we have it! We’ve built our first React to-do app. For your reference,

Figure 13-9 shows the src/App.js file in code editor.

Figure 13-7.  To-do application preview

Figure 13-8.  To-do application in action

Chapter 13 React

520

You can find the code for the to-do application over at this book’s GitHub repo.

�Summary
In this chapter, we have covered what is React and what makes it different from the other

JavaScript frameworks and libraries.

When it comes to React, the ecosystem is so vast that there is no dearth of learning

resources or literature. Ranging from tutorials to books and even video courses, there is

no shortage of good content pertaining to React development.

Since React is often used for front-end UI development, it might be a good idea

to use it in assonance with a Node.js framework, such as Next.js or Sails.js for more

complex projects.

Figure 13-9.  src/App.js file preview

Chapter 13 React

521

That said, the official React documentation is fairly large and very well

updated for any learner looking to brush up his or her React skills. Beyond that,

community-run blogs and other publications are not hard to find and even a simple

Google search should suffice for the most part.

•	 React Web site: https://reactjs.org/

•	 React Documentation: https://reactjs.org/docs/getting-

started.html

•	 React Community on reddit: www.reddit.com/r/reactjs/

Lastly, it is worth pointing out again that since React is under the aegis of the likes

of Facebook, it is not very likely that this particular JavaScript library will fall out of favor

anytime soon. As such, for building rich web applications and web sites, React is a very

sensible choice.

Chapter 13 React

https://reactjs.org/
https://reactjs.org/docs/getting-started.html
https://reactjs.org/docs/getting-started.html
https://www.reddit.com/r/reactjs/

523
© Sufyan bin Uzayr, Nicholas Cloud, Tim Ambler 2019
S. bin Uzayr et al., JavaScript Frameworks for Modern Web Development,
https://doi.org/10.1007/978-1-4842-4995-6_14

CHAPTER 14

Vue.js
So far in this book, we have covered various JavaScript frameworks that serve different

purposes. Most of these JS frameworks have a more or less noticeable ecosystem and

have been around for years.

But what about a newer JavaScript framework? One that is rising at a really

impressive pace and, in spite of being a lesser known and relatively younger entity, is as

powerful as any other framework in its league?

Yes, we are talking about Vue.js which is a progressive and really popular front-end

JavaScript framework.

So now, it is time to get started with Vue. In this chapter, we will be learning about

Vue.js framework, what it is about, and more importantly, what makes it special.

Furthermore, we will also be creating a simple Vue application so as to better

understand the functionality and methodology of this JS framework.

�Vue.js Overview
First up, what exactly is Vue.js and why should we be interested in it? It is worth noting

that in spite of being relatively newer to the playground, Vue.js has risen in popularity and

is steadily growing in stature. Surely, that has to be something worth the effort about it,

isn’t it?

So, what makes this framework tick?

�What Is Vue.js?
Vue is a progressive JavaScript framework that is fairly tiny in size (20 KB in size, approx.).

Notice the word “progressive”? What exactly does it mean in this context?

Progressive implies that the framework in question is implemented as an additional

markup to existing HTML.

524

In other words, Vue.js being a progressive framework means it is a template model

that is in turn bound to a data model, and the framework “reacts” to the model’s updates.

Here is how the Vue GitHub page describes itself1:

Vue (pronounced /vjuː/, like view) is a progressive framework for

building user interfaces. It is designed from the ground up to be

incrementally adoptable and can easily scale between a library

and a framework depending on different use cases. It consists of

an approachable core library that focuses on the view layer only

and an ecosystem of supporting libraries that helps you tackle

complexity in large single-page applications.

�What Is Vue Meant For?
Vue has been designed especially with adaptability in mind—so much so that the

core library consists of just the “view” layer (noticed the name “Vue,” which can be

pronounced as “view”?). This very layer can be bound to or integrated with other

libraries and projects.

In other words, if we have an existing project coded in some other JS framework,

we can easily use Vue.js to build user interfaces for our existing project, wherein Vue

will handle the front-end view of the UI, whereas any other framework can be used for

server-side rendering and data handling (Figure 14-1).

1�Vue.js on GitHub: https://github.com/vuejs/vue

Chapter 14 Vue.js

https://github.com/vuejs/vue

525

Owing to its simplicity and ease of use, as well as the comparatively easier learning

curve, Vue has risen in popularity for smaller projects as well. This implies the likes of

single-page web apps, which can be entirely powered by Vue.js.

Beyond that, Vue has earned a reputation for being far less opinionated than the likes

of Angular and more nimble and modern than many other JS frameworks out there. This,

of course, is more of an opinion-based verdict, and not everyone may find Vue to have

an edge over other frameworks. With that said, very few JS frameworks or libraries have

risen in popularity in this decade as Vue has. Naturally, the reputation is not without

good reasons.

So, how do we get started with Vue.js?

Figure 14-1.  Vue.js is a progressive JavaScript framework for building user
interfaces

Chapter 14 Vue.js

526

�Getting Started with Vue.js
The first step, obviously, is to install Vue in order to use it in our projects and

applications.

�Installation
Installing Vue.js is, basically, a no-brainer. We can choose to either include it directly

with the <script> tag or go the usual way and install via npm.

If we are including Vue in our projects via the <script> tag, Vue will be registered as a

global variable.

The procedure is simple. We just need to reference the required CDN URL in our

tags, for example:

<script src="https://cdn.jsdelivr.net/npm/vue@2.6.10/dist/vue.js"></script>

Or

<script src="https://unpkg.com/vue@2.6.1"></script>

It might be a smart idea to pay attention to the version numbering and build system,

as using an experimental Vue version in a production-level project can break things. The

Vue.js documentation has detailed info on which build of Vue to use and when.2

The second way of installing Vue.js is to do so via npm. As we have learned by now,

npm refers to the Node Package Manager. We will need to have Node.js up and running

on our system in order to use npm, and if you have been following the chapters of this

book so far, there are very good chances you already have Node.js and npm all set up.

The installation command is fairly simple:

npm install vue

Using npm for installing Vue.js is ideal if we are attempting to use Vue in a large

project and intend to integrate it with other libraries or tools. For instance, if we are

using tools such as Webpack, installing Vue via npm will pair it nicely with Webpack

automatically (Figure 14-2).

2�See https://vuejs.org/v2/guide/installation.html#Explanation-of-Different-Builds

Chapter 14 Vue.js

https://vuejs.org/v2/guide/installation.html#Explanation-of-Different-Builds

527

Installing Vue via npm will also give us access to the Vue.js CLI (assuming we have a

compatible version of Node.js on our system; as long as we have the latest build of Node,

we should be fine). The minimum supported version of Node is >=8.

The Vue CLI can easily help us set up projects and build applications quickly

(Figure 14-3). It can create basic skeleton apps or provide scaffolding that we can

customize to build complex and larger applications. We will soon be creating a project

using Vue CLI, though if needed, you can find detailed information about the CLI on the

concerned web site.3

3�Vue CLI Homepage: https://cli.vuejs.org/

Figure 14-2.  Installing Vue.js using npm

Figure 14-3.  Vue CLI provides a set of standard tools for rapid Vue.js app
development

Chapter 14 Vue.js

https://cli.vuejs.org/

528

We can easily install Vue CLI using npm, as under:

npm install -g @vue/cli

It might take a while to fetch and install, but once done, we are ready to use Vue CLI

in our development workflow (Figure 14-4).

�Building Our First Vue App
In order to create a Vue app, we first need to set up our project. The command for the

same is

vue create my-vue-project

wherein the project is named as “my-vue-project” and can be changed to anything of

your liking (Figure 14-5).

Figure 14-4.  Installing Vue CLI via npm

Chapter 14 Vue.js

529

The installer will ask us to select some options, and unless there is something custom

needed, we can go with the default linter, and so on. Again, it can take some time to load

all the required dependencies.

Once the project is set up, we can actually launch the app and preview in a browser.

First, we need to change the directory:

cd my-vue-project

And then, run the application:

npm run serve

The output in the terminal will be as shown in Figure 14-6.

Figure 14-5.  Creating our first Vue.js application using Vue CLI

Figure 14-6.  Running our first Vue application

Chapter 14 Vue.js

530

As we can see, the localhost port number is displayed in the terminal. When we

navigate to localhost:8080 in the web browser, we will find our sample application up

and running, as shown in Figure 14-7.

Alternatively, we can also choose to use

vue ui

The preceding command will launch a graphical user interface (GUI) in the web

browser, and then walk us through the project setup process (Figure 14-8).

Figure 14-7.  Previewing the Vue app in the web browser

Figure 14-8.  Running Vue UI to launch the GUI for project management in
Vue.js

Chapter 14 Vue.js

531

We first need to select the location to create our new project (or load an existing

one). See Figure 14-9.

And then, we will specify the usual details, such as package manager, project name,

linter, other details, and so on (Figure 14-10).

Figure 14-9.  Selecting location of project in Vue UI

Figure 14-10.  Creating a new project using Vue UI in the browser

Chapter 14 Vue.js

532

For those of us who are not the most comfortable working with the command line,

using Vue UI for project creation is an ideal choice.

Nonetheless, once we are done with the setup of our first project, and having

also tested and launched the app in the web browser, let us see the file structure and

functioning methodology of our new app.

�Digging Deeper
We will now be exploring the specific files of our new Vue application. This will help us

understand how Vue.js handles its various components and how it outputs the data to

the browser.

Upon navigating to the directory where we have created our new project, we will find

the directory structure of the app.

�Directory Structure
The typical directory structure and organization of a Vue project is shown in Figure 14-11.

Figure 14-11.  Directory structure showing file hierarchy in a Vue project

Most of the preceding directories are fairly self-explanatory. For instance, the public

folder contains some assets and an index.html file that is to render the app in the browser.

Chapter 14 Vue.js

533

Let us look at the src directory in greater detail.

We find the following within the src directory:

•	 An assets directory, containing images and other media assets

•	 A components directory, which, for the sample app generated earlier,

contains the HelloWorld.vue file

•	 Two files, namely, App.vue and main.js

�src/main.js File
This particular file is what drives our app. Upon inspecting, its contents look something

like this:

import Vue from 'vue'

import App from './App.vue'

Vue.config.productionTip = false

new Vue({

 render: h => h(App),

}).$mount('#app')

Figure 14-12 is the file preview in the code editor.

Figure 14-12.  src/main.js file of the Vue application

Chapter 14 Vue.js

534

In the given file, we are first importing the Vue library and then the App component

from App.vue.

Thereafter, we are setting the productionTip to false, so that Vue will not output

“Development Mode” in the console.

Next, we are creating our Vue instance and assigning it to the DOM element that is

identified by #app, so as to use the App component.

�src/App.vue File
This particular file is a Single File Component, containing HTML, CSS, as well as JS code.

In other words, the App.vue file is a stand-alone component that has all of its stuff in

one file only. Following are its contents, which can be viewed in our code editor, as well:

<template>

 <div id="app">

 <HelloWorld msg="Welcome to Your Vue.js App"/>

 </div>

</template>

<script>

import HelloWorld from './components/HelloWorld.vue'

export default {

 name: 'app',

 components: {

 HelloWorld

 }

}

</script>

<style>

#app {

 font-family: 'Avenir', Helvetica, Arial, sans-serif;

 -webkit-font-smoothing: antialiased;

 -moz-osx-font-smoothing: grayscale;

 text-align: center;

Chapter 14 Vue.js

535

 color: #2c3e50;

 margin-top: 60px;

}

</style>

The CSS code of this file is self-explanatory, as it provides the styling for the code.

The script tag, however, is importing a component from the components/HelloWorld.

vue file. Let us, therefore, turn our attention toward the said file itself.

�components/HelloWorld.vue File
The components/HelloWorld.vue file might seem to be slightly larger at first, but even a

slight look at its contents will be enough to comprehend the way it operates.

Here is what the file should contain by default, which can also be viewed in the

code editor:

<template>

 <div class="hello">

 <h1>{{ msg }}</h1>

 <p>

 For a guide and recipes on how to configure / customize this project,

 check out the

 �vue-

cli documentation.

 </p>

 <h3>Installed CLI Plugins</h3>

 �<a href="https://github.com/vuejs/vue-cli/tree/dev/packages/

%40vue/cli-plugin-babel" target="_blank" rel="noopener">babel

 �<a href="https://github.com/vuejs/vue-cli/tree/dev/packages/

%40vue/cli-plugin-eslint" target="_blank" rel="noopener">eslint

 <h3>Essential Links</h3>

 �Core

Docs

Chapter 14 Vue.js

536

 �<a href="https://forum.vuejs.org" target="_blank"

rel="noopener">Forum

 �<a href="https://chat.vuejs.org" target="_blank"

rel="noopener">Community Chat

 �<a href="https://twitter.com/vuejs" target="_blank"

rel="noopener">Twitter

 �<a href="https://news.vuejs.org" target="_blank"

rel="noopener">News

 <h3>Ecosystem</h3>

 �<a href="https://router.vuejs.org" target="_blank"

rel="noopener">vue-router

 �<a href="https://vuex.vuejs.org" target="_blank"

rel="noopener">vuex

 �<a href="https://github.com/vuejs/vue-devtools#vue-devtools"

target="_blank" rel="noopener">vue-devtools

 �<a href="https://vue-loader.vuejs.org" target="_blank"

rel="noopener">vue-loader

 �<a href="https://github.com/vuejs/awesome-vue" target="_blank"

rel="noopener">awesome-vue

 </div>

</template>

<script>

export default {

 name: 'HelloWorld',

 props: {

 msg: String

 }

}

</script>

Chapter 14 Vue.js

537

<!-- Add "scoped" attribute to limit CSS to this component only -->

<style scoped>

h3 {

 margin: 40px 0 0;

}

ul {

 list-style-type: none;

 padding: 0;

}

li {

 display: inline-block;

 margin: 0 10px;

}

a {

 color: #42b983;

}

</style>

This file contains our HelloWorld component that is in turn included in the App

component. When we preview the app in the browser, we can see that this file’s

component outputs a set of links with some explanatory text and other info.

In the preceding code, it is noteworthy that CSS is “scoped.” This means any CSS

added to the HelloWorld component is not global in nature and will not be applied to

other components.

The message or info that this component will output is stored in the data property of

the Vue instance.

So now, we have seen that the HelloWorld component is used to output the
contents of our app, and with scoped attributes being set, the CSS is not leaked
onto the other components.

Further, the HelloWorld component is imported by the App.vue file, and the App
component itself is imported by the main.js file.

At this point, we can safely turn to the index.html file.

Chapter 14 Vue.js

538

�public/index.html File
The index.html file is, in simple words, the main file for our app and can be viewed in the

code editor. Here is what it contains:

<!DOCTYPE html>

<html lang="en">

 <head>

 <meta charset="utf-8">

 <meta http-equiv="X-UA-Compatible" content="IE=edge">

 <meta name="viewport" content="width=device-width,initial-scale=1.0">

 <link rel="icon" href="<%= BASE_URL %>favicon.ico">

 <title>my-vue-project</title>

 </head>

 <body>

 <noscript>

 �We're sorry but my-vue-project doesn't work properly without

JavaScript enabled. Please enable it to continue.

 </noscript>

 <div id="app"></div>

 <!-- built files will be auto injected -->

 </body>

</html>

All of the code here is fairly obvious to understand. We can see that the file, in the

body, contains one element:

<div id="app"></div>

This is the element that the Vue application will use to attach to the DOM.

And there we have it! These are the major files that our sample app runs on. We have

read and understood the way each component is handled and imported, and it might

be worthwhile to refer to the app output once again here to better visualize the app’s

functioning.

Chapter 14 Vue.js

539

�Summary
In this chapter, we familiarized ourselves with Vue.js, plus we also learned how to install

this JS framework, what specialty it has to offer, as well as how to create a sample app.

Next, we learned about the major files and components within a Vue.js application,

how its projects are handled, as well as which file or component serves a particular

purpose.

�Next Steps
To learn more about Vue.js, a good place to start might be the official documentation

itself. Both the Style Guide and the API docs are fairly well laid out and detailed in

nature. Beyond that, Vue.js ecosystem also has a job board and a news portal, to help

developers get the most out of their skills and also stay updated with the latest insight

and information.

Here are some of the channels that you can use to stay updated with Vue.js and also

learn the maximum about it:

•	 Official Vue.js Documentation: https://vuejs.org/v2/guide/

•	 Vue.js Cookbook: https://vuejs.org/v2/cookbook/

•	 Vue.js Job Board: https://vuejobs.com/

•	 Vue.js News Board: https://news.vuejs.org/

•	 Vue.js Examples: https://vuejs.org/v2/examples/

In addition to that, it might also be worth the effort to check out the Awesome Vue

repository on GitHub that shares a curated list of some of the most interesting tools and

stuff related to Vue.js—you may visit the repository at https://github.com/vuejs/

awesome-vue.

Lastly, it is a good idea to give VuePress a shot. It is a static site generator built in Vue.

js and is a good example of how to harness the power of the Vue template engine. Since

static site generators in themselves are beyond the scope of this book per se, we’d leave

you with just a couple of handy links to help you learn more about VuePress:

•	 VuePress Homepage: https://vuepress.vuejs.org/

•	 VuePress Intro and Installation Tutorial: https://codecarbon.com/

vuepress-static-site-generator/

Chapter 14 Vue.js

https://vuejs.org/v2/guide/
https://vuejs.org/v2/cookbook/
https://vuejobs.com/
https://news.vuejs.org/
https://vuejs.org/v2/examples/
https://github.com/vuejs/awesome-vue
https://github.com/vuejs/awesome-vue
https://vuepress.vuejs.org/
https://codecarbon.com/vuepress-static-site-generator/
https://codecarbon.com/vuepress-static-site-generator/

541
© Sufyan bin Uzayr, Nicholas Cloud, Tim Ambler 2019
S. bin Uzayr et al., JavaScript Frameworks for Modern Web Development,
https://doi.org/10.1007/978-1-4842-4995-6

Index

A
Aggregation and indexing

countBy(), 467, 468
groupBy(), 468, 470
indexBy(), 470–472

Album.create() method, 317, 332
Album.findByIdAndUpdate()

method, 360
Album.find() method, 355
Angular, 8, 210

vs. angularJS, 209
aspects, 210
CLI using npm, 213
components file, 218
CSS changes, 220, 221
Dependency Injection, 221–223
directory structure, 215, 216
first app, 215
installation, 211
local host, 217
Node.js, 212
output update, 219
recompiling changes, 220
serve command, 217
title in browser, 219
web app, 210
workspace creation, 213, 214

Asynchronous module
definition (AMD), 92, 133, 134

Async.js
batch flow

asynchronous cargo, 455–458
asynchronous queue, 453–455

flow control function
pattern, 429, 430

flows and functions, 459
loop flow

condition, false, 446, 447, 449
condition, true, 443–446
infinite loop, 451, 452
retry loop, 449–451

parallel flow, 435, 437
steps, 434

pipeline flow
async.waterfall(), 439, 440
calcAge() function, 437
getUser() factory function, 437
nested callbacks, 438, 439
pipeline() function, 442
reward() function, 437
steps, 437, 438, 441

sequential flow, 431–433
async.parallel() function, 434, 435
async.retry() function, 449
async.series(), 435
Automated JavaScript linting, Grunt, 27
Automated Sass stylesheet compilation,

Grunt, 28
Automated unit testing, Grunt, 29

https://doi.org/10.1007/978-1-4842-4995-6

542

B
bind() function, 168
Bookshelf

object-relational mapper, 401
creating model, 402
creating new instance, 402, 403
customizing export process, 410
defining class properties, 411, 412
destroying instances, 404, 405
extending with custom

behavior, 407, 408
extending with subclasses, 412, 413
fetching instances, 404
fetching multiple models, 405, 406
validation, 409, 410

relationships, 414
many-to-many association, 422–425
one-to-many association, 417–422
one-to-one association, 414–417

bookshelf.Model.extend() method, 402
brfs transform, 155
Browserify, 155

AMD API vs. CommonJS, 134
browser module

lib/browser.js, 153
lib/extra-browser, 154
lib/extra.js, 154
lib/node.js, 153, 154
multiple module, 154

bundles
browserify.js, 145
browserify-vendor.js, 146
extract Gruntfile, 144
extract HTML file, 143

front-end application, 136
Grunt Task, 137, 141, 142
HTML file bundle, 137

installation, 135
Node

advantage, 150
create namspace, 149
dependency management, 152
Grunt Task, 150
Loading Lodash, 151
NODE_PATH environment, 148
path-env Project, 149
reference module, 147
resolution module, 148

trigger creation, 139
Watchify installation, 141

Browserify-shim transform, 159
Bulkify transform, 157

C
calcAge() function, 437
chain() function, 481
changePassword() function, 431
close() method, 86
CoffeeScript, 94
composeWith() method, 57
config() method, 12
Content Security Policy (CSP), 305
Context helpers

asynchronous, 272
bodies, 268
chunk, 266
context, 267
feature, 265
params, 270
systemStatus() context helper, 265

countBy() function, 467
create() method, 169
createBill() function, 440
Custom dust filter, 263

INDEX

543

D, E
db.albums.count() method, 320
db.albums.find() method, 320
Debounced function, 489
Dependency Injection, 221–223
Dependency management, 152
destroy() method, 404
Directory configuration, 247–249
Directory structure, 216
Dust helpers

context dump, 280
custom helpers, 280, 281
iteration helpers, 278
logic, 276, 277
mathematical expression, 279
switch statement, 277

Dust templates
blocks, 261
conditionality, 258
context and references, 252, 254–256
context helpers, 264
dust helpers, 275
dust sections, 256
filters, 262
iteration, 256
logic-less template engines, 251, 252
partials, 259

F
falsPoster() method, 223
filter() function, 472
findSimilar() method, 347
Folderify transform, 156
forge() method, 403
fs.copy() method, 53
fs.copyTpl() method, 53

funcDemo() method, 223
Function timing

debounce(), 488–490
defer(), 486, 487
throttle(), 490–492

G, H
getUser() function, 435
getUser() factory function, 437
groupBy() function, 468
Grunt

adding, 8, 9
configuration, 8
Gruntfile.js, 5, 6
installation, 4
interacting with file system

automated JavaScript
linting, 26–29

grunt-contrib-watch plugin, 26
methods, 23
source-destination

mappings, 23–26
loadTasks() function, 9–11
plugins, 8

configuration, 32
file structure, 31
output, 36
publishing via npm, 36
source code, 33, 35

tasks, 7
asynchronous, 14, 15
dependencies, 15, 16
descriptions, 13, 14
managing configuration, 12, 13
multi-tasks, 16–19

uglify.js, 12

Index

544

I
i18n plugin, 120
indexBy() function, 472
Index configuration, 245, 246
inPriceRange() method, 352
Internationalization

account transfer, 302
cookie-based authentication, 300
corresponding content files, 296
CSP, 305
CSRF token missing error, 304
English version, 297
Home Page, 295
locale-specific version, 297
locality detection, 298
malicious web site, 302
sign-in page, 301, 303
Spanish version, 298
synchronizer token

pattern, 303
user signs, 301

invokeThen() method, 408
isSelected() method, 168
Iteration helpers, 278

J
JavaScript Task Runner, 3
JavaScript XML (JSX), 509
jquery-all proxy module, 106
jQuery script, 94
JSON application configuration

file, 79
logs command, 80, 81
main application, 78, 80
options, 75
settings, 77
weather application, 78, 80

K
Knex

adding knex npm module, 379
command-line utility, 378, 379
configuring, 380
features, 378
migration scripts

configuration, 393, 394
execution, 397, 398
file structure, 395
new script, 394
reverting, 398
schema updates, 395–397
up and down functions, 392

seed scripts
creating, 399
execution, 400
simple Knex seed script, 399

SQL query builder
interface methods, 382–392
query builder methods, 381

knex.schema.raw() method, 396
knex.transaction() method, 391
Knockout library

additions and removal
attr binding, 190
changeIngredient() method, 191
commitNewIngredient()

method, 189
markup, 189
minus and plus buttons, 187, 188
reflecting changes, 192
splice() method, 192
valueUpdate binding, 191

application structure, 165
binding view models to DOM, 175, 177

steps, 176
changing contexts, 169

INDEX

545

changing title, 182
custom component system

elements, 196
input list component, 202, 203
input list template, 199, 201
input list view model, 197–199

data model, 164
elements, 167

 element, 168
instructions

citation field addition, 195, 196
creating and editing, 193
demoteInstruction() method, 194
markup, 193
promoteInstruction() method, 194

isSelected() method, 171
markup and bindings, 167–169, 171

<a> tag, 172
<h1> text binding, 172

observable property, 171, 173
hasCitation() method, 174, 175
ko.computed() function, 174
types, 174

RecipeDetails.create()
function, 172, 173

rendered application, 166
selectedRecipe observable, 171
selectRecipe() method, 171
subscribables

modified save() method, 205
notifySubscribers() method, 205
primitive message bus, 204
subscribe() method, 206
updation, 206

switching to “Edit” mode
arguments, 181
bindings, 179, 180
button appearance, 178

isEditing observable, 180
mapping plugin, 180, 181

updations
drop-down options, 184, 185
<option> element, 184
options binding, 183
regenerating formatted string, 186
<select> element, 183, 184
simple value bindings, 185
viewmodel.servings(), 184

view model, 164, 166, 169, 170
ko.applyBindings() function, 177
ko.computed() function, 174
Kraken

controller, 287, 288, 290
default controller, 285
dust templates (see Dust templates)
environment-aware configuration

application, 229
development mode, 232, 233
initializing confit, 230
node’s require() method, 232
object’s get() method, 233
production mode, 234
project/config folder, 230, 232
shortstop handlers, 234

initial file structure, 282
internationalization and

localization, 294
kraken-js module, 284
middleware functions

event notifications, 243
express application, 240
express processes, 239
flexibility, degree of, 241
meddleware module, 241, 243
steps, 240

onconfig() callback function, 284

Index

546

project launching, 283
project’s index.js script, 283
structured route registration

directory configuration, 247
index configuration, 245
routes configuration, 249

test suite, 290, 291, 293, 294
updated feeds model, 286, 287
Yeoman generator, 281

L
Loader plugin, 114
Loader plugins, RequireJS

i18n
German (de) translation, 122
header.hbs template, 120
header-view module, 121
language module, 121
nls/de directory, 122
quotes page view, 123
search.hbs template, 120

text.js, 115
#explode helper, 116
module alias, 115, 117
quotes.hbs template, 117
template, 115

loadTasks() function, 9
Logic helpers, 276, 277
HTML5 <script> tag, 92

M
mainConfigFile property, 128
Meddleware module, 241
Migration scripts, Knex

configuration, 393, 394
execution, 397, 398

new script, 394, 395
reverting, 398
schema updates

raw SQL queries, 396, 397
schema builder methods, 395, 396

up and down functions, 392
Mongoose

data types
complex types, 324
object types, 324
primitive types, 324

default values, 326, 327
JSON data

album JSON data file, 315
album schema, 316
importing data, 317–320
ODM, 315
querying data, 320–323

models and documents
creating Album constructor, 343
creating document with property

data, 346
document instance

methods, 347–349
document virtuals, 350–352
library schema and Album

model, 344
mongoose.model(), 343
new album document

instance, 344, 345
static methods, 352–354
verification, 346

MongoDB
duplication, 312
_id key, 312
RDBMS, 310
referential integrity, 313
terms and definitions, 310, 311

Kraken (cont.)

INDEX

547

nested schemas, 325, 326
queries

Model.count(), 362, 363
Model.find(), 355–357
Model.findById(), 357–360
Model.findByIdAndRemove(),

361, 362
Model.findByIdAndUpdate(),

360, 361
Query.Populate(), 363–365

query operators
$ advanced query

operators, 374, 375
$and and $or operators, 371–373
$lt and $gt operators, 365–368
$in and $nin operators, 368–371
$regex operators, 373, 374

required attribute, 327, 328
schema middleware

asynchronous pre-save
middleware, 342, 343

order of execution, 342
pre-save middleware, 340, 341

schema references
creating single/multiple

documents, 339
importing library data, 335, 337
libraryJSON.albums property, 338
library JSON data, 335
$or criteria, 337
running library import script, 339
verifying library import, 339

schema validation
asynchronous property

validators, 331
declaring property validators

inline, 330
properties, 330

robust version, 333, 334
ValidationError, 332

secondary indexes, 328, 329
moveFunds() function, 388
Multi-tasks, Grunt, 16

calling without specifying specific
target, 17

command-line options, 20, 21
with configuration options, 18
with configuration templates, 19, 20
displaying feedback to user, 21, 22
handling errors, 22
running against specific target, 17

N
Node.js-style callback, 430

O
Object data mapper (ODM), 315
Object-relational mapping (ORM), 401
object’s get() method, 233

P
pack-first approach, 92
pipeline() function, 442
PM2

accessing sole route, 64
commands, 64
details for specific PM2 process, 64
error recovery, 65–67
file changes, 67, 68
installation, 61
launching application, 62, 63
load balancing

exec_mode property, 83
Express application scaling, 82

Index

548

instances property, 83
JSON application configuration

file, 82
launching application, 83
monit command, 83, 84

monitoring
arguments, 70
local resources, 70
logging incoming requests, 68
output from processes, 69
output from specific processes, 70
remote resources, 71, 72

Node application information, 63
process management, 75, 77–80
zero-downtime deployments

gracefulReload command, 85, 86
modified application, 85
releasing updates to public, 84
reloading process, 87

Q
Query.populate() method, 364
Query.select() method, 367
quotes-view module, 115
quotesView.addQuote() method, 97

R
React

add to web pages, 509
building To-Do application

in action, 519
App.js file, 516
CSS styling, 515, 516
import components, 518

preview, 519
src/App.js file, 514, 515

installation, 510, 511, 513, 514
JSX, 509
user interface, 508

readFile() method, 385
Node’s require() method, 232
RequireJS

AMD, 92
application module and dependencies

logical dependency tree, 102, 103
module anatomy, 99, 100
module dependency paths, 102
public directory structure, 101

cache busting
bust parameter, 125
definition, 124
problems, 125, 126
urlArgs property, 124

configuration
application file locations, 96
external script, 98
global require object, 95, 96
main module, 98
RequireJS API, 97

exciting HTML file, 93
exciting web server, 93
installation, 94
loader plugins

i18n, 120–123
text.js, 115–117
web page loading, 118, 119

loading plugins
jQuery and custom plugins, 107
using module aliases, 106
without proxy module, 107

non-AMD dependencies, 92

PM2 (cont.)

INDEX

549

optimizer
configuring r.js, 126–128
public/scripts directory, 130
running r.js command, 128

paths and aliases
configuration module path

aliases, 105
jquery alias, 105
jQuery module dependency, 104

shim dependencies
highlight module, 112, 114
jQuery loading, 114
quotes-state module, 112
search-view module, 112
shimmed scripts, 113

shims
configuration, 109
module, 110
Undrln library, 108, 110

window.navigator.language property, 123
workflow, 94

reward() function, 437
Routes configuration, 249–251

S
save() method, 332
Schema.index() method, 329
SchemaType.validate() method, 330
Schema.virtual() method, 351
selectRecipe() method, 168, 171
sendEmail() method, 407
Shortstop handlers

default configuration file, 237
file, 237
glob, 237
import and config, 234
index.js Script, 236, 237

output, 235, 238, 239
path, 237
require, 237

Source-destination mappings, Grunt
expand option, 26
files array format, 25, 26
imaginary project’s public folder, 23
src key, 24, 25

SQL query builder, Knex
interface methods

callback function, 382
promise-based API, 382
results, 383
streams, 384–386
transactions, 387–392

stream() method, 387
Structured Query Language (SQL), 378
subscribe() method, 177

T
throttle() function, 490
toJSON() method, 410
Transforms

Browserify-Shim transform, 158
bulkify transform, 157
folderify transform, 156
fs.readFileSync(), 156
readFileSync() method, 155
transforms-brfs package, 155

U
Underscore and Lodash functions

aggregation and indexing, 466
chaining

collection, 481
filtering collection, 483

Index

550

forEach(), 485
primitive, 484

data selection from collections
filter(), 472, 473
filter() and where(), 474, 475
where(), 473, 474

data selection from objects
omit(), 479–481
pick(), 478
pluck(), 475, 476
values(), 476, 477

installation and usage, 465, 466
vs. native ECMAScript, 464
templates

accessing data object, 499, 500
changing template syntax, 498, 499
default data, 501, 502
gator tags, 493
global template settings, 499
looping, 495, 496
reusable binding function, 494

timing (see Function timing)
undrln library, 108
Utility libraries, 463

V
Visual learner, 138

custom code, 139
dependency tree, 138

Vue.js
building user interfaces, 525
definition, 523
digging deeper

directory structure, 532, 535, 537, 538
src/App.vue file, 534
src/main.js file, 533

installation, 526, 528
project creation, 529, 530, 532
running application, 531
selecting location, 531

W, X
window.navigator.language

property, 123

Y, Z
Yeoman generator

answer file, 43
Grunt task, 41, 42
installation, 40
node modules, 46, 47
question file, 41
subcommands

calling route sub-generator, 45
Grunt Task, 45
modernweb generator, 44

sub-generators
app folder contents, 51
commands, 47
composability, 57
default app sub-generator, 47, 48
instance methods, 52
Lodash templates, 53–55
prototype methods, 52
secondary commands, 55–57

tools and libraries, 40

Underscore and Lodash functions (cont.)

INDEX

	Table of Contents
	About the Authors
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Part I: Development Tools
	Chapter 1: Grunt
	Installing Grunt
	How Grunt Works
	Gruntfile.js
	Tasks
	Plugins
	Configuration

	Adding Grunt to Your Project
	Maintaining a Sane Grunt Structure

	Working with Tasks
	Managing Configuration
	Task Descriptions
	Asynchronous Tasks
	Task Dependencies
	Multi-Tasks
	Multi-Task Options
	Configuration Templates
	Command-Line Options
	Providing Feedback
	Handling Errors

	Interacting with the File System
	Source-Destination Mappings
	Watching for File Changes
	Automated JavaScript Linting
	Automated Sass Stylesheet Compilation
	Automated Unit Testing

	Creating Plugins
	Getting Started
	Creating the Task
	Publishing to npm

	Summary
	Related Resources

	Chapter 2: Yeoman
	Installing Yeoman
	Creating Your First Project
	Subcommands

	Creating Your First Generator
	Yeoman Generators Are Node Modules
	Sub-generators
	Lodash Templates

	Defining Secondary Commands
	Composability

	Summary
	Related Resources

	Chapter 3: PM2
	Installation
	Working with Processes
	Recovering from Errors
	Responding to File Changes

	Monitoring Logs
	Monitoring Resource Usage
	Monitoring Local Resources
	Monitoring Remote Resources

	Advanced Process Management
	JSON Application Declarations

	Load Balancing Across Multiple Processors
	Zero Downtime Deployments

	Summary
	Related Resources

	Part II: Module Loaders
	Chapter 4: RequireJS
	Running the Examples
	Working with RequireJS
	Installation
	Configuration
	Application Modules and Dependencies
	Paths and Aliases
	Loading Plugins with Proxy Modules

	Shims
	Shim Dependencies

	Loader Plugins
	text.js
	Page Load
	i18n

	Cache Busting

	RequireJS Optimizer
	Configuring r.js
	Running the r.js Command

	Summary

	Chapter 5: Browserify
	The AMD API vs. CommonJS
	Installing Browserify
	Creating Your First Bundle
	Visualizing the Dependency Tree
	Creating New Bundles As Changes Occur
	Watching for File Changes with Grunt
	Watching for File Changes with Watchify

	Using Multiple Bundles
	The Node Way
	Module Resolution and the NODE_PATH Environment Variable
	Taking Advantage of NODE_PATH Within Browserify

	Dependency Management

	Defining Browser-Specific Modules
	Extending Browserify with Transforms
	brfs
	folderify
	bulkify
	Browserify-Shim

	Summary
	Related Resources

	Part III: Client-Side Frameworks
	Chapter 6: Knockout
	Views, Models, and View Models
	The Recipe List
	Recipe Details

	Binding View Models to the DOM
	View Models and Forms
	Switching to “Edit” Mode

	Changing the Recipe Title
	Updating Recipe Servings and Cooking Time
	Adding and Removing Ingredients
	Instructions
	Citation
	Custom Components
	The Input List View Model
	The Input List Template
	Registering the Input List Tag

	Subscribables: Cheap Messaging
	Summary
	Resources

	Chapter 7: Angular
	Differences Between Angular and AngularJS
	Getting Started with Angular
	Installation
	Creating a Workspace in Angular
	Directory Structure
	Serving the App
	Customizing the App

	Dependency Injection in Angular
	Creating and Registering an Injection Service

	Conclusion

	Part IV: Server-Side Frameworks
	Chapter 8: Kraken
	Environment-Aware Configuration
	Shortstop Handlers

	Configuration-Based Middleware Registration
	Event Notifications

	Structured Route Registration
	Index Configuration
	Directory Configuration
	Routes Configuration

	Dust Templates
	Context and References
	Sections
	Iteration
	Conditionality
	Partials
	Blocks
	Filters
	Creating Custom Filters

	Context Helpers
	chunk
	context
	bodies
	params
	Asynchronous Context Helpers

	Dust Helpers
	Logic Helpers
	Switch Statements
	Iteration Helpers
	Mathematical Expressions
	Context Dump
	Custom Helpers

	Let’s Get Kraken
	Controllers, Models, and Tests
	The Model
	The Controller
	The Test Suite

	Internationalization and Localization
	Detecting Locality

	Security
	Defending Against Cross-Site Request Forgery Attacks
	Configuring Content Security Policy Headers

	Summary
	Related Resources

	Part V: Managing Database Interaction
	Chapter 9: Mongoose
	Basic MongoDB Concepts
	A Simple Mongoose Example
	Creating a Mongoose Schema for JSON Data
	Importing Data with Mongoose
	Querying Data with Mongoose

	Working with Schemas
	Data Types
	Nested Schemas
	Default Property Values
	Required Properties
	Secondary Indexes
	Schema Validation
	Schema References
	Schema Middleware

	Working with Models and Documents
	Document Instance Methods
	Document Virtuals
	Static Model Methods

	Working with Queries
	Model.find()
	Model.findById()
	Model.findByIdAndUpdate()
	Model.findByIdAndRemove()
	Model.count()
	Query.Populate()
	Finding Documents with Query Operators
	The $lt and $gt Operators
	The $in and $nin Operators
	The $and and $or Operators
	The $regex Operator
	Advanced Query Operators

	Summary

	Chapter 10: Knex and Bookshelf
	Knex
	Installing the Command-Line Utility
	Adding Knex to Your Project
	Configuring Knex
	The SQL Query Builder
	Query Builder Methods
	Interface Methods
	Promises
	Streams
	Transactions

	Migration Scripts
	Configuring Your Project for Migrations
	Creating Your First Migration
	Defining Schema Updates with Schema Builder Methods
	Defining Schema Updates with Raw SQL Queries

	Running Knex Migrations
	Reverting Knex Migrations

	Seed Scripts
	Creating Seed Scripts
	Running Seed Scripts

	Bookshelf
	What Is Object-Relational Mapping?
	Creating Your First Bookshelf Model
	Creating New Instances
	Fetching Instances
	Destroying Instances
	Fetching Multiple Models (Collections)
	Extending with Custom Behavior
	Performing Validation
	Customizing the Export Process
	Defining Class Properties
	Extending with Subclasses

	Relationships
	One-to-One
	hasOne and belongsTo

	One-to-Many
	hasMany and belongsTo

	Many-to-Many
	belongsToMany

	Summary
	Related Resources

	Part VI: Managing Control Flow
	Chapter 11: Async.js
	Sequential Flow
	Parallel Flow
	Pipeline Flow
	Reusing a Pipeline

	Loop Flow
	Looping While Some Condition Remains True
	Looping Until Some Condition Becomes False
	Retry Loops
	Infinite Loops

	Batch Flow
	Asynchronous Queue
	Asynchronous Cargo

	Summary

	Part VII: Further Useful Libraries
	Chapter 12: Underscore and Lodash
	Installation and Usage
	Aggregation and Indexing
	countBy()
	groupBy()
	indexBy()

	Being Choosy
	Selecting Data from Collections
	filter()
	where()
	find() and findWhere()

	Selecting Data from Objects
	pluck()
	values()
	pick()
	omit()

	Chaining
	Function Timing
	defer()
	debounce()
	throttle()

	Templates
	Loops and Other Arbitrary JavaScript in Templates
	Living Without Gator Tags
	Accessing the Data Object Within a Template
	Default Template Data

	Summary
	Related Resources

	Part VIII: Front-End Development
	Chapter 13: React
	React Overview
	What Makes React Special?

	Getting Started with React
	How to Add React to Web Pages?
	Installation

	Building a To-Do Application
	Summary

	Chapter 14: Vue.js
	Vue.js Overview
	What Is Vue.js?
	What Is Vue Meant For?

	Getting Started with Vue.js
	Installation
	Building Our First Vue App

	Digging Deeper
	Directory Structure
	src/main.js File
	src/App.vue File
	components/HelloWorld.vue File
	public/index.html File

	Summary
	Next Steps

	Index

