
Liz Rice & Michael Hausenblas

Operating Kubernetes Clusters
and Applications Safely

Kubernetes
Security

Compliments of

Building and managing secure Kubernetes clusters is a complex task. Aqua Security
provides a complete solution that leverages native Kubernetes capabilities, makes it easy
to establish policy-driven monitoring and enforcement, and further secures Kubernetes
deployments with runtime protection and compliance controls at the cluster, namespace,
node, pod and container levels.

Aqua Security is the company behind open-source tools that enable you to improve
the security of your Kubernetes cluster:

www.aquasec.com

Learn more

Enhances
Native Kubernetes Security Controls

Protects
Applications in Runtime

Provides Visibility
For Compliance

Secures
The Build Pipeline

Penetration testing tool that “attacks”
your cluster and nodes, looking for
configuration issues.
github.com/aquasecurity/kube-hunter

Check your cluster against 100+ tests
of the CIS Kubernetes Benchmark so you
can harden it according to best practices.
github.com/aquasecurity/kube-bench

Full Lifecycle Security
For Containers and
Cloud Native Applications

https://hubs.ly/H0dGvW-0
https://github.com/aquasecurity/kube-hunter
https://github.com/aquasecurity/kube-hunter
https://github.com/aquasecurity/kube-bench
https://github.com/aquasecurity/kube-bench%0D

Liz Rice and Michael Hausenblas

Kubernetes Security
Operating Kubernetes Clusters and

Applications Safely

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-492-04600-4

[LSI]

Kubernetes Security
by Liz Rice and Michael Hausenblas

Copyright © 2018 O’Reilly Media. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O’Reilly books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://oreilly.com/safari). For more
information, contact our corporate/institutional sales department: 800-998-9938 or
corporate@oreilly.com.

Acquisitions Editor: Nikki McDonald
Development Editor: Virginia Wilson
Production Editor: Justin Billing
Copyeditor: Sharon Wilkey

Proofreader: Chris Edwards
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

October 2018: First Edition

Revision History for the First Edition
2018-09-28: First Release

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Kubernetes Secu‐
rity, the cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the authors, and do not represent the
publisher’s views. While the publisher and the authors have used good faith efforts
to ensure that the information and instructions contained in this work are accurate,
the publisher and the authors disclaim all responsibility for errors or omissions,
including without limitation responsibility for damages resulting from the use of or
reliance on this work. Use of the information and instructions contained in this
work is at your own risk. If any code samples or other technology this work contains
or describes is subject to open source licenses or the intellectual property rights of
others, it is your responsibility to ensure that your use thereof complies with such
licenses and/or rights.

This work is part of a collaboration between O’Reilly and Aqua Security Software.
See our statement of editorial independence.

http://oreilly.com/safari
mailto:corporate@oreilly.com
http://www.oreilly.com/about/editorial_independence.html

Table of Contents

Introduction. v

1. Approaching Kubernetes Security. 1
Security Principles 3

2. Securing the Cluster. 7
API Server 7
Kubelet 9
Running etcd Safely 11
Kubernetes Dashboard 12
Validating the Configuration 13

3. Authentication. 15
Identity 15
Authentication Concepts 20
Authentication Strategies 21
Tooling and Good Practices 22

4. Authorization. 25
Authorization Concepts 25
Authorization Modes 26
Access Control with RBAC 27
Tooling and Good Practices 32

5. Securing Your Container Images. 35
Scanning Container Images 36
Patching Container Images 36

iii

CI/CD Best Practices 37
Image Storage 38
Correct Image Versions 39
Image Trust and Supply Chain 40
Minimizing Images to Reduce the Attack Surface 41

6. Running Containers Securely. 43
Say No to Root 43
Admission Control 44
Security Boundaries 45
Policies 47

7. Secrets Management. 57
Applying the Principle of Least Privilege 57
Secret Encryption 58
Kubernetes Secret Storage 58
Passing Secrets into Containerized Code 60
Secret Rotation and Revocation 63
Secret Access from Within the Container 64
Secret Access from a Kubelet 64

8. Advanced Topics. 67
Monitoring, Alerting, and Auditing 67
Host Security 68
Sandboxing and Runtime Protection 69
Multitenancy 70
Dynamic Admission Control 72
Network Protection 72
Static Analysis of YAML 73
Fork Bombs and Resource-Based Attacks 73
Cryptocurrency Mining 74
Kubernetes Security Updates 74

iv | Table of Contents

Introduction

This book will teach you practices to make your Kubernetes deploy‐
ments more secure. It will introduce you to security features in
Kubernetes and tell you about other things you should be aware of
in the context of containerized applications running on Kubernetes;
for example, container image best practices from a security point of
view.

We describe practical techniques and provide an accompanying
website with references and recipes, so if you want to follow along,
check it out!

Why We Wrote This Book
Kubernetes has rapidly become a popular choice for deploying code
“in the cloud” and is now used by enterprises of all sizes to deploy
mission-critical applications. However, information about securing
Kubernetes is distributed across the internet and in the code itself.
We want to make it easier for anyone who is using Kubernetes to
think about and address the security of their deployments by gather‐
ing information into one resource.

Who Is This Book For?
This book is written for developers, operation folks, and security
professionals who are using Kubernetes. Please note that we assume
familiarity with basic Kubernetes concepts. If you don’t have that
familiarity yet, a great book to get started is Kubernetes: Up and Run‐
ning by Kelsey Hightower et al. (O’Reilly). In addition, Kubernetes
Cookbook by Michael Hausenblas (one of the authors of this book)

v

https://kubernetes-security.info/
https://kubernetes-security.info/
https://bit.ly/kubernetes-up-and-running
https://bit.ly/kubernetes-up-and-running
https://bit.ly/kubernetes-cookbook
https://bit.ly/kubernetes-cookbook

and Sébastien Goasguen (O’Reilly) provides recipes for common
tasks.

In this book, we tackle the technical aspects of Kubernetes security,
but sidestep cultural and organizational issues, such as who should
be responsible for implementing and ensuring the advice we offer.
We do suggest that this is something you pay attention to, as no
amount of technology will fix a broken culture.

Which Version of Kubernetes?
Kubernetes is an evolving project with improvements being made all
the time. At the time of writing, the latest release of Kubernetes is
v1.11. Several security-related features have been added and stabi‐
lized over the last few releases, with the general availability of role-
based access control (RBAC) in v1.8 particularly worthy of note.
With that in mind, we strongly recommend upgrading to v1.8 or
newer if you haven’t already.

We expect the advice in this book to be generally applicable to what‐
ever version you are running from v1.8 onward. We point out when
a particular version newer than 1.8 is required in order for a recom‐
mendation to work.

Via the accompanying website kubernetes-security.info, we plan to
keep you up-to-date as new tooling and best practices become avail‐
able and as Kubernetes evolves, so keep an eye on this site!

A Note on Federation
Federation is the concept of operating multiple Kubernetes clusters
together, with the ability to synchronize and discover resources
across them. At the time of writing, the Kubernetes Federation API
has no clear path to general availability, so we have left the security
of federated clusters out of the scope of this book.

Acknowledgments
A big thank you to the O’Reilly team, especially Virginia Wilson, for
shepherding us through the process of writing this book.

We’re super grateful to our technical reviewers Alban Crequy, Amir
Jerbi, Andrew Martin, Ian Lewis, Jordan Liggitt, Michael Kehoe,

vi | Introduction

http://bit.ly/2xOVcEy
http://bit.ly/2xOVcEy
https://kubernetes-security.info/

Seth Vargo, and Tim Mackey, who provided valuable, actionable
feedback and advice.

Introduction | vii

CHAPTER 1

Approaching Kubernetes Security

Security is a funny, elusive thing. You will rarely hear a security pro‐
fessional describe something as “secure.” You’ll hear that something
may be more or less secure than an alternative, but security is
dependent on context.

In this book, we will show you ways to make your Kubernetes clus‐
ter more secure. Whether you need to apply a particular measure to
make your deployment secure enough for your particular use case is
something for you to assess, depending on the risks you are run‐
ning. We hope that if your Kubernetes cluster holds our bank
account details or our medical records, you will take all the precau‐
tions described herein, at the very least!

We will cover ways that you can configure your Kubernetes cluster
to improve security. Your cluster runs containerized workloads, and
we will discuss ways to make it more likely that you are running the
workloads you expect (and nothing more). We present precautions
you can take to limit the likelihood of a breach by an attacker, and to
limit the likelihood of that breach resulting in data loss.

In addition, you can use plenty of non-Kubernetes-specific security
tools and approaches that are outside the scope of this book. You
can layer traditional network firewalls and intrusion-detection sys‐
tems, in addition to everything that is described here. You may have
an air-gapped deployment. And wherever humans interact with
your system, they may constitute a risk to security, either mali‐
ciously or just due to human error. We don’t pretend to address
those issues in this book. As shown in Figure 1-1, there are various

1

ways that an attacker could attempt to compromise your Kubernetes
cluster and the applications running on it.

Figure 1-1. Kubernetes attack vectors

In this book, we explain controls, configurations, and best practices
that you can apply to mitigate all these potential modes of attack. We
present several aspects of Kubernetes security:

Configuring Kubernetes for security
Chapter 2 considers the configuration of Kubernetes compo‐
nents, and Chapter 3 and Chapter 4 discuss how to limit access
to Kubernetes resources so that they are accessible to only the
people and applications that need them.

Preventing your application workloads from being exploited
Chapter 5 explains approaches that ensure you are not running
code with known vulnerabilities on your Kubernetes cluster.
Chapter 6 presents additional ways you can limit the behavior
of containers at runtime, making it harder for an attacker to
abuse those containers.

2 | Chapter 1: Approaching Kubernetes Security

Protecting credentials
Chapter 7 discusses how to store credentials and pass them
safely into applications.

We finish in Chapter 8 with some advanced ideas for securing your
Kubernetes cluster.

But before we get started on Kubernetes-specific information, let’s
introduce a few important general security concepts that we’ll use in
the rest of the book.

Security Principles
In this section, we’ll discuss three important principles that can be
used to increase security: defense in depth, least privilege, and limit‐
ing the attack surface.

Defense in Depth
Picture a medieval castle under siege. It has strong, high walls to
keep undesirables out. The wall is surrounded by a moat, with
access via a drawbridge that is lowered only occasionally to let peo‐
ple in and out. The castle has thick doors, and bars across any win‐
dows. Archers patrol the castle walls, ready to fire at any attacker.

The castle has several layers of defense. Attackers who can swim
might be prepared to cross the moat, but then they have the walls to
scale, and the likelihood of being picked off by an archer. It might be
possible to compromise any given layer in the defensive structure,
but by having several layers, it’s hard for an attacker to successfully
enter the castle.

In the same way, it’s preferable to have several layers of defense
against attacks on your Kubernetes cluster. If you’re relying on a sin‐
gle defensive measure, attackers might find their way around it.

Least Privilege
The principle of least privilege tells us to restrict access so that differ‐
ent components can access only the information and resources they
need to operate correctly. In the event of a component being com‐
promised, an attacker can reach only the subset of information and
resources available to that component. This limits the “blast radius”
of the attack.

Security Principles | 3

http://bit.ly/2xSoQIW

Consider an example of an e-commerce store. Let’s assume it is built
using a “microservice” architecture with functionality broken into
small, discrete components. Even if product and user information is
held in the same database, different microservices might each be
granted access to only the appropriate parts of that database. A
product-search microservice needs read-only access to the product
tables, but nothing more. If this microservice somehow gets com‐
promised, or simply has a bug, the broken service can’t overwrite
product information (because it has only read access) or extract user
information (because it has no access to that data at all). Applying
the principle of least privilege means that we make it more difficult
for an attacker to cause damage.

Microservices, as defined by Martin Fowler, are a par‐
ticular design of software apps, essentially a collection
of independently deployable services.

The same principle can apply to humans too. In some organizations,
sharing production credentials with all staff may make sense. In oth‐
ers, it’s critical that only a small set of people have access, especially
if that access is to sensitive information such as medical or financial
records.

Limiting the Attack Surface
The attack surface is the set of all possible ways a system can be
attacked. The more complex the system, the bigger the attack sur‐
face, and therefore the more likely it is that an attacker will find a
way in.

Consider our castle metaphor again: the longer the length of the cas‐
tle walls, the more archers we would need to patrol them effectively.
A circular castle will be most efficient from this point of view; a
complicated shape with lots of nooks and crannies would need more
archers for the same interior volume.

In software systems, the fundamental way to reduce the attack sur‐
face is to minimize the amount of code. The more code that’s
present in the system, the more likely it is that it has vulnerabilities.
The greater the complexity, the more likely that latent vulnerabilities
exist, even in well-tested code.

4 | Chapter 1: Approaching Kubernetes Security

https://martinfowler.com/articles/microservices.html
https://en.wikipedia.org/wiki/Attack_surface

Now that we have established some security concepts, let’s see how
we apply them to the configuration of a Kubernetes cluster.

Security Principles | 5

CHAPTER 2

Securing the Cluster

Perhaps it goes without saying, but you don’t want to allow unau‐
thorized folks (or machines!) to have the ability to control what’s
happening in your Kubernetes cluster. Anyone who can run soft‐
ware on your deployment can, at the very least, use your compute
resources (as in the well-publicized case of “cryptojacking” at Tesla);
they could choose to play havoc with your existing services and even
get access to your data.

Unfortunately, in the early days of Kubernetes, the default settings
left the control plane insecure in important ways. The situation is
further complicated by the fact that different installation tools may
configure your deployment in different ways. The default settings
have been improving from a security point of view, but it is well
worth checking the configuration you’re using.

In this chapter, we cover the configuration settings that are impor‐
tant to get right for the Kubernetes control-plane components, con‐
cluding with some advice on tools that can be used to verify the
deployed configuration.

API Server
As its name suggests, the main function of the Kubernetes API
server is to offer a REST API for controlling Kubernetes. This is
powerful—a user who has full permissions on this API has the
equivalent of root access on every machine in the cluster.

7

https://blog.redlock.io/cryptojacking-tesla

The command-line tool kubectl is a client for this API, making
requests of the API server to manage resources and workloads. Any‐
one who has write access to this Kubernetes API can control the
cluster in the same way.

By default, the API server will listen on what is rightfully called the
insecure port, port 8080. Any requests to this port bypass authentica‐
tion and authorization checks. If you leave this port open, anyone
who gains access to the host your master is running on has full control
over your entire cluster.

Close the insecure port by setting the API server’s --insecure-port
flag to 0, and ensuring that the --insecure-bind-address is not set.

The --insecure-port flag was deprecated in Kuber‐
netes v1.10 and is a target for removal altogether in the
future.

You can check whether the insecure port is open on the default port
with a simple curl command like the following, where <IP

address> is the host where the API server is running (or localhost
if you can SSH directly to that machine):

$ curl <IP address>:8080
{
 "paths": [
 "/api",
 "/api/v1",
 "/apis",
...

If the response lists API endpoints, as in the preceding example,
then the insecure port is open. However, if you see an error message
of Connection refused, it’s good news, as the port is not open.

With the insecure port closed, the API can be accessed only over a
secure, encrypted TLS connection via the secure port. You may want
to further restrict API access to known, authenticated users by set‐
ting --anonymous-auth=false for the API server. However, it is not
reckless to allow anonymous access to the API so long as you are
using RBAC, which we strongly recommend. We discuss this in
more detail in “Access Control with RBAC” on page 27.

8 | Chapter 2: Securing the Cluster

http://bit.ly/2O8SHas

The default RBAC settings permit only limited API access for
anonymous users. This allows for health and discovery checks to be
made, for example, by components like load balancers.

One thing to be aware of, however, is that enabling anonymous
access to discovery endpoints could also increase the likelihood of
leaking information about the software that’s running on the system
to an attacker. This read-only information is unlikely to compromise
anything important by itself, but it can signpost an attacker toward
other weaknesses. For example, if attackers can use health-check
information to learn that a particular database is in use, they could
use that information to choose which types of attack are more likely
to work against that database.

For this reason, you may want to protect network access to the API
server by using other mechanisms—perhaps a traditional firewall or
a virtual private network (VPN).

Although we cover RBAC in more detail later, for now let’s cover
how to enable it in the control plane:

• Set --authorization-mode on the API server to enable the RBAC
authorization module.

• Include the Node authorizer in the --authorization-mode list,
which (in conjunction with the NodeRestriction admission
controller described in the next section) enables RBAC for
kubelets.

Kubelet
The kubelet is the agent on each node that is responsible for inter‐
acting with the container runtime to launch pods, and report node
and pod status and metrics. Each kubelet in the cluster also operates
an API, through which other components ask it to do things like
starting and stopping pods. If unauthorized users can access this
API (on any node) to execute code on the cluster, it’s possible to gain
control of the entire cluster.

Fortunately, layers of defense are now available in Kubernetes that
make it easy to prevent this kind of attack:

Kubelet | 9

http://bit.ly/2zttgZ0
http://bit.ly/2MZT8iN
http://bit.ly/2Q0ECZY
http://bit.ly/2Q0ECZY

• You can limit the API access to authenticated requests; that is,
anonymous requests are ignored.

• You can leverage access control to stop unauthorized actions
from being performed (see “Access Control with RBAC” on
page 27).

More specifically, here are some configuration options to lock down
the kubelets and hence help minimize the attack surface:

• Disable anonymous access with --anonymous-auth=false, so
that unauthenticated requests will receive Unauthorized Access
error responses. This requires the API server to identify itself to
the kubelet, which you can set up with the --kubelet-client-
certificate and --kubelet-client-key flags.

• Ensure that requests are authorized by setting --authorization-
mode to something other than AlwaysAllow. The kubeadm instal‐
lation tool defaults this setting to Webhook so that the kubelet
calls SubjectAccessReview on the API server for authorization.

• Limit the permissions of kubelets by including NodeRestriction
in the --admission-control settings on the API server. This
restricts a kubelet so that it can modify only pods that are
bound to it and its own Node object.

• Set --read-only-port=0 to turn off the read-only port. This port
allows an anonymous user to access information about running
workloads. While access to this port doesn’t allow a hacker to
control the cluster, exposing information about what’s running
could make it easier to attack.

• Older Kubernetes deployments used cAdvisor to provide met‐
rics, but this has largely been superseded by stats on the Kubelet
API. Unless you know you are using the kubelet cAdvisor port,
you should turn it off to stop it from exposing information
about your running workloads, by setting --cadvisor-port=0.
This is the default setting in Kubernetes v1.11, and it is expected
that the flag will be removed altogether in the future. If you
want to run cAdvisor on your cluster, it is now recommended
that you do this with a DaemonSet.

You can check what access is available on a kubelet by attempting an
API request to the node as follows:

10 | Chapter 2: Securing the Cluster

http://bit.ly/2ONLU2T
http://bit.ly/2ONLU2T
http://bit.ly/2NEKPxZ
http://bit.ly/2NEKPxZ
http://bit.ly/2xORevG
http://bit.ly/2Od4XGR
http://bit.ly/2Od4XGR
http://bit.ly/2IgwP7G
https://github.com/kubernetes/kubernetes/issues/56523

$ curl -sk https://<IP address>:10250/pods/

• If --anonymous-auth is false, you will see a 401 Unauthorized
response.

• If --anonymous-auth is true and --authorization-mode is Web
hook, you’ll see a 403 Forbidden response with the message For
bidden (user=system:anonymous, verb=get,

resource=nodes, subresource=proxy).
• If --anonymous-auth is true and --authorization-mode is
AlwaysAllow, you’ll see a list of pods.

Kubelet Certificate Rotation
Each kubelet needs a client certificate so that it can communicate
with the API server. From 1.8 onward, the kubelet supports rotating
these certificates automatically with the --rotate-certificates
flag, so that a new certificate will be requested and issued automati‐
cally as the expiry deadline approaches. Unless you have a good rea‐
son not to do so, we recommend enabling this feature.

Running etcd Safely
Kubernetes stores configuration and state information in a dis‐
tributed key-value store called etcd. Anyone who can write to etcd
can effectively control your Kubernetes cluster. Even just reading the
contents of etcd could easily provide helpful hints to a would-be
attacker. Therefore, you need to ensure that only authenticated
access is permitted:

• Set --cert-file and --key-file to enable HTTPS connections
to etcd.

• Set --client-cert-auth=true to ensure that access to etcd
requires authentication. Set --trusted-ca-file to specify the
certificate authority that has signed the client certificates.

• Set --auto-tls=false to disallow the generation and use of
self-signed certificates.

• Require etcd nodes to communicate with each other securely by
using --peer-client-cert-auth=true. Also set --peer-auto-
tls=false and specify --peer-cert-file, --peer-key-file

Running etcd Safely | 11

http://bit.ly/2IjCr12
http://bit.ly/2IjCr12

and --peer-trusted-ca-file. You will need corresponding
configuration on the Kubernetes API server so that it can com‐
municate with etcd.

• Set --etcd-cafile on the API server to the certificate authority
that signed etcd’s certificate.

• Specify --etcd-certfile and --etcd-keyfile so that the API
server can identify itself to etcd.

See the etcd documentation for more information.

You should take additional measures to encrypt etcd’s data stored on
disk. This is especially important if you are storing Kubernetes
secrets in etcd rather than an external secrets store. See Chapter 7
for more details on this topic.

Because only the Kubernetes control-plane components have any
business communicating with etcd, you can additionally use net‐
work firewalling to prevent traffic from other sources from reaching
the etcd cluster.

Kubernetes Dashboard
The Dashboard has historically been used by attackers to gain con‐
trol of Kubernetes clusters. It’s a powerful tool, and in older versions
of Kubernetes, the default settings made it easy to abuse; for exam‐
ple, prior to 1.7, the Dashboard had full admin privileges by default.

You might want to take several steps to ensure that your Kubernetes
Dashboard is not an easy entry point for attackers, including but not
limited to the following:

Allow only authenticated access
Only known users should be able to access the Dashboard.

Use RBAC
Limit the privileges that users have so they can administer only
the resources they need to.

Make sure the Dashboard service account has limited access
After reaching the Dashboard login screen, users have the
option to Skip. Taking this path means that rather than authen‐
ticating as their own user identity (as discussed in “Identity” on
page 15), they access the Dashboard with the service account

12 | Chapter 2: Securing the Cluster

http://bit.ly/2NF22av
http://bit.ly/2ORsavt
http://bit.ly/2ORsavt

associated with the Dashboard application itself. This service
account should have minimal permissions.

Don’t expose your Dashboard to the public internet
Unless you really know what you’re doing.

We recommend checking the latest Kubernetes Dashboard installa‐
tion recommendations.

You can use kubectl proxy to access the Dashboard securely from a
local machine. If you want to give users access directly via their
browser, the Heptio blog has a good discussion of the options.

Applying different security measures to the Dashboard gives you
defense in depth to mitigate potential attacks. For example, suppose
you use NodePort as the type for the kubernetes-dashboard service
so that it is available only from cluster nodes. A compromised pod
running within the cluster can still access the Dashboard service,
but well-crafted RBAC rules will limit the damage that it could do
through that service.

Validating the Configuration
Once you have set up your Kubernetes cluster, there are two main
options for validating whether it is configured safely. These options
are configuration testing, where tests validate the deployment
against a recommended set of settings, and penetration testing,
where tests explore the cluster from the perspective of an attacker.

CIS Security Benchmark
The Center for Internet Security (CIS) publishes a Benchmark for
Kubernetes giving best practices for configuring a deployment to
use secure settings. If you’re using Docker as your underlying run-
time, you may also want to follow the CIS Benchmark for Docker.

It’s a good idea to check your deployment against this benchmark.
You might decide that not all the recommendations apply for you,
but checking against the benchmark may alert you to insecure set‐
tings that you were unaware of. As a simple example, the Kubernetes
tests will let you know whether your cluster is configured to allow
anonymous access to the Kubernetes API.

Validating the Configuration | 13

http://bit.ly/2Q6es7X
http://bit.ly/2xCZYps
http://bit.ly/2xCZYps
http://bit.ly/2O50ENZ
http://bit.ly/2Ie7z1O
http://bit.ly/2Ie7z1O
https://www.cisecurity.org/benchmark/dock/

Running the benchmark tests on all your nodes on a
regular basis will help you spot any configuration drift
that might affect your security posture.

Manually running the benchmark tests would be time-consuming.
Fortunately, tools exist to automate the process, such as the Kuber‐
netes Benchmark tool (for which Liz is a maintainer).

Penetration Testing
Enterprises commonly recruit the services of a “pen-tester,” or pene‐
tration testing company, to probe their deployed software, searching
for ways that an attacker could exploit the software or the platform
on which it runs. A penetration-testing specialist will use creative
approaches to find weak points in your cluster configuration and in
the software running on it.

Additionally, you may like to consider testing with kube-hunter.
This project (also one that Liz maintains) is an open source penetra‐
tion testing tool specifically for Kubernetes.

To learn more about how to secure the Kubernetes control plane,
check out the resources on the accompanying website, in the “Secur‐
ing the Cluster” section.

Now that we have covered configuring the Kubernetes control-plane
components, let’s move on to discussing how to enable access to the
cluster by known users and software entities.

14 | Chapter 2: Securing the Cluster

https://github.com/aquasecurity/kube-bench
https://github.com/aquasecurity/kube-bench
http://github.com/aquasecurity/kube-hunter
http://bit.ly/2Q6Wfr0
http://bit.ly/2Q6Wfr0

CHAPTER 3

Authentication

If you’ve been using public cloud offerings such as Amazon Web
Services (AWS), Microsoft Azure, or Google Cloud Platform, you
might have come across the term identity and access management
(IAM), which allows you to define access to resources for users and
services. In this chapter and in Chapter 4, we discuss how this is
realized in Kubernetes.

All components, such as a kubelet running on a node, as well as
users issuing kubectl commands, need to communicate with the
API server. To process the request, the API server first has to verify
who (or what, in the case of machines) is issuing the request; the
server has to establish the identity of the caller, or in other words, to
authenticate the caller. This chapter covers how authentication in
Kubernetes works and the options you have at hand as a cluster
operator.

Identity
For the API server to authenticate a request, the request issuer needs
to possess an identity. At the time of writing, Kubernetes doesn’t
have a first-class notion of a human user, but rather assumes that
users are managed outside Kubernetes via a directory service such as
Lightweight Directory Access Protocol (LDAP) or single sign-on
(SSO) login standards like Security Assertion Markup Language
(SAML) or Kerberos. This is the standard approach in production,
but if you’re not using such a system, other authentication strategies
are available.

15

https://kubernetes.io/docs/admin/authentication/
http://bit.ly/2xECZdF

User accounts are considered cluster-wide, so make sure that the
usernames are unique across namespaces.

A namespace in Kubernetes is a way to logically divide
the cluster into smaller units of management. You can
have any number of namespaces; for example, you
might have one per application, or one per client, or
one per project. Resources in Kubernetes are either
namespaced (services, deployments, etc.) or cluster-
wide (nodes, persistent volumes, etc.) and you can
consider a namespace as one of the built-in security
boundaries. “Security Boundaries” on page 45 provides
more information on this topic.

It’s not just humans who interact with Kubernetes. We often want a
programmatic way for applications to communicate with the Kuber‐
netes API; for example, to query, create, or update resources such as
pods, services, or deployments. To that end, Kubernetes has a top-
level resource to represent the identity of an application: the service
account. A service account is a namespaced resource that you can
use if your application needs to communicate with the API server.
Many business applications don’t need to manipulate Kubernetes
resources in this way, so (following the principle of least privilege)
they can have service accounts with limited permissions.

By default, Kubernetes makes the credentials of the service account
available via a secret that is mounted into the pod (note that all files
shown here are owned by root):

$ kubectl run -it --rm jumpod \
 --restart=Never \
 --image=alpine -- sh
~ $ ls /var/run/secrets/kubernetes.io/serviceaccount/
ca.crt namespace service-ca.crt token

Most important here is the token file provided, which is a JSON
Web Token as per RFC7519:

~ $ cat /var/run/secrets/kubernetes.io/serviceaccount/token
eyJhbGciOiJSUzI1NiIsImtpZCI6IiJ9.eyJpc3MiOiJrdWJlcm5ldGVzL3Nl...

You can use the debugger provided by jwt.io to see what exactly the
payload of that token is; so, for example, copying content from the
preceding token file gives the output shown in Figure 3-1.

16 | Chapter 3: Authentication

http://bit.ly/2xEDfcD
http://bit.ly/2xEDfcD
https://tools.ietf.org/html/rfc7519
https://jwt.io/

Figure 3-1. A JSON Web Token provided by a service account

If you don’t explicitly specify a service account in the pod spec, the
default service account for the namespace is used.

The general form of a service account is as follows:

system:serviceaccount:$NAMESPACE:$NAME

In Figure 3-2, you can see a more complex example setup.

Identity | 17

Figure 3-2. Service accounts

Here we have two pods, simplepod and podwithsa. The former
doesn’t specify the service account and hence ends up using the
default service account of the namespace. On the other hand, pod
withsa uses a dedicated service account called mysa that you can
create, for example, using the following command:

$ kubectl create serviceaccount mysa
serviceaccount "mysa" created

$ kubectl describe serviceaccount mysa
Name: mysa
Namespace: default
Labels: <none>
Annotations: <none>
Image pull secrets: <none>
Mountable secrets: mysa-token-prb4r
Tokens: mysa-token-prb4r
Events: <none>

$ kubectl get secrets
NAME TYPE DATA AGE
default-token-dbcfn kubernetes.io/service-account-token 3 26m
mysa-token-prb4r kubernetes.io/service-account-token 3 9m

18 | Chapter 3: Authentication

What you can learn from the preceding output (also shown in
Figure 3-2) is that the creation of a service account triggers the cre‐
ation of a secret, attached to and managed by the service account.
This secret contains the JSON Web Token discussed earlier.

Now that we have created the service account, we want to use it in a
pod. How can you do that? Simply by using the serviceAccount
Name field in the pod spec to select the service account, in our case,
mysa. Let’s store a pod spec in a file called podwithsa.yaml with the
following content:

apiVersion: v1
kind: Pod
metadata:
 name: podwithsa
spec:
 serviceAccountName: mysa
 containers:
 - name: shell
 image: alpine:3.7
 command:
 - "sh"
 - "-c"
 - "sleep 10000"

You can launch the pod and inspect its properties as follows (the
output has been edited for better readability):

$ kubectl apply -f podwithsa.yaml
pod "podwithsa" created

$ kubectl describe po/podwithsa
Name: podwithsa
Namespace: default
...
Volumes:
 mysa-token-prb4r:
 Type: Secret (a volume populated by a Secret)
 SecretName: mysa-token-prb4r
 Optional: false
...

And indeed, here you see that our podwithsa pod uses its own ser‐
vice account with the token mysa-token-prb4r (allowing it to com‐
municate with the API server) available at the usual file
location /var/run/secrets/kubernetes.io/serviceaccount/token moun‐
ted into the pod.

Identity | 19

At this point, you might be wondering why you would bother at all
messing around with service accounts and not always use the default
service account. This will make more sense when you learn how ser‐
vice accounts are used with RBAC to define permissions for users
and applications in Chapter 4. For now, just remember that service
accounts allow applications to communicate with the API servers (if
they have to at all).

Now that we’ve covered the basics of identity in Kubernetes, let’s
move on to how authentication works.

Authentication Concepts
In Figure 3-3, you can see how the API server conceptually per‐
forms authentication by using one of the available strategies repre‐
sented by the authentication plug-ins (learn more about the
supported strategies in the next section).

Figure 3-3. Authentication concepts

The flow Kubernetes uses to authenticate a client’s request is as fol‐
lows:

1. The client presents its credentials to the API server.
2. The API server uses one of the configured authentication plug-

ins (you can enable multiple) to establish the identity with an
identity provider.

3. The identity provider verifies the request information, includ‐
ing username and group membership.

20 | Chapter 3: Authentication

4. If the credentials are in order, the API server moves on to check
permissions as described in Chapter 4. Otherwise, it returns an
HTTP 401 Unauthorized client error status response code, and
with that the request fails.

The identity provider and its behavior depend on the
authentication plug-in used. For example, it could sim‐
ply be a file with usernames and passwords that you
provide to the API server or an external system like
Active Directory. Kubernetes is not opinionated con‐
cerning how you verify the credentials; it just provides
the interface and enforces a certain flow to make sure
requests come from well-known clients.

Kubernetes also supports user impersonation; that is, a user can act
as another user. For example, as a cluster admin, you could use
impersonation to debug any authorization issues.

Authentication Strategies
A couple of authentication strategies are available in Kubernetes,
represented by authentication plug-ins. Depending on the size of the
deployment, the target users (human versus processes), and organi‐
zational policies, you as a cluster admin can choose one or more of
the following:

Static password or token file
This strategy uses the Basic HTTP authentication scheme as per
RFC7617. Essentially, the API server requires the client to pro‐
vide the identify via an HTTP header named Authorization
and the value of Basic base64($USER:$PASSWORD) in case of a
static password file or Bearer $TOKEN in case of a static token
file. Since it’s inflexible to maintain a static file with the users
and their passwords and requires direct access to the API server,
this method is not recommended in production.

X.509 certificates
With this strategy, every user has their own X.509 client certifi‐
cate. The API server then validates the client certificate via a
configured certificate authority (CA). If the client certificate is
verified successfully, the common name of the subject is used as

Authentication Strategies | 21

http://bit.ly/2xEzaW1
https://tools.ietf.org/html/rfc7617
https://en.wikipedia.org/wiki/X.509
http://bit.ly/2Q6cTXJ

the username for the request, and any organizations defined for
the subject are used as groups. As an admin, you need to man‐
age access to the CA as well as issue the client certificates, and
reissue them as they approach expiry. Kubernetes does not, at
the time of writing, support certificate revocation, and this is
considered a good reason to use an SSO approach where possi‐
ble.

OpenID Connect (OIDC)
OIDC is an identity layer on top of the OAuth 2.0. With this
strategy, you use OIDC to provide the API server with an id-
token in the form of a JSON Web Token after using your pro‐
vider’s login page, such as Google or Azure Active Directory.

Bootstrap tokens
These are an experimental feature targeting the cluster setup
phase and can be used with installers such as kubeadm.

If you want to integrate with other authentication protocols such as
LDAP, SAML, and Kerberos, you can use one of the following meth‐
ods:

Authenticating proxy
The API server can be configured to identify users from request
header values, such as X-Remote-User. You need to take care of
setting up and running the proxy; see, for example, Haoran
Wang’s post of an authentication example.

Webhook token authentication
Essentially, a hook for verifying bearer tokens.

With that, we move on to some good practices and tooling around
authentication.

Tooling and Good Practices
The majority of the effort in the context of authentication is with the
Kubernetes cluster administrator. You would start off with existing
infrastructure that you need to integrate with, such as an LDAP
server your organization already uses to capture team members and
group-related information. You also want to take into account the
environment the cluster is running in, like a public cloud provider, a
managed service (Amazon Elastic Container Service for Kubernetes,
Azure Kubernetes Service, Google Kubernetes Engine, OpenShift

22 | Chapter 3: Authentication

http://bit.ly/2IfCNFK
https://openid.net/connect/
https://jwt.io/
http://bit.ly/2OLrSWO
http://bit.ly/2MZNPQg
http://bit.ly/2xNS77W
http://bit.ly/2ztRMt7
http://bit.ly/2ztRMt7
http://bit.ly/2Oh6DPS
http://bit.ly/2OeczsH

Online, etc.), or an on-premises deployment. The latter is impor‐
tant, as you may have different options depending on the environ‐
ment and may end up having more or less work with the
authentication bits, based on what authentication strategy you go
for.

Several tools are available to help with this (you may wish to check
the latest list on the website accompanying this book):

Keycloak
An open source IAM solution with built-in support to connect
to existing LDAP servers. Keycloak can authenticate users with
existing OIDC or SAML 2.0 identity providers. A Helm chart is
also available to deploy it in Kubernetes.

Dex
An identity service that uses OIDC to drive authentication for
other applications. Dex acts as a portal to other identity provid‐
ers, allowing you to defer authentication to LDAP servers,
SAML providers, or established identity providers like GitHub,
Google, and Active Directory.

AWS IAM Authenticator for Kubernetes
A tool to use AWS IAM credentials to authenticate to a Kuber‐
netes cluster maintained by Heptio and Amazon.

Guard
A Kubernetes webhook authentication server by AppsCode,
allowing you to log into your Kubernetes cluster by using vari‐
ous identity providers, from GitHub to Google to LDAP.

In the last section of this chapter, we look at good practices in the
context of authentication. Note that because a new Kubernetes
release comes out every couple of months, some tips might be more
relevant than others (as defaults change or new features are intro‐
duced):

Use third-party providers
Unless you have to roll your own thing, integrate Kubernetes
with third-party identity providers such as Azure, Google, or
GitHub.

Don’t use static files
If you can’t use third-party providers, prefer X.509 certificates
over static password or token files.

Tooling and Good Practices | 23

https://kubernetes-security.info/#authentication
https://www.keycloak.org/
http://bit.ly/2OS6NKf
https://github.com/coreos/dex
https://github.com/heptio/authenticator
https://github.com/appscode/guard

Life cycle
Ensure that when people leave the organization, their creden‐
tials are invalidated. With third-party providers, this task is typ‐
ically easier compared to when you roll your own solution. In
any case, regular audits help here as well to uncover holes.

To learn more about authentication options and gotchas, check out
the resources on the accompanying website, in the “Authentication”
section.

With this, we have reached the end of the discussion of authentica‐
tion in Kubernetes, and you are ready to learn where and how the
authentication information eventually is used: giving users and
applications permissions and enforcing those, through a process
known as authorization.

24 | Chapter 3: Authentication

https://kubernetes-security.info/#authentication

CHAPTER 4

Authorization

In this chapter, we focus on authorization in Kubernetes—assigning
permissions to users and applications and in turn enforcing those.
Authorization in Kubernetes verifies whether a certain action (such
as “list pods” or “create a secret”) is allowed by a certain user or
application, and if it is allowed, performs that action or otherwise
rejects it and potentially logs the attempt. We’re building on the con‐
cepts and flows presented in Chapter 3, so if you haven’t read that
chapter yet, now is a good time.

Authorization Concepts
Kubernetes authorizes API requests by using the API server, evalu‐
ating the request attributes against the policies and subsequently
allowing or denying the request. By default, permissions are denied,
unless explicitly allowed by a policy. Conceptually, authorization in
Kubernetes works as depicted in Figure 4-1.

25

https://kubernetes.io/docs/admin/authorization/

Figure 4-1. Authorization concepts

The authorization flow is as follows:

1. The client’s request is authenticated. See “Authentication Con‐
cepts” on page 20 for details on this step.

2. If the authentication was successful, the credentials are taken as
one input of the authorization module.

3. The second input to the authorization module is a vector con‐
taining the request path, resource, verb, and namespace (and
other secondary attributes).

4. If the user or application is permitted to execute a certain action
on a certain resource, the request is passed on further to the
next component in the chain, the admission controller. If not,
the authorization module returns an HTTP 403 Forbidden cli‐
ent error status response code, and with that the request fails.

Now that you know how authorization works in principle in Kuber‐
netes, let’s look at the ways permissions can be enforced.

Authorization Modes
Kubernetes offers multiple ways to enforce permissions, represented
by various authorization modes and modules:

26 | Chapter 4: Authorization

Node authorization
A special-purpose authorizer that grants permissions to kube‐
lets based on the pods they are scheduled to run.

Attribute-based access control (ABAC)
An authorizer through which access rights are granted to users
through policies combining attributes (user attributes, resource
attributes, objects, etc.).

Webhook
A webhook is an HTTP callback—an HTTP POST that occurs
when something happens. This mode allows for integration
with Kubernetes-external authorizers.

Role-based access control (RBAC)
This is explained in detail in the following section.

Since RBAC is the most important authorization method for both
developers and admins in Kubernetes, let’s look at it in greater detail.

Access Control with RBAC
Developed originally at Red Hat in the context of OpenShift, role-
based access control (RBAC) was upstreamed to Kubernetes and is
stable as of version 1.8 access. You should use RBAC for access con‐
trol and not use ABAC or, even worse, use none.

As you can see in Figure 4-2, you have a few moving parts when
dealing with RBAC:

Entity
A group, user, or service account (representing an app—that
wants to carry out a certain operation and requires permissions
in order to do so).

Resource
A pod, service, or secret that the entity wants to access.

Role
Used to define rules for actions on resources.

Role binding
This attaches (or binds) a role to an entity, stating that a set of
actions is permitted for a certain entity on the specified resour‐
ces.

Access Control with RBAC | 27

http://bit.ly/2IfD2k1
http://bit.ly/2OdsK9C
http://bit.ly/2OeczsH
http://bit.ly/2Q0DTrI
http://bit.ly/2Q0DTrI

Figure 4-2. The RBAC concept

The actions on a resource that a role uses in its rules are the so-
called verbs, such as the following:

• get, list (read-only)
• create, update, patch, delete, deletecollection (read-write)

Concerning the roles, we differentiate between two types:

Cluster-wide
Cluster roles and their respective cluster role bindings

Namespace-wide
Roles and role bindings

Sometimes it’s not obvious whether you should use a role or a clus‐
ter role and/or role binding, so here are a few rules of thumb you
might find useful:

• If you want to grant access to a namespaced resource (like a ser‐
vice or a pod) in a particular namespace, use a role and a role
binding.

• If you want to reuse a role in a couple of namespaces, define a
cluster role and use a role binding to bind it to a “subject” (an
entity such as a user or service account).

• If you want to grant access to cluster-wide resources such as
nodes or to namespaced resources across all namespaces, use a
cluster role with a cluster role binding.

28 | Chapter 4: Authorization

http://bit.ly/2Q6gzZt

Kubernetes prevents users from escalating privileges by
editing roles or role bindings. Users can create or
update a role only if they already have all the permis‐
sions contained in the role. For example, if user alice
does not have the ability to list secrets cluster-wide,
that user cannot create a cluster role containing that
permission.

Kubernetes defines default roles that you should consider using
before you start defining your own roles:

User-facing roles
cluster-admin, admin (for namespaces), edit, and view that
you can use out of the box for your end users.

Core components
The Kubernetes control-plane components as well as nodes
have predefined roles, such as system:kube-controller-

manager or system:node, defining exactly the permissions the
respective component needs in order to work properly.

Other components
Kubernetes defines roles for noncore components that are
almost always used alongside the core bits. For example, there’s
a role called system:persistent-volume-provisioner for ena‐
bling dynamic volume provisioning.

Other kinds of predefined roles also exist—for example, discovery
roles (such as system:basic-user) or controller roles (such as
system:controller:deployment-controller). These are internal
to Kubernetes, and unless you’re an admin debugging an installation
or upgrade, they are typically not very relevant to your daily routine.
If you want to know which roles are predefined and available in
your environment, use the following (which in our case listed more
than 50 roles, output omitted here):

$ kubectl get clusterroles

Now, this may sound intimidating and complex, so let’s look at a
concrete example. Say you have an application that needs to have
access to pod information. You could use the view default cluster
role for it:

$ kubectl describe clusterrole view
Name: view

Access Control with RBAC | 29

http://bit.ly/2zttgZ0

Labels: kubernetes.io/bootstrapping=rbac-defaults
Annotations: rbac.authorization.kubernetes.io/autoupdate=true
PolicyRule:
 Resources ... Verbs
 --------- ... -----
 bindings ... [get list watch]
 configmaps ... [get list watch]
 endpoints ... [get list watch]
 events ... [get list watch]
 limitranges ... [get list watch]
 namespaces ... [get list watch]
 namespaces/status ... [get list watch]
 persistentvolumeclaims ... [get list watch]
 pods ... [get list watch]
 pods/log ... [get list watch]
 pods/status ... [get list watch]
 replicationcontrollers ... [get list watch]
 replicationcontrollers/scale ... [get list watch]
 replicationcontrollers/status ... [get list watch]
 resourcequotas ... [get list watch]
 resourcequotas/status ... [get list watch]
 serviceaccounts ... [get list watch]
 services ... [get list watch]
 daemonsets.apps ... [get list watch]
 deployments.apps ... [get list watch]
 deployments.apps/scale ... [get list watch]
 replicasets.apps ... [get list watch]
 replicasets.apps/scale ... [get list watch]
 statefulsets.apps ... [get list watch]
 horizontalpodautoscalers.autoscaling ... [get list watch]
 cronjobs.batch ... [get list watch]
 jobs.batch ... [get list watch]
 daemonsets.extensions ... [get list watch]
 deployments.extensions ... [get list watch]
 deployments.extensions/scale ... [get list watch]
 ingresses.extensions ... [get list watch]
 networkpolicies.extensions ... [get list watch]
 replicasets.extensions ... [get list watch]
 replicasets.extensions/scale ... [get list watch]
 replicationcontrollers.extensions/scale ... [get list watch]
 networkpolicies.networking.k8s.io ... [get list watch]
 poddisruptionbudgets.policy ... [get list watch]

As you can see, the view default role would work, but it additionally
allows your application access to many other resources such as
deployments and services. This is a potential security risk and goes
against the principle of least privilege, so let’s create a dedicated role
for it. A role that allows you to retrieve only info about pods.

30 | Chapter 4: Authorization

Since we want to set permissions for an application rather than a
user whose identity is managed outside Kubernetes, we first have to
create a dedicated service account representing the application’s
identity toward the API server. Also, it’s a good practice to not use
the default namespace, so let’s start by creating a namespace coolapp
that our application will live in and then a service account myappid
in this namespace:

$ kubectl create namespace coolapp
namespace "coolapp" created
$ kubectl --namespace=coolapp create serviceaccount myappid
serviceaccount "myappid" created

Now that we have established an identity for our application, we can
define a role podview that allows only viewing and listing pods in its
namespace:

$ kubectl --namespace=coolapp create role podview \
 --verb=get --verb=list \
 --resource=pods

$ kubectl --namespace=coolapp describe role/podview
Name: podview
Labels: <none>
Annotations: <none>
PolicyRule:
 Resources Non-Resource URLs Resource Names Verbs
 --------- ----------------- -------------- -----
 pods [] [] [get list]

That looks more like it! The role podview allows only for viewing
pods. Next, we need to attach the role podview to our application,
represented by the service account myappid. We do this by creating a
role binding (which binds a role to a human or machine user) called
mypodviewer, like so:

$ kubectl --namespace=coolapp create rolebinding mypodviewer \
 --role=podreader \
 --serviceaccount=coolapp:myappid
rolebinding.rbac.authorization.k8s.io "mypodviewer" created

$ kubectl --namespace=coolapp describe rolebinding/mypodviewer
Name: mypodviewer
Labels: <none>
Annotations: <none>
Role:
 Kind: Role
 Name: podreader
Subjects:

Access Control with RBAC | 31

 Kind Name Namespace
 ---- ---- ---------
 ServiceAccount myappid coolapp

Note that for the service account parameter, we had to use the fully
qualified name ($NAMESPACE:$SERVICEACCOUNT). And with this last
command, the service account myappid representing our application
is bound to the podreader role and all of that in the namespace cool
app.

But how can you be sure that only the required permissions have
been granted? You can check it like so:

$ kubectl --namespace=coolapp auth can-i \
 --as=system:serviceaccount:coolapp:myappid
 list pods
yes

$ kubectl --namespace=coolapp auth can-i \
 --as=system:serviceaccount:coolapp:myappid
 list services
no

The last step, not shown here, is simply to use serviceAccountName
in the pod spec of your app, as you saw in the example at the end of
“Identity” on page 15.

Tooling and Good Practices
Several tools focus on authorization with RBAC (see also the up-to-
date list on our website):

audit2rbac
A tool that allows you to automatically determine what permis‐
sions are necessary for a certain application and generate RBAC
roles and bindings for you.

rbac-manager
A Kubernetes operator that simplifies the management of role
bindings and service accounts.

kube2iam
A tool that provides AWS IAM credentials to containers based
on annotations.

In the last section of this chapter, we look at good practices in the
context of authorization:

32 | Chapter 4: Authorization

https://kubernetes-security.info/#authorization
https://github.com/liggitt/audit2rbac
https://github.com/reactiveops/rbac-manager
https://github.com/jtblin/kube2iam

Use RBAC
This should be the standard now—if not, please do upgrade
Kubernetes to a version equal to or greater than 1.8. Pass the --
authorization-mode=RBAC parameter to the API server to
enable this.

Disable automounting of the default service account token
Most applications don’t need to talk to the API server, so they
don’t need an access token. This is especially important if you’re
not using RBAC. You can do this by specifying automountServi
ceAccountToken: false in the PodSpec for your applications,
or you can patch the default service account so that its creden‐
tials are not automatically mounted into pods:

$ kubectl patch serviceaccount default \
 -p $'automountServiceAccountToken: false'
serviceaccount "default" patched

Use dedicated service accounts
If your application needs access to the API server, either because
it’s a system-level thing or has been written with Kubernetes in
mind, it is good practice to create a dedicated service account
per application and configure RBAC to be specifically limited to
the needs of that application. Bear in mind that if a pod is com‐
promised in some way, the attacker will have access to the ser‐
vice account associated with that pod, and its corresponding
permissions. See also “Identity” on page 15 for more details.

To learn more about RBAC and how to use it, check out the resour‐
ces on the accompanying website, in the “Authorization” section.

Now that you know the basics of performing authentication and
authorization in Kubernetes, let’s discuss how to make your applica‐
tions more secure, starting with container images in the next chap‐
ter.

Tooling and Good Practices | 33

http://bit.ly/2N3ziTy
https://kubernetes-security.info/#authorization

CHAPTER 5

Securing Your Container Images

Until now, we’ve been discussing things mainly from the point of
view of a Kubernetes cluster administrator. Going forward, we’ll
switch gears and focus more on developers, operators, or even
DevOps teams who want to deploy code to run on the cluster.

The software that you run in your Kubernetes cluster gets there in
the form of container images. In this chapter, we’ll discuss how to
check that your images:

• Don’t include known critical vulnerabilities
• Are the images you intended to use, and haven’t been manipu‐

lated or replaced by a third party
• Meet other image policy requirements your organization might

have in place

Vulnerabilities
In this context, a vulnerability is a flaw in a piece of code that an
attacker can exploit to cause undesirable consequences, and that
has been publicly disclosed (typically, through the National Vulner‐
ability Database). For example, the renowned Heartbleed vulnera‐
bility was a flaw in the OpenSSL library that allowed attackers to
access system memory, and hence steal encrypted information.

35

https://nvd.nist.gov/
https://nvd.nist.gov/
http://heartbleed.com/

Scanning Container Images
To detect vulnerabilities, you need to use a container image scanner.
The basic function of a container image scanner is to inspect the
packages included in an image, and report on any known vulnera‐
bilities included in those packages. At a minimum, this looks at the
packages installed through a package manager (like yum or apt,
depending on the OS distribution). Some scanners may also exam‐
ine files installed at image build time; for example, through ADD,
COPY, or RUN operations in a Dockerfile. Some scanners also
report on known malware (e.g., viruses) or the presence of sensitive
data (like passwords and tokens).

To ensure that you’re not running vulnerable code in your deploy‐
ment, you should scan any third-party container images as well as
the ones built by your own organization.

New vulnerabilities continue to be found in existing software, so it’s
important to rescan your images on a regular basis. In our experi‐
ence, it’s typical for enterprise customers to rescan the images in use
on their production systems every 24 hours, but you should con‐
sider your own risk profile. Depending on the scanning tool you
use, this may be a simple configuration setting, or you may need to
write automation scripting to put this in place.

Several commercial image-scanning tools are available as well as
some open source and/or free-to-use options.

Some registries provide metrics on the health of the container
images they store. For example, the Red Hat Container Catalog
grades images from A–F, and the Google Container Registry and
Docker Trusted Registry also include image scan results.

Patching Container Images
Once you have identified that you have a container image that
includes a package with a vulnerability, you need to update the con‐
tainer to use a fixed version of the package. Please don’t be tempted
to SSH into your running containers and run something like yum
update or apt-get update, as this is an antipattern for containers!
It quickly becomes unfeasible to manually patch like this when run‐
ning hundreds or thousands of instances across a cluster. Factor in
the self-healing nature of Kubernetes, which ensures that a failed

36 | Chapter 5: Securing Your Container Images

http://bit.ly/2R0zNkP
https://access.redhat.com/containers/#/
https://cloud.google.com/container-registry/
https://dockr.ly/2QY9onp

container will be replaced with a new one, and autoscaling, which
can create and destroy containers automatically, and it becomes
clear that it’s really not possible to keep up with the patching process
manually.

The key to “patching” in a container deployment is to rebuild a new
container image, and then redeploy the containers based on that
new image. The build part is typically automated through a continu‐
ous integration (CI) pipeline, and this may be extended to cover
continuous deployment (CD) as well. While CI/CD and its bright
new cousin, GitOps, are out of scope for this book, it is worth exam‐
ining how security tooling fits into the CI/CD pipeline.

CI/CD Best Practices
Image scanning can be integrated into the CI/CD pipeline to auto‐
mate the process of rejecting images, as shown in Figure 5-1. Many
scanners can report a pass or fail for each image, either on basic cri‐
teria (“fail all images with high-severity vulnerabilities”) or more-
complex, custom policies (“fail if the image has any high-severity
vulnerabilities, ignoring this set of whitelisted vulnerabilities, and
also fail if the image has this particular blacklisted medium-severity
vulnerability, or includes sensitive data”).

You can use this pass/fail in several places in your CI/CD pipeline:

• A failed scan can result in a failed build.
• A failed scan before deployment can prevent the image from

being deployed.
• A failed scan on an image that’s already in production can result

in an alert so that operators can take remedial action.

CI/CD Best Practices | 37

Figure 5-1. The CI/CD pipeline

In Figure 5-1, we also see an admission control step. Advanced solu‐
tions may also use some form of dynamic admission control (see
“Dynamic Admission Control” on page 72) to ensure that images
are deployed only if they have been scanned, and the scan was suc‐
cessful. This step can also automatically check whether the image
can be trusted, as we’ll come to in “Image Trust and Supply Chain”
on page 40.

A good best practice is to use automation to scan all images before
they are stored in a container registry, rejecting any images that fail
the scan. The next question to consider, then, is the use of a secure
container registry.

Image Storage
Container images can be stored in public or private registries. Many
security-conscious organizations use one or more private registries
and require that only images from these registries can be deployed.

38 | Chapter 5: Securing Your Container Images

Running a private registry means that you have greater control over
who has permissions to read and write images. You can also deploy
the registry with limited network access, perhaps using a firewall so
that only known IP addresses can access it.

Several offerings are available for running your own registry, includ‐
ing Docker’s own implementation, GitLab’s Container Registry, and
Quay from Red Hat.

The major hosted Kubernetes solutions all offer a container registry
solution, which can have the advantage of tight integrations with the
cloud platform that you are already familiar with. For example, if
you are using AWS, the Elastic Container Registry uses IAM for
access control.

Whichever registry solution you are using, unless you are pulling
public images, you will need to grant access to your Kubernetes clus‐
ter so that it can pull images from the registry. It’s a good idea to use
read-only accounts for this purpose; with the exception of, say, a
CI/CD system deployed on Kubernetes, it’s highly unusual that your
Kubernetes nodes would need to push images into the registry. By
using read-only credentials, you mitigate the possibility that an
attacker who gains access to the cluster can push modified images
into your registry, which then get pulled and run.

Correct Image Versions
When we define the containers that will run in pods, the PodSpec
refers to the container image by using a fully qualified image name
that includes the registry, the owner, the repository, and a reference
to a particular image version—for example, gcr.io/myname/
myimage:1.0.

Typically, the version reference is in the form of a tag (1.0 in this
example). However, tags are mutable (the same tag can be moved to
refer to a different image), and an image can have multiple tags, so
you need to handle your tags with care.

The Container Solutions blog provides a good demonstration of the
confusion that can be created with image tags.

To be certain that you are deploying a particular version of an
image, it’s possible to refer to it by its unique digest instead of the

Correct Image Versions | 39

https://docs.docker.com/registry/deploying/
http://bit.ly/2ztfy8p
https://www.openshift.com/products/quay
https://aws.amazon.com/ecr/
http://bit.ly/2xOPIcY
http://bit.ly/2xysDfp
http://bit.ly/2O9U88w
http://bit.ly/2QYOogh

tag. Here’s an example of YAML specifying a container in this way
(digest truncated for clarity):

spec:
 containers:
 - name: myimage
 image: gcr.io/myname/myimage@sha256:4a5573037f358b6cdfa2...

While this ensures that you pick up a particular version of a con‐
tainer image, it means updating YAML whenever there is a new
revision. In our experience, it’s much more common to refer to
images by using a semantic version tag.

If you supply neither a tag nor a digest, the image version tagged
latest will be used. It’s recommended to avoid using the latest
version, at least in production, because it’s hard to keep track of
exactly what code is running, and worse, what version to use should
you want to roll back to a previous version.

Running the Correct Version of Container Images
Make sure to always run the correct version of your container image
by doing the following:

• Using semantic versioning when tagging your images. That way,
it’s easy to identify the version you expect to be running. An
alternative approach is to always refer to an image by its unique
SHA digest.

• Using the AlwaysPullImages admission controller to ensure
that the most recent version that matches the specified tag is
obtained. Without this, a node may run a stale version of the
image that it pulled some time in the past. You don’t need this if
you are confident that all your images have immutable tags, or
your YAML refers to all images by SHA. Using AlwaysPullIm
ages also ensures that the pod doesn’t bypass the credentials
check that it is entitled to access that image, by using a locally
cached version.

Image Trust and Supply Chain
We have discussed how to specify the correct version of an image in
your YAML files, but a potential problem still remains: ensuring that
the version pulled from the image registry is the genuine, intended

40 | Chapter 5: Securing Your Container Images

http://semver.org
http://bit.ly/2QYOogh
http://bit.ly/2xXKdc3
http://bit.ly/2DuQUsc

code. Several projects aim to help with the problem of ensuring the
provenance of the application software running in a deployment:

• The TUF project, and its implementation Notary, use signing to
ensure the integrity of an image—that is, to make sure that the
image retrieved from a registry at deployment time is the cor‐
rect version as signed by a trusted authority. The Portieris
admission controller can prevent images from being deployed if
they don’t have a valid Notary signature.

• Grafeas is another approach to storing and assuring image
metadata, including signatures to validate image integrity.

• The in-toto project provides a framework to protect the integ‐
rity of the components installed into an image, and the tests
they have passed.

• Commercial security solutions can also add validation that the
image being deployed is a precisely approved version that
matches your policies.

In a high-risk environment, you will want to explore tools like these
for validating image provenance.

Minimizing Images to Reduce the Attack
Surface
Following the principle of “Limiting the Attack Surface” on page 4,
you can take it as a general rule that the smaller the image, the
smaller the attack surface:

• By minimizing the amount of code you include in the image,
you can reduce the likelihood of a vulnerability.

• There is rarely a good reason to include an SSH daemon, as
explained by Jérôme Petazzoni.

• Along similar lines, other utilities in your images may not be
required by the application code. Excluding them will make the
running container less useful to an attacker who manages to
compromise it. For example, suppose that a container has access
to database credentials that it accesses by reading from a secrets
file (see Chapter 7). If the container image doesn’t include utilit‐
ies like cat or more, it will be that much harder for attackers to
read the credentials even if they gain access to the running con‐

Minimizing Images to Reduce the Attack Surface | 41

https://theupdateframework.github.io/
http://bit.ly/2IpFN2i
https://github.com/IBM/portieris
https://github.com/IBM/portieris
https://grafeas.io/
https://in-toto.github.io/
http://bit.ly/2OULB6I

tainer. If the image doesn’t even have a shell (like sh or bash)
included in the image, this will make an attack even harder.

• Taking this idea even further, if your application code can be
built as a static binary, you can build an image that contains
nothing but that binary. This image will have no utilities that an
attacker can take advantage of.

As a counterpoint, however, consider that by excluding core tooling
such as cat, troubleshooting will also be hard for you, so you want
to aim for a sensible trade-off here.

To learn more about reducing image sizes, see Abby Fuller’s talk on
reducing image sizes. For more information on building secure con‐
tainer images, check out the resources on the accompanying web‐
site, in the “Securing Your Container Images” section.

As you’ve seen in this chapter, a lot can be done at the image build
stage to ensure that the application code is safe to deploy. Next, we
turn our attention to Kubernetes security features that apply while
code is running.

42 | Chapter 5: Securing Your Container Images

http://bit.ly/2xECjVF
http://bit.ly/2xECjVF
http://bit.ly/2R0zNkP

CHAPTER 6

Running Containers Securely

Now that you know how to build container images in a secure man‐
ner from Chapter 5, we move on to the topic of running those
images as containers in Kubernetes. In order to run containers
securely in Kubernetes, we aim to do the following:

• Use least privilege to carry out the task at hand.
• Do only the minimal host mounts necessary.
• Limit communication between applications, and to and from

the outside world, to a defined and deterministic set of connec‐
tions.

Before we discuss the security boundaries in Kubernetes and the fea‐
tures that you have at your disposal to enforce policies, let’s have a
quick look at two topics essential for you to appreciate the rest of the
chapter: why you should not run containers as root (unless you have
to) and how the API server deals with enforcing policies.

Say No to Root
As “Mr. SELinux” Dan Walsh pointed out in “Just Say No to Root (in
Containers),” there’s little need to run containers as root. Some
exceptions are as follows:

• Your container needs to modify the host system; for example,
modifying the kernel’s configuration.

43

https://red.ht/2xErrHb
https://red.ht/2xErrHb

• The container needs to bind to privileged ports on the node
(below 1024—for example, nginx serving on port 80). In prac‐
tice, this can be by-and-large avoided through port mappings
and the service abstraction in Kubernetes.

• Installing software into a container at runtime: traditional pack‐
age management systems might require root to function or
store files in a certain location with a different user ID than the
user executing the program. This approach is generally consid‐
ered bad practice since any code installed at runtime has not
been scanned for vulnerabilities or other policy requirements
(see Chapter 5).

If your container does not fall into one of the preceding categories,
then according to the principle of least privilege, it would make
sense to run it as a nonroot user. You can do this by including a USER
command in the Dockerfile, defining a user identity that the code
should run under.

The advocacy site canihaznonprivilegedcontainers.info has more
background resources on this topic, and Liz explored it in her “Run‐
ning with Scissors” keynote at KubeCon Copenhagen in 2018. How‐
ever, general awareness around this topic is sadly still low, and most
images on Docker Hub are built to run as the root user by default
(having no USER command).

Let’s move on and see how the API server enforces policies.

Admission Control
When a client submits a request to the API server and that request
has been authenticated (Chapter 3) and the client is authorized
(Chapter 4) to carry out the operation, there is one more step the
API server performs before persisting the resource in etcd: admis‐
sion control. A whole slew of admission controllers are included in
the API server, that you, as a cluster admin, can configure. The offi‐
cial docs list explains the more than 30 controllers in great detail;
some relevant ones in the context of running containers securely are
as follows:

AlwaysPullImages

Modifies every new pod to force the image pull policy to
Always, overwriting the default specification. This can be

44 | Chapter 6: Running Containers Securely

http://canihaznonprivilegedcontainers.info/
http://bit.ly/2ObSYcv
http://bit.ly/2ObSYcv
http://bit.ly/2ztKrJM

important (especially in a multitenant environment) since the
default behavior is that when an image is pulled to a node, it is
stored locally and can be accessed by other pods on the node
without them needing to pull it again. These other pods would
therefore bypass the registry credentials check when pulling an
image to ensure that they are entitled to access that image.

DenyEscalatingExec

Denies exec and attach commands to pods that run with esca‐
lated privileges, allowing host access. Prevents attackers from
launching interactive shells into privileged containers, so this is
recommended.

PodSecurityPolicy

Acts on creation and modification of the pod and determines
whether it should be admitted based on the requested security
context and the available policies. See also “Policies” on page 47.

LimitRange and ResourceQuota
Observes the incoming request and ensures that it does not vio‐
late any of the constraints enumerated in the LimitRange and
ResourceQuota object in each namespace, respectively, which
helps to combat denial-of-service attacks.

NodeRestriction

Limits the permissions of each kubelet, as discussed in Chap‐
ter 2.

Now that you’re equipped with the basics of policy enforcement in
Kubernetes, let’s focus on the main topic of this chapter: security
boundaries and how to realize them.

Security Boundaries
We introduced some security principles in Chapter 1, and one of
those principles is defense in depth. Kubernetes gives you a set of
first-class mechanisms to realize defense in depth. To better under‐
stand what that means, have a look at Figure 6-1, which shows the
security boundaries present by default.

Security Boundaries | 45

Figure 6-1. Security boundaries

By security boundary, we mean a set of controls to prevent a process
from affecting other processes and/or accessing data from other
users. From the most outer to the most inner layers of isolation,
these boundaries are as follows:

Cluster
Comprises all nodes as well as control-plane components, pro‐
viding network isolation, and forms the top-level unit (modulo
federation, not in scope here). You might prefer different clus‐
ters for each team and/or stage (for example, development, stag‐
ing, production) to implement multitenancy over, say,
namespace-level or node-level isolation.

Node
A virtual or bare-metal machine in the cluster hosting multiple
pods and system components such as the kubelet or kube-
proxy, typically labeled with system properties. Those nodes are
restricted to exactly access the resources necessary to carry out
their tasks; for example, when a pod is scheduled on that node.
You can separate sensitive workloads by assigning pods to cer‐
tain nodes either using the nodeSelector or, even better, using
node or pod affinity. The node authorizer discussed in “Author‐
ization Modes” on page 26 allows you to minimize the blast
radius, effectively helping to confine an attack to a single node.

Namespace
A sort of virtual cluster, containing multiple resources such as
services and pods. Namespaces are the basic unit for authoriza‐

46 | Chapter 6: Running Containers Securely

http://bit.ly/2N0Fv2Q

tion (see “Access Control with RBAC” on page 27). With certain
admission controllers, as shown in “Admission Control” on
page 44, you can restrict resource depletion and with that help
combat; for example, denial-of-service attacks.

Pod
A management unit Kubernetes uses to group containers with
the guarantee that all containers in the pod are scheduled on the
same node. It offers a certain level of isolation: you can define a
security context and enforce it (discussed in “Security Context
and Policies” on page 48) as well as specify network-level isola‐
tion (see “Network Policies” on page 52).

Container
A container is essentially a combination of cgroups, namespa‐
ces, and copy-on-write filesystems that manages the
application-level dependencies. By configuring the Quality of
Service of your pods, you can influence the runtime behavior,
but unless you’re using advanced runtime sandboxing techni‐
ques as discussed in “Sandboxing and Runtime Protection” on
page 69, containers typically do not provide strong isolation
guarantees beyond the kernel-level security ones.

Remember that maximizing the defense here requires a joint effort
by developers and cluster or namespace admins since some of the
responsibilities (such as creating a container image) fall into the
realm of the former, and others (like managing nodes or namespa‐
ces) fall into the realm of the latter.

The layout and composition of the security boundaries
shown here were based on and motivated by an excel‐
lent blog post by the Google Cloud Platform team. You
can read more here: “Exploring Container Security:
Isolation at Different Layers of the Kubernetes Stack.”

Now that you know about the security boundaries, let’s see what
mechanisms you have available to establish and enforce them.

Policies
Kubernetes offers two pod-level security-policy mechanisms allow‐
ing you to restrict what processes can do within a pod (as described

Policies | 47

http://bit.ly/2N3OccC
http://bit.ly/2N1xdaM
http://bit.ly/2N1xdaM
http://bit.ly/2xL7RZc
http://bit.ly/2xL7RZc

in the next section) and how pods are allowed to communicate (as
laid out in “Network Policies” on page 52).

Security Context and Policies
A security context defines privilege and access control settings on
either the pod or container level. The supported settings are as fol‐
lows:

Implement discretionary access control
Set permissions to access operating system objects, such as files,
based on user or group ID as well as running as an (un)privi‐
leged process.

Capabilities
Rather than giving someone root access, you can use capabili‐
ties to split the (unrestricted) root access into a set of separate
permissions such as CHOWN or NET_RAW.

Apply profiles
Configure seccomp by filtering system calls for processes or
configure AppArmor to restrict the capabilities of processes.

Implementing mandatory access control
Through configuring SELinux, by assigning security labels to
operating system objects.

Using a security context is straightforward: use the securityCon
text field on either the pod level or on the level of a particular con‐
tainer. For example, imagine you want to define the following:

• All containers in the pod must run under user 1001, through the
runAsUser setting.

• In the webserver container, prevent setuid binaries from
changing the effective user ID as well as prevent files from ena‐
bling extra capabilities by setting allowPrivilegeEscalation
to false.

This translates into the following pod specification we store under
secconpod.yaml:

apiVersion: v1
kind: Pod
metadata:
 name: securepod

48 | Chapter 6: Running Containers Securely

http://bit.ly/2IePTmP
http://bit.ly/2NEYl4N
https://en.wikipedia.org/wiki/Seccomp
https://github.com/genuinetools/bane

spec:
 securityContext:
 runAsUser: 1001
 containers:
 - name: webserver
 image: quay.io/mhausenblas/pingsvc:2
 securityContext:
 allowPrivilegeEscalation: false
 - name: shell
 image: centos:7
 command:
 - "bin/bash"
 - "-c"
 - "sleep 10000"

Now you can launch the pod and check the user that the respective
container is running under:

$ kubectl apply -f secconpod.yaml
pod "securepod" created

$ kubectl exec -it securepod --container=webserver -- id
uid=1001 gid=0(root) groups=0(root)

$ kubectl exec -it securepod --container=shell -- id
uid=1001 gid=0(root) groups=0(root)

So that works great; we can make sure that, for example, a container
in a pod doesn’t run as root. But how can you make sure, as a cluster
or namespace admin, that your developers use appropriate security
contexts?

Enter pod security policies. A pod security policy is a cluster-wide
resource that allows you to enforce the usage of security contexts.
The API server automatically enforces those policies for you, using
admission controllers, as described in “Admission Control” on page
44. If a pod’s specification doesn’t meet the requirements of the pod
security policy, it won’t be run (although note that for pod security
policies to take effect, the PodSecurityPolicy admission plugin
must be enabled, and permission must be granted to use that policy
for the appropriate users).

PodSecurityPolicy allows us to define securityContext context
settings, along with other security-related settings such as the sec‐
comp and AppArmor profiles.

Policies | 49

http://bit.ly/2xCkUwX

A word on seccomp and AppArmor profiles: by
default, containers running under Docker use a sec‐
comp and AppArmor profile that prevent some system
calls that most containerized applications have no
business trying to run. Docker is used to provide the
runtime layer for many Kubernetes installations, and it
would be easy—but sadly incorrect, at least at the time
of writing—to assume that the same profiles would be
used by default in Kubernetes as well.

To enable the default Docker seccomp profile, include the following
annotations set in your pod security policies:

annotations:
 seccomp.security.alpha.kubernetes.io/allowedProfileNames: \
 'docker/default'
 seccomp.security.alpha.kubernetes.io/defaultProfileName: \
 'docker/default'

Let’s see how we can enforce the “must run as nonroot user” sce‐
nario, along with Docker’s default seccomp and AppArmor profiles,
using the following policy:

apiVersion: policy/v1beta1
kind: PodSecurityPolicy
metadata:
 name: nonroot
 annotations:
 seccomp.security.alpha.kubernetes.io/allowedProfileNames: \
 'docker/default'
 apparmor.security.beta.kubernetes.io/allowedProfileNames: \
 'runtime/default'
 seccomp.security.alpha.kubernetes.io/defaultProfileName: \
 'docker/default'
 apparmor.security.beta.kubernetes.io/defaultProfileName: \
 'runtime/default'
spec:
 privileged: false
 allowPrivilegeEscalation: false
 runAsUser:
 rule: MustRunAsNonRoot
 seLinux:
 rule: RunAsAny
 supplementalGroups:
 rule: MustRunAs
 ranges:
 - min: 1000
 max: 1500
 fsGroup:

50 | Chapter 6: Running Containers Securely

https://dockr.ly/2PLrgl7
https://dockr.ly/2PLrgl7
https://dockr.ly/2NIJy9i

 rule: MustRunAs
 ranges:
 - min: 1000
 max: 1500

Least privilege security settings
We have already discussed why it’s preferable to limit the container
to running as nonroot, and that it’s a good idea to use seccomp and
AppArmor profiles. Other settings in securityContext and PodSe
curityPolicy are worth considering to restrict a pod to its least
privileges:

Use a read-only root filesystem
A common attack pattern in a compromised container is for
attackers to write an executable file that they will then run. If
your application code doesn’t need to be able to write into the
filesystem inside the container, the readOnlyRootFilesystem
setting prevents that approach.

Limiting host volume mounts
As discussed in “Running with Scissors”, certain sensitive direc‐
tories should not be mounted from the host into a container
without very good reason, as a compromised container (or just
buggy code) could lead to undesired changes on the host. The
allowedHostPaths parameter in PodSecurityPolicy allows
you to limit what can be mounted and therefore made accessi‐
ble to the container.

Disallow privileged access
Unless your container has a particular need for privileged Linux
capabilities, privileged and allowPrivilegeEscalation

should be false. Privileged access within a container is effec‐
tively the same as root access on the host.

The reference documentation on PodSecurityPolicy is worth
examining in detail if you want to carefully restrict the permissions
granted to container code.

With that, we’ve covered the basics of pod-level policies and move
on to communication between pods.

Policies | 51

http://bit.ly/2MYA309
http://bit.ly/2O9EzO3

Network Policies
Limiting the traffic that can flow between pods adds a good layer of
security:

• Even if an external attacker is able to reach the cluster network,
network policy can stop that attacker from sending traffic that
reaches application code running inside pods.

• If a container somehow becomes compromised, an attacker will
typically try to explore the network to move laterally to other
containers or hosts. By restricting the addresses, ports, and pods
that can be contacted, the attacker’s ability to reach other parts
of the deployment is curtailed.

Applications running in Kubernetes can potentially communicate
with outside clients (north-south traffic) as well as with other appli‐
cations running within the Kubernetes cluster (east-west traffic).

By default, all kinds of ingress (incoming) and egress (outgoing)
traffic are allowed, but you can control how pods are allowed to
communicate by using a Kubernetes feature called network policies.
From version 1.7 onward, this feature is considered stable and hence
ready for use in production.

Not all Kubernetes networking solutions support net‐
work policy! If your networking add-on doesn’t imple‐
ment a controller for NetworkPolicy resources,
defining them will have no effect.

Different Kubernetes distributions support network policies to dif‐
ferent degrees. Popular network policy providers include Calico,
Weave Net, OpenShift SDN, and Cilium. The latter is a BPF-based
(Berkeley Packet Filter) implementation with a promising future.

Example Network Policy
Let’s look at an example network policy preventing all ingress traffic
to and egress traffic from all pods in the namespace lockeddown:

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 name: nonetworkio
 namespace: lockeddown

52 | Chapter 6: Running Containers Securely

http://bit.ly/2vgq96P
http://bit.ly/2OOhIEQ
http://bit.ly/2QaQwRd
http://bit.ly/2xPTh2H
http://bit.ly/2OaiQpq
http://bit.ly/2vgr8Uz
http://bit.ly/2ztKYvg
http://bit.ly/2ztYxLk
http://bit.ly/2zuhlKv

spec:
 podSelector: {}
 policyTypes:
 - Ingress
 - Egress

A network policy applies to the set of pods that match the podSelec
tor defined in the spec. Typically, a label selector is used to match a
subset of pods; an empty podSelector as in the preceding example
matches all pods.

If a pod is not matched by any network policies, all traffic is allowed
to and from that pod.

The Kubernetes documentation includes example network policies
that you might use to limit traffic to and from all pods by default.

Effective Network Policies
For network policies to be at their most effective, we want to ensure
that traffic can flow only where it is needed, and nowhere else. To
achieve this, you will typically start with a DenyAll default policy
that matches all pods with an empty podSelector, just as in the pre‐
ceding lockeddown example. Then take a structured approach to
adding network policies that allows traffic between application pods
as necessary.

Suppose we have an application called my-app that stores data in a
Postgres database. The following example defines a policy that
allows traffic from my-app to my-postgres on the default port for
Postgres:

 apiVersion: networking.k8s.io/v1
 kind: NetworkPolicy
 metadata:
 name: allow-myapp-mypostgres
 namespace: lockeddown
 spec:
 podSelector:
 matchLabels:
 app: my-postgres
 ingress:
 - from:
 - podSelector:
 matchLabels:
 app: my-app
 ports:

Policies | 53

http://bit.ly/2QYuP88

 - protocol: TCP
 port: 5432

We then likely want to allow traffic from the internet to access my-
app, which we can achieve with another network policy like this:

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
 name: allow-external
 namespace: lockeddown
spec:
 podSelector:
 matchLabels:
 app: my-app
 ingress:
 - from: []

The combination of these three network policies allows the applica‐
tion traffic to flow as desired from external users to the application
pods, and from the application pods to the database, but traffic is
not permitted anywhere else in this lockeddown namespace.

Ahmet Alp Balkan has put together a set of useful network policy
recipes as well as a good post on the topic of “Securing Kubernetes
Cluster Networking”. Another helpful backgrounder is “Kubernetes
Security Context, Security Policy, and Network Policy” by Mateo
Burillo.

Going forward, service meshes will also play a role in this area. See
“Service Meshes” on page 72 for more on this topic.

Metadata API in cloud platforms
Platforms such as AWS, Microsoft Azure, and Google Cloud Plat‐
form pass configuration information to nodes through a Metadata
API. This can be the source of serious escalations; for example, as
disclosed in a bug bounty at Shopify. This can include critical infor‐
mation including the node’s kubelet credentials, so it is important to
restrict access to these APIs.

This can be achieved through network policies that block traffic to
the Metadata API for all pods that don’t explicitly need access. Azure
and AWS both use the IP address 169.254.169.254, and Google uses
the domain name metadata.google.internal.

54 | Chapter 6: Running Containers Securely

http://bit.ly/2OPREt6
http://bit.ly/2OPREt6
http://bit.ly/2Q51dVe
http://bit.ly/2Q51dVe
http://bit.ly/2N32xG2
http://bit.ly/2N32xG2
https://hackerone.com/reports/341876

Resource quotas and networking
Resource quotas are used to limit the resources available to a name‐
space. We discuss this more generally in “Multitenancy” on page 70,
but they are worth also considering here while we are thinking
about restricting network access.

Resource quotas can be used to limit the number of service resour‐
ces—and more specifically, the number of NodePort- or
LoadBalancer-type services. Setting a limit of 0 can prevent a user
from creating an application that is accessible from outside the clus‐
ter.

Reaching the end of this chapter, you now know how to create
images in a secure way and subsequently use those images to run
containers securely in Kubernetes by using the built-in features such
as namespaces, RBAC, and policies on the pod and network level.
With that as a solid foundation, we next look at how to manage sen‐
sitive data in Kubernetes.

Policies | 55

http://bit.ly/2r0eq6p

CHAPTER 7

Secrets Management

Your application code often needs access to secret information, like
credentials, in order to do its job. For example, if you run an e-
commerce site, some components will need access to a product
database, and other components likely will need to be able to man‐
age user or payment information. These components will need the
right access tokens or username/password combinations so they can
access the data they need to view or manipulate.

In this chapter, we consider the options for passing secret informa‐
tion into your code running under Kubernetes. Kubernetes provides
a “secret” resource for this purpose, but there are different ways of
using these secrets that you will want to weigh. In addition, you also
need to be aware of some aspects of the Kubernetes secrets imple‐
mentation from a security perspective.

Applying the Principle of Least Privilege
The principle of least privilege has two consequences on secrets
management in Kubernetes:

• We want to ensure that containerized code can read only the
secrets that it needs.

• It’s a good idea to have a different set of secrets for different
environments (like production, development, and testing). The
development and test credentials can be shared with a wider set

57

of team members without necessarily giving them full access to
the production credentials.

Secret Encryption
Since secret values protect sensitive data, we want them to be hard
to access. Ideally, they should by protected at rest and in transit:

At rest
Secrets should always be stored on disk in encrypted form, so
that an attacker with access to the filesystem cannot simply read
them from the file. In this chapter, you will see how secrets are
stored in Kubernetes, and our options for encrypting at rest.

In transit
Secrets should be encrypted whenever they are sent as network
traffic, so that an attacker snooping on the network cannot read
them as they pass.

Encryption in transit is achieved by encrypting the traffic between
the Kubernetes control-plane components using TLS (see Chap‐
ter 2). In order to consider how we can store our secrets safely in
encrypted form, let’s look at how Kubernetes manages secrets, and
the options for where they can be stored.

Kubernetes Secret Storage
The Kubernetes secret resource type is a mechanism for passing
secrets to your code without them appearing in plain text in the
pod’s YAML. Instead, the pod specification refers to a secret by
name, and the actual value of the secret is configured separately.

Take care with the storage and control of any YAML or
JSON manifest files used to define secrets. If you check
these manifests into source code control, the secret
value is accessible to anyone with access to that reposi‐
tory. Note also that secret values encoded in base64 in
secret manifest files are not encrypted!

The default storage for secret values is etcd, or you can use third-
party secret storage solutions.

58 | Chapter 7: Secrets Management

http://bit.ly/2xCI7Pz

Storing Secrets in etcd
By default, secret values are stored alongside other configuration
information in the etcd database; they are simply base64 encoded.

Although base64 encoding makes content unreadable
to the human eye, it does not encrypt it. If you come
across base64-encoded information, you simply need
to pass it through base64 decoding to retrieve the orig‐
inal information; no key is required. In other words,
base64 is effectively plain text to an attacker.

Anyone who gains access to your etcd database will be able to read
base64-encoded secrets from it. You can control access by configur‐
ing secure access only (see Chapter 2), but even then there is a risk:
your data is written to disk unencrypted, and if an attacker gains
access to the filesystem, your data may be compromised.

You can avoid this risk by ensuring that your etcd cluster is also
encrypted on disk. (The API server has access to the encrypted data
in etcd, so you will also want to limit API access as described in
Chapter 2 and Chapter 4.)

The EncryptionConfig YAML file for etcd encryption
includes a secret for unlocking the encrypted data. You
should make sure that this file can be read only by the
user account that runs the Kubernetes API server,
which often is root.

It’s good practice to rotate the encryption secret from time to time.
If you have multiple etcd nodes, you should also encrypt the com‐
munication between them, to prevent the secret values from being
passed in the clear.

Storing Secrets in Third-Party Stores
Some third-party systems are specifically designed to store secret
and sensitive values. Using these in conjunction with Kubernetes is
considered by many to be a more secure option than storing the
secrets alongside less-sensitive information in etcd.

Kubernetes Secret Storage | 59

http://bit.ly/2ORsavt
http://bit.ly/2ORsavt
http://bit.ly/2xEyUWW
http://bit.ly/2N1wIxq
http://bit.ly/2N1wIxq

The major cloud providers have key management systems that can
be used in this way. Other third-party solutions include HashiCorp
Vault and CyberArk Conjur.

Commercial container security tools offer integration with multiple
backend secret stores, and can also control access so that only spe‐
cific containers have access to particular secrets.

Passing Secrets into Containerized Code
There are three ways to get secrets (or any other kind of informa‐
tion) into a container so that they are accessible to the application:

• Building them into the image itself
• Passing them into the container as environment variables
• Mounting a volume into a container so that code can read the

information out of a file on that volume

You might be thinking that the container application could query
secrets through some kind of network activity, but then the question
arises: how do you stop that information from being available to bad
actor entities without requiring credentials of some kind? Then
those credentials are a secret that needs to be passed into the con‐
tainer first, and we are back to the set of three options.

Kubernetes secrets support the last two of these approaches,
although for reasons we will cover shortly, the third option of
mounting a volume is generally considered the safest, so if you are
short of time, skip ahead to “Passing Secrets in Files” on page 63.
Before we come to that, let’s consider why building secrets into con‐
tainer images is really not a great idea.

Don’t Build Secrets into Images
The first of these options is a bad idea for secrets, and here are a few
reasons:

• Anyone who has access to the image can obtain the secrets it
holds. Bear in mind that the set of people who can access the
image may not be the same set of people who need your pro‐
duction credentials.

60 | Chapter 7: Secrets Management

https://www.vaultproject.io/
https://www.vaultproject.io/
https://www.conjur.org/

• If you want to change a secret value, you need to rebuild the
image. This can imply downtime: for example, if you change
database credentials, your application code can’t access the data‐
base until it is rebuilt and redeployed.

• Anything that is built into the image is likely under source code
control, and unfortunately it’s all too common to see secret
information made publicly available through GitHub and simi‐
lar tools. Even if your repos are private, consider the possibility
that an authorized user forks your repo and makes it public.

Passing Secrets as Environment Variables
The Twelve-Factor App manifesto taught us to pass configuration
information into applications as environment variables. This allows
us to separate configuration from code, which is helpful when you
need to run the same code in different scenarios (production, test,
your own laptop…).

You can pass environment variables into containers at runtime. This
means you can take the container image (code) and configure it
according to the scenario it is running in. In Kubernetes, “ordinary”
environment variables can be specified directly in the pod YAML or
via a ConfigMap. But be careful: including secret values in YAML
files that you check into code control means those secrets are acces‐
sible to the same people who can see the source code.

To mitigate this, Kubernetes also supports the secret resource, which
can be passed into a pod as an environment variable. Your pod spec
or ConfigMap YAML refers to the secret resource by name rather
than directly to the secret value, so that it’s safe to put that YAML
under code control.

However, it’s easy to “leak” information from environment variables
to places you might not have considered. Let’s have a look at three
cases:

Case 1
It’s common for a process to log out its entire environment in the
event of a crash. This may be written to file, or in many deployments
it will make its way to a centralized log aggregation system. Should
the people who have access to this system also have access to your
production database credentials?

Passing Secrets into Containerized Code | 61

http://bit.ly/2ztncQn
http://bit.ly/2ztncQn
https://12factor.net/config
http://bit.ly/2Q8Hlkb
http://bit.ly/2xCI7Pz
http://bit.ly/2xO0Syz

Case 2

Take a look at the results from kubectl describe pod <example>
and you will find the environment variables are available in plain
text, such as shown in the following:

$ kubectl describe pod nginx-env-6c5b7b8ddd-dwpvk
Name: nginx-env-6c5b7b8ddd-dwpvk
...
Containers:
 nginx-env:
 ...
 Environment:
 NOT_SO_SECRET: some_value
 ...

You may have people who are allowed to inspect running pods in
your cluster who again don’t need access to the most privileged of
credentials in your system.

Case 3
If you are using Docker as your container runtime, the environment
is accessible using docker inspect <container>, running on the
host as shown here:

$ sudo docker inspect b5ad78e251a3
[
 {
 "Id": "b5ad78e251a3f94c10b9336ccfe88e576548b4f387f5c7040...",
 ...
 "Config": {
 "Hostname": "nginx-env-6c5b7b8ddd-dwpvk",
 ...
 "Env": [
 "NOT_SO_SECRET=some_value",
 ...
]
 }
 }
]

The fact that environment variables are accessible via logs or via the
command line to a broader set of people than might need access to
secret credentials can be considered a security risk. You should con‐
template whether this is an issue in your application and in your
organization.

Some commercial solutions inject secrets into the environment by
using a proprietary technique that means that the secret is not avail‐

62 | Chapter 7: Secrets Management

able through the command line via kubectl describe or docker
inspect. However, this approach still doesn’t protect against leaks
through dumping the environment to a file or to a log.

You can restrict access via kubectl by using RBAC (see Chapter 4)
so that only a subset of users can access specific pods.

Passing Secrets in Files
The last mechanism for passing information into a container is via a
volume mounted into the container, where secret values are written
into files on that volume. Kubernetes supports passing secrets into
pods through volume mounts. The containerized code needs to read
values out of these files.

If the mounted volume is a temporary filesystem, so much the bet‐
ter. This means the files are not written to disk, but held in memory,
thus helping our aim of never storing secrets in plain text at rest.

The values held in the file are not accessible via docker inspect or
kubectl describe. It’s possible that the application code might
write these secrets to somewhere undesirable, but this is much less
likely than the inadvertent inclusion of secrets as part of a dump of
environment variable values.

Secret Rotation and Revocation
For humans, it is no longer considered advisable to require frequent
password changes, but this advice doesn’t apply to the secrets used
by machines. The longer a given secret remains valid, the more
likely that it has been compromised. By regularly changing, or
“rotating,” secret values, we can ensure that a secret stops being of
any use to an attacker.

For both the human- and machine-readable credentials related to
your applications, you should have a mechanism in place that allows
you to revoke a value if you discover it has been compromised. If
you have a regular secret rotation process in place, you can have
confidence that you can revoke or change a secret in the event of an
emergency without harmful effects on the system.

Depending on how your application code is written, you may need
to restart a pod in order for a new secret value to take effect. For
example, an application might read a database password (from a file

Secret Rotation and Revocation | 63

http://bit.ly/2xNOOxy
http://bit.ly/2xNOOxy
http://bit.ly/2xOFR6R
http://bit.ly/2xOFR6R

or from an environment variable) just once as part of its initializa‐
tion; it would need to be restarted in order to read the new value
when it changes.

A different approach in the application might be to reread the secret
value, perhaps on a regular basis, or in response to a failure using
the currently held value. If the application code can cope with a
secret being updated, this leads us to a benefit of the file-based
approach to passing secrets: Kubernetes can update the secret value
written to file without having to restart the pod. If you’re using the
environment variable mechanism in Kubernetes to pass secrets, they
can’t be updated live without a pod restart (although commercial
solutions provide this capability).

Secret Access from Within the Container
If attackers gain execution access to a container, there is a high like‐
lihood they will have access to the secrets within that container. This
includes access via kubectl exec and docker exec.

In this situation, runtime protection can help (see “Sandboxing and
Runtime Protection” on page 69). The fewer tools that the attacker
can run inside the container, the better. For example, if the secrets
are held in a file, preventing the attacker from being able to run
commands like cat, more, or less make it harder to reach the
secrets.

You can also limit the attacker’s ability to access secrets by not build‐
ing those commands into the container image in the first place. See
Chapter 5 for more on reducing the attack surface in an image.

Secret Access from a Kubelet
Prior to Kubernetes 1.7, any kubelet could access any secret, but
nowadays node authorization ensures that a kubelet can access only
the secrets related to those pods that are scheduled to its node. If a
node is compromised, this limits the effect of secrets access. You can
ensure that this is in use by confirming that --enable-admission-
plugins includes NodeRestriction.

To learn more about secrets and how to use them, check out the
resources on the accompanying website, in the “Secrets” section.

64 | Chapter 7: Secrets Management

http://bit.ly/2IfD2k1
https://kubernetes-security.info/#secrets

So far, we have discussed how to set up your Kubernetes cluster with
security in mind, and approaches for building and running applica‐
tion code safely. We now move on to discuss advanced security fea‐
tures that might apply, depending on your particular needs, and
some new projects and capabilities that are under development at
the time of writing.

Secret Access from a Kubelet | 65

CHAPTER 8

Advanced Topics

This chapter covers a collection of crosscutting topics related to
making your Kubernetes cluster and its applications more secure.
We’ll build on the topics discussed in the previous chapters and
sometimes go beyond Kubernetes proper (for example, with moni‐
toring or service meshes).

Many of the ideas in this chapter are evolving and
under discussion within the Kubernetes community.
We welcome involvement from end users as well as
those contributing to the development of cloud native
projects themselves. If you’re not already involved,
there is a list of different ways to get involved; the
Community section of the Kubernetes website pro‐
vides a list of ways to get involved, from mailing lists
and Slack channels to in-person events.

Monitoring, Alerting, and Auditing
The community seems to be standardizing on Prometheus for mon‐
itoring Kubernetes clusters, so a good start is to familiarize yourself
with it. Since there are so many moving parts (from nodes to pods
to services), alerting on each event is not practical. What you can do,
however, is think about who needs to be informed about what kind
of event. For example, a policy could be that node-related or
namespace-related events are handled by admins, and developers
are paged for pod-level events. The same applies more or less for

67

https://kubernetes.io/community/
https://prometheus.io

logs, but here you also should be aware of where and when your
sensitive data lands on disk; see Chapter 7 for details.

Another useful feature Kubernetes offers via the API server is audit‐
ing, effectively recording the sequence of activities affecting the clus‐
ter. Different strategies are available in the auditing policy (from no
logging to logging event metadata, request and response bodies),
and you can choose between a simple log backend as well as using a
webhook for integrating with third-party systems.

Host Security
Much discussion of Kubernetes security focuses on the setup of
Kubernetes itself, or on securing the containerized applications that
run within it. There is another layer to be secured: the host
machines on which Kubernetes runs.

Whether they are bare-metal or VMs, there are many steps you can
take to restrict access to your hosts that are essentially the same as
you would take in a traditional cluster. For example, you should, of
course, restrict access to the machines, and you might well configure
them to use a dedicated VPN. These general machine security meas‐
ures are outside the scope of this book, but there are some specific
things you would do well to consider when you are running Kuber‐
netes (or any container orchestrator). Resources such as OpenSCAP
and OVAL can help with a broader security assessment.

Host Operating System
The host machines need to be able to run only the Kubernetes code,
its dependencies (a runtime system like Docker), and supporting
features like logging or security tools. Following the principle of
reducing the attack surface, a best-practice setup would have only
the necessary code and no superfluous libraries or binaries. This is
sometimes referred to as a thin OS.

Container-specific distributions like Container Linux from CoreOS
(now part of Red Hat), RancherOS, or Red Hat’s own Atomic are
one approach to minimizing the amount of code installed on your
host machines. These can also include other security features like a
read-only root filesystem. A general-purpose Linux distribution is
also fine, but it’s worth checking that you’re not using a machine
image with extra libraries and tools installed (particularly if, out of

68 | Chapter 8: Advanced Topics

http://bit.ly/2O4WBkL
http://bit.ly/2O4WBkL
https://www.open-scap.org/tools/
https://oval.mitre.org/index.html
https://coreos.com/os/docs/latest/
https://rancher.com/rancher-os/
https://red.ht/2MYylff

habit, you are using the same machine image you have used in a tra‐
ditional deployment).

Node Recycling
In a cloud-native deployment, we treat nodes as “cattle not pets,” and
it should be trivially easy to create a new node or replace a faulty
one, as it should be automated through an infrastructure as code
approach. This enables node recycling, where you tear down and
replace your nodes on a regular (or random) schedule.

When you recycle a node, you know that it has been returned to the
desired state, as determined by your infrastructure as code. If there
has been any “drift”—for example, because an undetected attacker
got a foothold into the system—that drift is removed.

Another benefit of recycling your nodes (especially for small or new
deployments) is that it’s effectively a fire drill. If you are frequently
replacing nodes as a matter of course, you can have more confidence
in the system’s ability to cope through node failure. It’s a baby step
toward chaos engineering!

Sandboxing and Runtime Protection
Sandboxing is the ability to isolate containers from each other and
from the underlying host, so that code running within one container
can’t effect change outside that container.

Runtime protection is the concept of limiting the set of code that can
be executed within the container itself. If attackers can access a con‐
tainer, but can’t execute their own code within it, the potential dam‐
age is limited.

While the end goal of these two concepts is different, some overlap
exists in the mechanisms used to achieve them. For example, sec‐
comp or AppArmor profiles can limit a container to have access to a
limited set of system calls. This restricts what the container can do
(runtime protection) and increases its isolation by giving it less
access to the kernel (sandboxing).

Containers share the host’s kernel, so vulnerabilities in the kernel
could conceivably allow an exploit to escape one container and
move to another or to the host.

Sandboxing and Runtime Protection | 69

http://bit.ly/2ztNLot
http://bit.ly/2zE2E7L
https://principlesofchaos.org/
http://bit.ly/2NGLvTy

At time of writing, several projects and vendors are aimed at
improving sandboxing and/or runtime protection, all with their
own strengths and characteristics:

• seccomp is a kernel mechanism for limiting the system calls that
application code can make. A securityContext or PodSecurity
Policy can specify the seccomp profile.

• AppArmor and SELinux are kernel security modules, also con‐
figurable through profiles attached to securityContext or Pod
SecurityPolicy in Kubernetes.

• Kata Containers run each application inside a “lightweight” VM
(so each has its own kernel).

• Google’s gVisor project runs container code in a sandbox
through a kernel API implemented in user space (if that’s not a
contradiction in terms).

• Nabla containers use unikernel technology to provide isolation
and limit access to the shared kernel.

• Enterprise container security solutions such as those from Aqua
Security and Twistlock use regular containers, with proprietary
runtime protection technology that includes whitelisting/black‐
listing the set of executables that can run in a given container.

Multitenancy
In some deployments, multiple “tenants” using the same cluster
don’t fully trust each other or might not be trusted by the cluster
operator. Tenants could be users, groups of users, or applications.
The level of trust between users depends on the environment; for
example, in a platform-as-a-service (PaaS) environment where users
can upload and run their own applications, they should be treated as
entirely untrusted, whereas in an enterprise, the tenants might map
to different organizational teams, who do cooperate and trust each
other to some extent, but who want to limit the risk of someone out‐
side one team maliciously or inadvertently affecting another team’s
application.

Multitenant isolation has two parts:

• The control plane, so that users can’t, for example, run kubectl
commands that impact other tenants’ resources

70 | Chapter 8: Advanced Topics

https://en.wikipedia.org/wiki/Seccomp
https://en.wikipedia.org/wiki/Apparmor
https://en.wikipedia.org/wiki/SELinux
https://katacontainers.io/
https://github.com/google/gvisor
https://nabla-containers.github.io/

• The runtime and networking environment, where container
workloads should not be able to interfere with each other or
steal resources

The Kubernetes namespace gives us the first building block for mul‐
titenancy in the control plane. Typically, there will be one name‐
space per tenant. Users are given RBAC permissions to create,
update, and delete resources within the namespace that maps to
their tenancy (see Chapter 3 and Chapter 4). Resource quotas allow
each namespace (and thereby, each tenant) to be restricted to a limit
of compute and storage resources, and of Kubernetes objects (for
example, upper bounds on the number of services, secrets, and per‐
sistent volume claims allowed within the namespace).

In an enterprise environment, this may be sufficient. Namespace-
based RBAC controls mean that one team can’t update application
code and associated Kubernetes resources that they are not respon‐
sible for. Quotas mean that one team’s application can’t use all avail‐
able resources so that another is starved.

However, this is unlikely to be sufficient protection in a fully untrus‐
ted environment. Here, tenant workloads should be isolated from
each other at a container level so that if there were to be an escape
from one container (perhaps because a user deploys code with a
serious vulnerability, perhaps even deliberately), they can’t affect or
inspect other tenants’ applications or data. Container sandboxing, as
described in “Sandboxing and Runtime Protection” on page 69, is
largely designed to solve this problem (for example, the gVisor
approach is based on the way Google isolates user workloads from
each other in Google App Engine).

Another approach to workload isolation is to assign one or more
nodes to each tenant, and then schedule pods so that workloads are
only ever colocated with other workloads from the same tenant.
This is straightforward (using taints and tolerations), but potentially
wasteful unless each tenant needs a node’s worth of compute resour‐
ces.

In an untrusted multitenant environment, you would want strong
network policies to isolate traffic so that it can’t flow between name‐
spaces. See “Network Policies” on page 52 for more information.

Multitenancy | 71

http://bit.ly/2r0wBc3
http://bit.ly/2r0eq6p
http://bit.ly/2zsA3C5
http://bit.ly/2ztTIBI

Dynamic Admission Control
From Kubernetes 1.9, dynamic admission controllers allow for flexi‐
ble, extensible mechanisms for making checks before allowing a
resource to be deployed to a cluster. As an example, check out Kel‐
sey Hightower’s Grafeas tutorial, which includes a validating web‐
hook that ensures that only signed images are admitted.

Network Protection
In a typical traditional deployment, a significant proportion of the
security measures is network based: firewalling and the use of VPNs
come immediately to mind. In the cloud-native world, similar
approaches are dedicated to restricting traffic so that only approved
flows can take place.

Security solutions for containers have for some years talked about
network micro- or nano-segmentation, and these approaches have
been made fairly common practice in Kubernetes deployments
through the use of network policies (as discussed in “Network Poli‐
cies” on page 52).

At the time of writing, service meshes are a popular topic—
although, in our opinion, currently at the stage of “early adopter”
rather than “early majority” market penetration.

Service Meshes
The idea of a service mesh like Istio or Linkerd is to take on much of
the burden of networking communication and control, so that
application developers don’t need to concern themselves with these
nonfunctional capabilities. While they offer several features like load
balancing and routing that are outside the scope of this book, they
offer two features that are of particular interest in relation to secu‐
rity: mutually authenticated TLS connections and service mesh net‐
work policies.

Mutually authenticated TLS connections
The service mesh intercepts network traffic to and from a pod, and
ensures that connections are all set up using TLS between authenti‐
cated components. This automatically ensures that all communica‐

72 | Chapter 8: Advanced Topics

http://bit.ly/2DwR2Y3
http://bit.ly/2OcTHub
http://bit.ly/2ONkASt
http://bit.ly/2DuISzk
https://istio.io/
https://linkerd.io/

tions are encrypted. Even if attackers find their way into your
cluster, they will struggle to intercept the network traffic within it.

Service mesh network policy
The service mesh can control which services can communicate with
each other, adding another layer of protection that makes it harder
for an attacker to move within the cluster.

As discussed in “Network Policies” on page 52, Kubernetes network
policies define what traffic is allowed to and from a group of pods,
so you may well be wondering how Kubernetes and service mesh
network policies interact.

Kubernetes network policy acts at the networking level, based on IP
addresses and ports as well as pods (identified by label), whereas
service mesh policy acts at the service level. There is a good discus‐
sion of this in a series of blog posts from Project Calico.

Static Analysis of YAML
In many organizations, the YAML associated with an application
could be written by a developer who may not have intimate knowl‐
edge of the security policies that the organization requires (or who
may simply make a mistake). Static analysis tools such as kubetest
and kubesec can be useful to look for issues in YAML configuration
files (for example, checking for the use of the privileged flag for a
pod), or to enforce a particular labeling policy. Just like image scan‐
ning (see “Scanning Container Images” on page 36), this is an exam‐
ple of “shift-left,” where security practices are dealt with and
enforced earlier in the development lifecycle.

Fork Bombs and Resource-Based Attacks
A fork bomb is a process that continually launches copies of itself,
with the intention of using all the available resources, effectively cre‐
ating a denial-of-service attack. Kubernetes addresses this by allow‐
ing you to configure a limit on the number of processes within a
pod. At the time of writing, this is an Alpha feature that may be sub‐
ject to significant changes in the future.

Other resource-based attacks might involve trying to consume
excessive memory and CPU, denying those resources to legitimate

Static Analysis of YAML | 73

http://bit.ly/2vgq96P
http://bit.ly/2vgq96P
http://bit.ly/2OOrpmF
https://github.com/garethr/kubetest
http://kubesec.io
https://en.wikipedia.org/wiki/Fork_bomb
http://bit.ly/2QXLicv
http://bit.ly/2QXLicv
http://bit.ly/2OOhIEQ

workloads. You can set resource limits to limit exposure to this kind
of attack.

Cryptocurrency Mining
A famous attack on Tesla exploited control-plane insecurities to
allow hackers to use the company’s resources to mine cryptocur‐
rency. Following the advice in Chapter 2 will go a long way to pre‐
venting this from happening in your cluster.

Additional research shows other approaches that would-be miners
are attempting. Ensuring that only trusted images can run in your
cluster would prevent, for example, a bad actor with approved access
to the cluster from running an unexpected mining image. See Chap‐
ter 5 for advice on preventing untrusted or compromised images
from running.

Runtime protection can add another layer of defense to ensure that
even if an approved image has a vulnerability that allows code to be
injected into a running container, that code can’t be executed.

Monitoring for unusual activity, such as unexpected CPU usage and
unexpected resources being scaled out, can help spot when your
resources are being used by an attacker. See “Monitoring, Alerting,
and Auditing” on page 67.

Kubernetes Security Updates
From time to time, security issues in Kubernetes itself are
unearthed, and the project has a security process for dealing with
these. The project documentation includes instructions for report‐
ing a vulnerability in Kubernetes to the security team.

If you want to be alerted as soon as vulnerabilities in Kubernetes are
announced, subscribe to the kubernetes-announce mailing list.

To learn more about the topics discussed in this chapter, check out
the resources on the accompanying website, in the “Advanced Top‐
ics” section.

We’ve reached the conclusion of the book and want to thank you for
sticking with us until the very end. Enjoy Kubernetes in production
—and stay safe!

74 | Chapter 8: Advanced Topics

http://bit.ly/2Obcx4V
https://blog.redlock.io/cryptojacking-tesla
http://bit.ly/2QRUTSh
http://bit.ly/2IdkSPX
http://bit.ly/2OdqoYk
http://bit.ly/2OdqoYk
http://bit.ly/2Q6SzWe
https://kubernetes-security.info/#advanced-topics
https://kubernetes-security.info/#advanced-topics

About the Authors
Liz Rice is the Technology Evangelist with container security spe‐
cialist Aqua Security, where she also works on container-related
open source projects including kube-bench and kube-hunter. She is
cochair of the CNCF’s KubeCon + CloudNativeCon events and has a
wealth of software development, team, and product management
experience from working on network protocols and distributed sys‐
tems, and in digital technology sectors such as VOD, music, and
VoIP. When not writing code or talking about it, Liz loves riding
bikes in places with better weather than her native London, and
competing in virtual races on Zwift.

Michael Hausenblas is a developer advocate for Kubernetes and
OpenShift at Red Hat where he helps appops to build and operate
apps. His background is in large-scale data processing and container
orchestration and he’s experienced in advocacy and standardization
at W3C and IETF. Before Red Hat, Michael worked at Mesosphere,
MapR, and in two research institutions in Ireland and Austria. He
contributes to open source software including Kubernetes, speaks at
conferences and user groups, and shares good practices around
cloud native topics via blog posts and books.

https://www.aquasec.com/
http://github.com/aquasecurity/kube-bench
http://github.com/aquasecurity/kube-hunter

	Cover
	Copyright
	Table of Contents
	Introduction
	Why We Wrote This Book
	Who Is This Book For?
	Which Version of Kubernetes?
	A Note on Federation
	Acknowledgments

	Chapter 1. Approaching Kubernetes Security
	Security Principles
	Defense in Depth
	Least Privilege
	Limiting the Attack Surface

	Chapter 2. Securing the Cluster
	API Server
	Kubelet
	Kubelet Certificate Rotation

	Running etcd Safely
	Kubernetes Dashboard
	Validating the Configuration
	CIS Security Benchmark
	Penetration Testing

	Chapter 3. Authentication
	Identity
	Authentication Concepts
	Authentication Strategies
	Tooling and Good Practices

	Chapter 4. Authorization
	Authorization Concepts
	Authorization Modes
	Access Control with RBAC
	Tooling and Good Practices

	Chapter 5. Securing Your Container Images
	Scanning Container Images
	Patching Container Images
	CI/CD Best Practices
	Image Storage
	Correct Image Versions
	Running the Correct Version of Container Images

	Image Trust and Supply Chain
	Minimizing Images to Reduce the Attack Surface

	Chapter 6. Running Containers Securely
	Say No to Root
	Admission Control
	Security Boundaries
	Policies
	Security Context and Policies
	Network Policies
	Example Network Policy
	Effective Network Policies

	Chapter 7. Secrets Management
	Applying the Principle of Least Privilege
	Secret Encryption
	Kubernetes Secret Storage
	Storing Secrets in etcd
	Storing Secrets in Third-Party Stores

	Passing Secrets into Containerized Code
	Don’t Build Secrets into Images
	Passing Secrets as Environment Variables
	Passing Secrets in Files

	Secret Rotation and Revocation
	Secret Access from Within the Container
	Secret Access from a Kubelet

	Chapter 8. Advanced Topics
	Monitoring, Alerting, and Auditing
	Host Security
	Host Operating System
	Node Recycling

	Sandboxing and Runtime Protection
	Multitenancy
	Dynamic Admission Control
	Network Protection
	Service Meshes

	Static Analysis of YAML
	Fork Bombs and Resource-Based Attacks
	Cryptocurrency Mining
	Kubernetes Security Updates

	About the Authors

