

Learning Vulkan

Discover how to build impressive 3D graphics with the next-
generation graphics API—Vulkan

Parminder Singh

 BIRMINGHAM - MUMBAI

Learning Vulkan

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: December 2016

Production reference: 1121216

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78646-980-9

www.packtpub.com

http://www.packtpub.com

Credits

Author

Parminder Singh

Copy Editor

Gladson Monteiro

Reviewer

Chris Forbes

Project Coordinator

Ritika Manoj

Commissioning Editor

Ashwin Nair

Proofreader

Safis Editing

Acquisition Editors

Smeet Thakkar
Aaron Lazar

Indexer

Rekha Nair

Content Development Editor

Sachin Karnani

Production Coordinator

Aparna Bhagat

Technical Editor

Murtaza Tinwala

Graphics

Abhinash Sahu

About the Author
Parminder Singh is a computation graphics engineer with Blackmagic Design, Singapore.
He has been working and developing graphic applications in the fields of network
simulations, geo-modeling, navigation, automotive, infotainment systems, image
processing, and post-production for the past decade. His research interests include GPU
programming for scalable graphics and compute applications, porting, and performance
optimization techniques.

He is a Vulkan, Metal and OpenGL ES trainer and has also authored OpenGL ES 3.0
Cookbook, Packt. His hobbies include traveling, light cooking, and spending quality time
with his baby girl.

Feel free to connect Parminder at h t t p s ://w w w . l i n k e d i n . c o m /i n /p a r m i n d e r s i n g h 18 or
you can reach him at http://openglescookbook.com.

https://www.linkedin.com/in/parmindersingh18
https://www.linkedin.com/in/parmindersingh18
https://www.linkedin.com/in/parmindersingh18
https://www.linkedin.com/in/parmindersingh18
https://www.linkedin.com/in/parmindersingh18
https://www.linkedin.com/in/parmindersingh18
https://www.linkedin.com/in/parmindersingh18
https://www.linkedin.com/in/parmindersingh18
https://www.linkedin.com/in/parmindersingh18
https://www.linkedin.com/in/parmindersingh18
https://www.linkedin.com/in/parmindersingh18
https://www.linkedin.com/in/parmindersingh18
https://www.linkedin.com/in/parmindersingh18
https://www.linkedin.com/in/parmindersingh18
https://www.linkedin.com/in/parmindersingh18
https://www.linkedin.com/in/parmindersingh18
https://www.linkedin.com/in/parmindersingh18
https://www.linkedin.com/in/parmindersingh18
https://www.linkedin.com/in/parmindersingh18
https://www.linkedin.com/in/parmindersingh18
https://www.linkedin.com/in/parmindersingh18
https://www.linkedin.com/in/parmindersingh18
https://www.linkedin.com/in/parmindersingh18
https://www.linkedin.com/in/parmindersingh18
https://www.linkedin.com/in/parmindersingh18
https://www.linkedin.com/in/parmindersingh18
https://www.linkedin.com/in/parmindersingh18
https://www.linkedin.com/in/parmindersingh18
https://www.linkedin.com/in/parmindersingh18
https://www.linkedin.com/in/parmindersingh18
https://www.linkedin.com/in/parmindersingh18
https://www.linkedin.com/in/parmindersingh18
https://www.linkedin.com/in/parmindersingh18
https://www.linkedin.com/in/parmindersingh18
https://www.linkedin.com/in/parmindersingh18
https://www.linkedin.com/in/parmindersingh18
https://www.linkedin.com/in/parmindersingh18
https://www.linkedin.com/in/parmindersingh18
https://www.linkedin.com/in/parmindersingh18
https://www.linkedin.com/in/parmindersingh18
https://www.linkedin.com/in/parmindersingh18
https://www.linkedin.com/in/parmindersingh18
https://www.linkedin.com/in/parmindersingh18
https://www.linkedin.com/in/parmindersingh18
https://www.linkedin.com/in/parmindersingh18
https://www.linkedin.com/in/parmindersingh18
https://www.linkedin.com/in/parmindersingh18
https://www.linkedin.com/in/parmindersingh18
https://www.linkedin.com/in/parmindersingh18
https://www.linkedin.com/in/parmindersingh18
https://www.linkedin.com/in/parmindersingh18
https://www.linkedin.com/in/parmindersingh18
https://www.linkedin.com/in/parmindersingh18
https://www.linkedin.com/in/parmindersingh18
https://www.linkedin.com/in/parmindersingh18
https://www.linkedin.com/in/parmindersingh18
https://www.linkedin.com/in/parmindersingh18
https://www.linkedin.com/in/parmindersingh18
https://www.linkedin.com/in/parmindersingh18
https://www.linkedin.com/in/parmindersingh18
https://www.linkedin.com/in/parmindersingh18
https://www.linkedin.com/in/parmindersingh18
https://www.linkedin.com/in/parmindersingh18
https://www.linkedin.com/in/parmindersingh18
https://www.linkedin.com/in/parmindersingh18
https://www.linkedin.com/in/parmindersingh18
https://www.linkedin.com/in/parmindersingh18
https://www.linkedin.com/in/parmindersingh18
https://www.linkedin.com/in/parmindersingh18
https://www.linkedin.com/in/parmindersingh18
https://www.linkedin.com/in/parmindersingh18
https://www.linkedin.com/in/parmindersingh18
https://www.linkedin.com/in/parmindersingh18
https://www.linkedin.com/in/parmindersingh18
https://www.linkedin.com/in/parmindersingh18
http://openglescookbook.com/

Acknowledgments
I dedicate this to my sweet baby girl, Raskeerat, who was born at the same time as we
started this project. With a little baby onboard, it's challenging to write a book; I am grateful
to my beloved wife Gurpreet Kaur and my family for helping me deliver this project to the
community.

I extend my gratitude to Mr. Ulrich Kabatek and the entire graphics team of Continental
Automotive; every member of the team had something to offer me to scale my vision of
graphics. I am grateful to Blackmagic Design, who helped me extend my horizon to take
GPU programming to a whole new level. I express my regards to Mohit Sindhwani and the
whole of Quantum Invention's team. It was a great pleasure to work for them and also was
a wonderful learning experience.

I am highly indebted to Chris Forbes from Google; his expertise in the graphics domain has
raised the bar of this title. I am highly impressed with his reviews and the quality of work
he delivered. Chris reviewed this title inch-by-inch and helped us not only to improve the
contents but also our understanding of the concepts with his detailed explanation.

Last but not the least, I am thankful to the entire division of Packt, especially Sachin
Karnani, who constantly remained involved during the production of this title. Murtaza
Tinwala, who brilliantly exhibited his content management and technical skills during the
final stages. I'm really happy to have them work with me on this book.

About the Reviewer
Chris Forbes works as a software developer for Google, working on Vulkan validation
support and other ecosystem components. Previously he has been involved in
implementing OpenGL 3 and 4 support in open source graphics drivers for Linux
(www.mesa3d.org), as well as rebuilding classic strategy games to run on modern systems
(www.openra.net).

http://www.mesa3d.org/
http://www.openra.net/

www.PacktPub.com
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

h t t p s ://w w w . p a c k t p u b . c o m /m a p t

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt
books and video courses, as well as industry-leading tools to help you plan your personal
development and advance your career.

Why subscribe?
Fully searchable across every book published by Packt
Copy and paste, print, and bookmark content
On demand and accessible via a web browser

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt

Table of Contents
Preface 1

Chapter 1: Getting Started with the NextGen 3D Graphics API 8

Vulkan and its evolution 8
Vulkan versus OpenGL 10
Important jargons before we get started 12
Learning the fundamentals of Vulkan 13

Vulkan's execution model 13
Vulkan's queues 15
The object model 16
Object lifetime and command syntax 16
Error checking and validation 17

Understanding the Vulkan application 17
Driver 18
Application 18
WSI 18
SPIR-V 18
LunarG SDK 19

Getting started with the Vulkan programming model 19
Hardware initialization 20
Window presentation surfaces 21
Resource setup 22
Pipeline setup 25

Descriptor sets and descriptor pools 25
Shaders with SPIR-V 26
Pipeline management 26
Recording commands 27
Queue submission 29

Summary 30

Chapter 2: Your First Vulkan Pseudo Program 31

Installing Vulkan 31
The Hello World!!! pseudocode 32

Initialization – a handshake with the device 33
Swapchain initialization – querying the WSI extension 37

Command buffer initialization – allocating command buffers 40
Resource objects – managing images and buffers 40

[ii]

Creating a presentation surface – creating a swapchain 42
Creating a depth image 44
Resource allocation – allocating and binding device memory 46

Supplying shaders – shader compilation into SPIR-V 47
Building layouts – descriptor and pipeline layouts 48
Creating a Render Pass – defining a pass attribute 50
Framebuffer – connect drawing images to the Render Pass 50
Populating geometry – storing a vertex into GPU memory 51
Pipeline state management – creating pipelines 55

Defining states 55
Creating a graphics pipeline 57

Executing the Render Pass – drawing Hello World!!! 58
Acquiring the drawing surface 58
Preparing the Render Pass control structure 59
Render Pass execution 59

Queue submission and synchronization – sending jobs 61
Displaying with presentation layer – rendering a triangle 62

Fitting it all together 63
Summary 64

Chapter 3: Shaking Hands with the Device 66

Getting started with the LunarG SDK 67
Setting up our first project with CMake 68

How to build the CMake file 73
Introduction to extensions 74

Querying layers and extensions 75
Creating a Vulkan instance 80

Enabling layers and extensions 84
Testing the enabled layers and extensions 86

Understanding physical and logical devices 88
Physical devices 88

Enumerating physical devices 90
Querying physical device extensions 91
Getting the properties of a physical device 92
Interrogating memory properties from the physical device 93

Logical device 93
Creating a logical device 94
Waiting on the host 95
Losing the device 96

Understanding queues and queue families 96
Querying queue families 97

Storing the graphics queue handle 99
Creating a queue 100

[iii]

Implementing devices and queues all together 102
Summary 105

Chapter 4: Debugging in Vulkan 106

Peeking into Vulkan debugging 107
Understanding LunarG validation layers and their features 108
Implementing debugging in Vulkan 109
Summary 118

Chapter 5: Command Buffer and Memory Management in Vulkan 119

Getting started with command buffers 119
Explicit synchronization 121
Types of command in command buffers 122
Command buffers and queues 122

The order of execution 122
Understanding command pool and buffer APIs 123

Creating a command pool 124
Resetting a command pool 125
Destroying a command pool 126

Command buffer allocation 126
Resetting command buffers 128
Freeing command buffers 128

Recording command buffers 129
Queue submission 130
Queue waiting 132

Implementing the wrapper class for a command buffer 132
Implementing the command buffer allocation process 133
Recording the command buffer allocation process 134

How to use command buffer recording functions 135
Submitting the command to the queue 136

Managing memory in Vulkan 137
Host memory 137
Device memory 139
Allocating device memory 142
Freeing up device memory 143
Accessing device memory from the host 144
Lazily allocated memory 145

Summary 146

Chapter 6: Allocating Image Resources and Building a Swapchain with
WSI 147

Getting started with image resources 147

[iv]

Image creation overview 149
Understanding image resources 151

Creating images 151
Destroying the created images 156

Understanding image layouts 156
Creating an image view 157

Destroying the image view 159
Memory allocation and binding image resources 159

Gathering memory allocation requirements 160
Allocating physical memory on the device 161
Binding the allocated memory to an image object 161

Introducing swapchains 162
Understanding the swapchain implementation flow 162
The swapchain implementation's class block diagram 165
Renderer – a window management custom class 166

Creating the presentation window 168
Initializing the renderer 169
Creating the command pool 170
Building swapchain and depth images 170
Rendering the presentation window 171

VulkanSwapChain – the swapchain manager 171
Querying swapchain extensions 173

Creating the surface with WSI and associating it with the created
window 176
The graphics queue with present support 178
Querying swapchain image formats 180
Creating the swapchain 181

Swapchain surface capabilities and the presentation mode 181
Managing presentation mode information 183
Retrieving the swapchain's color images 185
Creating color image views 189

Creating a depth image 191
Introduction to tiling 191
Creating a depth buffer image object 193
Getting the depth image's memory requirements 195
Determining the type of memory 195
Allocating and binding physical memory to a depth image 196
Image layout transition 197
Image layout transition with memory barriers 197
Creating the image view 203

Summarizing the application flow 204

[v]

Initialization 204
Rendering – displaying the output window 205

Summary 206

Chapter 7: Buffer Resource, Render Pass, Framebuffer, and Shaders
with SPIR-V 207

Understanding the Vulkan buffer resource type 208
Creating the buffer resource object 208

Destroying the buffer 210
Creating a buffer view 210

Destroying the buffer view 211
Creating geometry with a buffer resource 212

Preparing geometry data 212
Creating a vertex buffer 213
Buffer creation overview 214
Implementing a buffer resource – creating the vertex buffer for the
geometry 215
Understanding the code flow 219

Understanding a Render Pass 221
Attachments 221
Subpasses 222
Vulkan APIs for the Render Pass 223
Implementing the Render Pass 228

Using the Render Pass and creating the framebuffer 232
Implementing the framebuffer 233

Clearing the background color 235
Setting the background color in the Render Pass instance 237
Rendering the colored background 239

Working with a shader in Vulkan 241
Introduction to SPIR-V 242
Compiling a GLSL shader into SPIR-V 244

Offline compilation with the glslangValidator executable 244
Online compilation with SPIR-V tool libraries 245

Implementing a shader 246
Summary 255

Chapter 8: Pipelines and Pipeline State Management 256

Getting started with pipelines 257
VulkanPipeline – the pipeline implementation class 260

Caching pipeline objects with a PCO 261
Creating a pipeline cache object 262

[vi]

Merging pipeline caches 263
Retrieving data from pipeline caches 264
Implementing the PCO 266

Creating a graphics pipeline 266
Implementing a graphics pipeline 270
Destroying pipelines 272

Understanding compute pipelines 272
Pipeline State Objects (PSO) in Vulkan 275

Dynamic states 277
Implementing dynamic states 278

Vertex input states 279
Implementing vertex input states 280

Input assembly states 281
Implementing input assembly states 282

Primitive restart 282
Primitive topologies 284

Primitives topologies with no adjacency 285
Primitives topologies with adjacency 286

Rasterization 289
Rasterization states 289
Implementing rasterization states 291

Blending 291
Color blend states 292
Implementing color blend states 294

Viewport management 295
The viewport state 295
Implementing the viewport state 297

Depth and stencil tests 297
Depth and stencil states 298
Implementing depth stencil states 299

Multisample states 300
Implementing multisample states 302

Implementing the pipeline 303
Summary 306

Chapter 9: Drawing Objects 307

Overview of the drawing process in Vulkan 308
Walking through the header declaration 309

Preparing the drawing object 310
Recording Render Pass commands 310

Beginning Render Pass instance recording 310
Transitioning to the next subpass 313
Finishing Render Pass instance recording 314

[vii]

Implementation 314
Binding pipeline object 315

Implementation 316
Specifying drawing object geometry information 317

Implementation 318
Defining a dynamic viewport 318

Implementation 319
Scissoring 320

Implementation 321
Draw command 322

vkCmdDraw command 322
Implementing drawing object preparation 324

Rendering the drawing object 326
Acquiring the swapchain image 327
Executing the drawing command buffer object 329
Displaying the output with the presentation engine 329
Implementing drawing object rendering 332

Rendering an indexed geometry 336
Understanding synchronization primitives in Vulkan 339

Fences 340
Semaphores 343
Events 345

Resizing the display window 349
Summary 352

Chapter 10: Descriptors and Push Constant 354

Understanding the concept of descriptors 354
VulkanDescriptor – a user-defined descriptor class 355
Descriptor set layout 356

Implementing the descriptor set layout 359
Destroying the descriptor set layout 361

Understanding pipeline layouts 362
Creating a pipeline layout 362
Implementing the pipeline layout creation 363
Destroying the pipeline layout 364
Implementing the pipeline layout destruction process 365

Descriptor pool 365
Creating a descriptor pool 365
Implementing the creation of the descriptor pool 366
Destroying the descriptor pool 368
Implementing the destruction of the descriptor pool 368

Creating the descriptor set resources 368
Creating the descriptor sets 373

[viii]

Allocating the descriptor set object from the descriptor pool 374
Destroying the allocated descriptor set objects 374

Associating the resources with the descriptor sets 375
Implementing descriptor set creation 377

How to implement Uniforms in Vulkan? 379
Prerequisites 380
Execution model overview 381
Initialization 382

Shader implementation 382
Creating descriptors 383

Rendering 384
Binding the descriptor set 385

Update 386
Updating the transformation 387

Push constant updates 389
Defining the push constant resource in the shader 390
Updating the pipeline layout with the push constant 390
Updating the resource data 392

Summary 395

Chapter 11: Drawing Textures 396

Image resource – a quick recap 397
Prerequisites for texture drawing 398

Specifying the texture coordinates 398
Updating the shader program 399
Loading the image files 400

Using the GLI library 401
Local image data structure 401

Implementing the image resource with linear tiling 402
Loading the image file 403
Creating the image object 403
Memory allocation and binding 407
Populating the allocated device memory 408
Creating the command buffer object 409
Setting the image layout 409
Submitting the command buffer 409
Creating an image sampler 410
Filtering 413
Wrapping modes 414
Creating the image view 417

Implementing the image resource with optimal tiling 418

[ix]

Loading the image file 419
Buffer object memory allocation and binding 419
Populating the allocated device memory 420
Creating the image object 421
Image object memory allocation and binding 421
Creating a command buffer object 422
Setting the image layout 422
Buffer to image copy 423
Setting the optimal image layout 424
Submitting the command buffer 424
Creating an image sampler 425
Creating the image view 426

Copying data content between images and buffers 427
Updating the descriptor set 428
Summary 431

Index 432

Preface
This book is all about learning Vulkan from scratch. Vulkan is a next-generation cross-
platform graphics and compute API. Despite being a successor of OpenGL API, it is a
completely fresh approach to redesigning an API from the base that meets the competitive
demand of consumers and works very close with the underlying GPU hardware. Vulkan is
a software interface that is capable of controlling GPU hardware settings to harness the
power of paralleling computing. The driver layer in Vulkan is really thin and puts more
responsibilities on the shoulders of an application programmer to manage the application,
its resources, memory management, synchronization, and more; this explicit nature of
Vulkan makes it verbose. This book allows the beginner to learn such topics in baby steps,
covering each chapter with an easy-to-follow companion example. The chapters are laid out
in an incremental fashion; each chapter is built on top of the previous one, exposing the
modular difference to our readers.

The Vulkan API certainly requires some level of computer graphics or computing
knowledge prior to starting programming on it, as many of the concepts or terminologies
are very general and directly used throughout this book.

This book is very practically oriented and prepared with an objective to allow its readers to
learn Vulkan theory, concepts, and API specification, and see them in action through
companion examples. There are plenty of references throughout the book that help readers
to refer to the related concept, helping them to recap the fundamentals as they proceed
through.

What this book covers
Chapter 1, Getting Started with the NextGen 3D Graphics API, will begin with the
fundamentals of the Vulkan API and provides an overview of all its distinct features
compared to its predecessor OpenGL API. This chapter will cover the basics, concepts,
application model, and technical jargon used in Vulkan programming that is extremely
helpful for first-time learners. You will also walk through the Vulkan programming model
and see an outline of each module and its role.

Preface

[2]

Chapter 2, Your First Vulkan Pseudo Program, will help you program a simple Hello World
program using a pseudocode approach. This will help the beginners to get a flavor of
Vulkan programming and learn the step-by-step process to build their first Vulkan
application. You will also learn how to install necessary software and the SDK.

Chapter 3, Shaking Hands with the Device, will help you to set up the programming
environment to start with building your very first Vulkan example. You will create the
Vulkan instance and initialize the program. You will connect with the physical hardware
device, explore different types of queues exposed by it, and query various available layers
and extensions. This chapter will provide a detailed understanding of the device queue and
queue family concept and its relation with logical devices.

Chapter 4, Debugging in Vulkan, will describe how to perform debugging in a Vulkan
application. Vulkan allows debugging through validation layers. In this chapter, we will
discuss the role of each validation layer and program a simple example to understand the
debugging in action. In addition, we will also query the layer extensions to add extra
features that may not be a part of the Vulkan specifications.

Chapter 5, Command Buffer and Memory Management in Vulkan, will thoroughly discuss and
implement command buffers in Vulkan. You will understand the role of the command pool
and will learn how to record command buffers in Vulkan. The second half of the chapter
will cover memory management in Vulkan; you will dig through device memory, and learn
methods to allocate or deallocate GPU memory and understand the mapping of CPU and
GPU memory.

Chapter 6, Allocating Image Resources and Building a Swapchain with WSI, will shed light on
image resources and discuss memory management concepts, such as image creation,
allocation, binding and mapping. Using this, we will create a depth image for depth testing.
This chapter will also introduce the WSI swapchain, which is used for presentation and
renders the drawing output onscreen. We will acquire the swapchain color images and
create image views that will be used for drawing primitives.

Chapter 7, Buffer Resource, Render Pass, Frame Buffer, and Shaders with SPIR-V, will discuss
the buffer resource and its usage for implementing the vertex buffer containing a drawing
object’s geometry information. This chapter will give a detailed introduction to using the
Render Pass to define a single unit of work specifying drawing operations using various
attachments and subpasses. We will use Render Pass and implement frame buffers in
Vulkan and demonstrate simple example to clear the background. As the chapter closes, we
will implement our first shader in Vulkan using SPIR-V; we learn about SDK tools that
convert GLSL into SPIR-V intermediate representation.

Preface

[3]

Chapter 8, Pipelines and Pipeline State Management, will introduce Vulkan’s compute and
graphics pipeline. This chapter will provide an overview of the graphic pipeline flow and
cover the role of various modules from start to end. We will discuss pipeline state objects,
pipeline cache objects, and pipeline layouts. This chapter will cover all the pipeline states
thoroughly, also covering dynamics states, input assembly with drawing primitives,
rasterization, blending, viewport, depth/stencil testing, and multisampling. We will use
these states' objects and implement the graphics pipeline.

Chapter 9, Drawing Objects, will thoroughly cover the process of drawing objects in Vulkan.
We will record and execute the drawing object command buffers. The recording associates
the Render Pass, framebuffer, and pipeline together along with the viewport and geometry
data. The command buffer execution involves the submission of the command buffer to the
device queue and presenting the drawn swapchain image to the presentation engine. We
will also discuss the Vulkan synchronization mechanisms and understand fences,
semaphore, and memory barriers. In addition, we will also cover drawing APIs and
demonstrate it through some easy-to-follow examples.

Chapter 10, Descriptors and Push Constant, will describe how to update shader resources
from a Vulkan application using descriptors and push constants. In descriptors, we will
discuss and create descriptor pools and descriptor set layout. You will learn how to use the
pipeline layouts and use the descriptors to update the buffer resource residing on the device
memory and render the updated geometry on screen. Unlike descriptors, push constant do
not use the command buffer and provides an optimized path to update the resources. You
will implement a small example to understand push constants in action.

Chapter 11, Drawing Textures, will bring realism to our rendered 3D drawing object by
adding textures. You will learn how to create the image resource and apply samplers to it.
You will also learn how to apply textures using linear and optimal tiling. In optimal tiling
implementation, you will learn to transfer buffer and image memory through staging.

What you need for this book
Please follow through the hardware and software requirements provided with this book.
The reader must have a decent knowledge of C/C++ programming. Coding experience is
required.

Preface

[4]

Who this book is for
This book caters to those who have an interest in or desire to create cross-platform, high-
performance graphics, and compute applications across desktop and embedded domains.
The programmer may require some knowledge and experience of graphics and compute
domain to better co-relate the Vulkan concepts.

Conventions
In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"Enumerate the number of physical devices or GPUs on the existing system and get the
vkEnumeratePhysicalDevices() API."

A block of code is set as follows:

 foreach layerProperty{
 VkExtensionProperties *instanceExtensions;
 res = vkEnumerateInstanceExtensionProperties(layer_name,
 &instanceExtensionCount, instanceExtensions);
 }

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

 // Specify extensions that needs to be enabled on instance.
 instanceInfo.ppEnabledExtensionNames = {
 VK_KHR_SURFACE_EXTENSION_NAME,
 VK_KHR_WIN32_SURFACE_EXTENSION_NAME};

 // Create the Instance object
 vkCreateInstance(&instanceInfo, NULL, &instance);

Preface

[5]

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "This can be done by simply
placing a tick against the Add Python <version> to PATH checkbox."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or disliked. Reader feedback is important for us as it helps us
develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention the
book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at h t t p ://w w w . p

a c k t p u b . c o m . If you purchased this book elsewhere, you can visit h t t p ://w w w . p a c k t p u b . c

o m /s u p p o r t and register to have the files e-mailed directly to you.

mailto:feedback@packtpub.com
https://www.packtpub.com/books/info/packt/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support

Preface

[6]

You can download the code files by following these steps:

Log in or register to our website using your e-mail address and password.1.
Hover the mouse pointer on the SUPPORT tab at the top.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box.4.
Select the book for which you're looking to download the code files.5.
Choose from the drop-down menu where you purchased this book from.6.
Click on Code Download.7.

You can also download the code files by clicking on the Code Files button on the book's
webpage at the Packt Publishing website. This page can be accessed by entering the book's
name in the Search box. Please note that you need to be logged in to your Packt account.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR / 7-Zip for Windows
Zipeg / iZip / UnRarX for Mac
7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at h t t p s ://g i t h u b . c o m /P a c k t P u b l

i s h i n g /L e a r n i n g - V u l k a n . We also have other code bundles from our rich catalog of books
and videos available at h t t p s ://g i t h u b . c o m /P a c k t P u b l i s h i n g /. Check them out!

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/diagrams used
in this book. The color images will help you better understand the changes in the output.
You can download this file from h t t p s ://w w w . p a c k t p u b . c o m /s i t e s /d e f a u l t /f i l e s /d o w n

l o a d s /L e a r n i n g V u l k a n _ C o l o r I m a g e s . p d f .

https://github.com/PacktPublishing/Learning-Vulkan
https://github.com/PacktPublishing/Learning-Vulkan
https://github.com/PacktPublishing/Learning-Vulkan
https://github.com/PacktPublishing/Learning-Vulkan
https://github.com/PacktPublishing/Learning-Vulkan
https://github.com/PacktPublishing/Learning-Vulkan
https://github.com/PacktPublishing/Learning-Vulkan
https://github.com/PacktPublishing/Learning-Vulkan
https://github.com/PacktPublishing/Learning-Vulkan
https://github.com/PacktPublishing/Learning-Vulkan
https://github.com/PacktPublishing/Learning-Vulkan
https://github.com/PacktPublishing/Learning-Vulkan
https://github.com/PacktPublishing/Learning-Vulkan
https://github.com/PacktPublishing/Learning-Vulkan
https://github.com/PacktPublishing/Learning-Vulkan
https://github.com/PacktPublishing/Learning-Vulkan
https://github.com/PacktPublishing/Learning-Vulkan
https://github.com/PacktPublishing/Learning-Vulkan
https://github.com/PacktPublishing/Learning-Vulkan
https://github.com/PacktPublishing/Learning-Vulkan
https://github.com/PacktPublishing/Learning-Vulkan
https://github.com/PacktPublishing/Learning-Vulkan
https://github.com/PacktPublishing/Learning-Vulkan
https://github.com/PacktPublishing/Learning-Vulkan
https://github.com/PacktPublishing/Learning-Vulkan
https://github.com/PacktPublishing/Learning-Vulkan
https://github.com/PacktPublishing/Learning-Vulkan
https://github.com/PacktPublishing/Learning-Vulkan
https://github.com/PacktPublishing/Learning-Vulkan
https://github.com/PacktPublishing/Learning-Vulkan
https://github.com/PacktPublishing/Learning-Vulkan
https://github.com/PacktPublishing/Learning-Vulkan
https://github.com/PacktPublishing/Learning-Vulkan
https://github.com/PacktPublishing/Learning-Vulkan
https://github.com/PacktPublishing/Learning-Vulkan
https://github.com/PacktPublishing/Learning-Vulkan
https://github.com/PacktPublishing/Learning-Vulkan
https://github.com/PacktPublishing/Learning-Vulkan
https://github.com/PacktPublishing/Learning-Vulkan
https://github.com/PacktPublishing/Learning-Vulkan
https://github.com/PacktPublishing/Learning-Vulkan
https://github.com/PacktPublishing/Learning-Vulkan
https://github.com/PacktPublishing/Learning-Vulkan
https://github.com/PacktPublishing/Learning-Vulkan
https://github.com/PacktPublishing/Learning-Vulkan
https://github.com/PacktPublishing/Learning-Vulkan
https://github.com/PacktPublishing/Learning-Vulkan
https://github.com/PacktPublishing/Learning-Vulkan
https://github.com/PacktPublishing/Learning-Vulkan
https://github.com/PacktPublishing/Learning-Vulkan
https://github.com/PacktPublishing/Learning-Vulkan
https://github.com/PacktPublishing/Learning-Vulkan
https://github.com/PacktPublishing/Learning-Vulkan
https://github.com/PacktPublishing/Learning-Vulkan
https://github.com/PacktPublishing/Learning-Vulkan
https://github.com/PacktPublishing/Learning-Vulkan
https://github.com/PacktPublishing/Learning-Vulkan
https://github.com/PacktPublishing/Learning-Vulkan
https://github.com/PacktPublishing/Learning-Vulkan
https://github.com/PacktPublishing/Learning-Vulkan
https://github.com/PacktPublishing/Learning-Vulkan
https://github.com/PacktPublishing/Learning-Vulkan
https://github.com/PacktPublishing/Learning-Vulkan
https://github.com/PacktPublishing/Learning-Vulkan
https://github.com/PacktPublishing/Learning-Vulkan
https://github.com/PacktPublishing/Learning-Vulkan
https://github.com/PacktPublishing/Learning-Vulkan
https://github.com/PacktPublishing/Learning-Vulkan
https://github.com/PacktPublishing/Learning-Vulkan
https://github.com/PacktPublishing/Learning-Vulkan
https://github.com/PacktPublishing/Learning-Vulkan
https://github.com/PacktPublishing/Learning-Vulkan
https://github.com/PacktPublishing/Learning-Vulkan
https://github.com/PacktPublishing/Learning-Vulkan
https://github.com/PacktPublishing/Learning-Vulkan
https://github.com/PacktPublishing/Learning-Vulkan
https://github.com/PacktPublishing/Learning-Vulkan
https://github.com/PacktPublishing/Learning-Vulkan
https://github.com/PacktPublishing/Learning-Vulkan
https://github.com/PacktPublishing/Learning-Vulkan
https://github.com/PacktPublishing/Learning-Vulkan
https://github.com/PacktPublishing/Learning-Vulkan
https://github.com/PacktPublishing/Learning-Vulkan
https://github.com/PacktPublishing/Learning-Vulkan
https://github.com/PacktPublishing/Learning-Vulkan
https://github.com/PacktPublishing/Learning-Vulkan
https://github.com/PacktPublishing/Learning-Vulkan
https://github.com/PacktPublishing/Learning-Vulkan
https://github.com/PacktPublishing/Learning-Vulkan
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://www.packtpub.com/sites/default/files/downloads/LearningVulkan_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningVulkan_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningVulkan_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningVulkan_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningVulkan_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningVulkan_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningVulkan_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningVulkan_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningVulkan_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningVulkan_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningVulkan_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningVulkan_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningVulkan_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningVulkan_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningVulkan_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningVulkan_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningVulkan_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningVulkan_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningVulkan_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningVulkan_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningVulkan_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningVulkan_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningVulkan_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningVulkan_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningVulkan_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningVulkan_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningVulkan_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningVulkan_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningVulkan_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningVulkan_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningVulkan_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningVulkan_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningVulkan_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningVulkan_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningVulkan_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningVulkan_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningVulkan_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningVulkan_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningVulkan_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningVulkan_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningVulkan_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningVulkan_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningVulkan_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningVulkan_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningVulkan_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningVulkan_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningVulkan_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningVulkan_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningVulkan_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningVulkan_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningVulkan_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningVulkan_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningVulkan_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningVulkan_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningVulkan_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningVulkan_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningVulkan_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningVulkan_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningVulkan_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningVulkan_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningVulkan_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningVulkan_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningVulkan_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningVulkan_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningVulkan_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningVulkan_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningVulkan_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningVulkan_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningVulkan_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningVulkan_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningVulkan_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningVulkan_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningVulkan_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningVulkan_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningVulkan_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningVulkan_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningVulkan_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningVulkan_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningVulkan_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningVulkan_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningVulkan_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningVulkan_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningVulkan_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningVulkan_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningVulkan_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningVulkan_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningVulkan_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningVulkan_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningVulkan_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningVulkan_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningVulkan_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningVulkan_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningVulkan_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningVulkan_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningVulkan_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningVulkan_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningVulkan_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningVulkan_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningVulkan_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningVulkan_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningVulkan_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningVulkan_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningVulkan_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningVulkan_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningVulkan_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningVulkan_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningVulkan_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningVulkan_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningVulkan_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningVulkan_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningVulkan_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningVulkan_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningVulkan_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningVulkan_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningVulkan_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningVulkan_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningVulkan_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningVulkan_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningVulkan_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningVulkan_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningVulkan_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningVulkan_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningVulkan_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningVulkan_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningVulkan_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningVulkan_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningVulkan_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningVulkan_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningVulkan_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningVulkan_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningVulkan_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningVulkan_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningVulkan_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningVulkan_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningVulkan_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningVulkan_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningVulkan_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningVulkan_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningVulkan_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningVulkan_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningVulkan_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningVulkan_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningVulkan_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningVulkan_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningVulkan_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningVulkan_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningVulkan_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningVulkan_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningVulkan_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningVulkan_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningVulkan_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningVulkan_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningVulkan_ColorImages.pdf

Preface

[7]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you could report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you find
any errata, please report them by visiting h t t p ://w w w . p a c k t p u b . c o m /s u b m i t - e r r a t a ,
selecting your book, clicking on the Errata Submission Form link, and entering the details
of your errata. Once your errata are verified, your submission will be accepted and the
errata will be uploaded to our website or added to any list of existing errata under the
Errata section of that title.

To view the previously submitted errata, go to h t t p s ://w w w . p a c k t p u b . c o m /b o o k s /c o n t e n

t /s u p p o r t and enter the name of the book in the search field. The required information will
appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors and our ability to bring you valuable
content.

Questions
If you have a problem with any aspect of this book, you can contact us
at questions@packtpub.com, and we will do our best to address the problem.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
mailto:copyright@packtpub.com
mailto:questions@packtpub.com

1
Getting Started with the

NextGen 3D Graphics API
Vulkan is a revolutionary high-performance 3D graphics and computing API for modern
GPU pipeline architectures to meet the demanding requirements of the community. This
API provides a brand-new approach to overcome the complexities and gaps in existing
traditional APIs. Vulkan is an explicit API that promises predictable behavior and allows
you to have smooth rendering frame rates without causing lags or hitches. This chapter will
present an overview of the Vulkan API and its distinct features compared to its predecessor:
the OpenGL API. We will take a look at Vulkan's ecosystem and understand its graphics
system.

So we will cover the following topics:

Vulkan and its evolution
Vulkan versus OpenGL
Important jargons before we get started
Learning the fundamentals of Vulkan
Understanding the Vulkan application
Getting started with the Vulkan programming model

Vulkan and its evolution
It's almost a quarter-century since the famous OpenGL API came into existence, and it is
still evolving. Internally, it is a pure state machine that contains several switches working in
a binary state (on/off). These states are used to build dependency mapping in the driver to
manage resources and control them in an optimal way to yield maximum performance.

Getting Started with the NextGen 3D Graphics API

[9]

This state machine automates resource management implicitly, but it is not intelligent
enough to capture application logic, which is the driving force behind resource
management. As a result, there might be unexpected situations, such as the implementation
going off, resulting in recompilation of the shaders even when the application has not
requested it. In addition, the OpenGL API might be subject to other factors, such as
unpredictable behavior, multithreading scalability, rendering glitches, and so on. Later in
this chapter, we will compare OpenGL with the Vulkan API to understand the difference
between the two.

Launched by Khronos in 2016, the Vulkan API has a revolutionary architecture that takes
full advantage of modern graphics processor units to produce high-performance graphics
and compute applications. If you are not aware of Khronos, it's an association of members
and organizations that focus on producing open standards for royalty-free APIs. For more
information, refer to h t t p s ://w w w . k h r o n o s . o r g .

The original concept of Vulkan was designed and developed by AMD, based on their
proprietary Mantle API. This API showcased cutting-edge capabilities through several
games, thereby proving its revolutionary approach and fulfilling all the competitive
demands of the industry. AMD made their Mantle API open source and donated it to
Khronos. The Khronos consortium, with the help of many other hardware and software
vendors, made collaborative efforts to release Vulkan.

Vulkan is not the only next-gen 3D graphics API; there are competitors, such as Microsoft's
Direct-X 12 and Apple's Metal. However, Direct-X is limited to its Windows variants and
Metal to Mac (OS X and iOS). Vulkan stands out in that respect. Its cross-platform nature
supports almost all the available OS platforms; this list includes Windows (XP, Vista, 7, 8,
and 10), Linux, Tizen, SteamOS, and Android.

https://www.khronos.org
https://www.khronos.org
https://www.khronos.org
https://www.khronos.org
https://www.khronos.org
https://www.khronos.org
https://www.khronos.org
https://www.khronos.org
https://www.khronos.org
https://www.khronos.org
https://www.khronos.org
https://www.khronos.org
https://www.khronos.org
https://www.khronos.org
https://www.khronos.org
https://www.khronos.org
https://www.khronos.org
https://www.khronos.org
https://www.khronos.org
https://www.khronos.org
https://www.khronos.org
https://www.khronos.org
https://www.khronos.org
https://www.khronos.org
https://www.khronos.org
https://www.khronos.org
https://www.khronos.org
https://www.khronos.org
https://www.khronos.org
https://www.khronos.org
https://www.khronos.org
https://www.khronos.org
https://www.khronos.org
https://www.khronos.org
https://www.khronos.org
https://www.khronos.org
https://www.khronos.org
https://www.khronos.org
https://www.khronos.org
https://www.khronos.org

Getting Started with the NextGen 3D Graphics API

[10]

Vulkan versus OpenGL
Here are the features/improvements in Vulkan that give it an edge over OpenGL:

Reduced driver overhead and CPU usage: Vulkan is designed to be closer to the
underlying graphics hardware. Therefore, it provides an application programmer
with direct control over computing resources on the host in order to allow the
GPU to render as fast as possible. This also allows the software to directly access
the graphics processor, allowing better performance.
Multithread scalability: Multithread scaling is really poor in OpenGL, and it is
very difficult to take advantage of the threading features to better utilize the CPU.
However, Vulkan is specially designed to allow end users to fully exploit its
multithreading capability in a very transparent manner with no implicit global
states. Jobs under different threads remain separated from the moment they are
created and submitted for execution.
An explicit API: OpenGL is an implicit API, where resource management is the
driver's responsibility. The driver takes application hints and tracks resources,
which is an unnecessary overhead.

Vulkan is an explicit API; here, the driver is not responsible for
tracking resources and their relationships. This task is assigned to
the application. This clean approach is more predictable; the driver
is not doing gymnastics behind the scenes to manage resources (as
in OpenGL). As a result, job processing is streamlined and
straightforward, resulting in optimal performance and predictable
behavior.

Precompiled intermediate shading language: Unlike OpenGL, which requires
shaders to be provided as OpenGL Shading Language (GLSL) source code,
the Standard Portable Intermediate Language (SPIR-V) is a standard
intermediate language used by Vulkan for parallel computing and graphics.

Compilers for source languages, such as GLSL, HLSL, or LLVM, must
target the SPIR-V specification and provide utilities to provide SPIR-V
input. Vulkan takes this ready-to-execute binary-intermediate input and
uses it at the shader stage.

Getting Started with the NextGen 3D Graphics API

[11]

Driver and Application layer: In OpenGL, the application layer is thinner as
compared to the driver layer, as the driver's automation takes into account
resource management and state tracking. Vulkan is the opposite of this. It ensures
the driver is closer to the hardware with less overhead. It's an application's
responsibility to manage logic, resources, and states. The following diagram
shows the thickness of the driver and application code base of both the APIs:

Memory controls: Vulkan is capable of exposing various memory types on the
system and requires the application developer to choose the appropriate memory
type for the intended use of each resource. In contrast, OpenGL drivers decide on
the placement of resources according to internal heuristics, which vary between
vendors, and it may produce suboptimal placement or unexpected hitches if the
driver moves the resource later.
Predictable: Vulkan is highly predictable as compared to OpenGL; it does not
cause any lags or hitches while rendering. The jobs are submitted upfront as soon
as they are given to the driver, whereas the OpenGL job submission process is
not upfront and is at the mercy of the driver's scheduler.
A single API: OpenGL has separate versions for a desktop-based API (OpenGL)
and embedded API (OpenGL ES). Vulkan is clean and consists of only a single
API for any number of platforms. Vulkan supports mobile platforms as a first-
class citizen, which is not the case in OpenGL. Usually, the OpenGL
implementation first appears on desktop-based versions and is later made
available to the OpenGL ES APIs.
Direct access to the GPU: Vulkan gives a lot of control to the application user by
advertising its capabilities and hardware facilities. It exposes various types of
available physical devices, memory types, command buffer queues, and
extensions. This behavior ensures the software layer is much closer to the real
hardware.

Getting Started with the NextGen 3D Graphics API

[12]

Error checking and validation: When using OpenGL, well-behaved applications
pay a price when it comes to checking for errors, which they will never trigger at
the time of execution. In contrast, Vulkan offers these checks and validation as an
add-on service, which can be enabled and disabled as and when required. These
checks are optional and can be injected into a runtime by enabling error checking
and other validation layers. As a result, it causes less CPU overhead by avoiding
unnecessary checks. Ideally, these error and validation layers must be turned on
during the development phase for the debugging process and turned off during
the release process.
Supports various GPU hardware: Vulkan supports mobile and desktop
rasterizers as an integrated part of the implementation. It supports tile-based or
deferred rasterizers for embedded platforms along with native tiling-based feed
forward rasterizers.

Important jargons before we get started
Let's check out some of the important technical jargons used in Vulkan before we dive deep
into the fundamental details. This book will cover more of these technical terms as we
proceed further.

Physical device and device: A system may contain more than one physical
Vulkan-capable hardware device. A physical device represents a unique device,
whereas a device refers to a logical representation of the physical device in an
application.
Queues: A queue represents an interface between the execution engine and the
application. A physical device always contains one or more queues (graphics,
compute, DMA/transfer, and so on). A queue's responsibility is to gather the jobs
(command buffers) and dispatch them to the physical device for processing.
Memory type: Vulkan exposes various memory types. At a broader level, there
are two types of memory: host and device. As we proceed through this chapter,
we will cover these.

Getting Started with the NextGen 3D Graphics API

[13]

Command: A command is an instruction to do some act. A command can be
broadly divided into action, set state, or synchronization.

Action commands: These can be used to draw primitives, clear a
surface, copy a buffer, query/timestamp operations, and begin/end
subpass operations. These commands are capable of altering
framebuffer attachments, reading or writing into the memory
(buffer or image), and writing query pools.
Set state commands: These help bind the pipelines, descriptor sets,
and buffers; they also help set a dynamic state and render a
pass/subpass state.
Synchronization commands: Synchronization helps in satisfying
the requirements of two or more action commands, which may
compete for resources or have some memory dependencies. This
includes setting or waiting for events, inserting the pipeline barrier,
and rendering pass/subpass dependencies.

Command buffer: A command buffer is a collection of commands; it records the
commands and submits them to the queues.

In the next section, we will take an overview of Vulkan to help us understand its working
model and fundamental basics. We will also understand the command syntax rules get an
idea of API commands by simply looking at them.

Learning the fundamentals of Vulkan
This section will cover the basics of Vulkan. Here we will discuss the following:

Vulkan's execution model
Vulkan's queue
The object model
Object life-time and command syntax
Error checking and validation

Vulkan's execution model
A Vulkan-capable system is able to query the system and expose the number of physical
devices available on it. Each of the physical devices advertises one or more queues. These
queues are categorized into different families, where each family has very specific
functionalities. For example, these functionalities could include graphics, compute, data

Getting Started with the NextGen 3D Graphics API

[14]

transfer, and sparse memory management. Each member of the queue family may contain
one or more similar queues, making them compatible with each other. For example, a given
implementation may support data transfer and graphics operations on the same queue.

Vulkan allows you to explicitly manage memory control via the application. It exposes the
various types of heap available on the device, where each heap belongs to a different
memory region. Vulkan's execution model is fairly simple and straightforward. Here,
command buffers are submitted into queues, which are then consumed by the physical
device in order to be processed.

A Vulkan application is responsible for controlling a set of Vulkan-capable devices by
recording a number of commands into command buffers and submitting them into a queue.
This queue is read by the driver that executes the jobs upfront in the submitted order. The
command buffer construction is expensive; therefore, once constructed, it can be cached and
submitted to the queue for execution as many times as required. Further, several command
buffers can be built simultaneously in parallel using multiple threads in an application.

The following diagram shows a simplified pictorial representation of the execution model:

In this, the application records two command buffers containing several commands. These
commands are then given to one or more queues depending upon the job nature. The
queues submit these command buffer jobs to the device for processing. Finally, the device
processes the results and either displays them on the output display or returns them to the
application for further processing.

In Vulkan, the application is responsible for the following:

Producing all the necessary prerequisites for the successful execution of
commands:

This may include preparing resources, precompiling a shader, and
attaching the resources to the shader; specifying the render states;
building a pipeline; and drawing calls

Memory management
Synchronization

Getting Started with the NextGen 3D Graphics API

[15]

Between the host and device
Between the different queues available on the device

Hazard management

Vulkan's queues
Queues are the medium in Vulkan through which command buffers are fed into the device.
The command buffers record one or more commands and submit them to the required
queue. The device may expose multiple queues; therefore, it is the application's
responsibility to submit the command buffer to the correct queue.

The command buffers can be submitted to the following:

Single queue:
The order of the submission of the command buffer and execution
or playback are maintained
Command buffers are executed in a serial fashion

Multiple queues:
Allows the execution of the command buffer in parallel in two or
more queues.
The order of the submission and execution of command buffers are
not guaranteed unless specified explicitly. It is the application's
responsibility to synchronize this; in its absence, the execution may
be completely out of order with respect.

Vulkan provides various synchronization primitives to allow you to have relative control of
the work execution within a single queue or across queues. These are as follows:

Semaphore: This synchronizes work across multiple queues or a coarse-grained
command buffer submission in a single queue.
Events: Events controls fine-grained synchronization and are applied on a single
queue, allowing us to synchronize work within a single command buffer or
sequence of command buffers submitted to a single queue. The host can also
participate in event-based synchronization.
Fences: These allow synchronization between the host and device.
Pipeline barriers: A pipeline barrier is an inserted instruction that ensures that
commands prior to it must be executed before commands specified after it in the
command buffer.

Getting Started with the NextGen 3D Graphics API

[16]

The object model
At the application level, all the entities, including devices, queues, command buffers,
framebuffers, pipelines, and so on, are called Vulkan objects. Internally, at the API level,
these Vulkan objects are recognized with handles. These handles can be of two types:
dispatchable and non-dispatchable.

A dispatchable handle: This is a pointer that refers to an opaque-shaped entity
inside. Opaque types do not allow you to have direct access to the structure's
field. The fields can only be accessed using API routines. Each dispatchable
handle has an associated dispatchable type that is used to pass as a parameter in
the API command. Here's an example of this:

VkInstance VkCommandBuffer VkPhysicalDevice VkDevice VkQueue

Non-dispatchable handles: These are 64-bit integer-type handles that may
contain the object information itself, rather than a pointer to the structure. Here's
an example of this:

VkSemaphore VkFence VkQueryPool VkBufferView

VkDeviceMemory VkBuffer VkImage VkPipeline

VkShaderModule VkSampler VkRenderPass VkDescriptorPool

VkDescriptorSetLayout VkFramebuffer VkPipelineCache VkCommandPool

VkDescriptorSet VkEvent VkPipelineLayout VkImageView

Object lifetime and command syntax
In Vulkan, objects are created and destroyed explicitly as per application logic, and it is the
responsibility of an application to manage this.

Objects in Vulkan are created using Create and destroyed using the Destroy command:

Create syntax: Objects are created using the vkCreate* command; this accepts a
Vk*CreateInfo structure as a parameter input
Destroy syntax: The objects produced using the Create command are destroyed
using vkDestroy*

Getting Started with the NextGen 3D Graphics API

[17]

Objects created as part of the existing object pool or heap are created using the Allocate
command and released from the pool or heap with Free.

Allocate syntax: Objects that are created as part of an object pool use
vkAllocate* along with Vk*AllocateInfo as an argument input.
Freeing syntax: Objects are released back to the pool or memory using the
vkFree* command.

Any given implementation information can be easily accessed using the vkGet* command.
The API implementation of the form vkCmd* is used to record commands in the command
buffer.

Error checking and validation
Vulkan is specially designed to offer maximum performance by keeping error checks and
validations optional. At runtime, the error checks and validations are really minimal,
making the building of a command buffer and submission highly efficient. These optional
capabilities can be enabled using Vulkan's layered architecture, which allows the dynamic
injection of various layers (debugging and validation) into the running system.

Understanding the Vulkan application
This section will provide you with an overview of the various components that contribute
to, and are helpful in building a Vulkan application.

The following block diagram shows the different component blocks and respective
interconnections within the system:

Getting Started with the NextGen 3D Graphics API

[18]

Driver
A Vulkan-capable system comprises a minimum of one CPU and GPU. IHV's vendor
supplies the driver of a given Vulkan specification implementation for their dedicated GPU
architecture. The driver acts as an interface between the application and the device itself. It
provides high-level facilities to the application so it can communicate with the device. For
example, it advertises the number of devices available on the system, their queues and
queue capabilities, available heaps and their related properties, and so on.

Application
An application refers to a user-written program that is intended to make use of Vulkan
APIs to perform graphics or compute jobs. The application starts with the initialization of
the hardware and software; it detects the driver and loads all the Vulkan APIs. The
presentation layer is initialized with Vulkan's Window System Integration (WSI) APIs;
WSI will be helpful in rendering the drawing image on the display surface. The application
creates resources and binds them to the shader stage using descriptors. The descriptor set
layout helps bind the created resources to the underlying pipeline object that is created (of
the graphics or compute type). Finally, command buffers are recorded and submitted to the
queue for processing.

WSI
Windows System Integration is a set of extensions from Khronos for the unification of the
presentation layer across different platforms, such as Linux, Windows, and Android.

SPIR-V
SPIR-V provides a precompiled binary format for specifying shaders to Vulkan. Compilers
are available for various shader source languages, including variants of GLSL and HLSL,
which produce SPIR-V.

Getting Started with the NextGen 3D Graphics API

[19]

LunarG SDK
The Vulkan SDK from LunarG comprises a variety of tools and resources to aid Vulkan
application development. These tools and resources include the Vulkan loader, validation
layers, trace and replay tools, SPIR-V tools, Vulkan runtime installer, documentation,
samples, and demos, see Chapter 3, Shaking Hands with the Device to see detailed
description to get started with LunarG SDK. You can read more about it at
http://lunarg.com/vulkan-sdk.

Getting started with the Vulkan
programming model
Let's discuss the Vulkan programming model in detail. Here, the end user, considering he
or she is a total beginner, will be able to understand the following concepts:

The Vulkan programming model
The rendering execution model, which will be described using a pseudo step-by-
step approach
How Vulkan works

The following diagram shows a top-down approach of the Vulkan application
programming model; we will understand this process in detail and also delve into the
sublevel components and their functionalities:

http://lunarg.com/vulkan-sdk

Getting Started with the NextGen 3D Graphics API

[20]

Hardware initialization
When a Vulkan application starts, its very first job is the initialization of the hardware.
Here, the application activates the Vulkan drivers by communicating with the loader. The
following diagram represents a block diagram of a Loader with its subcomponents:

Loader: A loader is a piece of code used in the application start-up to locate the Vulkan
drivers in a system in a unified way across platforms. The following are the responsibilities
of a loader:

Locating drivers: As its primary job, a loader knows where to search for drivers
in the given system. It finds the correct driver and loads it.
Platform-independent: Initializing Vulkan is consistent across all platforms.
Unlike OpenGL, where creating a context requires working with a different
window system API for each environment, EGL, GLX, and WGL. Platform
differences in Vulkan are expressed as extensions.
Injectable layers: A loader supports a layered architecture and provides the
capability to inject various layers at runtime. The big improvement is that the
driver need not do any of the work (or retain any of the states it would need to do
the work) in determining whether the application's use of the API is valid.
Therefore, it's advisable to turn on the selected injectable layers, as per
application requirements, during the development stage and turn them off at the
deployment stage. For example, injectable layers can offer the following:

Tracing the Vulkan API commands
Capturing rendered scenes and executing them later
Error and validation for debugging purposes

The Vulkan application first performs a handshake with the loader library and initializes
the Vulkan implementation driver. The loader library loads Vulkan APIs dynamically. The
loader also offers a mechanism that allows the automatic loading of specific layers into all
Vulkan applications; this is called an Implicit-Enabled layer.

Getting Started with the NextGen 3D Graphics API

[21]

Once the loader locates the drivers and successfully links with the APIs, the application is
responsible for the following:

Creating a Vulkan instance
Querying the physical device for the available queues
Querying extensions and storing them as function pointers, such as WSI or
special feature APIs
Enabling an injectable layer for error checking, debugging, or the validation
process

Window presentation surfaces
Once the Vulkan implementation driver is located by the loader, we are good to draw
something using the Vulkan APIs. For this, we need an image to perform the drawing task
and put it on the presentation window to display it:

Building a presentation image and creating windows are very platform-specific jobs. In
OpenGL, windowing is intimately linked; the window system framebuffer is created along
with context/device. The big difference from GL here is that context/device creation in
Vulkan needn't involve the window system at all; it is managed through Window System
Integration (WSI).

WSI contains a set of cross-platform windowing management extensions:

A unique cross-platform implementation for the majority of platforms, such as
Windows, Linux, Android, and other OSes
A consistent API standard to easily create surfaces and display them without
getting into the details

WSI supports multiple windowing systems, such as Wayland, X, and Windows, and it also
manages the ownership of images via a swapchain.

Getting Started with the NextGen 3D Graphics API

[22]

WSI provides a swapchain mechanism; this allows the use of multiple images in such a way
that, while the window system is displaying one image, the application can prepare the
next.

The following screenshot shows the double-buffering swap image process. It contains two
images named First Image and Second Image. These images are swapped between
Application and Display with the help of WSI:

WSI works as an interface between Display and Application. It makes sure that both
images are acquired by Display and Application in a mutually exclusive way. Therefore,
when an Application works on First Image, WSI hands over Second Image to Display in
order to render its contents. Once the Application finishes the painting First image, it
submits it to the WSI and in return acquires Second Image to work with and vice-versa.

At this point, perform the following tasks:

Create a native window (like the CreateWindow method in the Windows OS)
Create a WSI surface attached to the window
Create the swapchain to present to the surface
Request the drawing images from the created swapchain

Resource setup
Setting up resources means storing data into memory regions. It could be any type of data,
for example, vertex attributes, such as position, color, or image type/name. Certainly, the
data has resided somewhere in the memory for Vulkan to access it.

Unlike OpenGL, which manages the memory behind the scenes using hints, Vulkan
provides full low-level access and control of the memory. Vulkan advertises the various
types of available memory on the physical device, providing the application with a fine
opportunity to manage these different types of memory explicitly.

Getting Started with the NextGen 3D Graphics API

[23]

Memory heaps can be categorized into two types, based upon their performance:

Host local: This is a slower type of memory
Device local: This is a type of memory with high bandwidth; it is faster

Memory heaps can be further divided based upon their memory type configurations:

Device local: This type of memory is physically attached to the physical device:
Visible to the device
Not visible to the host

Device local, host visible: This type of memory is also physically attached to the
device:

Visible to the device
Visible to the host

Host local, host visible: This refers to the local memory of the host, but it is
slower than the local device:

Visible to the device
Visible to the host

In Vulkan, resources are explicitly taken care of by the application with exclusive control of
memory management. The following is the process of resource management:

Resource objects: For resource setup, an application is responsible for allocating
memory for resources; these resources could be either images or buffer objects.
Allocation and suballocations: When resource objects are created, only logical
addresses are associated with them; there is no physical backing available. The
application allocates physical memory and binds these logical addresses to it. As
allocation is an expensive process, suballocation is an efficient way to manage the
memory; it allocates a big chunk of physical memory at once and puts different
resource objects into it. Suballocation is the responsibility of an application. The
following diagram shows the suballocated object from the big allocated piece of
physical memory:

Getting Started with the NextGen 3D Graphics API

[24]

Sparse memory: For very large image objects, Vulkan fully supports sparse
memory with all its features. Sparse memory is a special feature that allows you
to store large image resources; which are much larger than the actual memory
capacity, in the memory. This technique breaks the image into tiles and loads
only those tiles that fit the application logic.
Staging buffers: The population of the object and image buffers is done using
staging, where two different memory regions are used for the physical allocation.
The ideal memory placement for a resource may not be visible to the host. In this
case, the application must first populate the resource in a staging buffer that is
host-visible and then transfer it to the ideal location.
Asynchronous transfer: The data is transferred asynchronously using
asynchronous commands with any of the graphics or DMA/transfer queues.

Physical memory allocation is expensive; therefore, a good practice is to
allocate a large physical memory and then suballocate objects.

In contrast, OpenGL resource management does not offer granular control
over the memory. There is no conception of host and device memory; the
driver secretly does all of the allocation in the background. Also, these
allocation and suballocation processes are not fully transparent and might
change from one driver to another. This lack of consistency and hidden
memory management cause unpredictable behavior. Vulkan, on the other
hand, allocates the object right there in the chosen memory, making it
highly predictable.

Therefore, during the resource setup stage, you need to perform the following tasks:

Create a resource object.1.
Query the appropriate memory instance and create a memory object like buffer2.
and images.
Get the memory requirements for the allocation.3.
Allocate space and store data in it.4.
Bind the memory with the resource object that we created.5.

Getting Started with the NextGen 3D Graphics API

[25]

Pipeline setup
A pipeline is a set of events that occur in a fixed sequence defined by the application logic.
These events consist of the following: supplying the shaders, binding them to the resource,
and managing the state:

Descriptor sets and descriptor pools
A descriptor set is an interface between resources and shaders. It is a simple structure that
binds the shader to the resource information, such as images or buffers. It associates or
binds a resource memory that the shader is going to use. The following are the
characteristics associated with descriptor sets:

Frequent change: By nature, a descriptor set changes frequently; generally, it
contains attributes such as material, texture, and so on.
Descriptor pool: Considering the nature of descriptor sets, they are allocated
from a descriptor pool without introducing global synchronization
Multithread scalability: This allows multiple threads to update the descriptor set
simultaneously

Updating or changing a descriptor set is one of the most performance-
critical paths in rendering Vulkan. Therefore, the design of a descriptor set
is an important aspect in achieving maximum performance. Vulkan
supports logical partitioning of multiple descriptor sets at the scene (low
frequency updates), model (medium frequency updates), and draw level
(high frequency updates). This ensures that the high frequency update
descriptor does not affect low frequency descriptor resources.

Getting Started with the NextGen 3D Graphics API

[26]

Shaders with SPIR-V
The only way to specify shaders or compute kernels in Vulkan is through SPIR-V. The
following are some characteristics associated with it:

Multiple inputs: SPIR-V producing compilers exist for various source languages,
including GLSL and HLSL. These can be used to convert a human-readable
shader into a SPIR-V intermediate representation.
Offline compilation: Shaders/kernels are compiled offline and injected upfront.
glslangValidator: LunarG SDK provides the glslangValidator compiler, which
can be used to create SPIR-V shaders from equivalent GLSL shaders.
Multiple entry points: The shader object provides multiple entry points. This is
very beneficial for reducing the shipment size (and the loaded size) of the SPIR-V
shaders. Variants of a shader can be packaged into a single module.

Pipeline management
A physical device contains a range of hardware settings that determine how the submitted
input data of a given geometry needs to be interpreted and drawn. These settings are
collectively called pipeline states. These include the rasterizer state, blend state, and depth
stencil state; they also include the primitive topology type (point/line/triangle) of the
submitted geometry and the shaders that will be used for rendering. There are two types of
states: dynamic and static. The pipeline states are used to create the pipeline object
(graphics or compute), which is a performance-critical path. Therefore, we don't want to
create them again and again; we want to create them once and reuse them.

Vulkan allows you to control states using pipeline objects in conjunction with Pipeline
Cache Object (PCO) and the pipeline layout:

Pipeline objects: Pipeline creation is expensive. It includes shader recompilation,
resource binding, Render Pass, framebuffer management, and other related
operations. Pipeline objects could be numbered in hundreds and thousands;
therefore, each different state combination is stored as a separate pipeline object.
PCO: The creation of pipelines is expensive; therefore once created, a pipeline can
be cached. When a new pipeline is requested, the driver can look for a closer
match and create the new pipeline using the base pipeline.

Getting Started with the NextGen 3D Graphics API

[27]

Pipeline caches are opaque, and the details of their use by the driver are
unspecified. The application is responsible for persisting the cache if it wishes to
reuse it across runs and for providing a suitable cache at the time of pipeline
creation if it wishes to reap potential benefits.

Pipeline layout: Pipeline layouts describe the descriptor sets that will be used
with the pipeline, indicating what kind of resource is attached to each binding
slot in the shader. Different pipeline objects can use the same pipeline layout.

In the pipeline management stage, this is what happens:

The application compiles the shader into SPIR-V form and specifies it in the
pipeline shader state.
The descriptor helps us connect these resources to the shader itself. The
application allocates the descriptor set from the descriptor pool and connects the
incoming or outgoing resources to the binding slots in the shader.
The application creates pipeline objects, which contain the static and dynamic
state configuration to control the hardware settings. The pipeline should be
created from a pipeline cache pool for better performance.

Recording commands
Recording commands is the process of command buffer formation. Command buffers are
allocated from the command pool memory. Command pools can also be used for multiple
allocations. A command buffer is recorded by supplying commands within a given start
and end scope defined by the application. The following diagram illustrates the recording
of a drawing command buffer, and as you can see, it comprises many commands recorded
in the top-down order responsible for object painting.

Getting Started with the NextGen 3D Graphics API

[28]

Note that the commands in the command buffer may vary with the job
requirement. This diagram is just an illustration that covers the most
common steps performed while drawing primitives.

The major parts of drawing the are covered here:

Scope: The scope defines the start and end of the command buffer recording.
Render Pass: This defines the execution process of a job that might affect the
framebuffer cache. It may comprise attachments, subpasses, and dependencies
between those subpasses. The attachment refers to images on which the drawing
is performed. In a subpass, an attachment-like image can be subpassed for
multisampling resolve. Render Pass also controls how the framebuffer will be
treated at the beginning of the pass: it will either retain the last information on it
or clear it with the given color. Similarly, at the end of the Render Pass, the
results are going to be either discarded or stored.
Pipeline: This contains the states' (static/dynamic) information represented by a
pipeline object.
Descriptor: This binds the resource information to the pipeline.
Bind resource: This specifies the vertex buffer, image, or other geometry-related
information.
Viewport: This determines the portion of the drawing surface on which the
rendering of the primitives will be performed.
Scissor: This defines a rectangular space region beyond which nothing will be
drawn.
Drawing: The draw command specifies geometry buffer attributes, such as the
start index, total count, and so on.

The creation of a command buffer is an expensive job; it considers the
most performance-critical path. It can be reused numerous times if the
same work needs to happen on many frames. It can be resubmitted
without needing to re-record it. Also, multiple command buffers can be
produced simultaneously using multiple threads. Vulkan is specially
designed to exploit multithreaded scalability. Command pools ensure
there is no lock contention if used in a multithreaded environment.

Getting Started with the NextGen 3D Graphics API

[29]

The following diagram shows a scalable command buffer creation model with a multicore
and multithreading approach. This model provides true parallelism with multicore
processors.

Here, each thread is made to utilize a separate command buffer pool, which allocates either
single or multiple command buffers, allowing no fights on resource locks.

Queue submission
Once command buffers are built, they can be submitted to a queue for processing. Vulkan
exposes different types of queue to the application, such as the graphics, DMA/transfer, or
compute queues. Queue selection for submission is very much dependent upon the nature
of the job. For example, graphics-related tasks must be submitted to the graphics queue.
Similarly, for compute operations, the compute queue will be the best choice. The submitted
jobs are executed in an asynchronous fashion. Command buffers can be pushed into
separate compatible queues allowing parallel execution. The application is responsible for
any kind of synchronization within command buffers or between queues, even between the
host and device themselves.

Queue submission performs the following jobs:

Acquiring the images from the swapchain on which the next frame will be drawn
Deploying any synchronization mechanism, such as semaphore and fence,
required
Gathering the command buffer and submitting it to the required device queue for
processing
Requesting the presentation of the completed painted images on the output
device

Getting Started with the NextGen 3D Graphics API

[30]

Summary
This introductory chapter has boiled down Vulkan to a level where understanding it will be
really easy for beginners. In this chapter, we learned about the evolution of Vulkan and
understood the history and people behind it. Then, we distinguished this API from OpenGL
and understood the reasons for its existence in the modern computing age. We also looked
at simple and easy definitions of the important technical jargon associated with this API.
The fundamentals of the Vulkan API provide a precise and enriched overview of its
working model. We also saw the basic building blocks of the Vulkan ecosystem and got to
know their roles and responsibilities with interconnections. Finally, at the end of the
chapter, we understood how Vulkan works with an easy-to-understand step-by-step
pseudo programming model approach.

After you finish this chapter, you will be expected to have a basic understanding of the
Vulkan API and its detailed working model along with a reasonable familiarity
acquaintance with its technical jargon, to take your first steps in Vulkan programming.

In the next chapter, we will start with Vulkan programming using a pseudocode approach.
We will create a simple example without going into much details yet still covering
important core aspects, the fundamentals of Vulkan API, and data structures to understand
the complete process of graphics pipeline programming in Vulkan.

2
Your First Vulkan Pseudo

Program
In the last chapter, we provided a very basic introduction to visualize the new Vulkan API.
We hovered through the high-level ecosystem design of this API and also understood the
internal module's functionality to learn its execution model.

In this chapter, we will learn about the installation process to get ready to work with
Vulkan pseudocode programming. The explicit nature of Vulkan makes the programming
verbose. In Vulkan, a simple Hello World!!! program may end up with around 1,500 lines of
code. This means trying even a simple example will be a challenge for beginners. But let's
not hit the panic button; we will go through the entire Hello World!!! program with a
simple pseudocode programming model.

Beginners will also learn about a step-by-step approach to building their first Vulkan
application in a user-friendly way. In the following chapters of this book, we will delve into
the real coding process and get our hands dirty with Vulkan programming. So the learning
process is divided into several modules and split across multiple chapters.

This chapter lays the foundation for the remaining chapters. Here, we will build a very
simple Hello World!!! pseudocode program, where we will understand the process of
building a simple tricolored triangle using Vulkan. We will cover the following topics:

Installing Vulkan
The Hello World!!! pseudocode program
Fitting it all together

Your First Vulkan Pseudo Program

[32]

Installing Vulkan
Enough discussing about Vulkan. Now we will delve into the installation process and learn
all we need to make Vulkan work.

Before you go ahead with the installation, please go through the software-
hardware requirements, which you will find in the code files provided
with this book. If your system complies with the requirements mentioned,
you are good to go with the installation process.

Please follow these instructions to install Vulkan:

The Vulkan driver: Most vendors now have their Vulkan support included in the1.
normal driver package. First, install the Vulkan driver. You can choose the
installation location; otherwise, the default location will do. For instance, if you
are installing NVIDIA drivers, the installer first checks the system configuration
to scan any compatibility issues with the installing driver. It will upgrade any
preinstalled driver on the system.
Install Python: Install Python and make sure you add it to the path. This can be2.
done by simply placing a tick against the Add Python <version> to PATH
checkbox.
Install CMake: Next, install CMake. Ensure you select Add CMake to the system3.
PATH for all users. You can use the default location for installation.
Install the SDK: Install the LunarG SDK. The default location should be fine.4.

The LunarG SDK contains the Vulkan specification, manual, and the
necessary libraries that will be helpful in building the project. It also
contains demo samples that can be quickly launched to check the status of
the installation. If you are able to run the sample executable successfully, it
means the Vulkan driver and SDK are installed properly. You can find
these samples under <Lunar-G SDK Path>/Bin or <Lunar-G SDK
Path>/Bin32 for 32 bits systems.

The Hello World!!! pseudocode
In this section, we will build our first Hello World!!! Vulkan application. The application is
built using the pseudocode program model, which offers the following benefits:

Learning through a step-by-step process how to build a Vulkan application.

Your First Vulkan Pseudo Program

[33]

Vulkan coding is lengthy and beginners might get lost in the detail. The
pseudocode highlights only the necessary details that are easy to understand.
A compact form of the program, which is easier for first-time users to memorize.
Each pseudocode uses the real Vulkan API and explains the control flow.
By the end of this chapter, if you are a complete beginner, you'll able to
understand Vulkan programming and all the necessary clues to build
applications from scratch. In addition, you will learn about the high-level
concepts of Vulkan APIs with their responsibilities and functionalities.
For a detailed understanding of the API, use the Vulkan specification available
with the LunarG SDK. Or refer to
https://www.khronos.org/registry/vulkan/specs/1.0/apispec.html.

Given the scope of this chapter, it is not possible to provide a line-by-line
description of each data structure field and API argument. The
pseudocode is only limited to providing a high-level definition, an
overview and related functionalities in a maximum of one to two lines for
most of the important data structures or APIs. All the Vulkan APIs and
related data structures will be thoroughly covered as we proceed through
the upcoming chapters in this book.

Initialization – a handshake with the device
Vulkan initialization includes the initialization of validation layer properties and instance
object (VkInstance) creation. Once the instance is created, check the available physical
devices (VkPhysicalDevice) on the existing system. Choose the intended physical device
and create a corresponding logical device (VkDevice) with the help of the instance object.
In Vulkan programming, logical devices are used in most of the APIs that represent a
logical representation of the physical device.

https://www.khronos.org/registry/vulkan/specs/1.0/apispec.html

Your First Vulkan Pseudo Program

[34]

Vulkan provides debugging capabilities by means of error and validation layers. There are
two types of extension:

Instance-specific: This provides global-level extensions
Device-specific: This provides physical-device-specific extensions

At the beginning, the system is enumerated for global layers and device-specific extensions;
these are exposed by the Vulkan driver. The global layers and extensions can be injected
into the instance object to be enabled at the global level. However, enabling the extensions
only at the device level will enable them only at that specific device.

The initialization is responsible for creating instance and device objects. In addition, global
layers/extensions are queried and enabled at either the global or instance level. Similarly,
the extensions are enabled on the specific device. The following is the pseudocode for the
initialization process:

Enumerating Instance Layer properties: Vulkan first communicates with the1.
loader and locates the driver. The driver exposes a number of extensions and
layers, which may vary with each new installation or from one GPU vendor to
another. vkEnumerateInstanceLayerProperties retrieves the number of
layers and their properties. Each layer may contain multiple extensions that can
be queried using vkEnumerateInstanceExtensionProperties:

 /*** 1. Enumerate Instance Layer properties ***/
 // Get number of instance layers
 uint32_t instanceLayerCount;

 // Use second parameter as NULL to return the layer count
 vkEnumerateInstanceLayerProperties(&instanceLayerCount, NULL);

 VkLayerProperties *layerProperty = NULL;
 vkEnumerateInstanceLayerProperties(&instanceLayerCount,
 layerProperty);

 // Get the extensions for each available instance layer
 foreach layerProperty{
 VkExtensionProperties *instanceExtensions;
 res = vkEnumerateInstanceExtensionProperties(layer_name,
 &instanceExtensionCount, instanceExtensions);

Your First Vulkan Pseudo Program

[35]

 }

Instance creation: The instance object (VkInstance) is created using the2.
vkCreateInstance() API with parameters specifying the name of the layer and
extensions that are to be enabled for validation or debugging purposes. These
names are specified in the VkInstanceCreateInfo structure:

 /*** 2. Instance Creation ***/
 // Vulkan instance object
 VkInstance instance;
 VkInstanceCreateInfo instanceInfo = {};

 // Specify layer names that needs to be enabled on instance.
 instanceInfo.ppEnabledLayerNames = {
 "VK_LAYER_LUNARG_standard_validation",
 "VK_LAYER_LUNARG_object_tracker" };

 // Specify extensions that needs to be enabled on instance.
 instanceInfo.ppEnabledExtensionNames = {
 VK_KHR_SURFACE_EXTENSION_NAME,
 VK_KHR_WIN32_SURFACE_EXTENSION_NAME};

 // Create the Instance object
 vkCreateInstance(&instanceInfo, NULL, &instance);

Device creation: Enumerate the number of physical devices or GPUs on the3.
existing system and get the vkEnumeratePhysicalDevices() API:

 /*** 3. Enumerate physical devices ***/

 VkPhysicalDevice gpu; // Physical device
 uint32_t gpuCount; // Pysical device count
 vector<VkPhysicalDevice>gpuList; // List of physical devices

 // Get number of GPU count
 vkEnumeratePhysicalDevices(instance, &gpuCount, NULL);

 // Get GPU information
 vkEnumeratePhysicalDevices(instance, &gpuCount, gpuList);

For each physical device, enumerate device-specific extensions in the same way we did
during instance creation.

Your First Vulkan Pseudo Program

[36]

For an instance-based enumeration, use the vkEnumerateInstance-
LayerProperties and vkEnumerateInstanceExtensionProperties
APIs. However, device-based layer enumeration is deprecated; therefore,
the extensions can be enumerated using vkEnumerate-
DeviceExtensionProperties.

With the physical device list in hand, query the following information:

Queue and queue types: Query the available physical device queues and queue
properties using the vkGetPhysicalDeviceQueueFamilyProperties API.
Among the queried queues, search for the graphics-capable queue and store its
queue family index in the application for later use. The graphics queue is chosen
because we are only interested in drawing operations.
Memory information: The vkGetPhysicalDeviceMemoryProperties() API
retrieves the available memory types on the intended physical device.
Physical device properties: Optionally, you can store physical device properties
to retrieve some specific information while programming. This can be done using
the vkGetPhysicalDeviceProperties() API.

The device object is created using the vkCreateDevice() API. It's the logical
representation of the physical device in the application space. From now onward, the
program will use the device object in various places:

/*** 4. Create Device ***/

// Get Queue and Queue Type
vkGetPhysicalDeviceQueueFamilyProperties(gpu,
 &queueCount, queueProperties);

// Get the memory properties from the physical device or GPU
vkGetPhysicalDeviceMemoryProperties(gpu, &memoryProperties);

// Get the physical device or GPU properties
vkGetPhysicalDeviceProperties(gpu, &gpuProps);

// Create the logical device object from physical device
VkDeviceCreateInfo deviceInfo = {};
vkCreateDevice(gpuList[0],&deviceInfo, NULL, &device);

Your First Vulkan Pseudo Program

[37]

The following diagram summarizes the approach to creating a Vulkan instance and device
in a cheat sheet fashion; you can refer to it as a quick recap of the process:

Swapchain initialization – querying the WSI
extension
The presentation is responsible for displaying the rendered content on the output window.
For this, we need an empty window to which we can paste our drawing images. Create an
empty window using the CreateWindowEx (Windows) or xcb_create_window (Linux)
APIs.

The presentation needs to be initialized first using instance- and device-based WSI
extension APIs. These APIs allow you to create the presentation surface using various
surface properties.

These APIs must be dynamically linked and stored as function pointers in
the application. Use the vkGetInstanceProcAddr() API to query these
APIs, as shown in the following tabular form.

For instance-based extension APIs, refer to the following:

vkGetPhysicalDeviceSurfaceSupportKHR vkGetPhysicalDeviceSurfaceCapabilitiesKHR

vkGetPhysicalDeviceSurfaceFormatsKHR vkGetPhysicalDeviceSurfacePresentModesKHR

vkDestroySurfaceKHR

Your First Vulkan Pseudo Program

[38]

Similarly, for device-based extension APIs, refer to the following:

vkCreateSwapchainKHR vkDestroySwapchainKHR vkGetSwapchainImagesKHR

vkAcquireNextImageKHR vkQueuePresentKHR

It's really great to get these APIs to do all the presentation-related fun. Let's see what else is
required:

Create an abstract surface object: The very first thing in surface creation is the
creation of the VkSurfaceKHR object. This object abstracts the native platform's
(Windows, Linux, Wayland, Android, and more) windowing/surface
mechanisms. This object is created using the
vkCreate<Win32/Wayland/Android>SurfaceKHR() API.
Using a graphics queue with the presentation: Use the created abstract surface
object and search for a graphics queue that is capable of supporting the
presentation using the vkGetPhysicalDeviceSurfaceSupportKHR() API.

Store the handle or index of this searched queue. Later, it will be used to
query its surface properties and create a logical object of this queue (the
next step).

Get a compatible queue: Before you start any type of command buffer recording,
the queue must be acquired for command buffer submission. Use the
vkGetDeviceQueue() API and specify the handle or index of the compatible
queue that we have already queried in the last step.
Query the surface formats: Retrieve all the advertised surface formats that are
supported by the physical device using the
vkGetPhysicalDeviceSurfaceFormatsKHR API:

 /*** 5. Presentation Initialization ***/

 // Create an empty Window
 CreateWindowEx(...); /*Windows*/
 xcb_create_window(...); /*Linux*/

 // Query WSI extensions,store it as function pointers. For example:
 // vkCreateSwapchainKHR, vkCreateSwapchainKHR
 // Create an abstract surface object
 VkWin32SurfaceCreateInfoKHR createInfo = {};
 vkCreateWin32SurfaceKHR(instance, &createInfo, NULL, &surface);

 // Among all queues, select a queue that supports presentation

Your First Vulkan Pseudo Program

[39]

 foreach Queue in All Queues{
 vkGetPhysicalDeviceSurfaceSupportKHR
 (gpu, queueIndex, surface, &isPresentationSupported);
 // Store this queue's index
 if (isPresentationSupported) {
 graphicsQueueFamilyIndex = Queue.index;
 break;
 }
 }

 // Acquire compatible queue supporting presentation
 // and is also a graphics queue
 vkGetDeviceQueue(device, graphicsQueueFamilyIndex, 0, &queue);

 // Allocate memory for total surface format count
 uint32_t formatCount;
 vkGetPhysicalDeviceSurfaceFormatsKHR
 (gpu, surface, &formatCount, NULL);

 VkSurfaceFormatKHR *surfaceFormats = allocate memory
 (formatCount * VkSurfaceFormatKHR);

 // Grab the surface format into VkSurfaceFormatKHR objects
 vkGetPhysicalDeviceSurfaceFormatsKHR
 (gpu, surface, &formatCount, surfaceFormats);

The following diagram presents a quick overview of the presentation initialization:

Your First Vulkan Pseudo Program

[40]

Command buffer initialization – allocating command
buffers
Before we start creating a presentation surface, we need command buffers. Command
buffers record the commands and submit them to a compatible queue for processing.

Command buffer initialization includes the following:

Command pool creation: Remember, we saved the handle of the compatible
graphics queue that supports the presentation. Now we will use that index or
handle to create a command pool with the vkCreateCommandPool() API, which
is compatible with this queue family.
Allocate a command buffer: Command buffers can simply be allocated from the
created command pool using the vkAllocateCommandBuffers() API.

There is no need to allocate command buffers from the command pool for
each frame if repeatedly used. If the existing command buffers are no
longer required, they can be reused efficiently.

The command buffer pool is used to assign memory regions to create a command buffer
without introducing global synchronization:

Resource objects – managing images and buffers
It is very important to understand the concept of resource types under Vulkan. From now
on, we will deal with resource management quite often. Resource management includes the
creation, allocation, and binding of resources. For example, the presentation surface itself
treats the drawing surface just like any other generic Vulkan resource type.

Your First Vulkan Pseudo Program

[41]

Vulkan divides resources into two types, Buffer and Image, as shown in the following
diagram:

These resources are further divided into views; let's understand these:

Buffer: The buffer object represents resources with linear array types. The buffer
object is of the type VkBuffer and is created with the vkCreateBuffer() API.
This API takes a VkBufferCreateInfo structure as parameter input, which
specifies the various properties that can be used during object creation. For
example, you can specify the tiling of an image, usage of an image, size, queue
compatibility, and so on. Now let's look at what constitutes a buffer view:

Buffer view: A buffer view (VkBufferView) represents the data
buffer itself. It is used to accommodate the data in a contiguous
fashion, in a specific data interpretation format. It can be created
with the help of the vkCreateBufferView() API. It accepts the
VkBufferViewCreateInfo structure where various buffer-
specific properties can be specified, such as its buffer object
(VkBuffer), format, the range of the buffer view, and more.

Image: This is programmatically represented by VkImage. This object stores one-
to three-dimensional buffer arrays. The object is created using the
vkCreateImage() API. Similar to buffer object, this API uses the
VkImageCreateInfo structure to specify various properties during object
creation. Now let's look at what an image view is:

Image view: Similar to buffer view, an image view object is of the
type VkImageView. Use the vkCreateImageView() API along
with the VkImageViewCreateInfo structure to create the image
view object.

The application does not consume the buffer (VkBuffer) and image
(VkImage) object directly; instead, it relies on their respective views:
VkBufferView and VkImageView.

Your First Vulkan Pseudo Program

[42]

Creating a presentation surface – creating a swapchain
Let's do a quick recap. So far, we have created a Vulkan instance, a logical device to
represent our physical device, and we have queried queue properties and also stored the
queue family index that supports the presentation. We have created function pointers for
WSI extensions and understood Vulkan resource types. We have also initialized and created
our command buffers from the command pool.

That covers all we require to kick off our command buffer recording process.

What should be recorded into command buffers?
a) Building the drawing image and depth image for swapchain and
depth/stencil testing.
b) Creating the shader module to associate with the shader program.
c) Binding resources to the shaders with a descriptor set and pipeline
layout.
d) Creating and managing the Render Pass and framebuffer object.
e) Drawing operations.

Start command buffer recording with the vkBeginCommandBuffer() API. This defines the
starting scope of the command buffer; after this, any command specified will be recorded in
the command buffer.

Now, we will learn how to create a swapchain. Here we will acquire the drawing images
from the swapchain for rendering purposes:

Getting surface capabilities: Query the surface capabilities, such as current size,1.
minimum/maximum size possible, possible transformation capabilities, and
more, with the vkGetPhysicalDeviceSurfaceCapabilitiesKHR() API.
Getting surface presentation modes: The presentation mode tells how the2.
drawing surface is going to be updated, for example, whether it is going to be
updated in an immediate mode or vertical blank dependent and so on. The
presentation modes can be retrieved using the vkGetPhysicalDevice-
SurfacePresentModesKHR() API.
Creating the swapchain: Use the surface capabilities in conjunction with the3.
presentation modes to create the swapchain object. These capabilities, along with
many other parameters such as size, surface format, and more, are specified in
the VkSwapChainCreateInfo structure that is passed to vkCreateSwap-
chainKHR() to create the object.

Your First Vulkan Pseudo Program

[43]

Retrieving the swapchain images: Query the number of image surfaces4.
advertised by the swapchain and retrieve the respective image objects (VkImage)
using the vkGetSwapchainImagesKHR() API. For example, if the swapchain
supports double buffering, then it should return a count of two and also two
images for drawing.

For a swapchain image, there is no memory allocation needed on behalf of
the application. Internally, the swapchain has already taken care of
memory allocation and returned the baked object. The application only
needs to specify how to use this image through image views. An image
view describes the use of an image.

Setting the image layout: For each image, set the implementation-compatible5.
layout and add a pipeline barrier. According to the Vulkan specification, a
pipeline barrier inserts an execution dependency and a set of memory
dependencies between a set of commands; first it inserts the command buffer and
then the set of commands in the command buffer. This can be done using the
vkCmdPipelineBarrier() API. By inserting the barrier, it is guaranteed that
the image view will be available in the specified layout before it is used by the
application.
Creating an image view: As the application uses only the VkImageView objects,6.
create a VkImageView object using vkCreateImageView(). Save the view
objects for application use:

 /*** 6. Creating Swapchain ***/

 //Start recording commands into command buffer
 vkBeginCommandBuffer(cmd, &cmdBufInfo);

 // Getting surface capabilities
 vkGetPhysicalDeviceSurfaceCapabilitiesKHR
 (gpu, surface, &surfCapabilities);

 // Retrieve the surface presentation modes
 vkGetPhysicalDeviceSurfacePresentModesKHR
 (gpu, surface, &presentModeCount, NULL);
 VkPresentModeKHR presentModes[presentModeCount];
 vkGetPhysicalDeviceSurfacePresentModesKHR
 (gpu, surface, &presentModeCount, presentModes);

 // Creating the Swapchain
 VkSwapchainCreateInfoKHR swapChainInfo = {};
 fpCreateSwapchainKHR(device, &swapChainInfo, NULL, &swapChain);

Your First Vulkan Pseudo Program

[44]

 // Create the image view of the retrieved swapchain images
 vkGetSwapchainImagesKHR
 (device, swapChain, &swapchainImageCount, NULL);
 VkImage swapchainImages[swapchainImageCount];
 vkGetSwapchainImagesKHR
 (device, swapChain, &swapchainImageCount,
 swapchainImages);

 // Retrieve the Swapchain images
 foreach swapchainImages{

 // Set the implementation compatible layout
 SetImageLayout(. . .)

 // Insert pipeline barrier
 VkImageMemoryBarrier imgMemoryBarrier = { ... };
 vkCmdPipelineBarrier(cmd,srcStages,destStages,0,0,
 NULL,0,NULL,1,&imgMemoryBarrier);

 // Insert pipeline barrier
 vkCreateImageView(device, &colorImageView, NULL,
 &scBuffer.view);

 // Save the image view for application use
 buffers.push_back(scBuffer);
 }

The following diagram shows how swapbuffer image objects (VkImage) are used in the
form of image view objects (VkImageView):

Creating a depth image
The application needs a depth image if it intends to use depth testing. For 2D drawing logic,
only the swapchain image is enough. The process of depth image creation is the same as the
swapchain image. But there is a difference: unlike swapchain images, which are ready-
made (returned by vkGetPhysicalDeviceSurfaceFormatsKHR()), the depth image
object (VkImage) is allocated and created by the application manually.

Your First Vulkan Pseudo Program

[45]

The following is the depth image creation process:

First, query the physical device format properties for the depth image using the1.
vkGetPhysicalDeviceFormatProperties() API.
Create an image object using the vkCreateImage() API and get the resource2.
memory requirements with the vkGetImageMemoryRequirements() API.
Next, allocate the memory with the vkAllocateMemory() API using the3.
retrieved memory requirement properties. Bind the allocated memory to the
created image object by calling the vkBindImageMemory() API.
Similar to the swapchain drawing images, set the proper image layout and create4.
an image view for application usage. For more details on device memory
allocation, refer to the next section, Resource allocation – allocating and binding
device memory.

Refer to the following diagram; the newly allocated depth image is created (VkImage) and
connected to its view types (VKImageView) whose object resides in the memory:

The following pseudocode illustrates the creation of the depth image object, this depth
image will be used for depth testing purposes:

 /*** 7. Creating Depth image ***/
 // Query supported format features of the physical device
 vkGetPhysicalDeviceFormatProperties(gpus,depthFormat,&properties);

 // Create an image object
 vkCreateImage(device, &imageInfo, NULL, &imageObject);

 // Get the memory requirements for an image resource
 vkGetImageMemoryRequirements(device, image, &memRequirements);

 // Allocate memory
 vkAllocateMemory(device, &memAlloc, NULL, &memorys);

 // Bind memory
 vkBindImageMemory(device, imageObject, mem, 0);

Your First Vulkan Pseudo Program

[46]

 // Set the implementation compatible layout
 SetImageLayout(. . .)

 // Insert a pipeline barrier to ensure that specified image
 // layout are created before it being used further
 vkCmdPipelineBarrier(cmd, srcStages, destStages, 0, 0, NULL,
 0, NULL, 1, &imgPipelineBarrier);

 // Create an Image View
 vkCreateImageView(device, &imgViewInfo, NULL, &view);

Resource allocation – allocating and binding device
memory
When first created, Vulkan resources (for buffer, VkBuffer, and for image, VkImage) do
not have any backing memory associated with them. Before using a resource, we need to
allocate memory to it and bind the resource to the memory.

In order to allocate the Vulkan resource objects, first the application needs to query the
available memory on the physical device using vkGetPhysicalDeviceMemory-
Properties(). This API advertises one or more heaps and further exposes one or more
memory types from these heaps. The exposed properties are stored in a memory control
structure (VkPhysicalDeviceMemoryProperties). For a typical PC user, it will expose
two heaps: the system RAM and GPU RAM. Further, each of these heaps will be
categorized based on their memory types.

The properties of memory-specific queries, such as heap types, can be
queried during application initialization and cached at the application
level for later use.

Now, each of these memory types can have various properties that need to be queried from
the physical device. For example, some memory types could be either CPU-visible or not;
they could be coherent between CPU and GPU access, cached or uncached, and so on. Such
queries allow the application to choose the right kind of memory that fits their needs,
following is the typical process in Vulkan that a general application uses for resource
allocation:

Memory requirements: The resource objects (VkBuffer and VkImage) are
created based upon their object properties, such as tiling mode, usage flags, and
more. Now, each of these objects may have different memory requirements that
need to be queried by calling vkGetBufferMemoryRequirements() or

Your First Vulkan Pseudo Program

[47]

vkGetImageMemoryRequirements(). This is helpful in computing the
allocation size; for example, the returned size will take care of the padding
alignment and so on. It will take account of the specified bitmask of the memory
types that are compatible with the resource.

Allocation: The memory is allocated using the vkAllocateMemory() API. It
accepts the device object (VkDevice) and a memory control structure
(VkPhysicalDeviceMemoryProperties).
Binding: We got the memory requirements that helped us get the right type of
memory; using this, we allocate memory. Now we can bind the resource object to
this allocated memory using the vkBindBufferMemory() or
vkBindImageMemory() API.
Memory mapping: Memory mapping is how the content of physical device
memory is updated. First, map the device memory to the host memory using
vkMapMemory(). Update the content on this mapped memory region (on host the
side) and call the vkUnmapMemory() API. This API updates the content of device
memory with the updated mapped memory content.

Supplying shaders – shader compilation into
SPIR-V
Compile the shader files using glslangValidator.exe (a LunarG SDK tool) to convert
them from a readable text format to the SPIR-V format, which is a binary-intermediate form
that Vulkan understands:

// VERTEX SHADER
#version 450

layout (location = 0) in vec4 pos;
layout (location = 1) in vec4 inColor;
layout (location = 0) out vec4 outColor;

out gl_PerVertex {
 vec4 gl_Position;
};

void main() {
 outColor = inColor;
 gl_Position = pos;
 gl_Position.y = -gl_Position.y;
 gl_Position.z = (gl_Position.z + gl_Position.w) / 2.0;

Your First Vulkan Pseudo Program

[48]

}

// FRAGMENT SHADER
#version 450

layout (location = 0) in vec4 color;
layout (location = 0) out vec4 outColor;

void main() {
 outColor = color;
};

The following pseudocode shows the process of creating shader modules within an
application. A shader module for a given shader (vertex, fragment, geometry, tessellation,
and more) is created by calling the vkCreateShaderModule() API. This needs to be
provided with the SPIR-V format intermediate binary shader code that is specified in the
VkShaderModuleCreateInfo control structure:

/*** 8. Building shader module ***/

VkPipelineShaderStageCreateInfo vtxShdrStages = {....};
VkShaderModuleCreateInfo moduleCreateInfo = { ... };

// spvVertexShaderData contains binary form of vertex shader
moduleCreateInfo.pCode = spvVertexShaderData;

// Create Shader module on the device
vkCreateShaderModule
 (device, &moduleCreateInfo, NULL, &vtxShdrStages.module);

Building layouts – descriptor and pipeline layouts
A descriptor connects the resources with the shader through layout binding slots. It is very
commonly used to connect uniform and sampler resource types to the shaders.

More than one descriptor layout binding can be present in a single descriptor set; they will
be present in the form of blocks or arrays, as shown in the following pseudocode. These
blocks are then bundled into a single control structure,
VkDescriptorSetLayoutCreateInfo, and used to create a descriptor layout object by
calling the vkCreateDescriptorSetLayout() API. A descriptor set layout represents the
type of information a descriptor set contains.

Your First Vulkan Pseudo Program

[49]

Descriptor layouts are created but are not presently accessible by the underlying pipeline.
In order to provide access, we need to create a pipeline layout. A pipeline layout is the
means by which the pipeline can access the descriptor set information. It is created by
calling the vkCreatePipelineLayout() API, which consumes a
VkPipelineLayoutCreateInfo control structure object containing the preceding
descriptor layout:

/*** 9. Creating descriptor layout and pipeline layout ***/

// Descriptor layout specifies info type associated with shaders
VkDescriptorSetLayoutBinding layoutBind[2];

layoutBind[0].descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
layoutBind[0].binding = 0;
layoutBind[0].stageFlags = VK_SHADER_STAGE_VERTEX_BIT;

layoutBind[1].descriptorType =
 VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
layoutBind[1].binding = 0;
layoutBind[1].stageFlags = VK_SHADER_STAGE_FRAGMENT_BIT;

// Use layout bindings and create a descriptor set layout
VkDescriptorSetLayoutCreateInfo descriptorLayout = {};
descriptorLayout.pBindings = layoutBind;

VkDescriptorSetLayout descLayout[2];
vkCreateDescriptorSetLayout
 (device, &descriptorLayout, NULL, descLayout.data());

// Now use the descriptor layout to create a pipeline layout
VkPipelineLayoutCreateInfo pipelineLayoutCI = { ... };
pipelineLayoutCI.pSetLayouts = descLayout.data();
vkCreatePipelineLayout
 (device, &pipelineLayoutCI, NULL, &pipelineLayout);

The present example in this chapter makes use of the attributes only
(vertex position and color). It does not use any uniform or sampler.
Therefore, at this point in the chapter, we do not need to define the
descriptor. We will understand more about descriptor sets in detail later,
specifically in Chapter 10, Descriptors and Push Constant.

Your First Vulkan Pseudo Program

[50]

Creating a Render Pass – defining a pass
attribute
Next, create a Render Pass object. A Render Pass contains subpasses and attachments. It
describes the structure of the drawing work to the driver, how data will flow between the
various attachments or what the ordering requirements are; and runtime behavior, such as
how these attachments will be treated at each load or whether it needs to be clear or
preserve information. The Render Pass object is created by calling the
vkCreateRenderPass() API. It accepts the subpass and the attachment control structures
as arguments. See the following pseudocode for more information:

/*** 10. Render Pass ***/

// Define two attachment for color and depth buffer
VkAttachmentDescription attachments[2];
attachments[0].format = colorImageformat;
attachments[0].loadOp = clear ? VK_ATTACHMENT_LOAD_OP_CLEAR
 : VK_ATTACHMENT_LOAD_OP_DONT_CARE;
attachments[1].format = depthImageformat;
attachments[1].loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;

VkAttachmentReference colorReference, depthReference = {...};

// Describe the subpass, use color image and depth image
VkSubpassDescription subpass = {};
subpass.pColorAttachments = &colorReference;
subpass.pDepthStencilAttachment = &depthReference;

// Define RenderPass control structure
VkRenderPassCreateInfo rpInfo = { &attachments,&subpass ...};

VkRenderPass renderPass; // Create Render Pass object
vkCreateRenderPass(device, &rpInfo, NULL, &renderPass);

Framebuffer – connect drawing images to the
Render Pass
A framebuffer is a collection of image views, corresponding to the attachment specified in
the Render Pass. The image view represents the drawing image or depth image. The Render
Pass object is used to control these attachments through the properties that are specified
while creating the Render Pass object.

Your First Vulkan Pseudo Program

[51]

The VkFramebufferCreateInfo control structure accepts the Render Pass object and the
attachment and other important parameters in it, such as the dimensions, number of
attachments, layers, and so on. This structure is passed to the VkCreateFramebuffer()
API to create the framebuffer object.

The attachments used to represent the color and depth buffer must be
image views (VKImageView), not image objects (VkImage).

The following diagram shows the created framebuffer object. It contains the image views of
the color buffers images for drawing and the depth view for depth testing:

Let's walk through the frame buffer creation process using the following pseudocode:

/*** 11. Creating Frame buffers ***/

VkImageView attachments[2]; // [0] for color, [1] for depth
attachments[1] = Depth.view;

VkFramebufferCreateInfo fbInfo = {};
fbInfo.renderPass = renderPass; // Pass render buffer object
fbInfo.pAttachments = attachments; // Image view attachments
fbInfo.width = width; // Frame buffer width
fbInfo.height = height; // Frame buffer height

// Allocate memory for frame buffer objects, for each image
// in the swapchain, there is one frame buffer
VkFramebuffer framebuffers[number of draw imagein swap chain];

foreach (drawing buffer in swapchain) {
 attachments[0] = currentSwapChainDrawImage.view;
 vkCreateFramebuffer(device, &fbInfo, NULL, &framebuffers[i]);
}

Your First Vulkan Pseudo Program

[52]

Populating geometry – storing a vertex into GPU
memory
Next, define the geometric shape that will appear on the display output. In this chapter, we
used a simple tricolor triangle.

The following screenshot shows the interleaved geometry data associated with this triangle.
It contains the vertex position followed by color information for each vertex. This data array
needs to be supplied to the physical device via a Vulkan buffer object (VkBuffer).

The following pseudocode involves the allocation, mapping, and binding process of the
buffer objects:

/*** 12. Populate Geometry - storing vertex into GPU memory ***/

static const VertexWithColor triangleData[] ={
 /*{ x, y, z, w, r, g, b, a },*/
 { 0.0f, 1.0f, 0.0f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0 },
 { -1.0f, -1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0 },
 { 1.0f, -1.0f, 0.0f, 1.0f, 0.0f, 1.0f, 0.0f, 1.0 },
};

VkBuffer buffer;
VkMemoryRequirements mem_requirement;
VkDeviceMemory deviceMemory;

// Create buffer object, query required memory and allocate
VkBufferCreateInfo buffer_info = { ... };
vkCreateBuffer(device, &buffer_info, NULL, &buffer);

vkGetBufferMemoryRequirements(device, buffer, &mem_requirement);

VkMemoryAllocateInfo alloc_info = { ... };

Your First Vulkan Pseudo Program

[53]

vkAllocateMemory(device, &alloc_info, NULL, &(deviceMemory));

// Copy the triangleData to GPU using mapping and unmapping.
uint8_t *pData;
vkMapMemory(device, deviceMemory, 0, mem_requirement.size,
 0, &pData);
memcpy(pData, triangleData, dataSize); /**** Copying data ****/
vkUnmapMemory(device, deviceMemory);

// Bind the allocated memory
vkBindBufferMemory(device, buffer, deviceMemory, 0);

The process of buffer resource creation is very similar to that of image objects. Here, Vulkan
provides buffer-based APIs for allocation, mapping, and binding. This is very similar to
image object management APIs. The following table shows buffer and image resource
management APIs and related data structures:

Buffer object Image object

VkBuffer VkImageView

VkBufferCreateInfo VkImageCreateInfo

vkCreateBuffer vkCreateImage

vkGetBufferMemoryRequirements vkGetImageMemoryRequirements

vkBindBufferMemory vkBindImageMemory

vkCreateBufferView vkCreateImageView

The buffer is not initially associated with any type of memory. The application must
allocate and bind appropriate device memory to the buffer before it can be used. Unlike
images, which have to be compulsorily created with the image view in order to use them in
the application, the buffer object can be used directly (such as vertex attribute, uniforms,
and so on). If the buffer object is required to be accessed in the shader stage, it must be
accessed in the form of buffer view objects

Your First Vulkan Pseudo Program

[54]

Once the vertex data is uploaded in the device memory, the pipeline must be informed with
the specification of this data. This will be helpful in retrieving and interpreting the data. For
example, the preceding geometry vertex data comprises position and color information,
stored in an interleaved fashion, and each attribute is 16-bytes wide. This information needs
to be communicated to the underlying pipeline with the help of vertex input binding
(VkVertexInputBindingDescription) and the vertex input attribute descriptor
(VkVertexInputAttributeDescription) control structure.

The VkVertexInputBindingDescription contains properties that help the
pipeline to read the buffer resource data, for example, the stride between each
unit of information, considering the rate of information to be read (whether it is
vertex-based or based on a number of instances).
The VkVertexInputAttributeDescription interprets the buffer resource
data.

In the following pseudocode, the position and color attributes are read at the 0th and 1st

location in the vertex shader. Since the data is in interleaved form, the offset is 0 and 16,
respectively:

/*** 13. Vertex binding ***/

VkVertexInputBindingDescription viBinding;
viBinding.binding = 0;
viBinding.inputRate = VK_VERTEX_INPUT_RATE_VERTEX;
viBinding.stride = sizeof(triangleData) /*data Stride*/;

VkVertexInputAttributeDescriptionviAttribs[2];
viAttribs[0].binding = 0;
viAttribs[0].location = 0;
viAttribs[0].format = VK_FORMAT_R32G32B32A32_SFLOAT;
viAttribs[0].offset = 0;
viAttribs[1].binding = 0;
viAttribs[1].location = 1;
viAttribs[1].format = VK_FORMAT_R32G32B32A32_SFLOAT;
viAttribs[1].offset = 16;

The control structure objects viAttribs and viBinding will be used at
the time of pipeline creation. A pipeline object contains several states,
among these, the vertex input state consumes the objects that are helpful
in reading and interpreting a buffer resource.

Your First Vulkan Pseudo Program

[55]

Pipeline state management – creating pipelines
A pipeline is a collection of multiple states. Each state contains a set of properties that
defines an execution protocol for that state. Collectively, all these states produce a single
pipeline. There are two types of pipeline:

Graphics pipeline: This pipeline may comprise multiple shader stages, including
vertex, fragment, tessellation, geometry, and so on. It has a pipeline layout and
multiple fixed-function pipeline stages.
Compute pipeline: This is used for the compute operation. It consists of a single
static compute shader stage and the pipeline layout.

Pipeline state management can be divided into two steps. The first step consists of defining
various state objects containing important state control properties. In the second step, a
pipeline object is created using these state objects.

Defining states
A pipeline may consume several states, and these are defined here:

Dynamic states: The dynamic state notifies the pipeline about what states are
expected to change at runtime. This allows the pipeline to permit a special
routine update to the respective state instead of using an initialized value. For
example viewport and scissoring are dynamic states. The
VkPipelineDynamicStateCreateInfo structure specifies all dynamic states
and their properties in the application program.
Vertex input state: This state helps the pipeline to understand the reading and
interpretation of data. Use the VkPipelineVertexInputStateCreateInfo
object and specify the object of vertex input binding
(VkVertexInputBindingDescription) and the vertex input attribute
descriptor (VkVertexInputAttributeDescription) in it.
Rasterization state: This is the process by which a primitive is converted into a
two-dimensional image containing vital information, such as color, depth, and
other attributes. It is represented by the
VkPipelineRasterizationStateCreateInfo structure; this structure can be
specified with culling mode, front-face orientation, primitive type, line width,
and more.

Your First Vulkan Pseudo Program

[56]

Color blend attachment state: Blending is a combination of a source and a
destination color; this can be combined in various ways with different attributes
and blend equations. This is represented using the VkPipelineColor-
BlendStateCreateInfo structure.
Viewport state: This state is helpful in controlling the viewport transformation.
The viewport properties can be specified using VkPipelineViewportState-
CreateInfo. There could be various viewports. This state helps in determining
the vital properties of the selected viewport, such as dimension, start point, depth
range, and more. For each viewport, there is a corresponding scissor rectangle
defining the scissor test rectangular bounds.

Depth stencil state: The VkPipelineDepthStencilStateCreateInfo control
structure is used to control the depth bound tests, stencil test, and depth test.
Multisample state: The multisampling state contains important properties that
control the behavior of the antialiasing of rasterized Vulkan primitives, such as
points, lines, and polygons. The VkPipelineMultisampleStateCreateInfo
control structure can be used to specify such control properties.
The following pseudocode defines the various pipeline state objects that will be
used in creating the graphics pipeline:

 /*** 14. Defining states ***/

 // Vertex Input state
 VkPipelineVertexInputStateCreateInfo vertexInputStateInfo= {...};
 vertexInputStateInfo.vertexBindingDescriptionCount = 1;
 vertexInputStateInfo.pVertexBindingDescriptions = &viBinding;
 vertexInputStateInfo.vertexAttributeDescriptionCount = 2;
 vertexInputStateInfo.pVertexAttributeDescriptions = viAttribs;

 // Dynamic states
 VkPipelineDynamicStateCreateInfo dynamicState = { ... };

 // Input assembly state control structure
 VkPipelineInputAssemblyStateCreateInfo inputAssemblyInfo= { ... };

 // Rasterization state control structure
 VkPipelineRasterizationStateCreateInfo rasterStateInfo = { ... };

 // Color blend Attachment state control structure
 VkPipelineColorBlendAttachmentState colorBlendSI = { ... };

 // Color blend state control structure
 VkPipelineColorBlendStateCreateInfo colorBlendStateInfo = { ... };

Your First Vulkan Pseudo Program

[57]

 // View port state control structure
 VkPipelineViewportStateCreateInfo viewportStateInfo = { ... };

 // Depth stencil state control structure
 VkPipelineDepthStencilStateCreateInfo depthStencilStateInfo={..};

 // Multisampling state control structure
 VkPipelineMultisampleStateCreateInfo multiSampleStateInfo = {..};

Creating a graphics pipeline
Pipeline state objects are packed into the VkGraphicsPipelineCreateInfo control
structure. This structure provides a means to access the pipeline state information inside the
graphics pipeline object.

The creation of the pipeline state object could be an expensive operation. It is one of the
performance-critical paths. Therefore, pipeline state objects are created from a pipeline
cache (VkPipelineCache) to offer maximum performance. This allows the driver to create
a new pipeline using existing base pipelines.

The graphics pipeline object is created using the vkCreateGraphicsPipelines() API.
This API accepts the pipeline cache object to allocate the VkPipeline object from it and the
VkGraphicsPipelineCreateInfo object to specify all the states connected with this
pipeline:

/*** 15. Creating Graphics Pipeline ***/
// Create the pipeline objects
VkPipelineCache pipelineCache;
VkPipelineCacheCreateInfo pipelineCacheInfo;
vkCreatePipelineCache(device, &pipelineCacheInfo, NULL,
 &pipelineCache);

// Define the control structure of graphics pipeline
VkGraphicsPipelineCreateInfo pipelineInfo;
pipelineInfo.layout = pipelineLayout;
pipelineInfo.pVertexInputState = &vertexInputStateInfo;
pipelineInfo.pInputAssemblyState = &inputAssemblyInfo;
pipelineInfo.pRasterizationState = &rasterStateInfo;
pipelineInfo.pColorBlendState = &colorBlendStateInfo;
pipelineInfo.pMultisampleState = &multiSampleStateInfo;
pipelineInfo.pDynamicState = &dynamicState;
pipelineInfo.pViewportState = &viewportStateInfo;
pipelineInfo.pDepthStencilState = &depthStencilStateInfo;
pipelineInfo.pStages = shaderStages;
pipelineInfo.stageCount = 2;

Your First Vulkan Pseudo Program

[58]

pipelineInfo.renderPass = renderPass;

// Create graphics pipeline
vkCreateGraphicsPipelines
 (device, pipelineCache, 1, &pipelineInfo, NULL, &pipeline);

Executing the Render Pass – drawing Hello
World!!!
We are almost there! At this stage, we will render our simple triangle on the drawing
surface with the help of the Render Pass stage. The execution of the Render Pass stage
requires a drawing surface and a recording of a set of commands that defines a single
Render Pass run.

Acquiring the drawing surface
The very first thing we require before we start rendering anything is the drawing
framebuffer. We have already created the framebuffer object and associated the swapchain
drawing image within it (containing the swapchain image views). Now, we will use the
vkAcquireNextImageKHR() API to determine the index of the drawing image that is
currently available for the drawing operation. Using this acquired index, we refer to the
corresponding framebuffer and give it to the Render Pass stage for rendering purposes:

/*** 16. Acquiring drawing image ***/

// Define semaphore for synchronizing the acquire of draw image.
// Only acquire draw image when drawing is completed
VkSemaphore imageAcquiredSemaphore;
VkSemaphoreCreateInfo imageAcquiredSemaphoreCI = {...};
imageAcquiredSemaphoreCI.sType=VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO;
vkCreateSemaphore(device, &imageAcquiredSemaphoreCI, NULL,
 &imageAcquiredSemaphore);

// Get the index of the next available swapchain image:
vkAcquireNextImageKHR(device, swapChain, UINT64_MAX,
 imageAcquiredSemaphore, NULL, &swapChainObjCurrentBuffer);

A synchronization mechanism is required when two or more swapchain drawing images
are being used. A drawing image must only be acquired if it has rendered on the display
output and is ready to take the next job; this status is indicated by
vkAcquireNextImageKHR(). A semaphore object can be used to synchronize the acquiring
of the drawing images. A semaphore (VkSemaphore) can be created using the

Your First Vulkan Pseudo Program

[59]

vkCreateSemaphore() API; this object will be used in the command buffer submission.

Preparing the Render Pass control structure
Render Pass needs some specific information, such as the frame buffer, Render Pass object,
render area dimensions, clear color, depth stencil values, and so on. This information is
specified using the VkRenderPassBeginInfo control structure. This structure is later used
to define Render Pass execution. The following pseudocode will help you understand the
use of this structure in detail:

/*** 17. Preparing render pass control structure ***/

// Define clear color value and depth stencil values
const VkClearValue clearValues[2] = {
 [0] = { .color.float32 = { 0.2f, 0.2f, 0.2f, 0.2f } },
 [1] = { .depthStencil = { 1.0f, 0 } },
};

// Render pass execution data structure for a frame buffer
VkRenderPassBeginInfo beginPass;
beginPass.sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO;
beginPass.pNext= NULL;
beginPass.renderPass = renderPass;
beginPass.framebuffer =framebuffers[currentSwapchainImageIndex];
beginPass.renderArea.offset.x = 0;
beginPass.renderArea.offset.y = 0;
beginPass.renderArea.extent.width = width;
beginPass.renderArea.extent.height = height;
beginPass.clearValueCount = 2;
beginPass.pClearValues = clearValues;

Render Pass execution
The execution of the Render Pass is defined within a user-defined scope. This scope is
interpreted using start and end markers defined by the vkCmdBeginRenderPass() and
vkCmdEndRenderPass() APIs respectively. Within this scope, the following commands are
specified, automatically linked to the current Render Pass:

Bind the pipeline: Bind the graphics pipeline with vkCmdBindPipeline().1.
Bind the geometry buffer: Supply the vertex data buffer object (of the type2.
VkBuffer) to the Render Pass using the vkCmdBindVertexBuffers() API.

Your First Vulkan Pseudo Program

[60]

Viewport and scissor: Specify the viewport and scissor dimensions by calling the3.
vkCmdSetViewport() and vkCmdSetScissor() APIs.
Draw object: Specify the draw command containing information such as how4.
many vertices need to read from the start index, the number of instances, and so
on.

Before we finish command buffer recording, set an implementation-compatible image
layout and end command buffer recording by calling vkEndCommandBuffer():

/**** START RENDER PASS ****/
vkCmdBeginRenderPass(cmd, &beginPass, VK_SUBPASS_CONTENTS_INLINE);

// Bind the pipeline
vkCmdBindPipeline(cmd, VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline);
const VkDeviceSize offsets[1] = { 0 };

// Bind the triangle buffer data
vkCmdBindVertexBuffers(cmd, 0, 1, &buffer, offsets);

// viewport = {0, 0, 500, 500, 0 ,1}
vkCmdSetViewport(cmd, 0, NUM_VIEWPORTS, &viewport);

// scissor = {0, 0, 500, 500}
vkCmdSetScissor(cmd, 0, NUM_SCISSORS, &scissor);

// Draw command - 3 vertices, 1 instance, 0th first index
vkCmdDraw(cmd, 3, 1, 0, 0);

/**** END RENDER PASS ****/
vkCmdEndRenderPass(cmd);

// Set the swapchain image layout
setImageLayout(VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL . .);

/**** COMMAND BUFFER RECORDING ENDS HERE ****/
vkEndCommandBuffer(cmd);

Your First Vulkan Pseudo Program

[61]

The following diagram shows the Render Pass execution process. It highlights the
operations performed under the Render Pass scope.

Queue submission and synchronization –
sending jobs
Finally, we have reached a point where our command buffer is successfully recorded with
numerous commands, including the Render Pass information and the graphics pipeline.
The command buffer will be processed by submitting it into the queue. The driver will read
the command buffer and schedule it.

Command buffers are generally packed into batches for efficient
rendering; therefore, if multiple command buffers exist, then they need to
be packed into a single VkCommandBuffer array.

Before a command buffer is submitted, it's important to know the status of the previously
submitted batch. If it is processed successfully, then it only makes sense to push a new
batch into the queue. Vulkan provides fences (VkFence) as a synchronization mechanism to
know whether the previously sent jobs have been completed. A fence object (VkFence) is
created using the vkCreateFence() API. This API accepts a VkFenceCreateInfo control
structure into it.

Your First Vulkan Pseudo Program

[62]

Command buffers are specified in a submission object (VkSubmitInfo). This object
contains the command buffer list along with a VkSemaphore object for the synchronization
of a framebuffer with swapchain drawing images. This information is fed into the
vkQueueSubmit() API; it contains a VkQueue object to which the command buffer is going
to be submitted and a VkFence object to ensure there is synchronization between each
command buffer submission:

VkFenceCreateInfo fenceInfo = { ... };
VkFence drawFence;
// Create fence forensuring completion of cmdBuffer processing
vkCreateFence(device, &fenceInfo, NULL, &drawFence);

// Fill the command buffer submission control sturctures
VkSubmitInfo submitInfo[1] = { ... };
submitInfo[0].pNext = NULL;
submitInfo[0].sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
submitInfo[0].pWaitSemaphores = &imageAcquiredSemaphore;
submitInfo[0].commandBufferCount = 1;
submitInfo[0].pCommandBuffers = &cmd;

// Queue the command buffer for execution
vkQueueSubmit(queue, 1, submitInfo, NULL);

Displaying with presentation layer – rendering a
triangle
Once the command buffer is submitted to the queue, it is processed asynchronously by the
physical device. As a result, it will render a tricolor triangle on the drawing surface of the
swapchain. Now, this surface is invisible to the user and it needs to be presented on the
display window. The drawing surface is presented with the help of the VkPresentInfoKHR
control structure. This contains the presentation information, for example, the number of
swapchains in the application, the index of a drawing image that needs to be retrieved, and
so on. This control structures object is used as a parameter in vkQueuePresentKHR. This
flips the drawing surface image to the display window.

Once vkQueueSubmit is called, the presentation queue can wait upon the
imageAcquiredSemaphore semaphore signaled by the last submission
before it performs the presentation.

// Define the presentation control structure
VkPresentInfoKHR present = { ... };
present.sType = VK_STRUCTURE_TYPE_PRESENT_INFO_KHR;

Your First Vulkan Pseudo Program

[63]

present.pNext = NULL;
present.swapchainCount = 1;
present.pSwapchains = &swapChain;
present.pImageIndices = &swapChainObjCurrent_buffer;

// Check if all the submitted command buffers are processed
do {
 res=vkWaitForFences(device,1,&drawFence,VK_TRUE,FENCE_TIMEOUT);
} while (res == VK_TIMEOUT);

// Handover the swapchain image to presentation queue
// for presentation purpose
vkQueuePresentKHR(queue, &present);

// Destroy Synchronization objects
vkDestroySemaphore(device, imageAcquiredSemaphore, NULL);
vkDestroyFence(device, drawFence, NULL);

Fitting it all together
This section provides a short description of the working of our first Vulkan pseudo
application. The following diagram is a snapshot of the working model:

Your First Vulkan Pseudo Program

[64]

First, the application creates the Vulkan instance and device at the initialization stage with
the necessary layers enabled and extensions created. The device exposes various queues
(graphics or compute) as shown in the preceding diagram. These queues gather the
command buffers and submit them to the physical device for processing.

Using the WSI extension, drawing surfaces are prepared for rendering graphic contents.
The swapchain exposes these drawing surface as images, which are used in the form of
image views. Similarly, the depth image view is prepared. These image view objects are
used by the framebuffer. Render Pass makes use of this framebuffer to define a unit-
rendering operation.

The command buffer is allocated from command buffer pools, and it is used to record
various commands along with the Render Pass execution process. The Render Pass
execution requires some vital Vulkan objects, such as the graphics pipeline, the descriptor
set, shader modules, pipeline objects, and geometry data, as shown in the preceding
diagram.

Finally, the command buffer is submitted to a presentation-supported (plus graphics)
queue. Once submitted, it is processed by the GPU in an asynchronous fashion. Various
synchronization mechanisms and memory barriers may be required to make the rendering
output hitch-free.

Summary
In this chapter, we explored the step-by-step process of installing Vulkan on your system.
Then we pseudo programmed “Hello World!!!” where we rendered a tricolor triangle on the
display window.

This introductory chapter has boiled down Vulkan to a level where understanding this
graphics API is really easy for beginners. This chapter is a cheat code for Vulkan
programming; it can be used as a reference to remember all the programming steps along
with all their respective APIs in the correct order.

Aristotle said, “Well begun is half done!” With the completion of the first two chapters, we
have built a strong foundation to fully understand Vulkan mechanics from scratch; we will
do this in the upcoming chapters.

Your First Vulkan Pseudo Program

[65]

In the next chapter, we will delve into core programming and start building our first
Vulkan application. You will learn about layers and extensions and how to enable them
implicitly and explicitly. We will also look into the fundamentals of Vulkan instances and
the device and queues, which are very helpful to communicate with the GPU. Once we do
this, we will query the resources and facilities it exposes. We will also learn how to get
queues and their advertised properties.

3
Shaking Hands with the Device

With the knowledge we gained from the last two chapters, we have now reached a level
where we can start Vulkan programming from scratch. These two chapters laid the
foundation and helped us understand the basic fundamentals of this revolutionary API.
Now, at a higher level, we understand the motivation behind this technology, its core
blocks, and the associated functionalities and terminologies. In addition, we walked
through Vulkan pseudocoding and built a very simple application to understand and
visualize the Vulkan programming model.

From this chapter onward, we will dive into the core of Vulkan programming and start
transforming our Hello World!!! pseudocode into a real-world executable sample.

All the chapters in this book are designed and programmed carefully in a
structured way; every new chapter is dependent on the previous one. You
are advised to follow the sequence of the chapters for an efficient learning
experience.

In this chapter, we will cover the following topics:

Getting started with the LunarG SDK
Setting up the first project with CMake
An introduction to layers and extensions
Creating a Vulkan instance
Understanding physical and logical devices
Understanding queues and queue families
Implementing the device and queues all together

Shaking Hands with the Device

[67]

Getting started with the LunarG SDK
All the chapters in this book use the LunarG SDK for Vulkan programming. This SDK can
be downloaded from h t t p s ://v u l k a n . l u n a r g . c o m ; you'll need a LunarG account to do
this.

The SDK's default installation path always locates to C:\VulkanSDK\ [version]. Upon
successful installation, the SDK's Bin directory location is added to the $PATH environment
variable (C:\VulkanSDK\1.0.26.0\Bin). In addition, the VK_SDK_PATH environment
variable is added, pointing to the SDK's path (C:\VulkanSDK\1.0.26.0).

The installation will also add the Vulkan loader (vulkan-1.dll) to
C:\Windows\System32. Based on the window target, the loader will be either a 32-bit or
64-bit DLL.

The following are some general terms that will be commonly used throughout the chapter:

Term Description

ICD This is the abbreviation for Installable Client Driver. It is a Vulkan-compatible
display driver. Multiple ICDs–for example, NVIDIA and Intel drivers–can coexist
without interfering with each other.

Layers These are pluggable components that either hook or intercept Vulkan commands.
They provide services such as debugging, validation, tracing, and so on.

Loader A loader's job is to locate the display driver and expose the layer's libraries in a
platform-independent way. On Windows, the load library (vulkan-1.dll) uses
registries to locate ICD and layer configurations.

The following are the folder contencified in the highlighted part of the following code.ts of
the LunarG SDK along with the respective descriptions:

Directory Description

Bin and
Bin32

These contain the 32-bit (the Bin32 folder) and 64-bit (the Bin folder) release
build of the executable and loader. They also contain the libraries of layers and
tools.

Config This is meant to store different Vulkan configurations. For example, it contains
the vk_layer_settings.txt file, which is used to set configuration
parameters at different validation layers. These configurations can dynamically
affect the layers.

https://vulkan.lunarg.com
https://vulkan.lunarg.com
https://vulkan.lunarg.com
https://vulkan.lunarg.com
https://vulkan.lunarg.com
https://vulkan.lunarg.com
https://vulkan.lunarg.com
https://vulkan.lunarg.com
https://vulkan.lunarg.com
https://vulkan.lunarg.com
https://vulkan.lunarg.com
https://vulkan.lunarg.com
https://vulkan.lunarg.com
https://vulkan.lunarg.com
https://vulkan.lunarg.com
https://vulkan.lunarg.com
https://vulkan.lunarg.com
https://vulkan.lunarg.com
https://vulkan.lunarg.com
https://vulkan.lunarg.com
https://vulkan.lunarg.com
https://vulkan.lunarg.com
https://vulkan.lunarg.com
https://vulkan.lunarg.com
https://vulkan.lunarg.com
https://vulkan.lunarg.com
https://vulkan.lunarg.com
https://vulkan.lunarg.com
https://vulkan.lunarg.com
https://vulkan.lunarg.com
https://vulkan.lunarg.com
https://vulkan.lunarg.com
https://vulkan.lunarg.com
https://vulkan.lunarg.com
https://vulkan.lunarg.com
https://vulkan.lunarg.com
https://vulkan.lunarg.com
https://vulkan.lunarg.com
https://vulkan.lunarg.com
https://vulkan.lunarg.com
https://vulkan.lunarg.com
https://vulkan.lunarg.com
https://vulkan.lunarg.com
https://vulkan.lunarg.com

Shaking Hands with the Device

[68]

Demo This is the Vulkan demo source for the cube, tri, and vulkaninfo
programs.

Doc This refers to specifications, manuals, release notes, and other important pieces
of documentation.

glslang This contains the source and headers for glslang. It provides a frontend parser
for GLSL and a standalone wrapper tool called glslangValidator for
shader validation.

Include This contains the necessary header files that help the Vulkan application to be
built and compiled.

Runtime
installer

The Vulkan runtime installer offers Vulkan runtime libraries that can be
included by a Vulkan application or driver. Refer to the README.txt file for
more information.

Source This contains the source implementation for loader (vulkan-1.dll) and layer
libraries.

spir-v tools This refers to the source code and header files for SPIR-V tools.

The installation of multiple SDKs does not affect other installations. The
$PATH variable points to the most recently installed SDK version.

Setting up our first project with CMake
CMake is a build process management tool that works in an operating system in a compiler-
independent manner. It makes use of CMakeLists.txt to build project solutions. In this
section, we will learn the process of building a CMake file for our first Vulkan application.
Refer to the following instructions to understand the creation of this configuration file
(CMakeLists.txt):

Create an empty CMakeLists.txt file as per the specified folder structure1.
convention, that is, chapter_3 > Sample Name > CMakeLists.txt. For the
purpose of ensuring compatibility across different CMake versions, you need to
specify the minimum supported version. If the current version of CMake
happens to be lower than the specified one, then it will stop building the solution.
The minimum supported version of CMake is specified with
cmake_minimum_required. The following is the code from the CMakeList.txt
file:

Shaking Hands with the Device

[69]

 cmake_minimum_required(VERSION 3.7.1)

Specify the necessary variables that will be used to locate the path of the Vulkan2.
SDK using the set CMake keyword. Also, provide a meaningful name:

 set (Recipe_Name "3_0_DeviceHandshake")

In this title we used CMake version 3.7.1 since it comes with a Vulkan module.3.
This module is helpful to auto locate the Vulkan SDK installation, included
directories and required libraries to build Vulkan application. In the following
CMake code we first try to locate the Vulkan SDK using CMake Vulkan module,
if this is unsuccessful then we use manually specify the Vulkan SDK path. Follow
the given inline comment in the code for detailed description:

 # AUTO_LOCATE_VULKAN - accepted value ON or OFF
 # ON - Use CMake to auto locate the Vulkan SDK.
 # OFF - Vulkan SDK path can be specified manually.
 # This is helpful to test the build on various Vulkan version.
 option(AUTO_LOCATE_VULKAN "AUTO_LOCATE_VULKAN" ON)

 if(AUTO_LOCATE_VULKAN)

 message(STATUS "Attempting auto locate Vulkan using CMake......")

 # Find Vulkan Path using CMake's Vulkan Module
 # This will return Boolean 'Vulkan_FOUND' indicating
 # the status of find as success(ON) or fail(OFF).
 # Include directory path - 'Vulkan_INCLUDE_DIRS'
 # and 'Vulkan_LIBRARY' with required libraries.
 find_package(Vulkan)

 # Try extracting VulkanSDK path from ${Vulkan_INCLUDE_DIRS}
 if (NOT ${Vulkan_INCLUDE_DIRS} STREQUAL "")
 set(VULKAN_PATH ${Vulkan_INCLUDE_DIRS})
 STRING(REGEX REPLACE "/Include" "" VULKAN_PATH
 ${VULKAN_PATH})
 endif()

 if(NOT Vulkan_FOUND)
 # CMake may fail to locate the libraries but could be able to
 # provide some path in Vulkan SDK include directory variable
 # 'Vulkan_INCLUDE_DIRS', try to extract path from this.

 message(STATUS "Failed to locate Vulkan SDK, retrying again...")

 # Check if Vulkan path is valid, if not switch to manual mode.
 if(EXISTS "${VULKAN_PATH}")

Shaking Hands with the Device

[70]

 message(STATUS "Successfully located the
 Vulkan SDK: ${VULKAN_PATH}")
 else()
 message("Error: Unable to locate Vulkan SDK. Please
 turn off auto locate option by
 specifying 'AUTO_LOCATE_VULKAN' as 'OFF'")
 message("and specify manually path using 'VULKAN_SDK'
 and 'VULKAN_VERSION' variables
 in the CMakeLists.txt.")
 return()
 endif()

 endif()

 else()

 message(STATUS "Attempting to locate Vulkan SDK
 using manual path......")
 set(VULKAN_SDK "C:/VulkanSDK")
 set(VULKAN_VERSION "1.0.33.0")
 set(VULKAN_PATH "${VULKAN_SDK}/${VULKAN_VERSION}")
 message(STATUS "Using manual specified path: ${VULKAN_PATH}")

 # Check if manual set path exists
 if(NOT EXISTS "${VULKAN_PATH}")
 message("Error: Unable to locate this Vulkan SDK path
 VULKAN_PATH:
 ${VULKAN_PATH}, please specify correct path.
 For more information on correct installation process,
 please refer to subsection 'Getting started with
 Lunar-G SDK' and 'Setting up first project with CMake'
 in Chapter 3, 'Shaking hands with the device' in this
 book 'Learning Vulkan', ISBN - 9781786469809.")
 return()
 endif()

 endif()

Shaking Hands with the Device

[71]

With project keyword you can specify any desire name of your project. On4.
Windows, Window System Integration (WSI) needs the
VK_KHR_WIN32_SURFACE_EXTENSION_NAME extension API. For this, you need to
define the VK_USE_PLATFORM_WIN32_KHR preprocessor directives (with -D
prefixed) in the CMake file using add_definitions(). Include the path where
Vulkan header files are placed. Also, add the path of the Bin folder to link the
necessary Vulkan runtime/static libraries:

 # Specify a suitable project name
 project(${Recipe_Name})

 # Add preprocessor definitions here
 add_definitions(-DVK_USE_PLATFORM_WIN32_KHR)

Specify all required libraries in the VULKAN_LIB_LINK_LIST variable and later5.
linked it to the building project using target_link_libraries(). In addition,
provide a correct path for including Vulkan header files using CMake’s
include_directories() API. Also, specify the path from where linked
libraries are located using link_directories() API.

 # Add ‘vulkan-1’ library for build Vulkan application.
 set(VULKAN_LINK_LIST "vulkan-1")

 if(${CMAKE_SYSTEM_NAME} MATCHES "Windows")

 # Include Vulkan header files from Vulkan SDK
 include_directories(AFTER ${VULKAN_PATH}/Include)

 # Link directory for vulkan-1
 link_directories(${VULKAN_PATH}/Bin)

 endif()

The following code is used to group the header and source files together in the6.
build source project for better visualization and management of the code
structure:

 # Bunch the header and source files together
 if (WIN32)
 source_group ("include" REGULAR_EXPRESSION "include/*")
 source_group ("source" REGULAR_EXPRESSION "source/*")
 endif (WIN32)

Shaking Hands with the Device

[72]

Specify the sample's header file path. Read all the header files and source files in7.
the sample using file() API and store them in the CPP_Lists and HPP_Lists
variables. Use these lists to specify to the build solution all the files that need to
be used for compilation. Provide a name to the project build and link it to all the
necessary Vulkan libraries:

 # Define include path
 include_directories (${CMAKE_CURRENT_SOURCE_DIR}/include)

 # Gather list of header and source files for compilation
 file (GLOB_RECURSE CPP_FILES
 ${CMAKE_CURRENT_SOURCE_DIR}/source/*.cpp)
 file (GLOB_RECURSE HPP_FILES
 ${CMAKE_CURRENT_SOURCE_DIR}/include/*.*)

 # Build project, provide name and include files to be compiled
 add_executable (${Recipe_Name} ${CPP_FILES} ${HPP_FILES})

 # Link the debug and release libraries to the project
 target_link_libraries (${Recipe_Name}${VULKAN_LIB_LIST})

Define the project properties and the correct C/C++ standard versions to be used8.
in the project compilation. Specify the path of the binary executable:

 # Define project properties
 set_property(TARGET ${Recipe_Name} PROPERTY RUNTIME_OUTPUT_-
 DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR}/binaries)
 set_property(TARGET ${Recipe_Name} PROPERTY RUNTIME_OUTPUT_-
 DIRECTORY_DEBUG ${CMAKE_CURRENT_SOURCE_DIR}/binaries)
 set_property(TARGET ${Recipe_Name} PROPERTY RUNTIME_OUTPUT_-
 DIRECTORY_RELEASE ${CMAKE_CURRENT_SOURCE_DIR}/binaries)
 set_property(TARGET ${Recipe_Name} PROPERTY RUNTIME_OUTPUT_-
 DIRECTORY_MINSIZEREL ${CMAKE_CURRENT_SOURCE_DIR}/binaries)
 set_property(TARGET ${Recipe_Name} PROPERTY RUNTIME_OUTPUT_-
 DIRECTORY_RELWITHDEBINFO ${CMAKE_CURRENT_SOURCE_DIR}/binaries)

 # Define C++ version to be used for building the project
 set_property(TARGET ${Recipe_Name} PROPERTY CXX_STANDARD 11)
 set_property(TARGET ${Recipe_Name} PROPERTY
 CXX_STANDARD_REQUIRED ON)

 # Define C version to be used for building the project
 set_property(TARGET ${Recipe_Name} PROPERTY C_STANDARD 99)
 set_property(TARGET ${Recipe_Name} PROPERTY
 C_STANDARD_REQUIRED ON)

Shaking Hands with the Device

[73]

How to build the CMake file
Follow these steps to build the CMake file:

Open the command-line terminal and go to the sample's build directory. If it is1.
not present, create it. This empty build folder will contain the Visual Studio
project built through the command line. You can also use the CMake GUI instead.

Execute the following command to build the project (choose the correct IDE2.
version). The last parameter specifies the platform architecture; therefore, if you
are using a 32-bit machine, use Win32:

 cmake -G "Visual Studio 14 2015 Win64" ..

This is how the command-line interface looks:

The two dots at the end of the command specify the path of CMakeLists.txt (one folder
level up), which is required by the CMake command to build the project. Upon successful
execution, you will find the following project files based on the project name specified:

Shaking Hands with the Device

[74]

The following diagram shows the folder structure of all the samples that follow in this book:

Introduction to extensions
While implementing a Vulkan application, the very first thing that a developer may need to
do, and be interested in, is seeing the extended features, functionalities, and capabilities
offered by the API. These allow them to gather vital information that can be used to report
errors, debug, and trace commands; they can also be used for validation purposes. Vulkan
makes use of layers and extensions to expose these additional functionalities:

Layers: Layers get hooked up with the existing Vulkan APIs and insert
themselves in the chain of Vulkan commands that are associated with the
specified layer. It's commonly used for validating the development process. For
example, the driver need not check the supplied parameters in the Vulkan API;
it's the layer's responsibility to validate whether the incoming parameter is
correct or not.
Extensions: Extensions provide extended functionality or features, which may or
may not be part of the standard specification. The extension could either be a part
of the instance or the device. The extension commands cannot be linked statically;
they are queried first and then linked dynamically to the function pointers. These
function pointers may already be defined in vulkan.h for the registered
extension along with the necessary data structures and enumerations.

An extension can be categorized into two types:

Instance-based: This represents global functionalities that are independent of any
device and can be accessible without any VkDevice
Device-based: Here, the extensions are very specific to a device and require a
valid handle of the device to operate on and expose the special functionalities

Shaking Hands with the Device

[75]

It is suggested that layers and extensions should be enabled during the
development phase of an application and turned off at the production
stage when the product is expected for release. Turning off the extensions
and layers at the production stage allows the application to save
unnecessary validation overheads, thus offering higher performance.

Before we get started with application programming, let's take a look at which user-defined
classes are used by the sample and what their responsibilities are:

Main program: This is an entry point for Hello World!!! It is the application that
contains the main() function. The program control logic is built within this file
(main.cpp).
Headers.h: This is the single place where all the headers are included; we will put
our Vulkan headers here.
VulkanLayerAndExtension: This class is implemented in
VulkanLayerAndExtension.h/.cpp and provides layer- and extension-based
functionalities for the instance and device. It also offers debugging capabilities.
VulkanInstance: This class creates the Vulkan instance object and is helpful
during initialization. It's implemented in VulkanInstance.h/.cpp.
VulkanDevice: VulkanDevice.h/.cpp is responsible for creating the logical
and physical devices. Each physical device is capable of exposing one or more
queues. This class also manages a device's queue and its respective properties.

Querying layers and extensions
In this section, we will implement the main, VulkanApplication, and
VulkanLayerAndExtension classes. Now we will begin our Vulkan programming. We'll
start by querying the advertised Vulkan layers. Refer to the following instructions to
implement this:

The very first thing required for Vulkan programming is to add
<vulkan/vulkan.h> to the header file Header.h. It contains the most
commonly used Vulkan APIs and structure declarations.
Create the VulkanLayerAndExtension class and declare the function and
variables, as specified in the highlighted part of the following code. Please refer
to the inline comments for more details:

 struct LayerProperties {
 VkLayerProperties properties;
 vector<VkExtensionProperties> extensions;

Shaking Hands with the Device

[76]

 };

 class VulkanLayerAndExtension{
 // Layers and corresponding extension list
 std::vector<LayerProperties> // Instance/global
 layergetInstanceLayerProperties();

 // Global extensions
 VkResult getExtensionProperties(LayerProperties
 &layerProps, VkPhysicalDevice* gpu = NULL);

 // Device based extensions
 VkResult getDeviceExtensionProperties(VkPhysicalDevice*gpu);
 };

Upon application startup, the getInstanceLayerProperties() helper
function queries either instance or global layers. It gets the total count of the
layers and stores all of the layer information in a VkLayerProperties vector
called layerProperties. Both the operations (count and store) are done by
calling vkEnumerateInstanceLayerProperties() twice. For the first time,
calling the API with the second argument as NULL returns the layer count in the
first argument, instanceLayerCount. In the second instance, instead of
providing the second argument as NULL, pass it as an array/vector of
VkLayerProperties and fetch detailed property information into it.

Most enumerated APIs under Vulkan are used to perform more than one
functionality, based on the arguments supplied. Just now, we have seen
that the vkEnumerateInstanceLayerProperties API is not only used
to retrieve the layer count (by supplying a NULL argument), but also to get
the array of layers (by supplying an array of data structures) that contains
information.

Here's the syntax of the preceding code:

VkResult VulkanLayerAndExtension::getInstanceLayerProperties()
{
 // Stores number of instance layers
 uint32_t instanceLayerCount;
 // Vector to store layer properties
 std::vector<VkLayerProperties> layerProperties;
 // Check Vulkan API result status
 VkResult result;

 // Query all the layers

Shaking Hands with the Device

[77]

 do {
 result = vkEnumerateInstanceLayerProperties
 (&instanceLayerCount, NULL);

 if (result)
 return result;

 if (instanceLayerCount == 0)
 return VK_INCOMPLETE; // return fail

 layerProperties.resize(instanceLayerCount);
 result = vkEnumerateInstanceLayerProperties
 (&instanceLayerCount, layerProperties.data());
 } while (result == VK_INCOMPLETE);

 // Query all the extensions for each layer and store it.
 std::cout << "\nInstanced Layers" << std::endl;
 std::cout << "===================" << std::endl;
 for (auto globalLayerProp: layerProperties) {

 // Print layer name and its description
 std::cout <<"\n"<< globalLayerProp.description <<
 "\n\t|\n\t|---[Layer Name]--> " <<
 globalLayerProp.layerName <<"\n";

 LayerProperties layerProps;
 layerProps.properties = globalLayerProp;

 // Get Instance level extensions for
 // corresponding layer properties
 result = getExtensionProperties(layerProps);

 if (result){
 continue;
 }

 layerPropertyList.push_back(layerProps);

 // Print extension name for each instance layer
 for (auto j : layerProps.extensions){
 std::cout << "\t\t|\n\t\t|---
 [Layer Extension]--> " << j.extensionName << "\n";
 }

 }
 return result;
}

Shaking Hands with the Device

[78]

The following is the syntax of vkEnumerateInstanceLayerProperties():

VkResult vkEnumerateInstanceLayerProperties (
 uint32_t* pPropertyCount,
 VkLayerProperties* pProperties);

The following table describes the vkEnumerateInstanceLayerProperties() API fields:

Parameters Description

pPropertyCount This variable represents the number of layers at the instance level. This
variable works as an input or output variable, depending upon the value
passed to pProperties.

pProperties This variable can take two values. When specified as NULL, the API
returns the layer count in pPropertyCount with the total number of
layers. When used as an array, the API retrieves the information of the
layer properties in the same array.

Once we retrieve the layer property information for each layer, we'll use it to iterate
through all the layers in order to query the extensions exposed by each layer. We'll do this
by calling our user-defined helper function getExtensionProperties().

Upon the successful execution of the layer and their extensions, you'll see the following
output on the console:

LunarG debug layer
 |---[Layer Name]--> VK_LAYER_LUNARG_api_dump

LunarG Validation Layer
 |---[Layer Name]--> VK_LAYER_LUNARG_core_validation
 |---[Layer Extesion]--> VK_EXT_debug_report

LunarG Standard Validation Layer
 |---[Layer Name]--> VK_LAYER_LUNARG_standard_validation

LunarG Validation Layer
 |---[Layer Name]--> VK_LAYER_LUNARG_device_limits
 |---[Layer Extesion]--> VK_EXT_debug_report

Each layer may be capable of supporting one or more extensions. The
getExtensionProperties() function first enumerates the layers to get the number of
extensions exposed. Then, it stores the extension properties information in the
LayerProperties data structures using the vkEnumerate-
InstanceExtensionProperties() API. This whole process is very similar to the layer
enumeration; refer to getInstanceLayerProperties() for more information on the last

Shaking Hands with the Device

[79]

step. The getExtensionProperties() function queries the extensions for both the
instance and device:

// This function retrieves extension and its
// properties at instance and device level.
// Pass a valid physical device pointer (gpu) to retrieve
// device level extensions, otherwise use NULL to
// retrieve extension specific to instance level.
VkResult VulkanLayerAndExtension::getExtensionProperties
 (LayerProperties &layerProps, VkPhysicalDevice* gpu)
{
 // Stores number of extension per layer
 uint32_t extensionCount;
 VkResult result;
 // Name of the layer
 char* layerName = layerProps.properties.layerName;

 do {
 // Get the total number of extension in this layer
 if(gpu){
 result = vkEnumerateDeviceExtensionProperties
 (*gpu, layerName,
 &extensionCount, NULL);
 }
 else{
 result = vkEnumerateInstanceExtensionProperties
 (layerName, &extensionCount, NULL);
 }

 if (result || extensionCount == 0)
 continue;

 layerProps.extensions.resize(extensionCount);

 // Gather all extension properties
 if (gpu){
 result = vkEnumerateDeviceExtensionProperties
 (*gpu, layerName, &extensionCount,
 layerProps.extensions.data());
 }
 else{
 result = vkEnumerateInstanceExtensionProperties
 (layerName, &extensionCount,
 layerProps.extensions.data());
 }

 } while (result == VK_INCOMPLETE);

Shaking Hands with the Device

[80]

Creating a Vulkan instance
A Vulkan instance is a primary object that is required to build an application; it stores all
the application states. It is of the type VkInstance and is managed inside the
VulkanInstance class, which is user-defined (VulkanInstance.h/cpp). This class is
responsible for the creation and destruction of the Vulkan instance object. The following is
the implementation of the header file:

class VulkanInstance { // Many lines skipped

 // Vulkan instance object variable
 VkInstance instance;

 // Vulkan instance specific layer and extensions
 VulkanLayerAndExtension layerExtension;

 // Functions for Creation and Deletion of Vulkan instance
 VkResult createInstance(vector<const char *>& layers,
 vector<const char *>& extensions,
 const char* applicationName);

 // Destroy Vulkan instance
 void destroyInstance();
};

The creation of a Vulkan instance requires a set of information that is specified using the
VkApplicationInfo structure object, as represented by appInfo in the following code.
This structure object provides vital information about the application, such as its name,
version, engine, and so on. In addition, it also tells the drivers about the Vulkan API version
to be used by the application. If the specified version is not compatible with the underlying
driver, the application reports an error (if the validation layer is enabled). For more
information, refer to the apiVersion field of the VkApplicationInfo structure, which is
described later in this section:

VkResult VulkanInstance::createInstance(vector<const char *>& layers,
vector<const char *>& extensionNames, char const*const appName) {
 // Set the instance specific layer and extension information
 layerExtension.instanceExtensionNames = extensionNames;
 layerExtension.instanceLayerNames = layers;

 // Define the Vulkan application structure
 VkApplicationInfo appInfo = {};
 appInfo.sType = VK_STRUCTURE_TYPE_APPLICATION_INFO;
 appInfo.pNext = NULL;
 appInfo.pApplicationName = appName;
 appInfo.applicationVersion = 1;

Shaking Hands with the Device

[81]

 appInfo.pEngineName = appName;
 appInfo.engineVersion = 1;
 appInfo.apiVersion = VK_API_VERSION_1_0;

 // Define the Vulkan instance create info structure
 VkInstanceCreateInfo instInfo = {};
 instInfo.sType = VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO;
 instInfo.pNext = NULL;
 instInfo.flags = 0;
 instInfo.pApplicationInfo = &appInfo;

 VkResult res = vkCreateInstance(&instInfo, NULL, &instance);
 return res;
}

The VkInstance object is created using the vkCreateInstance() API. This API uses a
VkInstanceCreateInfo control structure object (instInfo). This structure object
contains the reference of appInfo (VkApplicationInfo) to understand application-
specific attributes. In addition, the VkInstanceCreateInfo object can also be used to
enable the instance-specific layer and its corresponding extensions.

To learn more about layers and enabling them in the Vulkan application,
refer to the next section.

The following is the syntax for Vulkan instance creation API:

VkResult vkCreateInstance(
 const VkInstanceCreateInfo* pCreateInfo,
 const VkAllocationCallbacks* pAllocator,
 VkInstance* pInstance);

Here are the fields for the vkCreateInstance API:

Parameters Description

pCreateInfo This refers to the pointer to the VkInstanceCreateInfo structure
(described later) containing application- (application create info), layer-, and
Vulkan-specific information.

pAllocator This specifies how to control host memory allocation. For more information,
refer to the Host memory section in Chapter 5, Command Buffer and Memory
Management in Vulkan.

pInstance This handles the Vulkan instance object of the type VkInstance.

Shaking Hands with the Device

[82]

The following is the syntax and structure description for VKInstanceCreateInfo:

typedef struct VKInstanceCreateInfo (
 VkStructureType type;
 const void* pNextnext;
 VkInstanceCreateFlags flags;
 const VkApplicationInfo* pApplicationInfo;
 uint32_t enabledLayerCount;
 const char* const* ppEnabledLayerNames;
 uint32_t enabledExtensionCount;
 const char* const*
ppEnabledExtensionNamesenabledExtensionNames;
} VkInstanceCreateInfo;

VKInstanceCreateInfo has the following fields:

Parameters Description

type This is the type information of this control structure. It
must be specified as VK_STRUCTURE_TYPE_INSTANCE
_CREATE_INFO.

pNext This field could either be a valid pointer to an extension-
specific structure or Null.

flags This field is reserved for the future and is not in use at
present.

pApplicationInfo This indicates the object pointer of VkApplicationInfo
that contains application-specific information, such as the
Vulkan API version, its name and engine version, and so
on.
For more information, refer to VkApplicationInfo,
which is defined in detail later. This field can also be NULL.

enabledLayerCount This field specifies the count of layers to be enabled at the
instance level.

ppEnabledLayerNames This contains the list of layer names in the form of an array
that needs to be enabled at the instance level. Refer to the
Introduction to layer and extensions section for further
information.

enabledExtensionCount This field specifies the count of extensions to be enabled at the
instance level.

Shaking Hands with the Device

[83]

ppEnabledExtensionNames This contains a list of extension names in the form of an array
that needs to be enabled at the instance level. Refer to the
Introduction to layer and extensions section for further details.

VKInstanceCreateInfo consumes VkApplicationInfo as one of its member variables.
Let's look at the specs of this structure:

typedef struct VkApplicationInfo {
 VkStructureType type;
 const void* pNext;
 const char* pApplicationName;
 uint32_t applicationVersion;
 const char* pEngineName;
 uint32_t pEngineVersion;
 uint32_t apiVersion;
} VkApplicationInfo;

Here are the fields described in the structure:

Parameters Description

type This is the type information of this control structure. It must be
specified as VK_STRUCTURE_TYPE_APPLICATION_INFO. The type
of this structure.

pNext This field could either be a valid pointer to an extension-specific
structure or Null as well.

pApplicatonName This field indicates the user-defined application name given to the
application, such as Hello World!!!.

applicationVersion Use this field to indicate the versioning of the developer application.
This will be helpful in retrieving the application version directly
from the application executable itself.

engineName This is the name of the backend engine used by the application.

engineVersion This indicates the backend application's engine versioning if used; if
not, the application version will suffice.

apiVersion This field announces the version number of the Vulkan API that is to
be used to run the application. The implementation reads this value
and validates whether it can be ignored (if specified as 0) or can be
used (if specified non-zero), it will report an error (if the API version
is not supported). If there is an error, the implementation returns
VK_ERROR_INCOMPATIBLE_DRIVER.

Shaking Hands with the Device

[84]

The patch version number specified in apiVersion is ignored when
creating an instance object. Only the major and minor versions of the
instance must match those requested in apiVersion.

When the application is no longer in use, it can kill the Vulkan instance using the user-
defined function destroyInstance():

void VulkanInstance::destroyInstance(){
 vkDestroyInstance(instance, NULL); // Destroy the instance
}

Inside this function, it calls the vkDestroyInstance() API, which accepts the handle of
the Vulkan instance that needs to be destroyed. The following is the syntax of this API
followed by its description:

VkResult vkDestroyInstance(
 VkInstance instance,
 const VkAllocationCallbacks* pAllocator);

The following fields are associated with the vkDestroyInstance API:

Parameters Description

instance The is the handle of the Vulkan instance, which needs to be destroyed.

pAllocator This specifies the host memory deallocation control.

Enabling layers and extensions
Enabling layers in Vulkan is simple. The application must be aware of the available layers
in the current Vulkan implementation. This can be easily done by querying and printing the
available instance-based layers; we have already covered this topic under the Querying
layers and extensions subsection.

Refer to the following steps to enable layers and extensions:

Add two vector lists to the VulkanLayerAndExtension class. The first list1.
contains the layer names that need to be enabled. The second contains the list of
extensions that are used by the application:

 class VulkanLayerAndExtension{

 // List of layer names requested by the application.
 std::vector<const char *> appRequestedLayerNames;

Shaking Hands with the Device

[85]

 // List of extension names requested by the application.
 std::vector<const char *> appRequestedExtensionNames;
 . . .
 };

In this application, we have enabled one layer (VK_LAYER_LUNARG_api_dump)2.
and two extensions (VK_KHR_SURFACE_EXTENSION_NAME and VK_KHR_WIN32-
_SURFACE_EXTENSION_NAME) in main.cpp. For more information, refer to the
next subsection, Testing the enabled layers and extensions.
The createInstance() function contains a list of layers and extensions. If there3.
is no list to specify, assign a NULL pointer to ppEnabledLayerNames and
ppEnabledExtensionNames:

 VkResult VulkanInstance::createInstance(char const*const
 appName, VulkanLayerAndExtension* layerExtension){
 . . . // Many line skipped
 VkInstanceCreateInfo instInfo = {};
 // Specify the list of layer name to be enabled.
 instInfo.enabledLayerCount = layers.size();
 instInfo.ppEnabledLayerNames = layers.data();

 // Specify the list of extensions to be enabled.
 instInfo.enabledExtensionCount = extensionNames.size();
 instInfo.ppEnabledExtensionNames = extensionNames.data();

 VkResult res = vkCreateInstance(&instInfo,NULL,&instance);
 }

The LunarG Vulkan SDK supports different types of layers for debugging
and validation purposes. In this example, we will enable
VK_LAYER_LUNARG_api_dump; this layer prints the Vulkan API calls
along with their parameters and values. Layers can be injected at runtime
for instance-based layers. For more information on the features offered by
other layers, refer to the Understanding layer features section in the next
chapter.

Shaking Hands with the Device

[86]

Testing the enabled layers and extensions
Follow these instructions to test the output:

Create the VulkanApplication class and implement the constructor and a1.
wrapper function (createVulkanInstance) to create the instance. Note that this
is a singleton class. For more information, refer to the
VulkanApplication.h/.cpp file:

 #include "VulkanInstance.h"
 #include "VulkanLED.h"
 class VulkanApplication {
 private:
 VulkanApplication();
 public:
 ~VulkanApplication();
 // Many lines skipped please refer to source
 // code for full implementation.
 public:
 // Create the Vulkan instance object
 VkResult createVulkanInstance
 (vector<const char *>& layers, vector<const char*
 > & extensions, const char* applicationName);

 // Vulkan Instance object
 VulkanInstance instanceObj;

 };

 // Application constructor responsible for layer enumeration.
 VulkanApplication::VulkanApplication() {
 // At application start up, enumerate instance layers
 instanceObj.layerExtension.getInstanceLayerProperties();
 }
 // Wrapper function to create the Vulkan instance
 VkResult VulkanApplication::createVulkanInstance
 (vector<const char*>& layers, vector<const char *>&
 extensions, const char* appName){

 instanceObj.createInstance(layers, extensions, appName);

 return VK_SUCCESS;
 }

Shaking Hands with the Device

[87]

Set the instance-level layers and extensions from the main (main.cpp) program,2.
enabling the instance layer VK_LAYER_LUNARG_api_dump. Also, add the
extensions VK_KHR_SURFACE_EXTENSION_NAME and
VK_KHR_WIN32_SURFACE_EXTENSION_NAME. This layer outputs the API call
with their parameters and values:

 #include "Headers.h"
 #include "VulkanApplication.h"

 std::vector<const char *> instanceExtensionNames = {
 VK_KHR_SURFACE_EXTENSION_NAME, VK_KHR_WIN32_SURFACE_EXTENSION_NAME
 };

 std::vector<const char *> layerNames = {
 "VK_LAYER_LUNARG_api_dump"
 };

 int main(int argc, char **argv){
 VkResult res;
 // Create singleton object, calls Constructor function
 VulkanApplication* appObj =VulkanApplication::GetInstance();
 appObj->initialize();

 }

 // Application constructor responsible for layer enumeration.
 void VulkanApplication::initialize()
 {
 char title[] = "Hello World!!!";

 // Create the Vulkan instance with
 // specified layer and extension names.
 createVulkanInstance(layerNames, instanceExtensionNames,
 title);
 }

Compile the project, open the terminal type, and go to the folder containing the3.
executable. Type [executable name].exe > [redirect file name], for
example, 3_0_DeviceHandshake.exe > apiDump.txt:

Shaking Hands with the Device

[88]

This will result in the following output:4.

 t{0} vkCreateInstance(pCreateInfo = 000000C697D0F570, pAllocator =
 0000000000000000, pInstance = 0000025A40AED010) = VK_SUCCESS
 pCreateInfo (000000C697D0F570)
 sType = VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO
 pNext = 000000C697D0F548
 flags = 0
 pApplicationInfo = 000000C697D0F6B8
 enabledLayerCount = 1
 ppEnabledLayerNames = 0000025A3F0ED490
 enabledExtensionCount = 2
 ppEnabledExtensionNames = 0000025A3F0ED9E0
 ppEnabledExtensionNames[0] = VK_KHR_surface
 ppEnabledExtensionNames[1] = VK_KHR_win32_surface
 ppEnabledLayerNames[0] = VK_LAYER_LUNARG_api_dump
 pApplicationInfo (000000C697D0F588)
 sType = VK_STRUCTURE_TYPE_APPLICATION_INFO
 pNext = 0000000000000000
 pApplicationName = Draw Cube
 applicationVersion = 1
 pEngineName = Draw Cube
 engineVersion = 1
 apiVersion = 4194304
 pNext (000000C697D0F578)

The layers can also be enabled explicitly, for instance by setting the
Windows environment variables to VK_INSTANCE_LAYERS =
VK_LAYER_LUNARG_api_dump.

Understanding physical and logical devices
Vulkan divides the representation of a device into two forms known as the logical and
physical device:

Physical device: A physical device represents a single workforce that may
comprise a single GPU along with other hardware parts that work together to
help the system accomplish the submitted jobs. On a very simple system, a
physical device can be considered to represent the physical GPU unit.
Logical device: A logical device represents the application view of the actual
device.

Shaking Hands with the Device

[89]

Physical devices
OpenGL does not expose physical devices; it connects them behind the curtains. Vulkan, on
the other hand, exposes the system real computing device or GPU to the application. It
allows the application to enumerate the physical devices available on the system.

In this section, we will add a new user-defined class called
VulkanDevice; this class is implemented in VulkanDevice.h/.cpp. It is
responsible for managing the physical (VkPhysicalDevice) and logical
device (VkDevice). In addition, it also manages the physical device's
queue families.

The following is the declaration of the VulkanDevice class; as we proceed through this
chapter, we will uncover most of the functions used in this class. Refer to the accompanying
source code for the full implementation of this header file declaration:

class VulkanDevice{
 public:
 VulkanDevice(VkPhysicalDevice* gpu); ~VulkanDevice();

 // Device related member variables
 VkDevice device; // Logical device
 VkPhysicalDevice* gpu; // Physical device
 VkPhysicalDeviceProperties gpuProps; // Physical device attributes
 VkPhysicalDeviceMemoryProperties memoryProperties;

 // Queue related properties
 // Vulkan Queues object
 VkQueue queue;
 // Store all queue families exposed by the physical device.
 vector<VkQueueFamilyProperties>queueFamilyProps;

 // Stores graphics queue index
 uint32_t graphicsQueueFamilyIndex;
 // Number of queue family exposed by device
 uint32_t queueFamilyCount;
 // Device specific extensions
 VulkanLayerAndExtension layerExtension;

 // This class exposes the below function to the outer world
 createDevice(), memoryTypeFromProperties()
 destroyDevice(), getGrahicsQueueHandle(),
 initializeDeviceQueue(), getPhysicalDeviceQueuesAndProperties();
};

Shaking Hands with the Device

[90]

Enumerating physical devices
In order to establish a connection with the available physical devices, an application has to
enumerate them. Physical device enumeration is a process by which Vulkan exposes the
number of actual devices, which are available on the system, to the application. A list of
physical devices can be retrieved using vkEnumeratePhysicalDevices().

The following is the syntax of this API:

VkResult (
 VkInstance instance,
 uint32_t pPhysicalDeviceCount,
 VkPhysicalDevice* pPhysicalDevice);

The following are the fields associated with this API:

Parameters Description

instance This is the handle of the Vulkan instance.

pPhysicalDeviceCount This specifies the number of physical devices.

pPhysicalDevice This is the Vulkan physical device object.

This API is wrapped in the Application class's enumeratePhysicalDevices function. It
returns the number of physical device objects on the available system:

 VkResult VulkanApplication::enumeratePhysicalDevices
 (std::vector<VkPhysicalDevice>& gpuList){
 // Holds the gpu count
 uint32_t gpuDeviceCount;
 // Get the gpu count
 vkEnumeratePhysicalDevices
 (instanceObj.instance, &gpuDeviceCount, NULL);

 // Make space for retrieval
 gpuList.resize(gpuDeviceCount);
 // Get Physical device object
 return vkEnumeratePhysicalDevices
 (instanceObj.instance, &gpuDeviceCount, gpuList.data());

 }

Shaking Hands with the Device

[91]

The following diagram shows the enumerated physical devices on the system and is
associated with the VkInstance object while querying:

Querying physical device extensions
A physical device exposes extensions similar to Vulkan instances. For each retrieved
instance layer property (VkLayerProperties), there may exist extension properties for
each physical device that can be queried using the
vkEnumerateDeviceExtensionProperties() API.

The following is the syntax of this API:

VkResult vkEnumerateDeviceExtensionProperties (
 VkPhysicalDevice physicalDevice,
 const char* pLayerName,
 uint32_t* pExtensionCount,
 VkExtensionProperties* pProperties);

Here are the fields associated with this API:

Parameters Description

physicalDevice This represents the physical device to which the extension properties will
be queried.

pLayerName This is the name of the layer for which the extension needs to be queried.

pExtensionCount This refers to the number of extension properties exposed by the current
physicalDevice for a corresponding pLayerName.

pProperties This represents a retrieved array; it contains the extension's property
objects that correspond to the pLayerName.

Shaking Hands with the Device

[92]

The process of querying device-based extension properties is very similar to that of an
instance-based one. The following is the implementation of this function:

VkResult VulkanLayerAndExtension::getDeviceExtensionProperties
 (VkPhysicalDevice* gpu)
{
 // Variable to check Vulkan API result status
 VkResult result;

 // Query all the extensions for each layer and store it.
 std::cout << "\Device extensions" << std::endl;
 std::cout << "===================" << std::endl;
 VulkanApplication* appObj = VulkanApplication::GetInstance();
 std::vector<LayerProperties>* instanceLayerProp =
 &appObj->GetInstance()->instanceObj.
 layerExtension.layerPropertyList;

 for (auto globalLayerProp : *instanceLayerProp) {
 LayerProperties layerProps;
 layerProps.properties = globalLayerProp.properties;

 if (result = getExtensionProperties(layerProps, gpu))
 continue;

 layerPropertyList.push_back(layerProps);

 // Many lines skipped..
 }
 return result;
}

Getting the properties of a physical device
The properties of a physical device can be retrieved using the
vkGetPhysicalDeviceProperties() API; the attributes are retrieved in the
VkPhysicalDeviceProperties control structure. Here's the syntax of this process:

void vkGetPhysicalDeviceMemoryProperties (
 VkPhysicalDevice physicalDevice,
 VkPhysicalDeviceMemoryProperties* pMemoryProperties);

Shaking Hands with the Device

[93]

Here are the fields for vkGetPhysicalDeviceMemoryProperties:

Parameters Description

physicalDevice This is the GPU handle whose memory properties need to be
retrieved.

pMemoryproperties This is the structure that will retrieve the GPU memory properties.

Interrogating memory properties from the physical
device
A single physical device may have different memory types, which are further differentiated
based on their properties. It's important for an application to know the characteristics of the
memory; this facilitates better allocation of the resources, depending upon the application
logic or resource type. The following syntax is to retrieve the physical device memory
properties:

void vkGetPhysicalDeviceMemoryProperties (
 VkPhysicalDevice physicalDevice,
 VkPhysicalDeviceMemoryProperties* pMemoryProperties);

Here are the fields described for vkGetPhysicalDeviceMemoryProperties:

Parameters Description

physicalDevice This is the GPU handle whose memory properties need to be queried.

pMemoryProperties This is for retrieving the memory properties.

Logical device
A logical device is the representation of a physical device, but it is used in the application
space; it provides a specialized view of the physical device. For example, a physical device
may consist of three queues: graphics, compute, and transfers. However, a logical device
can be created with a single queue (say, graphics) attached to it; this makes it very easy to
submit the command buffers.

Shaking Hands with the Device

[94]

Creating a logical device
A logical device is represented using VkDevice and can be created using the
vkCreateDevice API. Here's the syntax of this:

VkResult vkCreateDevice(
 VkPhysicalDevice pPhysicalDevice,
 Const VkDeviceCreateInfo* pCreateInfo,
 const VkAllocationCallbacks* pAllocator,
 VkDevice* pDevice);

For more information on API fields, refer to the following table:

Parameters Description

pPhysicalDevice This represents the physical device handle whose logical device is to be
created.

pCreateInfo This is the VkDeviceCreateInfo structure that contains specific
information that will be utilized by the vkCreateDevice() API to
control the creation of a logical device.

pAllocator This specifies how to control host memory allocation. For more
information, refer to the Host memory section in Chapter 5, Command
Buffer and Memory Management in Vulkan.

pDevice This refers to the created logical device pointer that contains the newly
created VkDevice object.

This API uses the VkDeviceCreateInfo control structure object (deviceInfo), which
contains the necessary information required to create a logical device object. For instance, it
contains the names of the layers (this feature is deprecated and kept for backward-
compatibility) and extensions that need to be enabled on the device. In addition, it also
specifies which queue it should be creating and connect to. In our case, we are interested in
drawing operations; therefore, we need a queue handle (graphicsQueueIndex) that will
represent a queue that has the functionality of drawing capabilities. In other words, we
need the graphics queue handle.

The queue information is contained in the VkDeviceQueueCreateInfo
structure object, queueInfo. When a logical device is created, it also
creates the associated queues with it, using this structure. For more
information on queues, how to find the graphics queue index, and the
queue creation process, refer to the next section, Understanding queues and
queue families.

Shaking Hands with the Device

[95]

VulkanDevice::createDevice is a user-defined wrapper method that helps to create the
logical device object. Here is its implementation:

 VkResult VulkanDevice::createDevice(vector<const char *>& layers,
 vector<const char *>& extensions){

 VkResult result;
 float queuePriorities[1] = { 0.0 };

 // Create the object information
 VkDeviceQueueCreateInfo queueInfo = {};
 queueInfo.queueFamilyIndex = graphicsQueueIndex;
 queueInfo.sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO;
 queueInfo.pNext = NULL;
 queueInfo.queueCount = 1;
 queueInfo.pQueuePriorities = queuePriorities;

 VkDeviceCreateInfo deviceInfo = {};
 deviceInfo.sType = VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO;
 deviceInfo.pNext = NULL;
 deviceInfo.queueCreateInfoCount = 1;
 deviceInfo.pQueueCreateInfos = &queueInfo;
 deviceInfo.enabledLayerCount = 0;
 // Device layers are deprecated
 deviceInfo.ppEnabledLayerNames = NULL;
 deviceInfo.enabledExtensionCount = extensions.size();
 deviceInfo.ppEnabledExtensionNames = extensions.data();
 deviceInfo.pEnabledFeatures = NULL;

 result = vkCreateDevice(*gpu, &deviceInfo, NULL, &device);

 assert(result == VK_SUCCESS);
 return result;
}

Waiting on the host
A device is said to be active as long as it has jobs in the queues to process. Once the queues
have no more command buffers to process, the device becomes idle. The following
vkDeviceWaitIdle API waits on the host until all the queues for the logical device become
idle. This API accepts the argument that takes the handle of the logical device object for
which the idle status is to be checked. Here's the syntax for this:

VkResult vkDeviceWaitIdle(VkDevice device);

Shaking Hands with the Device

[96]

Losing the device
While working with logical (VKDevice) and physical (VKPhysicalDevice) devices for a
certain reason–such as hardware malfunction, device error, execution timeouts, power
management events, and/or platform-specific events–the devices can be lost. This may
result in failing to execute the pending commands buffer.

When a physical device is lost, the attempt to create a logical device object
(VKDevice) will fail and it will return VK_ERROR_DEVICE_LOST. If the
logical device object is lost, certain commands will return
VK_ERROR_DEVICE_LOST upon its use. However, the corresponding
physical device may remain unaffected. It is not possible to reset the lost
state of the logical device, and this loss of state is local to the logical device
object (VKDevice) and does not affect any other active logical device
objects.

Understanding queues and queue families
Queues are the means by which an application and a physical device communicate. The
application provides the jobs in the form of a command buffer that is submitted to the
queues. These are read by the physical device and processed asynchronously.

A physical device may support four types of queues, as shown in the following diagram.
There could be multiple queues of the same type on a physical device; this allows the
application to choose the number of queues and what type of queue it needs. For example, a
simple application may require two queues: compute and graphics; here, the former is used
for convolution computing and the second renders the computed blur image.

Shaking Hands with the Device

[97]

A physical device may consist of one or more queue families exposing what types of queue
exist inside each queue family. Further, each queue family may have one or more queue
count. The following diagram shows three queue families with their respective multiple
queues:

Querying queue families
A physical device is capable of exposing multiple queue families.

The number of queue family properties are exposed by the
vkGetPhysicalDeviceQueueFamilyProperties() API, as described here:

VkResult vkGetPhysicalDeviceQueueFamilyProperties (
 VkPhysicalDevice physicalDevice,
 uint32_t* pQueueFamilyPropertyCount,
 VkQueueFamilyProperties* pQueueFamilyProperties);

Here are the fields for this API:

Parameters Description

physicalDevice This is the physical device handle whose queue properties
are to be retrieved.

pQueueFamilyPropertyCount This refers to the number of queue families exposed by the
device.

pQueueFamilyProperties This field retrieves the queue family properties in an array
of size equal to queueFamilyPropertyCount.

Shaking Hands with the Device

[98]

Queues are divided into families according to capabilities that are similar in nature. The
following code snippet from the VulkanDevice class shows how to query the queue
families and their properties in the VkQueueFamilyProperties control structure object,
namely queueFamilyProps.

In our implementation, the queue family properties are queried in a wrapper function
called getPhysicalDeviceQueuesAndProperties(), defined in the VulkanDevice
class. The following is the implementation:

void VulkanDevice::getPhysicalDeviceQueuesAndProperties(){
 // Query queue families count by passing NULL as second parameter
 vkGetPhysicalDeviceQueueFamilyProperties(*gpu, &queueFamilyCount,
 NULL);
 // Allocate space to accomodate Queue properties
 queueFamilyProps.resize(queueFamilyCount);

 // Get queue family properties
 vkGetPhysicalDeviceQueueFamilyProperties
 (*gpu, &queueFamilyCount, queueFamilyProps.data());
}

The queueFlag field of this structure contains the family information in the form of the
following flag bits:

Flag bit Queue family meaning

VK_QUEUE_GRAPHICS_BIT This is a graphics queue; it supports graphics-related
operations.

VK_QUEUE_COMPUTE_BIT This is a compute queue; it offers computation
capabilities.

VK_QUEUE_TRANSFER_BIT This is a transfer queue; it supports transfers.

VK_QUEUE_SPARSE_BINDING_BIT This is a sparse queue; it is capable of sparse memory
management.

Each queue family may support one or more queue types, which are indicated by the
queueFlag field of VkQueueFamilyProperties. The queueCount specifies the number of
queues in the queue family. The third field timestampVaildBits is used to time the
command execution. The last parameter minImageTransferGranularity specifies the
minimum granularity image transfer operations in the present queue family support. Here
is the syntax for this:

typedef struct VkQueueFamilyProperties {
 VkQueueFlags queueFlags;
 uint32_t queueCount;

Shaking Hands with the Device

[99]

 uint32_t timestampValidBits;
 VkExtent3D minImageTransferGranularity;
} VkQueueFamilyProperties;

The following diagram shows how the queue and queue families are related in a physical
device. In this particular illustration, a physical device comprises four types of queue
family, where each of these contains different capabilities in terms of the queue type
(queueFlags) it supports and the number of queues (queueCount) in each family.

Storing the graphics queue handle
The creation of a logical device object also needs a valid queue handle (in the form of an
index) in order to create the associated queue with it. For this, iterate through all the
queried queue family properties and check for the
VkQueueFamilyProperties::queueFlags bit information to find the appropriate queue.
For example, we are interested in the graphics queue handle. The following code stores the
handle of the graphics queue in graphicsQueueIndex, which is used in the creation of the
logical device (VkDevice) object:

uint32_t VulkanDevice::getGrahicsQueueHandle(){
 bool found = false;
 // 1. Iterate number of Queues supported by the Physical device
 for (unsigned int i = 0; i < queueFamilyCount; i++){
 // 2. Get the Graphics Queue type
 if (queueFamilyProps[i].queueFlags & VK_QUEUE_GRAPHICS_BIT){
 // 3. Get the handle/index ID of graphics queue family.
 found = true;
 graphicsQueueIndex = i;

Shaking Hands with the Device

[100]

 break;
 }
 } return 0;
}

Creating a queue
Queues are created implicitly when a logical device object is created using the
vkCreateDevice() API. This API also intakes the queue information in the form of
VkDeviceQueueCreateInfo. The following is the syntax and associated field's description:

typedef struct VkDeviceQueueCreateInfo {
 VkStructureType type;
 const void* pNext;
 VkDeviceQueueCreateFlags flags;
 uint32_t queueFamilyIndex;
 uint32_t queueCount;
 const float* pQueuePriorities;
} VkDeviceQueueCreateInfo;

The following table describes each field of this API:

Parameters Description

type This is the type information of this control structure. It must be
specified as VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO.

pNext This field could be a valid pointer to an extension-specific structure or
NULL.

flags These are unused flags, which are reserved for future use.

queueFamilyIndex This queues family information specified in the form of a 32-bit
unsigned int queue index type. For example, in our case we
supplied the graphicsQueueIndex variable, which contains the
graphics queue index.

queueCount This refers to the number of queue families to be created.

pQueuePriorities This field represents an array of normalized floating-point values that
specify the priority of the work submitted to each created queue.

Shaking Hands with the Device

[101]

As we already know, queues are automatically created when a logical device object is
created. The created queue can then be retrieved by the application using the
vkGetDeviceQueue() API. The following function (getDeviceQueue()) from the
VulkanDevice class provides a high-level wrapper function to get the device's associated
queue:

void VulkanDevice::getDeviceQueue(){
 vkGetDeviceQueue(device, graphicsQueueWithPresentIndex, 0, &queue);
}

Here is the syntax for this:

void vkGetDeviceQueue (
 VkDevice logicalDevice,
 uint32_t queueFamilyIndex,
 uint32_t queueIndex,
 VkQueue* pQueue);

For more information about the API fields, refer to the following table:

Parameters Description

logicalDevice This refers to the logical device (VkDevice) object that owns the queue.

queueFamilyIndex This field indicates the index number of the family to which the queue
(pQueue) belongs.

queueIndex There could be multiple queues within a queue family, where each
queue is identified by a unique index. This field indicates the index of
the queue within the queue family (indicated by queueFamilyIndex).

pQueue This is the retrieved queue object returned by this API.

The desired queue object that is intended to be queried from the logical
device object will be deferred at this point. This is because we are
interested in a queue that is capable of providing presentation capabilities,
and for this, we need to wait until Chapter 6, Allocating Image Resources
and Building a Swapchain with WSI. In this chapter, we will learn how to
implement the swapchain for presentation purposes.

Shaking Hands with the Device

[102]

Implementing devices and queues all
together
In this section, we will revisit all of the knowledge we've gathered in this chapter so far and
implement a program to create the device and queues from an application's view. Let's look
at a step-by-step process that describes the flow of information.

First, enumerate the physical devices on the system using enumeratePhysicalDevices();
the retrieved physical device is stored in the gpuList vector. For the sake of simplicity, we
are assuming the system has only one GPU (using the first element of gpuList). Next, we
handshake with the device using the handShakeWithDevice() function:

/********** VulkanApplication.cpp **********/
// Get the list of physical devices on the system
vector<VkPhysicalDevice> gpuList;

enumeratePhysicalDevices(gpuList);

if (gpuList.size() > 0) {
 appObj->handShakeWithDevice
 (&gpuList[0], layerNames, deviceExtensionNames);
}

void VulkanApplication::initialize()
{
 // Many lines skipped please refer to the source code.

 // Get the list of physical devices on the system
 std::vector<VkPhysicalDevice> gpuList;
 enumeratePhysicalDevices(gpuList);
 // This example use only one device which is available first.
 if (gpuList.size() > 0) {
 handShakeWithDevice(&gpuList[0], layerNames,
 deviceExtensionNames);
 }
}

Shaking Hands with the Device

[103]

The VulkanApplication::enumeratePhysicalDevices() function makes use of
vkEnumeratePhysicalDevices and gathers the number of physical devices
(VKPhysicalDevice) onboard. The application asserts whether there is a GPU to work
with. Next, it allocates the necessary space to store this information in a vector list and
provides it to the same API (vkEnumeratePhysicalDevices) again, along with the GPU
count, to get the physical device objects:

/***************** Application.cpp *****************/
VkResult VulkanApplication::enumeratePhysicalDevices
 (vector<VkPhysicalDevice>& gpuList){
 uint32_t gpuDeviceCount;

 VkResult result = vkEnumeratePhysicalDevices
 (instanceObj.instance, &gpuDeviceCount, NULL);
 assert(result == VK_SUCCESS);

 gpuList.resize(gpuDeviceCount); assert(gpuDeviceCount);

 result = vkEnumeratePhysicalDevices
 (instanceObj.instance, &gpuDeviceCount, gpuList.data());
 assert(result == VK_SUCCESS);

 return result;
}

VulkanApplication::handShakeWithDevice() is responsible for creating the logical
device objects and the queues associated with them. It also does some initialization jobs,
which are necessary at a later stage of application development, such as getting the physical
device properties and memory properties. Here is the syntax for this API:

 void VulkanApplication::handShakeWithDevice (
 VkPhysicalDevice* gpu,
 std::vector<const char*>& extensions,
 int queueIndex);

Here are the description for the fields:

Parameters Description

gpu This is the physical device to which the application performs the handshake.

layers This is the name of the layer that needs to be enabled at gpu.

extensions This refers to the extension names that need to be enabled at gpu.

Shaking Hands with the Device

[104]

The inside process of the VulkanApplication::handShakeWithDevice() function is
described as follows:

Use the VulkanDevice object and query the extensions exposed by the
associated physical device. The retrieved extensions can be cross-checked against
the application-requested extensions to check whether they are supported by the
physical device or not.
Retrieve the physical device properties using vkGetPhysical-
DeviceProperties() and store them in the local data structure (gpuProps) of
VulkanDevice for later use.
Get the memory information and its properties offered by the physical device
using the vkGetPhysicalDeviceMemoryProperties() API.
Query all the queue families supported by the physical device using the
getPhysicalDeviceQueuesAndProperties() helper function of
VulkanDevice class and store their properties for later use.
Traverse through all the queues and check which queue supports graphics
operations. This is done using the getGraphicsQueueHandle() function; this
function returns the index or handle of the queue, which can be used to perform
the graphics operations.
Finally, VulkanDevice::createDevice() is called to create the logical device
object associated with the physical device. This function uses the graphics queue
handle and also creates the queue associated with the logical device object. In
addition, this function also accepts the extensions' name list, which needs to be
enabled on the physical device:

 /***************** Application.cpp *****************/
 // High level function for creating device and queues
 VkResult VulkanApplication::handShakeWithDevice(
 VkPhysicalDevice* gpu, std::vector<const char *>& layers,
 std::vector<const char *>& extensions)
 {

 // The user define Vulkan Device object.
 // This will manage the Physical and logical
 // device and their queue and properties
 deviceObj = new VulkanDevice(gpu);
 if (!deviceObj){
 return VK_ERROR_OUT_OF_HOST_MEMORY;
 }
 // Print the devices available layer and their extension
 deviceObj->layerExtension.
 getDeviceExtensionProperties(gpu);

Shaking Hands with the Device

[105]

 // Get the physical device or GPU properties
 vkGetPhysicalDeviceProperties(*gpu, &deviceObj->gpuProps);

 // Get memory properties from the physical device or GPU.
 vkGetPhysicalDeviceMemoryProperties(*gpu,
 &deviceObj->memoryProperties);

 // Query the availabe queues on the physical
 // device and their properties.
 deviceObj->getPhysicalDeviceQueuesAndProperties();

 // Retrive the queue which support graphics pipeline.
 deviceObj->getGrahicsQueueHandle();

 // Create Logical Device, ensure that this
 // device is connect to graphics queue
 deviceObj->createDevice(layers, extensions);

 return VK_SUCCESS;
 }

Summary
In this chapter, we got our hands dirty with Vulkan programming. We understood the
setup and building process of the Vulkan project using CMake and the LunarG SDK. We
started with Vulkan basics, with layers and extensions, and learned the step-by-step process
to query them. We created a Vulkan instance and demonstrated the instructions to enable
and test the layers and extensions at an instance level.

Further, we discussed devices and queues. We explored the differences between physical
and logical device objects. We programmed the enumeration of the physical device on a
system and learned to enable device-specific extensions. We enumerated the queue families
associated with each physical device. Using the queue properties, we chose the graphics
queue and created the logical device object.

Finally, we summed up all of our understanding and implemented the process of
handshaking with the device, which includes the creation of physical and logical device
objects along with their queues.

Debugging provides a better opportunity to learn through mistakes with valid reasons. In
the next chapter, we will learn the debugging process in Vulkan, which is extremely
important from a developer's perspective. Vulkan is a new graphics API and has a
completely different programming paradigm from traditional APIs. The debugging
capabilities provide a better way to understand these APIs.

4
Debugging in Vulkan

In the last chapter, we initialized the Vulkan API and about learned the concepts of layers
and extensions. We connected with the physical hardware device and understood the
different types of queue exposed by it. Since we are gearing up for practical
implementations, it's important that we learn the Vulkan debugging in order to avoid
unpleasant mistakes.

Vulkan allows you to perform debugging through validation layers. These validation layer
checks are optional and can be injected into the system at runtime. Traditional graphics
APIs perform validation right up front using some sort of error-checking mechanism, which
is a mandatory part of the pipeline. This is indeed useful in the development phase, but
actually, it is an overhead during the release stage because the validation bugs might have
already been fixed at the development phase itself. Such compulsory checks cause the CPU
to spend a significant amount of time in error checking.

On the other hand, Vulkan is designed to offer maximum performance, where the optional
validation process and debugging model play a vital role. Vulkan assumes the application
has done its homework using the validation and debugging capabilities available at the
development stage, and it can be trusted flawlessly at the release stage.

In this chapter, we will learn about the validation and debugging process of a Vulkan
application. We will cover the following topics:

Peeking into Vulkan debugging
Understanding LunarG validation layers and their features
Implementing debugging in Vulkan

Debugging in Vulkan

[107]

Peeking into Vulkan debugging
Vulkan debugging validates application implementation. It surfaces not only errors, but
also other validations, such as proper API usage. It does so by verifying each parameter
passed to it, warning about the potentially incorrect and dangerous API practices in use and
reporting any performance-related warnings when the API is not used optimally. By
default, debugging is disabled, and it's the application's responsibility to enable it.
Debugging works only for those layers that are explicitly enabled at the instance level at the
time of instance creation (VkInstance).

When debugging is enabled, it inserts itself into the call chain for the Vulkan commands the
layer is interested in. For each command, the debugging visits all the enabled layers and
validates them for any potential error, warning, debugging information, and so on.

Debugging in Vulkan is simple. The following is an overview that describes the steps
required to enable it in an application:

Enable debugging capabilities by adding the1.
VK_EXT_DEBUG_REPORT_EXTENSION_NAME extension at the instance level.
Define the set of validation layers intended for debugging. For example, we are2.
interested in the following layers at the instance and device level. For more
information about these layer functionalities, refer to the next section:

VK_LAYER_GOOGLE_unique_objects

VK_LAYER_LUNARG_api_dump

VK_LAYER_LUNARG_core_validation

VK_LAYER_LUNARG_image

VK_LAYER_LUNARG_object_tracker

VK_LAYER_LUNARG_parameter_validation

VK_LAYER_LUNARG_swapchain

VK_LAYER_GOOGLE_threading

The Vulkan debugging APIs are not part of the core command, which can be3.
statically loaded by the loader. These are available in the form of extension APIs
that can be retrieved at runtime and dynamically linked to the predefined
function pointers. So, as the next step, the debug extension APIs
vkCreateDebugReportCallbackEXT and
vkDestroyDebugReportCallbackEXT are queried and linked dynamically.
These are used for the creation and destruction of the debug report.

Debugging in Vulkan

[108]

Once the function pointers for the debug report are retrieved successfully, the4.
former API (vkCreateDebugReportCallbackEXT) creates the debug report
object. Vulkan returns the debug reports in a user-defined callback, which has to
be linked to this API.
Destroy the debug report object when debugging is no longer required.5.

Understanding LunarG validation layers and
their features
The LunarG Vulkan SDK supports the following layers for debugging and validation
purposes. In the following points, we have described some of the layers that will help you
understand the offered functionalities:

VK_LAYER_GOOGLE_unique_objects: Non-dispatchable Vulkan objects handles
are not required to be unique; a driver may return the same handle for multiple
objects that it considers equivalent. This behavior makes tracking the object
difficult because it is not clear which object to reference at the time of deletion.
This layer packs the Vulkan objects into a unique identifier at the time of creation
and unpacks them when the application uses it. This ensures there is proper
object lifetime tracking at the time of validation. As per LunarG's
recommendation, this layer must be last in the chain of the validation layer,
making it closer to the display driver.
VK_LAYER_LUNARG_api_dump: This layer is helpful in knowing the parameter
values passed to the Vulkan APIs. It prints all the data structure parameters
along with their values.
VK_LAYER_LUNARG_core_validation: This is used for validating and printing
important pieces of information from the descriptor set, pipeline state, dynamic
state, and so on. This layer tracks and validates the GPU memory, object binding,
and command buffers. Also, it validates the graphics and compute pipelines.
VK_LAYER_LUNARG_image: This layer can be used for validating texture formats,
rendering target formats, and so on. For example, it verifies whether the
requested format is supported on the device. It validates whether the image view
creation parameters are reasonable for the image that the view is being created
for.
VK_LAYER_LUNARG_object_tracker: This keeps track of object creation along
with its use and destruction, which is helpful in avoiding memory leaks. It also
validates that the referenced object is properly created and is presently valid.

Debugging in Vulkan

[109]

VK_LAYER_LUNARG_parameter_validation: This validation layer ensures that
all the parameters passed to the API are correct as per the specification and are
up to the required expectation. It checks whether the value of a parameter is
consistent and within the valid usage criteria defined in the Vulkan specification.
Also, it checks whether the type field of a Vulkan control structure contains the
same value that is expected for a structure of that type.
VK_LAYER_LUNARG_swapchain: This layer validates the use of the WSI
swapchain extensions. For example, it checks whether the WSI extension is
available before its functions could be used. Also, it validates that an image index
is within the number of images in a swapchain.
VK_LAYER_GOOGLE_threading: This is helpful in the context of thread safety. It
checks the validity of multithreaded API usage. This layer ensures the
simultaneous use of objects using calls running under multiple threads. It reports
threading rule violations and enforces a mutex for such calls. Also, it allows an
application to continue running without actually crashing, despite the reported
threading problem.
VK_LAYER_LUNARG_standard_validation: This enables all the standard layers
in the correct order.

For more information on validation layers, visit LunarG's official website.
Check out https://vulkan.lunarg.com/doc/sdk and specifically refer to
the Validation Layer Details section for more details.

Implementing debugging in Vulkan
Since debugging is exposed by validation layers, most of the core implementation of the
debugging will be done under the VulkanLayerAndExtension class
(VulkanLED.h/.cpp). In this section, we will learn about the implementation that will help
us enable the debugging process in Vulkan:

The Vulkan debug facility is not part of the default core functionalities. Therefore, in order
to enable debugging and access the report callback feature, we need to add the necessary
extensions and layers:

Extension: Add the VK_EXT_DEBUG_REPORT_EXTENSION_NAME extension to the
instance level. This will help in exposing the Vulkan debug APIs to the
application:

 vector<const char *> instanceExtensionNames = {

https://vulkan.lunarg.com/doc/sdk

Debugging in Vulkan

[110]

 // other extensios
 VK_EXT_DEBUG_REPORT_EXTENSION_NAME,
 };

Layer: Define the following layers at the instance level to allow debugging at
these layers:

 vector<const char *> layerNames = {
 "VK_LAYER_GOOGLE_threading",
 "VK_LAYER_LUNARG_parameter_validation",
 "VK_LAYER_LUNARG_device_limits",
 "VK_LAYER_LUNARG_object_tracker",
 "VK_LAYER_LUNARG_image",
 "VK_LAYER_LUNARG_core_validation",
 "VK_LAYER_LUNARG_swapchain",
 "VK_LAYER_GOOGLE_unique_objects"
 };

In addition to the enabled validation layers, the LunarG SDK provides a
special layer called VK_LAYER_LUNARG_standard_validation. This
enables basic validation in the correct order as mentioned here. Also, this
built-in metadata layer loads a standard set of validation layers in the
optimal order. It is a good choice if you are not very specific when it
comes to a layer.
a) VK_LAYER_GOOGLE_threading
b) VK_LAYER_LUNARG_parameter_validation
c) VK_LAYER_LUNARG_object_tracker
d) VK_LAYER_LUNARG_image
e) VK_LAYER_LUNARG_core_validation
f) VK_LAYER_LUNARG_swapchain
g) VK_LAYER_GOOGLE_unique_objects

These layers are then supplied to the vkCreateInstance() API to enable them:

VulkanApplication* appObj = VulkanApplication::GetInstance();
appObj->createVulkanInstance(layerNames,
 instanceExtensionNames, title);

// VulkanInstance::createInstance()
VkResult VulkanInstance::createInstance(vector<const char *>&
 layers, std::vector<const char *>& extensionNames,
 char const*const appName)
{

Debugging in Vulkan

[111]

 . . .
 VkInstanceCreateInfo instInfo = {};

 // Specify the list of layer name to be enabled.
 instInfo.enabledLayerCount = layers.size();
 instInfo.ppEnabledLayerNames = layers.data();

 // Specify the list of extensions to
 // be used in the application.
 instInfo.enabledExtensionCount = extensionNames.size();
 instInfo.ppEnabledExtensionNames = extensionNames.data();
 . . .

 vkCreateInstance(&instInfo, NULL, &instance);
}

The validation layer is very specific to the vendor and SDK version. Therefore, it is
advisable to first check whether the layers are supported by the underlying implementation
before passing them to the vkCreateInstance() API. This way, the application remains
portable throughout when run against another driver implementation.
The areLayersSupported() function is a user-defined utility function that inspects the
incoming layer names against system-supported layers. The unsupported layers are
notified to the application and removed from the layer names before feeding them into the
system:

// VulkanLED.cpp

 VkBool32 VulkanLayerAndExtension::areLayersSupported
 (vector<const char *> &layerNames)
{
 uint32_t checkCount = layerNames.size();
 uint32_t layerCount = layerPropertyList.size();
 std::vector<const char*> unsupportLayerNames;
 for (uint32_t i = 0; i < checkCount; i++) {
 VkBool32 isSupported = 0;
 for (uint32_t j = 0; j < layerCount; j++) {
 if (!strcmp(layerNames[i], layerPropertyList[j].
 properties.layerName)) {
 isSupported = 1;
 }
 }

 if (!isSupported) {
 std::cout << "No Layer support found, removed"
 " from layer: "<< layerNames[i] << endl;
 unsupportLayerNames.push_back(layerNames[i]);
 }

Debugging in Vulkan

[112]

 else {
 cout << "Layer supported: " << layerNames[i] << endl;
 }
 }

 for (auto i : unsupportLayerNames) {
 auto it = std::find(layerNames.begin(),
 layerNames.end(), i);
 if (it != layerNames.end()) layerNames.erase(it);
 }

 return true;
 }

The debug report is created using the vkCreateDebugReportCallbackEXT API. This API
is not a part of Vulkan's core commands; therefore, the loader is unable to link it statically.
If you try to access it in the following manner, you will get an undefined symbol reference
error:

vkCreateDebugReportCallbackEXT(instance, NULL, NULL, NULL);

All debug-related APIs need to be queried using the vkGetInstanceProcAddr() API and
linked dynamically. The retrieved API reference is stored in a corresponding function
pointer called PFN_vkCreateDebugReportCallbackEXT. The
VulkanLayerAndExtension::createDebugReportCallback() function retrieves the
create and destroy debug APIs, as shown in the following implementation:

/********* VulkanLED.h *********/
// Declaration of the create and destroy function pointers
PFN_vkCreateDebugReportCallbackEXT dbgCreateDebugReportCallback;
PFN_vkDestroyDebugReportCallbackEXT dbgDestroyDebugReportCallback;

/********* VulkanLED.cpp *********/
VulkanLayerAndExtension::createDebugReportCallback(){
 . . .

// Get vkCreateDebugReportCallbackEXT API
dbgCreateDebugReportCallback=(PFN_vkCreateDebugReportCallbackEXT)
vkGetInstanceProcAddr(*instance,"vkCreateDebugReportCallbackEXT");
 if (!dbgCreateDebugReportCallback) {
 std::cout << "Error: GetInstanceProcAddr unable to locate
 vkCreateDebugReportCallbackEXT function.\n";
 return VK_ERROR_INITIALIZATION_FAILED;
 }
 // Get vkDestroyDebugReportCallbackEXT API
 dbgDestroyDebugReportCallback=

Debugging in Vulkan

[113]

 (PFN_vkDestroyDebugReportCallbackEXT)vkGetInstanceProcAddr
 (*instance, "vkDestroyDebugReportCallbackEXT");

 if (!dbgDestroyDebugReportCallback) {
 std::cout << "Error: GetInstanceProcAddr unable to locate
 vkDestroyDebugReportCallbackEXT function.\n";
 return VK_ERROR_INITIALIZATION_FAILED;
 }
 . . .
 }

The vkGetInstanceProcAddr() API obtains instance-level extensions dynamically; these
extensions are not exposed statically on a platform and need to be linked through this API
dynamically. The following is the signature of this API:

PFN_vkVoidFunction vkGetInstanceProcAddr(
 VkInstance instance,
 const char* name);

The following table describes the API fields:

Parameters Description

instance This is a VkInstance variable. If this variable is NULL, then the name must be
one of these: vkEnumerateInstanceExtensionProperties,
vkEnumerateInstanceLayerProperties, or vkCreateInstance.

name This is the name of the API that needs to be queried for dynamic linking.

Using the dbgCreateDebugReportCallback() function pointer, create the debugging
report object and store the handle in debugReportCallback. The second parameter of the
API accepts a VkDebugReportCallbackCreateInfoEXT control structure. This data
structure defines the behavior of the debugging, such as what the debug information
should include: errors, general warnings, information, performance-related warnings,
debug information, and so on. In addition, it also takes the reference of a user-defined
function (debugFunction); this helps filter and print the debugging information once it is
retrieved from the system. Here's the syntax for creating a debugging report:

struct VkDebugReportCallbackCreateInfoEXT {
 VkStructureType type;
 const void* pNext;
 VkDebugReportFlagsEXT flags;
 PFN_vkDebugReportCallbackEXT fnCallback;
 void* pUserData;
};

Debugging in Vulkan

[114]

The following table describes the purpose of the mentioned API fields:

Parameters Description

type This is the type information of this control structure. It must be specified as
VK_STRUCTURE_TYPE_DEBUG_REPORT_CREATE_INFO_EXT.

flags This is to define the kind of debugging information to be retrieved when
debugging is on; the next table defines these flags.

fnCallback This field refers to the function that filters and displays debug messages.

The VkDebugReportFlagBitsEXT control structure can exhibit a bitwise combination of
the following flag values:

Flag values Description

VK_DEBUG_REPORT_INFORMATION_BIT_EXT This is to display user-friendly
information describing the
background activities in the
currently running application, for
example, resource details that may
be useful when debugging an
application.

VK_DEBUG_REPORT_WARNING_BIT_EXT This is to provide a warning
message for potentially incorrect
or dangerous use of the API.

VK_DEBUG_REPORT_PERFORMANCE_WARNING_BIT_EXT This indicates a potentially non-
optimal use of Vulkan, which may
result in performance loss.

VK_DEBUG_REPORT_ERROR_BIT_EXT This refers to an error message
specifying incorrect API usage,
which may cause undefined
results–for example, application
crash.

VK_DEBUG_REPORT_DEBUG_BIT_EXT This indicates diagnostic
information from the loader and
layer.

Debugging in Vulkan

[115]

The createDebugReportCallback function implements the creation of the debug report.
First, it creates the VulkanLayerAndExtension control structure object and fills it with
relevant information. This primarily includes two things: first, assigning a user-defined
function (pfnCallback) that will print the debug information received from the system
(see the next point), and second, assigning the debugging flag (flags) in which the
programmer is interested:

/********* VulkanLED.h *********/
// Handle of the debug report callback
VkDebugReportCallbackEXT debugReportCallback;
// Debug report callback create information control structure
VkDebugReportCallbackCreateInfoEXT dbgReportCreateInfo = {};

/********* VulkanLED.cpp *********/
VulkanLayerAndExtension::createDebugReportCallback(){
 . . .
 // Define the debug report control structure,
 // provide the reference of 'debugFunction',
 // this function prints the debug information on the console.
 dbgReportCreateInfo.sType = VK_STRUCTURE_TYPE_DEBUG
 _REPORT_CREATE_INFO_EXT;
 dbgReportCreateInfo.pfnCallback = debugFunction;
 dbgReportCreateInfo.pUserData = NULL;
 dbgReportCreateInfo.pNext = NULL;
 dbgReportCreateInfo.flags = VK_DEBUG_REPORT_WARNING_BIT_EXT |
 VK_DEBUG_REPORT_PERFORMANCE
 _WARNING_BIT_EXT |
 VK_DEBUG_REPORT_ERROR_BIT_EXT |
 VK_DEBUG_REPORT_DEBUG_BIT_EXT;

 // Create the debug report callback and store the handle
 // into 'debugReportCallback'
 result = dbgCreateDebugReportCallback
 (*instance, &dbgReportCreateInfo, NULL, &debugReportCallback);

 if (result == VK_SUCCESS) {
 cout << "Debug report callback object created successfully\n";
 }
 return result;
}

Define the debugFunction() function that prints the retrieved debug information in a
user-friendly way. It describes the type of debug information along with the reported
message:

VKAPI_ATTR VkBool32 VKAPI_CALL

Debugging in Vulkan

[116]

VulkanLayerAndExtension::debugFunction(VkFlags msgFlags,
 VkDebugReportObjectTypeEXT objType, uint64_t srcObject,
 size_t location, int32_t msgCode, const char *pLayerPrefix,
 const char *pMsg, void *pUserData) {
 if (msgFlags & VK_DEBUG_REPORT_ERROR_BIT_EXT) {
 std::cout << "[VK_DEBUG_REPORT] ERROR: ["<<layerPrefix<<"]
 Code" << msgCode << ":" << msg << std::endl;

 }
 else if (msgFlags & VK_DEBUG_REPORT_WARNING_BIT_EXT) {
 std::cout << "[VK_DEBUG_REPORT] WARNING: ["<<layerPrefix<<"]
 Code" << msgCode << ":" << msg << std::endl;
 }
 else if (msgFlags & VK_DEBUG_REPORT_INFORMATION_BIT_EXT) {
 std::cout<<"[VK_DEBUG_REPORT] INFORMATION:[" <<layerPrefix<<"]
 Code" << msgCode << ":" << msg << std::endl;

 }
 else if(msgFlags& VK_DEBUG_REPORT_PERFORMANCE_WARNING_BIT_EXT){
 cout <<"[VK_DEBUG_REPORT] PERFORMANCE: ["<<layerPrefix<<"]
 Code" << msgCode << ":" << msg << std::endl;
 }
 else if (msgFlags & VK_DEBUG_REPORT_DEBUG_BIT_EXT) {
 cout << "[VK_DEBUG_REPORT] DEBUG: ["<<layerPrefix<<"]
 Code" << msgCode << ":" << msg << std::endl;
 }
 else {
 return VK_FALSE;
 }

 return VK_SUCCESS;
 }

The following table describes the various fields from the debugFunction() callback:

Parameters Description

msgFlags This specifies the type of debugging event that has triggered the call, for
example, an error, warning, performance warning, and so on.

objType This is the type object that is manipulated by the triggering call.

srcObject This is the handle of the object that's being created or manipulated by the
triggered call.

location This refers to the location of the code describing the event.

msgCode This refers to the message code.

Debugging in Vulkan

[117]

layerPrefix This is the layer responsible for triggering the debug event.

msg This field contains the debug message text.

userData Any application-specific user data is specified to the callback using this field.

The debugFunction callback has a Boolean return value. The true
return value indicates the continuation of the command chain to
subsequent validation layers even after an error has occurred.

However, the false value instructs the validation layer to abort the
execution when an error occurs. It is advisable to stop the execution at the
very first error.

The presence of an error itself indicates that something has occurred
unexpectedly; letting the system run in these circumstances may lead to
undefined results or further errors, which could be completely senseless
sometimes. In the latter case, where the execution is aborted, it provides a
better opportunity for the developer to concentrate and fix the reported
error. In contrast, the former approach, where the system throws a bunch
of errors, may be cumbersome leaving the developers in a confused state
sometimes.

In order to enable debugging at vkCreateInstance, provide dbgReportCreateInfo to
the pNext field of VkInstanceCreateInfo structure:

 VkInstanceCreateInfo instInfo = {};
 . . .
 instInfo.pNext = &layerExtension.dbgReportCreateInfo;
 vkCreateInstance(&instInfo, NULL, &instance);

Finally, once the debug is no longer in use, destroy the debug callback object:

void VulkanLayerAndExtension::destroyDebugReportCallback(){
 VulkanApplication* appObj = VulkanApplication::GetInstance();
 dbgDestroyDebugReportCallback(instance,debugReportCallback,NULL);
 }

The following is the output from the implemented debug report. Your output may differ
from this based on the GPU vendor and SDK provider. Also, the explanations of the errors
or warnings reported are very specific to the SDK itself. But at a higher level, the
specification will hold; this means you can expect to see a debug report with a warning,
information, debugging help, and so on, based on the debugging flag you have turned on.

Debugging in Vulkan

[118]

Summary
This chapter was short, precise, and full of practical implementations. Working on Vulkan
without debugging capabilities is like shooting in the dark. We know very well that Vulkan
demands an appreciable amount of programming and developers make mistakes for
obvious reasons; they are humans after all. We learn from our mistakes, and debugging
allows us to find and correct these errors. It also provides insightful information to build
quality products.

Let's do a quick recap. We learned the Vulkan debugging process. We looked at the various
LunarG validation layers and understood the roles and responsibilities offered by each one
of them. Next, we added a few selected validation layers that we were interested in
debugginig. We also added the debug extension that exposes the debugging capabilities;
without this, the API's definition could not be dynamically linked to the application. Then,
we implemented the Vulkan create user define debug report function and linked it to our
debug reporting callback; this callback decorates the captured debug report in a user-
friendly and presentable fashion. Finally, we implemented the API to destroy the
debugging report callback object.

In the next chapter, we will understand command buffers, explore their role in the Vulkan
pipeline, and learn to use them to record and execute API calls. We will also take an in-
depth look at the Vulkan memory management for host and device memory; we will learn
about various APIs to control them.

5
Command Buffer and Memory

Management in Vulkan
A command buffer is a collection of commands, and it is submitted to an appropriate
hardware queue for GPU processing. The driver then fetches the command buffers and
validates and compiles them before the real GPU processing starts.

This chapter will shed light on command buffer concepts. We will learn about command
pool creation, allocation/deallocation of command buffers, and recording commands. We
will implement the command buffers and use them in the next chapter to drive a
swapchain. A swapchain abstracts the mechanism to interface with platform surfaces and
provides an array of images that can be used to perform rendering. Once rendering is done,
the image is presented to the native windowing system.

In the second half of the chapter, we will understand memory management in Vulkan. We
will discuss the concepts of host and device memory. We will look into memory allocators
to manage host memory allocations. At the end of this chapter, we will delve into device
memory and learn the methods to allocate/deallocate and use it through mapping.

This chapter will cover the following topics on command buffers and memory allocation:

Getting started with command buffers
Understanding the command pool and command buffer APIs
Recording command buffers
Implementing the command buffer wrapper class
Managing memory in Vulkan

Command Buffer and Memory Management in Vulkan

[120]

Getting started with command buffers
As the name suggests, a command buffer is a buffer or collection of commands in a single
unit. A command buffer records various Vulkan API commands that an application is
expected to execute. Command buffers once baked can be reused again and again. They
record the commands in the sequence that is specified by the application. These commands
are meant for carrying out different type jobs; this includes binding vertex buffer, pipeline
binding, recording Render Pass commands, setting viewport and scissor, specifying
drawing commands, controlling copy operations on image and buffer contents, and more.

There are two types of command buffers: primary and secondary command buffers:

Primary command buffers: These are the owners of the secondary command
buffers and responsible for executing them; they are directly submitted to the
queues
Secondary command buffers: These are executed through primary command
buffers and cannot be directly submitted to queues

The number of command buffers in an application can vary from a few hundred to
thousands. The Vulkan API is designed to offer maximum performance; therefore, the
command buffers are allocated from the command pools in order to amortize the cost
(when used in a multithreaded environment–refer to the Explicit synchronization section in
this chapter) of resource creation across multiple command buffers. A command buffer
cannot be created directly; instead, it is allocated from the command pool:

Command buffers are persistent; they are created once and can be reused continuously.
Further, if a command buffer is no longer useful, it can be renewed with a simple reset
command and made ready for another recording. This is an efficient way as compared to
destroying and then creating a new buffer for the same purpose.

Command Buffer and Memory Management in Vulkan

[121]

Explicit synchronization
When multiple command buffers are created in a multithreaded environment, then it's
advisable to separate the synchronization domains by introducing separate command pools
for each thread. This makes the cost of command buffer allocations efficient since the
application does not need explicit synchronization in a different thread.

However, it is the application's responsibility to manage the synchronization between the
command buffers that are shared across multiple threads.

In contrast, OpenGL is an implicit synchronization model. In OpenGL, a lot of things are
done automatically, which comes at the cost of a lot of resource tracking, cache flushing,
and dependency chain construction. All of this is done behind the curtains, which indeed is
an overhead of the CPU. Vulkan is fairly simple in this context; the explicit synchronization
guarantees that there is no hidden mechanism nor an element of surprise.

An application is better aware of its resources, and hence, their usage and dependencies. A
driver is less likely to pinpoint the dependencies with accuracy. As a result, the OpenGL
implementation ends up with unexpected shader recompilations, cache flushes, and so on.
Vulkan's explicit synchronization makes it free from these limitations, thereby making the
hardware more productive.

Command Buffer and Memory Management in Vulkan

[122]

Another differentiation is the submission of the command buffers in OpenGL: command
buffers are pushed behind the scenes and are not in control of the application. An
application that submits the commands has no guarantee when those jobs will be executed.
This is because OpenGL executes command buffers in batches. It waits for the commands to
build the batch and then it dispatches them together. On the other hand, Vulkan gives
explicit control to the command buffer to allow the processing up front by submitting it to
the desired queue.

Types of command in command buffers
A command buffer consists of one or more commands. These commands can be categorized
into three types:

Action: This command performs operations such as draw, dispatch, clear, copy,
query/timestamp operations, and begin/end a subpass
State management: This includes descriptor sets, bind pipelines, and buffers, and
it is used to set the dynamic state, push constants, and the Render Pass/subpass
state
Synchronization: These commands are used for synchronization: pipeline
barriers, set events, wait events, and Render Pass/subpass dependencies

Command buffers and queues
Command buffers are submitted to a hardware queue where they are processed
asynchronously. Submission to queues can be made efficient by batching command buffers
and executing them once. Vulkan has a deferred command model where a collection of
draw calls in the command buffer and submissions are done separately and considered two
different operations. This is helpful from an application perspective. This is because it will
have prior knowledge of a large portion of the scene and this can be used as an opportunity
to add appropriate optimizations to the submission, which would've been difficult to
achieve in OpenGL.

Vulkan provides a logical view of the hardware queue, where each logical view is tightly
connected to a hardware queue. A single Vulkan hardware queue can be represented by
multiple logical queues, where each queue is being created based on the queue properties.
For example, the presentation of rendered swapchain images may require the command
buffer to submit them to a graphics queue, which is capable of presentation as well

Command Buffer and Memory Management in Vulkan

[123]

The order of execution
Command buffers can be submitted to either a single queue or multiple queues:

Single queue submission: Multiple command buffers submitted to a single
queue may be executed or overlapped. In single queue submission, a command
buffer must obey the order of the execution of operations as per the command
order and the API order specification. This book only covers the submission
commands used for vkQueueSubmit; it does not cover sparse memory binding
command buffers (through vkQueueBindSparse).
Multiple queue submission: The command buffers submitted to multiple queues
may be executed in any order unless explicit ordering constraints are applied
through the synchronization mechanism via semaphores and fences.

Understanding command pool and buffer
APIs
This section will explain the different APIs that can be used to manage the command pool
and command buffers. Here, we will understand the process of creating a command buffer
pool that will be used for command buffer allocation. We will also look at the process of
resetting and destroying APIs.

The next section of this chapter will be based on implementing these APIs in a ready-to-use
wrapper class. The wrapper implementation will be highly useful in the remaining chapters
of this book, where we will extensively make use of the command buffer.

As a prerequisite for the upcoming chapters, the Implementing the command
pool and command buffers, Recording command buffers, and Managing memory
in Vulkan sections are important.

Command Buffer and Memory Management in Vulkan

[124]

Creating a command pool
A command pool is created using the vkCreateCommandPool() API. It accepts a
VkCommandPoolCreateInfo control structure, which guides the implementation about the
nature of command buffers that are going to be allocated from this pool. It also indicates
which queue family it should belong to. This information, which is provided in advance, is
useful to allocate compatible command pools; these pools can be used to optimize the
command buffer allocation process for a typical queue submission. Here's the syntax of this:

typedef struct VkCommandPoolCreateInfo {
 VkStructureType sType;
 const void* next;
 VkCommandPoolCreateFlags flags;
 uint32_t queueFamilyIndex;
 } VkCommandPoolCreateInfo;

The following table describes the various fields of VkCommandPoolCreateInfo:

Parameters Description

type This is the type information of this control structure. It must be specified as
VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO.

next This could be a valid pointer to an extension-specific structure or NULL.

flag This represents a bitwise enum flag that indicates the behavior of the
command pool usage and the command buffer being allocated from it. This
enum flag is of the type VkCommandPoolFlag, and it can take
VK_COMMAND_POOL_CREATE_TRANSIENT_BIT and
VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT as possible
input values. For more information on these flag values, refer to the following
tip.

queueFamily
Index

This indicates the queue family to which the command buffer is intended to be
submitted.

The VK_COMMAND_POOL_CREATE_TRANSIENT_BIT enum flag indicates
that the command buffers allocated from this pool will be changed
frequently and have a shorter lifespan. This means that the buffers will be
reset or freed in a relatively short timeframe. This flag notifies the
implementation about the nature of the command buffer, and this can be
used to control the memory allocation behavior within the pool.

When the VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT
flag is set, it indicates that a command buffer allocated from the pool can

Command Buffer and Memory Management in Vulkan

[125]

be individually reset in two ways: either explicitly by calling
vkResetCommandBuffer or implicitly by calling
vkBeginCommandBuffer. If this flag is not set, then these two APIs must
not be called on the executable command buffers allocated from the pool.
This indicates that they can only be reset in bulk by calling
vkResetCommandPool.

The command pool in Vulkan is represented by the VkCommandPool object. It is created
using the vkCreateCommandPool() API. The following is the syntax and description of the
API:

VkResult vkCreateCommandPool(
 VkDevice device,
 const VkCommandPoolCreateInfo* pCreateInfo,
 const VkAllocationCallbacks* pAllocator,
 VkCommandPool* pCommandPool);

The following table describes the various fields of this API:

Parameters Description

device This is the handle of the device that will create the command pool.

pCreateInfo This refers to the VkCommandPoolCreateInfo object that indicates the
nature of the command buffer in the command pool.

pAllocator This controls host memory allocation.

pCommandPool This represents the VkCommandPool object returned by the API.

For more information on how to control host memory allocation using
VkAllocationCallbacks* allocator, refer to the Host memory topic in
the last section of this chapter, namely Managing memory in Vulkan.

Resetting a command pool
The command pool (VkCommandPool) can be reset using the vkResetCommandPool() API.
Here is the syntax of this API:

VkResult vkResetCommandPool (
 VkDevice device,
 VkCommandPool commandPool,
 VkCommandPoolResetFlags flags);

Command Buffer and Memory Management in Vulkan

[126]

The following are the parameters of this API:

Parameters Description

device This is the handle of the device that owns the command pool.

commandPool This refers to the VkCommandPool handle that needs to be reset.

flags This flag controls the behavior of resetting the pool.

Destroying a command pool
A command pool can be destroyed using the vkDestroyCommandPool() API. Here's the
syntax of this:

VkResult vkDestroyCommandPool(
 VkDevice device,
 VkCommandPool commandPool,
 const VkAllocationCallbacks* allocator);

The following are the parameters of this API:

Parameters Description

device This is the handle of the device that destroys the command pool.

commandPool This refers to the VkCommandPool handle that needs to be destroyed.

allocator This controls host memory allocation. For more information, refer
to the Host memory section in Chapter 5, Command Buffer and Memory
Management in Vulkan.

Command buffer allocation
Command buffers are allocated from the command buffer pool (VkCommandPool) using the
vkAllocateCommandBuffers() API. This API needs the
VkCommandBufferAllocateInfo control structure object, which specifies the various
parameters that will be helpful in the allocation process. Upon successful execution of the
API, it returns the VkCommandBuffer object. The following is the syntax of this API:

VkResult vkAllocateCommandBuffers(
 VkDevice device,
 const VkCommandBufferAllocateInfo* pAllocateInfo,
 VkCommandBuffer* pCommandBuffers);

Command Buffer and Memory Management in Vulkan

[127]

Let's take a look at the API fields:

Parameters Description

device This is the handle of the logical device object that owns the command
pool.

pAllocateInfo This is a pointer to a VkCommandBufferAllocateInfo structure
describing the parameters of the allocation; refer to the next table for
more information.

pCommandBuffers This refers to the allocated command buffer object array.

The VkCommandBufferAllocateInfo structure has the following fields.

Parameters Description

sType This refers to the type information telling Vulkan that it is a
VkCommandBufferAllocate structure, this must be a type of
VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO:

pNext This refers to NULL or an extension-specific structure.

commandPool This is the command pool handle from which memory needs to be
allocated for the requested command buffers.

level This is the bitwise enum flag of the type VkCommandBufferLevel
indicating whether the command buffer is at the primary or
secondary level. The following is the syntax of
VkCommandBufferLevel:
 typedef enum VkCommandBufferLevel {
 VK_COMMAND_BUFFER_LEVEL_PRIMARY=0,
 VK_COMMAND_BUFFER_LEVEL_SECONDARY=1,
 } VkCommandBufferLevel;

commandBufferCount This refers to the number of command buffers that need to be
allocated.

Command Buffer and Memory Management in Vulkan

[128]

Resetting command buffers
The allocated command buffer can be reset using the vkResetCommandBuffer() API. This
API accepts the VkCommandBuffer object as the first parameter that needs to be reset. The
second parameter is a bitwise mask, VkCommandBufferResetFlag, which controls the
behavior of the reset operation. This structure has one enum value, namely
VK_COMMAND_BUFFER_RESET_RELEASE_RESOURCES_BIT. When this value is set, it means
that the memory held by the command buffer will be returned to the parent command pool.

The following is the syntax of the API:

VkResult vkResetCommandBuffer(
 VkCommandBuffer commandBuffer,
 VkCommandBufferResetFlags flags);

Freeing command buffers
One or more command buffers can be released using the vkFreeCommandBuffer() API.
Here's the syntax of this API:

void vkFreeCommandBuffers(
 VkDevice device,
 VkCommandPool commandPool,
 uint32_t commandBufferCount,
 const VkCommandBuffer* pCommandBuffers);

The following are the parameters of the vkFreeCommandBuffers() API along with their
respective descriptions:

Parameters Description

device This refers to the logical device that holds the command pool.

commandPool This refers to the associated command pool from which the memory
has to be released.

commandBufferCount This refers to the number of command buffers that need to be
released.

pCommandBuffers This is an array of command buffer handles that needs to be
released.

Command Buffer and Memory Management in Vulkan

[129]

Recording command buffers
A command buffer is recorded using the vkBeginCommandBuffer() and
vkEndCommandBuffer() APIs. These APIs define the scope under which any specified
Vulkan commands are recorded. The following example shows the recording of the Render
Pass instance creation between these two APIs, which works as the start and end scopes.
For more information on creating a Render Pass, refer to the Understanding the Render Pass
section in Chapter 7, Buffer Resource, Render Pass, Framebuffer, and Shaders with SPIR-V.

The start of the recording is performed using the vkBeginCommandBuffer() API. This
defines the starting scope after which any call specified is considered to be recorded until
the end scope is reached (vkEndCommandBuffer()).

The following is the syntax of this API, followed by a description of the necessary
parameters:

VkResult vkBeginCommandBuffer(
 VkCommandBuffer commandBuffer,
 const VkCommandBufferBeginInfo* pBeginInfo);

This API accepts two parameters. The first one is the handle of the command buffer in
which the calls are to be recorded. The second parameter is a
VkCommandBufferBeginInfo structure object that defines additional information telling
you how to begin the command buffer recording process.

Command Buffer and Memory Management in Vulkan

[130]

The following is the API syntax of the VkCommandBufferBeginInfo structure:

typedef struct VkCommandBufferBeginInfo {
 VkStructureType sType;
 const void* pNext;
 VkCommandBufferUsageFlags flags;
 const VkCommandBufferInheritanceInfo* pInheritanceInfo;
} VkCommandBufferBeginInfo;

The accepted parameters in this structure are described as follows:

Parameters Description

sType This is the type information of this control structure. It must be
specified as VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO.

pNext This field could be a valid pointer to an extension-specific structure or
NULL.

flags This is a bitwise mask of the type VkCommandBufferUsageFlagBits
indicating the command buffer usage behavior.

pInheritanceInfo If this field is not NULL, it is used when the command buffer is the
secondary command buffer. It contains the
VkCommandBufferInheritanceInfo structure.

Command buffer recording is performed using the vkEndCommandBuffer() API. It
accepts one parameter, which specifies the command buffer object on which the recording is
to be stopped. Here's the syntax for this:

VkResult vkEndCommandBuffer(VkCommandBuffer commandBuffer);

Queue submission
Once the command buffer (VkCommandBuffer) is recorded, it is ready to be submitted to a
queue. The vkQueueSubmit() API helps commit the jobs in an appropriate queue. Let's
check out the syntax of this:

VkResult vkQueueSubmit(
 VkQueue queue,
 uint32_t submitCount,
 const VkSubmitInfo* pSubmitInfo,
 VkFence fence);

Command Buffer and Memory Management in Vulkan

[131]

The accepted parameters are listed as follows:

Parameters Description

queue This is the queue's handle to which the command buffer is submitted.

submitCount This refers to the number of submitInfo objects.

submitInfo This refers to the VkSubmitInfo pointer. It contains vital information about
each work submission, and the number of work submissions is indicated by
submitCount. The next point talks about its API specification.

fence This is used as a signaling mechanism indicating command buffer completion
of the execution. If fence is non-null and submitCount is non-zero, then
fence gets signaled when all the command buffers specified in the
VkSubmitInfo::pCommandBuffers members of submitInfo are
executed. If fence is non-null but submitCount is zero, then the signaled
fence indicates that all of the work previously submitted to the queue has
been completed.

Let's take a look at VkSubmitInfo. This structure embeds multiple pieces of information
into itself. This information is used by the submission process to handle an individual
VkSubmitInfo object containing a single command buffer or a bunch of them. The
following is the syntax of this:

typedef struct VkSubmitInfo {
 VkStructureType type;
 const void* pNext;
 uint32_t waitSemaphoreCount;
 const VkSemaphore* pWaitSemaphores;
 const VkPipelineStageFlags* pWaitDstStageMask;
 uint32_t commandBufferCount;
 const VkCommandBuffer* pCommandBuffers;
 uint32_t signalSemaphoreCount;
 const VkSemaphore* pSignalSemaphores;
} VkSubmitInfo;

The accepted parameters are described as follows:

Parameters Description

sType This is the type of the VkSumbitInfo structure, which must be
VK_STRUCTURE_TYPE_SUBMIT_INFO.

pNext This is a pointer to an extension-specific structure or NULL.

Command Buffer and Memory Management in Vulkan

[132]

waitSemaphoreCount; The refers to the number of semaphores upon which the
command buffer is made to wait before it's executed.

pWaitSemaphores This is a pointer to an array of semaphores upon which the
command buffers are made to wait before they are executed in a
batch.

pWaitDstStageMask This is a pointer to an array of pipeline stages at which each
corresponding semaphore wait will occur.

commandBufferCount This refers to the number of command buffers to be executed in a
batch.

pCommandBuffers This is a pointer to an array of command buffers to be executed in
a batch.

signalSemaphoreCount This refers to the number of semaphores to be signaled once the
commands specified in commandBuffers completes the
execution.

pSignalSemaphores This is a pointer to an array of semaphores that will be signaled
when the command buffers for the given batch are executed.

Queue waiting
Once committed to the queue, the application must wait for the queue to finish the
submitted jobs and be ready for the next batch. The process of waiting for the queue can be
done using the vkQueueWaitIdle() API. This API will be blocked until all the command
buffers and sparse-binding operations in the queue are not completed. This API accepts one
argument, which specifies the handle of the queue upon which the waiting has to be done.
The following is the syntax of this API:

VkResult vkQueueWaitIdle(VkQueue queue);

Implementing the wrapper class for a
command buffer
This section implements the wrapper class for a command buffer called
CommandBufferMgr. This class contains static functions that can be directly used like utility
functions without requiring a class object. The class is implemented in a new file called
wrapper.h/.cpp; this file will contain multiple utility methods.

Command Buffer and Memory Management in Vulkan

[133]

Most of the implemented functions in this class are provided with a default
implementation. This means that each function provides the user with the flexibility to
change the control structure parameters from outside the function call and send them as
parametric arguments. The function arguments are inherent defaults, so if you are not
specifying anything custom, the function will do all the jobs for you.

The following is the header implementation of the CommandBufferMgr class. It declares
four static functions that are responsible for allocating memory, recording the command
buffer, and submitting the command buffer to the command queue:

 /**************** Wrapper.h ******************/
class CommandBufferMgr{
public:
 // Allocate memory for command buffers from the command pool
 static void allocCommandBuffer(const VkDevice* device,
 const VkCommandPool cmdPool, VkCommandBuffer* cmdBuf, const
 VkCommandBufferAllocateInfo* commandBufferInfo);
 // Start the command buffer recording
 static void beginCommandBuffer(VkCommandBuffer cmdBuf,
 VkCommandBufferBeginInfo* inCmdBufInfo = NULL);
 // End the command buffer recording
 static void endCommandBuffer(VkCommandBuffer cmdBuf);
 // Submit the command buffer for execution
 static void submitCommandBuffer(const VkQueue& queue, const
 VkCommandBuffer* cmdBufList, const VkSubmitInfo* submit-
 Info = NULL, const VkFence& fence = VK_NULL_HANDLE);
};

Implementing the command buffer allocation
process
The allocCommandBuffer() function allocates a command buffer (cmdBuf) from the
specified command pool (cmdPool). The allocation behavior can be controlled using the
VkCommandBufferAllocateInfo pointer argument. When the last parameter of this
function has its default parameter value (NULL), then VkCommandBufferAllocateInfo is
implemented inside, as shown in the following code, and used for command buffer
allocation:

void CommandBufferMgr::allocCommandBuffer(const VkDevice* device,
const VkCommandPool cmdPool, VkCommandBuffer* cmdBuf, const
VkCommandBufferAllocateInfo* commandBufferInfo){
 VkResult result;

Command Buffer and Memory Management in Vulkan

[134]

 // If command information is available use it as it is.
 if (commandBufferInfo) {
 result = vkAllocateCommandBuffers
 (*device, commandBufferInfo, cmdBuf);
 assert(!result);
 return;
 }

 // Default implementation, create the command buffer
 // allocation info and use the supplied parameter into it
 VkCommandBufferAllocateInfo cmdInfo = {};
 cmdInfo.sType = VK_STRUCTRE_TYPE_COMMAND_BUFFER_ALOCATE_INFO;
 cmdInfo.pNext = NULL;
 cmdInfo.commandPool = cmdPool;
 cmdInfo.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY;
 cmdInfo.commandBufferCount = (uint32_t) sizeof(cmdBuf)/
 sizeof(VkCommandBuffer);
 // Allocate the memory
 result = vkAllocateCommandBuffers(*device, &cmdInfo, cmdBuf);
 assert(!result);
 }

Recording the command buffer allocation
process
API calls can be easily recorded with the simple beginCommandBuffer() and
endCommandBuffer() wrapper functions. Refer to the following code to understand the
implementation:

void CommandBufferMgr::beginCommandBuffer(VkCommandBuffer cmdBuf,
 VkCommandBufferBeginInfo* inCmdBufInfo){
 VkResult result;
 // If the user has specified the custom command buffer use it
 if (inCmdBufInfo) {
 result = vkBeginCommandBuffer(cmdBuf, inCmdBufInfo);
 assert(result == VK_SUCCESS);
 return;
 }

 // otherwise, use the default implementation.
 VkCommandBufferInheritanceInfo cmdBufInheritInfo = {};
 cmdBufInheritInfo.sType = VK_STRUCTURE_TYPE_COMMAND-
 _BUFFER_INHERITANCE_INFO;
 cmdBufInheritInfo.pNext = NULL;

Command Buffer and Memory Management in Vulkan

[135]

 cmdBufInheritInfo.renderPass = VK_NULL_HANDLE;
 cmdBufInheritInfo.subpass = 0;
 cmdBufInheritInfo.framebuffer = VK_NULL_HANDLE;
 cmdBufInheritInfo.occlusionQueryEnable = VK_FALSE;
 cmdBufInheritInfo.queryFlags = 0;
 cmdBufInheritInfo.pipelineStatistics = 0;
 VkCommandBufferBeginInfo cmdBufInfo = {};
 cmdBufInfo.sType=VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO;
 cmdBufInfo.pNext = NULL;
 cmdBufInfo.flags = 0;
 cmdBufInfo.pInheritanceInfo = &cmdBufInheritInfo;

 result = vkBeginCommandBuffer(cmdBuf, &cmdBufInfo);
 assert(result == VK_SUCCESS);
}

The following code describes the end of command buffer recording:

void CommandBufferMgr::endCommandBuffer(VkCommandBuffer commandBuffer){
 VkResult result;
 result = vkEndCommandBuffer(commandBuffer);
 assert(result == VK_SUCCESS);
}

How to use command buffer recording functions
In this section, we will use the code snippet from Chapter 7, Buffer Resource, Render Pass,
Framebuffer, and Shaders with SPIR-V, and demonstrate the use of the implemented
command buffer management utility functions. These functions grately simplify the code
for the command buffer creation and submission processes.

In the following code, the Render Pass instance is created using command buffers. First, the
command pool (cmdPool) is created and used to allocate a command buffer (vecCmdDraw)
using allocCommandBuffer(). The command buffer recording scope is managed between
the beginCommandBuffer() and endCommandBuffer() functions. Under these scope-
defining functions, a series of commands is recorded (vkCmdBeginRenderPass,
vkCmdBindPipeline, vkCmdDraw, and more). Ignore the working of the commands used
for Render Pass instance creation for now; we will understand them in detail in Chapter 7,
Buffer Resource, Render Pass, Framebuffer, and Shaders with SPIR-V. Here, our purpose is only
er recording.

Command Buffer and Memory Management in Vulkan

[136]

Finally, the command buffer is submitted with submitCommandBuffer(); this function is
described in detail in the next section:

 vkCreateCommandPool(device, &cmdPoolInfo, NULL, &cmdPool);
 CommandBufferMgr::allocCommandBuffer(&device, cmdPool,vecCmdDraw);

 // Start recording the command buffer
 CommandBufferMgr::beginCommandBuffer(vecCmdDraw);

 // Render pass instance
 vkCmdBeginRenderPass(. . .);
 vkCmdBindPipeline(. . .);
 vkCmdBindDescriptorSets(. . .);
 vkCmdBindVertexBuffers(. . .);
 vkCmdSetViewport(. . .);
 vkCmdSetScissor(. . .);
 vkCmdDraw(. . .);
 vkCmdEndRenderPass(. . .);

 // End recording the command buffer
 CommandBufferMgr::endCommandBuffer(vecCmdDraw);
 CommandBufferMgr::submitCommandBuffer(queue, &vecCmdDraw);

Submitting the command to the queue
Submission of the prepared command buffer is done with the help of the
submitCommandBuffer() function. It takes four parameters. The first parameter specifies
the submission queue (queue) to which the second parameter, namely the command buffer
(cmdBuffer), is to be submitted for execution. The third parameter (inSubmitInfo)
specifies the behavior involved in controlling the submission process. The last parameter
signals the completion of the submitted command buffers (fence):

void CommandBufferMgr::submitCommandBuffer(const VkQueue& queue,
 const VkCommandBuffer cmdBuffer, const
 VkSubmitInfo* inSubmitInfo, const VkFence& fence){
 VkResult result;
 // If Submit information is available use it as it is.
 // This assumes that the commands are already specified
 // in the structure, hence ignore command buffer
 if (inSubmitInfo){
 vkQueueSubmit(queue, 1, inSubmitInfo, fence);
 result = vkQueueWaitIdle(queue);
 return;
 }

Command Buffer and Memory Management in Vulkan

[137]

 // Else, create the submit info with specified buffer commands
 VkSubmitInfo submitInfo = {};
 submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
 submitInfo.pNext = NULL;
 submitInfo.waitSemaphoreCount = 0;
 submitInfo.pWaitSemaphores = NULL;
 submitInfo.pWaitDstStageMask = NULL;
 submitInfo.commandBufferCount = (uint32_t)
 sizeof(commandBuffer)/sizeof(VkCommandBuffer);
 submitInfo.pCommandBuffers = commandBuffer;
 submitInfo.signalSemaphoreCount = 0;
 submitInfo.pSignalSemaphores = NULL;

 result = vkQueueSubmit(queue, 1, &submitInfo, fence);
 assert(!result);

 result = vkQueueWaitIdle(queue); assert(!result);
}

Managing memory in Vulkan
Vulkan divides memory broadly into two types: host memory and device memory. Further,
each type of memory can be uniquely broken down based on the properties and memory
type. Vulkan provides a transparent mechanism to view internal memory details and
related properties. Such a type of exposure is not possible in OpenGL, and hence the
application is unable to explicitly control memory regions and layouts.

Of these memory types, host memory is slower than device memory. However, host
memory may be available in abundance. On the other hand, device memory is directly
visible to the physical device, making it efficient and faster. In this section, we will learn
about host and device memory and a way to access them.

Host memory
Vulkan makes use of host memory to store API internal data structures in the
implementation. Vulkan provides allocators, which allow an application to control memory
allocation on behalf of host memory. If the application does not use allocators, then the
Vulkan implementation uses a default allocation scheme to reserve a memory slot for its
data structures.

Command Buffer and Memory Management in Vulkan

[138]

Host memory is managed by the VkAllocationCallbacks control structure, which is
passed to Vulkan APIs for custom management of host memory. For example, the
command buffer pool creation (vkCreateCommandPool) and destroy
(vkDestroyCommandPool) APIs accept the last argument as the host memory allocator (the
VkAllocationCallbacks pointer).

The following is the syntax of this control structure:

typedef struct VkAllocationCallbacks {
 void* pUserData;
 PFN_vkAllocationFunction pfnAllocation;
 PFN_vkReallocationFunction pfnReallocation;
 PFN_vkFreeFunction pfnFree;
 PFN_vkInternalAllocationNotification pfnInternalAlloc;
 PFN_vkInternalFreeNotification pfnInternalFree;
} VkAllocationCallbacks;

The accepted parameters are described as follows:

Parameters Description

pUserData This field indicates the user data that can be passed in to manage the
memory management callbacks (alloc/realloc/free). The user data
may change each time a callback is executed, even with the same object.

pfnAllocation This is a user-defined function pointer of the signature type
PFN_vkAllocationFunction. This defines a custom allocation
function that can be used to allocate host memory to manage the data
structures of the Vulkan API that uses this allocator.

pfnReallocation This is a user-defined function pointer of the signature type
PFN_vkReallocationFunction. This defines a custom reallocation
function that can be used to reallocate the host memory of Vulkan API
data structures.

pfnFree This refers to the function pointer PFN_vkfreeFunction, which
points to a custom-defined memory release function.

pfnInternalAlloc This function pointer is used by the implementation to perform internal
allocation. It notifies the application about the allocation that has been
made. The function pointer used should match the
PFN_vkInternalAllocationNotification signatures.

Command Buffer and Memory Management in Vulkan

[139]

pfnInternalFree When the implementation releases internal allocation, it calls the
function pointer
PFN_vkInternalFreeAllocationNotification, which notifies
the application about freeing up allocated memory.
This function pointer is used by the implementation to release an
internal memory allocation. It notifies the application when the
memory is released. The function pointer used should match the
PFN_vkInternalFreeAllocationNotification signatures.

Given the scope and page limitations of this book, there is only so much that can be covered
about memory allocation extension functions, as discussed in the preceding table. For
further information, refer to
https://www.khronos.org/registry/vulkan/specs/1.0/apispec.html.

Device memory
Device memory is GPU memory that is visible to the physical device. The physical device
can read its memory regions directly. Device memory is very close to the physical device,
and thus provides faster performance than host memory. Image objects, buffers objects, and
uniform buffer objects are all allocated on device memory.

A single physical device may have different types of memory; these are further
differentiated based on their heaps and properties. The
vkGetPhysicalDeviceMemoryProperties() API queries the available memory heaps
and memory properties of the physical device. It's important for an application to know its
memory characteristics. This allows better allocation of resources, depending upon the
application logic or resource type.

The following is the syntax of the vkGetPhysicalDeviceMemoryProperties()API:

void vkGetPhysicalDeviceMemoryProperties (
VkPhysicalDevice physicalDevice,
VkPhysicalDeviceMemoryProperties* pMemoryProperties);

https://www.khronos.org/registry/vulkan/specs/1.0/apispec.html

Command Buffer and Memory Management in Vulkan

[140]

The following vkGetPhysicalDeviceMemoryProperties fields are available:

Parameters Description

physicalDevice This refers to the physical device handle whose memory properties
need to be queried.

pMemoryProperties The queried memory properties are retrieved in the
VkPhysicalDeviceMemoryProperties data structure pointer.
What follows is a description of this structure.

The VkPhysicalDeviceMemoryProperties structure is described as follows:

typedef struct VkPhysicalDeviceMemoryProperties {
 uint32_t memoryTypeCount;
 VkMemoryType memoryTypes[VK_MAX_MEMORY_TYPES];
 uint32_t memoryHeapCount;
 VkMemoryHeap memoryHeaps[VK_MAX_MEMORY_HEAPS];
} VkPhysicalDeviceMemoryProperties;

The vkGetPhysicalDeviceMemoryProperties structure provides the following
information:

Memory types: This contains the number of memory types (memoryTypeCount)
that can be used to access the available memory type (VkMemoryType) on the
physical device. A memory type provides vital information by describing a set of
memory properties, for example, whether the host memory is cached or not
cached. An allocation from a certain memory type is associated with a specific
memory heap, which is indicated by another field in this structure called the heap
index.
Memory heaps: This field provides the number of memory heaps
(memoryHeapCount) available on the physical device. This information is used to
access the allocated memory space in those heaps. Each heap is represented by
VkMemoryHeap, which describes a memory resource of a certain size. Each heap
may share more than one memory type.

The correct size of a physical memory resource can be queried accurately
with the mechanisms provided by the memory type and memory heap.
This allows the memory to be used with a variety of various properties.

Command Buffer and Memory Management in Vulkan

[141]

The following is the syntax of the VkMemoryHeap data structure:

typedef struct VkMemoryHeap {
 VkDeviceSize size;
 VkMemoryHeapFlags flags;
} VkMemoryHeap;

The first field size indicates the total size of the memory in the heap; this memory size in
bytes is occupied in the heap. The second field flag is a bitwise mask of the type
VkMemoryHeapFlagBits, indicating the heap attributes. Here's the syntax of this:

typedef enum VkMemoryHeapFlagBits {
 VK_MEMORY_HEAP_DEVICE_LOCAL_BIT = 0x00000001,
} VkMemoryHeapFlagBits;

The flag value with VK_MEMORY_HEAP_DEVICE_LOCAL_BIT indicates that the
corresponding heap belongs to the device's local memory. This type of memory may have
different memory property flags (VkMemoryPropertyFlagBits) and performance
characteristics as compared to the host local memory.

VkMemoryType provides information about the properties of this memory type with bitwise
flags (propertyFlags) and an index of the heap itself (heapIndex). Here's the syntax of
this:

typedef struct VkMemoryType {
 VkMemoryPropertyFlags propertyFlags;
 uint32_t heapIndex;
} VkMemoryType;

The following are the possible VkMemoryPropertyFlagBits enum flags:

Flags Description

VK_MEMORY_PROPERTY_
DEVICE_LOCAL_BIT

The memory allocation performed with this type is considered to
be most efficient for device memory access.

VK_MEMORY_PROPERTY_
HOST_VISIBLE_BIT

The memory allocated with this flag type is accessible to the host.
The host can make use of mapping functions (vkMapMemory())
to access the contents.

VK_MEMORY_PROPERTY_
HOST_COHERENT_BIT

This flag indicates that the host cache management
commands vkFlushMappedMemoryRanges and
vkInvalidateMappedMemoryRanges are not needed to make
host writes visible to device or the device writes visible to the
host, respectively.

Command Buffer and Memory Management in Vulkan

[142]

VK_MEMORY_PROPERTY_
HOST_CACHED_BIT

The memory allocated with this memory type is cached on the
host. Host memory access to uncached memory is slower than
access to cached memory; however, uncached memory is always
host-coherent.

VK_MEMORY_PROPERTY_
LAZILY_ALLOCATED_BIT

The memory is only device-accessible. Make sure that
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT and
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT are not set with
this memory type.

Allocating device memory
Device memory can be allocated in Vulkan using the vkAllocateMemory() API. This API
returns the VkDeviceMemory object if the device memory is successfully allocated. This
object is used within the application to access or operate device memory data. The
following is the syntax for this:

VkResult vkAllocateMemory(
 VkDevice device,
 const VkMemoryAllocateInfo* allocateInfo,
 const VkAllocationCallbacks* allocator,
 VkDeviceMemory* memory);

Let's look at the various fields for this API:

Parameters Description

device This represents the logical device that owns the memory.

allocateInfo This is a pointer to VkMemoryAllocateInfo; it describes the parameters
for device memory allocation.

allocator This is either NULL or is a pointer to the VkAllocationCallbacks
structure; it controls host memory allocation.

memory This is the handle of the allocated memory of the VkMemoryHandle type.

The VkMemoryAllocateInfo structure is defined as follows:

typedef struct VkMemoryAllocateInfo {
 VkStructureType type;
 const void* pNext;
 VkDeviceSize allocationSize;
 uint32_t memoryTypeIndex;
} VkMemoryAllocateInfo;

Command Buffer and Memory Management in Vulkan

[143]

The following table describes each parameter of this structure:

Parameters Description

type This represents the type information of this structure; it must be
VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO.

pNext This is a pointer to an extension-specific structure.

allocationSize The refers to the size of the memory that needs to be allocated.

memoryTypeIndex This is the index of the memory type that is used for selecting memory
properties and the heap where the memory comes from.

The implementation supports suballocation very well. For example, if the
memory requirement for an image is 512 bytes aligned and for buffer
objects is 64 bytes aligned, then vkAllocateMemory guarantees that it
will meet the specified requirement. It will return 512 bytes of aligned
device memory, which can be used to allocate any of the object types.
Once memory is allocated, it remains uninitialized. The application should
create large VkDeviceMemory objects and suballocate ranges out of them
for good performance.

The number of allocations performed on the physical device memory is implementation-
dependent and can be queried using the maxMemoryAllocationCount member of
VkPhysicalDeviceLimits. When maxMemoryAllocationCount is exceeded,
vkAllocateMemory may return VK_ERROR_TOO_MANY_OBJECTS.

Freeing up device memory
The allocated device memory can be freed using the vkFreeMemory() API. The following
is the syntax for this:

void vkFreeMemory(
 VkDevice device,
 VkDeviceMemory memory,
const VkAllocationCallbacks* allocator);

Command Buffer and Memory Management in Vulkan

[144]

The following table describes each parameter of this structure:

Parameters Description

device This refers to the logical device that owns the memory.

memory This refers to the VkDeviceMemory object that needs to be free.

allocator This controls host memory deallocation.

Accessing device memory from the host
The allocated device memory using the vkAllocateMemory API is only visible to the
device; it is not visible or accessible to the host. The host can only access those allocated
device memory regions that are mappable; the memory allocated with memory property
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT is considered mappable.

Using the vkMapMemory() API, the mapped device memory can be accessed by the host.
This API returns a virtual address pointer that is mapped to the allocated device memory
region. The following is the syntax of the API:

VkResult vkMapMemory(
 VkDevice device,
 VkDeviceMemory memory,
 VkDeviceSize offset,
 VkDeviceSize size,
 VkMemoryMapFlags flags,
 void** ppData);

The accepted parameters are described as follows:

Parameters Description

device This refers to the logical device that owns the memory.

Memory This refers to the device object memory that needs to be mapped.

offset This refers to the memory offset in bytes right from the start of the memory.

Size This refers to the size of the memory range that needs to be mapped.

flags This is reserved for future use.

ppData This returns the mapped memory address. This is a pointer to the pointer that
contains a host-accessible pointer to the beginning of the mapped range.

Command Buffer and Memory Management in Vulkan

[145]

The vkMapMemory API immediately returns the pointer to the mapped
memory. It does not check whether the memory is already mapped.
Therefore, it is the application's responsibility to manage the mapped
memory. Accessing a type of memory that is already mapped may lead to
undefined behavior; the driver may die in a heap.

Once the memory is mapped, it can be used like normal host memory, and the data can be
updated on it. Once the memory is updated, it needs to be unmapped so that the device
memory can be reflected with the latest changes. The unmapping of the memory is
performed using the vkUnmapMemory() API. It accepts two parameters. The first is of the
type VkDevice that indicates the logical device object handle that owns the memory, and
the second parameter is the handle to the device memory (VkDeviceMemory) that needs to
be unmapped. Here is the syntax for this:

void vkUnMapMemory(VkDevice device, VkDeviceMemory memory);

As we go further in this book, we will learn to use uniforms in the Vulkan API. In Chapter
10, Descriptors and Push Constant, we will implement device memory allocation and
mapping to update the uniform buffer.

Lazily allocated memory
The memory allocated with the VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT bit flag is
not allocated up front based on the requested size, but it may be allocated in a monotonic
fashion, where memory gradually increases in line with application demand. The memory
may start from a zero byte size in the beginning and grow with use.

Lazily allocated memory can only be used by image objects of the type VkImage. These
image objects must contain the memory type as
VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT.

At any given moment, the size of the lazily allocated memory presently committed to a
specific memory object (VkDeviceMemory) can be queried using the
vkGetDeviceMemoryCommitment() API. The following is the syntax for this:

void vkGetDeviceMemoryCommitment(
 VkDevice device,
 VkDeviceMemory memory,
 VkDeviceSize* pCommittedMemoryInBytes);

Command Buffer and Memory Management in Vulkan

[146]

This API accepts three parameters, which are explained in the following table:

Parameters Description

device This is the logical device that owns the memory.

memory This is the device object memory that needs to be queried for
size.

pCommittedMemoryInBytes This returns the currently committed size in device memory.

Summary
In this chapter, we learned about command buffers and memory allocation in the Vulkan
API. We understood the concept of command buffers and command pools, and while doing
this, we created pools and allocated command buffer objects through them. We got hands-
on and built the command buffer wrapper class and implemented the creation, resetting,
and destruction of command pools and command buffers. We implemented the recording
of command buffers and submitted them to an appropriate queue for processing.

The second part of this chapter was full of memory management concepts for host- and
device-based memory. We learned about allocators and their APIs to manage host
allocation. We also looked into device memory and understood how Vulkan APIs allocate,
map, and free device memory.

Vulkan has two types of resource: buffers and images. In the next chapter, we will learn
about Vulkan image resources and use them to create swapchains with the help of
command buffers. Buffer resources will be covered in Chapter 7, Buffer Resource, Render
Pass, Framebuffer, and Shaders with SPIR-V.

6
Allocating Image Resources

and Building a Swapchain with
WSI

In the previous chapter, we covered concepts related to memory management and
command buffers. We learned about host and device memory and ways to allocate in the
Vulkan API. We also covered command buffers; we implemented command buffer
recording API calls and submitted them to queues for processing.

In this chapter, we will make use of our knowledge of command buffers and memory
allocation to implement a swapchain and depth image. A swapchain provides the
mechanism by which we can render drawing primitives to swapchain color images, which
is then passed on to the presentation layer in order to display the primitives in the window.
Images are a prerequisite of swap buffer creation; therefore, this chapter will help you gain
in-depth knowledge of image resources and their uses in the Vulkan application.

We will cover the following topics:

Getting started with image resources
Understanding an image resource
Memory allocation and binding an image resource
Introducing swapchains
Creating a depth image
Summarizing the application flow

Allocating Image Resources and Building a Swapchain with WSI

[148]

Getting started with image resources
A Vulkan resource is simply a representation of a memory view that contains data. Vulkan
primarily has two types of resource: buffers and images. In this chapter, we will only
discuss the concept of an image resource; this will be used to implement the swapchain. For
more information on the buffer resource type, refer to Chapter 7, Buffer Resource, Render
Pass, Framebuffer, and Shaders with SPIR-V. In order to get an overview of this, you may want
to revisit the Resource objects – managing images and buffers section in Chapter 2, Your First
Vulkan Pseudo Program.

Vulkan images represent contiguous texture data in 1D/2D/3D form. These images are
primarily used as either an attachment or texture:

Attachment: The image is attached to the pipeline for the framebuffer's color or
depth attachment and can also be used as an auxiliary surface for multipass
processing purposes
Texture: The image is used as a descriptor interface and shared at the shader
stage (fragment shader) in the form of samplers

If you come from an OpenGL background, note that the use of images in
Vulkan is entirely different from its counterpart in OpenGL. In Vulkan, the
image is created by specifying a number of bitwise fields indicating the
kind of image usage, such as color attachment, depth/stencil attachment, a
sampled image in a shader, image load/store, and so on. In addition, you
need to specify the tiling information (linear or optimal) for the image.
This specifies the tiling or swizzling layout for the image data in memory.

The notion of texture in Vulkan is primarily interpreted with images, image layouts, and
image views:

Image: An image represents the texture object in Vulkan. This contains metadata
that is utilized for computing memory requirements. The gathered memory
requirements are helpful during memory allocation. An image indicates other,
and numerous types of information, such as the format, size, and type (sparse
map, cube map, and so on). A single image may contain sub-resources, such as
multiple images, based on the mipmap level or array layers. Each image or image
sub-resource is specified with an image layout.

Allocating Image Resources and Building a Swapchain with WSI

[149]

Image layout: An image layout is an implementation-specific way to store image
texture information in a grid coordinate representation in the image memory. The
image stored in image memory is very implementation-specific; each image has a
specific usage, for example, color attachment, a sampled image in a shader, image
load/store, or sparse textures for large images. For these special purposes, the
implementation provides image layouts that are specialized in image memory
usage to offer optimal performance.

Each image layout is special. Each may offer only certain features. For
example, an image specified with the
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL image layout can be
used as a color image attachment for optimal performance; however, it
cannot be used for transfer purposes.

Image view: Images cannot be used directly for reading and writing purposes by
API calls or pipeline shaders; instead, image views are used. It not only acts like
an interface to the image object, but it also provides the metadata that is used to
represent a continuous range of image sub-resources.

Image creation overview
In this section, we will provide you with a quick introduction to the image creation process
in a step-by-step manner. This will be helpful in getting an overview of the image, image
views, and the associated memory allocations. This section is immediately followed by two
other sections that will cover images (Understanding an image resource) and their memory
allocation (Memory allocation and binding image resources) along with a detailed description of
the corresponding APIs.

The following are step-by-step instructions on how to create an image resource using
Vulkan APIs:

First, create the image object:1.
Create an image object (VkImage) using the vkCreateImage() API.
This API intakes an array of the VkImageCreateInfo structure, which
specifies important image characteristics that are helpful in creating
one or more image objects. At this time, the image object has no
physical allocation on the device; however, it has logical memory
information that will be used to allocate memory in the next step. This
memory information comes from the VkImageCreateInfo object,
which contains the format, image size, creation flags, and so on.

Allocating Image Resources and Building a Swapchain with WSI

[150]

Then, allocate image memory:2.
Getting the memory requirements: Before we allocate the required
chunk of image memory, we need to calculate the appropriate size of
the memory we want to allocate. This is done using the
vkGetImageMemoryRequirements() API. It automates the process of
calculating the appropriate size of the image based on the image
properties. It intakes the VkCreateImageInfo object that we
described in the previous step.
Determining the memory type: Next, get the appropriate memory
type from the available memory types. Once the type is made
available, look for a type that matches the user properties.
Allocating device memory: Allocate the device memory
(VkDeviceMemory) with the vkAllocateMemory() API.
Binding the allocated memory: Bind the allocated device memory
(VkDeviceMemory) to the image object (VkImage) using the
vkBindImageMemory() API.

Set the image layout:3.
Set the correct image layout as per application requirements; do this
using pipeline image memory barriers with
vkCmdPipelineBarrier().

Create the image views:4.
Images can only be accessed via image views. This is the final step
where we create an image view using vkCreateImageView(). The
image can now be used by either API calls or pipeline shaders.

Allocating Image Resources and Building a Swapchain with WSI

[151]

Understanding image resources
This section will cover the Vulkan APIs used to create an image resource. Here, we'll look
into the concept of a data image, image view, and image layout in detail.

Creating images
An image resource in Vulkan is represented using the VkImage object. This object supports
a multidimensional image up to three-dimensional data arrays. Images are created using
the vkCreateImage() API. Here's the syntax to do this:

VkResult vkCreateImage(
 VkDevice device,
 const VkImageCreateInfo* pCreateInfo,
 const VkAllocationCallbacks* pAllocator,
 VkImage* pImage);

The following table describes the various fields of VkCommandPoolCreateInfo:

Parameters Description

device This refers to the logical device responsible for creating an image.

pCreateInfo This refers to a VkImageCreateInfo pointer.

pAllocator This controls the host memory allocation process.

pImage This returns the VkImage pointer after it's created.

The vkCreateImage() intakes VkImageCreateInfo as a second parameter, this control
structure is defined here:

typedef struct VkImageCreateInfo {
 VkStructureType sType;
 const void* pNext;
 VkImageCreateFlags flags;
 VkImageType imageType;
 VkFormat format;
 VkExtent3D extent;
 uint32_t mipLevels;
 uint32_t arrayLayers;
 VkSampleCountFlagBits samples;
 VkImageTiling tiling;
 VkImageUsageFlags usage;
 VkSharingMode sharingMode;
 uint32_t queueFamilyIndexCount;

Allocating Image Resources and Building a Swapchain with WSI

[152]

 const uint32_t* pQueueFamilyIndices;
 VkImageLayout initialLayout;
} VkImageCreateInfo;

The following table describes the various fields of VkImageCreateInfo:

Parameters Description

sType This is the type information of this control structure. It must be
specified as VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO.

pNext This could be a valid pointer to an extension-specific structure or
NULL.

flags This refers to the VkImageCreateFlagBits bit field flags.
More information on this will be provided later in this section.

imageType This specifies the 1D/2D/3D dimensionality of the image using
the VkImageType enum. It must be one of these:
VK_IMAGE_TYPE_1D, VK_IMAGE_TYPE_2D, or
VK_IMAGE_TYPE_3D.

format This refers to the image format specified in the VkFormat type.
It describes the format and type of the data elements that will be
contained in the image.

extent This describes the number of elements in each dimension of the
base level.

mipLevels This refers to the different levels of detail available in the
minified sampling image.

arrayLayers This specifies the number of layers in the image.

samples This specifies the number of subdata element samples in the
image, as defined in VkSampleCountFlagBits.

tilings This specifies the tiling information of the image in the memory.
It should be of the type VkImageTiling and must be either one
of these two enum values: VK_IMAGE_TILING_OPTIMAL or
VK_IMAGE_TILING_LINEAR.

usage This refers to VkImageUsageFlagBits specifying the bit field
that describes the intended usage of the image. More
information on this will be provided later in this section.

Allocating Image Resources and Building a Swapchain with WSI

[153]

sharingMode This specifies the sharing mode of the image when it will be
accessed by multiple queue families. This must be one of these
values: VK_SHARING_MODE_EXCLUSIVE or
VK_SHARING_MODE_CONCURRENT from the VkSharingMode
enum.

queueFamilyIndexCount This represents the number of entries in the
queueFamilyIndices array.

queueFamilyIndices This is an array of queue families that will access the image. The
sharingMode must be VK_SHARING_MODE_CONCURRENT;
otherwise, ignore it.

initialLayout This defines the initial VkImageLayout state of all the sub-
resources of the images. This must be either
VK_IMAGE_LAYOUT_UNDEFINED or
VK_IMAGE_LAYOUT_PREINITIALIZED. For more information
on image layouts, refer to the Understanding the image layouts
section of this chapter.

The image's usage flag of the VkImageCreateInfo control structure is described using the
VkImageUsageFlagBits enum flag. The following is the syntax followed by a description
of each field type of this enum:

typedef enum VkImageUsageFlagBits {
 VK_IMAGE_USAGE_TRANSFER_SRC_BIT = 0x00000001,
 VK_IMAGE_USAGE_TRANSFER_DST_BIT = 0x00000002,
 VK_IMAGE_USAGE_SAMPLED_BIT = 0x00000004,
 VK_IMAGE_USAGE_STORAGE_BIT = 0x00000008,
 VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT = 0x00000010,
 VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT= 0x00000020,
 VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT = 0x00000040,
 VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT = 0x00000080,
} VkImageUsageFlagBits;

Let's look at these bitwise fields in detail to understand what they mean:

Enum type Description

VK_IMAGE_USAGE_TRANSFER_SRC_BIT The image is used by the transfer command's (the copy
command) source.

VK_IMAGE_USAGE_TRANSFER_DST_BIT The image is used by the transfer command's (the copy
command) destination.

Allocating Image Resources and Building a Swapchain with WSI

[154]

VK_IMAGE_USAGE_SAMPLED_BIT This image type is used as a sampler at the shading
stage through the image view type, where the
associated descriptor set slot (VkDescriptorSet) type
could be either
VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE or
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER.
The sampled image in the shader is used for address
calculations, controlling the filtering behavior, and
other attributes.

VK_IMAGE_USAGE_STORAGE_BIT Use this image type for load, store, and atomic operations
on the image memory. The image view is associated with
the descriptor type slot of the type
VK_DESCRIPTOR_TYPE_STORAGE_IMAGE.

VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT The image view created from this type of image resource
is appropriate for a color attachment or the resolve
attachment associated with the frame buffer object
(VkFrameBuffer).

VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT The image view created from this type of image resource
is appropriate for a depth/stencil attachment or the resolve
attachment associated with the frame buffer object
(VkFrameBuffer).

VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT The image type represented by this flag is allocated lazily.
The memory type for this must be specified as
VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT. Note
that if this flag is specified, then
VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT,
VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT,
and VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT must
not be used.

VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT The image view created from this type of image resource
is appropriate for an input attachment in the shader stage
and in the frame buffer. This image view must be
associated with the descriptor set slot
(VkDescriptorSet) of the type
VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT.

The memory allocated with the VK_MEMORY_PROPERTY_LAZILY_-
ALLOCATED_BIT bit flag is not allocated upfront as per the requested size,
but it may be allocated in a monotonic fashion where memory gradually
increases with application demand.

Allocating Image Resources and Building a Swapchain with WSI

[155]

The flag field in the VkImageCreateInfo enum hints the underlying application how it
manages various image resources, such as memory, format, and attributes, using the
VkImageCreateFlagBits enum. The following is the syntax of each type:

typedef enum VkImageCreateFlagBits {
 VK_IMAGE_CREATE_SPARSE_BINDING_BIT = 0x00000001,
 VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT = 0x00000002,
 VK_IMAGE_CREATE_SPARSE_ALIASED_BIT = 0x00000004,
 VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT = 0x00000008,
 VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT = 0x00000010,
 VK_IMAGE_CREATE_FLAG_BITS_MAX_ENUM = 0x7FFFFFFF
} VkImageCreateFlagBits;
typedef VkFlags VkImageCreateFlags;

Now let's understand the flag definitions:

Flags Description

VK_IMAGE_CREATE_SPARSE_BINDING_BIT The image is fully stored using sparse
memory binding.

VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT Here the images can be stored partially using
sparse memory binding. In order to use this
field, the image must have the
VK_IMAGE_CREATE_SPARSE_BINDING_BIT

flag.

VK_IMAGE_CREATE_SPARSE_ALIASED_BIT In this type of flag, the image is stored in
sparse memory; it can also hold multiple
portions of the same image in the same
memory regions. The image must be created
using the
VK_IMAGE_CREATE_SPARSE_BINDING_BIT

flag.

VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT This format is useful in cases where the image
view (VkImageView) format is different from
the created image object format itself
(VkImage).

VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT This format is used for cube mapping. In this
case, VkImageView must be of the type
VK_IMAGE_VIEW_TYPE_CUBE or
VK_IMAGE_VIEW_TYPE_CUBE_ARRAY.

Allocating Image Resources and Building a Swapchain with WSI

[156]

Destroying the created images
When the image is no longer required, it can be destroyed using vkDestroyImage().
Here's the syntax to do this:

void vkDestroyImage(VkDevice device,
 VkImage image,
 const VkAllocationCallbacks* pAllocator);

This API accepts three parameters, which are described in the following table:

Parameters Description

device This is the logical device that destroys image.

image This is the VkImage object that needs to be destroyed.

pAllocator This controls the host memory deallocation process. Refer to the Host memory
section in Chapter 5, Command Buffer and Memory Management in Vulkan.

Understanding image layouts
Let's take a look at the various image layouts available in the Vulkan specification. They are
represented by the VkImageLayout enum values, as described in the following list:

VK_IMAGE_LAYOUT_UNDEFINED: This layout does not support device access. This
is most suitable for either intialLayout or oldLayout in an image transition.
The transitioning of this layout does not provide any guarantee of preserving the
memory data it holds.
VK_IMAGE_LAYOUT_GENERAL: This layout supports all types of device access.
VK_IMAGE_LAYOUT_PREINITIALIZED: This layout also does not support device
access and is most suitable for either intialLayout or oldLayout in an image
transition. The contents held by the layout memory are preserved while
transitioning. This type of layout is useful in cases where the data is readily
available at the initialization time. This way, the data can be directly stored in
device memory immediately, without requiring an extra step to execute the
layout transition.
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL: This layout is very suitable
for color images. Therefore, it must only be used with the color and resolved
attachment of VkFrameBuffer. In order to use this layout, the image must have
the usage bit set as VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT.

Allocating Image Resources and Building a Swapchain with WSI

[157]

Image sub-resources do not have the usage bits specified
individually–they are specified for the whole image only.

VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL: This layout must
only be used for the depth/stencil attachment of VkFrameBuffer. In order to use
this layout, the image must have the usage bit set as
VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT.
VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL: This is similar to
VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL, except that it's
used as a read-only VkFrameBuffer attachment or a read-only image in a
shader, where it must be read as a sampled image, combined image/sampler,
and/or input attachment. The image must be created with the usage bit set as
VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT.
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL: This must be used as a read-
only shader image, for example, a sampled image, combined image/sampler,
and/or input attachment. The image sub-resource must be created either with the
usage bit set as VK_IMAGE_USAGE_SAMPLED_BIT or
VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT.
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL: This must be used as the source
image of a transfer command with a transfer pipeline, and its usage is valid only
if the image sub-resource has the usage bit set as
VK_IMAGE_USAGE_TRANSFER_SRC_BIT.
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL: This must be used as the
destination image of a transfer command with a transfer pipeline, and its usage is
valid only if the image sub-resource has the usage bit set as
VK_IMAGE_USAGE_TRANSFER_DST_BIT.

Creating an image view
An image view is created using vkCreateImageView(). Here's the syntax of this:

VkResult vkCreateImageView(
 VkDevice device,
 const VkImageViewCreateInfo* pCreateInfo,
 const VkAllocationCallbacks* pAllocator,
 VkImageView* pView);

Allocating Image Resources and Building a Swapchain with WSI

[158]

The following table describes the various fields of VkCommandPoolCreateInfo:

Parameters Description

device This is the handle of the logical device that creates the image view.

pCreateInfo This is the pointer to VkCreateImageViewInfo; it controls the creation of
VkImageView.

pAllocator This controls the host memory allocation process. For more information, refer
to the Host memory section in Chapter 5, Command Buffer and Memory
Management in Vulkan.

pView This returns the handle of the created VkImageView object.

The VkCreateImageViewInfo data structure contains view-specific attributes that are
consumed by the vkCreateImageView() API to create the image view. The following is
the syntax of each field:

typedef struct VkImageViewCreateInfo {
 VkStructureType sType;
 const void* pNext;
 VkImageViewCreateFlags flags;
 VkImage image;
 VkImageViewType viewType;
 VkFormat format;
 VkComponentMapping components;
 VkImageSubresourceRange subresourceRange;
} VkImageViewCreateInfo;

The following table describes the various fields of VkImageViewCreateInfo:

Parameters Description

sType This is the type information of the structure; it must be
VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO.

pNext This is an extension-specific structure. This field could be NULL as well.

flags This field is NULL; it is reserved for future use.

image This is the handle of VkImage.

Allocating Image Resources and Building a Swapchain with WSI

[159]

viewType This indicates the image view type using the enum
VkImageViewType. It must be either one of these flag values:
VK_IMAGE_VIEW_TYPE_1D, VK_IMAGE_VIEW_TYPE_2D,
VK_IMAGE_VIEW_TYPE_3D, VK_IMAGE_VIEW_TYPE_CUBE,
VK_IMAGE_VIEW_TYPE_1D_ARRAY, VK_IMAGE_VIEW_TYPE-
_2D_ARRAY, or VK_IMAGE_VIEW_TYPE_CUBE_ARRAY.

format This specifies the format (VkFormat) of the image.

components This is used for remapping the color/depth/stencil after it has been
converted into color components.

subresourceRange This is used for selecting a range of mipmap levels and array layers,
which are accessible through the view.

Destroying the image view
An image view is destroyed using the vkCreateImageView() API. This API intakes three
parameters. The first parameter (device) specifies the logical device that is responsible for
destroying the image view (imageView), which is indicated by the second parameter. The
last parameter pAllocator controls the host memory allocation process. Here's the syntax
of this:

void vkDestroyImageView(VkDevice device,
 VkImageView imageView,
 VkAllocationCallbacks* pAllocator);

Memory allocation and binding image
resources
When an image resource object (VkImage) is created, it contains a logical allocation. The
image has no physical association with the device memory at that point. The actual memory
backing is provided separately at a later stage. The physical allocation is very type-
dependent; the images can be categorized into sparse and non-sparse. The sparse resource
is specified using sparse creation flags (VkImageCreateFlagBits in
VkImageCreateInfo); however, if the flag is not specified, it is a non-sparse image
resource. This chapter will only address non-sparse memory as a reference. For more
information on sparse resource allocation, refer to the official Vulkan 1.0 specification.

Allocating Image Resources and Building a Swapchain with WSI

[160]

The association of an image with memory is a three-step process: gathering memory
allocation requirements for image allocation, allocating the physical chunk on the device
memory, and binding the allocated memory to the image resource. Let's take a look at this
in detail.

Gathering memory allocation requirements
The non-sparse image resources memory requirement can be queried using the
vkGetImageMemoryRequirements() API. Here is the syntax of this:

void vkGetImageMemoryRequirements(VkDevice device,
 VkImage image,
 VkMemoryRequirements*
 pMemoryRequirements);

The following are the different fields of the vkGetImageMemoryRequirements()API:

Parameters Description

device This refers to the device that owns the image.

image This refers to the VkImage object.

pMemoryRequirements This returns the VkMemoryRequirements structure object.

The VkMemoryRequirements structure object contains the memory requirements
associated with the image object that we pass to vkGetImageMemoryRequirements().
Here's the syntax of this:

typedef struct VkMemoryRequirements {
 VkDeviceSize size;
 VkDeviceSize alignment;
 uint32_t memoryTypeBits;
} VkMemoryRequirements;

The parameters of this structure and their respective descriptions are as follows:

Parameters Description

size This specifies the size of the image resource required in bytes.

alignment This refers to the alignment offset in bytes that specifies the offset within
the allocation required for the resource.

Allocating Image Resources and Building a Swapchain with WSI

[161]

memoryTypeBits This is a bitwise flag indicating the supported memory type for the image
resource. If the bit i is set, it means it will support the memory type i in
the VkPhysicalDeviceMemoryProperties structure of the image
resource.

Allocating physical memory on the device
Physical memory is allocated using the vkAllocateMemory() API. This API was discussed
in the last chapter. For a detailed description of this API, refer to the Allocating the device
memory subsection under Managing memory in Vulkan in Chapter 5, Command Buffer and
Memory Management in Vulkan.

Binding the allocated memory to an image object
Once physical memory is allocated to the device, what we need to do is bind this memory
to its own image resource object (VkImage). The image resource is bonded with the
allocated device memory using the vkBindImageMemory() API. The code for this is as
follows:

VkResult vkBindBufferMemory(VkDevice device,
 VkBuffer buffer,
 VkDeviceMemor memory,
 VkDeviceSize memoryOffset);

The parameters of this structure are described as follows:

Parameters Description

device This is the logical device that owns the memory and image object.

image This refers to the VkImage object to which we need to bind the memory.

memory This refers to the allocated VkDeviceMemory.

memoryOffset This is the offset in bytes that specifies the starting point of the memory to
which the image will be bounded.

Allocating Image Resources and Building a Swapchain with WSI

[162]

Introducing swapchains
Swapchains are a mechanism by which the rendering of the drawing primitive is shown on
a platform-specific presentation window/surface. A swapchain may contain single or
multiple drawing images. These drawing images are called color images. A color image is
simply an array of pixel information that resides in a special layout in the memory. The
number of draw images in a swapchain is very specific to the implementation. When
double images are used, it's called double buffering, and when three surfaces are used,
triple buffering.

Among these images, when one image completes the drawing process in the background, it
is swapped to the presentation window. In order to fully utilize the GPU, a different image
is then treated as a background buffer for the drawing process. This process is repeated
back and forth and the swapping of the images takes place continuously. Making use of
multiple images improves the frame rate output as the GPU is always constantly busy with
the processing part with one of the image, reducing the overall idle time.

The swapping or flipping of the drawing image is dependent upon the presentation mode;
this may be updated during the Vertical Blanking Interval (VBI) or as soon as the drawing
is made available. This means that when the monitor is refreshed, the background image is
swapped with the front image displaying the new image. A swapchain is available in the
form of an API extension, which needs to be enabled with
VK_KHR_SWAPCHAIN_EXTENSION_NAME. Refer to the Querying swapchain extensions section
for more information.

Understanding the swapchain implementation
flow
The following diagram will provide you with an overview of swapchain implementation
from start to finish. This will cover each and every part of the flow in a very brief fashion,
allowing you to remain connected throughout the implementation, which will be covered in
detail in upcoming sections:

Allocating Image Resources and Building a Swapchain with WSI

[163]

Let's get into the flow and quickly take an overview of each of the specifics:

Create an empty window: This process provides an empty native platform1.
window that is connected to the swapchain's color images. Each time a frame
(image) is written, it is swapped to the presentation layer. The presentation layer
relays this information to the attached native window for display purposes.
Querying swap chain extensions: The swapchain APIs are not part of the2.
standard API specification. They are implementation-specific, and the loader is
used to load these APIs in the form of extensions. The loaded extensions are
stored in the form of function pointers whose signatures are predefined in the
Vulkan specification.
Creating a surface and associate it with the created window: This process3.
creates a logical platform-specific surface object. At this time, it has no memory
backing for the color images. This logical surface object is attached to the empty
window, declaring the window as its owner.
Getting supported image formats: In this step, we query the physical device to4.
check all the image formats it supports.
Querying swapchain image surface capabilities: This obtains the information on5.
basic surface capabilities, since it is required when we create swapchains images.
In addition, it checks the present modes that are available.
Managing the present mode information: This uses the available present mode6.
information and decide the present mode technique that should be used in the
swapchain. A swapchain's present mode decides how the incoming presentation
requests will be internally processed and queued.

Allocating Image Resources and Building a Swapchain with WSI

[164]

Creating the swapchain and retrieving the presentation images: Let's use the7.
above-gathered information and create the swapchain images. The WSI extension
returns the color image object; these images are of the type VkImage, and are
used by the application.

The WSI images are not owned by the application it belongs to WSI and
hence the image layout cannot applied. The image layout can only be
applied to images that are owned by the application.

Creating color image views: Depending upon the system capabilities, the WSI8.
implementation may return 1–3 swapchain images (based on single, double, or
triple buffering). For using each image in the application, you will need to create
a corresponding image view.
Creating a depth image: Similar to the color images, you will need a depth image9.
for depth testing; but unlike swapchain images, which are prebaked by the WSI,
the depth image needs to be created by the application. First, you will need to
create a depth image object (VkImage), follow the next steps to allocate the
memory, create image layout and finally producing the image view object
(VkImageView).
Depth image memory allocation: You will need to allocate the physical device10.
memory and bind it to the depth image object.
Creating the command pool: We need the command buffer for depth image since11.
this image is owned by us; we will use the command buffer to apply the image
layouts.
Creating the command buffer: You will need to create the command buffer and12.
begin to record the commands responsible for creating the depth image layout
using the created depth image object.
Image layout: This lets you apply a depth/stencil compatible image layout on the13.
depth image object.
Add pipeline barriers: In order to ensure that the image layout is always14.
executed before the creation of the image view, add a pipeline barrier. When a
pipeline barrier is inserted, it ensures that the commands prior to it is executed
before the commands that follow it in the command buffer.
Ending command buffer recording: This allows you to stop the command buffer15.
recording .
Creating a depth image view: After the image object is converted into the16.
compatible image layout, create an image view object (VkImageView). The
image cannot be directly used in the application; they must be in an image view
form.

Allocating Image Resources and Building a Swapchain with WSI

[165]

The created color image view will be submitted to the graphics queue to let the presentation
engine render it on the display window. By the end of this chapter, you will be able to
display the blank window since nothing is rendered on the swapchain color images so far.

The swapchain implementation's class block
diagram
This section will act as a brief introduction to the upcoming section where we will
implement the swapchain. This will help us understand the role of these classes as we inch
towards a detailed implementation.

In this chapter, we are introducing three new user-defined custom classes:
VulkanRenderer, VulkanSwapChain, and VulkanPipeline. These
classes are not associated with any official Vulkan specification API or
data structures. These are user-defined and will help us manage the
application in an organized way.

The following block diagram shows these module classes and their hierarchical
relationship. Besides this, this pictorial representation will also inform you about the
responsibility of each and every module. As we proceed to the next chapter, we will
introduce a few more classes:

Allocating Image Resources and Building a Swapchain with WSI

[166]

Renderer – a window management custom class
The VulkanRender class is defined in VulkanRenderer.h/.cpp. It manages a unique
presentation window and its dependent resources, such as devices, swapchains, pipelines,
and so on, in an application. An application can have multiple rendering windows, as
described in the following diagram; each renderer takes care of an individual presentation
window with all its corresponding resources.

However, since we are at the beginner level, our samples assume only one output
presentation window. Therefore, VulkanApplication contains a single VulkanRenderer
class object:

The following is the declaration of the VulkanRenderer header file. This class creates the
presentation layer's empty window (createPresentationWindow()), which will be later
filled with the color images of the swapchain. The empty window creation process is very
platform-specific; this sample example is only implemented for the Windows platform:

In addition, the VulkanRenderer class manages the initialization (initialize()) and
renders the presentation window, (render()). This class also manages the command pool
for various command buffers:

/************* VulkanRenderer.h *************/
class VulkanRenderer{
// Many line skipped in this header, please refer to
// corresponding source with this chapter.

Allocating Image Resources and Building a Swapchain with WSI

[167]

public:
 void initialize(); //Simple life cycle

 // Create an empty window
 void createPresentationWindow(int& w, int& height);

 // Windows procedure method for handling events.
 static LRESULT CALLBACK WndProc(HWND hWnd, UINT uMsg, WPARAM
 wParam, LPARAM lParam);

 void createCommandPool(); // Create command pool
 void createSwapChain(); // Create swapchain Color image
 void createDepthImage(); // Create Depth image

public:
 HINSTANCE connection; // hInstance - Windows Instance
 char name[80]; // name - App name appearing on the window
 HWND window; // hWnd - the window handle

 // Data structure used for depth image
 struct{ VkFormat format;
 VkImage image;
 VkDeviceMemory mem;
 VkImageView view;
 }Depth;

 VkCommandBuffer cmdDepthImage; // Depth image command buffer
 VkCommandPool cmdPool; // Command pool

 int width, height; // Window Width and Height

private:
 // Class managers
 VulkanSwapChain* swapChainObj;
 VulkanApplication* application;
 // The device object associated with this Presentation layer.
 VulkanDevice* deviceObj;
};

VulkanRenderer::VulkanRenderer(VulkanApplication * app,
 VulkanDevice* deviceObject){
 // Many lines skipped
 application = app;
 deviceObj = deviceObject;

 swapChainObj = new VulkanSwapChain(this);
}

Allocating Image Resources and Building a Swapchain with WSI

[168]

Creating the presentation window
This section will implement the windowing system that will be used to present the
swapchain color images on the display window. This example primarily focuses on
Windows and uses the CreateWindowEx() API to create an overlapped pop-up or child
window with an extended window style. Creating windows is common, and discussing this
topic is beyond the scope of this book.

Refer to the online MSDN documentation for more information on the related
APIs (https://msdn.microsoft.com/en-us/library/windows/desktop/ms632680(v=vs.85
).aspx):

void VulkanRenderer::createPresentationWindow(const int&
 windowWidth, const int& windowHeight){

 width = windowWidth;
 height = windowHeight;

 WNDCLASSEX winInfo;
 // Initialize the window class structure:
 memset(&winInfo, 0, sizeof(WNDCLASSEX));
 winInfo.cbSize = sizeof(WNDCLASSEX);
 winInfo.lpfnWndProc = WndProc;
 winInfo.hInstance = connection;
 winInfo.lpszClassName = name;

 // Register window class
 if (!RegisterClassEx(&winInfo)) { exit(1); }
 // Create window with the registered class
 RECT wr = { 0, 0, width, height };
 AdjustWindowRect(&wr, WS_OVERLAPPEDWINDOW, FALSE);
 window = CreateWindowEx(0, name, name, WS_OVERLAPPEDWINDOW
 |WS_VISIBLE | WS_SYSMENU, 100, 100,
 wr.right - wr.left, wr.bottom - wr.top,
 NULL, NULL, connection, NULL);

 SetWindowLongPtr(window,GWLP_USERDATA,&application);
}

https://msdn.microsoft.com/en-us/library/windows/desktop/ms632680(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms632680(v=vs.85).aspx

Allocating Image Resources and Building a Swapchain with WSI

[169]

On a Microsoft Windows window, we need a windows procedure function to handle event
processing. Here we will process the WM_PAINT, WM_SIZE and WM_CLOSE events. The
WM_CLOSE event is called when a user clicks on the close button on the window. However,
the WM_PAINT event is used to render the window. We will handle the WM_PAINT and
WM_SIZE message in later chapters:

// Windows procedure handlers for MS Windows
LRESULT CALLBACK VulkanRenderer::WndProc(HWND hWnd, UINT uMsg,
WPARAM wParam, LPARAM lParam){
 VulkanApplication* appObj = VulkanApplication::GetInstance();

 switch (uMsg){
 case WM_CLOSE: PostQuitMessage(0); break;

 default: break;
 }

 return (DefWindowProc(hWnd, uMsg, wParam, lParam));
}

Initializing the renderer
The initialization creates a presentation window with a given dimension and fulfills various
prerequisites for the swapchain implementation. This includes querying the swapchain
extension APIs, creating surface objects, finding the best-supported queue for the
presentation layer, getting the compatible image format for drawing, and so on. We will
discuss each and every part in detail as we proceed through the chapter. The initialization
of the Renderer class is done using the initialize() function, as described in the
following code; refer to the comments highlighted in bold to get an overview:

void VulkanRenderer::initialize(){
 // Create an empty window with dimension 500x500
 createPresentationWindow(500, 500);
 // Initialize swapchain
 swapChainObj->intializeSwapChain();

 // We need command buffers, so create a command buffer pool
 createCommandPool();
 // Let's create the swapchain color images
 buildSwapChainAndDepthImage();
}

Allocating Image Resources and Building a Swapchain with WSI

[170]

Creating the command pool
The VulkanRenderer class contains the command pool. This pool will be used for
command buffer allocation and for various operations such as the creation of the depth
image, pipeline state setup, drawing primitives, and many more. This chapter will
demonstrate the first command buffer in action, where we will create the depth image.

In the following code, the command pool is created using the various attributes specified in
the VkCommandPoolCreateInfo control structure. This control structure contains the index
of the graphics queue for which the command buffers need to be allocated. Vulkan specifies
such information in the control structures ahead of time, allowing the underlying pipeline
to take full advantage of pre-optimizations. For more information on command buffers and
command pools, refer to the Understanding the command pool and buffer APIs section in
Chapter 5, Command Buffer and Memory Management in Vulkan:

void VulkanRenderer::createCommandPool(){
 VulkanDevice* deviceObj = application->deviceObj;
 VkCommandPoolCreateInfo cmdPoolInfo = {};
 cmdPoolInfo.sType=VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO;
 cmdPoolInfo.queueFamilyIndex = deviceObj->
 graphicsQueueWithPresentIndex;

 vkCreateCommandPool(deviceObj->device, &cmdPoolInfo, NULL,
 &cmdPool);
}

Building swapchain and depth images
The buildSwapChainAndDepthImage() function is the entry point for creating swapchain
and depth images. We will look at these internal functions in detail as we proceed:

void VulkanRenderer::buildSwapChainAndDepthImage(){
 // Get the appropriate queue to submit the command into
 deviceObj->getDeviceQueue();

 // Create swapchain and get the color images
 swapChainObj->createSwapChain(cmdDepthImage);

 // Create the depth image
 createDepthImage();
}

Allocating Image Resources and Building a Swapchain with WSI

[171]

Rendering the presentation window
Draw the presentation window on the display and handle Windows messages. When the
user presses the close button, exit the presentation window and break the infinite rendering
loop:

void VulkanRenderer::render(){
 MSG msg; // message
 while (1) {
 PeekMessage(&msg, NULL, 0, 0, PM_REMOVE);
 if (msg.message == WM_QUIT) {
 break; // If Quit message the exit the render loop
 }
 TranslateMessage(&msg);
 DispatchMessage(&msg);
 RedrawWindow(window, NULL, NULL, RDW_INTERNALPAINT);
 }
}

VulkanSwapChain – the swapchain manager
A swapchain is implemented in the VulkanSwapChain class inside
VulkanSwapChain.h/.cpp. This class manages the entire swapchain life cycle from its
initialization and creation to its destruction (public functions). The life cycle comprises
several smaller intermediate stages, such as querying the API extensions, getting the
appropriate image format, getting surface capabilities and the presentation mode, and so on
(private functions).

The following is the header file declaration of the VulkanSwapChain class, we will go
through all the important functionalities:

class VulkanSwapChain{
 // Many line are skipped, please refer to source code
 public:
 void intializeSwapChain();
 void createSwapChain(const VkCommandBuffer& cmd);
 void destroySwapChain();

 private:
 VkResult createSwapChainExtensions();
 void getSupportedFormats();
 VkResult createSurface();
 uint32_t getGraphicsQueueWithPresentationSupport();
 void getSurfaceCapabilitiesAndPresentMode();
 void managePresentMode();

Allocating Image Resources and Building a Swapchain with WSI

[172]

 void createSwapChainColorBufferImages();
 void createColorImageView(const VkCommandBuffer& cmd);

 public:
 // User define structure containing public variables used
 // by the swapchain private and public functions.
 SwapChainPublicVariables scPublicVars;

 private:
 // User define structure containing private variables used
 // by the swapchain private and public functions.
 SwapChainPrivateVariables scPrivateVars;
 VulkanRenderer* rendererObj;
 VulkanApplication* appObj;
};

In addition to this, the class has two user-defined structures, namely
SwapChainPrivateVariables and SwapChainPublicVariables. This includes the
class's private and public member variables:

struct SwapChainPrivateVariables
{
 // Store the image surface capabilities
 VkSurfaceCapabilitiesKHR surfCapabilities;

 // Stores the number of present modes
 uint32_t presentModeCount;

 // Arrays for retrived present modes
 std::vector<VkPresentModeKHR> presentModes;

 // Size of the swapchain color images
 VkExtent2D swapChainExtent;

 // Number of color images supported
 uint32_t desiredNumberOfSwapChainImages;
 VkSurfaceTransformFlagBitsKHR preTransform;

 // Stores present mode bitwise flag for swapchain creation
 VkPresentModeKHR swapchainPresentMode;

 // The retrived drawing color swapchain images
 std::vector<VkImage> swapchainImages;

 std::vector<VkSurfaceFormatKHR> surfFormats;
};

struct SwapChainPublicVariables

Allocating Image Resources and Building a Swapchain with WSI

[173]

{
 // The logical platform dependent surface object
 VkSurfaceKHR surface;

 // Number of buffer image used for swapchain
 uint32_t swapchainImageCount;

 // Swapchain object
 VkSwapchainKHR swapChain;

 // List of color swapchain images
 std::vector<SwapChainBuffer> colorBuffer;

 // Current drawing surface index in use
 uint32_t currentColorBuffer;

 // Format of the image
 VkFormat format;
};

Querying swapchain extensions
The swapchain implementation needs a set of APIs. These APIs are not part of the Vulkan
SDK and are dynamically available. The APIs are very specific to the platform
implementation and are available in the form of API extensions, which are queried
dynamically and stored in the form of a function pointer. This API extension can be queried
successfully by specifying the VK_KHR_SWAPCHAIN_EXTENSION_NAME device extension
when the VkDevice object is created:

std::vector<const char *> deviceExtensionNames = {
 VK_KHR_SWAPCHAIN_EXTENSION_NAME
};

// Look into VulkanDevice::createDevice() for more info
VkDeviceCreateInfo deviceInfo = {};
deviceInfo.ppEnabledExtensionNames = deviceExtensionNames;
vkCreateDevice(*gpu, &deviceInfo, NULL, &device);

Allocating Image Resources and Building a Swapchain with WSI

[174]

The following code snippet codes a macro, thereby helping us query instance- and device-
specific extensions. We use this macro to get the WSI extension API's function pointer. For
more information on instance- and device-level extensions, refer to the Introduction to layer
and extensions section in Chapter 3, Shaking Hands with the Device:

#define INSTANCE_FUNC_PTR(instance, entrypoint){
 fp##entrypoint = (PFN_vk##entrypoint) vkGetInstanceProcAddr
 (instance, "vk"#entrypoint);
 if (fp##entrypoint == NULL) { exit(-1);
}

#define DEVICE_FUNC_PTR(dev, entrypoint){
 fp##entrypoint = (PFN_vk##entrypoint)vkGetDeviceProcAddr
 (dev, "vk"#entrypoint);

 if (fp##entrypoint == NULL) { exit(-1);
}

The following are the extension names at the instance and device level:

std::vector<const char *> instanceExtensionNames = {
 VK_KHR_SURFACE_EXTENSION_NAME,
 VK_KHR_WIN32_SURFACE_EXTENSION_NAME,
 VK_EXT_DEBUG_REPORT_EXTENSION_NAME,
};

std::vector<const char *> deviceExtensionNames = {
 VK_KHR_SWAPCHAIN_EXTENSION_NAME
};

This macro uses vkGetInstanceProcAddr() and vkGetDeviceProcAddr() to get the
instance- and device-level extensions. For more information on the
vkGetInstanceProcAddr() API, refer to the Implementing debugging in Vulkan section in
Chapter 4, Debugging in Vulkan.

The following code queries instance- and device-level extensions using the user-defined
createSwapChainExtensions() function:

VkResult VulkanSwapChain::createSwapChainExtensions(){

 // Dependency on createPresentationWindow()
 VkInstance& instance = appObj->instanceObj.instance;
 VkDevice& device = appObj->deviceObj->device;

 // Get Instance based swapchain extension function pointer
 INSTANCE_FUNC_PTR(instce,GetPhysicalDeviceSurfaceSupportKHR);
 INSTANCE_FUNC_PTR(instance,

Allocating Image Resources and Building a Swapchain with WSI

[175]

 GetPhysicalDeviceSurfaceCapabilitiesKHR);
 INSTANCE_FUNC_PTR(instance,
 GetPhysicalDeviceSurfaceFormatsKHR);
 INSTANCE_FUNC_PTR(instance,
 GetPhysicalDeviceSurfacePresentModesKHR);
 INSTANCE_FUNC_PTR(instance, DestroySurfaceKHR);

 // Get Device based swapchain extension function pointer
 DEVICE_FUNC_PTR(device, CreateSwapchainKHR);
 DEVICE_FUNC_PTR(device, DestroySwapchainKHR);
 DEVICE_FUNC_PTR(device, GetSwapchainImagesKHR);
 DEVICE_FUNC_PTR(device, AcquireNextImageKHR);
 DEVICE_FUNC_PTR(device, QueuePresentKHR);
}

The following table shows the extension APIs that will be required to implement and
manage the swapchain. These extensions are at both the instance and device levels and they
must be queried. As we go through the various function implementations, we will discuss
their extensions in detail:

Instance Device

For vkGetPhysicalDeviceSurfaceSupportKHR, the
function pointer
is fpGetPhysicalDeviceSurfaceSupportKHR.

For vkCreateSwapchainKHR
the function pointer is
fpGetPhysical.

For vkGetPhysicalDeviceSurfaceCapabilitiesKHR
the function pointer
is fpGetPhysicalDeviceSurfaceCapabilitiesKHR.

For vkDestroySwapchainKHR
the function pointer is
fpDestroySwapchainKHR.

For vkGetPhysicalDeviceSurfaceFormatsKHR
the function pointer is
fpGetPhysicalDeviceSurfaceFormatsKHR.

For
vkGetSwapchainImagesKHR

the function pointer is
fpGetSwapchainImagesKHR.

For vkGetPhysicalDeviceSurfacePresentModesKHR
the function pointer is
fpGetPhysicalDeviceSurfacePresentModesKHR.

For vkAcquireNextImageKHR
the function pointer is
fpAcquireNextImageKHR.

For vkDestroySurfaceKHR
the function pointer is fpDestroySurfaceKHR.

For vkQueuePresentKHR
the function pointer is
fpQueuePresentKHR.

Allocating Image Resources and Building a Swapchain with WSI

[176]

The retrieved API extensions are stored in the user-defined function pointer variable. They
are renamed by replacing the prefix vk with fp. For example, the API extension
vkGetPhysicalDeviceSurfaceCapabilitiesKHR() is stored as
fpGetPhysicalDeviceSurfaceCapabilitiesKHR(). This is similar for others API
extensions as well.

Creating the surface with WSI and associating it
with the created window
The Vulkan API can be implemented seamlessly on every platform. A platform is an
abstraction of windowing and OS services. Some examples include MS Windows, Android,
and Wayland. Window System Integration (WSI) provides a platform-independent way to
implement windowing or surface management.

Vulkan represents the logical surface object using VkSurfaceKHR. Different platforms have
different APIs to create the VkSurfaceKHR surface object, such as vkCreateWin32-
SurfaceKHR(), vkCreateAndroidSurfaceKHR(), and vkCreateXcbSurfaceKHR():

This example will focus on the Windows platform:

VkResult vkCreateWin32SurfaceKHR(
 VkInstance instance,
 const VkWin32SurfaceCreateInfoKHR* pCreateInfo,
 const VkAllocationCallbacks* pAllocator,
 VkSurfaceKHR* surface);

Allocating Image Resources and Building a Swapchain with WSI

[177]

The following is the description of each and every field:

Parameters Description

instance This refers to the VkInstance object associated with the surface.

pCreateInfo This refers to the VkWin32SurfaceCreateInfoKHR structure object to
control surface management. More information in provided in the following
information box.

pAllocator This is used to control the host-specific memory allocation process.

surface This returns the pointer of the created surface object.

The vkCreate<Platform>SurfaceKHR structure object is created on the
logical surface. It has no backing of the physical memory yet.

The API takes the VkWin32SurfaceCreateInfo structure as an input parameter, where
various control properties on surface management can be specified. The following is the
API syntax:

typedef struct VkWin32SurfaceCreateInfoKHR {
 VkStructureType type;
 const void* next;
 VkWin32SurfaceCreateFlagsKHR flags;
 HINSTANCE hinstance;
 HWND hwnd;
} VkWin32SurfaceCreateInfoKHR;

Let's take a look at all the parameters of the control structure:

Parameters Description

type This is the type information of this structure, which must be
VK_STRUCTURE_TYPE_WIN32_SURFACE_CREATE_INFO_KHR.

next This refers to NULL or an extension-specific pointer.

flag This field is reserved for future use.

hInstance This is the instance ID of the created window.

hwnd This is the handle of the created window; hwnd and hInstance will be used to
associate the surface with the presentation window.

Allocating Image Resources and Building a Swapchain with WSI

[178]

The VulkanSwapChain class implements the creation of the logical WSI surface using the
createSurface() method:

// Depends on createPresentationWindow(), need window handle
VkResult VulkanSwapChain::createSurface(){
 VkInstance& instance = appObj->instanceObj.instance;

 // Construct the surface description:
 VkWin32SurfaceCreateInfoKHR createInfo = {};
 createInfo.sType =
 VK_STRUCTURE_TYPE_WIN32_SURFACE_CREATE_INFO_KHR;
 createInfo.pNext = NULL;
 createInfo.hinstance = rendererObj->connection;
 createInfo.hwnd = rendererObj->window;

 // Create the VkSurfaceKHR object
 return result = vkCreateWin32SurfaceKHR(instance,
 &createInfo, NULL, &scPublicVars.surface);
}

The graphics queue with present support
When swapchain color images are painted by the drawing primitives commands, they then
submitted to the presentation engine to be displayed on the screen. This request is
submitted in the form of a command buffer into the queue which can take up presentation
requests and process it. Therefore, we need a graphic queue which is not only capable of
accepting drawing command buffers but also supports the presentation. This can be done
by querying each graphic queue available on the physical device and checking whether
they support the presentation properties or not. The following code help us to achieve the
same, we implement a help function getGraphicsQueueWithPresentationSupport()
where we end up retrieving a single queue supporting graphics and presentation command
buffer requests:

uint32_t VulkanSwapChain::getGraphicsQueueWithPresentationSupport(){
 VulkanDevice* device = appObj->deviceObj;
 uint32_t queueCount = device->queueCount;
 VkPhysicalDevice gpu = *device->gpu;
 vector<VkQueueFamilyProperties>& queueProps =
 device->queueProps;

 // Iterate each queue and get presentation status for each.
 VkBool32* supportsPresent = (VkBool32 *)malloc(queueCount *
 sizeof(VkBool32));
 for (uint32_t i = 0; i < queueCount; i++) {
 fpGetPhysicalDeviceSurfaceSupportKHR(gpu, i,

Allocating Image Resources and Building a Swapchain with WSI

[179]

 scPublicVars.surface, &supportsPresent[i]);
 }

 // Search for a graphics queues that supports presentation
 uint32_t graphicsQueueNodeIndex = UINT32_MAX;
 uint32_t presentQueueNodeIndex = UINT32_MAX;
 for (uint32_t i = 0; i < queueCount; i++) {
 if ((queueProps[i].queueFlags &
 VK_QUEUE_GRAPHICS_BIT) != 0) {

 if (graphicsQueueNodeIndex == UINT32_MAX) {
 graphicsQueueNodeIndex = i;
 }

 if (supportsPresent[i] == VK_TRUE) {
 graphicsQueueNodeIndex = i;
 presentQueueNodeIndex = i;
 break;
 }
 }
 }
 if (presentQueueNodeIndex == UINT32_MAX) {

 // If didn't find a queue that supports both graphics
 // and present, then find a separate present queue.
 for (uint32_t i = 0; i < queueCount; ++i) {
 if (supportsPresent[i] == VK_TRUE) {
 presentQueueNodeIndex = i;
 break;
 }
 }
 }

 free(supportsPresent);

 // Generate error if could not find queue with present queue
 if (graphicsQueueNodeIndex == UINT32_MAX ||
 presentQueueNodeIndex == UINT32_MAX) {return UINT32_MAX;}

 return graphicsQueueNodeIndex;
}

Allocating Image Resources and Building a Swapchain with WSI

[180]

Querying swapchain image formats
The swapchain needs a supported color-space format for the surface. All the supported
formats can be retrieved using the vkGetPhysicalDeviceSurfaceFormatsKHR() API.
Here's the syntax of this:

VkResult vkGetPhysicalDeviceSurfaceFormatsKHR(
 VkPhysicalDevice physicalDevice,
 VkSurfaceKHR surface,
 uint32_t* pSurfaceFormatCount,
 VkSurfaceFormatKHR* pSurfaceFormats);

The following table describes the various fields of this API:

Parameters Description

physicalDevice This refers to the logical device associated with the swapchain.

surface This refers to the logical surface created for the swapchain.

pSurfaceFormatCount This is an in and out parameter. When
vkGetPhysicalDeviceSurfaceFormatKHR is called with
surfaceFormats as NULL, it returns the number of supported
surface formats. Otherwise, it is used to retrieve the surfaces based
on the number of surface pointers.

pSurfaceFormats This is to retrieve the supported surface formats.

The following implementation gets the number of supported image formats. Using
formatCount, the surface formats are retrieved into the VkSurfaceFormatKHR array. In
the event no preferred surface format information is found, we treat the surface format as
32-bit RGBA:

void VulkanSwapChain::getSupportedFormats()
{
 VkPhysicalDevice gpu = *rendererObj->getDevice()->gpu;
 VkResult result;
 // Get the number of VkFormats supported:
 uint32_t formatCount;
 fpGetPhysicalDeviceSurfaceFormatsKHR
 (gpu, scPublicVars.surface, &formatCount, NULL);
 scPrivateVars.surfFormats.clear();
 scPrivateVars.surfFormats.resize(formatCount);

 // Get VkFormats in allocated objects
 result = fpGetPhysicalDeviceSurfaceFormatsKHR(gpu,
 scPublicVars.surface, &formatCount,
 &scPrivateVars.surfFormats[0]);

Allocating Image Resources and Building a Swapchain with WSI

[181]

 // In case it's a VK_FORMAT_UNDEFINED, then surface has no
 // preferred format. We use RGBA 32 bit format
 if (formatCount == 1 && surfFormats[0].format ==
 VK_FORMAT_UNDEFINED)
 { scPublicVars.format = VK_FORMAT_B8G8R8A8_UNORM; }
 else
 {scPublicVars.format = surfFormats[0].format;}
}

Creating the swapchain
In the following subsection, we will learn the implementation of the swapchain. This
consists of querying surface capabilities and presentation modes, retrieving color images,
and creating image views.

Swapchain surface capabilities and the presentation
mode
The swapchain creation process requires you to know two things in order to create the
image surface: surface capabilities and the presentation mode:

Surface capabilities: This specifies the image surface capabilities offered by the1.
physical device. The vkGetPhysicalDeviceSurfaceCapabilitiesKHR() API
extension can be used to query these capabilities. The extension is stored in the
user-defined function pointer fpGetPhysicalDeviceSurface-
CapabilitiesKHR(). Its syntax is as follows:

 VkResult vkGetPhysicalDeviceSurfaceCapabilitiesKHR(
 VkPhysicalDevice physicalDevice,
 VkSurfaceKHR surface,
 VkSurfaceCapabilitiesKHR* surfaceCapabilities);

The advertised capabilities are retrieved in the VkSurfaceCapabilitiesKHR
object. This includes useful information such as the min/max number of image
surfaces supported, image dimension range, the maximum number of image
arrays possible, the kinds of transformation features supported by the surface
(such as rotation or mirror rotation through 90, 180, and 270 degrees), and so on.

Allocating Image Resources and Building a Swapchain with WSI

[182]

The presentation mode: A swapchain can have various types of presentation2.
mode, and can be retrieved using the
vkGetPhysicalDeviceSurfacePresentModesKHR() API extension
dynamically . The retrieved information is exposed via the VkPresentModeKHR
enumeration supporting four types of presentation modes (see the next section
for more information on the modes). The presentModelCount contains the
number of presentation modes. The syntax of this API is as follows:

 VkResult vkGetPhysicalDeviceSurfacePresentModesKHR(

 VkPhysicalDevice physicalDevice,
 VkSurfaceKHR surface,
 uint32_t* presentModeCount,
 VkPresentModeKHR* presentModes);

The following code retrieves the surface capabilities along with the presentation modes and
stores the required information in the private class member variables:

void VulkanSwapChain::getSurfaceCapabilitiesAndPresentMode(){
 // Some lines are skipped, please refer to the source code
 VkPhysicalDevice gpu = *appObj->deviceObj->gpu;
 fpGetPhysicalDeviceSurfaceCapabilitiesKHR(gpu, scPublicVars.
 surface, &scPrivateVars.surfCapabilities);

 fpGetPhysicalDeviceSurfacePresentModesKHR(gpu, scPublicVars.
 surface, &scPrivateVars.presentModeCount, NULL);

 scPrivateVars.presentModes.clear();
 scPrivateVars.presentModes.resize
 (scPrivateVars.presentModeCount);
 assert(scPrivateVars.presentModes.size()>=1);

 result = fpGetPhysicalDeviceSurfacePresentModesKHR
 (gpu, scPublicVars.surface,
 &scPrivateVars.presentModeCount,
 &scPrivateVars.presentModes[0]);

 fpGetPhysicalDeviceSurfacePresentModesKHR(gpu, scPublicVars.
 surface, &scPrivateVars.presentModeCount,
 scPrivateVars.presentModes);

 if(scPrivateVars.surfCapabilities.currentExtent.width ==
 (uint32_t)-1){
 // If the surface width and height is not defined,
 // then set it equal to image size.
 scPrivateVars.swapChainExtent.width =
 rendererObj->width;

Allocating Image Resources and Building a Swapchain with WSI

[183]

 scPrivateVars.swapChainExtent.height =
 rendererObj->height;
 }
 else{
 // If the surface size is defined, then it must
 // match the swapchain size
 scPrivateVars.swapChainExtent = scPrivateVars.
 surfCapabilities.currentExtent;
 }
}

Managing presentation mode information
The color images contained by the swapchain are managed by the presentation engine
using the presentation mode schemes. These schemes determine how the incoming
presentation requests will be processed and queued internally. The VkPresentModeKHR()
API supports four types of presentation mode:

Presentation mode Description

VK_PRESENT_MODE_IMMEDIATE_KHR This mode immediately renders the presentation
requests without waiting for vertical blanking. No
internal queue management is required for
presentation requests. This mode is highly
susceptible to image tearing.

VK_PRESENT_MODE_MAILBOX_KHR Here, the presentation requests are queued up in
a single entry queue, and they wait for the next
vertical blanking signal that will allow the
presentation engine to update the image. This
mode does not cause the tearing effect. When the
queue is full, the latest presentation request
replaces the prior one. In the event of vertical
blanking, a single queue request is popped up
and is processed. Any image associated with the
prior entry becomes available for reuse by the
application.

Allocating Image Resources and Building a Swapchain with WSI

[184]

VK_PRESENT_MODE_FIFO_KHR Here, the presentation requests are queued up in
a single entry queue, and they wait for the next
vertical blanking to update the current image,
where the front image is removed and processed
(hence FIFO). Tearing cannot be observed here. A
new request is added to the end of the queue and
removed from the beginning.

VK_PRESENT_MODE_FIFO_RELAXED_KHR Here, the presentation engine generally updates
the current image during the vertical blanking
period. If a vertical blanking period has already
passed since the last update of the current image,
then the presentation engine does not wait for the
subsequent vertical blanking period to push the
next presentation image to be processed. The next
image is immediately followed for the update.
This mode may result in visible tearing. New
requests are appended to the end of the queue,
and one request is removed from the beginning of
the queue and processed during or after each
vertical blanking period in which the queue is not
empty.

The following code implements the presentation mode scheme. First it checks whether the
MAILBOX scheme (non-tearing) is available. In case this mode is not available, then the
IMMEDIATE mode is preferred. The default fallback scheme is FIFO:

void VulkanSwapChain::managePresentMode()
{
 // MAILBOX - lowest-latency non-tearing mode.If not,try
 // IMMEDIATE, the fastest (but tears). Else, fall back to FIFO.
 scPrivateVars.swapchainPresentMode = VK_PRESENT_MODE_FIFO_KHR;
 for (size_t i = 0; i < scPrivateVars.presentModeCount; i++) {
 if(scPrivateVars.presentModes[i]==VK_PRESENT_MODE_MAILBOX_KHR){
 scPrivateVars.swapchainPresentMode = VK_PRESENT_MODE_MAILBOX_KHR;
 break;
}
if(scPrivateVars.swapchainPresentMode!=VK_PRESENT_MODE_MAILBOX_KHR
 &&scPrivateVars.presentModes[i]== VK_PRESENT_MODE_IMMEDIATE_KHR){
 scPrivateVars.swapchainPresentMode=VK_PRESENT_MODE_IMMEDIATE_KHR;
}
 }
 // Determine the number of VkImage's to use in the swapchain
 scPrivateVars.desiredNumberOfSwapChainImages = scPrivateVars.
 surfCapabilities.minImageCount + 1;
 if ((scPrivateVars.surfCapabilities.maxImageCount > 0) &&

Allocating Image Resources and Building a Swapchain with WSI

[185]

 (scPrivateVars.desiredNumberOfSwapChainImages >
 scPrivateVars.surfCapabilities.maxImageCount)) {
 // Application must settle for fewer images than desired:
 scPrivateVars.desiredNumberOfSwapChainImages =
 scPrivateVars.surfCapabilities.maxImageCount;
 }
 if(scPrivateVars.surfCapabilities.supportedTransforms &
 VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR) {
 scPrivateVars.preTransform=VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR;
 }
 else {
 scPrivateVars.preTransform=
 scPrivateVars.surfCapabilities.currentTransform;
 }
}

In the real application, it is advisable to prefer
PRESENT_MODE_FIFO_RELAXED_KHR as the presentation mode as it only
tears when the app misses but doesn't tear when the app is fast enough.

Retrieving the swapchain's color images
Swapchain color images are retrieved by creating the VkSwapchainKHR swapchain object
using the vkCreateSwapchainKHR() API extension function pointer. The syntax to do this
is as follows:

VkResult vkCreateSwapchainKHR(
 VkDevice device,
 const VkSwapchainCreateInfoKHR* createInfo,
 const VkAllocationCallbacks* allocator,
 VkSwapchainKHR* swapchain);

This API accepts the VKSwapChainCreateInforKHR control structure. This structure
contains the necessary information to control the creation of the swapchain object retrieved
in the VkSwapchainKHR structure. Here's the syntax of this:

typedef struct VkSwapchainCreateInfoKHR {
 VkStructureType type;
 const void* next;
 VkSwapchainCreateFlagsKHR flags;
 VkSurfaceKHR surface;
 uint32_t minImageCount;
 VkFormat imageFormat;
 VkColorSpaceKHR imageColorSpace;
 VkExtent2D imageExtent;

Allocating Image Resources and Building a Swapchain with WSI

[186]

 uint32_t imageArrayLayers;
 VkImageUsageFlags imageUsage;
 VkSharingMode imageSharingMode;
 uint32_t queueFamilyIndexCount;
 const uint32_t* queueFamilyIndices;
 VkSurfaceTransformFlagBitsKHR preTransform;
 VkCompositeAlphaFlagBitsKHR compositeAlpha;
 VkPresentModeKHR presentMode;
 VkBool32 clipped;
 VkSwapchainKHR oldSwapchain;
} VkSwapchainCreateInfoKHR;

The VkSwapchainCreateInfoKHR structure has the following parameters:

Parameters Description

type This specifies the type of the structure. It must be VK_-
STRUCTURE_TYPE_SWAPCHAIN_CREATE_INFO_KHR.

next This refers to NULL or a pointer to an extension-specific structure.

flags This must be zero. This field is reserved for future use.

surface This is the surface to which the swapchain images will be presented.

minImageCount This refers to the minimum number of presentable images needed by
the application to implement the swapchain mechanism.

imageFormat This is the format to be used for swapchain color images.

imageColor-
Space

This represents the color space (VkColorSpaceKHR) supported by the
swapchain.

imageExtent This refers to the swapchain's image size or dimensions specified in
pixels.

imageArray-
Layers

This represents the number of views in a multiview/stereo surface.

imageUsage This is a VkImageUsageFlagBits bit field indicating how the
application will use the swapchain's presentable images.

imageSharingMode This is the sharing mode used for the images of the swapchain.

queueFamily-
IndexCount

The refers to the number of queue families that have access to the
images of the swapchain if imageSharingMode is
VK_SHARING_MODE_CONCURRENT.

Allocating Image Resources and Building a Swapchain with WSI

[187]

queueFamily
Indices

This is an array of queue family indices that have access to the images
of the swapchain if imageSharingMode is
VK_SHARING_MODE_CONCURRENT.

preTransform This is a bit field of VkSurfaceTransformFlag-BitsKHR that
describes the transform relative to the presentation engine's natural
orientation, which is applied to the image content prior to the
presentation.

compositeAlpha This is the VkCompositeAlphaFlagBitsKHR bit field indicating the
alpha-compositing mode to use when this surface is composited
together with other surfaces on certain windowing systems.

presentMode This is the presentation mode the swapchain will use.

clipped This indicates whether the Vulkan implementation is allowed to
discard the rendering operations that affect the regions of the surface
that aren't visible.

oldSwapchain This is non-null, and it specifies the swapchain that will be replaced by
the new swapchain being created. Upon calling
vkCreateSwapchainKHR with an old non-null swapchain, any image
owned by the presentation engine and not currently being displayed
will be freed immediately. Any image that is being displayed will be
freed once it is no longer being displayed. This may occur even if the
creation of the new swapchain fails. The application must destroy the
old swapchain to free all of the memory associated with the old
swapchain, including any presentable images the application currently
owns. It must wait for the completion of any outstanding rendering
before doing so, with the exception of rendering to presentable images
that have been successfully submitted to the presentation, as described
next, but that are not yet owned by the presentation engine.

In the following code, the createSwapChainColorBufferImage() function creates the
swapchain using the function pointer of vkCreateSwapchainKHR
(fpCreateSwapchainKHR()). Upon successful creation of the swapchain, the VkImage
object image surfaces are created behind the scenes. Before acquiring the image surfaces, we
allocate sufficient memory space to hold the image buffers. The number of swapchain
images and physical surfaces is returned by the vkGetSwapchainImagesKHR() API
extension's function pointer, namely (fpGetSwapchainImagesKHR()).

First populate the VkSwapchainCreateInfoKHR control structure with the1.
required field values, such as the format of the image, size, presentation mode,
color space, and so on. This information is used by the
fpCreateSwapchainKHR() API function pointer to create the swapchain.

Allocating Image Resources and Building a Swapchain with WSI

[188]

Once the VkSwapchainKHR swapchain object (swapchainImages) is created2.
successfully, use it to acquire the image using the
vkGetSwapchainImagesKHR() API. This API is called twice:

When it is called for the first time with the last parameter as NULL, it
retrieves the number of image (swapchainImageCount) present in the
swapchain.
The swapchainImageCount is used to allocate sufficient memory to
hold the surface image arrays (VkImage*). The same API when called
the second time retrieves the image in the allocated VkImage array
objects called swapchainImages, as explained in the following API
description:

 VkResult vkGetSwapchainImagesKHR(
 VkDevice device,
 VkSwapchainKHR swapchain,
 uint32_t* swapchainImageCount,
 VkImage* swapchainImages);

Parameters Description

device This is the logical device associated with the swapchain.

swapchain This refers to the VkSwapChainKHR object.

swapchainImageCount This refers to the number of image the swapchain contains.

swapchainImages This refers to the VkImage array object that retrieves the
swapchain.

The following code shows the implementation of the swapchain object creation process and
the retrieval of the color images. The color images are used to store the color information for
each corresponding pixel:

void VulkanSwapChain::createSwapChainColorBufferImages()
 {
VkSwapchainCreateInfoKHR scInfo = {};
scInfo.sType =
 VK_STRUCTURE_TYPE_SWAPCHAIN_CREATE_INFO_KHR;
scInfo.pNext = NULL;
scInfo.surface = scPublicVars.surface;
scInfo.minImageCount =
 scPrivateVars.desiredNumberOfSwapChainImages;
scInfo.imageFormat = scPublicVars.format;
scInfo.imageExtent.width =
 scPrivateVars.swapChainExtent.width;
scInfo.imageExtent.height =

Allocating Image Resources and Building a Swapchain with WSI

[189]

 scPrivateVars.swapChainExtent.height;
scInfo.preTransform = scPrivateVars.preTransform;
scInfo.compositeAlpha = VK_COMPOSITE_ALPHA_OPAQUE_BIT_KHR;
scInfo.imageArrayLayers = 1;
scInfo.presentMode = scPrivateVars.swapchainPresentMode;
scInfo.oldSwapchain = VK_NULL_HANDLE;
scInfo.clipped = true;
scInfo.imageColorSpace = VK_COLOR_SPACE_SRGB_NONLINEAR_KHR;
scInfo.imageUsage =
 VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT |
 VK_IMAGE_USAGE_TRANSFER_DST_BIT;
scInfo.imageSharingMode = VK_SHARING_MODE_EXCLUSIVE;
scInfo.queueFamilyIndexCount = 0;
scInfo.pQueueFamilyIndices = NULL;

// Create the swapchain object
fpCreateSwapchainKHR(rendererObj->getDevice()->device,
 &swapChainInfo, NULL, &scPublicVars.swapChain);

// Get the number of images the swapchain has
fpGetSwapchainImagesKHR(rendererObj->getDevice()->device,
 scPublicVars.swapChain, &scPublicVars.swapchainImageCount, NULL);

scPrivateVars.swapchainImages.clear();
// Make array of swapchain image to retrieve the images
scPrivateVars.swapchainImages.resize
(scPublicVars.swapchainImageCount);
assert(scPrivateVars.swapchainImages.size() >= 1);

// Retrieve the swapchain image surfaces
fpGetSwapchainImagesKHR(rendererObj->getDevice()->device,
 scPublicVars.swapChain, &scPublicVars.swapchainImageCount,
 scPrivateVars.swapchainImages);
 }

Creating color image views
As discussed in the beginning of this chapter, images are not directly used in the form of
image objects (VkImage) by the application; instead, image views are used (VkImageView).
In this section, we will learn how to create an image view using image objects.

Allocating Image Resources and Building a Swapchain with WSI

[190]

Our application implements the image view creation process in the
createColorImageView() function. The image view is created using the
vkCreateImageView() API. This API accepts important parameters, such as the image
view format, mipmap level, level count, number of array layers, and so on. For more
information on image view APIs, refer to the Creating the image view subsection under the
Understanding image resources section in this chapter.

In the following implementation, for each swapchain image object (VkImage), we create a
corresponding image view by iterating through the list of the image objects available in
scPublicVars.swapchainImageCount. This count is retrieved using the
fpGetSwapchainImagesKHR() API, as mentioned in the previous section. The created
image views are then pushed back to a vector list, where they will be used later to refer to
the correct front and back buffer images:

void VulkanSwapChain::createColorImageView(const
 VkCommandBuffer& cmd){
 VkResult result;
 for(uint32_t i = 0; i < scPublicVars.swapchainImageCount; i++){
 SwapChainBuffer sc_buffer;

 VkImageViewCreateInfo imgViewInfo = {};
 imgViewInfo.sType =
 VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
 imgViewInfo.pNext = NULL;
 imgViewInfo.format = scPublicVars.format;
 imgViewInfo.components.r = VK_COMPONENT_SWIZZLE_R;
 imgViewInfo.components.g = VK_COMPONENT_SWIZZLE_G;
 imgViewInfo.components.b = VK_COMPONENT_SWIZZLE_B;
 imgViewInfo.components.a = VK_COMPONENT_SWIZZLE_A;
 imgViewInfo.subresourceRange.aspectMask =
 VK_IMAGE_ASPECT_COLOR_BIT;
 imgViewInfo.subresourceRange.baseMipLevel = 0;
 imgViewInfo.subresourceRange.levelCount = 1;
 imgViewInfo.subresourceRange.baseArrayLayer = 0;
 imgViewInfo.subresourceRange.layerCount = 1;
 imgViewInfo.viewType = VK_IMAGE_VIEW_TYPE_2D;
 imgViewInfo.flags = 0;

 sc_buffer.image = scPrivateVars.swapchainImages[i];
 // Since the swapchain is not owned by us we cannot set
 // the image layout. Upon setting, the implementation
 // may give error, the images layout were
 // created by the WSI implementation not by us.

 imgViewInfo.image = sc_buffer.image;

Allocating Image Resources and Building a Swapchain with WSI

[191]

 result = vkCreateImageView(rendererObj->getDevice()->device,
 &imgViewInfo, NULL, &sc_buffer.view);
 scPublicVars.colorBuffer.push_back(sc_buffer);
 }
 scPublicVars.currentColorBuffer = 0;
}

Creating a depth image
The depth image surface plays an important role in 3D graphics application. It brings the
perception of depth in a rendered scene using depth testing. In depth testing, each
fragment's depth is stored in a special buffer called a depth image. Unlike the color image
that stores the color information, the depth image stores depth information of the
primitive's corresponding fragment from the camera view. The depth image's dimension is
usually the same as the color image. Not a hard-and-fast rule, but in general, the depth
image stores the depth information as 16-, 24-, or 32-bit float values.

The creation of a depth image is different from the color image. You must
have noticed that we did not use the vkCreateImage() API to obtain
color image objects while retrieving swapchain images. These images were
directly returned from the fpGetSwapchainImagesKHR() extension API.
In this section, we will go through a step-by-step process to create the
depth image.

Introduction to tiling
Image data is stored in a contiguous type of memory and is mapped to the 2D image
memory where it is stored in a linear fashion. In the linear arrangement, texels are laid out
in contiguous row-by-row memory locations, as shown in the following diagram:

Allocating Image Resources and Building a Swapchain with WSI

[192]

A pitch generally represents the width of an image, which could be more than the padding
bytes that are generally added in order to meet alignment requirements. The position offset
of a given texel can be calculated using its row and column position along with the given
pitch, as shown in the preceding image.

This linear layout is neat as long as texels are accessed in places along the row where no
neighboring texel information is required. However, in general, many applications require
image information to be fetched along multiple rows. When the image is large in
dimension, the pitch length increases and stretches across multiple rows in this linear
layout. In a multicache-level system, this leads to a situation where the performance can
drop due to slower address translation caused by translation lookaside buffer (TLB) and
cache misses.

On most GPUs, this slower translation of the address is fixed by storing the texels in a
swizzle format. This way of storing image texels is called Optimal tiling, where the image
texels are stored in a tiled fashion representing multiple columns and rows in a continuous
memory chunk. For example, in the following diagram, there are four tiles represented with
different colors, where each tile has 2 x 2 rows (pitch) and columns:

Clearly, in the linear fashion, blocks of the same color are set apart by the other blocks that
comes in between; however, in the optimal layout, blocks of the same color are held
together, providing a much more efficient way to access the neighboring texels without
incurring performance loss. Note that this illustration of optimal tiling just mimics how the
principle works; under the hood, there exist highly complex swizzling algorithms that help
achieve optimal tiling.

Allocating Image Resources and Building a Swapchain with WSI

[193]

In Vulkan, tiling is defined by VkImageTiling, and it represents linear tiling
(VK_IMAGE_TILING_LINEAR) and optimal tiling (VK_IMAGE_TILING_OPTIMAL). The
following is the syntax for this:

typedef enum VkImageTiling {
 VK_IMAGE_TILING_OPTIMAL = 0,
 VK_IMAGE_TILING_LINEAR = 1,
} VkImageTiling;

Let's take a look at the tiling types and their respective definitions:

Tiling type Description

VK_IMAGE_TILING_OPTIMAL These are opaquely tiled and provide optimal access to the
underlying memory by laying out the texels in an
implementation-dependent arrangement.

VK_IMAGE_TILING_LINEAR As understood by the name, texels here are arranged in a row-
major order in a linear fashion. The coherency may cause
some padding in each row.

Creating a depth buffer image object
Initialize the depth format with 16-byte float values and query the format properties
supported by the physical device specified by deviceObj->gpu. The retrieved properties
are used to choose the optimal tiling/swizzling (VK_IMAGE_TILING_OPTIMAL) layout for
the image in the memory.

The depth-related member variables are packed in a user-defined structure called Depth in
the Renderer class. Here's the code that illustrates this:

 struct{
 VkFormat format;
 VkImage image;
 VkDeviceMemory mem;
 VkImageView view;
 } Depth;

Allocating Image Resources and Building a Swapchain with WSI

[194]

The various fields of this structure are defined in the following table:

Parameters Description

format This refers to the depth image format, namely VkFormat.

image This refers to the VkImage depth image object.

mem This is the allocated memory associated with the depth image object.

view This is the VkImageView object of the depth image object (VkImage).

The depth format, tiling information, and other parameters–such as image size and image
type–are used to create the VkImageCreateInfo control structure. Since we are creating a
depth buffer, we need to specify the usage as
VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT in the usage field of the same
structure. Use it to create the VkImage image object with the vkCreateImage() API. For
more information on VkImageCreateInfo and vkCreateImage(), refer to the Creating
images subsection of the Understanding image resources section in this chapter:

 VkResult result;
 VkImageCreateInfo imageInfo = {};

 // If the depth format is undefined,
 // use fall back as 16-byte value
 if (Depth.format == VK_FORMAT_UNDEFINED) {
 Depth.format = VK_FORMAT_D16_UNORM;
 }
 const VkFormat depthFormat = Depth.format;

 VkFormatProperties props;
 vkGetPhysicalDeviceFormatProperties(*deviceObj->gpu,
 depthFormat, &props);

 if (props.optimalTilingFeatures &
VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT) {
 imageInfo.tiling = VK_IMAGE_TILING_OPTIMAL;
 }
 else if (props.linearTilingFeatures &
VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT) {
 imageInfo.tiling = VK_IMAGE_TILING_LINEAR;
 }
 else {
 std::cout << "Unsupported Depth Format, try other Depth
formats.\n";
 exit(-1);
 }
 imageInfo.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO;

Allocating Image Resources and Building a Swapchain with WSI

[195]

 imageInfo.pNext = NULL;
 imageInfo.imageType = VK_IMAGE_TYPE_2D;
 imageInfo.format = depthFormat;
 imageInfo.extent.width = width;
 imageInfo.extent.height = height;
 imageInfo.extent.depth = 1;
 imageInfo.mipLevels = 1;
 imageInfo.arrayLayers = 1;
 imageInfo.samples = NUM_SAMPLES;
 imageInfo.queueFamilyIndexCount= 0;
 imageInfo.pQueueFamilyIndices = NULL;
 imageInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
 imageInfo.usage =
 VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT;
 imageInfo.flags = 0;

 // User create image info and create the image objects
 result = vkCreateImage(deviceObj->device, &imageInfo,
 NULL, &Depth.image);
 assert(result == VK_SUCCESS);

Getting the depth image's memory requirements
Query the buffer's image memory requirements using the
vkGetImageMemoryRequirements() API. This will retrieve the total size required for
allocating the depth image object's physical memory backing. For more information on API
usage, refer to the Gathering memory allocation requirements subsection in this chapter:

 // Get the image memory requirements
 VkMemoryRequirements memRqrmnt;
 vkGetImageMemoryRequirements
 (deviceObj->device, Depth.image, &memRqrmnt);

Determining the type of memory
Use the memoryTypeBits field from the queried memory requirements, memRqrmnt, and
determine the type of memory suitable for allocating the memory of the depth image using
VulkanDevice::memoryTypeFromProperties():

 VkMemoryAllocateInfo memAlloc = {};
 memAlloc.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
 memAlloc.pNext = NULL;
 memAlloc.allocationSize = 0;
 memAlloc.memoryTypeIndex = 0;

Allocating Image Resources and Building a Swapchain with WSI

[196]

 memAlloc.allocationSize = memRqrmnt.size;

 bool pass;
 // Determine the type of memory required
 // with memory properties
 pass = deviceObj->memoryTypeFromProperties(memRqrmnt.
 memoryTypeBits, 0, &memAlloc.memoryTypeIndex);
 assert(pass);

The VulkanDevice::memoryTypeFromProperties() function takes three parameters as
inputs. The first one (typeBits) represents the type of the memory, the second parameter
(requirementsMask) specifies the user requirement for the particular memory type, and
the last one (typeIndex) returns the memory index handles.

This function iterates and checks whether the requested memory type is present. Next, it
checks whether the found memory satisfies the user requirements. If successful, it returns
Boolean true and the index of the memory type; upon failure, it returns Boolean false:

 bool VulkanDevice::memoryTypeFromProperties(uint32_t typeBits,
 VkFlags requirementsMask, uint32_t *typeIndex)
 {
 // Search memtypes to find first index with those properties
 for (uint32_t i = 0; i < 32; i++) {
 if ((typeBits & 1) == 1) {
 // Type is available, does it match user properties?
 if ((memoryProperties.memoryTypes[i].propertyFlags
 & requirementsMask) == requirementsMask) {
 *typeIndex = i;
 return true;
 }
 }
 typeBits >>= 1;
 }
 // No memory types matched, return failure
 return false;
}

Allocating and binding physical memory to a
depth image
The memory requirement guides the application to allocate a specified amount of memory
for the depth image. Once the memory is allocated successfully using
vkAllocateMemory(), it needs to be bound to the depth image (Depth.image), making
the image the owner of the allocated memory:

Allocating Image Resources and Building a Swapchain with WSI

[197]

 // Allocate the physical backing for the depth image
 result = vkAllocateMemory(deviceObj->device,
 &memAlloc, NULL, &Depth.mem);
 assert(result == VK_SUCCESS);

 // Bind the allocated memory to the depth image
 result = vkBindImageMemory(deviceObj->device,
 Depth.image, Depth.mem, 0);
 assert(result == VK_SUCCESS);

Image layout transition
GPU hardware that is capable of supporting optimal layouts requires transitioning from the
optimal layout to the linear layout and vice versa. Optimal layouts are not directly
accessible by the consumer components for read and write purposes. The opaque nature of
an optimal layout requires a layout transition, which is the process of converting one type
(old type) of layout into another type (new type).

The CPU may store the image data in a linear layout buffer and then
convert it into the optimal layout to allow the GPU to read it in a more
efficient manner.

GPU hardware that supports the optimal layout allows you to store the data either in a
linear or optimal layout through layout transitioning. The layout transition process can be
applied using memory barriers. The memory barriers inspect the specified old and new
image layouts and execute the layout transition. It may not be necessary that every layout
transition triggers an actual layout conversion operation on the GPU. For instance, when an
image object is created for the first time, it may have the initial layout undefined; in such a
case, the GPU may only need to access memory in the optimal pattern. For more
information on memory barriers, continue with the next section.

Image layout transition with memory barriers
A memory barrier is an instruction that helps synchronize data reads and writes. It
guarantees that the operation specified before and after the memory barrier will be
synchronized. When this instruction is inserted, it ensures that the memory operation
issued before this instruction is completed prior to executing the memory instruction issued
after the barrier instruction.

Allocating Image Resources and Building a Swapchain with WSI

[198]

There are three types of memory barrier:

Global memory barriers: This type of memory barrier type is applicable to all
kinds of executional memory objects and applies to their respective memory
access types. Global memory barriers are represented by the VkMemoryBarrier
structure's instance.
Buffer memory barriers: This memory barrier type is applicable to a specific
range of the specified buffer objects and it applies to their respective memory
access types. These memory barriers are represented by the
VkBufferMemoryBarrier structure's instance.
Image memory barriers: The image memory barrier is represented by the
VkImageMemoryBarrier instance and is applicable to the different memory
access types via a specific image sub-resource range of the specified image object.

The allocated image memory needs to be laid out according to its usage. The image layout
helps the memory contents become accessible in an implementation-specific way, given the
nature of its usage. There is a general layout available for the image that can be used for
anything, but this may not be the appropriate one (VK_IMAGE_LAYOUT_GENERAL). In
Vulkan, image layouts are represented using VkImageLayout. The following are the fields
defined for this enumeration:

VkImageLayout fields Description

VK_IMAGE_LAYOUT_UNDEFINED The image content in this layout and
its subrange are pretty much in an
undefined state and are assumed to
be in this state right after they are
created.

VK_IMAGE_LAYOUT_GENERAL This layout permits all operations on
the image or its subrange, which is
otherwise specified through the
usage flags (VkImageUsageFlag).

VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL The image in this layout can only be
used with the framebuffer color
attachment. It can be accessed via
framebuffer color reads and can be
written using draw commands.

Allocating Image Resources and Building a Swapchain with WSI

[199]

VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL The image in this layout can only be
used with the framebuffer
depth/stencil attachment. It can be
accessed via framebuffer color reads
and can be written using draw
commands.

VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL This layout uses the image as a read-
only shader resource. So it can only
be accessed by shader reads done via
a sampled image descriptor,
combined image sampler descriptor,
or read-only storage image
descriptor (VkDescriptorType).

VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL An image (or a subrange of it) in this
layout can only be used as the source
operand of the commands
vkCmdCopyImage,
vkCmdBlitImage,
vkCmdCopyImageToBuffer, and
vkCmdResolveImage.

VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL An image (or a subrange of it) in this
layout can only be used as the
destination operand of the
commands vkCmdCopyImage,
vkCmdBlitImage,
vkCmdCopyBufferToImage,
vkCmdResolveImage,
vkCmdClearColorImage, and
vkCmdClearDepthStencilImage.

The layouts in the images applied through special memory barriers are called
VkImageMemoryBarrier. The memory barriers are inserted with the help of the
vkCmdPipelineBarrier() API. The syntax of this API is as follows:

void vkCmdPipelineBarrier(
 VkCommandBuffer commandBuffer,
 VkPipelineStageFlags srcStageMask,
 VkPipelineStageFlags dstStageMask,
 VkDependencyFlags dependencyFlags,
 uint32_t memoryBarrierCount,
 const VkMemoryBarrier* pMemoryBarriers,
 uint32_t bufferMemoryBarrierCount,
 const VkBufferMemoryBarrier* pBufferMemoryBarriers,
 uint32_t imageMemoryBarrierCount,
 const VkImageMemoryBarrier* pImageMemoryBarriers);

Allocating Image Resources and Building a Swapchain with WSI

[200]

Let's see the specification of all the fields:

Parameters Description

commandBuffer This is the command buffer in which the memory barrier is
specified.

srcStageMask This is the bitwise mask field specifying the pipeline stages
that must complete their execution before the barrier is
implemented.

dstStageMask This is the bitwise mask field specifying the pipeline stages
that should not start the execution until the barrier is
completed.

dependencyFlags This refers to the VkDependencyFlagBits values that
indicate whether the barrier has screen-space locality.

memoryBarrierCount This refers to the number of memory barriers.

pMemoryBarriers This is the VkBufferMemoryBarreir object array with the
number of elements equal to memoryBarrierCount.

bufferMemoryBarrierCount This refers to the number of buffer memory barriers.

pBufferMemoryBarrier This refers to the VkMemoryBarreir object array with the
number of elements equal to
bufferMemoryBarrierCount.

imageMemoryBarrierCount This refers to the number of image type memory barriers.

pImageMemoryBarriers This refers to the VkImageMemoryBarrier object array
with the number of elements equal to
imageMemoryBarrierCount.

The following code makes use of an image barrier and sets the appropriate image layout
information in the VkImageMemoryBarrier control structure (imgMemoryBarrier). This
control structure is passed to the vkCmdPipelineBarrier() API, which sets the execution
and applies the memory barriers. The created depth image (Depth.image) is set as a
framebuffer depth/stencil attachment layout by specifying the VkImageMemoryBarrier's
newLayout field as VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL.

Allocating Image Resources and Building a Swapchain with WSI

[201]

Using the created command pool, allocate the cmdDepthImage command buffer. This
command buffer will be used to record the image layout transition, as mentioned here:

 /****** void VulkanRenderer::createDepthImage()******/
 // Use command buffer to create the depth image. This includes -
 // Command buffer allocation, recording with begin/end
 // scope and submission.
 CommandBufferMgr::allocCommandBuffer(&deviceObj->device,
 cmdPool, &cmdDepthImage);
 CommandBufferMgr::beginCommandBuffer(cmdDepthImage);
 {

 // Set the image layout to depth stencil optimal
 setImageLayout(Depth.image,
 VK_IMAGE_ASPECT_DEPTH_BIT,
 VK_IMAGE_LAYOUT_UNDEFINED,
 VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL,
 (VkAccessFlagBits)0, cmdDepthImage);
 }
 CommandBufferMgr::endCommandBuffer(cmdDepthImage);
 CommandBufferMgr::submitCommandBuffer(deviceObj->queue,
 &cmdDepthImage);

The image layout is set using the setImageLayout() function. This is a helper function
that records memory barriers using the vkCmdPipelineBarrier() command.

This command is recorded in the cmdDepthImage command buffer and guarantees that it
will meet the requirement of proper image layouts before it allows the dependent resources
to access it.

The setImageLayout() helper function transits the existing old image layout format to the
specified new layout type. In the present example, the old image layout is specified as
VK_IMAGE_LAYOUT_UNDEFINED because the image object is created for the first time and
has no predefined layout applied. Since we are implementing the image layout for
depth/stencil testing, the new intended image layout must be mentioned with the
VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL usage type:

void VulkanRenderer::setImageLayout(VkImage image,
 VkImageAspectFlags aspectMask, VkImageLayout oldImageLayout,
 VkImageLayout newImageLayout, VkAccessFlagBits srcAccessMask,
 const VkCommandBuffer& cmd){

// Dependency on cmd
assert(cmd != VK_NULL_HANDLE);
// The deviceObj->queue must be initialized
assert(deviceObj->queue != VK_NULL_HANDLE);

Allocating Image Resources and Building a Swapchain with WSI

[202]

VkImageMemoryBarrier imgMemoryBarrier = {};
imgMemoryBarrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
imgMemoryBarrier.pNext = NULL;
imgMemoryBarrier.srcAccessMask = srcAccessMask;
imgMemoryBarrier.dstAccessMask = 0;
imgMemoryBarrier.oldLayout = oldImageLayout;
imgMemoryBarrier.newLayout = newImageLayout;
imgMemoryBarrier.image = image;
imgMemoryBarrier.subresourceRange.aspectMask = aspectMask;
imgMemoryBarrier.subresourceRange.baseMipLevel = 0;
imgMemoryBarrier.subresourceRange.levelCount = 1;
imgMemoryBarrier.subresourceRange.layerCount = 1;

if (oldImageLayout == VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL) {
 imgMemoryBarrier.srcAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
}

switch (newImageLayout)
{
 // Ensure that anything that was copying from this image
 // has completed. An image in this layout can only be
 // used as the destination operand of the commands
 case VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL:
 case VK_IMAGE_LAYOUT_PRESENT_SRC_KHR:
 imgMemoryBarrier.dstAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
 break;

 // Ensure any Copy or CPU writes to image are flushed. An image
 // in this layout can only be used as a read-only shader resource
 case VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL:
 imgMemoryBarrier.srcAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
 imgMemoryBarrier.dstAccessMask = VK_ACCESS_SHADER_READ_BIT;
 break;

 // An image in this layout can only be used as a
 // framebuffer color attachment
 case VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL:
 imgMemoryBarrier.dstAccessMask =
 VK_ACCESS_COLOR_ATTACHMENT_READ_BIT;
 break;

 // An image in this layout can only be used as a
 // framebuffer depth/stencil attachment
 case VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL:
 imgMemoryBarrier.dstAccessMask =
 VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT;
 break;
}

Allocating Image Resources and Building a Swapchain with WSI

[203]

VkPipelineStageFlags srcStages= VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT;
VkPipelineStageFlags destStages = VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT;
vkCmdPipelineBarrier(cmd, srcStages, destStages, 0, 0,
 NULL, 0, NULL, 1, &imgMemoryBarrier);
}

Creating the image view
Finally, we'll let the application use the depth image by means of an image view. We know
very well that images cannot be used directly in a Vulkan application. They are used in the
form of image views. The following code implements the creation of the image view using
the vkCreateImageView() API. For more information on the API, refer to the Creating the
image view subsection under the Understanding image resources section in this chapter:

 /****** void VulkanRenderer::createDepthImage()******/

 VkImageViewCreateInfo imgViewInfo = {};
 imgViewInfo.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
 imgViewInfo.pNext = NULL;
 imgViewInfo.image = VK_NULL_HANDLE;
 imgViewInfo.format = depthFormat;
 imgViewInfo.components = { VK_COMPONENT_SWIZZLE_IDENTITY };
 imgViewInfo.subresourceRange.aspectMask =
 VK_IMAGE_ASPECT_DEPTH_BIT;
 imgViewInfo.subresourceRange.baseMipLevel = 0;
 imgViewInfo.subresourceRange.levelCount = 1;
 imgViewInfo.subresourceRange.baseArrayLayer = 0;
 imgViewInfo.subresourceRange.layerCount = 1;
 imgViewInfo.viewType = VK_IMAGE_VIEW_TYPE_2D;
 imgViewInfo.flags = 0;

 if (depthFormat == VK_FORMAT_D16_UNORM_S8_UINT ||
 depthFormat == VK_FORMAT_D24_UNORM_S8_UINT ||
 depthFormat == VK_FORMAT_D32_SFLOAT_S8_UINT) {

 imgViewInfo.subresourceRange.aspectMask |= VK_IMAGE_ASPECT_STENCIL_BIT;
 }

 // Create the image view and allow the application to
 // use the images.
 imgViewInfo.image = Depth.image;
 result = vkCreateImageView(deviceObj->device, &imgViewInfo,
 NULL, &Depth.view);
 assert(result == VK_SUCCESS);

Allocating Image Resources and Building a Swapchain with WSI

[204]

Summarizing the application flow
In this section, we will summarize the flow of swapchain creation and the building of the
presentation window. It consists of two parts: initialization and rendering.

Initialization
The initialization process initializes, creates, and processes the swapchain. The swapchain is
not yet connected to the framebuffer render process and the primitives. Therefore, the
rendered output will be a blank presentation window for now.

First, VulkanRenderer initializes the presentation window and creates a native platform-
specific empty window (500 x 500). This window renders the swapchain's front buffer
drawing image. Next, it initializes the swapchain to meet swapchain prerequisites. The
swapchain image view layouts are created using command buffers that are allocated from
the preallocated pool of command buffers.

During the initialization of the swapchain, the WSI extensions are queried and stored in the
form of function pointers. The logical swapchain surface object is created and associated
with the presentation window. Next, a suitable graphics queue is queried from the logical
device supporting the presentation; this queue is used to draw operations and present the
swapchain images to the display output window. Finally, the device is also checked for all
the possible image formats that can used for swapchain images. The creation of the
swapchain includes querying the swapchain surface capabilities that specify surface
configurations, such as the maximum size of the drawing surface, the available presentation
modes, and so on. Using this surface configuration, the swapchain image objects are
retrieved. Once the swapchain retrieves the images, it can be used to render the primitives.
The swapchain images are retrieved by the WSI; therefore, the application does not own
these. These images are finally converted into image views to allow the application to use
them in the implementation.

Allocating Image Resources and Building a Swapchain with WSI

[205]

We will also need to create the depth image for depth/stencil testing, and unlike the
swapchain image, the depth image is solely the responsibility of the application. The
application owns it and therefore can apply the image layout transition on the depth image
with an optimal depth layout scheme. The image transition is applied using the memory
barrier command, which is packed in the command buffer and submitted to the queue for
upfront processing. The memory barrier inserts special instructions that guarantees the
transitioning of the layout before it gets consumed.

Rendering – displaying the output window
The following code renders the presentation window:

void VulkanRenderer::render(){
 MSG msg; // message
 while (1) {
 PeekMessage(&msg, NULL, 0, 0, PM_REMOVE);
 if (msg.message == WM_QUIT) {
 break; // If Quit message the exit the render loop
 }
 TranslateMessage(&msg);
 DispatchMessage(&msg);

 // Display the window
 RedrawWindow(window, NULL, NULL, RDW_INTERNALPAINT);
 }
}

The following is the output of the preceding code implementation:

Allocating Image Resources and Building a Swapchain with WSI

[206]

Summary
This chapter was full of image resources. We started with a basic understanding of image
resource in Vulkan and learning about image objects, image layouts, and image views. Then
we created image objects and allocated device memory to them. We also used WSI
extensions to implement the swapchain and retrieved the swapchain images; these images
were then associated with the presentation window. Finally, we created image views out of
the swapchain images.

Next in this chapter, we implemented the depth buffer image. We also understood the
different Vulkan image tilings and the basic difference between them. In addition to this, we
also understood image layouts and their implementations using memory barriers.

In the next chapter, we will introduce the framebuffer and render pass. The framebuffer
consumes the image views of a swapchain and depth image and associates them with a
color and depth attachment. This information is then used by the render pass to define a
unit of work. We will also learn about a buffer resource and use it to create the geometry
buffer. In addition to this, we will look at SPIR-V to learn shader programming in Vulkan.

7
Buffer Resource, Render Pass,
Framebuffer, and Shaders with

SPIR-V
In the previous chapter, we learned about Vulkan resource types; we understood what
image resources (VkImage) are and implemented them in the swapchain image. In this
chapter, we will discuss the second type of Vulkan resource called buffer resources
(VkBuffer) and use them to prepare a simple geometry buffer.

This chapter will also introduce and implement a Render Pass and framebuffer. A Render
Pass helps in assembling a single unit of work. It defines the attachments and subpasses
associated with it that influence a single render job. A framebuffer consumes the created
Render Pass and creates single-frame information for each corresponding swapchain image.
Framebuffers associate a set of image views with the set of attachments described in a
Render Pass.

Additionally, we will implement our first shader in Vulkan using SPIR-V, which is a binary
intermediate language for shaders and kernels.

So, we will cover the following topics:

Understanding the Vulkan buffer resource type
Creating geometry with the buffer resource
Understanding a Render Pass
Using the Render Pass and creating the framebuffer
Clearing the background color
Working with a shader in Vulkan

Buffer Resource, Render Pass, Framebuffer, and Shaders with SPIR-V

[208]

Understanding the Vulkan buffer resource
type
A buffer resource represents a contiguous array of data in a linear fashion. Buffer resources
are commonly stored attribute data information, such as vertex coordinates, texture
coordinates, associated colors, and more. The buffer resource in Vulkan is represented by
the VkBuffer object, unlike the image resource (VkImage), which is represented in the view
form (image view, VkImageView), the buffer resources can be used directly as the source of
vertex data or accessed by shaders through descriptors. They need to be converted
explicitly into a buffer view (VkBufferView) to allow the shaders to use buffer data
contents in the formatted form. In this section, we will make use of the buffer resource
directly using the API commands.

First, this section will discuss the buffer resource concepts covering the API specifications to
use them in the implementation. Next, we will use these APIs and implement the buffer
resources to store the geometry data of a simple triangle. This will be used in the upcoming
chapters to render the geometry into the application.

Creating the buffer resource object
The buffer resource (VkBuffer) is created using the vkCreateBuffer API. The following
is the syntax:

VkResult vkCreateBuffer(
 VkDevice device,
 const VkBufferCreateInfo* pCreateInfo,
 const VkAllocationCallbacks* pAllocator,
 VkBuffer* buffer);

This table describes the various fields of the vkCreateBuffer() API:

Parameters Description

device This is the logical device responsible for creating the buffer resource.

pCreateInfo This refers to a VkBufferCreateInfo pointer; check the following sections
for more information.

pAllocator This controls the host memory allocation process.

buffer This returns the VkBuffer pointer after it's created.

Buffer Resource, Render Pass, Framebuffer, and Shaders with SPIR-V

[209]

The VkBufferCreateInfo syntax is defined here. The VkBufferCreateInfo syntax is
defined here:

typedef struct VkBufferCreateInfo {
 VkStructureType type;
 const void* pNext;
 VkBufferCreateFlags flags;
 VkDeviceSize size;
 VkBufferUsageFlags usage;
 VkSharingMode sharingMode;
 uint32_t queueFamilyIndexCount;
 const uint32_t* pQueueFamilyIndices;
} VkBufferCreateInfo;

The following table describes the various fields of VkBufferCreateInfo:

Parameters Description

type This specifies the type of the structure; this must be of
type VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO.

pNext This is an extension-specific structure. It can also be NULL.

flags These are VkBufferCreateFlagBits bit field flags. Refer to
VkBufferCreateFlagBits in the following sections for more
information on flags.

size This refers to the total size of the buffer to be created; the size is
specified in bytes.

usage This is VkBufferUsageFlagBits specifying the bit field that
describes the intended usage of the buffer resource. Refer to the
following sections for more information on the usage of
VkBufferUsageFlagBits.

sharingMode This specifies the sharing mode of the buffer when it will be
accessed by multiple queue families. This must be one of these
values: VK_SHARING_MODE_EXCLUSIVE or
VK_SHARING_MODE_CONCURRENT from VkSharingMode.

queueFamilyIndexCount This represents the number of entries in the
queueFamilyIndices array.

pQueueFamilyIndices This is an array of queue families that will access the buffer. The
sharingMode must be VK_SHARING_MODE_CONCURRENT;
otherwise, just ignore it.

Buffer Resource, Render Pass, Framebuffer, and Shaders with SPIR-V

[210]

Destroying the buffer
When the buffer is no longer required, it can be destroyed using vkDestroyBuffer():

void vkDestroyBuffer(VkDevice device,
 VkBuffer buffer,
 const VkAllocationCallbacks* allocator);

This API accepts three parameters, which are described in the following table:

Parameters Description

device This is the logical device that destroys the buffer object.

buffer This refers to the VkBuffer object that needs to be destroyed.

pAllocator This controls the host memory deallocation process; refer to the Host memory
section in Chapter 5, Command Buffer and Memory Management in Vulkan.

Creating a buffer view
A buffer view is created using vkCreateBufferView(). The following is the syntax of this
API:

VkResult vkCreateBufferView(
 VkDevice device,
 const VkBufferViewCreateInfo* pCreateInfo,
 const VkAllocationCallbacks* pAllocator,
 VkBufferView* pView);

This table describes the various fields of vkCreateBufferView:

Parameters Description

device This is the handle of the logical device that creates the image buffer.

pCreateInfo This is a pointer to VkCreateBufferViewInfo; this controls the creation of
VkBufferView.

pAllocator This controls the host memory allocation process; for more information, refer
to the Host memory section in Chapter 5, Command Buffer and Memory
Management in Vulkan.

pView This returns the handle of the created VkBufferView object.

Buffer Resource, Render Pass, Framebuffer, and Shaders with SPIR-V

[211]

The buffer view is created using the vkCreateBufferView() API. The following is the
syntax information:

typedef struct VkBufferViewCreateInfo {
 VkStructureType type;
 const void* pNext;
 VkBufferViewCreateFlags flags;
 VkBuffer buffer;
 VkFormat format;
 VkDeviceSize offset;
 VkDeviceSize range;
} VkBufferViewCreateInfo;

This table describes the various fields of VkBufferViewCreateInfo:

Parameters Description

type This refers to the type information of the structure; it must be of type
VK_STRUCTURE_TYPE_BUFFER_VIEW_CREATE_INFO.

next This is an extension-specific structure. This field could be NULL as well.

flags This field is reserved for future use.

buffer This is the handle of VkBuffer.

format This specifies the format (VkFormat) of the buffer data element.

offset This is used for the remapping of color/depth/stencil after they have been
converted into color components.

range This is used for selecting a range of mipmap levels and array layers, making them
accessible to the view.

Destroying the buffer view
The buffer view could be destroyed using the vkDestroBufferView() API. This intakes
three parameters. The first specifies the logical device that is responsible for destroying the
buffer view indicated by the second parameter. Here is the syntax of this:

void vkDestroyBufferView(VkDevice device,
 VkBufferView bufferView,
 VkAllocationCallbacks* pAllocator);

Buffer Resource, Render Pass, Framebuffer, and Shaders with SPIR-V

[212]

Creating geometry with a buffer resource
In this section, we will create a simple geometrical shape–a triangle. This will be stored in
the GPU memory with the help of a buffer resource. Most applications will consume buffers
through uniform or storage blocks. The implementation of a buffer resource is very similar
to that of an image resource, except the fact that here we would not need to create the buffer
view (VkBufferView).

Preparing geometry data
Create MeshData.h and define the geometry data inside it. Declare the following
structures:

/*---------------------MeshData.h-----------------------*/
// Mesh data structure and Vertex Data
struct VertexWithColor
{
 float x, y, z, w; // Vertex Position
 float r, g, b, a; // Color format Red, Green, Blue, Alpha
};

// Interleaved data containing position and color information
static const VertexWithColor triangleData[] =
{
 { 0.0f, 1.0f, 0.0f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0 },
 { 1.0f, -1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0 },
 { -1.0f, -1.0f, 0.0f, 1.0f, 0.0f, 1.0f, 0.0f, 1.0 },
};

The geometry is stored in an interleaved fashion, where the three vertices are stored such
that they would contain the vertex position information in the Cartesian form, followed by
the color information stored in the RGB color space. The position information consists of
four components: x, y, z, and w. The color information contains the r, g, b, and a
components. The following diagram shows the resultant triangle:

Buffer Resource, Render Pass, Framebuffer, and Shaders with SPIR-V

[213]

Creating a vertex buffer
Create a new user-defined class called VulkanDrawable. This class will be used to draw
the intended geometrical shape, which in the present case is a simple triangle. The
following is the header file that declares the functions used to create and destroy the buffer
resource:

class VulkanDrawable
{
 // Many lines skipped, please refer to the source code
public:

 void createVertexBuffer(const void *vertexData, uint32_t
 dataSize, uint32_t dataStride, bool useTexture);
 void destroyVertexBuffer();

 // Structure storing vertex buffer metadata
 struct {
 VkBuffer buffer;
 VkDeviceMemory memory;
 VkDescriptorBufferInfo bufferInfo;
 } VertexBuffer;

 // Stores the vertex input rate
 VkVertexInputBindingDescription viIpBind;
 // Store metadata helpful in data interpretation
 VkVertexInputAttributeDescription viIpAttrb[2];
};

Buffer Resource, Render Pass, Framebuffer, and Shaders with SPIR-V

[214]

In addition, the class contains a special user-defined structure to aggregate the vertex buffer
resource attributes defined by VertexBuffer. This structure contains the VkBuffer object.
This object will be bound to VkDeviceMemory and a buffer descriptor
(VkDescriptorBufferInfo) containing the necessary metadata for the allocated buffer
resource, such as the buffer object, its offset, and the range.

Buffer creation overview
The buffer resource creation process is very similar to that of image resource creation. To
get an overview of the image creation process, refer to the Image creation overview section in
Chapter 6, Allocating Image Resources and Building a Swapchain with WSI.

Let's take a quick look at buffer creation. The following are step-by-step instructions to
create the buffer resource (VkBuffer) using Vulkan APIs:

Creating the buffer object: The buffer object (VkBuffer) is created using the1.
vkCreateBuffer() API. This API intakes a VkCreateBufferInfo structure
object that specifies important buffer metadata that is used to create the buffer
object. The buffer object's VkCreateBufferInfo contains the necessary memory
information, such as format, usage, size, creation flags, and so on. This
information is used to allocate physical memory from the device. You may
consider that the buffer object at this initial stage has no backing memory. The
creation of the buffer object does not mean that the physical allocation is done
automatically behind the curtains; it has to be done manually, which is described
in the next step.
Allocating buffer memory: 2.

Getting the memory requirements: Gather the required memory
information using the vkGetBufferMemoryRequirements() API.
This information is helpful in allocating the appropriate size of the
memory needed by the buffer resource allocation process. This API
intakes the VkBuffer created in the first step.
Determining the memory type: Similar to an image resource, get the
proper memory type from what's available and select the one that
matches the user properties.
Allocating device memory: Allocate device memory
(VkDeviceMemory) with the vkAllocateMemory() API.
Staging: Once physical memory is allocated, it needs to be mapped
using vkMapMemory() to the localhost so that the geometry data can
be uploaded from the host memory to the physical device memory.

Buffer Resource, Render Pass, Framebuffer, and Shaders with SPIR-V

[215]

Once the data is copied to the physical device memory, it needs to be
unmapped using vkUnmapMemory().
Binding the allocated memory: Bind the device memory
(VkDeviceMemory) to the buffer object (VkBuffer) using the
vkBindBufferMemory() API.

The following diagram summarizes the complete buffer resource creation workflow:

Implementing a buffer resource – creating the
vertex buffer for the geometry
The VulkanDrawable class contains the createVertexBuffer() function that helps in
storing the geometry data in the GPU memory with the help of a buffer resource. The
implementation is very similar to creating an image resource, but with a little difference. In
this implementation, the buffer view creation process is not required; instead, the buffer
object will be used directly.

Some Vulkan implementations may offer the ability to fetch and format vertex attributes,
converting vertex input data from buffers as specialized fixed-function hardware rather
than performing the fetch as part of the vertex shader. Once the buffer resource is
implemented, its binding points are stored in the (VkVertexInputBindingDescription)
control structure. This structure describes the set of buffers that will be used to fetch the
vertex.

Buffer Resource, Render Pass, Framebuffer, and Shaders with SPIR-V

[216]

Similarly, attributes are stored in the VkVertexInputAttributeDescription structure;
this describes the format and layout of each attribute to read them from the vertex buffers to
a shader variable. Both the pieces of information are consumed at the time of pipeline
creation, specifying the vertex input state.

The following is the syntax information of VkVertexInputBindingDescription:

typedef struct VkVertexInputBindingDescription {
 uint32_t binding;
 uint32_t stride;
 VkVertexInputRate inputRate;
} VkVertexInputBindingDescription;

Let's look at the various fields of this structure:

Parameters Description

binding This field indicates an unsigned 32-bit integer-binding number that describes the
control structure.

stride This is specified in bytes; this field indicates the offset between the consecutive
elements within the buffer.

inputRate This field indicates whether the buffer attribute is specified at per vertex or
instance basis. This field takes the following enum:
 typedef enum VkVertexInputRate {
 VK_VERTEX_INPUT_RATE_VERTEX = 0,
 VK_VERTEX_INPUT_RATE_INSTANCE = 1,
 } VkVertexInputRate;

• The VK_VERTEX_INPUT_RATE_VERTEX indicates that the vertex attributes will
be consumed as per the vertex index basis.
• The VK_VERTEX_INPUT_RATE_INSTANCE indicates that the vertex attributes
will be consumed as per the instance index basis.

Similarly, here's the syntax information of VkVertexInputAttributeDescription:

typedef struct VkVertexInputAttributeDescription {
 uint32_t location;
 uint32_t binding;
 VkFormat format;
 uint32_t offset;
} VkVertexInputAttributeDescription;

Buffer Resource, Render Pass, Framebuffer, and Shaders with SPIR-V

[217]

The various fields in VkVertexInputAttributeDescription are as follows:

Parameters Description

location This field indicates the shader-binding location of this attribute.

binding This is the binding number from which the data is consumed by the attribute.

format The vertex attribute's data size and type is indicated by this field.

offset This field indicates the offset of this attribute in bytes from the start of an element
in vertex input binding.

The vertex buffer is created in the createVertexBuffer() function, as shown in the
following code snippet. This function accepts the host memory containing the vertex data,
its size, and stride information (if any). The last parameter is a boolean flag that indicates
whether the geometry data contains the texture coordinates:

void VulkanDrawable::createVertexBuffer(const void *vertexData, uint32_t
dataSize, uint32_t dataStride, bool useTexture)
{
 VulkanApplication* appObj = VulkanApplication::GetInstance();
 VulkanDevice* deviceObj = appObj->deviceObj;

 VkResult result;
 bool pass;

 // Create the Buffer resource metadata information
 VkBufferCreateInfo bufInfo = {};
 bufInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
 bufInfo.pNext = NULL;
 bufInfo.usage = VK_BUFFER_USAGE_VERTEX_BUFFER_BIT;
 bufInfo.size = dataSize;
 bufInfo.queueFamilyIndexCount = 0;
 bufInfo.pQueueFamilyIndices = NULL;
 bufInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
 bufInfo.flags = 0;

 // Create the Buffer resource
 result = vkCreateBuffer(deviceObj->device, &bufInfo,
 NULL, &VertexBuffer.buf);

 // Get the Buffer resource requirements
 VkMemoryRequirements memRqrmnt;
 vkGetBufferMemoryRequirements(deviceObj->device,
 VertexBuffer.buf, &memRqrmnt);

 // Create memory allocation metadata information

Buffer Resource, Render Pass, Framebuffer, and Shaders with SPIR-V

[218]

 VkMemoryAllocateInfo alloc_info = {};
 alloc_info.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
 alloc_info.pNext = NULL;
 alloc_info.memoryTypeIndex = 0;
 alloc_info.allocationSize = memRqrmnt.size;

 // Get the compatible type of memory
 pass = deviceObj->memoryTypeFromProperties
 (memRqrmnt.memoryTypeBits,
 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
 &alloc_info.memoryTypeIndex);

 // Allocate the physical backing for buffer resource
 result = vkAllocateMemory(deviceObj->device,
 &alloc_info, NULL, &(VertexBuffer.mem));

 VertexBuffer.bufferInfo.range = memRqrmnt.size;
 VertexBuffer.bufferInfo.offset = 0;

 // Map the physical device memory region to the host
 uint8_t *pData;
 result = vkMapMemory(deviceObj->device, VertexBuffer.mem,
 0, memRqrmnt.size, 0, (void **)&pData);

 // Copy the data in the mapped memory
 memcpy(pData, vertexData, dataSize);

 // Unmap the device memory
 vkUnmapMemory(deviceObj->device, VertexBuffer.mem);

 // Bind the allocated buffer resourece to the device memory
 result = vkBindBufferMemory(deviceObj->device,
 VertexBuffer.buf, VertexBuffer.mem, 0);

 // The VkVertexInputBinding viIpBind, stores the rate at
 // which the information will be injected for vertex input
 viIpBind.binding = 0;
 viIpBind.inputRate = VK_VERTEX_INPUT_RATE_VERTEX;
 viIpBind.stride = dataStride;

 // The VkVertexInputAttribute - Description) structure, store
 // the information that helps in interpreting the data.
 viIpAttrb[0].binding = 0;
 viIpAttrb[0].location = 0;
 viIpAttrb[0].format = VK_FORMAT_R32G32B32A32_SFLOAT;
 viIpAttrb[0].offset = 0;
 viIpAttrb[1].binding = 0;

Buffer Resource, Render Pass, Framebuffer, and Shaders with SPIR-V

[219]

 viIpAttrb[1].location = 1;
 viIpAttrb[1].format = useTexture ?
 VK_FORMAT_R32G32_SFLOAT : VK_FORMAT_R32G32B32A32_SFLOAT;
 viIpAttrib[1].offset = 16;
}

Understanding the code flow
Let's take a detailed view of the preceding implementation. First, the
VkCreateBufferInfo structure is created and filled with vertex buffer metadata. This is
where we store the buffer usage type; this usage type refers to vertex information
(VK_BUFFER_USAGE_VERTEX_BUFFER_BIT). The other usage types could be index buffer,
uniform buffer, texture buffer, and more. Specify the size of the vertex buffer data in bytes.
Since there are no multiple queues involved, we can mark the sharing mode as
VK_SHARING_MODE_EXCLUSIVE. Pass this structure to the vkCreateBuffer() API to
create the vertex buffer object (VertexBuffer::buf).

Use the created buffer object (VertexBuffer::buf) as passed to the
vkGetBufferMemoryRequirements() API in order to gather the memory requirements
(memRqrmnt) to allocate the buffer in the API. This information is helpful in allocating the
appropriate size of the memory needed by the buffer resource allocation process. This API
intakes the VkCreateBufferInfo control structure.

Next, get prepared for the allocation process and create VkMemoryAllocateInfo
(allocInfo) with the gathered memory requirement. Specify the allocation size
information in bytes and get the compatible memory type for the allocation. The memory is
allocated using vkAllocateMemory, passing in allocInfo, and retrieving the device
memory of the type VkDeviceMemory in VertexBuffer.mem.

Upon the allocation of the physical memory, use vkMapMemory() to map the localhost
memory so that the geometry data can be copied to the physical device memory. Once the
data is copied to the physical device memory, it needs to be unmapped using
vkUnmapMemory().

Use the vkBindBufferMemory() API and bind the device memory (VkDeviceMemory) to
the buffer object (VkBuffer).

This example does not need to create the buffer object views. Buffer views
(VkBufferView) are only created when the buffer data is going to be
utilized by the shaders. Use the vkCreateBufferView() API to create
the buffer view.

Buffer Resource, Render Pass, Framebuffer, and Shaders with SPIR-V

[220]

The following is a pictorial representation of the preceding process. It shows three columns,
where the first column shows the intended job, the second column defines the Vulkan APIs
used to accomplish the job, and the third specifies the returned value types.

As the final step, we need to bind the created buffer resource into the underlying pipeline
so that the rate of vertex input information can be defined in viIpBind (of the type
VkVertexInputBindingDescription)–the input rate could be based on a vertex or
instance.

The VkVertexInputAttributeDescription structure object's viIpAttrb stores
information related to the position and color attributes and is used to interpret the data. For
example, in viIpAttrb, we specify the binding point, location in the binding, expected
data format, and offset information. In the case of non-interleaved data, it should be 0. Since
our data is in the interleaved form, it is 0 and 16 for position and color attributes,
respectively; check out the following diagram. The useTexture interprets part of vertex
data as either texture coordinates or colors. When specified true, it indicates that the vertex
data contains texture coordinates (two components, where each component is of 32 bits)
instead of color components (four components of 32 bits each).

Buffer Resource, Render Pass, Framebuffer, and Shaders with SPIR-V

[221]

Understanding a Render Pass
A Render Pass tells us about the framebuffer attachments and subpasses that will be used
while rendering. Attachments, such as color and depth, indicate how many color and depth
images will be there. It specifies what should be the sample bits used to represent each of
them and how the contents will be used in the rendering process. It also confirms how the
contents would be treated at the beginning and end of each Render Pass instance. A Render
Pass used in a command buffer is called a Render Pass instance. It manages the
dependencies between the subpasses and defines the protocols on how the attachments
should be used over the course of the subpasses.

A Render Pass consists of mainly two type of components: attachments and subpasses. The
following are some facts about attachments and subpasses.

Attachments
An attachment refers to a surface region (such as color, depth/stencil, or resolve attachment
to perform resolve operations) used at the time of rendering a command. There are five
types of attachments described here:

Color attachment: A color attachment represents a drawing target image where
render primitives are drawn.
Depth attachment: A depth attachment stores the depth information and uses it
for the depth/stencil test operation.
Resolve attachment: A resolve attachment is automatically downsampled from
being a multisampled attachment to a corresponding single-sampled attachment
at the end of a subpass. Resolve attachments correspond to multisampled color
attachments and behave as if there is a vkCmdResolveImage at the end of a
subpass, from a color attachment to its corresponding resolve attachment. One
exception is that the driver may be able to do a better job, such as performing
both the spill and resolve actions on a tiler at the same time.
Input attachment: This consists of list attachments that will be shared with the
shaders. Input attachments are like restricted textures where the only operation a
shader may perform is texel fetch (texture(tex, uv))–read from the texel that
corresponds to the pixel currently being shaded. Obvious cases of this are one-tap
post processing filters (no blurs and so on), the lighting phase of a classic
deferred renderer to read from G-buffers, and more.

Buffer Resource, Render Pass, Framebuffer, and Shaders with SPIR-V

[222]

Preserve attachment: Throughout, in a given subpass, the contents inside the
preserve attachment remain unchanged. Preserve attachments aren't expressed in
other APIs at all. They express the requirement that the contents of some
attachment be kept (as it will be used later) but shouldn't be touched at all by the
current subpass. This isn't interesting at all on a desktop GPU, where render
target writes go straight into the memory. However, it's very interesting for a
tiler: the attachment portion of the on-chip memory can be reused in place of
some other attachment during the subpass, without having to spill its contents
back to the memory.

In a Vulkan API, the VkAttachmentDescription descriptor can be used to specify the
various properties of an attachment. This includes its format, sample count, initial layout
information, and how its contents are treated at the beginning and end of each Render Pass
instance.

Subpasses
In a Render Pass, a subpass reads and writes associated attachments. A current subpass in
the Render Pass execution is affected by the rendering commands:

A subpass can read from the previously written attachment (it must be
preserved) and write to the attachment currently associated with it.
Writing in the color and depth/stencil buffer is also a part of the subpass
attachment associated with a Render Pass instance.
In order to allow a subpass attachment to be used by the subsequent passes, it is
the application's responsibility to ensure that the information remains valid until
it is not utilized.
There are also preserve attachments that preserve the contents in the attachments
throughout the subpass life cycle. The subpass cannot affect these attachments as
they are read/write protected. In other words, they cannot be read/write during a
subpass life cycle.

A subpass descriptor is defined by VkSubpassDescription. It describes the number of
attachments involved in the subpass.

Buffer Resource, Render Pass, Framebuffer, and Shaders with SPIR-V

[223]

With advanced information on a subpass, about the subpass's set in
Render Pass, the Render Pass provides the underlying implementation an
opportunity to optimize the storage and transfer of attachment data
between the subpasses. This means multiple passes can be merged
together and resolved with a single Render Pass instance.

In our sample example, we are only dealing with a single subpass; therefore, any relevant
topic on its dependencies is out of the scope of this book.

Vulkan APIs for the Render Pass
In this section, we will understand the various APIs that are used to implement the Render
Pass in Vulkan.

The Render Pass object is created using the vkCreateRenderPass() API. This API accepts
the VkCreateRenderPassInfo control structure that defines the attachments, such as our
swapchain color images and depth image. It also contains an important structure
(VkRenderPassCreateInfo) that defines the protocols on how these attachments will be
treated in a single Render Pass.

Let's look at the Render Pass API specification to create the Render Pass object:

VkResult vkCreateRenderPass(
 VkDevice device,
 const VkRenderPassCreateInfo* pCreateInfo,
 const VkAllocationCallbacks* pAllocator,
 VkRenderPass* pRenderPass);

The following table describes the various fields of this structure:

Parameters Description

device This is the logical device handle for which the Render Pass is created.

pCreateInfo This is a pointer to the VkRenderPassCreateInfo structure object.

pAllocator This controls the host memory deallocation process. Refer to the Host memory
section in Chapter 5, Command Buffer and Memory Management in Vulkan.

pRenderPass This creates the VkRenderPass object pointer.

The VkRenderPassCreateInfo structure associates the attachment and subpasses with the
Render Pass object. The following is the syntax with the described fields:

typedef struct VkRenderPassCreateInfo {

Buffer Resource, Render Pass, Framebuffer, and Shaders with SPIR-V

[224]

 VkStructureType type;
 const void* pNext;
 VkRenderPassCreateFlags flags;
 uint32_t attachmentCount;
 const VkAttachmentDescription* pAttachments;
 uint32_t subpassCount;
 const VkSubpassDescription* pSubpasses;
 uint32_t dependencyCount;
 const VkSubpassDependency* pDependencies;
} VkRenderPassCreateInfo;

The following table describes the fields of this structure:

Parameters Description

type This is the type of this structure, which must be
VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO.

next This is either NULL or a pointer to an extension-specific structure.

flags This is reserved for future use.

attachmentCount This specifies the number of attachments used by this Render Pass
instance. If zero, it means there is no attachment within this Render Pass.

attachments This is an array of VkAttachmentDescription structures specifying
the properties of the Render Pass attachments. The array size is equal to
attachmentCount.

subpassCount This specifies the number of subpasses in this Render Pass.

subpasses This is an array of VkSubpassDescription structures describing the
properties of the subpasses.

dependencyCount This specifies the number of dependencies between the pairs of
subpasses. If zero, it means no dependencies exist.

dependencies This is an array that is equal to the dependencyCount number of the
VkSubpassDependency structures, describing the dependencies
between pairs of subpasses. This must be NULL if dependencyCount is
zero.

To describe each attachment used in a Render Pass, Vulkan provides the
VkAttachmentDescription control structure. The following is the syntax of this:

typedef struct VkAttachmentDescription {
 VkAttachmentDescriptionFlags flags;
 VkFormat format;
 VkSampleCountFlagBits samples;

Buffer Resource, Render Pass, Framebuffer, and Shaders with SPIR-V

[225]

 VkAttachmentLoadOp loadOp;
 VkAttachmentStoreOp storeOp;
 VkAttachmentLoadOp stencilLoadOp;
 VkAttachmentStoreOp stencilStoreOp;
 VkImageLayout initialLayout;
 VkImageLayout finalLayout;
} VkAttachmentDescription;

This table describes the various fields of this structure:

Parameters Description

flags This is a bitwise attachment flag of the type
VkAttachmentDescriptionFlags.

format This is the format of the image used in the attachment.

sample This refers to the number of samples used for the attachment in a Render
Pass.

loadOp This defines the behavior of color and depth attachments, how they will
be treated at the beginning of the subpass. For more information, refer to
VkAttachmentStoreOp in the following section:
typedef enum VkAttachmentLoadOp {
 VK_ATTACHMENT_LOAD_OP_LOAD = 0,
 VK_ATTACHMENT_LOAD_OP_CLEAR = 1,
 VK_ATTACHMENT_LOAD_OP_DONT_CARE = 2,
} VkAttachmentLoadOp;

These flags are defined as follows:
• VK_ATTACHMENT_LOAD_OP_LOAD: The use of this flag preserves the
existing contents of the attachment; this means the rendered area's content
remains preserved with each Render Pass execution.
• VK_ATTACHMENT_LOAD_OP_CLEAR: The rendered area's content is
cleared with the specified constant color value defined in the beginning of
the Render Pass. With each execution of the Render Pass, the background
is first cleared with the specified color and then primitives are drawn on top
of it.
• VK_ATTACHMENT_LOAD_OP_DONT_CARE: The content inside the render
area is undefined and is not preserved. This indicates that upon the
completion of the Render Pass instance, the application does not require
the contents of the buffer.

Buffer Resource, Render Pass, Framebuffer, and Shaders with SPIR-V

[226]

storeOp This defines the behavior of the color and depth attachments, how they
will be treated at the end of the subpass. For more information, refer to
VkAttachmentStoreOp in the following section.
typedef enum VkAttachmentStoreOp {
 VK_ATTACHMENT_STORE_OP_STORE = 0,
 VK_ATTACHMENT_STORE_OP_DONT_CARE = 1,
} VkAttachmentStoreOp;

• VK_ATTACHMENT_STORE_OP_STORE means the contents within the
render area are written to the memory and will be available for reading
after the Render Pass instance is completed, that is, once the writes have
been synchronized with VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT
(for color attachments) or
VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT (for
depth/stencil attachments).
In other words, the application wants to leave the rendering result in
this memory so that it can be utilized in the subsequent subpass or
intended to be presented to the display.
• VK_ATTACHMENT_STORE_OP_DONT_CARE means the contents within
the render area are not needed after the rendering is done and may be
discarded; the contents of the attachment will be undefined inside the
render area.

stencilLoadOp This defines the behavior of the stencil aspect of a depth/stencil
attachment using VkAttachmentLoadOp, how it will be treated at the
beginning of the subpass.

stencilStoreOp This defines the behavior of the stencil aspect of a depth/stencil
attachment using VkAttachmentStoreOp, how it will be treated at the
beginning of the subpass.

initialLayout This defines the layout of the attachment image the subresource will be in
when a Render Pass instance begins.

finalLayout This defines the layout of the attachment image the subresource will be
transitioned to when a Render Pass instance ends. In a given Render Pass
instance, an attachment can use a different layout in each subpass, if
required.

A subpass can reference to various attachments, such as an input, resolve, color,
depth/stencil, and preserve attachment. This is described using a special control structure
called VkSubpassDescription. Here is the syntax of this structure:

typedef struct VkSubpassDescription {
 VkSubpassDescriptionFlags flags;

Buffer Resource, Render Pass, Framebuffer, and Shaders with SPIR-V

[227]

 VkPipelineBindPoint pipelineBindPoint;
 uint32_t inputAttachmentCount;
 const VkAttachmentReference* pInputAttachments;
 uint32_t colorAttachmentCount;
 const VkAttachmentReference* pColorAttachments;
 const VkAttachmentReference* pResolveAttachments;
 const VkAttachmentReference* pDepthStencilAttachment;
 uint32_t preserveAttachmentCount;
 const uint32_t* pPreserveAttachments;
} VkSubpassDescription;

The various fields of this structure are described here:

Parameters Description

flags This field is not in use; it is reserved for future use.

pipelineBindPoint This specifies whether the subpass belongs to the graphics or
compute queue. It accepts a VkPipelineBindPoint value.

inputAttachmentCount This specifies the number of input attachments.

pInputAttachments This is an array of VkAttachmentReference structures
with size equal to inputAttachmentCount. It specifies
which attachments can be read at the shading stage and what
will be the layout of the attachment images during the
subpass.

colorAttachmentCount This refers to the number of color attachments.

pColorAttachments This is an array of VkAttachmentReference structures
with size equal to colorAttachmentCount, containing the
Render Pass's attachments that will be used as color
attachments in the subpass. Also, it specifies the layouts the
attachment images will be in during the subpass.

pResolveAttachments This is a pointer to an array of VkAttachmentReference
structures. Each of its elements (with the same index in
colorAttachments) corresponds to a color attachment.

pDepthStencilAttachment This specifies which attachment will be used for depth/stencil
data and the layout it will be in during the subpass; it is a
pointer to VkAttachmentReference.

preserveAttachmentCount This refers to the number of preserved attachments.

Buffer Resource, Render Pass, Framebuffer, and Shaders with SPIR-V

[228]

pPreserveAttachments This is an array of the preserveAttachmentCount Render
Pass attachment indices describing the attachments that are
not used by a subpass; the indices rather describe whose
contents must be preserved throughout the subpass.

Implementing the Render Pass
Let's implement the Render Pass in the existing VulkanRenderer class step by step:

Include the following Render Pass methods and variables in the VulkanRender1.
class in VulkanRenderer.h. This includes the creation/destruction of the Render
Pass and the command buffer associated with the Render Pass:

 class VulkanRenderer
 {
 // Many lines skipped, please refer to the source code
 public:
 /***** Member functions *****/

 // Record render pass command buffer
 void createRenderPassCB(bool includeDepth);

 // Render Pass creation
 void createRenderPass(bool includeDepth, bool clear=true);

 // Destroy the render pass object when no more required
 void destroyRenderpass();

 /***** Member variables *****/
 // Render pass created object
 VkRenderPass renderPass;
 }

At the initialization stage, create the Render Pass using VulkanRenderer::2.
createRenderPass():

 void VulkanRenderer::initialize()
 {
 const bool includeDepth = true;
 createRenderPass (includeDepth);
 }

Buffer Resource, Render Pass, Framebuffer, and Shaders with SPIR-V

[229]

The created color and depth image need to be specified in the attachments. Create3.
an array of the VkAttachmentDescription type with the size equal to 2 for
both the image types. The information specified in this structure will decide how
to treat the image at the beginning and end of the Render Pass. It contains the
image format, number of samples, load and store operations, and so on.
For both the attachments, set the loadOp member to4.
VK_ATTACHMENT_LOAD_OP_CLEAR. This tells to clear the buffer at the start of
each Render Pass instance. For the color attachment, set the storeOp member to
VK_ATTACHMENT_STORE_OP_STORE, indicating that the rendered output be kept
in the buffer that will be used to display it.
Next, for both the attachments, specify the binding points in the Render Pass.5.
This allows the Render Pass to know where to look for a specific attachment. The
binding points are defined with the help of VkAttachmentReference; the other
piece of information this control structure intakes is the image layout information
that will be used for image layout transitioning. Specify the image layout with
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL and
VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL for color and
depth buffer, respectively. The layout informs the underlying engine to store the
image in the optimal memory to give the best performance possible.
All the attachments are specified in the subpass using VkSubpassDescription.6.
Here, specify the color, depth, resolve, and preserve attachments. Finally, all the
attachments and subpass-specific information is accumulated in
VkRenderPassCreateInfo and passed to the vkCreateRenderPass() API to
create the Render Pass object:

 void VulkanRenderer::createRenderPass(bool isDepthSupported,
 bool clear)
 {
 // Dependency on VulkanSwapChain::createSwapChain() to
 // get the color image and VulkanRenderer::
 // createDepthImage() to get the depth image.
 VkResult result;
 // Attach the color buffer and depth buffer as an
 // attachment to render pass instance
 VkAttachmentDescription attachments[2];
 attachments[0].format = swapChainObj->scPublicVars.format;
 attachments[0].samples= NUM_SAMPLES;
 attachments[0].loadOp = clear ? VK_ATTACHMENT_LOAD_OP_CLEAR
 : VK_ATTACHMENT_LOAD_OP_DONT_CARE;
 attachments[0].storeOp = VK_ATTACHMENT_STORE_OP_STORE;
 attachments[0].stencilLoadOp =
 VK_ATTACHMENT_LOAD_OP_DONT_CARE;
 attachments[0].stencilStoreOp =

Buffer Resource, Render Pass, Framebuffer, and Shaders with SPIR-V

[230]

 VK_ATTACHMENT_STORE_OP_DONT_CARE;
 attachments[0].initialLayout =
 VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
 attachments[0].finalLayout =
 VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
 attachments[0].flags = 0;

 // Is the depth buffer present the define attachment
 // properties for depth buffer attachment.
 if (isDepthSupported)
 {
 attachments[1].format = Depth.format;
 attachments[1].samples = NUM_SAMPLES;
 attachments[1].loadOp = clear ?
 VK_ATTACHMENT_LOAD_OP_CLEAR :
 VK_ATTACHMENT_LOAD_OP_DONT_CARE;
 attachments[1].storeOp =
 VK_ATTACHMENT_STORE_OP_STORE;
 attachments[1].stencilLoadOp =
 VK_ATTACHMENT_LOAD_OP_LOAD;
 attachments[1].stencilStoreOp=
 VK_ATTACHMENT_STORE_OP_STORE;
 attachments[1].initialLayout =
 VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
 attachments[1].finalLayout =
 VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
 attachments[1].flags = 0;
 }

 // Define the color buffer attachment binding point
 // and layout information
 VkAttachmentReference colorReference = {};
 colorReference.attachment = 0;
 colorReference.layout =
 VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;

 // Define the depth buffer attachment binding point and
 // layout information
 VkAttachmentReference depthReference = {};
 depthReference.attachment = 1;
 depthReference.layout =
 VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;

 // Specify the attachments - color, depth,
 // resolve, preserve etc.
 VkSubpassDescription subpass = {};
 subpass.pipelineBindPoint =
 VK_PIPELINE_BIND_POINT_GRAPHICS;

Buffer Resource, Render Pass, Framebuffer, and Shaders with SPIR-V

[231]

 subpass.flags = 0;
 subpass.inputAttachmentCount = 0;
 subpass.pInputAttachments = NULL;
 subpass.colorAttachmentCount = 1;
 subpass.pColorAttachments = &colorReference;
 subpass.pResolveAttachments = NULL;
 subpass.pDepthStencilAttachment = isDepthSupported ?
 &depthReference : NULL;
 subpass.preserveAttachmentCount = 0;
 subpass.pPreserveAttachments = NULL;

 // Specify the attachement and subpass associate with
 // render pass
 VkRenderPassCreateInfo rpInfo = {};
 rpInfo.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO;
 rpInfo.pNext = NULL;
 rpInfo.attachmentCount = isDepthSupported ? 2 : 1;
 rpInfo.pAttachments = attachments;
 rpInfo.subpassCount = 1;
 rpInfo.pSubpasses = &subpass;
 rpInfo.dependencyCount = 0;
 rpInfo.pDependencies = NULL;

 // Create the render pass object
 result = vkCreateRenderPass(deviceObj->device, &rpInfo,
 NULL, &renderPass);

 assert(result == VK_SUCCESS);
 }

At the deinitialization stage, destroy the Render Pass object using the7.
vkDestroyRenderPass() API:

 void VulkanApplication::deInitialize()
 {
 rendererObj->destroyRenderpass();

 }

 void VulkanRenderer::destroyRenderpass()
 {
 vkDestroyRenderPass(deviceObj->device, renderPass, NULL);
 }

Buffer Resource, Render Pass, Framebuffer, and Shaders with SPIR-V

[232]

Using the Render Pass and creating the
framebuffer
Once the Render Pass is created, it is used to create the framebuffer. Ideally, for each
swapchain color image, we need a framebuffer associated with it. For example, if we have a
double buffer swapchain image, then we need two framebuffers: one for the front buffer
and another for the back buffer image.

The framebuffer in Vulkan is created using the vkCreateFrameBuffer() API. Like with
other Vulkan APIs, this also has a create info control structure called
VkFrameBufferCreateInfo. Refer to the following for more information on its syntax and
usage:

VkResult vkCreateFrameBuffer(
 VkDevice device,
 const VkFramebufferCreateInfo* pCreateInfo,
 const VkAllocationCallbacks* pAllocator,
 VkFramebuffer* pFrameBuffer);

The following table describes the various fields of the vkCreateFrameBuffer() API:

Parameters Description

device This is the logical device handle to which the framebuffer is associated.

pCreateInfo This is the pointer to the VkFrameBufferCreateInfo structure object.

pAllocator This controls the host memory deallocation process. Refer to the Host memory
section in Chapter 5, Command Buffer and Memory Management in Vulkan.

pFrameBuffer This creates the VkFrameBuffer object and returns the pointer.

The VkFrameBufferCreateInfo control structure is described in the following syntax:

typedef struct VkFramebufferCreateInfo {
 VkStructureType type;
 const void* pNext;
 VkFramebufferCreateFlags flags;
 VkRenderPass renderPass;
 uint32_t attachmentCount;
 const VkImageView* pAttachments;
 uint32_t width;
 uint32_t height;
 uint32_t layers;
} VkFramebufferCreateInfo;

Buffer Resource, Render Pass, Framebuffer, and Shaders with SPIR-V

[233]

The following table describes the various fields of this structure:

Parameters Description

type This refers to the type of this structure, which must be
VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO.

next This is either NULL or a pointer to an extension-specific structure.

flag This must be 0; it is reserved for future use.

renderPass This is the VkRenderPass object that we created in the previous
section.

attachment-Count This refers to the number of attachments associated with the
framebuffer.

attachment This is an array of VkImageView handles for the corresponding image,
each of which will be used as the corresponding attachment in the
Render Pass instance.

width This refers to the width of the framebuffer in pixels.

height This refers to the height of the framebuffer in pixels.

layers This refers to the layers in the framebuffer.

Implementing the framebuffer
The implementation of a framebuffer is simple; follow these steps:

Create the following functions and variables in the VulkanRenderer class. The1.
cmdFrameBuffer declares the command buffer responsible for creating the
framebuffer (frameBuffer):

 class VulkanRenderer
 {
 public:
 // Member functions
 void createFrameBuffer(bool includeDepth,bool clear= true);
 void destroyFrameBuffer ();
 // Number of frame buffer corresponding to each swap chain
 std::vector<VkFramebuffer> framebuffers;
 }

Buffer Resource, Render Pass, Framebuffer, and Shaders with SPIR-V

[234]

During the initialization, create the framebuffer using the2.
createFrameBuffer() function:

 void VulkanRenderer::initialize()
 {
 const bool includeDepth = true;
 createFrameBuffer(includeDepth);
 }

For each swapchain color image, create its corresponding framebuffer. This is3.
done using the vkCreateFrameBuffer() API. This API intakes
VkFrameBufferCreateInfo in which we specify the depth and color image
views as an attachment. Also, pass the created Render Pass object along with the
dimensions of the framebuffer in this structure:

 void VulkanRenderer::createFrameBuffer(bool includeDepth)
 {
 // Dependency on createDepthBuffer(), createRenderPass()
 // and recordSwapChain()
 VkResult result;
 VkImageView attachments[2];
 attachments[1] = Depth.view;

 VkFramebufferCreateInfo fbInfo = {};
 fbInfo.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO;
 fbInfo.pNext = NULL;
 fbInfo.renderPass = renderPass;
 fbInfo.attachmentCount = includeDepth ? 2 : 1;
 fbInfo.pAttachments = attachments;
 fbInfo.width = width;
 fbInfo.height = height;
 fbInfo.layers = 1;

 uint32_t i;

 framebuffers.clear();
 framebuffers.resize(swapChainObj->scPublicVars.
 swapchainImageCount);

 for (i = 0; i < swapChainObj->scPublicVars
 .swapchainImageCount; i++) {
 attachments[0] = swapChainObj->scPublicVars.
 colorBuffer[i].view;

 result = vkCreateFramebuffer(deviceObj->device,
 &fbInfo, NULL, &framebuffers.at(i));

Buffer Resource, Render Pass, Framebuffer, and Shaders with SPIR-V

[235]

 assert(result == VK_SUCCESS);
 }
 }

At the application de-initialization stage, destroy all the framebuffers using the4.
vkDestroyFrameBuffer() API:

 void VulkanApplication::deInitialize()
 {
 rendererObj->destroyRenderpass();

 }

 void VulkanRenderer::destroyFramebuffers()
 {
 for (uint32_t i = 0; i < swapChainObj
 ->scPublicVars.swapchainImageCount; i++) {
 vkDestroyFramebuffer(deviceObj->device,
 framebuffers.at(i), NULL);
 }
 framebuffers.clear();
 }

Clearing the background color
In this section, we use the created Render Pass and framebuffer object and implement the
Render Pass instance. This Render Pass instance is very simple and will only clear the
background image with a specified color. For each swapchain image, different colors can be
specified using the pClearValues field of the VkRenderPassBeginInfo structure; this
structure is then passed to the Render Pass instance.

The Render Pass instance is implemented during the preparation stage in which the
command buffers are created. For each swapchain image, a corresponding command buffer
object is created. This means, for n swapchain images, we need to create n command buffer
objects.

The preparation is done using the VulkanDrawable::prepare() function, and the
rendering of the swapchain images will be performed using the
VulkanDrawable::render() function.

Buffer Resource, Render Pass, Framebuffer, and Shaders with SPIR-V

[236]

The following diagram shows the call stack of the prepare() and render() function:

The following class declaration shows the new member variables and functions added to
the VulkanDrawable class. The prepare() function produces the command buffers in the
vecCmdDraw vector and records the drawing commands; these are used in the render()
function where the command buffer executes and renders the swapchain images. The
recordCommandBuffer() function records the commands in the Render Pass instance.

For a detailed understanding of the preparation and rendering of a
drawing object, refer to the Preparing the drawing object and Rendering the
drawing object sections in Chapter 9, Drawing Objects.

class VulkanDrawable
{
public:
 // Prepares the drawing object before rendering
 // Allocate, create, record command buffer
 void prepare();

 // Renders the drawing object
 void render();

private:
 // Command buffer for drawing
 std::vector<VkCommandBuffer> vecCmdDraw;
 // Prepares render pass instance
 void recordCommandBuffer(int currentImage,
 VkCommandBuffer* cmdDraw);
};

Buffer Resource, Render Pass, Framebuffer, and Shaders with SPIR-V

[237]

Setting the background color in the Render Pass
instance
In this section, we will implement the prepare() function of VulkanDrawable. Inside this,
the command buffer wrapper class (CommandBufferMgr) is used to manage (allocate,
record, and submit) the command buffers (vecCmdDraw). The following code implements
the prepare() function:

void VulkanDrawable::prepare()
{
 VulkanDevice* deviceObj = rendererObj->getDevice();
 vecCmdDraw.resize(rendererObj->getSwapChain()->scPublicVars
 .colorBuffer.size());

 // For each swapbuffer color image buffer
 // allocate the corresponding command buffer
 for (int i = 0; i < rendererObj->getSwapChain()->scPublicVars.
 colorBuffer.size(); i++){
 // Allocate, create and start command buffer recording
 CommandBufferMgr::allocCommandBuffer(&deviceObj->device,
 *rendererObj->getCommandPool(), &vecCmdDraw[i]);
 CommandBufferMgr::beginCommandBuffer(vecCmdDraw[i]);

 // Create the render pass instance
 recordCommandBuffer(i, &vecCmdDraw[i]);

 // Finish the command buffer recording
 CommandBufferMgr::endCommandBuffer(vecCmdDraw[i]);
 }
}

The implementation first checks the number of color images supported by the swapchain
and creates the same number of command buffer objects, associating each one of them
logically with the corresponding swapchain image. The clearing of the swapchain image is
always performed on the back image (back buffer), while the front image (front buffer) is
used to display the rendered contents. Once the back image is cleared and rendered (if any),
it is swapped with the front buffer.

Use the created command buffer (vecCmdDraw) and record the commands inside the
recordCommandBuffer() function. This function specifies the clear color value for each
swapchain image using the pClearValues field of the VkRenderPassBeginInfo data
structure that is passed into the vkCmdBeginRenderPass() API. The
vkCmdBeginRenderPass() and vkCmdEndRenderPass() APIs define a scope under
which the Render Pass instance commands are recorded.

Buffer Resource, Render Pass, Framebuffer, and Shaders with SPIR-V

[238]

For more information on Render Pass commands and its associated APIs,
refer to the Recording the Render Pass commands section in Chapter 9,
Drawing Objects.

There are two objects of the clear values (VkClearValue). The first one specifies the clear
color value of the associated swapchain image indicated by the currentImage index. The
second object specifies the clear color value to be used for the depth image:

void VulkanDrawable::recordCommandBuffer(int currentImage, VkCommandBuffer*
cmdDraw)
{
 // Specify the clear color value
 VkClearValue clearValues[2];
 switch (currentImage)
 {
 case 0: clearValues[0].color = { 1.0f,0.0f,0.0f,1.0f };break;
 case 1: clearValues[0].color = { 0.0f,1.0f,0.0f,1.0f };break;
 case 2: clearValues[0].color = { 0.0f,0.0f,1.0f,1.0f };break;
 default:clearValues[0].color = { 0.0f,0.0f,0.0f,1.0f };break;
 }

 // Specify the depth/stencil clear value
 clearValues[1].depthStencil.depth = 1.0f;
 clearValues[1].depthStencil.stencil = 0;

 // Define the VkRenderPassBeginInfo control structure
 VkRenderPassBeginInfo renderPassBegin = {};
 renderPassBegin.sType=VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO;
 renderPassBegin.renderPass = rendererObj->renderPass;
 renderPassBegin.framebuffer = rendererObj->
 framebuffers[currentImage];
 renderPassBegin.renderArea.extent.width = rendererObj->width;
 renderPassBegin.renderArea.extent.height= rendererObj->height;
 renderPassBegin.clearValueCount = 2;
 renderPassBegin.pClearValues = clearValues;
 // Start recording the render pass instance
 vkCmdBeginRenderPass(*cmdDraw, &renderPassBegin,
 VK_SUBPASS_CONTENTS_INLINE);

 // End of render pass instance recording
 vkCmdEndRenderPass(*cmdDraw);
}

Buffer Resource, Render Pass, Framebuffer, and Shaders with SPIR-V

[239]

Rendering the colored background
The cleared swapchain images are rendered one by one inside the render() function, as
implemented in the following code snippet. The WSI windowing system extension
vkAcquireNextImageKHR() is used to query the next available swapchain image index.
This index indicates which swapchain image will be available for drawing. Using this
index, the corresponding command buffer is selected and submitted to the queue. Once
processed on the GPU, the swapchain image is ready for displaying purposes using the
presentation engine. The presentation is performed using the WSI extension
fpQueuePresentKHR. This API intakes the VkPresentInfoKHR structure; this contains the
swapchain object and the index of the swapchain image that needs to be displayed on the
window.

Rendering the drawing object is a separate topic altogether and is out of
the scope of this chapter. For more information on this topic and the
associated WSI extensions with their related data structures, refer to the
Rendering the drawing object section in Chapter 9, Drawing Objects.

The following code implements the clearing where the background color is cleared every
second with red, blue and green background color:

void VulkanDrawable::render()
{
 VulkanDevice* deviceObj = rendererObj->getDevice();
 VulkanSwapChain* swapChainObj = rendererObj->getSwapChain();

 uint32_t& currentColorImage = swapChainObj->scPublicVars.
 currentColorBuffer;
 VkSwapchainKHR& swapChain = swapChainObj->scPublicVars.
 swapChain;
 // Render each background color for 1 second.
 Sleep(1000);
 // Get the index of the next available swapchain image:
 VkResult result = swapChainObj->fpAcquireNextImageKHR
 (deviceObj->device, swapChain, UINT64_MAX, VK_NULL_HANDLE,
 VK_NULL_HANDLE, ¤tColorImage);

 // Queue the command buffer for execution
 CommandBufferMgr::submitCommandBuffer(deviceObj->queue,
 &vecCmdDraw[currentColorImage], NULL);

 // Present the image in the window
 VkPresentInfoKHR present = {};
 present.sType = VK_STRUCTURE_TYPE_PRESENT_INFO_KHR;
 present.swapchainCount = 1;

Buffer Resource, Render Pass, Framebuffer, and Shaders with SPIR-V

[240]

 present.pSwapchains = &swapChain;
 present.pImageIndices = ¤tColorImage;

 // Queue the image for presentation,
 result = swapChainObj->fpQueuePresentKHR
 (deviceObj->queue, &present);
 assert(result == VK_SUCCESS);
}

The following is the output of the implemented exercise. The output will display various
background colors, and each image will be displayed for one second.

Buffer Resource, Render Pass, Framebuffer, and Shaders with SPIR-V

[241]

Working with a shader in Vulkan
Shaders are the means by which the programmable stage is controlled in the graphics and
compute pipeline.

The graphics pipeline includes vertex, tessellation, geometry, and fragment shaders.
Collectively, the first four-vertex, tessellation control, tessellation evaluation, and geometry
shaders-are responsible for the vertex-processing stages. These are followed by the
fragment shader, which is executed after rasterization.

Here's a bit about the graphics pipeline shaders:

Vertex shaders: The graphics pipeline executes the vertex shader as a result of the
primitive assembly. It is used to process geometric vertices. It manipulates the
data that may be required by the subsequent shaders (if enabled), such as lighting
information by the fragment shader.
Tessellation shaders: This is a vertex-processing stage. When enabled, it
subdivides the patches of vertex data into smaller primitives governed by the
control and evaluate shaders.
Geometry shaders: This shader when enabled has the capability to produce new
geometry at the execution time by using the output from the previous shader
stages (tessellation and vertex shaders).
Fragment shaders: The rasterizer (fixed function) produces the fragments using
the processed vertices from the previous stages. These fragments are then
processed by the fragment shader, which is responsible for coloring them.
Compute shaders: Compute shaders are invoked in the workgroup for
computing arbitrary information in a massive parallel computation format. The
compute pipeline only consists of the compute shader.

Unlike OpenGL, where GLSL is the official shading language, Vulkan uses SPIR-V, which is
a whole new approach to shaders and computing kernels.

Buffer Resource, Render Pass, Framebuffer, and Shaders with SPIR-V

[242]

Introduction to SPIR-V
Unlike OpenGL shading language (GLSL), which is a human-readable form for a shader,
Vulkan totally relies on SPIR-V, which is a low-level binary intermediate representation
(IR). As the high-level language is no more a requirement for SPIR-V, it reduces the driver
complexity significantly. This allows an application to accept any high-level language
(GLSL or HLSL) as long as the GPU vendor provides the compiler to convert it into the
SPIR-V form.

SPIR-V is a binary intermediate language used to represent graphical shader stages and
compute kernels for multiple APIs. It stores the information in a stream of 32-bit words. It
consists of mainly two parts: header and payload. The header consists of the first five slots
(5 x 4 bytes = 20 bytes) that are helpful in recognizing the input source as the SPIR-V input
stream. However, the payload represents variable length instructions containing the source
data.

SPIR-V is a platform-independent intermediate language that can be used for multiple
languages that feed multiple drivers under the hood, as shown in the following diagram.
Compilers to SPIR-V exist for multiple source languages, such as GLSL or HLSL, or even for
reading compute kernels. The shader module provides multiple entry points that can
provide good wins in terms of shader code size and disk I/O requirement.

Buffer Resource, Render Pass, Framebuffer, and Shaders with SPIR-V

[243]

The following diagram used from Khronos's official SPIR-V specification provides an
overview of the SPIR-V file format:

Although SPIR-V is a high-level language, it is also simple enough to bypass all of the text
or string parsing, which is a good thing to achieve higher performance. According to the
official specification, SPIR-V first encodes a set of annotations and decorations and then a
collection of functions. Each function encodes a control flow graph (CFG) of basic blocks
with additional instructions to preserve source-code-structured control flow. Load/store
instructions are used to access declared variables, which include all of the I/O. Intermediate
results bypassing load/store use the static single assignment (SSA) representation. Data
objects are represented logically with hierarchical-type information. There is no flattening of
aggregates or assignments to physical register banks and so on. Selectable addressing
models establish whether general pointers may be used or whether memory access is purely
logical.

Buffer Resource, Render Pass, Framebuffer, and Shaders with SPIR-V

[244]

Compiling a GLSL shader into SPIR-V
In this section, we will implement a very simple vertex and fragment shader in GLSL and
convert it into the SPIR-V form in order to utilize it in our Vulkan program. There are two
ways in which the GLSL shader can be converted into the SPIR-V binary form-offline and
online. The former uses an executable to covert a GLSL source into the SPIR-V native format
file; this file is then injected into the running Vulkan program. The latter makes use of a
dynamic library to compile the GLSL into the SPIR-V form.

Offline compilation with the glslangValidator executable
The precompiled Lunar-G SDK's binaries include the glslangValidator executable,
which can be used to convert GLSL into SPIR-V's .spv format. This does not require
runtime compilation of the data and can be injected upfront. In this approach, the
developers cannot change the GLSL program, and seeing the effects that take place upfront,
it has to be recompiled again with every change added. This way is suitable for product
releases where not to many changes are expected.

For a development cycle, where frequent changes are expected, the online method is
suitable. Refer to the next section for more information on this. Also, refer to the following
points:

Location: The glslangValidator can be located in <Vulkan SDK Path
>\<Vulkan SDK Version>\Bin on Windows. For a 32-bit platform
implementation, refer to the Bin32 folder instead.

Usage: Its usage is defined as glslangValidator [option]... [file]....

Here, each file ends in .<stage>, where <stage> is one of the following:

Stage Meaning

.conf To provide an optional configuration file that replaces the default configuration

.vert For a vertex shader

.tesc For a tessellation control shader

.tese For a tessellation evaluation shader

.geom For a geometry shader

.frag For a fragment shader

Buffer Resource, Render Pass, Framebuffer, and Shaders with SPIR-V

[245]

.comp For a compute shader

An example: Refer to the following instruction to compile the GLSL source file
into the SPIR-V format (.spv):

Open the terminal, go to the source folder (let's say the one
containing the vertex shader Tri.vert), and type the following
command; this will result into the Tri-Vert.spv SPIR-V format:

 glslangValidator.exe -V Tri.vert -o Tri-Vert.spv

The glslangValidator.exe can also be built using the LunarG SDK
glslang source code.

Online compilation with SPIR-V tool libraries
The Lunar SDK also provides on-the-fly compilation using GLslang libraries. We need to
compile these libraries from the SDK source code and include them in our source project.
This exposes some special APIs that can be used to pass the GLSL shader source code into
the project, making it available to the Vulkan shader module in the SPIR-V format behind
the curtains.

In order to build the source code and compile them into libraries, you need the following:

Location: Locate the SPIR-V-tool folder using the <Vulkan SDK Path
>\<Vulkan SDK Version>\glslang path.
CMake: The GLslang folder contains CMakelists.txt, which can be used to
build the platform-specific project. After you build CMake, the following projects
will be created: glslang, glslangValidator, OGLCompiler, OSDependent,
SPIRV, and spirv-remap. Upon the compilation of the project in the debug and
release mode, it will produce the necessary static libraries in the destination build
folder.
Required libraries: The following libraries (on Windows) are required in order to
support the online compilation of the GLSL files into SPIR-V:

SPIRV.lib

glslang.lib

OGLCompiler.lib

OSDependent.lib

HLSL.lib

Buffer Resource, Render Pass, Framebuffer, and Shaders with SPIR-V

[246]

Implementing a shader
It's time to bring some shader capabilities in our example. This section will help us achieve
this step by step. Follow the instructions given here:

Go to the sample application's CMakeLists.txt file and make the following changes:

A project name: Give the recipe a proper name and set Vulkan SDK path:

 set (Recipe_Name "7e_ShadersWithSPIRV")

Header files: Include the header file specified in the glslang directory. This will
allow us to include the SPIRV/GlslangToSpv.h required in the source program:

Static libraries: From the Vulkan-SDK-compiled projects, we need SPIRV,
glslang, HLSL OGLCompiler, and OSDependent static libraries.

The link library path: Provide the path to the solution where it can pick the static
libraries specified in the preceding point. The variable name, VULKAN_PATH,
specifies the path for the Lunar SDK:
The following CMake code adds the required libraries for GLSL to SPIR-V
conversion. You can convert a GLSL code into .spv form in two ways:
a) Offline: Using Vulkan SDK's glslangValidator.exe, this tool does not
require additional libraries, the Vulkan-1.lib is more than enough. This mode
is useful when the project is in the deployment stage where shaders are not
undergoing the development cycle's dynamic changes
b) Online: Auto-converting GLSL into .spv on runtime using glslang helper
functions. At project development stage, the developers do not need to compile
the GLSL shader offline for desire shader code changes. The glslang helper
functions automatically compiles the GLSL into .spv form. This mode requires a
few libraries these are: SPIRV, glslang, OGLCompiler, OSDependent,
HLSL.Using CMake's BUILD_SPV_ON_COMPILE_TIME variable you can choose
either of the desired options to convert the GLSL shader into .spv form. For
more information, please add the below code in existing CMakeLists.txt and
follow through the inline comments:

 # BUILD_SPV_ON_COMPILE_TIME - accepted value ON or OFF
 # ON - Reads the GLSL shader file and auto convert in SPIR-V form
 (.spv). This requires additional libraries support from VulkanSDK
 like SPIRV glslang OGLCompiler OSDependent HLSL
 # OFF - Only reads .spv files, which need to be compiled offline
 using glslangValidator.exe.
 #For example: glslangValidator.exe <GLSL file name> -V -o <output

Buffer Resource, Render Pass, Framebuffer, and Shaders with SPIR-V

[247]

 filename in SPIR-V(.spv) form>
 option(BUILD_SPV_ON_COMPILE_TIME "BUILD_SPV_ON_COMPILE_TIME" OFF)

 if(BUILD_SPV_ON_COMPILE_TIME)

 # Preprocessor flag allows the solution to use glslang
 library functions
 add_definitions(-DAUTO_COMPILE_GLSL_TO_SPV)

 # GLSL - use Vulkan SDK's glslang library for compling GLSL to SPV
 # This does not require offline coversion of GLSL shader to
 SPIR-V(.spv) form
 set(GLSLANGDIR "${VULKAN_PATH}/glslang")

 get_filename_component(GLSLANG_PREFIX "${GLSLANGDIR}" ABSOLUTE)

 # Check if glslang directory exists
 if(NOT EXISTS ${GLSLANG_PREFIX})
 message(FATAL_ERROR "Necessary glslang components do not
 exist: "${GLSLANG_PREFIX})
 endif()

 # Include the glslang directory
 include_directories(${GLSLANG_PREFIX})

 # If compiling GLSL to SPV using we need the following libraries
 set(GLSLANG_LIBS SPIRV glslang OGLCompiler OSDependent HLSL)

 # Generate the list of files to link, per flavor.
 foreach(x ${GLSLANG_LIBS})
 list(APPEND VULKAN_LIB_LIST debug ${x}d
 optimized ${x})
 endforeach()

 # Note: While configuring CMake for glslang we created the
 binaries in a "build" folder inside ${VULKAN_PATH}/glslang.
 # Therefore, you must edit the below lines for your custom path
 like <Your binary path>/OGLCompilersDLL,
 <Your binary path>/OSDependent/Windows
 link_directories(${VULKAN_PATH}/glslang/build/OGLCompilersDLL)
 link_directories(${VULKAN_PATH}/glslang/build/glslang/
 OSDependent/Windows)
 link_directories(${VULKAN_PATH}/glslang/build/glslang)
 link_directories(${VULKAN_PATH}/glslang/build/SPIRV)
 link_directories(${VULKAN_PATH}/glslang/build/hlsl)
 endif()

Buffer Resource, Render Pass, Framebuffer, and Shaders with SPIR-V

[248]

Implement the user-defined shader custom class called VulkanShader in
VulkanShader.h/.cpp to manage all the shader activities. Refer to the implementation
here:

 /************** VulkanShader.h **************/
 #pragma once
 #include "Headers.h"

 // Shader class managing the shader conversion, compilation, linking
 class VulkanShader
 {
 public:
 VulkanShader() {} // Constructor
 ~VulkanShader() {} // Destructor

 // Entry point to build the shaders
 void buildShader(const char *vertShaderText,
 const char *fragShaderText);
 // Convert GLSL shader to SPIR-V shader
 bool GLSLtoSPV(const VkShaderStageFlagBits shaderType,
 const char *pshader, std::vector<unsigned int> &spirv);
 // Kill the shader when not required
 void destroyShaders();

 // Type of shader language. This could be - EShLangVertex,
 // Tessellation Control, Tessellation Evaluation, Geometry,
 // Fragment and Compute
 EShLanguage getLanguage
 (const VkShaderStageFlagBits shaderType);

 // Initialize the TBuitInResource
 void initializeResources(TBuiltInResource &Resources);

 // Vk structure storing vertex & fragment shader information

 VkPipelineShaderStageCreateInfo shaderStages[2];
 };

The user-defined VulkanShader class exposes the buildShader() function, which allows
you to inject the GLSL shaders in order to compile them into the Vulkan project. Behind the
curtains, the function makes use of the GLslang SPIR-V library functions to convert them
into the native form.

Buffer Resource, Render Pass, Framebuffer, and Shaders with SPIR-V

[249]

This function builds the shader in four steps:

Initialize the GLSL language shader library using1.
glslang::InitializeProcess(). Note that this function needs to be called
exactly once per process before you use anything else.
Convert the GLSL shader code into a SPIR-V shader byte array. This includes the2.
following:

Parsing the GLSL source code
Adding the parse shader to the program object
Linking to the project object
Using glslang::GlslangToSpv() to covert the compiled binary
shader into the SPIR-V format

Use the converted SPIR-V shader intermediate binary code to create the shader3.
module using vkCreateShaderModule().
Finalize the processing using glslang::FinalizeProcess() during the tear4.
down. This function must be called once per process.

This function takes two arguments as parameter input, specifying the vertex and fragment
shader. The shaders are used to create the shader module VkShaderModule with the help
of the vkCreateShaderModule() API. This API intakes the
VkPipelineShaderStageCreateInfo control structure as primary input containing the
necessary information of the shader.

For more information, follow the syntax and parameter description given here:

VKAPI_ATTR VkResult VKAPI_CALL vkCreateShaderModule(
 VkDevice device,
 const VkShaderModuleCreateInfo* pCreateInfo,
 const VkAllocationCallbacks* pAllocator,
 VkShaderModule* pShaderModule);

The following table describes the various fields of this function:

Parameters Description

device This is the logical device handle to which the shader module is associated.

pCreateInfo This is the pointer to the VkShaderModuleCreateInfo structure object.

pAllocator This controls the host memory allocation process. For more information,
refer to the Host memory section in Chapter 5, Command Buffer and Memory
Management in Vulkan.

Buffer Resource, Render Pass, Framebuffer, and Shaders with SPIR-V

[250]

pShaderModule This refers to the created VkShaderModule object.

typedef struct VkShaderModuleCreateInfo {
 VkStructureType type;
 const void* next;
 VkShaderModuleCreateFlags flags;
 size_t codeSize;
 const uint32_t* code;
} VkShaderModuleCreateInfo;

The following table describes the various fields of this structure:

Parameters Description

type This refers to the type of the structure. This must be of the type
VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO.

next This is either NULL or a pointer to an extension-specific structure.

flags This is reserved for future use.

codeSize This refers to the source code size in bytes. The source is pointed by code.

code This refers to the source code that will be used to create the shader module.

The following code describes the implementation of the shader used in the sample example.
The implementation is done in the buildShader() function; this helper function presently
supports only vertex and fragment shaders, whose source code is passed as parameters into
this function in the GLSL form. The following is the implementation:

/************** VulkanShader.cpp **************/
 // Helper function intaking the GLSL vertex and fragment shader.
 // It prepares the shaders to be consumed in the SPIR-V format
 // with the help of glslang library helper functions.
void VulkanShader::buildShader(const char *vertShaderText, const char
*fragShaderText)
{
 VulkanDevice* deviceObj = VulkanApplication::GetInstance()
 ->deviceObj;

 VkResult result;
 bool retVal;

 // Fill in the control structure to push the necessary
 // details of the shader.
 std::vector<unsigned int> vertexSPV;
 shaderStages[0].sType = VK_STRUCTURE_TYPE_PIPELINE_
 SHADER_STAGE_CREATE_INFO;
 shaderStages[0].pNext = NULL;

Buffer Resource, Render Pass, Framebuffer, and Shaders with SPIR-V

[251]

 shaderStages[0].pSpecializationInfo = NULL;
 shaderStages[0].flags = 0;
 shaderStages[0].stage = VK_SHADER_STAGE_VERTEX_BIT;
 shaderStages[0].pName = "main";

 glslang::InitializeProcess();

 retVal = GLSLtoSPV(VK_SHADER_STAGE_VERTEX_BIT,
 vertShaderText, vertexSPV);
 assert(retVal);

 VkShaderModuleCreateInfo moduleCreateInfo;
 moduleCreateInfo.sType =
 VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO;
 moduleCreateInfo.pNext = NULL;
 moduleCreateInfo.flags = 0;
 moduleCreateInfo.codeSize = vertexSPV.size() *
 sizeof(unsigned int);
 moduleCreateInfo.pCode = vertexSPV.data();
 result = vkCreateShaderModule(deviceObj->device,
 &moduleCreateInfo, NULL, &shaderStages[0].module);
 assert(result == VK_SUCCESS);

 std::vector<unsigned int> fragSPV;
 shaderStages[1].sType = VK_STRUCTURE_TYPE_PIPELINE_
 SHADER_STAGE_CREATE_INFO;
 shaderStages[1].pNext = NULL;
 shaderStages[1].pSpecializationInfo = NULL;
 shaderStages[1].flags = 0;
 shaderStages[1].stage = VK_SHADER_STAGE_FRAGMENT_BIT;
 shaderStages[1].pName = "main";

 retVal = GLSLtoSPV(VK_SHADER_STAGE_FRAGMENT_BIT,
 fragShaderText, fragSPV);
 assert(retVal);

 moduleCreateInfo.sType = VK_STRUCTURE_TYPE_SHADER
 _MODULE_CREATE_INFO;
 moduleCreateInfo.pNext = NULL;
 moduleCreateInfo.flags = 0;
 moduleCreateInfo.codeSize = fragSPV.size() *
 sizeof(unsigned int);
 moduleCreateInfo.pCode = fragSPV.data();
 result = vkCreateShaderModule(deviceObj->device,
 &moduleCreateInfo, NULL, &shaderStages[1].module);
 assert(result == VK_SUCCESS);

 glslang::FinalizeProcess();

Buffer Resource, Render Pass, Framebuffer, and Shaders with SPIR-V

[252]

}

The vkCreateShaderModule() takes the SPIR-V form as an input; therefore, we need the
GLslang helper function to convert the GLSL shaders into the native format binary form
supported by SPIR-V.

Before you call any glslang function, the library needs to be initialized once per process.
This is done by calling glslang::InitializeProcess(). Next, the input shader is
converted into the stream of SPIR-V bits using the user-defined function
VulkanShader::GLSLtoSPV(), as mentioned in the following code:

bool VulkanShader::GLSLtoSPV(const VkShaderStageFlagBits shader_type, const
char *pshader, std::vector<unsigned int> &spirv)
{
 glslang::TProgram& program = *new glslang::TProgram;
 const char *shaderStrings[1];
 TBuiltInResource Resources;
 initializeResources(Resources);

 // Enable SPIR-V and Vulkan rules when parsing GLSL
 EShMessages messages = (EShMessages)(EShMsgSpvRules
 | EShMsgVulkanRules);

 EShLanguage stage = findLanguage(shader_type);
 glslang::TShader* shader = new glslang::TShader(stage);

 shaderStrings[0] = pshader;
 shader->setStrings(shaderStrings, 1);

 if (!shader->parse(&Resources, 100, false, messages)) {
 puts(shader->getInfoLog());
 puts(shader->getInfoDebugLog());
 return false;
 }

 program.addShader(shader);

 // Link the program and report if errors...
 if (!program.link(messages)) {
 puts(shader->getInfoLog());
 puts(shader->getInfoDebugLog());
 return false;
 }

 glslang::GlslangToSpv(*program.getIntermediate(stage),
 spirv);

Buffer Resource, Render Pass, Framebuffer, and Shaders with SPIR-V

[253]

 return true;
}

The GLSLtoSPV function needs to be compiled for each type of shader to convert its GLSL
source code into its SPIR-V form. First it creates an empty shader object and initializes the
shader resource structure. Using the shader type passed to the GLSLtoSPV function
parameter, determine the shader language using the findLanguage() helper function (see
the following code snippet) and create a TShader shader object. Pass the GLSL shader
source code to this shader and parse it to check for any potential issues. In case errors are
found, report the error to help the user rectify it:

EShLanguage VulkanShader::findLanguage(const VkShaderStageFlagBits
shader_type)
{
 switch (shader_type) {
 case VK_SHADER_STAGE_VERTEX_BIT:
 return EShLangVertex;

 case VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT:
 return EShLangTessControl;

 case VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT:
 return EShLangTessEvaluation;

 case VK_SHADER_STAGE_GEOMETRY_BIT:
 return EShLangGeometry;

 case VK_SHADER_STAGE_FRAGMENT_BIT:
 return EShLangFragment;

 case VK_SHADER_STAGE_COMPUTE_BIT:
 return EShLangCompute;

 default:
 printf("Unknown shader type specified: %d. Exiting!",
 shaderType);
 exit(1);
 }
}

Buffer Resource, Render Pass, Framebuffer, and Shaders with SPIR-V

[254]

Add the shader object in the program object to compile and link it. Upon the successful
linking of the glslang::GlslangToSpv() API called, convert the GLSL source program
into the intermediate shader (.spv) form.

Finally, upon exiting from the application, don't forget to delete the shaders. The shader can
be destroyed using the vkDestroyShaderModule() API. Refer to the following
implementation for more information:

void VulkanShader::destroyShaders()
{
 VulkanApplication* appObj = VulkanApplication::GetInstance();
 VulkanDevice* deviceObj = appObj->deviceObj;

 vkDestroyShaderModule(deviceObj->device,
 shaderStages[0].module, NULL);
 vkDestroyShaderModule(deviceObj->device,
 shaderStages[1].module, NULL);
}

Here is the syntax of the vkDestroyShaderModule() API:

VKAPI_ATTR void VKAPI_CALL vkDestroyShaderModule(
 VkDevice device,
 VkShaderModule shaderModule,
 const VkAllocationCallbacks* allocator);

The following table describes the various fields of this API:

Parameters Description

device This is the logical device to be used to destroy the shader module object.

shaderModule This is the handle of the shader module that needs to be destroyed.

allocator This controls the host memory deallocation process. For more information,
refer to the Host memory section in Chapter 5, Command Buffer and Memory
Management in Vulkan.

Buffer Resource, Render Pass, Framebuffer, and Shaders with SPIR-V

[255]

Summary
Following the image resource creation process from the previous chapter, this chapter
begins with another type of Vulkan resource called a buffer resource. We not only
understood the concept, but also implemented the geometry vertex buffer using it and also
looked into the Render Pass and framebuffer to define a unit render job in Vulkan. Finally,
we closed the chapter down with the introduction of SPIR-V, which is a new way of
specifying the shaders and kernels in the Vulkan. We implemented our first shader in the
SPIR-V form, where we input the vertex and fragment shader into GLSL and converted
them into the SPIR-V format using the Lunar-G SDK's glslangValidator.

In the next chapter, we will look at the descriptor and descriptor sets. These are the
interfaces between the created resources and the shaders. We will use a descriptor to
connect our created vertex buffer resource information to the SPIR-V shader implemented
in this chapter.

In the next chapter we will cover the pipeline state management in Vulkan. In this we
control the hardware setting by means of pipeline states (rasterizer state, blend state, and
depth stencil state) and plan the input data for rendering purposes.

8
Pipelines and Pipeline State

Management
In the previous chapter, we understood the buffer resource in Vulkan and used it to store
geometry data information in the form of a vertex buffer on the physical device memory.
We implemented a Render Pass and framebuffer object. Also, we learned about SPIR-V,
which is a new way of specifying shaders in Vulkan. In addition, we used the SPIR-V tool
library to convert GLSL shaders into the SPIR-V intermediate language at the time of
compilation.

We will take this chapter one notch up from what we've learned so far–we'll understand the
concept of a pipeline and pipeline state management. In this chapter, we will begin
describing the types of pipeline supported by the Vulkan API. There are two types of
pipeline–compute and graphics. These pipelines are created using pipeline cache objects,
which will be the next topic. As we approach the end of this chapter, we will implement the
graphics pipeline and thoroughly understand the various types of pipeline state associated
with it.

Pipelines and Pipeline State Management

[257]

In this chapter, we will cover the following topics:

Getting started with pipelines
Caching the pipeline objects with pipeline cache object (PCO)
Creating the graphics pipeline
Understanding the compute pipeline
Pipeline state objects in Vulkan
Implementing the pipeline

Getting started with pipelines
A pipeline refers to a succession of fixed stages through which a data input flows; each
stage processes the incoming data and hands it over to the next stage. The final product will
be either a 2D raster drawing image (the graphics pipeline) or updated resources (buffers or
images) with computational logic and calculations (the compute pipeline).

Vulkan supports two types of pipeline–graphics andcompute.

The graphics pipeline: This pipeline takes in a set of Vulkan commands through
command buffers and draws a 2D raster image of the 2D/3D scene.
The compute pipeline: This pipeline takes in Vulkan commands through
command buffers and processes them for computational work.

The following redrawn diagram from the official Vulkan specification (h t t p s ://w w w . k h r o n

o s . o r g /r e g i s t r y /v u l k a n /s p e c s /1. 0/x h t m l /v k s p e c . h t m l #p i p e l i n e s - b l o c k - d i a g r a m)
shows the Vulkan graphics and compute pipelines:

https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html#pipelines-block-diagram
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html#pipelines-block-diagram
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html#pipelines-block-diagram
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html#pipelines-block-diagram
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html#pipelines-block-diagram
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html#pipelines-block-diagram
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html#pipelines-block-diagram
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html#pipelines-block-diagram
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html#pipelines-block-diagram
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html#pipelines-block-diagram
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html#pipelines-block-diagram
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html#pipelines-block-diagram
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html#pipelines-block-diagram
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html#pipelines-block-diagram
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html#pipelines-block-diagram
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html#pipelines-block-diagram
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html#pipelines-block-diagram
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html#pipelines-block-diagram
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html#pipelines-block-diagram
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html#pipelines-block-diagram
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html#pipelines-block-diagram
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html#pipelines-block-diagram
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html#pipelines-block-diagram
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html#pipelines-block-diagram
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html#pipelines-block-diagram
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html#pipelines-block-diagram
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html#pipelines-block-diagram
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html#pipelines-block-diagram
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html#pipelines-block-diagram
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html#pipelines-block-diagram
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html#pipelines-block-diagram
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html#pipelines-block-diagram
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html#pipelines-block-diagram
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html#pipelines-block-diagram
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html#pipelines-block-diagram
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html#pipelines-block-diagram
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html#pipelines-block-diagram
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html#pipelines-block-diagram
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html#pipelines-block-diagram
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html#pipelines-block-diagram
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html#pipelines-block-diagram
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html#pipelines-block-diagram
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html#pipelines-block-diagram
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html#pipelines-block-diagram
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html#pipelines-block-diagram
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html#pipelines-block-diagram
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html#pipelines-block-diagram
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html#pipelines-block-diagram
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html#pipelines-block-diagram
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html#pipelines-block-diagram
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html#pipelines-block-diagram
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html#pipelines-block-diagram
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html#pipelines-block-diagram
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html#pipelines-block-diagram
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html#pipelines-block-diagram
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html#pipelines-block-diagram
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html#pipelines-block-diagram
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html#pipelines-block-diagram
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html#pipelines-block-diagram
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html#pipelines-block-diagram
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html#pipelines-block-diagram
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html#pipelines-block-diagram
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html#pipelines-block-diagram
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html#pipelines-block-diagram
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html#pipelines-block-diagram
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html#pipelines-block-diagram
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html#pipelines-block-diagram
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html#pipelines-block-diagram
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html#pipelines-block-diagram
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html#pipelines-block-diagram
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html#pipelines-block-diagram
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html#pipelines-block-diagram
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html#pipelines-block-diagram
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html#pipelines-block-diagram
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html#pipelines-block-diagram
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html#pipelines-block-diagram
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html#pipelines-block-diagram
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html#pipelines-block-diagram
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html#pipelines-block-diagram
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html#pipelines-block-diagram
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html#pipelines-block-diagram
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html#pipelines-block-diagram
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html#pipelines-block-diagram
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html#pipelines-block-diagram
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html#pipelines-block-diagram
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html#pipelines-block-diagram
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html#pipelines-block-diagram
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html#pipelines-block-diagram
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html#pipelines-block-diagram
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html#pipelines-block-diagram
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html#pipelines-block-diagram
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html#pipelines-block-diagram
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html#pipelines-block-diagram
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html#pipelines-block-diagram
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html#pipelines-block-diagram
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html#pipelines-block-diagram
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html#pipelines-block-diagram
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html#pipelines-block-diagram
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html#pipelines-block-diagram
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html#pipelines-block-diagram
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html#pipelines-block-diagram
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html#pipelines-block-diagram
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html#pipelines-block-diagram
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html#pipelines-block-diagram
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html#pipelines-block-diagram
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html#pipelines-block-diagram
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html#pipelines-block-diagram
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html#pipelines-block-diagram
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html#pipelines-block-diagram
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html#pipelines-block-diagram
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html#pipelines-block-diagram
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html#pipelines-block-diagram
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html#pipelines-block-diagram
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html#pipelines-block-diagram
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html#pipelines-block-diagram
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html#pipelines-block-diagram
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html#pipelines-block-diagram
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html#pipelines-block-diagram
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html#pipelines-block-diagram
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html#pipelines-block-diagram
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html#pipelines-block-diagram
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html#pipelines-block-diagram
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html#pipelines-block-diagram
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html#pipelines-block-diagram
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html#pipelines-block-diagram
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html#pipelines-block-diagram
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html#pipelines-block-diagram
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html#pipelines-block-diagram
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html#pipelines-block-diagram
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html#pipelines-block-diagram
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html#pipelines-block-diagram
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html#pipelines-block-diagram
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html#pipelines-block-diagram
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html#pipelines-block-diagram
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html#pipelines-block-diagram
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html#pipelines-block-diagram
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html#pipelines-block-diagram
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html#pipelines-block-diagram
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html#pipelines-block-diagram
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html#pipelines-block-diagram
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html#pipelines-block-diagram
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html#pipelines-block-diagram
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html#pipelines-block-diagram
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html#pipelines-block-diagram
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html#pipelines-block-diagram
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html#pipelines-block-diagram
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html#pipelines-block-diagram
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html#pipelines-block-diagram
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html#pipelines-block-diagram
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html#pipelines-block-diagram
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html#pipelines-block-diagram
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html#pipelines-block-diagram
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html#pipelines-block-diagram
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html#pipelines-block-diagram
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html#pipelines-block-diagram
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html#pipelines-block-diagram
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html#pipelines-block-diagram

Pipelines and Pipeline State Management

[258]

The pipeline journey begins at Input Assembler, where the input vertex data is assembled
in the form of a point, line, and triangle based on the primitive topology specified. Using
the Vertex Shader programmable stage, the input vertex data is transformed into a clip
space. The geometry is tessellated in the Tessellation Control Shader and Tessellation
Evaluation Shader assembler. Geometry Shader has the unique capability of producing
multiple primitives out of a single incoming primitive.

Pipelines and Pipeline State Management

[259]

Next, Primitive Assembler takes all the transformed coordinates from the previous stage
and arranges them in line with the specified draw or primitive-type (point, line, and
triangle) information provided at the input stage. The primitives are clipped when the
associated vertex coordinates fall outside the viewing volume, and when this happens, the
clipped fragments (outside the view) are discarded.

Rasterization is the process of converting transformed screen space primitives (point, line,
and triangle) into discrete elements called fragments. These fragments are controlled by the
next stage, called Fragment Shader. Fragment shaders perform computation on a single
fragment. These fragments finally become a part of the framebuffer, which is collectively
subjected to a number of conditional updates, such as depth testing, stenciling, and
fragment blending.

The buffer and image memory types can be processed in a separate pipeline in the form of a
1D/2D/3D workgroup called the compute pipeline. The compute pipeline is extremely
powerful in accomplishing jobs in parallel processing; it is primarily used in the field of
image processing and physics computation. Both the buffer and image memory can be
modified (read/write) by the compute pipeline.

This pipeline broadly consists of three concepts: pipeline state objects, pipeline cache objects,
and pipeline layouts. These can be used to effectively control the underlying pipeline
operations:

Pipeline state objects (PSO): The physical device or the GPU is capable of doing
several types of operation directly in the hardware. Such operations may include
rasterizers and conditional updates, such as blending the depth test, stenciling,
and so on. Vulkan offers the ability to control these hardware settings with the
help of PSOs. The other hardware-base-controlled operations may include the
assembly of the primitive topology type (point/line/triangle) on a given
geometrical shape, viewport control, and more.
Pipeline cache objects (PCOs): The pipeline cache provides a mechanism for
faster retrieval and reuse of stored pipelines. This gives an application a better
chance of avoiding the redundancy of creating similar or duplicate pipeline
objects.
Pipeline layouts: The buffer and images are indirectly connected to the shader
and can be accessed using shader resource variables. The resource variables are
connected to the buffer and image views. These resource variables are managed
through descriptors and the descriptor set layout. Within the pipeline, the
pipeline layouts manage the sequence of descriptor set layouts.

Pipelines and Pipeline State Management

[260]

A descriptor is an interface between the stored resource and the shader
stage. The resources are connected to the logical layout bindings defined
by the descriptor set layout, and the pipeline layout provides
unprecedented access to descriptor sets within the pipeline. Descriptors
will be covered in detail in Chapter 10, Descriptors and Push Constant,
where we will learn to use uniforms.

VulkanPipeline – the pipeline implementation
class
In this chapter, we are introducing a new user-defined class called VulkanPipeline. This
class will manage pipeline implementation for Vulkan applications. Pipeline creation is a
performance-critical path as it deals with a lot of pipeline state management objects;
therefore, the reusability of pipeline objects is highly advisable. The Vulkan pipeline
provides a pipeline-caching mechanism through a PCO. This reduces the overhead in
creating similar pipelines–the driver looks for a closer match and creates the new pipeline
using the base pipeline.

The pipeline implementation must be placed at a level where drawing an object can easily
access the PCO in a centralized manner to enhance the chance of pipeline reusability. For
this, there are two choices: place the VulkanPipeline class inside VulkanApplication (at
the application level, this may be the primary thread) or VulkanRenderer (for each
independent renderer thread). Both the options are fine as long as the application manages
the pipeline objects correctly with proper handling of memory leaks and thread
synchronization. This book follows the latter option, so we place VulkanPipeline in
VulkanRenderer to avoid thread synchronization, making it simpler for beginners.

The following block diagram shows a pictorial view that represents the application system
with the integration of the user-defined VulkanPipeline class:

Pipelines and Pipeline State Management

[261]

The following is the declaration of the VulkanPipeline header file (VulkanPipeline.h):

/************ VulkanPipeline.h ************/
class VulkanPipeline
{
public:
 // Creates the pipeline cache object and stores pipeline object
 void createPipelineCache();

 // Returns the created pipeline object, it takes the drawable
 // object which contains the vertex input rate and data
 // interpretation information, shader files, Boolean flag to
 // check depth is supported or not, and a flag to check if the
 // vertex input are available.
 bool createPipeline(VulkanDrawable* drawableObj,
 VkPipeline* pipeline, VulkanShader* shaderObj,
 VkBool32 includeDepth, VkBool32 includeVi = true);

 // Destruct the pipeline cache object
 void destroyPipelineCache();
 public:
 // Pipeline cache object
 VkPipelineCache pipelineCache;

 // References to other user defined class
 VulkanApplication* appObj;
 VulkanDevice* deviceObj;
};

The header file declaration contains the helper functions that allow you to create the
pipeline cache object (VkPipelineCache) and produce the pipelines (VkPipeline).

Caching pipeline objects with a PCO
A pipeline cache is a pool that stores baked pipelines. It enables an application to reduce the
pipeline creation overhead between pipeline runs and also between the subsequent
application run. The following is the difference between the two:

Between pipelines: The pipeline construction can be reused when new pipelines
are created. The pipeline cache object is passed as a parameter to the pipeline
creator API (vkCreateGraphicsPipelines). By doing so, the underlying
mechanism ensures that it reuses the pipeline if a similar one exists. This is
widely useful in the creation of drawing objects that are redundant in nature, for
example, paint brush strokes, sprites, mesh geometries, and so on.

Pipelines and Pipeline State Management

[262]

Between applications: While creating a pipeline, you deal with a lot of pipeline
state objects, which is an expensive path. Reusability across running applications
is a wise design and is efficient in terms of execution time and memory space. A
pipeline cache inside a Vulkan application can be effectively reused by serializing
the pipeline cache objects. The application retrieves the stored pipeline object
from the serialized pipeline cache and preinitializes it. In subsequent runs, the
same serialized PCOs can be reused across multiple application runs.

For more information on the specification and implementation of a pipeline cache object,
refer to the following subsections.

Creating a pipeline cache object
A PCO can be used to create either a graphics (vkCreateGraphicsPipelines) or compute
pipeline (vkCreateComputePipelines). Creating these pipelines with a PCO ensures the
reusability of the pipeline objects. If the PCO does not contain a similar pipeline, then it
creates a new one and adds it to its pool.

A PCO can be created using the vkCreatePipelineCache() API. Upon its successful
creation, it returns a VkPipelineCache object. This API accepts four parameters, as
described here:

VkResult vkCreatePipelineCache(
 VkDevice device,
 const VkPipelineCacheCreateInfo* pCreateInfo,
 const VkAllocationCallbacks* pAllocator,
 VkPipelineCache* pPipelineCache);

The following are the various parameters accepted by the vkCreatePipelineCache()
API:

Parameters Description

device This is an object of the logical device (of the type VkDevice) that is used
to create the pipeline cache object (VkPipelineCache).

pCreateInfo This is the VkPipelineCacheCreateInfo control structure that
contains the metadata or state information that will be used to create the
PCO object.

pAllocator This controls host memory allocation. For more information, refer to the
Host memory section in Chapter 5, Command Buffer and Memory
Management in Vulkan.

Pipelines and Pipeline State Management

[263]

pPipelineCache This returns the created VkPipelineCache object pointer.

The second parameter of the vkCreatePipelineCache() API is of the type
VkPipelineCacheCreateInfo; this control structure contains the state/metadata
information necessary to create and initialize the pipeline cache object. The following is the
syntax of this structure:

typedef struct VkPipelineCacheCreateInfo {
 VkStructureType sType;
 const void* pNext;
 VkPipelineCacheCreateFlags flags;
 size_t initialDataSize;
 const void* pInitialData;
} VkPipelineCacheCreateInfo;

Let's look at this structure's various fields:

Parameters Description

sType This is the type information of the control structure. It must be specified
as VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO.

pNext This could be a valid pointer to an extension-specific structure or NULL.

flags This field is reserved for future use.

initialDataSize This is the length of the data (in bytes) indicated by initialData. If
this field value is 0, then it signifies that the pipeline cache will be
initially empty. Then pInitialData is ignored.

pInitialData This field indicates the retrieved
datafrom some previously created pipeline cache. This will be used
for initializing the contents of the newly created pipeline cache object.
The initialization contents of the created pipeline cache object may
remain empty if the data of pInitialData is incompatible with the
device.

Merging pipeline caches
Two pipeline caches can be merged together into one using the
vkMergePipelineCaches() API. This API merges a destination pipeline cache into the
source pipeline cache. It intakes four parameters. The first parameter device is the logical
device for which the merging will be carried out. The number of source pipeline caches is
specified by pSrcCaches with a count equal to srcCacheCount. The final merging cache is

Pipelines and Pipeline State Management

[264]

stored in the destination pipeline cache called dstCache.

The following is the syntax of this API:

VkResult vkMergePipelineCaches(
 VkDevice device,
 VkPipelineCache dstCache,
 uint32_t srcCacheCount,
 const VkPipelineCache* pSrcCaches);

Retrieving data from pipeline caches
A pipeline cache object can save its information in the form of streams of bytes. This stored
information can be reused in future, when an application reruns or is executed again. The
pipeline cache data can be retrieved using the vkGetPipelineCacheData() API:

VkResult vkGetPipelineCacheData(
 VkDevice device,
 VkPipelineCache pipelineCache,
 size_t* dataSize,
 void* data);

The following table describes each parameter of this API:

Parameters Description

device This refers to the logical device that is used to create the pipeline cache
object.

pipelineCache This is the pipeline cache object from which the data is to be retrieved.

dataSize When data is NULL, this field is used to query the size of the pipeline cache
data in bytes from the pipelineCache object.

data When dataSize is non-zero, this API reads the dataSize bytes from the
pipelineCache object and retrieves the data.

The stored PCO information can be reused to preinitialize and populate the pipeline cache
objects when the application starts. The compilation results may depend on the vendor and
other device details. In order to ensure the application is compatible with the pipeline cache
data, the header information can be used.

Pipelines and Pipeline State Management

[265]

The retrieved data contains a header and a payload. The header provides the necessary
information about the written data to ensure there is compatibility when an application
runs the next time. The following diagram shows the format of the stored pipeline cache
object:

The header consists of five fields, which may change in line with the specification. The
header size is not fixed as per the specification but is read as the first four bytes from the
data. This byte information encodes the length of the entire pipeline cache object's retrieved
data header (in bytes), including each and every field in the header.

The following table specifies these fields' specification along with their size in bytes:

Offset Size Meaning

0 4 This specifies the pipeline cache header's length in bytes. This 4-byte array of
information is written with the least significant byte placed first in the sequence.

4 4 This represents the header version (VkPipelineCacheHeaderVersion) of the
pipeline cache. This is an array of bytes with the least significant byte placed
first.

8 4 This specifies the vendor ID, which is the same as
VkPhysicalDeviceProperties::vendorID. This is a 4-byte array with the
least significant byte placed first.

12 4 This specifies the device ID, which is the same as
VkPhysicalDeviceProperties::deviceID. This is also a 4-byte array with
the least significant byte placed first.

16 4 This specifies a unique identifier that represents the pipeline cache object. The ID
is equal to VkPhysicalDeviceProperties::pipelineCacheUUID.

Pipelines and Pipeline State Management

[266]

Implementing the PCO
The PCO is implemented in VulkanPipeline.cpp in the createPipelinceCache()
function. VkPipelineCacheCreateInfo is initialized and passed to the
vkCreatePipelineCache() API. The initialDataSize is 0 and pInitialData is NULL,
as there is no old, retrievable PCO data to be used in the initialization of the created PCO:

void VulkanPipeline::createPipelineCache()
{
 VkResult result;
 VkPipelineCacheCreateInfo pipelineCacheInfo;
 pipelineCacheInfo.sType = VK_STRUCTURE_TYPE_PIPELINE
 _CACHE_CREATE_INFO;
 pipelineCacheInfo.pNext = NULL;
 pipelineCacheInfo.initialDataSize = 0;
 pipelineCacheInfo.pInitialData = NULL;
 pipelineCacheInfo.flags = 0;

 // Create the pipeline cache using VkPipelineCacheCreateInfo
 result = vkCreatePipelineCache(deviceObj->device,
 &pipelineCacheInfo, NULL, &pipelineCache);
 assert(result == VK_SUCCESS);
}

Creating a graphics pipeline
A graphics pipeline consists of programmable, fixed-function pipeline stages, Render
Passes, subpasses, and pipeline layouts. The programmable stages include multiple shader
stages, such as the vertex, fragment, tessellation, geometry, and compute shaders. The
fixed-function states consist of multiple pipeline state objects (PSOs) that represent the
dynamic, vertex input, input assembly, rasterization, blending, viewport, multisampling,
and depth-stencil states.

A graphics pipeline object (VkPipeline) is created using the
vkCreateGraphicsPipelines() API. This API intakes the programmable stages, fixed-
function pipeline stages, and pipeline layouts through a metadata control structure called
VkGraphicsPipelineCreateInfo. The following is the syntax of the
vkCreateGraphicsPipelines() API:

VkResult vkCreateGraphicsPipelines(
 VkDevice device,
 VkPipelineCache pipelineCache,
 uint32_t createInfoCount,

Pipelines and Pipeline State Management

[267]

 const VkGraphicsPipelineCreateInfo* pCreateInfos,
 const VkAllocationCallbacks* pAllocator,
 VkPipeline* pPipelines);

Let's look at the various fields of the vkCreateGraphicsPipelines() API:

Parameters Description

device This is the logical device for which the pipeline object is to be created.

pipelineCache This is a valid pointer to the pipeline cache object. If this value is NULL,
then the pipeline cache will not be used to create the pipeline object.

createInfoCount This represents the number of graphics pipelines
(VkGraphicsPipelineCreateInfo) in the pCreateInfos array.

pCreateInfos This is the VkGraphicsPipelineCreateInfo array.

pAllocator This field controls host memory allocation. For more information, refer
to the Host memory section in Chapter 5, Command Buffer and Memory
Management in Vulkan.

pPipelines This returns the VkPipeline object array containing the graphics
pipeline objects. The number of objects depends on createInfoCount.

Here is the syntax of the metadata control structure
VkGraphicsPipelineCreateInfo, we discussed earlier:

typedef struct VkGraphicsPipelineCreateInfo {
 VkStructureType sType;
 const void* pNext;
 VkPipelineCreateFlags flags;
 uint32_t stageCount;
 const VkPipelineShaderStageCreateInfo* pStages;
 const VkPipelineVertexInputStateCreateInfo* pVertexInputState;
 const VkPipelineInputAssemblyStateCreateInfo* pInputAssemblyState;
 const VkPipelineTessellationStateCreateInfo* pTessellationState;
 const VkPipelineViewportStateCreateInfo* pViewportState;
 const VkPipelineRasterizationStateCreateInfo* pRasterizationState;
 const VkPipelineMultisampleStateCreateInfo* pMultisampleState;
 const VkPipelineDepthStencilStateCreateInfo* pDepthStencilState;
 const VkPipelineColorBlendStateCreateInfo* pColorBlendState;
 const VkPipelineDynamicStateCreateInfo* pDynamicState;
 VkPipelineLayout layout;
 VkRenderPass renderPass;
 uint32_t subpass;
 VkPipeline basePipelineHandle;
 int32_t basePipelineIndex;
} VkGraphicsPipelineCreateInfo;

Pipelines and Pipeline State Management

[268]

Let's look at the various fields for this structure:

Parameters Description

sType This is the type information of this control structure. It must be
specified as
VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO.

pNext This could be a valid pointer to an extension-specific structure or
NULL.

flags This field provides hints to help the implementation understand
how the pipeline will be generated. These hints are provided
using the VkPipelineCreateFlagBits enum.
The VkPipelineCreateFlagBits enum has three fields:
•
VK_PIPELINE_CREATE_DISABLE_OPTIMIZATION_BIT:
The pipelines created from this flag will not be optimized. Since
there is no optimization path, the overall time to create this pipeline
may be reduced.
• VK_PIPELINE_CREATE_ALLOW_DERIVATIVES_BIT:
The pipeline created using this flag is permitted to be the parent of
the subsequent pipelines that are going to be created using the
vkCreateGraphicsPipelines() API.
• VK_PIPELINE_CREATE_DERIVATIVE_BIT: The pipeline
created using this flag becomes the child of the previously created
pipeline.

stageCount This indicates the number of shaders to be used in the current
pipeline.

pStages This field indicates what all shader stages need to be included in
the pipeline using an array of
VkPipelineShaderStageCreateInfo. The total size of this
array is equal to stageCount.

pVertexInputState This field indicates the vertex input pipeline state through the
VkPipelineVertexInputStateCreateInfo pointer object.

pInputAssemblyState This field determines the behavior of the input assembly state using
the VkPipelineInputAssemblyStateCreateInfo pointer
object.

Pipelines and Pipeline State Management

[269]

pTessellationState This field indicates the tessellation control and evaluation shader
stages' states. These states are specified using the
VkPipelineTessellationStateCreateInfo pointer object.
This must be NULL if the tessellation control and evaluation shader
stages are not included in the pipeline.

pViewportState This field indicates the vertex states through the
VkPipelineViewportStateCreateInfo pointer object. This
field must be NULL if the pipeline has rasterization disabled.

pRasterizationState This field indicates the pipeline rasterization state using the
VkPipelineRasterizationStateCreateInfo structure's
pointer object.

pMultisampleState This refers to the VkPipelineMultisampleStateCreateInfo
object pointer. This field must be NULL if the pipeline has
rasterization disabled.

pDepthStencilState This field indicates the pipeline's depth/stencil state by using a
pointer to the VkPipelineDepthStencilStateCreateInfo
control structure. This would be NULL if rasterization is disabled or
the subpass in the Render Pass does not use a depth/stencil
attachment.

pColorBlendState This is a pointer to VkPipelineColorBlendStateCreateInfo
indicating the pipeline color's blend state.
This field must be NULL if the pipeline has rasterization disabled
or if the subpass in the Render Pass does not use any color
attachments.

pDynamicState This is a pointer to VkPipelineDynamicStateCreateInfo,
which indicates the pipeline's dynamic states. This field can be
changed independently of other pipeline states. If no dynamic
states are specified, then this field can be specified as NULL,
notifying the pipeline that there is no dynamic states to be
considered in this pipeline.

layout This field specifies the binding locations used by the pipeline and
the descriptor sets.

renderPass This field specifies the subpasses and attachments that will be used
by the pipeline.

subPass This notifies the pipeline about the Render Pass's subpass index
under which it will be used.

Pipelines and Pipeline State Management

[270]

basePipelineHandle This field specifies the base pipeline from where this pipeline will
be derived.

basePipelineIndex This field specifies the index of the pCreateInfos parameter in
the base pipeline. It will be used to derive this pipeline object.

Implementing a graphics pipeline
Graphics pipelines are implemented in the createPipeline() function of
VulkanPipeline. This function takes four parameters. The first parameter contains the
vertex input and data interpretation. The second parameter contains the return value in
which the array of pipelines will be created. The third parameter is a Boolean flag indicating
depth testing. And the last parameter is used to specify whether to consider the vertex input
or not.

The graphics pipeline consists of several pipeline state objects, render passes, shader
objects, and subpasses, as shown in the following diagram. The implementation of the
pipeline is done by creating a VkGraphicsPipelineCreateInfo object (pipelineInfo)
and specifying all the various state objects, shader objects, and render pass object into it.
Finally, the pipeline object is consumed by the vkCreateGraphicsPipelines() API to
create the pipeline. The following diagram shows the graphics pipeline and all its interface
controllers:

Pipelines and Pipeline State Management

[271]

This is the code implementation of the graphics pipeline object:

bool VulkanPipeline::createPipeline(VulkanDrawable* drawableObj,
VkPipeline* pipeline, VulkanShader* shaderObj, VkBool32 includeDepth,
VkBool32 includeVi)
{
 // Please refer to Dynamic State for more info
 VkPipelineDynamicStateCreateInfo dynamicState = {};

 // Please refer to Vertex Input States subsection for more info
 VkPipelineVertexInputStateCreateInfo vertexInputStateInfo = {};
 . . .

 // Please refer to Input Assembly States subsection for more info
 VkPipelineInputAssemblyStateCreateInfo inputAssemblyInfo = {};

 // Please refer to Rasterization State subsection for more info
 VkPipelineRasterizationStateCreateInfo rasterStateInfo = {};

 // Please refer to Color Blend Attachment for more info
 VkPipelineColorBlendAttachmentState
 colorBlendAttachmentStateInfo[1] = {};

 // Please refer to Color Blend State subsection for more info
 VkPipelineColorBlendStateCreateInfo colorBlendStateInfo = {};

 // Please refer to Viewport State subsection for more info
 VkPipelineViewportStateCreateInfo viewportStateInfo = {};

 // Please refer to Depth Stencil state subsection for more info
 VkPipelineDepthStencilStateCreateInfo depthStencilStateInfo = {};

 // Please refer to Multi Sample state subsection for more info
 VkPipelineMultisampleStateCreateInfo multiSampleStateInfo = {};

 // Populate the VkGraphicsPipelineCreateInfo structure to specify
 // programmable stages, fixed-function pipeline stages render
 // pass, sub-passes and pipeline layouts
 VkGraphicsPipelineCreateInfo pipelineInfo = {};
 pipelineInfo.sType =
 VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO;
 pipelineInfo.pVertexInputState = &vertexInputStateInfo;
 pipelineInfo.pInputAssemblyState = &inputAssemblyInfo;
 pipelineInfo.pRasterizationState = &rasterStateInfo;
 pipelineInfo.pColorBlendState = &colorBlendStateInfo;
 pipelineInfo.pTessellationState = NULL;
 pipelineInfo.pMultisampleState = &multiSampleStateInfo;
 pipelineInfo.pDynamicState = &dynamicState;

Pipelines and Pipeline State Management

[272]

 pipelineInfo.pViewportState = &viewportStateInfo;
 pipelineInfo.pDepthStencilState = &depthStencilStateInfo;
 pipelineInfo.pStages = shaderObj->shaderStages;
 pipelineInfo.stageCount = 2;
 pipelineInfo.renderPass = appObj->rendererObj->
 renderPass;
 pipelineInfo.subpass = 0;

 // Create the pipeline using the meta-data store in the
 // VkGraphicsPipelineCreateInfo object
 if (vkCreateGraphicsPipelines(deviceObj->device, pipelineCache,
 1, &pipelineInfo, NULL, pipeline) == VK_SUCCESS){
 return true;
 }
 else {
 return false;
 }
}

Destroying pipelines
A created pipeline can be destroyed using the vkDestroyPipeline API. This API accepts
three parameters. The first parameter specifies the logical device (VkDevice) that will be
used to destroy the pipeline. The second parameter is an object of pipeline (VkPipeline),
which is intended to be destroyed. The third parameter pAllocator controls host memory
allocation. For more information, refer to the Host memory section Chapter 5, Command
Buffer and Memory Management in Vulkan:

void vkDestroyPipeline(
 VkDevice device,
 VkPipeline pipeline,
 const VkAllocationCallbacks* pAllocator);

Understanding compute pipelines
A compute pipeline consists of a single static compute shader stage and the pipeline layout.
The compute shader stage is capable of doing massive parallel arbitrary computations. On
the other hand, the pipeline layout connects the compute pipeline to the descriptor using
the layout bindings. The vkCreateComputePipeline() API can be used to create a
compute pipeline:

VkResult vkCreateComputePipelines(
 VkDevice device,

Pipelines and Pipeline State Management

[273]

 VkPipelineCache pipelineCache,
 uint32_t createInfoCount,
 const VkComputePipelineCreateInfo* pCreateInfos,
 const VkAllocationCallbacks* pAllocator,
 VkPipeline* pPipelines);

The following table describes the various fields of the vkCreateGraphicsPipelines()
API:

Parameters Description

device This is the logical device (VkDevice) from which the compute pipeline
object is going to be created.

pipelineCache This is a valid pointer to the pipeline cache object. If this value is NULL,
then the pipeline cache will not be used to create the compute pipeline
object.

createInfoCount This represents the number of compute pipelines
(VkComputePipelineCreateInfo) in the pCreateInfos array.

pCreateInfos This refers to the VkComputePipelineCreateInfo structure array's
objects.

pAllocator This field controls host memory allocation. For more information, refer
to the Host memory section in Chapter 5, Command Buffer and Memory
Management in Vulkan.

pPipelines This returns the VkPipeline object array containing the number of
compute pipelines created.

The VkComputePipelineCreateInfo structure defines the state information of the
compute pipeline that is consumed by the vkCreateComputePipelines() API to create
the compute pipeline object. The syntax of this API is as follows:

typedef struct VkComputePipelineCreateInfo {
 VkStructureType type;
 const void* next;
 VkPipelineCreateFlags flags;
 VkPipelineShaderStageCreateInfo stage;
 VkPipelineLayout layout;
 VkPipeline basePipelineHandle;
 int32_t basePipelineIndex;
} VkComputePipelineCreateInfo;

Pipelines and Pipeline State Management

[274]

Let's look at the various fields of the VkComputePipelineCreateInfo structure:

Parameters Description

sType This is the type information of the VkComputePipeline-
CreateInfo structure. It must be specified as
VK_STRUCTURE_TYPE_COMPUTE_PIPELINE-_CREATE_INFO.

pNext This could be a valid pointer to an extension-specific structure or
NULL.

flags This field provides the hints that help the implementation
understand how the pipeline will be generated. These hints are
provided in the form of the VkPipelineCreateFlagBits enum.
The VkPipelineCreateFlagBits enum has three fields:
• VK_PIPELINE_CREATE_DISABLE_OPTIMIZATION_BIT:
The compute pipeline created from this flag will not be optimized. In
the absence of the optimization path, the overall time to create the
pipeline is expected to be reduced.
• VK_PIPELINE_CREATE_ALLOW_DERIVATIVES_BIT:
The compute pipeline created using this flag is permitted to be the
parent of the subsequent compute pipelines that are going to be
created using the vkCreateGraphicsPipelines() API.
• VK_PIPELINE_CREATE_ DERIVATIVE_BIT: The compute
pipeline created using this flag becomes the child of the previously
created pipeline.

stage This specifies the compute shader using the
VkPipelineShaderStageCreateInfo structure.

layout This field specifies the binding locations used by the pipeline and the
descriptor sets.

basePipelineHandle This field specifies the base pipeline from where this pipeline will be
derived.

basePipelineIndex This field specifies the index of the pCreateInfos parameter in the
base pipeline that will be used to derive this pipeline object.

Pipelines and Pipeline State Management

[275]

The VkPipelineShaderStageCreateInfo structure used in the compute pipeline
specifies vital information about the compute shader that is going to be used in the compute
pipeline. It contains the type of shader, which must be VK_SHADER_STAGE_COMPUTE_BIT.
In addition, it also specifies the shader source in the form of a shader module and the entry
point function in the compute shader source:

typedef struct VkPipelineShaderStageCreateInfo {
 VkStructureType sType;
 const void* pNext;
 VkPipelineShaderStageCreateFlags flags;
 VkShaderStageFlagBits stage;
 VkShaderModule module;
 const char* pName;
 const VkSpecializationInfo* pSpecializationInfo;
 } VkPipelineShaderStageCreateInfo;

Let's look at the various fields of this structure:

Parameters Description

sType This is the type information of this structure. It must be specified as
VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO.

pNext This could be a valid pointer to an extension-specific structure or
NULL.

flags This field is reserved for future use.

stage This specifies the pipeline stage using the
VkShaderStageFlagBits structure.

Module This is the VkShaderModule object, which contains the intended
compute shader.

pName This is the name (UTF-8 formatted string) of the entry point in the
compute shader.

pSpecializationInfo This is the VkSpecializationInfo pointer object.

Pipeline State Objects (PSO) in Vulkan
Pipeline state objects in a pipeline are the means by which the hardware settings of the
physical devices are controlled. There are various types of pipeline state objects specified in
the pipeline; which work in a predefined order. The input data and resources in these stages
are subjected to changes in line with user-specified behavior. Each stage processes the input
and passes it on to the next one. Depending upon application requirements, the pipeline

Pipelines and Pipeline State Management

[276]

state stage can be bypassed as per the user's choice. This is entirely configurable through
VkComputePipelineCreateInfo.

Let's have an overview of these pipeline state objects before we cover them in detail:

The dynamic state: This specifies the dynamic states used in this pipeline
The vertex input state: This specifies the data input rate and its interpretation
The input assembly state: This assembles the vertex data into the primitive's
topology (line, point, and triangle variants)
The rasterization state: This operation is related to rasterization, such as polygon
fill mode, front facing information, culling mode information, and so on
The color blend state: This specifies the blending factor and operation between
the source and destination fragments
The viewport state: This defines viewports, scissors, and dimensions
The depth/stencil state: This specifies how to carry out the depth/stencil
operation
The multisampling state: This controls the samples to be used in pixel depiction
during the rasterization for anti-aliasing purposes

The following diagram specifies each stage in the PSO:

In the following subsections, we will discuss each stage in detail. We will cover the concept
of pipeline states, their official specification, and sample code implementation.

We will implement all the pipeline state objects in VulkanPipeline class inside the
createPipeline() function. This function first sets up the pipeline state objects, these
objects are used to create the graphics pipeline.

Pipelines and Pipeline State Management

[277]

Dynamic states
The dynamic state specifies the total number of dynamic states used in the present pipeline
and their respective objects in the pipeline. It includes the viewport, stencil, line widths,
blending constants, stencil comparison masks, and so on. Each dynamic state in Vulkan is
represented using the VkDynamicState enum.

The updates on dynamic states are not expensive; in contrast, the static
states must be carefully set to avoid the performance-critical paths.

The following is the syntax of the dynamic state API:

typedef struct VkPipelineDynamicStateCreateInfo {
 VkStructureType sType;
 const void* pNext;
 VkPipelineDynamicStateCreateFlags flags;
 uint32_t dynamicStateCount;
 const VkDynamicState* pDynamicStates;
} VkPipelineDynamicStateCreateInfo;

Let's look at the various fields of this structure:

Parameters Description

sType This field specifies the type of the current structure. The value of this
field must be VK_STRUCTURE_TYPE_-
PIPELINE_DYNAMIC_STATE_CREATE_INFO.

pNext This could be a valid pointer to an extension-specific structure or NULL.

flags This is a reserved field for future use.

dynamicStateCount This refers to the count of VkDynamicState objects specified in
pDynamicStates.

pDynamicStates This is an array of VkDynamicState enums that represent all the
dynamic states that will use the values from the dynamic state
command instead of the values from the pipeline state's CreateInfo
command.

In the next subsection, we will use this API and implement dynamic states.

Pipelines and Pipeline State Management

[278]

Implementing dynamic states
The very first pipeline state implemented in the VulkanPipeline::createPipeline()
function is the dynamic state. First, it creates an empty array of VkDynamicState called
dynamicStateEnables and fills it up with the dynamic states. This array informs the
pipeline about those states that can be changed at runtime. For example, the following
implementation contains two dynamic states: viewport (VK_DYNAMIC_STATE_VIEWPORT)
and scissor (VK_DYNAMIC_STATE_SCISSOR). This implementation specifies the viewport
and scissor parameters and that they can be changed at runtime.

The dynamicStateEnables is pushed into the VkPipelineDynamicStateCreateInfo
control structure object, which will later be consumed by pipelineInfo
(VkGraphicsPipelineCreateInfo) to create the graphics pipeline. The following is the
code implementation:

 /********** VulkanPipeline.cpp /**********/
 // Inside VulkanPipeline::createPipeline()
 // Initialize the dynamic states, initially it's empty
 VkDynamicState dynamicStateEnables[VK_DYNAMIC_STATE_RANGE_SIZE];
 memset(dynamicStateEnables, 0, sizeof (dynamicStateEnables));

 // Specify the dynamic state information to pipeline through
 // VkPipelineDynamicStateCreateInfo control structure.
 VkPipelineDynamicStateCreateInfo dynamicState = {};
 dynamicState.sType =
 VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO;
 dynamicState.pNext = NULL;
 dynamicState.pDynamicStates = dynamicStateEnables;
 dynamicState.dynamicStateCount = 0;

 // Specify the dynamic state count and VkDynamicState enum
 // stating which dynamic state will use the values from dynamic
 // state commands rather than from the pipeline state creation info.
 dynamicStateEnables[dynamicState.dynamicStateCount++] =
 VK_DYNAMIC_STATE_VIEWPORT;
 dynamicStateEnables[dynamicState.dynamicStateCount++] =
 VK_DYNAMIC_STATE_SCISSOR;

Once the dynamic states are constructed, we can go ahead and build the next pipeline state
object. The next stage in this process is the vertex input stage, which is described in the
following section.

Pipelines and Pipeline State Management

[279]

Vertex input states
The vertex input state specifies input binding (VkVertexInputBindingDescription) and
vertex attribute descriptors (VkVertexInputAttributeDescription). Input binding
helps the pipeline access the resource through the binding at the rate at which the data is
consumed. On the other hand, the vertex attribute descriptor stores important information
such as the location, binding, format, and so on. This is used to interpret vertex data. For
more information, refer to the Implementing the buffer resource – creating the vertex buffer for the
geometry section in Chapter 7, Buffer Resource, Render Pass, Framebuffer, and Shaders with
SPIR-V.

The preceding information is wrapped into the
VkPipelineVertexInputStateCreateInfo structure object, which will be used later to
create the graphics pipeline. For a detailed explanation of this structure, refer to the
following specification. Here's the syntax of this structure:

typedef struct VkPipelineVertexInputStateCreateInfo {
 VkStructureType sType;
 const void* pNext;
 VkPipelineVertexInputStateCreateFlags flags;
 uint32_t vertexBindingDescriptionCount;
 const VkVertexInputBindingDescription*
 pVertexBindingDescriptions;
 uint32_t vertexAttributeDescriptionCount;
 const VkVertexInputAttributeDescription*
 pVertexAttributeDescriptions;
} VkPipelineVertexInputStateCreateInfo;

The following table specifies each field of this control structure:

Parameters Description

sType This is the type information of the structure. It must be specified as
VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO.

pNext This could be a valid pointer to an extension-specific structure or NULL.

flags This field is reserved for future implementation.

vertexBindingDescriptionCount This is the total number of vertex binding instances specified in the
VkVertexInputBindingDescription object
(pVertexBindingDescriptions).

pVertexBindingDescriptions This is a pointer to an array of VkVertexInputBindingDescription
objects.

vertexAttributeDescriptionCount This is the total number of vertex attribute descriptions specified in the
VkVertexInputAttributeDescription object
(pVertexAttributeDescriptions).

Pipelines and Pipeline State Management

[280]

pVertexAttributeDescriptions This is a pointer to an array of VkVertexInputAttributeDescription.

Let's understand the implementation of the vertex input state in the following subsection.

Implementing vertex input states
In the VulkanPipeline::createPipeline() function, the vertex input states are
implemented as demonstrated in the following code. This state helps the pipeline
understand how the data sent will be interpreted using the vertex attribute descriptions
specified in the VkVertexInputAttributeDescription object. Another piece of
information it contains is the rate at which the vertex data will be consumed for processing,
which is specified in the input binding description
(VkVertexInputBindingDescription). There are two ways in which the data can be
consumed: per-vertex or per-instance basis. The last createpipelines argument
drawableObj (of the type VulkanDrawable) contains the vertex attribute descriptions and
vertex input binding description:

 /********** VulkanPipeline.cpp **********/
 // Inside VulkanPipeline::createPipeline(VulkanDrawable*
 // drawableObj, VkPipeline* pipeline, VulkanShader*
 // shaderObj, VkBool32 includeDepth, VkBool32 includeVi)
 VkPipelineVertexInputStateCreateInfo vertexInputStateInfo = {};
 vertexInputStateInfo.sType =
 VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO;
 vertexInputStateInfo.pNext = NULL;
 vertexInputStateInfo.flags = 0;
 vertexInputStateInfo.vertexBindingDescriptionCount = 1;
 vertexInputStateInfo.pVertexBindingDescriptions =
 &drawableObj->viIpBind;
 vertexInputStateInfo.vertexAttributeDescriptionCount = 2;
 vertexInputStateInfo.pVertexAttributeDescriptions =
 drawableObj->viIpAttrb;

Following the vertex input state, we have the input assemble state. This stage assembles the
incoming data into meaningful shapes with the help of basic primitives, such as a point,
line, or triangle.

Pipelines and Pipeline State Management

[281]

Input assembly states
When the graphics pipeline receives the vertex data, it is very similar to a bucket filled with
unassembled Lego bricks. These vertices are connected in the form of point, line, and
triangle variants to give any arbitrary shape as per the user specification. This shape then
affects the rasterization stage to produce the corresponding fragments associated with the
shape primitives. This whole process is similar to assembling Lego bricks to make a sensible
geometrical shape out of them.

These vertices assemble into primitives at a stage called input assembly, which is specified
using the VkPipelineInputAssemblyStateCreateInfo structure. This contains the
necessary primitive topology information to help vertices to connect with each other, based
on the rules specified. The input assembly structure specifies the topology in the
VkPrimitiveTopology structure. Refer to the following syntax and the implementation:

typedef struct VkPipelineInputAssemblyStateCreateInfo {
 VkStructureType sType;
 const void* pNext;
 VkPipelineInputAssemblyStateCreateFlags flags;
 VkPrimitiveTopology topology;
 VkBool32 primitiveRestartEnable;
} VkPipelineInputAssemblyStateCreateInfo;

Let's look at the various fields of this structure:

Parameters Description

type This is the type information of this control structure. It must be specified as
VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO.

next This could be a valid pointer to an extension-specific structure or NULL.

flag This field is reserved for future implementation.

topology This field specifies the type of the primitive topology being used, using the
VkPrimitiveTopology enums.

primitiveRestartEnable This Boolean flag determines whether a special marker or vertex index is used
as the primitive restart feature. The special index value should either be
0xFFFFFFFF or 0xFFFF when vkCmdBindIndexBuffer is
VK_INDEX_TYPE_UINT32 or VK_INDEX_TYPE_UINT16, respectively. For list-
based topologies, primitive restart is not applicable.

Pipelines and Pipeline State Management

[282]

Implementing input assembly states
Specify the primitive topology for the drawing object using the
VkPipelineInputAssemblyStateCreateInfo function in
VulkanPipeline::createPipeline(). In the following implementation, we used
VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, which uses a set of three vertices to produce a
filled triangle. Next, we specify whether the primitive restart feature is enabled or not:

 /********** VulkanPipeline.cpp /**********/
 // Inside VulkanPipeline::createPipeline()
 VkPipelineInputAssemblyStateCreateInfo inputAssemblyInfo = {};
inputAssemblyInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_-
ASSEMBLY_STATE_CREATE_INFO;
 inputAssemblyInfo.pNext = NULL;
 inputAssemblyInfo.flags = 0;
 inputAssemblyInfo.primitiveRestartEnable = VK_FALSE;
 inputAssemblyInfo.topology =VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST;

Let's understand what primitive restart is in detail.

Primitive restart
Primitive restart are applicable to only index geometries and used with
(vkCmdDrawIndexed and vkCmdDrawIndexedIndirect) drawing APIs.

This feature uses a special marker in a single index array data to recognize disconnected
geometries of the same drawing type in a single batch. This is useful in cases where you
may have multiple small drawing geometries with a low number of vertices; these multiple
geometries can be combined into one index array with each geometry separated using the
special reset marker.

The marker used by the primitive restart feature to separate geometries is the highest value
of the data type unsigned short (0xFFFF (65535)) or unsigned int (0xFFFFFFFF
(4294967295)); with these, the element index array is specified:

Applicable topology: The primitive restart feature is applicable in the following
topologies; the key rule to remember is that it is not applicable on list-type
primitive topologies. For more information on topologies, refer to the next
section, Primitive topologies:

VK_PRIMITIVE_TOPOLOGY_LINE_STRIP

VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP

VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN

VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY

Pipelines and Pipeline State Management

[283]

VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY

Usage: The primitive restart feature can be used by enabling the
primitiveRestartEnable field (with VK_TRUE) of the
VkPipelineInputAssemblyStateCreateInfo structure and specifying a valid
topology in the topology field of the same structure.

Let's see the effect of primitive restart on a triangle strip topology. The following diagram
uses a set of 11 continuous indices to draw a long and single geometry shape. These indices
do not contain any primitive restart markers:

However, interestingly, when the 5th index (4) is replaced using the primitive restart marker
0xFFFF, then it divides this single index list into two. The first half (left of the reset marker)
is a new geometry shape that is disconnected from the second half (right of the reset
marker), producing another new shape. The Vulkan implementation marches through the
start of the index list; when it finds the reset marker, it disconnects the visited indices from
the rest of the list and treats them as a separate index list to form a new disconnected shape,
as shown in the following image:

Pipelines and Pipeline State Management

[284]

In the next section, we will understand the Vulkan topology and learn about the basic
primitives: point, line, and triangle and their related variants.

Primitive topologies
The primitive topology defines the rules that are applied to connect the vertices to produce
arbitrary shapes. These shapes comprise a single or several basic primitives: points, lines,
and triangles. A primitive topology is specified using VkPrimitiveTopology:

typedef enum VkPrimitiveTopology {
 VK_PRIMITIVE_TOPOLOGY_POINT_LIST = 0,
 VK_PRIMITIVE_TOPOLOGY_LINE_LIST = 1,
 VK_PRIMITIVE_TOPOLOGY_LINE_STRIP = 2,
 VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST = 3,
 VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP = 4,
 VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN = 5,
 VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY = 6,
 VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY = 7,
 VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY = 8,
 VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY = 9,
 VK_PRIMITIVE_TOPOLOGY_PATCH_LIST = 10,
} VkPrimitiveTopology;

Primitive topologies can be divided into two types: adjacency and non-adjacency. In the
former type, special mathematical rules are used to identify adjacent vertices in a set of
vertices that are used for drawing primitives. The adjacent vertices are accessible in the
geometric shaders. On the other hand, the latter type does not have the concept of
adjacency vertices.

Pipelines and Pipeline State Management

[285]

Primitives topologies with no adjacency
Let's take a quick look at each of these primitives in the following table:

Primitive topology types Description

VK_PRIMITIVE_TOPOLOGY_POINT_LIST Each incoming vertex position represents a
point primitive. For this, the provoking vertex
index is i.

VK_PRIMITIVE_TOPOLOGY_LINE_LIST Each pair of vertices is used to render a line
between them. For this, the provoking vertex
index is 2i.

VK_PRIMITIVE_TOPOLOGY_LINE_STRIP Each vertex makes a line between itself and
the vertex that precedes it. For this, the
provoking vertex index is i.

VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST A set of three vertices is used to form a filled
triangle. For this, the provoking vertex index
is 3i.

Pipelines and Pipeline State Management

[286]

VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP Every vertex makes a triangle with the
preceding two vertices. For this, the provoking
vertex index is i.

VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN Every vertex makes a triangle with the first
vertex and the vertex that precedes it. This
generates a fan-like pattern. For this, the
provoking vertex index is i+1.

Primitives topologies with adjacency
In this section, we will understand line and triangle primitives with the adjacency rule:

VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY: This enum type
defines a line list with adjacency. Here, for a given N number of vertices, each of
the 4i+1st and 4i+2nd vertices is used to draw a line segment. The 4i+0th and 4i+3rd

vertices are considered as adjacency vertices of the 4i+1st and 4i+2nd vertices,
respectively; here, i ranges from 0 to N-1. If the geometry shader stage is active,
then these adjacency vertices are accessible in the geometry shader; if not, they
are ignored:

Pipelines and Pipeline State Management

[287]

VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY: This type of line
enum defines a line strip with adjacency. For a given N+3 vertices, each of the i+1st

to i+2nd vertices are used to draw a line segment. The number of vertices must be
more than four; otherwise, the drawing is ignored. For each line segment i, the
i+0th and i+3rd vertices are considered the adjacency vertices of the i+1st and 4i+2nd

vertices, respectively.

VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY: This enum type
defines the triangle list with the adjacency. Here, for a given 6n+k vertices, the 6ith,
6i+2nd, and 6i+4th vertices resolve into a triangle (refer to the following diagram: 0,
2 and 4), where i ranges from 0, 1, 2,… to n-1, and k could be either 0, 1, 2, 3, 4, or
5. If k is not zero, then the last k vertices are ignored.

For each determined triangle, the i, 6i+1st, 6i+3rd, and 6i+5st vertices (refer to
the following diagram: 0, 1, 3 and 5) have their adjacent edges produced by
the pair of vertices 6i and 6i+2nd, 6i+2nd and 6i+4th, and 6i+4th and 6ith. In the
diagram, these adjacent edges are represented by 0 to 2, 2 to 4, and 4 to 6. If
the geometry shader stage is active, then the adjacent vertices of each triangle
are accessible in a geometry shader; if not, they will be ignored.

VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY: This is another
type of adjacency triangle enum. For a given 2(n+2)+k vertices, there are n
triangles drawn such that k can take either 0 or 1. The final vertex is ignored if k is
equal to 1. If the geometry shader stage is active, then the adjacent vertices of
each triangle are accessible in a geometry shader; if not, they are ignored.

Pipelines and Pipeline State Management

[288]

The following rule table describes the triangle strip with the adjacency vertices' drawing
order for each triangle:

The following diagram shows the rendering of the primitive under the triangle strip with
the adjacency rule:

In this next section, we will turn primitives into fragments using rasterization.

Pipelines and Pipeline State Management

[289]

Rasterization
Fragments are produced using primitive topologies in the rasterization stage. A rasterized
image consists of tiny squares called fragments, arranged in grid fashion. Fragments are a
logical combination of the (x, y) position in the framebuffer, corresponding to a depth (z)
along with the related data and attributes added by the fragment shaders.

Each primitive goes through the rasterization process and the corresponding fragments are
determined according to the topology shape. In this, each primitive's integer position is
computed, resulting in the corresponding point or square on the framebuffer grid. Along
with the position, one or more depth values with their attributes, which are responsible for
determining the final fragment color, are stored in the framebuffer. There can be one or
more depth values for each computed point; this indicates that there are multiple
overlapped primitives (fully or partially) contending for the same position. These fragments
are then resolved based on the depth and associated attributes.

The fragments could be non-square, and this does not affect how the rasterization process
works. Rasterization is independent of the aspect ratio of the fragments. The fragments are
assumed to be squares since a square simplifies antialiasing and texturing.

The final computed fragment is a pixel that corresponds to the framebuffer. Any fragment
that belongs outside the framebuffer dimension is discarded and never considered in the
later stages of the pipeline, including any of the early per-fragment tests. The fragment
shader processes the surviving fragments and modifies the existing depth value and the
associated data with the fragments.

Rasterization states
Rasterization is managed through the rasterization state, which can be programmatically
controlled using the VkPipelineRasterizationStateCreateInfo structure. This
structure provides vital information associated with the rasterization stage–such as the
polygon fill mode, front facing, and culling mode–and checks whether the depth is enabled
in the rasterization process. It also checks whether the discarded fragments are enabled.
Here is the syntax information:

typedef struct VkPipelineRasterizationStateCreateInfo {
 VkStructureType pType;
 const void* pNext;
 VkPipelineRasterizationStateCreateFlags flags;
 VkBool32 depthClampEnable;
 VkBool32 rasterizerDiscardEnable;
 VkPolygonMode polygonMode;
 VkCullModeFlags cullMode;

Pipelines and Pipeline State Management

[290]

 VkFrontFace frontFace;
 VkBool32 depthBiasEnable;
 float depthBiasConstantFactor;
 float depthBiasClamp;
 float depthBiasSlopeFactor;
 float lineWidth;
} VkPipelineRasterizationStateCreateInfo;

The following table describes each of the parameters of this structure:

Parameters Description

pType This is the type information of this control structure. It must be specified as
VK_STRUCTURE_TYPE_PIPELINE_-RASTERIZATION_STATE_CREATE_INFO.

pNext This could be a valid pointer to an extension-specific structure or NULL.

flags This field is reserved for future implementation.

depthClamp-Enable This Boolean flag controls whether the fragment's depth values are clamped
with the z planes of the frustum instead of the clipping primitives.

rasterizer-DiscardEnable Before the rasterization stage is reached, this flag value can be used to control
whether the corresponding primitives are to be discarded.

polygonMode The triangle primitive can be rendered in various modes, such as point, filled, or
outline. This mode is represented by the VkPolygonMode enum, which has the
VK_POLYGON_MODE_FILL, VK_POLYGON_MODE_LINE, and
VK_POLYGON_MODE_POINT values for fill, line, and point representation,
respectively.

cullMode This indicates the culling mode for primitives using VkCullModeFlagBits.
It has VK_CULL_MODE_NONE, VK_CULL_MODE_FRONT_BIT,
VK_CULL_MODE_BACK_BIT, and VK_CULL_MODE_FRONT_AND_BACK
enum values that specify no culling, front triangle face culling, back triangle
face culling, and both front and back face culling, respectively.

frontFace This indicates that the direction of the triangle vertices' orientation is to be
considered as front-facing using the VkFrontFace enum; this indicates
clockwise (VK_FRONT_FACE_CLOCKWISE) and counter-clockwise
(VK_FRONT_FACE_COUNTER_CLOCKWISE) orientation.

depthBiasEnable The bias fragment's depth values can be controlled using this field.

depthBias-ConstantFactor For each fragment's depth value, a constant depth can be added using this scalar
factor.

depthBiasClamp This field is a scalar factor that is used to represent the highest or lowest depth
bias of a fragment.

depthBiasSlope-Factor This field is a scalar factor that applies to the depth bias calculation on the
fragment's slope.

lineWidth This is the scalar value that controls the rasterized line segments width.

Pipelines and Pipeline State Management

[291]

Implementing rasterization states
In this section, we will implement the rasterization state inside the VulkanPipeline::
createPipeline() function. Rasterization produces the fragments associated with the
primitives involved in this stage. The following implementation specifies that the primitives
need to be render-filled. It culls out the back faces where the front face is determined by the
front-facing rule, which considers the vertices to be ordered in a clockwise direction:

 /********** VulkanPipeline.cpp **********/
 // Inside VulkanPipeline::createPipeline()
 VkPipelineRasterizationStateCreateInfo rasterStateInfo = {};
 rasterStateInfo.sType =
 VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO;
 rasterStateInfo.pNext = NULL;
 rasterStateInfo.flags = 0;
 rasterStateInfo.polygonMode = VK_POLYGON_MODE_FILL;
 rasterStateInfo.cullMode = VK_CULL_MODE_BACK_BIT;
 rasterStateInfo.frontFace = VK_FRONT_FACE_CLOCKWISE;
 rasterStateInfo.depthClampEnable = includeDepth;
 rasterStateInfo.rasterizerDiscardEnable = VK_FALSE;
 rasterStateInfo.depthBiasEnable = VK_FALSE;
 rasterStateInfo.depthBiasConstantFactor = 0;
 rasterStateInfo.depthBiasClamp = 0;
 rasterStateInfo.depthBiasSlopeFactor = 0;
 rasterStateInfo.lineWidth = 1.0f;

In the next section, we will look at the color-blending state in the Vulkan API and its
implementation.

Blending
Blending is a process in which a source fragment is merged into a destination fragment with
some special rules that are determined by the blending factors. Both the source and
destination fragment consist of four components; among these, three correspond to the
color components (R, G, B) and one to the alpha component that controls opacity.

For each given sample location in the framebuffer, the incoming source fragment (Rs, Gs,
Bs, As) are merged into the destination fragment (Rd, Gd, Bd, Ad) and stored in the
fragment location (x, y) in the framebuffer.

Pipelines and Pipeline State Management

[292]

The blending computations are performed with higher precession; they are always carried
out on the floating point basis, where the precession is not lower than the destination
components. Therefore, any signed and unsigned normalized fixed point is converted into a
floating point first to achieve the highest precession possible.

Blending is controlled by the blending operation, blending factor, and blend constants:

Blending operations: These define the basic math equations that are used to
combine the source and destination values, for example, addition
(VK_BLEND_OP_ADD), subtraction (VK_BLEND_OP_SUBTRACT), and reverse
subtraction (VK_BLEND_OP_REVERSE_SUBTRACT).
Blending factors: The weighting of each component is determined by the
blending factors. These factors can be used to modify the blending operation
used.
Blending constants: This is a constant color component (R, G, B, A) that is used
for blending and produces a new set of color components.

Color blend states
Inside the graphics pipeline, the blend state is specified using the VkPipeline-
ColorBlendStateCreateInfo control structure:

typedef struct VkPipelineColorBlendStateCreateInfo {
 VkStructureType sType;
 const void* pNext;
 VkPipelineColorBlendStateCreateFlags flags;
 VkBool32 logicOpEnable;
 VkLogicOp logicOp;
 uint32_t pAttachmentCount;
 const VkPipelineColorBlendAttachmentState* attachments;
 float blendConstants[4];
} VkPipelineColorBlendStateCreateInfo;

The following table describes the various fields of this structure:

Parameters Description

sType This is the type information of this control structure. It must be specified as
VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO.

pNext This could be a valid pointer to an extension-specific structure or NULL.

flags This field is reserved for future use.

Pipelines and Pipeline State Management

[293]

logicOpEnable This is a Boolean flag to determine whether to apply logical operations or
not.

logicOp If logicOpEnable is enabled, then this field specifies which logical
operation to apply.

attachmentCount This indicates the total number of object elements in pAttachments of the
type VkPipelineColorBlendAttachmentState.

pAttachments This is an array of elements (of the type VkPipelineColorBlend-
AttachmentState).

blendConstants Based on the blend factors used, this indicates the four color values (R, G, B,
A) used in the blending.

The VkPipelineColorBlendStateCreateInfo control structure takes
VkPipelineColorBlendAttachmentState as an input. It specifies the blend factor and
blend operation for each color attachment in the number of subpasses used in the present
pipeline. Here is the syntax of this:

typedef struct VkPipelineColorBlendAttachmentState {
 VkBool32 blendEnable;
 VkBlendFactor srcColorBlendFactor;
 VkBlendFactor dstColorBlendFactor;
 VkBlendOp colorBlendOp;
 VkBlendFactor srcAlphaBlendFactor;
 VkBlendFactor dstAlphaBlendFactor;
 VkBlendOp alphaBlendOp;
 VkColorComponentFlags colorWriteMask;
} VkPipelineColorBlendAttachmentState;

The various fields of VkPipelineColorBlendAttachmentState are as follows:

Parameters Description

blendEnable This indicates whether blending is enabled for the corresponding
color attachment. The source fragment's color remains unmodified
when blending is disabled.

srcColorBlendFactor This field specifies the blend factor that is applied to calculate the
source factors (Sr, Sg, Sb).

dstColorBlendFactor This field specifies the blend factor that is applied to calculate the
destination factors (Dr, Dg, Db).

colorBlendOp This indicates which blend factor to apply on the source's and
destination's color to calculate and write the final color value (RGB)
into the color attachment.

Pipelines and Pipeline State Management

[294]

srcAlphaBlendFactor This field specifies the blend factor that is applied to calculate the
source's alpha channel, namely Sa.

dstAlphaBlendFactor This field specifies the blend factor that is applied to calculate the
destination's alpha channel, namely Da.

alphaBlendOp This field specifies which blend factor is applied on the source's
and destination's alpha channel to compute and write the final
alpha value (A) into the color attachment.

colorWriteMask This field specifies the color channel's (R, G, B, A) bitmask value
that is used to write into the color attachment buffer.

Implementing color blend states
The process of color blending is implemented in the
VulkanPipeline::createPipeline() function. This function defines the blending
attributes for the color attachment with the VkPipelineColorBlendAttachmentState
structure object (colorBlendAttachmentStateInfo). This structure determines whether
the color blending is enabled or disabled. If enabled, then various properties, such as alpha
and color blending operations, are specified. There are multiple blend operation
(VkBlendOp) equations that can be used to merge the two, such as adding, subtracting,
reverse subtracting, and so on. In addition, for both the source and destination fragments,
color and alpha blend factors are initialized here.

Next, create the VkPipelineColorBlendStateCreateInfo object's
colorBlendStateInfo and pass colorBlendAttachmentStateInfo into it. This
structure specifies the color attachments that will be treated using color blending state
information. In addition, the logical blending operation is also initialized using logicOp (of
the type VkLogicOp). The other important piece of information specified is the color blend
constant. Refer to the following code implementation:

 /********** VulkanPipeline.cpp **********/
 // Inside VulkanPipeline::createPipeline()
 // Create the color blend attachment information
 VkPipelineColorBlendAttachmentState
 colorBlendAttachmentStateInfo[1] = {};
 colorBlendAttachmentStateInfo[0].colorWriteMask = 0xf;
 colorBlendAttachmentStateInfo[0].blendEnable = VK_FALSE;

 // Define color and alpha blending operation.
 colorBlendAttachmentStateInfo[0].alphaBlendOp = VK_BLEND_OP_ADD;
 colorBlendAttachmentStateInfo[0].colorBlendOp = VK_BLEND_OP_ADD;

Pipelines and Pipeline State Management

[295]

 // Set the source and destination color/alpha blend factors
 colorBlendAttachmentStateInfo[0].srcColorBlendFactor =
 VK_BLEND_FACTOR_ZERO;
 colorBlendAttachmentStateInfo[0].dstColorBlendFactor =
 VK_BLEND_FACTOR_ZERO;
 colorBlendAttachmentStateInfo[0].srcAlphaBlendFactor =
 VK_BLEND_FACTOR_ZERO;
 colorBlendAttachmentStateInfo[0].dstAlphaBlendFactor =
 VK_BLEND_FACTOR_ZERO;

 VkPipelineColorBlendStateCreateInfo colorBlendStateInfo = {};
 colorBlendStateInfo.sType = VK_STRUCTURE_TYPE-
 _PIPELINE_COLOR_BLEND_STATE_CREATE_INFO;
 colorBlendStateInfo.flags = 0;
 colorBlendStateInfo.pNext = NULL;
 colorBlendStateInfo.attachmentCount = 1;
 // Specify the color blend attachment state object
 colorBlendStateInfo.pAttachments = colorBlendAttachmentStateInfo;
 colorBlendStateInfo.logicOpEnable = VK_FALSE;
 colorBlendStateInfo.blendConstants[0] = 1.0f;
 colorBlendStateInfo.blendConstants[1] = 1.0f;
 colorBlendStateInfo.blendConstants[2] = 1.0f;
 colorBlendStateInfo.blendConstants[3] = 1.0f;

Now we move on to pipeline states. We start with discussing viewport management.

Viewport management
A viewport is a portion of the surface region on which the rendering of the primitives will
be performed. It defines the physical dimensions in pixels using the VkViewport structure,
which states a 2D presentation region and the depth range. These two are combined and
then used to perform the viewport transformation.

Now for a bit about viewport transformation. During the viewport transformation process,
the normalized device coordinates are converted into framebuffer coordinates using the
viewport's 2D region and depth range defined in VkViewport.

The viewport state
The viewport transformation process is part of the graphics pipeline and is controlled using
the VkPipelineViewportStateCreateInfo control structure. This structure not only
defines the viewports, but the scissors as well.

Pipelines and Pipeline State Management

[296]

Using this structure, more than one viewport can be specified; the maximum number of
viewports can be determined using VkPhysicalDeviceLimits::maxViewports minus
one. The following is the syntax for this:

typedef struct VkPipelineViewportStateCreateInfo {
 VkStructureType sType;
 const void* pNext;
 VkPipelineViewportStateCreateFlags flags;
 uint32_t viewportCount;
 const VkViewport* pViewports;
 uint32_t scissorCount;
 const VkRect2D* pScissors;
} VkPipelineViewportStateCreateInfo;

Let's look at the various fields of this structure:

Parameters Description

sType This is the type information of this control structure. It must be specified as
VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO.

pNext This could be a valid pointer to an extension-specific structure or NULL.

flags This field is reserved for future implementation and must be specified as
NULL; this field is currently not in use.

viewportCount This indicates the total number of viewports in the pViewports array used
by the pipeline.

pViewports This is a pointer to an array of viewports (of the type VkViewport)
indicating the dimension of each viewport. This value is ignored if the
viewport state is dynamic.

scissorCount This indicates the number of scissors used in the pipeline. This must be
equal to the number of viewports specified by viewportCount.

pScissors This is a pointer to an array of rectangular bounding regions for each
corresponding viewport specified by the VkRect2D control structure.

In the following subsection, we will implement the viewport's state object.

Pipelines and Pipeline State Management

[297]

Implementing the viewport state
The following is the viewport implementation in the
VulkanPipeline::createPipeline() function. First, create the
VkPipelineViewportStateCreateInfo object and assign the number of viewports and
scissors used by this pipeline. In the beginning of this section, we declared that the viewport
state is a dynamic state. This indicates to the pipeline that the viewport parameters are
subject to changes and will be set using vkSetCmdViewport() in the initViewport()
function. Therefore, the pViewports and pScissors parameters are NULL by default:

 /********** VulkanPipeline.cpp **********/
 // Inside VulkanPipeline::createPipeline()

 // Define the number of viewport, this must be equal to number
 // of scissors should be equal.
 #define NUMBER_OF_VIEWPORTS 1
 #define NUMBER_OF_SCISSORS NUMBER_OF_VIEWPORTS

 // Create the viewport state create info and provide the
 // the number of viewport and scissors being used in the
 // rendering pipeline.
 VkPipelineViewportStateCreateInfo viewportStateInfo = {};
 viewportStateInfo.sType = VK_STRUCTURE_TYPE_-
 PIPELINE_VIEWPORT_STATE_
 CREATE_INFO;
 viewportStateInfo.pNext = NULL;
 viewportStateInfo.flags = 0;

 // Number of viewports must be equal to number of scissors.
 viewportStateInfo.viewportCount = NUMBER_OF_VIEWPORTS;
 viewportStateInfo.scissorCount = NUMBER_OF_SCISSORS;
 viewportStateInfo.pScissors = NULL;
 viewportStateInfo.pViewports = NULL;

Depth and stencil tests
A depth test is a stored fragment that may contain different depth values belonging to each
of the overlapped primitives on the same framebuffer location. These values are compared
and stored in the depth buffer attachment. This is done to conditionally clip out the
fragments based on the value stored in the depth buffer attachment; for a given fragment,
the value is generally stored at the location (xf, yf) in the framebuffer.

Pipelines and Pipeline State Management

[298]

A stencil test makes use of the depth/stencil attachment and compares the value stored at
the framebuffer location (xf, yf) with a given reference value. Depending upon the stencil
test state, the stencil value and the stencil write masks are updated in the stencil/depth
attachments.

The depth and stencil states are controlled using the VkPipelineDepthStencil-
StateCreateInfo structure. Depth and stencil tests can be enabled or disabled using the
member variables depthBoundsTestEnable and stencilTestEnable.

Depth and stencil states
The following is the syntax and description of VkPipelineDepthStencilState-
CreateInfo:

typedef struct VkPipelineDepthStencilStateCreateInfo {
 VkStructureType SType;
 const void* pNext;
 VkPipelineDepthStencilStateCreateFlags flags;
 VkBool32 depthTestEnable;
 VkBool32 depthWriteEnable;
 VkCompareOp depthCompareOp;
 VkBool32 depthBoundsTestEnable;
 VkBool32 stencilTestEnable;
 VkStencilOpState front;
 VkStencilOpState back;
 float minDepthBounds;
 float maxDepthBounds;
} VkPipelineDepthStencilStateCreateInfo;

Let's look at the various fields of this structure:

Parameters Description

sType This is the type information of this control structure. It must be specified as
VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO.

pNext This could be a valid pointer to an extension-specific structure or NULL.

flags This field is reserved for future implementation and must be specified as NULL;
this field is currently not in use.

depthTestEnable This is the Boolean flag to check whether the depth test is enabled.

depthWriteEnable This field checks whether the depth writes are enabled.

depthCompareOp This field is the comparison operator that will be used in the depth test.

Pipelines and Pipeline State Management

[299]

depthBoundsTestEnable This is the Boolean flag that checks whether the depth bound test is enabled or
disabled.

stencilTestEnable This checks whether the stencil test is enabled or disabled.

front This is the parameter that corresponds to the front control of the stencil test.

back This is the parameter that corresponds to the back control of the stencil test.

minDepthBounds This is the minimum range of values used in the depth bounds test.

maxDepthBounds This is the maximum range of values used in the depth bounds test.

At the beginning of this function (createPipeline()), we defined some dynamic states
(VkDynamicState) that indicate to the pipeline which states will be controlled dynamically
in the pipeline. If the depth state (VK_DYNAMIC_STATE_DEPTH_BOUNDS) is not defined
dynamically, then the depth bounds test is defined by the minDepthBounds and
maxDepthBounds members of VkPipelineDepthStencilStateCreateInfo.

On the other hand, if the dynamic depth bound test is enabled, then the depth bound range
can be set at runtime using the vkCmdSetDepthBounds API. This API takes three
parameters. The first parameter is the command buffer, and the next two parameters
specify the minimum and maximum depth bounding values. Here's the syntax of this API:

void vkCmdSetDepthBounds(
 VkCommandBuffer commandBuffer,
 float minDepthBounds,
 float maxDepthBounds);

Implementing depth stencil states
The next state defined in createPipeline() is the depth/stencil state. In the following
code, VkPipelineDepthStencilStateCreateInfo is created, and it determines whether
the depth and stencil tests are enabled using the includeDepth boolean flag. In the present
case, the depth test is enabled; therefore, we should provide more information to the
pipeline specify how to carry out the depth and stencil operation. This information may
include a depth comparison operation, which tells how the depth buffer values are
compared to the incoming depth values to update the depth buffer when the depth write is
enabled. Similarly, some of the other fields that are defined are compare masks and the
minimum and maximum depth bound ranges. Refer to the implementation in the following
code:

 /********** VulkanPipeline.cpp **********/
 // Inside VulkanPipeline::createPipeline()
 VkPipelineDepthStencilStateCreateInfo depthStencilStateInfo = {};
 depthStencilStateInfo.sType = VK_STRUCTURE_TYPE_PIPELINE-

Pipelines and Pipeline State Management

[300]

 _DEPTH_STENCIL_STATE_CREATE_INFO;
 depthStencilStateInfo.pNext = NULL;
 depthStencilStateInfo.flags = 0;
 depthStencilStateInfo.depthTestEnable = includeDepth;
 depthStencilStateInfo.depthWriteEnable = includeDepth;
 depthStencilStateInfo.depthCompareOp = VK_COMPARE_OP_LESS
 _OR_EQUAL;
 depthStencilStateInfo.depthBoundsTestEnable = VK_FALSE;
 depthStencilStateInfo.stencilTestEnable = VK_FALSE;
 depthStencilStateInfo.back.failOp = VK_STENCIL_OP_KEEP;
 depthStencilStateInfo.back.passOp = VK_STENCIL_OP_KEEP;
 depthStencilStateInfo.back.compareOp = VK_COMPARE_OP_ALWAYS;
 depthStencilStateInfo.back.compareMask = 0;
 depthStencilStateInfo.back.reference = 0;
 depthStencilStateInfo.back.depthFailOp = VK_STENCIL_OP_KEEP;
 depthStencilStateInfo.back.writeMask = 0;
 depthStencilStateInfo.minDepthBounds = 0;
 depthStencilStateInfo.maxDepthBounds = 0;
 depthStencilStateInfo.stencilTestEnable = VK_FALSE;
 depthStencilStateInfo.front = depthStencilStateInfo.back;

In the next section, we will look at the multisampling state, which controls the appearance
of rastered images in order to improve the quality of the presentation.

Multisample states
Multisampling is a mechanism that removes the aliasing effects produced during the
Vulkan primitive rasterization. The antialiasing takes multiple samples from the geometry
for a given pixel to generate a smooth approximation such that it minimizes the stair-step
case effect and makes the edges appear smooth.

Antialiasing is a technique in computer graphics that improves the quality of the rendered
image or video output displayed on the screen by minimizing jagged lines or the stair-step
case effect. The raster framebuffer is composed of hundreds of tiny square pixels arranged
in a grid format. During image rasterization, the geometry is sampled for a given pixel
using a sampling scheme, which will be discussed later in this section. Basically, the cause
of antialiasing is point sampling. These samples are represented by rectangular pixels,
which are not sufficient to produce curved shapes. Edges in the image, which are round
(not horizontal or vertical), are responsible for this stair-step case effect, as they end up
coloring the pixels as in a stair arrangement. The aliasing problem is not much noticeable
when an image or scene is still, but as soon as they are in motion, jagged edges are highly
visible.

Pipelines and Pipeline State Management

[301]

Once the primitives (points, lines, and triangles) are baked into the final presentation pixels,
they are treated with the multisampling process. This allows you to make the Vulkan
primitive antialiased by making the edges appear smoother, not jagged. This efficient
technique saves a tremendous amount of computation cost)among many other antialiasing
techniques). It is the number-one choice of GPU hardware vendors. A multisample takes
more than one sample in the computation process for a given pixel in a single pass. In
multisampling, a given pixel in the primitive is sampled multiple times where each
sampling can utilize the color, depth, and/or stencil values independently, which are later
resolved into a single combined color.

In line with the Vulkan specification, the rasterization rules for single-sample modes in
Vulkan have been defined in such a way that they are equivalent to a multisample mode
with a single sample in the center of each pixel.

Multisampling can be organized within the pipeline using the VkPipeline-
MultisampleStateCreateInfo structure. Refer to the following subsection to understand
the API specification and its implementation. First, let's look at the syntax of this structure:

typedef struct VkPipelineMultisampleStateCreateInfo {
 VkStructureType sType;
 const void* pNext;
 VkPipelineMultisampleStateCreateFlags flags;
 VkSampleCountFlagBits rasterizationSamples;
 VkBool32 sampleShadingEnable;
 float minSampleShading;
 const VkSampleMask* pSampleMask;
 VkBool32 alphaToCoverageEnable;
 VkBool32 alphaToOneEnable;
} VkPipelineMultisampleStateCreateInfo;

Let's look at the various fields of this structure:

Parameters Description

sType This is the type information of this control structure. It must be specified as
VK_STRUCTURE_TYPE_-PIPELINE_MULTISAMPLE_STATE_CREATE_INFO.

pNext This could be a valid pointer to an extension-specific structure or NULL.

flags This field is NULL; it is reserved for future use.

rasterizationSamples This field indicates the number of samples used per pixel in the rasterization.

sampleShadingEnable The Boolean flags indicate whether the fragment shading will be executed
according to a per-sample or per-fragment basis. If the value is VK_TRUE, it is
per-sample, otherwise per-fragment.

Pipelines and Pipeline State Management

[302]

minSampleShading This specifies the minimum number of unique samples required to shade for
each fragment.

pSampleMask This field is the bitmask that is used for ANDing the static coverage
information with the rasterization-generated coverage information.

alphaToCoverageEnable This field controls whether the value of the alpha component of the
fragment's first color output can be used to generate a temporary coverage
value.

alphaToOneEnable This controls whether the multisampling coverage can replace the alpha
component value of the fragment's first color output.

Implementing multisample states
The last state defined in the VulkanPipeline::createPipeline() function is the
multisampling state. First, define the VkPipelineMultisampleStateCreateInfo
structure with the correct type information to help the underlying implementation
understand the kind of object that is passed in. The sType must be specified as
VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO. Next, indicate the
number of samples used as coverage values per pixel in rasterizationSample, which is
VK_SAMPLE_COUNT_1_BIT in the present case.

Various pixel sampling schemes exists. When the standardSampleLocations member of
VkPhysicalDeviceFeatures is VK_TRUE, then the sample counts are defined using the
samples shown in the following screenshot:

https://cdp.packtpub.com/learningvulkan/%5CVulkanSDK%5C1.0.26.0%5CDocumentation%5Cvkspec.html#VkPhysicalDeviceFeatures

Pipelines and Pipeline State Management

[303]

There could be different sample schemes based on the number of samples in a given pixel,
which could vary from 1 to 64 samplings. Samplings contain various positions that
contribute weights based on a position relative to an origin in the upper left corner of the
pixel. When rasterizationSamples is VK_SAMPLE_COUNT_1_BIT, sampling uses the
pixel center:

 /************ VulkanPipeline.cpp *************/
 // Inside VulkanPipeline::createPipeline()
 VkPipelineMultisampleStateCreateInfo multiSampleStateInfo = {};
 multiSampleStateInfo.sType =
 VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO;
 multiSampleStateInfo.pNext = NULL;
 multiSampleStateInfo.flags = 0;
 multiSampleStateInfo.rasterizationSamples = NUM_SAMPLES;

So far, in the Creating a graphics pipeline section and the Pipeline state objects in Vulkan section,
we learned how to create a graphics pipeline and specify various pipeline state objects into
it. In the next section, we will understand the execution model of creating the pipeline in
our sample application.

Implementing the pipeline
The graphics pipeline is implemented at the initialization stage of the application in the
VulkanRenderer class. The VulkanRenderer::createPipelineStateManagement()
function is responsible for executing the creation of the pipeline. Inside this function, the
cmdPipelineStateMgmt command buffer object is created into which the pipeline creation
process's commands are recorded. These recorded commands are then submitted to the
graphics queue, that is, to the underlying implementation.

The following diagram shows the execution process. Here, first the command buffer is
allocated for managing the pipeline operation. Under this, the pipeline cache object is
created using the VulkanPipeline::createPipelineCache() function; once this is
done, the pipeline is created in VulkanPipeline::createPipeline(). The following
diagram shows the calling sequence:

Pipelines and Pipeline State Management

[304]

Each drawing object (we will implement drawing objects in the next chapter) is associated
with the created pipeline object (pipeline). If there are multiple drawing objects, they can
reuse the pipeline object instead of creating a new one for each object. Therefore, it is the
application's responsibility to control the redundancy of the pipeline object association with
each drawing object:

// Create the pipeline and manage the pipeline state objects
void VulkanRenderer::createPipelineStateManagement()
{
 // Create the pipeline cache
 pipelineObj.createPipelineCache();

 const bool depthPresent = true;
 // For the each drawing object create the associated pipeline.
 for each (VulkanDrawable* drawableObj in drawableList){
 VkPipeline* pipeline=(VkPipeline*)malloc(sizeof(VkPipeline));
 if (pipelineObj.createPipeline(drawableObj, pipeline,
 &shaderObj, depthPresent)){
 pipelineList.push_back(pipeline);

Pipelines and Pipeline State Management

[305]

 drawableObj->setPipeline(pipeline);
 }
 else
 {
 free(pipeline);
 pipeline = NULL;
 }
 }
}

When the pipeline object is no longer required, it can be deleted. In the following sample
implementation, when the application closes, it deletes all the pipeline objects along with
the associated pipeline cache in the deInitialization() function:

void VulkanApplication::deInitialize(){
 // Destroy all the pipeline objects
 rendererObj->destroyPipeline();

 // Destroy the associate pipeline cache
 rendererObj->getPipelineObject()->destroyPipelineCache();

}

// Destroy each pipeline object existing in the renderer
void VulkanRenderer::destroyPipeline(){
 for each (VkPipeline* pipeline in pipelineList){
 vkDestroyPipeline(deviceObj->device, *pipeline, NULL);
 free(pipeline);
 }
 pipelineList.clear();
}

// Destroy the pipeline cache object when no more required
void VulkanPipeline::destroyPipelineCache(){
 vkDestroyPipelineCache(deviceObj->device, pipelineCache, NULL);
}

Pipelines and Pipeline State Management

[306]

Summary
In this chapter, we learned about the various pipelines available in the Vulkan API. We
understood the graphics and compute pipelines and implemented one of the former in our
sample example. We also learned about the pipeline cache object, which is a pool of
pipelines that help in achieving better performance. The pipeline cache object can be stored
in binary form and can be later uploaded and reused between application runs.

The graphics pipeline comprises many pipeline state objects. In this chapter, we covered all
the states in detail along with their implementation. As part of these pipeline state objects,
we discussed the dynamics state, vertex input state, input assembly state, rasterization,
blending, viewport management, depth and stencil test, and multisampling state.

Finally, we used the pipeline cache object and pipeline state objects to build a graphics
pipeline object.

In the next chapter, we will make use of the created graphics pipeline object and render our
first Vulkan drawing object on the display. Drawing the object consists of two major tasks:
preparing and rendering the drawing object. The preparation includes defining the Render
Pass, binding the graphics pipeline, supplying geometry, viewport/scissoring, and building
the drawing commands. While rendering, a swapchain is acquired and the prepared
drawing commands are executed; this renders the drawing object on the presentation layer.
In addition, we will understand Vulkan synchronization primitives; at this point, we will
discuss fences, semaphores, and events.

9
Drawing Objects

In the last two chapters, we implemented the Render Pass instance and displayed
swapchain images with specified background colors. In the previous chapter, we put
various pipeline states together along with Render Pass in the graphics pipeline. In this
chapter, we will put all previous implementations together to build the first Hello World!
program in Vulkan and display our first rendering object on the display output.

This chapter thoroughly covers the process of drawing objects in Vulkan; it comprises
recording and executing the drawing object's command buffers. The recording associates
the Render Pass, framebuffer, and the pipeline together with the viewport and geometry
data. Command buffer execution involves submitting the command buffer in the device
queue and presenting the drawn swapchain image onto the presentation engine. Toward
the end of this chapter, we will discuss various synchronization primitives available in the
Vulkan API.

In this chapter, we will cover the following topics:

Overview of the drawing process in Vulkan
Preparing the drawing object
Rendering the drawing object
Rendering an indexed geometry
Understanding synchronization primitives in Vulkan
Resizing the display window

Drawing Objects

[308]

Overview of the drawing process in Vulkan
Implementing a drawing object in Vulkan is simple; it consists of two phases: preparation, or
building the drawing object, and rendering it. The former phase produces the command
buffer and records the drawing commands. In the latter phase, the command buffer
executes these drawing commands to render the object. Let's take a look at these phases in
detail:

Preparing the drawing object: This phase produces the command buffers1.
required to draw objects:

Command buffer creation: For each swapchain color image, create a
corresponding command buffer object. For example, if the swapchain
is a double buffer, then it will contain two color images. As a result, we
should be creating two command buffers that correspond to each
image.
Command buffer recording: For the command buffer created, record
the Render Pass instance commands single subpass at ; refer to the
following steps:

Associate the created Render Pass object and framebuffer
with the required dimensions of the presentation's
render area.
Specify the scalar values for clearing the background
color and depth image. We implemented this step in
Chapter 7, Buffer Resource, Render Pass, Framebuffer, and
Shaders with SPIR-V. For more information, please refer
to the Clearing the background color section.
Bind the graphics pipeline object.
Bind the resources used by the pipeline, including vertex
buffers and descriptor sets.
Define the viewport and scissoring region.
Draw the object.

Rendering the drawing object: Here, the created command buffers in the2.
preparation phase are reused and executed again and again to render the
drawing object:

Get the swapchain image that is available to perform rendering on it.
Submit the command buffer to render the object.
Display the rendered drawing image on the presentation engine.

Drawing Objects

[309]

The preparation and rendering of the drawable object are implemented through the
prepare() and render() functions of the VulkanDrawable class.

Walking through the header declaration
In this section, we will take a look at the header file declaration for VulkanDrawable.
Please follow through the inline comments to understand the functionality and purpose of
each function and variable. As we proceed through the chapter, we will implement these
functions and discuss them in detail. The following are the new member variables and
functions added:

class VulkanDrawable
{
 public:
 // Prepares the drawing object before rendering,
 // allocate, create, record command buffer
 void prepare();

 // Renders the drawing object
 void render();

 // Initialize the viewport parameters here
 void initViewports(VkCommandBuffer* cmd);

 // Initialize the scissor parameters here
 void initScissors(VkCommandBuffer* cmd);

 // Destroy the drawing command buffer object
 void destroyCommandBuffer();
 private:
 // Command buffer for drawing
 std::vector<VkCommandBuffer> vecCmdDraw;

 // Prepares render pass instance
 void recordCommandBuffer(int currentImage,
 VkCommandBuffer* cmdDraw);

 // Viewport and Scissor variables
 VkViewport viewport;
 VkRect2D scissor;
 VkSemaphore presentCompleteSemaphore;
 VkSemaphore drawingCompleteSemaphore;
};

Drawing Objects

[310]

The prepare() function creates the command buffer objects, which are used in the
render() function to draw the object. The prepare() function allocates the memory for
the command buffer (vecCmdDraw) from the command pool (VulkanRenderer::cmdPool)
and creates the command buffer object. The command buffer commands are recorded
inside the recordCommandBuffer() function; this creates the Render Pass instance and
other important jobs, such as associating the graphics pipeline with the drawing object and
specifying the viewport and scissoring management through initViewport() and
initScissor().

The render() function uses the prepared recorded command buffer and renders the
drawing on the available swapchain color image. Once the drawing is finished on the
swapchain's color image, then it is given to the presentation engine for display purposes.

Preparing the drawing object
The preparation of the drawing object is implemented in the prepare() function; this
function has already been covered in Chapter 7, Buffer Resource, Render Pass, Framebuffer,
and Shaders with SPIR-V. For more information, please refer to the subsection Setting the
background color in Render Pass instance under Clearing the background color.

Recording Render Pass commands
The Render Pass instance records the command's single subpass at a time. A Render Pass
may contain one or more subpasses. For each subpass, the commands are recorded using
the vkCmdBeginRenderPass() and vkCmdEndRenderPass() APIs. These two APIs
together define a scope under which iterating through different subpasses will record the
commands for that particular subpass.

Beginning Render Pass instance recording
The vkCmdBeginRenderPass() API begins Render Pass instance command recording for
a given subpass. The following is the specification:

void vkCmdBeginRenderPass(
 VkCommandBuffer commandBuffer,
 const VkRenderPassBeginInfo* pRenderPassBegin,
 VkSubpassContents contents);

Drawing Objects

[311]

The vkCmdBeginRenderPass API accepts three parameters. The first
parameter–commandBuffer of the VkCommandBuffer type–indicates the command buffer
into which the commands are recorded. The second parameter–pRenderPassBegin–is a
VkRenderPassBeginInfo type control structure into which Render Pass metadata is
passed (more information is provided in the following section). The last parameter is of the
VkSubpassContents type and indicates where and how the contents will be recorded in
the subpass execution.

The following are the two types of VkSubpassContents:

VK_SUBPASS_CONTENTS_INLINE: In this type, the primary command buffer
directly records the subpass contents and doesn't permit the secondary command
buffer to execute within this subpass
VK_SUBPASS_CONTENTS_SECONDARY_COMMAND: Here, the secondary command
buffer is invoked through primary command buffers and is responsible for
recording the subpass contents

What are primary and secondary command buffers?

The primary command buffer does not have any parent command buffer.
However, the secondary command buffers are always executed from the
primary command buffers behaving as its parent. The secondary
command buffers are not directly submitted into the device queue; these
are recorded into the primary command buffer and executed using the
vkCmdExecuteCommands() API. void vkCmdExecuteCommands(
 VkCommandBuffer commandBuffer,
 uint32_t commandBufferCount,
 const VkCommandBuffer* pCommandBuffers);

This API takes three arguments. The first argument–commandBuffer (of
type VkCommandBuffer)–is the primary command buffer object handle.
The second parameter–commandBufferCount(of
typeuint32_t)–indicates the total number of secondary command buffers
that needs to be invoked under the primary command buffer. The last
parameter–pCommandBuffers (of type VkCommandBuffer*)–specifies a
complete list of the secondary command buffer objects to be passed in.

How are secondary command buffers useful?
Secondary command buffers are useful in recording common operations
into modular units. These modular capsules can be attached to any of your
desired primary buffer as required. In the absence of the secondary

Drawing Objects

[312]

command buffer, such common operations will be recorded as part of the
primary buffer, making them bulky and resulting in redundancy
pollution.

Let's take a look at the VkRenderPassBeginInfo structure syntax and its parameters:

typedef struct VkRenderPassBeginInfo {
 VkStructureType sType;
 const void* pNext;
 VkRenderPass renderPass;
 VkFramebuffer framebuffer;
 VkRect2D renderArea;
 uint32_t clearValueCount;
 const VkClearValue* pClearValues;
} VkRenderPassBeginInfo;

The following are the various parameters of the VkRenderPassBeginInfo structure:

Parameters Description

sType This is the type information of this control structure. It must be specified
as VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO.

pNext This could be a valid pointer to an extension-specific structure or could
be NULL.

renderPass The Render Pass instance consumes the Render Pass object to begin the
recording.

framebuffer The Render Pass is also associated with a VkFramebuffer object that
contains color and depth attachments.

renderArea This field indicates the rectangular region affected as a result of the
Render Pass execution.

clearValueCount This indicates the number of clear values for color or depth.

pClearValues This field contains the clear values associated with attachments specified
in the framebuffer.

Drawing Objects

[313]

While defining the renderArea in the Render Pass instance, if the
rendering region is smaller than the framebuffer, then it may cause a
performance penalty. In such case, it's advisable either to keep the render
area equal to the framebuffer region or to qualify the granularity for the
Render Pass. Render area granularity can be checked using the
vkGetRenderAreaGranularity() API.

void vkGetRenderAreaGranularity(
 VkDevice device,
 VkRenderPass renderPass,
 VkExtent2D* pGranularity);

This API accepts three parameters: the first parameter–device–is the VkDevice that is
associated with renderPass; the second parameter is the renderPass object; the last
parameter retrieves the granularity size in pGranularity.

Transitioning to the next subpass
In a given Render Pass instance, when a subpass recording is finished, the application can
switch or transit to the next subpass using the vkCmdNextSubpass() API.

void vkCmdNextSubpass(
 VkCommandBuffer commandBuffer,
 VkSubpassContents contents);

This API accepts two parameters as shown in the following table:

Parameters Description

commandBuffer This indicates the command buffer into which the commands are recorded.

contents This indicates where and how the contents will be provided in the next
subpass execution. For more information on VkSubpassContents, please
refer to the previous subsection–Beginning the Render Pass instance.

Drawing Objects

[314]

Finishing Render Pass instance recording
The vkCmdEndRenderPass() API ends the Render Pass instance command buffer
recording for the subpass that is currently being executed. This API takes one parameter
specifying the handle of the command buffer on which the recording must be stopped.

void vkCmdEndRenderPass(
 VkCommandBuffer commandBuffer);

Implementation
The current subpass is specified with a clear black color, which will paint the swapchain
image with this value, making the background appear black. In addition, other parameters,
such as the Render Pass object, framebuffer, and dimension, are also specified. There are
many other commands that get executed in the Render Pass instance; this will be discussed
in the next section, the following implementation shows the Render Pass instance recording
using the vkCmdBeginRenderPass()and vkCmdEndRenderPass() APIs:

void VulkanDrawable::recordCommandBuffer(int currentImage, VkCommandBuffer*
cmdDraw)
{
VulkanDevice* deviceObj= rendererObj->getDevice();
// Specify the clear color value
VkClearValue clearValues[2];
clearValues[0].color.float32[0]= 0.0f;
clearValues[0].color.float32[1]= 0.0f;
clearValues[0].color.float32[2]= 0.0f;
clearValues[0].color.float32[3]= 0.0f;

// Specify the depth/stencil clear value
clearValues[1].depthStencil.depth = 1.0f;
clearValues[1].depthStencil.stencil = 0;

// Define the VkRenderPassBeginInfo control structure
VkRenderPassBeginInfo renderPassBegin;
renderPassBegin.sType =
 VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO;
renderPassBegin.pNext = NULL;
renderPassBegin.renderPass = rendererObj->renderPass;
renderPassBegin.framebuffer = rendererObj->
 framebuffers[currentImage];
renderPassBegin.renderArea.offset.x = 0;
renderPassBegin.renderArea.offset.y = 0;
renderPassBegin.renderArea.extent.width = rendererObj->width;
renderPassBegin.renderArea.extent.height= rendererObj->height;
renderPassBegin.clearValueCount = 2;

Drawing Objects

[315]

renderPassBegin.pClearValues = clearValues;

// Start recording the render pass instance
vkCmdBeginRenderPass(*cmdDraw, &renderPassBegin,
 VK_SUBPASS_CONTENTS_INLINE);

// Execute the commands as per requirement
. . . .
// pipeline bind, geometry, viewport, scissoring

// End of render pass instance recording
vkCmdEndRenderPass(*cmdDraw);
. . . .
}

Binding pipeline object
In the Render Pass instance, the first thing we will need to do is bind the pipeline using the
vkCmdBindPipeline() API. This API binds a specific pipeline (either Graphics or Compute)
with the current command buffer that is using this command.

void vkCmdBindPipeline(
 VkCommandBuffer commandBuffer,
 VkPipelineBindPoint pipelineBindPoint,
 VkPipeline pipeline);

Parameters Description

commandBuffer This indicates the command buffer object (used in Render Pass
recording) that will be bound to the pipeline object.

pipelineBindPoint This field indicates the type of the pipeline binding point to which the
pipeline object will be bounded. This field is of type
VkPipelineBindPoint and can take one of the following two
given values:
typedef enum VkPipelineBindPoint {
VK_PIPELINE_BIND_POINT_GRAPHICS = 0,
VK_PIPELINE_BIND_POINT_COMPUTE = 1,
} VkPipelineBindPoint;

The first value indicates the bind point for graphics pipeline and
the second for the compute pipeline.

pipeline This indicates the pipeline object to which the command buffer will be
bounded.

Drawing Objects

[316]

Each pipeline–graphics or compute–is very specific to the commands that it affect once
bounded:

Compute pipeline: When the pipeline is bound to
VK_PIPELINE_BIND_POINT_COMPUTE, only the vkCmdDispatch and
vkCmdDispatchIndirect commands behavior can be controlled. Any other
command under this pipeline state will remain unaffected. For more information
on these commands, please refer to the official Vulkan specification documentation
at h t t p s ://w w w . k h r o n o s . o r g /r e g i s t r y /v u l k a n /s p e c s /1. 0/x h t m l /v k s p e c . h t m

l .
Graphics pipeline: When the pipeline is bound to
VK_PIPELINE_BIND_POINT_GRAPHICS, the vkCmdDraw, vkCmdDrawIndexed,
vkCmdDrawIndirect, and vkCmdDrawIndexedIndirect commands can be
controlled. Any other command under this pipeline state will remain unaffected.

Implementation
The following code shows the binding of the graphics pipeline with the existing command
buffer object cmdDraw, The pipeline object is connected with the graphics bind point
(VK_PIPELINE_BIND_POINT_GRAPHICS):

void VulkanDrawable::recordCommandBuffer(int currentImage, VkCommandBuffer*
cmdDraw){

 // Bound the command buffer with the graphics pipeline
 vkCmdBindPipeline(*cmdDraw, VK_PIPELINE_BIND_POINT_GRAPHICS,
 *pipeline);

}

For more information on pipeline creation and the pipeline object
specified in the implementation, please refer to Chapter 8, Pipelines and
Pipeline State Management.

https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html
https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html

Drawing Objects

[317]

Specifying drawing object geometry information
The geometry information for the drawing object can be specified using the vertex buffer.
Remember, we built the buffer resource in Chapter 7, Buffer Resource, Render Pass,
Framebuffer, and Shaders with SPIR-V and stored the vertex information in the
VertexBuffer.buf of the VulkanDrawble class.

For more information on , and to recap, vertex buffer building, please refer
to the Understanding the buffer resource and Creating geometry with buffer
resource section in Chapter 7, Buffer Resource, Render Pass, Framebuffer, and
Shaders with SPIR-V.

Vertex data contains vertex position and color information together in an interleaved form.
Bind this vertex data to the command buffer under the graphics pipeline state using the
vkCmdBindVertexBuffers() API. This command bounds a specific vertex buffer to a
command buffer on a per-draw basis.

void vkCmdBindVertexBuffers(
 VkCommandBuffer commandBuffer,
 uint32_t firstBinding,
 uint32_t bindingCount,
 const VkBuffer* pBuffers,
 const VkDeviceSize* pOffsets);

The following table lists the fields and indicates the description of each parameter:

Parameters Description

commandBuffer This is the command buffer object into which the
vkCmdBindVertexBuffers command will be recorded.

firstBinding This field indicates the index of the vertex input binding, which will be
updated by the command.

bindingCount This indicates the number of vertex input bindings whose state will be
updated by the command.

pBuffers This field is an array of the VkBuffer vertex buffer handles that are passed
into.

pOffsets This field is an array of vertex buffer offsets.

Drawing Objects

[318]

Implementation
Bind the command buffer object with the necessary information to pick the geometry data
using the vkCmdBindVertexBuffer() API; this API takes the vertex buffer information of
the drawing object that we are interested in to draw on the display:

void VulkanDrawable::recordCommandBuffer(int currentImage, VkCommandBuffer*
cmdDraw){

 // Bound the vertex buffer with the command buffer
 vkCmdBindVertexBuffers(*cmdDraw, 0, 1, &VertexBuffer.buf,
 offsets);

}

Defining a dynamic viewport
A viewport determines the portion of the drawing surface region on which the drawing
object primitives will be rendered. In Chapter 8, Pipelines and Pipeline State Management, we
learned to manage viewport state under the graphics pipeline in the Viewport management
subsection under Understanding the Pipeline State Objects (PSO) and created a pipeline state
object. Viewport parameters can be controlled statically or dynamically:

Statical control: If the dynamic state VK_DYNAMIC_STATE_VIEWPORT is disabled,
then the viewport parameters are not supposed to be changed and specified once
the viewport pipeline state object is created using the
VkPipelineViewportStateCreateInfo class' member variable pViewport.
Dynamical control: On the other hand, when the dynamic state
VK_DYNAMIC_STATE_VIEWPORT is enabled while creating the pipeline state object,
then the viewport transformation parameters are allowed to be changed at
runtime. These parameters can be controlled dynamically at runtime using the
vkCmdSetViewport() API. The following is the syntax and description of this
API:

void vkCmdSetViewport(
 VkCommandBuffer commandBuffer,
 uint32_t firstViewport,
 uint32_t viewportCount,
 const VkViewport* pViewports);

Drawing Objects

[319]

The fields and a description of each parameter follow:

Parameters Description

commandBuffer This field specifies the command buffer object that will be used to record
this command.

firstViewport The firstViewport is an index into the internal viewports array,
indicating the first viewport that requires to be updated.

viewportCount These are the total number of viewports in the pViewport whose
parameters will be updated by the command.

pViewports This is a pointer array of the VkViewport structure specifying the
dimensions of the viewport region.

typedef struct VkViewport {
 float x;
 float y;
 float width;
 float height;
 float minDepth;
 float maxDepth;
} VkViewport;

The fields and a description of each parameter follow:

Parameters Description

x, y This is the upper-left corner of the viewport (x, y).

width, height This indicates the width and height of the viewport.

minDepth, maxDepth This is the depth range for the viewport. minDepth could be greater
than or equal to maxDepth.

Implementation
The viewport is initialized using the initViewport() function by passing the current
command buffer object into which the vkCmdSetViewport() command will be recorded.
The vkCmdSetViewport() API sets the viewport parameters, which are dynamically set in
the viewport region, specifying the upper-left dimension and depth information of the
viewable region:

void VulkanDrawable::recordCommandBuffer(int currentImage, VkCommandBuffer*
cmdDraw){

Drawing Objects

[320]

 // Define the dynamic viewport here.
 initViewports(cmdDraw);

}

void VulkanDrawable::initViewports(VkCommandBuffer* cmd)
{
 viewport.height = (float)rendererObj->height;
 viewport.width = (float)rendererObj->width;
 viewport.minDepth = (float) 0.0f;
 viewport.maxDepth = (float) 1.0f;
 viewport.x = 0;
 viewport.y = 0;
 vkCmdSetViewport(*cmd, 0, NUMBER_OF_VIEWPORTS, &viewport);
}

Scissoring
A scissor defines a rectangular region; any framebuffer fragment's location (x, y) falling
outside this rectangular region is discarded.

If this pipeline state object is not created with the dynamic state
VK_DYNAMIC_STATE_VIEWPORT enabled, then scissor rectangles are controlled using the
VkPipelineViewportStateCreateInfo class's member variable pScissors. On the
other hand, if the pipeline state object is created with the dynamic state
VK_DYNAMIC_STATE_VIEWPORT enabled, then the scissor rectangle parameter can be
specified and controlled dynamically using the vkCmdSetScissor() API.

Similar to viewport parameters, scissor parameters can be controlled statically or
dynamically:

Static control: When viewport parameters are not expected to change, then it
means the viewing dimensions are fixed. This can be indicated to the underlying
pipeline using dynamic states by disabling the VK_DYNAMIC_STATE_VIEWPORT.
Such a case informs the pipeline about the static nature of the viewport, which
could be beneficial for decision-making and avoiding any kind of housekeeping
that the viewports dynamic factors required. For static viewport configuration,
the scissor parameters read from the viewport pipeline state object
VkPipelineViewportStateCreateInfo class's member variable pScissors.

Drawing Objects

[321]

Dynamical control: On the other hand, if the dynamic state
VK_DYNAMIC_STATE_VIEWPORT is enabled, scissor parameters can be changed
dynamically and specified through a special API called vkCmdSetViewport().
The following is the syntax and description of this API:

 void vkCmdSetScissor(
 VkCommandBuffer commandBuffer,
 uint32_t firstScissor,
 uint32_t scissorCount,
 const VkRect2D* pScissors);

The fields and a description of each parameter follow:

Parameters Description

commandBuffer This field specifies the command buffer object that will be used to record
this command.

firstScissor The firstScissor is an index to the internal scissors array, indicating the
first scissor to be updated.

scissorCount This is the total number of scissors in the pScissors array, whose
parameters will be updated by the command.

pScissors This is a pointer to an array of the VkRect2D structure specifying the 2D
dimensions of the scissor area.

Implementation
Scissoring is initialized using the initScissors() function specifying the non-clipping
region. Anything outside this rectangular region will be discarded. The
vkCmdSetScissor() API sets the scissoring parameters, which can be dynamically set,
indicating the rectangular dimensions used for single or multiple scissoring:

void VulkanDrawable::recordCommandBuffer(int currentImage, VkCommandBuffer*
cmdDraw){

 // Define the scissor here.initScissors(cmdDraw);

}
void VulkanDrawable::initScissors(VkCommandBuffer* cmd)
{
 scissor.extent.width = rendererObj->width;
 scissor.extent.height = rendererObj->height;
 scissor.offset.x = 0;
 scissor.offset.y = 0;

Drawing Objects

[322]

 vkCmdSetScissor(*cmd, 0, NUMBER_OF_SCISSORS, &scissor);
}

Draw command
The draw command helps in assembling the primitives. Vulkan supports index- and
nonindex-based draw commands. A draw command can affect the framebuffer by the order
in which fragments are ordered. In cases where multiple instances of a draw command are
used, the API order is used to process the draw commands. For nonindex-based commands,
the rule is to put primitives with lowered number instances earlier in the order. For index-
based commands, the primitive with a lower number of vertex index values is placed earlier
in the API order.

Vulkan renders drawing objects by recording draw commands in the command buffer.
There are four different drawing commands available in Vulkan, which are broadly divided
into the following two types of categories:

The first type (vkCmdDraw and vkCmdDrawIndexed) specifies the drawing
parameters in the command buffer object itself
In contrast, the second type (vkCmdDrawIndirect and
vkCmdDrawIndexedIndirect) uses buffer memory to read the parameters from
a drawing API, which is suffixed with the Indirect keyword and is of the latter
type; otherwise, it's the former one

vkCmdDraw command
The vkCmdDraw() API reads the drawing parameters from the command buffer; the vertex
information is accessed in the form of an array in sequential order, starting from the first
vertex (firstVertex) to the total number of vertices specified by the vertexCount. The
vkCmdDraw API renders primitives specified by the input assembly state under the pipeline
state object using vertex array data information.

This API supports instancing, which allows efficient rendering of an object multiple times
without calling multiple draw commands. Such drawing features are very helpful in
situations such as crowd simulation, tree rendering, clone patterns, and so on. The total
number of drawing instances is specified using instanceCount, starting from the first
instance index indicated by firstInstance.

Drawing Objects

[323]

void vkCmdDraw(
 VkCommandBuffer commandBuffer,
 uint32_t vertexCount,
 uint32_t instanceCount,
 uint32_t firstVertex,
 uint32_t firstInstance);

The fields and a description of each parameter follow:

Parameters Description

commandBuffer This field specifies the command buffer object (VkCommandBuffer) into
which the recording is performed.

vertexCount This is the total count of the vertex intended to draw.

instanceCount This field indicates the total number of instances to be drawn using this
command.

firstVertex This field specifies the very first vertex index from which the vertices are
read in order to draw them.

firstInstance This field specifies the very first instance ID of the instance to draw.

The present example in this chapter makes use of the following command:

vkCmdDraw(*cmdDraw, 3, 1, 0, 0);

This command consumes the following triangle data, which represents three vertices in the
interleaved form, hence the second parameter is specified as 3; since there is only one
instance, the third parameter is 1. The drawing should start from the first vertex, which is
indicated by index 0 as the fourth parameter. The last parameter is 0, pointing to the first
instance ID:

struct VertexWithColor
 {
 float x, y, z, w; // Vertex Position
 float r, g, b, a; // Color format Red, Green, Blue, Alpha
 };

 static const VertexWithColor triangleData[] =
 {
 { 0.0f, 1.0f, 0.0f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0 },/*Vertex0*/
 { 1.0f, -1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0 },/*Vertex1*/
 {-1.0f, -1.0f, 0.0f, 1.0f, 0.0f, 1.0f, 0.0f, 1.0 },/*Vertex2*/
 };

Drawing Objects

[324]

Another type of drawing command used in this chapter is the
vkCmdDrawIndexed() API. This API renders indexed geometry. For
detailed information, please refer to the Rendering an indexed geometry
section at the end of this chapter. But before jumping to this section, you
must work through all the remaining sections to understand the rendering
of drawing objects in Vulkan.

Implementing drawing object preparation
The drawing object's preparation process is executed inside the recordCommandBuffer
function of the VulkanDrawable class. This function records the commands associated
with the drawing object for each swapchain buffer in a separate command buffer object
(cmdDraw). The process includes the following steps.

Record the Render Pass instance using the vkCmdBeginRenderPass() API; this accepts the
VkRenderPassBeginInfo class's object (renderPassBegin) as an input parameter, which
contains the Render Pass and framebuffer objects that indicate the attachments, subpasses,
and image views associated with this Render Pass instance. For more information on
Render Pass and framebuffer objects, please refer to Chapter 7, Buffer Resource, Render Pass,
Framebuffer, and Shaders with SPIR-V.

The other information the renderPassBegin carries is the extent of the drawing region on
the framebuffer. In addition, the clear values for color, depth, or stencil image are also set
inside. This information clears the buffer attachments associated with the specified clear
value. For example, the clear value associated with the color buffer attachment works like a
background color.

The last parameter passed into the vkCmdBeginRenderPass is
VK_SUBPASS_CONTENTS_INLINE; it indicates that only primary command
buffers are supposed to record the subpass contents, and within this
subpass, the secondary commands will not be executed.

Use vkCmdBindPipeline()and bind the command buffer with the graphics pipeline object
that we created in Chapter 8, Pipelines and Pipeline State Management.

For dynamically setting the viewport and scissoring region, use initViewports() and
initScissors() and set the vkCmdSetViewport() and vkCmdSetScissor() APIs with
the required rectangular region dimensions.

Drawing Objects

[325]

When the vkCmdSetViewport() and vkCmdSetScissor()APIs are used
during runtime to specify the viewport and scissor dimensions, the
dynamic states (VkDynamicState) must be enabled with
VK_DYNAMIC_STATE_VIEWPORT.

Specify the draw command using the non-indexed drawing API vkCmdDraw(). The first
argument specifies the command buffer object (VkCommandBuffer) into which the drawing
command will be recorded. The second argument 3 specifies the number of vertices the
geometry is intended to draw. The third argument 1 specifies that there needs to draw
single instance at a time. The fourth argument specifies the first vertex index (0) to draw;
the last argument 0 specifies the first index to be used for instance-based drawing
responsible for controlling the rate at which data advances from an instanced array.

Finish the Render Pass instance recording using vkCmdEndRenderPass()and passing the
current command buffer object into it.

The recording of the command buffer is implemented as follows:

void VulkanDrawable::recordCommandBuffer(int currentImage, VkCommandBuffer*
cmdDraw)
{
 VulkanDevice* deviceObj = rendererObj->getDevice();
 VkClearValue clearValues[2];
 clearValues[0].color.float32[0] = 0.0f;
 clearValues[0].color.float32[1] = 0.0f;
 clearValues[0].color.float32[2] = 0.0f;
 clearValues[0].color.float32[3] = 0.0f;
 clearValues[1].depthStencil.depth = 1.0f;
 clearValues[1].depthStencil.stencil = 0;

 VkRenderPassBeginInfo renderPassBegin;
 renderPassBegin.sType = VK_STRUCTURE_TYPE_
 RENDER_PASS-_BEGIN_INFO;
 renderPassBegin.pNext = NULL;
 renderPassBegin.renderPass = rendererObj->renderPass;
 renderPassBegin.framebuffer = rendererObj->
 framebuffers[currentImage];
 renderPassBegin.renderArea.offset.x = 0;
 renderPassBegin.renderArea.offset.y = 0;
 renderPassBegin.renderArea.extent.width = rendererObj->width;
 renderPassBegin.renderArea.extent.height = rendererObj->height;
 renderPassBegin.clearValueCount = 2;
 renderPassBegin.pClearValues = clearValues;

 // Start recording the render pass instance
 vkCmdBeginRenderPass(*cmdDraw, &renderPassBegin,

Drawing Objects

[326]

 VK_SUBPASS_CONTENTS_INLINE);

 // Bound the command buffer with the graphics pipeline
 vkCmdBindPipeline(*cmdDraw, VK_PIPELINE_BIND_POINT_GRAPHICS,
 *pipeline);

 // Bound the command buffer with the graphics pipeline
 const VkDeviceSize offsets[1] = { 0 };
 vkCmdBindVertexBuffers(*cmdDraw, 0, 1, &VertexBuffer.buf,
 offsets);

 // Define the dynamic viewport here
 initViewports(cmdDraw);

 // Define the scissoring
 initScissors(cmdDraw);

 // Issue the draw command with 3 vertex, 1 instance starting
 // from first vertex
 vkCmdDraw(*cmdDraw, 3, 1, 0, 0);

 // End of render pass instance recording
 vkCmdEndRenderPass(*cmdDraw);

}

Rendering the drawing object
Once the Render Pass instance is prepared and recorded successfully in the drawing object's
command buffer, we can reuse it each time to draw the object.

Drawing an object comprises three steps. First, we will need to acquire the index to the next
available swapchain image onto which the primitive will be drawn or rasterized. Second, we
will need to submit the command buffer to the graphics queue to execute the recorded
command on the GPU; the GPU executes these commands and paints the available
swapchain drawing images with the draw commands. Finally, the drawn image is handed
over to the presentation engine, which renders the output onto the attached display window.
The following subsections will describe each of these three steps in detail.

Drawing Objects

[327]

Acquiring the swapchain image
Before executing the Render Pass instance-recorded commands, we will need to acquire a
swapchain image onto which the drawings will be performed. For this, we will need to
query the index of the swapchain image that will be available from the system using the
WSI extension vkAcquireNextImageKHR(); this will return the index of the swapchain
image that your application will render to. This extension is available in the form of a
function pointer of type PFN_vkAcquireNextImageKHR.

Upon the API call, it acquires the presentable image onto which the current command
buffer will be used to paint and notifies the application that the target presentable image
has changed.

Multiple factors influence the availability of presentable images when the
API is called. This includes presentation engine implementation, how the
VkPresentModeKHR is being used, the total number of images in the
swapchain, the number of images that the application owns at any given
time, and of course the application's performance.

VkResult vkAcquireNextImageKHR(
 VkDevice device,
 VkSwapchainKHR swapchain,
 uint64_t timeout,
 VkSemaphore semaphore,
 VkFence fence,
 uint32_t* pImageIndex);

The fields and a description of each parameter follow:

Parameters Description

device This indicates the logical VkDevice, which is associated with the swapchain
object.

swapchain This indicates the swapchain object (VkSwapchainKHR) from which the
drawing image will be acquired.

timeout This parameter indicates whether the API is blocking or nonblocking. When a
time-out (in nanosecond) is specified, it indicates for how long the function
waits or blocks, if no image is available. If the time-out is 0, then this API will
not block and return the success or failure error. This field guarantees that the
vkAcquireNextImageKHR() API never blocks the system and returns the
ownership after a finite time in case of failure.

Drawing Objects

[328]

semaphore This is the VkSemaphore object and must be unsignaled and should not have
any uncompleted signal or wait operations pending. It will be signaled when
the presentation engine has released ownership of the image and the device
can modify its contents. If not used in the API, this can be equal to
VK_NULL_HANDLE.

fence This is a VkFence object and must be unsignaled and not have any
uncompleted signal operations pending. It will become signaled when the
presentation engine has released ownership of the image. If not used in the
API, this can be equal to VK_NULL_HANDLE. This can be used to measure the
frame generation work that matches the presentation rate.

pImageIndex This retrieves the index of the next presentable image. This index belongs to
the index into the array of image handles returned by the
vkGetSwapchainImagesKHR() API. If the API does not return the
VK_SUCCESS instance, it means the pointed index is not modified.

vkAcquireNextImageKHR() cannot have both semaphore and fence
specified as VK_NULL_HANDLE; one of them must be a valid input.

The following table specifies the return value from the vkAcquireNextImageKHR() API,
which depends on the timeout field:

Return value Description

VK_SUCCESS This means that it has successfully acquired the presentable
image.

VK_ERROR_SURFACE_LOST_KHR This appears when the presentable surface is no longer
available.

VK_NOT_READY This indicates that no image is available and when
timeout is 0.

VK_TIMEOUT When timeout is a nonzero mean (> 0 and
<UINT64_MAX), this indicates that no presentable image is
available in the allowed duration.

VK_SUBOPTIMAL_KHR In this case, the returned presentable image no longer
matches with swapchain surface properties, but it can still
be used.

Drawing Objects

[329]

VK_ERROR_OUT_OF_DATE_KHR Here, the returned presentable image is no longer
compatible with the swapchain and thus cannot be further
used for presentation with swapchain. In this case, the
application must query the compatible surface properties
and recreate the swapchain with the required surface
properties in order to continue with presentation service.

Executing the drawing command buffer object
The drawing command buffer object is executed by submitting it into the graphics queue
using the CommandBufferMgr::submitCommandBuffer() function, which internally calls
the vkQueueSubmit() API to submit the command buffer.

For more information on the submitCommandBuffer() API and its usage,
please refer to Chapter 5, Command Buffer and Memory Management in
Vulkan. In this chapter, you can refer to the subsection Submitting the
command to queue under Implementing the wrapper class for command buffer.

Displaying the output with the presentation
engine
When the drawing object's command buffer is executed, the target presentation image is
painted with the recorded commands. This image is then queued to the presentation engine
using the vkQueuePresentKHR() API, which renders the output presentation image onto
the display output.

VkResult vkQueuePresentKHR(
 VkQueue queue,
 const VkPresentInfoKHR* pPresentInfo);

The following parameters are used inside the vkQueuePresentKHR()API:

Parameters Description

queue This is a VkQueue object, which is capable of presentation and has graphics
queue capabilities. Also, this queue belongs to the same device as the image's
swapchain.

pPresentInfo This is a pointer to a VkPresentInfoKHR structure specifying the
presentation metadata.

Drawing Objects

[330]

The following is the syntax and description of VkPresentInfoKHR():

typedef struct VkPresentInfoKHR {
 VkStructureType sType;
 const void* pNext;
 uint32_t waitSemaphoreCount;
 const VkSemaphore* pWaitSemaphores;
 uint32_t swapchainCount;
 const VkSwapchainKHR* pSwapchains;
 const uint32_t* pImageIndices;
 VkResult* pResults;
} VkPresentInfoKHR;

The fields and a description of each parameter follow:

Parameters Description

sType This specifies the type of this structure; this must be
VK_STRUCTURE_TYPE_PRESENT_INFO_KHR.

pNext This could be a valid pointer to an extension-specific structure or
could be NULL.

waitSemaphoreCount This field indicates the count of semaphores the presentation engine
should wait on before displaying the image.

pWaitSemaphores This specifies the semaphores to wait on before issuing the present
request. This is a Non-NULL VkSemaphore object array with size
equal to waitSemaphoreCount.

swapchainCount There can be more than one swapchain presented; this field indicates
the number of swapchains that will be presented using this API
command.

pSwapchains This indicates an array of the VkSwapchainKHR objects with size
equal to the swapchainCount entries.

pImageIndices This is an array of presentable image indices of each swapchain's
presentable images, with total entries specified by
swapchainCount. Each entry in the index array indicates the
presentable image that will be used in the presentation.

pResults This field, if non-NULL, returns the status (VkResult typed) for
each presentable image; the number of entries is equal to
swapchainCount. If an application does not require the per-
swapchain results, the pResults can be set as NULL.

Drawing Objects

[331]

The vkQueuePresentKHR is capable of presenting multiple presentable
images from corresponding swapchains. It releases the ownership of the
images (indicated by pImageIndices; refer to the following
VkPresentInfoKHR) to the presentation engine. These presented images
must not be used again until the application regains control of them using
the vkAcquireNextImageKHR() API (and must wait until the returned
semaphore is signaled, or fence is completed).

The presentation images sent to the queue are always processed in order; the transfer of the
ownership of a presentation image to the presentation engine happens with the submission
in the queue. These presentable images are only performed if the submitted semaphore is
signaled, indicating that no prior rendering operation is pending. The presentation time is
very implementation-specific; it may be affected by the semantics of the presentation engine
and the native platform in use.

The following table specifies the return value from the vkQueuePresentKHR() API:

Return value Description

VK_SUCCESS This means that it has successfully acquired the presentable
image.

VK_ERROR_SURFACE_LOST_KHR This appears when the presentable surface is no longer
available.

VK_SUBOPTIMAL_KHR In this case, the returned presentable image no longer
matches with swapchain surface properties, but it can still
be used for paint purposes successfully.

VK_ERROR_OUT_OF_DATE_KHR Here, the returned presentable image is no longer
compatible with the swapchain and thus cannot be further
used for presentation with the swapchain. In this case, the
application must query the compatible surface properties
and recreate the swapchain with the required surface
properties in order to continue with the presentation
service.

Drawing Objects

[332]

When a presentable image is given to the presentation engine, the presentation does not
change the contents of this image. If this image is again reacquired using
vkAcquireNextImageKHR() and the transitioning is taken away from the
VK_IMAGE_LAYOUT_PRESENT_SRC_KHR layout, even then the contents remain the same as
they were before transitioning. In contrast, if some other mechanism modifies the platform
window other than Vulkan, then the contents of all the presentable images in the swapchain
become undefined.

Implementing drawing object rendering
Let's understand the implemented rendering code. First, acquire the presentable image
index using the vkAcquireNextImageKHR() API extension; the index is returned in the
currentColorImage variable. This swapchain extension is stored as a function pointer
(fpAcquireNextImageKHR) in the VulkanRenderclass.

For more information on querying swapchain extensions, please refer to
the subsection Querying swapchain extensions in Chapter 6, Allocating Image
Resources and Building a Swapchain with WSI.

You must provide at least one of the sync objects (semaphore or fence); otherwise, you will
have no idea when you can use the image. For example, your image will still be read by the
presentation engine when you try to acquire it. The vkAcquireNextImageKHR() is
permitted to return as soon as it has identified the image that it has to give you next, not
when that image is actually usable. For this reason, synchronization is very important at
this step. Vulkan provides two ways to synchronize the swapchain image using semaphore
and fences. When semaphore and fences are used, they ensure that when the image is
acquired it has no previous pending operation (such as the presentation engine reading it).

In this example, we used a semaphore object (presentCompleteSemaphore) for
synchronization purposes; this object is passed into the vkAcquireNextImageKHR() to be
associated with the image, and this semaphore is signaled when the image can be rendered.

Use the retrieved image index (currentColorImage) and get the corresponding command
buffer from the vecCmdDraw vector. Create the VkSubmitInfo control structure and
specify the create semaphore object (presentCompleteSemaphore) in order to submit the
command buffer. Upon submission, the commands will only begin execution when a
semaphore is signaled; in other words, the image is ready to paint with drawing
commands.

Drawing Objects

[333]

As a final approach, the painted image is then queued in the presentation engine for display
purposes using the fpQueuePresentKHR API (vkQueuePresentKHR), transferring the
ownership to the presentation engine. It is very important to ensure that when an image is
used by the presentation engine it is not being painted or has any pending operations since
the last command buffer submission. This can be simply checked using another semaphore
object called drawingCompleteSemaphore; this object is passed into the VkSubmitInfo
class pSignalSemaphores field before the command buffer is submitted into the queue.
This semaphore is signaled when the command buffer is successfully processed, removing
any chance to overlap with the presentation engine's ownership. Once the presentable
image is displayed, the presentation engine relinquishes the ownership.
vkAcquireNextImageKHR() can query the same image again and get the ownership.

The following is the implementation code that demonstrates the rendering of the object in
Vulkan:

void VulkanDrawable::render()
{
 VulkanDevice* deviceObj = rendererObj->getDevice();
 VulkanSwapChain* swapChainObj= rendererObj->getSwapChain();
 uint32_t¤tColorImage = swapChainObj->
 scPublicVars.currentColorBuffer;
 VkSwapchainKHR& swapChain = swapChainObj->
 scPublicVars.swapChain;

 VkFence nullFence = VK_NULL_HANDLE;
 // Get the index of the next available swapchain image:
 VkResult result = swapChainObj->fpAcquireNextImageKHR(
 deviceObj->device, swapChain,UINT64_MAX,
 presentCompleteSemaphore, VK_NULL_HANDLE,
 ¤tColorImage);

 VkPipelineStageFlags submitPipelineStages =
 VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;

 // Prepare the submit into control structure
 VkSubmitInfo submitInfo = {};
 submitInfo.sType= VK_STRUCTURE_TYPE_SUBMIT_INFO;
 submitInfo.pNext= NULL;
 submitInfo.waitSemaphoreCount = 1;
 submitInfo.pWaitSemaphores= &presentCompleteSemaphore;
 submitInfo.pWaitDstStageMask= &submitPipelineStages;
 submitInfo.commandBufferCount= (uint32_t)sizeof(&vecCmdDraw
 [currentColorImage]) / sizeof(VkCommandBuffer);
 submitInfo.pCommandBuffers = &vecCmdDraw[currentColorImage];
 submitInfo.signalSemaphoreCount= 1;
 submitInfo.pSignalSemaphores = &drawingCompleteSemaphore;

Drawing Objects

[334]

 // Queue the command buffer for execution
 CommandBufferMgr::submitCommandBuffer(deviceObj->queue,
 &cmdDraw[currentColorImage],&submitInfo);
 // Present the image in the window
 VkPresentInfoKHR present;
 present.sType = VK_STRUCTURE_TYPE_PRESENT_INFO_KHR;
 present.pNext = NULL;
 present.swapchainCount= 1;
 present.pSwapchains= &swapChain;
 present.pImageIndices= ¤tColorImage;
 present.pWaitSemaphores= &drawingCompleteSemaphore;
 present.waitSemaphoreCount= 1;
 present.pResults= NULL;
 // Queue the image for presentation,
 result = swapChainObj->fpQueuePresentKHR
 (deviceObj->queue, &present);
 assert(result == VK_SUCCESS);
}

The semaphore objects are created in the constructor of the drawable class and reused
throughout the application as shown in the following.

VulkanDrawable::VulkanDrawable(VulkanRenderer* parent) {
 memset(&VertexBuffer, 0, sizeof(VertexBuffer));
 rendererObj = parent;

 // Prepare the semaphore create info data structure
 VkSemaphoreCreateInfo presentCompleteSemaphoreCreateInfo;
 presentCompleteSemaphoreCreateInfo.sType =
 VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO;
 presentCompleteSemaphoreCreateInfo.pNext = NULL;
 presentCompleteSemaphoreCreateInfo.flags = 0;
 VkSemaphoreCreateInfo drawingCompleteSemaphoreCreateInfo;
 drawingCompleteSemaphoreCreateInfo.sType =
 VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO;
 drawingCompleteSemaphoreCreateInfo.pNext = NULL;
 drawingCompleteSemaphoreCreateInfo.flags = 0;

 VulkanDevice* deviceObj = VulkanApplication::GetInstance()->
 deviceObj;

 vkCreateSemaphore(deviceObj->device,
 &presentCompleteSemaphoreCreateInfo, NULL,
 &presentCompleteSemaphore);

 vkCreateSemaphore(deviceObj->device,
 &drawingCompleteSemaphoreCreateInfo, NULL,
 &drawingCompleteSemaphore);

Drawing Objects

[335]

}

These semaphore objects can be destroyed using the user-defined
destroySynchronizationObjects() function during the de-initialization process:

void VulkanDrawable::destroySynchronizationObjects()
{
 VulkanApplication* appObj = VulkanApplication::GetInstance();
 VulkanDevice* deviceObj = appObj->deviceObj;
 vkDestroySemaphore(deviceObj->device,
 presentCompleteSemaphore, NULL);
 vkDestroySemaphore(deviceObj->device,
 drawingCompleteSemaphore, NULL);
}

The following is the output of the program:

Drawing Objects

[336]

Rendering an indexed geometry
In this section, you will learn to use the vkCmdDrawIndexed() draw command. This
command is used for drawing the index geometry.The vkCmdDrawIndexed() API is an
index buffer's draw command. In an index buffer, each vertex is represented using an index
number. This fashion of representing mesh data requires less memory and storage space to
represent connected meshes when the mesh has shared vertices (such as enclosed shapes).

For example, a square geometry rendered using two triangles shares two common vertices
as shown in the following example; as you can see, the first and third vertices are repeated:

static const VertexWithColor squareData[] =
{
 { -0.5f, 0.5f, 0.0f, 1.0f, 1.0f, 1.0f, 0.0f, 1.0 },
 { 0.5f, 0.5f, 0.0f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0 },
 { 0.5f, -0.5f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0 },
 { -0.5f, -0.5f, 0.0f, 1.0f, 0.0f, 1.0f, 0.0f, 1.0 },
};

uint16_t squareIndices[] = { 0,3,1, 3,2,1 }; // 6 indices

In this section, we will use the geometry data and indices to demonstrate the use of the
vkCmdDrawIndexed() API. The following is the syntax:

void vkCmdDrawIndexed(
 VkCommandBuffer commandBuffer,
 uint32_t indexCount,
 uint32_t instanceCount,
 uint32_t firstIndex,
 int32_t vertexOffset,
 uint32_t firstInstance);

Let's take a look at the different fields used in this API and their respective descriptions:

Parameter Description

commandBuffer This field specifies the command buffer object (VkCommandBuffer) into
which the recording is performed.

indexCount This is the total count of the index elements in the index list of the buffer
resources that are intended to be drawn.

instanceCount This field indicates the total number of instances to be drawn using this
command.

firstIndex This field specifies the first index (into the indices) from where the indices
are read.

Drawing Objects

[337]

vertexOffset This field specifies an offset value that will be added into the vertex index
to produce a resultant index. This computed index then is used to read the
vertex from the vertex buffer.

firstInstance This field specifies the very first instance ID into the instances to draw.

The following are the steps to render an indexed draw:

Using squareData and squareIndices, create a buffer resource (VkBuffer).1.
Store VkBuffer's handles in VertexBuffer::buf and VertexIndex::idx.
For more information, please refer to the Indexed Draw example provided in this
chapter.
Bind the vertex buffer using vkCmdBindVertexBuffers() and pass2.
VertexBuffer.buf into it.
Similarly, the index buffer (VertexIndex.idx) is bound using the3.
vkCmdBindIndexBuffer() API command.
Draw the object using vkCmdDrawIndexed().4.

vkCmdDrawIndexed() is used in conjunction with the vkCmdBindIndexBuffer() API.
Similar to vkCmdBindVertexBuffers(), which binds the vertex buffer, this command
binds the index buffer. The following is the syntax of this API; for more information on the
vkCmdBindVertexBuffers() API, please refer to the Specifying the drawing object geometry
information section.

void vkCmdBindIndexBuffer(
 VkCommandBuffer commandBuffer,
 VkBuffer buffer,
 VkDeviceSize offset,
 VkIndexType indexType);

Let's take a look at the different fields used in this API and their respective descriptions:

Parameter Description

commandBuffer This specifies the command buffer object into which this
command–vkCmdBindIndexBuffer()–will be recorded.

buffer This indicates the handle of the index buffer (VkBuffer) that will be bound
to this API.

offset This is the starting offset specified in bytes in the index buffer that will be
used for index buffer address calculation.

Drawing Objects

[338]

indexType This field indicates whether the indices are 16-bits or 32-bits wide.
This must be one of the VkIndexType types:
typedef enum VkIndexType {
VK_INDEX_TYPE_UINT16 = 0,
VK_INDEX_TYPE_UINT32 = 1,
} VkIndexType;

Similar to the createVertexBuffer() function, we have created a new function called
createIndexBuffer(); it creates the index buffer and stores the index buffer handle in
VertexIndex.idx. For a detailed implementation of this function, please refer to the
accompanying source code. The implementation of createIndexBuffer() is very similar
to createVertexBuffer(); for a detailed understanding on the implementation of this
function, please refer to Implementing the buffer resource–creating the vertex buffer for the
geometry in Chapter 7, Buffer Resource, Render Pass, Framebuffer, and Shaders with SPIR-V.

The following code demonstrates the rendering of the indexed geometry object:

// Local data structure in VulkanDrawable class
// for storing vertex buffer and index buffer metadata
struct {
 VkBuffer buf;
 VkDeviceMemory mem;
 VkDescriptorBufferInfo bufferInfo;
} VertexBuffer;

struct {
 VkBuffer idx;
 VkDeviceMemory mem;
 VkDescriptorBufferInfo bufferInfo;
} VertexIndex;

// Create the VkBuffer and store the handle in
// VertexBuffer.buf and VertexIndex.idx
. . . .
// Bind the vertex buffer
const VkDeviceSize offsets[1] = { 0 };
vkCmdBindVertexBuffers(*cmdDraw, 0, 1,&VertexBuffer.buf,
 offsets);

// Bind the Index buffer
vkCmdBindIndexBuffer(*cmdDraw, VertexIndex.idx,
 0, VK_INDEX_TYPE_UINT16);

// Draw the object
vkCmdDrawIndexed(*cmdDraw, 6, 1, 0, 0, 0);

Drawing Objects

[339]

The output of the preceding geometry data will be displayed as follows; for detailed code,
please refer to the Indexed Draw example in this chapter:

The vkCmdDrawIndirect and vkCmdDrawIndexedIndirect draw commands are very
similar to vkCmdDraw and vkCmdDrawIndexed, except that the parameters here are read
from the buffer memory. For more information on these APIs, please refer to the official
Vulkan specification.

Understanding synchronization primitives in
Vulkan
Synchronization is key to bringing order and discipline into asynchronous system. It not
only improves resource utilization, it also benefits from parallelism by reducing CPU and
GPU idle time.

Drawing Objects

[340]

Vulkan offers the following four types of synchronization primitive for concurrent
execution:

Fences: Offer synchronization between the host and device
Semaphores: Synchronize between and within queues
Events: Between queue submissions
Barriers: Within a command buffer between commands

In this section, we will learn about synchronization primitives and understand their API
specification. The drawing object example that we implemented in this chapter makes use
of semaphores to synchronize swapchain image writing. In the next chapter, we will learn
to draw textures and implement fence to synchronize the host and device.

Fences
When a host submits a command in a queue, it gets scheduled for device processing.
Sometimes it may require to know the status of command execution on the GPU in order to
control the execution of the next batch, to ensure that it never overlaps with the previous
batch of commands, which may produce undefined results or a situation that causes
resource access violation.

Fence provides synchronization between the host and the GPU; using this, an application
instructs the host to wait until a certain submitted operation is completed. This way, the
GPU can be prevented from piling up more operations into the command queues:

Creating the fence object: The fence object can be created using the vkCreateFence()API.

VkResult vkCreateFence(
 VkDevice device,
 const VkFenceCreateInfo* pCreateInfo,
 const VkAllocationCallbacks* pAllocator,
 VkFence* pFence);

Let's take a look at the different fields used in this API and their respective descriptions:

Parameter Description

device This is the logical device object, which will be used to create the fence object.

pCreateInfo This is a pointer to an array of the VkFenceCreateInfo control structure.

Drawing Objects

[341]

pAllocator This controls the host memory allocation. You can refer to Host memory,
Chapter 5, Command Buffer and Memory Management in Vulkan for more
information.

pFence This is the handle of the created fence object.

The vkCreateFence() API takes VkFenceCreateInfo containing metadata, which is
used to control the creation of the fence objects. Following is the syntax of this control
structure:

typedef struct VkFenceCreateInfo {
 VkStructureType sType;
 const void* pNext;
 VkFenceCreateFlags flags;
} VkFenceCreateInfo;

It has three fields: the first field sType indicates the type information of this structure,
which must be VK_STRUCTURE_TYPE_FENCE_CREATE_INFO; the second field pNext is not
in use and must be NULL; the last parameter is VkFenceCreateFlagBits (see the following
code snippet), which indicates whether the created fence object will be in a signaled or
nonsignaled state. The signal state is specified using VK_FENCE_CREATE_SIGNALED_BIT.

typedef enum VkFenceCreateFlagBits {
 VK_FENCE_CREATE_SIGNALED_BIT = 0x00000001,
} VkFenceCreateFlagBits;

Waiting on the fence object: Once a valid fence object is created, the host can inject this into
a command and wait for it using the vkWaitForFences()API until it is not processed by
the device. The device signals the fence object as soon as it processes the associated
command, allowing the host to unblock the waiting state. Following is the API syntax:

VkResult vkWaitForFences(
 VkDevice device,
 uint32_t fenceCount,
 const VkFence* pFences,
 VkBool32 waitAll,
 uint64_t timeout);

Drawing Objects

[342]

The vkWaitForFences API takes the following parameters:

Parameters Description

device This is the logical device object (VkDevice) that will be used to destroy the
fence object.

fenceCount This is number of the fence object that needs to be destroyed.

PFences This is an array of fence objects handles that needs to be destroyed. The array
size must be equal to fenceCount.

waitAll The block can be unblocked using this Boolean flag. When this flag value is:
• VK_TRUE: It indicates that all the pFences must be signaled in order to
successfully unblock the waiting.
• VK_FALSE: At least one fence object in the pFences array must be signaled
for successfully unblocking the wait state.

timeOut This is the time-out period, specified (in nano seconds), which will be used to
unblock the wait state if the fence object never got signaled. This field
guarantees that the system never falls into an infinite blocking state that will
bring the application to a halt.

Destroying the fence object: Once the fence is used and no longer required, it can be
destroyed using the vkDestroyFence()API; this API takes three parameters–the first
parameter device is the logical device that will be used to destroy the fence object, which is
indicated by the second parameter called fence; the last parameter (pAllocator) manages
host memory deallocation:

void vkDestroyFence(
 VkDevice device,
 VkFence fence,
 const VkAllocationCallbacks* pAllocator);

Resetting the fence object: The application can also preserve the created fence object and
reuse it by resetting them using vkResetFences(). This API takes three parameters as an
input–the first parameter indicates the logical device to be used to reset the given fence
objects. The number of fence objects that need to be reset is pointed by the second
parameter called fenceCount. The last parameter pFences is a pointer of the array of fence
objects that will be reset by this API. The following is the syntax of this API:

Drawing Objects

[343]

VkResult vkResetFences(
 VkDevice device,
 uint32_t fenceCount,
 const VkFence* pFences);

Let's move to the next synchronization primitive: semaphores.

Semaphores
Semaphores give the flexibility to achieve synchronization at the queue level; they are used
to synchronize one or more queues. A Semaphore has two states: signaled and unsignaled.
Signaled semaphores are specified in the queue submission command vkQueueSubmit();
it blocks the rest of the batch until the semaphores are not unsignaled by the device. A
created semaphore is visible across multiple queues. If two or more queue submission
commands are waiting upon the same semaphore, then only one will receive the signaled
state; others may continue to wait, ensuring atomicity.

Creating semaphore object: Semaphores are created using the vkCreateSemaphore()
API; the following is the syntax of this API:

VkResult vkCreateSemaphore(
 VkDevice device,
 const VkSemaphoreCreateInfo* pCreateInfo,
 const VkAllocationCallbacks* pAllocator,
 VkSemaphore* pSemaphore);

The vkCreateSemaphore API takes the following parameters:

Parameter Description

device This is the logical device object, which will be used to create the semaphore
object.

pCreateInfo This is the pointer to an array of the VkSemaphoreCreateInfo control
structure.

pAllocator This controls host memory allocation. You can refer to Host memory, Chapter
5, Command Buffer and Memory Management in Vulkan for more information.

pSemaphore This is the handle of the created semaphore object.

Drawing Objects

[344]

The VkSemaphoreCreateInfo type structure has three parameters–the first parameter
sType indicates the type information of this control structure; the second parameter is
pNext, which could be a valid pointer to an extension-specific structure or could be NULL.
The last parameter is a flag value (flags), which is currently not being used and is reserved
for future purposes. The following is the syntax of this structure:

typedef struct VkSemaphoreCreateInfo {
 VkStructureType sType;
 const void* pNext;
 VkSemaphoreCreateFlags flags;
} VkSemaphoreCreateInfo;

Destroying a semaphore: The created semaphore is destroyed using
vkDestroySemaphore() as declared in the following syntax. This API takes three
parameters. The first parameter device is the logical device that will destroy the
semaphore object specified in the second parameter (semaphore). The last parameter
(pAllocator) manages host memory deallocation:

void vkDestroySemaphore(
 VkDevice device,
 VkSemaphore semaphore,
 const VkAllocationCallbacks* pAllocator);

In this chapter, we used semaphores to ensure that a given swapchain
image is only being used if it is not read by the presentation engine, in
other words, when the presentation has finished reading the swapchain
image and is ready to render it. For this, we created a semaphore object
and passed it into vkAcquireNextImageKHR(); this API signals the
semaphore when the image is ready to render. This signaled semaphore is
next passed to vkQueueSubmit() using the VkSubmitInfo control
structure; this ensures that drawing commands must only be drawn to the
presentation image when it is not being used. The vkQueueSubmit()
unsignals the semaphore, unblocking the next command
(vkQueuePresentKHR) to be executed; this command renders the image
to the output display.

Drawing Objects

[345]

Events
Events controls fine-grained synchronization and can exist in both signaled and unsignaled
states. It allows synchronization of work within a single command buffer or sequence of
command buffers submitted to a queue. Both the host and device can signal or reset the
events. Similarly, both can wait on the event object; however, the device is only allowed to
wait at some specific pipeline stage within the pipeline. You will learn more as we will
proceed through the API specification:

Creating the event object: The event can be created using vkCreateEvent() API. This API
accepts three parameters; the syntax is provided as follows:

VkResult vkCreateEvent(
 VkDevice device,
 const VkEventCreateInfo* pCreateInfo,
 const VkAllocationCallbacks* pAllocator,
 VkEvent* pEvent);

The vkCreateEvent API takes four parameters as described in the following table:

Parameter Description

device This is the logical device object, which will be used to create the event object.

pCreateInfo Thhis is the pointer to an array of VkEventCreateInfo control structures.

pAllocator This controls host memory allocation. You can refer to Host memory, Chapter
5, Command Buffer and Memory Management in Vulkan for more information.

pSemaphore This is the handle of the created event object.

The VkEventCreateInfo structure has three parameters: the first parameter (sType)
describes the type information of this create info data structure; it must be
VK_STRUCTURE_TYPE_EVENT_CREATE_INFO. The second parameter is pNext; this could be
a valid pointer to an extension-specific structure or could be NULL. The last parameter is flag
value (flags), which is currently not being used and reserved for future purposes.
Following is the syntax of this structure:

typedef struct VkEventCreateInfo {
 VkStructureType sType;
 const void* pNext;
 VkEventCreateFlags flags;
} VkEventCreateInfo;

Drawing Objects

[346]

Destroying the event object: The created event is destroyed using
vkDestroyEvent()when the event is no longer in use. This API takes three
parameters–the first parameter device is the logical device that will destroy the event
object specified by the second parameter (semaphore). The last parameter (pAllocator)
manages host memory deallocation.

void vkDestroyEvent(
 VkDevice device,
 VkEvent event,
 const VkAllocationCallbacks* pAllocator);

Querying the event status: The event can be queried to check whether it is in the signaled
or nonsignaled state. This is done using the vkGetEventStatus()API; the first parameter
(device) of this API is the logical device (VkDevice) that owns the event object; the second
parameter (event) is the event handle whose status is being queried. The following is the
syntax of this API:

VkResult vkGetEventStatus(
 VkDevice device,
 VkEvent event);

This API returns VK_EVENT_SET, which indicates the event is signaled; for an unsignaled
event, it returns VK_EVENT_RESET.

Setting and resetting events: Events can be set using vkSetEvent() and
vkResetEvent(). Both APIs accept the same input parameters as described above for the
vkGetEventStatus() API; for more information, please refer to vkSetEvent and
vkResetEvent syntax:

vkSetEvent API vkResetEvent API
VkResult vkCmdSetEvent(
VkDevice device,
VkEvent event);

VkResult vkSetEvent(
VkDevice device,
VkEvent event);

Drawing Objects

[347]

Signaling and unsignaling an event from a device: An event can be updated to set or reset
on the device using command buffers. The vkCmdSetEvent()and
vkCmdResetEvent()APIs are used to signal and unsignal the events, respectively; following
is the syntax of these APIs:

vkCmdSetEvent API vkCmdResetEvent API
VkResult vkCmdSetEvent(
VkCommandBuffer
commandBuffer,
VkEvent
event,
VkPipelineStageFlags
stageMask);

VkResult vkCmdResetEvent(
VkCommandBuffer
commandBuffer,
VkEvent
event,
VkPipelineStageFlags
stageMask);

Both APIs accept the following three parameters: the first parameter (commandBuffer)
specifies the command buffer in which this command will be recorded. The second
parameter (event) indicates the handle of the event object, which needs to be signaled or
unsignaled. The last parameter (stageMask) is the VkPipelineStageFlags pipeline stage,
indicating the point at which the event's state will be updated.

Waiting on event objects: One or more event objects can be waited upon to signal using the
vkCmdWaitEvents()API. The following is the syntax of this API:

void vkCmdWaitEvents(
 VkCommandBuffer commandBuffer,
 uint32_t eventCount,
 const VkEvent* pEvents,
 VkPipelineStageFlags srcStageMask,
 VkPipelineStageFlags dstStageMask,
 uint32_t memoryBarrierCount,
 const VkMemoryBarrier* pMemoryBarriers,
 uint32_t bufferMemoryBarrierCount,
 const VkBufferMemoryBarrier* pBufferMemoryBarriers,
 uint32_t imageMemoryBarrierCount,
 const VkImageMemoryBarrier* pImageMemoryBarriers);

Drawing Objects

[348]

The fields and a description of each parameter follow:

Parameter Description

commandBuffer This is the command buffer object into which this command
will be captured or recorded.

eventCount This is the number of event objects to be waited upon.

pEvents This is the array of the VkEvent objects; the size of the
array must be equal to eventCount.

srcStageMask This is the bitwise mask field that specifies the pipeline
stages that will signal the event objects specified in the
pEvents array.

dstStageMask This is the bitwise mask field that specifies the pipeline stage
at which the waiting should be performed.

memoryBarrierCount This refers to the number of memory barriers.

pMemoryBarriers This is the VkBufferMemoryBarreir object array that has
the number of elements equal to memoryBarrierCount.

bufferMemoryBarrierCount This refers to the number of buffer memory barriers.

pBufferMemoryBarriers This refers to the VkMemoryBarreir object array that has
the number of elements equal to
bufferMemoryBarrierCount.

imageMemoryBarrierCount This refers to the number of image type memory barriers.

pImageMemoryBarriers This refers to the VkImageMemoryBarrier object array
that has the number of elements equal to
imageMemoryBarrierCount.

Barrier have already been discussed and implemented in Chapter 6,
Allocating Image Resources and Building a Swapchain with WSI; for more
information, please refer to the Image layout transition with memory barriers
section.

Drawing Objects

[349]

Resizing the display window
When a display window resizes, the Vulkan application is given the new window
dimensions to re-paint the drawing images. On the Windows platform, the WM_SIZE
message of the associated window's procedure can be used to indicate the change in the
dimension size as shown in the following highlighted code. The new changes added to the
WndProc() function are highlighted with bold; the new dimension size is updated to the
VulkanSwapChain class using the setSwapChainExtent() function, which will be later
used to recreate the new swapchain images with the indicated dimensions:

LRESULT CALLBACK VulkanRenderer::WndProc(HWND hWnd, UINT uMsg,
WPARAM wParam, LPARAM lParam)
{
 VulkanApplication* appObj = VulkanApplication::GetInstance();
 switch (uMsg)
 {
 case WM_CLOSE:
 PostQuitMessage(0);
 break;
 case WM_PAINT:
 // Many lines skipped please, refer to the source code
 case WM_SIZE:
 if (wParam != SIZE_MINIMIZED) {
 appObj->rendererObj->width = lParam & 0xffff;
 appObj->rendererObj->height = (lParam &
 0xffff0000) >> 16;
 appObj->rendererObj->getSwapChain()->
 setSwapChainExtent(appObj->rendererObj->
 width, appObj->rendererObj->height);
 appObj->resize()
 }
 break;

 default:
 break;
}
return (DefWindowProc(hWnd, uMsg, wParam, lParam));
}

The VulkanApplication class is added with a new function called resize(); this
function handles resize activities. The Vulkan application's resize function is called by the
VulkanRenderer::WndProc()when a resize event happens.

Drawing Objects

[350]

The resize() function destroys created resources and recreates them again. The resource
preparation status can be checked using the isPrepared flag in VulkanApplication; if
this flag is false, it means resources are not prepared yet and resizing cannot be performed.

When the resources are recreated,the old swapchain images are destroyed and created
again to match the new window size.

A swapchain image must only be recreated when it is not being used by
any pending command or presentation operation. This can be ensured by
calling the vkDeviceWaitIdle() API; this API guarantees that there is
no pending operation on this device. This API keeps the host waiting until
the device become idle.

When the waiting in resize function finishes, it can go ahead and recreate the swapchain
images; but before doing so we will also need to destroy and recreate the framebuffer,
command pool, graphics pipeline, Render Pass, depth buffer image, image view, vertex
buffer, and so on. The following is the implementation of the resize function showing this:

void VulkanApplication::resize()
{
 // If prepared then only proceed for
 if (!isPrepared) {
 return;
 }

 isResizing = true;

 vkDeviceWaitIdle(deviceObj->device);
 rendererObj->destroyFramebuffers();
 rendererObj->destroyCommandPool();
 rendererObj->destroyPipeline();
 rendererObj->getPipelineObject()->destroyPipelineCache();
 rendererObj->destroyRenderpass();
 rendererObj->getSwapChain()->destroySwapChain();
 rendererObj->destroyDrawableVertexBuffer();
 rendererObj->destroyDepthBuffer();
 rendererObj->initialize();
 prepare();

 isResizing = false;
}

Drawing Objects

[351]

The application must prevent any render operation when resizing is going on; for this
purpose, the isResizing flag can be used to indicate the resizing status. The
reinitialization is performed by calling the VulkanRender'sinitialize() function. The
drawing commands are recorded in the Vulkan application's prepare function:

void VulkanRenderer::initialize()
{
 // We need command buffers, so create a command buffer pool
 createCommandPool();

 // Let's create the swap chain color images and depth image
 buildSwapChainAndDepthImage();

 // Build the vertex buffer
 createVertexBuffer();

 const bool includeDepth = true;
 // Create the render pass now..
 createRenderPass(includeDepth);

 // Use render pass and create frame buffer
 createFrameBuffer(includeDepth);

 // Create the vertex and fragment shader
 createShaders();

 // Manage the pipeline state objects
 createPipelineStateManagement();
}
void VulkanApplication::prepare()
{
 isPrepared = false;
 rendererObj->prepare();
 isPrepared = true;
}

Drawing Objects

[352]

The following screenshot shows the output of the resize window implementation:

Summary
In this chapter, we rendered our first Hello World! program in Vulkan. Drawing it consists
of two stages–preparation and rendering (execution). Preparation records the command
buffers and the rendering executes them. The command buffers are recorded once and
executed multiple times unless there is an explicit change in the pipeline state objects.

The preparation of the command buffer involves recording the Render Pass and graphics
pipeline binding and drawing parameters, such as vertex buffers, viewport, scissor, and so
on. Finally, the drawing API command is specified; we demonstrated both index- and
nonindex-based drawing APIs using the sample application.

Drawing Objects

[353]

The recorded command buffer is executed in the rendering stage. The execution process
acquires the swapchain image and submits the command buffer into the graphics queue.
Painting is done on the acquired swapchain image. Once this is complete the image is sent
to the presentation engine to be displayed on the output display. This chapter also
demonstrated API commands for drawing indexed and non-indexed geometries. Towards
the end of this chapter, we covered synchronization primitives in Vulkan and you learned
how to perform synchronization in between the host and device, and queues and command
buffers.

In the next chapter, we will learn about descriptors and the push constant, which allows the
sharing of resource contents with the Shader program.

10
Descriptors and Push Constant

In the previous chapter, we rendered our first drawing object on the display output. In this
chapter, we will take the previous implementation ahead and implement some 3D
transformations on the rendered geometry with the help of Uniforms. Uniforms are read-
only blocks of data accessible in the shader, and their value is constant for an entire draw
call.

Uniforms are managed by descriptors and descriptor pools. A descriptor helps connect the
resources with the shaders. But it may be expected to change frequently; therefore, the
allocation is performed through a preallocated descriptor buffer called the descriptor pool.

In this chapter, we will also implement a push constant. A push constant allows you to
update the constant data in the shader using an optimized high-speed path.

We will cover the following topics:

Understanding the concept of descriptors
How to implement Uniforms in Vulkan
Push constant updates

Understanding the concept of descriptors
A descriptor consists of descriptor set objects. These objects contain storage for a set of
descriptors. A descriptor set connects a given resource–such as a uniform buffer, sampled
image, stored image, and so on–to the shader helping it read and interpret the incoming
resource data through the layout bindings defined using the descriptor set layout. For
example, resources such as image textures, sampler and buffers are bound to the shader
using descriptors.

Descriptors and Push Constant

[355]

Descriptors are opaque objects and define a protocol to communicate with the shaders;
behind the curtain, it provides a silent mechanism to associate the resource memory with
the shaders with the help of location binding.

VulkanDescriptor – a user-defined descriptor
class
In this chapter, we will introduce a new user class called VulkanDescriptor and keep our
descriptor-related member variable and function here. This will be helpful in keeping the
descriptor code separate from the rest of the implementation, providing a much cleaner and
easier way to understand the descriptor functionality.

The following is the header declaration of the VulkanDescriptor class in
VulkanDescriptor.h /.cpp. As we proceed through the various sections, we will
discuss the purpose and implementation of declared functions and variables in this class in
detail. Refer to the inline comments for a quick grasp:

// A user define descriptor class implementing Vulkan descriptors
class VulkanDescriptor
{
public:
 VulkanDescriptor(); // Constructor
 ~VulkanDescriptor(); // Destructor

 // Creates descriptor pool and allocate descriptor set from it
 void createDescriptor(bool useTexture);
 // Deletes the created descriptor set object
 void destroyDescriptor();

 // Defines the descriptor sets layout binding and
 // create descriptor layout
 virtual void createDescriptorLayout(bool useTexture) = 0;
 // Destroy the valid descriptor layout object
 void destroyDescriptorLayout();

 // Creates the descriptor pool that is used to
 // allocate descriptor sets
 virtual void createDescriptorPool(bool useTexture) = 0;

 // Deletes the descriptor pool
 void destroyDescriptorPool();

 // Create the descriptor set from the descriptor pool allocated
 // memory and update the descriptor set information into it.

Descriptors and Push Constant

[356]

 virtual void createDescriptorSet(bool useTexture) = 0;
 void destroyDescriptorSet();

 // Creates the pipeline layout to inject into the pipeline
 virtual void createPipelineLayout() = 0;
 // Destroys the create pipelineLayout
 void destroyPipelineLayouts();
 public:
 // Pipeline layout object
 VkPipelineLayout pipelineLayout;

 // List of all the VkDescriptorSetLayouts
 std::vector<VkDescriptorSetLayout> descLayout;
 // Decriptor pool object that will be used
 // for allocating VkDescriptorSet object
 VkDescriptorPool descriptorPool;
 // List of all created VkDescriptorSet
 std::vector<VkDescriptorSet> descriptorSet;
 // Logical device used for creating the
 // descriptor pool and descriptor sets
 VulkanDevice* deviceObj;
};

Descriptor set layout
A descriptor set layout is a collection of zero or more descriptor bindings. It provides an
interface to read the resource in the shader at the specified location. Each descriptor binding
has a special type that indicates the kind of resource it is handling, the number of
descriptors in that binding, the sampler descriptor arrays, and the respective shader stages
to which it is associated with. This metadata information is specified in
VkDescriptorSetLayoutBinding. Following is the image showing descriptor set layout
which contains various resources layout binding in it where each resource is specified with
a binding number uniquely identified in that descriptor layout:

Descriptors and Push Constant

[357]

A descriptor set layout is created using the vkCreateDescriptorSetLayout() API. This
API accepts the VkDescriptorSetLayoutCreateInfo control structure into which the
preceding metadata information for zero or more descriptor sets is specified using the
VkDescriptorSetLayoutBinding structure. The following is the syntax of this structure:

VkResult vkCreateDescriptorSetLayout(
 VkDevice device,
 const VkDescriptorSetLayoutCreateInfo* pCreateInfo,
 const VkAllocationCallbacks* pAllocator,
 VkDescriptorSetLayout* pSetLayout);

Here are the parameters defined in the vkCreateDescriptorSetLayout() API:

Parameters Description

device This field specifies the logical device (VkDevice) that is responsible for
creating the descriptor set layout.

pCreateInfo This field specifies the descriptor set layout metadata using the pointer to an
object of the VkDescriptorSetLayoutCreateInfo structure.

pAllocator This controls host memory deallocation. Refer to the Host memory section in
Chapter 5, Command Buffer and Memory Management in Vulkan.

pSetLayout The created descriptor set layout objects are returned in the form of
VkDescriptorSetLayout handles.

Let's understand the VkDescriptorSetLayoutCreateInfo structure, which is given here:

typedef struct VkDescriptorSetLayoutCreateInfo {
 VkStructureType sType;
 const void* pNext;
 VkDescriptorSetLayoutCreateFlags flags;
 uint32_t bindingCount;
 const VkDescriptorSetLayoutBinding* pBindings;
} VkDescriptorSetLayoutCreateInfo;

The various fields of the VkDescriptorSetLayoutCreateInfo structure are defined in
this table:

Parameters Description

sType This is the type information of this control structure. It must be specified as
VK_STRUCTURE_TYPE_DESCRIPTOR-_SET_LAYOUT_CREATE_INFO.

pNext This could be a valid pointer to an extension-specific structure or NULL.

Descriptors and Push Constant

[358]

flags This field is of the VkDescriptorSetLayoutCreateFlags type and is
presently not in use; it is reserved for future use.

bindingCount This refers to the number of entries in the pBindings array.

pBindings This is a pointer to the structure array of
VkDescriptorSetLayoutBinding.

The following is the syntax of the VkDescriptorSetLayoutBinding structure:

typedef struct VkDescriptorSetLayoutBinding {
 uint32_t binding;
 VkDescriptorType descriptorType;
 uint32_t descriptorCount;
 VkShaderStageFlags stageFlags;
 const VkSampler* pImmutableSamplers;
} VkDescriptorSetLayoutBinding;

The various fields of the VkDescriptorSetLayoutBinding structure are defined in the
following table:

Parameters Description

binding This is the binding index that indicates the entry of this resource
type, and this index must be equal to the binding number or index
used in the corresponding shader stage.

descriptorType This indicates the type of the descriptor being used for binding. The
type is expressed using the VkDescriptorType enum.

descriptorCount This indicates the number of descriptors in the shader as an array,
and it refers to the shader that is contained in the binding.

stageFlags This field specifies which shader stages can access the value for both
the graphics and compute state. This shader stage is indicated by the
bit field of VkShaderStageFlagBits. If the value is
VK_SHADER_STAGE_ALL, then all the defined shader stages can
access the resource via the specified binding.

Descriptors and Push Constant

[359]

pImmutableSamplers This is a pointer to an array of sampler handles represented by
the corresponding binding that will be consumed by the
descriptor set layout.
This field is used for initializing a set of immutable samplers if
the descriptorType specified is either
VK_DESCRIPTOR_TYPE_SAMPLER or
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER. If
descriptorType is not one of these descriptor types, then this
field (pImmutableSamplers) is ignored. Once immutable
samplers are bounded, they cannot be bounded into the set
layout again. The sampler slots are dynamic when this field is
NULL, and the sampler handles must be bound to the descriptor
sets using this layout.

The following is the complete set of the VkDescriptorType enum signifying the various
descriptor types. The enumeration name of each type is self-explanatory; each of them
shows the type of resource it is associated with:

typedef enum VkDescriptorType {
 VK_DESCRIPTOR_TYPE_SAMPLER = 0,
 VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER = 1,
 VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE = 2,
 VK_DESCRIPTOR_TYPE_STORAGE_IMAGE = 3,
 VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER = 4,
 VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER = 5,
 VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER = 6,
 VK_DESCRIPTOR_TYPE_STORAGE_BUFFER = 7,
 VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC = 8,
 VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC = 9,
 VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT = 10,
} VkDescriptorType;

Let's go ahead and implement the descriptor set in the next subsection.

Implementing the descriptor set layout
The descriptor layout is implemented in the createDescriptorLayout() function of the
VulkanDrawable class. This function is a pure virtual function that is declared in the
VulkanDescriptor class. The VulkanDrawable class inherits the VulkanDescriptor
class. The following is the implementation of this:

void VulkanDrawable::createDescriptorLayout(bool useTexture)
{

Descriptors and Push Constant

[360]

 // Define the layout binding information for the
 // descriptor set(before creating it), specify binding point,
 // shader type(like vertex shader below), count etc.
 VkDescriptorSetLayoutBinding layoutBindings[2];
 layoutBindings[0].binding = 0; // DESCRIPTOR_SET_BINDING_INDEX
 layoutBindings[0].descriptorType =
 VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
 layoutBindings[0].descriptorCount = 1;
 layoutBindings[0].stageFlags = VK_SHADER_STAGE_VERTEX_BIT;
 layoutBindings[0].pImmutableSamplers = NULL;

 // If texture is being used then there exists a
 // second binding in the fragment shader
 if (useTexture)
 {
 layoutBindings[1].binding = 1;
 layoutBindings[1].descriptorType =
 VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
 layoutBindings[1].descriptorCount = 1;
 layoutBindings[1].stageFlags =
 VK_SHADER_STAGE_FRAGMENT_BIT;
 layoutBindings[1].pImmutableSamplers = NULL;
 }

 // Specify the layout bind into the VkDescriptorSetLayout-
 // CreateInfo and use it to create a descriptor set layout
 VkDescriptorSetLayoutCreateInfo descriptorLayout = {};
 descriptorLayout.sType =
 VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO;
 descriptorLayout.pNext = NULL;
 descriptorLayout.bindingCount = useTexture ? 2 : 1;
 descriptorLayout.pBindings = layoutBindings;

 VkResult result;
 // Allocate required number of descriptor layout objects and
 // create them using vkCreateDescriptorSetLayout()
 descLayout.resize(numberOfDescriptorSet);
 result = vkCreateDescriptorSetLayout(deviceObj->device,
 &descriptorLayout, NULL, descLayout.data());
 assert(result == VK_SUCCESS);
}

Before you create the descriptor set object, the layout bindings need to be defined. There are
two VkDescriptorSetLayoutBinding objects (an array) created in the preceding
implementation.

Descriptors and Push Constant

[361]

The first layout binding, layoutBindings[0], is used to bind the uniform block with the
resource index specified in the shader. In the present case, the index of our uniform block in
the vertex shader is 0, which is the same value that is specified in the
layoutBindings[0].binding field. The other fields of the object indicate that the binding
point is attached to the vertex shader stage (stageFlags), and the number of descriptors
(descriptorCount) are attached as an array in the shader that is contained within the
binding.

The second array object, layoutBindings[1], indicates the layout binding for texture
support in our geometry; however, this sample example only implements the uniform block
to demonstrate a 3D transformation. In order to use the current implementation for texture
support, the useTexture flag parameter of the createDescriptorLayout() function
must be set to the boolean true. In the present example, although we are using two
descriptor sets, only one is used, that is, useTexture is false. In the upcoming chapter,
we will implement texture support.

Destroying the descriptor set layout
The descriptor layout can be destroyed using the vkDestroyDescriptorSetLayout()
API. Here's the syntax for this:

void vkDestroyDescriptorSetLayout(
 VkDevice device,
 VkDescriptorSetLayout descriptorSetLayout,
 const VkAllocationCallbacks* pAllocator);

The vkDestroyDescriptorSetLayout() API takes the following parameters:

Parameters Description

device This is a logical device that destroys the descriptor set layout.

descriptorSetLayout This is the descriptor set layout object to be destroyed.

pAllocator This controls host memory deallocation. Refer to the Host memory
section in Chapter 5, Command Buffer and Memory Management in
Vulkan.

Descriptors and Push Constant

[362]

Understanding pipeline layouts
Pipeline layouts allow a pipeline (graphics or compute) to access the descriptor sets. A
pipeline layout object is comprised of descriptor set layouts and push constant ranges (refer
to the Push constant updates section in this chapter), and it represents the complete set of
resources that can be accessed by the underlying pipeline.

The pipeline layout object information needs to be provided in the
VkGraphicsPipelineCreateInfo structure before the pipeline object is created using the
vkCreateGraphicsPipelines() API. This information is set in the
VkGraphicsPipelineCreateInfo::layout field. This is a compulsory field. If the
application does not use descriptor sets, then you must create an empty descriptor layout
and specify it in the pipeline layout to suffice the pipeline object (VkPipeline) creation
process. For more information on the pipeline creation process, refer to the Creating graphics
pipeline subsection in Chapter 8, Pipelines and Pipeline State Management.

The pipeline layout can contain zero or more descriptor sets in sequence, with each having
a specific layout. This layout defines the interfaces between the shader stages and shader
resources. The following image shows pipeline layout which comprises of multiple
descriptor layouts contains various layout bindings for each resource:

Creating a pipeline layout
A pipeline layout object can be created with the help of the vkCreatePipelineLayout ()
API. This API accepts VkPipelineLayoutCreateInfo, which contains the descriptor set's
state information. This creates one pipeline layout. Let's take a look at the syntax of this
API:

VkResult vkCreatePipelineLayout(
 VkDevice device,
 const VkPipelineLayoutCreateInfo* pCreateInfo,
 const VkAllocationCallbacks* pAllocator,

Descriptors and Push Constant

[363]

 VkPipelineLayout* pPipelineLayout);

The various fields of the vkCreatePipelineLayout structure are defined as follows:

Parameters Description

device This indicates the logical device (VkDevice) that is responsible for
creating the pipeline layout.

pCreateInfo This field is the metadata of the pipeline layout object specified using the
pointer to the VkPipelineLayoutCreateInfo structure.

pAllocator This controls host memory deallocation. Refer to the Host memory section
in Chapter 5, Command Buffer and Memory Management in Vulkan.

pPipelineLayout This returns the VkPipelineLayout object handle after the API is
successfully executed.

Implementing the pipeline layout creation
The VulkanDrawable class implements the createPipelineLayout() interface from
VulkanDrawble, which allows a drawable class to implement its own implementation
based on the drawing object resource requirements.

First, VkPipelineLayoutCreateInfo is created (pPipelineLayoutCreateInfo) and
specified with the descriptor layout objects (descLayout), which was created using the
vkCreateDescriptorSetLayout() API. The descriptor set binding information is
accessed with the pipeline layout within the pipeline (VkPipeline).

The created pPipelineLayoutCreateInfo is set into the vkCreatePipelineLayout()
API to create the pipelineLayout object. During pipeline creation, this object will be
passed to VkGraphicsPipelineCreateInfo::layout in order to create the graphics
pipeline object (VkPipeline):

// createPipelineLayout is a virtual function from
// VulkanDescriptor and defined in the VulkanDrawable class.
// virtual void VulkanDescriptor::createPipelineLayout() = 0;
// Creates the pipeline layout to inject into the pipeline
void VulkanDrawable::createPipelineLayout()
{
 // Create the pipeline layout using descriptor layout.
 VkPipelineLayoutCreateInfo pPipelineLayoutCreateInfo = {};
 pPipelineLayoutCreateInfo.sType = VK_STRUCTURE_TYPE_PIPELINE-
 _LAYOUT_CREATE_INFO;
 pPipelineLayoutCreateInfo.pNext = NULL;

Descriptors and Push Constant

[364]

 pPipelineLayoutCreateInfo.pushConstantRangeCount= 0;
 pPipelineLayoutCreateInfo.pPushConstantRanges = NULL;
 pPipelineLayoutCreateInfo.setLayoutCount =
 numberOfDescriptorSet;
 pPipelineLayoutCreateInfo.pSetLayouts = descLayout.data();

 VkResult result;
 result = vkCreatePipelineLayout(deviceObj->device,
 &pPipelineLayoutCreateInfo, NULL, &pipelineLayout);
 assert(result == VK_SUCCESS);
}

Destroying the pipeline layout
The created pipeline layout can be destroyed using the vkDestroyPipelineLayout() API
in Vulkan. The following is its description:

void vkDestroyPipelineLayout(
 VkDevice device,
 VkPipelineLayout pipelineLayout,
 const VkAllocationCallbacks* pAllocator);

The various fields of the vkDestroyPipelineLayout structure are defined here:

Parameters Description

device This is the VkDevice logical object used to destroy the pipeline layout
object.

pipelineLayout This indicates the pipeline layout object (VkPipelineLayout) that needs
to be destroyed.

pAllocator This controls host memory allocation. Refer to the Host memory section in
Chapter 5, Command Buffer and Memory Management in Vulkan.

Let's use this API and implement it in the next section.

Descriptors and Push Constant

[365]

Implementing the pipeline layout destruction process
The VulkanDescriptor class provides a high-level function to destroy the created pipeline
layout: the destroyPipelineLayouts() function. The following is the code
implementation:

// Destroy the create pipeline layout object
void VulkanDescriptor::destroyPipelineLayouts()
{
 vkDestroyPipelineLayout(deviceObj->device, pipelineLayout, NULL);
}

Descriptor pool
In Vulkan, descriptor sets cannot be created directly; instead, these are first allocated from a
special pool called a descriptor pool. A descriptor pool is responsible for allocating the
descriptor set objects. In other words, it is a collection of descriptors from which the
descriptor set is allocated.

Descriptor pools are useful in efficient memory allocation of several
objects of the descriptor set without requiring global synchronization.

Creating a descriptor pool
Creating a descriptor pool is simple; use the vkCreateDescriptorPool API. The
following is the API specification, followed by the implementation of this API in our sample
recipe:

VkResult vkCreateDescriptorPool(
 VkDevice device,
 const VkDescriptorPoolCreateInfo* pCreateInfo,
 const VkAllocationCallbacks* pAllocator,
 VkDescriptorPool* pDescriptorPool);

Descriptors and Push Constant

[366]

The various fields of the vkCreateDescriptorPool structure are defined here:

Parameters Description

device This specifies the logical device (VkDevice) that is responsible for
creating the descriptor pool.

pCreateInfo This field is the metadata of the descriptor pool object, which is specified
using a pointer to an object of the VkDescriptorPoolCreateInfo
structure.

pAllocator This controls host memory allocation. Refer to the Host memory section in
Chapter 5, Command Buffer and Memory Management in Vulkan.

pDescriptorPool This indicates the created descriptor pool object's handle of the type
(VkDescriptorPool), which is a result of the execution of this API.

Implementing the creation of the descriptor pool
The createDescriptorPool() is a pure virtual function exposed by the
VulkanDescriptor class. This function is implemented in the VulkanDrawble class,
which is responsible for creating the descriptor pool in our Vulkan application sample. Let's
understand the working of this function:

First, the descriptor pool's size structure is defined indicating the number of pools
that need to be created within the descriptor pool for allocating each type of
descriptor set. There are two types of descriptor sets that are being used in the
following implementation; thus, two VkDescriptorPoolSize objects are
created. The first object indicates the descriptor pool that it needs to provide the
allocation for the uniform buffer descriptor types. This pool will be used to
allocate the descriptor set objects that bind to the uniform block resource types.
The second object indicates the descriptor pool for texture samplers. We will
implement the texture in the next chapter.
These created objects (descriptorTypePool) are then specified in the descriptor
pool's CreateInfo structure (descriptorPoolCreateInfo) to indicate the
types of descriptor sets (with other state information as well) that are going to be
supported by the created descriptor pool. Finally, the descriptorTypePool
object is used by the vkCreateDescriptorPool() API to create the descriptor
pool object descriptorPool.

Descriptors and Push Constant

[367]

The implementation of the descriptor pool is given here:

// Creates the descriptor pool, this function depends on -
// createDescriptorSetLayout()
void VulkanDrawable::createDescriptorPool(bool useTexture)
{
 VkResult result;
 // Define the size of descriptor pool based on the
 // type of descriptor set being used.
 VkDescriptorPoolSize descriptorTypePool[2];

 // The first descriptor pool object is of type Uniform buffer
descriptorTypePool[0].type = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
 descriptorTypePool[0].descriptorCount = 1;

 // If texture is supported then define the second object with
 // descriptor type to be Image sampler
 if (useTexture){
 descriptorTypePool[1].type= VK_DESCRIPTOR_TYPE_-
 COMBINED_IMAGE_SAMPLER;
 descriptorTypePool[1].descriptorCount = 1;
 }

 // Populate the descriptor pool state information
 // in the create info structure.
 VkDescriptorPoolCreateInfo descriptorPoolCreateInfo = {};
 descriptorPoolCreateInfo.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_-
 POOL_CREATE_INFO;
 descriptorPoolCreateInfo.pNext = NULL;
 descriptorPoolCreateInfo.maxSets = 1;
 descriptorPoolCreateInfo.poolSizeCount= useTexture ? 2 : 1;
 descriptorPoolCreateInfo.pPoolSizes = descriptorTypePool;

 // Create the descriptor pool using the descriptor
 // pool create info structure
 result = vkCreateDescriptorPool(deviceObj->device,
 &descriptorPoolCreateInfo, NULL, &descriptorPool);
 assert(result == VK_SUCCESS);
}

Descriptors and Push Constant

[368]

Destroying the descriptor pool
The descriptor pool can be destroyed using the vkDestroyDescriptorPool() API. This
API accepts three parameters. The first parameter, device, specifies the logical device
(VkDevice) that owns the descriptor pool and will be used to destroy descriptorPool.
The second parameter, descriptorPool, is the descriptor pool object that needs to be
destroyed using this API. The last parameter, pAllocator, controls host memory
allocation. You can refer to the Host memory section in Chapter 5, Command Buffer and
Memory Management in Vulkan, for more information:

void vkDestroyDescriptorPool(
 VkDevice device,
 VkDescriptorPool descriptorPool,
 const VkAllocationCallbacks* pAllocator);

Implementing the destruction of the descriptor pool
In the present sample application, the desctroyDescriptorPool() function from
VulkanDescriptor can be used to destroy the created descriptor pool object:

// Deletes the descriptor pool
void VulkanDescriptor::destroyDescriptorPool()
{
 vkDestroyDescriptorPool(deviceObj->device, descriptorPool, NULL);
}

Creating the descriptor set resources
Before the descriptor sets are created, it's compulsory to create the resources in order to
associate or bound them with it. In this section, we will create a uniform buffer resource and
later associate it with the descriptor set we will create in the following, Creating the descriptor
sets, section.

All the descriptor-related resources are created in the createDescriptorResources()
interface of the VulkanDescriptor class. Based on the requirements, this interface can be
implemented in the derived class.

Descriptors and Push Constant

[369]

In the present example, this interface is implemented in the VulkanDrawable class, which
creates a uniform buffer and stores a 4 x 4 transformation into it. For this, we need to create
buffer type resources. Remember, there are two types of resources in Vulkan: buffers and
images. We created the buffer resource in the Understanding the buffer resource section in
Chapter 7, Buffer resource, Render Pass, Framebuffer, and Shaders with SPIR-V. In the same
chapter, we created the vertex buffer (see the Creating geometry with buffer resource section).
We will reuse our learning from this chapter and implement a uniform buffer to store the
uniform block information.

The following code implements createDescriptorResources(), where it calls another
function, createUniformBuffer(), which creates the uniform buffer resource:

// Create the Uniform resource inside. Create Descriptor set
// associated resources before creating the descriptor set
void VulkanDrawable::createDescriptorResources()
{
 createUniformBuffer();
}

The createUniformBuffer() function produces the transformation matrices information
using the glm library helper functions. It computes the correct Model, View, and Project
matrices as per the user specification and stores the result in the MVP matrix. MVP is stored in
the host memory and needs to be transferred to the device memory using the buffer object
(VkBuffer). The following are step-by-step instructions to create the buffer resource
(VkBuffer) of MVP:

Creating the buffer object: Create a VkBuffer object (UniformData.buffer)1.
using the vkCreateBuffer() API. This API intakes a VkCreateBufferInfo
structure object (bufInfo) that specifies the important buffer metadata used to
create the buffer object. For example, it indicates the usage type in
bufInfo.usage as VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT since MVP is
treated as a uniform block resource in the vertex shader. The other important
piece of information it needs is the size of the buffer; this will be required to hold
the complete MVP buffer information. In the present case, it is equal to the size of a
4 x 4 transformation matrix. At this stage, when the buffer object is created
(UniformData.buffer), no physical backing is associated with it. In order to
allocate physical memory, proceed to the next steps.

Descriptors and Push Constant

[370]

Allocating physical memory for the buffer resource: 2.
Get the memory requirements: Allocate the appropriate size of the
memory required by the buffer resource. Query the essential memory
by passing the VkBuffer object to the
vkGetBufferMemoryRequirements API. This will return the
required memory information in the VkMemoryRequirements type
object (memRqrmnt).
Determining the memory type: Get the proper memory type from the
available options and select the one that matches the user properties.
Allocating device memory: Allocate the physical memory (in
UniformData::memory of the VkDeviceMemory type) for the buffer
resource using the vkAllocateMemory() API.
Mapping the device memory: Map the physical device memory to the
application's address space using the vkMapMemory() API. Upload the
uniform buffer data to this address space. Invalidate the mapped
buffer to make it visible to the host using
vkInvalidateMappedMemoryRanges(). If the memory property is
set with VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, then the driver
may take care of this; otherwise, for non-coherent mapped memory,
vkInvalidateMappedMemoryRanges() needs to be called explicitly.
Binding the allocated memory: Bind the device memory
(UniformData::memory) to the buffer object
(UniformData::buffer) using the vkBindBufferMemory() API.

The following diagram provides an overview of the described process:

Descriptors and Push Constant

[371]

Once the buffer resource is created, it stores the necessary information in the local data
structure for housekeeping purposes:

class VulkanDrawable : public VulkanDescriptor
{
. . . .
 // Local data structure for uniform buffer house keeping
 struct {
 // Buffer resource object
 VkBuffer buffer;
 // Buffer resourece object's allocated device memory
 VkDeviceMemory memory;

 // Buffer info that need to supplied into
 // write descriptor set (VkWriteDescriptorSet)
 VkDescriptorBufferInfo bufferInfo;

 // Store the queried memory requirement
 // of the uniform buffer
 VkMemoryRequirements memRqrmnt;

 // Metadata of memory mapped objects
 std::vector<VkMappedMemoryRange> mappedRange;
 // Host pointer containing the mapped device
 // address which is used to write data into.
 uint8_t* pData;
 } UniformData;

. . . .
};

void VulkanDrawable::createUniformBuffer()
{
 VkResult result;
 bool pass;
 Projection = glm::perspective(radians(45.f), 1.f, .1f, 100.f);
 View = glm::lookAt(
 glm::vec3(10, 3, 10), // Camera in World Space
 glm::vec3(0, 0, 0), // and looks at the origin
 glm::vec3(0, -1, 0));// Head is up
 Model = glm::mat4(1.0f);
 MVP = Projection * View * Model;

 // Create buffer resource states using VkBufferCreateInfo
 VkBufferCreateInfo bufInfo = {};
 bufInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
 bufInfo.pNext = NULL;
 bufInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT;

Descriptors and Push Constant

[372]

 bufInfo.size = sizeof(MVP);
 bufInfo.queueFamilyIndexCount = 0;
 bufInfo.pQueueFamilyIndices = NULL;
 bufInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
 bufInfo.flags = 0;

 // Use create buffer info and create the buffer objects
 result = vkCreateBuffer(deviceObj->device, &bufInfo, NULL,
 &UniformData.buffer);
 assert(result == VK_SUCCESS);

 // Get the buffer memory requirements
 VkMemoryRequirements memRqrmnt;
 vkGetBufferMemoryRequirements(deviceObj->device,
 UniformData.buffer, &memRqrmnt);

 VkMemoryAllocateInfo memAllocInfo = {};
 memAllocInfo.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
 memAllocInfo.pNext = NULL;
 memAllocInfo.memoryTypeIndex = 0;
 memAllocInfo.allocationSize = memRqrmnt.size;

 // Determine the type of memory required
 // with the help of memory properties
 pass = deviceObj->memoryTypeFromProperties
 (memRqrmnt.memoryTypeBits,
 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT,
 &memAllocInfo.memoryTypeIndex);
 assert(pass);

 // Allocate the memory for buffer objects
 result = vkAllocateMemory(deviceObj->device, &memAllocInfo,
 NULL, &(UniformData.memory));
 assert(result == VK_SUCCESS);

 // Map the GPU memory on to local host
 result = vkMapMemory(deviceObj->device, UniformData.memory,
 0, memRqrmnt.size, 0, (void **)&UniformData.pData);
 assert(result == VK_SUCCESS);

 // Copy computed data in the mapped buffer
 memcpy(UniformData.pData, &MVP, sizeof(MVP));

 // We have only one Uniform buffer object to update
 UniformData.mappedRange.resize(1);

 // Populate the VkMappedMemoryRange data structure
 UniformData.mappedRange[0].sType =

Descriptors and Push Constant

[373]

 VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE;
 UniformData.mappedRange[0].memory = UniformData.memory;
 UniformData.mappedRange[0].offset = 0;
 UniformData.mappedRange[0].size = sizeof(MVP);

 // Invalidate the range of mapped buffer in order
 // to make it visible to the host.
 vkInvalidateMappedMemoryRanges(deviceObj->device, 1,
 &UniformData.mappedRange[0]);

 // Bind the buffer device memory
 result = vkBindBufferMemory(deviceObj->device,
 UniformData.buffer, UniformData.memory, 0);
 assert(result == VK_SUCCESS);

 // Update the local data structure with uniform
 // buffer for house keeping
 UniformData.bufferInfo.buffer = UniformData.buffer;
 UniformData.bufferInfo.offset = 0;
 UniformData.bufferInfo.range = sizeof(MVP);
 UniformData.memRqrmnt = memRqrmnt;
}

Next, we will create the descriptor set and associate the created uniform buffer with it.

Creating the descriptor sets
The descriptor set creation process comprises two steps:

Descriptor set allocation: This allocates the descriptor set from the descriptor1.
pool.
Resource assignment: Here, the descriptor set is associated with the created2.
resource data.

Descriptors and Push Constant

[374]

Allocating the descriptor set object from the descriptor
pool
The descriptor set is allocated from the descriptor pool using the
vkAllocateDescriptorSets() API. This API intakes three parameters. The first
parameter (device) specifies the logical device (of the type VkDevice) that owns the
descriptor pool. The second parameter (pAllocateInfo) is a pointer to an object of the
VkDescriptorSetAllocateInfo structure describing the various parameters that will be
helpful in the allocation process of the descriptor pool. The last parameter
(pDescriptorSets) is a pointer to an array of VkDescriptorSet; this will be filled by the
API with the handles of each allocated descriptor set:

VkResult vkAllocateDescriptorSets(
 VkDevice device,
 const VkDescriptorSetAllocateInfo* pAllocateInfo,
 VkDescriptorSet* pDescriptorSets);

Destroying the allocated descriptor set objects
The allocated descriptor set objects can be freed using the vkFreeDescriptorSets() API.
This API accepts four parameters. The first parameter (device) is the logical device that
owns the descriptor pool. The second device is the descriptor pool (descriptorPool) that
was used to allocate the descriptor sets. The third parameter (descriptorSetCount)
indicates the number of elements in the last parameter. The last parameter
(pDescriptorSets) is the VkDescriptorSet object's array that needs to be freed:

VkResult vkFreeDescriptorSets(
 VkDevice device,
 VkDescriptorPool descriptorPool,
 uint32_t descriptorSetCount,
 const VkDescriptorSet* pDescriptorSets);

In this current sample implementation, the vkFreeDescriptorSets() API is exposed
through the destroyDescriptorSet() helper function in the VulkanDescriptor class.
The following is the implementation code:

void VulkanDescriptor::destroyDescriptorSet()
{
 vkFreeDescriptorSets(deviceObj->device, descriptorPool,
 numberOfDescriptorSet, &descriptorSet[0]);
}

Descriptors and Push Constant

[375]

Associating the resources with the descriptor sets
The descriptor sets can be associated with the resources information by updating them
using the vkUpdateDescriptorSets() API. This API uses four parameters. The first
parameter, device, is the logical device that will be used to update the descriptor sets. This
logical device should be the one that owns the descriptor sets. The second parameter,
descriptorWriteCount, specifies the element count in the pDescriptorWrites array (of
the VkCopyDescriptorSettype). The third parameter, pDescriptorWrites, is a pointer
to an array of VkWriteDescriptorSet in the pDescriptorCopies array. The last
parameter, pDescriptorCopies, is a pointer to the array objects (the
VkCopyDescriptorSet structures) describing the descriptor sets to copy between:

void vkUpdateDescriptorSets(
 VkDevice device,
 uint32_t descriptorWriteCount,
 const VkWriteDescriptorSet* pDescriptorWrites,
 uint32_t descriptorCopyCount,
 const VkCopyDescriptorSet* pDescriptorCopies);

The update is an amalgamation of two operations, namely write and copy:

Write: The allocated descriptor set is updated by filling an array of zero or more
VkWriteDescriptorSet control structures with the resource information, such
as buffer data, count, binding index, and more. The write operation is specified in
the vkUpdateDescriptorSets() API. This API intakes the filled
VkWriteDescriptorSet data structure.
Copy: The copy operation uses the existing descriptor sets and copies their
information to the destination descriptor set. The copy operation is specified by
the VkWriteDescriptorSet control structure. There could be zero or more
write operations possible.

The write operations are executed first, followed by the copy operations.
For each operation type (write or copy), zero or more operations are
represented in the form of arrays, and within these arrays, the operations
are performed in the order that they appear.

The following is the specification of VkWriteDescriptorSet:

typedef struct VkWriteDescriptorSet {
 VkStructureType sType;
 const void* pNext;
 VkDescriptorSet dstSet;
 uint32_t dstBinding;
 uint32_t dstArrayElement;

Descriptors and Push Constant

[376]

 uint32_t descriptorCount;
 VkDescriptorType descriptorType;
 const VkDescriptorImageInfo* pImageInfo;
 const VkDescriptorBufferInfo* pBufferInfo;
 const VkBufferView* pTexelBufferView;
} VkWriteDescriptorSet;

The various fields of the VkWriteDescriptorSet structure are defined as follows:

Parameters Description

sType This is the type information of this control structure. It must be
specified as VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET.

pNext This could be a valid pointer to an extension-specific structure or NULL.

dstSet This is the destination descriptor set that will be updated.

dstBinding This specifies the descriptor binding within the set. This should be the
same as the binding index specified in the shader for a given shader
stage.

dstArrayElement This field indicates the starting element index in the array of descriptors
within a single binding.

descriptorCount This is the count of the descriptors to be updated in any of these:
pImageInfo, pBufferInfo, or pTexelBufferView.

descriptorType This field indicates the type of each participating descriptor
(pImageInfo, pBufferInfo, or pTexelBufferView).

pImageInfo This is an array of VkDescriptorImageInfo structures that
represent the image resource. This field must be VK_NULL_HANDLE if
not specified.

pBufferInfo This is an array of VkDescriptorBufferInfo structures or it can be
VK_NULL_HANDLE if not specified.

pTexelBufferView This is an array containing VkBufferView handles, or it can be
VK_NULL_HANDLE if not specified.

Descriptors and Push Constant

[377]

Let's take a look at the VkCopyDescriptorSet specification:

typedef struct VkCopyDescriptorSet {
 VkStructureType sType;
 const void* pNext;
 VkDescriptorSet srcSet;
 uint32_t srcBinding;
 uint32_t srcArrayElement;
 VkDescriptorSet dstSet;
 uint32_t dstBinding;
 uint32_t dstArrayElement;
 uint32_t descriptorCount;
} VkCopyDescriptorSet;

The various fields of the VkCopyDescriptorSet structure are defined here:

Parameters Description

sType This is the type information of this control structure. It must be specified
as VK_STRUCTURE_TYPE_COPY_DESCRIPTOR_SET.

pNext This could be a valid pointer to an extension-specific structure or NULL.

srcSet This specifies the source descriptor set that will be copied from.

srcBinding This specifies the binding index within the source descriptor set.

srcArrayElement This indicates the starting array element within the first updated
binding.

dstSet This specifies the destination descriptor set into which the source
descriptor will be copied.

dstBinding This specifies the binding index within the destination descriptor set.

dstArrayElement This field indicates the starting index in the array of descriptors within a
single binding.

descriptorCount This refers to the total count of descriptors that will be copied from the
source to the destination.

Implementing descriptor set creation
Descriptor sets are created in the VulkanDrawable class, which inherits the
createDescriptorSet() interface from the VulkanDescriptor class and implements it.

Descriptors and Push Constant

[378]

First, the VkDescriptorSetAllocateInfo control structure (dsAllocInfo) is created
and specified within the descriptor pool to allocate descriptorSet from the intended
descriptor pool. The second important thing that needs to be specified is the descriptor
layout information that we created and stored in the descLayout object. The descriptor
layout provides an interface to read the resource in the shader.

The allocated descriptor sets are empty and do not hold any valid information. They are
updated using the write or copy descriptor structures (Vk<Write/Copy>DescriptorSet).
In this implementation, the write descriptor write[0] is specified with the uniform data
buffer (UniformData::bufferInfo) along with other state information. This information
includes the destination descriptor set object, descriptorSet[0], into which this uniform
buffer needs to be bound and the destination binding index to which it should be attached.
The dstBinding must be equal to the index specified in the shader stage. The update
operation is performed using vkUpdateDescriptorSets(), specifying the write
descriptor into it:

// Creates the descriptor sets using descriptor pool.
// This function depends on the createDescriptorPool()
// and createUniformBuffer().
void VulkanDrawable::createDescriptorSet(bool useTexture)
{
 VulkanPipeline* pipelineObj = rendererObj->getPipelineObject();
 VkResult result;
 // Create the descriptor allocation structure and specify
 // the descriptor pool and descriptor layout
 VkDescriptorSetAllocateInfo dsAllocInfo[1];
 dsAllocInfo[0].sType =
 VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO;
 dsAllocInfo[0].pNext = NULL;
 dsAllocInfo[0].descriptorPool = descriptorPool;
 dsAllocInfo[0].descriptorSetCount = 1;
 dsAllocInfo[0].pSetLayouts = descLayout.data();

 // Allocate the number of descriptor set needs to be produced
 descriptorSet.resize(1);

 // Allocate descriptor sets
 result = vkAllocateDescriptorSets(deviceObj->device,
 dsAllocInfo, descriptorSet.data());
 assert(result == VK_SUCCESS);

 // Allocate two write descriptors for - 1. MVP and 2. Texture
 VkWriteDescriptorSet writes[2];
 memset(&writes, 0, sizeof(writes));

Descriptors and Push Constant

[379]

 // Specify the uniform buffer related
 // information into first write descriptor
 writes[0] = {};
 writes[0].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
 writes[0].pNext = NULL;
 writes[0].dstSet = descriptorSet[0];
 writes[0].descriptorCount = 1;
 writes[0].descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
 writes[0].pBufferInfo = &UniformData.bufferInfo;
 writes[0].dstArrayElement = 0;
 writes[0].dstBinding = 0;

 // If texture is used then update the second
 // write descriptor structure. We will use this descriptor
 // set in the next chapter where textures are used.
 if (useTexture)
 {
 // In this sample textures are not used
 writes[1] = {};
 writes[1].sType = VK_STRUCTURE_TYPE_WRITE-
 _DESCRIPTOR_SET;
 writes[1].dstSet = descriptorSet[0];
 writes[1].dstBinding = 1;
 writes[1].descriptorCount = 1;
 writes[1].descriptorType = VK_DESCRIPTOR_TYPE_-
 COMBINED_IMAGE_SAMPLER;
 writes[1].pImageInfo = NULL;
 writes[1].dstArrayElement = 0;
 }

 // Update the uniform buffer into the allocated descriptor set
 vkUpdateDescriptorSets(deviceObj->device,
 useTexture ? 2 : 1, writes, 0, NULL);
}

How to implement Uniforms in Vulkan?
In this section, we will understand the requirements and execution model for a Uniform
implementation in Vulkan. We will also describe the step-by-step instructions to apply 3D
transformations on the rendered object using Uniforms. Reuse the sample recipe from the
previous chapter and follow the given instructions.

Descriptors and Push Constant

[380]

Prerequisites
Let's check out the requirements first.

3D Transformation: This implementation uses the glm mathematics library to achieve 3D
transformation using the library's inbuilt transformation functions. GLM is a header-only
C++ mathematics library for graphics software based on the GLSL specification. You can
download this library from http://glm.g-truc.net. In order to use it, perform the
following changes:

CMakeLists.txt: Add GLM support by adding the following lines to the project's
CMakeLists.txt file:

 # GLM SETUP

 set (EXTDIR "${CMAKE_SOURCE_DIR}/../../external")
 set (GLMINCLUDES "${EXTDIR}")
 get_filename_component(GLMINC_PREFIX "${GLMINCLUDES}" ABSOLUTE)
 if(NOT EXISTS ${GLMINC_PREFIX})
 message(FATAL_ERROR "Necessary glm headers do not exist: "
 ${GLMINC_PREFIX})
 endif()
 include_directories(${GLMINC_PREFIX})

Header files: Include the header files for GLM in the Headers.h file:

 /*********** GLM HEADER FILES ***********/
 #define GLM_FORCE_RADIANS
 #include "glm/glm.hpp"
 #include <glm/gtc/matrix_transform.hpp>

Applying transformations: The transformations are executed just before the rendering
happens. Introduce an update() function in the current design and call it just before the
render() function is executed. Add update() to VulkanRenderer and VulkanDrawable
and implement main.cpp as follows:

int main(int argc, char **argv)
 {
 VulkanApplication* appObj = VulkanApplication::GetInstance();
 appObj->initialize();
 appObj->prepare();
 bool isWindowOpen = true;
 while (isWindowOpen) {
 // Add the update function here..
 appObj->update();
 isWindowOpen = appObj->render();

http://glm.g-truc.net/

Descriptors and Push Constant

[381]

 }
 appObj->deInitialize();
}

The descriptor class: The VulkanDrawable class inherits VulkanDescriptor, bringing all
the descriptor-related helper functions and user variables together, yet keeping the code
logic separate. At the same time, it allows different implementation-drawable classes to
extend it as per their requirements:

Execution model overview
This section will help us understand the execution model for Uniforms using the descriptor
sets in Vulkan. The following are the step-by-step instructions:

Initialization: When an application is initialized, it calls the renderer's1.
initialize() function. This function creates all the descriptors associated with
each drawable object. The VulkanDrawable class is inherited from
VulkanDescriptor, which contains the descriptor sets and the descriptor pool
along with the related helper functions. The descriptor sets are allocated from the
descriptor pool.
Creating the descriptor layout: Descriptor layouts define the descriptor bindings.2.
This binding indicates the metadata about the descriptor, such as what kind of
shader it is associated with, the type of the descriptor, the binding index in the
shader, and the total number of descriptors of this type.
The pipeline layout: Create the pipeline layout; the descriptor set is specified in3.
the pipeline object through pipeline layouts.
Creating a uniform buffer for the transformation: The transformation4.
information is specified in a 4 x 4 transformation matrix. This is created
(createUniformBuffer()) in a uniform buffer in the device memory that is
used by the vertex shader to read the transformation information and apply it to
the geometry vertices.

Descriptors and Push Constant

[382]

Creating the descriptor pool: Next, create a descriptor pool from which the5.
descriptor sets will be allocated.
Creating the descriptor set: Allocate the descriptor set from the created6.
descriptor pool (step 5) and associate the uniform buffer data (created in step 4)
with it.
Updating the transformation: The transformation is updated in each frame7.
where the uniform buffer GPU memory is mapped and updated with new
transformation data contents.

Initialization
Initialization includes vertex and fragment shader implementation, the building of the
uniform buffer resource, and the creation of the descriptor set from the descriptor pool. The
descriptor set creation process includes building the descriptor and pipeline layout.

Shader implementation
The transformation is applied through a vertex shader using the uniform buffer as an input
interface through the uniform block (bufferVals) with the layout binding index 1, as
highlighted in bold in the following code.

The transformation is calculated by the product of the model view project matrix of
bufferVals—mvp (layout binding = 0)–and the input vertices–pos (layout location =
0):

// Vertex shader
#version 450
layout (std140, binding = 0) uniform bufferVals {
mat4 mvp;
} myBufferVals;

layout (location = 0) in vec4 pos;
layout (location = 1) in vec4 inColor;
layout (location = 0) out vec4 outColor;
void main() {
 outColor = inColor;
 gl_Position = myBufferVals.mvp * pos;
 gl_Position.z = (gl_Position.z + gl_Position.w) / 2.0;
}

Descriptors and Push Constant

[383]

There is no change required in the fragment shader. The input color received at location
0 (color) is used as the current fragment color specified by the output, location 0
(outColor):

// Fragment shader
#version 450
layout (location = 0) in vec4 color;
layout (location = 0) out vec4 outColor;
void main() {
 outColor = color;
}

Creating descriptors
When the renderer is initialized (using the initialize() function), the descriptors are
created in the helper function called createDescriptors(). This function first creates the
descriptor layout for each drawable object by calling the createDescriptorSetLayout()
function of VulkanDrawable. Next, the descriptor object is created inside the
createDescriptor() function of VulkanDrawable. In this example, we are not
programming textures; therefore, we send the parameter value as Boolean false:

// Create the descriptor sets
void VulkanRenderer::createDescriptors()
{
 for each (VulkanDrawable* drawableObj in drawableList)
 {
 // It is up to an application how it manages the
 // creation of descriptor. Descriptors can be cached
 // and reuse for all similar objects.
 drawableObj->createDescriptorSetLayout(false);

 // Create the descriptor set
 drawableObj->createDescriptor(false);
 }
}

void VulkanRenderer::initialize()
{

 // Create the vertex and fragment shader
 createShaders();

 // Create descriptor set layout
 createDescriptors();

Descriptors and Push Constant

[384]

 // Manage the pipeline state objects
 createPipelineStateManagement();

}

The createDescriptorSetLayout() function must be executed before you create the
graphics pipeline layout. This ensures the descriptor layout is properly utilized while the
pipeline layout is being created in the VulkanDrawable::createPipelineLayout()
function. For more information on createPipelineLayout(), refer to the Implementing the
pipeline layout creation subsection of the Pipeline layouts section in this chapter.

Descriptor set creation comprises of three steps–first, creating the uniform buffer; second,
creating the descriptor pool; and finally, allocating the descriptor set and updating the
descriptor set with the uniform buffer resource:

void VulkanDescriptor::createDescriptor(bool useTexture)
{
 // Create the uniform buffer resource
 createDescriptorResources();

 // Create the descriptor pool and
 // use it for descriptor set allocation
 createDescriptorPool(useTexture);

 // Create descriptor set with uniform buffer data in it
 createDescriptorSet(useTexture);
}

For more information on the creation of the uniform resource, refer to the Creating the
descriptor set resources section in this chapter. In addition, you can refer to the Creating the
descriptor pool and Creating the descriptor sets sections for a detailed understanding of
descriptor pools and descriptor sets' creation.

Rendering
The created descriptor set needs to be specified in the drawing object. This is done when the
command buffer of the drawing object is recorded
(VulkanDrawable::recordCommandBuffer()).

Descriptors and Push Constant

[385]

The descriptor set is bound with the recorded command buffer inside
recordCommandBuffer() using the vkCmdBindDescriptorSets() API. This API is
called after the pipeline object is bound (vkCmdBindPipeline()) with the current
command buffer and before you bind the vertex buffer (vkCmdBindVertexBuffers())
API:

void VulkanDrawable::recordCommandBuffer(int currentBuffer,
 VkCommandBuffer* cmdDraw)
{
 // Bound the command buffer with the graphics pipeline
 vkCmdBindPipeline(*cmdDraw, VK_PIPELINE_BIND_POINT_GRAPHICS,
 *pipeline);
 // Bind the descriptor set into the command buffer
 vkCmdBindDescriptorSets(*cmdDraw,VK_PIPELINE_BIND_POINT_GRAPHICS,
 pipelineLayout, 0, 1, descriptorSet.data(), 0, NULL);

 const VkDeviceSize offsets[1] = { 0 };
 vkCmdBindVertexBuffers(*cmdDraw, 0, 1,
 &VertexBuffer.buf, offsets);

}

For more information on the vkCmdBindDescriptorSets() API specification, refer to the
following subsection, Binding the descriptor set.

Binding the descriptor set
One or more created descriptor sets can be specified in the command buffer using
vkCmdBindDescriptorSets():

void vkCmdBindDescriptorSets(
 VkCommandBuffer commandBuffer,
 VkPipelineBindPoint pipelineBindPoint,
 VkPipelineLayout layout,
 uint32_t firstSet,
 uint32_t descriptorSetCount,
 const VkDescriptorSet* pDescriptorSets,
 uint32_t dynamicOffsetCount,
 const uint32_t* pDynamicOffsets);

Descriptors and Push Constant

[386]

The various fields of the vkCmdBindDescriptorSets structure are defined as follows:

Parameters Description

commandBuffer This is the command buffer (VkCommandBuffer) to which the
descriptor sets will be bound.

pipelineBindPoint This field is a binding point to the pipeline of the type
VkPipelineBindPoint, which indicates whether the descriptor
will be used by the graphics pipeline or the compute pipeline. The
respective binding points for the graphics and compute pipeline do
not interfere with each other's work.

Layouts This refers to the VkPipelineLayout object used to program the
bindings.

firstSet This indicates the index of the first descriptor set to be bound.

descriptorSetCount This refers to the number of elements in the pDescriptorSets
arrays.

pDescriptorSets This is an array of handles for the VkDescriptorSet objects
describing the descriptor sets to write to.

dynamicOffsetCount This refers to the number of dynamic offsets in the
pDynamicOffsets array.

pDynamicOffsets This is a pointer to an array of uint32_t values specifying the
dynamic offsets.

Update
Once the command buffer (bounded with the descriptor set) is submitted to the queue, it
executes and renders the drawing object with the transformation specified in the uniform
buffer. In order to update and render a continuous update transformation, the update()
function can be used.

Updating the descriptor set could be a performance-critical path;
therefore, it is advisable to partition multiple descriptors based upon the
frequency with which they are updated. It can be divided into the scene,
model, and drawing levels, where the update frequency is low, medium,
and high, respectively.

Descriptors and Push Constant

[387]

Updating the transformation
The transformation is updated in each frame inside the update() function of the drawable
class (VulkanDrawable), which acquires the memory location of the uniform buffer and
updates the transformation matrix with the new information. The uniform buffer memory
location is not available directly because it is a resident of the GPU memory; therefore, the
GPU memory is allocated by means of memory mapping, where a portion of the GPU
memory is mapped to the CPU memory. Once the memory is updated with it, it is
remapped to the GPU memory. The following code snippet implements the update()
function:

void VulkanDrawable::update()
{
 VulkanDevice* deviceObj = rendererObj->getDevice();
 uint8_t *pData;
 glm::mat4 Projection = glm::perspective(glm::radians(45.0f), 1.0f,
 0.1f, 100.0f);
 glm::mat4 View = glm::lookAt(
 glm::vec3(0, 0, 5), // Camera is in World Space
 glm::vec3(0, 0, 0), // and looks at the origin
 glm::vec3(0, 1, 0)); // Head is up
 glm::mat4 Model = glm::mat4(1.0f);
 static float rot = 0;
 rot += .003;
 Model = glm::rotate(Model, rot, glm::vec3(0.0, 1.0, 0.0))
 * glm::rotate(Model, rot, glm::vec3(1.0, 1.0, 1.0));

 // Compute the ModelViewProjection transformation matrix
 glm::mat4 MVP = Projection * View * Model;

 // Map the GPU memory on to local host
 VkResult result = vkMapMemory(deviceObj->device, UniformData.
 memory, 0, UniformData.memRqrmnt.size, 0,
 (void **)&pData);
 assert(result == VK_SUCCESS);
 // The device memory we have kept mapped it,
 // invalidate the range of mapped buffer in order
 // to make it visible to the host.
 VkResult res = vkInvalidateMappedMemoryRanges(deviceObj->device,
 1, &UniformData.mappedRange[0]);
 assert(res == VK_SUCCESS);

 // Copy computed data in the mapped buffer
 memcpy(pData, &MVP, sizeof(MVP));

 // Flush the range of mapped buffer in order to
 // make it visible to the device. If the memory

Descriptors and Push Constant

[388]

 // is coherent (memory property must be
 // VK_MEMORY_PROPERTY_HOST_COHERENT_BIT) then the driver
 // may take care of this, otherwise for non-coherent
 // mapped memory vkFlushMappedMemoryRanges() needs
 // to be called explicitly to flush out the pending
 // writes on the host side
 res = vkFlushMappedMemoryRanges(deviceObj->device,
 1, &UniformData.mappedRange[0]);
 assert(res == VK_SUCCESS);
}

In the preceding implementation, once the uniform buffer is mapped, we do not unmap it
until the application stops using the uniform buffer. In order to make the range of uniform
buffer visible to the host, we invalidate the mapped range using
vkInvalidateMappedMemoryRanges(). After the new data is updated in the mapped
buffer, the host flushes out any pending writes using vkFlushMappedMemoryRanges()
and makes the mapped memory visible to the device.

Finally, don't forget to unmap the mapped device memory when it is no longer needed
using the vkUnmapMemory() API. In this present example, we unmap it before destroying
the uniform buffer objects:

void VulkanDrawable::destroyUniformBuffer()
{
 vkUnmapMemory(deviceObj->device, UniformData.memory);
 vkDestroyBuffer(rendererObj->getDevice()->device,
 UniformData.buffer, NULL);
 vkFreeMemory(rendererObj->getDevice()->device,
 UniformData.memory, NULL);
}

Descriptors and Push Constant

[389]

The following is the output showing the revolving cube:

Push constant updates
Push constants are specially designed to update the shader constant data using the
command buffer instead of updating the resources with the write or copy descriptors.

Push constants offer a high-speed optimized path to update the constant
data in the pipeline.

In this section, we will quickly implement an example to demonstrate a push constant. We
will learn how push constants are used with command buffers to update the resource
contents in the shader. This example defines two types of resources in the fragment
shader–constColor and mixerValue–within the push constant uniform block
pushConstantsColorBlock. The constColor resource contains an integer value that is
used as a flag to render the rotating cube in a solid color (red, green, or blue). The
mixerValue resource is a floating value that mixes with the cube color.

Descriptors and Push Constant

[390]

Defining the push constant resource in the
shader
The push constant resource in the shader is defined using the push_constant keyword in
a layout that indicates it is a push constant block. In the following code, we have modified
the existing fragment shader and added two push constant variables, namely constColor
and mixerValue. If the value of constColor is either 1, 2, or 3, then a solid geometry color
(red, green, or blue) is rendered. Otherwise, the original color is mixed with mixerValue:

// Fragment shader
#version 450
layout (location = 0) in vec4 color;
layout (location = 0) out vec4 outColor;
layout(push_constant) uniform colorBlock {
 int constColor;
 float mixerValue;
} pushConstantsColorBlock;

vec4 red = vec4(1.0, 0.0, 0.0, 1.0);
vec4 green = vec4(0.0, 1.0, 0.0, 1.0);
vec4 blue = vec4(0.0, 0.0, 1.0, 1.0);

void main() {
 if (pushConstantsColorBlock.constColor == 1)
 outColor = red;
 else if (pushConstantsColorBlock.constColor == 2)
 outColor = green;
 else if (pushConstantsColorBlock.constColor == 3)
 outColor = blue;
 else
 outColor = color*pushConstantsColorBlock.mixerValue;
}

In the next section, we will update this shader push constant resource in the pipeline layout.

Updating the pipeline layout with the push
constant
Update the pipeline layout indicating the push constant ranges. The push constant range is
defined in a single pipeline layout using the VkPushConstantRange structure. The
pipeline layout also needs to be informed how many push constants can be accessed by
each stage of the pipeline.

Descriptors and Push Constant

[391]

The following is the syntax of this structure:

typedef struct VkPushConstantRange {
 VkShaderStageFlags stageFlags;
 uint32_t offset;
 uint32_t size;
} VkPushConstantRange;

The various fields of the VkPushConstantRange structure are defined here:

Parameters Description

stageFlags This field indicates the shader stage to which this push constant range belongs.
If stageFlags is not defined with the shader stage, then accessing the push
constant resource member from that shader stage will produce an instance
where undefined data would be read.

offset This is the start offset of the push constant range specified in bytes and is a
multiple of four.

size This field is also specified in bytes and is a multiple of four, indicating the size
of the push constant range.

Update pushConstantRangeCount of VkPipelineLayoutCreateInfo with the push
constant range count and pPushConstantRanges with a pointer to an array of
VkPushConstantRange:

void VulkanDrawable::createPipelineLayout()
{
 // Setup the push constant range
 const unsigned pushConstantRangeCount = 1;
 VkPushConstantRange pushConstantRanges[pushConstantRangeCount]={};
 pushConstantRanges[0].stageFlags = VK_SHADER_STAGE_FRAGMENT_BIT;
 pushConstantRanges[0].offset = 0;
 pushConstantRanges[0].size = 8;

 // Create the pipeline layout with the help of descriptor layout.
 VkPipelineLayoutCreateInfo pPipelineLayoutCreateInfo = {};
 pPipelineLayoutCreateInfo.sType =
 VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO;
 pPipelineLayoutCreateInfo.pNext = NULL;
 pPipelineLayoutCreateInfo.pushConstantRangeCount =
 pushConstantRangeCount;
 pPipelineLayoutCreateInfo.pPushConstantRanges =
 pushConstantRanges;
 pPipelineLayoutCreateInfo.setLayoutCount =
 (uint32_t)descLayout.size();
 pPipelineLayoutCreateInfo.pSetLayouts = descLayout.data();

Descriptors and Push Constant

[392]

 VkResult result;
 result = vkCreatePipelineLayout(deviceObj->device,
 &pPipelineLayoutCreateInfo, NULL, &pipelineLayout);
 assert(result == VK_SUCCESS);
}

Updating the resource data
The resource data can be updated using the vkCmdPushConstants() API. In order to use
this API, allocate a command buffer called cmdPushConstant, update the resource data
with the appropriate values, and execute vkCmdPushConstants(). The following is the
syntax of this API:

void vkCmdPushConstants(
 VkCommandBuffer commandBuffer,
 VkPipelineLayout layout,
 VkShaderStageFlags stageFlags,
 uint32_t offset,
 uint32_t size,
 const void* pValues);

The various fields of the vkCmdPushConstants structure are defined here:

Parameters Description

commandBuffer This is the command buffer object (VkCommandBuffer) that will be used to
record the push constant update.

layout This is VkPipelineLayout object that will be used to program the push
constant updates.

stageFlag This specifies the shader stage that will utilize the push constants in the
updated range. The shader stage is indicated using a bitmask of
VkShaderStageFlagBits.

offset This starts the offset in bytes specifying the push constant range for the
update.

size This refers to the size (in bytes) of the push constant range to be updated.

pValues This is an array containing the new push constant values.

The size of the push constant must never exceed the size specified in
VkPhysicalDeviceProperties::limits::maxPushConstantsSize.

Descriptors and Push Constant

[393]

The following is the implementation of the push constants where the push constant is
executed using the allocated command buffer cmdPushConstant. There are two push
constant resource variables: constColorRGBFlag and mixerValue. These are set with the
desired values and specified in the vkCmdPushConstants() API:

void VulkanRenderer::createPushConstants()
{
 // Allocate and start recording the push constant buffer.
 CommandBufferMgr::allocCommandBuffer(&deviceObj->device,
 cmdPool, &cmdPushConstant);
 CommandBufferMgr::beginCommandBuffer(cmdPushConstant);

 enum ColorFlag {
 RED = 1,
 GREEN = 2,
 BLUE = 3,
 MIXED_COLOR = 4,
 };

 float mixerValue = 0.3f;
 unsigned constColorRGBFlag = BLUE;

 // Create push constant data, this contain a constant
 // color flag and mixer value for non-const color
 unsigned pushConstants[2] = {};
 pushConstants[0] = constColorRGBFlag;
 memcpy(&pushConstants[1], &mixerValue, sizeof(float));

 // Check if number of push constants does
 // not exceed the allowed size
 int maxPushContantSize = getDevice()->gpuProps.
 limits.maxPushConstantsSize;

 if (sizeof(pushConstants) > maxPushContantSize) {
 assert(0);
 printf("Push constant size is greater than expected,
 max allow size is %d", maxPushContantSize);
 }

 for each (VulkanDrawable* drawableObj in drawableList)
 {
 vkCmdPushConstants(cmdPushConstant,
 drawableObj->pipelineLayout,
 VK_SHADER_STAGE_FRAGMENT_BIT,
 0, sizeof(pushConstants), pushConstants);
 }

Descriptors and Push Constant

[394]

 CommandBufferMgr::endCommandBuffer(cmdPushConstant);
 CommandBufferMgr::submitCommandBuffer(deviceObj->queue,
 &cmdPushConstant);
}

The following is the output rendering the cube geometry with solid colors. In this example,
constColor must be 1, 2, or 3 in order to produce the solid color:

Descriptors and Push Constant

[395]

The following is the output of the original colored cube blended with the mixer value; for
this output, constColor must not be 1, 2, or 3:

Summary
In this chapter, we learned the concept of descriptor set and understood the implementation
of Uniforms. We rendered a multicolor cube and added 3D transformation through uniform
blocks. Uniforms are implemented using descriptor sets. We understood the role of the
descriptor pool and used it to allocate the descriptor set objects.

We attached the descriptor sets to the graphics pipeline using the pipeline layouts; this
allows a pipeline (graphics or compute) to access the descriptor sets. In addition, we also
understood and implemented push constant updates, which is an optimized way to update
the constant data using command buffers.

In the next chapter, we will play with textures. Textures are implemented in Vulkan
through the image resource type. We will understand this resource type and also
demonstrate how to bring these textures on the rendered geometries.

11
Drawing Textures

In the previous chapter, we learned how to update the resource contents and read them at
the shader stage using descriptors. We also covered push constant, which is an optimized
way of updating the constant data at the shader stage using command buffers. In addition,
by making use of descriptors, we added 3D transformations to our rendering primitives
and also demonstrated an example to learn push constants.

In this chapter, we will learn and implement textures; we will wrap them around the
geometry surfaces to bring realism to the scene. Textures are created using the Vulkan
image resource; its data can be stored in either a linear or optimal layout. We will
implement these two layouts–the latter layout uses staging. In staging, two different
memory regions are used for the physical allocation process. The ideal memory placement
for a resource may not be visible to the host. In this case, the application must first populate
the resource in a host-visible staging buffer and then transfer it to the ideal location.

In this chapter, we will cover the following topics:

Image resource – a quick recap
Prerequisites for texture drawing
Implementing the image resource with linear tiling
Implementing the image resource with optimal tiling
Copying data content between images and buffers
Updating the descriptor set

Drawing Textures

[397]

Image resource – a quick recap
Images are continuous array of bytes stored in 1D, 2D, or 3D form. Unlike the buffer
resource, an image is a formatted piece of information stored in the memory.

The image resource in Vulkan is represented by the VkImage object and created using the
vkCreateImage API. The creation of this object does not back with the actual image
contents, yet. This has to be done separately, where device memory is allocated and the
image contents are stored into it. This memory is then bound to the created object.

In order to utilize the created images' objects at the shader stage, they must be converted
into the image view–VkImageView. Before you convert an image into an image view, it has
to be made compatible with the underlying implementation using image layouts.

The image is converted into the implementation-dependent layouts using VkImageLayout.
For a given image resource, multiple image layouts can be created and used across.
Different layouts might expose different performance characteristics, as they are very
dedicated to the usage type. Indicating a correct usage lets the driver choose a specific
memory location or portion suitable to offer optimal performance.

If you like to get a detailed introduction of image resources, refer to the very first section,
namely Getting started with image resources in Chapter 6, Allocating Image Resources and
Building a Swapchain with WSI. In the same chapter, you can refer to the Understanding image
resource section for detailed information on images, image views, and image layouts.

Creating an image resource is simple. It consists of the following steps:

Image object creation: First, the VkImage object is created. This object does not1.
contain the image data, but it holds various important object states of the image
resource, such as the format, dimension, image type, image's usage type, tiling
fashion, and more. A given image can have multiple sub image resources, such as
mipmaps. Following are the steps to create an image object:

Tiling: There are two ways in which image tiling can be specified:1.
linear and optimal. In the linear layout, the image data is mapped to
contiguous memory on the device, arranged in a linear fashion.
However, in an optimal layout, the image is stored in the form of tiles,
and the texels inside each tile may be arranged in either a linear or
some proprietary format to offer optimal performance. For a detailed
view of linear and optimal layouts, refer to the Introduction to tiling
section in Chapter 6, Allocating Image Resources and Building a
Swapchain with WSI.
Allocating and assigning image data: Read the image contents and2.

Drawing Textures

[398]

allocate the required memory to the image resource. Fill the allocated
device memory with the image channel contents.
Setting the correct layout: Create an implementation-compatible3.
image layout. A single image and its sub resource can be specified with
multiple layouts.

Image sampler: Create samplers (VkSampler) to control texture filtering.2.
Image view creation: An image resource can only be accessed in the shader in the3.
form of an image view (VkImageView).

Prerequisites for texture drawing
Implementing textures is easy and requires only a few steps. Let's have a quick overview of
this first, then we will take a deep dive into it:

Texture coordinates: Textures are glued to the geometry surfaces using texture1.
coordinates. For each vertex, there is a corresponding texture coordinate
attached. In our implementation, we specified the vertices and texture
coordinates in an interleaved form.
The shader stage: The vertex and fragment shader are modified to bound the2.
texture resources. The shader stage allows the fragment shader to access the
texture resource and paint the fragments. Textures are shared in the form of a
sampler at the shader stage.
Loading the image files: Parse the image files and load the raw image data into3.
the local data structure. This will be helpful in producing Vulkan image resources
and sharing them at the shader stage.
Local image data structure: The TextureData local data structure stores all the4.
image-specific attributes.

Specifying the texture coordinates
The geometry coordinates (x, y, z, w) are interleaved with texture coordinates (u, v) in the
VertexWithUV structure defined in MeshData.h:

struct VertexWithUV
{
 float x, y, z, w; // Vertex Position
 float u, v; // Texture format U,V
};

Drawing Textures

[399]

In this present sample, we will render a cube drawn with textured faces. The following code
shows one of the cube faces with four vertex positions followed by two texture coordinates.
Refer to MeshData.h for the complete code:

static const VertexWithUV geometryData[] = {
 { -1.0f,-1.0f,-1.0f, 1.0f, 0.0f, 1.0f }, // -X side
 { -1.0f,-1.0f, 1.0f, 1.0f, 1.0f, 1.0f },
 { -1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 0.0f },
 { -1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 0.0f },
 { -1.0f, 1.0f,-1.0f, 1.0f, 0.0f, 0.0f },
 { -1.0f,-1.0f,-1.0f, 1.0f, 0.0f, 1.0f },
. . . .
// Similar, specify +X, -Y, +Y, -Z, +Z faces
}

Updating the shader program
In addition to the vertex coordinates, now our vertex shader will also take the texture
coordinates under consideration. The input texture coordinates are received at the layout
location 1 in the inUV attribute. These coordinates are then passed on to the fragment
shading stage and received in outUV. The following code shows the modification in the
existing vertex shader in bold:

// Vertex Shader
#version 450
layout (std140, binding = 0) uniform bufferVals {
 mat4 mvp;
} myBufferVals;

layout (location = 0) in vec4 pos;
layout (location = 1) in vec2 inUV;
layout (location = 0) out vec2 outUV;

void main() {
 outUV = inUV;
 gl_Position = myBufferVals.mvp * pos;
 gl_Position.z = (gl_Position.z + gl_Position.w) / 2.0;
}

Drawing Textures

[400]

The following code implements the fragment shader where the sampled texture is received
at the layout binding index 1. The received texture is used with the input texture
coordinates to fetch the fragment colors:

// Fragment Shader
#version 450
layout(binding = 1) uniform sampler2D tex;
layout (location = 0) in vec2 uv;
layout (location = 0) out vec4 outColor;

void main() {
outColor = texture(tex, uv);
}

Loading the image files
The image files are loaded in our sample application using the GLI library. OpenGL Image
(GLI) is a header-only C++ image library that supports the loading of KTX and DDS image
files for a graphics software application. It provides various features such as texture loading
and creation, texture compression, accessing of the texture texels, sample textures, convert
textures, mipmaps, and more.

You can download this library from http://gli.g-truc.net/0.8.1/index.html. In order
to use this library, perform the following changes:

CMakeLists.txt: Add GLI support by adding the following lines to the project's
CMakeLists.txt file:

 # GLI SETUP
 set (EXTDIR "${CMAKE_SOURCE_DIR}/../../external/gli")
 set (GLIINCLUDES "${EXTDIR}")
 get_filename_component(GLIINC_PREFIX "${GLIINCLUDES}" ABSOLUTE)
 if(NOT EXISTS ${GLIINC_PREFIX})
 message(FATAL_ERROR "Necessary gli headers do not exist:
 " ${GLIINC_PREFIX})
 endif()
 include_directories(${GLIINC_PREFIX})

Header files: This includes the header files for GLI in the Headers.h file:

 /*********** GLI HEADER FILES ***********/
 #include <gli/gli.hpp>

http://gli.g-truc.net/0.8.1/index.html

Drawing Textures

[401]

Using the GLI library
The following code is the minimal usage of the GLI library in our application. This code
demonstrates image loading, the querying of a dimension, mipmap levels, and the retrieval
of image data:

 // Load the image
 const char* filename = "../VulkanEssentials.ktx";
 gli::texture2D image2D(gli::load(filename));
 assert(!image2D.empty());

 // Get the image dimensions at ith sub-resource
 uint32_t textureWidth = image2D[i].dimensions().x;
 uint32_t textureHeight = image2D[i].dimensions().y;

 // Get number of mip-map levels
 uint32_t mipMapLevels = image2D.levels();

 // Retrieve the raw image data
 void* rawData = image2D.data();

Local image data structure
The wrapper.h contains a user-defined TextureData structure to hold the image
attributes and various pieces of image-specific information in the application. The following
is the syntax and description of each field:

struct TextureData{
 VkSampler sampler;
 VkImage image;
 VkImageLayout imageLayout;
 VkMemoryAllocateInfo memoryAlloc;
 VkDeviceMemory mem;
 VkImageView view;
 uint32_t mipMapLevels;
 uint32_t layerCount;
 uint32_t textureWidth, textureHeight;
 VkDescriptorImageInfo descsImgInfo;
};

Drawing Textures

[402]

The following table describes the various fields of the user-defined structure, TextureData:

Parameters Description

sampler This is the VkSampler object associated with the image object.

image This is the VkImage object.

imageLayout This contains specific implementation-dependent layout information of the
image resource object.

memoryAlloc This stores the memory allocation information bound with associated
image object (VkImage).

mem This refers to the physical device memory allocated for this image resource.

view This is the ImageView object of image.

mipMapLevels This refers to the number of mipmap levels in the image resource.

layerCount This refers to the number of layer count in the image resource.

textureWidth
textureHeight

These are the dimensions of the image resource.

descsImgInfo This is the descriptor image information that contains the image view and
sample information with proper image layout usage type.

In the next section, we will start implementing our image resource and see it in action.

Implementing the image resource with linear
tiling
In this section, we will implement the image resource with linear tiling and display a
textured image on the faces of our rendering cube that we implemented in the last chapter.

As we learned in the Introduction to tiling section in Chapter 6, Allocating Image Resources
and Building a Swapchain with WSI, there are two types of image tiling–linear and optimal:

Linear tiling: In this type of tiling arrangement, the image texels are laid out in a
row-by-row manner (row-major order), which might require some padding to
match the row pitch. A row pitch defines the width of the row; as a result, if the
laid out texel row is smaller than the row pitch, then padding is needed. The
VkImageCreateInfo indicates the linear tiling through the tiling field (of the
type VkImageTiling). This field must be specified

Drawing Textures

[403]

as VK_IMAGE_TILING_LINEAR.
Optimal tiling: As the name suggests, the image texels are laid out in an
implementation-specific way meant for offering better performance by optimal
memory access. Here, the tiling field must be specified as
VK_IMAGE_TILING_OPTIMAL.

Linear image tiling is implemented in the createTextureLinear() function inside the
VulkanRenderer class. This function takes four parameters. The first parameter
(filename) specifies which image file to load. The second parameter is a TextureData
data structure into which the created image and properties should be stored. The third
parameter, imageUsageFlags, indicates the hints of the image resource specifying the
purpose for which it will be used. The last parameter, format, specifies the image format
into which the image object must be created. Here's the syntax of this:

void VulkanRenderer::createTextureLinear(const char* filename, TextureData
*texture, VkImageUsageFlags imageUsageFlags, VkFormat format);

Let's understand and implement these functions step-by-step.

Loading the image file
Use the GLI library and load the image file:

// Load the image
gli::texture2D image2D(gli::load(filename)); assert(!image2D.empty());

// Get the image dimensions
texture->textureWidth = uint32_t(image2D[0].dimensions().x);
texture->textureHeight = uint32_t(image2D[0].dimensions().y);

// Get number of mip-map levels
texture->mipMapLevels = uint32_t(image2D.levels());

Creating the image object
Create the image object (VkImage) using the vkCreateImage API. The vkCreateImage()
API uses VkImageCreateInfo. This structure specifies the image resource metadata. The
usage field of VkImageCreateInfo must be passed with the
VK_IMAGE_USAGE_SAMPLED_BIT bitwise flag since the textures will be consumed at the
shader stage in the form of samplers:

Drawing Textures

[404]

// Create image resource states using VkImageCreateInfo
VkImageCreateInfo imageCreateInfo = {};
imageCreateInfo.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO;
imageCreateInfo.pNext = NULL;
imageCreateInfo.imageType = VK_IMAGE_TYPE_2D;
imageCreateInfo.format = format;
imageCreateInfo.extent.width = image2D[0].dimensions().x;
imageCreateInfo.extent.height = image2D[0].dimensions().y;
imageCreateInfo.extent.depth = 1;
imageCreateInfo.mipLevels = texture->mipMapLevels;
imageCreateInfo.arrayLayers = 1;
imageCreateInfo.samples = VK_SAMPLE_COUNT_1_BIT;
imageCreateInfo.queueFamilyIndexCount = 0;
imageCreateInfo.pQueueFamilyIndices = NULL;
imageCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
imageCreateInfo.usage = imageUsageFlags;
imageCreateInfo.flags = 0;
imageCreateInfo.initialLayout = VK_IMAGE_LAYOUT_PREINITIALIZED,
imageCreateInfo.tiling = VK_IMAGE_TILING_LINEAR;

// Use create image info and create the image objects
vkCreateImage(deviceObj->device, &imageCreateInfo, NULL, &texture->image);

The usage bit field of the create info structure specifies how the image resource will be
used, for instance, the color image type for presentation, depth image type for depth testing,
source and destination image type for transfer commands, and more. This information,
provided in advance, is helpful in optimal resource management.

The image's usage flag of the VkImageCreateInfo control structure is described using the
VkImageUsageFlagBits enum flag. The following is the syntax and description of each
type:

typedef enum VkImageUsageFlagBits {
 VK_IMAGE_USAGE_TRANSFER_SRC_BIT = 0x00000001,
 VK_IMAGE_USAGE_TRANSFER_DST_BIT = 0x00000002,
 VK_IMAGE_USAGE_SAMPLED_BIT = 0x00000004,
 VK_IMAGE_USAGE_STORAGE_BIT = 0x00000008,
 VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT = 0x00000010,
 VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT = 0x00000020,
 VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT = 0x00000040,
 VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT = 0x00000080,
} VkImageUsageFlagBits;

Drawing Textures

[405]

Let's look at these bitwise fields in detail to understand what they mean:

Enum type Description

VK_IMAGE_USAGE_TRANSFER_SRC_BIT With this, the image is used by the transfer command's
(copy command) source.

VK_IMAGE_USAGE_TRANSFER_DST_BIT With this, the image is used by the transfer command's
(copy command) destination.

VK_IMAGE_USAGE_SAMPLED_BIT This image type is used as a sampler at the shading
stage through the image view type, where the
associated descriptor set slot (VkDescriptorSet) type
could be either
VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE or
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER.
The sampled image in the shader is used for address
calculations, controlling the filtering behavior, and
other attributes.

VK_IMAGE_USAGE_STORAGE_BIT Use this image type for load, store, and atomic operations
on the image memory. The image view is associated with a
descriptor-type slot of the type
VK_DESCRIPTOR_TYPE_STORAGE_IMAGE.

VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT The image view created from this type of image resource
is appropriate for either the color attachment or the resolve
attachment associated with the framebuffer object
(VkFrameBuffer).

VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT The image view created from this type of image resource
is appropriate for either the depth/stencil attachment or
the resolve attachment associated with the framebuffer
object (VkFrameBuffer).

VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT The image type represented by this flag is allocated lazily.
The memory type for this must be specified as
VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT. Note
that if this flag is specified, then
VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT,
VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT,
and VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT must
not be used.

VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT The image view created from this type of image resource
is appropriate for the input attachment at the shader stage
and in the framebuffer. The image view must be
associated with the descriptor set slot
(VkDescriptorSet) of the type
VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT.

Drawing Textures

[406]

The memory allocated with the
VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT bit flag is not allocated
upfront as per the requested size, but it may be allocated in a monotonic
fashion where memory gradually increases as per application demand.

The flag field in the VkImageCreateInfo enum hints the underlying application how it
manages various image resources, such as memory, format, and attributes, using the
VkImageCreateFlagBits enum. The following is the syntax and description of each type:

typedef enum VkImageCreateFlagBits {
 VK_IMAGE_CREATE_SPARSE_BINDING_BIT = 0x00000001,
 VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT = 0x00000002,
 VK_IMAGE_CREATE_SPARSE_ALIASED_BIT = 0x00000004,
 VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT = 0x00000008,
 VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT = 0x00000010,
 VK_IMAGE_CREATE_FLAG_BITS_MAX_ENUM = 0x7FFFFFFF
} VkImageCreateFlagBits;
typedef VkFlags VkImageCreateFlags;

Let's understand the flag definitions:

Flags Description

VK_IMAGE_CREATE_SPARSE_BINDING_BIT Here, the image is fully stored using sparse
memory binding.

VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT Here, the image can be stored partially using
sparse memory binding. In order to use this
field, the image must have the
VK_IMAGE_CREATE_SPARSE_BINDING_BIT

flag.

VK_IMAGE_CREATE_SPARSE_ALIASED_BIT In this type of flag, the image is stored into
sparse memory, and it also can hold multiple
portions of the same image in the same
memory regions. The image must be created
using the
VK_IMAGE_CREATE_SPARSE_BINDING_BIT

flag.

VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT This allows the image view's format to differ
from the image's format.

Drawing Textures

[407]

VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT This flag indicates that the VkImageView of
the type VK_IMAGE_VIEW_TYPE_CUBE or
VK_IMAGE_VIEW_TYPE_CUBE_ARRAY can
be created from the image (VkImage) object.

Memory allocation and binding
The created image object does not have any device memory backing. In this step, we will
allocate the physical device memory and bind it with the created texture->image. For
more information on memory allocation and the binding process, refer to the Memory
allocation and binding image resources section in Chapter 6, Allocating Image Resources and
Building a Swapchain with WSI:

// Get the buffer memory requirements
VkMemoryRequirements memoryRequirements;
vkGetImageMemoryRequirements(deviceObj->device, texture->image,
 &memoryRequirements);

// Create memory allocation metadata information
VkMemoryAllocateInfo& memAlloc = texture->memoryAlloc;
memAlloc.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
memAlloc.pNext = NULL;
memAlloc.allocationSize = memoryRequirements.size;
memAlloc.memoryTypeIndex = 0;

// Determine the type of memory required
// with the help of memory properties
deviceObj->memoryTypeFromProperties
 (memoryRequirements.memoryTypeBits,
 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT,
 &texture->memoryAlloc.memoryTypeIndex);

// Allocate the memory for buffer objects
vkAllocateMemory(deviceObj->device,
 &texture->memoryAlloc, NULL, &(texture->mem));

// Bind the image device memory
vkBindImageMemory(deviceObj->device, texture->image,
 texture->mem, 0);

Drawing Textures

[408]

Populating the allocated device memory
Push the image data on the GPU using the mapping (vkMapMemory) and unmapping
(vkUnmapMemory) function. First, query the resource layout information with the
vkGetImageSubresourceLayout() API. The layout information provides the rowPitch
information that is utilized to store the image data in a row-by-row fashion:

VkImageSubresource subresource = {};
subresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
subresource.mipLevel = 0;
subresource.arrayLayer = 0;

VkSubresourceLayout layout;
uint8_t *data;

vkGetImageSubresourceLayout(deviceObj->device,
 texture->image, &subresource, &layout);

// Map the GPU memory on to local host
error = vkMapMemory(deviceObj->device, texture->mem, 0, texture
 ->memoryAlloc.allocationSize, 0, (void**)&data);
assert(!error);

// Load image texture data in the mapped buffer
uint8_t* dataTemp = (uint8_t*)image2D.data();
for (int y = 0; y < image2D[0].dimensions().y; y++)
{
 size_t imageSize = image2D[0].dimensions().y * 4;
 memcpy(data, dataTemp, imageSize);
 dataTemp += imageSize;

 // Advance row-by-row pitch information
 data += layout.rowPitch;
}

// UnMap the host memory to push changes into the device memory
vkUnmapMemory(deviceObj->device, texture->mem);

Drawing Textures

[409]

Creating the command buffer object
The image resource objects are created using the command buffer object, cmdTexture,
defined in the VulkanRenderer class:

// Command buffer allocation and recording begins
CommandBufferMgr::allocCommandBuffer(&deviceObj->device,
 cmdPool, &cmdTexture);
CommandBufferMgr::beginCommandBuffer(cmdTexture);

Setting the image layout
Set the image layout (VkImageLayout) with the setImageLayout() function. For more
information on this function, refer to the Set the image layout with memory barriers section in
Chapter 6, Allocating Image Resources and Building a Swapchain with WSI:

VkImageSubresourceRange subresourceRange = {};
subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
subresourceRange.baseMipLevel = 0;
subresourceRange.levelCount = texture->mipMapLevels;
subresourceRange.layerCount = 1;

texture->imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;

setImageLayout(texture->image, VK_IMAGE_ASPECT_COLOR_BIT,
 VK_IMAGE_LAYOUT_PREINITIALIZED, texture->imageLayout,
 VK_ACCESS_HOST_WRITE_BIT, subresourceRange, cmdTexture);

Submitting the command buffer
End the command buffer recording and submit the command buffer to the graphics queue.
Also, create a fence that ensures the command buffer execution is completed. If the fence is
signaled, it means the image object is successfully created with the specified image layout.
Fences are used to synchronize the host and device operations.

In the following implementation, we create a fence object (fenceCI) on the host and submit
it to the queue using the queue submission command (vkQueueSubmit). This fence will
ensure that the first half of the memory operations is guaranteed to be executed before any
further commands are executed. The guarantee is provided by the fence object, which is
signaled by the device when the image layout is successfully created. The host must wait to
execute any other operation until the fence is signaled.

Drawing Textures

[410]

For more information on fences, refer to the Understanding synchronization
primitives in Vulkan section in Chapter 9, Drawing Objects.

The following code snippet shows two things, first, the command buffer recording is
completed and ready to be submitted in the graphics queue. Second, we created the fence
object and wait upon it on the host side to let the GPU finish operations on the submitted
command buffer containing the texture processing request:

// Stop command buffer recording
CommandBufferMgr::endCommandBuffer(cmdTexture);

// Create a fence to make sure that the
// copies have finished before continuing
VkFence fence;
VkFenceCreateInfo fenceCI= {};
fenceCI.sType = VK_STRUCTURE_TYPE_FENCE_CREATE_INFO;
fenceCI.flags = 0;

vkCreateFence(deviceObj->device, &fenceCI, nullptr, &fence);

VkSubmitInfo submitInfo = {};
submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
submitInfo.pNext = NULL;
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &cmdTexture;

CommandBufferMgr::submitCommandBuffer(deviceObj->queue,
 &cmdTexture, &submitInfo, fence);

// Wait for maximum 10 seconds, if fence is not signaled
vkWaitForFences(deviceObj->device, 1, &fence,
 VK_TRUE, 10000000000);
vkDestroyFence(deviceObj->device, fence, nullptr);

Creating an image sampler
A sampler is an object that contains a set of algorithms that controls the appearance of
formatted image data by controlling various parameters. These parameters control image
transformation, minification and magnification filtering, mipmapping, and wrapping, and
produces the final sample array of image texels.

Drawing Textures

[411]

In Vulkan, image samplers are created using the vkCreateSampler() API. This API
accepts four parameters as shown in the following API syntax. The first parameter device
is the logical device that is responsible for creating the sampler object. The second
parameter is the image attribute controller structure of type VkSamplerCreateInfo; we
will discuss this next. The third parameter (pAllocator) controls the host memory
allocation; this API creates and returns the sampler object in the last parameter called
pSampler:

VKAPI_ATTR VkResult VKAPI_CALL vkCreateSampler(
 VkDevice device,
 const VkSamplerCreateInfo* pCreateInfo,
 const VkAllocationCallbacks* pAllocator,
 VkSampler* pSampler);

These various relevant image attribute controller parameters are passed into the
aforementioned API using the VkSamplerCreateInfo structure; the following is the
syntax of this API:

typedef struct VkSamplerCreateInfo {
 VkStructureType sType;
 const void* pNext;
 VkSamplerCreateFlags flags;
 VkFilter magFilter;
 VkFilter minFilter;
 VkSamplerMipmapMode mipmapMode;
 VkSamplerAddressMode addressModeU;
 VkSamplerAddressMode addressModeV;
 VkSamplerAddressMode addressModeW;
 float mipLodBias;
 VkBool32 anisotropyEnable;
 float maxAnisotropy;
 VkBool32 compareEnable;
 VkCompareOp compareOp;
 float minLod;
 float maxLod;
 VkBorderColor borderColor;
 VkBool32 unnormalizedCoordinates;
} VkSamplerCreateInfo;

Drawing Textures

[412]

Let's take a look at each and every field in the following table:

Parameter Description

sType This is the type information of this control structure. It must
be specified as
VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO.

pNext This could be a valid pointer to an extension-specific structure
or could be NULL.

flags This future reserved field is not in use at present.

magFilter This field corresponds to the magnification filter. It is of type
VkFilter enum and can take VK_FILTER_NEAREST
and VK_FILTER_LINEAR values as an input. We will
discuss these filtering options and see their effects later in this
section.

minFilter This field corresponds with the minification filter.

mipmapMode This field is used to specify the mipmapping filtering modes
and accepts enum values of type VkSamplerMipmapMode,
as follows:
typedef enum VkSamplerMipmapMode {
VK_SAMPLER_MIPMAP_MODE_NEAREST = 0,
VK_SAMPLER_MIPMAP_MODE_LINEAR = 1, }
VkSamplerMipmapMode;

addressModeU This field controls image wrapping along the U coordinate,
when the image texel coordinates are beyond the [0 .. 1] range.

addressModeV This field controls image wrapping along the V coordinate
when the image texel coordinates are beyond the [0 .. 1] range.

addressModeW This field controls image wrapping along the W coordinate
when the image texel coordinates are beyond the [0 .. 1] range.

mipLodBias This is a floating bias value that is added to the mipmap level
of detail (LOD) calculation.

anisotropyEnable This Boolean field indicates whether anisotropic filtering is
enabled (VK_TRUE) or disabled(VK_FALSE).

maxAnisotropy This is the maximum anisotropic filtering value used for
clamping purposes.

compareEnable This Boolean field indicates whether to compare against the
reference value while filtering lookups.

Drawing Textures

[413]

compareOp The fetched texel data can be compared using the comparison
function specified in this field before performing the desired
filtering.

minLod This indicates the minimum clamping value to be used for the
computed LOD.

maxLod This indicates the Maximum clamping value to be used for
the computed LOD.

borderColor This is the predefined color that is used to replace an existing
texel with the specified border color. The border color is
specified using VkBorderColor, as follows:
typedef enum VkBorderColor {
VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK = 0,
VK_BORDER_COLOR_INT_TRANSPARENT_BLACK = 1,
VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK = 2,
VK_BORDER_COLOR_INT_OPAQUE_BLACK = 3,
VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE = 4,
VK_BORDER_COLOR_INT_OPAQUE_WHITE = 5, }
VkBorderColor;

unnormalizedCoordinates This Boolean field indicates whether to use unnormalized
texel coordinates (VK_TRUE) or normalized texel coordinates
(VK_FALSE) for texel lookup.

Filtering
Texture filtering controls the appearance of the texture quality when texture is scaled-in or
scaled-out. At a correct depth, one texel may corresponds with exactly one pixel onscreen.
However, mapping a smaller texture on a bigger geometry may cause the texture to appear
stretched. This is called magnification; in other words, the image size is smaller than the
geometry size onto which it needs to be mapped. On the other hand, when the geometry
shape is smaller than the image size, many texels share a few pixels, resulting in the image
shrinking. This is called minification.

Drawing Textures

[414]

Magnification and minification image effects can be controlled using filtering modes;
Vulkan uses the VkFilter enum. This enum has the following two fields:

VK_FILTER_NEAREST: The sample uses the texel closest to the specified texture
coordinates.
VK_FILTER_LINEAR: This uses the weighted average of the four surrounding
pixels closest to the computing texture coordinates.

The filtering modes are specified in the magFilter and minFilter of
VkSamplerCreateInfo.

Wrapping modes
Vulkan supports sample addressing modes through VkSamplerAddressMode along the U,
V, and W texture coordinates when the range of texture mapping is greater than 1.0; Vulkan
sampling allows the following types of wrapping address mode:

VK_SAMPLER_ADDRESS_MODE_REPEAT: This produces repeating patterns.1.
VK_SAMPLER_ADDRESS_MODE_MIRRORED_REPEAT: This produces a repeating2.
pattern with adjacent texels mirrored.
VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE: This repeats the border texels3.
until edges are reached; refer to the following screenshot for more information.
VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER: The texels beyond the border4.
are clamped.

Drawing Textures

[415]

In the following screenshot, we used texture coordinates range greater than [0 .. 1] and
demonstrated the use of wrapping modes:

Addressing modes are specified in VkSamplerCreateInfo using the addressModeU,
addressModeV, and addressModeW fields.

The following is the code implement sampler in the Vulkan API:

// Specify a particular kind of texture using samplers
VkSamplerCreateInfo samplerCI = {};
samplerCI.sType = VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO;
samplerCI.pNext = NULL;
samplerCI.magFilter = VK_FILTER_LINEAR;
samplerCI.minFilter = VK_FILTER_LINEAR;
samplerCI.mipmapMode = VK_SAMPLER_MIPMAP_MODE_NEAREST;
samplerCI.addressModeU = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE;
samplerCI.addressModeV = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE;
samplerCI.addressModeW = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE;
samplerCI.mipLodBias = 0.0f;

if (deviceObj->deviceFeatures.samplerAnisotropy == VK_TRUE)
{
 samplerCI.anisotropyEnable = VK_TRUE;

Drawing Textures

[416]

 samplerCI.maxAnisotropy = 8;
}
else
{
 samplerCI.anisotropyEnable = VK_FALSE;
 samplerCI.maxAnisotropy = 1;
}

samplerCI.compareOp = VK_COMPARE_OP_NEVER;
samplerCI.minLod = 0.0f;
samplerCI.maxLod = 0.0f;
samplerCI.borderColor = VK_BORDER_COLOR_FLOAT
 _OPAQUE_WHITE;
samplerCI.unnormalizedCoordinates = VK_FALSE;

// Create the sampler
error = vkCreateSampler(deviceObj->device, &samplerCI,
 NULL, &texture->sampler);
assert(!error);

// Specify the sampler in the texture's descsImgInfo
texture->descsImgInfo.sampler = texture->sampler;

If isotropic filtering is used, then the device must enable the samplerAnisotropy feature.
This feature can be enabled when the logical device is created (VkDevice), if the physical
device is capable of supporting it.

The vkGetPhysicalDeviceFeatures() API queries the features of the physical device;
this API accepts two parameters. The first parameter (physicalDevice) indicates the
physical device handle. The second parameter (pFeatures) is the
VkPhysicalDeviceFeatures control structure; it contains the predefined feature list that
will be checked again to test whether it is supported or not:

void vkGetPhysicalDeviceFeatures(
 VkPhysicalDevice physicalDevice,
 VkPhysicalDeviceFeatures* pFeatures);

Once the vkGetPhysicalDeviceFeatures() API is called, it stores a Boolean value for
each feature, indicating whether it is supported or not. The Boolean VK_TRUE indicates that
the feature is supported; the Boolean VK_FALSE means the feature is not supported by the
physical device.

Drawing Textures

[417]

If VkPhysicalDeviceFeatures::samplerAnisotropy is supported by your physical
device, then enable it while creating the logical device. This can be done by creating a new
object of VkPhysicalDeviceFeatures and settingsamplerAnisotropy to VK_TRUE if
samplerAnisotropy is supported, as shown in the following code:

VkResult VulkanDevice::createDevice(std::vector<const char *>& layers,
std::vector<const char *>& extensions)
{

 // Many lines skipped please refer to source code.
 VkPhysicalDeviceFeatures getEnabledFeatures;
 vkGetPhysicalDeviceFeatures(*gpu, &getEnabledFeatures);

 VkPhysicalDeviceFeatures setEnabledFeatures = { VK_FALSE };
 setEnabledFeatures.samplerAnisotropy =
 getEnabledFeatures.samplerAnisotropy;

 VkDeviceCreateInfo deviceInfo = {};
 deviceInfo.sType = VK_STRUCTURE_TYPE_DEVICE
 _CREATE_INFO;
 deviceInfo.pNext = NULL;
 deviceInfo.queueCreateInfoCount = 1;
 deviceInfo.pQueueCreateInfos = &queueInfo;
 deviceInfo.enabledLayerCount = 0;
 deviceInfo.ppEnabledLayerNames = NULL;
 deviceInfo.enabledExtensionCount = (uint32_t) extensions.size();
 deviceInfo.ppEnabledExtensionNames = extensions.size() ?
 extensions.data() : NULL;
 deviceInfo.pEnabledFeatures = &setEnabledFeatures;

 result = vkCreateDevice(*gpu, &deviceInfo, NULL, &device);
 assert(result == VK_SUCCESS);

 return result;
}

Creating the image view
Create the image view and store it in the local TextureData object's texture. The flag
field must be VK_IMAGE_VIEW_TYPE_2D:

// Specify the attribute used in create the image view
VkImageViewCreateInfo viewCI = {};
viewCI.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
viewCI.pNext = NULL;
viewCI.viewType = VK_IMAGE_VIEW_TYPE_2D;

Drawing Textures

[418]

viewCI.format = format;
viewCI.components.r = VK_COMPONENT_SWIZZLE_R;
viewCI.components.g = VK_COMPONENT_SWIZZLE_G;
viewCI.components.b = VK_COMPONENT_SWIZZLE_B;
viewCI.components.a = VK_COMPONENT_SWIZZLE_A;
viewCI.subresourceRange = subresourceRange;
viewCI.flags = 0;
viewCI.image = texture->image;

// Create the image view
error = vkCreateImageView(deviceObj->device, &viewCI,
 NULL, &texture->view);
assert(!error);

The flag field indicates the type of the image view (VkImageViewType) that is going to be
created. These types are provided as follows, which are self-descriptive:

typedef enum {
 VK_IMAGE_VIEW_TYPE_1D = 0,
 VK_IMAGE_VIEW_TYPE_2D = 1,
 VK_IMAGE_VIEW_TYPE_3D = 2,
 VK_IMAGE_VIEW_TYPE_CUBE = 3,
 VK_IMAGE_VIEW_TYPE_1D_ARRAY = 4,
 VK_IMAGE_VIEW_TYPE_2D_ARRAY = 5,
 VK_IMAGE_VIEW_TYPE_CUBE_ARRAY = 6,
} VkImageViewType;

Implementing the image resource with
optimal tiling
Optimal tiling is implemented through the staging buffer. First, a buffer resource object is
created and stored with the raw image data contents. Next, the buffer resource data
contents are copied to a newly created image object using the buffer-to-image copy
command. The buffer-to-image copy command (vkCmdCopyBufferToImage) copies the
buffer memory contents to the image memory.

Drawing Textures

[419]

In this section, we will implement the image resources using optimal tiling. In order to
create an image resource with optimal tiling our user defined
function VulkanRenderer::createTextureOptimal() can be used. This function takes
parameters in the same way as the createTextureLinear() function:

void VulkanRenderer::createTextureOptimal(const char* filename, TextureData
*texture, VkImageUsageFlags imageUsageFlags, VkFormat format);

Let's understand and implement these functions step by step.

Loading the image file
Load the image file and retrieve its dimensions and the mipmap-level information:

// Load the image
gli::texture2D image2D(gli::load(filename)); assert(!image2D.empty());

// Get the image dimensions
texture->textureWidth = uint32_t(image2D[0].dimensions().x);
texture->textureHeight = uint32_t(image2D[0].dimensions().y);

// Get number of mip-map levels
texture->mipMapLevels = uint32_t(image2D.levels());

Buffer object memory allocation and binding
The created image object does not have any device memory backing. In this step, we will
allocate the physical device memory and bind it with the created texture->image. For
more information on memory allocation and the binding process, refer to the Memory
allocation and binding image resources section in Chapter 6, Allocating Image Resources and
Building a Swapchain with WSI:

// Create a staging buffer resource states using.
// Indicate it be the source of the transfer command.
// .usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT
VkBufferCreateInfo bufferCreateInfo = {};
bufferCreateInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
bufferCreateInfo.size = image2D.size();
bufferCreateInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT;
bufferCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;

// Get the buffer memory requirements for the staging buffer
VkMemoryRequirements memRqrmnt;
VkDeviceMemory devMemory;

Drawing Textures

[420]

vkGetBufferMemoryRequirements(deviceObj->device, buffer,
 &memRqrmnt);

VkMemoryAllocateInfo memAllocInfo = {};
memAllocInfo.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
memAllocInfo.pNext = NULL;
memAllocInfo.allocationSize = 0;
memAllocInfo.memoryTypeIndex = 0;
memAllocInfo.allocationSize = memRqrmnt.size;

// Determine the type of memory required for
// the host-visible buffer
deviceObj->memoryTypeFromProperties(memRqrmnt.memoryTypeBits,
 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
 &memAllocInfo.memoryTypeIndex);
// Allocate the memory for host-visible buffer objects -
error = vkAllocateMemory(deviceObj->device, &memAllocInfo,
 nullptr, &devMemory);
assert(!error);

// Bind the host-visible buffer with allocated device memory -
error=vkBindBufferMemory(deviceObj->device,buffer,devMemory,0);
assert(!error);

Populating the allocated device memory
Use vkMapMemory() and populate the raw contents of the loaded image into the buffer
object's device memory. Once mapped, use vkUnmapMemory() to complete the process of
uploading data from the host to the device memory:

// Populate the raw image data into the device memory
uint8_t *data;
error = vkMapMemory(deviceObj->device, devMemory, 0,
 memRqrmnt.size, 0, (void **)&data);
assert(!error);

memcpy(data, image2D.data(), image2D.size());
vkUnmapMemory(deviceObj->device, devMemory);

Drawing Textures

[421]

Creating the image object
The image's create info object (VkImageCreateInfo) must be created using tiling
(.tiling) options as optimal tiling (VK_IMAGE_TILING_OPTIMAL). In addition, the image's
usage flag must be set with VK_IMAGE_USAGE_TRANSFER_DST_BIT, making it a
destination for the copy commands to transfer data contents to texture->image from the
buffer object:

// Create image info with optimal tiling
// support (.tiling = VK_IMAGE_TILING_OPTIMAL)
VkImageCreateInfo imageCreateInfo = {};
imageCreateInfo.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO;
imageCreateInfo.pNext = NULL;
imageCreateInfo.imageType = VK_IMAGE_TYPE_2D;
imageCreateInfo.format = format;
imageCreateInfo.mipLevels = texture->mipMapLevels;
imageCreateInfo.arrayLayers = 1;
imageCreateInfo.samples = VK_SAMPLE_COUNT_1_BIT;
imageCreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL;
imageCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
imageCreateInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
imageCreateInfo.extent = { texture->textureWidth,
 texture->textureHeight, 1 };
imageCreateInfo.usage = imageUsageFlags;

// Set image object with VK_IMAGE_USAGE_TRANSFER_DST_BIT if
// not set already. This allows to copy the source VkBuffer
// object (with VK_IMAGE_USAGE_TRANSFER_DST_BIT) contents
// into this image object memory(destination).
if (!(imageCreateInfo.usage & VK_IMAGE_USAGE_TRANSFER_DST_BIT)){
 imageCreateInfo.usage |= VK_IMAGE_USAGE_TRANSFER_DST_BIT;
}

error = vkCreateImage(deviceObj->device, &imageCreateInfo,
 nullptr, &texture->image);
assert(!error);

Image object memory allocation and binding
Allocate the physical memory backing and bind it with the created texture->image. For
more information on memory allocation and the binding process, refer to the Memory
allocation and binding image resources section in Chapter 6, Allocating Image Resources and
Building a Swapchain with WSI:

// Get the image memory requirements

Drawing Textures

[422]

vkGetImageMemoryRequirements(deviceObj->device, texture->image,
 &memRqrmnt);

// Set the allocation size equal to the buffer allocation
memAllocInfo.allocationSize = memRqrmnt.size;

// Determine the type of memory required with the help of memory properties
deviceObj->memoryTypeFromProperties(memRqrmnt.memoryTypeBits,
 VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT,
 &memAllocInfo.memoryTypeIndex);

// Allocate the physical memory on the GPU
error = vkAllocateMemory(deviceObj->device, &memAllocInfo,
 nullptr, &texture->mem);
assert(!error);

// Bound the physical memory with the created image object
error = vkBindImageMemory(deviceObj->device, texture->image,
 texture->mem, 0);
assert(!error);

Creating a command buffer object
The image resource objects are created using the command buffer object, cmdTexture,
defined in the VulkanRenderer class. Allocate the command buffer to set the image layout
and start recording the command buffer:

// Command buffer allocation and recording begins
CommandBufferMgr::allocCommandBuffer(&deviceObj->device,
 cmdPool, &cmdTexture);
CommandBufferMgr::beginCommandBuffer(cmdTexture);

Setting the image layout
Set the image layout (VkImageLayout) to be VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL
since the data contents will be copied from the staging buffer object (source) to the image
object (destination). For more information on the setImageLayout() function, refer to the
Set the image layout with memory barriers section in Chapter 6, Allocating Image Resources and
Building a Swapchain with WSI:

VkImageSubresourceRange subresourceRange = {};
subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
subresourceRange.baseMipLevel = 0;
subresourceRange.levelCount = texture->mipMapLevels;

Drawing Textures

[423]

subresourceRange.layerCount = 1;

// Set the image layout to be
// VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL
// since it is destination for copying buffer
// into image using vkCmdCopyBufferToImage -
setImageLayout(texture->image, VK_IMAGE_ASPECT_COLOR_BIT,
 VK_IMAGE_LAYOUT_UNDEFINED,VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
 (VkAccessFlagBits)0, subresourceRange, cmdTexture);

Buffer to image copy
Create buffer image copy regions for the image object and its subresource mipmaps. Use the
copy command to transfer the buffer object's (buffer) device memory contents to the
image object's (texture->image) memory contents:

// List contain buffer image copy for each mipLevel
std::vector<VkBufferImageCopy> bufferImgCopyList;

uint32_t bufferOffset = 0;
// Iterater through each mip level and set buffer image copy
for (uint32_t i = 0; i < texture->mipMapLevels; i++)
{
 VkBufferImageCopy bufImgCopyItem = {};
 bufImgCopyItem.imageSubresource.aspectMask =
 VK_IMAGE_ASPECT_COLOR_BIT;
 bufImgCopyItem.imageSubresource.mipLevel = i;
 bufImgCopyItem.imageSubresource.layerCount = 1;
 bufImgCopyItem.imageSubresource.baseArrayLayer = 0;
 bufImgCopyItem.imageExtent.width =
 uint32_t(image2D[i].dimensions().x);
 bufImgCopyItem.imageExtent.height =
 uint32_t(image2D[i].dimensions().y);
 bufImgCopyItem.imageExtent.depth = 1;
 bufImgCopyItem.bufferOffset = bufferOffset;

 bufferImgCopyList.push_back(bufImgCopyItem);

 // adjust buffer offset
 bufferOffset += uint32_t(image2D[i].size());
}

// Copy the staging buffer memory data containing the
// staged raw data(with mip levels) into the image object
vkCmdCopyBufferToImage(cmdTexture, buffer, texture->image,

Drawing Textures

[424]

 VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
 uint32_t(bufferImgCopyList.size()),
 bufferImgCopyList.data());

For more information on the copy commands, please refer to our next
section, Understanding the copy commands.

Setting the optimal image layout
Set the image layout, indicating the new layout to be optimal tiling compatible. The
underlying implementation uses this flag and chooses a suitable technique to lay out the
image contents in an optimal manner:

// Advised to change the image layout to shader read
// after staged buffer copied into image memory
texture->imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
setImageLayout(texture->image, VK_IMAGE_ASPECT_COLOR_BIT,
 VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
 texture->imageLayout,
 subresourceRange, cmdTexture);

The layout of an image can be controlled at:
a) Creation of the image resource by specifying the initial layout
b) Specifying explicitly using memory barriers
c) Or while using it in the Render Pass

Submitting the command buffer
Finalize the command buffer recording and submit it to the graphics queue:

// Submit command buffer containing copy
// and image layout commands
CommandBufferMgr::endCommandBuffer(cmdTexture);

// Create a fence object to ensure that the command
// buffer is executed, coping our staged raw data
// from the buffers to image memory with
// respective image layout and attributes into consideration
VkFence fence;
VkFenceCreateInfo fenceCI = {};
fenceCI.sType = VK_STRUCTURE_TYPE_FENCE_CREATE_INFO;
fenceCI.flags = 0;

error = vkCreateFence(deviceObj->device, &fenceCI, nullptr,

Drawing Textures

[425]

 &fence);
assert(!error);

VkSubmitInfo submitInfo = {};
submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
submitInfo.pNext = NULL;
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &cmdTexture;

CommandBufferMgr::submitCommandBuffer(deviceObj->queue,
 &cmdTexture, &submitInfo, fence);

error = vkWaitForFences(deviceObj->device, 1, &fence, VK_TRUE,
 10000000000);
assert(!error);

vkDestroyFence(deviceObj->device, fence, nullptr);

// destroy the allocated resoureces
vkFreeMemory(deviceObj->device, devMemory, nullptr);
vkDestroyBuffer(deviceObj->device, buffer, nullptr);

Add a fence as a synchronization primitive to ensure the image layout is prepared
successfully before it could utilize the image. Release the fence object once the fence is
signaled. In case the fence fails to signal, then the wait command vkWaitForFences()
waits for a maximum of 10 seconds to ensure the system never halts or goes into an infinite
wait condition.

For more information on fences, refer to the Understanding synchronization
primitives in Vulkan section in Chapter 9, Drawing Objects.

Creating an image sampler
Create an image sampler with linear filtering for minification (minFilter) and
magnification (magFilter) and also enable anisotropy filtering:

// Create sampler
VkSamplerCreateInfo samplerCI = {};
samplerCI.sType = VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO;
samplerCI.pNext = NULL;
samplerCI.magFilter = VK_FILTER_LINEAR;
samplerCI.minFilter = VK_FILTER_LINEAR;
samplerCI.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR;

Drawing Textures

[426]

samplerCI.addressModeU = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE;
samplerCI.addressModeV = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE;
samplerCI.addressModeW = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE;
samplerCI.mipLodBias = 0.0f;

if (deviceObj->deviceFeatures.samplerAnisotropy == VK_TRUE)
{
 samplerCI.anisotropyEnable = VK_TRUE;
 samplerCI.maxAnisotropy = 8;
}
else
{
 samplerCI.anisotropyEnable = VK_FALSE;
 samplerCI.maxAnisotropy = 1;
}

samplerCI.compareOp = VK_COMPARE_OP_NEVER;
samplerCI.minLod = 0.0f;
samplerCI.maxLod = (float)texture->mipMapLevels;
samplerCI.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE;
samplerCI.unnormalizedCoordinates = VK_FALSE;

error = vkCreateSampler(deviceObj->device, &samplerCI, nullptr,
 &texture->sampler);
assert(!error);

// Specify the sampler in the texture's descsImgInfo
texture->descsImgInfo.sampler = texture->sampler;

Creating the image view
Create the image view and store it in the local TextureData object's texture:

// Create image view to allow shader to// access the texture information
VkImageViewCreateInfo viewCI = {};
viewCI.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
viewCI.pNext = NULL;
viewCI.image = VK_NULL_HANDLE;
viewCI.viewType = VK_IMAGE_VIEW_TYPE_2D;
viewCI.format = format;
viewCI.components.r = VK_COMPONENT_SWIZZLE_R;
viewCI.components.g = VK_COMPONENT_SWIZZLE_G;
viewCI.components.b = VK_COMPONENT_SWIZZLE_B;
viewCI.components.a = VK_COMPONENT_SWIZZLE_A;
viewCI.subresourceRange = subresourceRange;
viewCI.subresourceRange.levelCount = texture->mipMapLevels;

Drawing Textures

[427]

// Optimal tiling supports mip map levels very well set it.
viewCI.image = texture->image;

error = vkCreateImageView(deviceObj->device, &viewCI, NULL,
 &texture->view);
assert(!error);

// Fill descriptor image info that can be // used for setting up descriptor
sets
texture->descsImgInfo.imageView = texture->view;

Copying data content between images and
buffers
Copy commands are special transfer commands that transfer data contents from one
memory region to another. These regions could be between buffers objects, image objects,
and buffer-to-image and vice versa.

Depending upon the application need, you may need to copy data between buffers and
images in various situations. There are four types of copy commands available to
accomplish this job:

vkCmdCopyBuffer: Data contents are copied from the source buffer to the
destination buffer object's device memory
vkCmdCopyImage: A specific portion of the source image object is copied to the
destination image region
vkCmdCopyBufferToImage: Buffer object data contents are copied to the image
objects
vkCmdCopyImageToBuffer: Image object data contents are copied to the buffer
objects

In the optimal tiling implementation, we used vkCmdCopyBufferToImage. The following
is the syntax:

void vkCmdCopyBufferToImage(
 VkCommandBuffer commandBuffer,
 VkBuffer srcBuffer,
 VkImage dstImage,
 VkImageLayout dstImageLayout,
 uint32_t regionCount,
 const VkBufferImageCopy* pRegions);

Drawing Textures

[428]

This API accepts six parameters, which are explained in the following table:

Parameters Description

commandBuffer The vkCmdCopyImageToBuffer command will be recorded in this
command buffer object.

srcBuffer This refers to the source buffer (VkBuffer) object from where the data
contents will be copied.

dstImage This refers to the destination image (VkImage) object into which a portion
of the data contents will be copied.

dstImageLayout This is the dstImage object's image layout object (VkImageLayout).

regionCount This is the total count of the copy regions upon which the transfer of data
contents will be performed.

pRegions This field is a pointer to an array of VkBufferCopy holding the regions'
specification that will undergo data transfer.

In the next section, we will update the descriptor set with the image object, which contains
the image layouts and image views, and render the image object on the 3D cube.

Updating the descriptor set
Once the texture is prepared by linear or optimal tiling, it is just a matter of updating the
descriptor set with the created image resource object. This is done in the implemented
VulkanDrawable::createDescriptorSet() function. The input parameter useTexture
must be true to support the texture. The following highlights a single-line change that is
required in this function to support the texture.

When the useTexture parameter is true, the second VkWriteDescriptorSet element
(with index 1) is populated with the texture information. Here are two things that are of
utmost importance:

Setting the texture object: The pImageInfo field of VkWriteDescriptorSet
must be set with the texture object's (TextureData) descsImgInfo (of the type
VkDescriptorImageInfo).

Drawing Textures

[429]

Layout binding: This must be equal to the index number specified in the
fragment shader. For instance, in the present example, the sampler is received at
the layout binding 1, therefore, writes[1].dstBinding= 1;:

 // Creates the descriptor sets using descriptor pool.
 // This function depend on the createDescriptorPool()
 // and createUniformBuffer().
 void VulkanDrawable::createDescriptorSet(bool useTexture)
 {
 VulkanPipeline* pipelineObj = rendererObj->getPipelineObject();
 VkResult result;

 // Create the descriptor allocation structure and specify
 // the descriptor pool and descriptor layout
 VkDescriptorSetAllocateInfo dsAllocInfo[1];
 dsAllocInfo[0].sType = VK_STRUCTURE_TYPE_DESCRIPTOR
_SET_ALLOCATE_INFO;
 dsAllocInfo[0].pNext = NULL;
 dsAllocInfo[0].descriptorPool = descriptorPool;
 dsAllocInfo[0].descriptorSetCount = 1;
 dsAllocInfo[0].pSetLayouts = descLayout.data();

 // Allocate the number of descriptor set needs to be produced
 descriptorSet.resize(1);

 // Allocate descriptor sets
 result = vkAllocateDescriptorSets(deviceObj->device,
 dsAllocInfo, descriptorSet.data());
 assert(result == VK_SUCCESS);

 // Allocate two write descriptors for - 1. MVP and 2. Texture
 VkWriteDescriptorSet writes[2];
 memset(&writes, 0, sizeof(writes));

 // Specify the uniform buffer related
 // information into first write descriptor
 writes[0] = {};
 writes[0].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
 writes[0].pNext = NULL;
 writes[0].dstSet = descriptorSet[0];
 writes[0].descriptorCount = 1;
 writes[0].descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
 writes[0].pBufferInfo = &UniformData.bufferInfo;
 writes[0].dstArrayElement = 0;
 writes[0].dstBinding = 0; // DESCRIPTOR_SET_BINDING_INDEX

 // If texture is used then update the second

Drawing Textures

[430]

 // write descriptor structure
 if (useTexture)
 {
 writes[1] = {};
 writes[1].sType = VK_STRUCTURE_TYPE_WRITE-
 _DESCRIPTOR_SET;
 writes[1].dstSet = descriptorSet[0];
 writes[1].dstBinding = 1; writes[1].descriptorCount = 1;
 writes[1].descriptorType = VK_DESCRIPTOR_TYPE_
COMBINED_IMAGE_SAMPLER;
 writes[1].pImageInfo = &textures->descsImgInfo;
 /
 }

 // Update the uniform buffer into the allocated descriptor set
 vkUpdateDescriptorSets(deviceObj->device,
 useTexture ? 2 : 1, writes, 0, NULL);
 }

For more information on this function and the creation of the descriptor set, refer to the
Creating the descriptor sets section in Chapter 10, Descriptors and Push Constant.

The following is the output of the rendered texture:

Drawing Textures

[431]

Summary
This chapter implemented the image resources and rendered the texture on a 3D geometry
object. It opened with a quick recap of the fundamentals of image resource and covered the
basic concepts of image objects, image layouts, and image views.

We implemented texture rendering with linear and optimal tiling schemes. The former is
simple to implement and is purely based on the image type resource. The latter scheme is
implemented using staging, where both buffer and image resources are used; in this
scheme, the image is first stored in the buffer object and transferred to the image object
using copy commands.

Index

A
allocated memory
 binding 160
 binding, to image object 161
application flow
 initialization 204, 205
 output window, displaying 205
 summarizing 204

B
background color
 clearing 235, 236
 setting, in Render Pass instance 237
blending process
 about 291
 blending constants 292
 blending factors 292
 blending operations 292
 color blend states 292
buffer APIs 123
buffer resource object
 buffer, destroying 210
 creating 208, 209
buffer resource
 about 208
 buffer view, creating 210
 implementation, by creating vertex buffer 215
 type 208
 used, for creating geometry 212
buffer view
 about 41
 creating 210, 211
 destroying 211

C
characteristics, descriptor sets
 descriptor pool 25
 frequent change 25
 multithread scalability 25
CMake
 file, building 73
color blend states
 about 292
 implementing 294
colored background
 rendering 239, 240
command buffer functions
 using 135
command buffer initialization
 command buffer allocation 40
 command pool creation 40
command buffer, drawing
 descriptor 28
 drawing 28
 pipeline 28
 render pass 28
 scissor 28
 viewport 28
command buffers, types
 action 122
 state management 122
 synchronization 122
command buffers
 about 119
 allocating 126, 127
 allocation process, implementing 133
 allocation process, recording 134
 and queues 122
 command, types 122
 explicit synchronization 121, 122

[433]

 freeing 128
 order of execution 123
 primary command buffer 120
 queue submission 130
 queue waiting 132
 recording 129, 130
 resetting 128
 secondary command buffer 120
 submitting, to queue 136
 using 120
 wrapper class, implementing 133
command pool
 about 123
 creating 124
 destroying 126
 resetting 125
command
 action 13
 set state 13
 synchronization 13
compute pipelines 272, 274, 275
control flow graph (CFG) 243
CreateWindowEx function
 reference 168

D
data content
 copying, between images and buffers 427, 428
debugging
 implementation, in Vulkan 109, 114, 115
depth image
 building 170
 creating 191
 depth buffer image object, creating 193, 194
 layout transition 197
 memory requirements, obtaining 195
 memory type, determining 195
 physical memory, allocating to 196
 physical memory, binding to 196
 tiling 191, 192, 193
 view, creating 203
depth stencil states
 implementing 299
depth test 297
descriptor pool

 about 354, 365
 creating 365
 creation, implementing 366
 destroying 368
 destruction, implementing 368
descriptor set layout
 about 356, 357
 destroying 361
 implementing 359
descriptor set resources
 creating 368, 369, 371
descriptor set, updating
 about 428
 layout binding 429
 texture object, setting 428
descriptor set
 about 354
 allocated descriptor sets objects, destroying 374
 creating 373
 layout 356, 357
 object, allocating from descriptor pool 374
 resources, associating with 375, 377
 updating 428, 430
descriptors
 about 18, 354
 creation, implementing 377, 378
 pipeline layouts 362
 set resources, creating 368
device memory
 about 139, 141
 accessing, from host 144, 145
 allocating 142, 143
 freeing up 143
 memory heaps 140
 memory types 140
device
 and queue, implementing 102, 103, 104
display window
 resizing 349, 350, 351, 352
draw command
 about 322
 categories 322
 vkCmdDraw command 322, 323
drawing object, preparing
 command buffer object, implementing 318

[434]

 draw command 322, 323
 dynamic viewport, defining 318, 319
 geometry information, specifying 317
 pipeline object, binding 315
 Render Pass commands, recording 310
 scissoring 320, 321
drawing object, rendering
 swapchain image, acquiring 327, 329
drawing object
 preparation, implementing 324, 325
 preparing 310
 rendering 326
 rendering, implementation 332, 335
drawing process
 drawing object, preparing 308
 drawing object, rendering 308
 header declaration 309, 310
 overview 308
dynamic states
 about 277
 implementing 278
dynamic viewport
 defining 318, 319
 dynamical control 318
 implementation 319
 statical control 318

E
enabled extensions, Vulcan instance
 testing 86, 87, 88
enabled layers, Vulcan instance
 testing 86, 87, 88
execution model, Uniforms
 descriptor layout, creating 381
 descriptor pool, creating 382
 descriptor set, creating 382
 descriptors, creating 383
 implementation 382
 initialization 381
 pipeline layout 381
 rendering 384, 385
 shader implementation 382, 383
 transformation, updating 382, 387
 uniform buffer, creating 381
 update() function 386

extensions
 about 74
 device-based 74
 device-specific 34
 instance-based 74
 instance-specific 34
 querying 75, 78

F
features, Vulcan
 Direct access to GPU 11
 Driver and Application layer 11
 error checking and validation 12
 explicit API 10
 GPU hardware 12
 memory controls 11
 multithread scalability 10
 precompiled intermediate shading language 10
 predictable 11
 reduced driver overhead 10
 single API 11
framebuffer
 implementing 233, 234, 235
 used, for creating Render Pass 232

G
geometry
 buffer creation overview 214
 code flow 219
 creating, with buffer resource 212
 data, preparing 212
 vertex buffer, creating 213, 215, 216, 217
GLSL shader compilation, into SPIR-V
 about 244
 offline compilation, with glslangValidator

executable 244
 online compilation, with SPIR-V tool libraries 245
GLSL shader
 implementing 246, 248, 249, 250
graphics pipeline shaders
 vertex shaders 241
graphics pipeline
 creating 266, 267
 implementing 270, 271

[435]

H
Hello World!!! Vulkan application
 buffers, managing 40
 building 32
 command buffer initialization 40
 depth buffer, creating 44, 45
 descriptor layout 48
 device memory, allocating 46
 device memory, binding 46
 drawing images, connecting to Render Pass 50,

51

 images, managing 40
 pass attribute, defining 50
 pipeline layouts 48
 pipelines, creating 55
 presentation layer, displaying 62
 queue submission 61, 62
 Render Pass stage, executing 58
 shader compilation into SPIR-V 47
 swapchain, creating 42, 43
 synchronization 61, 62
 validation layer properties, initializing 33, 34, 36
 vertex, storing into GPU memory 52, 54
 working 63, 64
 WSI extension, querying 37, 38

I
image creation
 overview 149
image files
 GLI library, using 401
 loading 400
image resource implementation, with linear tiling
 about 403
 allocated device memory, populating 408
 command buffer object, creating 409
 command buffer, setting 409, 410
 image file, loading 403
 image layout, setting 409
 image object, creating 403, 405, 406
 image view, creating 417
 memory allocation 407
 memory binding 407
image resource implementation, with optimal tiling

 about 418
 allocated device memory, populating 420
 buffer image copy, creating 423
 buffer object memory allocation 419
 buffer object memory, binding 419
 command buffer object, creating 422
 command buffer, submitting 424
 image file, loading 419
 image layout, setting 422
 image object memory allocation 421
 image object memory, binding 421
 image object, creating 421
 image sampler, creating 425
 image view, creating 426
 optimal image layout, setting 424
image resource, creating
 image object, creating 397
 image sampler 398
 image view, creating 398
image resource
 about 151, 397
 implementing, with linear tiling 402
 implementing, with optimal tiling 403, 418
 starting with 148
image sampler
 creating 410
image
 and buffers, data content copying between 427
 created images, destroying 156
 creating 151, 155
 layouts 156
 view, creating 157, 158
 view, destroying 159
Implicit-Enabled layer 20
indexed geometry
 rendering 336
input assembly states
 about 281
 implementing 282
 primitive topologies 284
 primitive topologies, with adjacency 286, 287,

288

 primitive topologies, with no adjacency 285
intermediate representation (IR) 242

[436]

K
Khronos
 reference 9

L
layers
 about 67, 74
 querying 75, 78
loader 20, 67
logical device
 about 88, 93
 creating 94, 95
 host, waiting on 95
 losing 96
LunarG SDK
 Bin and Bin32 67
 config 67
 demo 68
 doc 68
 glslang 68
 Include 68
 installer source 68
 reference 19
 runtime 68
 SPIR-V tools 68
 starting with 67
LunarG
 reference 109
 validation layers 108

M
memory allocation extension functions
 reference 139
memory allocation
 about 159
 requirements, gathering 160
memory barriers
 about 197
 buffer 198
 global 198
 image 198
 image layout transition 199, 201
memory heap
 device local 23

 host local 23
memory management
 about 137
 allocated memory 145
 device memory 139
 device memory, allocating 142
 host memory 137, 140, 141
memory
 allocating 47
 binding 47
 mapping 47
 requirements 46
model, Uniforms
 descriptor set, building 385, 386
multisample states
 about 300, 301
 implementing 302, 303

O
objects
 syntax, allocating 17
 syntax, creating 16
 syntax, destroying 16
 syntax, freeing 17
OpenGL Image (GLI)
 about 400
 reference 400
OpenGL Mathematics
 reference 380
OpenGL Shading Language (GLSL) 10, 242
order of execution, command buffer
 multiple queue submission 123
 single queue submission 123

P
physical device
 about 88
 enumerating 90, 91
 extensions, querying 91, 92
 memory properties, interrogating 93
 properties, obtaining 92, 93
physical memory
 allocating, on device 161
pipeline cache object (PCO)
 about 26, 259

[437]

 creating 262, 263
 implementing 266
pipeline caches
 data, retrieving from 264
 merging 263
pipeline layout
 about 27, 61, 259, 362
 creating 362
 creation, implementing 363
 destroying 364
 destruction process, implementing 365
pipeline objects
 about 26
 caching, between applications 262
 caching, between pipelines 261
 caching, with pipeline caching objects (PCO) 261
 compute pipeline 316
 graphics pipeline 316
pipeline shaders
 compute shaders 241
 fragment shaders 241
 geometry shaders 241
 GLSL shader, compiling into SPIR-V 244
 SPIR-V 242
 tessellation shaders 241
pipeline state objects (PSO)
 about 259, 266
 blending process 291
 color blend state 276
 depth test 297
 depth/stencil state 276
 dynamic state 276, 277
 input assembly state 276, 281
 multisample state 276, 300, 301
 rasterization state 276, 289
 stencil test 297
 vertex input state 276, 279
 viewport management 295
 viewport state 276
pipeline states 26
pipeline
 about 258, 259
 commands, recording 27
 compute pipeline 55
 compute pipelines 257

 descriptor set 25
 destroying 272
 graphics 257
 graphics pipeline 55
 graphics pipeline, creating 57
 implementing 303
 Input Assembly 258
 management 26, 27
 queue submission 29
 reference 257
 setup 25
 shaders with SPIR-V 26
 states 55
 using 257, 259
 Vertex Shader 258
prerequisites, texture drawing
 image files, loading 398, 400
 local image data structure 398, 401, 402
 shader program, updating 399, 400
 shader stage 398
 texture coordinates 398
 texture coordinates, specifying 398
prerequisites, Uniforms implementation
 3D transformation 380
 transformations, applying 380
push constant
 pipeline layout, updating with 390, 391
 resource data, updating 392, 393, 395
 resource, defining in shader 390
 updates 389

Q
queue
 about 96, 97
 and devices, implementing 102
 and queue, implementing 103, 104
 creating 100, 101
 families 96
 families, querying 97, 98
 graphics queue handle, storing 99
 multiple queues 15
 single queue 15

[438]

R
rasterization states
 about 289
 implementing 291
Render Pass instance 221
Render Pass instance recording
 primary command buffer 311
 secondary command buffer 311
 secondary command buffer, uses 311, 313
 starting 310, 311
Render Pass stage execution
 about 59, 60
 drawing surface, acquiring 58
 structure, preparing 59
Render Pass
 about 221
 attachments 221
 commands, recording 310
 implementation 228, 314
 instance recording 310, 311
 instance recording, finishing 314
 next subpass, transitioning 313
 subpass 222, 223
 used, for creating framebuffer 232
 Vulkan APIs 223
resource management
 allocation and suballocations 23
 asynchronous transfer 24
 resource objects 23
 sparse memory 24
 staging buffers 24
resources
 buffer 41
responsibilities, loader
 drivers, locating 20
 injectable layers 20
 platform-independent 20

S
scissor parameters
 dynamic control 321
 implementation 321
 static control 320
shaders, with SPIR-V

 glslangValidator 26
 multiple entry points 26
 multiple inputs 26
 offline compilation 26
Standard Portable Intermediate Language (SPIR-

V) 10
states, pipeline
 color blend attachment state 56
 depth stencil 56
 dynamic 55
 multisample 56
 rasterization states 55
 vertex input 55
 viewport 56
static single assignment (SSA) 243
stencil states 298
swapchain
 about 162
 building 170
 color image views, creating 189, 190
 color images, retrieving 185, 188
 creating 42, 181
 graphics queue, with present support 178
 image formats, querying 180
 implementation flow 162
 implementation's class block diagram 165
 presentation mode 182
 presentation mode information, managing 183
 surface capabilities 181
 window management custom class 166
synchronization primitives
 barriers 340
 events 15, 340, 345, 347, 348
 fences 15, 340, 342, 343
 pipeline barriers 15
 semaphores 15, 340, 343, 344

T
tabular lookaside buffer (TLB) 192
technical jargon
 command 13
 command buffer 13
 memory type 12
 physical device and device 12
 queues 12

[439]

texture drawing
 prerequisites 398
texture filtering 413
texture, Vulkan
 image 148
 image layout 149
 image view 149

U
Uniforms implementation
 execution model overview 381
 prerequisites 380
Uniforms
 about 354
 implementing 379
user-defined classes
 headers.h 75
 main program 75
 VulkanDevice 75
 VulkanInstance 75
 VulkanLayerAndExtension 75

V
validation layers, LunarG 108, 109
vertex input states
 about 279
 implementing 280
Vertical Blanking Interval (VBI) 162
viewport management
 about 295
 viewport state 295
viewport state
 about 296
 implementing 297
Vulcan images
 using, as attachment 148
 using, as texture 148
Vulkan application
 about 17
 application 18
 driver 18
 LunarG SDK 19
 SPIR-V 18
 WSI 18
Vulkan installation

 CMake, installing 32
 Python installation 32
 SDK, installing 32
 Vulkan driver 32
Vulkan instance
 creating 80, 82
 extensions, enabling 84
 layers, enabling 84
Vulkan objects
 dispatchable handle 16
 non-dispatchable handles 16
Vulkan programming model
 hardware initialization 20
 pipeline setup 25
 using 19
 Window presentation surfaces 21
Vulkan
 about 8, 9, 298
 command syntax 16
 debugging 107, 108
 debugging, implementation 109, 114, 115
 drawing process 308
 error checking 17
 evolution 9
 execution model 13, 14
 fundamentals 13
 installing 32
 object lifetime 16
 object model 16
 pipeline state objects (PSO) 275
 queues 15
 reference 316
 shader, working with 241
 specification, reference 33
 synchronization primitives 15, 339
 Uniforms, implementing 379
 validation 17
 versus OpenGL 10
VulkanDescriptor 355
VulkanPipeline 260, 261
VulkanSwapChain
 about 171
 associating, with created window 176, 177, 178
 surface, creating 176, 177, 178
 swapchain extensions, querying 173, 174, 176

W
window management custom class
 about 166
 command pool, creating 170
 presentation window, creating 168, 169
 presentation window, rendering 171

 renderer, initializing 169
Window System Integration (WSI) 18, 21, 176
wrapper class
 implementing, for command buffer 133
wrapping modes
 types 414, 415, 417

	Cover
	Copyright
	Credits
	About the Author
	Acknowledgments
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started with the NextGen 3D Graphics API
	Vulkan and its evolution
	Vulkan versus OpenGL
	Important jargons before we get started
	Learning the fundamentals of Vulkan
	Vulkan's execution model
	Vulkan's queues
	The object model
	Object lifetime and command syntax
	Error checking and validation

	Understanding the Vulkan application
	Driver
	Application
	WSI
	SPIR-V
	LunarG SDK

	Getting started with the Vulkan programming model
	Hardware initialization
	Window presentation surfaces
	Resource setup
	Pipeline setup
	Descriptor sets and descriptor pools
	Shaders with SPIR-V
	Pipeline management
	Recording commands
	Queue submission

	Summary

	Chapter 2: Your First Vulkan Pseudo Program
	Installing Vulkan
	The Hello World!!! pseudocode
	Initialization – a handshake with the device
	Swapchain initialization – querying the WSI extension
	Command buffer initialization – allocating command buffers
	Resource objects – managing images and buffers
	Creating a presentation surface – creating a swapchain
	Creating a depth image
	Resource allocation – allocating and binding device memory

	Supplying shaders – shader compilation into SPIR-V
	Building layouts – descriptor and pipeline layouts
	Creating a Render Pass – defining a pass attribute
	Framebuffer – connect drawing images to the Render Pass
	Populating geometry – storing a vertex into GPU memory
	Pipeline state management – creating pipelines
	Defining states
	Creating a graphics pipeline

	Executing the Render Pass – drawing Hello World!!!
	Acquiring the drawing surface
	Preparing the Render Pass control structure
	Render Pass execution

	Queue submission and synchronization – sending jobs
	Displaying with presentation layer – rendering a triangle

	Fitting it all together
	Summary

	Chapter 3: Shaking Hands with the Device
	Getting started with the LunarG SDK
	Setting up our first project with CMake
	How to build the CMake file

	Introduction to extensions
	Querying layers and extensions

	Creating a Vulkan instance
	Enabling layers and extensions
	Testing the enabled layers and extensions

	Understanding physical and logical devices
	Physical devices
	Enumerating physical devices
	Querying physical device extensions
	Getting the properties of a physical device
	Interrogating memory properties from the physical device

	Logical device
	Creating a logical device
	Waiting on the host
	Losing the device

	Understanding queues and queue families
	Querying queue families
	Storing the graphics queue handle

	Creating a queue

	Implementing devices and queues all together
	Summary

	Chapter 4: Debugging in Vulkan
	Peeking into Vulkan debugging
	Understanding LunarG validation layers and their features
	Implementing debugging in Vulkan
	Summary

	Chapter 5: Command Buffer and Memory Management in Vulkan
	Getting started with command buffers
	Explicit synchronization
	Types of command in command buffers
	Command buffers and queues
	The order of execution

	Understanding command pool and buffer APIs
	Creating a command pool
	Resetting a command pool
	Destroying a command pool

	Command buffer allocation
	Resetting command buffers
	Freeing command buffers

	Recording command buffers
	Queue submission
	Queue waiting

	Implementing the wrapper class for a command buffer
	Implementing the command buffer allocation process
	Recording the command buffer allocation process
	How to use command buffer recording functions

	Submitting the command to the queue

	Managing memory in Vulkan
	Host memory
	Device memory
	Allocating device memory
	Freeing up device memory
	Accessing device memory from the host
	Lazily allocated memory

	Summary

	Chapter 6: Allocating Image Resources and Building a Swapchain with WSI
	Getting started with image resources
	Image creation overview

	Understanding image resources
	Creating images
	Destroying the created images

	Understanding image layouts
	Creating an image view
	Destroying the image view

	Memory allocation and binding image resources
	Gathering memory allocation requirements
	Allocating physical memory on the device
	Binding the allocated memory to an image object

	Introducing swapchains
	Understanding the swapchain implementation flow
	The swapchain implementation's class block diagram
	Renderer – a window management custom class
	Creating the presentation window
	Initializing the renderer
	Creating the command pool
	Building swapchain and depth images
	Rendering the presentation window

	VulkanSwapChain – the swapchain manager
	Querying swapchain extensions

	Creating the surface with WSI and associating it with the created window
	The graphics queue with present support
	Querying swapchain image formats
	Creating the swapchain
	Swapchain surface capabilities and the presentation mode
	Managing presentation mode information
	Retrieving the swapchain's color images
	Creating color image views

	Creating a depth image
	Introduction to tiling
	Creating a depth buffer image object
	Getting the depth image's memory requirements
	Determining the type of memory
	Allocating and binding physical memory to a depth image
	Image layout transition
	Image layout transition with memory barriers
	Creating the image view

	Summarizing the application flow
	Initialization
	Rendering – displaying the output window

	Summary

	Chapter 7: Buffer Resource, Render Pass, Framebuffer, and Shaders with SPIR-V
	Understanding the Vulkan buffer resource type
	Creating the buffer resource object
	Destroying the buffer

	Creating a buffer view
	Destroying the buffer view

	Creating geometry with a buffer resource
	Preparing geometry data
	Creating a vertex buffer
	Buffer creation overview
	Implementing a buffer resource – creating the vertex buffer for the geometry
	Understanding the code flow

	Understanding a Render Pass
	Attachments
	Subpasses
	Vulkan APIs for the Render Pass
	Implementing the Render Pass

	Using the Render Pass and creating the framebuffer
	Implementing the framebuffer

	Clearing the background color
	Setting the background color in the Render Pass instance
	Rendering the colored background

	Working with a shader in Vulkan
	Introduction to SPIR-V
	Compiling a GLSL shader into SPIR-V
	Offline compilation with the glslangValidator executable
	Online compilation with SPIR-V tool libraries

	Implementing a shader

	Summary

	Chapter 8: Pipelines and Pipeline State Management
	Getting started with pipelines
	VulkanPipeline – the pipeline implementation class

	Caching pipeline objects with a PCO
	Creating a pipeline cache object
	Merging pipeline caches
	Retrieving data from pipeline caches
	Implementing the PCO

	Creating a graphics pipeline
	Implementing a graphics pipeline
	Destroying pipelines

	Understanding compute pipelines
	Pipeline State Objects (PSO) in Vulkan
	Dynamic states
	Implementing dynamic states

	Vertex input states
	Implementing vertex input states

	Input assembly states
	Implementing input assembly states
	Primitive restart

	Primitive topologies
	Primitives topologies with no adjacency
	Primitives topologies with adjacency

	Rasterization
	Rasterization states
	Implementing rasterization states

	Blending
	Color blend states
	Implementing color blend states

	Viewport management
	The viewport state
	Implementing the viewport state

	Depth and stencil tests
	Depth and stencil states
	Implementing depth stencil states

	Multisample states
	Implementing multisample states

	Implementing the pipeline
	Summary

	Chapter 9: Drawing Objects
	Overview of the drawing process in Vulkan
	Walking through the header declaration

	Preparing the drawing object
	Recording Render Pass commands
	Beginning Render Pass instance recording
	Transitioning to the next subpass
	Finishing Render Pass instance recording
	Implementation

	Binding pipeline object
	Implementation

	Specifying drawing object geometry information
	Implementation

	Defining a dynamic viewport
	Implementation

	Scissoring
	Implementation

	Draw command
	vkCmdDraw command

	Implementing drawing object preparation

	Rendering the drawing object
	Acquiring the swapchain image
	Executing the drawing command buffer object
	Displaying the output with the presentation engine
	Implementing drawing object rendering

	Rendering an indexed geometry
	Understanding synchronization primitives in Vulkan
	Fences
	Semaphores
	Events

	Resizing the display window
	Summary

	Chapter 10: Descriptors and Push Constant
	Understanding the concept of descriptors
	VulkanDescriptor – a user-defined descriptor class
	Descriptor set layout
	Implementing the descriptor set layout
	Destroying the descriptor set layout

	Understanding pipeline layouts
	Creating a pipeline layout
	Implementing the pipeline layout creation
	Destroying the pipeline layout
	Implementing the pipeline layout destruction process

	Descriptor pool
	Creating a descriptor pool
	Implementing the creation of the descriptor pool
	Destroying the descriptor pool
	Implementing the destruction of the descriptor pool

	Creating the descriptor set resources
	Creating the descriptor sets
	Allocating the descriptor set object from the descriptor pool
	Destroying the allocated descriptor set objects

	Associating the resources with the descriptor sets
	Implementing descriptor set creation

	How to implement Uniforms in Vulkan?
	Prerequisites
	Execution model overview
	Initialization
	Shader implementation
	Creating descriptors

	Rendering
	Binding the descriptor set

	Update
	Updating the transformation

	Push constant updates
	Defining the push constant resource in the shader
	Updating the pipeline layout with the push constant
	Updating the resource data

	Summary

	Chapter 11: Drawing Textures
	Image resource – a quick recap
	Prerequisites for texture drawing
	Specifying the texture coordinates
	Updating the shader program
	Loading the image files
	Using the GLI library

	Local image data structure

	Implementing the image resource with linear tiling
	Loading the image file
	Creating the image object
	Memory allocation and binding
	Populating the allocated device memory
	Creating the command buffer object
	Setting the image layout
	Submitting the command buffer
	Creating an image sampler
	Filtering
	Wrapping modes
	Creating the image view

	Implementing the image resource with optimal tiling
	Loading the image file
	Buffer object memory allocation and binding
	Populating the allocated device memory
	Creating the image object
	Image object memory allocation and binding
	Creating a command buffer object
	Setting the image layout
	Buffer to image copy
	Setting the optimal image layout
	Submitting the command buffer
	Creating an image sampler
	Creating the image view

	Copying data content between images and buffers
	Updating the descriptor set
	Summary

	Index

