

Mastering	Angular	2	Components

Table	of	Contents

Mastering	Angular	2	Components
Credits
About	the	Author
About	the	Reviewer
www.PacktPub.com

eBooks,	discount	offers,	and	more
Why	subscribe?

Preface
What	this	book	covers
What	you	need	for	this	book
Who	this	book	is	for
Conventions
Reader	feedback
Customer	support

Downloading	the	example	code
Downloading	the	color	images	of	this	book
Errata
Piracy
Questions

1.	Component-Based	User	Interfaces
Thinking	of	organisms
Components	–	The	organs	of	user	interfaces

Encapsulation
Composability
Components,	invented	by	nature

My	UI	framework	wishlist
Time	for	new	standards

Template	elements
Shadow	DOM

Angular's	component	architecture
Everything	is	a	component

Your	first	component
JavaScript	of	the	future

I	speak	JavaScript,	translate,	please!
Classes
Modules
Template	strings
ECMAScript	or	TypeScript?
Decorators

Tools
Node.js	and	NPM

SystemJS	and	JSPM
JSPM
Getting	started	with	JSPM

Summary
2.	Ready,	Set,	Go!

Managing	tasks
Vision

Starting	from	scratch
Bootstrapping
Running	the	application
Recap

Creating	a	task	list
Recap

The	right	level	of	encapsulation
Recap

Input	generates	output
Recap

Custom	UI	elements
Recap

Filtering	tasks
Summary

3.	Composing	with	Components
Data	–	Fake	to	real
Reactive	programming	with	observable	data	structures
Immutability
Pure	components

Purifying	our	task	list
Recap

Composition	using	content	projection
Creating	a	tabbed	interface	component

Recap
Mixing	projected	with	generated	content
Summary

4.	No	Comments,	Please!
One	editor	to	rule	them	all

Creating	an	editor	component
Recap

Building	a	commenting	system
Building	the	comment	component
Building	the	comments	component
Recap

Summary
5.	Component-Based	Routing

An	introduction	to	the	Angular	router

Composition	by	routing
Router	versus	template	composition
Understanding	the	route	tree

Back	to	the	routes
Routable	tabs

Refactoring	navigation
Summary

6.	Keeping	Up	with	Activities
Creating	a	service	for	logging	activities

Logging	activities
Leveraging	the	power	of	SVG

Styling	SVG
Building	SVG	components

Building	an	interactive	activity	slider	component
Projection	of	time
Rendering	activity	indicators
Bringing	it	to	life
Recap

Building	the	activity	timeline
Summary

7.	Components	for	User	Experience
Tag	management

Tag	data	entity
Generating	tags
Creating	a	tags	service
Rendering	tags
Integrating	the	task	service
Completion	of	the	tags	service

Supporting	tag	input
Creating	a	tag	input	manager
Creating	a	tags	select	component
Integrating	tag	input	within	the	editor	component
Finishing	up	our	tagging	system

Drag	and	drop
Implementing	the	draggable	directive
Implementing	a	drop	target	directive
Integrating	drag	and	drop	in	task	list	component
Recapitulate	on	drag	and	drop

To	infinity	and	beyond!
The	asterisk	syntax	and	templates
Creating	an	infinite	scroll	directive
Detecting	change	within	our	template	directive
Adding	and	removing	embedded	views
Finishing	our	infinite	scroll	directive

Summary
8.	Time	Will	Tell

Task	details
Enabling	tags	for	tasks
Managing	efforts

The	time	duration	input
Components	to	manage	efforts
The	visual	efforts	timeline
Recapitulating	on	efforts	management

Setting	milestones
Creating	an	autocomplete	component

Summary
9.	Spaceship	Dashboard

Introduction	to	Chartist
Projects	dashboard

Creating	the	projects	dashboard	component
Project	summary	component

Creating	your	first	chart
Visualizing	open	tasks

Creating	an	open	tasks	chart
Creating	a	chart	legend
Making	tasks	chart	interactive

Summary
10.	Making	Things	Pluggable

Plugin	architecture
Pluggable	UI	components
Implementing	the	plugin	API

Instantiating	plugin	components
Finalizing	our	plugin	architecture

Building	an	Agile	plugin
Agile	task	info	component
Agile	task	details	component
Recapitulating	on	our	first	plugin

Managing	plugins
Loading	new	plugins	at	runtime

Summary
11.	Putting	Things	to	the	Test

An	introduction	to	Jasmine
Writing	our	first	test
Spying	on	component	outputs
Utilities	to	test	components

Injecting	in	tests
Test	component	builder

Testing	components	in	action

Testing	component	interaction
Testing	our	plugin	system
Summary

A.	Task	Management	Application	Source	Code
Download
Prerequisites
Usage
Troubleshooting

Cleaning	IndexDB	to	reset	data
Enabling	web	components	in	Firefox

Index

Mastering	Angular	2	Components

Mastering	Angular	2	Components
Copyright	©	2016	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,	or
transmitted	in	any	form	or	by	any	means,	without	the	prior	written	permission	of	the
publisher,	except	in	the	case	of	brief	quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the
information	presented.	However,	the	information	contained	in	this	book	is	sold	without
warranty,	either	express	or	implied.	Neither	the	author,	nor	Packt	Publishing,	and	its	dealers
and	distributors	will	be	held	liable	for	any	damages	caused	or	alleged	to	be	caused	directly	or
indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the
companies	and	products	mentioned	in	this	book	by	the	appropriate	use	of	capitals.	However,
Packt	Publishing	cannot	guarantee	the	accuracy	of	this	information.

First	published:	June	2016

Production	reference:	1280616

Published	by	Packt	Publishing	Ltd.

Livery	Place

35	Livery	Street

Birmingham	B3	2PB,	UK.

ISBN	978-1-78588-464-1

www.packtpub.com

http://www.packtpub.com

Credits
Author

Gion	Kunz

Reviewer

Carlos	Morales

Commissioning	Editor

Sarah	Crofton

Acquisition	Editors

Aaron	Lazar

Larissa	Pinto

Content	Development	Editor

Samantha	Gonsalves

Technical	Editor

Madhunikita	Sunil	Chindarkar

Copy	Editor

Priyanka	Ravi

Project	Coordinator

Sanchita	Mandal

Proofreader

Safis	Editing

Indexer

Monica	Ajmera	Mehta

Graphics

Disha	Haria

Production	Coordinator

Melwyn	Dsa

Cover	Work

Melwyn	Dsa

About	the	Author
Gion	Kunz	has	years	of	experience	with	web	technologies	and	is	totally	in	love	with	web
standards.	With	over	10	years	of	experience	of	writing	interactive	user	interfaces	using
JavaScript,	he	constantly	evaluates	new	approaches	and	frameworks.	He's	worked	with
AngularJS	for	over	3	years	now	and	is	one	of	the	earliest	adopters	of	Angular	2.	Gion	speaks
about	Angular	2	at	conferences,	and	he	helps	with	the	organization	of	the	Zurich	Angular
Meetup	group	in	Switzerland.

He	currently	works	for	the	start-up	company	oddEVEN	in	Zurich,	where	they	help	customers
build	websites	and	applications.	Besides	working	for	oddEVEN,	Gion	is	a	head	instructor	at
the	SAE	Institute	in	Zurich	and	loves	to	get	his	students	enthusiastic	about	the	Web.

He	is	also	the	creator	of	the	responsive	charting	library	Chartist,	and	he	loves	to	contribute	to
the	open	source	community	whenever	he	finds	time.

When	Gion	is	not	busy	with	web	technologies,	you	can	probably	find	him	at	his	home	music
studio,	outdoors,	fishing,	or	spending	quality	time	with	his	girlfriend	and	their	cute	little	dog.

I	would	like	to	thank	my	girlfriend,	Nathalie,	for	her	ongoing	support	and	her	patience	with
all	my	efforts	spent	on	this	book.	I	really	appreciate	all	that	you	did	for	both	of	us	during	this
time	and	that	you	compensated	the	energy	loss	I've	brought	into	our	relation.

About	the	Reviewer
Carlos	Morales	started	programming	in	BASIC	when	he	was	6	years	old	with	a	Sinclair	ZX
Spectrum+	that	he	still	owns.	He's	loved	the	technology	ever	since.	Professionally,	he	has
worked	for	more	than	15	years	in	different	roles,	always	around	web	applications.	He	fell	in
love	with	Angular,	and	he	founded	the	Angular	Meetup	group	in	Zürich,	which	is	one	of	the
most	attended	Meetups	in	the	city.

Soy	ingeniero	informático	gracias	a	mi	dedicación,	pero	sobretodo	a	mis	padres.

www.PacktPub.com

eBooks,	discount	offers,	and	more
Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with	PDF	and	ePub
files	available?	You	can	upgrade	to	the	eBook	version	at	www.PacktPub.com	and	as	a	print
book	customer,	you	are	entitled	to	a	discount	on	the	eBook	copy.	Get	in	touch	with	us	at
<customercare@packtpub.com>	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign	up	for	a
range	of	free	newsletters	and	receive	exclusive	discounts	and	offers	on	Packt	books	and
eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do	you	need	instant	solutions	to	your	IT	questions?	PacktLib	is	Packt's	online	digital	book
library.	Here,	you	can	search,	access,	and	read	Packt's	entire	library	of	books.

http://www.PacktPub.com
mailto:customercare@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib

Why	subscribe?
Fully	searchable	across	every	book	published	by	Packt
Copy	and	paste,	print,	and	bookmark	content
On	demand	and	accessible	via	a	web	browser

Preface
Web	components	have	long	been	touted	as	the	next	great	leap	forward	in	web	development.
With	Angular	2,	we're	closer	than	ever.	Over	the	past	couple	of	years,	there's	been	a	lot	of
buzz	around	web	components	for	quite	some	time	in	the	web	development	community.	New
component-style	directives	in	Angular	2	will	change	developers'	workflows	and	their
thinking	about	shared	and	reusable	blocks	of	custom	HTML	in	the	shadow	DOM.	Ours	is	the
first	book	that	guides	developers	along	this	path.	It's	also	a	practical	way	to	learn,	giving
readers	the	chance	to	build	components	of	their	own.	With	Mastering	Angular	2	Components,
learners	will	get	ahead	of	the	curve	in	a	new	wave	of	web	development	by	tightly	focusing	on
an	area	that's	the	key	to	unlocking	the	powers	of	Angular	development.

Mastering	Angular	2	Components	teaches	readers	to	think	componentially.	This	rich	guide	to
the	new	component-centric	way	of	doing	things	in	Angular	teaches	readers	how	to	invent,
build,	and	manage	shared	and	reusable	components	for	their	web	projects.	This	book	will
change	how	developers	think	about	how	to	accomplish	things	in	Angular	2,	and	the	reader
will	be	working	on	useful	and	fun	example	components	throughout.

What	this	book	covers
Chapter	1,	Component-Based	User	Interfaces,	looks	at	a	bit	at	the	UI	development	history	and
provides	a	brief	introduction	to	component-based	user	interfaces	in	general.	We	will	see	how
Angular	2	handles	this	concept.

Chapter	2,	Ready,	Set,	Go!,	will	get	the	reader	started	on	their	journey	toward	building	an
Angular	2	component-based	application.	It	covers	the	basic	elements	of	structuring	an
application	with	components.

Chapter	3,	Composing	with	Components,	is	where	the	reader	will	start	to	structure	the	user
interface	into	its	basic	pieces.	The	reader	will	then	go	on	to	compose	an	application	using
components	by	organizing	an	application	layout	into	components,	establishing	the
composition	of	components	using	QueryList,	and	creating	a	reusable	tab	component	to
structure	the	application	interface.

Chapter	4,	No	Comments,	Please!,	is	where	the	reader	will	learn	how	to	build	a	commenting
system	using	components.	They	will	learn	to	create	a	component	to	list	comments	and	also	to
create	new	comments.

Chapter	5,	Component-Based	Routing,	explains	how	components	react	to	routing	and	will
enable	the	reader	to	add	simple	routing	to	the	existing	components	in	the	task	management
application.	The	reader	will	also	work	on	the	login	process	and	build	an	understanding	to
protect	components	using	the	router.

Chapter	6,	Keeping	Up	with	Activities,	covers	the	creation	of	components	that	will	visualize
activity	streams	on	project	and	task	level.

Chapter	7,	Components	for	User	Experience,	is	where	the	reader	will	create	many	small
reusable	components	that	will	have	a	great	effect	on	the	overall	user	experience	of	the	task
management	application.	This	includes	in-place	editing	of	text	fields,	infinite	scroll,	popup
notification,	and	drag	and	drop	support.

Chapter	8,	Time	Will	Tell,	focuses	on	creating	time-tracking	components	that	helps	estimate
time	on	a	project	and	task	level	but	also	for	users	to	log	the	time	spent	on	tasks.

Chapter	9,	Spaceship	Dashboard,	focuses	on	creating	components	to	visualize	some	data	in
the	task	management	application	using	the	third-party	library	Chartist.

Chapter	10,	Making	Things	Pluggable,	is	where	the	reader	will	learn	about	an	approach	to
make	components	pluggable	using	a	simple	but	powerful	pattern.	With	a	DIY	plugin
architecture	for	Angular	2	components,	we	make	our	task	management	system	extensible.

Chapter	11,	Putting	Things	to	the	Test,	covers	some	basic	approaches	to	testing	Angular	2
components.	We	will	see	the	options	for	mocking/overriding	specific	parts	of	a	component

for	testing.

Appendix,	Task	Management	Application	Source	Code,	contains	all	the	information	you'll
need	to	download	and	install	the	source	code	that	comes	with	this	book.	You'll	also	find
instructions	to	use	and	troubleshoot	the	code	in	there.

What	you	need	for	this	book
This	book	will	need	a	basic	installation	of	Node.js	on	your	Windows,	Mac,	or	Linux	machine.

Who	this	book	is	for
This	book	is	for	Angular	developers	who	already	have	a	good	understanding	of	basic
frontend	web	technologies,	such	as	JavaScript,	HTML,	and	CSS.	You	will	learn	about	the	new
component-based	architecture	in	Angular	2	and	how	to	use	it	to	build	modern	and	clean	user
interfaces.

Conventions
In	this	book,	you	will	find	a	number	of	text	styles	that	distinguish	between	different	kinds	of
information.	Here	are	some	examples	of	these	styles	and	an	explanation	of	their	meaning.

Code	words	in	text,	database	table	names,	folder	names,	filenames,	file	extensions,	pathnames,
dummy	URLs,	user	input,	and	Twitter	handles	are	shown	as	follows:	"You	have	a	Fisher	class
and	a	Developer	class,	both	of	which	hold	specific	behaviors."

A	block	of	code	is	set	as	follows:

class	Fruit	{

		constructor(name)	{	this.name	=	name;	}

}

const	apple	=	new	Fruit('Apple');

When	we	wish	to	draw	your	attention	to	a	particular	part	of	a	code	block,	the	relevant	lines	or
items	are	set	in	bold:

<body>

<template	id="template">

		<h1>This	is	a	template!</h1>

</template>

</body>

Any	command-line	input	or	output	is	written	as	follows:

npm	install	jspm	--save-dev

jspm	init

New	terms	and	important	words	are	shown	in	bold.	Words	that	you	see	on	the	screen,	for
example,	in	menus	or	dialog	boxes,	appear	in	the	text	like	this:	"If	everything	goes	well,	you
will	have	an	open	web	browser	that	shows	Hello	World!."

Note

Warnings	or	important	notes	appear	in	a	box	like	this.

Tip

Tips	and	tricks	appear	like	this.

Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think	about	this	book—
what	you	liked	or	disliked.	Reader	feedback	is	important	for	us	as	it	helps	us	develop	titles
that	you	will	really	get	the	most	out	of.

To	send	us	general	feedback,	simply	e-mail	<feedback@packtpub.com>,	and	mention	the
book's	title	in	the	subject	of	your	message.

If	there	is	a	topic	that	you	have	expertise	in	and	you	are	interested	in	either	writing	or
contributing	to	a	book,	see	our	author	guide	at	www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things	to	help	you	to
get	the	most	from	your	purchase.

Downloading	the	example	code
You	can	download	the	example	code	files	for	this	book	from	your	account	at
http://www.packtpub.com.	If	you	purchased	this	book	elsewhere,	you	can	visit
http://www.packtpub.com/support	and	register	to	have	the	files	e-mailed	directly	to	you.

You	can	download	the	code	files	by	following	these	steps:

1.	 Log	in	or	register	to	our	website	using	your	e-mail	address	and	password.
2.	 Hover	the	mouse	pointer	on	the	SUPPORT 	tab	at	the	top.
3.	 Click	on	Code	Downloads	&	Errata.
4.	 Enter	the	name	of	the	book	in	the	Search	box.
5.	 Select	the	book	for	which	you're	looking	to	download	the	code	files.
6.	 Choose	from	the	drop-down	menu	where	you	purchased	this	book	from.
7.	 Click	on	Code	Download.

You	can	also	download	the	code	files	by	clicking	on	the	Code	Files	button	on	the	book's
webpage	at	the	Packt	Publishing	website.	This	page	can	be	accessed	by	entering	the	book's
name	in	the	Search	box.	Please	note	that	you	need	to	be	logged	in	to	your	Packt	account.

Once	the	file	is	downloaded,	please	make	sure	that	you	unzip	or	extract	the	folder	using	the
latest	version	of:

WinRAR	/	7-Zip	for	Windows
Zipeg	/	iZip	/	UnRarX	for	Mac
7-Zip	/	PeaZip	for	Linux

The	code	bundle	for	the	book	is	also	hosted	on	GitHub	at
https://github.com/PacktPublishing/Mastering-Angular-2-Components.	We	also	have	other
code	bundles	from	our	rich	catalog	of	books	and	videos	available	at
https://github.com/PacktPublishing/.	Check	them	out!

http://www.packtpub.com
http://www.packtpub.com/support
https://github.com/PacktPublishing/Mastering-Angular-2-Components
https://github.com/PacktPublishing/

Downloading	the	color	images	of	this	book
We	also	provide	you	with	a	PDF	file	that	has	color	images	of	the	screenshots/diagrams	used
in	this	book.	The	color	images	will	help	you	better	understand	the	changes	in	the	output.	You
can	download	this	file	from
https://www.packtpub.com/sites/default/files/downloads/MasteringAngular2Components_ColorImages.pdf

https://www.packtpub.com/sites/default/files/downloads/MasteringAngular2Components_ColorImages.pdf

Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,	mistakes	do	happen.
If	you	find	a	mistake	in	one	of	our	books—maybe	a	mistake	in	the	text	or	the	code—we
would	be	grateful	if	you	could	report	this	to	us.	By	doing	so,	you	can	save	other	readers	from
frustration	and	help	us	improve	subsequent	versions	of	this	book.	If	you	find	any	errata,
please	report	them	by	visiting	http://www.packtpub.com/submit-errata,	selecting	your	book,
clicking	on	the	Errata	Submission	Form	link,	and	entering	the	details	of	your	errata.	Once
your	errata	are	verified,	your	submission	will	be	accepted	and	the	errata	will	be	uploaded	to
our	website	or	added	to	any	list	of	existing	errata	under	the	Errata	section	of	that	title.

To	view	the	previously	submitted	errata,	go	to
https://www.packtpub.com/books/content/support	and	enter	the	name	of	the	book	in	the	search
field.	The	required	information	will	appear	under	the	Errata	section.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

Piracy
Piracy	of	copyrighted	material	on	the	Internet	is	an	ongoing	problem	across	all	media.	At
Packt,	we	take	the	protection	of	our	copyright	and	licenses	very	seriously.	If	you	come	across
any	illegal	copies	of	our	works	in	any	form	on	the	Internet,	please	provide	us	with	the
location	address	or	website	name	immediately	so	that	we	can	pursue	a	remedy.

Please	contact	us	at	<copyright@packtpub.com>	with	a	link	to	the	suspected	pirated	material.

We	appreciate	your	help	in	protecting	our	authors	and	our	ability	to	bring	you	valuable
content.

mailto:copyright@packtpub.com

Questions
If	you	have	a	problem	with	any	aspect	of	this	book,	you	can	contact	us	at
<questions@packtpub.com>,	and	we	will	do	our	best	to	address	the	problem.

mailto:questions@packtpub.com

Chapter	1.	Component-Based	User	Interfaces
Although	we'll	cover	a	lot	of	Angular-related	topics	in	this	book,	the	focus	will	be	mainly	on
creating	component-based	user	interfaces.	It's	one	thing	to	understand	a	framework,	such	as
Angular	2,	but	it's	a	whole	different	thing	to	establish	an	effective	workflow	using	a
component-based	architecture.	In	this	book,	I'll	try	to	explain	the	core	concepts	behind
Angular	2	components	and	how	we	can	leverage	this	architecture	to	create	modern,	efficient,
and	maintainable	user	interfaces.

Besides	learning	all	the	necessary	concepts	behind	Angular	2,	we	will	together	create	a	task-
management	application	from	scratch.	This	will	allow	us	to	explore	different	approaches	to
solve	common	UI	problems	using	the	component	system	that	is	provided	by	Angular	2.

A	preview	of	the	task	management	application	that	we	are	going	to	build

In	this	chapter,	we	will	take	a	look	at	how	component-based	user	interfaces	help	us	build
greater	applications.	Over	the	course	of	this	book,	we	will	build	an	Angular	2	application
together,	where	we	will	use	the	component-based	approach	to	its	full	potential.	This	chapter
will	also	introduce	you	to	the	technologies	that	are	used	in	this	book.	The	topics	that	we	will
cover	in	this	chapter	are	as	follows:

An	introduction	to	component-based	user	interfaces
Encapsulation	and	composition	using	component-based	user	interfaces
Evolution	of	UI	frameworks
The	standard	and	Web	components

An	introduction	to	the	Angular	2	component	system
Writing	your	first	Angular	2	component
An	overview	and	history	of	ECMAScript	and	TypeScript
ECMAScript	7	decorators	as	meta	annotations
An	introduction	to	Node.js-based	tooling	using	JSPM	and	SystemJS

Thinking	of	organisms
Today's	user	interfaces	do	not	consist	of	just	a	bunch	of	form	elements	that	are	cobbled
together	onto	a	screen.	Modern	users	experience	design	and	innovative	visual	presentations	of
interactive	content	challenges	technology	more	than	ever.

Sadly,	we	almost	always	tend	to	think	in	pages	when	we	flesh	out	concepts	for	web
applications,	such	as	the	pages	within	a	printed	book.	Well,	this	is	probably	the	most	efficient
way	to	convey	information	for	this	kind	of	content	and	medium.	You	can	skim	through	the
pages	one	by	one	without	any	real	physical	effort,	read	paragraph	by	paragraph,	and	just	scan
through	the	chapters	that	you	don't	find	interesting.

The	problem	with	thinking	in	pages	too	much	is	that	this	concept,	which	is	borrowed	from
books,	does	not	really	translate	well	to	how	things	work	in	the	real	world.	The	world	is
created	from	organisms	that	form	a	system	of	organisms	together.	This	system	itself	forms
an	organism	again,	just	on	a	higher	level.

Take	our	bodies	as	an	example.	We	mostly	consist	of	independent	organs	that	interact	with
each	other	using	electrical	and	chemical	signals.	Organs	themselves	consist	of	proteins	that
on	their	own	work	like	a	machine	to	form	a	system.	Down	to	the	molecules,	atoms,	protons,
and	quarks,	we	can't	really	tell	where	one	starts	and	where	it	ends.	What	we	can	tell	for	sure	is
that	it's	all	about	systems	of	organisms	with	interdependencies,	and	it	is	not	about	pages.

I	like	to	view	user	interfaces	as	systems	of	organisms.	Whether	if,	where,	and	how	they	are
distributed	to	pages	is	subordinate	while	designing	them.	Also,	they	should	work
independently,	and	they	should	interact	with	each	other	on	an	interdependent	level.

Components	–	The	organs	of	user	interfaces
	 "We're	not	designing	pages,	we're	designing	systems	of	components." 	

	 --Stephen	Hay

This	quote	by	Stephen	Hay	from	BDConf	in	Orlando	2012	brings	it	to	the	point.	Interface
design	is	really	not	about	pages.	To	create	efficient	user	interfaces	for	not	only	the	users	but
also	the	developers	who	maintain	them,	we	need	to	think	in	systems	of	components.
Components	are	independent,	but	they	can	interact	with	each	other	and	create	larger
components	when	they	are	arranged	together.	We	need	to	look	at	user	interfaces	holistically
and	using	components	enables	us	to	do	this.

In	the	following	topics,	we're	going	to	explore	a	few	fundamental	aspects	of	components.
Some	of	these	are	already	known	from	other	concepts,	such	as	object-oriented
programming	(OOP),	but	they	appear	in	a	slightly	different	light	when	thinking	about
components.

Encapsulation
Encapsulation	is	a	very	important	factor	when	thinking	about	maintenance	in	a	system.	Having
a	classical	OOP	background,	I've	learned	that	encapsulation	means	bundling	logic	and	data
together	into	an	isolated	container.	This	way,	we	can	operate	on	the	container	from	the	outside
and	treat	it	like	a	closed	system.

There	are	many	positive	aspects	of	this	approach	when	it	comes	to	maintainability	and
accessibility.	Dealing	with	closed	systems	is	important	for	the	organization	of	our	code.
However,	this	is	even	more	importantly	because	we	can	organize	ourselves	while	working
with	code.

I	have	a	pretty	bad	memory,	and	it's	very	important	for	me	to	find	the	right	focus	level	when
working	on	code.	Immediate	memory	research	told	us	that	the	human	brain	can	remember
about	seven	items	at	once	on	an	average.	Therefore,	it's	crucial	for	us	to	write	code	in	such	a
way	that	it	allows	us	to	focus	on	fewer	and	smaller	pieces	at	once.

A	clear	encapsulation	helps	us	in	organizing	our	code.	We	can	maybe	forget	all	the	internals
of	the	closed	system	and	about	the	kind	of	logic	and	data	that	we've	put	into	it.	We	can	focus
only	on	its	surface,	which	allows	us	to	work	on	a	higher-abstraction	level.	Similar	to	the
previous	figure,	without	using	a	hierarchy	of	encapsulated	components,	we'd	have	all	our
code	cobbled	together	on	the	same	level.

Encapsulation	encourages	us	to	isolate	small	and	concise	components	and	build	a	system	of
components.	During	development,	we	can	focus	on	the	internals	of	one	component	and	only
deal	with	the	interface	of	other	components.

Sometimes,	we	forget	that	all	the	organization	of	the	coding	we	actually	perform	is	for
ourselves	and	not	for	the	computer	that	runs	this	code.	If	this	was	for	the	computer,	then	we

would	probably	all	start	writing	in	machine	language	again.	A	strong	encapsulation	helps	us
access	specific	code	easily,	focus	on	one	layer	of	the	code,	and	trust	the	underlying
implementations	within	capsules.

The	following	JavaScript	example	shows	you	how	to	use	encapsulation	to	write	maintainable
applications.	Let's	assume	that	we	are	in	a	T-shirt	factory,	and	we	need	some	code	to	produce
T-shirts	with	a	background	and	foreground	color.	This	example	uses	some	new	language
features	of	ECMAScript	6.	If	you're	not	familiar	with	the	language	features	of	ECMAScript	6,
don't	worry	too	much	at	this	point.	We	will	learn	about	these	later	in	this	chapter:

//	This	class	implements	data	and	logic	to	represent	a	colour

//	which	establishes	clean	encapsulation.

class	Colour	{

		constructor(red,	green,	blue)	{

				Object.assign(this,	{red,	green,	blue});

		}

		

		//	Using	this	function	we	can	convert	the	internal	colour	values

		//	to	a	hex	colour	string	like	#ff0000	(red).

		getHex()	{

				return	'#'	+	Colour.getHexValue(this.red)	+	Colour.getHexValue(this.green)	+

						Colour.getHexValue(this.blue);

		}

		

		//	Static	function	on	Colour	class	to	convert	a	number	from

		//	0	to	255	to	a	hexadecimal	representation	00	to	ff

		static	getHexValue(number)	{

				const	hex	=	number.toString(16);

				return	hex.length	===	2	?	hex	:	'0'	+	hex;

		}

}

//	Our	TShirt	class	expects	two	colours	to	be	passed	during

//	construction	that	will	be	used	to	render	some	HTML

class	TShirt	{

		constructor(backgroundColour,	foregroundColour)	{

				Object.assign(this,	{backgroundColour,	foregroundColour});

		}

		

		//	Function	that	returns	some	markup	which	represents	our	

		//	T-Shirts

		getHtml()	{

				return	`

						<t-shirt	style="background-color:	${this.backgroundColour.getHex()}">

								<t-shirt-text	style="color:	${this.foregroundColour.getHex()}">

										Awesome	Shirt!

								</t-shirt-text>

						</t-shirt>

				`;

		}

}

//	Instantiate	a	blue	colour

const	blue	=	new	Colour(0,	0,	255);

//	Instantiate	a	red	colour

const	red	=	new	Colour(255,	0,	0);

//	Create	a	new	shirt	using	the	above	colours

const	awesomeShirt	=	new	TShirt(blue,	red);

//	Adding	the	generated	markup	of	our	shirt	to	our	document

document.body.innerHTML	=	awesomeShirt.getHtml();

Using	a	clean	encapsulation,	we	can	now	work	with	the	abstraction	of	color	in	our	T-shirt.	We
don't	need	to	worry	about	how	to	calculate	the	hexadecimal	representation	of	colors	at	the	T-
shirt	level	because	this	is	already	done	by	the	Colour	class.	This	makes	your	application
maintainable	and	keeps	it	very	open	for	change.

I	really	recommend	that	you	read	about	the	SOLID	principles	if	you	haven't	done	so	already.
As	the	name	already	suggests,	this	assembly	of	principles	is	a	solid	power	tool	that	can
change	the	way	you	organize	code	tremendously.	You	can	learn	more	about	the	SOLID
principles	in	the	book,	Agile	Principles,	Patterns,	and	Practices,	by	Robert	C.	Martin.

Composability
Composition	is	a	special	kind	of	reusability.	You	don't	extend	an	existing	component,	but	you
create	a	new	larger	component	by	composing	many	smaller	components	together	into	a
system	of	components.

In	OOP	languages,	composition	is	often	used	to	get	around	the	multiple	inheritance	issues	that
most	OOP	languages	have.	Subclass	polymorphism	is	always	great	until	you	reach	the	point
where	your	design	does	not	match	the	latest	requirements	in	your	project.	Let's	look	at	a
simple	example	that	illustrates	this	problem.

You	have	a	Fisher	class	and	a	Developer	class,	both	of	which	hold	specific	behaviors.	Now,
you'd	want	to	create	a	FishingDeveloper	class	that	inherits	both	from	Fisher	and	Developer.
Unless	you're	using	a	language	that	supports	multiple	inheritance	(such	as	C++	does	to	a
certain	extent),	you	will	not	be	able	to	reuse	this	functionality	using	inheritance.	There	is	no
way	to	tell	the	language	that	your	new	class	should	inherit	from	both	super	classes.	Using
composition,	you	can	easily	solve	this	problem.	Instead	of	using	inheritance,	you're
composing	a	new	FishingDeveloper	class	that	delegates	all	behavior	to	an	internal	Developer
and	Fisher	instance:

class	Developer	{

		code()	{

				console.log(`${this.name}	writes	some	code!`);

		}

}

class	Fisher	{

		fish()	{

				console.log(`${this.name}	catches	a	big	fish!`);

		}

}

class	FishingDeveloper	{

		constructor(name)	{

				this.name	=	name;

				this.developerStuff	=	new	Developer();

				this.fisherStuff	=	new	Fisher();

		}

		

		code()	{

				this.developerStuff.code.bind(this)();

		}

		

		fish()	{

				this.fisherStuff.fish.bind(this)();

		}

}

var	bob	=	new	FishingDeveloper('Bob');

bob.code();

bob.fish();

Experience	has	taught	us	that	composition	is	probably	the	most	efficient	way	to	reuse	code.	In
contrast	to	inheritance,	decoration,	and	other	approaches	to	gain	reusability,	composition	is
probably	the	least	intrusive	and	the	most	flexible.

Recent	versions	of	some	languages	also	support	a	pattern	called	traits,	that	is,	mixins.	Traits
allow	you	to	reuse	certain	functionality	and	attributes	from	other	classes	in	a	way	that	is
similar	to	multiple	inheritance.

If	we	think	about	the	concept	of	composition,	it's	nothing	more	than	designing	organisms.	We
have	the	two	Developer	and	Fisher	organisms,	and	we	unify	their	behaviors	into	a	single
FishingDeveloper	organism.

Components,	invented	by	nature
Components,	embracing	encapsulation,	and	composition	are	an	effective	way	to	build
maintainable	applications.	Composed	from	components,	applications	are	very	resistant	to	the
negative	implications	of	change,	and	change	is	a	necessary	thing	that	will	happen	to	every
application.	It's	only	a	matter	of	time	until	your	design	will	be	challenged	by	the	effects	of
change;	therefore,	it's	very	important	to	write	code	that	can	handle	change	as	smoothly	as
possible.

Nature	is	the	best	teacher.	Almost	all	the	achievements	in	technological	developments	have
their	origin	in	observations	of	how	nature	solves	problems.	If	we	look	at	evolution,	it's	an
ongoing	redesign	of	matter	by	adapting	to	outer	forces	and	constraints.	Nature	solves	this	by
constant	change	using	mutation	and	natural	selection.

If	we	project	the	concept	of	evolution	onto	developing	an	application,	we	can	say	that	nature
does	actually	refactor	its	code	in	every	single	moment.	This	is	actually	the	dream	of	every
product	manager—an	application	that	can	undergo	constant	change	but	does	not	lose	any	of
its	efficiency.

I	believe	that	there	are	two	key	concepts	that	play	a	major	role	in	nature	that	allows	it	to	apply
constant	change	in	its	design	without	losing	much	efficiency.	This	uses	encapsulation	and
composition.	Coming	back	to	the	example	of	our	bodies,	we	can	actually	tell	that	our	organs
use	a	very	clear	encapsulation.	They	use	membranes	to	create	isolation,	veins	to	transport
nutrition,	and	synapses	to	send	messages.	Also,	they	have	interdependencies,	and	they
communicate	with	electrical	and	chemical	messages.	Most	obviously,	they	form	larger
systems,	which	is	the	core	concept	of	composition.

Of	course,	there	are	many	other	factors,	and	I'm	not	a	professor	in	biology.	However,	I	think
it's	a	fascinating	thing	to	see	that	we	have	learned	to	organize	our	code	very	similarly	to	how
nature	organizes	matter.

The	idea	of	creating	reusable	UI	components	is	quite	old,	and	it	was	implemented	in	various
languages	and	frameworks.	One	of	the	earliest	systems	that	used	UI	components	was	probably
the	Xerox	Alto	system	back	in	1970s.	It	used	reusable	UI	components	that	allowed	developers
to	create	an	application	by	composing	them	on	a	screen	where	users	could	interact	with	them.

The	user	interface	of	file	manager	on	the	Xerox	Alto	system	from	the	1970s.

Early	frontend	UI	frameworks,	such	as	DHTMLX,	Ext	JS,	or	jQuery	UI	implemented
components	in	a	more	limited	fashion	that	didn't	provide	great	flexibility	or	extensibility.
Most	of	these	frameworks	just	provided	widget	libraries.	The	problem	with	UI	widgets	is	that

they	mostly	don't	embrace	the	pattern	of	composition	enough.	You	can	arrange	widgets	on	a
page	and	they	provide	encapsulation,	but	with	most	toolkits,	you	can't	create	larger
components	by	nesting	them	inside	each	other.	Some	toolkits	solve	this	by	providing	a	special
kind	of	widget	which	was	mostly	called	a	container.	However,	this	is	not	the	same	as	a	full-
fledged	component	tree	that	allows	you	to	create	systems	within	systems.	Containers	were
actually	meant	to	provide	a	visual	layout	container	rather	than	a	composite	container	to	form
a	larger	system.

Usually	when	working	with	widgets	on	a	page	of	our	application,	we'd	have	a	large	controller
that	controls	all	these	widgets,	user	input,	and	states.	However,	we	are	left	with	two	levels	of
composition,	and	there's	no	way	that	we	can	structure	our	code	more	granularly.	There	is	the
page	and	there	are	the	widgets.	Having	a	bunch	of	UI	widgets	is	simply	not	enough,	and	we
are	almost	back	to	the	state	where	we	create	pages	plastered	with	form	elements.

I've	been	a	user	of	JavaServer	Faces	for	years,	and	besides	all	its	problems,	the	concept	of
having	reusable	custom	elements	was	groundbreaking.	Using	XHTML,	one	could	write	so-
called	composite	components	that	consisted	of	other	composite	components	or	native	HTML
elements.	A	developer	could	gain	a	fantastic	level	of	reusability	using	composition.	The	big
issue	in	my	view	with	this	technology	was	that	it	did	not	address	the	concerns	in	the	frontend
enough	to	become	really	usable	for	complex	user	interactions.	In	fact,	a	framework	like	this
should	live	completely	within	the	frontend.

My	UI	framework	wishlist

Usually	when	UI	frameworks	get	compared,	they	get	measured	against	each	other	based	on
metrics,	such	as	widget	count,	theming	capabilities,	and	asynchronous	data	retrieval	features.
Every	framework	has	its	strengths	and	weaknesses,	but	leaving	all	the	extra	features	aside	and
reducing	it	to	the	core	concerns	of	a	UI	framework,	I	only	have	a	few	metrics	left	that	I'd	like
to	be	assessed.	These	metrics	are,	of	course,	not	the	only	ones	that	are	important	in	today's	UI
development,	but	they	also	are	the	main	factors	toward	building	a	clean	architecture	that
supports	the	principle	of	change:

I	can	create	encapsulated	components	with	clear	interfaces
I	can	create	larger	components	by	composition
I	can	make	components	interact	with	each	other	within	their	hierarchy

If	you're	looking	for	a	framework	which	enables	you	to	take	full	advantage	of	component-
based	UI	development,	you	should	look	for	these	three	key	measures.

First	of	all,	I	think	it's	very	important	to	understand	the	main	purpose	of	the	web	and	how	it
evolved.	If	we	think	of	the	web	in	its	early	days	in	the	1990s,	it	was	probably	only	about
hypertext.	There	were	very	basic	semantics	that	could	be	used	to	structure	information	and
display	them	to	a	user.	HTML	was	created	to	hold	structure	and	information.	The	need	for
custom	visual	presentation	of	information	led	to	the	development	of	CSS	right	after	HTML
started	being	widely	used.

It	was	in	the	mid	1990s	when	Brendan	Eich	invented	JavaScript,	and	it	was	first	implemented
in	Netscape	Navigator.	By	providing	a	way	to	implement	behavior	and	state,	JavaScript	was
the	last	missing	piece	for	a	full	web	customization:

Technology Concern

HTML Structure	and	information

CSS Presentation

JavaScript Behavior	and	state

We	have	learned	to	keep	these	concerns	as	separate	as	possible	in	order	to	maintain	a	clean
architecture.	Although	there	are	different	opinions	on	this	and	some	recent	technologies	also
move	away	from	this	principle,	I	believe	that	a	clean	separation	of	these	concerns	is	very
important	to	create	a	maintainable	application.

Leaving	this	view	aside,	the	standard	definition	of	encapsulation	from	OOP	is	just	concerned
about	coupling	and	isolation	of	logic	and	data.	This	probably	applies	well	to	classic	software
components.	However,	as	soon	as	we	consider	a	user	interface	as	part	of	an	architecture,	there
is	a	new	dimension	that	is	added.

Classical	MVC	frameworks	are	view	centric,	and	developers	organize	their	code	based	on
pages.	You'll	probably	go	ahead	and	create	a	new	view	that	represents	a	page.	Of	course,	your
view	needs	a	controller	and	model,	so	you'll	also	create	them.	The	problem	with	organization
by	pages	is	that	there's	little	to	no	gain	of	reusability.	Once	you've	created	a	page	and	you'd
like	to	reuse	only	some	parts	of	the	page,	you	will	need	a	way	to	encapsulate	only	a	specific
part	of	this	model—the	view	and	the	controller.

UI	components	solve	this	problem	nicely.	I	like	to	see	them	as	a	modular	approach	to	MVC.
Although	they	still	embrace	the	MVC	pattern,	they	also	establish	encapsulation	and
composability.	This	way	a	view	is	a	component	itself,	but	it	also	consists	of	components.	By
composing	views	of	components,	one	can	gain	a	maximum	amount	of	reusability:

UI	components	embrace	MVC,	but	they	also	support	encapsulation	and	composition	on	a	much
lower	level

Technically,	there	are	some	challenges	when	implementing	components	with	web
technologies.	JavaScript	was	always	flexible	enough	to	implement	different	patterns	and
paradigms.	Working	with	encapsulation	and	composition	isn't	an	issue	at	all,	and	the
controlling	part	and	the	model	of	components	can	easily	be	implemented.	Approaches,	such
as	the	revealing	module	pattern,	namespaces,	prototypes,	or	the	recent	ECMAScript	6
modules,	provide	all	the	tools	that	are	needed	from	the	JavaScript	side.

However,	for	the	view	part	of	our	components,	we	face	some	limitations.	Although	HTML
supports	great	flexibility	in	terms	of	composability	because	the	DOM	tree	is	nothing	else	than
a	big	composition,	we	have	no	way	to	reuse	these	compositions.	We	can	only	create	one	large
composition,	which	is	the	page	itself.	HTML	being	only	the	final	view	that	was	delivered	from
the	server,	this	was	never	really	a	real	concern.	Today's	applications	are	much	more
demanding,	and	we	need	to	have	a	fully-encapsulated	component	running	in	the	browser,
which	also	consists	of	a	partial	view.

We	face	the	same	problem	with	CSS.	There	is	no	real	modularization	and	encapsulation	while
writing	CSS,	and	we	need	to	use	namespaces	and	prefixes	in	order	to	segregate	our	CSS
styles.	Still,	the	whole	cascading	nature	of	CSS	can	easily	destroy	all	encapsulation	that	we	try
to	bring	in	place	using	CSS-structuring	patterns.

Time	for	new	standards
Web	standards	have	been	evolving	immensely	in	the	last	couple	of	years.	There	are	so	many
new	standards,	and	the	browser	became	such	a	big	multimedia	framework,	that	it's	hard	for
other	platforms	to	compete	with	this.

I'd	even	go	as	far	as	to	say	that	web	technology	will	actually	replace	other	frameworks	in	the
future,	and	it	probably	will	be	renamed	to	multimedia	technology	or	something	similar.
There's	no	reason	why	we	need	to	use	different	native	frameworks	to	create	user	interfaces
and	presentations.	Web	technologies	embed	so	many	features	that	it's	hard	to	find	a	reason	not
to	use	them	for	any	kind	of	application.	Just	look	at	the	Firefox	OS	or	the	Chrome	OS,	which
are	designed	to	run	with	web	technologies.	I	think	it's	only	a	matter	of	time	until	more
operating	systems	and	embedded	devices	make	use	of	web	technologies	to	implement	their
software.	This	is	why	I	believe	that	at	some	point	it	will	be	questionable	whether	the	term	web
technologies	is	still	appropriate	or	whether	we	should	replace	it	with	a	more	general	term.

Although	we	usually	just	see	new	features	appear	in	browsers,	there	is	a	very	open	and	long-
winded	standardization	process	behind	them.	It's	very	important	to	standardize	features,	but
this	takes	a	lot	of	time,	especially	when	people	disagree	about	different	approaches	to	solving
problems.

Coming	back	to	the	concept	of	components,	this	is	something	where	we	really	need	support
from	web	standards	to	break	the	current	limitations.	Fortunately,	the	W3C	thought	the	same,
and	a	group	of	developers	started	to	work	on	specifications	under	the	hood	of	an	umbrella
specification	called	web	components.

The	following	topics	will	give	you	a	brief	overview	over	two	specifications	that	also	play	a
role	in	Angular	2	components.	One	of	Angular	2's	core	strengths	is	that	it	acts	more	like	a
superset	of	web	standards	rather	than	being	a	complete	isolated	framework.

Template	elements

Template	elements	allow	you	to	define	regions	within	your	HTML,	which	will	not	be
rendered	by	the	browser.	You	can	then	instantiate	these	document	fragments	with	JavaScript
and	then	place	the	resulting	DOM	within	your	document.

While	the	browser	is	actually	parsing	the	template	content,	it	only	does	so	in	order	to	validate
the	HTML.	Any	immediate	actions	that	the	parser	would	usually	execute	will	not	be	taken.
Within	the	content	of	template	elements,	images	will	not	be	loaded	and	scripts	won't	be
executed.	Only	after	a	template	is	instantiated,	the	parser	will	take	the	necessary	actions,	as
follows:

<body>

<template	id="template">

		<h1>This	is	a	template!</h1>

</template>

</body>

This	simple	HTML	example	of	a	template	element	won't	display	the	heading	on	your	page.	As
the	heading	is	inside	a	template	element,	we	first	need	to	instantiate	the	template	and	add	the
resulting	DOM	into	our	document:

var	template	=	document.querySelector('#template');

var	instance	=	document.importNode(template.content,	true);

document.body.appendChild(instance);

Using	these	three	lines	of	JavaScript,	we	can	instantiate	the	template	and	append	it	into	our
document.

Shadow	DOM

This	part	of	the	web	components	specification	was	the	missing	piece	to	create	proper	DOM
encapsulation	and	composition.	With	shadow	DOM,	we	can	create	isolated	parts	of	the	DOM
that	are	protected	against	regular	DOM	operations	from	the	outside.	Also,	CSS	will	not	reach
into	shadow	DOM	automatically,	and	we	can	create	local	CSS	within	our	component.

Tip

If	you	add	a	style	tag	inside	shadow	DOM,	the	styles	are	scoped	to	the	root	within	the	shadow
DOM,	and	they	will	not	leak	outside.	This	enables	a	very	strong	encapsulation	for	CSS.

Content	insertion	points	make	it	easy	to	control	content	from	the	outside	of	a	shadow	DOM
component,	and	it	provides	some	kind	of	an	interface	to	pass	in	content.

At	the	time	of	writing	this	book,	shadow	DOM	is	supported	by	most	browsers	although	it	still
needs	to	be	enabled	in	Firefox.

Angular's	component	architecture
For	me,	the	concept	of	directives	from	the	first	version	of	Angular	changed	the	game	in
frontend	UI	frameworks.	This	was	the	first	time	that	I	felt	that	there	was	a	simple	yet	powerful
concept	that	allowed	the	creation	of	reusable	UI	components.	Directives	could	communicate
with	DOM	events	or	messaging	services.	They	allowed	you	to	follow	the	principle	of
composition,	and	you	could	nest	directives	and	create	larger	directives	that	solely	consisted
of	smaller	directives	arranged	together.	Actually,	directives	were	a	very	nice	implementation
of	components	for	the	browser.

In	this	section,	we'll	look	into	the	component-based	architecture	of	Angular	2	and	how	the
things	we've	learned	about	components	will	fit	into	Angular.

Everything	is	a	component
As	an	early	adopter	of	Angular	2	and	while	talking	to	other	people	about	it,	I	got	frequently
asked	what	the	biggest	difference	is	to	the	first	version.	My	answer	to	this	question	was	always
the	same.	Everything	is	a	component.

For	me,	this	paradigm	shift	was	the	most	relevant	change	that	both	simplified	and	enriched	the
framework.	Of	course,	there	are	a	lot	of	other	changes	with	Angular	2.	However,	as	an
advocate	of	component-based	user	interfaces,	I've	found	that	this	change	is	the	most
interesting	one.	Of	course,	this	change	also	came	with	a	lot	of	architectural	changes.

Angular	2	supports	the	idea	of	looking	at	the	user	interface	holistically	and	supporting
composition	with	components.	However,	the	biggest	difference	to	its	first	version	is	that	now
your	pages	are	no	longer	global	views,	but	they	are	simply	components	that	are	assembled
from	other	components.	If	you've	been	following	this	chapter,	you'll	notice	that	this	is	exactly
what	a	holistic	approach	to	user	interfaces	demands.	No	more	pages	but	systems	of
components.

Tip

Angular	2	still	uses	the	concept	of	directives,	although	directives	are	now	really	what	the
name	suggests.	They	are	orders	for	the	browser	to	attach	a	given	behavior	to	an	element.

Components	are	a	special	kind	of	directives	that	come	with	a	view.

Your	first	component
Keeping	up	the	tradition,	before	we	start	building	a	real	application	together,	we	should	write
our	first	hello	world	component	with	Angular:

//	Decorators	allow	us	to	separate	declarative	logic	from	our

//	component	implementation	logic.

@Component({

		selector:	'hello-world',

		template:	'<div>Hello	{{name}}</div>'

})

class	HelloWorld	{

		constructor()	{

				this.name	=	'World';

		}

}

This	is	already	a	fully-working	Angular	2	application.	We	used	ECMAScript	6	classes	to
create	the	necessary	encapsulation	required	for	a	component.	You	can	also	see	a	meta-
annotation	that	is	used	to	declaratively	configure	our	component.	This	statement,	which	looks
like	a	function	call	that	is	prefixed	with	an	at	symbol	actually	comes	from	the	ECMAScript	7
decorator	proposal.

Note

ECMAScript	7	decorators	are	still	very	experimental	at	the	time	of	writing	this	book.	For	the
code	in	this	book,	we	actually	use	the	TypeScript	transpiler	version	1.5	that	already
implements	decorators	with	a	slight	twist	to	the	original	specification.	TypeScript	1.5	is	also
used	by	the	Angular	2	team	to	develop	the	core	of	Angular.

It's	important	to	understand	that	an	element	can	only	be	bound	to	one	single	component.	As	a
component	always	comes	with	a	view,	there	is	no	way	that	we	can	bind	more	than	one
component	to	an	element.	On	the	other	hand,	an	element	can	be	bound	to	many	directives,	as
directives	don't	come	with	a	view	but	they	only	attach	behavior.

In	the	Component	decorator,	we	need	to	configure	everything	that	is	relevant	to	describe	our
component	for	Angular.	This,	of	course,	also	includes	our	template	for	the	view.	In	the
preceding	example,	we	are	specifying	our	template	directly	within	JavaScript	as	a	string.	We
can	also	use	the	templateUrl	property	to	specify	a	URL	where	the	template	should	be	loaded
from.

Now,	let's	enhance	our	example	a	little	bit	so	that	we	can	see	how	we	can	compose	our
application	from	smaller	components:

//	Using	decorators	we	can	declaratively	define	our	component	used

//	to	write	bold	text

@Component({

		selector:	'shout-out',

		template:	'{{words}}'

})

class	ShoutOut	{

		@Input()	words;

}

//	This	component	will	be	our	main	application	component	that

//	makes	use	of	the	above	shout-out	component	(composition)

@Component({

		selector:	'hello-world'

		template:	'<shout-out	words="Hello,	{{name}}!"></shout-out>',

		directives:	[ShoutOut]

})

class	HelloWorld	{

		constructor()	{

				this.name	=	'World';

		}

}

You	can	see	that	we	have	now	created	a	small	component	that	allows	us	to	shout	out	words	as
we	like.	In	our	Hello	World	application,	we	make	use	of	this	component	to	shout	out	Hello,
World!

Tip

Every	directive	or	component	that	is	used	inside	a	components	view	template	needs	to	be
explicitly	declared	in	the	directives	property	of	the	view	annotation.	Otherwise,	the	compiler
will	not	recognize	the	directive	when	it	encounters	the	element	in	the	template.

Over	the	course	of	this	book	and	while	writing	our	task	management	application,	we	will
learn	a	lot	more	about	the	configuration	and	implementation	of	components.	However,	before
we	start	with	this	in	the	second	chapter,	we	should	take	a	look	at	some	tools	and	language
features	that	we'll	use	during	this	book.

JavaScript	of	the	future
It	was	not	so	long	ago	that	somebody	asked	me	whether	we	should	really	use	the	bind	function
of	ECMAScript	5.1,	as	then	we'd	probably	run	into	browser	compatibility	issues.	The	web
moves	very	fast,	and	we	need	to	keep	up	the	pace.	We	can't	write	code	that	does	not	use	the
latest	features	even	if	this	would	cause	issues	in	old	browsers.

The	fantastic	people	from	TC39,	the	technical	committee	that	is	responsible	for	writing	the
ECMAScript	specification,	have	done	a	great	job	progressively	enhancing	the	JavaScript
language.	This,	and	the	fact	that	JavaScript	is	so	flexible,	allows	us	to	use	so-called	polyfills
and	shims	to	make	our	code	run	in	older	browsers.

ECMAScript	6	(also	referred	to	as	ECMAScript	2015)	was	published	in	June	2015,	exactly
four	years	after	its	predecessor.	There	is	a	massive	amount	of	new	API	additions	as	well	as	a
whole	bunch	of	new	language	features.	The	language	features	are	syntactic	sugar,	and
ECMAScript	6	can	be	transpiled	to	its	previous	version	where	it	runs	perfectly	in	older
browsers.	At	the	time	of	writing	this	book,	none	of	the	current	browser	versions	have	fully
implemented	ECMAScript	6,	but	there's	absolutely	no	reason	not	to	use	it	for	production
applications.

Tip

Syntactic	sugar	is	a	design	approach	where	we	evolve	a	programming	language	while	not
breaking	backwards	compatibility.	This	allows	language	designers	to	come	up	with	new
syntax,	which	enriches	developer	experience	but	does	not	break	the	web.	Every	new	feature
needs	to	be	translatable	to	the	old	syntax.	This	way,	so-called	transpilers	can	be	used	to
convert	code	to	older	versions.

I	speak	JavaScript,	translate,	please!

While	compilers	compile	from	a	higher-level	language	to	a	lower-level	language,	a
transpiler	or	transcompiler	acts	more	like	a	converter.	It	is	a	source-to-source	compiler	that
translates	code	to	run	in	a	different	interpreter.

Recently,	there's	a	real	battle	among	new	languages	that	are	transpiled	to	JavaScript	and	can
run	in	the	browser.	I	used	Google	Dart	for	quite	some	time,	and	I	must	admit,	I	really	loved
the	language	features.	The	problem	with	nonstandardized	languages	is	that	they	depend
heavily	on	community	adoption	and	the	hype.	Also,	it's	almost	certain	that	they	will	never	run
natively	within	the	browser.	This	is	also	the	reason	why	I	prefer	standard	JavaScript,	and	the
JavaScript	of	the	future	uses	transpilers	that	allow	me	to	do	this.

Some	people	argue	that	transpilers	introduce	code	that	does	not	run	very	performant	and,
therefore,	recommend	that	you	do	not	use	ECMAScript	6	and	transpilers	at	all.	I	don't	agree
with	this	because	of	many	reasons.	Usually,	this	is	about	performance	in	micro	or	even
nanosecond	areas	where	this	often	really	does	not	matter	for	most	applications.

I	don't	say	performance	doesn't	matter,	but	performance	needs	to	always	be	discussed	within	a
context.	If	you're	trying	to	optimize	a	loop	within	your	application	by	reducing	processing
time	from	10	microseconds	to	five	microseconds	where	you'd	never	iterate	over	more	than
100	items,	then	you're	probably	spending	your	time	on	the	wrong	things.

Also,	a	very	important	fact	is	that	transpiled	code	is	designed	by	people	who	understand
micro	performance	optimization	much	better	than	I	do,	and	I'm	sure	their	code	runs	faster
than	mine.	On	top	of	this,	a	transpiler	is	probably	also	the	right	place	where	you'd	want	to	do
performance	optimization	because	this	code	is	automatically	generated	and	you	don't	lose
maintainability	of	your	code	through	performance	quirks.

I'd	like	to	quote	Donald	Knuth	here	and	say	that	premature	optimization	is	the	root	of	all	evil.
I	really	recommend	that	you	read	his	paper	on	this	topic	(Donald	Knuth,	December	1974,
Structured	Programming	with	go	to	Statements).	Just	because	the	goto	statements	got	banished
from	all	modern	programming	languages,	it	doesn't	mean	this	is	less	of	a	good	read.

Later	on	in	this	chapter,	you'll	learn	about	tools	that	help	you	use	transpilers	easily	within
your	project,	and	we'll	take	a	look	at	the	decisions	and	directions	Angular	went	with	their
source	code.

Let's	look	at	a	few	language	features	that	come	with	ECMAScript	6	and	make	our	life	much
easier.

Classes

Classes	were	among	one	the	most	requested	features	in	JavaScript,	and	I	was	one	of	the
people	voting	for	it.	Well,	coming	from	an	OOP	background	and	being	used	to	organizing
everything	within	classes,	it	was	hard	for	me	to	let	go.	Although,	after	working	with	modern
JavaScript	for	some	time,	you'll	reduce	their	use	to	the	bare	minimum	and	to	exactly	what
they	are	made	for—inheritance.

Classes	in	ECMAScript	6	provide	you	with	syntactic	sugar	to	deal	with	prototypes,
constructor	functions,	super	calls,	and	object	property	definitions	in	a	way	that	you	have	the
illusion	that	JavaScript	could	be	a	class-based	OOP	language:

class	Fruit	{

		constructor(name)	{	this.name	=	name;	}

}

const	apple	=	new	Fruit('Apple');

As	we	learned	in	the	previous	topic	about	transpilers,	ECMAScript	6	can	be	de-sugared	to
ECMAScript	5.	Let's	take	a	look	at	what	a	transpiler	would	produce	from	this	simple	example:

function	Fruit(name)	{	this.name	=	name;	}

var	apple	=	new	Fruit('Apple');

This	simple	example	can	easily	be	built	using	ECMAScript	5.	However,	once	we	use	the	more

complex	features	of	class-based	object-oriented	languages,	the	de-sugaring	gets	quite
complicated.

ECMAScript	6	classes	introduce	simplified	syntax	to	write	class	member	functions	(static
functions),	the	use	of	the	super	keyword,	and	inheritance	using	the	extends	keyword.

If	you	would	like	to	read	more	about	the	features	in	classes	and	ECMAScript	6,	I	highly
recommend	that	you	read	the	articles	of	Dr.	Axel	Rauschmayer	(http://www.2ality.com/).

Modules

Modules	provide	a	way	to	encapsulate	your	code	and	create	privacy.	In	object-oriented
languages,	we	usually	use	classes	for	this.	However,	I	actually	believe	this	is	an	antipattern
rather	than	a	good	practice.	Classes	should	be	used	where	inheritance	is	desired	and	not	just	to
structure	your	code.

I'm	sure	that	you've	encountered	a	lot	of	different	module	patterns	in	JavaScript	already.	One
of	the	most	popular	ones	that	creates	privacy	using	a	function	closure	of	an	immediately
invoked	function	expression	(IIFE)	is	probably	the	revealing	module	pattern.	If	you'd	like	to
read	more	about	this	and	may	be	other	great	patterns,	I	recommend	the	book,	Learning
JavaScript	Design	Patterns,	by	Addy	Osmani.

Within	ECMAScript	6,	we	can	now	use	modules	to	serve	this	purpose.	We	simply	create	one
file	per	module,	and	then	we	use	the	import	and	export	keywords	to	connect	our	modules
together.

Within	the	ECMAScript	6	module	specification,	we	can	actually	export	as	many	things	as	we
like	from	each	module.	We	can	then	import	these	named	exports	from	any	other	module.	We
can	have	one	default	export	per	module,	which	is	especially	easy	to	import.	Default	exports
don't	need	to	be	named,	and	we	don't	need	to	know	their	name	when	importing	them:

import	SomeModule	from	'./some-module.js';

var	something	=	SomeModule.doSomething();

export	default	something;

There	are	many	combinations	on	how	to	use	modules.	We	will	discover	some	of	these
together	while	working	on	our	task	management	application	during	the	upcoming	chapters.	If
you'd	like	to	see	more	examples	on	how	to	use	modules,	I	can	recommend	the	Mozilla
Developer	Network	documentation	(https://developer.mozilla.org)	on	the	import	and	export
keywords.

Template	strings

Template	strings	are	a	very	simple,	but	they	are	an	extremely	useful	addition	to	the	JavaScript
syntax.	They	serve	three	main	purposes:

Writing	multiline	strings

http://www.2ality.com/
https://developer.mozilla.org

String	interpolation
Tagged	template	strings

Before	template	strings,	it	was	quite	verbose	to	write	multiline	strings.	You	needed	to
concatenate	pieces	of	strings	and	append	a	new-line	character	yourself	to	the	line	endings:

const	header	=	'<header>\n'	+

		'		<h1>'	+	title	+	'</h1>\n'	+

		'</header>';

Using	template	strings,	we	can	simplify	this	example	a	lot.	We	can	write	multiline	strings,	and
we	can	also	use	the	string	interpolation	functionality	for	our	title	variable	that	we	used	to
concatenate	earlier:

const	header	=	'

		<header>

				<h1>${title}</h1>

		</header>

`;

Note	the	back	ticks	instead	of	the	previous	single	quotes.	Template	strings	are	always	written
between	back	ticks,	and	the	parser	will	interpret	all	characters	in	between	them	as	part	of	the
resulting	string.	This	way,	the	new-line	characters	present	in	our	source	file	will	also	be	part
of	the	string	automatically.

You	can	also	see	that	we	have	used	the	dollar	sign,	followed	by	curly	brackets	to	interpolate
our	strings.	This	allows	us	to	write	arbitrary	JavaScript	within	strings	and	helps	a	lot	while
constructing	HTML	template	strings.

You	can	read	more	about	template	strings	on	the	Mozilla	Developer	Network.

ECMAScript	or	TypeScript?

TypeScript	was	created	in	2012	by	Anders	Hejlsberg	with	the	intention	to	implement	the
future	standard	of	ECMAScript	6	but	also	to	provide	a	superset	of	syntax	and	features	that	was
not	part	of	the	specification.

There	are	many	features	in	TypeScript	as	a	superset	to	the	ECMAScript	6	standard,	including,
but	not	limited	to	the	following:

Optional	static	typing	with	type	annotations
Interfaces
Enum	types
Generics

It's	important	to	understand	that	all	of	the	features	that	TypeScript	provides	as	a	superset	are
optional.	You	can	write	pure	ECMAScript	6	and	not	take	advantage	of	the	additional	features
that	TypeScript	provides.	The	TypeScript	compiler	will	still	transcompile	pure	ECMAScript	6

code	to	ECMAScript	5	without	any	errors.

Note

Most	of	the	features	that	are	seen	in	TypeScript	are	actually	already	present	in	other
languages,	such	as	Java	and	C#.	One	goal	of	TypeScript	was	to	provide	language	features	that
support	workflows	and	better	maintainability	for	large-scale	applications.

The	problem	with	any	nonstandard	language	is	that	nobody	can	tell	how	long	the	language
will	be	maintained	and	how	fast	the	momentum	of	the	language	will	be	in	the	future.	In	terms
of	support,	the	chances	are	high	that	TypeScript,	with	its	sponsor	Microsoft,	will	actually	have
a	long	life.	However,	there's	still	no	guarantee	that	the	momentum	and	trend	of	the	language
will	keep	moving	at	a	reasonable	pace.	This	problem	does	obviously	not	exist	for	standard
ECMAScript	6	because	it's	what	the	web	of	the	future	is	made	of	and	what	browsers	will	speak
natively.

Still,	there	are	valid	reasons	to	use	the	extended	features	of	TypeScript	if	you'd	want	to
address	the	following	concerns	that	clearly	outweigh	the	negative	implications	of	an	uncertain
future	in	your	project:

Large	applications	that	undergo	a	huge	amount	of	changes	and	refactoring
Large	teams	that	require	a	strict	governance	while	working	on	code

In	this	book,	we'll	use	a	TypeScript	compiler,	but	we	will	work	with	standard	ECMAScript	6
code	with	one	exception	that	is	covered	in	the	next	topic	about	decorators.

Decorators

Decorators	are	not	part	of	the	ECMAScript	6	specification,	but	they	were	proposed	to	the
ECMAScript	7	standard	for	2016.	They	provide	us	with	a	way	to	decorate	classes	and
properties	during	design	time.	This	allows	a	developer	to	use	meta-annotations	while	writing
classes,	and	declaratively	attach	functionality	to	the	class	and	its	properties.

Decorators	are	named	after	the	decorator	pattern	that	was	initially	described	in	the	book
Design	Patterns:	Elements	of	Reusable	Object-Oriented	Software	of	Erich	Gamma	and	his
colleagues,	also	known	as	the	Gang	of	Four	(GoF).

The	principle	of	decoration	is	that	an	existing	procedure	is	intercepted	and	the	decorator	has
the	chance	to	either	delegate,	provide	an	alternative	procedure,	or	do	a	mix	from	both.

Visualization	of	decoration	in	a	dynamic	environment	with	the	example	of	a	simple	access
procedure

Decorators	in	ECMAScript	7	can	be	used	to	annotate	classes	and	class	properties.	Note	that
this	also	includes	class	methods,	as	class	methods	are	also	properties	of	the	class	prototype
object.	Decorators	get	defined	as	regular	functions,	and	they	can	be	attached	to	classes	or
class	properties	with	the	at	symbol.	Our	decorator	function	will	then	be	called	with	contextual
information	about	the	location	of	inclusion	every	time	that	the	decorator	is	placed.

Let's	take	a	look	at	a	simple	example	that	illustrates	the	use	of	a	decorator:

function	logAccess(obj,	prop,	descriptor)	{

		const	delegate	=	descriptor.value;

		descriptor.value	=	function()	{

				console.log(`${prop}	was	called!`);

				return	delegate.apply(this,	arguments);

		};

}

class	MoneySafe	{

		@logAccess

		openSafe()	{

				this.open	=	true;

		}

}

const	safe	=	new	MoneySafe();

safe.openSafe();	//	openSafe	was	called!

We	have	created	a	logAccess	decorator	that	will	log	all	function	calls	that	are	tagged	with	the
decorator.	If	we	look	at	the	MoneySafe	class,	you	can	see	that	we	have	decorated	the	openSafe
method	with	our	logAccess	decorator.

The	logAccess	decorator	function	will	be	executed	for	each	annotated	property	within	our
code.	This	enables	us	to	intercept	the	property	definition	of	the	given	property.	Let's	take	a
look	at	the	signature	of	our	decorator	function.	Decorator	functions	that	are	placed	on	class
properties	will	be	called	with	the	target	object	of	the	property	definition	as	a	first	parameter.
The	second	parameter	is	the	actual	property	name	that	is	defined,	followed	by	the	last
parameter,	which	is	the	descriptor	object	that	is	supposed	to	be	applied	to	the	object.

The	decorator	gives	us	the	opportunity	to	intercept	the	property	definition.	In	our	case,	we	use
this	ability	to	exchange	the	descriptor	value	(which	is	the	annotated	function)	with	a	proxy
function	that	will	log	the	function	call	before	calling	the	origin	function	(delegation).	For
simplification	purposes,	we've	implemented	a	very	simple	yet	incomplete	function	proxy.	For
real-world	scenarios,	it	would	be	advisable	to	use	a	better	proxy	implementation,	such	as	the
ECMAScript	6	proxy	object.

Decorators	are	a	great	feature	to	leverage	aspect-oriented	concepts	and	declaratively	add
behavior	to	our	code	at	design	time.

Let's	look	at	a	second	example	where	we	use	an	alternative	way	to	declare	and	use	decorators.
We	can	treat	decorators	like	function	expressions	where	our	decorator	function	is	rewritten	as
a	factory	function.	This	form	of	usage	is	especially	useful	when	you	need	to	pass	along
configuration	to	the	decorator,	which	is	made	available	in	the	decorator	factory	function:

function	delay(time)	{

		return	function(obj,	prop,	descriptor)	{

				const	delegate	=	descriptor.value;

				descriptor.value	=	function()	{

						const	context	=	this;

						const	args	=	arguments;

						return	new	Promise(function(success)	{

								setTimeout(function()	{

										success(delegate.apply(context,	arguments));

								},	time);

						});

				};

		};

}

class	Doer	{

		@delay(1000)

		doItLater()	{

				console.log('I	did	it!');

		}

}

const	doer	=	new	Doer();

doer.doItLater();	//	I	did	it!	(after	1	second)

We	have	now	learned	how	ECMAScript	7	decorators	can	help	you	to	write	declarative	code
that	has	an	aspect-oriented	twist	to	it.	This	simplifies	development	a	lot	because	we	can	now
think	of	behavior	that	we	add	to	our	classes	during	design	time	when	we	actually	think	about
the	class	as	a	whole	and	write	the	initial	stub	of	the	class.

Decorators	in	TypeScript	are	slightly	different	than	the	decorators	from	ECMAScript	7.	They
are	not	limited	to	classes	and	class	properties,	but	they	can	also	be	placed	on	parameters
within	the	class	methods.	This	allows	you	to	annotate	function	parameters,	which	can	be
useful	in	some	cases:

class	TypeScriptClass	{

		constructor(@ParameterDecorator()	param)	{}

}

Angular	uses	this	feature	to	simplify	dependency	injection	on	class	constructors.	As	all
directive,	component,	and	service	classes	get	instantiated	from	Angular	dependency	injection
and	not	by	us	directly,	these	annotations	help	Angular	find	the	correct	dependencies.	For	this
use-case,	function	parameter	decorators	actually	make	a	lot	of	sense.

Note

Currently,	there	are	still	issues	with	the	implementation	of	decorators	on	class	method
parameters,	which	is	also	why	ECMAScript	7	does	not	support	it.	As	this	feature	is	crucial	to
build	an	Angular	2	application,	we'll	use	the	TypeScript	compiler	to	transpile	the	code	of	our
application.	This	is	the	only	TypeScript-specific	feature	that	we'll	use	in	this	book.

Tools
In	order	to	make	use	of	all	these	future	technologies,	we	need	some	tools	to	support	us.	We
were	already	talking	about	ECMAScript	6	and	decorators,	where	we	actually	prefer
TypeScript	decorators,	as	they	support	the	function	parameter	decorators	that	are	used	by
Angular	2.	Although	the	ECMAScript	6	syntax	supports	modules,	we	still	need	some	sort	of	a
module	loader	that	will	actually	load	the	required	modules	in	the	browser	or	help	us	generate
an	executable	bundle.

Node.js	and	NPM
Node.js	is	JavaScript	on	steroids.	Initially,	a	fork	of	the	V8	JavaScript	engine	from	the
Google	Chrome	browser,	Node.js	was	extended	with	more	functionality,	specifically	to	make
JavaScript	useful	on	the	server-side.	File	handling,	streams,	system	APIs,	and	a	huge
ecosystem	of	user-generated	packages	are	just	some	of	the	facts	that	make	this	technology	an
outstanding	partner	for	your	web	development.

The	node	package	manager,	NPM,	is	a	door	to	over	200,000	packages	and	libraries	that	help
you	build	your	own	application	or	library.	The	Node.js	philosophy	is	very	similar	to	the
UNIX	philosophy,	where	packages	should	stay	small	and	sharp,	but	they	should	use
composition	to	achieve	greater	goals.

To	build	our	application,	we	will	rely	on	Node.js	as	the	host	for	the	tools	that	we're	going	to
use.	We	should,	therefore,	make	sure	that	we	install	Node.js	on	our	machine	so	that	we	are
prepared	for	the	next	chapter,	where	we	start	to	craft	our	task	management	application.

Note

You	can	get	Node.js	from	their	website	at	https://nodejs.org,	and	it	should	be	a	breeze	to
install	this	on	any	kind	of	operating	system	by	following	the	instructions	on	their	website.

Once	you've	installed	Node.js,	we	can	perform	a	simple	test	to	check	whether	everything	is	up
and	running.	Open	a	terminal	console	and	execute	the	following	command:

node	-e	"console.log('Hello	World');"	

https://nodejs.org

SystemJS	and	JSPM
There	are	many	module	formats	and	module	loaders	out	there,	but	there's	one	that	rules	them
all	in	my	opinion.	SystemJS	is	built	on	top	of	an	ES6	module	loader	polyfill	and,	therefore,
moves	very	close	to	an	upcoming	standard.	I	strongly	believe	in	standardization	and,
therefore,	prefer	SystemJS	over	other	module	loaders,	such	as	RequireJS,	Browserify,	or
webpack.	We	should	stop	using	libraries	where	possible	and	rely	on	polyfills	that	make	our
browser	capable	of	running	the	code	of	the	future.

SystemJS	is	a	universal	module	loader	that	is	capable	of	loading	many	different	module
formats,	such	as	AMD,	CommonJS,	and	ECMAScript	6,	and	it	also	supports	a	very	flexible
shiming	mechanism	to	modularize	global	JavaScript.

SystemJS	also	supports	the	most	popular	transpilers,	including	ECMAScript	6	and
TypeScript.	This	means	that	you	can	actually	load	ECMAScript	6	code	directly	in	your
browser,	where	it's	transpiled	by	SystemJS	in	runtime.	This	is	great	during	development,
especially	because	you're	allowed	to	load	modules	from	any	location,	including	remote
HTTP	locations,	such	as	GitHub	or	the	NPM	repository.

JSPM

The	JavaScript	package	manager	is	not	just	another	package	manager	for	JavaScript.	This	is
basically	a	mediator	and	manager	for	SystemJS	that	helps	you	look	up	packages	from
package	repositories,	such	as	Bower	or	NPM,	and	it	creates	the	necessary	configuration	for
SystemJS.	JSPM	is	written	in	Node.js	and	does	not	come	with	its	own	remote	package
repository.	As	SystemJS	needs	URLs	and	module	mappings	to	know	where	to	load	modules
from,	JSPM	is	your	tool	to	create	this	necessary	configuration	and	simplify	package
installation.

Getting	started	with	JSPM

Let's	create	a	simple	application	together	using	JSPM.	First	of	all,	we	need	to	install	two
global	modules	with	NPM.	Besides	JSPM,	we'll	also	install	a	tool	called	live-server,	which
will	help	us	during	development	by	providing	an	HTTP	server	that	serves	static	files.	It	also
has	file	change	detection	built-in,	and	it	will	reload	your	browser	automatically	once	a	file
change	has	been	detected.	This	provides	a	very	short	feedback	loop	and	makes	development	a
very	fast	process:

1.	 Run	the	following	command	on	your	command	line:

npm	install	-g	jspm	live-server

Tip

Note	that	on	UNIX-like	systems,	such	as	Linux	or	Mac	OS	X,	it's	sometimes	required	to
run	NPM	as	a	super	user.	It's	also	recommended	that	you	use	the	Node	Version	Manager
(NVM)	to	get	around	those	issues	(https://github.com/creationix/nvm).

https://github.com/creationix/nvm

2.	 After	installing	JSPM	and	the	live-server	package,	we	can	go	ahead	and	create	our	first
application	using	JSPM.

3.	 Create	a	new	directory	for	the	application,	and	open	a	terminal	console	within	this
directory.

4.	 You	can	now	execute	the	following	command	on	your	terminal	console	to	install	JSPM
locally	and	initialize	a	new	JSPM	project:

npm	install	jspm	--save-dev

jspm	init	

5.	 JSPM	will	start	a	wizard	that	guides	you	though	the	initialization	steps.	You	can	answer
all	questions	with	the	default	answer	(just	hit	Enter)	except	for	the	question	about	which
transpiler	you'd	like	to	use	that	you	should	answer	with	TypeScript.

6.	 After	JSPM	installs	all	the	necessary	packages,	we	can	go	ahead	and	create	our
index.html	file.	Navigate	to	your	project	folder	and	create	a	new	file,	index.html,	in
your	favorite	editor:

<!doctype	html>

<script	src="jspm_packages/system.js"></script>

<script	src="config.js"></script>

<script>

		System.import('main.js');

</script>

7.	 This	very	minimalistic	HTML	is	already	the	foundation	for	our	JSPM	Hello	World
application.	After	including	the	SystemJS	library	and	the	config.js	file	that	was
generated	by	JSPM,	we	only	need	to	bootstrap	our	application	by	telling	SystemJS	which
file	to	import.

8.	 Before	we	create	our	main	application	file,	we	will	quickly	install	jQuery	as	a	package,
just	to	demonstrate	how	easily	third-party	libraries	can	be	installed	and	used	with
SystemJS	and	JSPM:

jspm	install	jquery

9.	 After	installing	jQuery,	we	can	go	ahead	and	create	our	main.js	file	inside	of	the
application	folder:

import	$	from	'jquery';

class	HelloWorld	{

		constructor()	{

				$(document.body).append('<h1>Hello	World!</h1>');

		}

}

const	helloWorld	=	new	HelloWorld();

10.	 In	order	to	run	this	example	in	the	browser,	we	can	now	start	our	live	server	with	the
following	command	executed	inside	of	the	application	folder:

live-server

After	following	the	preceding	steps,	you	should	have	a	working	example	with	ECMAScript	6
and	SystemJS	using	the	TypeScript	transpiler.	Using	LiveReload,	your	browser	should
automatically	open	and	display	our	Hello	World	application.	You	can	also	try	now	to	modify
the	code	a	bit	and	change	the	sentence	that	is	written	to	the	DOM.	You'll	notice	that	once	you
save	your	changes,	the	browser	will	immediately	reload	the	page.

Summary
In	this	chapter,	we	looked	at	a	component-based	approach	to	structure	user	interfaces,	and	we
talked	about	the	necessary	aspects	of	its	background	to	understand	why	we	are	moving	in	this
direction	with	the	web	standard	and	frameworks,	such	as	Angular.	We	also	ensured	that	we	are
prepared	with	all	the	technology	that	we	will	use	in	the	upcoming	chapters	in	this	book.	You
created	your	first	simple	example	using	JSPM,	SystemJS,	ECMAScript	6,	and	the	TypeScript
transpiler.	Now,	we	are	ready	to	start	building	our	task-management	system	using	a
component-based	architecture	to	its	full	potential.

In	the	next	chapter,	we're	going	to	start	building	our	task	management	application	using
Angular	2	components.	We'll	look	at	the	initial	steps	that	are	required	to	create	an	Angular	2
application	from	scratch	and	flesh	out	the	first	few	components	in	order	to	build	a	task	list.

Chapter	2.	Ready,	Set,	Go!
In	this	chapter,	we	will	start	building	our	task	management	application.	We'll	jump	right	into
the	core	of	the	application	and	create	the	initial	components	required	to	manage	a	simple	task
list.	In	the	process	of	going	through	this	chapter,	you'll	learn	about	the	following	topics:

Bootstrapping	an	Angular	application	using	a	main	component
Component	input	and	output
Host	property	binding
Styling	and	view	encapsulation
Importing	HTML	templates	using	the	SystemJS	text	loader
Using	EventEmitter	to	emit	custom	events
Two-way	data	binding
Component	life	cycle

Managing	tasks
After	picking	up	the	basics	from	the	previous	chapter,	we	will	now	go	on	and	create	a	task
management	application	together	in	the	upcoming	chapters.	You'll	learn	about	some	concepts
during	the	chapters	and	then	use	them	with	practical	examples.	You'll	also	learn	how	to
structure	an	application	using	components.	This	begins	with	the	folder	structure	and	ends	with
setting	up	the	interaction	between	components.

Vision
The	task	management	application	should	enable	users	to	manage	tasks	easily	and	help	them
organize	small	projects.	Usability	is	the	central	aspect	of	any	application;	therefore,	you'll
need	to	design	a	modern	and	flexible	user	interface	that	will	support	the	user.

A	preview	of	the	task	management	application	we	are	going	to	build

Our	task	management	application	will	consist	of	components	that	will	allow	us	to	design	a
platform	providing	a	great	user	experience	for	the	purpose	of	managing	tasks.	Let's	define	the
core	features	of	our	application:

Managing	tasks	within	multiple	projects	and	providing	a	project	overview
Simple	scheduling	as	well	as	a	time-and-effort-tracking	mechanism
Overviewing	the	dashboard	using	graphical	charts
Tracking	activities	and	providing	a	visual	audit	log
A	simple	commenting	system	that	would	work	across	different	components

The	task	management	application	is	the	main	example	in	this	book.	Therefore,	the	building
blocks	within	the	book	should	only	contain	the	code	that	is	relevant	to	the	theme	of	the	book.
Of	course,	other	than	components,	an	application	needs	other	functionalities,	such	as	visual
design,	data,	session	management,	and	other	important	parts,	to	work.	While	the	required
code	for	each	chapter	can	be	downloaded	online,	we'll	only	discuss	the	code	relevant	to	the
topics	learned	within	the	book.

Starting	from	scratch
Let's	start	out	by	creating	a	new	folder	called	angular-2-components	in	order	to	create	our
application:

1.	 Open	a	console	window	inside	our	newly	created	folder	and	run	the	following	command
to	initialize	a	new	Node.js	project:

npm	init

2.	 Finish	the	initialization	wizard	by	confirming	all	the	steps	with	the	Enter	key	(default
settings).

3.	 Since	we're	using	JSPM	to	manage	our	dependencies,	we	need	to	install	it	as	a	project
Node.js	package:

npm	install	jspm	--save-dev

4.	 Let's	also	initialize	a	new	JSPM	project	within	our	project	folder.	Be	sure	to	use	the
default	settings	(just	hit	the	Enter	key)	for	all	settings,	except	for	the	step	where	you	are
asked	which	transpiler	you'd	like	to	use.	Enter	TypeScript	at	this	stage:

jspm	init

5.	 We'll	now	use	JSPM	to	install	the	relevant	Angular	2	packages	into	our	project	as
dependencies.	We'll	also	install	a	SystemJS	loader	plugin	to	load	text	files	as	modules.
We'll	provide	some	details	around	this	later	on:

jspm	install	npm:@angular/core	npm:@angular/common	npm:@angular/compiler	

npm:@angular/platform-browser-dynamic	npm:rxjs	text

Let's	examine	what	we've	been	creating	so	far	by	using	the	NPM	and	JSPM	command-line
tools.

The	package.json	file	is	our	Node.js	configuration	file	that	we're	using	as	the	base	to	work
with	JSPM	(the	package	manager)	and	SystemJS	(the	module	loader	with	transpiler).	If	you
check	out	the	package.json	file,	you	will	see	an	additional	section	for	JSPM	dependencies:

		"jspm":	{

				"dependencies":	{

						"@angular/common":	"npm:@angular/common@2.0.0-rc.1",

						"@angular/compiler":	"npm:@angular/compiler@2.0.0-rc.1",

						"@angular/core":	"npm:@angular/core@2.0.0-rc.1",

						"@angular/platform-browser-dynamic":	"npm:@angular/platform-browser-

dynamic@2.0.0-rc.1",

						"text":	"github:SystemJS/plugin-text@0.0.7"

				},

				"devDependencies":	{

						"typescript":	"npm:typescript@1.8.10",

				}

		}

Let's	take	a	quick	look	at	the	dependencies	we	have	installed	using	JSPM	and	their	purpose:

Package Description

@angular/core

This	is	the	core	package	of	Angular	2,	hosted	on	NPM.	If	you
remember	from	Chapter	1,	Component-Based	User	Interfaces,	JSPM	is
only	a	broker,	and	it	delegates	to	other	package	repositories.	The	core
package	contains	all	Angular-core	modules,	such	as	the	@Component
decorator,	change	detection,	dependency	injection,	and	more.

@angular/common

The	Angular	common	package	provides	us	with	base	directives,	such	as
NgIf	and	NgFor.	It	also	contains	all	the	base	pipes	and	the	directives
that	are	used	to	control	forms.

@angular/compiler

The	compiler	package	contains	all	the	artifacts	required	to	compile
view	templates.	Angular	not	only	provides	the	ability	to	precompile
templates	to	gain	faster	booting	time,	but	it	also	uses	the	compiler	at
runtime	to	convert	text	templates	into	compiled	templates.	This
package	is	required	if	we're	compiling	templates	at	runtime.

@angular/platform-

browser-dynamic

This	package	includes	the	bootstrapping	functionality	that	will	help	us
start	our	application.	The	bootstrap	initiated	by	the	platform-browser-
dynamic	package	is	dynamic	in	the	sense	of	compiling	templates	at
runtime.

typescript

This	development	dependency	is	the	TypeScript	transpiler	for
SystemJS.	It	transpiles	our	ECMAScript	6	and	TypeScript	code	to
ECMAScript	5,	from	where	it	can	run	in	the	browser.

text

This	SystemJS	loader	supports	the	loading	of	text	files	in	the	form	of
JavaScript	strings.	This	is	especially	useful	if	you	like	to	load	HTML
templates	and	avoid	asynchronous	requests.

Our	main	entry	point	for	displaying	our	application	within	the	browser	is	our	index	site.	The
index.html	file	completes	the	following	five	actions:

Loading	ECMAScript	6	polyfill	es6-shim	from	a	CDN.	This	script	is	required	to	make
sure	the	browser	understands	the	latest	ECMAScript	6	APIs.
Loading	the	Angular	2	polyfills	required	by	the	framework.	This	includes	various
patches	for	the	browser	that	are	required	to	run	an	Angular	2	application.	It's	important

to	load	these	polyfills	before	we	load	any	other	code	within	our	application.
Loading	SystemJS	and	the	SystemJS	config.js	file	that	contains	the	mapping
information	generated	by	JSPM.
Using	the	System.import	function	to	load	and	execute	the	main	entry	point,	which	is	our
boostrap.js	file.

Let's	create	a	new	index.html	file	within	the	root	folder	of	our	project:

<!doctype	html>

<html>

<head	lang="en">

		<title>Angular	2	Components</title>

</head>

<body>

<script	src="https://cdnjs.cloudflare.com/ajax/libs/es6-shim/0.35.0/es6-

shim.min.js"></script>

<script	src="https://cdnjs.cloudflare.com/ajax/libs/angular.js/2.0.0-

beta.15/angular2-polyfills.js"></script>

<script	src="jspm_packages/system.js"></script>

<script	src="config.js"></script>

<script>

		System.import('lib/bootstrap.js');

</script>

</body>

</html>

Let's	move	on	to	our	application	component.	You	can	think	of	it	as	the	outermost	component
of	your	application.	It's	the	main	component	in	that	it	represents	your	whole	application.
Every	application	needs	one	and	just	one	main	component.	This	is	where	your	component	tree
has	its	roots.

We'll	name	our	main	component	App	because	it	represents	our	whole	application.	Let's	go
ahead	and	create	the	component	within	a	new	lib	folder	in	our	project	folder.	Create	a	file,
app.js,	with	the	following	content:

//	We	need	the	Component	annotation	as	well	as	the	

//	ViewEncapsulation	enumeration

import	{Component,	ViewEncapsulation}	from	'@angular/core';

//	Using	the	text	loader	we	can	import	our	template

import	template	from	'./app.html!text';

//	This	creates	our	main	application	component

@Component({

		//	Tells	Angular	to	look	for	an	element	<ngc-app>	to	create	this	

		//	component

		selector:	'ngc-app',

		//	Let's	use	the	imported	HTML	template	string

		template,

		//	Tell	Angular	to	ignore	view	encapsulation

		encapsulation:	ViewEncapsulation.None

})

export	class	App	{}

There's	nothing	different	here	from	what	we	already	know	about	structuring	a	component,
something	that	we	learned	in	the	previous	chapter.	However,	there	are	two	main	differences
here	compared	to	how	we	created	the	components	before.	If	you	look	at	how	we	configured
the	template	property,	you	could	tell	that	we	didn't	write	the	HTML	template	directly	within
the	JavaScript	file	inside	the	ECMAScript	6	template	strings.	Instead,	we're	going	to	load	the
template	into	a	JavaScript	string	using	the	text	loader	plugin	in	SystemJS.	We	can	just	load
any	text	file	from	the	file	system	by	appending	!text	to	our	regular	ECMAScript	6	imports:

import	template	from	'./app.html!text';

This	will	load	the	file,	app.html,	from	the	current	directory	and	make	a	default	export	with	its
content	as	a	string.

The	second	difference	is	that	we're	using	ViewEncapsulation	to	specify	how	Angular	should
handle	view	encapsulation.	Angular	has	three	ways,	to	handle	view	encapsulation,	which
provides	different	levels	of	granularity	and	has	their	own	pros	and	cons.	They	are	as	follows:

Encapsulation	type Description

ViewEncapsulation.Emulated

If	a	component	is	set	to	emulated	view	encapsulation,	it	will
emulate	style	encapsulation	by	attaching	the	generated
attributes	to	the	component	element	and	modifying	CSS
selectors	to	include	these	attribute	selectors.	This	will	enable
certain	forms	of	encapsulation,	although	the	outer	styles	can
still	leak	into	the	component	if	there	are	other	global	styles.

This	view	encapsulation	mode	is	the	default	mode,	if	not
specified	otherwise.

ViewEncapsulation.Native

Native	view	encapsulation	is	supposed	to	be	the	ultimate	goal
of	the	view	encapsulation	concept	within	Angular.	It	makes
use	of	Shadow	DOM,	as	described	in	the	previous	chapter,	to
create	an	isolated	DOM	for	the	whole	component.	This	mode
depends	on	the	browser	to	support	Shadow	DOM	natively,
and	therefore,	can't	always	be	used.	It's	also	important	to	note
that	global	styles	will	no	longer	be	respected	and	local	styles
need	to	be	placed	within	the	component	in	inline	style	tags	(or
use	the	styles	property	on	the	component	annotation).

This	mode	tells	Angular	not	to	provide	any	template	or	style
encapsulation.	Within	our	application,	we	mainly	rely	on

ViewEncapsulation.None styles	coming	from	a	global	CSS;	therefore,	we	use	this
mode	for	most	of	the	components.	Neither	Shadow	DOM,	nor
attributes	will	be	used	to	create	style	encapsulation;	we	can
simply	use	the	classes	specified	within	our	global	CSS	file.

As	this	component	is	now	relying	on	a	template	to	be	loaded	from	the	file	system,	we	need	to
create	the	app.html	file	in	the	lib	folder	with	some	initial	content:

<div>Hello	World!</div>

For	the	time	being,	that's	everything	we	put	in	our	template.	Our	directory	should	look	similar
to	this:

angular-2-components

├──	node_modules/

├──	jspm_packages/

├──	config.js

├──	index.html

├──	lib

│			├──	app.html

│			└──	app.js

└──	package.json

Now	that	we	have	created	our	main	application	component,	we	can	add	the	component's	host
element	to	our	index.html	file:

<!DOCTYPE	html>

<html>

<head	lang="en">

		<title>Angular	2	Components</title>

</head>

<body>

<ngc-app></ngc-app>

...

Bootstrapping
The	index.html	file	will	load	the	bootstrap.js	module	using	SystemJS	in	an	inline	script
tag.	It's	a	best	practice	to	have	a	main	entry	point	for	your	scripts	when	working	with
SystemJS.	Our	bootstrap.js	file	is	responsible	for	loading	all	the	necessary	JavaScript
dependencies	for	our	application	as	well	as	bootstrapping	the	Angular	framework.

We	can	go	ahead	and	bootstrap	our	Angular	application	by	providing	our	main	application
component,	App.	We	need	to	import	the	bootstrap	function	from	the	angular2	module.	We
can	then	import	our	App	component	and	call	the	bootstrap	function,	passing	it	as	parameter:

//	Import	Angular	bootstrap	function

import	{bootstrap}	from	'@angular/platform-browser-dynamic';	

//	Import	our	main	app	component

import	{App}	from	'./app';

//	We	are	bootstrapping	Angular	using	our	main	application

//	component

bootstrap(App);

Running	the	application
The	code	we've	produced	so	far	should	now	be	in	a	state	where	we	can	run	it.	Before	we	run
our	code	using	the	live-server	module,	let's	ensure	we	have	all	the	files	ready.	At	this	stage,
our	directory	should	look	something	like	this:

angular-2-components

├──	jspm_packages/

├──	node_modules/

├──	config.js

├──	index.html

├──	lib

│			├──	app.html

│			├──	app.js

│			└──	bootstrap.js

└──	package.json

Now	let's	start	live	server	to	start	a	server	and	a	browser	with	live	reload.	For	this,	we	need	to
simply	execute	the	following	command	on	the	command	line	within	our	project	folder:

live-server

If	everything	goes	well,	you	will	have	an	open	web	browser	that	shows	Hello	World!.

Recap
Let's	recap	what	we	have	done	so	far:

1.	 We	initialized	a	new	project	using	NPM	and	JSPM	and	installed	the	Angular
dependencies	using	JSPM.

2.	 We	created	our	main	application	component	in	app.js.
3.	 We	also	created	a	bootstrap.js	script	to	include	the	Angular	framework	boot	of	our

application.
4.	 We	added	our	component	to	the	index.html	file	by	including	an	element	that	matches

our	component	selector	property.
5.	 Finally,	we	used	live	server	to	start	a	basic	web	server	and	launch	a	web	browser.

Creating	a	task	list
Now	that	we	have	our	main	application	component	set	up,	we	can	go	on	and	flesh	out	our	task
application.	The	second	component	that	we're	going	to	create	will	be	responsible	for	listing
tasks.	Following	the	concept	of	composition,	we'll	create	a	task-list	component	as	a
subcomponent	of	our	main	application	component.

Let's	create	a	folder	within	the	lib	folder	called	task-list	and	a	new	JavaScript	file	called
task-list.js,	where	we	will	write	our	component	code:

import	{Component,	ViewEncapsulation}	from	'@angular/core';

import	template	from	'./task-list.html!text';

@Component({

		selector:	'ngc-task-list',

		//	The	host	property	allows	us	to	set	some	properties	on	the	

		//	HTML	element	where	our	component	is	initialized

		host:	{

				class:	'task-list'

		},

		template,

		encapsulation:	ViewEncapsulation.None

})

export	class	TaskList	{

		constructor()	{

				this.tasks	=	[

						{title:	'Task	1',	done:	false},

						{title:	'Task	2',	done:	true}

];

		}

}

We've	created	a	very	simple	task-list	component	that	has	a	list	of	tasks	stored	internally.
This	component	will	be	attached	to	HTML	elements	that	match	the	CSS	element	selector	ngc-
task-list.

Now	let's	create	a	view	for	this	component	to	display	the	tasks.	As	you	can	see	from	the
import	within	the	component	JavaScript	file,	we	are	looking	for	a	file	called	task-list.html:

<div	*ngFor="let	task	of	tasks"	class="task">

		<input	type="checkbox"	[checked]="task.done">

		<div	class="task__title">{{task.title}}</div>

</div>

We	use	the	NgFor	directive	to	repeat	the	<div>	element	with	the	class	task	for	as	many	tasks	as
we	have	in	the	task	list	of	our	component.	The	NgFor	directive	in	Angular	will	create	a
template	element	from	its	underlying	content	and	instantiate	as	many	elements	from	the
template	as	the	expression	evaluates	to.	We	currently	have	two	tasks	in	our	task-list
component,	so	this	will	create	two	instances	of	our	template.

Your	folder	structure	inside	the	lib	folder	should	now	look	similar	to	this:

angular-2-components

└──	lib

				├──	app.html

				├──	app.js

				├──	bootstrap.js

				└──	task-list

								├──	task-list.html

								└──	task-list.js

All	that's	left	to	do	in	order	to	make	our	task	list	work	is	the	inclusion	of	the	task-list
component	within	the	main	application	component.	We	can	go	ahead	and	modify	our	app.js
file	and	add	the	following	line	on	top	of	it:

import	{TaskList}	from	'./task-list/task-list';

As	we	want	to	add	the	task-list	component	to	our	main	application	view	template,	we	also
need	to	make	sure	that	Angular	knows	about	the	component	when	compiling	the	view.	For
this,	we	need	to	add	the	directives	property	to	our	main	application	component	within	the
app.js	file	and	include	our	imported	TaskList	component	class	within	the	list	of	directives:

...

		//	Tell	Angular	to	ignore	view	encapsulation

		encapsulation:	ViewEncapsulation.None,

		directives:	[TaskList]

})

...

Finally,	we	need	to	include	the	host	element	of	our	task-list	component	in	the	template	of
the	main	application,	which	is	located	within	the	app.html	file:

<ngc-task-list></ngc-task-list>

These	were	the	last	changes	we	needed	to	make	in	order	to	make	our	task-list	component
work.	To	view	your	changes,	you	can	start	the	live	server	by	executing	the	live-server
command	within	your	angular-2-components	directory.

Recap
Let's	look	at	what	we	have	done	in	the	previous	building	block.	We	achieved	a	simple	listing
of	tasks	within	an	encapsulated	component	by	following	these	steps:

1.	 We	created	the	component	JavaScript	file	that	contains	the	logic	of	our	component.
2.	 We	created	the	component's	view	within	a	separate	HTML	file.
3.	 We	included	the	component	class	within	the	configuration	of	our	main	application

component.
4.	 We	included	the	component	HTML	element	within	our	main	application	view	template.

The	right	level	of	encapsulation
Our	task	list	is	displayed	correctly	and	the	code	we	used	to	achieve	this	looks	quite	okay.
However,	if	we	want	to	follow	a	better	approach	for	composition,	we	should	rethink	the
design	of	our	task-list	component.	If	we	draw	a	line	at	enlisting	the	task	list	responsibilities,
we	would	come	up	with	things	such	as	listing	tasks,	adding	new	tasks	to	the	list,	and	sorting
and	filtering	the	task	list;	however,	operations	are	not	performed	on	an	individual	task	itself.
Also,	rendering	the	task	itself	falls	outside	of	the	responsibilities	of	the	task	list.	The	task-
list	component	should	only	serve	as	a	container	for	tasks.

If	we	look	at	our	code	again,	we	will	see	that	we're	violating	the	single	responsibility
principle	and	rendering	the	whole	task	body	within	our	task-list	component.	Let's	take	a
look	at	how	we	can	fix	this	by	increasing	the	granularity	of	the	encapsulation.

The	goal	now	is	to	do	a	code	refactoring	exercise,	also	known	as	extraction.	We	are	pulling
our	task's	relevant	template	out	of	the	task	list	template	and	creating	a	new	component	that
encapsulates	the	tasks.

For	this,	we	need	to	create	a	new	sub	folder	within	the	task-list	folder	called	task.	Within
this	folder,	we	will	create	a	template	file	with	the	name	task.html:

<input	type="checkbox"	[checked]="task.done">

<div	class="task__title">{{task.title}}</div>

The	content	of	our	new	task.html	file	is	pretty	much	the	same	as	what	we	already	have	within
our	task-list.html	template.	The	only	difference	is	that	we	will	now	refer	to	a	new	model
called	task.

Now,	within	the	task	folder,	let's	create	the	JavaScript	file,	task.js,	which	will	contain	the
controller	class	of	our	component:

import	{Component,	Input,	ViewEncapsulation}	from	'@angular/core';

import	template	from	'./task.html!text';

@Component({

		selector:	'ngc-task',

		host:	{

				class:	'task'

		},

		template,

		encapsulation:	ViewEncapsulation.None

})

export	class	Task	{

		//	Our	task	model	can	be	attached	on	the	host	within	the	view

		@Input()	task;

}

In	the	previous	chapter	of	this	book,	we	spoke	about	encapsulation	and	the	preconditions	to

establish	a	clean	encapsulation	for	UI	components.	One	of	these	preconditions	is	the
possibility	to	design	proper	interfaces	in	and	out	of	the	component.	Such	input	and	output
methods	are	necessary	to	make	the	component	work	within	compositions.	That's	how	a
component	will	receive	and	publish	information.

As	you	can	see	from	our	task	component	implementation,	we	are	now	building	such	an
interface	using	the	@Input	annotation	on	a	class	instance	field.	In	order	to	use	this	annotation,
we	will	first	need	to	import	it	from	the	angular	core	module.

Input	properties	in	Angular	allow	us	to	bind	the	expressions	in	our	templates	to	class	instance
fields	on	our	components.	This	way,	we	can	pass	data	from	the	outside	of	the	component	to
the	component	inside,	using	the	components	template.	This	can	be	thought	of	as	an	example	of
one-way	binding,	from	the	view	to	the	component.

If	we're	using	property	binding	on	a	regular	DOM	property,	Angular	will	create	a	binding	of
the	expression	directly	to	the	element's	DOM	property.	We're	using	such	a	type	of	binding	to
bind	the	task	completed	flag	to	the	checked	property	of	the	checkbox's	input	element:

Usage Description

@Input()

inputProp;

This	allows	us	to	bind	the	inputProp	attribute	to	the	component	element
within	the	parent	component.

Angular	assumes	that	the	attribute	of	the	element	has	the	same	name	as	that
of	the	input	property.

@Input('inp')

inputProp;

You	can	also	override	the	name	of	the	attribute	that	should	be	mapped	to	this
input.	Here,	the	inp	attribute	of	the	component's	HTML	element	is	mapped
to	the	component's	input	property,	inputProp.

The	last	missing	piece	to	use	our	newly	created	task	component	is	the	modification	of	the
existing	template	of	the	task	list.

We	include	the	task	component	within	our	task	list	template	by	using	an	<ngc-task>	element,
as	specified	in	the	selector	within	our	task	component.	Also,	we	create	a	property	binding	on
the	task	element.	There,	we	pass	the	task	object	from	the	current	NgFor	iteration	to	the	task
input	of	the	task	component.	We	need	to	replace	all	the	existing	content	in	the	task.html	file
with	the	following	lines	of	code:

<ngc-task	*ngFor="let	task	of	tasks"	

										[task]="task"></ngc-task>

In	order	to	make	our	task-list	component	recognize	the	task	component	element,	we	need	to

add	it	to	the	task-list	component's	directives	property	within	the	task-list.js	file:

...

import	{Task}	from	'./task/task';

@Component({

		...

		directives:	[Task]

})

...

Congratulations!	You've	successfully	refactored	your	task	list	by	extracting	the	task	into	its
own	component	and	have	established	a	clean	encapsulation.	Also,	we	can	now	say	that	our
task	list	is	a	composition	of	tasks.

If	you	think	about	maintainability	and	reusability,	this	was	actually	a	very	important	step	in	the
process	of	building	our	application.	You	should	constantly	look	out	for	such	encapsulation
opportunities,	and	if	you	feel	something	could	be	arranged	into	multiple	subcomponents,	you
should	probably	go	for	it.	Of	course,	you	can	also	overdo	this.	There's	simply	no	golden	rule
to	determine	what	granularity	of	encapsulation	is	the	right	one.

Tip

The	right	granularity	of	encapsulation	for	a	component	architecture	always	depends	on	the
context.	My	personal	tip	here	is	to	use	known	principles	from	OOP,	such	as	single
responsibility,	to	lay	the	groundwork	for	a	good	design	of	your	component	tree.	Always
make	sure	your	components	are	only	doing	things	that	they	are	supposed	to	do	as	their	names
suggest.	A	task	list	has	the	responsibility	of	listing	tasks	and	providing	some	filters	or	other
controls	for	the	list.	The	responsibility	of	operating	on	individual	task	data	and	rendering	the
necessary	view	clearly	belongs	to	a	task	component	and	not	the	task	list.

Recap
In	this	building	block,	we	cleaned	up	our	component	tree	and	established	clean	encapsulation
using	subcomponents.	Then,	we	set	up	the	interfaces	provided	by	Angular	using	input
bindings.	We	performed	these	actions	by	following	the	ensuing	steps:

1.	 We	created	a	task	subcomponent.
2.	 We	used	the	task	subcomponent	with	the	task-list	component.
3.	 We	used	input	bindings	and	DOM	element	property	bindings	to	establish	one-way	data

binding	in	the	task	component.

Input	generates	output
Our	task	list	looks	nice	already,	but	it	would	be	quite	useless	if	the	user	is	unable	to	add	new
tasks	to	the	list.	Let's	create	a	component	for	entering	new	tasks	together.	As	this	component
belongs	to	the	task-list	component,	we're	going	to	create	a	new	folder	called	enter-task
within	the	task-list	folder.	The	responsibilities	of	this	component	will	be	to	handle	all	the	UI
logic	necessary	for	entering	a	new	task.

Using	the	same	naming	convention	as	with	the	rest	of	our	components,	let's	create	a	file	called
enter-task.html	to	store	the	template	of	our	component:

<input	type="text"	class="enter-task__title-input"

							placeholder="Enter	new	task	title..."

							#titleInput>

<button	class="button"	(click)="enterTask(titleInput)">

		Add	Task

</button>

This	template	consists	of	an	input	field	as	well	as	a	button	to	enter	a	new	task.	Here,	we're
making	use	of	the	so-called	local	view	variables	by	specifying	that	our	input	field	should	have
the	reference	name	#titleInput.	We	can	reference	this	variable	within	the	current	component
view	by	the	name	titleInput.

In	this	case,	we	are	actually	using	the	variable	to	pass	the	input	field	DOM	element	to	the
enterTask	function	that	we	call	on	a	click	event	on	the	Add	Task	button.

Let's	take	a	look	at	the	implementation	of	our	Component	class	for	entering	a	new	task	by
using	the	following	code	in	a	newly-created	enter-task.js	file:

import	{Component,	Output,	ViewEncapsulation,	EventEmitter}	from	

'@angular/core';

import	template	from	'./enter-task.html!text';

@Component({

		selector:	'ngc-enter-task',

		host:	{	class:	'enter-task'	},

		template,

		encapsulation:	ViewEncapsulation.None

})

export	class	EnterTask	{

		//	Event	emitter	that	gets	fired	once	a	task	is	entered.

		@Output()	taskEntered	=	new	EventEmitter();

		//	This	function	will	fire	the	taskEntered	event	emitter	

		//	and	reset	the	task	title	input	field.

		enterTask(titleInput)	{

				this.taskEntered.next(titleInput.value);

				titleInput.value	=	'';	

				titleInput.focus();

		}

}

For	this	component,	we've	chosen	a	design	approach	where	we	use	a	loose	relation	to	our	task
list	where	the	actual	task	will	be	created.	Although	this	component	is	closely	related	to	the	task
list,	it's	better	to	keep	the	components	as	loosely	coupled	as	possible.

One	of	the	simplest	forms	of	inversion	of	control,	a	callback	function	or	event	listener	is	a
great	principle	to	establish	loose	coupling.	In	this	component,	we	are	using	the	@Output
annotation	to	create	an	event	emitter.	The	output	properties	need	to	be	instance	fields	that	hold
an	event	emitter	within	the	component.	On	the	component's	HTML	element,	we	can	then	use
event	bindings	to	capture	any	events	emitted.	This	gives	us	great	flexibility	that	we	can	use	to
create	a	clean	application	design,	where	we	glue	components	together	through	the	binding
within	the	view:

Usage Description

@Output()

outputProp	=

new

EventEmitter();

When	outputProp.next()	is	called,	a	custom	event	with	the	name
outputProp	will	be	emitted	on	the	component.	Angular	will	look	for	event
bindings	on	the	component's	HTML	element	(where	the	component	is
used)	and	execute	them:

<my-comp	(output-prop)=	"doSomething()">

Within	the	expressions	in	event	bindings,	you	will	always	have	access	to	a
synthetic	variable	called	$event.	This	variable	is	a	reference	to	the	data
emitted	by	EventEmitter.

@Output('out')

outputProp	=

new

EventEmitter();

Use	this	way	of	declaring	your	output	properties	if	you'd	want	to	name
your	events	differently	from	what	your	property	name	is.	In	this	example,
a	custom	event	with	the	name	out	will	be	fired	when	outputProp.next()	is
called:

<my-comp	(out)=	"doSomething()">

Okay,	let's	use	this	newly	created	component	to	add	new	tasks	within	our	task-list
component.	First,	let's	modify	the	existing	template	of	the	task-list	component.	Open	the
file,	task-list.html,	in	the	task-list	component	folder.	We	need	to	add	the	EnterTask
component	to	the	template	and	also	handle	the	custom	event	that	we're	going	to	emit,	once	a
new	task	is	entered	within	the	component:

<ngc-enter-task	(taskEntered)="addTask($event)">

</ngc-enter-task>

<ngc-task	*ngFor="let	task	of	tasks"	

										[task]="task"></ngc-task>

Since	the	output	property	within	the	enter-task	component	is	called	taskEntered,	we	can

bind	it	with	the	event	binding	attribute,	(taskEntered)="",	on	the	host	element.

Within	the	event	binding	expression,	we	then	call	a	function	on	our	task-list	component
called	addTask.	Also,	we	use	the	synthetic	variable	$event,	which	contains	the	task	title	emitted
from	the	enter-task	component.	Now,	whenever	we	push	the	button	in	our	enter-task
component	and	an	event	gets	emitted	from	the	component,	we	catch	the	event	in	our	event
binding	and	handle	it	within	the	task-list	component.

We	also	need	to	make	some	minor	changes	to	the	task-list	component's	JavaScript	file.	Let's
open	task-list.js	and	modify	it	with	the	following	changes:

...

//	The	component	for	entering	new	tasks

import	{EnterTask}	from	'./enter-task/enter-task';

@Component({

		...

		directives:	[Task,	EnterTask]

})

export	class	TaskList	{

		...

		//	Function	to	add	a	task	from	the	view

		addTask(title)	{

				this.tasks.push({

						title,	done:	false

				});

		}

}

The	only	thing	we	changed	within	the	task-list	component	module	is	its	ability	to	declare
the	EnterTask	component	in	the	directives	property	so	that	the	compiler	recognizes	our
enter-task	component	correctly.

We	have	also	added	a	function,	addTask,	which	will	add	a	new	task	to	our	task	list	with	a	title
that	is	passed	to	the	function.	Now	the	circle	is	closed	and	our	event	from	the	enter-task
component	is	routed	to	this	function	within	the	view	of	the	task-list	component.

You	can	now	start	live	server	from	your	project	directory	in	order	to	test	the	newly	added
functionality	using	the	live-server	command.

Recap
We	have	added	a	new	subcomponent	of	the	task	list	that	is	responsible	for	providing	the	UI
logic	to	add	new	tasks.	In	other	words,	we	have	covered	the	following	topics:

1.	 We	created	a	subcomponent	that	is	loosely	coupled	using	output	properties	and	event
emitters.

2.	 We	learned	about	the	@Output	annotation	and	how	to	use	it	to	create	output	properties.
3.	 We	used	event	bindings	to	link	the	behavior	together,	from	the	view	of	a	component.

Custom	UI	elements
The	standard	UI	elements	in	the	browser	are	great,	but	sometimes,	modern	web	applications
require	more	complex	and	intelligent	input	elements	than	the	ones	available	within	the
browser.

We'll	now	create	two	specific	custom	UI	elements	that	we'll	use	within	our	application	going
forward	in	order	to	provide	a	nice	user	experience:

Checkbox:	There's	already	a	native	checkbox	input	in	the	browser,	but	sometimes,	it's
hard	to	fit	it	into	the	visual	design	of	an	application.	Native	checkboxes	are	limited	in
their	styling	possibilities,	and	therefore,	it's	hard	to	make	them	look	great.	Sometimes,
it's	those	minor	details	that	make	an	application	look	appealing.
Toggle	buttons:	This	is	a	list	of	toggle	buttons,	where	only	one	button	can	be	toggled
within	the	list.	They	could	also	be	represented	with	a	native	radio	button	list.	However,
like	with	native	checkboxes,	radio	buttons	are	sometimes	not	really	the	nicest	visual
solution	to	the	problem.	A	list	of	toggle	buttons	that	also	represents	a	select-one-user
input	element	is	much	more	modern	and	provides	the	visual	aspect	that	we	are	looking
for.	Besides,	who	does	not	like	to	push	buttons?

Let's	create	our	custom	checkbox	UI	element	first.	As	we'll	probably	come	up	with	a	few
custom	UI	elements,	first	let's	create	a	new	subfolder	called	ui	within	the	lib	folder.

Within	the	ui	folder,	we	now	create	a	folder	with	the	name	checkbox	for	our	checkbox
component.	Starting	with	the	template	of	our	new	component,	we	now	create	a	file	with	the
name	checkbox.html	within	the	checkbox	folder:

<input	type="checkbox"

							[checked]="checked"

							(change)="onChecke

dChange($event.target.checked)">

		{{label}}

On	the	checkbox	input,	we	have	two	bindings.	First,	we	have	a	property	binding	for	the
checked	property	on	the	DOM	element.	We	are	binding	the	DOM	property	to	the	checked
member	field	on	our	component,	which	we	are	going	to	create	in	a	moment.

Also,	we	have	an	event	binding	on	the	input	element	where	we	listen	for	the	checkbox	change
DOM	event	and	call	the	method	onCheckedChange	on	our	component	class.	We	use	the
synthetic	variable	$event	to	pass	the	checked	property	on	the	checkbox	DOM	element	where
the	change	event	is	originated.

Moving	on	to	our	component	class	implementation,	we	need	to	create	a	file	with	the	name
checkbox.js	within	the	checkbox	folder:

import	{Component,	Input,	Output,	ViewEncapsulation,	EventEmitter}	from	

'@angular/core';

import	template	from	'./checkbox.html!text';

@Component({

		selector:	'ngc-checkbox',

		host:	{	class:	'checkbox'	},

		template,

		encapsulation:	ViewEncapsulation.None

})

export	class	Checkbox	{

		//	An	optional	label	can	be	set	for	the	checkbox

		@Input()	label;

		//	If	the	checkbox	is	checked	or	unchecked

		@Input()	checked;

		//	Event	emitter	when	checked	is	changed	using	the	convention	

		//	for	two	way	binding	with	[(checked)]	syntax.

		@Output()	checkedChange	=	new	EventEmitter();

		//	This	function	will	trigger	the	checked	event	emitter

		onCheckedChange(checked)	{

				this.checkedChange.next(checked);

		}

}

There's	nothing	special	about	this	component	class	if	we	first	look	at	it.	It	uses	an	input
property	to	set	the	checked	state	from	the	outside,	and	it	also	has	an	output	property	with	an
event	emitter	that	allows	us	to	notify	the	outer	component	about	the	changes	of	the	checked
state	using	a	custom	event.	However,	there's	a	naming	convention	that	makes	this	component	a
bit	special.	The	convention	of	using	an	input	property	name	also	as	an	output	property	name
but	appending	the	word	change	is	actually	enabling	a	developer	who	uses	the	component	to
make	use	of	the	two-way	data	binding	template	shorthand.

Angular	does	not	come	with	two-way	data	binding	out	of	the	box.	However,	creating	two-way
binding	is	quite	easy.	Actually,	two-way	data	binding	is	no	different	than	combining	a
property	binding	with	an	event	binding.

The	following	example	creates	a	very	simple	two-way	data	binding	process	on	an	input	field:

		<input	type="text"	(input)="value	=	$event.target.value"	

																					[value]="value">

The	simplicity	of	Angular	and	the	general	approach	of	extending	the	native	functionality	of
the	browser	makes	implementing	this	mechanism	a	breeze.

Implementing	two-way	data	binding	between	a	component	and	its	subcomponent	isn't	really
too	difficult.	The	only	thing	we	need	to	take	care	about	is	that	there	are	input	and	output
properties	of	the	subcomponent	involved.

Please	have	a	look	at	the	following	screenshot:

A	two-way	data	binding	between	member	variables	of	a	component	and	a	subcomponent

Since	two-way	data	binding	was	a	highly	requested	feature	in	Angular,	there's	a	handy
shorthand	to	write	it.	Let's	look	at	some	examples	on	how	to	implement	data	bindings	between
a	template	of	a	component	and	its	subcomponent:

Subcomponent
properties Bindings	in	component	template

@Input()	text;

@Output()

textOut	=	new

EventEmitter();

<sc	[text]="myText"

				(textOut)="myText	=	$event">

We	bind	the	component's	myText	property	to	the	subcomponent's	text	input.
Also,	we	capture	the	textOut	event	emitted	from	the	subcomponent	and
update	our	myText	property.

@Input()	text;

@Output()

textChange	=

new

<sc	[(text)]="myText">

We	can	simplify	this	two-way	data	binding	by	using	the	naming
convention	to	append	the	word	"change"	to	our	event	emitter	identifier.
This	way,	we	can	use	the	two-way	data	binding	shorthand	within	our

EventEmitter(); template	using	the	[(property)]	notation.

If	we	look	at	our	checkbox	component	implementation	again,	we	will	see	that	we	are	using	the
two-way	data	binding	naming	convention	for	the	checked	property	of	our	component.	This
way,	we	enable	the	use	of	the	template	shorthand	for	two-way	data	binding	wherever	we	use
our	custom	checkbox	UI	component.

Let's	integrate	our	checkbox	in	the	task	component	to	replace	the	native	checkbox	input	we're
currently	using	there.	For	this,	we	need	to	modify	the	task.html	file	within	the	task-
list/task	folder,	by	replacing	the	native	input	checkbox	that	we	have	in	the	task.html	file
with	the	following	line	of	code:

<ngc-checkbox	[(checked)]="task.done"></ngc-checkbox>

As	always,	we	also	need	to	tell	the	task	component	that	we'd	like	to	use	the	component	within
the	template.	Let's	change	the	code	within	the	task.js	file	accordingly:

...

import	{...,	HostBinding}	from	'@angular/core';

//	Each	task	has	a	checkbox	component	for	marking	tasks	as	done.

import	{Checkbox}	from	'../../ui/checkbox/checkbox';

@Component({

		...

		//	We	need	to	specify	that	this	component	relies	on	the	Checkbox	

		//	component	within	the	view.

		directives:	[Checkbox]

})

export	class	Task	{

		//	Our	task	model	can	be	attached	on	the	host	within	the	view

		@Input()	task;

		@HostBinding('class.task--done')

		get	done()	{

				return	this.task	&&	this.task.done;

		}

}

We've	already	learned	about	the	host	property	on	components.	It	allows	us	to	set	property	and
event	bindings	on	our	component	host	element.	The	host	element	is	the	DOM	element	where
our	component	is	initialized	within	the	parent	component.

There's	another	way	through	which	we	can	set	properties	on	our	component	host	element,
which	becomes	handy	when	we	want	to	set	a	property	based	on	some	data	within	our
component.

Using	the	@HostBinding	annotation,	we	can	create	property	bindings	on	the	component	host
element	based	on	the	members	within	our	component.	Let's	use	this	annotation	in	order	to
create	a	binding	that	will	conditionally	set	the	task--done	class	on	the	component's	HTML

element.	This	is	used	to	make	some	visual	distinctions	of	finished	tasks	within	our	styles.

This	was	just	the	last	step	to	integrate	our	custom	checkbox	UI	component	within	the	task
component.	You	can	now	start	live-server	in	order	to	view	your	changes	and	play	around
with	these	large	new	checkboxes	in	the	task	list.	Isn't	that	much	more	fun	to	do	than	activating
regular	checkboxes?	Don't	underestimate	the	effect	of	a	user	interface	that	is	pleasing	to	use.
This	can	have	a	very	positive	impact	on	the	usage	of	your	product.

Our	task	list	after	adding	our	custom	checkbox	component

Now	that	we've	created	our	checkbox	component,	let's	go	ahead	and	create	another	UI
component	for	toggle	buttons	that	we'll	use	in	the	next	topic.	We	need	to	create	a	folder	named
toggle	within	the	ui	folder	and	create	a	template	called	toggle.html	within	the	toggle	folder:

<button	class="button	button--toggle"

								*ngFor="let	button	of	buttonList"

								[class.button--active]="button	===	selectedButton"

								(click)="onButtonActivate(button)">{{button}}</button>

Nothing	special	here,	really!	We	repeat	a	button	by	iterating	over	an	instance	field	called

buttonList	using	the	NgFor	directive.	This	button	list	will	contain	the	labels	of	our	toggle
buttons.	Conditionally,	we	set	a	class	called	button--active	using	a	property	binding	and
checking	it	against	our	current	button	within	the	iteration	against	an	instance	field	called
selectedButton.	When	the	button	is	clicked,	we	call	a	method,	onButtonActivate,	on	our
component	class	and	pass	the	current	button	label	from	the	iteration.

Let's	create	toggle.js	inside	the	toggle	folder	and	implement	the	component	class:

import	{Component,	Input,	Output,	ViewEncapsulation,	EventEmitter}	from	

'@angular/core';

import	template	from	'./toggle.html!text';

@Component({

		selector:	'ngc-toggle',

		host:	{

				class:	'toggle'

		},

		template,

		encapsulation:	ViewEncapsulation.None

})

export	class	Toggle	{

		//	A	list	of	objects	that	will	be	used	as	button	values.

		@Input()	buttonList;

		//	Input	and	state	of	which	button	is	selected	needs	to	refer	to	

		//	an	object	within	buttonList

		@Input()	selectedButton;

		//	Event	emitter	when	selectedButton	is	changed	using	the	

		//	convention	for	two	way	binding	with	[(selected-button)]	

		//	syntax.

		@Output()	selectedButtonChange	=	new	EventEmitter();

		//	Callback	within	the	component	lifecycle	that	will	be	called	

		//	after	the	constructor	and	inputs	have	been	set.

		ngOnInit()	{

				if	(this.selectedButton	===	undefined)	{

						this.selectedButton	=	this.buttonList[0];

				}

		}

		//	Method	to	set	selected	button	and	trigger	event	emitter.

		onButtonActivate(button)	{

				this.selectedButton	=	button;

				this.selectedButtonChange.next(button);

		}

}

Within	our	toggle	component,	we	rely	on	the	buttonList	member	to	be	an	array	of	objects,
as	we	are	using	this	array	within	our	template	on	an	NgFor	directive.	The	buttonList	member
is	annotated	to	be	an	input	property;	this	way,	we	can	pass	the	array	into	the	component.

For	the	selectedButton	member,	which	holds	the	object	of	the	buttonList	array	that	is
currently	selected,	we	use	a	two-way	data	binding	approach.	This	way,	we	can	not	only	set	the
toggled	button	from	the	outside	of	the	component,	but	also	get	notified	via	the	toggle

component,	when	a	button	is	toggled	in	the	UI.

Within	the	onButtonActivate	function,	we	are	setting	the	selectedButton	member	as	well	as
triggering	the	event	emitter.

The	ngOnInit	method	is	actually	called	by	Angular	within	the	life	cycle	of	directives	and
components.	In	the	case	where	the	selectedButton	input	property	was	not	specified,	we'll	add
a	check	and	select	the	first	button	from	the	available	button	list.	Since	selectedButton	as	well
as	buttonList	are	instance	fields	that	are	also	input	properties	at	the	same	time,	we	need	to
wait	for	them	to	be	initialized	in	order	to	execute	this	logic.	It's	important	not	to	perform	this
initialization	within	the	component	constructor.	The	life	cycle	hook,	OnInit,	will	be	called
after	the	directive	input	and	output	properties	have	been	checked	for	the	first	time.	It	is
invoked	only	once	when	the	directive	is	constructed.

Tip

Angular	will	call	any	life	cycle	hooks	that	have	been	implemented	on	your	component
automatically.

The	next	diagram	illustrates	the	life	cycle	of	an	Angular	component.	Upon	component
construction,	all	the	life	cycle	hooks	will	be	called	as	per	the	order	shown	in	the	diagram,
except	the	OnDestroy	hook,	which	will	be	called	upon	component	destruction.

Change	detection	will	also	start	a	subset	of	life	cycle	hooks,	where	there	will	be	at	least	two
cycles	in	the	following	order:

doCheck

afterContentChecked

afterViewChecked

onChanges	(if	any	changes	are	detected)

A	detailed	description	of	the	life	cycle	hooks	and	their	purpose	is	available	on	the	Angular
documentation	website	at	https://angular.io/docs/ts/latest/guide/lifecycle-hooks.html.

https://angular.io/docs/ts/latest/guide/lifecycle-hooks.html

An	illustration	of	the	life	cycle	of	an	Angular	component

Recap
In	this	block,	you	learned	how	to	build	custom	UI	components	that	are	generic	and	loosely
coupled	so	that	they	can	be	used	in	other	components	as	subcomponents.	We	also	completed
the	following	tasks:

1.	 We	created	a	subcomponent	that	is	loosely	coupled	using	output	properties	and	event
emitters.

2.	 We	learned	what	the	@Output	annotation	is	and	how	to	use	it	to	create	output	properties.
3.	 We	used	the	@HostBinding	annotation	to	create	property	bindings	declaratively	from

within	our	component	class.
4.	 We	used	event	bindings	to	link	the	behavior	together	from	the	view	of	a	component.
5.	 We	built	two-way	data	binding	using	a	binding	shorthand.
6.	 We	learned	about	the	working	of	the	Angular	component	life	cycle	and	how	we	can	use

the	OnInit	life	cycle	hook	to	initialize	the	component	after	the	input	and	output	have	been
processed	for	the	first	time.

Filtering	tasks
This	is	the	last	building	block	of	this	chapter.	We	have	already	learned	a	lot	about	building
basic	components	and	how	to	compose	them	together	in	order	to	form	larger	components.	In
the	previous	building	block,	we	created	generic	UI	components	that	could	be	used	in	other
components.	In	this	topic,	we	will	use	the	toggle	button	component	not	only	to	create	a	filter
for	our	task	list,	but	also	to	improve	the	way	we	receive	and	store	tasks	by	using	data	services.

Let's	continue	with	another	refactoring	exercise.	So	far,	we	have	stored	our	task	list	data
directly	within	the	task-list	component,	but	let's	change	that	here	and	use	a	service	that	will
provide	tasks	for	us.

Our	service	will	still	not	use	a	database,	but	we'll	get	the	task	data	out	of	our	component.	In
order	to	use	the	service,	we're	making	use	of	Angular's	dependency	injection	for	the	first
time.

Let's	create	a	new	file	called	task-list-service.js	within	the	lib/task-list	folder	of	our
application:

//	Classes	which	we'd	like	to	provide	for	dependency	injection	

//	need	to	be	annotated	using	this	decorator

import	{Injectable}	from	'@angular/core';

@Injectable()

export	class	TaskListService	{

		constructor()	{

				this.tasks	=	[

						{title:	'Task	1',	done:	false},

						{title:	'Task	2',	done:	false},

						{title:	'Task	3',	done:	true},

						{title:	'Task	4',	done:	false}

];

		}

}

We've	moved	all	our	task	data	into	the	newly	created	service.	In	order	to	make	our	service
class	injectable,	we	need	to	decorate	it	with	the	@Injectable	annotation.

Let's	apply	some	changes	to	our	task-list	component	and	modify	the	task-list.js	file
within	the	task-list	folder.	The	modified	code	in	the	file	is	highlighted	in	the	following	code
excerpt:

import	{...,	Inject}	from	'@angular/core';

//	The	dummy	task	service	where	we	get	our	tasks	from

import	{TaskListService}	from	'./task-list-service';

...

//	We	also	need	a	Toggle	UI	component	to	provide	a	filter

import	{Toggle}	from	'../ui/toggle/toggle';

@Component({

		...

		//	Set	the	TaskListService	as	host	provider

		providers:	[TaskListService],

		//	Specify	all	directives	/	components	that	are	used	in	the	view

		directives:	[Task,	EnterTask,	Toggle]

})

export	class	TaskList	{

		//	Inject	the	TaskListService	and	set	our	filter	data

		constructor(@Inject(TaskListService)	taskListService)	{

				this.taskListService	=	taskListService;

				this.taskFilterList	=	['all',	'open',	'done'];

				this.selectedTaskFilter	=	'all';

		}

		//	Method	that	returns	a	filtered	list	of	tasks	based	on	the	

		//	selected	task	filter	string.

		getFilteredTasks()	{

				return	this.taskListService.tasks	?	

this.taskListService.tasks.filter((task)	=>	{

						if	(this.selectedTaskFilter	===	'all')	{

								return	true;

						}	else	if	(this.selectedTaskFilter	===	'open')	{

								return	!task.done;

						}	else	{

								return	task.done;

						}

				})	:	[];

		}

		//	Method	to	add	a	task	from	the	view

		addTask(title)	{

				this.taskListService.tasks.push({

						title,

						done:	false

				});

		}

}

In	the	import	section	of	our	module,	we're	going	to	import	the	task	list	service.	We	will	use
dependency	injection	to	receive	an	instance	of	the	TaskListService	class	within	our
component	constructor.	For	this,	we'll	use	a	new	annotation,	which	lets	us	specify	the	type
we'd	like	to	inject.	The	Inject	decorator	needs	to	be	imported	from	the	Angular	core	module
in	order	to	use	the	@Inject	annotation.	If	you	take	a	look	at	our	constructor,	you'll	find	that
we're	using	the	@Inject	annotation	there	to	specify	what	instance	type	we'd	like	to	inject.

In	addition	to	the	@Inject	annotation	on	the	constructor,	we	need	one	last	thing	to	make	the
injection	work.	We	need	to	register	TaskListService	as	a	provider	within	the	providers
property	of	our	@Component	annotation.

Now	we	get	the	TaskListService	injected	when	the	directive	is	constructed,	and	we	can	store
a	reference	to	it	inside	an	instance	field.

Within	the	constructor	of	the	component,	we	also	want	to	store	a	list	of	states	the	task	status

filter	can	have.	This	list	will	also	serve	as	input	for	our	toggle	button	list.	If	you	recall	the
input	properties	on	our	toggle	button,	we	have	a	buttonList	input	that	accepts	a	list	of	button
labels.	To	store	the	currently	selected	filter	type,	we	use	an	instance	field	called
selectedTaskFilter.

The	last	piece	that	we	need	to	add	to	our	task-list	component	is	the	method,
getFilteredTasks.	We	no	longer	need	to	store	the	task	list	directly	within	an	instance	field,
and	tasks	should	only	be	received	within	the	component	using	this	method.	The	logic	inside
the	method	checks	the	selectedTaskFilter	property	and	returns	a	filtered	list	that	meets	this
condition.

Since	we	want	to	use	the	toggle	button	component	that	we've	created	within	the	previous	topic
to	create	a	filter	button	list,	we	will	need	to	import	the	toggle	component	within	the	import
section	and	also	add	the	Toggle	class	to	our	directives	property.	Now	we	can	use	the	toggle
component	within	the	template	of	our	task-list	component.

Okay,	that's	all	we	are	going	to	change	in	our	component	implementation.	We	want	to	change
our	view	template	though	to	use	the	filtered	task	list	coming	from	the	data	service	and	show	a
toggle	button	list	to	activate	the	different	filter	types.	Let's	open	the	template	file,	task-
list.html,	inside	the	task-list	folder	and	modify	it	with	the	following	content:

<ngc-toggle	[buttonList]="taskFilterList"

												[(selectedButton)]="selectedTaskFilter">

</ngc-toggle>

<ngc-enter-task	(taskEntered)="addTask($event)">

</ngc-enter-task>

<ngc-task	*ngFor="let	task	of	getFilteredTasks()"	

										[task]="task"></ngc-task>

Since	we've	added	the	toggle	component	within	the	directives	property	of	our	task-list
component,	we	can	use	it	now	within	our	view	template.	We	bind	the	input	property
buttonList	to	taskFilterList	that	we	store	within	our	task-list	component.	Also,	we're
using	two-way	data	binding	to	bind	the	selectedButton	input	property	of	the	toggle	button	list
to	the	selectedTaskFilter	instance	field	of	the	task	list.	This	way,	we	can	not	only	update	the
selected	task	filer	from	our	task-list	component	programmatically,	but	also	allow	a	user	to
change	the	value	using	the	toggle	button	list.

Now	we	only	need	to	make	a	small	change	to	the	NgFor	directive	that	repeats	our	task
elements	within	the	task	list.	Since	we	need	to	access	the	tasks	of	the	task-list	component
with	the	getFilteredTasks	method	now,	we	also	need	to	use	that	method	within	our	repeater
expression.

That's	it	already,	congratulations!	You've	successfully	added	a	filtering	mechanism	to	your
task	list	by	reusing	the	toggle	component	that	we	created	in	the	previous	topic.	You	can	now
start	your	live	server	(using	the	live-server	command)	and	should	see	a	fully	functional	task
list	where	you	can	enter	new	tasks	and	also	filter	the	task	list:

Screenshot	of	the	task	list	with	the	newly	added	toggle	button	component	for	filtering	the	task
state

Summary
In	this	chapter,	you	learned	a	lot	of	new	concepts	on	building	UI-component-based
applications	with	Angular.	Also,	we	built	the	core	component	of	our	task	management
application,	which	is	the	task	list	itself.	You	learned	about	the	concept	of	input	and	output
properties	and	how	to	use	them	to	build	two-way	data	binding.

We	also	covered	the	basics	of	the	Angular	component	life	cycle	and	how	to	use	life	cycle
hooks	to	execute	post	initialization	steps.

As	the	last	step,	we	integrated	a	toggle	button	list	component	within	our	task	list	to	filter	the
task	states.	We	refactored	our	task-list	component	to	use	a	service	in	order	to	obtain	task
data.	For	this,	we	used	Angular's	dependency	injection.

Chapter	3.	Composing	with	Components
In	this	chapter,	we	will	go	one	step	further	in	structuring	our	application	and	working	on	the
layout	and	architecture	that	serves	as	the	base	for	our	task	management	system.	Besides
introducing	new	components	and	creating	larger	compositions	with	the	existing	components,
we'll	also	look	at	the	way	that	we	deal	with	data.	So	far,	we've	obtained	task	data
synchronously	from	the	TaskListService	that	we	created	in	the	previous	chapter.	However,	in
real-world	scenarios,	this	would	rarely	be	the	case.	In	a	real	application,	data	is	mostly
retrieved	in	an	asynchronous	form.	Usually,	we	acquire	data	through	a	RESTful	web	service,
and	we	use	XMLHttpRequest	or	the	recently	standardized	fetch	API.	However,	as	we're	trying
to	build	a	cutting-edge	application,	we	will	go	one	step	further.	In	this	chapter,	we'll	look	at
how	we	can	restructure	our	application	to	deal	with	observable	data	structures	using	RxJS—a
functional	and	reactive	programming	library	that	is	used	in	Angular.

In	this	chapter,	we	will	look	at	the	following	topics:

Restructuring	our	application	to	deal	with	observable	data	structures
The	basics	of	RxJS	and	its	operators	in	order	to	build	a	reactive	data	model
Using	pure	components	in	Angular
Using	ChangeDetectionStrategy.OnPush	for	pure	components
Using	content	projection	points	and	@ContentChildren	to	create	a	Tab	component
Creating	a	simple	navigation	component
Injecting	parent	components	and	establishing	direct	component	communication
Combining	internal	and	external	content	to	create	a	flexible	component	API

Data	–	Fake	to	real
Starting	with	this	chapter,	we	are	switching	to	a	document-based	database	to	store	our	tasks
and	project	data.	As	a	data	store,	we	use	the	PouchDB	project,	which	is	an	in-browser	database
that	is	designed	to	run	with	IndexedDB	and	various	fallback	strategies.	PouchDB	is	designed
similarly	to	Apache	CouchDB,	and	it	can	even	be	synchronized	with	it.

In	order	to	provide	a	quality	experience	for	you	while	you	build	your	application,	it's
important	that	we	work	in	real-life	conditions.	This	means	that	we	should	use	asynchronous
data	in	our	components	and	not	rely	on	a	simple	JavaScript	array	of	data.	In	order	to	make
this	as	smooth	as	possible,	the	whole	data	layer	is	already	set	up	for	you,	and	you	don't	need
to	worry	about	the	internals	too	much.	Of	course	if	you're	still	interested,	I'm	not	holding	you
back	from	exploring	the	source	code	that	is	in	the	data-access	folder.

Reactive	programming	with	observable	data
structures
So	far,	we	used	simple	array	data	structures	in	the	task	list	that	we	created.	This	is	not	really
what	we'll	find	in	real-world	scenarios.	In	real	applications,	we	have	to	deal	with
asynchronous	data	and	the	changes	of	the	data	that	needs	to	be	synchronized	between	users.
The	requirements	for	modern	applications	sometimes	even	go	further	and	also	provide	view
updates	on	the	changed	data	in	real	time.	As	we're	building	a	modern	task	management	system
here,	we	should	try	to	keep	up	with	these	requirements.

Both	of	these,	handling	asynchronous	data	and	handling	real-time	data	updates,	require	a
major	redesign	of	the	data	flow	in	our	application.	Using	observable	data	structures,	we
enable	our	application	to	master	the	challenges	of	asynchronous	data	where	we	need	to	react
to	change.

Handling	data	in	applications	behaves	very	similarly	to	streams.	You	take	input,	transform	it,
combine	it,	merge	it,	and	finally,	write	it	into	output.	In	systems	such	as	this,	it's	also	very
likely	that	input	is	in	a	continuous	form	and	sometimes	even	of	infinite	duration.	Just	take	a
live	feed	as	an	example;	this	type	of	data	flows	continuously,	and	the	data	also	flows	infinitely.
Functional	and	reactive	programming	are	paradigms	to	help	us	deal	with	this	kind	of	data	in	a
cleaner	way.

A	simple	observable	subscription	with	value	emission	and	a	transformation

Angular	2	is	reactive	at	its	very	core	and	the	whole	of	the	change	detection	and	bindings	are
built	using	a	reactive	architecture.	The	input	and	output	of	components,	which	we've	learned
about	in	the	previous	chapter,	is	nothing	but	a	data	flow	that	is	established	using	a	reactive
event-driven	approach.	Angular	uses	RxJS,	a	functional	and	reactive	programming	library
for	JavaScript,	to	implement	this	data	flow.	In	fact,	the	EventEmitter,	which	we've	used	to
send	custom	events	from	within	our	components,	is	just	a	wrapper	around	an	RxJS
observable.

Reactive	and	functional	programming	is	exactly	what	we	are	looking	for	to	redesign	our
application	in	order	to	handle	asynchronous	data	and	data	changes.	As	we	already	have	RxJS
at	hand	from	the	production	dependency	of	Angular,	let's	use	it	to	establish	a	continuous	data
flow	from	our	data	source	into	our	application.	The	DataProvider	service	that	is	present	in
the	data-access	folder	of	our	project	provides	a	nice	wrapper	around	our	data	store	using
RxJS.	As	we	will	use	this	service	in	our	whole	application,	we	can	directly	provide	it	to	the
bootstrap	in	the	bootstrap.js	file,	as	follows:

//	Import	Angular	bootstrap	function

import	{bootstrap}	from	'@angular/platform-browser-dynamic';

import	{DataProvider}	from	'../data-access/data-provider';

//	Import	our	main	app	component

import	{App}	from	'./app';

bootstrap(App,	[

		DataProvider

]);

As	a	second	argument	to	the	bootstrap	function	of	Angular,	we	can	provide	application-level
dependencies,	which	will	be	available	for	injection	in	all	components	and	directives.

Let's	now	use	the	DataProvider	service	as	an	abstraction	to	obtain	data	from	the	PouchDB
data	store	and	create	a	new	service	responsible	to	provide	project	data.

We	will	create	a	new	ProjectService	class	on	the	lib/project/project-service/project-
service.js	path,	as	follows:

import	{Injectable,	Inject}	from	'@angular/core';

import	{ReplaySubject}	from	'rxjs/Rx';

import	{DataProvider}	from	'../../../data-access/data-provider';

@Injectable()

export	class	ProjectService	{

		constructor(@Inject(DataProvider)	dataProvider)	{

				…

		}

}

Looking	at	the	import	section	of	our	new	module,	you	can	see	that	we	import	the	necessary
dependencies	from	the	Angular	core	module	for	dependency	injection.	Our	service	class	uses
the	@Injectable	decorator	so	that	we	can	provide	this	to	the	injectors	of	components.	We	also

inject	the	DataProvider	service	into	the	constructor	of	our	newly-created	service.

The	ReplaySubject	class,	which	we	import	from	the	RxJS	library,	is	used	to	make	our	service
reactive.	A	subject	in	the	RxJS	world	is	both	an	observer	as	well	as	an	observable.	It	can
observe	something	for	changes	and	then	emit	further	on	to	all	its	subscribers.	You	can	think
of	a	subject	like	a	proxy,	where	it	sits	in	the	middle	between	a	source	for	changes	and	a	group
of	observers.	Whenever	the	source	emits	changes,	the	subject	will	notify	all	subscribers	about
these	changes.

Now,	the	ReplaySubject	class	is	a	special	kind	of	subject	that	allows	you	to	replay	a	buffer	of
changes	when	new	subscribers	get	added.	This	is	especially	useful	if	you	always	need	to
provide	some	initial	data	to	subscribers.	Imagine	our	data,	which	we'd	like	to	get	propagated
into	the	UI.	We	want	to	immediately	get	the	initial	data	when	we	subscribe	to	our	service	and
then	going	forward,	we	also	want	to	get	notified	about	changes.	Using	a	ReplySubject	class,
which	is	buffering	just	one	change,	suits	this	use-case	perfectly.

Let's	look	at	the	following	figure,	which	illustrates	the	behavior	of	ReplaySubject:

A	source	connected	to	an	observer	using	a	ReplaySubject	class,	which	buffers	the	most	recent
value	and	emits	on	subscription

In	the	preceding	figure,	you	can	see	that	we're	connecting	a	ReplaySubject	class	to	a	source
that	is	emitting	value	changes	over	time.	After	two	emissions,	an	observer	subscribes	to	our
ReplaySubject	class.	ReplaySubject	will	then	replay	all	buffered	changes	to	the	new
subscriber	as	if	these	events	just	occurred.	In	this	example,	we	use	a	replay	buffer	length	of
one.	On	subsequent	value	emissions,	these	will	be	directly	re-emitted	to	the	subscribers	of	the
ReplaySubject	class.

Let's	go	back	to	our	ProjectService	class	and	add	some	logic	to	the	constructor	function	in
order	to	emit	project	data	using	a	ReplaySubject	class.

We	will	start	off	with	some	member	field	initialization,	for	which	we're	going	to	need	to

implement	the	logic:

this.dataProvider	=	dataProvider;

this.projects	=	[];

//	We're	exposing	a	replay	subject	that	will	emit	events	whenever	

//	the	projects	list	change

this.change	=	new	ReplaySubject(1);

Note	that	we	created	a	new	ReplaySubject	class	with	a	buffer	length	of	one,	and	assign	it	to
the	member	filed	with	the	name	change.

We	also	assign	the	DataProvider	service,	which	was	previously	injected	in	the	constructor
parameters,	to	the	dataProvider	member	field.

Now,	it's	time	to	make	use	of	the	DataProvider	service	in	order	to	subscribe	for	any	changes
within	our	data	store.	This	establishes	a	reactive	connection	to	our	data	that	is	stored	in
PouchDB:

//	Setting	up	our	functional	reactive	subscription	to	receive

//	project	changes	from	the	database

this.projectsSubscription	=	this.dataProvider.getLiveChanges()

		//	First	convert	the	change	records	to	actual	documents

		.map((change)	=>	change.doc)

		//	Filter	so	that	we	only	receive	project	documents

		.filter((document)	=>	document.type	===	'project')

		//	Finally	we	subscribe	to	the	change	observer	and	deal	with	

		//	project	changes	in	the	function	parameter

		.subscribe((changedProject)	=>	{

				this.projects	=	this.projects.slice();

				//	On	every	project	change	we	need	to	update	our	projects	list	

				const	projectIndex	=	this.projects.findIndex(

						(project)	=>	project._id	===	changedProject._id

);

				if	(projectIndex	===	-1)	{

						this.projects.push(changedProject);

				}	else	{

						this.projects.splice(projectIndex,	1,	changedProject);

				}

				//	Emit	an	event	on	our	replay	subject

				this.change.next(this.projects);

		});

The	observable	that	is	returned	by	the	getLiveChanges()	function	emits	data	in	our	data	store
as	changes.	In	addition	to	this,	this	will	also	emit	any	future	changes	that	are	applied	to	our
store	after	we've	received	the	initial	data.	You	can	imagine	a	persistent	connection	to	the
database,	and	whenever	a	document	is	updated	in	the	database,	our	observer	will	receive	this
change	as	a	value.

Observables	provide	a	large	amount	of	so-called	operators	that	allow	you	to	transform	the
data	stream	that	originated	at	the	observable.	You	might	already	know	about	some	of	these
functional	operators	from	the	ECMAScript	5	array	extra	functions,	such	as	map	and	filter.

Using	operators,	you	can	model	a	whole	transformation	flow	until	you	finally	subscribe	to
the	data.

As	we	receive	changed	objects	from	the	data	store,	we	first	need	to	transform	them	into
document	objects.	This	is	fairly	easy	because	each	change	object	contains	a	doc	property	that
actually	holds	the	whole	data	of	the	changed	document	for	which	we	have	received	an	update.
Using	the	map	function,	we	can	transform	the	changed	objects	into	project	objects	before	we
return	them	back	into	the	data	flow:

.map((change)	=>	change.doc)

DataProvider	will	provide	us	with	data	for	all	the	documents	in	the	store.	As	we	are	only
interested	in	project	data	at	the	moment,	we	also	apply	a	filter	that	filters	out	all	the	documents
that	are	not	of	the	project	type:

.filter((document)	=>	document.type	===	'project')

Finally,	we	can	subscribe	to	the	transformed	stream,	as	follows:

.subscribe((changedProject)	=>	{})

The	subscribe	operator	is	where	we	terminate	our	observation	path.	This	is	like	an	endpoint
at	which	we	sit	and	observe.	Inside	our	subscribe	function,	we	listen	for	project	document
updates	and	incorporate	them	into	the	projects	member	property	of	our	App	component.	This
includes	not	only	adding	the	new	projects	that	were	added	to	the	document	store,	but	it	also
includes	updating	existing	projects.	Each	project	contains	a	unique	identifier	that	can	be
accessed	by	the	_id	property.	This	allows	us	to	find	the	right	action	easily.

After	updating	our	actual	view	of	the	projects	and	storing	the	list	of	projects	in	the	projects
member	field,	we	can	emit	the	updated	list	using	our	ReplaySubject	class:

this.change.next(this.projects);

Our	ProjectService	class	is	now	ready	to	be	used,	and	applications	components	that	need	to
obtain	project	data	can	subscribe	to	the	exposed	ReplaySubject	class	in	order	to	react	on
these	data	changes.

Let's	refactor	our	App	component	in	lib/app.js	and	get	rid	of	the	fake	TaskListService	that
we've	used	so	far:

import	{Component,	ViewEncapsulation,	Inject}	from	'@angular/core';

import	{ProjectService}	from	'./project/project-service/project-service';

import	template	from	'./app.html!text';

@Component({

		selector:	'ngc-app',

		template,

		encapsulation:	ViewEncapsulation.None,

		providers:	[ProjectService]

})

export	class	App	{

		constructor(@Inject(ProjectService)	projectService)	{

				this.projectService	=	projectService;

				this.projects	=	[];

				//	Setting	up	our	functional	reactive	subscription	to	receive	

				//	project	changes

				this.projectsSubscription	=	projectService.change

						//	We	subscribe	to	the	change	observer	of	our	service

						.subscribe((projects)	=>	{

								this.projects	=	projects;

						});

		}

		//	If	this	component	gets	destroyed,	we	need	to	remember	to	

		//	clean	up	the	project	subscription

		ngOnDestroy()	{

				this.projectsSubscription.unsubscribe();

		}

}

In	our	App	component,	we	now	obtain	a	list	of	projects	using	the	changed	observable	on	our
ProjectService	class.	Using	a	reactive	subscription	to	ReplaySubject	on	the	service,	we
make	sure	that	our	projects	list	that	is	stored	in	the	App	component	will	always	be	updated
after	any	changes.

We	use	the	OnDestroy	lifecycle	hook	to	unsubscribe	from	the	ProjectService	change
observable.	This	is	a	necessary	manual	step	if	you	like	to	do	proper	housekeeping	in	your
application.	Depending	on	the	source,	forgetting	to	unsubscribe	could	lead	to	memory	leaks.

With	the	preceding	code,	we	already	established	the	base	for	a	reactive	data	architecture.	We
observe	our	data	store	for	changes	and	our	user	interface	will	react	on	them:

This	figure	shows	the	reactive	data	flow	end-to-end	from	our	data-store	into	the	view

Immutability
Immutable	data	was	originally	a	core	concept	of	functional	programming.	This	topic	will	not
cover	immutable	data	in	much	depth,	but	it	will	explain	the	core	concept	so	that	we	can	talk
about	how	to	apply	this	concept	to	Angular	components.

Immutable	data	structures	force	you	to	create	a	full	copy	of	the	data	that	you	want	to	modify
before	you	can	do	this.	You'll	never	operate	on	the	data	directly	but	on	a	copy	of	this	same
data.	This	has	many	benefits	over	standard	mutable	data,	the	most	obvious	probably	being	the
application	state.	When	you	always	operate	on	new	copies	of	data,	there's	no	chance	that
you're	messing	up	the	data	that	you	actually	didn't	want	to	modify.

Let's	take	this	simple	example,	which	illustrates	the	issues	object	references	can	cause:

const	list	=	[1,	2,	3];

console.log(list	===	list.reverse());	//	true

Although	this	seems	odd	at	first,	it	actually	makes	sense	that	the	output	of	this	example	is	true.
Array.reverse()	is	a	mutable	operation,	and	it	will	modify	the	innards	of	the	array.	The
actual	reference	will	stay	the	same	because	JavaScript	will	not	create	a	copy	of	the	array	to
reverse	it.	Although	technically	this	makes	a	lot	of	sense,	this	is	not	what	we	expected	in	the
first	place	when	we	look	at	this	code.

We	can	easily	change	this	example	to	an	immutable	procedure	by	creating	a	copy	of	the	array
before	we	reverse	it:

const	list	=	[1,	2,	3];

console.log(list	===	list.slice().reverse());	//	false

The	issue	with	references	is	that	they	can	cause	a	lot	of	unexpected	side-effects.	Also,	if	we
come	back	to	our	encapsulation	topic	from	Chapter	1,	Component-Based	User	Interfaces,	they
are	completely	against	the	concept	of	encapsulation.	Although	we	might	think	that	it	would	be
safe	to	pass	complex	data	types	into	a	capsule,	it's	actually	not.	As	we're	dealing	with
references	here,	the	data	can	still	be	modified	from	the	outside,	and	our	capsule	will	not	have
the	complete	ownership.	Consider	the	following	example:

class	Sum	{

		constructor(data)	{

				this.data	=	data;

				this.data.sum	=	data.a	+	data.b;

		}

		getSum()	{

				return	this.data.sum;

		}

}

const	data	=	{a:	5,	b:	8};

var	sum	=	new	Sum(data);

console.log(sum.getSum());	//	13

console.log(data.sum);	//	13

Even	if	we	only	wanted	to	store	the	data	internally	in	our	Sum	class,	we	would	have	created	an
unwanted	side-effect	of	referencing	and	modifying	the	data	object	that's	outside	the	instance.
Multiple	sum	instances	would	also	share	the	same	data	from	outside	and	cause	more	side-
effects.	As	a	developer,	you've	learned	to	treat	object	references	right,	but	they	still	can	cause
a	lot	of	problems.

We	don't	have	these	problems	with	immutable	data,	which	can	be	illustrated	easily	with
primitive	data	types	in	JavaScript.	Primitive	data	types	don't	use	references,	and	they	are
immutable	by	design:

let	originalString	=	'Hello	there!';

let	modifiedString	=	originalString.replace(/e/g,	3);

console.log(originalString);	//	Hello	there!

console.log(modifiedString);	//	H3llo	th3r3!

There's	no	way	we	can	modify	an	instance	of	a	string.	Every	modification	that	we	perform	on
a	string	will	generate	a	new	string,	and	this	prevents	the	unwanted	side-effects.

So,	why	do	we	still	have	object	references	within	programming	languages,	even	though	they
cause	so	many	issues?	Why	aren't	we	performing	all	these	operations	on	immutable	data,	and
why	are	we	only	dealing	with	values	rather	than	object	references?

Of	course,	imperative	data	structures	also	come	with	their	benefits,	and	it	always	depends	on
the	context	if	immutable	data	brings	value.

One	of	the	main	reasons	that	is	often	used	against	immutable	data	is	bad	performance.	Of
course,	it	costs	some	performance	if	we	need	to	create	tons	of	copies	of	our	data	every	time
we	want	to	modify	it.	However,	there	are	great	optimization	techniques,	which	fully	eliminate
the	performance	issues	that	we	would	usually	expect	from	immutable	data	structures.	Using	a
tree	data	structure	that	allows	internal	structural	sharing,	copies	of	the	data	will	be	shared
internally.	This	allows	very	efficient	memory	management,	which	in	some	situations,	even
outperforms	mutable	data	structures.	I	can	highly	recommend	the	paper	by	Chris	Okasaki
about	Purely	Functional	Data	Structures	if	you	would	like	to	read	more	about	performance	in
immutable	data	structures.

Tip

JavaScript	does	not	support	immutable	data	structures	out	of	the	box.	However,	you	can	use
libraries,	such	as	Immutable.js	by	Facebook,	which	provide	you	with	an	easy	API	to	deal	with
immutable	data.	Immutable.js	even	implements	structural	sharing	and	makes	it	a	perfect
power	tool	if	you	decide	to	build	on	an	immutable	architecture	in	your	application.

As	with	every	paradigm,	there	are	pros	and	cons,	and	depending	on	the	context,	one	concept
may	fit	better	than	another	one.	In	our	application,	we	won't	use	immutable	data	structures	that
are	provided	by	third-party	libraries,	but	we'll	borrow	some	of	the	benefits	that	you	get	from

immutable	data	by	the	following	immutable	idioms:

It's	much	easier	to	reason	about	immutable	data:	You	can	always	tell	why	your	data	is
in	a	given	state	because	you	know	the	exact	transformation	path.	This	may	sound
irrelevant,	but	in	practice,	this	is	a	huge	benefit	not	only	for	humans	to	write	code,	but
also	for	compilers	and	interpreters	to	optimize	it.
Using	immutable	objects	makes	change	detection	much	faster:	If	we	rely	on
immutable	patterns	to	treat	our	data,	we	can	rely	on	object	reference	checks	to	detect
change.	We	no	longer	need	to	perform	complex	data	analysis	and	comparison	for	dirty
checking,	and	can	fully	rely	on	checking	references.	We	have	the	guarantee	that	object
properties	don't	change	without	the	object	identity	changing	as	well.	This	makes	change
detection	as	easy	as	oldObject	===	newObject.

Pure	components
The	idea	of	a	"pure"	component	is	that	its	whole	state	is	represented	by	its	inputs,	where	all
inputs	are	immutable.	This	is	effectively	a	stateless	component,	but	additionally,	all	the	inputs
are	immutable.

I	like	to	call	such	components	"pure"	because	their	behavior	can	be	compared	to	the	concept
of	pure	functions	in	functional	programming.	A	pure	function	is	a	function	which	has	the
following	properties:

It	does	not	rely	on	any	state	outside	of	the	function	scope
It	always	behave	the	same	if	input	parameters	don't	change
It	never	changes	any	state	outside	the	function	scope	(side-effect)

With	pure	components,	we	have	a	simple	guarantee.	A	pure	component	will	never	change
without	its	input	parameters	being	changed.	We	can	ignore	a	component	and	its
subcomponents	in	change	detection	until	one	of	the	component	inputs	changes.	Sticking	to	this
idea	about	components	gives	us	several	advantages.

It's	very	easy	to	reason	about	pure	components	and	their	behavior	can	be	predicted	very
easily.	Let's	look	at	a	simple	illustration	of	a	component	tree	where	we	use	pure	components:

A	component	tree	with	immutable	components

If	we	have	the	guarantee	that	each	component	in	our	tree	has	a	stable	state	until	an	immutable
input	property	changes,	we	can	safely	ignore	change	detection	that	would	usually	be	triggered
by	Angular.	The	only	way	that	such	a	component	could	change	is	if	an	input	of	the	component
changes.	Let's	say	that	there's	an	event	that	causes	the	A	root	component	to	change	the	input
binding	value	of	the	B	component,	which	will	change	the	value	of	a	binding	on	the	E
component.	This	event,	and	the	resulting	procedure,	would	mark	a	certain	path	in	our
component	tree	to	be	checked	by	change	detection:

Figure	that	shows	a	marked	path	for	change	detection	(in	black)	with	"pure"	components.

Although	the	state	of	the	root	component	changed,	which	also	changed	input	properties	of	the
subcomponents	on	two	levels,	we	only	need	to	be	concerned	about	a	given	path	when	thinking
about	possible	changes	in	the	system.	Pure	components	give	us	the	promise	that	they	will	not
change	if	their	inputs	will	not.	Immutability	plays	a	big	role	here.	Imagine	that	you're	binding
a	mutable	object	to	the	component,	B,	and	the	A	component	would	change	a	property	of	this
object.	As	we	use	object	references	and	mutable	objects,	the	property	would	also	be	changed
for	the	B	component.	However,	there's	no	way	for	the	B	component	to	notice	this	change,	as
we	can't	track	who	knows	about	our	object	within	the	component	tree.	Basically,	we'd	need	to
go	back	to	regular	dirty	checking	of	the	whole	tree	again.

By	knowing	that	all	our	components	are	pure	and	that	their	inputs	are	immutable,	we	can	tell
Angular	to	disable	change	detection	until	an	input	property	value	changes.	This	makes	our
component	tree	very	efficient,	and	Angular	can	optimize	change	detection	effectively.	When
thinking	about	large	component	trees,	this	can	make	the	difference	between	a	stunningly-fast
application	and	a	slow	one.

The	change	detection	of	Angular	is	very	flexible,	and	each	component	gets	its	own	change
detector.	We	can	configure	the	change	detection	of	a	component	by	specifying	the
changeDetection	property	of	the	component	decorator.

Using	ChangeDetectionStrategy,	we	can	choose	from	a	list	of	strategies	that	apply	for	the
change	detection	of	our	component.	In	order	to	tell	Angular	that	our	component	should	only
be	checked	if	an	immutable	input	was	changed,	we	can	use	the	OnPush	strategy,	which	is
designed	exactly	for	this	purpose.

Let's	take	a	look	at	the	different	configuration	possibilities	of	component	change-detection
strategies	and	some	possible	use	cases:

Change-
detection
strategy

Description

CheckAlways

This	strategy	tells	Angular	to	check	this	component	during	every	change-
detection	cycle,	and	this	is	obviously	the	most	expensive	strategy.	This	is	the
only	strategy	that	guarantees	that	a	component	gets	checked	for	changes	on
every	possible	application	state	change.	If	we're	not	working	with	stateless	or
immutable	components,	or	we	are	using	an	inconsistent	data	flow	within	our
application,	this	is	still	the	most	reliable	change-detection	method.	Change
detection	will	be	executed	on	every	browser	event	that	runs	within	the	zone	of
this	component.

Detached

This	strategy	tells	Angular	to	completely	detach	a	component	subtree	from
change	detection.	This	strategy	can	be	used	to	create	a	manual	change-detection
mechanism.

OnPush

This	strategy	tells	Angular	that	a	given	component	subtree	will	only	change
under	one	of	the	following	conditions:

One	of	the	input	properties	changes	where	changes	need	to	be	immutable
An	event	binding	within	the	component	subtree	is	receiving	an	event

Default This	strategy	simply	evaluates	to	CheckAlways

Purifying	our	task	list
In	the	previous	topic,	we	changed	our	main	application	component	to	use	RxJS	Observables
in	order	to	get	notified	about	the	data	changes	in	our	data	store.

We	also	looked	into	the	basics	of	using	immutable	data	structures	and	that	Angular	can	be
configured	to	assume	component	changes	only	occur	when	component	input	changes	("pure"
components).	As	we'd	like	to	get	the	performance	benefits	that	result	from	this	optimization,
let's	refactor	our	task	list	component	to	make	use	of	this.

In	the	previous	chapter,	we	built	our	TaskList	component	and	directly	placed	the	task	data	in
the	component.	We	then	refactored	our	code	so	that	we	could	place	the	task	data	into	a	service
and	use	injection	to	obtain	data.

Now,	we're	rebuilding	our	TaskList	component	to	make	it	"pure"	and	only	dependent	on	its
input	properties.	As	we'll	make	sure	that	the	data	flowing	into	the	component	is	always
immutable,	we	can	use	the	OnPush	change-detection	strategy	on	our	refactored	component.
This	will	certainly	give	our	task	list	a	performance	boost.

Equally	important	as	performance,	are	the	structural	benefits	that	we	get	from	using	pure
components.	A	"pure"	component	does	not	change	any	data	directly	because	it's	not	allowed	to
modify	application	state.	Instead,	it	uses	output	properties	to	emit	events	on	changed	data.	This
allows	our	parent	component	to	react	to	these	events	and	perform	the	necessary	steps	to
handle	the	changes.	As	a	result	of	this,	the	parent	component	will	possibly	change	the	input
properties	of	the	pure	component.	This	will	trigger	change	detection	and	effectively	change
the	state	of	the	pure	component.

What	might	sound	a	bit	overcomplicated	at	first	is	actually	an	immense	benefit	to	the	structure
of	our	application.	This	allows	us	to	reason	about	our	component	with	high	confidence.	The
unidirectional	data	flow	as	well	as	stateless	nature	makes	it	easy	to	understand,	examine,	and
test	our	components.	Also,	the	loose	nature	of	inputs	and	outputs	makes	our	component
extremely	portable.	We	can	decide	on	a	parent	component,	what	data	we'd	like	to	run	into	our
component,	and	how	we'd	like	to	handle	changes.

Let's	take	a	look	at	our	TaskList	component	and	how	we	change	it	to	conform	to	our	concept
of	"pure"	components:

import	{Component,	ViewEncapsulation,	Input,	Output,	EventEmitter,	

ChangeDetectionStrategy}	from	'@angular/core';

import	template	from	'./task-list.html!text';

import	{Task}	from	'./task/task';

import	{EnterTask}	from	'./enter-task/enter-task';

import	{Toggle}	from	'../ui/toggle/toggle';

@Component({

		selector:	'ngc-task-list',

		host:	{

				class:	'task-list'

		},

		template,

		encapsulation:	ViewEncapsulation.None,

		directives:	[Task,	EnterTask,	Toggle],

		changeDetection:	ChangeDetectionStrategy.OnPush

})

export	class	TaskList	{

		@Input()	tasks;

		//	Event	emitter	for	emitting	an	event	once	the	task	list	has	

		//	been	changed

		@Output()	tasksUpdated	=	new	EventEmitter();

		constructor()	{

				this.taskFilterList	=	['all',	'open',	'done'];

				this.selectedTaskFilter	=	'all';

		}

		ngOnChanges(changes)	{

				if	(changes.tasks)	{

						this.taskFilterChange(this.selectedTaskFilter);

				}

		}

		taskFilterChange(filter)	{

				this.selectedTaskFilter	=	filter;

				this.filteredTasks	=	this.tasks	?	this.tasks.filter((task)	=>	{

								if	(filter	===	'all')	{

										return	true;

								}	else	if	(filter	===	'open')	{

										return	!task.done;

								}	else	{

										return	task.done;

								}

						})	:	[];

		}

		//	Function	to	add	a	new	task

		addTask(title)	{

				const	tasks	=	this.tasks.slice();

				tasks.push({	created:	+new	Date(),	title,	done:	null	});

				this.tasksUpdated.next(tasks);

		}

}

All	the	operations	in	our	task	list	component	are	now	immutable.	We	never	directly	modify
our	task's	data	that	was	passed	in	as	input,	but	rather	we	create	new	task	data	arrays	to	perform
mutable	operations.

From	what	we've	learned	from	the	previous	section,	this	effectively	makes	our	component	a
"pure"	component.	This	component	itself	is	only	relying	on	its	input	and	makes	our
component	very	easy	to	reason	about.

You've	probably	noticed	that	we've	also	configured	the	change-detection	strategy	of	our

component.	As	we	have	a	"pure"	component	now,	we	can	configure	our	change-detection
strategy	accordingly	to	save	some	performance:

@Component({

		selector:	'ngc-task-list',

		…

		changeDetection:	ChangeDetectionStrategy.OnPush

})

As	we're	rendering	a	Task	component	for	each	data	record	in	our	task	list,	we	should	also
check	what	we	can	change	there	in	order	to	round	this	out.

Let's	look	at	the	changes	in	our	Task	component:

import	{Component,	Input,	Output,	EventEmitter,	ViewEncapsulation,	HostBinding,	

ChangeDetectionStrategy}	from	'@angular/core';

import	template	from	'./task.html!text';

import	{Checkbox}	from	'../../ui/checkbox/checkbox';

@Component({

		selector:	'ngc-task',

		host:	{

				class:	'task'

		},

		template,

		encapsulation:	ViewEncapsulation.None,

		directives:	[Checkbox],

		changeDetection:	ChangeDetectionStrategy.OnPush

})

export	class	Task	{

		@Input()	task;

		//	We	are	using	an	output	to	notify	our	parent	about	updates

		@Output()	taskUpdated	=	new	EventEmitter();

		@HostBinding('class.task--done')

		get	done()	{

				return	this.task	&&	this.task.done;

		}

		//	We	use	this	function	to	update	the	checked	state	of	our	task

		markDone(checked)	{

				this.taskUpdated.next({

						title:	this.task.title,

						done:	checked	?	+new	Date()	:	null

				});

		}

}

We	also	use	the	OnPush	strategy	for	our	Task	component,	and	we	can	do	this	because	we	also
have	a	pure	component	here.	This	component	only	depends	on	its	inputs.	Both	inputs	expect
native	values	(a	String	for	title	and	a	Boolean	for	done),	which	actually	makes	them
immutable	by	nature.	Changes	on	the	task	will	be	communicated	using	the	taskUpdated	output
property.

Now,	this	is	a	good	time	to	think	about	where	to	place	our	task	list	in	the	application.	As	we're
writing	a	task	management	system	that	gives	our	users	the	ability	to	manage	tasks	within
projects,	we	need	to	have	a	container	that	will	encapsulate	the	concerns	of	projects.	We	create
a	new	Project	component,	on	the	path	lib/project/project.js,	which	will	display	project
details	and	renders	the	TaskList	component	as	a	subcomponent:

import	{Component,	ViewEncapsulation,	Input,	Output,	EventEmitter,	

ChangeDetectionStrategy}	from	'@angular/core';

import	template	from	'./project.html!text';

import	{TaskList}	from	'../task-list/task-list';

@Component({

		selector:	'ngc-project',

		host:	{

				class:	'project'

		},

		template,

		encapsulation:	ViewEncapsulation.None,

		directives:	[TaskList],

		changeDetection:	ChangeDetectionStrategy.OnPush

})

export	class	Project	{

		@Input()	title;

		@Input()	description;

		@Input()	tasks;

		@Output()	projectUpdated	=	new	EventEmitter();

		//	This	function	should	be	called	if	the	task	list	of	the	

		//	project	was	updated

		updateTasks(tasks)	{

				this.projectUpdated.next({

						title:	this.title,

						description:	this.description,

						tasks

				});

		}	

}

Again,	we	make	the	state	of	this	component	dependent	only	on	its	immutable	inputs,	and	we
use	the	OnPush	strategy	in	order	to	get	the	positive	performance	implications	of	using	a	pure
component.	It's	also	important	to	note	that	the	updateTasks	function	acts	as	some	sort	of	a
delegate	from	our	TaskList	component.	When	we	update	a	task	inside	the	TaskList
component,	we	catch	the	event	in	the	project	template	and	call	the	updateTasks	function	with
the	new	updated	task	list.	From	here,	we're	just	emitting	the	updated	project	data	with	the	new
task	list	further	up	in	the	component	tree.

Let's	also	take	a	look	at	the	template	of	our	Project	component	quickly	to	understand	the
wiring	behind	this	component:

<div	class="project__l-header">

		<h2	class="project__title">{{title}}</h2>

		<p>{{description}}</p>

</div>

<ngc-task-list	[tasks]="tasks"

															(tasksUpdated)="updateTasks($event)">

</ngc-task-list>

The	binding	logic	in	the	template	tells	us	how	the	whole	data	flow	with	our	purified
components	work.	While	the	Project	component	itself	receives	the	list	of	tasks	as	input,	it
directly	forwards	this	data	to	the	tasks	input	of	the	TaskList	component.	If	the	TaskList
component	fires	a	tasksUpdated	event,	we're	calling	the	updateTasks	method	on	the	Project
component,	which	in	fact	just	emits	a	projectUpdated	event	again.

Recap
The	refactoring	of	our	task	list	is	now	completed,	and	we	applied	our	knowledge	about
immutable	components	and	observable	data	structures	to	gain	some	performance	wins	in	this
structure.	There	won't	be	unnecessary	dirty	checking	on	our	Task	component	any	more
because	we	switched	to	the	OnPush	change-detection	strategy.

We	have	also	reduced	the	complexity	of	the	TaskList	and	Task	components	a	lot,	and	it's	now
far	easier	to	reason	about	these	components	and	their	state.

A	further	benefit	of	this	refactoring	is	the	great	encapsulation	level	that	we	achieved	using
immutable	inputs.	Our	TaskList	component	is	not	relying	on	any	task	container	as	a	project.
We	can	also	pass	it	a	list	of	tasks	across	all	the	projects,	and	it	can	still	work	as	expected.

Composition	using	content	projection
In	this	section,	we	will	create	a	tabbed	interface	for	our	Project	component	that	will	help	us
further	organize	the	structure	of	our	application	user	interface.	In	order	to	create	a	Tabs
component,	we'll	look	at	content	projection	and	content	child	injection	using	observable
query	lists.

Input	and	output	properties	are	great	to	establish	encapsulation,	and	this	is	a	main	property	of
proper	composition.	However,	sometimes	the	requirements	are	not	to	only	pass	data	but	to
also	pass	content	from	the	outside	of	a	component	into	the	component.	In	Shadow	DOM,	this
is	done	using	so-called	slots.	In	Angular	components,	we	can	create	content	projection	points
using	the	<ng-content>	element.

Let's	look	at	a	simple	content	projection	example	that	helps	us	understand	what	this	is	good
for:

@Component({

		selector:	'child',

		template:	`

				<article>

						<header>

								<h1><ng-content	select="[data-header]"></ng-content></h1>

						</header>

						<ng-content></ng-content>

				</article>

		`

})

export	class	Child	{}

@Component({

		selector:	'app',

		template:	`

				<child>

						<header	data-header>Content	projection	is	great</header>

						<p>Insert	content	in	a	controlled	manner</p>

				</child>

		`,

		directives:	[Child]

})

export	class	App	{}

Looking	at	the	App	component	in	this	example,	we	can	see	that	we've	put	elements	inside	the
actual	<child>	element.	Usually,	this	content	would	be	ignored	and	removed	by	Angular
before	it	renders	the	Child	component	with	its	template.

However,	when	using	content	projection,	the	elements	that	are	placed	inside	our	component
HTML	element	can	be	sucked	into	the	Child	component.	This	is	what	content	projection	is	all
about.	Content	projection	is	actually	very	similar	to	the	concept	of	transclusion	from	Angular
1.

All	that	we	need	to	do	in	order	to	enable	content	projection	within	a	Child	component	is	to
place	a	<ng-content>	element	within	its	template.	In	this	way,	we	specify	at	what	locations	in
our	component	template	we	want	to	insert	the	content	that	is	sucked	in	from	the	parent
component.

Additionally,	we	can	use	the	select	attribute	on	the	<ng-content>	element	to	set	a	CSS-like
selector.	This	selector	will	be	used	to	only	suck	in	specific	elements,	which	match	this
selector.	In	this	way,	you	can	have	multiple	insertion	points	that	cover	different	content
requirements.

Elements	from	the	component	element	can	only	be	inserted	once,	and	the	content	projection
works	by	going	through	all	the	<ng-content>	elements	in	sequential	order	by	project
matching	elements.	If	you	have	multiple	competing	content	projection	points	in	your	template
that	are	interested	in	the	same	elements,	the	first	one	will	actually	win.

Creating	a	tabbed	interface	component
Let's	introduce	a	new	UI	component	in	our	ui	folder	in	the	project	that	will	provide	us	with	a
tabbed	interface	that	we	can	use	for	composition.	We	use	what	we	learned	about	content
projection	in	order	to	make	this	component	reusable.

We'll	actually	create	two	components,	one	for	Tabs,	which	itself	holds	individual	Tab
components.

First,	let's	create	the	component	class	within	a	new	tabs/tab	folder	in	a	file	called	tab.js:

import	{Component,	Input,	ViewEncapsulation,	HostBinding}	from	'@angular/core';

import	template	from	'./tab.html!text';

@Component({

		selector:	'ngc-tab',

		host:	{

				class:	'tabs__tab'

		},

		template,

		encapsulation:	ViewEncapsulation.None

})

export	class	Tab	{

		@Input()	name;

		@HostBinding('class.tabs__tab--active')	active	=	false;

}

The	only	state	that	we	store	in	our	Tab	component	is	whether	the	tab	is	active	or	not.	The	name
that	is	displayed	on	the	tab	will	be	available	through	an	input	property.

We	use	a	class	property	binding	to	make	a	tab	visible,	based	on	the	active	flag	we	set	a	class;
without	this,	our	tabs	are	hidden.

Let's	take	a	look	at	the	tab.html	template	file	of	this	component:

<ng-content></ng-content>

This	is	it	already?	Actually,	yes	it	is!	The	Tab	component	is	only	responsible	for	the	storage
of	its	name	and	active	state,	as	well	as	the	insertion	of	the	host	element	content	in	the	content
projection	point.	There's	no	additional	templating	that	is	needed.

Now,	we'll	move	one	level	up	and	create	the	Tabs	component	that	will	be	responsible	for
grouping	all	the	Tab	components.	As	we	won't	include	Tab	components	directly	when	we	want
to	create	a	tabbed	interface	but	use	the	Tabs	component	instead,	this	needs	to	forward	content
that	we	put	into	the	Tabs	host	element.	Let's	look	at	how	we	can	achieve	this.

In	the	tabs	folder,	we	will	create	a	tabs.js	file	that	contains	our	Tabs	component	code,	as
follows:

import	{Component,	ViewEncapsulation,	ContentChildren}	from	'@angular/core';

import	template	from	'./tabs.html!text';

//	We	rely	on	the	Tab	component

import	{Tab}	from	'./tab/tab';

@Component({

		selector:	'ngc-tabs',

		host:	{

				class:	'tabs'

		},

		template,

		encapsulation:	ViewEncapsulation.None,

		directives:	[Tab]

})

export	class	Tabs	{

		//	This	queries	the	content	inside	<ng-content>	and	stores	a	

		//	query	list	that	will	be	updated	if	the	content	changes

		@ContentChildren(Tab)	tabs;

		//	The	ngAfterContentInit	lifecycle	hook	will	be	called	once	the	

		//	content	inside	<ng-content>	was	initialized

		ngAfterContentInit()	{

				this.activateTab(this.tabs.first);

		}

		activateTab(tab)	{

				//	To	activate	a	tab	we	first	convert	the	live	list	to	an	

				//	array	and	deactivate	all	tabs	before	we	set	the	new	

				//	tab	active

				this.tabs.toArray().forEach((t)	=>	t.active	=	false);

				tab.active	=	true;

		}

}	

Let's	observe	what's	happening	here.	We	used	a	new	@ContentChildren	annotation,	in	order	to
query	our	inserted	content	for	directives	that	match	the	type	that	we	pass	to	the	decorator.	The
tabs	property	will	contain	an	object	of	the	QueryList	type,	which	is	an	observable	list	type
that	will	be	updated	if	the	content	projection	changes.	You	need	to	remember	that	content
projection	is	a	dynamic	process,	as	the	content	in	the	host	element	can	actually	change,	for
example,	using	the	NgFor	or	NgIf	directives.

We	use	the	AfterContentInit	lifecycle	hook,	which	we've	already	briefly	discussed	in	the
Custom	UI	elements	section	of	Chapter	2,	Ready,	Set,	Go!	This	lifecycle	hook	is	called	after
Angular	has	completed	content	projection	on	the	component.	Only	then	do	we	have	the
guarantee	that	our	QueryList	object	will	be	initialized,	and	we	can	start	working	with	child
directives	that	were	projected	as	content.

The	activateTab	function	will	set	the	Tab	component's	active	flag,	deactivating	any	previous
active	tab.	As	the	observable	QueryList	object	is	not	a	native	array,	we	first	need	to	convert	it
using	toArray()	before	we	start	working	with	it.

Let's	now	look	at	the	template	of	the	Tabs	component	that	we	created	in	a	file	called	tabs.html

in	the	tabs	directory:

<ul	class="tabs__tab-list">

		<li	*ngFor="let	tab	of	tabs">

				<button	class="tabs__tab-button"

												[class.tabs__tab-button--active]="tab.active"

												(click)="activateTab(tab)">{{tab.name}}</button>

		

<div	class="tabs__l-container">

		<ng-content	select="ngc-tab"></ng-content>

</div>

The	structure	of	our	Tabs	component	is	as	follows.

First	we	render	all	the	tab	buttons	in	an	unordered	list.
After	the	unordered	list,	we	have	a	tabs	container	that	will	contain	all	our	Tab
components	that	are	inserted	using	content	projection	and	the	<ng-content>	element.
Note	that	the	selector	that	we	use	is	actually	the	selector	we	use	for	our	Tab	component.
Tabs	that	are	not	active	will	not	be	visible	because	we	control	this	using	CSS	on	our	Tab
component	class	attribute	binding	(refer	to	the	Tab	component	code).

This	is	all	that	we	need	to	create	a	flexible	and	well-encapsulated	tabbed	interface	component.
Now	we	can	go	ahead	and	use	this	component	in	our	Project	component	to	provide	a
segregation	of	our	project	detail	information.

We	will	create	three	tabs	for	now,	where	the	first	one	will	embed	our	task	list.	We	will	address
the	content	of	the	other	two	tabs	in	a	later	chapter.

Let's	modify	our	Project	component	template	in	the	project.html	file	as	a	first	step.

Instead	of	including	our	TaskList	component	directly,	we	now	use	the	Tabs	and	Tab
components	to	nest	the	task	list	into	our	tabbed	interface:

<ngc-tabs>

		<ngc-tab	name="Tasks">

				<ngc-task-list	[tasks]="tasks"

																			(tasksUpdated)="updateTasks($event)">

				</ngc-task-list>

		</ngc-tab>

		<ngc-tab	name="Comments"></ngc-tab>

		<ngc-tab	name="Activities"></ngc-tab>

</ngc-tabs>

You	should	have	noticed	by	now	that	we	are	actually	nesting	two	components	within	this
template	code	using	content	projection,	as	follows:

First,	the	Tabs	component	uses	content	projection	to	select	all	the	<ngc-tab>	elements.	As
these	elements	happen	to	be	components	too	(our	Tab	component	will	attach	to	elements
with	this	name),	they	will	be	recognized	as	such	within	the	Tabs	component	once	they	are
inserted.

In	the	<ngc-tab>	element,	we	then	nest	our	TaskList	component.	If	we	go	back	to	our
Task	component	template,	which	will	be	attached	to	elements	with	the	name	ngc-tab,	we
will	have	a	generic	projection	point	that	inserts	any	content	that	is	present	in	the	host
element.	Our	task	list	will	effectively	be	passed	through	the	Tabs	component	into	the	Tab
component.

Recap
In	this	topic,	we	created	a	very	handy	tabbed	interface	component	that	we	can	use	to	segregate
our	user	interface	and	provide	a	focused	context	for	our	users.	We	used	content	projection
points	using	the	<ng-content>	elements.	We	also	learned	how	to	access	inserted	components
using	the	@ContentChildren	annotation	and	observable	lists	using	the	QueryList	type.

Mixing	projected	with	generated	content
Our	task	management	application	supports	the	listing	of	multiple	projects	where	a	user	can
manage	tasks.	We	need	to	provide	a	navigation	that	enables	a	user	to	browse	through	the
existing	projects.	As	projects	come	from	our	data	store,	the	navigation	will	need	to	be
generated	dynamically.	However,	we	also	would	like	to	have	the	possibility	of	specifying
some	navigation	items	within	our	navigation,	as	static	content	with	pure	templating.

In	this	section,	we	will	create	a	simple	navigation	component,	which	will	use	content
projection,	so	that	we	can	add	static	navigation	items.	At	the	same	time,	navigation	items	can
be	generated	from	data	and	mixed	with	the	static	content-based	navigation	items.

Let's	first	take	a	look	at	an	illustration	of	the	architectural	design	and	composition	that	we're
going	to	use	to	implement	our	navigation:

An	illustration	of	the	navigation	component	tree	and	interactions

We'll	use	an	intermediate	component	between	the	Navigation	and	NavigationItem
components.	The	NavigationSection	component	is	responsible	for	the	division	of	multiple
items	into	a	section.	The	navigation	sections	also	have	a	title	that	will	be	displayed	on	top	of
the	item	list.

The	illustration	shows	two	NavigationSection	components,	where	the	left	one	uses	pure
content	projection	to	create	items,	as	we	have	learned	in	the	previous	section.	The	right
NavigationSection	component	generates	items	using	an	input	data	structure,	which	is	a	list	of
navigation	item	models.

As	we	have	intermediate	components	between	the	Navigation	and	NavigationItems
components	(we	can	only	have	one	selected	navigation),	we	also	establish	a	direct
communication	path	between	them.	We	will	achieve	this	using	ancestor	component	injection.

Note

The	architectural	approach	for	this	navigation	is	just	one	of	many	possible	approaches.	We
choose	this	approach	in	order	to	show	you	how	we	can	easily	mix	content	projection	and
generated	content.	In	this	example,	we	don't	use	the	Angular	router	to	provide	navigation	state
and	route	mapping.	This	will	be	part	of	a	later	chapter.

Let's	start	bottom	up	with	the	NavigationItem	component	and	create	a	new	navigation-
item.js	file	in	a	newly-created	navigation/navigation-section/navigation-item	path:

//	We	rely	on	the	navigation	component	to	know	if	we	are	active

import	{Navigation}	from	'../../navigation';

@Component({

		selector:	'ngc-navigation-item'

})

export	class	NavigationItem	{

		@Input()	title;

		@Input()	link;

		constructor(@Inject(Navigation)	navigation)	{

				this.navigation	=	navigation;

		}

		//	Here,	we	are	delegating	to	the	navigation	component	to	see	if

		//	we	are	active	or	not

		isActive()	{

				return	this.navigation.isItemActive(this);

		}

		//	If	this	link	is	activated	we	need	to	tell	the	navigation	component

		onActivate()	{

				this.navigation.activateLink(this.link);

		}

}

From	the	NavigationItem	component	code,	we	can	see	that	we're	directly	communicating
with	the	Navigation	ancestor	component.	We	can	simply	inject	the	NavigationComponent,	as
this	is	a	child	of	the	component.	As	the	Navigation	items	will	never	exist	without	a
Navigation	component,	we	should	be	fine	with	this	direct	dependency.

Let's	move	on	to	the	NavigationSection	component	that	is	the	intermediate	component

between	the	Navigation	component	and	the	items	and	is	responsible	for	the	grouping	of	items
together.

We	will	create	a	file	called	navigation-section.js	in	the	navigation/navigation-section
path:

@Component({

		selector:	'ngc-navigation-section',

		directives:	[NavigationItem]

})

export	class	NavigationSection	{

		@Input()	title;

		@Input()	items;

}

Hold	on!	That's	all	that	this	needs?	Didn't	we	say	that	we	want	our	NavigationSection
component	to	also	be	responsible	for	not	only	providing	a	way	to	insert	content,	but	also
accepting	data	in	order	to	generate	items?	Well,	this	is	true.	However,	this	is	actually	pure
templating	logic,	and	it	can	be	done	solely	within	the	template	file	of	the	component.	All	that
we	need	is	an	optional	input	with	item	data	that	we	will	use	to	generate	the	NavigationItem
components.

Let's	create	the	view	template	for	this	component	in	a	file	named	navigation-section.html:

<h2	class="navigation-section__title">{{title}}</h2>

<ul	class="navigation-section__list">

		<ng-content	select="ngc-navigation-item"></ng-content>

		<ngc-navigation-item	*ngFor="let	item	of	items"

																							[title]="item.title"

																							[link]="item.link"></ngc-navigation-item>

Well,	this	wasn't	rocket	science,	was	it?	However,	this	shows	the	great	flexibility	that	we	have
in	Angular	component	templates:

Firstly,	we	create	a	content	projection	point	that	selects	all	the	elements	from	the	host
element	that	match	the	name	ngc-navigation-item.	This	means	that	the	NavigationItem
components	can	be	placed	outside	the	component	in	a	very	static	fashion	to	create,	for
example,	static	links.	As	the	model	properties	of	navigation	items	are	directly	exposed	as
bindable	attributes	on	the	NavigationItem	element,	we	can	also	place	them	statically	into
a	pure	HTML	template	with	regular	DOM	attributes.
Secondly,	we	can	use	the	NgFor	directive	to	generate	the	NavigationItem	components
inside	the	component.	Here,	we	just	iterate	over	the	list	of	navigation	item	models	that
acts	as	an	optional	input	to	our	component.	We	use	bindings	in	the	items	model	so	that	we
can	even	propagate	change	into	our	navigation	item	components.

As	a	final	step,	we	create	the	Navigation	component	itself	that	uses	content	projection	points
so	that	we	can	manage	the	NavigationSection	component	from	outside.	We	create	a	file
called	navigation.js	to	write	the	code	of	the	Navigation	component:

import	{NavigationSection}	from	'./navigation-section/navigation-section';

@Component({

		selector:	'ngc-navigation',

		directives:	[NavigationSection]

})

export	class	Navigation	{

		@Input()	activeLink;

		//	Checks	if	a	given	navigation	item	is	currently	active	by	its	

		//	link.	This	function	will	be	called	by	navigation	item	child	

		//	components.

		isItemActive(item)	{

				return	item.link	===	this.activeLink;

		}

		//	If	a	link	wants	to	be	activated	within	the	navigation,	this	

		//	function	needs	to	be	called.	This	way	child	navigation	item	

		//	components	can	activate	themselves.

		activateLink(link)	{

				this.activeLink	=	link;

				this.activeLinkChange.next(this.activeLink);

		}

}

In	the	Navigation	component,	we	store	the	state	of	which	navigation	item	is	activated.	This	is
also	provided	as	input	to	the	component	so	that	we	can	set	the	activated	link	with	an	input
binding	from	outside.	The	isItemActive	and	activateLink	functions	are	there	to	monitor	and
change	the	state	of	the	active	item	within	the	navigation.	These	functions	are	directly	used
within	the	NavigationItem	components,	which	inject	the	navigation	using	ancestor	component
injection.

Now,	the	only	bit	that	is	missing	is	to	include	our	navigation	in	the	main	application.	For	this,
we	will	edit	the	app.html	template	of	the	component:

<div	class="app">

		<div	class="app__l-side">

				<ngc-navigation	

												[activeLink]="getSelectedProjectLink()"

												(activeLinkChange)="selectProjectByLink($event)">

						<ngc-navigation-section	

																			title="Projects"

																			[items]="getProjectNavigationItems()">

						</ngc-navigation-section>

				</ngc-na

vigation>

		</div>

		<div	class="app__l-main">

				…

		</div>

</div>

Here,	we	only	use	the	generative	approach	to	write	a	NavigationSection	component	where

we	actually	pass	a	list	of	navigation	item	models	into	the	navigation	component.	This	list	is
generated	by	the	getProjectNavigationItems	function	on	our	main	application	component
using	the	available	projects	from	our	observable	data	structure:

A	screenshot	of	the	newly-created	project	navigation

Summary
In	this	chapter,	we	learned	about	how	we	can	profit	from	concepts,	such	as	reactive
programming,	observable	data	structures,	and	immutable	objects,	in	order	to	make	our
application	perform	better,	and	most	importantly,	simple	and	easy	to	reason	about.

We	touched	on	the	different	change-detection	strategies	and	learned	how	to	use	the	OnPush
strategy	to	gain	better	performance	in	combination	with	immutable	data.

We	built	a	tabbed	user	interface	component	that	we	can	reuse	wherever	we	need	it,	and	we
learned	about	the	concept	of	content	projection.	We	also	created	a	simple	navigation
component	tree	that	uses	a	mix	of	content	projection	and	generation.	The	navigation	items
also	directly	communicate	with	their	ancestor	Navigation	component,	in	order	to	manage
their	state	using	ancestor	component	injection.

As	we	switched	to	a	reactive	approach	to	manage	data	within	our	application,	I	want	you	to
perform	a	little	experiment.	If	you've	downloaded	the	final	chapter's	code,	go	ahead	and	open
two	browser	windows	that	point	to	the	task	management	application.	You	will	be	amazed	that
we	already	have	a	working	real-time	synchronization	in	place	that	allows	us	to	work	in	both
browser	windows	and	have	both	of	them	updated	at	the	same	time.	This	has	all	been	made
possible	because	of	the	reactive	and	functional	way	that	we	work	with	data	in	our	components.

Chapter	4.	No	Comments,	Please!
During	the	course	of	this	chapter,	we	will	create	reusable	components	to	enable	commenting
not	only	on	projects,	but	also	on	any	other	entity	within	our	application.	We'll	build	our
commenting	system	in	a	way	that	it	will	allow	us	to	place	it	anywhere	we'd	like	for	our	users
to	put	comments.	In	order	to	provide	our	users	with	a	feature	to	edit	existing	comments	and
also	a	seamless	authoring	experience,	we'll	create	an	editor	UI	component	that	could	be	used
to	make	arbitrary	content	within	our	application	editable.

Discussing	security	and	proper	user	management	in	this	chapter	is	still	out	of	scope,	but	we're
going	to	create	a	dummy	user	service	that	will	help	us	simulate	a	logged-in	user.	This	service
will	be	used	by	the	commenting	system,	and	we'll	refactor	our	existing	component	to	make
use	of	it	too.

We'll	cover	the	following	topics	in	this	chapter:

Using	contenteditable	to	create	an	in-place	editor
Using	@HostBinding	and	@HostListener	to	bind	component	members	to	host	element
properties	and	events
Communicating	directly	with	view	children	using	the	@ViewChild	annotation
Performing	DOM	operations	by	injecting	and	using	ElementRef
Creating	a	dummy	user	service	and	using	the	@Injectable	annotation	to	serve	it	as	a
dependency	injection	provider
Applying	custom	actions	on	component	input	changes,	using	the	OnChanges	life	cycle
hook
Creating	a	simple	pipe	to	format	relative	time	intervals	using	the	Moment.js	library

One	editor	to	rule	them	all
Since	we	will	be	processing	a	lot	of	user	input	within	our	application,	it's	crucial	to	provide	a
nice	authoring	experience	to	our	users.	Within	the	commenting	system	we're	about	to	create
in	this	chapter,	we	need	a	way	through	which	users	could	edit	existing	comments,	as	well	as
add	new	comments.	We	could	use	regular	text	area	input	and	work	with	dialog	boxes	to	edit
comments,	but	this	seems	too	old-fashioned	for	a	modern	user	interface,	which	we're	going
to	build,	and	does	not	really	provide	a	great	user	experience.	What	we're	looking	for	is	a	way
to	edit	stuff	in	place.	The	commenting	system	will	not	only	benefit	from	such	an	in-place
editor,	but	it	will	also	help	us	create	the	editor	component	in	such	a	way	that	we	can	use	it	for
any	content	within	our	application	that	we'd	like	to	make	editable.

In	order	to	build	our	in-place	editor,	we're	going	to	use	the	contenteditable	API	that	will
enable	a	user	to	modify	the	content	within	the	HTML	elements	directly	in	the	site	document.

The	following	example	illustrates	how	we	can	use	the	contenteditable	attribute	to	make
HTML	elements	editable:

<h1	contenteditable>I'm	an	editable	title</h1>

<p>I	can't	be	edited</p>

Run	the	preceding	example	on	a	blank	HTML	page	and	click	on	the	h1	text.	You	will	see	that
the	element	has	become	editable	and	you	can	type	to	modify	its	content.

Getting	notified	about	changes	within	editable	elements	is	fairly	easy.	There's	an	input	event
emitted	on	every	DOM	element	that	is	editable,	and	this	will	allow	us	to	react	to	a	change
easily:

const	h1	=	document.querySelector('h1');

h1.addEventListener('input',(event)=>console.log(h1.textContent);

With	this	example,	we	have	already	created	a	naive	implementation	of	an	in-place	editor
where	we're	able	to	monitor	changes	applied	by	the	user.	Within	this	topic,	we'll	use	this
standard	technology	to	build	a	reusable	component	that	we	can	use	wherever	we	want	to	make
things	editable.

Creating	an	editor	component
First,	let's	create	a	new	folder	named	editor	within	our	ui	folder.	In	this	folder,	we're	going
to	create	a	new	component	file	named	editor.js:

import	{Component,	ViewChild,	Input,	Output,	ViewEncapsulation,	EventEmitter,	

HostBinding,	HostListener}	from	'@angular/core';

import	template	from	'./editor.html!text';

@Component({

		selector:	'ngc-editor',

		host:	{

				class:	'editor'

		},

		template,

		encapsulation:	ViewEncapsulation.None

})

export	class	Editor	{

		//	Using	view	child	reference	with	local	view	variable	name

		@ViewChild('editableContentElement')	editableContentElement;

		//	Content	that	will	be	edited	and	displayed

		@Input()	content;

		//	Creating	a	host	element	class	attribute	binding	from	the	

		//	editMode	property

		@Input()	@HostBinding('class.editor--edit-mode')	editMode;

		@Input()	showControls;

		@Output()	editSaved	=	new	EventEmitter();

		@Output()	editableInput	=	new	EventEmitter();

		//	We	need	to	make	sure	to	reflect	to	our	editable	element	if	

		//	content	gets	updated	from	outside

		ngOnChanges()	{

				if	(this.editableContentElement	&&	this.content)	{

						this.setEditableContent(this.content);

				}

		}

		ngAfterViewInit()	{

				this.setEditableContent(this.content);

		}

		//	This	returns	the	content	of	our	content	editable

		getEditableContent()	{

				return	this.editableContentElement.nativeElement.textContent;

		}

		//	This	sets	the	content	of	our	content	editable

		setEditableContent(content)	{

				this.editableContentElement.nativeElement.textContent	=	

						content;

		}

		//	This	annotation	will	create	a	click	event	listener	on	the	

		//	host	element	that	will	invoke	the	underlying	method

		@HostListener('click')

		focusEditableContent()	{

				if	(this.editMode)	{

						this.editableContentElement.nativeElement.focus();

				}

		}

		//	Method	that	will	be	invoked	if	our	editable	element	is	

		//	changed

		onInput()	{

				//	Emit	a	editableInput	event	with	the	edited	content

				this.editableInput.next(this.getEditableContent());

		}

		//	On	save	we	reflect	the	content	of	the	editable	element	into	

		//	the	content	field	and	emit	an	event

		save()	{

				this.editSaved.next(this.getEditableContent());

				this.setEditableContent(this.content);

				//	Setting	editMode	to	false	to	switch	the	editor	back	to	

				//	viewing	mode

				this.editMode	=	false;

		}

		//	Canceling	the	edit	will	not	reflect	the	edited	content	and	

		//	switch	back	to	viewing	mode

		cancel()	{

				this.setEditableContent(this.content);

				this.editableInput.next(this.getEditableContent());

				this.editMode	=	false;

		}

		//	The	edit	method	will	initialize	the	editable	element	and	set	

		//	the	component	into	edit	mode

		edit()	{

				this.editMode	=	true;

		}

}

Okay,	that's	quite	a	lot	of	new	code.	Let's	dissect	the	different	parts	of	the	Editor	component
and	go	through	each	part	step	by	step.

Within	our	Editor	component,	we'll	need	to	interact	with	the	native	DOM	element,	which	is
editable.	The	easiest	and	also	the	safest	method	to	do	this	is	to	use	the	@ViewChild	decorator
in	order	to	retrieve	an	element	with	a	local	view	reference:

@ViewChild('editableContentElement')	editableContentElement;

In	the	previous	chapter,	we	learned	about	the	@ContentChildren	annotation,	which	helps	us
obtain	a	list	of	all	the	child	components	within	content	projection	points.	If	we	would	like	to
do	the	same	with	regular	view	children,	we	need	to	use	the	equivalent	@ViewChildren
annotation.	While	@ContentChildren	searches	for	components	within	content	projection
points,	@ViewChildren	hunts	for	the	regular	sub-tree	of	a	component.

If	we	want	to	search	the	component	sub-tree	for	one	single	component,	we	can	use	the
@ViewChild	annotation	(please	note	that	@ViewChild	and	@ViewChidren	are	different).

Query	annotation Description

@ViewChildren(selector)
Will	query	the	current	component's	view	for	either	directives	or
components	and	return	an	object	of	the	type	QueryList.	If	the	view
is	dynamically	updated,	this	list	will	be	updated	as	well.

@ViewChild(selector) Will	query	for	only	the	first	matching	component	or	directive	and
return	an	instance	of	it.

Note

A	selector	can	be	either	a	directive	or	component	type,	or	a	string	that	contains	the	name	of	a
local	view	variable.	If	a	local	view	variable	name	is	provided,	Angular	will	search	for	the
element	containing	the	view	variable	reference.

If	you	need	to	communicate	with	view	child	components	directly,	using	@ViewChild	and
@ViewChildren	annotations	should	be	your	preferred	way.

Tip

Sometimes	you	need	to	run	the	initialization	code	on	view	children	after	your	component	is
initialized.	In	such	cases,	you	can	use	the	AfterViewInit	life	cycle	hook.	While	the	view	child
properties	of	your	component	class	will	still	be	undefined	within	the	constructor	of	your
component,	they	will	be	populated	and	initialized	after	the	AfterViewInit	life	cycle	callback.

The	@ViewChild	and	@ViewChildren	decorators	are	great	tools	to	interact	with	in	your	view
directly.	It	doesn't	really	matter	whether	you'd	like	to	interact	with	a	DOM	element	or	a
component	instance.	Both	use	cases	are	nicely	covered	using	this	declarative	API.

Let's	move	back	to	our	Editor	component	code.	The	next	thing	we're	going	to	look	into	are
the	component's	input	functions:

@Input()	content;

@Input()	@HostBinding('class.editor--edit-mode')	editMode;

@Input()	showControls;

The	content	input	property	is	the	main	interface	for	interacting	with	the	component	from
outside.	Using	property	bindings,	we	can	have	any	preexisting	text	content	set	up	in	the	editor
component.

The	editMode	property	is	a	Boolean	value	that	controls	whether	the	editor	is	in	edit	or	display

mode.	Our	editor	component	will	depend	on	this	flag	to	know	whether	content	should	be
edited	or	not.	This	allows	us	to	switch	from	read-only	mode	to	edit	mode	and	back
interactively.

Though	an	input	property,	this	flag	can	be	controlled	from	outside	the	component.	At	the
same	time,	it	can	also	be	used	to	create	property	binding	of	a	host	element.	Specifically,	we
can	use	the	flag	to	create	a	class	attribute	binding	to	add	or	remove	the	modifier	class,
editor--edit-mode.	This	class	is	used	to	control	some	differences	in	the	visual	appearance	of
the	editor	while	in	edit	mode.

The	last	of	the	three	input	properties	in	our	editor	component,	showControls,	controls
whether	the	editor	should	show	the	control	functions.	There	are	three	controls	that	will	be
shown	when	this	property	evaluates	to	a	true	value:

Edit	button:	This	will	be	shown	when	the	component	is	in	display	mode,	and	it	will
switch	the	component	to	edit	mode	using	the	editMode	flag.
Save	button:	This	will	be	shown	only	if	the	component	is	in	edit	mode.	This	control	will
save	the	changes	applied	within	the	current	edit	mode	and	switch	the	component	back	to
display	mode.
Cancel	button:	This	is	the	same	as	the	save	button,	and	this	control	is	shown	only	when
the	component	is	in	edit	mode.	If	activated,	the	component	will	switch	back	to	display
mode,	reverting	any	changes	that	you	may	have	made.

Besides	our	input	properties,	we	also	need	some	output	properties	to	notify	the	outer	world
about	the	changes	within	our	editor.	The	following	piece	of	code	helps	us	do	this:

@Output()	editSaved	=	new	EventEmitter();

@Output()	editableInput	=	new	EventEmitter();

The	editSaved	event	will	be	emitted	once	the	edited	content	is	saved	using	the	save	button
control.	Also,	it'll	be	better	if	an	event	is	emitted	upon	every	input	change	within	our	editable
content	element.	For	this,	we	used	the	editableInput	output	property.

Our	editor	component	works	in	a	simple	way.	If	the	component	is	in	edit	mode,	it	shows	an
element	that	can	be	edited.	However,	once	the	editor	switches	back	to	display	mode,	we	see	a
different	element	that	cannot	be	edited.	The	visibility	is	controlled	with	the	modifier	class	set
by	the	host	element	property	binding	to	the	editMode	flag.

Angular	has	no	control	over	the	content	within	our	editable	element.	We	control	this	content
manually	by	using	native	DOM	operations.	Let's	look	at	how	we	did	this.	First	of	all,	we
needed	to	use	delegates	to	access	the	element,	since	we're	most	likely	going	to	change	how	we
will	read	and	write	to	and	from	the	editable	element.	We	used	the	following	to	do	this:

getEditableContent()	{

		return	this.editableContentElement.nativeElement.textContent;

			}

setEditableContent(content)	{

		this.editableContentElement.nativeElement.textContent	=	

				content;

}

Tip

Note	that	we	used	the	nativeElement	property	on	our	editableContentElement	field,
previously	set	by	the	@ViewChild	decorator.

Angular	does	not	directly	provide	us	with	a	DOM	element	reference	but	a	wrapper	object	of
the	type	ElementRef.	It's	basically	a	wrapper	around	the	native	DOM	element,	holding
additional	information	that	is	relevant	to	Angular.

Using	the	nativeElement	accessor,	we	can	obtain	a	reference	to	the	underlying	DOM	element.

Note

The	ElementRef	wrapper	plays	an	important	part	in	Angular's	platform-agnostic	architecture.
It	allows	you	to	run	Angular	in	different	environments	(for	example,	native	mobile,	web
workers,	or	others).	It's	part	of	an	abstraction	layer	between	the	components	and	their	views.

We	also	needed	a	way	to	set	the	content	of	the	editable	element	based	on	the	input	that	we
would	receive	from	the	content	input	property.	We	could	use	the	life	cycle	hook	OnInit,
which	will	be	called	only	after	the	input	properties	are	checked	upon	component	initialization.
However,	this	life	cycle	hook	fires	only	once	after	the	initialization,	and	we	needed	a	way	that
would	have	helped	us	react	to	subsequent	input	changes	of	the	content	property.	Have	a	look
at	the	following	code	snippet:

ngOnChanges()	{

		if	(this.editableContentElement	&&	this.content)	{

				this.setEditableContent(this.content);

		}

}

The	OnChanges	life	cycle	hook	is	exactly	what	we	needed	here.	With	this,	once	a	change	in	the
content	input	property	is	detected	(this	also	includes	the	first	change	after	the	initialization),
we	can	reflect	the	changed	content	onto	our	editable	element.

Now	we	have	already	implemented	the	reflection	of	the	component	content	input	property
onto	the	editable	field.	But	what	about	the	opposite	direction?	We	need	to	find	a	way	to	reflect
the	changes	in	our	editable	element	onto	our	component	content	property.	That's	also	closely
related	to	the	actions	performed	on	the	component	using	the	available	controls	within	edit
mode,	which	are	as	follows:

In	the	save	operation:	Here,	we	reflect	the	edited	content	from	the	editable	element	back
to	the	component's	content	property.
In	the	cancel	operation:	Here,	we	ignore	what	has	been	edited	by	the	user	within	the
editable	element	and	set	its	content	back	to	the	value	in	the	component's	content

property:

Let's	look	at	the	code	for	those	two	operations:

save()	{

		this.editSaved.next(this.getEditableContent());

		this.setEditableContent(this.content);

		this.editMode	=	false;

}

cancel()	{

		this.setEditableContent(this.content);

		this.editableInput.next(this.getEditableContent());

		this.editMode	=	false;

}

In	addition	to	the	highlighted	code,	which	shows	the	reflection	between	the	component's
content	property	and	the	editable	element,	we	emitted	certain	events	that	would	help	us	notify
the	outside	world	about	the	changes.	In	both	the	operations,	we	set	the	editMode	flag	to	false
after	completion.	This	ensures	that	our	editor	will	switch	to	display	mode	after	any	one	of	the
operations	is	completed.

The	edit	method	will	be	called	from	the	edit	control	button	when	the	component	is	in	display
mode.	The	only	thing	it	does	is	that	it	switches	the	component	back	to	edit	mode:

edit()	{

		this.editMode	=	true;

}

Whatever	we've	discussed	thus	far	in	relation	to	the	code	is	good	enough	for	us	to	set	up	a
fully	functional	component.	However,	the	last	part	of	the	code,	which	we	haven't	discussed	yet,
relates	to	ensuring	better	accessibility	of	our	editor.	Since	our	editor	component	is	a	bit	larger
than	the	editable	element,	we	also	want	to	make	sure	that	a	click	anywhere	inside	the	editor
component	will	cause	the	editable	element	to	be	focused.	The	following	code	makes	this
happen:

@HostListener('click')

focusEditableContent()	{

		if	(this.editMode)	{

				this.editableContentElement.nativeElement.focus();

		}

}

Using	the	@HostListener	decorator,	we	registered	an	event	binding	on	our	component
element	that	called	the	focusEditableContent	method.	Inside	this	method,	we	used	the
reference	to	the	editable	DOM	element	and	triggered	a	focus.

Let's	look	at	the	template	of	our	component	that	is	located	within	the	editor.html	file	in	order
to	see	how	we	could	interact	with	the	logic	within	our	component:

<div	(input)="onInput($event)"

					class="editor__editable-content"

					contenteditable="true"

					#editableContentElement></div>

<div	class="editor__output">{{content}}</div>

<div	*ngIf="showControls	&&	!editMode"	class="editor__controls">

		<button	(click)="edit()"	class="editor__icon-edit"></button>

</div>

<div	*ngIf="showControls	&&	editMode"	class="editor__controls">

		<button	(click)="save()"	class="editor__icon-save"></button>

		<button	(click)="cancel()"	class="editor__icon-cancel"></button>

</div>

The	logic	within	the	editor	component	template	is	quite	straightforward.	If	you've	been
following	the	component	code,	you'll	now	be	able	to	identify	the	different	elements	that
compose	this	component's	view.

The	first	element	with	the	editor__editable-content	class	is	our	editable	element	that	has
the	contenteditable	attribute.	The	user	will	be	able	to	type	into	this	element	when	the	editor
is	in	edit	mode.	It's	important	to	note	that	we've	annotated	it	with	a	local	view	variable
reference,	#editableContentElement,	which	we're	using	in	our	view	child	queries.

The	second	element	with	the	editor__output	class	is	only	to	display	the	editor	content	and	is
only	visible	when	the	editor	is	in	display	mode.	The	visibility	of	both	the	elements	is
controlled	using	CSS,	based	on	the	editor--edit-mode	modifier	class,	which,	if	you	recall
from	the	component	class	code,	is	set	through	host	property	binding	based	on	the	editMode
property.

The	three	control	buttons	are	shown	using	the	NgIf	directive	conditionally.	The	showControls
input	property	needs	to	be	true,	and	depending	on	the	editMode	flag,	the	screen	will	either
show	the	edit	button	or	the	save	and	the	cancel	button:

Screenshot	of	our	editor	component	in	action

Recap
Within	this	building	block,	we	have	created	an	in-place	editor	widget,	which	we	can	use	to
grab	user	input	for	any	content	within	our	application.	It	allows	us	to	provide	the	user	with
contextual	editing	capabilities,	which	will	result	in	a	great	user	experience.

We	have	also	learned	about	the	following	topics:

1.	 Using	contenteditable	HTML5	attribute	to	enable	in-place	editing.
2.	 Using	@ViewChild	and	@ViewChildren	to	query	view	child	elements.
3.	 Using	the	ElementRef	dependency	to	perform	native	DOM	operations.
4.	 Implementing	the	logic,	using	the	OnChange	life	cycle	hook,	to	reflect	data	between

Angular	and	the	content	that	is	not	in	immediate	control	of	Angular.

Building	a	commenting	system
In	the	previous	topic,	we	created	an	editor	component	that	will	support	users	in	editing	content
within	our	application.	Here,	we're	going	to	create	a	commenting	system	that	will	enable
users	to	write	comments	in	various	areas	of	our	application.	The	commenting	system	will	use
our	editor	component	to	make	comments	editable,	and	thereby	help	users	create	new
comments:

An	illustration	of	the	component	sub-tree	of	a	commenting	system

The	preceding	diagram	illustrates	the	architecture	of	the	component	tree	within	the
commenting	system	that	we	are	about	to	create.

The	Comments	component	will	be	responsible	for	listing	all	the	existing	comments,	as	well	as
creating	new	comments.

Each	comment	itself	is	encapsulated	into	a	Comment	component.	Comment	components
themselves	use	an	editor	that	enables	users	to	edit	comments	once	they	are	created.

The	Editor	component,	which	we	built	in	the	previous	topic,	is	used	by	the	Comment
component	directly,	to	provide	an	input	control	for	adding	new	comments.	This	allows	us	to
reuse	the	functionality	of	our	editor	component	to	capture	user	input.

The	Editor	component	emits	an	editSaved	event	once	editable	content	is	saved	using	the
control	buttons	of	the	editor.	In	the	Comment	component,	we	will	capture	these	events	and
propagate	a	new	event	upward	to	our	Comments	component.	There,	we	will	do	the	necessary
updates	but	then	again	emit	a	new	event	to	notify	our	parent	about	the	change.	In	a
composition	of	components,	each	component	will	react	on	change	and	delegate	to	the	parent
component	if	necessary.

Building	the	comment	component
Let's	start	building	our	commenting	system	by	fleshing	out	the	Comment	component	first.	In
addition	to	the	comment	itself,	we'd	like	to	display	the	user's	profile	who	commented,	and	of
course,	the	time	of	the	comment.

To	display	the	time,	we	will	make	use	of	relative	time	formatting,	as	this	will	give	our	users	a
better	feel	of	time.	Relative	time	formatting	displays	timestamps	in	the	format	"5	minutes	ago"
or	"1	month	ago",	in	contrast	to	absolute	timestamps,	such	as	"25.12.2015	18:00".	Using	the
Moment.js	library,	we'll	create	a	pipe	that	we	can	use	within	component	templates	to	convert
timestamps	and	dates	into	relative	time	intervals.

Let's	create	a	new	pipe	within	a	new	folder	named	pipes.	The	pipe	needs	to	be	created	within	a
file	named	from-now.js,	which	is	created	under	the	pipes	folder:

import	{Pipe}	from	'@angular/core';

//	We	use	the	Moment.js	library	to	convert	dates	to	relative	times

import	Moment	from	'moment';

@Pipe({

		//	Specifying	the	name	to	be	used	within	templates

		name:	'fromNow'

})

//	Our	pipe	will	transform	dates	and	timestamps	to	relative	times	

//	using	Moment.js

export	class	FromNowPipe	{

		//	The	transform	method	will	be	called	when	the	pipe	is	used	

		//	within	a	template

		transform(value)	{

				if	(value	&&	(value	instanceof	Date	||	

								typeof	value	===	'number'))	{

						return	new	Moment(value).fromNow();

				}

		}

}

This	pipe	can	now	be	used	within	the	templates	of	components	to	format	timestamps	and	dates
into	relative	time	intervals.

Let's	use	this	pipe	and	the	Editor	component	we	created	in	the	previous	topic	to	create	our
Comment	component.	Within	a	file	named	comment.html,	which	is	located	within	a	new	comment
folder	in	the	comments	folder,	we'll	create	the	template	for	our	Comment	component:

<div	class="comment__l-meta">

		<div	class="comment__user-picture">

				

		</div>

		<div	class="comment__user-name">{{user.name}}</div>

		<div	class="comment__time">

				{{time	|	fromNow}}

		</div>

</div>

<div	class="comment__l-main">

		<div	class="comment__message">

				<ngc-editor	[content]="content"

																[showControls]="true"

																(editSaved)="onContentSaved($event)">

				</ngc-editor>

		</div>

</div>

From	the	user	object,	we	will	get	the	user's	profile	image	as	well	as	the	username.	To	display
the	time	of	the	comment	in	a	relative	format,	we'll	use	the	fromNow	pipe	that	we	created	earlier.

Finally,	we	will	make	use	of	the	in-place	editor	component	to	display	the	content	of	the
comment	and	make	it	editable	at	the	same	time.	We	will	bind	the	comment	content	property	to
the	content	input	property	of	the	editor.	At	the	same	time,	we	will	listen	for	the	editSaved
event	of	the	editor	and	call	the	onContentSaved	method	on	our	comment	component	class.	If
you	look	at	our	component	code	again,	you'll	notice	that	we	are	re-emitting	the	event	within
the	method	so	that	the	outside	world	is	also	notified	about	the	change	in	the	comment.

Let's	take	a	look	at	the	component	class	that	we	will	create	in	a	file	named	comment.js:

import	{Component,	Input,	Output,	ViewEncapsulation,	EventEmitter}	from	

'@angular/core';

import	{Editor}	from	'../../ui/editor/editor';

import	template	from	'./comment.html!text';

//	We	use	our	fromNow	pipe	that	converts	timestamps	to	relative	

//	times

import	{FromNowPipe}	from	'../../pipes/from-now';

@Component({

		selector:	'ngc-comment',

		host:	{

				class:	'comment'

		},

		template,

		encapsulation:	ViewEncapsulation.None,

		directives:	[Editor],

		pipes:	[FromNowPipe]

})

export	class	Comment	{

		//	The	time	of	the	comment	as	a	timestamp

		@Input()	time;

		//	The	user	object	of	the	user	who	created	the	comment

		@Input()	user;

		//	The	comment	content

		@Input()	content;

		//	If	a	comment	was	edited	this	event	will	be	emitted

		@Output()	commentEdited	=	new	EventEmitter();

		onContentSaved(content)	{

				this.commentEdited.next(content);

		}

}

The	component	code	is	pretty	straightforward.	The	only	noticeable	difference	to	other
components	we've	created	so	far	is	the	pipes	property	within	the	component's	annotation.
Here,	we	specify	that	we'd	like	to	use	the	FromNowPipe	class	that	we've	just	created.	Pipes
always	need	to	be	declared	within	the	component;	otherwise,	they	can't	be	used	within	the
component's	template.

As	input,	we	expect	a	user	object	that	is	passed	along	with	the	user	input	property.	The
content	input	property	should	be	filled	with	the	actual	comment	as	a	string,	while	the	time
input	property	should	be	set	to	a	timestamp	that	reflects	the	actual	time	of	the	comment.

We	also	have	an	output	property	called	commentEdited,	which	we	will	use	to	notify	the
changes	on	the	comment.	The	onEditSaved	method	will	be	called	by	the	event	binding	on	our
Editor	component,	which	will	then	emit	an	event	using	the	commentEdited	output	property.

Building	the	comments	component
We	now	have	all	the	components	ready	in	order	to	finish	building	our	commenting	system.
The	last	missing	piece	of	the	puzzle	is	the	Comments	component,	which	will	list	all	the
comments	and	provide	an	editor	to	create	new	comments.

First,	let's	take	a	look	at	the	template	of	our	Comments	component	that	we	will	create	in	a	file
named	comments.html	within	a	folder	named	comments:

<div	class="comments__title">Add	new	comment</div>

<div	class="comments__add-comment-section">

		<div	class="comments__add-comment-box">

				<ngc-editor	[editMode]="true"

																[showControls]=	"false"></ngc-editor>

		</div>

		<button	(click)="addNewComment()"

										class="button"	>Add	comment</button>

</div>

<div	*ngIf="comments?.length	>	0">

		<div	class="comments__title">All	comments</div>

		<ul	class="comments__list">

				<li	*ngFor="let	comment	of	comments">

						<ngc-comment	[content]="comment.content"

														[time]="comment.time"

														[user]="comment.user"

														(commentEdited)="onCommentEdited(comment,	$event)">

						</ngc-comment>

				

		

</div>

You	can	see	the	direct	usage	of	an	Editor	component	within	the	component's	template.	We	are
using	this	in-place	editor	to	provide	an	input	component	to	create	new	comments.	We	could
also	use	a	text	area	here,	but	we've	decided	to	reuse	our	Editor	component.	We	will	set	the
editMode	property	to	true	so	it	will	be	initialized	in	edit	mode.	We	will	also	set	the
showControls	input	to	false	because	we	don't	want	the	editor	to	become	autonomous.	We	will
only	use	its	in-place	editing	capabilities,	but	control	it	from	our	Comments	component.

To	add	a	new	comment,	we	will	use	a	button	that	has	a	click	event	binding,	which	calls	the
addNewComment	method	on	our	component	class.

Below	the	section	where	users	can	add	new	comments,	we	will	create	another	section	that	will
list	all	the	existing	comments.	If	no	comments	exist,	we	simply	don't	render	the	section.	With
the	help	of	the	NgFor	directive,	we	could	display	all	the	existing	comments	and	create	a
Comment	component	for	each	repetition.	We	will	bind	all	the	comment	data	properties	to	our
Comment	component	and	also	add	an	event	binding	to	handle	updated	comments.

Let's	create	the	component	class	within	a	new	file	named	comments.js	in	the	comments	folder:

import	{Component,	Inject,	Input,	Output,	ViewEncapsulation,	ViewChild,	

EventEmitter}	from	'@angular/core';

import	template	from	'./comments.html!text';

import	{Editor}	from	'../ui/editor/editor';

import	{Comment}	from	'./comment/comment';

import	{UserService}	from	'../user/user-service/user-service';

@Component({

		selector:	'ngc-comments',

		host:	{

				class:	'comments'

		},

		template,

		encapsulation:	ViewEncapsulation.None,

		directives:	[Comment,	Editor]

})

export	class	Comments	{

		//	A	list	of	comment	objects

		@Input()	comments;

		//	Event	when	the	list	of	comments	have	been	updated

		@Output()	commentsUpdated	=	new	EventEmitter();

		//	We	are	using	an	editor	for	adding	new	comments	and	control	it	

		//	directly	using	a	reference

		@ViewChild(Editor)	newCommentEditor;

		//	We're	using	the	user	service	to	obtain	the	currently	logged	

		//	in	user

		constructor(@Inject(UserService)	userService)	{

				this.userService	=	userService;

		}

		//	We	use	input	change	tracking	to	prevent	dealing	with	

		//	undefined	comment	list

		ngOnChanges(changes)	{

				if	(changes.comments	&&	

								changes.comments.currentValue	===	undefined)	{

						this.comments	=	[];

				}

		}

		//	Adding	a	new	comment	from	the	newCommentContent	field	that	is	

		//	bound	to	the	editor	content

		addNewComment()	{

				const	comments	=	this.comments.slice();

				comments.splice(0,	0,	{

						user:	this.userService.currentUser,

						time:	+new	Date(),

						content:	this.newCommentEditor.getEditableContent()

				});

				//	Emit	event	so	the	updated	comment	list	can	be	persisted	

				//	outside	the	component

				this.commentsUpdated.next(comments);

				//	We	reset	the	content	of	the	editor

				this.newCommentEditor.setEditableContent('');

		}

		//	This	method	deals	with	edited	comments

		onCommentEdited(comment,	content)	{

				const	comments	=	this.comments.slice();

				//	If	the	comment	was	edited	with	e	zero	length	content,	we	

				//	will	delete	the	comment	from	the	list

				if	(content.length	===	0)	{

						comments.splice(comments.indexOf(comment),	1);

				}	else	{

						//	Otherwise	we're	replacing	the	existing	comment

						comments.splice(comments.indexOf(comment),	1,	{

								user:	comment.user,

								time:	comment.time,

								content

						});

				}

				//	Emit	event	so	the	updated	comment	list	can	be	persisted	

				//	outside	the	component

				this.commentsUpdated.next(comments);

		}

}

Let's	go	through	individual	code	parts	again	and	discuss	what	each	of	them	does.	First,	we
declared	an	input	property	named	comments	in	our	component	class:

@Input()	comments;

The	comments	input	property	is	a	list	of	comment	objects	that	contains	all	of	the	data
associated	with	the	comments.	This	includes	the	user	who	authored	the	comment	and	the
timestamp,	as	well	as	the	content	of	the	comment.

We	also	need	to	be	able	to	emit	an	event	once	a	comment	is	added	or	an	existing	comment	is
modified.	For	this	purpose,	we	used	an	output	property	named	commentsUpdates:

@Output()	commentsUpdated	=	new	EventEmitter();

Once	a	new	comment	is	added	or	an	existing	one	is	modified,	we	will	emit	an	event	from	this
output	property	with	the	updated	list	of	comments.

The	Editor	component	we're	going	to	use	to	add	new	comments	will	not	have	its	own	control
buttons.	We	will	use	the	showControls	input	property	to	disable	them.	Instead,	we	will	control
the	editor	from	our	Comments	component	directly.	Therefore,	we	need	a	way	to	communicate
with	the	Editor	component	within	our	component	class.

We	used	the	@ViewChild	decorator	for	this	purpose	again.	However,	this	time,	we	did	not
reference	a	DOM	element,	which	contains	a	local	view	variable	reference.	We	directly	passed
our	component	type	class	to	the	decorator.	Angular	will	search	for	any	Editor	components
within	the	comments	view	and	provide	us	with	a	reference	to	the	instance	of	the	editor.	This	is
shown	in	the	following	line	of	code:

@ViewChild(Editor)	newCommentEditor;

Since	the	Comments	component	only	hosts	one	editor	directly	within	the	component	template,
we	can	use	the	@ViewChild	annotation	to	obtain	a	reference	to	it.	Using	this	reference,	we	can
directly	interact	with	the	child	component.	This	will	allow	us	to	control	the	editor	directly
from	our	Comments	component.

Let's	move	on	to	the	next	part	of	the	code,	which	is	the	Comments	component	constructor.	The
only	thing	we've	done	here	is	inject	a	user	service	that	will	provide	us	with	a	way	to	obtain
information	of	the	currently	logged-in	user.	As	of	now,	this	functionality	is	only	mocked,	and
we	will	receive	information	of	a	dummy	user.	We	need	this	information	in	the	Comments
component,	since	we	need	to	know	which	user	has	actually	entered	a	new	comment:

constructor(@Inject(UserService)	userService)	{

		this.userService	=	userService;

}

In	the	next	part	of	the	code,	we	controlled	how	we	should	react	to	the	changes	of	the	comments
input	property.	Actually,	we	would	never	want	the	list	of	comments	to	remain	undefined.	It
should	be	an	empty	list	in	case	there	are	no	comments,	but	the	input	property	comments
should	never	be	undefined.	We	controlled	this	by	using	the	OnChange	life	cycle	hook	and
overriding	our	comments	property	if	it	was	set	to	undefined	from	outside:

ngOnChanges(changes)	{

		if	(changes.comments	&&	

										changes.comments.currentValue	===	undefined)	{

				this.comments	=	[];

		}

}

This	small	change	makes	the	internal	handling	of	our	comment	data	much	cleaner.	We	don't
need	additional	checks	when	working	for	array	transformation	functions,	and	we	can	always
treat	the	comments	property	as	an	array.

Since	the	Comments	component	is	also	responsible	for	handling	the	logic	that	deals	with	the
process	of	adding	new	comments,	we	needed	a	method	that	could	implement	this	requirement.
In	relation	to	this,	we	used	some	immutable	practices	we	learned	about	in	the	previous
chapter:

addNewComment()	{

		const	comments	=	this.comments.slice();

		comments.splice(0,	0,	{

				user:	this.userService.currentUser,

				time:	+new	Date(),

				content:	this.newCommentEditor.getEditableContent()

		});

		this.commentsUpdated.next(comments);

		this.newCommentEditor.setEditableContent('');

}

There	are	a	few	key	aspects	in	this	part	of	the	code.	This	method	will	be	called	from	our
component	view	when	the	Add	comment	button	is	clicked.	This	is	when	the	user	will	have

already	entered	some	text	into	the	editor	and	a	new	comment	will	have	been	created.

First,	we	will	use	the	user	service	that	we	injected	within	the	constructor	to	obtain	information
related	to	the	currently	logged-in	user.	The	content	of	the	newly	created	comment	will	be
obtained	directly	from	the	Editor	component	we	set	up	using	the	@ViewChild	annotation.
And,	the	getEditableContent	method	will	allow	us	to	receive	the	content	of	the	editable
element	within	the	in-place	editor.

The	next	thing	we	wanted	to	do	was	to	communicate	an	update	of	the	comment	list	with	the
outside	world.	We	used	the	commentsUpdated	output	property	to	emit	an	event	with	the	updated
comment	list.

Finally,	we	wanted	to	clear	the	editor	used	to	add	new	comments.	As	the	in-place	editor	in	the
view	of	the	Comments	component	is	only	used	to	add	new	comments,	we	can	always	clear	it
after	a	comment	is	added.	This	will	give	the	user	the	impression	that	his	comment	has	been
moved	from	the	editor	into	the	list	of	comments.	Then,	once	again,	we	can	access	the	Editor
component	directly	using	our	newCommentEditor	property	and	call	the	setEditableContent
method	with	an	empty	string	to	clear	the	editor.	And	this	is	what	we've	done	here.

Our	Comments	component	will	hold	the	list	of	all	the	comments,	and	its	view	will	create	a
Comment	component	for	each	comment	in	that	list.	Each	Comment	component	will	use	an	Editor
component	to	provide	in-place	editing	of	its	content.	These	editors	work	autonomously	using
their	own	controls,	and	they	emit	an	event	if	the	content	is	changed	or	altered	in	any	way.	To
take	care	of	this,	we	need	to	re-emit	this	event	with	the	name	commentEdited	from	the	Comment
component.	Now	we	only	need	to	catch	this	event	within	our	Comments	component	in	order	to
update	the	list	of	comments	with	the	changes.	This	is	illustrated	in	the	following	part	of	the
code:

onCommentEdited(comment,	content)	{

		const	comments	=	this.comments.slice();

		if	(content.length	===	0)	{

				comments.splice(comments.indexOf(comment),	1);

		}	else	{

				comments.splice(comments.indexOf(comment),	1,	{

						user:	comment.user,

						time:	comment.time,

						content

				});

		}

		this.commentsUpdated.next(comments);

}

This	method	will	be	called	for	each	individual	Comment	component	that	is	repeated	using	the
NgFor	directive.	From	the	view,	we	pass	a	reference	to	the	comment	object	concerned,	as	well
as	the	edited	content	we	would	receive	from	the	Comment	component	event.

The	comment	object	will	only	be	used	to	determine	the	position	of	the	updated	comment
within	the	comment	list.	If	the	new	comment	content	is	empty,	we	will	remove	the	comment

from	the	list.	Otherwise,	we	will	just	create	a	copy	of	the	previous	comment	object,	change
the	content	with	the	new	edited	content,	and	replace	the	old	comment	object	in	the	list	with	the
copy.

Finally,	since	we	wanted	to	communicate	the	change	in	the	comment	list,	we	emitted	an	event
using	the	commentUpdated	output	property.

With	this,	we	have	completed	our	commenting	system,	and	now	it's	time	to	make	use	of	it.	We
already	have	an	empty	tab	prepared	for	our	project	comments,	and	this	is	going	to	be	the	spot
where	we	will	add	commenting	capabilities	using	our	commenting	system.

First,	let's	amend	our	Project	component	template,	project/project.html,	to	include	the
commenting	system:

...

<ngc-tabs>

		<ngc-tab	name="Tasks">...</ngc-tab>

		<ngc-tab	name="Comments">

				<ngc-comments	[comments]="comments"

																		(commentsUpdated)="updateComments($event)">

				</ngc-comments>

		</ngc-tab>

		<ngc-tab	name="Activities"></ngc-tab>

</ngc-tabs>

This	is	as	easy	as	it	gets.	Since	we	are	paying	attention	to	a	clean	component	architecture,	the
inclusion	of	our	commenting	system	really	works	like	a	breeze.	The	only	thing	we	now	need
to	ensure	is	that	we	provide	a	property	on	our	project	with	a	list	of	comments.	We	also	need	a
way	to	react	to	changes	if	comments	are	updated	within	our	Comments	component.	For	this
purpose,	we	will	create	an	updateComments	method.

Let's	look	at	the	component	class	changes	within	the	project/project.js	file:

export	class	Project	{

		...

		@Input()	comments;

		...

				updateComments(comments)	{

						this.projectUpdated.next({

								comments

						});

		}

}

Since	we	are	already	dealing	with	project	updates	in	a	general	way	and	our	Project
component	is	emitting	directly	to	our	App	component,	where	projects	data	will	be	persisted,
the	only	thing	we	need	to	implement	is	an	additional	input	property,	as	well	as	a	method	to
handle	comment	updates:

Screenshot	of	the	commenting	system	integrated	within	our	project	component

Recap
Within	this	topic,	we	have	successfully	created	a	full-fledged	commenting	system	that	can	be
placed	in	various	areas	of	our	application	to	enable	commenting.	Users	can	interact	with	in-
place	editors	to	edit	the	content	in	comments,	which	gives	them	a	great	user	experience.

While	writing	the	code	for	our	commenting	system,	we	learned	about	the	following	topics:

1.	 Implementing	a	simple	pipe	using	the	@Pipe	annotation	and	the	Moment.js	library	to
provide	relative	time	formatting

2.	 Using	the	OnChanges	life	cycle	hook	to	prevent	unwanted	or	invalid	values	within	input
properties

3.	 Using	@ViewChild	to	obtain	a	reference	to	the	components	within	the	component	sub-
tree	in	order	to	establish	direct	communication

4.	 Reusing	the	Editor	component	as	an	input	field	replacement	and	as	an	autonomous	in-
place	editor	within	the	Comment	component

Summary
In	this	chapter,	we	created	a	simple	in-place	editor	that	we	can	use	for	making	content	editable
within	our	application.	Going	forward,	we	can	use	the	Editor	component	wherever	we	want
to	make	content	editable	for	our	users.	They	will	not	have	to	jump	into	nasty	dialogs	or
separate	configuration	pages,	but	will	be	in	a	position	to	edit	directly,	as	per	their	current
context.	This	is	a	great	tool	for	enhancing	the	user	experience	for	our	users.

Besides	our	shiny	new	Editor	component,	we	created	a	whole	commenting	system	that	can	be
easily	included	in	areas	of	our	application	where	we'd	like	to	provide	commenting
capabilities.	We	have	now	included	the	commenting	system	within	our	Project	component,
and	users	can	now	comment	on	projects	by	navigating	to	the	Comments	tab	on	the	project
details.

In	the	next	chapter,	we'll	use	the	component-based	router	of	Angular	to	make	our	application
navigable.

Chapter	5.	Component-Based	Routing
Routing	is	an	integral	part	of	today's	frontend	applications.	In	general,	a	router	serves	two
main	purposes:

Making	your	application	navigable	so	that	users	can	use	their	browser's	back	button	and
store	and	share	links	within	the	application
Offload	parts	of	the	application	composition	so	that	the	router	takes	responsibility	to
compose	your	application,	based	on	routes	and	route	parameters

The	router	that	comes	with	Angular	supports	many	different	use-cases,	and	it	comes	with	an
easy-to-use	API.	This	supports	child	routers	that	are	similar	to	the	Angular	UI-Router	nested
states,	Ember.js	nested	routes,	or	child	routers	in	the	Durandal	framework.	Tied	to	the
component	tree,	this	also	makes	use	of	its	own	tree	structure	to	store	states	and	to	resolve
requested	URLs.

In	this	chapter,	we	refactor	our	code	to	use	the	component-based	router	of	Angular.	We	will
look	into	the	core	elements	of	the	router	and	how	to	use	them	to	enable	routing	in	our
application.

The	following	topics	will	be	covered	in	this	chapter:

An	introduction	to	the	Angular	router
An	overview	of	the	refactoring	to	enable	the	router	in	our	application
Composition	by	template,	composition	by	routing,	and	how	to	mix	them
Using	the	Routes	decorator	to	configure	routes	and	child	routes
Using	the	OnActivate	router	lifecycle	hook	to	obtain	route	parameters
Using	the	RouterOutlet	directive	to	create	insertion	points	that	are	controlled	by	the
router
Using	the	RouterLink	directive	and	the	router	DSL	to	create	navigation	links
Querying	for	the	RouterLink	directives	using	the	@ChildView	decorator	in	order	to
obtain	the	link's	active	state

An	introduction	to	the	Angular	router
The	router	in	Angular	is	closely	coupled	to	our	component	tree.	The	design	of	the	Angular
router	is	built	on	the	assumption	that	a	component	tree	is	directly	related	to	our	URL	structure.
This	is	certainly	true	for	most	of	the	cases.	If	we	look	at	a	component	B,	which	is	nested
within	a	component	A,	the	URL	to	represent	our	location	would	very	likely	be	/a/b.

In	order	to	specify	the	location	in	our	template	where	we'd	like	to	enable	the	router	to
instantiate	components,	we	can	use	so-called	outlets.	Simply	by	including	a	<router-outlet>
element,	we	can	make	use	of	the	RouterOutlet	directive	to	mark	the	router	insertion	point	in
our	template.

Based	on	some	route	configuration	that	we	can	place	on	our	component,	the	router	then
decides	which	components	need	to	be	instantiated	and	placed	into	the	router	outlets.	Routes
can	also	be	parameterized,	and	we	can	access	these	parameters	within	the	instantiated
components.

Based	on	our	component	tree	and	the	route	configurations	on	components	in	this	tree,	we	can
build	a	hierarchical	routing	and	decouple	child	routes	from	their	parent	routes.	Such	nested
routes	make	it	possible	to	specify	route	configuration	on	multiple	layers	in	our	component
tree	and	reuse	parent	components	for	multiple	child	routes.

Router	hierarchy	established	through	a	component	tree

Let's	look	at	the	elements	of	the	router	again	in	more	detail:

Route	configuration:	The	route	configuration	is	placed	at	component	level,	and	it
contains	the	different	routes	possible	for	this	level	in	the	component	tree.	By	placing
multiple	route	configurations	on	different	components	in	the	component	tree,	we	can
build	decoupled	nested	routes	easily.
Router	outlets:	Outlets	are	the	locations	in	components	that	will	be	managed	by	the
router.	Instantiated	components	that	are	based	on	the	route	configuration	will	be	placed
into	these	outlets.
Router	link:	These	are	links	built	with	a	DSL	style	notation	that	enable	the	developer	to
build	complex	links	through	the	routing	tree.

Composition	by	routing
So	far,	we	achieved	composition	by	including	subcomponents	in	component	templates.
However,	we'd	now	like	to	give	the	control	to	the	router	to	decide	which	component	should	be
included	and	where.

The	following	illustration	provides	an	overview	of	the	component	architecture	of	our
application,	which	we're	going	to	enable	to	route:

A	component	tree	displaying	routing	components	(solid	line)	and	router	outlets

The	Project	component	is	now	not	directly	included	with	our	App	component.	Instead,	we	use
a	router	outlet	in	the	template	of	our	App	component.	This	way,	we	can	give	control	to	the
router,	and	let	it	decide	which	component	should	be	placed	into	the	outlet.	The	App
component's	router	configuration	will	contain	all	top-level	routes.	In	the	current	application,
we	only	have	the	Project	component	as	a	secondary-level	component,	but	this	will	change	in
further	chapters.

The	Project	component	contains	child	route	configuration	to	navigate	to	the	tasks	and
comments	view.	However,	it	does	not	directly	contain	a	router	outlet.	We	use	the	Tabs

component	as	a	navigation	element	for	any	sub	views.	As	a	result,	we'll	place	the	router	outlet
into	the	Tabs	component	and	include	the	component	directly	in	the	template	of	the	Project
component.

Router	versus	template	composition
The	composition	that	we	dealt	with	so	far	was	purely	based	on	instantiation	via	template
inclusion.	We	used	input	and	output	properties	to	decouple	and	encapsulate	components,	and
followed	nice	reusable	patterns.

With	the	router,	we	face	a	problem	that	has	not	yet	been	solved	by	Angular	and	requires	that
we	find	our	own	solution.	As	we	give	control	to	the	router	to	instantiate	and	insert
components	into	our	component	tree,	we	can't	control	any	bindings	on	our	instantiated
component.	While	we	previously	relied	on	the	clean	decoupling	of	components	using	input
and	output	properties,	we	can	no	longer	do	this.	The	only	thing	that	a	router	provides	us	are
route	parameters	that	may	have	been	set	along	the	activated	route.

This	puts	us	in	quite	a	nasty	situation.	Basically,	we	need	to	decide	between	two	designs	when
writing	components,	which	are	as	follows:

We	use	a	given	component	purely	in	template	composition	and,	therefore,	rely	on	input
and	output	properties	as	the	glue	between	the	parent	component
We	use	a	component	instantiated	by	the	router	and	rely	on	input-provided	view	route
parameters	and	don't	require	communication	with	the	parent	component

Well,	both	of	the	preceding	design	approaches	aren't	very	nice,	are	they?	In	an	ideal	world,	we
would	not	need	to	apply	any	changes	to	a	component	when	we	enable	it	for	routing.	The
router	should	just	enable	the	component	for	routing,	but	it	should	not	require	any	changes	on
the	component	itself.	Unfortunately,	there's	no	agreement	for	a	solution	to	this	problem	at	the
time	of	writing	this	book.

As	we	don't	want	to	lose	any	composition	capabilities	that	we	gain	from	relying	on	inputs	and
outputs	in	our	TaskList	and	Comments	components,	we	need	to	a	find	a	better	solution	to
enable	routing	in	our	application.

The	following	solution	allows	us	to	leave	the	TaskList	and	Comments	components
untouched	while	they	can	still	rely	on	input	and	output	properties.	Instead	of	exposing
them	directly	to	the	router,	we	will	build	wrapper	components	that	we	address	from	our
routes.	These	wrappers	follow	some	mechanics	to	bridge	this	gap	between	the	router	and
our	components.
The	wrapper	component	deals	with	any	route	parameters	or	route	data	that	might	have
been	set	in	the	activated	route.
Their	template	should	only	include	the	component	that	is	wrapped	and	its	input	and
output	bindings.
They	handle	the	required	data	and	functionality	to	provide	the	input	and	output	bindings
of	the	concerned	component
They	may	use	parent	component	injection	to	establish	communication	with	the	parent	and
propagate	any	action	that	is	required	by	emitted	events.	Parent	component	injection
should	be	used	with	caution	as	it	somewhat	breaks	our	decoupling	of	components.

Understanding	the	route	tree
Angular	uses	tree	data	structures	to	represent	the	router	state.	You	can	imagine	that	every
navigation	in	your	application	activates	a	branch	in	this	tree.	Let's	look	at	the	following
example.

We	have	an	application	that	consists	of	four	possible	routes:

/:	This	is	the	root	route	of	the	application,	which	is	handled	in	a	component	called	A.
/b/:id:	This	is	the	route	where	we	can	access	a	b	detail	view,	which	is	handled	in	a
component	called	B.	In	the	URL,	we	can	pass	an	id	parameter	(that	is,	/b/100).
/b/:id/c:	This	is	the	route	where	the	b	detail	view	has	another	navigation	possibility,
which	reveals	more	specific	details	that	we	call	c.	This	is	handled	in	a	C	component.
/b/:id/d:	This	is	the	route	where	we	can	also	navigate	to	a	d	view	in	the	b	detail	view.
This	is	handled	by	a	component,	called	D:

A	route	tree	consisting	of	an	active	branch	of	route	segments	for	an	activated	route	/b/100/d

Let's	assume	that	we	activate	a	route	in	our	example	by	navigating	the	URL,	/b/100/d.	In	this
case,	we'd	activate	a	route	that	reflects	the	state	that	is	outlined	in	the	preceding	figure.	Note
that	the	route	segment	B	actually	consists	of	two	URL	segments.	The	reason	for	this	is	that

we've	specified	that	our	route	B	actually	consists	of	the	b	identifier	and	an	:id	route
parameter.

Using	this	tree	data	structure,	we	have	a	perfect	abstraction	to	deal	with	navigation	trees.	We
can	compare	trees,	check	whether	certain	segments	exist	in	a	tree,	and	extract	parameters
present	on	resolved	route	segments.

To	demonstrate	the	use	of	routing	trees,	let's	take	a	look	at	the	OnActivate	router	lifecycle
hook	that	we	can	implement	on	our	navigable	components:

routerOnActivate(currentRouteSegment,	

																	previousRouteSegment,

																	currentTree,

																	previousTree)

When	we	implement	this	lifecycle	hook	on	our	components,	we	can	run	some	code	after	the
route	was	activated.	The	currentRouteSegment	argument	will	point	to	the	RouteSegment
instance	that	was	activated	on	our	component.

Let's	take	a	look	at	our	example	again	and	assume	that	we	want	to	access	the	:id	parameter	in
the	routerOnActivate	hook	of	our	B	component:

routerOnActivate(currentRouteSegment)	{

		this.id	=	currentRouteSegment.getParam('id');

}

Using	the	getParam	function	on	the	RouteSegment	instance,	we	obtain	any	parameters	that	are
resolved	on	the	given	segment.	In	our	example	case,	this	would	return	a	100	string.

Let's	take	a	look	at	a	more	complex	example.	What	if	we	want	to	access	the	:id	parameter
from	the	D	component	on	the	d	detail	view?	In	the	OnActivate	lifecycle	hook,	we'll	receive
only	the	route	segment	that	is	relevant	to	the	D	component.	This	only	consists	of	the	d	URL
segment	and	this	does	not	include	the	:id	parameter	from	the	parent	route.	We	can	now	make
use	of	the	RouteTree	instance	to	find	the	parent	route	segment	and	obtain	the	parameter	from
there:

routerOnActivate(currentRouteSegment,	

																	previousRouteSegment,	

																		currentTree)	{

		this.id	=	currentTree.parent(currentRouteSegment).getParam('id');

}

Using	the	current	RouteTree	instance,	we	can	obtain	the	parent	of	the	current	route	segment.
As	a	result,	we'll	receive	the	parent	route	segment	(RouteSegment	B	in	the	preceding	figure)
from	where	we	can	obtain	the	:id	parameter.

As	you	can	see,	the	router	API	is	quite	flexible,	and	it	allows	us	to	inspect	route	activity	on	a
very	fine	granularity.	The	tree	structures	that	are	used	in	the	router	make	it	possible	to
compare	complex	router	states	in	our	application	without	bothering	about	the	underlying

complexity.

Back	to	the	routes
All	right,	now	it's	time	to	implement	routing	for	our	application!	In	the	following	topics,	we'll
create	the	following	routes	for	our	application:

Route	path Description

/projects/:projectId

This	route	will	activate	the	Project	component	in	the	outlet
of	our	main	application	component.	This	consists	of	the
projects	URL	segment	as	well	as	the	:projectId	URL
segment	to	specify	the	project	ID.

/projects/:projectId/tasks

This	route	will	activate	the	TaskList	component.	We	will
create	a	ProjectTaskList	wrapper	component	in	order	to
decouple	our	TaskList	component	from	routing.	We'll
apply	the	procedure	described	in	the	previous	section,
Router	versus	template	composition.

/projects/:projectId/comments

This	route	will	activate	the	Comments	component.	We'll
create	a	ProjectComments	wrapper	component	in	order	to
decouple	our	Comments	component	from	routing.	We'll
apply	the	procedure	described	in	the	previous	section,
Router	versus	template	composition.

In	order	to	use	the	router	of	Angular,	the	first	thing	that	we	need	to	do	is	to	add	the	route
provider	to	our	application.	We'll	do	this	on	bootstrap	in	order	to	make	sure	the	router
providers	are	only	loaded	once.	Let's	open	our	boostrap.js	file	and	add	the	necessary
dependencies:

...

import	{bootstrap}	from	'@angular/platform-browser-dynamic';

import	{provide}	from	'@angular/core';

//	Import	router	dependencies

import	{HashLocationStrategy,	LocationStrategy}	from	'@angular/common';

import	{ROUTER_PROVIDERS}	from	'@angular/router';	

...

bootstrap(App,	[

		...

		ROUTER_PROVIDERS,

		provide(LocationStrategy,	{

				useClass:	HashLocationStrategy

		})

]);

From	the	router	module,	we	import	the	ROUTER_PROVIDERS	constant	that	contains	a	list	of
modules	that	are	required	to	be	exposed	as	providers	when	using	the	router.	We	also	import
the	LocationStrategy	and	HashLocationStrategy	type	from	the	common	module	that	need	to
be	provided	manually.

Using	the	provide	function,	we	provide	the	HashLocationStrategy	class	as	a	substitution	for
the	LocationStrategy	abstract	class.	This	way,	the	router	will	know	which	strategy	to	use
when	resolving	URLs.

The	following	two	strategies	exist	at	the	moment:

HashLocationStrategy:	This	can	be	used	when	the	router	should	use	hash	URLs,	such	as
localhost:8080#/child/something.	This	location	strategy	makes	sense	if	you're
working	in	an	environment	where	the	HTML5	push	state	can't	be	used	due	to	browser	or
server	constraints.	The	whole	navigation	state	will	be	managed	in	the	fragment	identifier
of	the	URL.
PathLocationStrategy:	This	strategy	can	be	used	if	you'd	like	to	use	the	HTML5	push
state	to	handle	application	URLs.	This	means	that	your	application	navigation	becomes
the	actual	path	of	the	URL.	Using	the	preceding	example	of	a	hash-based	URL,	this
strategy	would	enable	the	direct	use	of	localhost:8080/child/something.	As	the	initial
requests	will	hit	the	server	if	the	state	is	encoded	in	the	path	of	a	URL,	you'll	need	to
enable	the	correct	routing	on	the	server	to	make	this	work	properly.

After	enabling	the	router	for	our	application,	we	will	need	to	make	our	root	component
routable.	We	can	do	this	by	including	a	route	configuration	on	our	App	component.	Let's	look
at	the	necessary	code	to	do	this.	We	edit	the	app.js	file	in	our	lib	folder:

...

import	{Project}	from	'./project/project';

import	{Routes,	Route}	from	'@angular/router';

@Component({

		selector:	'ngc-app',

		...

})

@Routes([

		new	Route({path:	'projects/:projectId',	component:	Project})

])

export	class	App	{

					...

}

In	the	preceding	code,	we	imported	the	Routes	decorator	as	well	as	the	Route	type	from	the
router	module.

In	order	to	configure	routes	on	our	component,	we	can	use	the	@Routes	decorator	by	passing
an	array	of	Route	objects	that	describe	the	possible	child	routes	on	this	component.

Let's	look	at	the	available	options	that	we	can	pass	to	the	Route	constructor:

Route
property Description

path

This	property	is	required.	Using	the	path,	we	can	describe	the	navigation	URL	in
the	browser	using	the	route	matcher	DSL.	This	can	contain	route	parameter
placeholders.

Some	examples	are	as	follows:

The	following	route	gets	activated	if	the	user	navigates	to	/home	in	the
browser:

path:	'/home'

The	following	route	gets	activated	when	the	user	navigates	to	a
/child/something	URL	where	something	will	be	available	as	route
parameter	with	the	name,	id:

path:	'/child/:id'

component

This	property	is	required,	and	it	defines	which	component	should	be	instantiated
by	the	router.	As	already	explained	in	the	previous	section,	the	router	does	not
allow	us	here	to	specify	any	bindings	to	the	instantiated	component.

The	route	configuration	on	our	App	component	covers	the	Project	component	being
instantiated	on	the	projects/:projectId	route	path.	This	means	that	we	use	a	projectId
parameter	on	the	child	route,	which	will	be	available	to	the	Project	component.

We	also	need	to	modify	our	App	component	template	and	remove	the	direct	inclusion	of	the
Project	component	there.	We	now	give	control	to	the	router	to	decide	which	component	to
display.	For	this,	we	need	to	make	use	of	the	RouterOutlet	directive	to	provide	a	slot	in	our
template	where	the	router	will	instantiate	components.

The	RouterOutlet	directive	is	part	of	the	ROUTER_DIRECTIVES	constant	that	is	exported	by	the
router	module.	Let's	import	and	add	the	constant	to	the	directives	list	on	our	component:

...

import	{Routes,	Route,	ROUTER_DIRECTIVES}	from	'@angular/router';

			...

@Component({

		selector:	'ngc-app',

		...

		directives:	[...,	ROUTER_DIRECTIVES],

		...

})

...

export	class	App	{

		...

}

Now,	we	can	use	the	RouterOutlet	directive	in	our	template	to	indicate	the	insertion	position
of	instantiated	components	by	the	router.	Let's	open	our	App	component	template	file,
app.html,	and	make	the	necessary	modifications:

<div	class="app">

		...

		<div	class="app__l-main">

				<router-outlet></router-outlet>

		</div>

</div>

The	next	step	is	to	refactor	our	Project	component	so	that	it	can	be	used	in	routing.	As	we
already	outlined	in	the	previous	section,	the	router	comes	with	certain	constraints	when	it
comes	to	component	design.	For	the	Project	component,	we	decide	to	redesign	it	in	a	way	so
that	we	can	only	use	it	with	routing.	This	isn't	a	bad	thing	here	because	we	can	exclude	the
possibility	that	it	will	be	reused	somewhere	else	in	our	application.

The	redesign	of	the	Project	component	includes	the	following	steps:

1.	 Getting	rid	of	all	input	and	output	properties	of	the	component.
2.	 Using	the	OnActivate	router	lifecycle	hook	to	obtain	the	projectId	parameter	from	the

activated	route	segment	of	the	App	component.
3.	 Obtaining	the	project	data	directly	from	the	data	store	using	the	projectId	parameter.
4.	 Handling	updates	on	the	project	data	directly	on	the	component	instead	of	delegating	to

the	App	component.

Let's	modify	the	Component	class	located	in	lib/project/project.js	to	implement	the
preceding	design	changes:

import	{Component,	ViewEncapsulation,	Inject}	from	'@angular/core';

import	template	from	'./project.html!text';

import	{Tabs}	from	'../ui/tabs/tabs';

import	{DataProvider}	from	'../../data-access/data-provider';

import	{LiveDocument}	from	'../../data-access/live-document';

@Component({

		selector:	'ngc-project',

		host:	{class:	'project'},

		template,

		encapsulation:	ViewEncapsulation.None,

		directives:	[Tabs]

})

export	class	Project	{

		constructor(@Inject(DataProvider)	dataProvider)	{

				this.dataProvider	=	dataProvider;

				this.tabItems	=	[

						{title:	'Tasks',	link:	['tasks']},

						{title:	'Comments',	link:	['comments']}

];

		}

		routerOnActivate(currentRouteSegment)	{

				this.id	=	currentRouteSegment.getParam('projectId');

				this.document	=	new	LiveDocument(this.dataProvider,	{

						type:	'project',

						_id:	this.id

				});

				this.document.change.subscribe((data)	=>	{

						this.title	=	data.title;

						this.description	=	data.description;

						this.tasks	=	data.tasks;

						this.comments	=	data.comments;

				});

		}

		updateTasks(tasks)	{

				this.document.data.tasks	=	tasks;

				this.document.persist();

		}

		updateComments(comments)	{

				this.document.data.comments	=	comments;

				this.document.persist();

		}

		ngOnDestroy()	{

				this.document.unsubscribe();

		}

}

Besides	implementing	these	changes	that	are	already	described	in	the	redesigning	steps,	we
also	made	use	of	a	new	LiveDocument	utility	class	that	we	imported	from	the	data-access
folder.	This	helps	us	to	keep	our	programming	reactive	when	we're	concerned	about	changes
on	a	single	data	entity.	Using	the	LiveDocument	class,	we	can	query	the	database	for	a	single
entity,	while	the	change	property	of	the	LiveDocument	instance	is	an	observable	that	keeps	us
notified	about	changes	on	the	entity.	A	LiveDocument	instance	also	exposes	the	data	of	the
entity	into	a	data	property,	which	can	be	accessed	directly.	If	we'd	like	to	make	an	update	on
the	entity,	we	can	add,	modify,	or	remove	properties	on	the	data	object	and	then	store	the
changes	by	calling	persist().

As	our	Project	component	is	now	activated	by	the	router	in	the	App	component,	we	can	make
use	of	the	OnActivate	router	lifecycle	hook	by	implementing	a	method,	named
routerOnActivate.	We	use	the	getParam	function	of	the	current	route	segment	to	obtain	the
:projectId	parameter	of	the	route.

In	the	subscribe	function	on	the	change	observable	of	our	LiveDocument	instance,	we	expose
the	project	data	directly	on	the	Project	component.	This	simplifies	later	use	in	the	view.

In	the	OnDestroy	lifecycle	hook,	we	make	sure	that	we	unsubscribe	from	the	document	change

observable.

Now,	we	can	rely	on	the	projectId	route	parameter	to	be	passed	into	our	component,	which
makes	the	Project	component	depend	on	the	router.	We	got	rid	of	all	input	properties,	and
then	we	set	the	necessary	data	by	querying	our	data	store	using	the	project	ID.

Now,	it's	time	to	build	the	wrapper	components	that	we	talked	about	in	order	to	route	to	our
TaskList	and	Comments	components.

Let's	create	a	new	component	called	ProjectTaskList,	which	will	serve	as	a	wrapper	to	enable
the	TaskList	component	in	routing.	We	will	create	a	project-task-list.js	file	in	the
lib/project/project-task-list	path,	as	follows:

import	{Component,	ViewEncapsulation,	Inject,	forwardRef}	from	'@angular/core';

import	template	from	'./project-task-list.html!text';

import	{TaskList}	from	'../../task-list/task-list';

import	{Project}	from	'../project';

@Component({

		selector:	'ngc-project-task-list',

		...

		directives:	[TaskList]

})

export	class	ProjectTaskList	{

		constructor(@Inject(forwardRef(()	=>	Project))	project)	{

				this.project	=	project;

		}

		updateTasks(tasks)	{

				this.project.updateTasks(tasks);

		}

}

Let's	also	take	a	look	at	the	template	in	the	project-task-list.html	file:

<ngc-task-list	[tasks]="project.tasks"

													(tasksUpdated)="updateTasks($event)"></ngc-task-list>

We	inject	the	Project	parent	component	into	our	wrapper	component.	As	we	can't	rely	on
output	properties	any	more	to	emit	events,	this	is	the	only	way	to	communicate	with	the	parent
Project	component.	We're	dealing	with	a	circular	reference	here	(Project	depends	on
ProjectTaskList,	and	ProjectTaskList	depends	on	Project),	hence	we	need	to	use	a
forwardRef	helper	function	to	prevent	the	Project	type	evaluating	to	undefined.

If	we	receive	a	tasksUpdated	event	in	the	template,	we	will	call	the	updateTasks	method	on
our	wrapper	component.	The	wrapper	then	simply	delegates	the	call	to	the	project	component.

Similarly,	we	use	the	project	data	to	obtain	the	list	of	tasks	and	create	a	binding	to	the	tasks
input	property	of	the	TaskList	component.

Using	this	wrapper	approach	for	routing,	we're	able	to	leave	our	components	unmodified
when	enabling	them	for	routing.	This	is	much	better	than	the	option	to	make	our	task	list	only
available	for	the	router.	We	would	lose	the	freedom	to	use	a	task	list	outside	of	the	context	of
a	project,	and	then	use	it	with	pure	template	composition.

For	the	Comments	component,	we	perform	the	exact	same	task,	and	create	a	wrapper	on	the
lib/project/project-comments	path.	Besides	dealing	with	comments	instead	of	tasks,	the
code	looks	exactly	the	same	as	with	the	ProjectTaskList	wrapper	component.

After	creating	the	two	wrapper	components,	we	can	now	create	the	router	configuration	on
our	Project	component.	Let's	modify	the	project/project.js	file	to	enable	routing:

...

import	{ProjectTaskList}	from	'./project-task-list/project-task-list';

import	{ProjectComments}	from	'./project-comments/project-comments';

import	{Routes,	Route}	from	'@angular/router';

...

@Component({

		selector:	'ngc-project',

		...

})

@Routes([

		new	Route({	path:	'tasks',	component:	ProjectTaskList}),

		new	Route({	path:	'comments',	component:	ProjectComments})

])

export	class	Project	{

		...

}

To	enable	the	task	list	and	make	comments	navigable	using	the	router,	we	simply	create	a
router	configuration	that	instantiates	our	wrapper	components.	We	also	specify	that	the	tasks
route	should	be	the	default	route	if	no	child	route	was	selected.

Routable	tabs
Okay,	if	you've	read	through	this	chapter	so	far,	you	now	may	wonder	where	the	router	will
instantiate	the	components	of	the	child	routes.	We've	not	yet	included	a	router	outlet	in	the
Project	component	template	so	that	the	router	knows	where	to	instantiate	components.

We	won't	include	the	outlet	for	the	project	router	directly	in	the	Project	component.	Instead,
we	will	use	our	Tabs	component	to	take	over	this	job.	Instead	of	using	content	insertion	in	our
Tabs	component	like	we	did	so	far,	we	now	use	a	router	outlet	to	compose	its	content.	This
will	make	our	Tabs	component	unusable	for	nonrouting	cases,	but	we	can	establish	a	nice
decoupling	by	only	providing	the	router	outlet.	This	way	we	can	still	reuse	the	Tabs
component	in	other	routing	situations:

The	App	component	includes	a	router	outlet	directly;	however,	the	Project	component	relies	on
the	Tabs	component	to	provide	a	router	outlet.

On	a	higher	level,	we	can	describe	the	new	design	of	our	Tabs	component,	as	follows:

It	renders	all	tab	buttons,	based	on	a	list	of	router	links	and	titles	to	provide	a	router
navigation
It	provides	a	router	outlet	that	will	be	used	by	the	parent	component	to	instantiate
navigated	components

Let's	modify	our	Tabs	component	in	lib/ui/tabs/tabs.js	to	implement	these	changes:

...

import	{ROUTER_DIRECTIVES}	from	'@angular/router';

@Component({

		selector:	'ngc-tabs',

		...

		directives:	[ROUTER_DIRECTIVES]

})

export	class	Tabs	{

		@Input()	items;

}

The	ROUTER_DIRECTIVES	constant	from	the	router	module	contains	the	RouterOutlet	directive
as	well	as	the	RouterLink	directive.	By	importing	the	constant	and	providing	it	to	the
components	directives	list,	we	enable	both	router	directives	to	be	used	in	our	template.

The	RouterOutlet	directive	is	used	inside	the	Tabs	component	template	to	indicate	the
instantiation	point	for	the	router.

The	RouterLink	directive	can	be	used	to	generate	routing	URLs	from	the	template	using	the
router	link	DSL.	This	allows	you	to	generate	navigation	links	in	your	application	and	it	can	be
placed	both	on	anchor	tags	as	well	as	other	elements	where	it	will	trigger	navigation	on	click.

The	items	input	is	an	array	of	link	items	that	contain	a	title	and	a	router	link.	On	our	parent
project	component,	we	already	prepare	these	items	in	the	constructor.

Let's	also	take	a	quick	look	at	the	template	of	our	component	in	the	tabs.html	file:

<ul	class="tabs__tab-list">

		<li	*ngFor="let	item	of	items">

				<a	class="tabs__tab-button"

							[routerLink]="item.link">{{item.title}}

		

<div	class="tabs__l-container">

		<div	class="tabs__tab	tabs__tab--active">

				<router-outlet></router-outlet>

		</div>

</div>

As	we	let	the	router	deal	with	the	active	view	using	a	router	outlet,	there's	no	need	any	more	to
use	multiple	tab	components	that	are	switched	active.	We	will	always	have	one	active	tab,	and
let	the	router	handle	the	content.

Let's	see	how	we	can	make	use	of	the	new	Tabs	component	in	our	Project	component	to	make
the	configured	routes	navigable.	First,	we	need	to	add	the	following	code	to	our	Project
component	constructor	to	provide	the	necessary	navigation	items	to	our	Tabs	component:

this.tabItems	=	[

		{title:	'Tasks',	link:	['tasks']},

		{title:	'Comments',	link:	['comments']}

];

In	the	link	property	of	our	navigation	items,	we	use	the	router	link	DSL	to	specify	which	route
should	be	navigated.	As	the	navigation	is	relative	to	the	parent	route	segment	and	we're
already	in	the	/projects/:projectId	route,	the	only	thing	in	our	router	link	DSL	should	be	a
relative	path	to	the	tasks	and	comments	child	routes.

In	the	template	of	our	Project	component,	we	can	now	use	the	tabItems	property	to	create	a
binding	to	the	input	property	of	the	Tabs	component:

<div	class="project__l-header">

		<h2	class="project__title">{{title}}</h2>

		<p>{{description}}</p>

</div>

<ngc-tabs	[items]="tabItems"></ngc-tabs>

Refactoring	navigation
As	a	final	step,	we	also	need	to	refactor	our	navigation	components	to	rely	on	the	router.	So
far,	we	used	our	own	routing	that	was	implemented	in	a	complex	nested-navigation
component	structure.	We	can	simplify	this	a	lot	using	the	Angular	router.

Let's	start	with	the	smallest	component	first,	and	edit	our	NavigationItem	component	template
in	the	lib/navigation/navigation-section/navigation-item/navigation-item.html	file:

<a	class="navigation-section__link"

			[class.navigation-section__link--active]="isActive()"

			[routerLink]="link">{{title}}

Instead	of	controlling	the	link	behavior	ourselves,	we	now	use	the	RouterLink	directive	to
generate	a	link	that	is	based	on	the	component	link	input	property.	To	set	the	active	class	on
the	navigation	link,	we	still	rely	on	the	isActive	method	on	our	component,	and	there's	no
change	required	in	the	template.

Let's	look	at	the	changes	to	the	Component	class	in	the	navigation-item.js	file:

...

import	{RouterLink}	from	'@angular/router/src/directives/router_link';

@Component({

		selector:	'ngc-navigation-item',

		...

		directives:	[RouterLink]

})

export	class	NavigationItem	{

		@Input()	title;

		@Input()	link;

		@ViewChild(RouterLink)	routerLink;

		isActive()	{

				return	this.routerLink	?	

																			this.routerLink.isActive	:	false;

		}

}

Instead	of	relying	on	the	Navigation	component	to	manage	the	active	state	of	navigation
items,	we	now	rely	on	the	RouterLink	directive.	Each	RouterLink	directive	provides	an
accessor	property,	isActive,	which	tells	us	whether	this	specific	route	addressed	by	the	router
link	is	currently	activated	within	the	browsers	URL.	Using	the	@ViewChild	decorator,	we	can
query	for	the	RouterLink	directive	in	our	view	and	then	query	the	isActive	property	to	find
out	if	the	current	navigation	item	is	active	or	not.

Now,	we	only	need	to	make	sure	that	we	pass	the	necessary	items	to	the	Navigation
component	in	our	App	component	in	order	to	make	our	navigation	work	again.

The	following	code	needs	to	be	changed	in	the	App	component	constructor	in	the	app.js	file:

this.projectsSubscription	=	projectService.change

		.subscribe((projects)	=>	{

				this.projects	=	projects;

				//	We	create	new	navigation	items	for	our	projects

				this.projectNavigationItems	=	this.projects

						//	We	first	filter	for	projects	that	are	not	deleted

						.filter((project)	=>	!project.deleted)

						.map((project)	=>	{

								return	{

										title:	project.title,

										link:	['/projects',	project._id]

								};

						});

				});

By	filtering	and	mapping	the	available	projects,	we	can	create	a	list	of	navigation	items	that
contain	a	title	and	link	property.	The	link	property	contains	a	route	link	DSL	that	points	to
the	project	details	route	that	is	configured	in	the	App	component	router	configuration.	By
passing	an	object	literal	as	a	sibling	to	the	route	name,	we	can	specify	some	parameters	along
the	route.	Here,	we	simply	set	the	expected	projectId	parameter	to	the	ID	of	the	project	in	the
projects	list.

Now,	our	navigation	components	make	use	of	the	router	to	enable	navigation.	We	got	rid	of
our	custom	routing	functionality	in	the	Navigation	component,	and	we	use	router	link	DSL	to
create	navigation	items.

Summary
In	this	chapter,	we	learned	about	the	basic	concepts	of	the	router	in	Angular.	We	looked	at	how
we	can	use	the	existing	component	tree	to	configure	child	routes	in	nested-router	scenarios.
Using	nested-child	routes,	we	enabled	the	reuse	of	components	with	route	configurations.

We	also	looked	at	the	problem	of	router	versus	template	composition	and	how	to	mitigate	this
problem	using	wrapper	components.	In	this	way,	we	close	the	gap	between	the	router	and
underlying	components	using	an	in-between	layer.

We	looked	into	route	configuration	specifics	and	the	basics	of	the	router	link	DSL.	We	also
covered	the	basics	of	the	RouteTree	and	RouteSegment	classes	and	how	to	use	them	to	perform
in-depth	route	analysis.

In	the	next	chapter,	we	will	learn	about	SVG	and	how	to	use	this	web	standard	in	order	to	draw
graphics	in	our	Angular	applications.	We	will	visualize	an	activity	log	of	our	application
activities	using	SVG	and	see	how	Angular	makes	this	technology	even	greater	by	enabling
composability.

Chapter	6.	Keeping	Up	with	Activities
In	this	chapter,	we'll	build	an	activity	log	in	our	task	management	system	using	Scalable
Vector	Graphics	(SVG)	to	build	graphical	components	using	Angular.	SVG	is	the	perfect
candidate	when	it	comes	to	complex	graphical	content,	and	using	Angular	components,	we
can	build	nicely	encapsulated	and	reusable	content.

Since	we	want	to	log	all	the	activities	within	our	application,	such	as	adding	comments	or
renaming	tasks,	we	are	going	to	create	a	central	repository.	We	can	then	display	these
activities	and	render	them	as	an	activity	timeline	using	SVG.

To	add	an	overview	of	all	the	activities	and	to	provide	a	user	input	to	narrow	the	range	of
displayed	activities,	we're	going	to	create	an	interactive	slider	component.	This	component
will	use	a	projection	to	render	timestamps,	in	the	form	of	ticks	and	activities,	directly	onto	the
slider's	background.	We'll	also	use	SVG	to	render	the	elements	within	the	component.

We'll	cover	the	following	topics	in	this	chapter:

A	basic	introduction	to	SVG
Making	SVG	composable	with	Angular	components
Using	namespaces	in	component	templates
Creating	a	simple	pipe	to	format	calendar	times	using	Moment.js
Using	the	@HostListener	annotations	to	handle	user	input	events	to	create	an	interactive
slider	element
Making	use	of	Shadow	DOM	using	ViewEncapsulation.Native	in	order	to	create	native-
style	encapsulation

Creating	a	service	for	logging	activities
The	goal	of	this	chapter	is	to	provide	a	way	to	keep	track	of	all	user	activities	within	the	task
management	application.	For	this	purpose,	we'll	need	a	system	that	will	allow	us	to	log
activities	within	components	and	to	access	already	logged	activities.

Activities,	as	entities,	should	be	quite	generic	and	should	have	the	following	fields	with	their
respective	purposes:

Subject:	This	field	should	be	used	to	reference	the	subject	of	the	activity.	This	can	be	any
identifier	that	identifies	a	foreign	entity.	In	the	context	of	projects,	we'll	store	the	project
ID	in	this	field.	Services	and	components	that	use	the	activity	service	should	use	this	field
to	filter	specific	activities	further.
Category:	This	field	provides	an	additional	way	of	tagging	the	activity	further.	For
projects,	we	will	currently	use	two	categories:	comments	and	tasks.
Title:	This	refers	to	the	title	of	the	activity	that	will	provide	a	very	brief	summary	of
what	the	activity	is	about.	This	could	be	something	like	New	task	was	added	or	Comment
was	deleted.
Message:	This	is	the	field	where	the	real	beef	of	the	activity	goes	into.	It	should	contain
enough	information	to	provide	good	traceability	of	what	happened	during	the	activity.

In	order	to	develop	our	system,	we'll	create	a	new	file	named	activity-service.js	under	the
activities/activity-service	path	in	our	lib	folder.	In	this	file,	we	will	create	our	activity
service	class,	which	we're	enabling	for	dependency	injection,	by	using	the	@Injectable
annotation:

@Injectable()

constructor(@Inject(DataProvider)	dataProvider,

																			@Inject(UserService)	userService)	{

export	class	ActivityService	{

				//	We're	exposing	a	replay	subject	that	will	emit	events	

				//	whenever	the	activities	list	change

				this.change	=	new	ReplaySubject(1);

				this.dataProvider	=	dataProvider;

				this.userService	=	userService;

				this.activities	=	[];

				//	We're	creating	a	subscription	to	our	datastore	to	get	

				//	updates	on	activities

				this.activitiesSubscription	=	this.dataProvider.getLiveChanges()

						.map((change)	=>	change.doc)

						.filter((document)	=>	document.type	===	'activity')

						.subscribe((changedActivity)	=>	{

								this.activities	=	this.activities.slice();

								//	Since	activities	can	only	be	added	we	can	assume	that	

								//	this	change	is	a	new	activity

								this.activities.push(changedActivity);

								//	Sorting	the	activities	by	time	to	make	sure	there's	no	

								//	sync	issue	messing	with	the	ordering

								this.activities.sort((a,	b)	=>	

										a.time	>	b.time	?	-1	:	a.time	<	b.time	?	1	:	0);

								this.change.next(this.activities);

						});

		}

		//	This	method	is	logging	a	new	activity

		logActivity(subject,	category,	title,	message)	{

				//	Using	the	DataProvider	to	create	a	new	document	in	our

				//	datastore

				this.dataProvider.createOrUpdateDocument({

						type:	'activity',

						user:	this.userService.currentUser,

						time:	new	Date().getTime(),

						subject,

						category,

						title,

						message

				});

		}

}

In	the	constructor	of	our	activity	service,	we've	subscribed	to	changes	to	our	data	store	and
have	filtered	any	incoming	change	by	type	so	we	will	only	receive	activity	updates.

Since	activities	can't	be	edited	or	deleted,	we	only	need	to	be	concerned	about	newly	added
activities.	We	update	the	internal	array	of	activities	with	any	added	activity	in	the	subscription.
This	way,	we'll	not	only	receive	all	the	initial	activities,	but	also	the	activities	that	are
subsequently	added	directly	from	the	data	store.	Other	services	and	components	can	then
directly	access	the	activity	list	of	the	system.

In	order	for	other	application	components	to	react	to	changes	in	the	activity	list,	we've
exposed	a	ReplaySubject	observable	on	the	change	member	field.

In	the	logActivity	method,	we've	simply	added	a	new	activity	to	the	data	store.	UserService
will	provide	us	with	information	on	the	currently	logged-in	user,	and	we	can	use
DataProvider	to	write	to	the	data	store.

So,	we	have	created	a	simple	platform	that	will	help	us	keep	track	of	activities	within	our
application.	Since	we	want	only	one	instance	of	ActivityService	within	our	application,	let's
add	it	to	the	providers	list	on	our	root	App	component.	You'll	find	this	component	in	the
app.js	file,	located	within	our	lib	folder:

@Component({

		selector:	'ngc-app',

		…

		providers:	[ProjectService,	UserService,	ActivityService]

})

Because	all	dependency	injectors	will	inherit	the	dependencies	from	our	App	component,	we
can	inject	it	in	any	component	of	our	application	going	forward.

Logging	activities
We	have	created	a	nice	system	to	log	activities.	Now	let's	go	ahead	and	use	it	within	our
components	to	keep	an	audit	of	all	the	activities.

First,	let's	use	ActivityService	to	log	activities	within	the	TaskList	component.	The
following	code	excerpt	highlights	the	changes	made	to	the	TaskList	component	within	the
task-list/task-list.js	file	in	our	lib	folder:

...

import	{ActivityService}	from	'../activities/activity-service/activity-

service';

import	{limitWithEllipsis}	from	'../utilities/string-utilities';

@Component({

		selector:	'ngc-task-list',

		...

})

export	class	TaskList	{

		…

		//	Subject	for	logging	activities

		@Input()	activitySubject;

		onTaskUpdated(task,	updatedData)	{

				...

				//	Creating	an	activity	log	for	the	updated	task

				this.activityService.logActivity(

						this.activitySubject.id,

						'tasks',

						'A	task	was	updated',

						'The	task	"${limitWithEllipsis(oldTask.title,	30)}"	was	updated	on	

#${this.activitySubject.document.data._id}.'

);

		}

		onTaskDeleted(task)	{

				...

				//	Creating	an	activity	log	for	the	deleted	task

				this.activityService.logActivity(

						this.activitySubject.id,

						'tasks',

						'A	task	was	deleted',

						'The	task	"${limitWithEllipsis(removed.title,	30)}"	was	deleted	from	

#${this.activitySubject.document.data._id}.'

);

		}

		addTask(title)	{

				...

				//	Creating	an	activity	log	for	the	added	task

				this.activityService.logActivity(

						this.activitySubject.id,

						'tasks',

						'A	task	was	added',

						'A	new	task	"${limitWithEllipsis(title,	30)}"	was	added	to	

#${this.activitySubject.document.data._id}.'

);

		}

		...

}

Using	the	logActivity	method	of	ActivityService,	we	can	easily	log	any	number	of
activities	within	the	already	existing	TaskList	methods	to	modify	tasks.

In	the	message	body	of	our	activities,	we've	used	a	new	utility	function,	limitWithEllipsis,
which	we've	imported	from	a	new	module,	namely	string-utilities.	This	function	takes	a
string	and	a	number	as	parameters.	The	returned	string	is	a	truncated	version	of	the	input
string,	which	is	cut	off	at	the	position	specified	with	the	second	parameter.	In	addition,	there's
an	ellipsis	character	(...)	appended	to	the	string.	I	won't	bother	you	with	the	rather	simple
code	within	this	helper.	If	you'd	like	to	know	how	it's	implemented,	you	can	always	check	the
implementation	after	downloading	this	chapter's	code.

If	you	go	back	to	the	specification	of	our	activity	logs,	you	will	see	that	we	always	need	to
specify	a	subject	in	order	to	log	activities.	We've	implemented	this	on	our	TaskList
component	by	introducing	a	new	input	parameter	called	activitySubject.	The	assumption
here	is	that	each	activity	subject	contains	LiveDocument	stored	under	the	document	member.
From	there,	we	can	obtain	the	ID	in	the	data	store	and	use	it	for	our	activity	message.

If	we	revisit	our	Project	component,	you	will	see	that	we're	already	following	the
prerequisites	of	being	an	activity	subject.	We've	stored	a	reference	to	the	underlying
LiveDocument	instance	under	the	document	member	field.

All	we	need	to	do	now	is	change	the	template	of	our	ProjectTaskList	wrapper	component	to
pass	the	activitySubject	project	input	of	the	TaskList	component.	Let's	look	at	the	changes
in	the	lib/project/project-task-list/project-task-list.html	file	quickly:

<ngc-task-list	[tasks]="project.tasks"

															[activitySubject]="project"

													(tasksUpdated)="updateTasks($event)"></ngc-task-list>

You	might	wonder	why	we	care	about	this	rather	cumbersome	way	of	dealing	with	our	task
list,	if	we	could	just	pass	in	a	hard	reference	to	the	project	and	use	project	tasks	and	the
project	ID	directly.	The	beautiful	aspect	of	our	current	solution	is	that	we	do	not	have	any
dependency	on	a	project	as	such.	We	could	also	use	our	TaskList	component	without	the
context	of	a	project.	And	we	can	still	pass	a	list	of	tasks	to	the	tasks	input	and	use	a	different
activity	subject	for	the	activity	logs.

We're	also	going	to	use	ActivityService	within	the	Comments	component	to	create	logs	for
added,	edited,	and	deleted	comments.	Since	the	steps	involved	are	very	similar	to	what	we've
just	done	for	the	TaskList	component,	we're	going	to	skip	this.	You	can	always	take	a	look	at
the	final	codebase	for	this	chapter	to	add	activity	logs	for	the	Comments	component.

Leveraging	the	power	of	SVG
SVG	has	been	a	part	of	the	Open	Web	Platform	standards	since	1999	and	was	first
recommended	in	2001	under	the	SVG	1.0	standard.	SVG	is	a	consolidation	of	two	independent
proposals	for	an	XML-based	vector	image	format.	Precision	Graphics	Markup	Language
(PGML)—mainly	developed	by	Adobe	and	Netscape—as	well	as	Vector	Markup	Language
(VML)—which	was	mainly	represented	by	Microsoft	and	Macromedia—were	both	different
XML	formats	that	served	the	same	purpose.	The	W3C	consortium	declined	both	the	proposals
in	favor	of	the	newly	developed	SVG	standard	that	unified	the	best	of	both	worlds	into	a
single	standard:

Timeline	showing	the	development	of	the	SVG	standard

All	three	standards	had	a	common	goal,	which	was	to	provide	a	format	for	the	Web	to	display
vector	graphics	in	the	browser.	SVG	is	a	declarative	language	that	specifies	graphical	objects
using	XML	elements	and	attributes.

Let's	look	at	a	simple	example	on	how	to	create	an	SVG	image	with	a	black	circle,	using
SVG:

<?xml	version="1.0"	encoding="utf-8"?>		

<svg	version="1.1"	xmlns="http://www.w3.org/2000/svg"	

					width="20px"	height="20px">

		<circle	cx="10"	cy="10"	r="10"	fill="black"	/>

</svg>

This	rather	simple	example	represents	an	SVG	image	with	a	black	circle,	whose	center	is
located	at	x	=	10	px	and	y	=	10	px.	The	radius	of	the	circle	is	10	px,	which	makes	this	circle
20	px	in	width	and	height.

The	origin	of	the	coordinate	system	in	SVG	sits	on	the	top-left	corner,	where	the	y	axis	faces
the	south	direction	and	the	x	axis	eastward:

The	coordinate	system	within	SVG

Using	not	only	primitive	shapes,	such	as	circles,	lines,	and	rectangles,	but	also	complex
polygons,	the	possibilities	for	creating	graphical	content	are	nearly	unlimited.

SVG	is	not	only	used	within	the	Web,	but	has	also	become	a	very	important	intermediate
format	for	exchanging	vector	graphics	between	different	applications.	Almost	any	application
that	supports	vector	graphics	also	supports	the	import	of	SVG	files.

The	real	power	of	SVG	comes	to	the	surface	when	we	do	not	include	an	SVG	file	as	an
HTML	image,	but	rather	include	the	SVG	content	directly	within	our	DOM.	Since	HTML5
directly	supports	the	SVG	namespace	within	an	HTML	document	and	will	render	the	graphics
we	define	within	our	HTML,	a	whole	bunch	of	new	possibilities	spring	up.	We	can	now	style
our	SVG	with	CSS,	manipulate	the	DOM	with	JavaScript,	and	easily	make	our	SVG
interactive.

Taking	the	previous	example	of	our	circle	image	to	the	next	level,	we	could	make	it
interactive	by	changing	the	circle	color	by	clicking	it.	First,	let's	create	a	minimal	HTML
document	and	include	our	SVG	elements	directly	within	the	DOM:

<!doctype	html>

<title>Minimalistic	Circle</title>

<svg	width="20px"	height="20px">

		<circle	id="circle"	cx="10"	cy="10"	r="10"	fill="black">

</svg>

<script>

		document

				.getElementById('circle')

				.addEventListener('click',	function(event)	{

						event.target.setAttribute('fill',	'red');

				});

</script>

As	you	can	see,	we	can	get	rid	of	the	version	and	the	XML	namespace	declaration	when	we
use	SVG	directly	within	the	DOM	of	our	HTML	document.	What's	interesting	here	is	that	we
can	treat	SVG	very	much	like	regular	HTML.	We	can	assign	an	ID	and	even	classes	to	SVG
elements	and	access	them	from	JavaScript.

Within	the	script	tag	of	our	HTML	document,	we	can	directly	access	our	circle	element
using	the	ID	we've	previously	assigned	to	it.	We	can	add	event	listeners,	the	way	we	already
know,	from	regular	HTML	elements.	In	this	example,	we	added	a	click	event	listener	and
changed	the	color	of	our	circle	to	red.

For	the	sake	of	simplicity,	we	used	an	inline	script	tag	in	this	example.	It	would	of	course	be
much	cleaner	to	have	a	separate	JavaScript	file	to	do	the	scripting.

Styling	SVG
I'm	a	purist	when	it	comes	to	the	separation	of	concerns	within	the	Web.	I	still	strongly	believe
in	the	separation	of	structure	(HTML),	appearance	(CSS),	and	behavior	(JavaScript),	as	well
as	producing	the	most	maintainable	applications	when	following	this	practice.

First,	it	seems	weird	to	have	SVG	in	your	HTML,	and	you	might	think	that	this	breaks	the
contract	of	a	clean	separation.	Why	is	this	graphical	content,	consisting	of	only	appearance-
relevant	data,	sitting	in	my	HTML	that	is	supposed	to	only	contain	raw	information?	After
dealing	with	a	lot	of	SVGs	within	a	DOM,	I	have	come	to	the	conclusion	that	we	can	establish
a	clean	separation	when	using	SVG	by	dividing	our	appearance	responsibilities	into	the
following	two	subgroups:

Graphical	structure:	This	subgroup	deals	with	the	process	of	defining	the	basic
structure	of	your	graphical	content.	This	is	about	shapes	and	layout.
Visual	appearance:	This	subgroup	deals	with	the	process	of	defining	the	look	and	feel	of
our	graphical	structures,	such	as	colors,	line	widths,	line	styles,	and	text	alignment.

If	we	separate	the	concerns	of	SVG	into	these	groups,	we	can	actually	gain	great
maintainability.	Graphical	structure	is	defined	by	the	SVG	shapes	themselves.	They	are
directly	written	within	our	HTML	but	don't	have	a	particular	look	and	feel.	We	only	store	the
basic	structural	information	within	HTML.

Luckily,	all	the	properties	of	visual	appearance,	such	as	colors,	cannot	only	be	expressed
through	the	attributes	in	our	SVG	elements;	however,	there's	a	corresponding	CSS	property
that	allows	us	to	offload	all	the	look-and-feel-relevant	aspects	of	the	structure	to	CSS.

Go	back	to	the	example	where	we	drew	a	black	circle;	we'll	tweak	this	a	bit	to	fit	our	demands
of	separation	of	concerns	so	that	we	can	distinguish	graphical	structure	from	graphical
appearance:

<!doctype	html>

<title>Minimalistic	Circle</title>

<svg	width="20px"	height="20px">

		<circle	class="circle"	cx="10"	cy="10"	r="10">

</svg>

Styling	our	graphical	structures	can	now	be	achieved	using	CSS	by	including	a	stylesheet	with
the	following	content:

.circle	{

		fill:	black;

}

This	is	fantastic,	as	we	can	now	not	only	reuse	some	graphical	structures,	but	also	apply
different	visual	appearance	parameters	using	CSS,	similar	to	those	enlightening	moments
when	we	managed	to	reuse	some	semantic	HTML	by	only	changing	some	CSS.

Let's	look	at	the	most	important	CSS	properties	we	can	use	to	style	SVG	shapes:

fill:	While	working	with	solid	SVG	shapes,	there's	always	a	shape	fill	and	stroke	option
available;	the	fill	property	specifies	the	color	of	the	shape	fill.
stroke:	This	property	specifies	the	color	of	the	SVG	shape's	outline.
stroke-width:	This	property	specifies	the	width	of	the	SVG	shape's	outline	on	solid
shapes.	For	nonsolid	shapes,	such	as	lines,	this	can	be	thought	of	as	line	width.
stroke-dasharray:	This	specifies	a	dash	pattern	for	strokes.	Dash	patterns	are	space-
separated	values	that	define	a	pattern.
stroke-dashoffset:	This	specifies	an	offset	for	the	dash	pattern,	which	is	specified	with
the	stroke-dasharray	property.
stroke-linecap:	This	property	defines	how	line	caps	should	be	rendered.	They	can	be
rendered	as	square,	butt,	or	rounded	caps.
stroke-linejoin:	This	property	specifies	how	lines	are	joined	together	within	a	path.
shape-rendering:	Using	this	property,	you	can	override	the	shape-rendering	algorithm
that,	as	the	name	suggests,	is	used	to	render	shapes.	This	is	particularly	useful	if	you	need
crispy	edges	on	your	shapes.

For	a	complete	reference	of	the	available	appearance-relevant	SVG	attributes,	visit	the
Mozilla	Developer	website	at	https://developer.mozilla.org/en-US/docs/Web/SVG/Attribute.

I	hope	this	brief	introduction	gave	you	a	better	feeling	about	SVG	and	the	great	power	it
comes	with.	In	this	chapter,	we're	going	to	use	some	of	that	power	to	create	nice,	interactive
graphical	components.	If	you	would	like	to	learn	more	about	SVG,	I	strongly	recommend	that
you	go	through	the	great	articles	by	Sara	Soueidan.

https://developer.mozilla.org/en-US/docs/Web/SVG/Attribute

Building	SVG	components
When	building	Angular	components	with	SVG	templates,	there	are	a	couple	of	things	we	need
to	be	aware	of.	The	first	and	most	obvious	one,	is	XML	namespaces.	Modern	browsers	are
very	intelligent	when	parsing	HTML.	Besides	being	probably	the	most	fault-tolerant	parser	in
the	history	of	computer	science,	DOM	parsers	are	very	smart	in	recognizing	markup	and	then
deciding	how	to	treat	it.	They	will	automatically	decide	the	correct	namespaces	for	us,	based
on	element	names,	so	we	don't	need	to	deal	with	them	when	writing	HTML.

If	you've	messed	around	with	the	DOM	API	a	bit,	you	would've	probably	recognized	that	there
are	two	methods	for	creating	new	elements.	In	the	document	object,	for	example,	there's	a
createElement	function,	but	there's	also	createElementNS	that	accepts	an	additional
namespace	URI	parameter.	Also,	every	created	element	has	a	namespaceURI	property	that	tells
you	the	namespace	of	the	specific	element.	This	is	important	since	HTML5	is	a	standard	that
consists	of	at	least	three	namespaces:

HTML:	This	is	the	standard	HTML	namespace	with	the	http://www.w3.org/1999/xhtml
URI.
SVG:	This	embraces	all	SVG	elements	and	attributes	and	uses	the
http://www.w3.org/2000/svg	URI.	You	can	sometimes	see	this	namespace	URI	in	an	xmlns
attribute	of	the	svg	elements.	In	fact,	this	is	not	really	required,	as	the	browser	is	smart
enough	to	decide	on	the	correct	namespace	itself.
MathML:	This	is	an	XML-based	format	to	describe	mathematical	formulas	and	is
supported	in	most	modern	browsers.	It	uses	the	http://www.w3.org/1998/Math/MathML
namespace	URI.

We	can	mix	all	these	elements	from	different	standards	and	namespaces	within	a	single
document,	and	our	browser	will	figure	out	the	correct	namespace	itself	when	it	creates
elements	within	the	DOM.

Tip

If	you	want	more	information	on	namespaces,	I	recommend	that	you	go	through	the
Namespaces	Crash	Course	article	on	the	Mozilla	Developer	Network	at
https://developer.mozilla.org/en/docs/Web/SVG/Namespaces_Crash_Course.

As	Angular	will	compile	templates	for	us	and	render	elements	into	the	DOM	using	the	DOM
API,	it	needs	to	be	aware	of	the	namespaces	when	doing	that.	Similar	to	the	browser,	Angular
provides	some	intelligence	for	deciding	the	correct	namespace	while	creating	elements.
However,	there	are	some	situations	where	you	need	to	help	Angular	recognize	the	correct
namespace.

To	illustrate	some	of	this	behavior,	let's	transform	our	circle	example	that	we've	been
working	on	into	an	Angular	component:

@Component({

http://www.w3.org/1999/xhtml
http://www.w3.org/2000/svg
http://www.w3.org/1998/Math/MathML
https://developer.mozilla.org/en/docs/Web/SVG/Namespaces_Crash_Course

		selector:	'awesome-circle',

		template:	`

				<svg	[attr.width]="size"	[attr.height]="size">

						<circle	[attr.cx]="size/2"	[attr.cy]="size/2"

														[attr.r]="size/2"	fill="black"	/>

				</svg>

		`

})

export	class	AwesomeCircle	{

		@Input()	size;

}

We've	wrapped	our	circle	SVG	graphics	into	a	simple	Angular	component.	The	size	input
parameter	determines	the	actual	width	and	height	of	the	circle	by	controlling	the	SVG's	width
and	height	attributes	and	the	circle's	cx,	cy,	and	r	attributes.

To	use	our	Circle	component,	simply	use	the	following	template	within	another	component:

<awesome-circle	[size]="20"></awesome-circle>

Note

It's	important	to	note	that	we	need	to	use	attribute	bindings	on	SVG	elements,	and	we	can't	set
DOM	element	properties	directly.	This	is	due	to	the	nature	of	SVG	elements	that	have	special
property	types—for	example,	SVGAnimatedLength—that	can	be	animated	with	Synchronized
Multimedia	Integration	Language	(SMIL).	Instead	of	interfering	with	these	rather	complex
element	properties,	we	can	simply	use	attribute	bindings	to	set	the	attribute	values	of	the	DOM
element.

Let's	go	back	to	our	namespace	discussion.	Angular	would	know	that	it	needs	to	use	the	SVG
namespace	to	create	the	elements	within	this	template.	It	will	function	in	this	way	simply
because	we're	using	the	svg	element	as	a	root	element	within	our	component,	and	it	could
switch	the	namespace	within	the	template	parser	for	any	child	elements	automatically.

However,	there	are	certain	situations	where	we	need	to	help	Angular	determine	the	correct
namespace	for	the	elements	we'd	like	to	create.	This	strikes	us	if	we're	creating	nested	SVG
components	that	don't	contain	a	root	svg	element:

@Component({

		selector:	'[awesomeCircle]',

		template:	`

						<svg:circle	[attr.cx]="size/2"	[attr.cy]="size/2"

																		[attr.r]="size/2"	fill="black"	/>

		'

})

export	class	AwesomeCircle	{

		@Input('awesomeCircle')	size;

}

@Component({

		selector:	'app'

		template:	`

			<svg	width="20"	height="20">

				<g	[awesomeCircle]="20"></g>

			</svg>

		`,

		directives:	[AwesomeCircle]

})

export	class	App	{}

In	this	example,	we're	nesting	SVG	components,	and	our	AwesomeCircle	component	does	not
have	an	svg	root	element	to	tell	Angular	to	switch	the	namespace.	This	is	why	we've	created
the	svg	element	within	our	App	component	and	then	included	the	AwesomeCircle	component	in
an	SVG	group.

We	need	to	explicitly	tell	Angular	to	switch	to	the	SVG	namespace	within	our	Circle
component,	and	we	can	do	this	by	including	the	namespace	name	as	a	prefix	separated	by	a
colon,	as	you	can	see	in	the	highlighted	section	of	the	preceding	code	excerpt.

If	you	have	multiple	elements	that	need	to	be	created	within	the	SVG	namespace	explicitly,
you	can	rely	on	the	fact	that	Angular	does	apply	the	namespace	for	child	elements	too	and
does	group	all	your	elements	with	an	SVG	group	element.	So,	you	only	need	to	prefix	the
group	element	<svg:g>	...	</svg:g>,	but	none	of	the	contained	SVG	elements.

This	is	enough	to	know	about	Angular	internals	when	dealing	with	SVG.	Let's	move	on	and
create	some	real	components!

Building	an	interactive	activity	slider
component
In	the	previous	topics,	we've	covered	the	basics	of	working	with	SVG	and	dealing	with	SVG
in	Angular	components.	Now	it's	time	to	apply	our	knowledge	to	the	task	management
application	and	create	some	components	using	SVG.

The	first	component	we'll	be	creating	in	this	context	is	an	interactive	slider	that	allows	the
user	to	select	the	time	range	of	activities	that	he	or	she	is	interested	to	check	out.	Displaying	a
simple	HTML5	range	input	could	be	a	solution,	but	since	we've	gained	some	SVG
superpower,	we	can	do	better!	We'll	use	SVG	to	render	our	own	slider	that	will	show	existing
activities	as	ticks	on	the	slider.	Let's	look	at	a	mock-up	of	the	slider	component	that	we're
going	to	create:

A	mockup	of	the	activity	slider	component

Our	slider	component	will	actually	serve	two	purposes.	It	should	be	a	user	control	and	should
provide	a	way	to	select	a	time	range	for	filtering	activities.	However,	it	should	also	provide
an	overview	of	all	the	activities	so	that	a	user	can	filter	the	range	more	intuitively.	By	drawing
vertical	bars	that	represent	activities,	we	can	already	give	the	user	a	feeling	of	the	range	he	or
she	is	interested	in.

First	of	all,	we'll	create	a	new	file	for	our	ActivitySlider	component	called	activity-
slider.js	within	the	activities/activity-slider	path	and	define	our	component	class:

import	styles	from	'./activity-slider.css!text';

@Component({

		selector:	'ngc-activity-slider',

		host:	{

				class:	'activity-slider'

		},

		styles:	[styles],

		encapsulation:	ViewEncapsulation.Native,

		…

})

export	class	ActivitySlider	{

		//	The	input	expects	a	list	of	activities

		@Input()	activities;

		//	If	the	selection	of	date	range	changes	within	our	slider	

		//	component,	we'll	emit	a	change	event

		@Output()	selectionChange	=	new	EventEmitter();

		constructor(@Inject(ElementRef)	elementRef)	{

				//	We'll	use	the	host	element	for	measurement	when	drawing

				//	the	SVG

				this.sliderElement	=	elementRef.nativeElement;

				//	The	padding	on	each	side	of	the	slider

				this.padding	=	20;

		}

		ngAfterViewInit()	{

				//	We'll	need	a	reference	to	the	overlay	rectangle	so	we	can	

				//	update	its	position	and	width

				this.selectionOverlay	=	this.sliderElement

					.shadowRoot.querySelector('.selection-overlay');

		}

}

The	first	thing	we	should	mention,	and	which	differs	from	all	the	other	components	we've
written	so	far,	is	that	we're	using	ViewEncapsulation.Native	for	this	component.	As	we
learned	from	the	Creating	our	application	component	section	in	Chapter	2,	Ready,	Set,	Go!,
when	we	use	ViewEncapsulation.Native	for	our	component	encapsulation,	Angular	actually
uses	Shadow	DOM	to	create	the	component.	We	briefly	looked	at	this	in	the	Shadow	DOM
section	in	Chapter	1,	Component-Based	User	Interfaces	as	well.

Using	Shadow	DOM	for	our	component	will	give	us	this	advantage:	our	component	will	be
fully	encapsulated	from	the	CSS	side	of	things.	This	not	only	means	that	none	of	the	global
CSSes	will	leak	into	our	component,	but	it	also	means	that	we'll	need	to	create	local	styles	in
order	to	style	our	component.

So	far,	we've	used	a	CSS	naming	convention	called	BEM	that	provides	us	with	some
necessary	prefixes	to	avoid	name	clashes	within	CSS	and	establish	a	clean	and	simple	CSS
specificity.	However,	when	using	Shadow	DOM,	we	can	forego	prefixes	to	avoid	name
clashes,	since	we're	only	applying	styles	locally	within	the	component.

Because	we're	using	Shadow	DOM	for	this	component,	we	need	to	have	a	way	to	define	local
styles.	Angular	provides	us	with	an	option	to	pass	styles	into	the	component	using	the	styles
property	of	the	component	annotation.

Tip

Chrome	supports	Shadow	DOM	natively	since	version	35.	Within	Firefox,	Shadow	DOM	can
be	enabled	by	visiting	the	about:config	page	and	turning	on	the	dom.webcomponents.enabled
flag.	IE,	Edge,	and	Safari	don't	support	this	standard	at	all;	however,	we	can	set	things	up	in	a
way	that	they	could	deal	with	Shadow	DOM,	by	including	a	polyfill	named	webcomponents.js.
You	can	find	more	information	on	this	polyfill	at

https://github.com/webcomponents/webcomponentsjs.

Using	the	text	plugin	of	SystemJS,	we	can	import	a	stylesheet	containing	only	the	local	styles
of	our	component	and	then	pass	them	to	the	styles	property.	By	appending	a	!text	postfix	to
the	import	of	our	CSS	file,	we	tell	SystemJS	to	load	our	CSS	file	as	raw	text.	Note	that	the
styles	property	is	expecting	an	array,	which	is	why	we	wrap	our	imported	styles	into	an
array	literal.

If	you	take	a	look	at	the	stylesheet	for	the	ActivitySlider	component,	you	can	immediately
see	that	we're	no	longer	prefixing	the	classes	with	the	component	name:

.slide	{

		fill:#f9f9f9;

}

.activity	{

		fill:#3699cb;

}

.time	{

		fill:#bbb;

		font-size:14px;

}

.tick	{

		stroke:#bbb;

		stroke-width:2px;

		stroke-dasharray:3px;

}

.selection-overlay	{

		fill:#d9d9d9;

}

Usually,	such	short	class	names	would	probably	lead	to	name	clashes	within	our	project,	but
since	the	styles	will	be	local	to	the	Shadow	DOM	of	our	component,	we	don't	need	to	worry
about	name	clashes	any	more.

As	an	input	parameter,	we	define	the	list	of	activities	that	will	be	used	not	only	to	determine
the	available	range	in	the	slider,	but	also	to	render	activities	on	the	background	of	the	slider.

Once	a	selection	is	made	by	the	user,	our	component	will	use	the	selectionChange	event
emitter	to	notify	the	outside	world	about	the	change.

Within	the	constructor,	we're	setting	aside	the	component	DOM	element	for	some
measurement	we	need	to	make	in	order	to	draw	later	on:

this.sliderElement	=	elementRef.nativeElement;

By	injecting	the	ElementRef	instance	to	the	constructor,	we	can	easily	access	the	native	DOM
element	of	our	component.

https://github.com/webcomponents/webcomponentsjs

Projection	of	time
Our	slider	component	needs	to	be	able	to	project	timestamps	into	the	coordinate	system	of
SVG.	Also,	when	a	user	clicks	on	the	timeline	to	select	a	range,	we'll	need	to	be	able	to
project	coordinates	back	into	timestamps.	For	this	purpose,	we	need	to	create	two	projection
functions	within	our	component	that	will	use	a	few	helper	functions	and	states	to	calculate	the
values,	from	coordinates	to	time	and	vice-verse:

Visualization	of	important	variables	and	functions	for	our	calculations

While	we	will	use	percentage	to	position	our	SVG	elements	on	the	slider	component,	the
padding	on	the	sides	will	need	to	be	specified	in	pixels.	The	totalWidth	function	will	return
the	total	width	of	the	area	in	pixels;	this	is	where	we'll	draw	the	activity	indicators.	The
timeFirst,	timeLast,	and	timeSpan	variables	will	also	be	used	by	the	calculations	and	are
specified	in	milliseconds.

Let's	add	some	code	to	our	slider	to	deal	with	the	projection	of	our	activities	on	the	slider	in
the	activity-slider.js	file:

//	Getting	the	total	available	width	of	the	slider

totalWidth()	{

		return	this.sliderElement.clientWidth	-	this.padding	*	2;

}

//	Projects	a	time	stamp	into	percentage	for	positioning

projectTime(time)	{

		let	position	=	this.padding	+

				(time	-	this.timeFirst)	/	this.timeSpan	*	this.totalWidth();

		return	position	/	this.sliderElement.clientWidth	*	100;

}

//	Projects	a	pixel	value	back	to	a	time	value.	This	is	required	

//	for	calculating	time	stamps	from	user	selection.

projectLength(length)	{

		return	this.timeFirst	+	(length	-	this.padding)	/	this.totalWidth()	*	

this.timeSpan;

}

Since	we	have	put	aside	the	reference	to	the	root	element	as	the	sliderElement	member
variable,	we	can	use	its	clientWidth	property	to	get	the	full	width	of	the	component	and
subtract	the	padding.	This	will	give	us	the	full	width	of	the	area	where	we'd	like	to	draw
activity	indicators,	in	pixels.

In	the	projectTime	function,	we	will	first	transform	the	timestamp	into	a	position	by	a	simple
rule	of	three.	Because	we	have	access	to	the	timestamp	of	the	first	activity	as	well	as	the	total
time	span,	this	will	be	quite	a	simple	task.	Once	we	do	this,	we	can	convert	our	position	value,
which	is	of	unit	pixels,	into	percentage,	by	dividing	it	by	the	total	component	width	and	then
multiplying	it	by	100.

To	project	a	pixel	value	back	to	a	timestamp,	we	can	do	more	or	less	the	reverse	of
projectTime,	except	that	we're	not	dealing	with	percentage	here	but	assuming	the	length
parameter	of	the	projectLength	function	is	in	pixel	unit.

We've	used	some	member	variables—timeFirst,	timeLast,	and	timeSpan—within	our
projection	code,	but	how	do	we	set	these	member	variables?	Since	we	have	an	activities
component	input,	which	is	expected	to	be	a	list	of	relevant	activities,	we	can	observe	the	input
for	changes	and	set	the	values	based	on	the	input.	To	observe	component	input	for	changes,
we	can	use	the	ngOnChanges	life	cycle	hook:

ngOnChanges(changes)	{

		//	If	the	activities	input	changes	we	need	to	re-calculate	and	

		//	re-draw

		if	(changes.activities	&&	changes.activities.currentValue)	{

				const	activities	=	changes.activities.currentValue;

				//	For	later	calculations	we	set	aside	the	times	of	the	

				//	first	and	the	last	activity

				if	(activities.length	===	1)	{

						//	If	we	only	have	one	activity	we	use	the	same	time	for	

						//	first	and	last

						this.timeFirst	=	this.timeLast	=	activities[0].time;

				}	else	if	(activities.length	>	1)	{

						//	Take	first	and	last	time

						this.timeFirst	=	activities[activities.length	-	1].time;

						this.timeLast	=	activities[0].time;

				}	else	{

						//	No	activities	yet,	so	we	use	the	current	time	for	both	

						//	first	and	last

						this.timeFirst	=	this.timeLast	=	new	Date().getTime();

				}

				//	The	time	span	is	the	time	from	the	first	activity	to	the	

				//	last	activity.	We	need	to	limit	to	lower	1	for	not	messing	

				//	up	later	calculations.

				this.timeSpan	=	Math.max(1,	this.timeLast	-	this.timeFirst);

		}

}

First,	we	need	to	check	whether	the	changes	include	changes	to	the	activities	input	and	that
the	current	value	of	the	input	is	valid.	After	checking	for	the	input	value,	we	can	determine

our	member	variables,	namely	timeFirst,	timeLast,	and	timeSpan.	We	limit	the	timeSpan
variable	to	1	at	least,	as	our	projection	calculations	would	be	messed	up	otherwise.

The	preceding	code	will	ensure	that	we	will	always	recalculate	our	member	variables	when
the	activities	input	changes	and	that	we'd	be	using	the	most	recent	data-rendering	activities.

Rendering	activity	indicators
We've	already	implemented	the	basics	of	the	component	and	laid	the	groundwork	for	drawing
time	information	into	the	coordinate	system	of	our	component.	It's	time	to	use	our	projection
functions	and	draw	our	activities	as	indicators	on	the	slider	using	SVG.

First,	let's	take	a	look	at	the	required	template	that	we	are	going	to	create	in	a	file	called
activity-slider.html	within	our	activity-slider	directory:

<svg	width="100%"	height="70px">

		…

		<rect	x="0"	y="30"	width="100%"	height="40"	

								class="slide"></rect>

		<rect	*ngFor="let	activity	of	activities"

								[attr.x]="projectTime(activity.time)	+	'%'"

								height="40"	width="2px"	y="30"	class="activity"></rect>

</svg>

Since	we	need	to	create	an	indicator	for	every	activity	within	our	activities	list,	we	can	simply
use	the	NgFor	directive	to	repeat	the	rectangle	that	represents	our	activity	indicator.

As	we	know	from	building	our	ActivityService	class	in	a	previous	topic,	activities	always
contain	a	time	field	with	the	timestamp	of	the	activity.	Within	our	component,	we	have	already
created	a	projection	function	that	converts	time	into	percentage,	relative	to	our	component
width.	We	can	simply	use	the	projectTime	function	within	our	attribute	binding	for	the	x
attribute	of	the	rect	element	to	position	our	activity	indicators	at	the	correct	positions.

By	using	only	an	SVG	template	and	our	backing	function	to	project	time,	we	have	created	a
nice	little	chart	that	displays	activity	indicators	on	a	timeline.

You	can	imagine	that	if	we	have	a	lot	of	activities,	our	slider	will	actually	look	pretty	stuffed,
and	it	will	be	hard	to	get	a	feeling	for	when	those	activities	may	have	occurred.	We	need	to
have	some	sort	of	a	grid	that	will	help	us	associate	the	chart	with	a	timeline.

As	already	shown	in	the	mock-up	of	our	slider	component,	we're	now	going	to	introduce
some	ticks	on	the	slider	background	that	will	divide	the	slider	into	sections.	We'll	also	label
each	tick	with	a	calendar	time.	This	will	give	our	users	a	rough	sense	for	time	when	looking
at	the	activity	indicators	on	the	slider.

Let's	look	at	the	code	changes	within	our	ActivitySlider	class	that	will	enable	the	rendering
of	our	ticks:

ngOnChanges(changes)	{

		//	If	the	activities	input	changes	we	need	to	re-calculate	and	

		//	re-draw

		if	(changes.activities	&&	changes.activities.currentValue)	{

				...

				//	Re-calculate	the	ticks	that	we	display	on	top	of	the	slider

				this.computeTicks();

		...

}

//	This	function	computes	5	ticks	with	their	time	and	position	on	

//	the	slider

computeTicks()	{

		const	count	=	5;

		const	timeSpanTick	=	this.timeSpan	/	count;

		this.ticks	=	Array.from({length:	count}).map(

				(element,	index)	=>	{

						return	this.timeFirst	+	timeSpanTick	*	index;

				});

}

...

First	of	all,	we	need	to	create	a	function	that	computes	some	ticks	for	us	that	we	can	place
onto	the	timeline.	For	this	purpose,	we	need	to	create	the	computeTicks	method	that	will
divide	the	whole	timeline	into	five	equal	segments	and	generate	timestamps	that	represent	the
position	in	time	for	individual	ticks.	We	store	these	ticks	in	a	new	ticks	member	variable.
With	the	help	of	these	timestamps,	we	can	render	the	ticks	within	our	view	easily.

Tip

We	use	the	Array.from	ES6	function	to	create	a	new	array	with	the	desired	length,	and	use	the
functional	array	extra	function	map	to	generate	tick	model	objects	from	this	array.	Using
Array.from	is	a	nice	trick	to	create	an	initial	array	of	a	given	length	that	can	be	used	to
establish	functional	style.

Let's	look	at	the	template	of	our	component	and	how	we	can	use	our	array	of	timestamps	to
render	ticks	on	our	slider	component.	We're	going	to	modify	our	component	template	in
activity-slider.html:

...

<g	*ngFor="let	tick	of	ticks">

		<text	[attr.x]="projectTime(tick)	+	'%'"	y="14"	class="time">	

				{{tick	|	calendarTime}}</text>

		<line	[attr.x1]="projectTime(tick)	+	'%'"

								[attr.x2]="projectTime(tick)	+	'%'"

								y1="30"	y2="70"	class="tick"></line>

</g>

...

To	render	our	ticks,	we've	used	an	SVG	group	element	to	place	our	NgFor	directive	that
repeats	the	tick	timestamps	we've	stored	in	the	ticks	member	variable.

For	each	tick,	we	need	to	place	a	label	as	well	as	a	line	that	spans	over	the	slider	background.
We	can	use	the	SVG	text	element	to	render	our	label	with	the	timestamp	on	top	of	the	slider.
Within	the	attribute	binding	for	the	x	attribute	of	our	text	element,	we've	used	our
projectTime	projection	function	to	receive	the	projected	percentage	value	from	our
timestamp.	The	y	coordinate	of	our	text	element	is	fixed	at	a	position	where	the	labels	will

just	sit	on	top	of	our	slider.

SVG	lines	consist	of	four	coordinates:	x1,	x2,	y1,	and	y2.	Together	they	define	two	coordinate
points	where	a	line	will	be	drawn	from	one	point	to	the	other.

Now	we	are	getting	closer	to	the	final	slider	that	we	specified	in	the	mock-up	at	the	beginning
of	this	topic.	The	last	missing	piece	of	the	puzzle	is	to	make	our	slider	interactive	so	a	user
can	select	a	range	of	activities.

Bringing	it	to	life
So	far,	we've	covered	the	rendering	of	the	slider	background	as	well	as	the	rendering	of	the
activity	indicators.	We've	also	generated	ticks	and	displayed	them	with	a	grid	line	and	a	label
to	display	the	calendar	time	of	each	tick.

Well,	that	does	not	really	make	a	slider,	does	it?	Of	course,	we	also	need	to	handle	user	input
and	make	the	slider	interactive	so	users	can	select	a	time	range	they	want	to	display	the
activities	for.

To	do	this,	add	the	following	changes	to	the	component	class:

ngOnChanges(changes)	{

		//	If	the	activities	input	changes	we	need	to	re-calculate	and	

		//	re-draw

		if	(changes.activities	&&	changes.activities.currentValue)	{

				...

				//	Setting	the	selection	to	the	full	range

				this.selection	=	{

						start:	this.timeFirst,

						end:	this.timeLast

				};

				//	Selection	changed	so	we	need	to	emit	event

				this.selectionChange.next(this.selection);

		}

}

When	we	detect	a	change	in	the	activities	input	property	within	the	ngOnChanges	life	cycle
hook,	we	initialize	a	model	for	the	user	selection	in	our	slider	component.	It	consists	of	a
start	and	end	property,	both	containing	timestamps	that	represent	the	selected	range	on	our
activity	slider.

Once	we've	set	our	initial	selection,	we	need	to	use	the	selectionChange	output	property	to
emit	an	event.	This	way,	we	can	let	our	parent	component	know	that	the	selection	within	the
slider	has	changed.

To	display	the	selected	range,	we	use	an	overlay	rectangle	within	our	template	that	will	be
placed	above	the	slider	background.	If	you	look	at	the	mock-up	image	of	the	slider	again,
you'll	notice	that	this	overlay	is	painted	in	gray:

		<rect	*ngIf="selection"

								[attr.x]="projectTime(selection.start)	+	'%'"

								[attr.width]="projectTime(selection.end)	-	

projectTime(selection.start)	+	'%'"

								y="30"	height="40"	class="selection-overlay"></rect>

This	rectangle	will	be	placed	just	above	our	slider	background	and	will	use	our	projection
function	to	calculate	the	x	and	width	attributes.	As	we	need	to	wait	for	change	detection	to
initialize	our	selection	within	the	ngOnChanges	life	cycle	hook,	we'll	just	check	for	a	valid

selection	object	by	making	use	of	the	NgIf	directive.

Now	we	need	to	start	tackling	user	input	in	our	ActivitySlider	component.	The	mechanics
for	storing	the	state	and	rendering	our	selection	is	already	in	place,	so	we	can	implement	the
required	host	listeners	to	handle	user	input:

...

//	If	the	component	receives	a	mousedown	event,	we	need	to	start	a	

//	new	selection

@HostListener('mousedown',	['$event'])

onMouseDown(event)	{

		//	Starting	a	new	selection	by	setting	selection	start	and	end	

		//	to	the	projected	time	of	the	clicked	position.

		this.selection.start	=	this.selection.end	=	

				this.projectLength(event.offsetX);

		//	Selection	changed	so	we	need	to	emit	event	an

		this.selectionChange.next(this.selection);

		//	Setting	a	flag	so	we	know	that	the	user	is	currently	moving	

		//	the	selection

		this.modifySelection	=	true;

}

//	We	also	need	to	track	mouse	moves	within	our	slider	component

@HostListener('mousemove',	['$event'])

onMouseMove(event)	{

		//	We	should	only	modify	the	selection	if	the	component	is	in	

		//	the	correct	mode

		if	(this.modifySelection)	{

				//	Update	the	selection	end	with	the	projected	time	from	the	

				//	mouse	coordinates

				this.selection.end	=	Math.max(this.selection.start,	

						this.projectLength(event.offsetX));

				//	Selection	changed	so	we	need	to	emit	event	an

				this.selectionChange.next(this.selection);

				//	To	prevent	side	effects,	we	should	stop	propagation	and	

				//	prevent	browser	default

				event.stopPropagation();

				event.preventDefault();

		}

}

//	If	the	user	is	releasing	the	mouse	button,	we	should	stop	the	

//	modify	selection	mode

@HostListener('mouseup')

onMouseUp()	{

		this.modifySelection	=	false;

}

//	If	the	user	is	leaving	the	component	with	the	mouse,	we	should	

//	stop	the	modify	selection	mode

@HostListener('mouseleave')

onMouseLeave()	{

		this.modifySelection	=	false;

}

...

In	the	preceding	code	excerpt,	we	handled	a	total	of	four	events	on	the	slider	host	element:

onMouseDown:	We	set	our	selection	model's	start	and	end	properties	with	the	same	value.
Since	we're	using	timestamps	for	these	properties,	we	projected	the	mouse	position	into
the	timespace	first.	The	mouse	position	comes	in	pixels	relative	to	the	slider	component's
origin.	Since	we	know	the	slider's	width	and	the	total	time	duration	displayed,	we	can
convert	this	into	timestamps	easily.	We're	using	the	projectLength	method	for	this
purpose.	By	passing	a	second	argument	to	the	@HostListener	decorator,	we	specified	that
we'd	like	to	pass	the	DOM	event	to	our	onMouseDown	method.	We	also	set	a	state	flag,
modifySelection,	in	our	component	to	indicate	that	a	selection	is	under	progress.
onMouseMove:	If	the	component	is	in	selection	mode	(the	modifySelection	flag	is	true),
you	can	adjust	the	end	property	of	the	selection	object.	Here,	we	also	made	sure	that	we
ruled	out	the	possibility	of	creating	a	negative	selection	by	using	Math.max	and	limiting
the	end	of	the	selection	to	not	be	smaller	than	the	start.
onMouseUp:	When	the	user	releases	the	mouse	button,	the	component	exits	the	selection
mode.	This	can	be	done	by	setting	the	modifySelection	flag	to	false.
onMouseLeave:	This	is	the	same	as	the	onMouseUp	event;	the	difference	is	that	here	the
component	will	just	exit	the	selection	mode.

Using	the	@HostListener	decorator,	we	were	able	to	handle	all	of	the	necessary	user	input	to
complete	our	component	with	the	interactive	elements	that	were	still	missing.

Recap
In	this	topic,	we	learned	how	to	use	SVG	in	order	to	create	graphical	and	interactive
components	with	Angular.	By	creating	attribute	bindings	on	our	SVG	elements	and
controlling	the	instantiation	of	graphical	elements	using	the	NgFor	and	NgIf	directives,	we
built	a	custom	slider	component	that	provides	a	nice	overview	of	our	activities.	At	the	same
time,	we	also	learned	how	to	handle	user	input	using	the	@HostListener	decorator	in	order	to
make	our	component	interactive:

A	screenshot	of	the	finished	activity	slider	component

To	sum	things	up,	we	learned	about	the	following	concepts:

Encapsulating	component	views	using	ViewEncapsulation.Native	and	importing	local
styles
Covering	some	basic	projections	of	timestamps	onto	screen	coordinates	to	be	used	with
SVG	elements
Handling	user	input	and	creating	a	custom	selection	mechanism	using	the	@HostListener
decorator

Building	the	activity	timeline
So	far,	we've	built	a	service	to	log	activities	and	a	slider	component	to	select	a	time	range	and
provide	an	overview	using	activity	indicators.	Since	we	needed	to	perform	a	lot	of	drawing
tasks	within	the	slider	component,	SVG	was	a	perfect	fit	for	this	use	case.	To	complete	our
Activities	component	tree,	we	still	need	to	render	the	activities	that	were	selected	using	the
ActivitySlider	component.

Let's	continue	to	work	on	our	activities	component	tree.	Well	create	a	new	component	that	will
be	responsible	for	rendering	an	individual	activity	within	an	activity	timeline.	Let's	start	with
the	template	of	the	Activity	component,	which	we	will	create	in	a	new
activities/activity/activity.html	file:

<img	[attr.src]="activity.user.pictureDataUri"

					[attr.alt]="activity.user.name"

					class="activity__user-image">

<div	[class.activity__info--align-right]="isAlignedRight()"

					class="activity__info">

		<h3	class="activity__title">{{activity.title}}</h3>

		<p	class="activity__author">

				by	{{activity.user.name}}	{{activity.time	|	fromNow}}

		</p>

		<p>{{activity.message}}</p>

</div>

Each	activity	will	consist	of	a	user	image	as	well	as	an	information	box	that	will	contain	the
activity	title,	message,	and	authoring	details.

Our	activity	will	use	an	input	to	determine	its	alignment.	This	allows	us	to	align	the	activity
from	outside	the	component.	The	isAlignedRight	method	helps	us	set	an	additional	CSS
class,	activity__info--align-right,	on	the	activity	information	box.

We	also	need	to	create	a	component	class	for	our	Activity	component,	which	we	will	create
under	a	new	activities/activity/activity.js	file:

import	{FromNowPipe}	from	'../../pipes/from-now';

@Component({

		selector:	'ngc-activity',

		…

		//	We	are	using	the	FromNow	pipe	to	display	relative	times	

		//	within	our	template

		pipes:	[FromNowPipe]

})

export	class	Activity	{

		@Input()	activity;

		//	Input	that	should	be	a	string	'left'	or	'right'	and	will	

		//	determine	the	activity	alignment	using	CSS

		@Input()	alignment;

		@Input()	@HostBinding('class.activity--start-mark')	startMark;

		@Input()	@HostBinding('class.activity--end-mark')	endMark;

		//	Function	with	that	will	tell	us	if	the	activity	should	be	

		//	aligned	to	the	right.	It's	used	for	setting	a	modifier	class	

		//	on	the	info	element.

		isAlignedRight()	{

				return	this.alignment	===	'right';

		}

}

Our	Activity	component	expects	four	inputs:

activity:	This	property	takes	the	data	model	of	the	activity	that	needs	to	be	rendered
with	the	component.	This	is	the	activity	that	we	created	using	ActivityService.
alignment:	This	input	property	should	be	set	to	a	string	containing	the	word	left	or
right.	We	used	this	to	determine	whether	we	needed	to	add	an	additional	CSS	class	to
our	template	in	order	to	align	the	activity	information	box	to	the	right.
startMark:	This	input	property	acts	as	an	input	and	a	host	binding	at	the	same	time.	If	this
input	is	set	to	true,	the	activity	will	get	an	additional	CSS	class,	activity--start-mark,
which	will	cause	a	small	mark	on	top	of	the	timeline	to	indicate	the	timeline	termination.
endMark:	In	the	same	way	as	startMark,	this	input	uses	a	host	binding	to	set	an	additional
CSS	class,	activity--end-mark,	which	will	cause	a	small	mark	on	the	bottom	of	the
timeline	to	indicate	the	timeline	termination.

The	isAlignedRight	method	is	used	within	the	template	to	determine	whether	we	need	to	add
an	additional	CSS	class	to	the	information	box	in	order	to	align	it	to	the	right.

We	formatted	the	timestamp	of	the	activity	using	the	FromNow	pipe,	which	we	created	in
Chapter	4,	No	Comments,	Please!.	In	order	to	use	the	pipe	in	the	template,	we	need	to	import	it
and	add	it	to	the	pipes	property	of	our	component	annotation.

We	now	have	almost	all	the	components	to	display	our	activities.	But	still,	there's	something
missing,	which	is	the	glue	to	combine	ActivitySlider	with	our	Activity	components	and
also	make	our	component	subtree	navigable.	For	this,	we'll	create	a	new	component	called
Activities.	Let's	create	an	activities/activities.js	file	to	write	our	component	class:

@Component({

		selector:	'ngc-activities',

		...

		directives:	[ActivitySlider,	Activity]

})

export	class	Activities	{

		@Input()	activitySubject;

		constructor(@Inject(ActivityService)	activityService)	{

				this.activityService	=	activityService;

		}

		ngOnChanges(changes)	{

				if	(changes.activitySubject)	{

						//	If	we	have	a	subscription	to	the	activities	service	

						//	already	we	need	to	unsubscribe	first

						if	(this.activitiesChangeSubscription)	{

								this.activitiesChangeSubscription.unsubscribe();

						}

						//	When	the	project	data	is	updated	we	need	to	filter	for	

						//	activities	again

						this.activitiesChangeSubscription	=	

								this.activityService.change.subscribe((activities)	=>	{

								//	Filter	for	all	activities	that	have	the	project	ID	as	subject

								this.activities	=	activities

										.filter((activity)	=>	activity.subject	===	

this.activitySubject.document.data._id);

								this.onSelectionChange();

						});

				}

		}

First	of	all,	we	need	to	know	which	activities	we	want	to	display	within	our	component.	For
this,	we	need	to	provide	a	component	input,	namely	activitySubject.	Once	this	is	done,	we
can	pass	an	activity	subject	from	the	parent	component	and	use	it	to	filter	activities	we're
interested	in.

Since	we've	used	activity	subjects	to	log	activities	as	well,	we	can	use	the	same	subjects	to
display	activities.	In	the	ngOnChanges	life	cycle	hook,	we	set	up	a	subscription	on	the
ActivityService	instance	to	react	to	newly	created	activities.	Because	the	activity	service	will
notify	us	with	an	updated	list	of	activities,	we	can	simply	use	the	Array.prototype.filter
function	to	filter	only	relevant	items.	We've	made	use	of	the	activitySubject	input	to	obtain
the	ID	from	the	subject.

Next,	we	need	to	create	a	method	to	apply	a	date	range	filter	to	our	activities.	The
onSelectionChange	method	will	be	called	from	our	activities	template,	where	we	created	a
binding	to	our	ActivitySlider	component:

		//	If	the	selection	within	the	activity	slider	changes,	we	need	

		//	to	filter	out	activities	again

		onSelectionChange(selection	=	this.selection)	{

				this.selection	=	selection;

				//	Store	filtered	activities	that	fall	into	the	date	range	

				//	selection	specified	by	the	slider

				this.selectedActivities	=	this.selection	?	this.activities.filter(

						(activity)	=>	activity.time	>=	this.selection.start

																	&&	activity.time	<=	this.selection.end

);

		}

Whenever	the	time	range	is	updated	by	the	user	within	the	slider,	we'll	override	the
selectedActivities	member	variable	with	a	new	filtered	version	of	the	activities,	which	we'd
obtain	from	ActivityService.	The	filter	will	narrow	down	the	activities	by	comparing	the
activity	time	against	the	selection	range	from	the	slider	component.

Now	we	will	set	up	some	helper	functions	to	be	used	within	our	template:

		//	Get	an	alignment	string	based	on	the	index.	Activities	with	

		//	even	index	get	aligned	left	while	odds	get	aligned	right.

		getAlignment(index)	{

				return	index	%	2	===	0	?	'left'	:	'right';

		}

		//	Function	to	determine	if	an	activity	index	is	first

		isFirst(index)	{

				return	index	===	0;

		}

		//	Function	to	determine	if	an	activity	index	is	last

		isLast(index)	{

				return	index	===	this.selectedActivities.length	-	1;

		}

The	three	methods,	namely	getAlignment,	isFirst,	and	isLast,	are	used	within	the	template
as	input	for	the	Activity	component.	If	you	take	a	look	at	the	code	of	ActivityComponent
again,	you	will	see	that	we	need	to	provide	some	input	in	order	to	set	some	CSS	classes	for
appearance.	The	three	methods	we	created	here	will	be	used	for	this	purpose:

		//	If	the	component	gets	destroyed,	we	need	to	unsubscribe	from	

		//	the	activities	change	observer

		ngOnDestroy()	{

				this.activitiesChangeSubscription.unsubscribe();

		}

}

Finally,	we	added	an	OnDestroy	life	cycle	hook	that	will	unsubscribe	us	from	the	activity's
change	observable.

The	template	for	this	component	is	rather	simple.	The	only	thing	we	need	to	do	is	render	the
ActivitySlider	component,	as	well	as	iterate	over	the	selected	activities	and	wire	in	the
Activity	component	for	each	iteration:

<ngc-activity-slider	[activities]="activities"

																			(selectionChange)="onSelectionChange($event)">

</ngc-activity-slider>

<div	class="activities__l-container">

		<ngc-activity	

			*ngFor="let	activity	of	selectedActivities,	let	index	=	index"

			[activity]="activity"

			[alignment]="getAlignment(index)"

			[startMark]="isLast(index)"

			[endMark]="isFirst(index)">

		</ngc-activity>

</div>

There's	not	much	we	need	to	explain	here.	We've	bound	activities	and	our
onSelectionChange	method	to	the	slider	component	and	iterated	over	all	the	selected	activities
to	render	our	Activity	components.	We've	created	a	local	view	variable,	index,	which	we

will	use	for	the	appearance	input	of	the	Activity	component.

That's	it	for	our	activities	page!	We've	created	three	components	that	are	composed	together
and	display	an	activity	stream,	which	provides	a	slider	to	filter	activities	for	dates:

A	screenshot	of	the	finished	activities	view

Summary
In	this	chapter,	we	created	an	interactive	slider	component	using	SVG.	While	doing	this,	we
learned	about	some	SVG	basics	and	the	power	of	SVG	within	the	DOM.	Using	Angular,	we
were	able	to	make	SVG	composable,	which	it	isn't	by	nature.	We	learned	about	namespaces,
how	Angular	handles	them,	and	how	we	can	tell	Angular	that	we'd	like	to	use	namespaces
explicitly.

Besides	using	SVG	for	our	slider	component,	we	also	learned	how	to	use	Shadow	DOM	to
create	native	view	encapsulation.	As	a	result	of	this,	we	were	able	to	use	local	styles	for	our
component.	We	don't	need	to	worry	about	CSS	name	clashes,	specificity,	and	global	CSS	side
effects	any	more	when	using	local	styles.

The	whole	code	for	this	chapter	can	be	found	in	the	ZIP	file	of	the	book	resources	that	you
can	download	from	the	Packt	Publishing	website.

In	the	next	chapter,	we're	going	to	enhance	what	we've	built	throughout	the	chapters	so	far.	We
will	create	some	components	to	enrich	the	user	experience	within	our	application.

Chapter	7.	Components	for	User	Experience
User	experience	is	a	core	concern	for	developers	building	today's	applications.	We	are	no
longer	living	in	a	world	where	users	are	contented	with	an	application	that	just	works.	The
expectations	are	much	higher.	Now,	an	application	needs	to	be	highly	usable	and	should
provide	an	efficient	workflow;	users	also	expect	it	to	bring	them	pleasure	while	performing
tasks.

In	this	chapter,	we're	going	to	look	at	building	some	components	that	will	increase	the	overall
usability	of	our	task	management	system.	These	features	will	enrich	the	current	functionality
and	provide	more	efficient	workflows.

We	will	develop	the	following	three	technical	features	and	embed	them	into	our	current
application,	wherever	applicable:

Tag	management:	We'll	enable	the	use	of	tags	within	generated	content,	such	as
comments,	activities,	and	other	areas	where	they	can	be	of	any	use.	Tags	will	help	users
build	links	between	content	and	navigation	shortcuts.
Drag	and	drop:	We'll	build	generic	components	that	will	make	use	of	drag	and	drop
features	a	breeze.	By	enabling	drag	and	drop	features,	we'll	allow	users	to	fulfill	certain
tasks	with	much	higher	efficiency.
Infinite	scrolling:	We'll	build	a	component	that	will	reveal	the	content	of	lists	while
scrolling.	This	feature	is	not	going	to	directly	increase	the	workflow	performance,	but	it
will	help	us	increase	the	overall	application	performance.	It	will	also	narrow	down	the
user's	context	by	only	showing	relevant	information.

We'll	cover	the	following	topics	in	this	chapter:

Creating	a	tag	management	system	to	enter	and	display	tags
Creating	a	stateful	pipe	to	render	tags	using	a	service
Using	the	sanitize-html	module	to	sanitize	potentially	unsafe	content
Creating	a	component	to	autocomplete	tags	during	user	input
Going	through	the	basics	of	the	HTML5	drag	and	drop	API
Creating	directives	for	draggable	elements	and	drop	targets
Using	dataTransfer	objects	and	a	custom	attribute	to	enable	selective	drop	targets
Creating	a	custom	ForOf	repeater	using	the	asterisk	template	syntax	to	enable	infinite
scrolling
Implementing	custom	change	detection	using	the	DoCheck	lifecycle	hook,	and	using
IterableDiffer	to	apply	DOM	changes
Performing	dynamic	view	instantiation	using	ViewContainer

Tag	management
The	classical	form	of	tagging	enables	you	to	associate	a	taxonomy	with	elements	within	a
system	and	helps	you	organize	your	project.	It	allows	you	to	have	a	many-to-many
association	that	can	be	quickly	managed,	and	you	can	use	it	later	to	filter	relevant	information.

In	our	task	management	system,	we're	going	to	use	a	slightly	different	version	of	tags.	Our
goal	is	to	provide	a	way	to	have	semantic	shortcuts	within	the	application.	With	the	help	of
tags,	a	user	should	be	able	to	cross-reference	information	between	different	parts	of	the	data,
providing	a	summary	of	the	referenced	entity	as	well	as	a	navigation	shortcut	for	the	entity.

For	example,	we	can	include	a	project	tag	within	a	user	comment.	A	user	can	enter	the	tag	by
simply	typing	in	the	project	ID.	When	a	comment	is	displayed,	we	see	the	title	of	the	project
and	the	number	of	open	tasks	within	the	project.	But	when	we	click	on	the	tag,	we	directly
reach	the	project	detail	page	where	the	task	is	located.

In	this	section,	we'll	develop	the	required	elements	to	provide	a	way	to	use	project	tags	that
will	enable	the	user	to	cross-reference	other	projects	within	comments.	We'll	also	use	tag
management	in	our	activities,	which	we	created	in	the	previous	chapter.

Tag	data	entity
Let's	start	with	the	tag	entity	that	shows	how	we	can	represent	tags	within	our	system.	We'll
create	a	new	Tag	class	in	a	file	under	tags/tag.js:

//	Class	that	represents	a	tag

export	class	Tag	{

		constructor(textTag,	title,	link,	type)	{

				//	The	textTag	property	is	the	text	representation	of	the	tag

				this.textTag	=	textTag;

				this.title	=	title;

				this.link	=	link;

				this.type	=	type;

		}

}

This	class	represents	tags;	whenever	we	store	tag	information,	we'll	use	this	entity	as	a	data
vehicle.	Let's	look	at	the	individual	fields	and	elaborate	on	their	use:

textTag:	This	is	the	text	representation	of	a	tag.	All	our	tags	need	to	be	identified
uniquely	using	this	text	representation.	We	can	define	the	text	representation	of	tags	as
follows:

Text	tags	always	start	with	a	hash	symbol	(#)
Text	tags	only	contain	word	characters	or	the	minus	symbol	(-)
All	the	innards	of	a	tag,	defined	by	other	properties	(title,	link,	and	type),	can	be
extrapolated	from	the	textTag	property.	It	can	therefore	be	considered	an	ID.

title:	This	is	a	comparatively	longer	text	representation	of	a	tag.	It	should	contain	as
much	detail	about	the	subject	as	possible.	In	the	case	of	project	tags,	this	could	mean	the
project	title,	open	tags	count,	assignee,	and	other	important	information.	Since	this	is	the
field	that	will	be	rendered	if	a	tag	is	parsed,	it'll	be	beneficial	if	the	content	stays
relatively	condensed.
link:	A	valid	URL,	which	will	be	used	when	the	tag	is	rendered.	This	URL	will	make
links	clickable	and	enable	the	shortcut	navigation.	In	the	case	of	the	projects	tags	we're
going	to	create,	this	will	be	a	URL	fragment	identifier	that	will	link	to	the	given	project
page.
type:	This	is	used	to	distinguish	between	different	tags	and	provide	us	a	way	to	organize
tags	at	a	higher	granularity	level.

So	far,	so	good.	We	now	have	a	data	vehicle	we	can	easily	construct	to	transfer	information
about	tags.

Generating	tags
Our	next	step	is	to	create	a	factory	that	will	generate	tags	for	us.	All	we'd	like	to	pass	to	the
factory	is	a	subject,	which	can	be	basically	anything.	The	factory	will	then	determine	the	type
of	the	subject	and	execute	the	necessary	logic	to	generate	a	tag	from	it.	This	might	sound	a	bit
abstract	at	first,	but	let's	look	at	the	code	of	the	generateTag	function	we'll	create	in	a	module
under	tags/generate-tag.js:

import	{Tag}	from	'./tag';

import	{limitWithEllipsis}	from	'../utilities/string-utilities';

export	const	TAG_TYPE_PROJECT	=	'project';

//	The	generateTag	function	is	responsible	for	generating	new	tag	

//	objects	depending	on	the	passed	subject

export	function	generateTag(subject)	{

		if	(subject.type	===	TAG_TYPE_PROJECT)	{

				//	If	we're	dealing	with	a	project	here,	we	generate	the	

				//	according	tag	object

				const	openTaskCount	=	subject.tasks.filter((task)	=>	!task.done).length;

				return	new	Tag(

						`#${subject._id}`,

						`${limitWithEllipsis(subject.title,	20)}	(${openTaskCount}	open	tasks)`,

						`#/projects/${subject._id}/tasks`,

						TAG_TYPE_PROJECT

);

		}

}

Let's	examine	the	generateTag	function	and	what	we're	trying	to	achieve	here.

First,	we	determined	the	subject	type	by	checking	the	type	attribute	of	the	subject	object.	In
the	case	of	project	data	objects,	we	know	that	the	type	will	be	set	to	"project".	The	following
three	points	succinctly	explain	what	we've	done:

1.	 Since	we	were	sure	that	we	were	dealing	with	a	project	here,	we	generated	a	new	tag.	In
the	future,	we'll	deal	with	other	subject	types	as	well,	so	this	check	will	be	required.

2.	 We	wanted	to	use	an	indicator	for	all	the	open	tasks	in	the	tag	title.	For	this	reason,	we
did	a	quick	filtering	of	open	tasks	within	the	project	and	stored	the	length	of	the	filtered
array	in	the	openTaskCount	constant.

3.	 Now	we	can	instantiate	a	new	Tag	object	using	the	project	ID	as	textTag.	For	the	title
field,	we	used	a	helper	function,	limitWithElipsis,	which	truncates	project	titles	that	are
longer	than	20	characters.	We	also	appended	the	open	tasks	count	to	the	tag	title.	For	the
link	field	of	the	Tag	instance,	we	specify	a	URL	that	will	navigate	to	the	project	details
view.	Finally,	we	used	the	TAG_TYPE_PROJECT	constant	to	define	the	tag	type	field.

Creating	a	tags	service
Okay,	we're	done	with	setting	up	all	the	supporting	structures	we	need;	we	can	now	move
forward	to	create	a	tags	service.	A	tags	service	will	have	the	following	responsibilities:

Generating	and	caching	tags:	We	won't	create	tags	in	our	system	ad	hoc	if	we	only	want
to	render	them.	The	mechanics	of	a	tags	service	is	more	like	generated	cache.	Initially,	a
tags	service	gathers	all	the	required	information	to	generate	all	the	possible	tags	within
the	system.	It	also	reacts	to	changes	and	updates	the	list	of	tags	if	required.	With	this,
we'll	not	only	save	on	some	processing	needs,	but	we'll	also	have	a	readily	available	list
to	search	for	existing	tags.	This	will	be	particularly	useful	if	we	like	to	present	the
available	tags	to	the	user	so	they	can	choose	from	them.
Rendering	tags:	A	tags	service	is	also	responsible	for	turning	tags	into	HTML.	It	uses
the	title	and	link	fields	of	the	Tag	instances	to	generate	their	HTML	representation.
Parsing	text	content:	The	parsing	functionality	of	the	tags	service	is	responsible	for
finding	text	representations	of	tags	within	a	string.	It	then	uses	the	rendering	function	to
render	these	tags	into	HTML.

Let's	create	a	module	for	our	tags	service	in	a	new	file	under	tags/tags-service.js.

First,	we	need	to	create	two	utility	functions	that	will	help	us	process	tags	and	strings
containing	the	textual	representations	of	tags.

The	replaceAll	function	is	a	simple	substitute	for	a	missing	JavaScript	function	to	replace
multiple	text	occurrences	within	a	string	without	using	regular	expressions:

//	Utility	function	to	replace	all	text	occurrences	in	a	string

function	replaceAll(target,	search,	replacement)	{

		return	target.split(search).join(replacement);

}

The	findTags	function	will	extract	any	possible	tag	from	a	text	string.	It	does	this	by	applying
a	regular	expression	that	will	find	matches	for	tags	in	the	format	discussed	at	the	beginning	of
the	topic.	This	format	assumes	that	our	tags	always	start	with	a	hash	symbol,	followed	by	any
word	character	or	dash	symbols.	This	function	returns	a	list	of	all	the	possible	text	tags:

//	Function	to	find	any	tags	within	a	string	and	return	an	array	

//	of	discovered	tags

function	findTags(str)	{

		const	result	=	[];

		const	regex	=	/#[\w\/-]+/g;

		let	match;

		while	(match	=	regex.exec(str))	{

				result.push(match[0]);

		}

		return	result;

}

For	our	tags	service,	we	will	now	define	a	new	class	that	will	be	annotated	with	@Injectable

so	we	can	use	it	as	a	provider	in	our	components:

@Injectable()

export	class	TagsService	{

...

}

Let's	look	at	the	constructor	of	our	TagsService	class:

constructor(@Inject(ProjectService)	projectService)	{

		//	If	the	available	tags	within	the	system	changes,	we	will	

		//	emit	this	event

		this.change	=	new	ReplaySubject(1);

		//	In	order	to	generate	project	tags,	we're	making	use	of	the	

		//	ProjectService

		this.projectService	=	projectService;

		this.projectService.change.subscribe((projects)	=>	{

				//	On	project	changes	we	store	the	new	project	list	and	re-

				//	initialize	our	tags

				this.projects	=	projects;

				this.initializeTags();

		});

}

In	order	to	generate	and	cache	project	tags,	we	obviously	need	ProjectService,	which
provides	us	with	a	list	of	all	the	projects.	Instead	of	grabbing	the	list	data	from
ProjectService	once,	we're	observing	the	list	for	changes.	This	brings	us	the	advantage	that
we'll	not	only	get	the	initial	list	of	projects,	but	we'll	also	be	made	aware	of	any	changes	made
in	the	project	list.

We	subscribed	to	ProjectService	using	the	change	field.	This	exposes	ReplaySubject,	which
emits	the	project	list.	After	storing	the	current	project	list	as	a	member	field,	we	need	to	call
the	initializeTags	method:

//	This	method	is	used	internally	to	initialize	all	available	tags

initializeTags()	{

		//	We're	creating	tags	from	all	projects	using	the	generateTag	

		//	function

		this.tags	=	this.projects.map(generateTag);

		//	Since	we've	updated	the	list	of	available	tags	we	need	to	

		//	emit	a	change	event

		this.change.next(this.tags);

}

As	we	only	support	project	tags	currently,	the	only	thing	we	need	to	consider	while
generating	tags	is	the	projects	we	have	stored	in	our	service.	We	can	simply	map	the	project
list	we	have	stored	in	the	projects	member	field	using	our	generateTag	function.	The
Array.prototype.map	function	will	return	a	new	array	that	is	already	a	list	of	generated	tasks
for	the	projects.

Rendering	tags
Okay,	we	now	have	a	service	that	uses	a	reactive	approach	to	generate	tags	from	the	available
projects.	This	is	already	addressing	the	first	concern	of	our	service.	Let's	look	at	its	other
responsibilities,	which	are	parsing	text	content	for	tags	and	rendering	HTML.

Rendering	tags	is	not	a	big	deal	since	we	have	already	abstracted	the	data	model	of	tags	in	a
clean	way.	We	need	to	write	a	method	for	rendering	tags	that	will	act	as	a	pass-through
function	if	the	argument	is	not	a	valid	Tag	instance.	This	way,	we	can	pass	unrecognized	text
representations	of	tags	as	strings,	and	it	will	just	return	us	the	string.

Since	tags	have	URLs	that	point	to	a	location,	we're	going	to	use	anchor	HTML	elements	to
represent	our	tags.	These	elements	also	have	classes	that	will	help	us	style	tags	differently
than	regular	content.	Let's	create	another	method	within	the	tags	service	that	can	be	used	to
render	tag	objects	into	HTML:

renderTag(tag)	{

		if	(tag	instanceof	Tag)	{

				return	`<a	class="tags__tag	tags__tag--${tag.type}"	

href="${tag.link}">${tag.title}`;

		}	else	{

				return	tag;

		}

}

The	following	method	can	be	used	to	find	a	tag	by	its	textual	representation.	This	function
will	try	to	find	the	tag	within	our	generated	cache,	and	if	unsuccessful,	will	return	the	textTag
argument.	This	is	also	a	pass-through	mechanism	that	simplifies	the	handling	when	we	parse	a
whole	piece	of	text	for	tags:

//	This	method	will	lookup	a	tag	via	its	text	representation	or	

//	return	the	input	argument	if	not	found

parseTag(textTag)	{

					return	this.tags.find(

				(tag)	=>	tag.textTag	===	textTag

)	||	textTag;

}

Last	but	not	least,	let's	implement	the	main	method	of	the	service.	The	parse	function	scans	the
whole	text	for	tags	and	replaces	them	with	their	HTML	representation:

//	This	method	takes	some	text	input	and	replaces	any	found	and	

//	valid	text	representations	of	tags	with	the	generated	HTML	

//	representation	of	those	tags

parse(value)	{

		//	First	we	find	all	possible	tags	within	the	text

		const	tags	=	findTags(value);

		//	For	each	found	text	tag,	we're	parsing	and	rendering	them	

		//	while	replacing	the	text	tag	with	the	HTML	representation	

		//	if	applicable

		tags.forEach(

				(tag)	=>	value	=	replaceAll(value,	tag,	

																										this.renderTag(this.parseTag(tag))));

);

		//	After	all	tags	have	been	rendered,	we're	using	a	sanitizer	

		//	to	ensure	some	basic	security

		return	value;

}

First,	we	need	to	use	the	findTags	utility	function;	this	will	return	a	list	of	all	the	text	tags	that
it	would	find	in	the	string	content	passed	to	the	parse	function.	Using	this	text	tag	list,	we	can
then	iterate	through	the	list	and	successively	replace	all	the	text	tags	in	the	content	with	the
generated	HTML	using	the	renderTag	method.

Integrating	the	task	service
All	the	concerns	of	our	task	service	have	now	been	taken	care	of,	and	it	is	already	storing	tags
for	the	available	projects.	We	can	now	go	ahead	and	integrate	our	service	into	the	application.

Since	our	tags	service	turns	text	with	simple	hash	tags	into	HTML	with	links,	a	pipe	would	be
a	perfect	helper	to	integrate	the	functionality	within	our	components.

Let's	create	a	tags.js	file	in	our	pipes	folder	and	create	a	new	pipe	class,	namely,	Tags:

import	{Pipe,	Inject}	from	'@angular/core';

import	{TagsService}	from	'../tags/tags-service';

@Pipe({

		name:	'tags',

		//	Since	our	pipe	is	depending	on	services,	we're	dealing	with	a	

		//	stateful	pipe	and	therefore	set	the	pure	flag	to	false

		pure:	false

})

export	class	TagsPipe	{

		constructor(@Inject(TagsService)	tagsService)	{

				this.tagsService	=	tagsService;

		}

		//	The	transform	method	will	be	called	when	the	pipe	is	used	within	a	template

		transform(value)	{

				if	(typeof	value	!==	'string')	{

						return	value;

				}

				//	The	pipe	is	using	the	TagsService	to	parse	the	entire	text

				return	this.tagsService.parse(value);

		}

}

We	have	already	created	a	few	pipes	so	far.	However,	this	pipe	is	a	bit	different	in	that	it	isn't	a
pure	pipe.	Pipes	are	considered	pure	if	their	transform	function	always	returns	the	same
output	for	a	given	input.	This	implies	that	the	transform	function	should	not	be	dependent	on
any	other	external	source	that	can	influence	the	outcome	of	the	transform,	and	the	only
dependencies	are	the	input	values.	This	is	not	true	for	our	Tags	pipe	though.	It	depends	on
TagsService	to	transform	the	input,	and	new	tags	can	be	stored	in	the	tags	service	at	any	time.
Successive	transformations	can	successfully	render	tags	that	were	not	existent	just	a	moment
ago.

By	telling	Angular	that	our	pipe	is	not	pure,	we	can	disable	the	optimization	it	performs	on
pure	pipes.	This	also	means	that	Angular	will	need	to	revalidate	the	output	of	the	pipe	on
every	change	detection.	This	can	lead	to	performance	issues;	therefore,	the	pure	flag	should
be	used	with	caution.

All	right,	as	far	as	rendering	tags	is	concerned,	we	are	all	set.	Let's	integrate	our	tags
functionality	into	our	Editor	component	so	we	can	make	use	of	them	within	the	commenting

system.

Let's	start	by	editing	the	Editor	module	located	under	ui/editor/editor.js:

...

import	{TagsPipe}	from	'../../pipes/tags';

@Component({

		selector:	'ngc-editor',

		...

		pipes:	[TagsPipe]

})

export	class	Editor	{

		...

		@Input()	enableTags;

		...

}

First,	we	imported	the	TagsPipe	class	and	referenced	it	to	the	pipes	configuration	of	the
@Component	annotation.

We've	also	added	a	new	input	to	the	enableTags	component,	which	will	allow	us	to	control
whether	we	should	handle	tags	within	the	content	of	the	editor	or	ignore	them.

That's	it,	as	far	as	changes	to	the	component	file	is	concerned.	Let's	apply	some	changes	to	the
template	of	the	component	by	editing	the	ui/editor/editor.html	file:

...

<div	*ngIf="enableTags"	class="editor__output"	

					[innerHtml]="(content	||	'-')	|	tags"></div>

<div	*ngIf="!enableTags"	class="editor__output">

		{{content	||	'-'}}

</div>

...

The	only	change	we've	made	in	the	template	is	where	we	display	the	editor	content.	We've
used	two	template	elements	by	employing	the	NgIf	asterisk	template	syntax.	The	latter	one,	if
tags	are	disabled,	renders	the	content	as	before.	If	tags	are	enabled,	we'll	be	using	a	property
binding	to	the	innerHTML	property	of	our	editor's	output	HTML	element.	This	allows	us	to
render	the	HTML	content.	In	the	binding,	we've	used	our	Tags	pipe	that	will	parse	the	content
for	tags	using	TagService.

Completion	of	the	tags	service
Let's	digress	for	a	moment	at	this	point.	We've	already	created	a	tagging	system,	and	we	just
integrated	it	into	our	Editor	component	by	using	the	Tags	pipe.	If	a	user	writes	project	tags	in
any	comment	now,	they	will	be	rendered	by	TagsService.	This	is	fantastic!	Users	can	now
establish	cross-links	to	other	projects	within	comments,	which	will	be	automatically	rendered
as	links	showing	the	project	title	and	open	tasks.	All	a	user	needs	to	do	is	add	the	text
representations	of	project	tags	to	a	comment.	In	the	default	data	set	of	the	book,	this	could	be
the	#project-1	string.

The	following	two	images	show	you	an	example	of	the	commenting	system.	The	first	image
is	an	example	of	an	editor	in	edit	mode,	under	the	commenting	system,	where	a	text	tag	is
entered:

An	example	where	a	text	tag	is	entered

The	second	image	is	an	example	of	a	rendered	tag	enabled	in	the	commenting	system	through
our	editor	integration:

An	example	of	rendered	tag	through	editor	integration

We're	not	done	yet	when	it	comes	to	entering	tags.	We	cannot	expect	our	users	to	know	all	the

available	tags	within	the	system	and	then	enter	them	manually	within	comments.	Let's	look	at
how	we	can	improve	this	in	the	next	section:

In	this	section,	we	looked	at	the	following	concepts:

1.	 We	built	a	tags	service	that	generates,	caches,	and	renders	tags.
2.	 We	built	a	stateful	pipe	using	the	pure	flag.
3.	 We	used	the	[innerHTML]	property	binding	to	render	HTML	content	into	an	element.

Supporting	tag	input
Here,	we're	going	to	build	a	component	and	its	supporting	structures	to	make	the	process	of
entering	tags	a	smooth	experience	for	our	users.	So	far,	they	can	write	project	tags,	but	it
requires	them	to	know	the	project	IDs,	which	makes	our	tag	management	quite	useless.	What
we'd	like	to	do	is	provide	the	user	with	some	choices	when	they	are	about	to	write	a	tag.
Ideally,	we	show	them	the	available	tags,	as	soon	as	they	start	writing	a	tag	by	typing	the	hash
(#)	symbol.

What	sounds	simple	in	the	first	place	is	actually	quite	a	tricky	thing	to	implement.	Our	tag
input	needs	to	deal	with	the	following	challenges:

Handling	input	events	to	monitor	tag	creation.	Somehow,	we	need	to	know	when	a	user
starts	writing	a	tag,	and	we	need	to	know	when	the	typed	tag	name	is	updated	or	canceled
by	using	an	invalid	tag	character.
Calculating	the	position	of	the	input	caret	of	the	user.	Yeah,	I	know	this	sounds	pretty
simple,	but	it	actually	isn't.	Calculating	the	viewport	offset	position	of	a	user's	input	caret
requires	the	use	of	the	browser's	Selection	API,	which	is	quite	low-level	and	needs	some
abstraction.

In	order	to	tackle	these	challenges,	we	are	going	to	introduce	a	utility	class	we	can	delegate
the	user	input	to.	It	will	help	us	figure	out	the	details	we're	interested	in	and	deal	with	low-
level	APIs.

Creating	a	tag	input	manager
Create	a	module	in	a	new	file	under	tags/tag-input-manager.js.	The	first	bit	of	code	is	a
function	that	will	help	us	figure	out	the	position	of	the	user	input	caret	when	the	user	starts
typing	a	tag:

//	This	function	can	be	used	to	find	the	screen	coordinates	of	the	

//	input	cursor	position

function	getRangeBoundlingClientRect()	{

		const	selection	=	window.getSelection();

		if	(!selection.rangeCount)	return;

		const	range	=	selection.getRangeAt(0);

		if	(!range.collapsed)	{

				return	range.getBoundingClientRect();

		}

		const	dummy	=	document.createElement('span');

		range.insertNode(dummy);

		const	pos	=	dummy.getBoundingClientRect();

		dummy.parentNode.removeChild(dummy);

		return	pos;

}

Let's	not	go	into	too	much	detail	here.	What	this	code	basically	does	is	that	it	tries	to	find	the
bounding	box	DOMRect	object,	which	describes	the	top,	right,	bottom,	and	left	offsets	of	the
caret	position	relative	to	the	viewport.	The	problem	is	that	the	Selection	API	does	not	allow	us
to	get	the	position	of	the	caret	directly;	it	only	allows	us	to	get	the	position	of	the	current
selection.	In	case	the	caret	is	not	placed	correctly,	we	will	need	to	insert	a	dummy	element	at
the	location	of	the	caret	and	return	the	bounding	box	DOMRect	object	of	the	dummy	element.
Of	course,	we'd	need	to	remove	the	dummy	element	again	before	we	return	the	DOMRect
object.

Now	let's	create	a	new	class,	TagInputManager,	under	lib/tags/tag-input-manager.js,
which	will	deal	with	the	user	input	handling	for	tag	creation:

export	class	TagInputManager	{

		constructor()	{

				this.reset();

		}

		...

In	the	constructor,	we	need	to	call	an	internal	reset	method.	This	reset	method	will	reset	the
two	member	fields	that	TagInputManager	will	expose.	The	position	member	will	store	the
position	of	the	latest	caret,	where	the	user	had	started	writing	a	tag.	The	textTag	member	will
store	the	current	tag,	which	is	recognized	by	TagInputManager:

reset()	{

		this.textTag	=	'';

		this.position	=	null;

}

Now	let's	create	a	method	to	determine	if	a	user	is	in	the	progress	of	entering	a	tag.	If	the
textTag	member	contains	a	hash	symbol	at	the	beginning,	we	can	assume	that	there	is	a	tag
entering	in	progress:

hasTextTag()	{

		return	this.textTag[0]	===	'#';

}

We	also	need	a	method	that	will	allow	us	to	update	both	the	current	text	tag,	which	is	entered,
as	well	as	the	updated	caret	position:

updateTextTag(textTag,	position	=	this.position)	{

		this.textTag	=	textTag;

		this.position	=	position;

}

Within	the	onKeyDown	method,	we	expect	to	receive	delegated	keydown	events.	We	are
concerned	about	the	backspace,	which	should	also	remove	the	last	character	of	the	tag	that	is
currently	entered.

onKeyDown(event)	{

		//	If	we	receive	a	backspace	(key	code	is	8),	we	need	to	

		//	remove	the	last	character	from	the	text	tag

		if	(event.which	===	8	&&	this.hasTextTag())	{

				this.updateTextTag(this.textTag.slice(0,	-1));

		}

}

In	the	onKeyPress	method,	we	expect	to	receive	delegated	key	press	events.	This	is	where	the
main	logic	of	this	supporting	class	lies.	Here,	we	handle	two	different	cases:

If	the	pressed	key	is	a	hash	symbol,	we	will	start	over	with	a	new	tag.
If	the	pressed	key	is	not	a	valid	word	character	or	a	hash	symbol,	we	will	reset	it	to	its
initial	state,	which	will	cancel	the	tag	entry.	Otherwise,	it'd	mean	that	we	are	dealing	with
a	valid	tag	character,	and	we'll	add	it	to	the	current	text	tag	string.

The	code	for	this	is	as	follows:

onKeyPress(event)	{

		const	char	=	String.fromCharCode(event.which);

		if	(char	===	'#')	{

				//	If	the	current	character	from	user	input	is	a	hash	symbol	

				//	we	can	initiate	a	new	text	tag	and	set	the	current	

				//	position

				this.updateTextTag('#',	getRangeBoundlingClientRect());

		}	else	if	((/[\w-]/i).test(this.textTag[0]))	{

				//	If	the	current	character	is	not	a	valid	tag	character	we	

				//	reset	our	state	and	assume	the	tag	entry	was	canceled

				this.reset();

		}	else	if	(this.hasTextTag())	{

				//	If	we	have	any	other	valid	tag	character	input,	we're	

				//	updating	our	text	tag

				this.updateTextTag(this.textTag	+	char);

		}

}

Okay,	so	now	we	have	all	the	support	we	need	to	handle	tag	input.	However,	we	still	need	a
way	to	show	the	available	tags	from	TagsService	to	the	user.	For	this	purpose,	we'll	create	a
new	TagsSelect	component.

Creating	a	tags	select	component
To	support	the	user	in	finding	the	right	tag,	we'll	provide	them	with	a	dropdown	with	the
available	tags.	To	do	this,	we	need	to	use	our	TagInputManager	class	to	recognize	tags	within
user	input	as	well	as	filter	the	available	tags	with	user	input.	Let's	briefly	look	at	the
requirements	of	this	component:

Display	the	available	tags	gathered	from	TagsService	in	a	tooltip/callout	box
It	should	support	a	limitation	of	displayed	tags
It	should	support	an	input	to	filter	the	available	tags
The	component	should	accept	an	input	parameter	to	position	the	callout	box
It	should	emit	an	event	once	the	user	clicks	on	a	tag	in	the	listed	tags
The	component	should	hide	itself	if	the	filter	is	invalid	or	if	there	are	no	elements
matching	the	filter:

Finished	tags	select	component	filtered	with	user	input

Let's	start	with	the	component	class	and	see	how	we	fulfill	these	requirements.	First,	create	a
new	file	called	tags-select.js	under	tags/tags-select:

...

@Component({

		selector:	'ngc-tags-select',

		...

})

export	class	TagsSelect	{

		...

}

We	have	no	specialties	to	deal	with	in	our	@Component	annotation.	Let's	start	with
implementing	the	innards	of	our	component.	First,	we'll	define	the	following	input	in	the
component:

@Input()	filter;

Using	the	filter	input,	we	can	pass	a	filter	tag	to	the	TagsSelect	component.	This	means	that
we'll	use	the	filter	input	to	filter	the	available	tags	by	title	and	text	tags.

The	limit	input	can	be	set	to	any	number.	This	input	is	used	to	limit	the	number	of	filtered
tags	that	could	be	displayed	within	the	component:

@Input()	limit;

The	position	input	should	be	set	to	a	valid	DOMRect	object	that	contains	the	top	and	left
properties.	They	will	be	used	to	position	our	component:

@Input()	position;

The	tagSelected	output	property	is	used	to	emit	an	event	once	the	user	has	clicked	on	a	tag
within	the	list	of	tags:

@Output()	tagSelected	=	new	EventEmitter();

The	following	accessor	property	is	bound	to	the	host	element's	display	style	property.	It	will
control	whether	the	component	is	displayed	or	hidden.	We	only	display	the	component	if	the
filter	is	valid	and	the	filtered	tags	contain	at	least	one	tag:

@HostBinding('style.display')

get	isVisible()	{

		if	(this.filter[0]	===	'#'	&&	this.filteredTags.length	>	0)	{

				return	'block';

		}	else	{

				return	'none';

		}

}

The	following	two	accessor	properties	use	host	bindings	to	set	the	top	and	left	styles	of	our
host	element	based	on	the	position	input	of	the	component:

@HostBinding('style.top')

get	topPosition()	{

		return	this.position	?	`${this.position.top}px`	:	0;

}

@HostBinding('style.left')

get	leftPosition()	{

		return	this.position	?	`${this.position.left}px`	:	0;

}

Let's	inject	TagsService	into	our	component	so	we	can	access	the	list	of	available	tags:

constructor(@Inject(TagsService)	tagsService)	{

		this.tagsService	=	tagsService;

		//	This	member	is	storing	the	filtered	tag	list

		this.filteredTags	=	[];

		this.filter	=	'';

}

We	need	to	use	the	OnInit	life	cycle	hook	to	set	up	a	subscription	to	the	TagService	change
observable.	This	way,	we'll	get	access	to	the	initial	list	of	tags	as	well	as	any	changes	in	the
list.	After	we	receive	a	new	list	of	tags,	we	will	need	to	reapply	the	filtering:

ngOnInit()	{

		//	The	TagsService	is	providing	us	with	all	available	tags	

		//	within	the	application

		this.tagsSubscription	=	this.tagsService.change.subscribe(

				(tags)	=>	{

						//	If	the	available	tags	change	we	store	the	new	list	and	

						//	execute	filtering	again

						this.tags	=	tags;

						this.filterTags();

				}

);

}

The	following	is	the	method	that	will	be	called	from	the	template	if	a	tag	is	clicked.	We'll	just
re-emit	that	tag	using	the	tagSelected	output:

onTagClick(tag)	{

		this.tagSelected.next(tag);

}

The	filterTags	method	is	responsible	for	filtering	and	limiting	our	tag	list	based	on	the
filter	and	limit	input	properties	and	the	available	tags	from	TagsService.	As	a	result,	it	will
store	the	filtered	and	limited	list	in	the	filteredTags	member	field:

filterTags()	{

		this.filteredTags	=	this.tags

				.filter((tag)	=>	{

						return	tag.textTag.indexOf(this.filter.slice(1))	!==	-1	||

													tag.title.indexOf(this.filter.slice(1))	!==	-1;

				})

				.slice(0,	this.limit);

}

If	the	input	properties	filter	or	limit	changes,	we	will	need	to	reapply	our	filtering	method.	By
implementing	the	ngOnChanges	life	cycle	hook,	we	can	easily	manage	this	requirement:

ngOnChanges(changes)	{

		//	If	the	filter	or	the	limit	input	changes,	we're	filtering	the	

		//	available	tags	again

		if	(this.tags	&&	(changes.filter	||	changes.limit))	{

				this.filterTags();

		}

}

Finally,	we	should	unsubscribe	from	the	TagsService	change	observable	if	the	TagsSelect
component	is	destroyed:

ngOnDestroy()	{

		this.tagsSubscription.unsubscribe();

}

The	template	for	our	component	is	rather	simple.	Let's	look	at	the	view	template	that	is	stored
under	tags/tags-select/tags-select.html:

<ul	class="tags-select__list">

		<li	*ngFor="let	tag	of	filteredTags"

						(click)="onTagClick(tag)"

						class="tags-select__item">{{tag.title}}

We	used	the	NgFor	directive	to	iterate	over	all	the	tags	within	the	filteredTags	member.	If	a
tag	is	clicked,	we	will	need	to	execute	the	onTagClicked	method	and	pass	the	tag	of	the	current
iteration.	In	the	listing,	we'll	only	display	the	tag	title	that	should	help	the	user	identify	the	tag
they	would	like	to	use.

Now	we	have	built	all	the	pieces	that	we	need	to	enable	smooth	tag	entering	for	our	users.
Let's	patch	our	Editor	component	again	to	include	our	changes.

Integrating	tag	input	within	the	editor	component
As	the	first	step,	we	should	amend	our	Editor	component	to	utilize	the	TagInputManager
class.	We	need	to	delegate	the	user	input	inside	the	content-editable	element	to	the	tag	input
manager	so	it	can	detect	any	tag	entering.	Then,	we'll	use	the	information	from
TagInputManager	to	control	a	TagsSelector	component.

First,	let's	look	at	the	required	changes	to	be	made	inside	the	Component	class	located	under
ui/editor/editor.js:

...

import	{TagsSelect}	from	'../../tags/tags-select/tags-select';

import	{TagInputManager}	from	'../../tags/tag-input-manager';

@Component({

		selector:	'ngc-editor',

		...

		directives:	[TagsSelect]

})

export	class	Editor	{

		...

				//	We're	using	a	TagInputManager	to	help	us	dealing	with	tag	

				//	creation

				this.tagInputManager	=	new	TagInputManager();

		}

		...

		//	This	method	is	called	when	the	editable	element	receives	a	

		//	keydown	event

		onKeyDown(event)	{

				//	We're	delegating	the	keydown	event	to	the	TagInputManager

				this.tagInputManager.onKeyDown(event);

		}

		//	This	method	is	called	when	the	editable	element	receives	a	

		//	keypress	event

		onKeyPress(event)	{

				//	We're	delegating	the	keypress	event	to	the	TagInputManager

				this.tagInputManager.onKeyPress(event);

		}

		//	This	method	is	called	if	the	child	TagSelect	component	is	

		//	emitting	an	event	for	a	selected	tag

		onTagSelected(tag)	{

				//	We	replace	the	partial	text	tag	within	the	editor	with	the	

				//	text	representation	of	the	tag	that	was	selected	in	the	

				//	TagSelect	component.

				this.setEditableContent(

						this.getEditableContent().replace(

								this.tagInputManager.textTag,	tag.textTag

)

);

				this.tagInputManager.reset();

		}

		...

}

In	our	@Component	annotation,	we	added	the	TagsSelect	component	to	the	directives	property
so	we	could	use	the	component	within	the	template.

To	help	us	do	all	the	low-level	processing	for	tag	entry,	we	used	TagInputManager	and
created	a	new	instance	of	it	within	the	component	constructor.

We	have	now	created	two	methods	for	handling	keypress	and	keydown	events	coming	from
our	content-editable	element.	These	methods	delegate	the	events	to	TagInputManager,	which
will	handle	all	of	the	processing	to	extract	a	text	tag	and	the	position	of	the	caret.

Finally,	we	added	a	method	that	will	be	called	once	a	tag	is	clicked	within	the	TagsSelect
component.	Here,	we	simply	replaced	the	text	tag	that	is	currently	entered	with	the	text
representation	of	the	tag	that	was	clicked.	This	provides	a	naive	implementation	of	some	sort
of	autocomplete.	After	we	added	the	text	representation	of	the	clicked	tag	to	the	content-
editable	element,	we	reset	TagInputManager	to	clear	its	state.

The	only	bit	left	now	is	to	to	edit	the	template	of	the	Editor	component	in	order	to	include	the
TagsSelect	component.

In	the	ui/editor/editor.html	file,	we	need	to	make	the	following	changes:

...

<ngc-tags-select	*ngIf="enableTags"

																	[filter]="tagInputManager.textTag"

																	[position]="tagInputManager.position"

																	[limit]="5"

																	(tagSelected)="onTagSelected($event)">

</ngc-tags-select>

The	NgIf	directive	helps	us	avoid	the	component	from	being	created	if	tags	are	not	enabled
within	the	editor.

We	set	the	filter	and	position	input	of	the	TagsSelect	component	from	the	data	we	have	in
our	TagInputManager	instance.

On	the	emitted	tagSelected	event	of	the	TagsSelect	component,	we	called	the	onTagSelected
method	on	the	Editor	component	we	created	a	moment	ago.

That's	all	we	need	to	do	with	the	template	of	the	Editor	component.

Finishing	up	our	tagging	system
Congratulations!	You've	now	successfully	implemented	the	first	of	the	three	usability
components.

With	the	help	of	a	TagInputManager	class,	we	offloaded	heavy	low-level	handling	of	user
input	and	the	processing	of	the	user	caret	position.	Then,	we	created	a	component	to	display
the	available	tags	to	the	user	and	provided	a	way	for	them	to	select	a	tag	by	clicking	on	it.	In
our	Editor	component,	we	used	the	TagInputManager	class	together	with	the	TagsSelect
component	to	enable	the	smooth	entering	of	tags	while	editing	comments	and	other	areas
where	we've	enabled	tagging.

We've	covered	the	following	concepts	in	this	section:

1.	 We	processed	complex	user	input	within	a	designated	manager	class	to	offload	logic
from	our	components.

2.	 We	used	host	bindings	to	set	positional	style	attributes.
3.	 We	implemented	fully	reactive	components	that	rely	on	observables	and	don't	create	side

effects	during	change	detection.

Drag	and	drop
We	have	learned	to	use	our	computer	mouse	and	keyboard	with	great	efficiency.	Using
keyboard	shortcuts,	different	click	actions	and	contextual	mouse	menus	support	us	nicely
when	performing	tasks.	However,	there	is	one	pattern	that	has	gained	more	attention	again	in
applications	lately,	given	the	current	mobile	and	touch	devices	hype.	Drag	and	drop	actions
are	a	very	intuitive	and	logical	way	to	express	actions	such	as	moving	or	copying	items.	One
task	performed	on	user	interfaces	benefits	from	drag	and	drop	particularly,	which	is	ordering
items	within	a	list.	If	we	need	to	order	items	via	action	menus,	it	gets	very	confusing.	Moving
items	step	by	step	using	the	up	and	down	buttons	works	great,	but	it	takes	a	lot	of	time.	If	you
can	drag	items	around	and	drop	them	in	a	place	where	you'd	like	them	to	be	reordered,	you
can	sort	a	list	of	items	extremely	fast.

In	this	topic,	we	will	build	the	required	elements	to	enable	drag	and	drop	selectively.	We	will
use	the	drag	and	drop	feature	to	enable	users	to	reorder	their	task	lists.	By	developing
reusable	directives	to	provide	this	functionality,	we	can	enable	the	feature	at	any	other	spot
within	our	application	later	on.

To	implement	our	directives,	we	will	make	use	of	the	HTML5	drag	and	drop	API,	which	is
supported	in	all	the	major	browsers	at	the	time	of	writing	this	book.

Since	we	would	like	to	reuse	our	drag	and	drop	behavior	on	multiple	components,	we	will
use	directives	for	the	implementation.	We	are	going	to	create	two	directives	in	this	section:

Draggable	directive:	This	directive	should	be	attached	to	components,	which	should	be
enabled	for	dragging
Draggable	drop	zone	directive:	This	directive	should	be	attached	to	components	that
will	act	as	a	drop	target

We'll	also	implement	a	feature	where	we	can	be	selective	about	what	can	be	dragged	where.
For	this,	we	will	use	a	type	attribute	on	our	draggable	directives	as	well	an	accepted	type
attribute	on	our	drop	zones.

Implementing	the	draggable	directive
The	draggable	directive	will	be	attached	to	the	element	that	can	be	dragged	onto	other
elements.	Let's	get	started	with	creating	a	new	directive	class	under	draggable/draggable.js:

...

@Directive({

		selector:	'[draggable]',

		host:	{

				class:	'draggable',

				//	Additionally	to	the	class	we	also	need	to	set	the	HTML	

				//	attribute	draggable	to	enable	draggable	browser	behavior

				draggable:	'true'

		}

})

export	class	Draggable	{

		...

}

Instead	of	using	the	@Component	annotation,	we've	now	used	the	@Directive	annotation	to	let
Angular	know	that	the	following	class	is	a	directive	class.	By	setting	the	HTML	attribute
draggable	to	true,	we	tell	the	browser	that	we're	considering	this	element	a	draggable
element.

Tip

The	big	difference	of	using	directives	in	comparison	to	components	is	that	they	don't	embrace
a	view	but	only	behavior.	Therefore,	it's	also	possible	to	use	many	directives	on	the	same
element,	which	is	not	possible	with	components.

Let's	look	at	the	input	for	our	newly	created	component	class:

@Input()	draggableData;

The	draggableData	input	is	used	to	specify	the	data	that	represents	the	element	which	can	be
dragged.	This	data	will	be	serialized	to	JSON	and	transferred	to	our	drop	zones	once	a	drag
action	is	completed.

By	specifying	a	draggable	type,	we	can	be	more	selective	when	the	element	is	dragged	over	a
drop	zone.	Within	the	drop	zone,	we	can	have	a	counterpart	that	controls	what	types	are
acceptable	to	be	dropped.

@Input()	draggableType;

Additionally	to	our	input,	we	also	want	to	use	a	host	binding	to	set	a	special	class	if	the
element	is	currently	dragged:

@HostBinding('class.draggable--dragging')	dragging;

This	binding	will	set	a	draggable--dragging	class,	which	will	apply	some	special	styles	that

will	make	it	easy	to	recognize	that	an	element	is	dragged.

Now	we	need	to	handle	two	events	within	our	directive	to	implement	the	behavior	of	a
draggable	element.	The	following	DOM	events	are	triggered	by	the	drag	and	drop	DOM	API:

dragstart:	This	event	is	emitted	on	elements	that	are	grabbed	and	moved	across	the
screen
dragend:	If	the	previously	initiated	dragging	of	the	element	is	ended,	because	of	a
successful	drop	or	a	release	outside	of	a	valid	drop	target,	this	DOM	event	will	be
triggered.

Let's	look	at	the	implementation	of	HostListener	for	the	dragstart	event:

//	We're	listening	for	the	dragstart	event	and	initialize	the	

//	dataTransfer	object

@HostListener('dragstart',	['$event'])

onDragStart(event)	{

		event.dataTransfer.effectAllowed	=	'move';

		//	Serialize	our	data	to	JSON	and	set	it	on	our	dataTransfer	

		//	object

		event.dataTransfer.setData(

				'application/json',	

				JSON.stringify(this.draggableData));

		//	By	adding	the	draggableType	as	a	data	type	key	within	our	

		//	The	dataTransfer	object,	we	enable	drop	zones	to	observe	the	type	

		//	before	receiving	the	actual	drop.

		event.dataTransfer.setData(

				`draggable-type:${this.draggableType}`,	'');

		this.dragging	=	true;

}

Now	let's	discuss	the	different	actions	we	will	perform	in	the	implementation	of	our	host
listener:

1.	 We	will	need	to	access	the	DOM	event	object	in	our	host	listener.	If	we	were	to	create	this
binding	within	the	template,	we	would	probably	need	to	write	something	similar	to	this:
(dragstart)="onDragStart($event)".	Within	event	bindings,	we	can	make	use	of	the
synthetic	variable	$event,	which	is	a	reference	to	the	event	that	would	have	triggered	the
event	binding.	If	we	were	to	create	an	event	binding	on	our	host	element	using	the
@HostListener	annotation,	we	would	need	to	construct	the	parameter	list	for	the	binding
using	the	second	argument	of	the	decorator.

2.	 The	first	action	in	our	event	listener	is	to	set	the	desired	effectAllowed	property	on	the
dataTransfer	object.	Currently,	we	only	support	the	move	effect	as	our	main	concern	is
to	reorder	tasks	within	the	task	list	using	drag	and	drop.	The	drag	and	drop	API	is	very
system-specific,	but	usually	there	are	different	drag	effects	if	a	user	holds	a	modifier	key
(such	as	Ctrl	or	Shift)	while	initiating	the	dragging.	Within	our	draggable	directive,	we
can	force	the	move	effect	for	all	drag	actions.

3.	 In	the	next	code	snippet,	we	will	set	the	data	that	should	be	transferred	by	dragging.	It's
important	to	understand	the	core	purpose	of	the	drag	and	drop	API.	It	does	not	only

provide	a	way	to	implement	drag	and	drop	for	elements	solely	in	your	DOM,	but	it	also
supports	the	dragging	of	files	and	other	objects	into	your	browser.	Because	of	this,	the
API	undergoes	some	constraints,	where	one	of	them	is	making	it	impossible	to	transfer
data	other	than	simple	string	values.	In	order	for	us	to	transfer	complex	objects,	we	will
serialize	the	data	from	the	draggableData	input	using	JSON.stringify.

4.	 Another	limitation	caused	by	some	security	constraints	within	the	API	is	that	data	can
only	be	read	after	a	successful	drop.	This	means	that	we	cannot	inspect	the	data	if	the	user
is	just	hovering	over	an	element.	However,	we	need	to	know	some	facts	about	the	data
when	hovering	drop	zones.	We	need	to	know	the	type	of	the	draggable	element	when
entering	a	drop	zone	so	we	can	make	the	drop	zone	signal	if	the	type	is	accepted.	We're
using	a	small	workaround	for	this	issue.	The	drag	and	drop	API	hides	the	data	when	we
drag	data	over	a	drop	target.	However,	it	tells	us	what	type	of	data	it	is.	Knowing	this	fact,
we	can	use	the	setData	function	to	encode	our	draggable	type.	Accessing	the	data	keys
only	is	considered	secure	and	therefore	can	be	done	in	all	drop	zone	events.

5.	 Finally,	we'll	set	the	dragging	flag	to	true,	which	will	cause	the	class	binding	to
revalidate	and	add	the	draggable--dragging	class	to	the	element.

After	dealing	with	the	dragstart	event,	we	only	need	to	handle	the	dragend	event	to	complete
our	Draggable	directive.	The	only	thing	we	do	within	the	onDragEnd	method	that	is	bound	to
the	dragend	event	is	set	the	dragging	member	to	false.	This	will	cause	the	draggable--
dragging	class	to	be	removed	from	the	host	element:

@HostListener('dragend')

onDragEnd()	{

		this.dragging	=	false;

}

That's	it	for	the	behavior	of	our	Draggable	directive.	Now	we	need	to	create	its	counterpart
directive	to	provide	the	behavior	of	a	drop	zone.

Implementing	a	drop	target	directive
Drop	zones	will	act	as	containers	where	draggable	elements	can	be	dropped.	For	this,	we'll
create	a	new	directive	called	DraggableDropZone	under	draggable/draggable-drop-zone.js:

@Directive({

		selector:	'[draggableDropZone]'

})

export	class	DraggableDropZone	{

		...

}

There's	nothing	special	about	this	@Directive	annotation.	We	used	an	attribute	selector	so	it
can	be	attached	using	a	draggableDropZone	attribute	on	any	HTML	element.	Using	the
following	input,	we	can	specify	what	types	of	draggable	elements	we	accept	in	this	drop	zone.
This	will	help	the	user	identify	whether	they	are	able	to	drop	off	the	draggable	elements	when
approaching	the	drop	zone:

@Input()	dropAcceptType;

Upon	successful	drops	into	the	drop	zone,	we	will	need	to	emit	an	event	so	that	the
components	using	our	drag	and	drop	functionality	can	react	accordingly.	For	this	purpose,
let's	create	a	dropDraggable	output	property:

@Output()	dropDraggable	=	new	EventEmitter();

The	over	member	field	will	store	the	state	if	an	accepted	element	is	in	the	process	of	being
dragged	over	the	drop	zone:

@HostBinding('class.draggable--over')	over;

The	following	method	will	be	used	to	check	whether	our	drop	zone	should	accept	any	given
drag	and	drop	event	by	checking	against	our	dropAcceptType	member.	If	you	remember	the
security	problems	we	needed	to	work	around	with	when	creating	the	Draggable	directive,	you
will	understand	why	this	determination	is	rather	simple:

typeIsAccepted(event)	{

		const	draggableType	=	

						Array.from(event.dataTransfer.types).find(

								(key)	=>	key.indexOf('draggable-type')	===	0

);

		return	draggableType	&&	

									draggableType.split(':')[1]	===	this.dropAcceptType;

}

We	can	only	read	the	types	of	the	data	within	dataTransfer	objects	for	certain	events,	where
the	data	itself	is	hidden	until	a	successful	drop	event	is	occurred.	To	bypass	this	security
limitation,	we've	encoded	the	draggable	type	information	into	a	data	key	itself.	Since	we	can
list	all	the	data	types	safely,	it's	not	too	hard	to	extract	the	encoded	draggable	type
information.	We	will	search	for	a	data	type	key	that	starts	with	"draggable-type"	and	then

split	it	by	the	column	character.	The	value	after	the	column	character	is	our	type	information,
which	we	will	then	compare	against	the	dropAcceptType	directive	input	property.

We	will	use	two	events	to	determine	whether	a	draggable	element	is	moved	to	our	drop	zone:

dragenter:	This	is	fired	by	an	element	if	another	element	is	dragged	over	it
dragleave:	This	is	fired	by	an	element	if	the	previously	entered	element	has	left	again

There's	one	problem	with	the	preceding	events,	which	is	that	they	actually	bubble,	and	we	will
receive	a	dragleave	event	if	the	dragged	element	is	moved	to	a	child	element	within	our	drop
zone.	Because	of	the	bubbling,	we	then	also	receive	dragenter	and	dragleave	events	from	the
child	elements.	This	is	not	desired	in	our	case,	and	we	need	to	build	some	functionality	to
improve	this	behavior.	We	will	make	use	of	a	counter	member	field	dragEnterCount,	which
will	count	up	to	all	the	dragenter	events	and	count	down	to	dragleave	events.	This	way,	we
can	now	say	that	only	on	dragleave	events,	where	the	counter	becomes	zero,	we	will	actually
leave	the	inside	of	our	drop	zone.	Let's	look	at	the	following	diagram	that	illustrates	the
problem:

Visualization	of	important	variables	and	functions	for	our	calculations

Let's	implement	this	logic	to	build	a	proper	enter	and	leave	behavior	of	our	drop	zone	within
the	draggable/draggable-drop-zone.js	file:

constructor()	{

		//	We	need	this	counter	to	know	if	a	draggable	is	still	over	our	

		//	drop	zone

		this.dragEnterCount	=	0;

}

//	The	dragenter	event	is	captured	when	a	draggable	is	dragged	

//	into	our	drop	zone

@HostListener('dragenter',	['$event'])

onDragEnter(event)	{

		//	Only	handle	event	if	the	draggable	is	accepted	by	our	drop	

		//	zone

		if	(this.typeIsAccepted(event))	{

				this.over	=	true;

				//	We	use	this	counter	to	determine	if	we	loose	focus	because	

				//	of	child	element	or	because	of	final	leave

				this.dragEnterCount++;

		}

}

//	The	dragleave	event	is	captured	when	the	draggable	leaves	our	

//	drop	zone

@HostListener('dragleave',	['$event'])

onDragLeave(event)	{

		//	Using	dragEnterCount,	we	determine	if	the	dragleave	event	is	

		//	because	of	child	elements	or	because	the	draggable	was	moved	

		//	outside	the	drop	zone

		if	(this.typeIsAccepted(event)	&&	--this.dragEnterCount	===	0)	{

				this.over	=	false;

		}

}

Within	both	the	events,	we	first	check	whether	the	event	is	carrying	a	dataTransfer	object	of
which	we	accept	the	type.	After	validating	the	type	using	our	typeIsAccepter	method,	we	deal
with	the	counter	and	set	the	over	member	field	if	required.

We	need	to	handle	another	event	that	is	important	for	drag	and	drop	functionality,	which	is	the
dragover	event.	Within	the	dragover	event,	we	can	set	the	accepted	dropEffect	of	the	current
dragging	action.	This	will	tell	our	browser	that	the	initiated	dragging	action	from	our
draggable	is	suitable	for	this	drop	zone.	It's	also	important	that	we	prevent	the	default	browser
behavior	so	there's	nothing	in	the	way	of	our	custom	drag	and	drop	behavior.	Let's	add	an
other	function	to	cover	those	concerns:

@HostListener('dragover',	['$event'])

onDragOver(event)	{

		//	Only	handle	event	if	the	draggable	is	accepted	by	our	drop	

		//	zone

		if	(this.typeIsAccepted(event))	{

				//	Prevent	any	default	drag	action	of	the	browser	and	set	the	

				//	dropEffect	of	the	dataTransfer	object

				event.preventDefault();

				event.dataTransfer.dropEffect	=	'move';

		}

}

Finally,	we	need	to	handle	the	most	important	event	in	the	drop	zone,	which	is	the	drop	event

that	is	triggered	if	a	user	drops	a	draggable	into	our	drop	zone:

//	This	event	will	be	captured	if	a	draggable	element	is	dropped	

//	onto	our	drop	zone

@HostListener('drop',	['$event'])

onDrop(event)	{

		//	Only	handle	event	if	the	draggable	is	accepted	by	our	drop	

		//	zone

		if	(this.typeIsAccepted(event))	{

				//	First	obtain	the	data	object	that	comes	with	the	drop	event

				const	data	=	JSON.parse(

						event.dataTransfer.getData('application/json')

);

				//	After	successful	drop,	we	can	reset	our	state	and	emit	an	

				//	event	with	the	data

				this.over	=	false;

				this.dragEnterCount	=	0;

				this.dropDraggable.next(data);

		}

}

After	checking	whether	the	dropped	element	is	of	an	accepted	type,	we	can	now	go	ahead	and
read	the	dataTransfer	object	data	from	the	event.	This	data	was	previously	set	by	the
Draggable	directive	and	needs	to	be	deserialized	using	JSON.parse.

Since	the	drop	was	successful,	we	can	reset	our	dragEnterCount	member	and	set	the	over	flag
to	false.

Finally,	we	will	emit	the	deserialized	data	from	the	draggable	element	using	our
dropDraggable	output	property.

That's	all	we	need	to	have	a	highly	reusable	drag	and	drop	behavior	that	we	can	now	attach	to
any	components	within	our	application	where	we	feel	the	need.

Integrating	drag	and	drop	in	task	list	component
We	can	now	use	the	Draggable	and	DraggableDropZone	directives	in	our	TaskList	component
so	we	can	enable	the	reordering	of	tasks	using	drag	and	drop.

The	way	we're	going	to	do	this	is	by	attaching	both	the	directives	to	the	task	elements	within
the	TaskList	component	template,	where	we'll	render	them.	Yeah,	that's	right!	We	want	to
make	our	Task	component	a	draggable	but	also	a	drop	zone	at	the	same	time.	This	way,	we
can	drop	tasks	into	other	tasks,	and	this	gives	us	the	foundation	for	reordering.	What	we	will
do	is	reorder	the	list	in	a	drop	so	that	the	dropped	task	will	be	squeezed	into	the	position	right
before	the	task	where	it	was	dropped.

First,	let's	apply	the	directives	to	the	<ngc-task>	element	in	the	TaskList	component	template,
namely	task-list/task-list.html:

<div	class="task-list__l-container">

		...

		<ngc-task	*ngFor="let	task	of	filteredTasks"

												line:[task]="task

												(taskUpdated)="onTaskUpdated(task,	$event)"

												(taskDeleted)="onTaskDeleted(task)"

												draggable

												draggableType="task"

												[draggableData]="task"

												draggableDropZone

												dropAcceptType="task"

												(dropDraggable)="onTaskDrop($event,	task)">

		</ngc-task>

		...

</div>

Alright,	using	the	preceding	attributes,	we	have	made	our	tasks	not	only	a	draggable,	but	also
a	drop	zone.	By	specifying	both	draggableType	and	dropAcceptType	to	the	"task"	string,	we
are	telling	our	drag	and	drop	behavior	that	these	task	elements	can	be	dropped	into	other	task
elements.	Our	DraggableDropZone	directive	is	set	to	emit	a	dropDraggable	event	whenever	a
valid	draggable	is	dropped	off.	To	handle	dropped	tasks,	we	can	simply	use	this	event	and
create	a	binding	to	a	method	in	our	TaskList	component.

Let's	see	what	we	need	to	change	within	our	Component	class,	located	under	task-list/task-
list.js,	to	make	this	work:

...

import	{Draggable}	from	'../draggable/draggable';

import	{DraggableDropZone}	from	'../draggable/draggable-drop-zone';

@Component({

		selector:	'ngc-task-list',

		...

		directives:	[...,	Draggable,	DraggableDropZone]

})

export	class	TaskList	{

		...

		onTaskDrop(source,	target)	{

				if	(source.position	===	target.position)	{

						return;

				}

				let	tasks	=	this.tasks.slice();

				const	sourceIndex	=	tasks.findIndex(

						(task)	=>	task.position	===	source.position

);

				const	targetIndex	=	tasks.findIndex(

						(task)	=>	task.position	===	target.position

);

				tasks.splice(targetIndex,	

																	0,	

																	tasks.splice(sourceIndex,	1)[0]);

				tasks	=	tasks.map((task,	index)	=>	{

						return	Object.assign({},	task,	{

								position:	index

						});

				});

				this.tasksUpdated.next(tasks);

		}

		...

}

Let's	elaborate	on	the	behavior	we'll	see	within	the	onTaskDrop	method	that	is	bound	to	the
DropZone's	dropDraggable	event	in	our	template:

1.	 If	you	check	the	template	again,	you	would	see	that	we	bound	to	the	onTaskDrop	method
with	the	following	expression:	(dropDraggable)="onTaskDrop($event,	task)".	Since
the	drop	zone	emitted	an	event	with	de-serialized	data	that	was	bound	using	the	draggable
input	property	draggableData,	we	can	safely	assume	that	we	will	receive	a	copy	of	the
task	that	was	dropped	into	the	drop	zone.	As	a	second	parameter	to	our	binding,	we
added	the	local	view	variable	task,	which	is	actually	the	task	that	acts	as	the	drop	zone.
Therefore,	we	can	say	that	the	first	parameter	of	our	onTaskDrop	method	represents	the
source,	while	the	second	represents	the	target	task.

2.	 As	a	first	check	in	our	method,	we	compare	the	source	position	with	the	target	position,
and	if	they	match,	we	can	assume	that	the	task	was	dropped	by	itself	and	we	don't	need	to
perform	any	further	actions.

3.	 Now	we	can	get	the	source	and	target	task	indices	within	our	tasks	array	and	execute	a
nested	splice	so	that	we	can	remove	the	source	from	its	old	position	within	the	array	and
add	it	right	before	the	position	of	the	target.

4.	 All	that's	left	to	do	now	is	recalculate	the	position	fields	of	the	tasks	so	that	they	reflect
the	reordered	array.	We	can	do	this	easily	by	using	Array.prototype.map.

5.	 As	the	last	step,	we	need	to	notify	our	parent	component	that	we've	updated	the	task	list.
We	can	simply	use	the	taskUpdated	event	to	do	so.	We	have	used	that	same	event	when
tasks	were	added	or	removed.

How	great	is	that?	We	have	successfully	implemented	drag	and	drop	on	our	task	list	to
provide	a	very	usable	feature	to	reorder	tasks.

Recapitulate	on	drag	and	drop
With	the	use	of	the	low-level	drag	and	drop	API,	using	events	and	dataTransfer	objects,	we
have	implemented	two	directives	that	can	now	be	used	to	execute	smooth	drag	and	drop
functionality	within	our	application	wherever	we	desire.

With	almost	no	effort,	we	have	implemented	our	drag	and	drop	behavior	on	the	task	list	to
provide	a	nice	feature	to	reorder	the	tasks	within	the	list.	The	only	thing	we	needed	to	do,
besides	hooking	up	the	directives,	was	to	implement	a	method	where	we	could	reorder	the
tasks	based	on	the	information	from	the	DraggableDropZone	event.

We	have	worked	with	the	following	concepts	in	this	section:

1.	 We	learned	the	basics	of	HTML5	drag	and	drop	API.
2.	 We	used	the	dataTransfer	object	to	securely	transfer	data	within	drag	and	drop	events.
3.	 Built	reusable	behavior	patterns	using	directives.
4.	 Enriched	the	standard	drag	and	drop	API	by	providing	our	own	custom	selection

mechanisms	using	a	custom	data	type	that	encodes	draggable-type	information.

To	infinity	and	beyond!
Displaying	a	simple	list	with	an	average	size	does	not	come	with	a	lot	of	challenges.	As	soon
as	the	lists	starts	to	grow,	challenges	start	to	appear.	We	can	easily	overwhelm	a	user	with	a
very	long	list.	Long	lists	can	also	have	a	performance	impact	on	our	application,	especially
when	it	displays	dynamic	content.

One	way	to	address	the	challenge	faced	when	displaying	long	lists	is	to	provide	pagination.
However,	pages	do	not	always	translate	very	well.	While	using	pagination	on	a	desktop	device
with	a	mouse	seems	very	intuitive,	it	becomes	cumbersome	on	mobile	devices	with	touch
support.

In	this	chapter,	we'll	look	at	a	different	approach	that	can	help	us	mitigate	the	performance
implications	of	long	lists	while	providing	a	smooth	experience	on	mobile	devices.	We	are
using	a	pattern	sometimes	referred	to	as	infinite	scrolling.	The	goal	is	to	display	only	enough
items	within	the	list	to	fill	the	screen,	and	load	more	items	on	demand	if	the	user	scrolls	down.

To	implement	such	a	behavior,	we	could	write	a	wrapper	component	that	will	provide	an
infinite	scroll	pane	and	use	content	insertion	to	embrace	our	list.	However,	we	will	use	a
different	approach	to	implement	our	infinite	scroll	behavior	and	build	a	custom	template
directive	such	as	NgFor.

The	asterisk	syntax	and	templates
We	have	used	the	NgFor	and	NgIf	directives	quite	a	lot	so	far	using	the	asterisk	(*)	symbol	to
indicate	we're	dealing	with	a	directive	that	creates	a	template.	However,	we	haven't	looked	at
the	anatomy	of	the	asterisk	template	syntax.	Imagine	that	it	will	create	some	sort	of	syntactic
sugar	for	our	template.

Check	out	this	example	of	using	the	NgFor	directive	with	the	asterisk	template	syntax:

<div	*ngFor="let	i	of	[1,	2,	3]">{{i}}</div>

The	template	parser	of	Angular	will	handle	all	the	attributes	that	start	with	an	asterisk	in	a
special	way.	The	preceding	example	is	an	easier	and	more	concise	writing	style	of	the
following:

<template	ngFor	#i	[ngForOf]="[1,	2,	3]">

		<div>{{i}}</div>

</template>

Both	the	preceding	examples	are	absolutely	identical.	Template	directives,	such	as	NgFor	or
NgIf,	make	use	of	HTML	template	elements,	which	we've	briefly	discussed	in	Chapter	1,
Component-Based	User	Interfaces.	The	reason	that	the	Angular	common	directives	NgFor,
NgIf,	and	NgSwitch	use	HTML	template	elements	is	actually	quite	obvious	if	you	think	about
their	nature.	All	three	directives	need	to	insert	and	remove	large	regions	of	our	DOM
dynamically.	NgIf,	for	example,	inserts	or	removes	the	element	it's	attached	to,	based	on	a
condition.	By	leveraging	template	elements,	this	can	be	supported	by	the	browser's	native
functionality.

Note

If	you	compare	the	examples	discussed	here,	it's	obvious	that	the	first	writing	style	is	much
simpler	to	deal	with.	Asking	you	to	write	a	separate	template	element	every	time	you'd	want	to
use	NgFor	or	NgIf	would	be	quite	a	pain.	This	is	the	only	reason	why	the	asterisk	syntax
exists,	its	raison	d'être	if	you	like.	Instead	of	writing	a	template	element	directly,	we	can	use	an
asterisk	on	an	attribute	and	Angular	will	transform	the	HTML	portion	into	a	template	element
for	us.

The	NgFor	directive	uses	a	TemplateRef	dependency,	which	can	be	injected	into	the
constructor	of	the	directive,	to	instantiate	the	template	or	multiple	instances	of	it,	as	desired.
The	[ngForOf]	property	binding	is	generated	during	de-sugaring	by	appending	the	word	Of
within	the	NgFor	expression	to	the	directive	name,	ngFor.	The	binding	is	created	by	the	NgFor
directive,	which	accepts	an	input,	ngForOf.

Consider	the	following	example:

<div	*test="let	variable	withSugar	true">{{variable}}</div>

Angular	would	de-sugar	this	into	the	following	code:

<template	test	#variable	[testWithSugar]="true">

		<div>{{variable}}</div>

</template>

That's	just	the	way	Angular	de-sugars	the	asterisk	template	syntax.	It's	a	shortcut	to	attach
directives	as	well	as	one	input	bindings	to	template	elements.

There's	still	one	thing	that	might	look	confusing,	which	is	the	variable	attribute	in	the
template.	Let's	look	at	another	example	of	using	the	NgFor	directive	by	aliasing	the	exposed
local	variables	of	a	directive	like	the	current	index:

<div	*ngFor="let	n	of	[1,	2,	3];	let	i	=	index">{{i}}:	{{n}}</div>

This	example	will	be	de-sugared	to	the	following	template:

<template	ngFor	#n	#i="index"	[ngForOf]="[1,	2,	3]">

		<div>{{i}}:	{{n}}</div>

</template>

So	we	can	now	tell	from	de-sugaring	that	additional	aliases	or	mappings	will	get	created	as
variable	mappings	in	our	template	element.	The	index	that	is	exposed	within	the	code	of	the
NgFor	directive	class	as	a	local	view	variable	is	mapped	to	a	local	view	variable	within	the
instantiated	content	of	the	template.

So	what's	going	on	with	the	local	view	variable	n	within	our	instantiated	templates?	Why	can
we	access	n,	when	there's	just	one	variable	attribute	without	any	value	that	would	tell	us	where
it's	mapped	to?

We	have	learned	that	when	we	use	hash	symbol	attributes	on	regular	elements,	we	create	a
local	view	reference.	We	can	use	this	reference	as	an	identifier	in	the	view	directly,	or	by
querying	using	@ViewChild.	However,	when	the	view	compiler	of	Angular	discovers	what
looks	like	a	local	view	reference	on	a	template,	the	behavior	is	a	bit	different.

What	is	invisible	to	us	is	that	Angular	actually	implies	a	default	value	for	variable	attributes
on	template	elements	that	don't	have	an	attribute	value.	It	will	create	a	mapping	for	a	local
view	variable	called	$implicit.	You	can	think	of	$implicit	as	a	default	value	that	can	be
exposed	in	directives	as	local	view	variables	and	will	provide	some	ease	of	use	when	dealing
with	template	elements.

It	would	also	be	totally	valid	to	write	the	preceding	example	as	follows:

<template	ngFor	#n="$implicit"	#i="index"	[ngForOf]="[1,	2,	3]">

		<div>{{i}}:	{{n}}</div>

</template>

Here,	the	NgFor	directive	is	exposing	a	local	view	variable	$implicit,	which	is	a	reference	to
the	current	value	associated	with	the	instance	during	the	iteration	over	the	array	it	receives

within	the	ngForOf	input.	Using	a	plain	variable	attribute	without	a	value,	Angular	will	default
a	mapping	to	$implicit.	Because	we	don't	want	to	write	this	mapping	all	the	time	ourselves,
we	can	just	specify	an	empty	variable	attribute	and	Angular	will	assume	it	for	us.

Creating	an	infinite	scroll	directive
Since	we	now	know	a	bit	more	about	template	elements	and	how	Angular	deals	with	the
asterisk	syntax,	we	can	actually	create	our	own	copy	of	NgFor,	which	is	additionally	dealing
with	the	behavior	of	infinite	scrolling.

Let's	create	a	new	file	for	our	directive	under	infinite-scroll/infinite-scroll.js:

...

@Directive({

		selector:	'[ngcInfiniteScroll]'

})

export	class	InfiniteScroll	{

		...

		//	This	input	will	be	set	by	the	for	of	template	syntax

		@Input('ngcInfiniteScrollOf')

		set	infiniteScrollOfSetter(value)	{

				this.infiniteScrollOf	=	value;

				...

		}

		...

		applyChanges(changes)	{

				...

				this.bulkInsert(insertTuples).forEach((tuple)	=>

						tuple.view.context.$implicit	=	tuple.record.item);

		}

		...

}

We	start	off	by	declaring	a	regular	directive	that	is	sensitive	to	the	attribute	selector
ngcInfiniteScroll.	The	preceding	code	excerpt	only	shows	the	relevant	code	for	the
template	element	handling	we	discussed	in	the	previous	topic.	There	are	some	code	parts	that
we	will	cover	later	on	in	this	topic.	You	can	see	that	we	used	an	input	property
ngcInfiniteScrollOf,	which	is	used	to	pass	in	the	list	of	times	used	within	the	infinite
scrolling.	For	inserted	template	instances,	we	set	the	local	view	variable	$implicit	to	the
actual	item	within	the	list	we	were	iterating	over.

We	will	discuss	how	we	get	to	all	of	the	surrounding	code	shortly,	but	first	let's	take	a	look	at
how	we	could	use	this	directive	within	a	template:

<div	*ngcInfiniteScroll="#item	of	items">{{item}}</div>

The	preceding	code,	as	per	the	mechanisms	described	in	the	previous	topic,	will	de-sugar	into
the	following	template	element:

<template	ngcInfiniteScroll	#item	[ngcInfiniteScrollOf]="items">

		<div>{{item}}</div>

</template>

So	what	we	can	tell	now	is	that	the	items	array	will	be	placed	as	a	property	binding	onto	our

template	element.	The	same	element	also	contains	the	InfiniteScroll	directive.

After	discussing	how	the	directive	will	be	used	and	how	we	can	get	the	required	input	into	the
directive,	let's	look	at	the	implementation	details	that	enable	the	infinite	scroll	behavior.

Our	directive	needs	to	deal	with	quite	a	lot	of	concerns.	Let's	check	out	a	high-level
requirement	list:

It	needs	to	dynamically	create	new	child	views	based	on	the	template	element	and	also
remove	child	views	that	are	no	longer	required.
It	needs	to	detect	changes	on	the	input	property	ngcInfiniteScrollOf,	which	is	bound	to
an	array	within	the	template.	It's	not	sufficient	to	use	a	simple	identity	check,	because
we'd	like	to	create	a	comparison	of	the	previous	array	to	the	new	array	and	only	perform
view	changes	based	on	the	differences.	For	this	purpose,	we	will	need	to	implement	the
DoCheck	life	cycle	callback.
It	needs	to	store	a	count	of	items	that	should	be	displayed	initially,	and	by	detecting	scroll
events,	the	displayed	item	count	should	increase	so	more	items	could	be	made	visible.	At
the	same	time,	scrolling	should	trigger	the	change	detection	so	that	we	can	create	new
instances	of	the	template	within	the	view.

Let's	start	with	the	constructor	of	our	directive:

constructor(@Inject(ViewContainerRef)	viewContainerRef,

												@Inject(TemplateRef)	templateRef,

												@Inject(IterableDiffers)	iterableDiffers,

												@Inject(ChangeDetectorRef)	cdr)	{

		//	Using	Object.assign	we	can	easily	add	all	constructor	

		//	arguments	to	our	instance

		Object.assign(this,	

				{viewContainerRef,	templateRef,	iterableDiffers,	cdr});

		//	How	many	items	will	be	shown	initially

		this.shownItemCount	=	3;

		//	How	many	items	should	be	displayed	additionally,	when	we	

		//	scroll	to	the	bottom

		this.increment	=	3;

}

We	needed	to	use	quite	a	lot	of	injected	dependencies	in	order	to	perform	all	the	operations
required	to	fulfill	the	outlined	requirements	of	our	directive:

The	ViewContainerRef	dependency	helps	us	create	new	embedded	views	based	on	our
template	element	as	well	as	detach	or	completely	remove	existing	views.
The	TemplateRef	dependency	is	a	reference	to	the	template	element,	and	we	can	use	it	in
conjunction	with	the	ViewContainerRef	dependency	in	order	to	create	new	instances.
The	IterableDiffers	dependency	is	used	to	create	a	diff	of	our	input	property,	which	is
the	array	of	items	we're	concerned	about	in	our	infinite	scroll	repeater.	It	supports	us	in
finding	the	created,	removed,	and	deleted	items.
The	ChangeDetectorRef	dependency	is	used	to	trigger	change	detection	manually	when
we	actually	need	it.

As	the	first	step,	we	used	Object.assign	to	store	all	our	function	parameters	in	the	instance	of
the	directive.	Then,	we	set	two-member	variables	that	will	store	information	related	to	the
number	of	items	that	should	be	displayed	and	also	the	number	of	displayed	items	we	should
increase	upon	scrolling.

That's	it	for	the	constructor.	We	also	need	to	perform	some	actions	after	the	view	within	our
directive	has	been	initialized.	We'll	use	the	ngOnInit	life	cycle	hook	for	this	purpose:

		ngOnInit()	{

				this.scrollableElement	=	findScrollableParent(

						this.viewContainerRef.element.nativeElement.parentElement);

				this.scrollableElement.addEventListener('scroll',	this._onScrollListener);

		}

Let's	look	at	these	two	lines	of	code	in	more	detail:

The	way	our	infinite	scrolling	works	is	that	it	detects	whether	the	scrollable	parent
element	has	already	scrolled	to	the	bottom.	If	that's	the	case,	we'd	need	to	render	more
items	from	the	list.	In	order	to	check	whether	our	parent	element	has	already	scrolled	to
the	bottom,	we	will	need	a	reference	to	it.	As	scroll	events	don't	bubble,	we	need	to	be
very	precise	where	to	monitor	them.	That's	the	reason	why	we	use	a	utility	function	to
scan	the	DOM	tree	to	find	the	next	scrollable	parent	element.	The	findScrollableParent
function	looks	for	the	first	parent	element	that	has	scrollbars	or	the	window	object.	You
can	check	the	source	code	of	this	chapter	if	you'd	like	to	see	the	internals	of	the	function.
Now	we've	added	an	event	handler	to	the	found	scrollable	parent	element	and	registered
our	internal	onScroll	method	as	a	callback.

Detecting	change	within	our	template	directive
Now	let's	look	at	the	complete	code	of	the	ngcInfiniteScrollOf	property	setter,	which	we
have	briefly	looked	at	already:

@Input('ngcInfiniteScrollOf')

set	infiniteScrollOfSetter(value)	{

		this.infiniteScrollOf	=	value;

		//	Create	a	new	iterable	differ	for	the	iterable	`value`,	if	the	

		//	differ	is	not	already	present

		if	(value	&&	!this.differ)	{

				this.differ	=	this.iterableDiffers.find(value).create(this.cdr);

				}

}

Our	property	setter	will	be	called	by	Angular	every	time	the	ngcInfiniteScrollOf	input
property	changes.	Since	this	property	is	bound	by	the	de-sugaring	of	the	asterisk	template
syntax	to	the	list	we	refer	to	within	our	template,	we	can	assume	that	the	value	will	always	be
an	array	or	a	similar	iterable	structure.

Besides	storing	the	new	value	from	the	input	property	onto	our	directive	instance,	we	also
lazy	initialize	a	member	field	called	differ.	Using	the	find	method	on	the	IterableDiffers
object,	we	can	obtain	a	factory	that	matches	the	type	of	iterable	you're	dealing	with	(in	our
case,	this	will	be	plain	arrays).	On	the	obtained	factory,	we	can	then	call	the	create	method	to
create	a	new	differ.	The	create	method	expects	a	ChangeDetectorRef	object	to	be	passed.
Luckily,	we	have	that	readily	available	through	an	injection	within	the	constructor.

The	differ	will	help	us	in	a	later	step	to	detect	changes	between	the	existing	value	of	our	array
and	an	updated	one.	We	can	then	perform	additions,	removals,	and	movements	in	a	very
performant	way.

If	we	call	the	diff	method	on	IterableDiffer,	it	will	return	a	new	IterableDiffer	object
that	contains	all	the	changes	relative	to	the	previous	IterableDiffer	object.	In	a	differ,	we
can	then	call	one	of	the	following	methods	to	iterate	over	the	relevant
CollectionChangeRecord:

forEachItem:	This	iterates	over	each	CollectionChangeRecord	within	the	differ	by
providing	a	callback	function.	The	first	argument	to	the	callback	will	be	a	change	record.
forEachPreviousItem:	This	only	iterates	over	each	CollectionChangeRecord	within	the
differ	that	already	existed	in	the	previous	differ.
forEachAddedItem:	This	only	iterates	over	each	change	record	that	was	added	from	the
previous	diff	to	the	current	one.
forEachMovedItem:	This	only	iterates	over	each	change	record	that	was	moved.
forEachRemovedItem:	This	only	iterates	over	change	records	that	were	removed

The	CollectionChangeRecord	objects	contain	the	following	three	main	properties:

item:	A	reference	to	the	item	within	the	list	which	we're	observing	for	changes	using	the

differ
previousIndex:	The	index	of	the	item	within	the	list	before	the	differ	iterable	happened
currentIndex:	The	index	of	the	item	within	the	list	after	the	differ	iterable

We	can	also	solely	tell	from	the	constellation	of	previousIndex	and	currentIndex	what
happened	to	the	item.	The	following	methods	are	present	on	an	IterableDiffer	object:

Added	items:	This	can	be	identified	if	previousIndex	is	null	and	currentIndex	is	set	to
a	valid	number
Moved	items:	This	can	be	identified	if	previousIndex	and	currentIndex	are	both	set	to
a	valid	number
Removed	items:	This	can	be	identified	if	previousIndex	is	set	to	a	valid	number	but
currentIndex	is	set	to	null

Now	let's	look	at	the	onScroll	method,	which	will	be	invoked	by	the	scroll	event	callback	of
the	scrollable	container	element.	In	this	method,	we	need	to	handle	the	logic	of	our	behavior
that	should	be	executed	when	a	user	scrolls	down:

onScroll()	{

		//	If	the	scrollable	parent	is	scrolled	to	the	bottom,	we	will	

		//	increase	the	count	of	displayed	items

		if	(this.scrollableElement	&&	isScrolledBottom(this.		scrollableElement))	{

				this.shownItemCount	=	Math.min(this.infiniteScrollOf.length,	

this.shownItemCount	+	this.increment);

				//	After	incrementing	the	number	of	items	displayed,	we	need	

				//	to	tell	the	change	detection	to	revalidate

				this.cdr.markForCheck();

		}

}

In	the	onScroll	method,	we	first	checked	whether	the	scrollbar	of	the	scrollable	parent
element	has	already	scrolled	to	the	bottom.	If	that's	the	case,	we	can	assume	that	we	should
display	more	items	from	our	list.

We	incremented	the	showItemCount	member	by	the	default	increment	value,	which	we	have	set
to	3,	and	after	modifying	the	number	of	displayed	items,	we	used	the	change	detector	to	mark
our	subtree	structure	to	be	checked.

Since	we	would	like	to	use	the	differ	that	we	have	lazy	initialized	within	our	input	setter	to
detect	changes	and	perform	any	actions	manually,	we	will	need	to	implement	the	DoCheck	life
cycle	callback	on	our	directive.	By	implementing	this,	we	will	disable	the	default	change
detection	of	Angular	and	implement	our	own	way	to	deal	with	changes:

ngDoCheck()	{

		if	(this.differ)	{

				//	We	are	creating	a	new	slice	based	on	the	displayed	item	

				//	count	and	then	create	a	changes	object	containing	the	

				//	differences	using	the	IterableDiffer

				const	updatedList	=	this.infiniteScrollOf

						.slice(0,	this.shownItemCount);

				const	changes	=	this.differ.diff(updatedList);

				if	(changes)	{

						//	If	we	have	any	changes,	we	call	our	`applyChanges`	method

						this.applyChanges(changes);

				}

		}

}

First,	we	used	the	differ	to	obtain	a	change	record	set	from	the	current	infiniteScrollOf
array	to	the	previous	one.	The	differ	will	actually	always	store	the	previous	value,	so	we	only
need	to	pass	it	the	current	value.	The	change	records	will	then	help	us	to	perform	different
actions	for	added,	removed,	and	moved	items.	It's	also	important	to	note	that	we	did	not	use
the	whole	list	here	to	create	a	diff,	but	a	slice	of	the	list	where	our	showItemCount	member
comes	into	play.	This	will	only	make	the	list	that	we're	concerned	about	available	in	our
infinite	scroll	behavior.

Adding	and	removing	embedded	views
If	there	are	any	changes	detected	by	the	differ,	we	can	call	the	applyChanges	method,	which
deals	with	the	details	of	how	to	perform	view	updates	with	changed	items:

applyChanges(changes)	{

		//	First	we	create	a	record	list	that	contains	all	moved	and	

		//	removed	change	records

		const	recordViewTuples	=	[];

		changes.forEachRemovedItem((removedRecord)	=>	

				recordViewTuples.push({record:	removedRecord}));

		changes.forEachMovedItem((movedRecord)	=>	

				recordViewTuples.push({record:	movedRecord}));

		//	We	can	now	bulk	remove	all	moved	and	removed	views	and	as	a	

		//	result	we	get	all	moved	records	only

		const	insertTuples	=	this.bulkRemove(recordViewTuples);

		//	In	addition	to	all	moved	records	we	also	add	a	record	for	all	

		//	newly	added	records

		changes.forEachAddedItem((addedRecord)	=>	

				insertTuples.push({record:	addedRecord}));

		//	Now	we	have	stored	all	moved	and	added	records	within	`

		//	insertTuples`	which	we	use	to	do	a	bulk	insert.	As	a	result	

		//	we	get	the	list	of	the	newly	created	views.	On	those	views	

		//	we're	then	creating	a	view	local	variable	`$implicit`	that	

		//	will	bind	the	list	items	to	the	variable	name	used	within	the	

		//	for	of	template	syntax.

		this.bulkInsert(insertTuples).forEach((tuple)	=>

				tuple.view.context.$implicit	=	tuple.record.item);

}

Let's	look	at	the	innards	of	the	applyChanges	method.	It	needs	to	be	called	from	the	OnChange
life	cycle	hook	with	a	parameter	that	reflects	the	record	changes	within	the	observed	input
array	called	infiniteScrollOf.	In	the	constant	recordViewTuples,	we	stored	all	the	change
records	that	were	either	moved	or	removed	completely.	Now	you	can	call	the	bulkRemove
method	by	passing	the	recordViewTuples	array.	The	bulkRemove	method	will	either	detach	the
view,	in	case	there	is	movement,	or	completely	remove	the	view.	The	returned	value	is	a	list
that	will	contain	only	the	tuples	that	were	moved.	We	stored	these	within	a	constant	called
insertTuples.	Because	they	were	detached	from	the	view	container,	we	will	need	to	reattach
them	at	a	different	position	within	the	view	container.

Now	we	can	go	ahead	and	add	all	the	records	to	the	insertTuples	array	that	were	added
according	to	the	latest	diff.	The	insertTuples	array	now	contains	all	the	moved	as	well	as
added	records.

Using	this	list,	we	call	the	bulkInsert	method,	which	will	reinsert	moved	views	and	create
new	embedded	views	for	added	records.	As	a	result,	we	get	a	list	of	all	the	inserted	records
(moved	and	added),	where	each	record	also	contains	a	view	property	that	points	to	the
inserted	view.

The	last	step	within	our	applyChanges	method	should	now	ring	a	bell.	We	iterated	through	the
list	of	newly	inserted	views	and	set	the	local	view	variable	$implicit	on	the	view	context.
This	way,	we	can	set	the	required	variable	that	is	used	to	create	the	default	variable	mappings
on	our	template	elements,	as	discussed	in	the	previous	topic.

In	order	to	understand	how	we	can	instantiate	new	views	from	our	template	element,	move
views	around,	and	remove	existing	views,	we	need	to	understand	the	view	container.	The
ViewContainerRef	dependency	is	provided	to	our	directive	or	component	using	injection	in
the	constructor.	It	stores	a	list	of	views	and	provides	some	methods	to	add	new	and	remove
existing	views.	Each	component	within	Angular	contains	one	view	container.	We	can	then
access	the	methods	on	the	view	container	in	order	to	programmatically	modify	the	view.

There	are	four	main	methods	in	ViewContainerRef	that	we're	interested	in:

Method Description

createEmbeddedView

This	method	will	create	a	new	embedded	view	using	a	template
reference	and	insert	the	newly	created	view	at	a	given	index	within	the
view	container.	Embedded	views	are	views	instantiated	from	template
elements.

The	following	are	its	parameters:

templateRef:	The	first	parameter	should	be	the	template
reference,	which	should	be	instantiated	into	an	embedded	view.
context:	This	is	an	optional	context	object,	which	will	be
available	for	the	instantiated	template	view.	All	properties	within
the	context	can	be	used	within	the	view	template	as	local	view
variables.
index:	The	optional	index	parameter	can	be	used	to	place	the
instantiated	view	at	a	given	position	within	the	view	container.

This	method	returns	the	created	embedded	view.

detach

The	detach	method	will	remove	an	embedded	view	from	the	view
container	at	a	given	index	without	destroying	the	view	so	it	can	be
reattached	later	using	the	insert	method.

The	following	is	its	parameter:

index:	This	is	the	index	of	the	embedded	view,	which	should	be
detached

This	method	returns	the	detached	embedded	view.

remove

The	remove	method	will	completely	remove	an	embedded	view	from
the	view	container	and	also	destroy	the	view.	A	view	that	has	been
destroyed	can't	simply	be	reattached	using	the	insert	method.

The	following	is	its	parameter:

index:	This	is	the	index	of	the	embedded	view,	which	should	be
removed

This	method	returns	the	removed	embedded	view.

insert

This	method	will	insert	an	existing	view	into	the	view	container.

The	following	are	its	parameters:

viewRef:	The	embedded	view	that	should	be	inserted	into	the	view
container.
index:	The	optional	index	parameter	that	can	be	used	to	place	the
embedded	view	at	a	given	position	within	the	view	container.

This	method	returns	the	inserted	embedded	view.

Let's	quickly	look	at	the	bulkRemove	and	bulkInsert	methods	to	see	how	we	can	use	the	view
container	to	modify	the	containing	view	upon	changes:

bulkRemove(tuples)	{

		...

		//	Reducing	the	change	records	so	we	can	return	only	moved	

		//	records

		return	tuples.reduceRight((movedTuples,	tuple)	=>	{

				//	If	an	index	is	present	on	the	change	record,	it	means	that	

				//	its	of	type	"moved"

				if	(tuple.record.currentIndex	!=	null)	{

						//	For	moved	records	we	only	detach	the	view	from	the	view	

						//	container	and	push	it	into	the	reduced	record	list

						tuple.view	=	this.viewContainerRef.detach(tuple.record.previousIndex);

						movedTuples.push(tuple);

				}	else	{

						//	If	we're	dealing	with	a	record	of	type	"removed",	we	

						//	completely	remove	the	view

						this.viewContainerRef.remove(tuple.record.previousIndex);

				}

				return	movedTuples;

		},	[]);

}

We	use	ViewContainerRef	to	detach	views	in	case	the	record	contains	a	valid	currentIndex
field.	If	that's	the	case,	we	know	that	we	are	dealing	with	a	view	that	will	be	moved.	We	use	the
detach	method	to	exclude	the	view	from	its	position	within	the	view	container,	but	this	will

not	destroy	the	view.	It's	important	to	note	here	that	we	stored	the	returned	view	from	the
detach	method	onto	the	tuple	before	we	added	it	to	the	movedTuples	list.	This	way,	we	were
able	to	identify	it	later	as	a	moved	item,	and	we	could	use	the	view	to	reattach	it	using	the
insert	method	on	the	view	container.

In	the	case	where	there's	no	valid	currentIndex,	we	are	dealing	with	an	element	that	was
removed	from	the	list.	In	such	cases,	we'd	need	to	use	the	remove	method	to	completely
destroy	the	view	and	remove	it	from	the	view	container.

Now	we'll	call	the	bulkInsert	method	with	any	moved	or	inserted	views.	Let's	also	look	at
the	code	of	this	method	briefly	to	see	how	we	can	handle	view	updates	there:

bulkInsert(tuples)	{

		...

		tuples.forEach((tuple)	=>	{

				if	(tuple.view)	{

						//	We're	inserting	back	the	detached	view	at	the	new	positionwithin	the	

view	container

						this.viewContainerRef.insert(tuple.view,	

								tuple.record.currentIndex);

				}	else	{

						//	We're	dealing	with	a	newly	created	view	so	we	create	a	new	embedded	

view	on	the	view	container	and	store	it	in	the	change	record

						tuple.view	=	

								this.viewContainerRef.createEmbeddedView(

										this.templateRef,	

										{},

										tuple.record.currentIndex);

				}

		});

		return	tuples;

}

If	the	tuple	contains	a	view	property,	we	know	we	have	previously	detached	it	from	a	different
position.	We	are	using	the	insert	method	of	the	view	container	to	reattach	it	at	the	new	position
using	the	information	from	CollectionChangeRecord.

If	there's	no	view	property,	we	are	dealing	with	a	newly	added	record.	In	that	case,	we	simply
use	the	createEmbeddedView	method	to	create	a	new	template	instance.	For	the	context
parameter,	we	need	to	pass	a	new	empty	object.	However,	we've	updated	the	context	object
already	within	our	applyChanges	method.	There,	we	added	the	$implicit	local	view	variable
for	every	created	view.

That's	all	we	need	for	our	InfiniteScroll	directive,	and	we	can	now	add	it	to	the	templates
where	we're	planning	to	use	this	functionality.	Let's	use	it	within	the	task	list	by	adding	the
directive	to	the	directive	list	of	the	TaskList	component	within	the	task-list/task-list.js
file:

...

import	{InfiniteScroll}	from	'../infinite-scroll/infinite-scroll';

@Component({

		selector:	'ngc-task-list',

		...

		directives:	[...,	InfiniteScroll]

})

export	class	TaskList	{

		...

}

Now	we	can	simply	edit	the	task	list	template	in	task-list/task-list.html	and	replace	the
NgFor	directive	with	our	InfiniteScroll	directive:

<ngc-task	*ngcInfiniteScroll="let	task	of	filteredTasks"

										[[task]="task"

										(taskUpdated)="onTaskUpdated(task,	$event)"

										(taskDeleted)="onTaskDeleted(task)"

										draggable

										draggableType="task"

										[draggableData]="task"

										draggableDropZone

										dropAcceptType="task"

										(dropDraggable)="onTaskDrop($event,	task)"></ngc-task>

That's	all	we	need	to	use	our	infinite	scroll	functionality.	This	is	highly	reusable,	and	we	can
place	it	wherever	we'd	like	to	use	it	instead	of	the	regular	NgFor	repeater.

Finishing	our	infinite	scroll	directive
In	this	topic,	we	created	an	infinite	scrolling	behavior	by	implementing	a	template	directive
similar	to	NgFor.	We	replaced	the	NgFor	directive	in	our	task	list	to	use	the	InfiniteScroll
directive	instead.	Now	we	don't	display	all	the	tasks	right	at	the	beginning,	but	as	soon	as	the
user	starts	to	scroll,	new	tasks	appear.	In	scenarios	where	we	rely	on	a	list	that	is	partially
loaded	from	the	server,	our	directive	could	even	be	extended	so	it	could	request	for	more
items	from	the	server	on	demand.

We've	covered	the	following	subtopics	here:

The	asterisk	syntax	and	de-sugaring	to	template	elements
The	local	view	variable,	$implicit
Implementing	the	OnChange	life	cycle	hook	to	provide	custom	change	detection
Using	IterableDiffer	to	analyze	the	difference	of	changes	within	our	array	input
property	and	handling	CollectionChangeRecord	objects	to	react	on	changes
Using	ViewContainerRef	to	update	the	view	of	a	component	programmatically
Using	TemplateRef	as	a	reference	to	the	template	element	within	template	directives

Summary
In	this	chapter,	we	built	three	components	to	enhance	the	usability	of	our	application.	Users
can	now	make	use	of	tags	to	easily	annotate	comments	with	navigable	items	that	provide
summaries	to	the	subject.	They	can	use	drag	and	drop	to	reorder	tasks	and	benefit	from	an
infinite	scroll	behavior	on	the	task	list.

Usability	is	a	key	asset	in	today's	applications,	and	by	providing	highly	encapsulated	and
reusable	components	to	address	usability	concerns,	we	can	make	our	lives	a	lot	easier	when
building	those	applications.	Thinking	in	terms	of	components	when	dealing	with	usability	is	a
very	good	thing,	which	not	only	eases	development,	but	also	establishes	consistency.	The
consistency	itself	then	plays	a	major	role	in	making	an	application	usable.

In	the	next	chapter,	we're	going	to	create	some	nifty	components	to	manage	time	within	our
task	management	system.	This	will	also	include	some	new	user	input	components	to	enable
simple	work	time-entry	fields.

Chapter	8.	Time	Will	Tell
Our	task-management	system	is	coming	into	shape.	However,	we	were	not	concerned	about
one	crucial	aspect	of	managing	our	projects	so	far.	Time	plays	a	major	role	in	all	projects,
and	this	is	the	thing	that	is	often	the	most	complicated	to	manage.

In	this	chapter,	we	will	add	a	few	features	to	our	task	management	system	that	will	help	our
users	to	manage	time	more	efficiently.	Reusing	some	components	that	we	created	earlier,	we
will	be	able	to	provide	a	consistent	user	experience	to	manage	time.

On	a	higher	level,	we	will	develop	the	following	features	to	enable	time	management	in	our
application:

Task	details:	So	far,	we	did	not	include	a	details	page	of	tasks	because	all	the	necessary
information	about	tasks	could	be	displayed	on	the	task	list	of	our	project	page.	While	our
time	management	will	increase	the	complexity	of	our	tasks	quite	a	bit,	we	will	create	a
new	detail	view	of	project	tasks	that	will	also	be	accessible	through	routing.
Efforts	management:	We	will	include	some	new	data	on	our	tasks	to	manage	efforts	on
tasks.	Efforts	are	always	represented	by	an	estimated	duration	of	time	and	an	effective
duration	of	spent	time.	We	will	make	both	properties	of	efforts	optional	so	that	they	can
exist	independently.	We	will	create	new	components	to	enable	users	to	provide	time
duration	input	easily.
Milestone	management:	We	will	include	a	way	to	manage	project	milestones	and	then
map	them	to	project	tasks.	This	will	help	us	later	gain	an	overview	over	the	project
status,	and	it	enables	the	user	to	group	tasks	into	smaller	chunks	of	work.

The	following	topics	will	be	covered	in	this	chapter:

Creating	a	project	task	detail	component	to	edit	task	details	and	enable	a	new	route
Modifying	our	tag	management	system	to	include	task	tags
Creating	new	pipes	to	deal	with	formatting	time	durations
Creating	task	information	components	to	display	task	overview	information	on	the
existing	task	components
Creating	a	time	duration	use	input	component	that	enables	users	to	easily	input	time
durations
Creating	an	SVG	component	to	display	progress	on	tasks
Creating	an	autocomplete	component	to	manage	milestones	on	tasks

Task	details
So	far,	our	task	list	was	sufficient	enough	to	display	all	details	of	tasks	directly	in	the	listing.
However,	as	we	will	add	more	details	to	tasks	in	this	chapter,	it's	time	to	provide	a	detail	view
where	users	can	edit	the	task.

We	already	laid	the	groundwork	on	project	navigation	using	the	router	in	Chapter	5,
Component-Based	Routing,	of	this	book.	Adding	a	new	routable	component	that	we'll	use	in
the	context	of	our	projects	will	be	a	breeze.

Let's	create	a	new	component	class	for	our	project	task	detail	view	in	the	project/project-
task-details/project-task-details.js	path:

…

@Component({

		selector:	'ngc-project-task-details',

		…

})

export	class	ProjectTaskDetails	{

		…

}

As	this	component	will	never	exist	without	a	parent	Project	component,	we	can	safely	rely	on
that	to	obtain	the	data	we	use.	This	component	isn't	used	in	pure	UI	composition	cases,	so	it's
not	required	to	create	a	routable	wrapper	component	like	we	did	for	other	components	in
Chapter	5,	Component-Based	Routing.	We	can	directly	rely	on	route	parameters	and	obtain	the
relevant	data	from	the	parent	Project	component.

First,	we	use	dependency	injection	in	order	to	get	a	reference	to	the	parent	project	component:

constructor(@Inject(forwardRef(()	=>	Project))	project)	{

		this.project	=	project;	

}

Similarly	to	our	routing	wrapper	components,	we	make	use	of	parent	component	injection	to
obtain	a	reference	to	the	parent	Project	component.

Now,	we'll	use	the	OnActivate	lifecycle	hook	of	the	router	again	to	obtain	the	task	number
from	the	active	route	segment:

		routerOnActivate(currentRouteSegment)	{

				const	taskNr	=	currentRouteSegment.getParam('nr');

				this.projectChangeSubscription	=	

this.project.document.change.subscribe((data)	=>	{

						this.task	=	data.tasks.find((task)	=>	task.nr	===	+taskNr);

						this.projectMilestones	=	data.milestones	||	[];

				});

		}

Finally,	we'll	create	a	reactive	subscription	to	the	LiveDocument	projects	that	will	extract	the
task	that	we	are	concerned	about	and	store	it	into	the	components	task	member.	In	this	way,
we	ensure	that	our	component	will	always	receive	the	latest	task	data	when	the	project	is
updated	outside	of	the	current	task	details	view.

If	our	component	gets	destroyed,	we	need	to	make	sure	that	we	unsubscribe	from	the	RxJS
Observable	that	is	provided	by	the	LiveDocument	project.	Let's	implement	the	ngOnDestroy
lifecycle	hook	for	this	purpose:

ngOnDestroy()	{

		this.projectChangeSubscription.unsubscribe();

}

Alright,	let's	now	take	a	look	at	the	template	of	our	component,	and	see	how	we'll	deal	with
the	task	data	to	provide	an	interface	to	edit	the	details.	We'll	create	a	project-task-
details.html	file	in	our	new	component	folder:

<h3	class="task-details__title">

		Task	Details	of	task	#{{task?.nr}}

</h3>

<div	class="task-details__content">

		<div	class="task-details__label">Title</div>

		<ngc-editor	[content]="task?.title"

														[showControls]="true"

														(editSaved)="onTitleSaved($event)"></ngc-editor>

		<div	class="task-details__label">Description</div>

		<ngc-editor	[content]="task?.description"

														[showControls]="true"

														[enableTags]="true"

														(editSaved)="onDescriptionSaved($event)">

		</ngc-editor>

</div>

Reusing	the	Editor	component	that	we	created	in	Chapter	4,	No	Comments,	Please!,	of	this
book,	we	can	rely	on	simple	UI	composition	to	make	the	title	and	description	of	our	tasks
editable.

As	we	stored	the	task	data	into	the	task	member	variable	on	our	component,	we	can	reference
the	title	and	description	fields	to	create	a	binding	to	the	content	input	property	of	our
editor	components.

While	the	title	should	only	consist	of	plaintext,	we	can	support	the	tagging	functionality	that
we	created	in	Chapter	7,	Components	for	User	Experience,	on	the	description	field	of	the
task.	For	this,	we	simply	set	the	enableTags	input	property	of	the	description	Editor
component	to	true.

The	Editor	component	has	an	editSaved	output	property	that	will	emit	the	updated	content
once	a	user	saves	his	edits.	Now,	all	we	need	to	make	sure	of	is	that	we	create	a	binding	to	our
component	that	will	persist	these	changes.	Let's	create	the	onTitleSaved	and

onDescriptionSaved	methods	on	our	Component	class	to	handle	these	events:

onTitleSaved(title)	{

		this.task.title	=	title;

		this.project.document.persist();

}

onDescriptionSaved(description)	{

		this.task.description	=	description;

		this.project.document.persist();

}

The	task	member	is	just	a	reference	to	the	given	task	in	the	LiveDocument	project	of	the
Project	component.	This	simplifies	the	way	we	persist	the	data	that	was	changed	on	the	task.
After	updating	the	given	property	on	the	task,	we	simply	call	the	persist	method	on	the
LiveDocument	projects	to	store	our	changes	in	the	data	store.

So	far,	so	good.	We	created	a	task	details	component	that	makes	it	easy	to	edit	the	title	and
description	of	tasks	using	our	Editor	UI	component.	The	only	thing	left	to	enable	our
component	is	to	create	a	child	route	on	the	Project	component.	Let's	open	our	Project
component	class	in	lib/project/project.js	to	make	the	necessary	modifications:

…

import	{ProjectTaskDetails}	from	'./project-task-details/project-task-

details';

…

@Component({

		selector:	'ngc-project',

		…

})

@Routes([

		new	Route({	path:	'task/:nr',	component:	ProjectTaskDetails}),

		…

])

export	class	Project	{

		…

}

We	added	a	new	child	route	on	our	Project	component,	which	is	responsible	for	the
instantiation	of	our	ProjectTaskDetails	component.	By	including	a	:nr	parameter	in	the
route	configuration,	we	can	pass	the	concerned	task	number	into	the	ProjectTaskDetails
component.

Our	newly-created	child	route	is	now	accessible	in	the	router	and	we	can	access	the	task	detail
view	using	the	/projects/project-1/task/1	example	URL.

In	order	to	make	our	TaskDetails	route	navigable,	we	need	to	add	a	navigation	link	to	our
Task	component	so	that	users	can	navigate	to	it	in	the	projects	task	list.

For	this	rather	simple	task,	the	only	thing	that	we	need	to	do	is	use	the	RouterLink	directive

and	create	a	new	link	in	the	Task	template,	lib/task-list/task/task.html:

…

<div	class="task__l-box-b">

		…

		<a	[routerLink]="['../task',	task?.nr]"

										class="button	button--small">Details

</div>

…

We	use	a	relative	router	URL	here	because	we're	already	on	the	/project/tasks	route.	As	our
task/:nr	route	is	part	of	the	project	router,	we	need	to	navigate	one	level	back	to	access	the
task	route:

Newly	created	task	detail	view	with	editable	title	and	description

Enabling	tags	for	tasks
So	far,	the	tag-management	system	that	we	created	in	Chapter	7,	Components	for	User
Experience,	only	supports	project	tags.	As	we	now	created	a	detail	view	to	tasks,	it	would	be
nice	to	also	support	task	tags	directly	in	our	tagging	system.	Our	tagging	system	is	quite
flexible,	and	we	can	implement	new	tags	with	very	little	effort.	On	a	higher	level,	we	need	to
make	the	following	changes	to	enable	task	tags	in	our	system:

Edit	the	generate-tag.js	module	in	order	to	support	the	generation	of	task	tags	from
task	and	project	data
Edit	the	TagsService	in	order	to	initialize	task	tags	using	the	generate-tag.js	module
and	cache

Let's	first	modify	the	lib/tags/generate-tag.js	file	to	enable	task	tag	generation:

…

export	const	TAG_TYPE_TASK	=	'task';

export	function	generateTag(subject)	{

		if	(subject.type	===	TAG_TYPE_PROJECT)	{

				…

		}	else	if	(subject.type	===	TAG_TYPE_TASK)	{

				//	If	we're	dealing	with	a	task,	we	generate	the	according	tag	

				//	object

				return	new	Tag(

						`#${subject.project._id}-task-${subject.task.nr}`,

						`${limitWithEllipsis(subject.task.title,	20)}	(${subject.task.done	?	

'done'	:	'open'})`,

					`#/projects/${subject.project._id}/task/${subject.task.nr}`,

						TAG_TYPE_TASK

);

		}

}

As	we	need	to	have	a	reference	to	project	data	as	well	as	to	the	individual	task	of	this	project,
we	expect	the	subject	parameter	to	look	like	the	following	object:

{task:	…,	project:	…,	type:	TAG_TYPE_TASK}

From	this	subject	object,	we	can	then	create	a	new	Tag	object.	For	the	textTag	field,	we	use	a
construct	that	includes	the	project	ID	as	well	as	the	task	number.	Like	this,	we	can	uniquely
identify	the	task	using	a	simple	text	representation.

For	the	link	field,	we	construct	a	URL	from	the	project	as	well	as	the	task	number.	This	string
will	resolve	to	a	URL	required	to	activate	the	TaskDetails	route,	which	we	configured	in	the
previous	section.

Our	generateTag	function	is	now	ready	to	create	task	tags.	Now,	the	only	thing	left	to	enable
task	tags	in	our	system	is	the	modification	required	in	the	TagsService	class.	Let's	open	the

lib/tags/tags-service.js	file	and	apply	our	changes:

…

import	{generateTag,	TAG_TYPE_TASK}	from	'./generate-tag';

…

@Injectable()

export	class	TagsService	{

		…

		//	This	method	is	used	internally	to	initialize	all	available	

		//	tags

		initializeTags()	{

				…

				//	Let's	also	create	task	tags

				this.projects.forEach((project)	=>	{

						this.tags	=	this.tags.concat(project.tasks.map((task)	=>	{

								return	{

										type:	TAG_TYPE_TASK,

										project,

										task

								};

						}).map(generateTag));

				});

				…

		}

		…

}

In	the	initializeTags	method	of	our	TagsService	class,	we	now	add	task	Tag	objects	for	all
available	tasks	in	projects.	First,	we	map	each	project	task	to	the	required	subject	object	by
the	generateTag	function.	Then,	we	can	simply	map	the	resulting	array	using	the	generateTag
function	directly.	The	result	is	an	array	of	generated	task	Tag	objects	that	we	then	concatenate
into	the	tags	list	of	the	TagsService	class.

This	wasn't	too	complicated,	right?	This	relatively	simple	change	results	in	a	huge
improvement	for	our	users.	They	can	now	reference	individual	tasks	everywhere	in	our
system	where	we	enabled	tags:

The	Editor	component	displaying	newly-added	task	tags

Managing	efforts
In	this	section,	we	will	create	some	components	that	help	us	keep	track	of	efforts.	Primarily,
we	will	use	this	to	manage	efforts	on	tasks,	but	this	could	be	applied	to	any	part	of	our
application	where	we	need	to	keep	track	of	time.

Efforts	in	our	context	always	consist	of	two	components:

Estimated	duration:	This	is	the	duration	that	is	initially	estimated	for	the	task
Effective	duration:	This	is	the	duration	of	time	that	is	spent	on	a	given	task

For	time	durations,	we	assume	some	time	units	and	rules	that	will	simplify	the	processing	of
time	and	align	to	some	working	standards.	The	goal	here	is	not	to	provide	a	razor	sharp	time
management	but	something	that	is	accurate	enough	to	bring	value.	For	this	purpose,	we	define
the	following	working	time	units:

Minute:	One	minute	is	a	regular	60	seconds
Hour:	One	hour	always	represents	60	minutes
Day:	One	day	represents	a	regular	workday	of	eight	hours
Week:	One	week	is	equivalent	to	five	working	days	(5	*	8	hours)

The	time	duration	input
We	can	now	start	to	write	a	complex	user	interface	component,	where	users	can	enter
individual	time	units	in	different	input	element.	However,	I	believe	it's	much	more	convenient
to	treat	time	duration	input	with	a	no-UI	approach.	Therefore,	instead	of	building	a	complex
user	interface,	we	can	simply	agree	on	a	textual	short	form	to	write	durations,	and	let	the	user
write	something,	such	as	1.5d	or	5h	30m,	in	order	to	provide	input.	Sticking	to	the	convention
that	we	previously	established,	we	can	build	a	simple	parser	that	can	handle	this	sort	of	input.

This	approach	has	several	advantages.	Besides	that,	this	is	one	of	the	most	effective	ways	to
enter	time	durations,	and	it's	also	easy	for	us	to	implement.	We	can	simply	reuse	our	Editor
component	to	gather	text	input	from	the	user.	Then,	we	use	a	conversion	process	to	parse	the
entered	time	duration.

Let's	spin	up	a	new	module	that	helps	us	deal	with	these	conversions.	We	create	a	new	module
in	the	lib/utilities/time-utilities.js	file.

First,	we	need	to	have	a	constant	that	defines	all	the	units	we	need	for	the	conversion	process:

export	const	UNITS	=	[{

		short:	'w',

		milliseconds:	5	*	8	*	60	*	60	*	1000

},	{

		short:	'd',

		milliseconds:	8	*	60	*	60	*	1000

},	{

		short:	'h',

		milliseconds:	60	*	60	*	1000

},	{

		short:	'm',

		milliseconds:	60	*	1000

}];

This	is	all	the	units	that	we	need	to	deal	with	for	now.	You	can	see	the	milliseconds	being
calculated	at	interpretation	time.	We	can	also	write	the	milliseconds	as	constants,	but	this
provides	us	with	some	transparency	on	how	we	get	to	these	values	and	we	can	spear	on	some
comments.

Let's	look	at	our	parsing	function,	which	we	can	use	to	parse	text	input	into	time	durations:

export	function	parseDuration(formattedDuration)	{

		const	pattern	=	/[\d\.]+\s*[wdhm]/g;

		let	timeSpan	=	0;

		let	result;

		while	(result	=	pattern.exec(formattedDuration))	{

				const	chunk	=	result[0].replace(/\s/g,	'');

				let	amount	=	Number(chunk.slice(0,	-1));

				let	unitShortName	=	chunk.slice(-1);

				timeSpan	+=	amount	*	UNITS.find(

						(unit)	=>	unit.short	===	unitShortName

).milliseconds;

		}

		return	+timeSpan	||	null;

}

Let's	analyze	the	preceding	code	briefly	to	explain	what	we	do	here:

1.	 First,	we	define	a	regular	expression	that	helps	us	dissect	the	text	representation	of	a
duration.	This	pattern	will	extract	chunks	from	the	text	input	that	are	important	to
calculate	the	duration	behind	the	text	representation.	These	chunks	always	consist	of	a
number,	followed	by	either	w,	d,	h,	or	m.	Therefore,	the	text	10w	3d	2h	30m	will	be	split
into	the	chunks	10w,	3d,	2h,	and	30m.

2.	 We	initialize	a	timeSpan	variable	with	0,	so	we	can	add	all	the	milliseconds	from
discovered	chunks	together	and	later	return	this	sum.

3.	 For	each	of	the	previously-extracted	chunks,	we	now	extract	the	number	component	into
a	variable	called	amount,	and	the	unit	(w,	d,	h,	or	m)	into	a	variable	called	unitShortName.

4.	 Now,	we	can	look	up	the	data	in	the	UNITS	constant	for	the	unit	of	the	chunk	that	we	will
process,	multiply	the	amount	of	milliseconds	of	the	unit	by	the	amount	we	extract	from
the	chunk,	and	then	add	that	result	to	our	timeSpan	variable.

Well	this	is	quite	a	neat	function	we	built	here.	It	accepts	a	formatted	time	duration	string	and
converts	it	into	milliseconds.	This	is	already	half	of	what	we	need	to	deal	with	textual
representation	of	time	durations.	The	second	piece	is	the	opposite	of	what	we	have	with	the
parseDuration	function	to	convert	a	duration	in	milliseconds	into	a	formatted	duration	string:

export	function	formatDuration(timeSpan)	{

		return	UNITS.reduce((str,	unit)	=>	{

				const	amount	=	timeSpan	/	unit.milliseconds;

				if	(amount	>=	1)	{

						const	fullUnits	=	Math.floor(amount);

						const	formatted	=	`${str}	${fullUnits}${unit.short}`;

						timeSpan	-=	fullUnits	*	unit.milliseconds;

						return	formatted;

				}	else	{

						return	str;

				}

		},	'').trim();

}

Let's	also	explain	briefly	what	the	formatDuration	function	does:

We	use	the	Array.prototype.reduce	function	to	format	a	string	that	contains	all	time
units	and	their	amount.	We	iterate	over	all	available	time	units	in	the	UNITS	constant
starting	with	the	largest	unit	for	weeks.
We	then	divide	the	timeSpan	variable,	which	is	in	milliseconds,	by	the	milliseconds	of	the
unit	which	gives	us	the	amount	of	the	given	unit.
If	the	amount	is	greater	than	or	equal	to	1,	we	can	add	the	unit	with	the	given	amount	and
unit	short	name	to	our	formatted	string.
As	we	could	be	left	with	some	fractions	after	the	comma	in	the	amount,	which	we	will

need	to	encode	in	smaller	units,	we	subtract	the	floored	version	of	our	amount	from	the
timeSpan	before	we	return	to	the	reduce	function	again.
This	process	is	repeated	for	every	unit,	where	each	unit	will	only	provide	formatted
output	if	the	amount	is	greater	than	or	equal	to	1.

This	is	all	we	need	to	convert	back	and	forth	between	formatted	time	duration	and	time
duration	represented	in	milliseconds.

We'll	do	one	more	thing	before	we	create	the	actual	component	to	enter	time	durations.	We
will	create	a	simple	pipe	that	basically	just	wraps	our	formatTime	function.	For	this,	we	will
create	a	new	lib/pipes/format-duration.js	file:

import	{Pipe,	Inject}	from	'@angular/core';

import	{formatDuration}	from	'../utilities/time-utilities';

@Pipe({

		name:	'formatDuration'

})

export	class	FormatDurationPipe	{

		transform(value)	{

				if	(value	==	null	||	typeof	value	!==	'number')	{

						return	value;

				}

				return	formatDuration(value);

		}

}

Using	the	formatTime	function	of	our	time-utilities	module,	we	now	have	the	ability	to
format	durations	in	millisecond	directly	from	in	our	templates.

Components	to	manage	efforts
Okay,	this	is	enough	time	math	for	the	moment.	Let's	now	use	the	elements	that	we	created	to
shape	some	components	that	will	help	us	gather	user	input.

In	this	section,	we	will	create	two	components	to	manage	efforts:

Duration:	The	Duration	component	is	a	simple	UI	component,	enabling	user	input	of
time	durations	using	the	formatted	time	strings	we	dealt	with	in	the	previous	topics.	It
uses	an	Editor	component	to	enable	user	input	and	makes	use	of	the	FormatTimePipe
pipe	as	well	as	the	parseDuration	utility	function.
Efforts:	The	Efforts	component	is	just	a	composition	of	two	Duration	components	that
represent	the	estimated	effort	and	the	effective	effort	spent	on	a	given	task.	Following	a
strict	rule	of	composition,	this	component	is	important	for	us	so	that	we	don't	repeat
ourselves	and	instead	compose	a	larger	component.

Let's	start	with	the	Duration	component	class,	and	create	a	new
lib/ui/duration/duration.js	file:

…

import	{FormatDurationPipe}	from	'../../pipes/format-duration';

import	{Editor}	from	'../../ui/editor/editor';

import	{parseDuration}	from	'../../utilities/time-utilities';

@Component({

		selector:	'ngc-duration',

		…

		directives:	[Editor],

		pipes:	[FormatDurationPipe]

})

export	class	Duration	{

		@Input()	duration;

		@Output()	durationChange	=	new	EventEmitter();

		onEditSaved(formattedDuration)	{

				this.durationChange.next(formattedDuration	?	

						parseDuration(formattedDuration)	:	null);

		}

}

There's	nothing	fancy	about	this	component	really	because	we	created	the	bulk	of	the	logic
already	and	we	simply	compose	a	higher	component	together.

As	the	duration	input,	we	expect	a	time	duration	in	milliseconds,	while	the	durationChange
output	property	will	emit	events	when	the	user	provides	some	input.

The	onEditSaved	method	serves	in	the	binding	to	the	Editor	component	in	our	component.
Whenever	the	user	saves	his	edits	on	the	Editor	component,	we'll	take	this	input,	convert	the
formatted	time	duration	into	milliseconds	using	the	parseDuration	function,	and	re-emit	the
converted	value	using	the	durationChange	output	property.

Let's	look	at	the	template	of	our	component	in	the	lib/ui/duration/duration.html	file:

<ngc-editor	[content]="duration	|	formatDuration"

												[showControls]="true"

												(editSaved)="onEditSaved($event)"></ngc-editor>

Surprised	with	how	simple	our	template	is?	Well,	this	is	exactly	what	we	should	achieve	with
higher	components	once	we	establish	a	good	foundation	of	base	components.	Well-organized
composition	radically	simplifies	our	code.	The	only	thing	that	we	deal	with	here	is	our	good
old	Editor	component.

We	bind	the	duration	input	property	of	our	Duration	component	to	the	content	input	property
of	the	Editor	component.	As	we'd	like	to	pass	the	formatted	time	duration	and	not	the
duration	in	milliseconds,	we	use	the	FormatDurationPipe	pipe	to	convert	in	the	binding
expression.

If	the	Editor	component	notifies	us	about	a	saved	edit,	we	call	the	onEditSaved	method	on
our	Duration	component,	which	will	parse	the	entered	duration	and	re-emit	the	resulting
value.

As	we	initially	defined	all	efforts	to	consist	of	an	estimated	and	an	effective	duration,	we
would	now	like	to	create	another	component	that	combines	these	two	durations.

Let's	create	a	new	Efforts	component	by	starting	with	a	new	template	on	the
lib/efforts/efforts.html	path:

<div	class="efforts__label">Estimated:</div>

<ngc-duration	[duration]="estimated"

														(durationChange)="onEstimatedChange($event)">

</ngc-duration>

<div	class="efforts__label">Effective:</div>

<ngc-duration	[duration]="effective"

														(durationChange)="onEffectiveChange($event)">

</ngc-duration>

<button	class="button	button--small"	

								(click)="addEffectiveHours(1)">+1h</button>

<button	class="button	button--small"	

								(click)="addEffectiveHours(4)">+4h</button>

<button	class="button	button--small"	

								(click)="addEffectiveHours(8)">+1d</button>

First,	we	add	two	Duration	components	labelled,	where	the	first	one	is	used	to	gather	input
for	the	estimated	time	and	the	later	one	for	effective	time.

In	addition	to	this,	we	provide	three	small	buttons	to	increase	the	effective	duration	by	a
simple	click.	In	this	way,	the	user	can	quickly	add	one	or	four	hours	(half	a	working	day)	or	a
complete	working	day	(which	we	defined	as	eight	hours).

Looking	at	the	Component	class,	there	should	be	no	surprises.	Let's	open	the

lib/efforts/efforts.js	component	class	file:

…

import	{Duration}	from	'../ui/duration/duration';	

import	{UNITS}	from	'../utilities/time-utilities';

@Component({

		selector:	'ngc-efforts',

		…

		directives:	[Duration]

})

export	class	Efforts	{

		@Input()	estimated;

		@Input()	effective;

		@Output()	effortsChange	=	new	EventEmitter();

		onEstimatedChange(estimated)	{

				this.effortsChange.next({

						estimated,

						effective:	this.effective

				});

		}

		onEffectiveChange(effective)	{

				this.effortsChange.next({

						effective,

						estimated:	this.estimated

				});

		}

		addEffectiveHours(hours)	{

				this.effortsChange.next({

						effective:	(this.effective	||	0)	+	

								hours	*	UNITS.find((unit)	=>	unit.short	===	'h'),

						estimated:	this.estimated

				});

		}

}

The	component	provides	two	separate	inputs	for	estimated	and	effective	time	duration	in
milliseconds.	If	you	take	a	look	at	the	component	template	again,	these	input	properties	are
directly	bound	to	the	input	properties	of	the	Duration	components.

The	onEstimatedChange	and	onEffectiveChange	methods	are	used	to	create	bindings	to	the
durationChange	output	properties	of	the	Duration	components.	All	we	do	here	is	emit	an
aggregated	data	object	that	contains	the	effective	and	estimated	time	in	milliseconds	using	the
effortsChange	output	property.

In	the	addEffectiveHours	method,	we	simply	emit	an	effortsChange	event	and	update	the
effective	property	by	the	calculated	amount	of	milliseconds.	We	use	our	UNITS	constant	from
the	time-utilities	module	in	order	to	get	the	amount	of	milliseconds	for	an	hour.

This	is	all	that	we	need	in	order	to	provide	a	user	input	to	manage	efforts	on	our	tasks.	To

complete	this	topic,	we	will	add	our	newly-created	Efforts	component	to	the
ProjectTaskDetail	component	in	order	to	manage	efforts	on	tasks.

Let's	first	look	at	the	code	changes	in	the	Component	class	located	in	lib/project/project-
task-detail/project-task-detail.js:

…

import	{Efforts}	from	'../../efforts/efforts';

@Component({

		selector:	'ngc-project-task-details',

		…

		directives:	[Editor,	Efforts]

})

export	class	ProjectTaskDetails	{

		…

		onEffortsChange(efforts)	{

				if	(!efforts.estimated	&&	!efforts.effective)	{

						this.task.efforts	=	null;

				}	else	{

						this.task.efforts	=	efforts;

				}

				this.project.document.persist();

		}

		…

}

Besides	providing	the	Efforts	component	to	the	directives	list	of	our	ProjectTaskDetail
component,	we	added	a	new	onEffortsChange	method	that	deals	with	the	output	provided	by
the	Efforts	component.

If	both	estimated	and	effective	effort	isn't	set,	or	set	to	0,	we'll	set	the	task	efforts	to	null.
Otherwise,	we	use	the	output	data	of	the	Efforts	component	and	assign	it	as	our	new	task
efforts.

After	changing	the	task	efforts,	we	persist	the	LiveDocument	of	the	project	in	the	same	way
that	we	do	for	the	title	and	the	description	updates	already.

Let's	check	out	the	changes	in	the	template	of	our	component	located	in
lib/project/project-task-detail/project-task-detail.html:

…

<div	class="task-details__content">

		…

		<div	class="task-details__label">Efforts</div>

		<ngc-efforts	[estimated]="task?.efforts?.estimated"

															[effective]="task?.efforts?.effective"

															(effortsChange)="onEffortsChange($event)">

		</ngc-efforts>

</div>

We	are	binding	the	estimated	and	effective	input	properties	of	the	Efforts	component	to	the

task	data	in	the	ProjectTaskDetail	component.	For	the	effortsChange	output	property	we're
using	an	expression	that	is	invoking	our	onEffortsChange	method	that	we've	just	created:

Our	new	Efforts	component	that	consists	of	two	duration	input	components

The	visual	efforts	timeline
Although	the	components	that	we	created	so	far	to	manage	efforts	provide	a	good	way	to	edit
and	display	effort	and	time	durations,	we	can	still	improve	this	with	some	visual	indication.

In	this	section,	we	will	create	a	visual	efforts	timeline	using	SVG.	This	timeline	should
display	the	following	information:

The	total	estimated	duration	as	a	gray	background	bar
The	total	effective	duration	as	a	green	bar	that	overlays	on	the	total	estimated	duration
bar
A	yellow	bar	that	shows	any	overtime	(if	the	effective	duration	is	greater	than	the
estimated	duration)

The	following	two	figures	illustrate	the	different	visual	states	of	our	efforts	timeline
component:

The	visual	state	if	the	estimated	duration	is	greater	than	the	effective	duration

The	visual	state	if	the	effective	duration	exceeds	the	estimated	duration	(the	overtime	is
displayed	as	a	black	bar)

Let's	start	fleshing	out	our	component	by	creating	a	new	EffortsTimeline	Component	class
on	the	lib/efforts/efforts-timeline/efforts-timeline.js	path:

…

@Component({

		selector:	'ngc-efforts-timeline',

		…

})

export	class	EffortsTimeline	{

		@Input()	estimated;

		@Input()	effective;

		@Input()	height;

		ngOnChanges(changes)	{

				this.done	=	0;

				this.overtime	=	0;

				if	(!this.estimated	&&	this.effective	||	

								(this.estimated	&&	this.estimated	===	this.effective))	{

						//	If	there's	only	effective	time	or	if	the	estimated	time	

						//	is	equal	to	the	effective	time	we	are	100%	done

						this.done	=	100;

				}	else	if	(this.estimated	<	this.effective)	{

						//	If	we	have	more	effective	time	than	estimated	we	need	to	

						//	calculate	overtime	and	done	in	percentage

						this.done	=	this.estimated	/	this.effective	*	100;

						this.overtime	=	100	-	this.done;

				}	else	{

						//	The	regular	case	where	we	have	less	effective	time	than	

						//	estimated

						this.done	=	this.effective	/	this.estimated	*	100;

				}		

		}

}

Our	component	has	three	input	properties:

estimated:	This	is	the	estimated	time	duration	in	milliseconds
effective:	This	is	the	effective	time	duration	in	milliseconds
height:	This	is	the	desired	height	of	the	efforts	timeline	in	pixels

In	the	OnChanges	lifecycle	hook,	we	set	two	component	member	fields,	which	are	based	on	the
estimated	and	effective	time:

done:	This	contains	the	width	of	the	green	bar	in	percentage	that	displays	the	effective
duration	without	overtime	that	exceeds	the	estimated	duration
overtime:	This	contains	the	width	of	the	yellow	bar	in	percentage	that	displays	any
overtime,	which	is	any	time	duration	that	exceeds	the	estimated	duration

Let's	look	at	the	template	of	the	EffortsTimeline	component	and	see	how	we	can	now	use	the
done	and	overtime	member	fields	to	draw	our	timeline.

We	will	create	a	new	lib/efforts/efforts-timeline/efforts-timeline.html	file:

<svg	width="100%"	[attr.height]="height">

		<rect	[attr.height]="height"

								x="0"	y="0"	width="100%"

								class="efforts-timeline__remaining"></rect>

		<rect	*ngIf="done"	x="0"	y="0"	

								[attr.width]="done	+	'%'"	[attr.height]="height"

								class="efforts-timeline__done"></rect>

		<rect	*ngIf="overtime"	[attr.x]="done	+	'%'"	y="0"

								[attr.width]="overtime	+	'%'"	[attr.height]="height"

								class="efforts-timeline__overtime"></rect>

</svg>

Our	template	is	SVG-based,	and	it	contains	three	rectangles	for	each	of	the	bars	that	we	want
to	display.	The	background	bar	that	will	be	visible	if	there	is	remaining	effort	will	always	be
displayed.

Above	the	remaining	bar,	we	conditionally	display	the	done	and	the	overtime	bar	using	the
calculated	widths	from	our	component	class.

Now,	we	can	go	ahead	and	include	the	EffortsTimeline	class	in	our	Efforts	component.
This	way	our	users	will	have	visual	feedback	when	they	edit	the	estimated	or	effective
duration,	and	it	provides	them	a	sense	of	overview.

Let's	look	into	the	template	of	the	Efforts	component	to	see	how	we	integrate	the	timeline:

…

<ngc-efforts-timeline	height="10"

																						[estimated]="estimated"

																						[effective]="effective">

</ngc-efforts-timeline>

As	we	have	the	estimated	and	effective	duration	times	readily	available	in	our	Efforts
component,	we	can	simply	create	a	binding	to	the	EffortsTimeline	component	input
properties:

The	Efforts	component	displaying	our	newly-created	efforts	timeline	component	(the	overtime
of	six	hours	is	visualized	with	the	yellow	bar)

Recapitulating	on	efforts	management
In	this	section,	we'll	create	components	that	allow	users	to	manage	efforts	easily	and	add	a
simple	but	powerful	time	tracking	to	our	tasks.	We've	done	the	following	to	achieve	this:

We	implemented	some	utility	functions	to	deal	with	the	time	math	in	order	to	convert
time	durations	in	milliseconds	into	formatted	time	durations	and	vice	versa
We	created	a	pipe	to	format	time	durations	in	milliseconds	using	our	utility	functions
We	created	a	Duration	UI	component,	which	wraps	an	Editor	component	and	uses	our
time	utilities	to	provide	a	no-UI	kind	of	input	element	to	enter	durations
We	created	an	Efforts	component	that	acts	as	a	composition	of	two	Duration
components	for	estimated	and	effective	time	and	provides	additional	buttons	to	add
effective	spent	time	quickly
We	integrated	the	Efforts	component	into	the	ProjectTaskDetail	component	in	order	to
manage	efforts	on	tasks
We	created	a	visual	EffortsTimeline	component	using	SVG,	which	displays	the	overall
progress	on	a	task

Setting	milestones
Tracking	time	is	important.	I	don't	know	how	you	feel	about	time,	but	I	really	suck	at
organizing	my	time.	Although	a	lot	of	people	ask	me	how	I	manage	to	do	so	many	things,	I
believe	I'm	actually	very	bad	at	managing	how	I	get	these	things	done.	If	I	were	a	better
organizer,	I	could	get	things	done	with	much	less	energy	involved.

One	thing	that	always	helps	me	organize	myself	is	to	break	things	down	into	smaller	work
packages.	Users	that	organize	themselves	with	our	task	management	application	can	already
do	this	by	creating	tasks	in	projects.	While	a	project	is	the	overall	goal,	we	can	create	smaller
tasks	to	achieve	this	goal.	However,	sometimes	we	tend	to	lose	sight	of	the	overall	goal	when
we're	only	focused	on	tasks.

Milestones	are	a	perfect	glue	between	projects	and	tasks.	They	make	sure	that	we	bundle	tasks
together	into	larger	packages.	This	will	help	us	a	lot	in	organizing	our	tasks,	and	we	can	look
at	milestones	of	the	project	to	see	the	overall	project	health.	However,	we	can	still	focus	on
tasks	when	we	work	in	the	context	of	a	milestone.

In	this	section,	we	will	create	the	necessary	components	in	order	to	add	basic	milestone
functionality	to	our	application.

To	implement	milestone	functionality	in	our	application,	we	will	stick	to	the	following	design
decisions:

Milestones	should	be	stored	on	the	project	level,	and	tasks	can	contain	an	optional
reference	to	a	project	milestone.
To	keep	things	simple,	the	only	interaction	point	with	milestones	should	be	on	task	level.
Therefore,	creation	of	milestones	will	be	done	on	task	level,	although	the	created
milestones	will	be	stored	on	project	level.
Milestones	currently	only	consist	of	a	name.	There	are	a	lot	more	to	milestones	that	we
can	potentially	build	into	our	system,	such	as	deadlines,	dependencies,	and	other	nice
things.	However,	we	will	stick	to	the	bare	minimum,	which	is	a	milestone	name.

Creating	an	autocomplete	component
In	order	to	keep	the	management	of	milestones	simple,	we	will	create	a	new	user	interface
component	to	deal	with	the	design	concerns	that	we	listed.	Our	new	autocomplete	component
will	not	only	display	possible	values	to	select	from,	but	it	will	also	allow	us	to	create	new
items.	We	can	then	simply	use	this	component	on	our	ProjectTaskDetail	component	in	order
to	manage	milestones.

Let's	look	at	the	Component	class	of	our	new	autocomplete	component	that	we	will	create	in	the
lib/ui/auto-complete/auto-complete.js	file:

…

import	{Editor}	from	'../editor/editor';

@Component({

		selector:	'ngc-auto-complete',

		…

		directives:	[Editor]

})

export	class	AutoComplete	{

		@Input()	items;

		@Input()	selectedItem;

		@Output()	selectedItemChange	=	new	EventEmitter();

		@Output()	itemCreated	=	new	EventEmitter();

		…

}

Once	again,	our	Editor	component	can	be	reused	to	create	this	higher	component.	We're
lucky	that	we	created	such	a	nice	component,	as	this	saved	us	a	lot	of	time	throughout	this
project.

Let's	look	at	the	input	and	output	properties	of	the	AutoComplete	component	in	more	detail:

items:	This	is	where	we	expect	an	array	of	strings.	This	will	be	the	list	of	items	a	user
can	choose	from	when	typing	into	the	editor.
selectedItem:	This	is	when	we	make	the	selected	item	an	input	property	to	actually	make
this	component	pure,	and	we	can	rely	on	the	parent	component	to	set	this	property	right.
selectedItemChange:	This	output	property	will	emit	an	event	if	the	selected	item	was
changed.	As	we	create	a	pure	component	here,	we	somehow	need	to	propagate	the	event
of	an	item	that	was	selected	in	the	autocomplete	list.
itemCreated:	This	output	property	will	emit	an	event	if	a	new	item	was	added	to	the
autocomplete	list.	Updating	the	list	of	items	and	changing	the	component	items	input
property	will	still	be	the	responsibility	of	the	parent	component.

Let's	add	more	code	to	our	component.	We	use	an	Editor	component	as	main	input	source.
While	our	users	will	type	into	the	editor,	we	filter	the	available	items	using	the	text	input	of
the	editor.	Let's	create	a	filterItems	for	this	purpose:

filterItems(filter)	{

		this.filter	=	filter	||	'';

		this.filteredItems	=	this.items

				.filter(

						(item)	=>	item

								.toLowerCase()

								.indexOf(this.filter.toLowerCase().trim())	!==	-1)

				.slice(0,	10);

		this.exactMatch	=	this.items.includes(this.filter);

}

The	filterItems	method	has	a	single	parameter,	which	is	the	text	that	we	want	to	use	in	order
to	search	for	relevant	items	in	our	list.

Let's	look	at	the	content	of	the	method	in	more	detail:

For	later	use	in	our	template,	we	will	set	aside	the	filter	query	that	was	used	the	last	time
this	method	was	called
In	the	filteredItems	member	variable,	we	will	store	a	filtered	version	of	the	item	list	by
searching	for	text	occurrences	of	the	filter	string
As	a	last	step,	we	also	store	the	information	if	the	search	query	resulted	in	an	exact	match
of	an	item	in	our	list

Now,	we	need	to	make	sure	that	if	the	items	or	selectedItem	input	properties	change,	we	also
execute	our	filter	method	again.	For	this,	we	simply	implement	the	ngOnChanges	lifecycle
hook:

ngOnChanges(changes)	{

		if	(this.items	&&	this.selectedItem)	{

				this.filterItems(this.selectedItem);

		}

}

Let's	now	see	how	we	deal	with	the	events	provided	by	the	Editor	component:

onEditModeChange(editMode)	{

		if	(editMode)	{

				this.showCallout	=	true;

				this.previousSelectedItem	=	this.selectedItem;

		}	else	{

				this.showCallout	=	false;

		}

}

If	the	editor	changes	to	edit	mode,	we	want	to	save	the	previously	selected	item.	We'll	need
this	if	the	user	decides	to	cancel	his	edits	and	switch	back	to	the	previous	item.	Of	course,	this
is	also	the	point	where	we	need	to	display	the	autocomplete	list	to	the	user.

On	the	other	hand,	if	the	edit	mode	is	switched	back	to	read	mode,	we	want	to	hide	the
autocomplete	list	again:

onEditableInput(content)	{

		this.filterItems(content);

}

The	editableInput	event	is	triggered	by	our	editor	on	every	editor	input	change.	The	event
provides	us	with	the	text	content	that	was	entered	by	the	user.	If	such	an	event	occurs,	we	need
to	execute	our	filter	function	again	with	the	updated	filter	query:

onEditSaved(content)	{

		if	(content	===	'')	{

				this.selectedItemChange.next(null);

		}	else	if	(content	!==	this.selectedItem	&&	

													!this.items.includes(content))	{

				this.itemCreated.next(content);

		}

}

When	the	editSaved	event	is	triggered	by	our	editor,	we	need	to	decide	whether	we	should	do
either	of	the	following:

Emit	an	event	using	the	selectedItemChange	output	property	if	the	saved	content	is	an
empty	string	to	signal	the	removal	of	a	selected	item	to	the	parent	component
Emit	an	event	using	the	itemCreated	output	property	if	valid	content	is	given	and	our	list
does	not	include	an	item	with	that	name	to	signal	an	item	creation:

onEditCanceled()	{

		this.selectedItemChange.next(this.previousSelectedItem);

}

On	the	editCanceled	event	of	the	Editor	component,	we	want	to	switch	back	to	the	previous
selected	item.	For	this,	we	can	simply	emit	an	event	using	the	selectedItemChange	output
property	and	the	previousSelectedItem	member	that	we	put	aside	after	the	editor	was
switched	into	edit	mode.

These	are	all	the	binding	functions	that	we	will	use	to	wire	up	our	editor	and	in	order	to	attach
the	autocomplete	functionality	to	it.

There	are	two	more	rather	simple	methods	that	we	will	create	before	we	take	a	look	at	the
template	of	our	autocomplete	component:

selectItem(item)	{

		this.selectedItemChange.next(item);

}

createItem(item)	{

		this.itemCreated.next(item);

}

We	will	use	these	two	for	the	click	actions	in	the	autocomplete	callout	from	our	template.	Let's
take	a	look	at	the	template	so	that	you	can	see	all	the	code	that	we	just	created	in	action:

<ngc-editor	[content]="selectedItem"

												[showControls]="true"

												(editModeChange)="onEditModeChange($event)"

												(editableInput)="onEditableInput($event)"

												(editSaved)="onEditSaved($event)"

												(editCanceled)="onEditCanceled($event)"></ngc-editor>

First,	the	Editor	component	is	placed	and	all	necessary	bindings	to	the	handler	methods	that
we	created	in	our	Component	class	are	attached.

Now,	we	will	create	the	autocomplete	list	that	will	be	displayed	as	a	callout	to	the	user	right
next	to	the	editor	input	area:

<ul	*ngIf="showCallout"	class="auto-complete__callout">

		<li	*ngFor="let	item	of	filteredItems"

						(click)="selectItem(item)"

						class="auto-complete__item"

						[class.auto-complete__item--selected]="item	===	selectedItem">{{item}}

		<li	*ngIf="filter	&&	!exactMatch"

						(click)="createItem(filter)"

						class="auto-complete__item	auto-complete__item--create">Create	"{{filter}}"

We	rely	on	the	showCallout	member	set	by	the	onEditModeChange	method	of	our	Component
class	to	signal	if	we	should	display	the	autocomplete	list	or	not.

We	then	iterate	over	all	filtered	items	using	the	NgFor	directive	and	render	the	text	content	of
each	item.	If	one	of	the	items	gets	clicked	on,	we	will	call	our	selectItem	method	with	the
concerned	item	as	the	parameter	value.

As	the	last	list	element,	after	the	repeated	list	items,	we	conditionally	display	an	additional	list
element	in	order	to	create	a	nonexisting	milestone.	We	only	display	this	button	if	there's	a
valid	filter	already	and	if	there's	no	exact	match	of	the	filter	to	an	existing	milestone:

Our	milestone	component	plays	nicely	together	with	the	editor	component	using	a	clean
composition

Now	that	we	are	all	done	with	our	autocomplete	component,	the	only	thing	left	to	do	in	order
to	manage	project	milestones	is	to	make	use	of	it	in	the	ProjectTaskDetails	component.

Let's	open	the	Component	class	located	in	lib/project/project-task-details/project-task-
details.js	and	apply	the	necessary	modifications:

…

import	{AutoComplete}	from	'../../ui/auto-complete/auto-complete';

@Component({

		selector:	'ngc-project-task-details',

		…

		directives:	[…,	AutoComplete]

})

export	class	ProjectTaskDetails	{

		constructor(@Inject(forwardRef(()	=>	Project))	project,	{

				…

				this.projectChangeSubscription	=	

this.project.document.change.subscribe((data)	=>	{

						…

						this.projectMilestones	=	data.milestones	||	[];

				});

		}

		…

		onMilestoneSelected(milestone)	{

				this.task.milestone	=	milestone;

				this.project.document.persist();

		}

		onMilestoneCreated(milestone)	{

				this.project.document.data.milestones	=	

this.project.document.data.milestones	||	[];

				this.project.document.data.milestones.push(milestone);

				this.task.milestone	=	milestone;

				this.project.document.persist();

		}

		…

}

In	the	subscription	to	project	changes,	we	now	also	extract	any	preexisting	project	milestones
and	store	them	in	a	projectMilestones	member	variable.	This	makes	it	easier	to	reference	in
the	template.

The	onMilestoneSelected	method	will	be	bound	to	the	selectItemChange	output	property	of
the	AutoComplete	component.	We	use	the	emitted	value	of	the	AutoComplete	component	to	set
our	tasks	milestone	and	persist	the	LiveDocument	project	using	its	persist	method.

The	onMilestoneCreated	method	will	be	bound	to	the	itemCreated	output	property	of	the
AutoComplete	component.	On	such	an	event,	we	add	the	created	milestone	to	the	projects
milestone	list	as	well	as	assign	the	current	task	to	the	created	milestone.	After	updating	the
LiveDocument	data,	we	use	the	persist	method	to	save	all	changes.

Let's	look	into	lib/project/project-task-details/project-task-details.html	to	see	the
necessary	changes	in	our	template:

…

<div	class="task-details__content">

		…

		<ngc-auto-complete	[items]="projectMilestones"

																					[selectedItem]="task?.milestone"

															(selectedItemChange)="onMilestoneSelected($event)"

															(itemCreated)="onMilestoneCreated($event)">

		</ngc-auto-complete>

</div>

Besides	the	output	property	bindings	that	you're	already	aware	of,	we	also	create	two	input
bindings	for	the	items	and	selectedItem	input	properties	of	the	AutoComplete	component.

This	is	already	it.	We	created	a	new	UI	component	that	provides	autocompletion	and	used	that
component	to	implement	milestone	management	on	our	tasks.

Isn't	it	nice	how	easy	it	suddenly	seems	to	implement	new	functionality	when	using
components	with	proper	encapsulation?	The	great	thing	about	component-oriented
development	is	that	your	development	time	for	new	functionality	decreased	with	the	amount
of	reusable	components	that	you	already	created.

Summary
In	this	chapter,	we	implemented	some	components	that	help	our	users	keep	track	of	time.	They
can	now	log	efforts	on	tasks	and	manage	milestones	on	projects.	We	created	a	new	task	detail
view	that	can	be	accessed	using	a	navigation	link	on	our	task	list.

Once	more,	we	experienced	the	power	of	composition	using	components,	and	reusing
existing	components,	we	were	able	to	easily	implement	higher	components	that	provide	more
complex	functionality.

In	the	next	chapter,	we	will	look	at	how	to	use	the	charting	library	Chartist	and	create	some
wrapper	components	that	allow	us	to	build	reusable	charts.	We	will	build	a	dashboard	for	our
task	management	system,	where	we	will	see	our	chart	components	in	action.

Chapter	9.	Spaceship	Dashboard
When	I	was	a	child,	I	loved	to	play	spaceship	pilot.	I	piled	up	old	carton	boxes	and	decorated
the	interior	to	look	like	a	spaceship	cockpit.	With	a	marker,	I	drew	a	spaceship	dashboard	on
the	inside	of	the	boxes,	and	I	remember	playing	in	there	for	hours.

The	thing	that's	special	about	the	design	of	cockpits	and	spaceship	dashboards	is	that	they	need
to	provide	an	overview	and	control	over	the	whole	spaceship	on	very	limited	space.	I	think	the
same	also	applies	to	application	dashboards.	A	dashboard	should	provide	the	user	with	an
overview	and	a	sense	for	the	overall	status	of	what's	going	on.

In	this	chapter,	we	will	create	such	a	dashboard	for	our	task	management	application.	We	will
make	use	of	the	open	source	charting	library	Chartist	to	create	good	looking	responsive
charts	and	provide	an	overview	over	open	tasks	and	project	status:

A	preview	of	the	tasks	chart	that	we	will	build	during	the	course	of	this	chapter

On	a	higher	level,	we	will	create	the	following	components	in	this	chapter:

Project	summary:	This	is	the	project	summary	that	will	provide	a	quick	insight	into	the
overall	project	status.	By	aggregating	all	efforts	of	containing	tasks,	we	can	provide	a
nice	overall	efforts	status,	for	which	we	have	created	the	components	in	the	previous
chapter.
Project	activity	chart:	Without	any	labels	or	scales,	this	bar	chart	will	just	give	a	quick
sense	for	the	activity	on	projects	in	the	last	24	hours.
Project	tasks	chart:	This	chart	provides	an	overview	of	the	task	progress	on	projects.
Using	a	line	chart,	we	will	display	the	count	of	open	tasks	over	a	certain	time	period.
Using	our	Toggle	component	that	we	created	in	Chapter	2,	Ready,	Set,	Go!,	of	this	book,
we'll	provide	an	easy	way	for	the	user	to	switch	the	displayed	timeframe	on	the	chart.

Introduction	to	Chartist
We	will	create	some	components	in	this	chapter	that	will	render	charts,	and	we	should	look
for	some	help	in	rendering	them.	Of	course,	we	can	follow	a	similar	approach	as	we	did	in
Chapter	6,	Keeping	Up	with	Activities,	when	we	drew	our	activity	timeline.	However,	when	it
comes	to	more	complex	data	visualization,	it's	better	to	rely	on	a	library	to	do	the	heavy
lifting.

It	shouldn't	be	a	surprise	that	we'll	use	Chartist	to	fill	this	gap	because	I've	spent	almost	two
years	writing	it.	As	the	author	of	Chartist,	I	feel	very	lucky	that	we've	found	a	perfect	spot	in
this	book	to	make	use	of	it.

I'd	like	to	take	the	opportunity	to	introduce	you	to	Chartist	briefly	before	we	dive	into	the
implementation	of	the	components	for	our	dashboard.

The	claim	of	Chartist	is	simple	responsive	charts,	and	this	is	luckily	still	the	case	after	three
years	of	existence.	I	can	tell	you	that	probably	the	hardest	job	of	maintaining	this	library	was
to	protect	it	from	feature	bloating.	There	are	so	many	great	movements,	technologies,	and
ideas	in	the	open	source	community	and	to	resist	and	always	stay	focused	on	the	initial	claim
wasn't	easy.

Let	me	show	you	a	very	basic	example	of	how	you	can	create	a	simple	line	chart	once	you've
included	the	Chartist	scripts	on	your	website:

const	chart	=	new	Chartist.Line('#chart',	{

labels:	['Mon',	'Tue',	'Wed',	'Thu',	'Fri'],

series:	[

				[10,	7,	2,	8,	5]

]

});

The	corresponding	HTML	markup	that	is	required	for	this	example	looks	as	simple	as	the
following:

<body>

<div	id="chart"	class="ct-golden-section"></div>

</body>

The	following	figure	shows	you	the	resulting	chart	that	is	rendered	by	Chartist:

A	simple	line	chart	rendered	with	Chartist

I	believe	that	by	saying	that	we've	been	sticking	to	our	claim	to	stay	simple,	we've	not
promised	too	much.

Let's	look	at	the	second	core	concern	of	Chartist,	which	is	to	be	perfectly	responsive.	Well,
let's	start	with	one	of	my	most	appreciated	principles	in	web	development,	which	is	the
separation	of	concerns	in	the	frontend.	Chartist	tries	to	stick	to	this	separation	wherever
possible,	which	means	that	it	uses	CSS	for	its	appearance,	SVG	for	the	basic	graphical
structure,	and	JavaScript	for	any	behavior.	Simply	by	following	this	principle,	we've	already
enabled	a	lot	of	responsiveness.	We	can	use	CSS	media	queries	to	apply	different	styles	to	our
charts	on	different	media.

While	CSS	is	great	for	visual	styles,	there	are	plenty	of	elements	in	the	process	of	rendering
charts,	which	can't	be	controlled	simply	by	styling.	After	all,	this	is	the	reason	why	we	use	a
JavaScript	library	to	render	charts.

So,	how	can	we	control	how	Chartist	renders	our	charts	on	different	media	if	we	haven't	got
control	over	this	in	CSS?	Well,	Chartist	provides	something	called	responsive	configuration
overrides.	Using	the	browsers	matchMedia	API,	Chartist	is	able	to	provide	a	configuration
mechanism	that	allows	you	to	specify	options	that	you	want	overridden	on	certain	media.

Let's	look	into	a	simple	example	of	how	we	can	easily	implement	responsive	behavior	using	a
mobile-first	approach:

const	chart	=	new	Chartist.Line('#chart',	{

labels:	['Mon',	'Tue',	'Wed',	'Thu',	'Fri'],

series:	[

				[10,	7,	2,	8,	5]

]

},	{

showPoint:	true,

showLine:	true

},	[

		['screen	and	(min-width:	400px)',	{

showPoint:	false

		}],

		['screen	and	(min-width:	800px)',	{

lineSmooth:	false

		}]

]);

Here,	the	second	parameter	to	the	Chartist.Line	constructor	sets	the	initial	options;	we	can
provide	overriding	options	annotated	with	media	queries	in	an	array	as	the	third	parameter	of
the	constructor.	In	this	example,	we'll	override	the	showPoint	option	for	any	media	larger
than	400	px	in	width.	Media	larger	than	800	px	in	width	will	receive	both	the	showPoint
override	as	well	as	the	lineSmooth	override.

Not	only	can	we	specify	real	media	queries	to	trigger	setting	changes,	but	we	can	also	use	an
overriding	mechanism	that	is	very	similar	to	CSS.	This	way,	we	can	implement	various
approaches,	such	as	ranged	or	exclusive	media	queries,	mobile-first,	or	desktop-first.	This
responsive	options	mechanism	can	be	used	for	all	options	available	in	Chartist.

Displaying	the	previous	chart	on	three	different	media	left	to	right,	starting	from	a	media	with
less	than	400	px	(A),	less	than	800	px	(B),	and	more	than	800	px	(C).

As	you	can	see,	implementing	complex	responsive	behavior	is	a	breeze	with	Chartist.
Although	our	task	management	application	was	never	meant	to	be	a	responsive	web
application,	we	can	still	benefit	from	this	feature	in	order	to	optimize	our	content.

If	I've	tickled	your	fantasy	with	Chartist,	I	recommend	that	you	check	out	the	project's	website
at	http://gionkunz.github.io/chartist-js.	On	the	website,	you	can	also	visit	the	live	example	page
at	http://gionkunz.github.io/chartist-js/examples.html,	where	you	can	hack	some	charts
directly	in	the	browser.

http://gionkunz.github.io/chartist-js
http://gionkunz.github.io/chartist-js/examples.html

Projects	dashboard
In	this	chapter,	we'll	create	a	projects	dashboard,	which	will	consist	of	the	following
components:

Tasks	chart:	This	is	where	we'll	provide	a	visual	overview	on	open	tasks	over	time.	All
projects	will	be	represented	in	a	line	chart	that	displays	the	progress	of	open	tasks.	We'll
also	provide	some	user	interaction	so	that	the	user	can	choose	between	different
timeframes.
Activity	chart:	This	component	visualizes	activities	in	a	bar	chart	over	a	timeframe	of
24	hours.	This	will	help	our	users	quickly	identify	overall	and	peak	project	activities.
Project	summary:	This	is	where	we'll	display	a	summary	of	each	project	where	we
outline	the	most	important	facts.	Our	project	summary	component	will	also	include	an
activity	chart	component	that	visualizes	project	activity.
Projects	dashboard:	This	component	is	just	a	composition	of	the	previous	two
components.	This	is	our	main	component	in	the	dashboard.	It	represents	our	dashboard
page	and	is	directly	exposed	to	the	router.

Creating	the	projects	dashboard	component
First,	we'll	create	our	main	dashboard	component.	The	ProjectsDashboard	component	has
only	two	responsibilities:

Obtaining	project	data,	which	is	used	to	create	the	dashboard
Composing	the	main	dashboard	layout	by	including	our	dashboard	subcomponents

Let's	jump	right	in	and	create	a	new	component	class	on	the	path,	lib/projects-
dashboard/projects-dashboard.js:

import	{Component,	ViewEncapsulation,	Inject}	from	'@angular/core';

import	template	from	'./projects-dashboard.html!text';

import	{ProjectService}	from	'../project/project-service/project-service';

@Component({

selector:	'ngc-projects-dashboard',

host:	{class:	'projects-dashboard'},

template,

encapsulation:	ViewEncapsulation.None

})

export	class	ProjectsDashboard	{

constructor(@Inject(ProjectService)	projectService)	{

this.projects	=	projectService.change;

		}

}

In	our	dashboard	component,	we'll	use	the	change	observable	of	ProjectService	directly.
This	is	different	to	the	usual	way	that	we	deal	with	observables.	Usually,	we'd	subscribe	to	the
observable	in	our	component	and	then	update	our	component	whenever	data	streams	through.
However,	in	our	projects	dashboard,	we're	directly	storing	the	change	observable	of
ProjectService	on	our	component.

Now,	we	can	use	one	of	Angular's	async	core	pipes	in	order	to	subscribe	to	the	observable
directly	in	our	view.

Exposing	observables	directly	into	the	view	and	using	the	async	pipe	to	subscribe	to	the
observable	comes	with	a	main	advantage.

We	don't	need	to	deal	with	subscribing	and	unsubscribing	in	our	component,	as	the	async	pipe
will	do	that	for	us	directly	in	the	view.

When	a	new	value	is	emitted	within	the	observable,	the	async	pipe	will	cause	the	underlying
binding	to	be	updated.	Also,	if	the	view	gets	destroyed	because	of	any	reason,	the	async	pipe
will	automatically	unsubscribe	from	the	observable.

Tip

By	chaining	RxJS	operators	together,	we	can	bring	an	observable	stream	into	the	required

shape	without	performing	any	subscription.	Using	the	async	pipe,	we	can	then	leave	it	up	to
the	view	to	subscribe	and	unsubscribe	from	the	transformed	observable	stream.	This
encourages	us	to	write	pure	and	stateless	components,	and	when	used	correctly,	this	is	a	great
practice.

Let's	take	a	look	at	the	view	of	our	component	created	in	the	projects-dashboard.html	file	in
the	same	directory	as	the	Component	class:

<div	class="projects-dashboard__l-header">

<h2	class="projects-dashboard__title">Dashboard</h2>

</div>

<div	class="projects-dashboard__l-main">

<h3	class="projects-dashboard__sub-title">Projects</h3>

<ul	class="projects-dashboard__list">

<li	*ngFor="let	project	of	projects	|	async">

<div>{{project.title}}</div>

<div>{{project.description}}</div>

</div>

You	can	see	from	the	template	that	we	use	the	async	pipe	to	subscribe	to	the	projects
observable	of	our	Component	class.	The	async	pipe	will	initially	return	null,	but	on	any
change	in	the	observable,	this	will	return	the	resolved	value	from	the	subscription.	This
means	that	we	don't	need	to	worry	about	subscribing	to	our	project	list	observable.	We	can
simply	make	use	of	the	async	pipe	to	subscribe	and	resolve	directly	in	our	view.

For	the	moment,	we	only	displayed	the	project	title	and	description,	but	in	the	next	section,	we
will	create	a	new	project	summary	component	that	will	deal	with	some	more	complex
rendering.

Project	summary	component
In	this	section,	we'll	create	a	project-summary	component	that	will	provide	some	overview
information	for	projects.	Besides	the	title	and	description,	this	will	also	include	an	overview
over	the	total	efforts	on	the	project	tasks.

Let's	first	build	the	component	and	make	the	necessary	preparations	so	that	we	can	display	the
total	effort	of	the	underlying	tasks	of	the	project.

We'll	start	with	the	Component	class	on	the	lib/projects-dashboard/project-
summary/project-summary.js	path:

...

import{FormatEffortsPipe}	from	'../../pipes/format-efforts';

import{EffortsTimeline}	from	'../../efforts/efforts-timeline/efforts-

timeline';

import	template	from	'./project-summary.html!text';

@Component({

selector:	'ngc-project-summary',

host:	{	class:	'project-summary'	},

template,

directives:	[EffortsTimeline],

pipes:	[FormatEffortsPipe],

encapsulation:	ViewEncapsulation.None

})

export	class	ProjectSummary	{

@Input()	project;

ngOnChanges(changes)	{

if	(this.project)	{

this.totalEfforts	=	this.project.tasks.reduce(

								(totalEfforts,	task)	=>	{

if	(task.efforts)	{

totalEfforts.estimated	+=	task.efforts.estimated	||	0;

totalEfforts.effective	+=	task.efforts.effective	||	0;

										}

returntotalEfforts;

								},	{

estimated:	0,

effective:	0

								});

							}

		}

}

As	you've	probably	already	guessed,	we	reused	the	EffortsTimeline	component	that	we
created	in	the	previous	chapter.	As	our	project	summary	will	also	include	an	efforts	timeline,
based	on	the	same	semantics	as	our	total	effort,	there's	no	need	to	create	a	new	component	for
this.

What	we	need	to	do,	though,	is	to	accumulate	all	task	efforts	into	an	overall	effort.	Using	the
Array.prototype.reduce	function,	we	can	accumulate	all	task	efforts	relatively	easy.

The	resulting	object	from	the	reduce	call	needs	to	keep	up	with	the	format	that	is	expected	of
an	efforts	object.	As	an	initial	value,	we'll	provide	an	efforts	object	with	an	estimated	and
effective	time	of	zero.	Then,	the	reduce	callback	will	add	any	task	effort	values	that	are	found
in	the	project.

Let's	look	into	the	template	to	see	how	we're	going	to	use	this	total	efforts	data	to	display	our
EffortsTimeline	component:

<div	class="project-summary__title">{{project?.title}}</div>

<div	class="project-summary__description">

{{project?.description}}

</div>

<div	class="project-summary__label">Total	Efforts</div>

<ngc-efforts-timeline	[estimated]="totalEfforts?.estimated"

																						[effective]="totalEfforts?.effective"

height="10"></ngc-efforts-timeline>

<p>{{totalEfforts	|	formatEfforts}}</p>

After	displaying	the	title	and	description	of	the	project,	we	included	the	EffortsTimeline
component,	which	we	bind	to	the	totalEfforts	member	that	we	just	constructed.	This
timeline	will	now	display	the	total	aggregated	amount	of	efforts	logged	on	the	tasks.

In	addition	to	the	timeline,	we	also	rendered	a	formatted	efforts	text,	such	as	the	one	that	we
already	rendered	in	the	Efforts	component	of	the	previous	chapter.	For	this,	we	used	the
FormatEffortsPipe	pipe.

Now,	what's	still	left	to	do	is	to	integrate	our	ProjectSummary	component	into	the
ProjectsDashboard	component.

Let's	look	at	the	template	modification	in	the	projects-dashboard.html	component	template:

...

<li	*ngFor="let	project	of	projects	|	async">

<ngc-project-summary	

				[project]="project"

				[routerLink]="['/projects',	project._id]">

</ngc-project-summary>

...

You	can	see	that	we	bind	the	project	local	view	variable,	which	was	created	by	the	NgFor
directive	in	conjunction	with	the	async	pipe,	to	the	project	input	property	of	our
ProjectSummary	component.

We	also	used	the	RouterLink	directive	to	establish	the	navigation	onto	the	ProjectDetails
view	if	the	user	clicks	on	one	of	the	summary	tiles.

The	modifications	in	the	ProjectsDashboard	component	class	are	negligible:

...

import	{ROUTER_DIRECTIVES}	from	'@angular/router';

import{ProjectSummary}	from	'./project-summary/project-summary';

...

@Component({

selector:	'ngc-projects-dashboard',

directives:	[ProjectSummary,	ROUTER_DIRECTIVES],

		...

})

export	class	ProjectsDashboard	{

		...

}

The	only	modification	that	we	applied	to	the	Component	class	was	to	add	the	ProjectSummary
component	and	the	ROUTER_DIRECTIVES	constant	to	the	directives	list	of	the	component.	The
ROUTER_DIRECTIVES	constant	includes	the	RouterOutlet	and	RouterLink	directives,	and	we
use	the	latter	in	our	template.

A	projects	dashboard	displaying	two	project	summary	components	with	the	aggregated	total
effort

Okay,	so	far	so	good.	We	created	two	new	components	and	reused	our	EffortsTimeline
component	to	create	an	aggregated	view	on	the	tasks	efforts.	In	the	next	section,	we	will
enrich	our	ProjectSummary	component	with	a	nice	Chartist	chart.

Creating	your	first	chart
In	this	section,	we	will	create	our	first	chart	using	Chartist	to	provide	a	project	activity
overview	over	the	past	24	hours.	This	bar	chart	will	only	provide	some	visual	clues	about	the
project	activity,	and	our	goal	is	not	to	make	it	provide	detailed	information.	For	this	reason,
we	will	configure	it	to	hide	any	labels,	scales,	and	grid	lines.	The	only	visible	part	should	be
the	bars	of	the	bar	chart.

Before	we	start	creating	the	activity	chart	itself,	we	need	to	look	at	how	we	need	to	transform
and	prepare	our	data	for	the	charts.

Let's	look	at	what	data	we	already	have	in	our	system.	As	far	as	the	activities	go,	they	all	have
a	timestamp	on	them	stored	in	the	time	field.	However,	for	our	chart,	we	want	something	else
displayed.	What	we're	looking	for	is	a	chart	that	displays	one	bar	for	each	hour	of	the	past	24
hours.	Each	bar	should	represent	the	count	of	activities	in	that	timeframe.

The	following	illustration	shows	our	source	data,	which	is	basically	a	time	stream	of	activity
events.	On	the	lower	arrow,	we	see	the	data	that	we	need	to	end	up	with	for	our	chart:

An	illustration	displaying	activities	as	a	time	stream	where	the	dots	represent	activities.	The
lower	arrow	is	showing	a	rasterized	count	by	hour	for	the	last	24	hours.

Let's	implement	a	function	that	does	the	transformation	outlined	in	this	image.	We'll	add	this
function	to	our	time-utilities	module	on	the	lib/utilities/time-utilities.js	path:

function	rasterize(timeData,	timeFrame,	quantity,	now,	fill	=	0)	{

		//	Floor	to	a	given	time	frame

now	=	Math.floor(now	/	timeFrame)	*	timeFrame;

returntimeData.reduce((out,	timeData)	=>	{

				//	Calculating	the	designated	index	in	the	rasterized	output

const	index	=	Math.ceil((now	-	timeData.time)	/	timeFrame);

				//	If	the	index	is	larger	or	equal	to	the	designed	rasterized	

				//	array	length,	we	can	skip	the	value

if	(index	<	quantity)	{

out[index]	=	(out[index]	||	0)	+	timeData.weight;

				}

return	out;

		},	Array.from({length:	quantity}).fill(fill)).reverse();

}

Let's	look	at	the	input	parameters	of	our	newly-created	function:

timeData:	This	parameter	is	expected	to	be	an	array	of	objects	that	contains	a	time
property	that	is	set	to	the	timestamp	of	the	event	that	should	be	counted.	The	objects
should	also	contain	a	weight	property,	which	is	used	to	count.	Using	this	property,	we
can	count	one	event	as	two	or	even	count	minus	values	to	decrease	the	count	in	a	raster.
timeFrame:	This	parameter	specifies	the	time	span	of	each	raster	in	milliseconds.	If	we
want	to	have	24	rasterized	frames,	each	consisting	of	one	hour	this	parameter	needs	to	be
set	to	3,600,000	(1	h	=	60	min	=	3,600	s	=	3,600,000	ms).
quantity:	This	parameter	sets	the	amount	of	rasterized	frames	that	should	be	present	in
the	output	array.	In	the	case	of	24	frames	of	one	hour,	this	parameter	should	be	set	to	24.
now:	This	is	when	our	function	is	rasterizing	time,	starting	at	a	given	point	in	time
backwards.	The	now	parameter	sets	this	point	in	time.
fill:	This	is	how	we	can	specify	how	we'd	like	our	rasterized	output	array	to	be
initialized.	In	the	case	of	our	activity	counts,	we	want	this	to	be	set	to	0.

The	function	that	we	just	created	is	necessary	to	create	the	activity	chart.	The	transformation
helps	us	prepare	project	activities	for	the	input	data	of	the	chart.

It's	time	to	create	our	first	chart	component!	Let's	start	with	a	new	template	created	on	the
lib/projects-dashboard/project-summary/activity-chart/activity-chart.html	path:

<div	#chartContainer></div>

As	we	leave	all	the	rendering	up	to	Chartist,	this	is	actually	already	all	that	we	need.	Chartist
needs	an	element	as	a	container	to	create	the	chart	in.	We	set	a	chartContainer	local	view
reference	so	that	we	can	reference	it	from	our	component,	and	then	pass	it	to	Chartist.

Let's	move	on	with	the	chart	creation,	and	flesh	out	the	activity	chart	component	by	creating
the	Component	class	in	activity-chart.js	in	the	same	directory	as	the	template:

...

import	Chartist	from	'chartist';

import	{rasterize,	UNITS}	from	'../../../utilities/time-utilities';

@Component({

selector:	'ngc-activity-chart',

		...

})

export	class	ActivityChart	{

@Input()	activities;

@ViewChild('chartContainer')	chartContainer;

ngOnChanges()	{

this.createOrUpdateChart();

		}

ngAfterViewInit()	{

this.createOrUpdateChart();

		}

		...

}

Note

Chartist	is	available	for	almost	all	package	managers,	and	it	also	comes	bundled	in	the	UMD
module	format	(Universal	Module	Format),	which,	in	fact,	is	a	wrapper	to	enable	AMD
(Asynchronous	Module	Definition),	CommonJS	module	format,	and	global	export.

Using	JSPM,	we	can	simply	install	Chartist	by	executing	the	following	command	on	the
command	line:

jspm	install	chartist

After	installing	Chartist,	we	can	directly	import	it	using	ES6	module	syntax.

We	also	import	the	rasterize	function	that	we	created	so	that	we	can	use	it	later	to	convert	our
activities	into	the	expected	input	format	for	our	chart.

As	we	rely	on	a	view	child	as	a	container	element	to	create	our	chart,	we	need	to	wait	for	the
AfterViewInit	lifecycle	hook	in	order	to	construct	the	chart.	At	the	same	time,	we	need	to
rerender	the	chart	if	the	input	activities	change.	Using	the	OnChanges	lifecycle	hook,	we	can
react	on	input	changes	and	update	our	chart.

Let's	now	look	at	the	createOrUpdateChart	function,	which	does	exactly	what	its	name	already
implies:

createOrUpdateChart()	{

if	(!this.activities	||	!this.chartContainer)	{

return;

		}

consttimeData	=	this.activities.map((activity)	=>	{

return	{

time:	activity.time,

weight:	1

				};

		});

const	series	=	[

rasterize(

timeData,

UNITS.find((unit)	=>	unit.short	===	'h').milliseconds,

						24,	

						+new	Date())

];

if	(this.chart)	{

this.chart.update({	series	});

		}	else	{

this.chart	=	new	Chartist.Bar(this.chartContainer.nativeElement,	{

series

				},	{

width:	'100%',

height:	60,

axisY:	{

onlyInteger:	true,

showGrid:	false,

showLabel:	false,

offset:	0

						},

axisX:	{

showGrid:	false,

showLabel:	false,

offset:	0

						},

chartPadding:	0

				});

		}

}

Let's	look	into	the	code	in	more	detail	and	walk	through	it	step	by	step:

As	we	get	called	both	from	the	AfterViewInit	and	OnChanges	lifecycle,	we	need	to	make
sure	that	both	the	chartContainer	and	activities	inputs	are	ready	before	we	continue.
Now,	it's	time	to	convert	the	activity	data	that	we	receive	as	input	into	the	rasterized	form
that	is	required	for	the	chart	that	we'd	like	to	create.	We	use	Array.prototype.map	to
transform	our	activities	into	the	timeData	objects	that	are	required	by	the	rasterize
function.	We	also	pass	the	necessary	parameters	so	that	the	function	will	rasterize	into	24
frames,	each	consisting	of	one	hour.
If	the	chart	member	is	already	set	to	a	chart	that	was	previously	created,	we	can	use	the
update	function	on	the	Chartist	chart	object	to	only	update	with	the	new	data.
If	there's	no	chart	object	already,	we	need	to	create	a	new	chart.	As	a	first	parameter	to
the	Chartist.Bar	constructor,	we'll	pass	the	DOM	element	reference	of	our	container
view	child.	Chartist	will	create	our	chart	in	this	container	element.	The	second	argument
is	our	data,	which	we	fill	with	the	series	that	was	just	generated.	In	the	chart	options,	we'll
set	everything	to	achieve	a	very	plain-looking	chart	without	any	detailed	information.

This	is	great!	We	created	our	first	chart	component	using	Chartist!	Now,	we	can	go	back	to
our	ProjectSummary	component	and	integrate	the	activity	chart	there	to	provide	an	activity
overview:

...

import	{ActivityService}	from	'../../activities/activity-service/activity-

service';

import	{ActivityChart}	from	'./activity-chart/activity-chart';

@Component({

selector:	'ngc-project-summary',

		...

directives:	[EffortsTimeline,	ActivityChart],

		...

})

export	class	ProjectSummary	{

		...

constructor(@Inject(ActivityService)	activityService)	{

this.activityService	=	activityService;

		}

ngOnChanges()	{

if	(this.project)	{

						...

this.activities	=	this.activityService.change

								.map((activities)	=>	activities.filter((activity)	=>	activity.subject	

===	this.project._id));

				}

		}

}

The	first	change	here	is	to	include	the	ActivityService	so	that	we	can	extract	the	required
project	activities	to	pass	them	to	the	ActivityChart	component.	We	also	need	to	import	the
ActivityChart	component	and	declare	it	as	a	directive	on	the	component.

As	our	component	relies	on	the	project	to	be	provided	as	input,	which	is	subject	to	change,	we
need	to	implement	the	logic	to	extract	activities	in	the	OnChanges	lifecycle	hook	of	the
component.

Before	we	pass	on	the	observable	activities	stream,	we	need	to	filter	the	activities	that	come
through	the	stream	so	that	we	only	get	activities	that	are	relevant	to	the	current	project.	Again,
we	will	use	the	async	pipe	in	order	to	subscribe	to	the	activities	so	that	there's	no	need	to	use	a
subscribe	form	within	the	component.	The	activities	property	will	be	directly	set	to	a
filtered	Observable.

Let's	look	at	the	changes	in	the	view	of	the	ProjectSummary	component	in	order	to	enable	our
chart:

...

<div	class="project-summary__label">Activity	last	24	hours</div>

<ngc-activity-chart	[activities]="activities	|	async">

</ngc-activity-chart>

We	add	our	ActivityChart	component	at	the	bottom	of	the	already	existing	template.	We	also
create	the	necessary	binding	to	pass	our	activities	into	the	component.	Using	the	async	pipe,
we	can	resolve	the	observable	stream	and	pass	the	filtered	activities	list	into	the	chart
component.

Finally,	our	ProjectSummary	component	looks	great	and	immediately	provides	a	project
insight	by	displaying	the	aggregated	efforts	timeline	and	a	nice	activity	chart.	In	the	next

section,	we'll	dive	a	bit	deeper	into	the	charting	capabilities	of	Chartist,	and	we	will	also
provide	some	interactivity	using	Angular.

Visualizing	open	tasks
In	this	section,	we	will	create	a	chart	component	using	Chartist,	which	will	display	the	open
task	progress	of	projects	over	time.	To	do	this,	we'll	use	a	line	chart	with	a	specific
interpolation	that	provides	quantized	steps	rather	than	lines	with	directly	connected	points.

We	are	also	providing	some	interactivity	in	that	the	user	will	be	able	to	switch	the	displayed
time	frame	using	a	toggle	button.	This	allows	us	to	reuse	the	Toggle	component	that	we
created	in	Chapter	2,	Ready,	Set,	Go!,	of	this	book.

Let's	first	look	at	the	data	that	we	have	in	our	system	and	how	we	can	transform	it	into	the	data
needed	by	Chartist.

We	can	rely	on	two	data	attributes	of	our	tasks	in	order	to	draw	them	onto	a	timeline.	The
created	attribute	is	set	to	the	timestamp	at	the	moment	when	the	task	was	created.	If	a	task	is
marked	as	done,	the	done	attribute	is	set	to	the	timestamp	at	that	time.

As	we're	only	interested	in	the	amount	of	open	tasks	at	any	given	time,	we	can	safely	presume
a	model	where	we	put	all	tasks	onto	a	single	timeline	and	where	we	are	only	concerned	about
the	created	and	done	timestamps	as	events.	Let's	look	at	the	following	illustration	to	get	a
better	understanding	of	the	problem:

An	illustration	that	shows	how	we	can	represent	all	task	timelines	on	a	single	timeline	using
the	created	and	done	events.	The	created	events	count	as	a	+1,	while	the	done	events	count	as

-1.

The	lower	arrow	is	a	representation	of	all	tasks	of	the	created	and	done	events	on	a	timeline.
We	can	now	use	this	information	as	input	to	our	rasterize	function	in	order	to	get	the	data
that	we	need	for	our	chart.	As	the	timeData	objects	that	are	used	as	input	for	the	rasterization
also	support	a	weight	property,	we	can	use	this	to	represent	the	created	(+1)	or	done	(-1)
events.

We	need	to	make	a	slight	modification	to	our	rasterize	function.	So	far,	the	rasterize	function
only	counts	events	together	in	frames.	However,	for	the	open	task	counts,	we	look	into	an
accumulation	over	time.	If	the	task	count	changes,	we	need	to	keep	the	value	until	it	changes
again.	In	transformation	of	activities	in	the	previous	topic,	we	didn't	use	this	same	logic.
There,	we	only	counted	events	inside	frames,	but	there	was	no	accumulation.

Let's	look	at	the	following	illustration	to	see	the	difference	as	compared	to	the	rasterization
that	we	applied	while	processing	activities:

An	illustration	that	shows	how	we	can	accumulate	the	open	tasks	count	over	time

We	can	count	each	weight	property	of	the	timeData	objects	(events)	together	over	time.	Only
if	there's	a	change	of	the	accumulated	value,	we	will	write	the	current	accumulated	value	into
the	rasterized	output	array.

Let's	open	our	time-utilities	module	and	apply	the	changes	to	the	rasterize	function:

export	function	rasterize(timeData,	timeFrame,	quantity,	

now	=	+new	Date(),	fill	=	0,	

accumulate	=	false)	{

		//	Floor	to	a	given	time	frame

now	=	Math.floor(now	/	timeFrame)	*	timeFrame;

		//	Accumulation	value	used	for	accumulation	mode	to	keep	track	

		//	of	current	value

let	accumulatedValue	=	0;

		//	In	accumulation	mode	we	need	to	be	sure	that	the	time	data	

		//	is	ordered

if	(accumulate)	{

timeData	=	timeData.slice().sort(

						(a,	b)	=>	a.time	<	b.time	?	-1	:	a.time	>	b.time	?	1	:	0);

		}

return	timeData.reduce((rasterized,	timeData)	=>	{

				//	Increase	the	accumulated	value,	in	case	we	need	it

accumulatedValue	+=	timeData.weight;

				//	Calculating	the	designated	index	in	the	rasterized	output	

				//	array

const	index	=	Math.ceil((now	-	timeData.time)	/	timeFrame);

				//	If	the	index	is	larger	or	equal	to	the	designed	rasterized	

				//	array	length,	we	can	skip	the	value

if	(index	<	quantity)	{

rasterized[index]	=	accumulate	?	

accumulatedValue	:

								(rasterized[index]	||	0)	+	timeData.weight;

				}

return	rasterized;

		},	Array.from({length:	quantity}).fill(fill)).reverse();

}

Let's	walk	through	the	changes	that	we	applied	to	the	rasterize	function	to	allow
accumulation	of	frames:

First	of	all,	we	added	a	new	parameter	to	our	function	with	the	name	accumulate.	We
used	the	ES6	default	parameters	to	set	the	parameter	to	false	if	no	value	was	passed	into
the	function	when	called.
We	now	define	a	new	accumulatedValue	variable,	which	we	initialize	with	0.	This
variable	will	be	used	to	keep	track	of	the	sum	of	all	weight	values	over	time.
The	next	bit	of	code	is	very	important.	If	we	want	to	accumulate	the	sum	of	all	weight
values	over	time,	we	need	to	make	sure	that	these	values	come	in	sequence.	In	order	to
ensure	this,	we	sort	the	timeData	list	by	its	items	time	attribute.
In	the	reduce	callback,	we	increase	the	accumulatedValue	variable	by	the	weight	value	of
the	current	timeData	object.
If	the	timeData	object	falls	into	a	rasterized	frame,	we	do	not	increase	this	frame's	count
like	we	did	before.	In	accumulation	mode,	we	set	the	frames	count	to	the	current	value	in
accumulatedValue.	This	will	result	in	all	changed	accumulated	values	being	reflected	in
the	rasterized	output	array.

This	is	all	the	preparation	that	we	need	to	process	the	date	in	order	to	render	our	open	tasks
chart.	Let's	move	on	and	create	the	Component	class	of	our	new	chart	component.

Creating	an	open	tasks	chart
In	the	following	component,	we	will	utilize	the	refactored	rasterize	function	of	the	previous
topic.	Using	the	new	accumulate	function,	we	can	now	track	open	task	counts	over	time.

Let's	start	with	the	Component	class	in	a	new	lib/projects-dashboard/tasks-chart/tasks-
chart.js	file	to	implement	our	Component	class:

...

import	Chartist	from	'chartist';

import	Moment	from	'moment';

import	{rasterize}	from	'../../utilities/time-utilities';

@Component({

selector:	'ngc-tasks-chart',

		...

})

export	class	TasksChart	{

@Input()	projects;

@ViewChild('chartContainer')	chartContainer;

ngOnChanges()	{

this.createOrUpdateChart();

		}

ngAfterViewInit()	{

this.createOrUpdateChart();

		}

					...

}

So	far,	this	looks	exactly	like	our	first	chart	component	where	we	visualized	project
activities.	We	also	imported	Chartist	as	we	will	use	it	to	render	our	chart	in	the
createOrUpdateChart	function	that	we'll	create	shortly.	The	chart	that	we	will	create	will
contain	much	more	detailed	information.	We	will	render	both	axis	labels	and	some	scales.	In
order	to	format	our	labels	that	basically	contain	timestamps,	we	use	the	Moment.js	library
once	again.

We	also	use	the	projects	input	data	and	transform	it	with	the	amended	rasterize	utility
function	in	order	to	prepare	all	the	data	for	our	line	chart.

Let's	move	on	and	flesh	out	the	createOrUpdateChart	method	of	our	component:

createOrUpdateChart()	{

if	(!this.projects	||	!this.chartContainer)	{

return;

		}

		//	Create	a	series	array	that	contains	one	data	series	for	each	

		//	project

const	series	=	this.projects.map((project)	=>	{

				//	First	we	need	to	reduces	all	tasks	into	one	timeData	list

const	timeData	=	project.tasks.reduce((timeData,	task)	=>	{

						//	The	created	time	of	the	task	generates	a	timeData	with	

						//	weight	1

timeData.push({

time:	task.created,

weight:	1

						});

						//	If	this	task	is	done,	we're	also	generating	a	timeData

						//	object	with	weight	-1

if	(task.done)	{

timeData.push({

time:	task.done,

weight:	-1

								});

						}

return	timeData;

				},	[]);

				//	Using	the	rasterize	function	in	accumulation	mode,	we	can	

				//	create	the	required	data	array	that	represents	our	series	

				//	data

return	rasterize(timeData,	600000,	144,	+new	Date(),	

null,	true);

		});

const	now	=	+new	Date();

		//	Creating	labels	for	all	the	timeframes	we're	displaying

const	labels	=	Array.from({

length:	144

		}).map((e,	index)	=>	now	-	index	*	600000).reverse();

if	(this.chart)	{

				//	If	we	already	have	a	valid	chart	object,	we	can	simply	

				//	update	the	series	data	and	labels

this.chart.update({

series,

labels

				});

		}	else	{

				//	Creating	a	new	line	chart	using	the	chartContainer	element	

				//	as	container

this.chart	=	new	Chartist.Line(this.chartContainer.nativeElement,	{

series,

						labels

				},	{

						width:	'100%',

height:	300,

						//	Using	step	interpolation,	we	can	cause	the	chart	to	

						//	render	in	steps	instead	of	directly	connected	points

lineSmooth:	Chartist.Interpolation.step({

								//	The	fill	holes	setting	on	the	interpolation	will	cause	

								//	null	values	to	be	skipped	and	makes	our	line	to	

								//	connect	to	the	next	valid	value

fillHoles:	true

						}),

axisY:	{

onlyInteger:	true,

low:	0,

offset:	70,

								//	We're	using	the	label	interpolation	function	for	

								//	formatting	our	open	tasks	count

labelInterpolationFnc:	(value)	=>	`${value}	tasks`

						},

axisX:	{

								//	We're	only	displaying	two	x-axis	labels	and	grid	lines

labelInterpolationFnc:	(value,	index,	array)	=>	index	%	(144	/	4)	===	0	?	

Moment(value).calendar()	:	null

						}

				});

		}

}

Okay,	that's	quite	a	bit	of	code	here.	Let's	walk	through	it	step	by	step	to	gain	a	better
understanding	of	what's	going	on:

1.	 First,	we	need	to	create	our	transformed	series	data	by	mapping	the	projects	list.	The
series	array	should	include	one	data	array	for	each	project.	Each	data	array	will	contain
the	open	project	tasks	over	time.

2.	 As	the	rasterize	function	expects	a	list	of	timeData	objects,	we	first	need	to	transform
the	projects	task	list	into	this	format.	By	reducing	the	task	list,	we	create	a	single	list	of
the	timeData	objects.	The	reduce	function	callback	will	generate	one	timeData	object
with	a	weight	of	1	for	each	task.	Additionally,	it	will	generate	a	timeData	object	for	each
task	marked	as	one	with	the	weight	value	-1.	This	will	result	in	the	desired	rimeData
array,	which	we	can	use	to	accumulate	and	rasterize.

3.	 After	preparing	the	timeData	list,	we	can	call	the	rasterize	function	in	order	to	create	a
list	of	open	tasks	over	a	certain	amount	of	timeframes.	We	use	a	10	minute	timeframe
(600000ms)	and	rasterize	this	with	144	frames.	This	makes	a	total	of	24	hours.

4.	 Besides	the	series	data,	we	will	also	need	labels	for	our	chart.	We	create	a	new	array	and
initialize	this	with	144	timestamps,	all	of	which	are	set	to	the	start	of	the	144	rasterized
frames	that	we	display	on	the	chart.

5.	 Now,	we	have	the	series	data	and	the	labels	ready,	and	all	that's	left	to	do	is	to	render	our
chart.

6.	 Using	the	lineSmooth	configuration,	we	can	specify	a	special	kind	of	interpolation	for
our	line	chart.	The	step	interpolation	will	not	connect	each	point	in	our	line	chart
directly,	but	rather	it	will	move	in	discrete	steps	to	move	from	point	to	point.	This	is
exactly	what	we're	looking	for	to	render	the	open	task	counts	over	time.

7.	 Setting	the	fillHoles	option	to	true	in	the	step	interpolation	is	very	important.	Using
this	setting,	we	can	actually	tell	Chartist	that	it	should	close	any	gaps	within	the	data
(actually	null	values)	and	connect	the	line	to	the	next	valid	value.	Without	this	setting,
we'd	see	gaps	on	the	chart	between	the	task	count	changes	in	our	data	arrays.

8.	 One	last	important	thing	in	our	code	is	the	labelInterpolationFnc	option	that	we	set	on
the	x	axis	configuration.	This	function	can	not	only	be	used	to	format	a	label	or
interpolate	any	expression	that	may	come	along	with	the	label,	but	it	also	allows	us	to

return	null	instead.	Returning	null	from	this	function	will	cause	Chartist	to	skip	the	given
label	and	the	corresponding	grid	line.	This	is	very	useful	if	we'd	like	to	skip	certain
labels	by	their	value	or	by	the	index	of	the	label.	In	our	code,	we	ensure	that	we	only
render	four	labels	of	all	144	generated	labels.

Let's	take	a	look	at	the	rather	simple	template	of	our	component	in	the	tasks-chart.html	file
in	the	same	folder	as	our	Component	class	file:

<div	#chartContainer	class="tasks-chart__container"></div>

The	same	as	with	the	ActivityChart	component,	we	only	create	a	simple	chart	container
element,	which	we	already	reference	in	our	Component	class.

This	is	basically	all	that	we	needed	to	do	in	order	to	create	an	open	tasks	chart	using	Chartist.
However,	there's	still	some	room	for	improvement	here:

Open	tasks	visualized	with	our	tasks	chart	component	using	Chartist's	step	interpolation

Creating	a	chart	legend
Currently,	there's	no	way	to	tell	exactly	which	of	the	lines	represents	what	project.	We	see	one
colored	line	for	each	project,	but	we	can't	associate	these	colors.	What	we	need	is	a	simple
legend	that	helps	our	users	to	associate	line	chart	colors	to	projects.

Let's	look	at	the	required	code	changes	to	implement	legends	on	our	chart.	In	the	Component
class	of	our	TasksChart	component,	we	need	to	perform	the	following	modifications:

...

export	class	TasksChart	{

		...

ngOnChanges()	{

if	(this.projects)	{

						//	On	changes	of	the	projects	input,	we	need	to	update	the	

						//	legend

this.legend	=	this.projects.map((project,	index)	=>	{

return	{

name:	project.title,

class:	`tasks-chart__series--series-${index	+	1}`

								};

						});

				}

this.createOrUpdateChart();

		}

		...

}

In	the	OnChanges	lifecycle	hook,	we	map	the	projects	input	to	a	list	of	objects	that	contain	a
name	and	class	property,	which	will	support	us	in	rendering	a	simple	legend.	The	template
`tasks-chart__series--series-${index	+	1}`	string	will	generate	the	necessary	class
name	to	render	the	right	color	into	our	legend.

Using	this	legend	information,	we	can	now	go	ahead	and	implement	the	necessary	template
changes	to	render	the	legend	in	our	chart	component:

<ul	class="tasks-chart__series-list">

<li	*ngFor="let	series	of	legend"

class="tasks-chart__series	{{series.class}}">

				{{series.name}}

<div	#chartContainer	class="tasks-chart__container"></div>

Well,	that	was	a	piece	of	cake,	right?	However,	the	result	speaks	for	itself.	We	created	a	nice
legend	for	the	chart	in	just	a	couple	of	minutes:

Open	tasks	chart	with	our	added	legend

Making	tasks	chart	interactive
Currently,	we	hardcoded	the	timeframe	of	our	open	task	chart	to	be	144	frames,	each	of	10
minutes,	making	a	total	of	24	hours	displayed	to	the	user.	However,	maybe	our	users	would
want	to	change	this	view.

In	this	topic,	we	will	create	a	simple	input	control	using	our	Toggle	component,	which	allows
our	users	to	change	the	timeframe	settings	of	the	chart.

We	will	provide	the	following	views	as	options:

Day:	This	view	will	rasterize	144	frames,	each	consisting	of	10	minutes,	which	makes	a
total	of	24	hours
Week:	This	view	will	rasterize	168	frames,	each	consisting	of	one	hour,	which	makes	a
total	of	seven	days
Year:	This	view	will	rasterize	360	frames,	each	representing	a	full	day

Let's	start	with	the	implementation	of	our	timeframe	switch	by	modifying	the	Component	class
code	of	the	TasksChart	component:

...

import	{Toggle}	from	'../../ui/toggle/toggle';

@Component({

		...

directives:	[Toggle]

})

export	class	TasksChart	{

		...

constructor()	{

				//	Define	the	available	time	frames	within	the	chart	provided	

				//	to	the	user	for	selection

this.timeFrames	=	[{

name:	'day',

timeFrame:	600000,

amount:	144

				},	{

name:	'week',

timeFrame:	3600000,

amount:	168

				},	{

name:	'year',

timeFrame:	86400000,

amount:	360

				}];

				//	From	the	available	time	frames,	we're	generating	a	list	of	

				//	names	for	later	use	within	the	Toggle	component

this.timeFrameNames

						=	this.timeFrames.map((timeFrame)	=>	timeFrame.name);

				//	The	currently	selected	timeframe	is	set	to	the	first	

				//	available	one

this.selectedTimeFrame	=	this.timeFrames[0];

		}

		...

createOrUpdateChart()	{

				...

const	series	=	this.projects.map((project)	=>	{

						...

return	rasterize(timeData,	

this.selectedTimeFrame.timeFrame,	

this.selectedTimeFrame.amount,	

																							+new	Date(),	null,	true);

				});

const	now	=	+new	Date();

const	labels	=	Array.from({

length:	this.selectedTimeFrame.amount

				}).map((e,	index)	=>	now	-	index	*	

this.selectedTimeFrame.timeFrame).reverse();

		...

		}

		...

		//	Called	from	the	Toggle	component	if	a	new	timeframe	was	

		//	selected

onSelectedTimeFrameChange(timeFrameName)	{

				//	Set	the	selected	time	frame	to	the	available	timeframe	with	

				//	the	name	selected	in	the	Toggle	component

this.selectedTimeFrame	=	

this.timeFrames.find((timeFrame)	=>

timeFrame.name	===	timeFrameName);

this.createOrUpdateChart();

		}

}

Let's	go	through	these	changes	briefly:

1.	 First	of	all,	we	added	a	constructor	to	our	Component	class	in	which	we	initialized	three
new	members.	The	timeFrames	member	is	set	to	an	array	of	timeframe	description
objects.	They	contain	the	name,	timeFrame,	and	amount	properties,	which	are	later	used
for	the	calculations.	The	timeFrameNames	member	contains	a	list	of	timeframe	names,
which	is	directly	derived	from	the	timeFrames	list.	Finally,	we	have	a	selectedTimeFrame
member,	which	simply	points	to	the	first	available	timeframe	object.

2.	 In	the	createOrUpdateChart	function,	we	no	longer	rely	on	hardcoded	values	for	the	task
count	rasterization,	but	we	refer	to	the	data	in	the	selectedTimeFrame	object.	By	changing
this	object	reference	and	calling	the	createOrUpdateChart	function	again,	we	can	now
switch	the	view	on	the	underlying	data	dynamically.

3.	 Finally,	we	added	a	new	onSelectedTimeFrameChange	method,	which	acts	as	a	binding	to
the	Toggle	component,	and	this	will	be	called	whenever	the	user	selects	a	different
timeframe.

Let's	look	at	the	necessary	template	changes	to	enable	switching	of	timeframes:

<ngc-toggle	

						[buttonList]="timeFrameNames"

						[selectedButton]="selectedTimeFrame.name"

						(selectedButtonChange)="onSelectedTimeFrameChange($event)">

</ngc-toggle>

...

<div	#chartContainer	class="tasks-chart__container"></div>

From	the	bindings	to	the	Toggle	component,	you	can	already	tell	that	we	rely	on	the
timeFrameNames	member	on	our	component	to	represent	all	selectable	timeframes.	We	also
bind	to	the	selectedButton	input	property	of	the	Toggle	component	using	the
selectedTimeFrame.name	property.	On	changes	of	the	selected	button	in	the	Toggle
component,	we	call	the	onSelectedTimeFrameChange	function,	where	the	timeframe	is
switched	and	the	chart	is	updated.

This	is	all	that	we	need	to	enable	switching	the	timeframe	on	our	chart.	The	user	can	now
choose	between	the	year,	week,	and	day	views.

Our	TasksChart	component	is	now	ready	to	be	integrated	into	our	dashboard.	We	can	achieve
this	with	some	small	changes	to	the	template	of	our	ProjectsDashboard	component:

...

<div	class="projects-dashboard__l-main">

<h3	class="projects-dashboard__sub-title">Tasks	Overview</h3>

<div	class="projects-dashboard__tasks">

<ngc-tasks-chart	[projects]="projects	|	async">

</ngc-tasks-chart>

</div>

		...

</div>

This	is	basically	all	that	we	need	to	make,	and	after	this	change,	our	dashboard	contains	our
nice	chart	displaying	open	task	counts	over	time.

In	the	binding	of	the	TasksChart	projects	input	property,	we	use	the	async	pipe	once	again	to
resolve	the	observable	stream	of	projects	directly	in	the	view.

Summary
In	this	chapter,	we	learned	about	Chartist	and	how	to	use	it	in	conjunction	with	Angular	to
create	good	looking	and	functional	charts.	We	can	leverage	the	power	of	both	worlds,	and
create	reusable	chart	components	that	are	nicely	encapsulated.

Just	like	in	most	real	cases,	we	always	have	a	lot	of	data,	but	the	one	that	we	need	in	a
particular	case.	We	learned	how	we	can	transform	existing	data	into	a	form	that	is	optimized
for	visual	representation.

In	the	next	chapter,	we	will	look	at	building	a	plugin	system	in	our	application.	This	will	allow
us	to	develop	portable	functionality	that	is	packaged	into	plugins.	Our	plugin	system	will	load
new	plugins	dynamically,	and	we	will	use	it	to	develop	a	simple	agile	estimation	plugin.

Chapter	10.	Making	Things	Pluggable
I'm	a	huge	fan	of	plugin	architectures.	Besides	their	tremendously	positive	effect	on	your
application	and	scope	management,	they	are	also	a	lot	of	fun	to	develop.	I'd	recommend
integrating	a	plugin	architecture	in	their	library	or	application	to	anyone	who	asks	me.	A
good	plugin	architecture	allows	you	to	write	a	concise	application	core	and	provide
additional	functionality	via	plugins.

Designing	your	whole	application	in	a	way	that	it	allows	you	to	build	a	plugin	architecture	has
a	great	effect	on	the	extensibility	of	your	system.	This	is	because	you're	making	your
application	open	for	extensibility	but	closing	it	for	modification.

While	authoring	my	open	source	projects,	I	also	experienced	that	a	plugin	architecture	helps
you	manage	the	scope	of	your	project.	Sometimes,	a	requested	feature	is	really	nice	and
helpful,	but	it	will	still	bloat	the	library	core.	Instead	of	bloating	your	whole	application	or
library	with	such	features,	you	can	simply	write	a	plugin	to	get	the	job	done.

In	this	chapter,	we	will	create	our	own	plugin	architecture	that	will	help	us	extend	the	features
of	our	application	without	bloating	its	core.	We'll	first	build	the	plugin	API	in	the	core	of	our
application	and	then	use	the	API	to	implement	a	nice	little	agile	plugin,	which	helps	us	to
estimate	tasks	using	story	points.

We'll	cover	the	following	topics	in	this	chapter:

Designing	a	plugin	architecture,	based	on	the	Angular	ecosystem
Implementing	a	decorator-based	plugin	API
Using	ComponentResolver	and	ViewContainerRef	to	instantiate	plugin	components	into
predefined	slots	in	our	application
Implementing	a	plugin-loading	mechanism	using	SystemJS
Using	a	reactive	approach	in	our	plugin	architecture	to	enable	plug	and	play	style
plugins
Implementing	an	agile	plugin	to	record	story	points	using	the	new	plugin	API

Plugin	architecture
At	a	higher	level,	a	plugin	architecture	should	fulfil	at	least	the	following	requirements:

Extensibility:	The	main	idea	behind	plugins	is	to	allow	the	extension	of	the	core
functionality	using	isolated	bundles	of	code.	A	great	plugin	architecture	allows	you	to
extend	the	core	seamlessly	and	without	noticeable	performance	losses.
Portability:	Plugins	should	be	isolated	enough	so	that	they	can	be	plugged	into	the
system	during	runtime.	There	shouldn't	be	a	necessity	to	rebuild	a	system	to	enable
plugins.	Ideally,	plugins	can	even	be	loaded	at	any	time	during	runtime.	They	can	be
deactivated	and	activated	and	should	not	cause	the	system	to	run	into	an	inconsistent	state.
Composability:	A	plugin	system	should	allow	the	use	of	many	plugins	in	parallel	and
allow	an	extension	of	the	system	by	compositing	multiple	plugins	together.	Ideally,	the
system	also	includes	dependency	management,	plugin	version	management,	and	plugin
intercommunication.

There	are	a	lot	of	different	approaches	on	how	to	implement	a	plugin	architecture.	Although
these	approaches	can	vary	a	lot,	there's	almost	always	a	mechanism	in	place	that	provides
unified	extension	points.	Without	this,	it	will	be	hard	to	extend	a	system	uniformly.

I've	worked	with	some	plugin	architectures	in	the	past,	and	besides	using	existing	plugin
mechanisms,	I've	also	enjoyed	designing	some	of	them	myself.	The	following	list	should
provide	an	idea	about	some	of	the	approaches	that	you	can	use	when	designing	a	plugin
system:

DSL:	Using	domain-specific	languages	is	one	way	to	implement	a	pluggable
architecture.	After	you've	implemented	the	core	of	your	application,	you	can	develop	an
API	or	even	a	scripting	language	that	allows	you	to	develop	further	features	using	this
DSL.	A	lot	of	video	game	engines	and	CG	applications	rely	on	this	approach.	Although
this	approach	is	very	flexible,	it	can	also	lead	to	performance	issues	quickly,	and	it's
prone	to	introducing	complexity.	Mostly,	the	prerequisites	to	implement	such	an
architecture	are	to	expose	very	low-level	core	operations	(such	as	adding	UI	elements,
configuring	process	flows,	and	so	on)	into	the	DSL,	which	does	not	provide	clear
boundaries	and	extension	points	but	is	extremely	flexible.	Some	examples	of	DSL-based
plugin	systems	are	most	of	Adobe's	CG	applications,	3D	Studio	Max,	and	Maya,	but	also
game	engines,	such	as	Unreal	Engine	or	the	Real	Virtuality	Engine	from	Bohemia
Interactive	Studio.
The	core	is	the	plugin	system:	Another	approach	is	to	build	such	a	sophisticated	plugin
architecture	that	it	fulfils	all	the	outlined	requirements	in	the	previous	listing
(extensibility,	portability,	and	composability)	and	even	some	more	sophisticated
requirements	on	top.	The	core	of	your	application	is	one	large	plugin	system.	Then,	you
start	to	implement	everything	as	a	plugin.	Even	the	core	concerns	of	your	application
will	be	implemented	as	plugins.	A	perfect	example	of	this	approach	is	the	Eclipse	IDE
with	its	Equinox	core.	The	problem	with	this	approach	is	that	you're	likely	to	run	into
performance	problems	as	your	application	grows.	As	everything	is	a	plugin,

optimization	is	quite	tricky,	and	plugin	compatibility	can	make	the	application	unstable.
Event-based	extension	points:	Also,	a	great	way	to	provide	extensibility	of	a	system	is
by	opening	up	the	pipeline	of	your	system	to	input	from	outside.	Imagine	that	for	every
important	step	in	your	application,	you	notify	the	outside	world	about	the	step	and	allow
interception	before	the	application	continues	with	processing.	In	this	manner,	a	plugin
will	just	be	an	adapter	that	listens	for	these	pipeline	events	of	your	application	and	then
modifies	the	behavior	as	required.	A	plugin	itself	can	also	emit	events,	which	then	can	be
processed	by	other	plugins	again.	This	architecture	is	really	flexible,	as	it	allows	you	to
change	the	behavior	of	your	core	functionality	without	introducing	too	much	complexity.
It's	also	fairly	easy	to	implement	this	approach	even	after	you've	finished	your	core
without	any	thoughts	about	a	plugin	system.	I've	been	following	this	approach	in	my
open	source	project	Chartist	and,	so	far,	I've	had	very	good	results	with	it.
Plugin	interfaces:	An	application	can	expose	a	set	of	interfaces	that	define	certain
extension	points.	This	approach	is	heavily	used	in	the	Java	framework	where	it's	known
as	Service	Provider	Interface	(SPI).	Providers	implement	a	certain	contract,	which
allows	the	core	system	to	rely	on	an	interface	rather	than	an	implementation.	These
providers	can	then	be	cycled	back	into	the	system	where	they	are	made	available	to	the
framework	and	other	providers.	Although	this	is	probably	the	safest	way	to	provide
extensibility	in	terms	of	uniformness,	it's	also	the	most	rigid	one.	A	plugin	will	never	be
allowed	to	do	anything	else	that	was	specified	in	the	contract	of	the	interfaces.

You	can	see	that	all	four	approaches	vary	a	lot.	From	the	top-most,	which	provides	extreme
flexibility	at	the	cost	of	complexity	and	stability,	to	the	bottom-most,	which	is	very	robust	but
also	rigid.

The	approach	that	you	choose	when	implementing	a	plugin	system	heavily	depends	on	the
requirements	for	your	application.	If	you	do	not	plan	on	building	an	application	that	comes
bundled	in	various	flavors	and	where	multiple	versions	for	completely	different	concerns
should	exist,	the	approaches	to	the	bottom	of	the	preceding	listing	are	probably	more	likely
the	ones	that	you	should	follow.

Pluggable	UI	components
The	system	that	we're	going	to	build	in	this	chapter	borrows	a	lot	of	mechanisms	that	are
already	present	in	the	Angular	framework.	In	order	to	implement	extensibility	using	plugins,
we	rely	on	the	following	core	concepts:

We	use	directives	to	indicate	extension	points	in	the	UI,	which	we	call	plugin	slots.	These
plugin	slot	directives	will	be	responsible	for	the	dynamic	instantiation	of	plugin
components	and	will	insert	them	into	the	application	UI	at	the	given	position.
Plugins	expose	components	using	a	concept	that	we	call	plugin	placements.	Plugin
placements	declare	what	components	of	a	plugin	should	be	placed	into	which	plugin	slots
in	the	application.	We	also	use	plugin	placements	to	decide	the	order	in	which
components	from	different	plugins	should	be	inserted	into	the	plugin	slots.	For	this,	we'll
use	a	property	called	priority.
We	use	the	dependency	injection	of	Angular	to	provide	the	instantiated	plugin
information	into	the	plugin	components.	As	the	plugin	components	will	be	placed	in	a
spot	where	there's	already	an	injector	present,	they	will	be	able	to	inject	surrounding
components	and	dependencies	in	order	to	connect	to	the	application.

Let's	look	at	the	following	illustration	to	picture	the	architecture	of	our	plugin	system	before
we	start	implementing	it:

The	plugin	architecture	that	we'll	implement	in	this	chapter	using	some	basic	UML	and
cardinality	annotations

Let's	look	at	the	different	entities	in	this	diagram	and	quickly	explain	what	they	do:

PluginConfig:	This	ES7	decorator	is	the	key	element	when	implementing	a	plugin.	By

annotating	a	plugin	class	using	this	decorator,	we	can	store	meta-information	about	the
plugin,	which	will	be	used	later	by	our	plugin	system.	The	metadata	includes	the	plugin
name,	a	description,	and	the	placement	information.
PluginData:	This	is	an	aggregation	class	that	is	used	by	the	plugin	system	to	couple	the
information	about	an	instantiated	plugin	with	the	placement	information	(where	plugin
components	should	be	instantiated).	This	entity	is	exposed	in	dependency	injection	once	a
plugin	component	is	created.	Any	plugin	component	can	make	use	of	this	entity	to	gather
information	about	the	instantiation	or	to	gain	access	to	the	plugin	instance.
PluginService:	This	is	the	service	used	to	glue	our	plugin	system	together.	It's	mainly
used	to	load	plugins,	remove	plugins,	or	used	by	the	PluginSlot	directive	to	gather
plugin	components	together	that	are	relevant	for	creation	in	the	plugin	slot.
PluginSlot:	This	directive	is	used	to	mark	UI	extension	points	in	our	application.
Wherever	we'd	like	to	make	it	possible	for	plugins	to	hook	into	our	application	user
interface,	we'll	place	this	directive.	Plugin	slots	need	to	be	named,	and	plugins	use
placement	information	to	reference	slots	by	their	name.	This	way	a	plugin	can	provide
different	components	for	different	slots	in	our	application.
PluginComponent:	These	are	regular	Angular	components	that	come	bundled	with	a
plugin	implementation.	A	plugin	can	provide	multiple	components	configured	on	the
plugin	using	a	PluginPlacement	object.
PluginPlacement:	This	is	used	in	the	plugin	configuration	where	a	plugin	can	have
multiple	placement	configurations.	Each	placement	entity	consist	of	a	reference	to	a
component,	the	name	of	the	slot	where	the	component	should	be	instantiated,	and	a
priority	number	that	helps	the	plugin	system	to	order	plugin	components	correctly	when
multiple	components	get	instantiated	in	the	same	slot.
Plugin:	This	is	the	actual	plugin	class	when	implementing	a	plugin.	The	class	contains
the	plugin	configuration	annotated	using	the	PluginConfig	decorator.	The	plugin	class	is
instantiated	once	in	the	application	and	is	also	shared	across	the	plugin	components	using
the	dependency	injection	of	Angular.	Therefore,	this	class	is	also	a	good	place	to	share
data	between	plugin	components.

Now,	we	have	an	overview	of	what	we're	going	to	build	on	a	higher	level.	Our	plugin	system
is	very	rudimentary,	but	it	will	support	things	such	as	hot	loading	plugins	(plug	and	play
style)	and	other	nice	features.	In	the	next	topic,	we'll	start	by	implementing	the	plugin	API
core	components.

Implementing	the	plugin	API
Let's	start	with	the	less	complex	entities	of	our	plugin	API.	We	create	a	new
lib/plugin/plugin.js	file	to	create	the	PluginConfig	decorator	and	the	PluginPlacement
class,	which	stores	the	information	where	plugin	components	should	be	placed.	We	also
create	the	PluginData	class	in	this	file,	which	is	used	to	inject	plugin	runtime	information	into
plugin	components:

export	function	PluginConfig(config)	{

		return	(type)	=>	{

				type._pluginConfig	=	config;

		};

}

The	PluginConfig	decorator	contains	the	very	simple	logic	of	accepting	a	configuration
parameter,	which	will	then	be	stored	on	the	annotated	class	(the	constructor	function)	on	the
_pluginConfig	property.	If	you	need	a	refresher	on	how	decorators	work,	it's	maybe	a	good
time	to	read	the	decorator	topic	in	Chapter	1,	Component-Based	User	Interfaces,	again:

export	class	PluginPlacement	{

		constructor(options)	{

				this.slot	=	options.slot;

				this.priority	=	options.priority;

				this.component	=	options.component;

		}

}

The	PluginPlacement	class	represents	the	configuration	object	to	expose	plugin	components
into	different	plugin	slots	in	the	application	UI:

export	class	PluginData	{

		constructor(plugin,	placement)	{

				this.plugin	=	plugin;

				this.placement	=	placement;

		}

}

The	PluginData	class	represents	the	plugin	runtime	information	that	was	created	during
instantiation	of	the	plugin	as	well	as	one	PluginPlacement	object.	This	class	will	be	used	by
the	PluginService	to	convey	information	about	plugin	components	to	the	plugin	slots	in	the
application.

These	three	classes	are	the	main	interaction	points	when	implementing	a	plugin.

Let's	look	at	a	simple	example	plugin,	to	get	a	picture	of	how	we	can	use	the	PluginConfig
decorator	and	the	PluginPlacement	class	to	configure	a	plugin:

@PluginConfig({

		name:	'my-example-plugin',

		description:	'A	simple	example	plugin',

		placements:	[

				new	PluginPlacement({

						slot:	'plugin-slot-1',

						priority:	1,	

						component:	PluginComponent1

				}),

				new	PluginPlacement({

						slot:	'plugin-slot-2',	

						priority:	1,	

						component:	PluginComponent2

				})

]

})

export	default	class	ExamplePlugin	{}

Using	the	PluginConfig	decorator,	implementing	a	new	plugin	is	a	breeze.	We	decide	the
name,	description,	and	where	we'd	like	to	place	plugin	components	in	the	application	at
design	time.

Our	plugin	system	uses	named	PluginSlot	directives	to	indicate	extension	points	in	our
application	component	tree.	In	the	PluginPlacement	objects,	we	reference	the	Angular
components	built	into	the	plugin	and	indicate	in	which	slot	they	should	be	placed	by
referencing	the	plugin	slot	name.	The	priority	of	the	placement	will	tell	the	plugin	slot	how	to
order	the	plugin	component	when	created.	This	gets	important	when	components	of	different
plugins	get	created	in	the	same	plugin	slot.

Okay,	let's	dive	right	into	the	core	of	our	plugin	architecture	by	implementing	the	plugin
service.	We'll	create	a	new	lib/plugin/plugin-service.js	file	and	create	a	new
PluginService	class:

import	{Injectable}	from	'@angular/core';

import	{ReplaySubject}	from	'rxjs/Rx';

@Injectable()

export	class	PluginService	{

		...

}

As	we	will	create	an	injectable	service,	we'll	annotate	our	PluginService	class	using	the
@Injectable	annotation.	We	use	the	RxJS	ReplaySubject	type	in	order	to	emit	events	on	any
changes	of	the	activated	plugins.

Let's	look	at	the	constructor	of	our	service:

constructor()	{

		this.plugins	=	[];

		//	Change	observable	if	the	list	of	active	plugin	changes

		this.change	=	new	ReplaySubject(1);

		this.loadPlugins();

}

First,	we	initialize	a	new	empty	plugins	array.	This	will	be	the	list	of	active	plugins,	which
contains	runtime	plugin	data	such	as	the	URL	where	the	plugin	was	loaded	from,	the	plugin
type	(constructor	of	the	class),	a	shortcut	to	the	configuration	stored	on	the	plugin	(created	by
the	PluginConfig	decorator)	and	finally,	the	instance	of	the	plugin	class	itself.

We	also	add	a	change	member	that	we	initialize	with	a	new	RxJS	ReplaySubject.	We'll	use	this
subject	in	order	to	emit	the	list	of	active	plugins	once	it	changes.	This	allows	us	to	build	our
plugin	system	in	a	reactive	way	and	enable	plug	and	play	style	plugins.

As	a	last	action	in	the	constructor,	we	call	the	loadPlugins	method	of	the	service.	This	will
perform	the	initial	loading	with	the	registered	plugins:

loadPlugins()	{

		System.import('/plugins.js').then((pluginsModule)	=>	{

				pluginsModule.default.forEach((pluginUrl)	=> 	

this.loadPlugin(pluginUrl)

);

		});

}

The	loadPlugins	method	asynchronously	loads	a	file	with	the	name	plugins.js	from	the
root	path	of	our	application	using	SystemJS.	The	plugins.js	file	is	expected	to	default	export
an	array,	which	contains	preconfigured	paths	to	plugins	that	should	be	loaded	with	the
application	startup.	This	allows	us	to	configure	the	plugins	that	we're	already	aware	of	and
which	should	be	present	by	default.	Using	a	separate	and	asynchronously	loaded	file	for	this
configuration	gives	us	a	better	separation	from	the	main	application.	We	can	run	the	same
application	code	but	using	a	different	plugins.js	file	and	control	what	plugins	should	be
present	by	default.

The	loadPlugins	method	then	loads	each	plugin	using	the	URL	present	in	the	plugins.js
file	by	calling	the	loadPlugin	method:

loadPlugin(url)	{

		return	System.import(url).then((pluginModule)	=>	{

				const	Plugin	=	pluginModule.default;

				const	pluginData	=	{

						url,

						type:	Plugin,

						//	Reading	the	meta	data	previously	stored	by	the	@Plugin	

						//	decorator

						config:	Plugin._pluginConfig,

						//	Creates	the	plugin	instance

						instance:	new	Plugin()

				};

				this.plugins	=	this.plugins.concat([pluginData]);

				this.change.next(this.plugins);

		});

}

The	loadPlugin	method	is	responsible	for	the	loading	and	instantiation	of	individual	plugin

modules.	It	will	take	the	URL	of	a	plugin	module	as	parameter	and	uses	System.import	to
dynamically	load	the	plugin	module.	The	benefits	we	get	from	using	System.import	for	this
job	is	that	we	can	load	both,	already	existing	modules	in	the	bundled	application	as	well	as
remote	URL's	using	HTTP	requests.	This	makes	our	plugin	system	very	portable,	and	we	can
even	load	modules	during	runtime	from	a	different	server,	from	NPM	or	even	GitHub.	Of
course,	SystemJS	also	supports	different	module	formats,	such	as	ES6	modules	or
CommonJS	modules,	as	well	as	different	transpilers	if	the	modules	are	not	already	transpiled.

After	the	plugin	module	is	successfully	loaded,	we	bundle	all	information	about	the	loaded
plugin	together	into	a	pluginData	object.	We	can	then	add	this	information	to	our	plugins
array	and	emit	a	new	event	on	our	ReplaySubject	to	notify	interested	parties	about	the	change.

Finally,	we'll	need	a	method	to	gather	the	PluginPlacement	data	from	all	our	plugins	and
filter	them	by	a	slot	name.	This	gets	important	when	our	plugin	slots	need	to	know	which
components	they	should	instantiate.	Plugins	can	expose	any	number	of	components	into	any
number	of	application	plugin	slots.	This	function	will	be	used	by	our	plugin	slots	when	they
need	to	know	which	of	the	exposed	Angular	components	are	relevant	to	them:

getPluginData(slot)	{

		return	this.plugins.reduce((components,	pluginData)	=>	{

				return	components.concat(

					pluginData.config.placements

						.filter((placement)	=>	placement.slot	===	slot)

						.map((placement)	=>	new	PluginData(pluginData,	placement))

);

		},	[]);

This	is	already	it	for	the	PluginService	class	so	far,	and	we	created	the	core	of	our	plugin
system.	In	the	next	chapter,	we	will	deal	with	the	plugin	slots	and	look	at	how	we	can
instantiate	plugin	components	dynamically.

Instantiating	plugin	components
Now,	it's	time	to	look	at	the	second	major	piece	of	our	plugin	architecture,	which	is	the
PluginSlot	directive	that	is	responsible	for	the	instantiation	of	plugin	components	in	the	right
spots.

Before	we	get	to	implement	the	directive	though,	let's	look	at	how	we	can	instantiate	a
component	dynamically	in	Angular.	We	already	covered	instantiating	views	that	can	contain
components	in	Chapter	7,	Components	for	User	Experience.	In	the	infinite	scroll	directive,	we
used	the	ViewContainerRef	to	instantiate	template	elements.	However,	we	have	a	different	use
case	here.	We'd	like	to	instantiate	a	single	component	into	an	existing	view.

The	ViewContainerRef	object	also	provides	us	with	a	solution	to	this	problem.	Let's	look	at	a
very	basic	example	on	how	to	use	the	ViewContainerRef	object	to	instantiate	a	component.	In
the	following	example,	we	make	use	of	four	new	concepts:

Using	@ViewChild	with	read	options	set	to	{read:	ViewContainerRef}	to	query	for	view
container	instead	of	the	element
Using	the	ComponentResolver	instance	to	obtain	the	factory	of	the	component,	which	we
want	to	instantiate	dynamically
Using	ReflectiveInjector	to	create	a	new	child	injector	that	is	used	for	our	instantiated
component
Using	ViewContainerRef.createComponent	to	instantiate	a	component	and	attach	it	to	the
underlying	view	of	the	view	container.

The	following	code	example	shows	how	we	can	dynamically	create	a	component	using	the
ViewContainerRef	instance.

import	{Component,	Inject,	ViewChild,	ViewContainerRef,	ComponentResolver}	from	

'@angular/core';

@Component({

		selector:	'hello-world',

		template:	'Hello	World'

})

export	class	HelloWorld	{}

@Component({

		selector:	'app'

		template:	'<h1	#headingRef>App</h1>'

})

export	class	App	{

		@ViewChild('headingRef',	{read:	ViewContainerRef})	viewContainer;

		

		constructor(@Inject(ComponentResolver)	resolver)	{

				this.resolver	=	resolver;

		}

		

		ngAfterViewInit()	{

				this.resolver

						.resolveComponent(HelloWorld)

						.then((componentFactory)	=>	{

								this.viewContainer.createComponent(componentFactory);

						});

		}

}

Injected	into	the	constructor	of	the	App	component,	we	can	later	use	ComponentResolver	to
resolve	the	HelloWorld	component.	We	use	the	@ViewChild	decorator	to	query	for	the
heading	element	in	the	App	component.	Usually,	this	would	give	us	the	ElementRef	object	that
is	associated	with	the	view	element.	However,	as	we	need	the	view	container	associated	with
the	element,	we	can	use	the	{read:	ViewContainerRef}	options	to	obtain	the
ViewContainerRef	object	instead.

In	the	AfterViewInit	lifecycle	hook,	we	first	call	the	resolveComponent	method	on	the
ComponentResolver	instance.	This	call	returns	a	promise,	which	resolves	to	an	object	of	the
ComponentFactory	type.	Angular	uses	component	factories	internally	in	order	to	create
components.

After	the	promise	has	been	resolved,	we	can	now	use	the	createComponent	method	on	the	view
container	of	our	heading	element	to	create	our	HelloWorld	component.

Let's	look	at	the	createComponent	method	of	the	ViewContainerRef	object	in	more	detail:

Method Description

ViewContainerRef.createComponent

This	method	will	create	a	component	that	is	based	on
the	component	factory	provided	in	the
componentFactory	parameter.	The	compiled
component	will	then	be	attached	to	the	view	container
at	a	specific	position	provided	by	the	index	parameter.

The	following	are	the	parameters:

componentFactory:	This	is	the	component	factory,
which	will	be	used	to	create	a	new	component.
Index:	This	is	the	optional	parameter	to	specify
the	position	in	the	view	container	at	which	the
created	component	should	be	inserted.	If	this
parameter	is	not	specified,	the	component	will	be
inserted	at	the	last	position	in	the	view	container.
Injector:	This	is	an	optional	parameter	that
allows	you	to	specify	a	custom	injector	for	the
created	component.	This	allows	you	to	provide
additional	dependencies	for	the	created

component.
projectableNodes:	This	is	an	optional	parameter
to	specify	nodes	for	content	projection.

This	method	returns	a	promise	that	is	resolved	when
the	instantiated	component	is	compiled.	The	Promise
resolves	to	a	ComponentRef	object,	which	can	also	be
used	to	destroy	the	component	again	later	on.

Tip

By	default,	a	component	created	with	the	ViewContainerRef.createComponent	method	will
inherit	the	injector	from	the	parent	component,	which	makes	this	process	context	aware.
However,	the	injector	parameter	of	the	createComponent	method	is	especially	useful	when
you	want	to	provide	additional	dependencies	into	the	component	that	are	not	present	on	any
parent	injector.

Let's	go	back	to	our	PluginSlot	directive	that	is	responsible	for	the	instantiation	of	relevant
plugin	components.

First,	let's	think	about	the	high-level	requirements	of	our	PluginSlot	directive	before	we	dive
into	the	code:

The	plugin	slot	should	contain	a	name	input	property	so	that	this	name	can	be	referenced
from	plugins	that	want	to	provide	components	for	the	slot.
The	directive	needs	to	react	on	changes	of	the	PluginService	and	re-evaluate	what
plugin	components	need	to	be	placed.
In	the	initialization	of	the	plugin	slot,	we	need	to	obtain	a	list	of	the	PluginData	objects
that	are	relevant	to	this	particular	slot.	We	should	consult	the	getPluginData	method	of
PluginService	in	order	to	get	this	list.
Using	the	obtained	list	of	the	relevant	PluginData	objects,	we'll	be	able	to	instantiate
components	that	are	associated	with	the	placement	information	using	the
ViewContainerRef	object	of	our	directive.

Let's	create	our	PluginSlot	directive	on	the	lib/plugin/plugin-slot.js	path:

import	{Directive,	Input,	Inject,	provide,	ViewContainerRef,	

ComponentResolver,	ReflectiveInjector}	from	'@angular/core';

import	{PluginData}	from	'./plugin';

import	{PluginService}	from	'./plugin-service';

@Directive({

		selector:	'ngc-plugin-slot'

})

export	class	PluginSlot	{

		@Input()	name;

		...

}

The	name	input	in	our	directive	is	very	important	for	our	plugin	mechanism.	By	providing	a
name	to	the	directive,	we	can	define	named	extension	points	in	our	UI	and	later	use	this	name
in	the	PluginPlacement	data	of	the	plugin	configurations:

		constructor(@Inject(ViewContainerRef)	viewContainerRef,	

														@Inject(ComponentResolver)	componentResolver,	

														@Inject(PluginService)	pluginService)	{

				this.viewContainerRef	=	viewContainerRef;

				this.componentResolver	=	componentResolver;

				this.pluginService	=	pluginService;

				this.componentRefs	=	[];

				//	Subscribing	to	changes	on	the	plugin	service	and	re-

				//	initialize	slot	if	needed

				this.pluginChangeSubscription	=	

						this.pluginService

								.change.subscribe(()	=>	this.initialize());

		}

In	the	constructor,	we	first	inject	the	ViewContainerRef	object,	which	is	a	reference	to	the
view	container	of	the	directive.	As	we	want	to	use	the	view	container	of	the	directive	directly,
there's	no	need	to	use	@ViewChild	here.	If	we	want	the	view	container	of	the	current	directive,
we	can	simply	use	injection.	We'll	use	this	reference	while	we're	instantiating	components
using	the	ViewContainerRef.createComponent	method.

In	order	to	resolve	components	and	their	factory,	we	inject	the	ComponentResolver	instance.

The	PluginService	is	injected	for	two	reasons.	First,	we'd	like	to	subscribe	to	any	changes	on
the	list	of	active	plugins,	and	secondly,	we	use	it	to	obtain	relevant	PluginData	objects	for	this
slot.

We	use	the	componentRefs	member	to	keep	track	of	already	instantiated	plugin	components.
This	will	help	us	destroy	them	later	on	when	a	plugin	gets	deactivated.

Finally,	we	create	a	new	subscription	to	PluginService	and	store	the	subscription	into	the
pluginChangeSubscription	member	field.	On	any	changes	of	the	activated	plugin	list,	we
execute	the	initialize	method	on	our	component:

initialize()	{

		if	(this.componentRefs.length	>	0)	{

				this.componentRefs.forEach(

						(componentRef)	=>	componentRef.destroy());

				this.componentRefs	=	[];

		}

		const	pluginData	=	

				this.pluginService.getPluginData(this.name);

		pluginData.sort(

				(a,	b)	=>	a.placement.priority	<	b.placement.priority	?

							1	:	a.placement.priority	>	b.placement.priority	?	-1	:	0);

		return	Promise.all(

				pluginData.map((pluginData)	=>	

						this.instantiatePluginComponent(pluginData))

);

}

Let's	look	at	the	four	parts	of	the	initialize	method	in	detail:

First,	we	check	whether	this	plugin	slot	already	contains	instantiated	plugin	components
in	the	componentRefs	member.	If	this	is	the	case,	we	use	the	detach	method	of	the
ComponentRef	objects	to	remove	all	existing	instances.	After	this,	we	initialize	the
componentRefs	member	with	an	empty	array.
We	use	the	getPluginData	method	of	PluginService	to	obtain	a	list	of	the	PluginData
objects	that	are	relevant	for	this	particular	slot.	We	pass	the	name	of	this	slot	to	the
method,	so	the	PluginService	will	already	provide	us	with	a	filtered	list	of	plugin
components	that	are	interested	to	be	placed	in	our	slot.
As	there	could	be	many	plugins	queueing	for	placement	in	our	slot,	we	are	using	the
priority	property	of	the	PluginPlacement	objects	to	sort	the	list	of	the	PluginData
objects.	This	will	ensure	that	plugin	components	with	higher	priority	will	be	placed
before	the	ones	with	a	lower	priority.	This	is	a	nice	extra	feature	that	will	come	in	handy
when	we	deal	with	a	lot	of	plugins	fighting	for	space.
The	last	code	part	in	our	initialize	method	calls	the	instantiatePluginComponent
method	for	each	PluginData	object	in	our	list.

Now,	let's	create	the	instantiatePluginComponent	method,	which	is	called	as	a	last	step	in	the
initialize	method:

instantiatePluginComponent(pluginData)	{

		return	this.componentResolver

				.resolveComponent(pluginData.placement.component)

				.then((componentFactory)	=>	{

						//	Get	the	injector	of	the	plugin	slot	parent	component

						const	contextInjector	=	this.viewContainerRef.parentInjector;

						//	Preparing	additional	PluginData	provider	for	the	created	

						//	plugin	component

						const	providers	=	[

								provide(PluginData,	{

												useValue:	pluginData

								})

];

						//	We're	creating	a	new	child	injector	and	provide	the	

						//	PluginData	provider

						const	childInjector	=	ReflectiveInjector

								.resolveAndCreate(providers,	contextInjector);

						//	Now	we	can	create	a	new	component	using	the	plugin	slot	view	

						//	container	and	the	resolved	component	factory

						const	componentRef	=	this.viewContainerRef

								.createComponent(componentFactory,	

																									this.viewContainerRef.length,	

																									childInjector);

						this.componentRefs.push(componentRef);

				});

}

This	method	is	responsible	for	the	instantiation	of	an	individual	plugin	component.	Now,	we
can	use	the	knowledge	that	we	gained	in	this	topic	about	the
ViewContainerRef.createComponent	method	and	the	ComponentResolver	object	to	instantiate
components	dynamically.

In	addition	to	the	inherited	providers	from	the	component	where	this	plugin	slot	is	placed,
we'd	like	to	provide	PluginData	to	the	injector	of	the	instantiated	plugin	component.	Using
Angular's	provide	function,	we	can	specify	pluginData	to	resolve	for	any	injection	on	the
PluginData	type.

The	ReflectiveInjector	class	provides	us	with	some	static	methods	that	are	used	to	create
injectors.	We	can	use	the	parentInjector	member	on	our	view	container	to	obtain	the	injector
that	is	present	in	the	plugin	slot	context.	Then,	we	use	the	static	resolveAndCreate	method	on
the	ReflectiveInjector	class	in	order	to	create	a	new	child	injector.

In	the	first	parameter	of	the	resolveAndCreate	method,	we	can	provide	a	list	of	providers.
Those	providers	will	be	resolved	and	made	available	in	our	new	child	injector.	The	second
parameter	of	the	resolveAndCreate	method	accepts	the	parent	injector	of	the	newly-created
child	injector.

Finally,	we	use	the	createComponent	method	of	the	ViewContainerRef	object	to	instantiate	the
plugin	component.	As	a	second	parameter	to	the	createComponent	method	call,	we	need	to
pass	the	position	in	the	view	container.	Here,	we	make	use	of	the	length	property	of	our	view
container	in	order	to	place	it	at	the	very	end.	In	the	third	parameter,	we	override	the	default
injector	of	the	component	with	our	custom	child	injector.	On	success,	we	add	the	created
ComponentRef	object	to	our	list	of	instantiated	components.

Finalizing	our	plugin	architecture
Congratulations,	you've	just	built	your	own	plugin	architecture	using	Angular!	We	created	a
plugin	API	that	can	be	used	to	create	new	plugins	using	the	PluginConfig	decorator.
PluginService	manages	the	whole	plugin	loading	and	provides	the	PluginData	objects	to	the
slots	in	our	application	using	custom	injectors.	The	PluginSlot	directive	can	be	used	in	the
task	management	application	to	mark	extension	points	in	the	user	interface.	Using	the
inheriting	nature	of	the	dependency	injection	in	Angular,	plugin	components	will	be	able	to
access	whatever	they	require	from	their	environment.

In	the	next	section,	we	will	create	our	first	plugin	using	the	plugin	architecture	that	we	just
created.

Building	an	Agile	plugin
In	the	previous	section,	we	created	a	simple	but	effective	plugin	architecture,	and	we	will	now
use	this	plugin	API	to	build	our	first	plugin	in	the	task	management	application.

Before	we	get	into	the	plugin	details,	we	should	first	agree	on	where	to	make	our	application
extensible.	Our	plugin	system	is	based	on	the	PluginSlot	directives,	which	should	be	placed
somewhere	in	our	component	tree	so	that	plugins	can	expose	components	to	these	slots.	For
now,	we	decide	to	make	two	spots	in	our	application	extensible:

TaskInfo:	In	the	list	of	tasks	displayed	in	a	project,	we	currently	render	Task
components.	Besides	the	title	of	the	task,	the	Task	component	displays	additional
information	such	as	the	task	number,	the	date	of	creation,	and	milestones,	as	well	as
efforts	information	where	applicable.	This	additional	information	is	rendered	on	the
Task	component	using	the	TaskInfos	subcomponent.	This	is	a	good	spot	to	provide
extensibility	for	plugins	so	that	they	can	add	additional	task	information,	which	will	be
displayed	on	the	task	list	overview.
TaskDetail:	Another	great	spot	to	provide	extensibility	is	the	ProjectTaskDetails
component.	This	is	where	we	can	edit	the	details	of	a	task,	which	makes	it	a	great
component	to	open	up	for	extension	by	plugins.

Besides	adding	the	PluginSlot	directive	to	the	directives	list	of	the	TaskInfos	component,	we
modify	the	template	located	at	lib/task-list/task/task-infos/task-infos.html:

...

<ngc-task-info	title="Efforts"	

															[info]="task.efforts	|	formatEfforts">

</ngc-task-info>

<ngc-plugin-slot	name="task-info"></ngc-plugin-slot>

After	including	the	PluginSlot	directive	and	by	setting	the	name	input	property	to	task-info,
we	provide	an	extension	point	for	plugins	where	they	can	provide	additional	components.

Let's	apply	the	same	changes	to	the	ProjectTaskDetails	component	template	in
lib/project/project-task-details/project-task-details.html:

...

<div	class="task-details__content">

		...

		<ngc-plugin-slot	name="task-detail"></ngc-plugin-slot>

</div>

Right	before	the	end	of	the	task	details	content	element,	we	include	another	plugin	slot	with
the	name	task-detail.	By	providing	components	for	this	slot,	plugins	can	hook	into	the	edit
view	of	tasks.

Okay,	so	our	extension	points	are	set	up	for	plugins	to	provide	additional	components	on	a

task	level.	You	can	see	that	preparing	these	spots	using	the	PluginSlot	directive	is	really	a
piece	of	cake.

Now,	we	can	look	into	the	implementation	of	our	Agile	plugin,	which	will	make	use	of	the
extension	points	that	we	just	exposed.

The	agile	plugin	that	we	will	create	will	provide	functionality	to	log	story	points	on	tasks.
Story	points	are	commonly	used	in	Agile	project	management.	They	should	provide	a	sense
for	complexity,	and	they	are	relative	to	a	so-called	reference	story.	If	you	want	to	know	more
about	Agile	project	management	and	how	to	estimate	using	story	points,	I	really	recommend
the	book,	Agile	Estimating	and	Planning	by	Mike	Cohn.

Let's	start	with	our	plugin	class	and	the	necessary	configuration.	We	create	the	plugin	outside
our	regular	lib	folder,	just	to	indicate	the	portable	nature	of	plugins.

We	create	a	new	AgilePlugin	class	on	the	plugins/agile/agile.js	path:

import	{PluginConfig,	PluginPlacement}	from	'../../lib/plugin/plugin';

@PluginConfig({

		name:	'agile',

		description:	'Agile	development	plugin	to	manage	story	points	on	tasks',

		placements:	[]

})

export	default	class	AgilePlugin	{

		constructor()	{

				this.storyPoints	=	[0.5,	1,	2,	3,	5,	8,	13,	21];

		}

}

The	plugin	class	forms	the	central	entry	point	of	our	plugin.	We	use	the	PluginConfig
decorator,	which	we	created	as	part	of	our	plugin	API.	Besides	the	name	and	description,	we
also	need	to	configure	any	placements	where	we	map	plugin	components	to	application
plugin	slots.	However,	as	we	haven't	got	any	plugin	component	yet	to	expose,	our	list	remains
empty	for	the	moment.

It's	also	important	to	note	that	a	plugin	module	always	needs	to	default	export	the	plugin	class.
This	is	just	how	we've	implemented	the	plugin-loading	mechanisms	in	our	PluginService
class.

Looking	back	at	these	two	lines	in	the	loadPlugin	method	of	PluginService	shows	you	that
we	rely	on	the	default	export	of	plugin	modules:

return	System.import(url).then((pluginModule)	=>	{

				const	Plugin	=	pluginModule.default;

...

When	the	plugin	module	is	successfully	loaded,	we	obtain	the	default	export	by	referencing
the	default	property	on	the	module.

So	far,	we	created	our	plugin	entry	module.	This	acts	as	a	plugin	configuration	container,	and
it	is	not	related	to	Angular	in	any	way.	Using	the	placements	configuration,	we	can	then
expose	our	plugin	Angular	components	once	we've	created	them.

Agile	task	info	component
Let's	move	on	to	the	first	Agile	plugin	component	that	we	want	to	expose.	First,	we	create	the
component,	which	will	be	exposed	into	the	slot	with	the	name	task-info.	Below	the	task	title
on	the	task	list,	our	Agile	information	component	should	display	the	stored	story	points.

We	create	a	new	Component	class	on	the	plugins/agile/agile-task-info/agile-task-
info.js	path:

...

import	{Task}	from	'../../../lib/task-list/task/task';

@Component({

		selector:	'ngc-agile-task-info',

		encapsulation:	ViewEncapsulation.None,

		template,

		host:	{

				class:	'task-infos__info'

		}

})

export	class	AgileTaskInfo	{

		constructor(@Inject(Task)	taskComponent)	{

				this.task	=	taskComponent.task;

		}

}

You	can	see	that	we	implemented	a	regular	component	here.	There's	nothing	special	about	this
component	at	all.

We	import	the	Task	component	to	get	the	type	information	to	inject	it	in	our	constructor.	As
the	plugin	slot	is	placed	inside	of	the	TaskInfos	component,	which,	in	fact,	is	always	a	child
of	a	Task	component,	this	is	a	safe	injection.

In	the	constructor,	we	then	take	the	injected	Task	component	and	extract	the	task	data	into	a
local	task	member.

We	also	borrow	the	task-infos__info	class	of	the	TaskInfos	component	in	order	to	get	the
same	look	like	other	task	information	that	is	already	present	on	the	task.

Let's	take	a	look	at	the	template	of	the	AgileTaskInfo	component	that	is	located	in	the	same
path	in	the	agile-task-info.html	file:

<div	*ngIf="task.storyPoints	||	task.storyPoints	===	0">

		Story	Points:	{{task.storyPoints}}

</div>

Following	the	same	mark-up	that	we	used	in	the	TaskInfo	component,	we	display	the
storyPoints	tasks	if	present.

Alright,	now	we	can	expose	the	plugin	component	in	the	plugin	configuration	using	a

PluginPlacement	object.	Let's	make	the	necessary	modification	to	our	agile.js	module	file:

...

import	{AgileTaskInfo}	from	'./agile-task-info/agile-task-info';

@PluginConfig({

		name:	'agile',

		description:	'Agile	development	plugin	to	manage	story	points	on	tasks',

		placements:	[

				new	PluginPlacement({slot:	'task-info',	priority:	1,	

																									component:	AgileTaskInfo})

]

})

export	default	class	AgilePlugin	{

		...

}

Now,	we	include	a	new	PluginPlacement	object	in	our	plugin	configuration,	which	maps	our
AgileTaskInfo	component	to	be	exposed	into	the	application	plugin	slot	with	the	name	task-
info:

Task	info	displaying	additional	information	that	is	provided	by	our	Agile	plugin

This	would	already	be	enough	for	the	plugin	to	work.	However,	as	we	don't	have	any	data
filled	as	storyPoints	on	our	tasks,	this	plugin	wouldn't	really	show	us	anything	at	the
moment.

Agile	task	details	component
Let's	create	another	plugin	component,	which	can	be	used	to	enter	story	points.	For	this,	we
will	create	a	new	AgileTaskDetail	component	on	the	plugins/agile/agile-task-
detail/agile-task-detail.js	path:

...

import	{Project}	from	'../../../lib/project/project';

import	{ProjectTaskDetails}	from	'../../../lib/project/project-task-

details/project-task-details';

import	{Editor}	from	'../../../lib/ui/editor/editor';

@Component({

		selector:	'ngc-agile-task-detail',

		encapsulation:	ViewEncapsulation.None,

		template,

		host:	{class:	'agile-task-detail'},

		directives:	[Editor]

})

export	class	AgileTaskDetail	{

		constructor(@Inject(Project)	project,	

														@Inject(ProjectTaskDetails)	projectTaskDetails)	{

				this.project	=	project;

				this.projectTaskDetails	=	projectTaskDetails;

				this.plugin	=	placementData.plugin.instance;

		}

		onStoryPointsSaved(storyPoints)	{

				this.projectTaskDetails.task.storyPoints	=	+storyPoints	||	0;

				this.project.document.persist();

		}

}

There's	nothing	really	fancy	with	this	component	either.	Our	target	slot	is	the	task-detail
plugin	slot,	which	is	placed	inside	the	ProjectTaskDetails	component.	Therefore,	it's	safe	for
both	the	ProjectTaskDetails	and	Project	components	to	be	injected	into	our	plugin
component.	The	ProjectTaskDetails	component	is	used	to	obtain	the	task	data	in	context.	We
use	LiveDocument	that	is	stored	on	the	Project	component	to	persist	any	changes	that	we	make
to	the	task	data	of	the	project.

We	reuse	an	Editor	component	to	obtain	user	input	and	store	the	input	data	in	the
onStoryPointsSaved	call-back.	This	is	the	same	mechanism	we	know	from	other	areas	where
we	use	the	Editor	component.	When	the	story	points	get	edited,	we	first	update	the	task	data
model	that	is	stored	in	the	ProjectTaskDetails	component.	After	this,	we	can	use	the
LiveDocument	persist	method	to	save	the	changes.

Let's	look	at	the	template	of	our	AgileTaskDetail	component	in	the	plugins/agile/agile-
task-detail/agile-task-detail.html	file:

<div	class="task-details__label">Story	Points</div>

<ngc-editor	[content]="projectTaskDetails.task?.storyPoints"

												[showControls]="true"

												(editSaved)="onStoryPointsSaved($event)"></ngc-editor>

We	create	a	direct	binding	from	the	content	input	property	of	our	editor	to	the	storyPoints
property	of	the	task	data.

When	an	edit	is	saved,	we	call	the	onStoryPointsSaved	callback	with	the	updated	value:

Task	details	displaying	the	new	Agile	story	points	that	are	exposed	by	our	Agile	plugin

Before	we	expose	our	newly-created	plugin	component	using	a	new	PluginPlacement	object
on	the	plugin	configuration,	we'll	enhance	the	component	one	more	time.	This	would	be	nice
if	we	provide	two	buttons	on	the	component	that	allows	the	user	to	increase	or	decrease	the
story	points	to	the	next	common	story	point	value	in	range.	As	we	already	stored	the	list	of
common	story	points	on	the	Agile	plugin	class,	let's	see	how	we	can	make	use	of	this:

...

import	{PluginData}	from	'../../../lib/plugin/plugin';

@Component({

		selector:	'ngc-agile-task-detail',

		...

})

export	class	AgileTaskDetail	{

		constructor(...,	@Inject(PluginData)	pluginData)	{

				...

				this.plugin	=	pluginData.plugin.instance;

		}

		...

		increaseStoryPoints()	{

			const	current	=	this.projectTaskDetails.task.storyPoints	||	0;

				const	storyPoints	=	this.plugin.storyPoints.slice().sort((a,	b)	=>	a	>	b	?	1	

:	a	<	b	?	-1	:	0);

				this.projectTaskDetails.task.storyPoints	=

						storyPoints.find((storyPoints)	=>	storyPoints	>	current)	||	current;

				this.project.document.persist();

		}

		decreaseStoryPoints()	{

			const	current	=	this.projectTaskDetails.task.storyPoints	||	0;

				const	storyPoints	=	this.plugin.storyPoints.slice().sort((a,	b)	=>	a	<	b	?	1	

:	a	>	b	?	-1	:	0);

				this.projectTaskDetails.task.storyPoints	=

						storyPoints.find((storyPoints)	=>	storyPoints	<	current)	||	current;

				this.project.document.persist();

		}

}

While	we	previously	injected	the	Project	and	ProjectTaskDetails	components	that	are
provided	by	the	component	level	injectors,	we	now	make	use	of	the	providers	that	we	added
during	instantiation	in	our	PluginSlot	directive.	Here,	we	provided	PluginData,	which	we
can	now	use	to	get	a	reference	back	to	the	plugin	component.

The	next	higher	or	lower	story	point	value	is	found	by	increaseStoryPoints	and
decreaseStoryPoints.	This	is	done	by	searching	the	list	of	common	story	points	that	are
stored	on	our	AgilePlugin	class.	Using	the	plugin	class	instance	that	is	present	on	the	injected
PluginData,	we	can	easily	access	this	list.	After	storing	the	modified	story	points,	we	then	use
the	LiveDocument	instance	of	the	project	component	to	persist	the	adjusted	story	points.

In	the	template	of	our	AgileTaskDetail	component,	we	simply	add	two	buttons	that	allow	the
user	to	increase	or	decrease	the	story	points	that	are	based	on	our	newly-created	methods:

...

<button	(click)="decreaseStoryPoints()"

								class="button	button--small">-</button>

<button	(click)="increaseStoryPoints()"

								class="button	button--small">+</button>

Okay,	let's	now	add	the	AgileTaskDetail	component	to	the	plugin	configuration	using	a	new
PluginPlacement	object,	which	references	the	task-detail	plugin	slot:

...

import	{AgileTaskDetail}	from	'./agile-task-detail/agile-task-detail';

@PluginConfig({

		...

		placements:	[

				new	PluginPlacement({slot:	'task-info',	priority:	1,	

																									component:	AgileTaskInfo}),

				new	PluginPlacement({slot:	'task-detail',	priority:	1,	

																									component:	AgileTaskDetail})

]

})

export	default	class	AgilePlugin	{

		...

}

Isn't	this	great?	You	created	a	fully-portable	plugin	that	enables	the	management	of	Agile
story	points	on	tasks.

The	task	details	view	with	story	points	and	additional	increase/decrease	buttons

The	only	thing	that	is	left	is	to	add	the	plugin	to	the	list	of	plugins	that	should	be	loaded
initially	by	the	PluginService	directive.	For	this,	we'll	create	a	plugins.js	file	on	the	root	of
our	application	and	add	the	following	content:

export	default	[

		'/plugins/agile/agile.js'

];

Now,	if	we	launch	our	application,	the	plugin	will	be	loaded	by	the	PluginService	and
PluginSlot	directives	will	instantiate	the	Agile	plugin	components	where	appropriate.

Recapitulating	on	our	first	plugin
Well	done!	You	successfully	implemented	your	first	plugin!	In	this	section,	we	used	the	API	of
our	plugin	architecture	to	create	a	plugin	to	manage	Agile	story	points.	We	used	the
PluginPlacement	class	to	map	our	plugin	components	to	different	slots	in	the	UI	of	our
application.	We	also	made	use	of	the	PluginData	object	that	is	provided	to	each	instantiated
component	in	the	plugin	slot	in	order	to	access	the	plugin	instance.

The	advantage	of	implementing	functionality	like	this	inside	a	plugin	should	be	obvious.	We
added	an	additional	feature	to	our	application	without	building	up	additional	dependencies.
Our	Agile	feature	is	completely	portable.	Third-party	developers	can	write	independent
plugins,	and	they	can	be	loaded	by	our	system.	This	is	a	big	advantage,	and	it	helps	us	keep
our	core	slim	while	providing	great	extensibility.

Managing	plugins
We	already	built	the	core	of	the	plugin	architecture	and	a	first	plugin	that	runs	in	this	system.
We	can	use	the	plugins.js	file	on	the	root	of	our	application	to	register	plugins.	The	system
is	actually	fully	functional	already.	However,	it	would	be	nice	to	provide	a	way	to	manage	our
plugins	during	runtime.

In	this	section,	we	will	build	a	new	routable	component,	which	will	list	all	active	plugins	in	the
system.	After	we've	done	this,	we'll	also	add	some	elements	which	allow	users	to	unload
active	plugins	as	well	as	load	new	plugins	during	runtime.	Due	to	the	reactive	nature	of	our
plugin	system,	the	browser	does	not	need	to	be	refreshed	in	order	for	newly-loaded	plugins	to
become	active.	The	moment	a	plugin	is	loaded,	it	will	immediately	be	made	available	to
relevant	plugin	slots.

Let's	start	with	a	new	ManagePlugins	component	class	on	the	lib/manage-plugins/manage-
plugins.js	path:

...

import	{PluginService}	from	'../plugin/plugin-service';

@Component({

		selector:	'ngc-manage-plugins',

		...

})

export	class	ManagePlugins	{

		constructor(@Inject(PluginService)	pluginService)	{

				this.plugins	=	pluginService.change;

		}

}

Our	ManagePlugins	component	is	quite	simple.	We	inject	the	PluginService	into	the
constructor	of	the	component	and	set	the	member	field	plugins	to	point	to	the	change
observable	of	PluginService.	As	we'll	always	get	the	latest	plugin	list	emitted	by	this
observable,	we	can	then	simply	use	the	async	pipe	in	the	view	to	subscribe	to	the	observable.

Let's	look	at	the	template	of	our	new	component	in	lib/manage-plugins/manage-
plugins.html:

<div	class="manage-plugins__l-header">

		<h2	class="manage-plugins__title">Manage	Plugins</h2>

</div>

<div	class="manage-plugins__l-main">

		<h3	class="manage-plugins__sub-title">Active	Plugins</h3>

		<div	class="manage-plugins__section">

				<table	class="manage-plugins__table">

						<thead>

						<tr>

								<th>Name</th>

								<th>Url</th>

								<th>Description</th>

								<th>Placements</th>

						</tr>

						</thead>

						<tbody>

						<tr	*ngFor="let	plugin	of	plugins	|	async">

								<td>{{plugin.config.name}}</td>

								<td>{{plugin.url}}</td>

								<td>{{plugin.config.description}}</td>

								<td>

										<div	*ngFor="let	placement	of	plugin.config.placements"

															class="manage-plugins__placement">

												{{placement.slot}}

										</div>

								</td>

						</tr>

						</tbody>

				</table>

		</div>

</div>

We	use	an	HTML	table	to	display	the	list	of	active	plugins.	On	the	table	body	rows,	we	use	the
NgFor	directive	to	iterate	over	the	list	of	active	plugins,	which	we	subscribe	to	using	the	async
pipe.

In	the	plugin	objects,	we	got	everything	worth	displaying	already	present.	By	iterating	over
the	PluginPlacement	objects	that	are	stored	on	the	config	property	on	the	plugin	data,	we	can
even	display	the	slot	names	where	our	plugins	provide	components.

Now,	the	only	thing	left	to	do	to	enable	our	new	component	is	to	make	it	routable	and	to	add	it
to	the	navigation	of	our	application.	Let's	make	the	necessary	modification	in	the	lib/app.js
module	for	this:

...

import	{ManagePlugins}	from	'./manage-plugins/manage-plugins';

@Component({

		selector:	'ngc-app',

		...

})

@Routes([

		...

		new	Route({path:	'plugins',	component:	ManagePlugins})

])

export	class	App	{

		...

}

We	added	a	new	route,	so	let's	add	it	to	our	navigation	in	lib/app.html:

<div	class="app">

		<div	class="app__l-side">

				<ngc-navigation	[openTasksCount]="openTaskCount">

						...

						<ngc-navigation-section	title="Admin">

								<ngc-navigation-item	title="Manage	Plugins"	

																													[link]="['/plugins']">

								</ngc-navigation-item>

						</ngc-navigation-section>

				</ngc-navigation>

		</div>

		<div	class="app__l-main">

				<router-outlet></router-outlet>

		</div>

</div>

In	a	new	Admin	navigation	section,	we	add	a	new	navigation-item	that	links	to	the	newly-
created	"plugins"	route:

Our	new	ManagePlugins	component	displaying	a	table	of	active	plugins	and	their	exposed
placements

Loading	new	plugins	at	runtime
We	already	have	everything	in	place	to	provide	a	page	to	see	all	active	plugins.	However,	we
said	that	it	would	be	nice	to	be	able	to	manage	this	list.	A	user	should	be	able	to	remove	active
plugins	as	well	as	manually	load	additional	plugins.

Let's	add	these	capabilities	to	our	ManagePlugins	component.	Before	we	can	do	this,	we'll
need	an	additional	method	on	our	PluginService	class,	which	is	the	part	responsible	for	the
loading	of	plugins.	So	far,	we	didn't	consider	the	functionality	to	remove	active	plugins.	Let's
open	PluginService	in	lib/plugin/plugin-service.js	to	add	this	functionality:

...

@Injectable()

export	class	PluginService	{

		...

		removePlugin(name)	{

				const	plugin	=	this.plugins.find(

						(plugin)	=>	plugin.name	===	name);

				if	(plugin)	{

						const	plugins	=	this.plugins.slice();

						plugins.splice(plugins.indexOf(plugin),	1);

						this.plugins	=	plugins;

						this.change.next(this.plugins);

				}

		}

}

Well,	this	was	easy!	We	provide	a	new	removePlugin	method,	which	takes	a	plugin	name	as
parameter.	We	then	look	up	the	plugin	in	the	plugins	array,	and	if	a	plugin	was	found	with
this	name,	we	remove	it	from	the	list.	Additionally,	after	we've	removed	the	plugin,	we	emit	a
change	event	with	the	updated	list.	As	all	plugin	slots	in	the	application	are	subscribed	to	this
change	observable,	they	will	update	and	reinitialize	relevant	plugin	components	automatically.

Let's	now	apply	the	necessary	changes	to	our	ManagePlugins	component	class	in	order	to	not
only	remove	plugins	but	also	to	load	additional	plugins:

...

@Component({

		selector:	'ngc-manage-plugins',

		...

})

export	class	ManagePlugins	{

		constructor(@Inject(PluginService)	pluginService)	{

				...

				this.pluginService	=	pluginService;

		}

		removePlugin(name)	{

				this.pluginService.removePlugin(name);

		}

		loadPlugin(loadUrlInput)	{

				this.pluginService.loadPlugin(loadUrlInput.value);

				loadUrlInput.value	=	'';

		}

}

Now,	we	also	store	the	PluginService	on	our	component.	In	the	removePlugin	and	the
loadPlugin	functions,	we	delegate	to	the	PluginService	to	take	the	necessary	actions.

The	loadPlugin	method	will	receive	an	ElementRef	object	that	points	to	the	input	field,	where
the	user	enters	the	URL	from	which	we	load	a	new	plugin.	We	can	pass	the	value	of	the	input
field	to	the	loadPlugin	method	of	PluginService,	which	deals	with	the	rest.	We	also	set	the
input	field	value	to	an	empty	string	once	we've	submitted	this	call.

Let's	open	the	template	at	lib/manage-plugins/manage-plugins.html	to	apply	the	required
changes	in	the	view	of	our	component:

...

<div	class="manage-plugins__l-main">

		<h3	class="manage-plugins__sub-title">Active	Plugins</h3>

		<div	class="manage-plugins__section">

				...

								<td>

										<button	(click)="removePlugin(plugin.name)"

																		class="button	button--small">remove</button>

								</td>

				...

		</div>

		<h3	class="manage-plugins__sub-title">Load	Plugin</h3>

		<div	class="manage-plugins__section">

				<div	class="manage-plugins__load-elements">

						<input	#loadUrlRef	type="text"

													placeholder="Enter	plugin	URL"

													class="manage-plugins__load-url">

						<button	(click)="loadPlugin(loadUrlRef)"

														class="button">Load</button>

				</div>

		</div>

</div>

We	added	an	additional	button	for	every	listed	plugin	in	the	table,	which	contains	a	binding
expression	that	calls	the	removePlugin	method	with	the	currently	iterated	plugin	name.

We	also	added	a	new	section	after	the	listed	plugins	to	load	new	plugins.	In	this	section,	we
use	an	input	field	to	enter	the	plugin	URL	as	well	as	a	button	to	execute	the	loading.	Using	a
loadUrlRef	local	view	reference,	we	can	pass	a	reference	to	the	input	DOM	element	to	the
loadPlugin	method	on	our	component:

A	completed	ManagePlugins	component	with	the	ability	to	remove	and	load	plugin	modules	at
runtime

Now,	we	have	everything	in	place	to	manage	our	plugins.	Plugins	initially	loaded	from	URLs
present	in	the	root	plugins.js	file	can	now	be	unloaded	using	the	REMOVE	button	in	the
plugins	listing.	New	plugins	can	be	loaded	and	activated	by	entering	the	URL	of	a	plugin,
which	could	be	a	local	URL,	bundled	and	mapped	module,	or	even	a	remote	URL	on	a
different	server.

Summary
In	this	chapter,	we	looked	at	different	approaches	on	how	to	implement	a	plugin	architecture.
We	then	created	our	own	design	for	a	plugin	architecture	that	leverages	some	Angular
mechanisms	and	works	on	the	concept	of	UI	extension	points	that	we	call	slots.

We	implemented	a	plugin	API	that	provides	great	developer	experience	by	leveraging	ES7
decorators	to	make	the	configuration	of	new	plugins	a	piece	of	cake.	We	implemented	the
core	of	our	plugin	system	using	a	service	to	load	and	unload	plugins	that	are	based	on	the
SystemJS	module	loader.	This	allowed	us	to	make	use	of	the	advanced	loading	possibilities
that	are	provided	by	SystemJS.	Plugins	can	be	transpiled	in	real	time,	can	be	located	on	a	local
URL,	remote	URL,	or	even	be	bundled	into	the	main	application.

We	implemented	our	first	plugin,	which	provides	some	components	to	manage	Agile	story
points	on	our	tasks.	The	plugin	was	created	outside	our	regular	project	lib	folder,	which
should	underline	the	portable	nature	of	our	plugin	system.

Finally,	we	created	a	new	routable	component	to	manage	plugins	at	runtime.	Due	to	the
reactive	nature	of	our	plugin	system,	plugins	can	be	loaded	and	unloaded	during	application
runtime	without	any	unwanted	side-effects.

When	you're	playing	with	the	source	code	of	this	chapter,	I	highly	recommend	that	you	play
with	the	loading	mechanism	of	our	plugin	architecture.	The	flexibility	that	we	achieved	with
very	little	effort	is	fantastic.	You	can	unload	the	Agile	plugin	and	load	it	again	by	providing
the	URL	to	the	plugin	main	module.	You	can	even	try	to	place	the	whole	plugins	folder	onto	a
remote	server	and	load	the	plugin	from	there.	Just	make	sure	that	you	consider	the	necessary
Cross-Origin	Resource	Sharing	(CORS)	headers.

The	whole	code	for	this	chapter	can	be	found	in	the	ZIP	file	of	the	book	resources	that	you
can	download	from	Packt	Publishing.	You	can	refer	to	the	Downloading	the	example	code
section	in	the	Preface	of	the	book.

In	the	next	and	last	chapter	of	this	book,	we'll	look	at	how	we	can	test	the	components	that
we've	created	so	far.	So,	stay	tuned	for	this	overdue	topic!

Chapter	11.	Putting	Things	to	the	Test
Writing	tests	is	crucial	for	the	maintainability	of	your	code.	It's	a	known	fact	that	having	a
good	range	of	tests	that	cover	most	of	your	functionality	is	equally	important	as	the
functionality	itself.

The	first	thing	that	comes	to	mind	when	thinking	about	tests	is	probably	code	quality
assurance.	You	test	the	code	that	you	write,	so	this	is	definitely	true.	However,	there	are	many
other	important	aspects	of	writing	tests:

Resistance	to	unexpected	change:	Your	tests	define	what	your	code	is	supposed	to	do.
They	test	whether	your	code	conforms	to	your	specifications.	This	has	several	benefits,
where	the	most	obvious	is	probably	a	resistance	to	unexpected	change	in	the	future.	If
you	modify	the	code	in	the	future,	you'll	less	likely	break	your	existing	code	because
your	tests	will	validate	whether	the	existing	functionality	still	works	as	specified.
Documentation:	Your	tests	define	what	your	code	should	do.	At	the	same	time,	they
display	the	API	calls	that	are	required	to	use	the	concerned	functionality.	This	is	the
perfect	documentation	for	any	developer.	Whenever	I	want	to	understand	how	a	library
really	works,	the	tests	are	the	first	thing	that	I	look	at.
Avoiding	unnecessary	code:	The	practice	of	writing	tests	forces	you	to	limit	your	code
to	fulfil	the	requirements	of	your	specification	and	nothing	more.	Any	code	in	your
application	that	is	not	reached	in	your	automated	tests	can	be	considered	dead	code.	If
you	stick	to	a	merciless	refactoring	approach,	you'd	then	remove	such	unused	code
ASAP.

So	far,	we	haven't	considered	testing	in	our	book	at	all,	and	given	its	importance,	you	may
wonder	why	I	come	up	with	this	now	in	the	last	chapter.	In	a	real	project,	we'd	definitely	create
tests	much	earlier	if	not	at	first.	However,	I	hope	you	understand	that	in	this	book,	we
postponed	this	rather	important	topic	until	the	end.	I	really	love	testing,	but	as	we're	mainly
focused	on	the	component	architecture	of	Angular,	placing	this	chapter	at	the	end	seemed
more	logical.

In	this	chapter,	we'll	look	into	how	to	perform	proper	unit	testing	on	your	components.	We'll
focus	on	unit	testing;	automated	end-to-end	testing	is	beyond	the	scope	of	this	book.	Still,
we'll	look	into	how	to	test	user	interaction	on	components,	although	not	on	the	level	it	would
be	done	in	end-to-end	testing.

In	this	chapter,	we	will	delve	into	the	following	topics:

An	introduction	to	the	Jasmine	testing	framework
Writing	simple	JavaScript	tests	for	components
Creating	a	tests.html	file,	which	serves	as	an	in-browser	test	runner
Creating	Jasmine	spies	and	observing	component	output	properties
Learning	about	Angular	testing	utilities,	such	as	inject,	async,	TestComponentBuilder,
DebugElement,	and	more

Mocking	components
Mocking	existing	services
Creating	tests	for	our	AutoComplete	UI	component
Creating	tests	for	our	plugin	system

An	introduction	to	Jasmine
Jasmine	is	a	very	simple	testing	framework,	which	comes	with	an	API	that	allows	you	to	write
Behavior-driven	Development	(BDD)	style	tests.	BDD	is	an	agile	software	development
process	of	defining	specifications	in	a	written	format.

In	BDD,	we	define	that	an	agile	user	story	consists	of	multiple	scenarios.	These	scenarios
closely	relate	to	or	even	replace	the	acceptance	criteria	of	a	story.	They	define	requirements
on	a	higher	level,	and	they	are	mostly	written	narrative.	Each	scenario	then	consists	of	three
parts:

Given:	This	part	is	used	to	describe	the	initial	state	of	the	scenario.	The	test	code	is	where
we	perform	all	the	setup	that	is	needed	to	execute	the	test	scenario.
When:	This	part	reflects	the	changes	that	we	perform	to	the	system	under	test.	Usually,
this	part	consists	of	some	API	calls	and	actions	that	reflect	the	behavior	of	a	user	of	the
system.
Then:	This	part	specifies	what	the	system	should	look	like	after	the	given	state	and	the
changes	applied	in	the	when	part.	In	our	code,	this	is	the	part	that	is	usually	at	the	end	of
our	tests	function,	where	we	use	assertion	libraries	to	verify	the	state	of	the	system.
Jasmine	comes	with	an	API	that	makes	it	very	easy	to	write	tests	which	structure
according	to	the	BDD	style.	Let's	look	at	a	very	simple	example	of	how	we	use	Jasmine
to	write	a	test	for	a	shopping	cart	system:

describe('Buying	items	in	the	shop',	()	=>	{

		it('should	increase	the	basket	count',	()	=>	{

				//	Given

				const	shop	=	new	Shop();

				//	When

				shop.buy('Toothpaste');

				shop.buy('Shampoo');

				//	Then

				expect(shop.basket.length).toBe(2);

				expect(shop.basket).toContain('Toothpaste');

				expect(shop.basket).toContain('Shampoo');

		});

});

Jasmine	provides	us	with	a	describe	function,	which	allows	us	to	group	certain	scenarios	on
the	same	subject.	In	this	example,	we	used	the	describe	function	to	register	a	new	test	suite	for
tests	about	buying	items	in	a	shop.

Using	the	it	function,	we	can	register	individual	scenarios,	which	we'd	like	to	get	tested.	In
the	describe	callback	function,	we	can	register	as	many	scenarios	using	the	it	function	as	we
like.

Inside	the	callback	function	of	the	Jasmine	it	function,	we	can	start	writing	our	test.	We	use	a
BDD	style	to	structure	the	code	inside	our	test.

You	don't	necessarily	need	to	run	Jasmine	in	the	browser,	but	if	you	do	this,	you'll	get	a	nice
summary	report	of	all	tests	and	their	state:

Jasmine	provides	a	nice	visual	report	over	all	your	test	specifications,	which	also	allows	you
to	rerun	individual	tests	and	provides	you	with	more	options

Jasmine	comes	in	three	parts	that	are	relevant	to	us:

Jasmine	core:	This	contains	the	test	definition	APIs,	the	assertion	library,	and	all	the
other	core	parts	of	the	testing	framework
Jasmine	HTML:	This	is	the	HTML	reporter,	which	will	write	all	tests	results	to	the
browser	document	and	even	provide	options	to	rerun	individual	tests
Jasmine	boot:	This	is	the	file	that	bootstraps	the	Jasmine	framework	for	the	browser	and
performs	any	setup	that	is	needed	with	the	HTML	reporter

In	our	project,	we	will	use	Jasmine	and	the	preceding	parts	directly	from	a	CDN,	so	we	don't
need	to	install	anything	to	get	started.	We	create	a	new	tests.html	file,	which	will	serve	as	a
runner	for	our	tests.	In	conjunction	with	live-server,	we	can	always	have	this	page	open	in
our	browser.	This	way	we'll	get	immediate	feedback	on	our	tests	while	developing.

Tip

Jasmine	also	plays	nice	with	test	runners	such	as	Karma	to	run	your	tests.	Karma	is	a	popular
test	runner,	which	allows	you	to	run	your	tests	in	parallel	using	the	Karma	CLI	or	integrate	it
in	your	build	pipeline.	This	also	allows	you	to	run	tests	in	different	browsers.	In	this	chapter,
we	will	use	the	Jasmine	HTML	and	Jasmine	boot	to	run	our	tests	directly	in	the	browser.	This
allows	us	to	skip	the	rather	complex	setup	that	we'd	need	to	undertake	if	we	used	Karma	as
our	test	runner.

Let's	look	at	the	code	of	the	tests.html	file	that	we	create	in	the	root	folder	of	our
application,	right	next	to	the	index.html	file,	which	is	already	present:

...

<script	src="https://cdnjs.cloudflare.com/ajax/libs/es6-shim/0.35.0/es6-

shim.min.js"></script>

<script	src="https://cdnjs.cloudflare.com/ajax/libs/angular.js/2.0.0-

beta.17/angular2-polyfills.js"></script>

<script	src="jspm_packages/system.js"></script>

<script	src="config.js"></script>

<script	src="https://cdnjs.cloudflare.com/ajax/libs/jasmine/2.4.1/jasmine.js">

</script>

<script	src="https://cdnjs.cloudflare.com/ajax/libs/jasmine/2.4.1/jasmine-

html.js"></script>

<script	src="https://cdnjs.cloudflare.com/ajax/libs/jasmine/2.4.1/boot.js">

</script>

Besides	loading	the	usual	suspects	for	our	Angular	application	(ES6	shim,	Angular	polyfills,
and	SystemJS),	we	now	also	load	the	three	main	components	of	Jasmine.

By	default,	Jasmine	executes	all	registered	tests	on	the	window's	load	event.	However,	as	we
will	load	our	tests	using	SystemJS,	we	need	to	defer	the	bootstrap	of	Jasmine	until	SystemJS
has	completely	loaded	our	tests:

<script>

		window._jasmineOnLoad	=	window.onload;

		window.onload	=	null;

				return	System.import('./all.spec')

				.then(window._jasmineOnLoad)

				.catch(console.error.bind(console));

		...

</script>

We	first	put	aside	the	function	that	was	registered	by	Jasmine	boot	on	window.onload.	We
store	the	function	in	a	temporary	_jasmineOnLoad	global	variable.

Now,	we	use	SystemJS	to	import	our	entry	point	module	for	our	tests,	which	will	be	stored	in
the	all.spec.js	file.	SystemJS	returns	a	Promise	that	will	be	resolved	if	the	test	module	has
been	loaded	and	executed	successfully.	We	can	use	the	then	function	of	the	returned	Promise
to	execute	the	Jasmine	boot	function	stored	in	window._jasmineOnLoad.	In	this	way,	we	make
sure	that	Jasmine	is	booted	after	all	our	tests	have	been	registered.

Writing	our	first	test
Now	that	we	are	all	set	with	the	Jasmine	setup,	we	can	start	writing	our	first	test.	In	this
section,	we	will	create	a	first	test	for	the	AutoComplete	component	that	we	created	in	Chapter
8,	Time	Will	Tell,	of	this	book.

As	Angular	components	are	just	classes,	we	can	already	test	a	lot	of	the	functionality	by
instantiating	the	Component	class	and	testing	its	methods.	Tests	that	can	be	performed	like	this
should	always	be	considered	first.	These	tests	can	run	without	Angular	bootstrapping	the
component.

The	AutoComplete	component	filters	displayed	results	based	on	the	available	items	and	a	filter
criteria.	In	the	following	test,	we'll	verify	that	the	filter	method	on	the	component	works	as
expected.

Tip

In	this	book,	we	follow	the	practice	to	store	test	files	by	appending	a	.spec.js	file	to	the	name
of	the	file	that	has	to	be	tested.	We'll	also	store	these	test	files	in	the	same	folder	of	the	subject.
This	makes	it	much	easier	to	keep	the	context.

We'll	create	a	new	auto-complete.spec.js	file	in	the	folder	of	the	AutoComplete	component	at
lib/ui/auto-complete:

import	{describe,	expect,	it,}	from	'@angular/core/testing';

import	{AutoComplete}	from	'./auto-complete';

describe('AutoComplete',	()	=>	{

		it('should	filter	items	correctly',	()	=>	{

				//	Given

				const	autoComplete	=	new	AutoComplete();

				autoComplete.items	=	['One',	'two',	'three'];

				//	When

				autoComplete.filterItems('o');

				//	Then

				expect(autoComplete.filteredItems).toEqual(['One',	'two']);

		});

});

As	we	loaded	Jasmine	prior	to	executing	our	test,	we	could	rely	on	the	global	describe,	it,
and	expect	functions	that	are	exposed	by	Jasmine.	However,	Angular	provides	us	with	some
nice	wrappers	of	the	Jasmine	functions,	which	we	can	import	from	the	module	located	in
@angular/core/testing.

As	you	can	see,	we	don't	really	need	to	activate	the	AutoComplete	component	in	order	to	test
some	of	its	functionality.	By	simply	testing	the	component	class,	we	can	already	execute	some
of	our	executable	specifications.

We	follow	a	BDD	approach	to	structure	our	test,	and	in	the	Given	section,	we	instantiate	a	new
AutoComplete	component	class,	and	then	we	initialize	the	items	list	with	some	test	items.	Even
if	the	items	field	is	actually	a	component	input,	we	can	simply	disregard	this	fact	in	order	to
test	the	filtering	functionality.

In	the	When	section	of	our	test,	we	actually	call	the	filterItems	method	of	the	component
class	and	test	whether	it	does	filter	the	items	according	to	the	specification.

In	the	Then	section,	we	use	the	expect	function	of	Jasmine	in	order	to	assert	the	expected	state
after	the	When	section.	As	the	component	should	filter	all	items	with	partial	and	case-
insensitive	matches	of	the	filter	criteria,	the	expected	value	in	filteredItems	should	be	an
array	with	the	One	and	two	items.

We	use	the	assertion	toEqual	function	in	order	to	perform	a	deep	equal	check.	If	we	use	the
toBe	matcher,	we'd	compare	the	references	of	the	two	arrays,	which	will	result	in	a	negative
match.

This	is	it	for	our	first	test.	What's	left	to	do	still	is	to	create	our	main	test	module	that	is
loaded	in	the	tests.html	file.

We	created	the	main	entry	point	for	all	our	tests	in	a	all.spec.js	file	on	the	root	path	of	our
application.	This	file	will	then	include	all	specification	files	that	we	create	in	our	application:

import	'./lib/ui/auto-complete/auto-complete.spec';

This	is	currently	all	that	we	need	to	make	our	test	run.	We	simply	import	the	test	file	that	we
just	created.	Now,	tests.html	will	use	SystemJS	to	load	our	all.spec.js	file,	and	here,	we
then	load	the	auto-complete-spec.js	file.

We	can	now	start	live-server	in	the	root	path	of	our	application	and	navigate	to
http://127.0	.0.1:8080/tests.html	in	our	browser.	As	live-server	will	reload	our
browser	on	changes,	we	can	start	adding	new	tests	while	we	constantly	get	updates	on	our	test
state	in	the	browser.

Spying	on	component	outputs
A	common	practice	in	testing	is	to	use	spy	function	calls	during	the	execution	of	tests	and	then
evaluate	these	calls,	checking	whether	all	functions	have	been	called	correctly.

Jasmine	provides	us	with	some	nice	helpers	in	order	to	use	spy	function	calls.	We	can	use	the
spyOn	function	of	Jasmine	in	order	to	replace	the	original	function	with	a	spy	function.	The
spy	function	will	record	any	calls,	and	we	can	later	on	evaluate	how	many	times	it	was	called
and	with	what	parameters.

Let's	look	at	a	simple	example	of	how	to	use	the	spyOn	function:

class	Calculator	{

		multiply(a,	b)	{

				return	a	*	b;

		}

		

		pythagorean(a,	b)	{

				return	Math.sqrt(this.multiply(a,	a)	+	this.multiply(b,	b));

		}

}

We	will	test	a	simple	Calculator	class	that	has	two	methods.	The	multiply	method	simply
multiplies	two	numbers	and	returns	the	result.	The	pythagorean	method	calculates	the
hypotenuse	of	a	right-angled	triangle	with	two	sides,	a	and	b.

You	might	remember	the	formula	for	the	Pythagorean	theorem	from	your	early	school	days:

a²	+	b²	=	c²

We	will	use	this	formula	to	produce	c	from	a	and	b	by	getting	the	square	root	of	the	result	of
a*a	+	b*b.	For	the	multiplications,	we'll	use	our	multiply	method	instead	of	using	arithmetic
operators	directly.

Now,	we'd	want	to	test	our	calculator	pythagorean	method,	and	as	it	uses	the	multiply
method	to	multiply	a	and	b,	we	can	spy	on	this	method	to	verify	our	test	result	in	depth:

describe('Calculator	pythagorean	function',	()	=>	{

		it('should	call	multiply	function	correctly',	()	=>	{

				//	Given

				const	calc	=	new	Calculator();

				spyOn(calc,	'multiply').and.callThrough();

				//	When

				const	result	=	calc.pythagorean(6,	8);

				//	Then

				expect(result).toBe(10);

				expect(calc.mul).toHaveBeenCalled();

				expect(calc.mul.calls.count()).toBe(2);

				expect(calc.mul.calls.argsFor(0)).toEqual([6,	6]);

				expect(calc.mul.calls.argsFor(1)).toEqual([8,	8]);

		});

});

The	spyOn	function	of	Jasmine	takes	an	object	as	first	parameter	and	the	function	name	on	the
object	which	we'd	like	to	spy	on.

This	will	effectively	replace	the	original	multiply	function	on	our	class	instance	with	a	new
spy	function	of	Jasmine.	By	default,	spy	functions	will	only	record	function	calls,	and	they
won't	delegate	the	call	further	to	the	original	function.	We	can	use	the	.and.callThrough()
function	to	specify	that	we'd	like	Jasmine	to	call	the	original	function.	This	way	our	spy
function	will	act	as	a	proxy	and	record	any	calls	at	the	same	time.

In	the	Then	section	of	our	test,	we	can	then	inspect	the	spy	function.	Using	the
toHaveBeenCalled	matcher,	we	can	check	whether	the	spy	function	was	called	after	all.

Using	the	calls	property	of	the	spy	function,	we	can	inspect	in	more	detail	and	verify	the	call
count	as	well	as	the	arguments	that	individual	calls	received.

Using	the	knowledge	that	we	gained	about	Jasmine	spies,	we	can	now	apply	that	to	our
component	tests.	As	we	know	that	all	output	properties	of	components	contain	an
EventEmitter,	we	can	actually	spy	on	them	to	check	whether	our	component	sends	output.

Inside	components,	we	call	the	next	method	on	EventEmitter	in	order	to	send	output	to	parent
component	bindings.	As	this	is	an	asynchronous	operation	and	we'd	also	like	to	test	our
components	without	needing	to	involve	parent	components,	we	can	simply	spy	on	the	next
method	of	our	output	properties.

In	the	next	two	tests	for	our	AutoComplete	component,	we'd	like	to	verify	the	functionality
when	we	save	an	edit	in	the	Editor	child	component.	Let's	quickly	recap	on	this	behavior:

On	saved	edits,	we	get	the	onEditSaved	method	on	the	AutoComplete	component	that	is
called
If	the	saved	value	is	an	empty	string,	the	AutoComplete	component	should	emit	a
selectedItemChange	event	with	a	null	value
If	the	saved	value	is	no	empty	string	and	the	value	is	not	present	in	the	items	of	the
AutoComplete	component,	an	itemCreated	event	should	be	emitted

Let's	create	the	tests	for	the	previous	expected	behavior	to	the	already	existing	lib/ui/auto-
complete/auto-complete.spec.js	test	file:

		...

		it('should	emit	selectedItemChange	event	with	null	on	empty	content	being	

saved',	()	=>	{

				//	Given

				const	autoComplete	=	new	AutoComplete();

				autoComplete.items	=	['one',	'two',	'three'];

				autoComplete.selectedItem	=	'three';

				spyOn(autoComplete.selectedItemChange,	'next');

				spyOn(autoComplete.itemCreated,	'next');

				//	When

				autoComplete.onEditSaved('');

				//	Then

				expect(autoComplete.selectedItemChange.next).toHaveBeenCalledWith(null);

				expect(autoComplete.itemCreated.next).not.toHaveBeenCalled();

		});

We	create	two	Jasmine	spies	here.	The	first	one	spies	on	the	selectedItemChange	output
property,	while	the	second	one	spies	on	the	itemCreated	output	property.

After	simulation,	the	editor	was	saved	with	an	empty	string.	We	can	start	verifying	our	spies
in	the	Then	section	of	our	test.

The	next	function	of	the	selectedItemChange	event,	EventEmitter,	should	have	been	called
with	a	null	value,	while	next	of	itemCreated	shouldn't	have	been	called	at	all.	We	can	use	the
not	property	on	the	returned	expectation	object	to	invert	the	matcher.

Let's	add	a	second	test	for	the	behavior	when	an	editor	was	saved	with	a	value	that	does	not	yet
exist	in	the	AutoComplete	component:

		it('should	emit	an	itemCreated	event	on	content	being	saved	which	does	not	

match	an	existing	item',	()	=>	{

				//	Given

				const	autoComplete	=	new	AutoComplete();

				autoComplete.items	=	['one',	'two',	'three'];

				autoComplete.selectedItem	=	'three';

				spyOn(autoComplete.selectedItemChange,	'next');

				spyOn(autoComplete.itemCreated,	'next');

				//	When

				autoComplete.onEditSaved('four');

				//	Then

				expect(autoComplete.selectedItemChange.next).not.toHaveBeenCalled();

				expect(autoComplete.itemCreated.next).toHaveBeenCalledWith('four');

		});

This	time,	we	simulate	a	saved	edit	with	a	value,	which	isn't	an	empty	string	and	does	not	exist
in	the	autocomplete	items	already.

In	the	Then	section	of	our	code,	we	evaluate	the	spies	and	expect	that	the	itemCreated.next
function	was	called	with	a	four	string.

Using	Jasmine	spies,	we	managed	to	test	our	component	output	successfully	without	the	need
to	bootstrap	Angular.	We	performed	these	tests	solely	on	the	component	class	and	by	creating
spies	on	the	EventEmitter	that	is	present	on	all	output	properties.

Utilities	to	test	components
So	far,	we	tested	our	components	with	plain	vanilla	JavaScript.	The	fact	that	components	are
in	just	regular	classes	make	this	possible.	However,	this	can	only	be	done	for	very	simple	use-
cases.	As	soon	as	we'd	like	to	test	components	for	things	that	involve	template	compilation,
user	interaction	on	components,	change	detection,	or	dependency	injection,	we'll	need	to	get	a
little	help	from	Angular	to	perform	our	tests.

Angular	comes	with	a	whole	bunch	of	testing	tools	that	help	us	out	here.	In	fact,	the	platform-
agnostic	way	that	Angular	is	built	allows	us	to	exchange	the	regular	view	adapter	with	a
debug	view	adapter.	This	enables	us	to	render	components	in	such	a	way	that	allows	us	to
inspect	them	in	great	detail.

To	enable	the	debugging	capabilities	of	Angular	while	rendering	components,	we	need	to
modify	our	main	entry	point	for	our	tests	first.

Let's	open	up	all.spec.js	to	make	the	necessary	modifications:

import	{setBaseTestProviders}	from	'@angular/core/testing';

import	{TEST_BROWSER_DYNAMIC_PLATFORM_PROVIDERS,	

TEST_BROWSER_DYNAMIC_APPLICATION_PROVIDERS}	from	'@angular/platform-browser-

dynamic/testing';

setBaseTestProviders(TEST_BROWSER_PLATFORM_PROVIDERS,	

TEST_BROWSER_APPLICATION_PROVIDERS);

import	'./lib/ui/auto-complete/auto-complete.spec';

import	'./lib/plugin/plugin.spec';

Using	the	setBaseTestProviders	function	of	the	@angular/core/testing	module,	we	can
actually	initialize	a	test	platform	injector,	which	will	then	be	used	in	the	context	of	our
Angular	testing.	This	function	takes	two	arguments	where	the	first	one	is	an	array	of	platform
providers,	and	the	second	one	is	an	array	of	application	providers.

From	the	@angular/platform-browser-dynamic/testing	module,	we	can	import	two
constants	that	contain	an	already	prepared	list	for	both	platform	and	application-level
dependencies.	Here	are	some	of	the	providers	present	in	these	constants:

Platform-level	providers:	These	consist	mostly	of	platform	initialization	providers	to
debug
Application-level	providers:	These	consist	of	the	following:

DebugDomRootRenderer:	This	overrides	the	default	DomRenderer	in	the	browser	and
enables	debugging	of	elements	using	DebugElement	and	probing
MockDirectiveResolver:	This	overrides	the	default	DirectiveResolver	and	allows
overriding	of	directive	metadata	for	testing	purposes
MockViewResolver:	This	overrides	the	default	ViewResolver	and	allows	overriding
of	component	view	specific	metadata

Using	the	setBaseTestProviders	function	and	the	imported	constants	with	the	debugging
providers,	we	can	now	initialize	our	test	environment.	After	calling	this	function	and	passing
our	providers,	Angular	is	set	up	for	testing.

Injecting	in	tests
Injecting	Angular	dependencies	in	tests	is	made	easy	by	two	helper	functions	that	we	can	use.
The	inject	and	async	functions	are	available	through	the	@angular/core/testing	package,
and	they	help	us	inject	dependencies	in	our	tests.

Let's	look	at	this	simple	example	where	we	inject	the	document	element	using	the	inject
wrapper	function.	This	test	is	irrelevant	for	our	application,	but	it	illustrates	how	we	can	now
make	use	of	injection	in	our	tests:

import	{describe,	expect,	it,	inject}	from	'@angular/core/testing';

import	{DOCUMENT}	from	'@angular/platform-browser';

describe('Application	initialized	with	test	providers',	()	=>	{

		it('should	inject	document',	inject([DOCUMENT],	(document)	=>	{

				expect(document).toBe(window.document);

		}));

});

We	can	simply	use	inject	to	wrap	our	test	function.	The	inject	function	accepts	an	array	as
the	first	parameter	that	should	include	a	list	of	injectables.	The	second	parameter	is	our	actual
test	function,	which	will	now	receive	the	injected	document.

The	async	function	on	the	other	hand	helps	us	with	a	different	concern	too.	What	if	our	tests
actually	involve	asynchronous	operations?	Well,	a	standard	asynchronous	Jasmine	test	would
look	like	the	following:

describe('Async	test',	()	=>	{

		it('should	be	completed	by	calling	done',	(done)	=>	{

				setTimeout(()	=>	{

						expect(true).toBe(true);

						done();

				},	2000);

		});

});

Jasmine	provides	us	with	a	nice	way	to	specify	asynchronous	tests.	We	can	simply	use	the	first
parameter	of	our	test	functions,	which	resolves	to	a	callback	function.	By	calling	this	callback
function,	in	our	case	we	named	it	done,	we	tell	Jasmine	that	our	asynchronous	operations	are
done,	and	we	would	like	to	finish	the	test.

Using	callbacks	to	indicate	whether	our	asynchronous	test	is	finished	is	a	valid	option.
However,	this	can	make	our	test	quite	complicated	if	many	asynchronous	operations	are
involved.	It's	sometimes	even	impossible	to	monitor	all	the	asynchronous	operations	that	are
happening	under	the	hood,	which	also	makes	it	impossible	for	us	to	determine	the	end	of	our
test.

This	is	where	the	async	helper	function	comes	into	play.	Angular	uses	a	library	called	Zone.js
to	monitor	any	asynchronous	operation	in	the	browser.	Simply	put,	Zone.js	hooks	into	any

asynchronous	operation	and	monitors	where	they	are	initiated	as	well	as	when	they	are
finished.	With	this	information,	Angular	knows	exactly	how	many	pending	asynchronous
operations	there	are.

If	we're	using	the	async	helper,	we	tell	Angular	to	automatically	finish	our	test	when	all
asynchronous	operations	in	our	test	are	done.	The	helper	uses	Zone.js	to	create	a	new	zone
and	determine	whether	all	the	microtasks	executed	within	this	zone	are	finished.

Let's	look	at	how	we	can	combine	injection	with	an	asynchronous	operation	in	our	test:

import	{describe,	expect,	it,	inject,	async}	from	'@angular/core/testing';

import	{DOCUMENT}	from	'@angular/platform-browser';

describe('Application	initialized	with	test	providers',	()	=>	{

		it('should	inject	document',	async(inject([DOCUMENT],	(document)	=>	{

						

						setTimeout(()	=>	{

								expect(document).toBe(window.document);

						},	2000);

				}))

);

});

By	combining	inject	with	async	(wrapping),	we	now	have	an	asynchronous	operation	in	our
test.	The	async	helper	will	make	our	test	wait	until	all	asynchronous	operations	are	completed.
We	don't	need	to	rely	on	a	callback,	and	we	have	the	guarantee	that	even	internal
asynchronous	operations	will	complete	before	our	test	finishes.

Tip

Zone.js	is	designed	to	work	with	all	asynchronous	operations	in	the	browser.	It	patches	all
core	DOM	APIs	and	makes	sure	that	every	operation	goes	through	a	zone.	Angular	also	relies
on	Zone.js	in	order	to	initiate	change	detection.

Test	component	builder
Angular	comes	with	another	very	important	testing	utility	to	test	components	and	directives.
So	far,	we	only	tested	the	component	class	of	our	components.	However,	as	soon	as	we	need
to	test	components	and	their	behavior	in	our	application,	this	involves	a	few	more	things:

Testing	the	view	of	components:	It's	sometimes	required	that	we	test	the	rendered	view
of	components.	With	all	the	bindings	in	our	view,	dynamic	instantiation	using	template
directives	and	content	insertion,	it's	required	that	we	can	have	a	way	to	test	all	this
behavior.
Testing	change	detection:	As	soon	as	we	update	our	model	in	our	component	class,	we
want	to	test	the	updates	that	are	performed	via	change	detection.	This	involves	the	whole
change	detection	behavior	of	our	components.
User	interaction:	Our	component	templates	probably	contain	a	set	of	event	bindings,
which	trigger	some	behavior	on	user	interaction.	We'd	also	need	a	way	to	test	the	state
after	some	user	interaction.
Overriding	and	mocking:	In	a	testing	scenario,	it's	sometimes	required	to	mock	certain
areas	in	our	components	in	order	to	create	a	proper	isolation	for	our	test.	In	unit	testing,
we	should	be	concerned	only	about	the	specific	behavior	that	we	want	to	test.

The	TestComponentBuilder,	which	is	available	through	the	@angular/compiler/testing
package,	helps	us	exactly	with	the	previous	concerns.	It's	our	main	tool	to	test	components.

TestComponentBuilder	is	provided	to	the	test	application	injector,	which	we	initialized	in	our
all.spec.js	module	using	the	setBaseTestProviders	function.	The	reason	for	this	is	that	the
builder	itself	also	relies	on	a	lot	of	platform	and	application	dependencies	to	create
components.	As	all	our	dependencies	now	come	from	the	test	injector	and	most	of	them	are
overridden	to	enable	inspection,	this	makes	perfect	sense.

Let's	look	at	a	very	simple	example	of	how	we	can	use	TestComponentBuilder	to	test	the	view
rendering	of	a	dummy	component:

@Component({

		selector:	'dummy-component',

		template:	'dummy'

})

class	DummyComponent	{}

describe('Creating	a	component	with	TestComponentBuilder',	()	=>	{

		it('should	render	its	view	correctly',	async(inject([TestComponentBuilder],	

(tbc)	=>	{

						tbc.createAsync(DummyComponent).then((fixture)	=>	{

								//	When

								fixture.detectChanges();

								//	Then

								expect(fixture.nativeElement.textContent).toBe('dummy');

						});

				}))

);

});

As	TestComponentBuilder	is	exposed	in	the	test	injector,	we	need	to	use	dependency	injection
to	get	hold	of	the	instance.	We	use	the	inject	helper	for	this	purpose.	As	creating	a
component	is	an	asynchronous	operation,	we	also	need	to	make	our	test	wait	for	completion
using	the	async	helper.

In	our	test	function,	we	call	the	createAsync	method	of	TestComponentBuilder	and	pass	a
reference	to	DummyComponent,	which	we	want	to	create.	This	method	returns	a	Promise,	which
will	resolve	once	the	component	is	successfully	compiled.

In	the	then	callback	of	the	returned	promise,	we'll	receive	a	special	fixture	object	of	the
ComponentFixture	type.	We	can	then	call	the	detectChanges	method	on	this	fixture	object,
which	will	execute	change	detection	on	the	created	component.	After	this	initial	change
detection,	the	view	of	our	dummy	component	is	updated.	We	can	now	use	the	nativeElement
property	of	the	fixture	in	order	to	access	the	root	DOM	element	of	the	created	component.

Let's	look	at	the	ComponentFixture	type	and	the	available	fields	in	more	detail:

Member Description

detectChanges()

This	executes	change	detection	on	the	root	component	that	was	created
in	the	context	of	the	fixture.	The	template	bindings	will	not	be	evaluated
automatically	after	creating	a	component	using	TestComponentBuilder.
It's	our	own	responsibility	to	trigger	change	detection.	Even	after	we
change	the	state	of	our	components,	we'd	need	to	trigger	change
detection	again.

destroy()

This	method	destroys	the	underlying	component	and	performs	any
cleanup	that	is	required.	This	can	be	used	to	test	the	OnDestroy
component's	lifecycle.

componentInstance
This	property	points	to	the	component	class	instance,	and	this	is	our
main	interaction	point	if	we	want	to	interact	with	the	component.

nativeElement

This	is	a	reference	to	the	native	DOM	element	at	the	root	of	the	created
component.	This	property	can	be	used	to	inspect	the	rendered	DOM	of
our	component	directly.

elementRef

This	is	the	ElementRef	wrapper	around	the	root	element	of	the	created
component.

debugElement

This	property	points	to	an	instance	of	DebugElement	that	was	created	by
DebugDomRootRenderer	in	the	component	view	rendering	pipeline.	The
debug	element	provides	us	with	some	nice	utilities	to	inspect	the
rendered	element	tree	and	testing	user	interaction.	We'll	take	a	closer
look	at	this	later	in	another	section.

We've	now	looked	at	a	very	simple	dummy	component	and	how	to	test	it	using
TestComponentBuilder	in	conjunction	with	the	inject	and	async	helper	functions.

This	is	great,	but	it	doesn't	really	reflect	the	complexity	that	we	face	when	we	need	to	test	real
components.	Real	components	have	a	lot	more	dependencies	than	our	dummy	component.	We
rely	on	child	directives	and	probably	on	injected	services	to	obtain	data.

Of	course,	the	TestComponentBuilder	also	provides	us	with	the	tools	that	we	need	in	order	to
test	more	complex	components	and	keep	the	necessary	isolation	in	a	unit	test.

Let's	first	look	at	an	example	where	we'd	like	to	test	a	ParentComponent	component,	which
uses	a	ChildComponent	component	to	render	a	list	of	numbers.	As	we'd	only	like	to	test
ParentComponent,	we're	not	interested	in	how	ChildComponent	renders	this	list.	We	want	to
remove	the	behavior	of	the	child	component	from	our	test	by	providing	a	mock	component
for	ChildComponent	during	our	test,	which	allows	us	to	easily	verify	that	the	data	is	received
by	the	child	component:

@Component({

		selector:	'child',

		template:'<li	*ngFor="let	n	of	numbers">Item:	{{n}}'

})

class	ChildComponent	{

		@Input()	numbers;

}

@Component({

		selector:	'parent',

		template:	'<child	[numbers]="numbers"></child>',

		directives:	[ChildComponent]

})

class	ParentComponent	{

		numbers	=	[1,	2,	3];

}

This	is	our	starting	point.	We	have	two	components,	where	we'll	only	be	interested	in	testing
the	parent	component.	However,	the	child	component	is	required	by	the	parent	component,
and	it	implies	a	very	specific	way	to	render	the	numbers	that	are	passed	by	the	parent.	We
would	only	like	to	test	whether	our	numbers	were	passed	successfully	to	the	child	component.
We	don't	want	to	involve	the	rendering	logic	of	the	child	component	in	our	test.	This	is	very
important	because	changing	only	the	child	component	could	then	break	our	parent	component

test,	which	we	want	to	avoid.

The	thing	we	want	to	achieve	now	is	to	create	a	mock	of	our	child	component	in	the	context
of	our	test:

@Component({

		selector:	'child',

		template:	'{{numbers.toString()}}'

})

class	MockChildComponent	{

		@Input()	numbers;

}

In	our	MockChildComponent	class,	it's	important	that	we	use	the	same	selector	property	as	the
real	component.	Otherwise,	the	mocking	will	not	work.	In	the	template,	we	use	a	very	simple
output	of	the	numbers	input,	which	enables	an	easy	inspection.

It's	also	important	that	we	provide	the	same	input	properties	as	the	original	component.
Otherwise,	we	won't	imitate	the	real	component	correctly.

Now,	we	can	go	ahead	and	perform	our	test.	Using	an	additional	method	of
TestComponentBuilder,	we	are	able	to	override	the	real	ChildComponent	with	our	mock
component:

describe('ParentComponent',	()	=>	{

		it('should	pass	data	to	child	correctly',	async(inject([TestComponentBuilder],	

(tbc)	=>	{

						tbc

							.overrideDirective(ParentComponent,	ChildComponent,	MockChildComponent)

							.createAsync(ParentComponent).then((fixture)	=>	{

									fixture.detectChanges();

									expect(fixture.nativeElement.textContent).toBe('1,2,3');

							});

				}))

);

});

Using	the	overrideDirective	method	on	TestBuilderComponent,	we	can	modify	the	parent
component's	directives	metadata	before	we	create	it.	In	this	way,	we're	able	to	exchange	the
real	child	component	with	our	MockChildComponent	class.

As	a	result,	we	decouple	ParentComponent	from	ChildComponent	in	the	context	of	our	test.	We
need	this	level	of	separation	in	order	to	create	a	proper	isolation	of	our	unit	test.	As	our	mock
child	component	simply	renders	the	string	representation	of	the	passed	array,	we	can	easily
test	the	text	content	of	our	fixture.

Tip

The	definition	of	a	unit	test	is	to	test	a	single	unit	and	isolate	the	unit	from	any	dependencies.
If	we	want	to	stick	to	this	paradigm,	we'd	need	to	create	a	mock	for	every	dependent

component.	This	can	easily	get	us	into	a	situation	where	we	need	to	maintain	more	complexity
only	for	the	sake	of	our	tests.	The	key	here	lies	in	finding	the	right	balance.	You	should	mock
dependencies	that	have	a	great	impact	on	our	subject	and	ignore	dependencies	that	have	low
impact	on	the	functionality	we'd	like	to	test.

Let's	look	at	a	different	use	case	where	we	have	a	component	that	injects	a	service	in	order	to
obtain	data.	As	we	also	want	to	test	only	our	component	and	not	the	service	it	relies	on,	we
somehow	need	to	sneak	in	a	mock	service	instead	of	the	real	service	into	our	component.
TestComponentBuilder	also	provides	a	method	to	modify	the	providers	metadata	of
directives,	which	comes	in	very	handy	for	this	case.

First,	we	declare	our	base	component	and	a	service	that	it	relies	on.	In	this	example,	the
NumbersComponent	class	injects	the	NumbersService	class,	and	it	obtains	an	array	with
numbers	from	it:

@Injectable()

class	NumbersService	{

		numbers	=	[1,	2,	3,	4,	5,	6];

}

@Component({

		selector:	'numbers-component',

		template:	'{{numbers.toString()}}',

		providers:	[NumbersService]

})

class	NumbersComponent	{

		constructor(@Inject(NumbersService)	numbersService)	{

				this.numbers	=	numbersService.numbers;

		}

}

Now,	we	need	to	create	a	mock	service	that	provides	the	data	required	in	our	test	and	isolates
our	component	from	the	original	service:

@Injectable()

class	MockNumbersService	extends	NumbersService	{

		numbers	=	[1,	2,	3];

}

In	this	simplified	example,	we	just	provide	a	different	set	of	numbers.	However,	in	a	real
mocking	case,	we	can	exclude	a	lot	of	steps	that	are	unnecessary	and	could	potentially	create
side	effects.	Using	a	mock	service	also	ensures	that	our	test,	which	is	focused	on	the
NumbersComponent	class,	will	not	break	because	of	a	change	in	the	NumbersService	class.

By	extending	the	real	service,	we	can	leverage	some	of	the	behavior	of	our	original	service
while	overriding	certain	functionality	in	our	mock.	You	need	to	be	careful	with	this	approach
though,	as	we	rely	on	the	original	service	by	doing	this.	If	you'd	like	to	create	a	fully	isolated
test,	you	should	probably	override	all	methods	and	properties.	Or	you	can	create	a	completely
independent	mock	service,	which	provides	the	same	methods	and	properties	that	are	used	in

your	test.

Tip

When	using	TypeScript,	you	should	use	interfaces	for	this	purpose	where	both	your	real
service	as	well	as	your	mock	service	implement	the	same	interface.

Let's	now	look	at	the	test	case	and	how	we	can	use	TestComponentBuilder	to	provide	our
mock	service	instead	of	the	real	one:

describe('NumbersComponent',	()	=>	{

		it('should	render	numbers	correctly',	async(inject([TestComponentBuilder],	

(tbc)	=>	{

						tbc

							.overrideProviders(NumbersComponent,	[

									provide(NumbersService,	{

											useClass:	MockNumbersService

									})

])

							.createAsync(NumbersComponent).then((fixture)	=>	{

									fixture.detectChanges();

									expect(fixture.nativeElement.textContent).toBe('1,2,3');

							});

				}))

);

});

Using	the	overrideProviders	method	on	TestComponentBuilder,	we	can	provide	additional
providers	to	the	component	under	test.	This	allows	us	to	override	existing	providers	that	are
already	present	on	the	component.	Using	the	provide	function	of	the	@angular/core	module,
we	can	create	a	provider	which	provides	on	requests	for	NumberService	but	also	resolves	to	a
MockNumberService.

TestComponentBuilder	allows	us	to	perform	tests	in	a	very	simple,	isolated,	and	flexible
fashion.	It	plays	a	major	role	when	writing	unit	tests	for	components.	If	you'd	like	to	read
more	about	the	available	methods	on	TestComponentBuilder,	you	can	visit	the	official
documentation	website	at
https://angular.io/docs/ts/latest/api/core/testing/TestComponentBuilder-class.html.

Now,	it's	time	to	use	what	we	learned	about	TestComponentBuilder	service	and	start	to	test	our
application	components	in	action!

https://angular.io/docs/ts/latest/api/core/testing/TestComponentBuilder-class.html

Testing	components	in	action
In	the	previous	topic,	we	learned	about	the	TestComponentBuilder	service	and	how	to	use	it	to
create	components	in	our	testing	environment.	We	learned	about	the	inject	and	async	helpers
as	well	as	how	to	mock	components	and	services.

Let's	now	use	this	knowledge	to	work	on	our	tests	for	the	AutoComplete	component.	Let's	add
another	test	to	the	auto-complete.spec.js	file	on	the	lib/ui/auto-complete	path.

As	the	AutoComplete	component	relies	on	the	rather	complex	Editor	component,	it's	probably
a	good	idea	to	mock	our	Editor	component	before	we	start	writing	a	test:

@Component({

		selector:	'ngc-editor',

		template:	'{{content}}'

})

export	class	MockEditor	{

		@Input()	content;

}

This	might	look	a	bit	tenuous,	but	this	is	actually	all	that	we	need	for	our	current	tests	on	the
AutoComplete	component.	The	Editor	component	should	just	accept	a	content	input,	which	is
the	main	interaction	between	the	two	components.	In	the	template	of	our	MockEditor
component,	we	just	render	the	content	input	property.	This	way,	we	can	easily	verify	the	result
of	using	the	AutoComplete	component.

Let's	use	this	mock	editor	to	write	our	next	test:

it('should	initialize	editor	with	selected	item',	

async(inject([TestComponentBuilder],	(tcb)	=>	{

				tcb

						.overrideDirective(AutoComplete,	Editor,	MockEditor)

						.createAsync(AutoComplete).then((fixture)	=>	{

								//	Given

								fixture.componentInstance.items	=	['one',	'two',	'three'];

								fixture.componentInstance.selectedItem	=	'two';

								//	When

								fixture.detectChanges();

								//	Then

								expect(fixture.nativeElement.textContent.trim())

										.toBe('two');

						});

		})));

In	our	tests,	we'd	like	to	test	whether	the	AutoComplete	component	initializes	Editor
(respectively,	our	MockEditor	component)	with	the	right	content.	We	test	whether
selectedItem	of	our	AutoComplete	component	successfully	reflects	into	the	editor.

We	use	TestComponentBuilder,	which	creates	components	asynchronously.	Using	the	async

helper	function,	we	tell	Jasmine	to	wait	for	all	asynchronous	operations	to	complete	for	this
test.

Using	the	ComponentFixture	that	is	provided	by	TestComponentBuilder,	we	can	start	to
interact	with	the	created	component.	Using	the	componentInstance	member	of	the	component
fixture,	we	can	set	the	required	input	properties	of	our	AutoComplete	component.

As	we're	responsible	for	the	triggering	of	change	detection	manually	in	our	tests,	we	use	the
detectChanges	method	on	our	fixture	to	update	the	component	view,	based	on	the	new	state.
This	will	initiate	the	change	detection	lifecycle	on	our	component	and	perform	the	necessary
view	updates.

After	the	view	updates	both	of	our	AutoComplete	component	and	the	underlying	MockEditor
component,	we	can	run	our	assertions	to	validate	the	updated	DOM	by	getting	the	text	content
of	the	nativeElement	property	on	our	fixture.

For	this	particular	test,	we're	fine	with	this	approach.	However,	in	other	scenarios	where	we
have	more	DOM	elements	involved,	it	wouldn't	be	sufficient	to	assert	on	the	root	component's
textContent	property	directly.	This	would	probably	include	a	lot	of	noise,	which	we're	not
interested	in	for	our	assertion.	We	should	always	try	to	narrow	our	assertion	to	the	fewest
details	possible.

As	we	have	access	to	the	native	DOM	element	on	our	fixture,	we	can	simply	use	the	DOM	API
to	select	child	elements	in	order	to	narrow	our	assertion:

expect(fixture.nativeElement.querySelector('ngc-

editor').textContent.trim()).toBe('two');

This	would	successfully	select	the	DOM	element	of	our	mock	editor,	and	we	can	only	check
the	text	content	inside	the	editor.

Although	this	would	be	a	feasible	approach,	Angular	provides	us	with	a	much	better	approach
to	achieve	this	goal.

Provided	by	ComponentFixture,	we	have	access	to	the	DebugElement	tree	that	is	created	by
DebugDomRootRenderer	in	the	context	of	our	test.	DebugElement	allows	us	advanced	inspection
of	the	element	tree	that	was	created	by	Angular	when	rendering	our	components.	It	also
contains	an	advanced	querying	API,	which	allows	us	to	search	for	certain	elements	in	the	tree.

Let's	rewrite	our	test	to	use	the	advanced	capabilities	provided	by	DebugElement:

...

import	{By}	from	'@angular/platform-browser';

...

		it('should	initialize	editor	with	selected	item',	

async(inject([TestComponentBuilder],	(tcb)	=>	{

				tcb

						.overrideDirective(AutoComplete,	Editor,	MockEditor)

						.createAsync(AutoComplete).then((fixture)	=>	{

								...

								

expect(fixture.debugElement.query(By.directive(MockEditor)).nativeElement.text

Content.trim()).toBe('two');

						});

		})));

The	query	and	queryAll	methods	that	are	available	on	every	DebugElement	object	allow	us	to
query	the	Angular	view	tree	like	we	would	query	a	DOM	tree	using	querySelector	and
querySelectorAll.	The	difference	here	is	that	we	can	use	a	predicate	helper	to	query	for
matching	elements.	Using	the	By	helper	class,	we	can	create	these	predicates,	which	will	then
be	used	in	order	to	query	the	DebugElement	tree.

There	are	currently	three	different	predicates	available	using	the	By	helper:

Member Description

By.all()
This	is	the	predicate,	which	will	result	in	querying	for	all	the	child
DebugElement	object	of	the	current	DebugElement	object

By.css(selector)
This	is	the	predicate,	which	will	result	in	querying	for	DebugElement
using	the	specified	CSS	selector

By.directive(type)
This	is	the	predicate,	which	will	result	in	querying	for	DebugElement
that	contain	the	specified	directive

Going	back	to	our	test,	we	can	now	use	the	query	method	on	the	fixture	debug	element	in
order	to	query	for	our	editor.	As	we've	exchanged	the	real	Editor	component	with	our
MockEditor	component,	we	need	to	query	for	the	latter.	We	use	a	By.directive(MockEditor)
predicate,	which	will	successfully	query	for	the	DebugElement	object	that	represents	the	host
element	of	our	MockEditor	component.

The	query	method	of	the	DebugElement	object	will	always	return	a	new	DebugElement	object
of	the	first	found	element	if	there	was	a	match.	It	will	return	null	if	the	queried	element	was
not	found.

The	queryAll	method	of	the	DebugElement	will	return	an	array	of	many	DebugElement	which
contains	all	elements	that	match	the	predicate.	If	there	were	no	matching	elements,	this	method
will	return	an	empty	array.

Testing	component	interaction
Although	UI	interaction	testing	is	probably	part	of	end-to-end	testing,	we'll	look	at	how	to	test
basic	user	interaction	on	your	components	in	this	topic.

In	this	topic,	we'll	test	the	autocomplete	component	behavior	if	the	user	clicks	on	an	item	in
the	callout	window	that	shows	all	available	items.

Let's	add	this	test	to	the	already	existing	auto-complete.spec.js	module:

it('should	emit	selectedItemChange	on	click	in	callout',	

async(inject([TestComponentBuilder],	(tcb)	=>	{

				tcb

						.overrideDirective(AutoComplete,	Editor,	MockEditor)

						.createAsync(AutoComplete).then((fixture)	=>	{

								spyOn(fixture.componentInstance.selectedItemChange,	'next');

								fixture.componentInstance.items	=	['one',	'two',	'three'];

								fixture.componentInstance.selectedItem	=	'one';

								fixture.componentInstance.onEditModeChange(true);

								fixture.componentInstance.onEditableInput('');

								fixture.detectChanges();

								fixture.debugElement

										.queryAll(By.css('.auto-complete__item'))

										.find((item)	=>	item.nativeElement.textContent.trim()	===	'two')

										.triggerEventHandler('click');

								

expect(fixture.componentInstance.selectedItemChange.next).toHaveBeenCalledWith

('two');

				});

		})));

First,	we	want	to	set	up	a	Jasmine	spy	on	the	selectedItemChange	EventEmitter	next	function
for	our	test.	This	way,	we	can	check	later	whether	our	AutoComplete	component	successfully
emitted	the	event	when	the	user	selects	an	item	from	the	callout.

In	the	Given	section	of	our	test	code,	we	also	call	the	onEditModeChanged	and
onEditableInput	methods	on	the	AutoComplete	component	instance.	With	these	calls,	we
simulate	the	editor	that	was	used,	and	there's	currently	no	content	in	the	editor.	This	will	result
in	the	desired	filtering,	which	will	present	all	available	items	in	the	callout	for	selection.

In	the	When	section	of	our	code,	we	first	need	to	trigger	change	detection	on	the	fixture.	This
results	in	the	callout	with	all	available	auto-complete	items	being	rendered	in	the
AutoComplete	component.

Now,	we	can	simulate	the	click	event	on	one	of	our	autocomplete	items	to	fishing	the	actions
in	this	test.

First,	we'll	select	all	DebugElement	object	that	match	the	CSS	class	of	our	autocomplete	items
in	the	callout.	This	will	provide	us	with	an	array	containing	all	the	elements,	where	we	can

now	use	the	Array.prototype.find	method	to	select	one	specific	item	based	on	the	contained
text.

On	the	DebugElement	resulting	from	our	query,	we	now	call	the	triggerEventHandler
method	to	simulate	a	click	event.	This	will	actually	not	trigger	a	real	click	event,	but	rather	it
will	execute	the	handler	attached	to	the	binding	in	the	view	directly.

After	simulating	a	click	on	the	autocomplete	item	with	the	text	content	of	two,	we	can	now
inspect	our	spy	on	the	selectedItemChange.next	function.	According	to	the	behavior	in	our
component,	this	should	have	been	called	with	the	selected	item	value.

Testing	user	interaction	on	components	is	made	very	easy	using	the	DebugElement.	We	also
decouple	our	tests	from	the	underlying	DOM	events	by	taking	the	shortcut	enabled	by	the
triggerEventHandler	method.

Tip

The	triggerEventHandler	method	operates	on	the	virtual	element	tree	of	Angular,	rather
than	the	actual	DOM	tree.	Due	to	this,	we	can	also	use	this	method	to	trigger	event	handlers
that	are	attached	to	component	output	properties.

Testing	our	plugin	system
In	the	previous	sections,	we	created	tests	for	the	AutoComplete	component,	which	is	a	rather
simple	UI	component.	However,	we	learned	about	all	the	techniques	that	are	required	to
perform	testing	on	more	complex	components	or	even	systems	of	components.

Now,	we'll	look	into	testing	the	plugin	system	that	was	created	in	Chapter	10,	Making	Things
Pluggable.

It's	probably	a	good	time	to	recap	on	the	plugin	system	architecture	overview	before	working
on	this	topic.	As	always	with	testing,	it's	crucial	to	understand	exactly	what's	happening	in	the
system	under	test.

Let's	create	a	new	plugin.spec.js	file	in	the	lib/plugin	path.

Before	we	implement	our	first	test	function	for	this	subject,	we	will	need	to	create	some
dummy	components	and	plugins	to	test	our	system	with.	Let's	create	these	at	the	top	of	our
testing	module:

@Component({

		selector:	'dummy-plugin-component-1',

		template:	'dummy1'

})

export	class	DummyPluginComponent1	{}

@Component({

		selector:	'dummy-plugin-component-2',

		template:	'dummy2'

})

export	class	DummyPluginComponent2	{}

@Component({

		selector:	'dummy-application',

		template:	'dummy-slot:<ngc-plugin-slot	name="dummy-slot"></ngc-plugin-slot>',

		directives:	[PluginSlot]

})

export	class	DummyApplication	{}

Nothing	special	here.	We	declare	two	dummy	components	with	a	static	template	that	will	serve
us	in	performing	our	plugin	tests.	Additionally,	we	created	a	dummy	application	component,
which	will	be	our	main	testing	component.	In	the	following	tests,	we	will	make	use	of	a
dummy	component	to	test	our	PluginSlot	directive,	as	opposed	to	testing	a	component
directly.

Next,	we'll	need	to	mock	our	PluginService	injectable,	which	is	designed	to	load	plugins
asynchronously	from	URLs.	In	our	mock,	we'd	want	to	override	this	functionality.	Instead	of
loading	plugins	from	URLs,	we	want	to	load	some	predefined	test	plugins:

@Injectable()

export	class	MockPluginService	extends	PluginService	{

		constructor()	{

				super();

				this.change	=	{

						subscribe()	{}

				};

		}

		loadPlugins()	{}

}

We	override	the	loadPlugins	method	to	avoid	any	plugins	being	loaded	during	the
construction	of	the	service.	We	also	override	the	RxJS	subject	present	on	the	change	property
in	order	to	prevent	any	reactive	behavior	of	our	plugin	system	because	this	would	only
disturb	our	tests.

Let's	dive	right	into	our	first	test	where	we	want	to	test	a	very	basic	plugin	with	one	plugin
component,	to	be	instantiated	correctly	by	the	PluginSlot	directive.	First,	we	set	up	our	test
structure	using	the	describe	and	it	functions:

describe('PluginSlot',	()	=>	{

		beforeEachProviders(()	=>	[

				provide(PluginService,	{

						useClass:	MockPluginService

				})

]);

		it('should	create	dummy	component	into	designated	

slot',async(inject([TestComponentBuilder,	PluginService],	(tcb,	pluginService)	

=>	{

						tcb.createAsync(DummyApplication).then((fixture)	=>	{

										...

								});

}));

The	only	difference	here	to	what	we	already	knew	is	that	we	use	a	new	beforeEachProviders
function	from	the	@angular/core/testing	module.	This	function	allows	us	to	set	up	some
default	providers	that	are	used	in	our	tests.	As	all	our	plugin	system	tests	will	rely	on	the
presence	of	PluginService,	we	use	this	function	to	set	up	the	mock	provider	resolving	to	our
MockPluginService	class.

Instead	of	using	beforeEachProviders,	we	could	also	use	the	overrideProviders	method	in
the	TestComponentBuilder	to	provide	additional	injectables.	However,	this	will	limit	the	use
to	the	inside	of	our	components.	If	we	want	to	interact	with	the	service	from	our	test	function,
we	need	to	use	the	beforeEachProviders	helper.

Using	the	inject	helper,	we	inject	TestComponentBuilder	and	PluginService,	which	we
provided	using	the	beforeEachProviders	helper.

Let's	now	implement	the	missing	test	body	inside	of	the	Promise	callback	after	executing

createAsync.

As	a	first	step,	we	define	a	new	dummy	plugin,	which	uses	the	PluginConfig	decorator	from
the	previous	chapter.	We	create	a	PluginPlacement	in	the	plugin	metadata,	which	includes	a
mapping	of	DummyPluginComponent1	into	the	slot	with	the	name	dummy-slot.	If	you	take	a
look	at	the	DummyApplication	component	that	we	use	in	this	test	again,	you	can	see	that	it
contains	a	PluginSlot	directive	with	the	name	attribute	set	to	dummy-slot:

@PluginConfig({

		name:	'dummy-plugin',

		description:	'Dummy	Plugin',

		placements:	[

				new	PluginPlacement({slot:	'dummy-slot',	priority:	1,	component:	

DummyPluginComponent1})

]

})

class	DummyPlugin	{}

This	plugin	should	now	cause	the	DummyPluginComponent1	component	to	be	rendered	in	the
plugin	slot	of	our	DummyApplication	class.

As	a	next	step,	we	add	the	DummyPlugin	class	to	the	plugins	list	of	our	MockPluginService
mock	service:

pluginService.plugins	=	[{

		type:	DummyPlugin,

		config:	DummyPlugin._pluginConfig,

		instance:	new	DummyPlugin()

}];

The	object	that	we're	adding	to	the	plugins	array	of	the	MockPluginService	simply	simulates
a	plugin	that	would	normally	be	loaded	in	PluginService.

Next,	we	put	aside	a	reference	to	the	PluginSlot	directive,	which	is	placed	in	our
DummyApplication	component.	For	this,	we	can	use	the	query	method	on	the	DebugElement
root	of	our	fixture.	We	use	a	predicate,	which	allows	us	to	query	by	the	directive	type	of	our
PluginSlot	component:

const	pluginSlot	=	fixture.debugElement

		.query(By.directive(PluginSlot))

		.injector

		.get(PluginSlot);

We	need	the	reference	to	the	directive	instance	of	the	plugin	slot	in	order	to	initialize	the	slot
prior	to	our	test	assertion.	This	is	an	important	step	because	we	can't	rely	on	the	observable
subject	in	our	MockPluginService	class	to	initialize	our	PluginSlot	directive.	We	explicitly
disabled	the	reactive	features	of	our	plugin	system	in	order	to	perform	proper	testing.
Therefore,	we	need	to	manually	initialize	our	plugin	slot	before	we	can	perform	any
assertion.

After	executing	the	query	with	the	directive	predicate	(searching	for	an	element	which
contains	the	PluginSlot	directive),	we'll	receive	DebugElement	of	our	plugin	slot	element.	In
order	to	get	the	directive	instance,	we	use	the	element	injector	present	on	each	DebugElement
object.

The	initialize	method	on	the	PluginSlot	component	instance	will	create	all	relevant	plugin
components.	Luckily,	this	will	also	return	a	Promise	to	us,	which	will	be	resolved	once	all
components	have	been	created	in	the	view	of	our	ApplicationDummy	component:

pluginSlot.initialize().then(()	=>	{

		fixture.detectChanges();

		expect(fixture.nativeElement.textContent).toBe('dummy-slot:dummy1');

});

In	the	callback	of	the	Promise	returned	by	the	initialize	method	of	the	PluginSlot	instance,
we	can	finally	assert	on	the	text	content	of	the	root	element	of	our	DummyApplication
component.

As	the	DummyPluginComponent1	class	has	a	simple	static	template	that	contains	the	text	dummy1,
we	should	see	a	complete	text	content	of	dummy-slot:dummy1	in	our	application	view.

This	is	it	for	our	first	plugin	test.	Now,	we	will	look	at	a	second	test,	which	we'll	use	to	verify
another	feature	of	our	plugin	system.	Our	plugin	system	should	also	be	able	to	render	two
components	of	the	same	plugin	into	two	separate	plugin	slots.	However,	in	the	template	of	our
DummyApplication	component,	we	currently	only	have	one	plugin	slot	with	the	name	dummy-
slot.

In	order	to	modify	the	template	of	our	DummyApplication	component	just	for	a	particular	test,
we	can	use	the	overrideTemplate	method	on	TestBuilderComponent:

		it('should	create	two	dummy	components	of	same	plugin	into	different	

slots',async(inject([TestComponentBuilder,	PluginService],	(tcb,	pluginService)	

=>	{

						const	template	=	'dummy-slot1:<ngc-plugin-slot	name="dummy-slot1">

</ngc-plugin-slot>dummy-slot2:<ngc-plugin-slot	name="dummy-slot2"></ngc-

plugin-slot>';

						tcb.overrideTemplate(DummyApplication,	template)

								.createAsync(DummyApplication).then((fixture)	=>	{

										...

								});

				}))

);

In	our	test	function,	we	create	a	new	template	for	our	DummyApplication	component.	We're
adding	two	plugin	slots	to	the	template	with	their	name	attributes	set	to	dummy-slot1	and
dummy-slot2.

Now,	we	can	use	the	overrideTemplate	method	on	TestComponentBuilder	to	override	the

DummyApplication	component	template	before	we	create	it.	This	provides	us	with	the
necessary	flexibility	to	reuse	mock	and	dummy	components	for	different	tests.

Let's	take	a	look	at	the	code	that	comes	in	the	createAsync	promise	callback:

@PluginConfig({

		name:	'dummy-plugin',

		description:	'Dummy	Plugin',

		placements:	[

				new	PluginPlacement({slot:	'dummy-slot',	priority:	1,	component:	

DummyPluginComponent1}),

				new	PluginPlacement({slot:	'dummy-slot',	priority:	2,	component:	

DummyPluginComponent2})

]

})

class	DummyPlugin	{}

First,	we	create	a	new	DummyPlugin	plugin	class	and	use	the	PluginConfig	decorator	to
configure	it.	In	the	placement	metadata,	we	configure	the	mappings	so	that	we	map	two
components	into	different	plugin	slots.	The	first	component	is	mapped	to	the	plugin	slot	with
the	name	DummySlot1,	while	the	second	one	will	go	to	the	slot	with	the	name	DummySlot2.
We've	overridden	our	DummyApplication	template	to	include	both	of	these	plugin	slots.

We	now	add	our	DummyPlugin	class	to	the	MockPluginService	class	and	simulate	the	plugin
being	loaded:

pluginService.plugins	=	[{

		type:	DummyPlugin,

		config:	DummyPlugin._pluginConfig,

		instance:	new	DummyPlugin()

}];

The	following	code	queries	for	DebugElements	in	the	fixture	using	the	queryAll	method.	We
use	a	predicate	that	queries	for	all	elements	containing	the	PluginSlot	directive.	With	an
additional	call	to	Array.prototype.map,	we	transform	the	array	in	order	to	get	back	the
component	instances	of	the	discovered	PluginSlot	components	directly:

const	pluginSlots	=	fixture.debugElement

		.queryAll(By.directive(PluginSlot))

		.map((debugElement)	=>	debugElement.injector.get(PluginSlot));

Now,	it's	time	to	complete	our	test.	Using	the	Promise.all	function,	we're	able	to	streamline
an	array	of	Promises	into	a	single	Promise,	which	will	resolve	once	all	underlying	Promises
are	resolved.	We	can	then	map	our	pluginSlots	array	by	executing	the	initialize	method	on
each	of	the	PluginSlot	components.	This	will	return	an	array	of	Promises	to	us,	which	will
resolve	when	all	components	within	the	plugin	slots	are	created:

Promise.all(

		pluginSlots.map((pluginSlot)	=>	pluginSlot.initialize())

).then(()	=>	{

		fixture.detectChanges();

		expect(fixture.nativeElement.textContent).toBe('dummy-slot1:dummy1dummy-

slot2:dumm

y2');

});

In	the	then	callback	of	the	consolidated	promise	using	the	Promise.all	function,	we	can
finally	perform	our	assertion.	With	the	overridden	template	of	our	DummyApplication
component	and	the	output	of	our	two	plugin	components	in	the	two	separated	plugin	slots,	we
should	get	a	text	content	of	dummy-slot1:dummy1dummy-slot2:dummy2.

This	is	the	last	test	that	we	look	at	in	this	chapter.	However,	there	are	more	tests	in	the	code
that	comes	with	this	book.	Just	check	out	the	code	repository	and	get	your	hands	on	those	tests
yourself.

Summary
In	this	chapter,	we	learned	how	to	write	concise	unit	tests	for	our	components.	We	followed	a
BDD	style	approach	of	writing	tests,	and	we	also	covered	the	basics	of	the	JavaScript	testing
framework,	Jasmine.

We	learned	about	the	debugging	tools	that	are	available	in	Angular	and	how	to	set	up	an
injector	environment	for	testing.	Using	TestComponentBuilder,	we	were	able	to	perform	tests
in	a	very	flexible	but	precise	way.	We	also	learned	about	the	view	tree	of	multiple
DebugElement	that	are	created	along	with	TestComponentBuilder	running	in	the	debug
environment.	This	allowed	us	to	perform	clever	inspection	and	apply	practical	queries	to	the
rendered	views	in	order	to	assert	expected	results.

We	used	the	inject	and	async	helpers	to	inject	dependencies	and,	at	the	same	time,	run
asynchronous	tests.	We	built	both	mock	and	dummy	components	in	order	to	isolate	our	tests
from	the	rest	of	our	application.

Appendix	A.	Task	Management	Application
Source	Code
The	source	code	of	the	task	management	application	built	in	this	book	is	available	from	the
Packt	download	servers.	The	links	for	each	chapter's	final	code	are	listed	in	this	appendix.
This	appendix	also	provides	instructions	on	how	to	use	the	downloaded	code	and	the	steps
required	in	order	to	run	the	code.	Furthermore,	it	helps	you	troubleshoot	some	of	the
common	problems	that	you	can	experience	when	working	with	the	task	management
application	and	some	hints	on	how	to	resolve	them.

Download
The	following	list	provides	download	links	for	each	chapter	of	the	book.	The	download	links
reference	downloadable	archive	files,	which	need	to	be	unpacked	on	your	local	hard	drive:

Chapter Link

Chapter	2,	Ready,	Set,
Go!

https://github.com/PacktPublishing/Mastering-Angular-2-
Components/tree/master/angular-2-components-chapter-2

Chapter	3,	Composing
with	Components

https://github.com/PacktPublishing/Mastering-Angular-2-
Components/tree/master/angular-2-components-chapter-3

Chapter	4,	No
Comments,	Please!

https://github.com/PacktPublishing/Mastering-Angular-2-
Components/tree/master/angular-2-components-chapter-4

Chapter	5,	Component-
Based	Routing

https://github.com/PacktPublishing/Mastering-Angular-2-
Components/tree/master/angular-2-components-chapter-5

Chapter	6,	Keeping	Up
with	Activities

https://github.com/PacktPublishing/Mastering-Angular-2-
Components/tree/master/angular-2-components-chapter-6

Chapter	7,	Components
for	User	Experience

https://github.com/PacktPublishing/Mastering-Angular-2-
Components/tree/master/angular-2-components-chapter-7

Chapter	8,	Time	Will	Tell https://github.com/PacktPublishing/Mastering-Angular-2-
Components/tree/master/angular-2-components-chapter-8

Chapter	9,	Spaceship
Dashboard

https://github.com/PacktPublishing/Mastering-Angular-2-
Components/tree/master/angular-2-components-chapter-9

Chapter	10,	Making
Things	Pluggable

https://github.com/PacktPublishing/Mastering-Angular-2-
Components/tree/master/angular-2-components-chapter-10

Chapter	11,	Putting
Things	to	the	Test

https://github.com/PacktPublishing/Mastering-Angular-2-
Components/tree/master/angular-2-components-chapter-11

https://github.com/PacktPublishing/Mastering-Angular-2-Components/tree/master/angular-2-components-chapter-2
https://github.com/PacktPublishing/Mastering-Angular-2-Components/tree/master/angular-2-components-chapter-3
https://github.com/PacktPublishing/Mastering-Angular-2-Components/tree/master/angular-2-components-chapter-4
https://github.com/PacktPublishing/Mastering-Angular-2-Components/tree/master/angular-2-components-chapter-5
https://github.com/PacktPublishing/Mastering-Angular-2-Components/tree/master/angular-2-components-chapter-6
https://github.com/PacktPublishing/Mastering-Angular-2-Components/tree/master/angular-2-components-chapter-7
https://github.com/PacktPublishing/Mastering-Angular-2-Components/tree/master/angular-2-components-chapter-8
https://github.com/PacktPublishing/Mastering-Angular-2-Components/tree/master/angular-2-components-chapter-9
https://github.com/PacktPublishing/Mastering-Angular-2-Components/tree/master/angular-2-components-chapter-10
https://github.com/PacktPublishing/Mastering-Angular-2-Components/tree/master/angular-2-components-chapter-11

The	complete	source	code	is	also	available	at	http://www.packtpub.com.

http://www.packtpub.com

Prerequisites
The	task	management	application	is	built	using	Node.js	technologies;	therefore,	it	requires
that	you	have	Node.js	installed	on	your	machine	before	you	can	run	any	of	the	code.

You	can	download	and	install	Node.js	from	the	website,	http://nodejs.org.	In	order	to	build	the
Sass	source	files	and	start	a	server	with	live-reload,	two	global	node	modules	are	required:

npm	install	-g	gulp	live-server

http://nodejs.org

Usage
After	downloading	the	source	code	of	an	individual	chapter,	you'll	need	to	install	NPM	as
well	as	JSPM	dependencies.	By	running	the	following	two	lines	of	code	on	your	console,
you'll	make	sure	all	dependencies	are	installed.	Make	sure	that	you	run	these	commands	from
inside	the	downloaded	and	extracted	code	folder:

npm	install

jspm	install

After	you've	installed	the	required	dependencies,	you	can	go	ahead	and	start	the	application:

npm	start

The	NPM	start	script	will	invoke	gulp	in	order	to	compile	any	Sass	files	as	well	as	live	server
to	start	a	static	server	with	live-reload.	Please	read	the	prerequisites	topic	on	how	to	install
these	global	Node.js	modules.

Troubleshooting
We've	carefully	considered	various	environments	where	the	task	management	source	code
will	be	executed.	However,	there's	always	a	chance	that	you'll	experience	some	issues	when
working	with	the	source	code.	This	topic	will	provide	you	with	solutions	for	common
problems	when	working	with	the	task	management	application.

Cleaning	IndexDB	to	reset	data
The	task	management	application	uses	a	data	store	that	is	persisted	in	your	browser.	If	you	use
the	application	extensively	across	multiple	chapters,	chances	are	high	that	your	data	is	causing
some	application	instability.

If	you'd	like	to	clean	the	local	database	used	in	the	application,	you	can	run	the	following	line
of	code	on	the	debugger	console	of	your	browser.	It's	important	that	you	run	the	code	snippet
in	the	debugger	of	your	browser	with	the	task	management	application	open.	If	your	browser
points	to	a	different	origin,	the	application	database	can't	be	deleted.	After	deleting	the
database,	the	application	can	be	reloaded,	and	it	will	recreate	the	database	with	the	initial
sample	data:

indexedDB.deleteDatabase('_pouch_angular-2-components');

Enabling	web	components	in	Firefox
Chapter	6,	Keeping	Up	with	Activities,	relies	on	the	presence	of	Shadow	DOM	in	the	browser.
Chrome	supports	Shadow	DOM	natively	after	version	35.	In	Firefox,	you	can	enable	Shadow
DOM	by	visiting	the	about:config	page	and	turning	on	the	dom.webcomponents.enabled	flag.

IE,	Edge,	and	Safari	don't	support	this	standard	at	all;	however,	we	can	teach	them	how	to	deal
with	Shadow	DOM	by	including	a	polyfill	named	webcomponents.js.	You	can	find	more
information	on	this	polyfill	at	https://github.com/webcomponents/webcomponentsjs.

https://github.com/webcomponents/webcomponentsjs

Index
A

2ality
URL	/	Classes

activity	slider	component
building	/	Building	an	interactive	activity	slider	component
projection	of	time	/	Projection	of	time
activity	indicators,	rendering	/	Rendering	activity	indicators
implementing	/	Bringing	it	to	life,	Recap

activity	timeline
building	/	Building	the	activity	timeline

Agile	plugin
building	/	Building	an	Agile	plugin
Agile	task	info	component	/	Agile	task	info	component
Agile	task	details	component	/	Agile	task	details	component

Angular	2
component	architecture	/	Angular's	component	architecture

application
running	/	Running	the	application,	Recap

asterisk	syntax
and	templates	/	The	asterisk	syntax	and	templates

autocomplete	component	/	Creating	an	autocomplete	component

B
Behavior-driven	Development	(BDD)	style	tests	/	An	introduction	to	Jasmine
Bootstrapping

about	/	Bootstrapping

C
Chartist

about	/	Introduction	to	Chartist
chart	legend

creating	/	Creating	a	chart	legend
classes,	ECMAScript	6

about	/	Classes
commenting	system

building	/	Building	a	commenting	system
comment	component,	building	/	Building	the	comment	component,	Building	the
comments	component

component	architecture
about	/	Angular's	component	architecture
in	Angular	2	/	Everything	is	a	component

component	builder
testing	/	Test	component	builder

component	outputs
spying	on	/	Spying	on	component	outputs

components
testing,	utilities	for	/	Utilities	to	test	components
providers	/	Utilities	to	test	components
in	action,	testing	/	Testing	components	in	action
interaction,	testing	/	Testing	component	interaction

components,	user	interfaces
encapsulation	/	Encapsulation
composability	/	Composability
code,	structuring	/	Components,	invented	by	nature
metrics	/	My	UI	framework	wishlist
standards	/	Time	for	new	standards
template	elements	/	Template	elements
shadow	DOM	/	Shadow	DOM

composability
about	/	Composability

composition
content	projection	used	/	Composition	using	content	projection
by	routing	/	Composition	by	routing

container
about	/	Components,	invented	by	nature

content
projected,	mixing	with	generated	content	/	Mixing	projected	with	generated	content

content	projection
used,	for	composition	/	Composition	using	content	projection

custom	UI	elements

about	/	Custom	UI	elements,	Recap
checkbox	/	Custom	UI	elements
toggle	buttons	/	Custom	UI	elements

D
data

about	/	Data	–	Fake	to	real
decorators,	ECMAScript	6

about	/	Decorators
download	links	/	Download
drag	and	drop

about	/	Drag	and	drop
draggable	directive,	implementing	/	Implementing	the	draggable	directive
drop	target	directive,	implementing	/	Implementing	a	drop	target	directive
in	task	list	component,	implementing	/	Integrating	drag	and	drop	in	task	list
component
recapitulate	/	Recapitulate	on	drag	and	drop

draggable	directive
implementing	/	Implementing	the	draggable	directive

drop	target	directive
implementing	/	Implementing	a	drop	target	directive

DSL	/	Plugin	architecture

E
ECMAScript	6

about	/	JavaScript	of	the	future
features	/	I	speak	JavaScript,	translate,	please!
classes	/	Classes
modules	/	Modules
template	strings	/	Template	strings
versus	TypeScript	/	ECMAScript	or	TypeScript?
decorators	/	Decorators

editor
about	/	One	editor	to	rule	them	all
component,	creating	/	Creating	an	editor	component,	Recap

editor	component
tag	input,	integrating	/	Integrating	tag	input	within	the	editor	component

efforts
managing	/	Managing	efforts
estimated	duration	/	Managing	efforts
effective	duration	/	Managing	efforts
time	duration	input	/	The	time	duration	input
managing,	components	for	/	Components	to	manage	efforts
duration	component	/	Components	to	manage	efforts
component	/	Components	to	manage	efforts
visual	efforts	timeline	/	The	visual	efforts	timeline
recapitulating	on	/	Recapitulating	on	efforts	management

embedded	views
adding	/	Adding	and	removing	embedded	views
removing	/	Adding	and	removing	embedded	views

encapsulation
about	/	Encapsulation,	The	right	level	of	encapsulation,	Recap

event-based	extension	points	/	Plugin	architecture

G
Gang	of	Four	(GoF)

about	/	Decorators

H
hello	world	component

writing	/	Your	first	component
writing,	JavaScript	used	/	JavaScript	of	the	future

HTML
URL	/	Building	SVG	components

I
immediately	invoked	function	expression	(IIFE)

about	/	Modules
immutability

about	/	Immutability
benefits	/	Immutability

IndexDB
cleaning,	to	rest	data	/	Cleaning	IndexDB	to	reset	data

infinite	scroll	directive
creating	/	Creating	an	infinite	scroll	directive
finishing	/	Finishing	our	infinite	scroll	directive

input
generating	output	/	Input	generates	output,	Recap

J
Jasmine

about	/	An	introduction	to	Jasmine
core	/	An	introduction	to	Jasmine
HTML	/	An	introduction	to	Jasmine
boot	/	An	introduction	to	Jasmine
first	test,	writing	/	Writing	our	first	test

JavaScript
using	/	JavaScript	of	the	future
ECMAScript	6	/	JavaScript	of	the	future

JSPM
about	/	SystemJS	and	JSPM,	Starting	from	scratch
application,	creating	/	Getting	started	with	JSPM

L
life	cycle	hooks

URL	/	Custom	UI	elements
local	view	variables	/	Input	generates	output
logging	activities

service,	creating	for	/	Creating	a	service	for	logging	activities
about	/	Logging	activities

M
MathML

URL	/	Building	SVG	components
milestones

setting	/	Setting	milestones
autocomplete	component,	creating	/	Creating	an	autocomplete	component

modules,	ECMAScript	6
about	/	Modules

Mozilla	Developer
URL	/	Styling	SVG

Mozilla	Developer	Network
URL,	for	documentation	/	Modules

N
Namespaces	Crash	Course	article

URL	/	Building	SVG	components
navigation

refactoring	/	Refactoring	navigation,	Summary
Node.js

about	/	Node.js	and	NPM
URL	/	Node.js	and	NPM

node	package	manager	(NPM)
about	/	Node.js	and	NPM

Node	Version	Manager	(NVM)
URL	/	Getting	started	with	JSPM

NPM	start	script	/	Usage

O
object-oriented	programming	(OOP)

about	/	Components	–	The	organs	of	user	interfaces
observable	data	structures

reactive	programming	with	/	Reactive	programming	with	observable	data	structures
open	tasks

visualizing	/	Visualizing	open	tasks
chart,	creating	/	Creating	an	open	tasks	chart
chart	legend,	creating	/	Creating	a	chart	legend
tasks	chart,	making	interactive	/	Making	tasks	chart	interactive

P
pluggable	UI	components

about	/	Pluggable	UI	components
plugin	architecture,	finalizing	/	Finalizing	our	plugin	architecture

plugin,	architecture
about	/	Plugin	architecture
extensibility	/	Plugin	architecture
portability	/	Plugin	architecture
composability	/	Plugin	architecture

plugin	API
implementing	/	Implementing	the	plugin	API
plugin	components,	instantiating	/	Instantiating	plugin	components

plugin	interfaces	/	Plugin	architecture
plugins

managing	/	Managing	plugins
new	plugins,	loading	at	runtime	/	Loading	new	plugins	at	runtime

plugin	system
testing	/	Testing	our	plugin	system

Precision	Graphics	Markup	Language	(PGML)	/	Leveraging	the	power	of	SVG
prerequisites	/	Prerequisites
projects	dashboard

about	/	Projects	dashboard
tasks	chart	/	Projects	dashboard
activity	chart	/	Projects	dashboard
project	summary	/	Projects	dashboard
component,	creating	/	Creating	the	projects	dashboard	component
summary	component	/	Project	summary	component
first	chart,	creating	/	Creating	your	first	chart

pure	components
about	/	Pure	components

R
reactive	programming

with	observable	data	structures	/	Reactive	programming	with	observable	data
structures

route
about	/	Back	to	the	routes
routable	tabs	/	Routable	tabs

router
about	/	An	introduction	to	the	Angular	router
configuring	/	An	introduction	to	the	Angular	router
outlets	/	An	introduction	to	the	Angular	router
link	/	An	introduction	to	the	Angular	router
versus	template	composition	/	Router	versus	template	composition

route	tree
about	/	Understanding	the	route	tree

routing
composition	by	/	Composition	by	routing

S
service

creating,	for	logging	activities	/	Creating	a	service	for	logging	activities
logging	activities	/	Logging	activities

Service	Provider	Interface	(SPI)	/	Plugin	architecture
shadow	DOM

about	/	Shadow	DOM
SVG

about	/	Leveraging	the	power	of	SVG
styling	/	Styling	SVG
graphical	structure	/	Styling	SVG
visual	appearance	/	Styling	SVG
components,	building	/	Building	SVG	components
URL	/	Building	SVG	components

Synchronized	Multimedia	Integration	Language	(SMIL)	/	Building	SVG	components
SystemJS

about	/	SystemJS	and	JSPM

T
tabbed	interface	component

creating	/	Creating	a	tabbed	interface	component,	Recap
tag	input

supporting	/	Supporting	tag	input
manager,	creating	/	Creating	a	tag	input	manager
tags	select	component,	creating	/	Creating	a	tags	select	component
integrating,	within	editor	component	/	Integrating	tag	input	within	the	editor
component
tagging	system,	finishing	up	/	Finishing	up	our	tagging	system

tag	management
about	/	Tag	management
tag	data	entity	/	Tag	data	entity
tags,	generating	/	Generating	tags
tags	service,	creating	/	Creating	a	tags	service
tags,	rendering	/	Rendering	tags
task	service,	integrating	/	Integrating	the	task	service
tags	service,	finishing	/	Completion	of	the	tags	service

tags
enabling,	for	tasks	/	Enabling	tags	for	tasks

tags	select	component
creating	/	Creating	a	tags	select	component

tags	service
creating	/	Creating	a	tags	service
finishing	/	Completion	of	the	tags	service

task	details
about	/	Task	details

task	list
creating	/	Creating	a	task	list,	Recap
purifying	/	Purifying	our	task	list,	Recap

tasks
managing	/	Managing	tasks
vision	/	Vision
filtering	/	Filtering	tasks
tags,	enabling	for	/	Enabling	tags	for	tasks

template	composition
versus	router	/	Router	versus	template	composition

template	directive
change,	detecting	/	Detecting	change	within	our	template	directive

template	elements
about	/	Template	elements

template	strings,	ECMAScript	6
about	/	Template	strings

tests
injecting	in	/	Injecting	in	tests

time	duration	input
about	/	The	time	duration	input

tools
about	/	Tools
Node.js	/	Node.js	and	NPM
node	package	manager	(NPM)	/	Node.js	and	NPM
SystemJS	/	SystemJS	and	JSPM
JSPM	/	SystemJS	and	JSPM

troubleshooting	/	Troubleshooting
TypeScript

versus	ECMAScript	6	/	ECMAScript	or	TypeScript?

U
user	interfaces

about	/	Thinking	of	organisms
components	/	Components	–	The	organs	of	user	interfaces

V
Vector	Markup	Language	(VML)	/	Leveraging	the	power	of	SVG
visual	efforts	timeline	/	The	visual	efforts	timeline

W
web	components

enabling,	in	Firefox	/	Enabling	web	components	in	Firefox
webcomponents.js

URL	/	Building	an	interactive	activity	slider	component

	Mastering Angular 2 Components
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	eBooks, discount offers, and more
	Why subscribe?
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Downloading the color images of this book
	Errata
	Piracy
	Questions
	1. Component-Based User Interfaces
	Thinking of organisms
	Components – The organs of user interfaces
	Encapsulation
	Composability
	Components, invented by nature
	My UI framework wishlist
	Time for new standards
	Template elements
	Shadow DOM
	Angular's component architecture
	Everything is a component
	Your first component
	JavaScript of the future
	I speak JavaScript, translate, please!
	Classes
	Modules
	Template strings
	ECMAScript or TypeScript?
	Decorators
	Tools
	Node.js and NPM
	SystemJS and JSPM
	JSPM
	Getting started with JSPM
	Summary
	2. Ready, Set, Go!
	Managing tasks
	Vision
	Starting from scratch
	Bootstrapping
	Running the application
	Recap
	Creating a task list
	Recap
	The right level of encapsulation
	Recap
	Input generates output
	Recap
	Custom UI elements
	Recap
	Filtering tasks
	Summary
	3. Composing with Components
	Data – Fake to real
	Reactive programming with observable data structures
	Immutability
	Pure components
	Purifying our task list
	Recap
	Composition using content projection
	Creating a tabbed interface component
	Recap
	Mixing projected with generated content
	Summary
	4. No Comments, Please!
	One editor to rule them all
	Creating an editor component
	Recap
	Building a commenting system
	Building the comment component
	Building the comments component
	Recap
	Summary
	5. Component-Based Routing
	An introduction to the Angular router
	Composition by routing
	Router versus template composition
	Understanding the route tree
	Back to the routes
	Routable tabs
	Refactoring navigation
	Summary
	6. Keeping Up with Activities
	Creating a service for logging activities
	Logging activities
	Leveraging the power of SVG
	Styling SVG
	Building SVG components
	Building an interactive activity slider component
	Projection of time
	Rendering activity indicators
	Bringing it to life
	Recap
	Building the activity timeline
	Summary
	7. Components for User Experience
	Tag management
	Tag data entity
	Generating tags
	Creating a tags service
	Rendering tags
	Integrating the task service
	Completion of the tags service
	Supporting tag input
	Creating a tag input manager
	Creating a tags select component
	Integrating tag input within the editor component
	Finishing up our tagging system
	Drag and drop
	Implementing the draggable directive
	Implementing a drop target directive
	Integrating drag and drop in task list component
	Recapitulate on drag and drop
	To infinity and beyond!
	The asterisk syntax and templates
	Creating an infinite scroll directive
	Detecting change within our template directive
	Adding and removing embedded views
	Finishing our infinite scroll directive
	Summary
	8. Time Will Tell
	Task details
	Enabling tags for tasks
	Managing efforts
	The time duration input
	Components to manage efforts
	The visual efforts timeline
	Recapitulating on efforts management
	Setting milestones
	Creating an autocomplete component
	Summary
	9. Spaceship Dashboard
	Introduction to Chartist
	Projects dashboard
	Creating the projects dashboard component
	Project summary component
	Creating your first chart
	Visualizing open tasks
	Creating an open tasks chart
	Creating a chart legend
	Making tasks chart interactive
	Summary
	10. Making Things Pluggable
	Plugin architecture
	Pluggable UI components
	Implementing the plugin API
	Instantiating plugin components
	Finalizing our plugin architecture
	Building an Agile plugin
	Agile task info component
	Agile task details component
	Recapitulating on our first plugin
	Managing plugins
	Loading new plugins at runtime
	Summary
	11. Putting Things to the Test
	An introduction to Jasmine
	Writing our first test
	Spying on component outputs
	Utilities to test components
	Injecting in tests
	Test component builder
	Testing components in action
	Testing component interaction
	Testing our plugin system
	Summary
	A. Task Management Application Source Code
	Download
	Prerequisites
	Usage
	Troubleshooting
	Cleaning IndexDB to reset data
	Enabling web components in Firefox
	Index

