

Mastering API Architecture
Defining, Connecting, and Securing Distributed

Systems and Microservices

With Early Release ebooks, you get books in their earliest form—the
authors’ raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

James Gough, Daniel Bryant, and Matthew
Auburn

Mastering API Architecture
by James Gough, Daniel Bryant, and Matthew Auburn

Copyright © 2021 James Gough Ltd, Big Picture Tech Ltd, and Matthew
Auburn Ltd. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North,
Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales
promotional use. Online editions are also available for most titles
(http://oreilly.com). For more information, contact our
corporate/institutional sales department: 800-998-9938 or
corporate@oreilly.com.

Acquisitions Editor: Melissa Duffield

Development Editor: Nicole Tache

Production Editor: Kate Galloway

Interior Designer: David Futato

Cover Designer: Karen Montgomery

Illustrator: Kate Dullea

November 2022: First Edition

Revision History for the Early Release

2021-03-18: First Release

2021-10-29: Second Release

2022-01-12: Third Release

http://oreilly.com/

See http://oreilly.com/catalog/errata.csp?isbn=9781492090632 for release
details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc.
Mastering API Architecture, the cover image, and related trade dress are
trademarks of O’Reilly Media, Inc.

While the publisher and the authors have used good faith efforts to ensure
that the information and instructions contained in this work are accurate, the
publisher and the authors disclaim all responsibility for errors or omissions,
including without limitation responsibility for damages resulting from the
use of or reliance on this work. Use of the information and instructions
contained in this work is at your own risk. If any code samples or other
technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility
to ensure that your use thereof complies with such licenses and/or rights.

978-1-492-09056-4

[LSI]

http://oreilly.com/catalog/errata.csp?isbn=9781492090632

Preface

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the
authors’ raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the author at feedback@mastering-api.com.

Why Did We Write This book?
In early 2020 we attended O’Reilly Software Architecture in New York,
where Jim and Matt gave a workshop on APIs and a presentation on API
Gateways. Jim and Daniel know each other from the London Java
Community, and like at many architecture events, had got together to talk
about our thoughts and understanding around API architectures. As we were
talking on the hallway track, several conference delegates came up to us
and chatted about their experiences with APIs. People were asking for our
thoughts and guidance on their API journey. It was at this point that we
thought writing a book on the topic of APIs would help share our
discussions from conferences with other architects.

Why Should You Read This Book?
This book has been designed to provide a complete picture on designing,
building, operating and evolving an API Architecture. We will share

mailto:feedback@mastering-api.com

through both writing and case study key focus areas for consideration for
getting the best architectural results building an API architecture.

We also believe in allowing you to form your own decisions, to support this
we will:

Be clear when we have a strong recommendation or guidance

Highlight areas of caution and problems that you may encounter

Where the answer is “it depends” we will supply an ADR
Guideline, to help inform the best possible decision given the
circumstances of your architecture and give guidance on what to
consider

Highlight references and useful articles where you can find out
more in-depth content

The book is not just a greenfield technology book. We felt that covering
existing architectures with an evolutionary approach towards more suitable
API architectures would have the most use for you. We have also tried to
balance this with looking forward to newer technologies and developments
in the API architecture domain.

The Core Personas For This Book

Developer
You have most likely been coding professionally for several years and have
a good understanding of common software development challenges,
patterns, and best practices. You are increasingly realizing that the software
industry’s march towards building service-oriented architecture and
adopting cloud services means that building and operating APIs is fast
becoming a core skill. You are keen to learn more about designing effective
APIs and testing them. You are wanting to explore the various
implementation choices (e.g. synchronous versus asynchronous

communication) and technologies (e.g. REST, gRPC, messaging), and learn
how to ask the right questions and evaluate which approach is best for a
given context.

Accidental Architect
You have most likely been developing software for many years, and have
often operated as a team lead or resident software architect (even if you
don’t have the official titles). You understand core architectural concepts,
such as designing for high cohesion and loose coupling, and apply these to
all aspects of software development, including design, testing, and
operating systems. You are realizing that your role is increasingly focused
on combining systems to meet customer requirements, both internally built
applications and also third-party COTS and SaaS-type offerings, and the
APIs of these systems play a big role in the successful integration. You want
to learn more about the supporting technologies (e.g. API gateway, service
mesh etc) and also understand how to operate and secure API-based
systems.

Solutions/Enterprise Architect
You have been designing and building enterprise software systems for
several years and most likely have the word “architect” in your job title or
role description. You are responsible for the big picture of software
delivery, and typically work within the context of a large organization or a
series of large inter-connected organizations. You recognize the changes
that the latest iteration of service-based architectural styles are having on
the design, integration, and governance of software, and you see APIs are
pivotal to the success of your organization’s software strategy. You are keen
to learn more about evolutionary patterns and understand how the choice of
API design and implementation will impact this. You also want to focus on
the cross-functional “ilities” and understand how to build API-based
systems that exhibit such properties as usability, maintainability, scalability,
availability and security.

What This Book is Not
We realise that APIs encompass a vast market space and we want to be
clear what this book will not cover. It doesn’t mean to say that we believe
these topics are not important, however if we tried to cover everything we
wouldn’t be able to share our knowledge effectively with you.

We will cover application patterns for migration and modernization that will
include taking advantage of cloud, but the book is not wholly focused on
cloud. Many of you will have hybrid architectures or even have all of your
systems hosted in data centres. We want to ensure that we cover the design
and operational factors of API architectures that support both approaches.

The book is not tied to a specific language, but will use some lightweight
examples to demonstrate approaches to building/designing APIs and their
corresponding infrastructure. The book will focus more on the approach and
significant code examples will be available in the accompanying GitHub
repository.

The book does not favour one style of architecture over another, however
we will discuss situations where architectural approaches may cause
limitations to the API offering presented.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic

Indicates new terms, URLs, email addresses, filenames, and file
extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to
program elements such as variable or function names, databases, data
types, environment variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by
values determined by context.

TIP
This element signifies a tip or suggestion.

NOTE
This element signifies a general note.

WARNING
This element indicates a warning or caution.

Using Code Examples
Supplemental material (code examples, exercises, etc.) will be available for
download at a later date.

If you have a technical question or a problem using the code examples,
please send email to bookquestions@oreilly.com.

This book is here to help you get your job done. In general, if example code
is offered with this book, you may use it in your programs and
documentation. You do not need to contact us for permission unless you’re
reproducing a significant portion of the code. For example, writing a
program that uses several chunks of code from this book does not require

mailto:bookquestions@oreilly.com

permission. Selling or distributing examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant
amount of example code from this book into your product’s documentation
does require permission.

We appreciate, but generally do not require, attribution. An attribution
usually includes the title, author, publisher, and ISBN. For example: “Book
Title by Some Author (O’Reilly). Copyright 2012 Some Copyright Holder,
978-0-596-xxxx-x.”

If you feel your use of code examples falls outside fair use or the
permission given above, feel free to contact us at permissions@oreilly.com.

O’Reilly Online Learning

NOTE
For more than 40 years, O’Reilly Media has provided technology and business training,
knowledge, and insight to help companies succeed.

Our unique network of experts and innovators share their knowledge and
expertise through books, articles, conferences, and our online learning
platform. O’Reilly’s online learning platform gives you on-demand access
to live training courses, in-depth learning paths, interactive coding
environments, and a vast collection of text and video from O’Reilly and
200+ other publishers. For more information, please visit http://oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the
publisher:

O’Reilly Media, Inc.

mailto:permissions@oreilly.com
http://oreilly.com/
http://oreilly.com/

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)

707-829-0515 (international or local)

707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any
additional information. You can access this page at
https://learning.oreilly.com/library/view/mastering-api-
architecture/9781492090625.

Email bookquestions@oreilly.com to comment or ask technical questions
about this book.

For more information about our books, courses, conferences, and news, see
our website at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

file:///C:/Users/Barhoma/AppData/Local/Temp/2/calibre_5w7pu3u3/s2f05r_w_pdf_out/OEBPS/preface01.xhtml
mailto:bookquestions@oreilly.com
http://www.oreilly.com/
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

Part I. API Fundamentals

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the
authors’ raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the author at feedback@mastering-api.com.

This section will introduce the architectural foundation for Mastering API
Architecture. Architecture can be quite abstract and potentially difficult to
set the context, to avoid this the conference system case study is introduced
from the outset. We will document the current architecture using C4
diagrams and explain the plans for the conference system. Using the case
study you will learn about API interactions, capturing decisions and taking
our first evolutionary step towards an API based architecture.

This section wraps up by discussing the challenges of moving to an API
based architecture and sets the agenda for the rest of the book.

Chapter 1

mailto:feedback@mastering-api.com

Chapter 1. API Architecture
Primer

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the
authors’ raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be Chapter 1 of the final book.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the author at feedback@mastering-api.com.

Anyone who has taken a long journey will no doubt have encountered the
question (and possibly persistently) “are we there yet?”. For the first few
inquiries you look at the GPS or a route planner and provide an estimate -
hoping that you don’t encounter any delays along the way. Similarly, the
journey to building API based architectures can be complex for developers
and architects to navigate, even if there was an Architecture GPS what
would your destination be? Architecture is a journey without a destination,
and you cannot predict how technologies and architectural approaches will
change. For example, you may not have been able to predict Service Mesh
technology would become so widely used, but once you learn about its
capabilities it may cause you to think about evolving your existing
architecture. The culminating effect of delivering incremental value
combined with new emerging technologies leads to the concept of
Evolutionary Architecture. Along the way, we ask you to keep the following
advice in approaching API architecture in mind:

mailto:feedback@mastering-api.com

Though architects like to be able to strategically plan for the future, the
constantly changing software development ecosystem makes that
difficult. Since we can’t avoid change, we need to exploit it.

—Building Evolutionary Architectures - Neal Ford,
Rebecca Parsons and Patrick Kua

In many projects APIs themselves may be evolutionary, at the time of
connecting software services or systems specific functionality was more
important than the definition of the API. The authors have built services
focussing on a single function and not considering the broader API reuse.
API-First design is an approach where developers and architects consider
the functionality of their service and design an API suitable for any
consumer. The API consumer could be a mobile application, another service
or even an external customer. In Chapter 2 we will analyze the API-First
approach and discover how we build APIs that are durable to change and
delivery value to a broad consumer base.

The good news is that you can start an API-First architecture journey at any
point, and as authors we have experienced many points along the journey. If
you are responsible for pre-existing technical inventory, we will show you
techniques to evolve your architecture to promote the use of APIs in your
platform. On the other hand, if you are lucky and have a blank canvas to
work with, we will share with you the benefit of adopting API architectures
based on our years of experience, while also highlighting key factors in
decision making. All the authors actively work in the API multiverse and
our journey is still underway, we hope to share our perspective to help you
with Mastering API Architecture.

API Architecture Case Study
Throughout the book, to demonstrate approaches to building API based
architectures, we will focus on a case study based on a conference system.
Figure 1-1 visualizes the conference system at a high level. The system is
used by an external customer to create their attendee account, review the
conference sessions available and book their attendance. The intention of

this diagram is to set context for both a technical and non technical
audience. Many architecture conversations dive straight into the low level
detail and miss setting the context of the high-level interactions. Consider
the implications of getting a system context diagram wrong, the benefit of
summarizing the approach may save months of work to correct a
misunderstanding.

Figure 1-1. C4 Conference System Context Diagram

We have chosen C4 diagrams because we believe C4 is the best
documentation standard for communicating architecture, context and
interactions to a diverse set of stakeholders. You may be wondering what
about UML? The Unified Modeling Language (UML) provides an
extensive dialect for communicating software architectures. A major
challenge is that the majority of what UML provides is not committed to
memory of architects and developers, people quickly revert to
boxes/circles/diamonds. It becomes a real challenge to understand the
structure of diagrams before getting onto the technical content of the
discussion. Many diagrams are only committed to a project history if
someone accidentally uses a permanent marker instead of dry wipe marker
by mistake. The C4 Model provides a simplified set of diagrams that act as
a guide to your project architecture at various levels of detail.

While Figure 1-1 provides the big picture of the conference system, a
container diagram helps describe the technical breakout of the major
participants in the architecture. A container in C4 is defined as “something
that needs to be running in order for the overall system to work”, for
example the conference database. Container diagrams are technical in
nature and build on the higher level system context diagram. Figure 1-2, a
container diagram, documents the detail of a customer interacting with the
conference system. The user interacts with the Web Application, which
invokes APIs on the conference application. The conference application
uses SQL to query the backing database.

Figure 1-2. C4 Conference System Container Diagram

NOTE
The conference application container in Figure 1-2 is documented as simply software.
Normally a C4 container would provide more detail into the type of container e.g. Java
Spring Application. However in this book we will be avoiding technology specifics,
unless it helps to demonstrate a specific solution. The advantage of APIs and indeed
modern applications is there is a significant amount of flexibility in the solution space.

The current architectural approach has worked for the conference system
for many years, however the conference owner has asked for two
improvements, which are driving architectural change:

The conference organizers would like to build a mobile
application.

The conference organizers plan to go global with their system,
running ten conferences instead of one per year. In order to
facilitate this expansion they would like to integrate with an
external Call for Papers (CFP) system for managing speakers and
their application to present sessions at the conference.

Our goal is to migrate the conference system to be able to support the new
requirements, without impacting the existing production system or rewriting
everything in one go. In this chapter we will introduce the concept of traffic
patterns in API Architecture and the opportunities to use this concept to
evolve our architecture. As the case study evolves, we will share techniques
for documenting architectures and recording decisions.

A Brief Introduction to APIs
In the field of software architecture there are a handful of terms that are
incredibly difficult to define. The term API (Application Programming
Interface) falls into this categorization, as the concept first surfaced as many
as 80 years ago. Terms that have been around for a significant amount of
time end up being overused and having multiple meanings in different
problem spaces. In this book we will refer to an API to mean the following:

An API represents an abstraction of the underlying
implementation.

An API is represented by a specification that introduces types.
Developers can understand the specifications and use tooling to
generate code in multiple languages to implement an API
Consumer (software that consumes an API).

An API has defined semantics or behavior to effectively model the
exchange of information.

Effective API design enables APIs to be extended to customers or
third parties for a business integration.

Broadly speaking APIs can be broken into two general categories
depending on whether the API invocation is in process or out of process. In
order to explore this concept further with our C4 diagrams we need to zoom
into the Conference Application Container box in Figure 1-2.

The component diagram in Figure 1-3 helps to define the roles and
responsibilities within each container, along with the internal interactions.
This diagram is useful if the detail of a container is queried, it is also
provides a very useful map to the codebase. Think about the first time
starting work on a new project, browsing a self documenting codebase is
one approach - but it can be difficult to piece everything together. A
component diagram reveals the detail of the language/stack you are using to
build your software. In order to remain technology agnostic we have used
the term package/module.

Figure 1-3. C4 Conference System Component Diagram

The web application to API Controller arrow is an out of process call,
where as the API Controller to Attendee Component arrow is an example of
an in process call. All interactions within the Conference Application
boundary are examples of in process calls. The in process invocation is well
defined and restricted by the programming language used to implement the
Conference Application. The invocation is compile time safe, the conditions
under which the exchange mechanism are enforced at the time of writing
code.

An out of process exchange is significantly more complicated, the external
process can be written in any language and potentially located anywhere.
There needs to be an agreement on the protocol, expected behavior and
compatibility. Out of process API modelling will be the focus of Chapter 2.

Figure 1-3 describes 4 major components and the database involved in the
current system. The API Controller faces all incoming traffic from the UI
and make a decision about where to route the request in the system. This
component would also be responsible for marshalling from the on the wire
network level representation to an object or representation in code. The API
Controller component is intriguing from the perspective of in process
routing and acting as a junction point or front controller pattern. For API
requests and processing this is an important pattern, all requests pass
through the controller which makes a decision on where the request is
directed. In Chapter 4 we will look at the potential for taking the controller
out of process.

The Attendee, Booking and Session packages are involved in translating
the requests into queries and execute SQL against the database out of
process. In the existing architecture the database is an important
component, potentially enforcing relationships for example constraints
between bookings and sessions.

From Tiered Architecture to Modelling APIs

The starting point of the case study is a typical 3-tier architecture,
composed of a UI, a server-side processing tier and a datastore. To begin to
discuss an evolutionary architecture we need a model to think about the
way API requests are processed by the components. We need a
model/abstraction that will work for both public cloud, virtual machines in
a data center and a hybrid approach.

The abstraction of traffic will allow us to consider out of process
interactions between an API consumer and an API service, sometimes
referred to as the API producer. With architectural approaches like Service
Oriented Architecture (SOA) and Microservices based Architecture the
importance of modelling API interactions is critical. Learning about API
traffic and the style of communication between components will be the
difference between realizing the advantages of increased decoupling or
creating a maintenance nightmare.

WARNING
Traffic patterns are used by data center engineers to describe network exchanges within
data centers and between low level applications. At the API level we are using traffic
patterns to describe flows between groups of applications. For the purposes of this book,
we are referring to application and API level traffic patterns.

An Evolutionary Step
In order to start to consider traffic pattern types it will be useful to take a
small evolutionary step in our case study architecture. In Figure 1-4 a step
has been taken to refactor the Attendee component into an independent
service, as opposed to a package or module within the legacy conference
system. The conference system now has two traffic flows, the interaction
between the customer and the legacy conference system and the interaction
between the legacy system and the attendee system.

Figure 1-4. C4 Conference System Context - Evolutionary Step

North - South Traffic
The interaction between the customer and the legacy conference system is
referred to a north → south traffic, and represents an ingress flow. The
customer is using the UI which is sending requests to the legacy conference
system over the internet. This represents a point in our network that is
exposed publicly, and will be accessed by the UI . This means that any1

component handling north → south traffic must make concrete checks
about client identity and also include appropriate challenges before
allowing traffic to progress through the system. Chapter 7 will go into
detail about securing north → south API traffic.

East - West Traffic
The new interaction between the legacy conference system and the
Attendee service introduces an east → west traffic flow to our system. East
→ west traffic can be thought of as service-to-service style of
communication within a group of applications. Most east → west traffic,
particularly if the origin is within your wider infrastructure, can be trusted
to some degree. Although we can trust the source of the traffic, it is still
necessary to consider securing east → west traffic.

API Infrastructure and Traffic Patterns
There are two key infrastructure components present in API based
architectures, which are key to controlling traffic. Controlling and
coordinating traffic is often described as Traffic Management. Generally
north → south traffic will be controlled by API Gateways, the key subject
for Chapter 4.

East → west traffic will often be handled by infrastructure components like
Kubernetes or Service Mesh, the key subject for Chapter 5. Infrastructure
components like Kubernetes and Service Mesh use network abstractions to
route to services, requiring services to run inside a managed environment.
In some systems east → west traffic is managed by the application itself
and service discovery techniques are implemented to locate other systems.

Using Architecture Decision Records
As developers, architects and indeed humans we have all been in the
position where we ask the question “what were they thinking??”. If you
have ever driven on the M62 between Leeds and Manchester in the United
Kingdom you may have been baffled by the construction of the motorway.

As you climb the hill on the 3 lane highway it starts to deviate away from
the traffic contraflow, until eventually Scott Hall Farm emerges surrounded
by around 15 acres of farming land nestled between the carriages. Local
legend of what happened described the owner of the land as stubborn and
refused to move or handover his land, so the engineers simply built around
him 50 years later a documentary surfaced revealing that the real reason
for this was a geological fault beneath the land, meaning the motorway had
to be built that way. When people guess why something was done in
particular way expect rumour, humour and criticism to emerge.

In software architecture there will be many constraints that we have to build
around, so it is important to ensure our decisions are recorded and
transparent. Architecture Decision Records (ADRs) help make decisions
clear in software architecture.

An Architecture Decision Record (ADR) is a document that captures a
decision, including the context of how the decision was made and the
consequences of adopting the decision.

—Engineering at Spotify Blog

An ADR is created in a proposed state and based on discussion will usually
be either accepted or rejected, it is also possible that later the decision may
be superseded by a new ADR. The context helps to set the scene and
describe the problem or the bounds in which the decision will be made. The
context is not intended to be a blog post or detailed description, often
creating a blog post ahead of the ADR and then linking from the ADR helps
the community to follow your working. The decision clearly sets out what
you plan to do and how you plan to do it. All decisions carry consequences
or trade offs, in architecture these can sometimes be incredibly costly to get
wrong.

When reviewing an ADR it is important to see if you agree with the
decision in the ADR or if there is an alternative approach. An alternative
approach that has not been considered may cause the ADR to be rejected.
There is a lot of value in a rejected ADR and most teams choose to keep
ADRs immutable to capture the change in perspective. ADRs work best

2

when they are presented in a location where key participants can view the
ADR, comment and help move the ADR to accepted.

TIP
A question we often get asked is at what point should the team create an ADR? It is
useful to ensure that there has been discussion ahead of the ADR and the record is a
result of collective thinking in the team.

Attendees Evolution ADR
In Figure 1-4 we made the decision to take an evolutionary step in the
conference system architecture. This is a major change and would warrant
an ADR. Below is an example ADR that might have been proposed by the
engineering team owning the conference system.

T
a
b
l
e
1
-
1
.
A
D
R
0
0
1
S
e
p
a
r
a
t
i
n
g
A
t
t
e
n
d
e
e
s

f
r
o
m

t
h
e
L
e
g
a
c
y
C
o
n
f
e
r
e
n
c
e
S
y
s
t
e
m

Status Proposed

Context The conference owners have requested two new major features to the current
conference system, that need to be implemented without disrupting the current
system.

The conference system will need to be evolved to support a mobile
application and an integration with an external CFP system.
Both the mobile application and the external CFP system need to be able to
access attendees to log in users to the third party service.

Decision We will take an evolutionary step as documented in Figure 1-4 to split out the
Attendee component into a standalone service.
This will allow API-First development against the Attendee service and allow
the API to be invoked from the legacy conference service.
This will also support the ability to design for direct access to the Attendee
service to provide user information to the external CFP system.

Consequences The call to the Attendee service will not be out of process and may introduce
a latency that will need to be tested.
The Attendee service could become a single point of failure in the
architecture and we may need to take steps to mitigate the potential impact of
running a single Attendee service.

Some of the consequences in the ADR are fairly major, and definitely
require further discussion. We are going to defer some of the consequences
to later chapters.

Mastering API - ADR Guidelines
Within Mastering API Architecture we will be supplying ADR Guidelines
to help collect important questions to ask when decisions on the topic
covered. Making decisions about an API based Architecture can be really
tough, and in a lot of situations the answer is it depends. Rather than say it
depends without context, the ADR Guidelines will help describe what it
depends on and help inform your decisions. The ADR Guidelines can be
used as a reference point to come back to or to read ahead to if you’re
facing a specific challenge.

T
a
b
l
e
1
-
2
.
A
D
R

G
u
i
d
e
li
n
e
s
-
F
o
r
m
a
t

Decision Describes a decision that you might need to make when considering an aspect
of this book.

Discussion Points This section helps to identify the key discussions that you should be having

when making a decision about your API Architecture.

In this section we will reveal some of the authors experiences that may have
influenced the decision. We will help you to identify the key information to
inform your decision making process.

Recommendations We will make specific recommendations that you should consider when
creating your ADR, explaining the rationale behind why we are making a
specific recommendation.

Roadmap for our Journey
In “An Evolutionary Step” we started our journey to evolve the conference
system as an API based architecture, but how should we design our API?
What are our different options around modelling APIs and what are the
benefits and drawbacks of each? Designing an API is an important
undertaking, particularly if it will be used by an external customer. In
Chapter 2 you will discover how to design your API, the different styles of
API and the considerations you must make with each.

One of the benefits of an API based architecture, which we revealed in this
chapter is the abstraction of implementation detail, which leads to being
able to rapidly change your application. However APIs also introduce the
possibility of impacting vast numbers of consumers if an error or
compatibility issue occurs. Out of process API interactions are a lot more
susceptible to runtime errors than in process exchanges within a compiled
application. In order to ensure that an API responds in the expected manner
it is essential that appropriate testing is applied on the API. In Chapter 3
you will discover the different approaches to testing APIs within the context
of the test pyramid.

Once we have more APIs in our system we can look to at opening these up
to the outside world. In this chapter we introduced the model of north →
south traffic, which usually involves entering the system from the internet.
How do you go about creating that entry point and setting up a pattern that
will work for routing to multiple APIs? In Chapter 4 we will introduce API

Gateways and demonstrate the importance of getting started with an API
based architecture.

In this chapter we also introduced the model of east → west traffic, or
services communicating laterally within a group of services. The pattern
can introduce challenges with locating services, scaling up services and
even deployments if configured manually. Service Mesh represents a best in
class solution to this type of problem and is the focus of Chapter 5.

Once we have patterns and approaches for building APIs and managing
traffic the next step is to consider how we operationally manage API based
architectures in production. In Chapter 6 you will learn about some of the
approaches to deploying and releasing APIs and how we can potentially use
traffic management concepts to reduce the risk of releasing into production.

The security conscious may now be in wild panic about services that we can
rapidly release as APIs to the internet! An API based architecture with an
internet facing component must consider security from the outset in the
design and architecture of the system. In Chapter 7 we will demonstrate
approaches that help to interrogate API Architectures and ensure that the
overall architecture has security considerations built in from the outset.

Chapter 8 takes security a step further, introducing the worst case scenario -
the architecture is under attack. How do you find out that the system is
under attack and what mitigation can be put in place to prevent the entire
system falling over? We will also explore how you can attack and test your
own system to ensure that the architecture holds up to expected volumes.

In the final section we start to explore evolutionary architectures with APIs.
In Chapter 9 we will cover patterns and approaches to redesigning
monolithic application to use an API based series of services. We will
discuss how you structure those services and consider a service oriented
approach and a microservices based approach.

Chapter 10 will build on Chapter 9 and discuss how the content of the book
can be applied to help migrate to a hybrid-cloud or even a pure cloud
deployment for an API ecosystem. We will talk about some of the

approaches to cloud migration and how this does not need to be an all or
nothing approach.

Summary
In this chapter we have introduced a variety of key concepts that are an
important foundation to building API based architectures that will be
revisited throughout the book:

Architecture is an endless journey and the conference based case
study will demonstrate this throughout the book.

C4 Architecture diagrams allows us to explore the conference
system at different levels.

Briefly introduced APIs and considered the approach of modelling
API based systems using traffic patterns.

Introduced an evolutionary step to the conference system
architecture and documented this in C4 with a sample ADR. We
also introduced the concept of ADR Guidelines that will guide
decisions that are context dependant.

Looked at the challenges of API Architecture and how the book is
structured to help you work through the challenges.

1 The intention is it will be the UI accessing the ingress point. However it is open for potential
exploit.

2 Local stubborn traits fueled this likely explanation.

Part II. Designing, Building and
Testing APIs

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the
authors’ raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the author at feedback@mastering-api.com.

This section provides the foundational building blocks for API Ecosystems.
In general, an API Ecosystem will have API services and infrastructure-
based routing, this section will focus on design and testing of APIs before
we consider how architectural patterns are applied.

In the first chapter you will learn the foundation of REST APIs and why
without following API guidelines things can go wrong quite quickly for
your customers. You will learn the practical application for OpenAPI
Specifications and why they have rapidly become an industry standard. You
will learn about why REST is a low barrier to entry for an API ecosystem
and we will review the best way to revise and evolve REST APIs. Not all
API exchanges will be best modelled with REST and additional constraints
might require alternative considerations. You will learn about gRPC and the
pros and cons vs a REST approach. You will also look at GraphQL and
consider where this might fit into an API ecosystem. Finally, we will

mailto:feedback@mastering-api.com

consider if there is a way to mix and match our approach to a service
modelling different styles of API.

The first chapter presents a variety of choices for modelling APIs, and we
need to review the practical applications to start to break out parts of our
conference monolith. You will look at the attendees service and consider the
implications of modelling API exchanges in the conference ecosystem. The
second chapter leads straight into learning practices to test the APIs that we
have seen in the first chapter. To understand how to get the most value out
of testing APIs you will learn what the testing quadrant and the test pyramid
is. From these two testing strategies you will be able to devise how they can
apply this to your own environment and understand why they provide
value. A practical introduction to Unit tests, Service tests and UI tests will
be given next. By learning about the fundamentals of testing you will be
shown the value that testing provides and how it need not be difficult to
start and introduce into your architecture. The Conference System will be
used to demonstrate this.

One of the toughest parts of testing is to validate that two services can
communicate with one another before actually being deployed. With this in
mind, we go into detail explaining different strategies to solve this problem,
however, the authors think that one of the best ways to solve this is using
Contract testing. You will come away armed with knowledge about what
tests should be applied and at what level.

Chapter 2
Chapter 3

Chapter 2. Defining Rest APIs
and Alternative API Approaches

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the
authors’ raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be Chapter 2 of the final book.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the author at feedback@mastering-api.com.

WARNING
Dear Reader,

Thank you for taking the time to read and review our early access content. Over the past
few months we have received some excellent feedback on the structure of the book. As
a result, we will be making a few changes to this chapter, including updating the content
and adding a case study. Once the update is complete, we will remove this warning. — 
James, Daniel and Matthew

Microservices based architectures and Service Oriented Architectures
promote an increased number of independent services. Often services are
running multi-process, on multiple machines in data centers around the
globe. This has led to an explosion in mechanisms to communicate between
processes and deal with the challenges of distributed communication
between services. The software development community has responded by

mailto:feedback@mastering-api.com

building a variety of creative API protocols and exchanges including REST,
gRPC and GraphQL learning from vintage protocols. With a range of
options available an API architect needs an overall understanding of the
exchange styles available and how to pick the right technologies for their
domain.

In this chapter we will explore how REST addresses the challenges of
communicating across services, techniques for specifying REST APIs using
OpenAPI and the practical applications of OpenAPI specifications. With
modern tooling building REST APIs is easy, however building a REST API
that is intuitive and follows recommended practices requires careful design
and consideration. In order to be successful with microservices, a focus on
continuous integration, deployment speed and safety is essential. REST
APIs need to complement DevOps and rapid deployments rather than
become a bottleneck or deployment constraint. In order to keep our system
free to evolve and not disrupt consumers, it is also necessary to consider
versioning in the release process of APIs.

Due to the simplicity of REST and wide support it is usually one of the best
approaches to create an API. However there will be situations and
constraints where we must consider alternative approaches for our API
implementation. This may come down to performance or the requirement to
create a query layer across multiple APIs.

The chapter concludes by looking at whether we can combine multiple API
formats in a single service. We will also discuss whether the complexity of
multi specifications takes us further away from the fundamentals of REST
and other API approaches.

Introduction to REST
Roy Fielding’s dissertation Architectural Styles and the Design of Network-
based Software Architectures provides an excellent definition of the
architectural applications of REST. REpresentational State Transfer (REST)
is one of the primary mechanisms for exchanging data between client and
server and is extremely popular within the API ecosystem and beyond. If

https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

we adjust “distributed hypermedia system” in Roy Fielding’s definition
below to “an API” it describes the benefit that we get from using REST
APIs.

The Representational State Transfer (REST) style is an abstraction of the
architectural elements within a distributed hypermedia system. REST
ignores the details of component implementation and protocol syntax in
order to focus on the roles of components, the constraints upon their
interaction with other components, and their interpretation of significant
data elements. It encompasses the fundamental constraints upon
components, connectors, and data that define the basis of the Web
architecture, and thus the essence of its behavior as a network-based
application.

—Roy Thomas Fielding

To explore REST in more practical terms Figure 2-1 describes a typical
REST exchange and the key components involved in the exchange over
HTTP. In this example the consumer requests information about the
attendees resource, which is known by the resource identifier
http://mastering-api.com/attendees. Modelling an exchange in REST
involves a request method (also known as the request verb), in this case a
GET to retrieve data, and the resource identifer to describe the target of our
operation. REST defines the notion of a representation in the body and
allows for representation metadata to be defined in the headers. In this
example we are informing the server we are expecting application/json by
stating this in the Accept header.

The response includes the status code and message from the server, which
enables the consumer to interrogate the result of the operation on the server-
side resource. In the response body a JSON representation containing the
conference attendees is returned. In “REST API Standards and Structure”
we will explore approaches to modelling the JSON body for API
compatibility.

http://mastering-api.com/attendees

Figure 2-1. Anatomy of a RESTful Request and Response over HTTP

NOTE
Although there is nothing in the REST specification that states HTTP is required, the
data elements and their usage were designed with HTTP in mind.

The Richardson Maturity Model
The REST specification does not enforce a high degree of restriction in
terms of how developers and architects build and design REST APIs.
Speaking at QCon in 2008 Leonard Richardson presented his experiences
of reviewing many REST APIs. Martin Fowler also covered Leonard
Richardson’s maturity model on his blog. The model presents levels of
adoption that teams apply to building APIs.

https://www.crummy.com/writing/speaking/2008-QCon/act3.html
https://martinfowler.com/articles/richardsonMaturityModel.html

T
a
b
l
e

2
-
1
.
R
i
c
h
a
r
d
s
o
n

M
a
t
u
r
i
t
y

M
o
d
e

l
L
e
v
e
l
s

Level 0 -
HTTP/RPC

Establishes that the API is built using HTTP and has the notion of one URI
and one HTTP method.
Taking our example above of GET /attendees, if we stopped there the
example would match Level 0.
Essentially this represents an RPC (Remote Procedure Call) implementation, a
consideration we will compare and contrast throughout this chapter.

Level 1 - Resources Establishes the use of resources, and starts to bring in the idea of modelling
resources in the context of the URI.
In our example if we added GET /attendees/1 returning a specific
attendee it would start look like a level 1 API.
Martin Fowler draws an analogy to the classic object oriented world of
introducing identity.

Level 2 - Verbs
(Methods)

Starts to introduce the correct modelling of multiple resources URIs accessed
by different request methods (also know as HTTP Verbs) based on the effect
of the resources on the server.
An API at level 2 can make guarantees around GET methods not impacting
server state and presenting multiple operations on the same resource URI.
In our example adding DELETE /attendees/1, PUT /attendees/1
would start to add the notion of a level 2 compliant API.

Level 3 -
Hypermedia
Controls

This is the epitome of REST design and involves navigable APIs by the use of
HATEOAS (Hypertext As The Engine Of Application State).
In our example when we call GET /attendees/1 the response would
contain the actions that are possible on the object returned from the server.
This would include the option to be able to update the attendee or delete the
attendee and what the client is required to invoke in order to do so.

Most APIs reach API maturity level 2, but with this wide range of options
there is a lot for the developer to consider. The practical applications of

https://restcookbook.com/Basics/hateoas/HATEOAS

HATEOAS are limited in modern RESTful APIs and this is where the
theoretical ideal REST concept meets the battle testing of production code.
In order to be consistent we need to establish baseline expectations of the
APIs implemented using REST and provide that consistency across all the
APIs offered.

REST API Standards and Structure
REST has some very basic rules, but for the most part the implementation
and design of an API is left as an exercise for the developer. It is useful to
have a more practical definition around the APIs to provide a uniformity
and expectations across different APIs. This is where REST API Standards
or Guidelines can help, however there are a variety of sources to choose
from. For the purposes of discussing REST API design we will use the
Microsoft REST API Guidelines, which represent a series of internal
guidelines that have been OpenSourced to create a dialog in the community.
The guidelines use RFC-2119 which defines terminology for standards such
as MUST, SHOULD, SHOULD NOT, MUST NOT etc allowing the
developer to determine whether requirements are optional or mandatory.

TIP
As REST API Standards are evolving, an open list of API Standards are available on the
book’s Github. Please contribute via Pull Request any open standards you think would
be useful for other readers to consider.

Lets evolve our attendees API using the Microsoft REST API Guidelines
and introduce an endpoint to create a new attendee. If you are familiar
with REST the thought will immediately be to use POST, but the
recommended response header might not be so obvious.

POST http://mastering-api.com/attendees
{
 "displayName": "Jim",
 "givenName": "James",

https://github.com/microsoft/api-guidelines
https://github.com/masteringapi/rest-api-standards

 "surname": "Gough",
 "email": "jim@mastering-api.com"
}

201 CREATED
Location: http://mastering-api.com/attendees/1

The Location header reveals the location of the new resource created on the
server, and in this API we are modelling a unique ID for the user. It is
possible to use the email field as a unique ID, however the Microsoft REST
API guidelines recommend in section 7.9 that PII should not be part of the
URL.

WARNING
The reason for removing sensitive data from the URL is paths or query parameters
might be inadvertently cached in the network, for example in server logs or elsewhere.

Another aspect of APIs that can be difficult is naming, as we will discuss in
“API Versioning” something as simple as changing a name can break
compatibility. There is a short list of standard names that should be used in
the Microsoft Rest API Guidelines, however teams should expand this to
have a common domain data dictionary to supplement the standards. Lets
now take a look at patterns for retrieving data.

Collections and Pagination
It seems reasonable to model the GET /attendees request as a response
containing a raw array. The source snippet below shows an example of what
that might look like as a response body.

GET http://mastering-api.com/attendees

200 OK
[
 {
 "displayName": "Jim",
 "givenName": "James",

https://github.com/microsoft/api-guidelines/blob/vNext/Guidelines.md#79-pii-parameters

 "surname": "Gough",
 "email": "jim@mastering-api.com",
 "id": 1,
 },
 {
 "displayName": "Matt",
 "givenName": "Matthew",
 "surname": "Auburn",
 "email": "matt@mastering-api.com",
 "id": 2,
 }
]

Let’s consider at an alternative model to the GET /attendees that nests the
array of attendees inside an object. It may seem strange that an array
response is returned in an object, however the reason for this is that allows
for us to model bigger collections and pagination. This is reaping the
benefits of hindsight, adding pagination later and converting from an array
to a object in order to add a @nextLink (as recommended by the
standards) would break compatibility.

GET http://mastering-api.com/attendees

200 OK
{
 "value": [
 {
 "displayName": "Jim",
 "givenName": "James",
 "surname": "Gough",
 "email": "jim@mastering-api.com",
 "id": 1,
 }
],
 "@nextLink": "{opaqueUrl}"
}

Filtering Collections
Our conference is looking a little lonely with only two attendees, however
when collections grow in size we may need to add filtering in addition to
pagination. The filtering standard provides an expression language within

https://github.com/microsoft/api-guidelines/blob/vNext/Guidelines.md#97-filtering

REST to standardize how filter queries should behave, based upon the
OData Standard. For example we could find all attendees with the
displayName Jim using

GET http://mastering-api.com/attendees?$filter=displayName eq
'Jim'

It is not necessary to complete all filtering and searching features from the
start. Designing an API in line with the standards will allow the developer
to support an evolving API architecture without breaking compatibility for
consumers.

Updating Data
When designing an API the developer would need to make an active
decision on whether to use PUT or PATCH to update an attendees details. A
PUT is used to replace the resource entirely with the content of the request,
where as a PATCH would only update the attributes specified by the
request. Depending on the number of fields and expected parallel updates
the API should be designed accordingly. For example two PUT operations
would likely involve a lost update whereas two PATCH requests may be
successful independently.

Error Handling
An important consideration when extending APIs to consumers is defining
what should happen in various error scenarios. Error standards are useful to
define upfront and share with API producers to provide consistency. It is
important Errors describe to the API Consumer exactly what has gone
wrong with the request, this will avoid increased support of the API.

https://docs.microsoft.com/en-us/dynamics-nav/using-filter-expressions-in-odata-uris
https://github.com/microsoft/api-guidelines/blob/vNext/Guidelines.md#7102-error-condition-responses

WARNING
Ensure that the error messages sent back to the consumer does not contain stack traces
and other sensitive information. This information can help an hacker aiming to
compromise the system.

We have just scratched the surface on building REST APIs, but clearly
there are important decisions to be made at the beginning of the project to
build an API. If we combine the desire to present intuitive APIs that are
consistent and allow for an evolving compatible API, it is worth adopting
an API Standard early.

Checklist: Choosing an API Standard

T
a
b
l
e

2
-
2
.
A
P
I

S
t
a
n
d
a
r
d
s

C
h
e
c
k
l
i
s
t

Decision Which API standard should we adopt?

Discussion Points Does the organization already have other standards within the company? Can
we extend those standards to external consumers?

Are we using any third party APIs that we will need to expose to a consumer
(e.g. Identity Services) that already have a standard?

What does the impact of not having a standard look like for our consumers?

Recommendations Pick an API standard that best matches the culture of the Organization and
formats of APIs you may already have in the inventory.

Be prepared to evolve and add to a standard any domain/industry specific
amendments.

Start with something early to avoid having to break compatibility later for
consistency.

Be critical of existing APIs, are they in a format that consumers would
understand or is more effort required to offer the content?

Specifying REST APIs
As we have seen the design of an API is fundamental to the success of an
API platform. The next challenge to overcome is sharing the API with
developers consuming our APIs.

API marketplaces provide a public or private listing of APIs available to a
consumer. The developer can browse documentation and quickly trial an
API in the browser to explore the API behavior and functionality. Public
and private API marketplaces have placed REST APIs prominently into the
consumer space. Architecturally REST APIs are increasingly important in
support of both microservices based architectures and Service Oriented
Architectures. The success of REST APIs has been driven by both the
technical landscape and the low barrier to entry for both the client and
server.

Prior to 2015 there was no standard for specifying REST APIs, which may
be quite surprising given that API specifications are not a new concept.
XML had XML Schema Definitions (or XSD), which were a core

mechanism in ensuring compatibility of services. However, it is important
to remember that REST was designed for the web, rather than specifically
for APIs. As the number of APIs grew it quickly became necessary to have
a mechanism to share the shape and structure of APIs with consumers. This
is why the OpenAPI Initiative was formed by API industry leaders to
construct the OpenAPI Specification (OAS). The OAS was formerly known
as Swagger and documentation and implementation use OAS and Swagger
interchangeably.

OpenAPI Specification Structure
Let’s explore an example OpenAPI Specification for the attendees API.

 "openapi": "3.0.3",
 "info": {
 "title": "Attendees Mastering API",
 "description": "Example accompanying the Mastering API
Book",
 "version": "1.0"
 },
 "servers": [
 {
 "url": "http://mastering-api.com",
 "description": "Demo Server"
 }
],

The specification begins by defining the OAS version, information about
the API and the servers the API is hosted on. The info attribute is often
used for top level documentation and for specifying the version of the API.
The version of the API is an important attribute, which we will discuss in
more detail in “API Versioning”. The servers array is one of the new
additions in OpenAPI Specification 3, prior to this only a single host could
be represented. The openapi object key is named swagger in older
versions of the specification.

https://www.openapis.org/

NOTE
As well as defining the shape of an API the OpenAPI Specification often conveys full
documentation about the API.

 "paths": {
 "/attendees": {
 "get": {
 "tags": [
 "attendees-controller"
],
 "summary": "Retrieve a list of all attendees
stored within the system",
 "operationId": "getAttendees",
 "responses": {
 "200": {
 "description": "OK",
 "content": {
 "*/*": {
 "schema": {
 "$ref":
"#/components/schemas/AttendeeResponse"
 }
 }
 }
 }
 }
 }
 }
 },

The paths tag conveys the possible operations on the RESTful API and
the expected request and response object formats. In this example on a 200
status response the consumer can expect to receive an object
AttendeeResponse. The components object will describe the
response has a key value containing the Attendee array. The $ref tag
indicates that this will be represented elsewhere in the specification.

 "components": {
 "schemas": {
 "Attendee": {
 "title": "Attendee",

 "required": [
 "email",
 "givenName",
 "surname",
 "displayName"
],
 "type": "object",
 "properties": {
 "displayName": {
 "type": "string"
 },
 "email": {
 "maxLength": 254,
 "minLength": 0,
 "type": "string"
 },
 "givenName": {
 "maxLength": 35,
 "minLength": 0,
 "type": "string"
 },
 "id": {
 "type": "integer",
 "format": "int32"
 },
 "surname": {
 "maxLength": 35,
 "minLength": 0,
 "type": "string"
 }
 }
 },
 "AttendeeResponse": {
 "title": "AttendeeResponse",
 "type": "object",
 "properties": {
 "value": {
 "type": "array",
 "items": {
 "$ref":
"#/components/schemas/Attendee"
 }
 }
 }
 }
 }
 }
}

NOTE
In addition to documentation the author can also supply example responses to
demonstrate how the API should be used.

Components holds the various object schemas for the specification and
in this case defines our Attendee and AttendeeResponse object.

OpenAPI specifications can also include a wide range of additional
metadata and useful features for developers and API consumers. In the
Attendees example the required fields of an Attendee are all fields except
for id, at the time of generating an Attendee the consumer does not
know the id. The specification also sets out maximum lengths for some of
the strings, it also possible to set a regular expression to pattern match
email. Full details of the OpenAPI Specification are hosted on the book’s
GitHub.

Example requests and responses, like the one we’ve shown here,
demonstrate a typical data exchange supported by the API. The OAS also
documents the OAuth2 flows that are supported by an API, which we will
explore further in Chapter 9. Over the course of the chapter it should
become clear how important the OpenAPI Specification is to offering any
type of REST API platform.

Visualizing OpenAPI Specifications
It’s quite difficult to read a specification in JSON or in YAML (which is
also supported by OAS), especially as APIs grow beyond a handful of
operations. The example specification above includes no user
documentation. When documentation is added specifications can rapidly
become thousands of lines long, which makes the specification difficult to
read without a tool. One of the big success stories of OpenAPI
Specifications has been the number of tools available in many different
languages. There are tools that enable the developer to generate OpenAPI

1

https://github.com/OAI/OpenAPI-Specification

Specifications directly from their code or use the Swagger Editor in Figure
2 (TK).

Practical Application of OpenAPI
Specifications
Once an OpenAPI Specification is shared the power of the specification
starts to become apparent. OpenAPI.Tools documents a full range of open
and closed source tools available. In this section we will explore some of
the practical applications of tools based on their interaction with the
OpenAPI Specification.

Code Generation
Perhaps one of the most useful features of an OpenAPI specification is
allowing the generation of client side code to consume the API. As
discussed in “Specifying REST APIs” we can include the full details of the
server, security and of course the API structure itself. With all this
information we can generate a series of model and service objects that
represent and invoke the API. The OpenAPI Generator project supports a
wide range of languages and tool chains. For example, in Java you can
choose to use Spring or JAX-RS and in Typescript you can choose a
combination of Typescript with your favorite framework. It is also possible
to generate the API implementation stubs from the OpenAPI Specification.

This raises an important question about what should come first the
specification or the server side code? In the next chapter we are going to
discuss “Contract testing” which presents a behavior driven approach to
testing and building APIs. The challenge with OpenAPI Specifications is
that alone they only convey the shape of the API. OpenAPI specifications
do not fully model the semantics (or expected behavior of the API) under
different conditions. If you are going to present an API to external users it is
important that the range of behaviors is modelled and tested to help avoid
having to drastically change the API later.

https://openapi.tools/#text-editors
https://openapi-generator.tech/

A common challenge with API modelling, as discussed in “The Richardson
Maturity Model”, is determining whether you need a RESTful API or
whether you need RPC. We will explore this idea further in “Alternative
API Formats”. It is important that this is an active decision, as delivering
RPC over REST can result in a modelling mistake and a challenge for
consumers. APIs should be designed from the perspective of the consumer
and abstract away from the underlying representation behind the scenes. It
is important to be able to freely refactor components behind the scenes
without breaking API compatibility, otherwise the API abstraction loses
value.

OpenAPI Validation
OpenAPI Specifications are useful for validating the content of an exchange
to ensure the request and response match the expectations of the
specification. At first it might not seem apparent where this would be
useful, if code is generated surely the exchange will always be right? One
practical application of OpenAPI validation is in securing APIs and API
infrastructure. In many organizations a zonal architecture is common, with a
notion of a DMZ (Demilitarized Zone) used to shield a network from
inbound traffic. A useful feature is to interrogate messages in the DMZ and
terminate the traffic if the specification does not match.

Atlassian, for example, Open Sourced a tool called the swagger-request-
validator, which is capable of validating JSON REST content. The project
also has adapters that integrate with various mocking and testing
frameworks to help ensure that API Specifications are conformed to as part
of testing. The tool has an OpenApiInteractionValidator which is
used to create a ValidationReport on an exchange.

//Using the location of the specification create an interaction
validator
//The base path override is useful if the validator will be used
behind a gateway/proxy
final OpenApiInteractionValidator validator =
OpenApiInteractionValidator
 .createForSpecificationUrl(specUrl)

https://bitbucket.org/atlassian/swagger-request-validator/src/master/

 .withBasePathOverride(basePathOverride)
 .build;

//Requests and Response objects can be converted or created using
a builder
final ValidationReport report = validator.validate(request,
response);

if (report.hasErrors()) {
 // Capture or process error information
}

Examples and Mocking
The OpenAPI Specification can provide example responses for the paths in
the specification. Examples, as we’ve discussed, are useful for
documentation to help developers understand the API usage. Some products
have started to use examples to allow the user to query the API and return
example responses from a mock service. This can be really useful in
features such as a Developer Portal, which allows developers to explore
documentation and invoke APIs.

Examples can potentially introduce an interesting problem, which is that
this part of the specification is essentially a string (in order to model
XML/JSON etc). openapi-examples-validator validates that an example
matches the OpenAPI Specification for the corresponding request/response
component of the API.

Detecting Changes
OpenAPI Specifications can also be useful in detecting changes in an API.
This can be incredibly useful as part of a DevOps pipeline. Detecting
changes for backwards compatibility is incredibly important, but first it is
useful to understand versioning of APIs in more detail.

API Versioning

2

We have explored the advantages of sharing an OpenAPI specification with
a consumer, including the speed of integration. Consider the case where
multiple consumers start to operate against the API. What happens when
there is a change to the API or one of the consumers requests the addition of
new features to the API?

Let’s take a step back and think about if this was a code library built into
our application at compile time. Any changes to the library would be
packaged as a new version and until the code is recompiled and tested
against the new version, there would be no impact to production
applications. As APIs are running services, we have a couple of upgrade
options that are immediately available to us when changes are requested:

Release a new version and deploy in a new location. Older
applications continue to operate against the older version of the
APIs. This is fine from a consumer perspective, as the consumer
only upgrades to the new location and API if they need the new
features. However, the owner of the API needs to maintain and
manage multiple versions of the API, including any patching and
bug fixing that might be necessary.

Release a new version of the API that is backwards compatible
with the previous version of the API. This allows additive
changes without impacting existing users of the API. There are no
changes required by the consumer, but we may need to consider
downtime or availability of both old and new versions during the
upgrade. If there is a small bug fix that changes something as small
as an incorrect fieldname, this would break compatibility.

Break compatibility with the previous API and all consumers
must upgrade code to use the API. This seems like an awful idea
at first, as that would result in things breaking unexpectedly in
production. However a situation may present itself where we
cannot avoid breaking compatibility with older versions. One
example where APIs have had to break compatibility for a legal

3

reasons was the introduction of GDPR (General Data Protection
Regulation) in Europe.

The challenge is that each of these different upgrade options offer
advantages, but also drawbacks either to the consumer or the API owner.
The reality is that we want to be able to support a combination of all three
options. In order to do this we need to introduce rules around versioning
and how versions are exposed to the consumer.

Semantic Versioning
Semantic Versioning offers an approach that we can apply to REST APIs to
give us a combination of the above. Semantic versioning defines a
numerical representation attributed to an API release. That number is based
on the change in behavior in comparison to the previous version, using the
following rules.

A Major version introduces non-compatible changes with previous
versions of the API. In an API platform upgrading to a new major
version is an active decision by the consumer. There is likely going
to be a migration guide and tracking as consumers upgrade to the
new API.

A Minor version introduces a backwards compatible change with
the previous version of the API. In an API service platform it is
acceptable for consumer to receive minor versions without making
an active change on the client side.

A Patch version does not change or introduce new functionality,
but is used for bug fixes on an existing Major.Minor version of
functionality.

Formatting for semantic versioning can be represented as
Major.Minor.Patch. For example 1.5.1 would represent major version
1, minor version 5 with patch upgrade of 1. Whilst reading the above the
reader may have noticed that with APIs running as services there is another
important aspect to the story. Versioning alone is not enough, an element of

https://semver.org/

deployment and what is exposed to the consumer at what time is part of the
challenge. This is where the API Lifecycle is important to consider, n terms
of versioning.

API Lifecycle
The API space is moving quickly, but one of the clearest representations of
version lifecycle comes from the now archived PayPal API Standards. The
lifecycle is defined as follows:

https://github.com/paypal/api-standards/blob/master/api-style-guide.md#api-lifecycle

T
a
b
l
e

2
-
3
.
A
P
I

L
i
f
e
c
y
c
l
e

(
a
d
a
p
t
e
d

f

r
o
m

P
a
y
P
a
l
A
P
I

S
t
a
n
d
a
r
d
s
)

Planned Exposing an API from a technology perspective is quite straightforward,
however once it is exposed and consumed we have multiple parties that need
to be managed.
The planning stage is about advertising that you are building an API to the
rest of the API program.
This allows a discussion to be had about the API and the scope of what it
should cover.

Beta Involves releasing a version of our API for users to start to integrate with,
however this is generally for the purpose of feedback and improving the API.
At this stage the producer reserves the right to break compatibility, it is not a
versioned API.
This helps to get rapid feedback from consumers about the design of the API

before settling on a structure.
A round of feedback and changes enables the producer to avoid having many
major versions at the start of the APIs lifetime.

Live The API is now versioned and live in production.
Any changes from this point onward would be versioned changes.
There should only ever be one live API, which marks the most recent
major/minor version combination.
Whenever a new version is released the current live API moves to deprecated.

Deprecated When an API is deprecated it is still available for use, but significant new
development should not be carried out against it.

When a minor version of a new API is released an API will only be
deprecated for a short time, until validation of the new API in production is
complete.
After the new version is successfully validated a minor version moves to
retired, as the new version is backwards compatible and can handle the same
features as the previous API.

When a major version of the API is released the older version becomes
deprecated.
It is likely that will be for weeks or months, as an opportunity must be given
to consumers to migrate to the new version.
There is likely going to be communication with the consumers, a migration
guide and tracking of metrics and usage of the deprecated API.

Retired The API is retired from production and is no longer accessible.

The lifecycle helps the consumer fully understand what to expect from the
API. The main question is what does the consumer see with respect to the
versioning and lifecycle? With Semantic Versioning combined with the API
Lifecycle the consumer only needs to be aware of the major version of the
API. Minor and patch versions will be received without updates required on
the consumers side and won’t break compatibility.

One often controversial question is how should the major version be
exposed to the user. One way is to expose the major version in the URL i.e.
http://mastering-api.com/v1/attendees. From a purely RESTful perspective
however the version is not part of the resource. Having the major version as
part of the URL makes it clear to the consumer what they are consuming. A
more RESTful way is to have the major version as part of the header, e.g.

http://mastering-api.com/v1/attendees

VERSION: 1. Having the version in a header may be slightly hidden from
the consumer. A decision would need to be made to be consistent across
APIs.

You may be wondering how APIs with multiple versions can be presented
side-by-side during deployments and route to specific API services. We will
explore this further in Chapter 4 and in Chapter 5.

OpenAPI Specification and Versioning
Now that we have explored versioning we can look at examples of breaking
changes and non breaking changes using the attendees API specification.
There are several tools to choose from to compare specifications, in this
example we will use openapi-diff from OpenAPITools.

We will start with a breaking change. We will change givenName to be a
field called firstName. We can run the diff tool from a docker container
using the following command:

$docker run --rm -t \
 -v $(pwd):/specs:ro \
 openapitools/openapi-diff:latest /specs/original.json
/specs/first-name.json
===
=========
== API CHANGE LOG
==
===
=========
 Attendees Mastering API

-- What's Changed
--

- GET /attendees
 Return Type:
 - Changed 200 OK
 Media types:
 - Changed */*
 Schema: Broken compatibility

https://github.com/OpenAPITools/openapi-diff

 Missing property: [n].givenName (string)

-- Result
--

 API changes broke backward compatibility

TIP
The -v $(pwd):/specs:ro adds the present working directory to the container
under the /specs mount as read only.

We can try to add a new attribute to the /attendees return type to add an
additional field age. Adding new fields does not break existing behavior
and therefore does not break compatibility.

$ docker run --rm -t \
 -v $(pwd):/specs:ro \
openapitools/openapi-diff:latest --info /specs/original.json
/specs/age.json
===
=========
== API CHANGE LOG
==
===
=========
 Attendees Mastering API

-- What's Changed
--

- GET /attendees
 Return Type:
 - Changed 200 OK
 Media types:
 - Changed */*
 Schema: Backward compatible

-- Result
--

 API changes are backward compatible

It is worth trying this out to see what would be compatible changes and
what would not. Introducing this type of tooling as part of the API pipeline
is going to help avoid unexpected non compatible changes for consumers.
OpenAPI specifications are an important part of an API program, and when
combined with tooling, versioning and lifecycle they are invaluable.

Alternative API Formats
REST APIs work incredibly well for extending services to external
consumers. From the consumer perspective the API is clearly defined,
won’t break unexpectedly and all major languages are supported. But, is
using a REST API for every exchange in a microservices based architecture
the right approach? For the remainder of the chapter we will discuss the
various API formats available to us and factors that will help determine the
best solution to our problem.

Remote Procedure Call (RPC)
Remote Procedure Calls (RPC) are definitely not a new concept. RPC
involves executing code or a function of another process. It is an API, but
unlike a REST API it generally exposes the underlying system or function
internals. With RPC the model tends to convey the exact functionality at a
method level that is required from a secondary service.

RPC is different from REST as REST focuses on building a model of the
domain and extending an abstraction to the consumer. REST hides the

system details from the user, RPC exposes it. RPC involves exposing a
method from one process and allows it to be called directly from another.

gRPC is a modern open source high performance Remote Procedure Call
(RPC). gRPC is under stewardship of the Linux Foundation and is the
defacto standard for RPC across most platforms. Figure 2-2 describes an
RPC call in gRPC, which involves the Schedule Service invoking the
remote method on the Attendees Service. THe gRPC Attendees Service
creates a server, allowing methods to be invoked remotely. On the client
side, the Schedule Service, a stub is used to abstract the complexity of
making the remote call into the library.

Figure 2-2. Example Attendees with RPC using gRPC

Another key difference between REST and RPC is state, REST is by
definition stateless - with RPC state depends on the implementation. The
authors have seen huge systems built around SOAP, which was the XML-
RPC successor of the noughties! Many systems have been built around
content based routing of messages to specific services with the right cached
state to handle the request. In state based RPC systems the developer must
have a detailed understanding of each exchange and expected behavior. In

order to scale, systems start to leak business logic into routing, which if not
carefully managed can lead to increased complexity.

Implementing RPC with gRPC
The Attendees service could model either a North→South or East→West
API. In addition to modelling a REST API we are going to evolve the
Attendees service to support gRPC.

TIP
East→West such as Attendees tend to be higher traffic, and can be implemented as
microservices used across the architecture. gRPC may be a more suitable tool than
REST for East→West services, owing to the smaller data transmission and speed within
the ecosystem. Any performance decisions should always be measured in order to be
informed.

Let’s explore using a Spring Boot Starter to rapidly create a gRPC server.
The Java code below demonstrates a simple structure for implementing the
behavior on the generated gRPC server classes.

@GrpcService
public class AttendeesServiceImpl extends
AttendeesServiceGrpc.AttendeesServiceImplBase {

 @Override
 public void getAttendees(AttendeesRequest request,
 StreamObserver<AttendeeResponse> responseObserver) {
 AttendeeResponse.Builder responseBuilder =
AttendeeResponse.newBuilder();

 //populate response
 responseObserver.onNext(responseBuilder.build());
 responseObserver.onCompleted();
 }
}

The following .proto file defines an empty request and returns a repeated
Attendee response. In protocols used for binary representations it is

https://grpc.io/
https://github.com/yidongnan/grpc-spring-boot-starter

important to note that position and order of fields is important, as they
govern the layout of the message. Adding a new service or new method is
backward compatible as is adding a field to a message, but care is required.
Removing a field or renaming a field will break compatibility, as will
changing the datatype of a field. Changing the field number is also an issue
as field numbers are used to identify fields on the wire. The restrictions of
encoding with gRPC mean the definition must be very specific. REST and
OpenAPI are quite forgiving as the specification is only a guide . Extra
fields and ordering do not matter in OpenAPI, versioning and compatibility
is therefore even more important when it comes to gRPC.

The following .proto file models the same attendee object that we
explored in our OpenAPI Specification example.

syntax = "proto3";
option java_multiple_files = true;
package com.masteringapi.attendees.grpc.server;

message AttendeesRequest {
}

message Attendee {
 int32 id = 1;
 string givenName = 2;
 string surname = 3;
 string email = 4;

}

message AttendeeResponse {
 repeated Attendee attendees = 1;
}

service AttendeesService {
 rpc getAttendees(AttendeesRequest) returns (AttendeeResponse);
}

The Java service modelling this example can be found on the Book GitHub
page. gRPC cannot be queried directly from a browser without additional
libraries, however you can install gRPC UI to use the browser for testing.
grpcurl also provides a command line tool:

4

https://github.com/orgs/masteringapi/attendees
https://github.com/fullstorydev/grpcui

$ grpcurl -plaintext localhost:9090 \

com.masteringapi.attendees.grpc.server.AttendeesService/getAttend
ees
{
 "attendees": [
 {
 "id": 1,
 "givenName": "Jim",
 "surname": "Gough",
 "email": "gough@mail.com"
 }
]
}

gRPC gives us another option for querying our service and defines a
specification for the consumer to generate code. gRPC has a more strict
specification than OpenAPI and requires methods/internals to be
understood by the consumer.

GraphQL
RPC offers access to a series of individual functions provided by a
producer, but does not usually extend a model or abstraction to the
consumer. REST extends a resource model for a single API provided by the
producer. It is possible to offer multiple APIs on the same base URL by
combining REST APIs together using API Gateways. We will explore this
notion further in Chapter 4. If we offer multiple APIs in this way the
consumer will need to query the APIs sequentially to build up state on the
client side. This approach is also wasteful if the client is only interested in a
subset of fields on the API response. Consider a user interface that models a
dashboard of data on our conference system using visual tiles. Each
individual tile would need to invoke each API to populate the UI to display
the tile content the user is interested in. Figure 2-3 shows the number of
invocations required.

Figure 2-3. Example User Interface model

GraphQL introduces a technology layer over existing services, data stores
and APIs that provides a query language to query across multiple sources.
The query language allows the client to ask for exactly the fields required,
including fields that span across multiple APIs.

https://graphql.org/

GraphQL introduces the GraphQL schema language, which is used to
specify the types in individual APIs and how APIs combine. One major
advantage of introducing a GraphQL schema is the ability to provide a
single version across all APIs, removing the need for potentially complex
version management on the consumer side.

After defining the schema the next consideration is the implementation of
behavior and defining how data is retrieved and if necessary converted to
match the schema. A Resolver is a function that a GraphQL server
implementor creates to source the data for data elements in the GraphQL
schema. Mark Stuart has written an excellent blog on GraphQL resolver
best practices for PayPal Engineering.

TIP
One mistake that API developers and architects often make is assuming that GraphQL is
only a technology used with User Interfaces. In systems where vast amounts of data is
stored across different subsystems GraphQL can provide an ideal solution to abstracting
away internal system complexity.

Lets implement a very trivial GraphQL schema for the /attendees call
to look at what GraphQL looks like to the consumer.

var schema = buildSchema(`
 type Attendee {
 givenName: String
 surname: String
 displayName: String
 email: String
 id: Int
 }

 type Query {
 attendees: [Attendee]
 }
`);

// Logic to resolve and fetch content

https://graphql.org/learn/schema/
https://medium.com/paypal-engineering/graphql-resolvers-best-practices-cd36fdbcef55

var app = express();
app.use('/graphql', graphqlHTTP({
 schema: schema,
 rootValue: root,
 graphiql: true,
}));
app.listen(4000);

GraphQL has a single POST /graphql endpoint (not too dissimilar from
RPC), however unlike RPC it is not single a method with set behavior that
is invoked but a declarative request for specific elements of the schema.

curl -X POST -H "Content-Type: application/json" \
 -d '{"query": "{ attendees { email } }"}'
http://localhost:4000/graphql

{"data":{"attendees":[{"email":"jpgough@gmail.com"}]}}

Figure 2-4 shows how GraphiQL (a UI tool for GraphQL) provides the
consumer with a graphical mechanism for building up queries, along with
the ability to explore the schema data types.

Figure 2-4. Executing a Query from the GraphiQL UI

GraphQL is a fascinating technology and offers a complement to REST and
RPC and in some cases will be a better choice. Learning GraphQL by Eve
Porcello and Alex Banks offers an in-depth exploration for the curious
architect. GraphQL works very well when the data and services that a team
or company present are from a specific business domain. In the case where
disparate APIs are presented externally GraphQL could introduce a
complicated overhead to maintain if it tried to do too much. Whilst you can
use GraphQL to normalize access to a domain, maintenance may be
reduced if the services behind the scenes have already been normalized.

Exchanges and Choosing an API Format
In Chapter 1 we discussed the concept of traffic patterns, and the difference
between requests originating from outside the ecosystem and requests
within the ecosystem. Traffic patterns are an important factor in
determining the appropriate format of API for the problem at hand. When
we have full control over the services and exchanges within our
microservices based architecture, we can start to make compromises that we
would not be able to make with external consumers.

It is important to recognize that the performance characteristics of an
East→West service are likely to be more applicable than a North→South
service. In a North→South exchange traffic originating from outside the
API producer’s environment will generally involve the exchange using the
internet. The internet introduces a high degree of latency, and an API
architect should always consider the compounding effects of each service.
In a microservices based architecture it is likely that one North→South
request will involve multiple East→West exchanges. High traffic
East→West exchange need to be efficient to avoid cascading slow-downs
propagating back to the consumer.

High Traffic Services

https://learning.oreilly.com/library/view/learning-graphql/9781492030706/

In our example Attendees is a central service. In a microservices based
architecture components will keep track of an attendeeId. APIs offered
to consumers will potentially retrieve data stored in the Attendees service,
and at scale it will be a high traffic component. If the exchange frequency is
high between services, the cost of network transfer due to payload size and
limitations of one protocol vs another will be more profound as usage
increases. The cost can present itself in either monetary costs of each
transfer or the total time taken for the message to reach the destination.

Large Exchange Payloads
Large payload sizes may also become a challenge in API exchanges and are
susceptible to increasing transfer performance across the wire. JSON over
REST is human readable, and will often be more verbose than a fixed or
binary representation.

TIP
A common misconception is that “human readability” is quoted as a primary reason to
use JSON in data transfers. The number of times a developer will need to read a
message vs the performance consideration is not a strong case with modern tracing
tools. It is also rare that large JSON files will be read from beginning to end. Better
logging and error handling can mitigate the human readable argument.

Another factor in large payload exchanges is the time taken by components
to parse the message content into language level domain objects.
Performance time of parsing data formats varies vastly depending on the
language a service is implemented in. Many traditional server side
languages can struggle with JSON compared to a binary representation for
example. It is worth exploring the impact of parsing and include that
consideration when choosing an exchange format.

HTTP/2 Performance Benefits

Using HTTP/2 based services can help to improve performance of
exchanges by supporting binary compression and framing. The binary
framing layer is transparent to the developer, but behind the scenes will split
and compress the message into smaller chunks. The advantage of binary
framing is it allows for a full request and response multiplexing over a
single connection. Consider processing a list in another service and the
requirement is to retrieve 20 different attendees, if we retrieved these as
individual HTTP/1 requests it would require the overhead of creating 20
new TCP connections. Multiplexing allows us to perform 20 individual
requests over a single HTTP/2 connection.

gRPC uses HTTP/2 by default and reduces the size of exchange by using a
binary protocol. If bandwidth is a concern or cost gRPC will provide an
advantage, in particular as content payloads increase significantly in size.
gRPC may be beneficial compared to REST if payload bandwidth is a
cumulative concern or the service exchanges large volumes of data. If large
volumes of data exchanges are frequent it is also worth considering some of
the asynchronous capabilities of gRPC, which we will cover in Chapter 10.

Vintage Formats
Not all services in an architecture will be based on a modern design. In
Chapter 6 we will look at how to isolate and evolve vintage components,
however as part of an evolving architecture older components will be an
active consideration. Many older services will use formats such as
SOAP/XML over HTTP/TCP. It is important that an API architect
understands the overall performance impact of introducing vintage
components.

Performance Testing Exchanges
Recognizing the performance characteristics of exchanges is a useful skill
for an API Architect to develop. Often it is not the network alone that needs
to be considered - the test should include the network, parsing, responding
to the query and returning a response. Smaller benchmarks do not capture

https://developers.google.com/web/fundamentals/performance/http2#binary_framing_layer

the full picture, so it is important to look at the performance in the context
of your system. Let’s explore the approach of a simple end-to-end
performance test in the gRPC ecosystem.

Performance is at the heart of every build of the gRPC libraries, and a
Performance Dashboard monitors each build and the impact of changes on
performance. Buying into the gRPC ecosystem will provide a full stack of
complementing libraries that work together in the target language for
building services.

If performance is a primary concern for a service it is important to build a
benchmark that can be used to test changes to code and libraries over time.
We can use a gRPC benchmarking tool ghz to get an idea of the
performance of the attendees service.

brew install ghz
ghz --insecure --format=html --total=10000 \
 --proto ./attendees.proto \
 --call
com.masteringapi.attendees.grpc.server.AttendeesService.getAttend
ees \
 -d {} localhost:9090 > results.html

Figure 2-5 shows a graphical representation of the the performance of
10,000 requests. The average response time was 2.49 milliseconds, the
slowest response time was 14.22 milliseconds and the fastest was 0.16ms.

https://performance-dot-grpc-testing.appspot.com/explore?dashboard=5636470266134528

Figure 2-5. GHZ gRPC Benchmark Tool - https://github.com/bojand/ghz

TIP
We want to avoid premature optimization and benchmarks without analysis can lead to a
confirmation bias. gRPC will provide performance benefits, but it is important to
consider the consumer and their expectations of the API.

gRPC also supports asynchronous and streaming APIs, we will spend
Chapter 10 discussing asynchronous approaches to APIs. If services are
constantly exchanging information an open asynchronous pipe would offer
advantages over an individual request/response model. In Chapter 5 we will
explore alternative approaches to testing and monitoring the behavior of
applications and exchanges in production.

Checklist: Modelling Exchanges

https://github.com/bojand/ghz

T
a
b
l
e

2
-
4
.
M
o
d
e
l
l
i
n
g

E
x
c
h
a
n
g
e
s

C
h
e
c

k
l
i
s
t

Decision What format should we use to model the API for our service?

Discussion Points Is the exchange a North→South or East→West exchange? Are we in control
of the consumer code?

Is there a strong business domain across multiple services or do we want to
allow consumers to construct their own queries?

What versioning considerations do we need to have?

What is the deployment/change frequency of the underlying data model.

Is this a high traffic service where bandwidth or performance concerns have
been raised?

Recommendations If the API is consumed by external users REST is the lowest barrier to entry
and provides a strong domain model.

If the APIs offered connect well together and users are likely to use the API to
query across APIs frequently consider using GraphQL.

If the API is interacting between two services under close control of the
producer or the service is proven to be high traffic consider gRPC.

Multiple Specifications
In this chapter we have explored a variety of API formats for an API
Architect to consider and perhaps the final question is “Can we provide all
formats?”. The answer is yes we can support an API that has a RESTful
presentation, a gRPC service and connections into a GraphQL schema.
However, it is not going to be easy and may not be the right thing to do. In
this final section we will explore some of the options available for a multi-
format API and the challenges it can present.

The Golden Specification
The .proto file for attendees and the OpenAPI specification do not look
too dissimilar, they contain the same fields and both have data types. Is it
possible to generate a .proto file from an OpenAPI specification using
the openapi2proto tool? Running openapi2proto --spec spec-
v2.json will output the .proto file with fields ordered alphabetically
by default. This is fine until we add a new field to the OpenAPI
specification that is backwards compatible and suddenly the ID of all fields
changes, breaking backwards compatibility.

The sample .proto file below shoes that adding a_new_filed would
be alphabetically added to the beginning, changing the binary format and
breaking existing services.

message Attendee {
 string a_new_field = 1;
 string email = 2;
 string givenName = 3;
 int32 id = 4;
 string surname = 5;
}

OpenAPI specifications support the idea of extensions, and by using the
openapi2proto specific OpenAPI extensions it is possible to generate the
compatibility between the two mechanisms of specification.

NOTE
There are other tools available to solve the specification conversion problem, however it
is worth noting that some tools only support OpenAPI Specification version 2. The time
taken to move between version 2 and 3 in some of the tools built around OpenAPI has
led to many products needing to support both versions of the OAS.

An alternative option is grpc-gateway, which generates a reverse-proxy
providing a REST facade in front of the gRPC service. The reverse proxy is
generated at build time against the .proto file and will produce a best

https://github.com/nytimes/openapi2proto
https://github.com/nytimes/openapi2proto
https://github.com/grpc-ecosystem/grpc-gateway

effort mapping to REST, similar to openapi2proto. You can also supply
extensions within the .proto file to map the RPC methods to a nice
representation in the OpenAPI specification.

import "google/api/annotations.proto";
//...
service AttendeesService {
 rpc getAttendees(AttendeesRequest) returns (AttendeeResponse) {
 option(google.api.http) = {
 get: "/attendees"
 };
}

Using grpc-gateway gives us another option for presenting both a REST
and gRPC service. However, grpc-gateway involves several commands and
setup that would only be familiar to developers who work with the go
language or build environment.

Challenges of Combined Specifications
It’s important to take a step back here and consider what we are trying to
do. When converting from OpenAPI we are effectively trying to convert our
RESTful representation into a gRPC series of calls. We are tying to covert
an extended hypermedia domain model into a lower level function to
function call. This is a potential conflation of the difference between RPC
and APIs and is likely going to result in wrestling with compatibility.

With converting gRPC to OpenAPI we have a similar issue, the objective is
trying to take gRPC and make it look like a REST API. This is likely going
to create a difficult series of issues when evolving the service.

Once specifications are combined or generated from one another,
versioning becomes a challenge. It is important to be mindful of how both
the gRPC and OpenAPI specifications maintain their individual
compatibility requirements. An active decision should be made as to
whether coupling the REST domain to an RPC domain makes sense and
adds overall value. Rather than generate RPC for East→West from
North→South, what makes more sense is to carefully design the

microservices based architecture (RPC) communication independently from
the REST representation, allowing both APIs to evolve freely.

GraphQL offers a mechanism that is version-less from the consumers
perspective, they interact with only the data that they wish to retrieve. This
is at the cost to the producer in maintaining a GraphQL Schema and logic
that is used to fetch and resolve data from the underlying services. It is
possible to offer REST APIs to external users and then use the separate
GraphQL server to aggregate together APIs that have combined domains. It
is also possible to use GraphQL to present RPC based services in a
normalized schema to clients.

Summary
In this chapter we have scratched the surface of a variety of topics that an
API Architect, API developer or individuals involved in an API program
perspective must appreciate.

The barrier to building a REST API is really low in most
technologies.

REST is a fairly loose standard and for building APIs, conforming
to an agreed API Standards ensures our APIs are consistent and
have the expected behavior for our consumers.

OpenAPI specifications are a useful way of sharing API structure
and automating many coding related activities. Teams should
actively select OpenAPI features within their platform and choose
what tooling or generation features will be applied to projects.

Versioning is an important topic that adds complexity for the API
producer but is necessary to ease API usage for the API consumer.
Not planning for versioning in APIs exposed to consumers is
dangerous. Versioning should be an active decision in the product
feature set and a mechanism to convey versioning to consumers
should be part of the discussion. Versioning alone is usually not

5

enough and ensuring we have an API Lifecycle to help govern
versioning will lead to a successful API offering.

REST is great, but is it not always the best option especially when
traffic patterns and performance concerns are factored in. It is
important to consider how we approach and model exchanges of
information in our microservices based architecture. gRPC and
GraphQL provide options that need to be considered when we
design our exchange modelling.

Modelling multiple specifications starts to become quite tricky,
especially when generating from one type of specification to
another. Versioning complicates matters further but is an important
factor to avoid breaking changes. Teams should think carefully
before combining RPC representations with RESTful API
representations, as there are fundamental differences in terms of
usage and control over the consumer code.

The challenge for an API architect is to drive the requirements from a
consumer business perspective, create a great developer experience around
APIs, and avoid unexpected compatibility issues.

1 The schema object is an extended subset of the JSON Schema Specification Wright Draft 00.

2 https://github.com/codekie/openapi-examples-validator

3 The authors have been in this situation many times, usually first thing on a Monday!

4 Validation of OpenAPI specifications at runtime helps enforce a greater strictness of OpenAPI
Specifications.

5 Anecdotally, whilst researching this chapter some developers claim it is 10 minutes.

https://tools.ietf.org/html/draft-wright-json-schema-00
https://github.com/codekie/openapi-examples-validator

Chapter 3. Testing APIs and the
Test Pyramid

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the
authors’ raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be Chapter 3 of the final book.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the author at feedback@mastering-api.com.

In Chapter 2 we covered the different types of APIs and the value that they
provide to your architecture. This chapter closes out the Designing,
Building and Testing APIs section of this book, we finish by reviewing
approaches to testing APIs. In Chapter 1 we explained that we were taking
the evolutionary step to separate the Attendee functionality into its own
separate API, and we want to make this a testable solution. The authors
believe that, testing is core to building APIs and that testing helps deliver a
quality product to the consumer of your API.

If we compare building APIs to any sort of product, such as a mouthguard
, the only way to verify that the product works as expected is to test it. In

the case of the mouthguard this can mean stretching, hitting, pushing and
pulling the product, or even running simulations. Similarly, testing an API
service gives us confidence that it operates correctly under varying
conditions as expected.

1

mailto:feedback@mastering-api.com

As discussed in Chapter 2 “Specifying REST APIs”, an API should not
return anything unexpected from its documented results. It is also
infuriating when an API introduces breaking changes or causes network
timeouts due to the large duration of time to retrieve a result. These types of
issues drive customers away and are entirely preventable by creating quality
tests around the API service. Any API built should be able to handle a
variety of scenarios, including sending useful feedback to users who
provide a bad input, being secure and returning results within a specified
SLO (Service Level Objectives) based on our SLIs (Service Level
Indicator). that are agreed.

This chapter will introduce the different types of testing that can be applied
to your API to help avoid these unforeseen issues. We will highlight the
positives and the negatives of each type of testing to understand where the
most time should be invested. Throughout the chapter we will reference
some recommended resources for those readers seeking to gain a
significantly more in depth and specialist knowledge about a subject area.

Scenario for this chapter
In Chapter 1, “Attendees Evolution ADR”, we cover the reasons that we
took the evolutionary approach to separate the Attendee API service from
the rest of the Conference System. This separation introduces new
interactions between services, the new Attendee API service will still be
used by the Legacy Conference System, as well as the new use case, in
which it will be used by the external CFP system. We can see how the
Legacy Conference System will work with the new Attendee API service
here Figure 3-1. We will spend this Chapter covering the testing that will be
needed for this new service and how we can use testing to verify the
interactions between the Legacy Conference System and the Attendee API.
As a collective we have seen enough APIs that become inconsistent or
produce accidental breaking changes as new releases are made, this is all
due to a lack of testing. We want to make sure that the new Attendee API is
not like this and that as the Attendee API will be functionally correct. It is

2

important to ensure that the Attendee API returns the correct results, a
service that is not correct is useless, so we need to get this right.

Figure 3-1. Scenario for the chapter

Testing can be applied at different levels to an API, this starts with the
individual building blocks that make up the API itself to verifying that it
works as part of the entire ecosystem. Before implementing some tests and
researching what testing tools and frameworks are available, it is important
to understand the strategies that can be used when testing. This is where we
believe the Testing Quadrant is important to discuss.

Testing Quadrant
The Attendee API service is being seperated out from the Legacy
Conference System and as such when we do start testing the new setup we
want to know that we are performing the correct tests. We use the Testing
Quadrant to help guide our testing efforts. If we start testing the wrong
thing then we waste time or produce incorrect results.

The testing quadrant was first introduced by Brian Marick in his blog series
on agile testing. This became popularized in the book Agile Testing by Lisa
Crispin and Janet Gregory (Addison-Wesley). The testing quadrant brings
together Technology and the Business. Technology cares that the service
has been built correctly, that its pieces (e.g. functions or endpoints) respond
as expected, and that it is resilient and continues to behave under abnormal
circumstances. The Business cares that the right service is being developed
i.e. in the case of the Attendee API service do the right attendees get
returned when querying the API? To clarify by the term The Business we
mean that this someone that has a clear understanding of what should be
developed to take the product in the right direction. For our case we want to
ensure that we are building the right API.

There is a distinction between the priorities from each perspective and the
Testing Quadrant brings these together to create a nice collaborative
approach to develop testing. The popular image of the test quadrant is
shown in Figure 3-2.

http://www.exampler.com/old-blog/2003/08/21.1.html#agile-testing-project-1
https://agiletester.ca/

Figure 3-2. Agile Testing Quadrants from Agile Testing (Addison-Wesley) by Lisa Crispin and Janet
Gregory

The testing Quadrant does not depict any order, they are labeled for
convenience and this is a common source of confusion that Lisa describes
in one of her blog posts. The four quadrants can be generally described as
follows:

Q1 Unit and Component tests for technology, what has been
created works as it should, automated testing.

Q2 Tests with the business to ensure what is being built is serving
its purpose, combination of manual and automated.

Q3 Testing for the business, meeting functional requirements,
exploratory testing and expectations being fulfilled.

https://lisacrispin.com/2011/11/08/using-the-agile-testing-quadrants/
https://lisacrispin.com/2011/11/08/using-the-agile-testing-quadrants/

Q4 The system will work as expected from a technical standpoint,
including aspects such as; security, SLA integrity, the service
scales effectively, whether horizontally or vertically. These are all
non-functional requirements. We will cover more of the Q4
concerns in Chapter 6.

The left side of quadrant (Q1, Q2) is all about supporting the product, it
helps guide the product and prevent defects. The right side (Q3, Q4) is
about critiquing the product and finding defects in the product. The top of
the pyramid (Q2,Q3) is the external quality of your product, what the
business finds important, in our case the users of our APIs. The bottom of
the pyramid (Q1, Q4) are the Technology facing tests so that we maintain
the internal quality of our application.

If our conference system was looking at selling tickets, which is a system
that must handle large traffic spikes, it may be best to start with Q4. When
building APIs you will look at each of the quadrants, though in this chapter
the primary focus will be on automating the testing. We want to create the
right tests for our API service and automated testing allows for faster
feedback.

Test Pyramid
In addition to the testing quadrants we can use the Test pyramid as part of
our strategy for test automation The Testing pyramid was first introduced in
the book Succeeding with Agile by Mike Cohn. This pyramid gives the
notion of how much time should be spent on a testing area, the difficulty
and the returned value that it brings. If you search online for images of a
testing pyramid thousands will appear, they all consist of different blocks,
colours, arrows drawn on them and some even have clouds at the top.
However, the Testing Pyramid at its core has remained unchanged. The
Testing Pyramid has Unit Tests as its foundation, Service Tests as the
middle block and UI tests at the peak of the pyramid.

Figure 3-3 shows a Testing pyramid which comes from Martin Fowlers
online post https://martinfowler.com/bliki/TestPyramid.html

3

https://www.oreilly.com/library/view/succeeding-with-agile/9780321660534/
https://twitter.com/mikewcohn
https://martinfowler.com/bliki/TestPyramid.html

Figure 3-3. Martin Fowler Testing Pyramid

An important point to note is that when we look at this image we see
intuitive icons that allow us to understand that the UI tests at the top of the
pyramid are slower and more costly than the faster and cheaper unit tests at
the bottom of the pyramid.

When testing APIs start at the bottom of the pyramid with the Unit tests,
which form the foundation of your automated testing. These fit into Q1 of
the testing quadrant, they are used to provide quality to the internals of your
API. Unit tests are testing small, isolated units of your code to ensure that
your defined unit is running as expected.

Service tests are next in the pyramid with a higher development and
maintenance cost than unit tests and a slower run time than unit tests. The
reason for the increased maintenance cost in a service test is that they are
more complex, service tests. They consist of multiple units tested together
to verify they integrate correctly. For APIs this is about ensuring that your
API can integrate with other components, maybe even other APIs, which
comes under Q1 of the testing quadrant. Service tests also check that your
API is responding to requests and responses as expected, ensuring that it is
returning the payloads as expected, this fits into Q2 of the testing quadrant.
This can cross over into Q4 of the quadrant if we want to verify that the
API is working as expected with using automated performance tests. As

https://martinfowler.com/bliki/TestPyramid.html

these tests are more complex this will mean that they will run more slowly
than unit tests.

Finally, we have UI tests which are the peak of the pyramid. We want to
state now that we will not be using the term UI tests and instead be using
the term end-to-end tests. In the olden days of software development where
everything was a LAMP stack, the web UI was the only way to test your
application all the way through. In the world of APIs we do not care what
the callee is , it can be a UI, a process or anything for that matter. Therefore,
the term End-to-End covers the same ground, of a request flowing from a
start to an end point, but does not enforce that it must be a UI. These are the
most complex tests, so they will have the most cost in terms of creation and
maintenance and will also run the most slowly. The End-to-end tests will
test that an entire module is working together with all its integrations. This
high cost and low speed demonstrates why UI tests are the peak of the
pyramid as the cost to benefit diminishes.

This does not mean that one type of test is better than another. When
building an API it is important to perform all of these types of test. We do
not want to end up with only unit tests or end-to-end tests.

The testing pyramid is a guide to the proportions of each type of testing that
should be done. Most of your time/expense should be on Unit tests, and less
on Service/end-to-end tests

The reason that we need a testing pyramid is that from a high level, as an
Architect or a project owner standpoint, UI tests are the most tangible.
Having something tangible makes these tests feel the safest and by giving
someone a list of step by step tests to follow this will catch all the bugs.
This gives the false sense of security that these higher level tests are of
higher quality/value than unit tests, which are not in an architects control.
This fallacy gives rise to the ice cream cone representation of testing, which
is the opposite of a testing pyramid. For a robust argument on this please
read Steve Smiths’ blog post End-To-End Testing considered harmful

Here we have an image of the anti-pattern testing ice cream cone
https://alisterbscott.com/kb/testing-pyramids/.

https://en.wikipedia.org/wiki/LAMP_(software_bundle)
https://www.stevesmith.tech/blog/end-to-end-testing-considered-harmful/
https://alisterbscott.com/kb/testing-pyramids/

Figure 3-4. Software Testing Ice-Cream Cone by Alister B Scott

As can be seen in Figure 3-4 the emphasis here is on the high level manual
and end-to-end testing over the lower level and more isolated unit tests.
This is exactly what you do not want to do, to end up with lots of automated
tests that are slow and have a high cost to maintain. Martin Fowler wrote an
updated piece on testing shapes and covered why he feels that testing that is
guided by any shape other than the pyramid is incorrect.,
https://martinfowler.com/articles/2021-test-shapes.html.

For this Chapter we would like to show the following test pyramid
Figure 3-5 that we feel helps breakdown further the test pyramid and show
the parts that we are more interested in. It should help guide you in each
area that we will cover and give you a clearer picutre of where these tests fit
in.

https://alisterbscott.com/kb/testing-pyramids/
https://martinfowler.com/articles/2021-test-shapes.html

Figure 3-5. Broken down test pyramid

Unit Testing
As we’ve mentioned, the foundation of the testing pyramid is unit testing,
we have outlined some characteristics that unit tests should have, they
should be fast numerous and cheap to maintain. However, what is the unit?
The typical example of a Unit in Object-Oriented (OO) languages is a
Class, though some make unit tests per public method of a Class. For a
declarative language, such as Haskel, a unit may be defined as a function or
some Logic. 4

https://www.slideshare.net/dbryant_uk/devoxx-uk-2019-testing-java-microservices-from-development-to-production/24

At this point you may be wondering why are we spending time looking at
unit tests in this discussion of creating our new Attendee APIs? Unit tests
are for testing logic at small isolated parts. This gives a developer, who is
implementing the unit, the confidence that this piece has been built
“correctly” and doing what it is supposed to do. When building an API it
must be reliable for the customer and so it is essential that all these
foundational units are working as expected. We want our new Attendees
API service to return correct results.

Let us take an example where we have a class that handles verifying the
input data of a request made to our Attendee API. In this case we are not
concerned about how the input was deserialized, there is another part of the
service that handles that, we want to validate the data that has been passed
in.

boolean valid = attendeeValidator.validate(attendeeData);

We can write unit tests to ensure that the data we care about exists, in this
case we care that the attendee data includes the event attended and the time
that they arrived and left the event. Other checks include the time that the
attendee left the event after the attended time. This is a test to ensure the
internal quality of your API works as expected. The nice thing about this is
that it is very self-contained, however not all cases will be like that.

This is where we can use stubs and/or mocks. A stub is an object used for
a test that can return hard coded responses. Mocks are pre-programmed
objects that work on behavior verification. In the following example an
attendee record should be added to the database if the data is valid. For the
test we have the option to stub or mock the database and the validator.

Response createAttendeeRecord(AttendeeData attendee){
 if(!attendeeValidator.validate(attendee)){
 return new ClientRequestError400();
 }
 var newAttendeeRecord = attendeeDB.addRecord(attendee);
 return new CreatedRecord201(newAttendeeRecord);
}

5

This is really valuable for our use case as we are testing core logic of our
API, however, we are not escaping this unit. With these unit tests we can
perform lots of different verification such as checking:

When non-valid attendee data is presented

When the database fails to save

When valid data is saved to the database

Stubs and mocks are known as types of doubles. To learn a lot more on this
subject of mocks and stubs please read this excellent article by Martin
Fowler titled Mocks Aren’t Stubs

Test Driven Development
Test Driven Development also known as TDD is a style of development
used to write tests before writing any code. This simple iterative process
was discovered/re-discovered by Kent Beck, for an in depth learning about
TDD refer to the works of Kent Beck’s Test Driven Development: By
Example(Addison-Wesley).

The TDD process (also known as Red, Green, Refactor) is defined as:

Write Test - Write the test that you wish your unit to fulfill

Run all the Tests - Your code should compile and run, however,
your tests should not pass.

Write the code to make test pass

Run all the Tests - Validates that your code is working and nothing
is broken

Refactor code - Tidy up the code

Repeat

So why is TDD important to building APIs? We find this a useful technique
for development to deliver the correct outcome and having tests help guide

https://www.martinfowler.com/articles/mocksArentStubs.html
https://learning.oreilly.com/library/view/test-driven-development/0321146530/

development. Knowing the outcomes upfront helps the developer to avoid
making assumptions and encourages them to ask questions early if they are
unsure of what the actual end result should be. Writing tests also ensures
that your code keeps functioning as expected, if it is modified in the future
and breaks the implementation then a test should catch the error. There are
different ways to perform TDD. However, for the Attendee API service we
would use an Outside-In approach. This approach entails asking what is
required, i.e what is the functionality that should be implemented, and
focusing on writing tests that verify that behaviour is implemented. We like
this approach as it requires the developer to ask questions about what is
actually required. This also means that you do not write functionality that is
not required which saves time.

A consequence of TDD is that as you write all of your tests first, you end up
with lots of unit tests, which is essential to the base of the test pyramid. This
is a benefit — if you do not use TDD then you will need to have another
process to add unit tests to your API. We do recommend TDD as a general
development approach, but it is not necessary.

Service Testing
As part of developing your API you want to ensure that it can be called by a
consumer and that the correct data is being produced. We also want to
validate that if our API is calling other services that it can successfully
integrate with these services as well. For APIs these service level tests are
important, in order to confirm responses that match what is expected.

Here we see the Attendees API service in our C4 diagram, for our service
tests, the scope of testing (the center area within the dotted lines) is just the
Attendees API.

Figure 3-6. Scope of service tests

Since we want tests to validate what our API produces and how our API
service integrates with other services, we will have two definitions for our
service level tests.

Component tests, which are testing our API and do not include
external services (if they are needed then doubles are used).

Integration tests, which are tests that verify egress communication
across a module boundary (e.g. DB Service, External service, other
Module)

The following image clarifies the scope of each of these

We start by demonstrating how we can validate the Attendees API is
working as expected when requests are made to it. Then we will want to
show an integration test, however, instead of showing the integration
between the DAO (Data Access Object) and the Test DB shown in the
image we first want to show how the Legacy Conference System can write
tests to integrate with the new Attendee API. After which we will discuss
how we can improve testing between services by using contract tests and
then move onto showing how to test the DAO and test database using
Testcontainers.

Component tests
Component testing to see how our module works with multiple units is
really valuable. It validates that the modules work as expected and our API
can return the correct response from incoming consumer requests.

This is where using a library or testing framework that wraps a request
client can be really useful, as these libraries usually have a DSL and make it
easy to analyse responses from the API. An example in Java is to use
RestAssured which is a testing library for REST services or using the
httptest package that comes with Go. Depending on the language or
framework that you use there should be something available, otherwise,
creating a small wrapper around a standard client can make things
considerably easier to integrate responses when writing tests.

The type of tests that we want to trigger in this scope varies based on the
business case, however, we do want to validate cases such as:

Is the correct status code returned when I make a request?

Does the response contain the correct data?

When I send a request where the accepted content type is XML
will the data return the expected format?

https://en.wikipedia.org/wiki/Data_access_object

If a request is made by a user who does not have the correct
entitlements, what will the response be?

What will happen if an empty dataset is returned, is this a 404 or is
it an empty array?

When creating a resource does the location header point to the new
asset created?

From this selection of tests we see how these bleed into two areas of the
testing quadrant. This includes Q1 where we are checking that we built the
API correctly as we want the components of our API to all work together,
Q2 where we have automated tests to verify that we built the right API (as
we want to check the response) and that it is functioning correctly (as it is
rejecting unauthorized requests).

For component tests we do not include external dependencies, any that are
required should be test doubles. In the Attendees component tests we will
want to use a test double for the DAO, there is no need to have a real
instance that communicates with a database as that is crossing a boundary.
Also, this is useful if you want to force a module to fail and trigger issues
such as client errors and internal service errors which can help verify that
responses are generated correctly.

Let’s look at an example of a case for our Attendees API. We have an
endpoint /conference/{conference-id}/attendees which
returns a list of the attendees at a conference event. The things we want to
test for this endpoint are:

Requests that are successful have response of 200 (OK)

Users without the right level of access will return a status of 403
(Forbidden)

When a conference has no attendees an empty array will be
returned

Here we use REST-Assured to show an example of calling out to the
Attendees API to verify these cases

@Test
void response_for_attendees_should_be_200() {
 given()
 .when()
 .get("/conference/conf-1/attendees")
 .then()
 .statusCode(HttpStatus.OK.value());
}
@Test
void response_for_attendees_should_be_403() {
 given()
 .when()
 .get("/conference/conf-1/attendees")
 .then()
 .statusCode(HttpStatus.FORBIDDEN.value());
}

We see that running this type of test gives us confidence that our API is
behaving correctly. This is what we are checking for primarily, the
behaviour of your components is appropriate.

If you are not going to do contract testing, which we will see later on in this
chapter “Contract testing”, then it is important that you check the response
body of your endpoints. This is going to give you a faster feedback loop to
validate the response than if done as part of end-to-end testing. You will
need to ensure that the response fits with the API specification that you
have laid out. If your tests do not cover this and your response is different
from the API Specification then users of your API will quickly become
very frustrated.

Integration tests
Integration tests in our definition are tests across boundaries between the
module being developed and any external dependencies.

The Attendees API has a single other external services which is the
PostgreSQL Database. For communicating with the PostgreSQL database

https://github.com/rest-assured/rest-assured

the Attendees API has a DAO component, which will be demonstrated at the
end of this section (“Testcontainers”). We first need to examine how the
Legacy Conference System will interact with the Attendees API, this will
demonstrate the tests that can be used to interact with an external API.

It is important to clarify that when performing an integration test we only
want to test our communication communicate with the external dependency,
as normally it is not feasible to launch the whole external dependency. This
can be seen in the case of the Legacy Conference System that wishes to
have an integration test with the Attendees API. The Attendees Service has
a dependency on a Database as well, so bringing up the whole system,
(Legacy Conference System, Attendees API service and the database)
would not be an integration test but becomes an end-to-end test. All that the
Legacy Conference System cares about when running integration tests with
the Attendees API is if the requests it makes are correct and what the
responses will be.

Figure 3-7. Legacy Conference System wanting to the test the Attendees API

External Service integration
When testing across an external boundary the validation that should be
performed is to confirm that the communication across the boundary is
correct. The types of things we want to verify that we have successfully
integrated with an external service are the following:

Ensuring that an interaction is being made correctly e.g. for a
RESTful service this may be specifying the correct URL or the
payload body is correct

Is the data being sent in the correct format?

Can the unit that is interacting with external service handle the
responses that are being returned?

For the Legacy Conference System, it will need to verify it can
communicate with the new the Attendees API.

So, how can we validate that the two services can talk to each other?

There are many options available to us, the simplest one though is to hand
roll a stub service that mimics the requests and responses of the service we
interact with (hence, you’ll see why we label a stand-in API in the Figure 3-
7“). This is certainly a viable option as in your chosen language and
framework it is usually very easy for developer to create a stub service with
canned responses that integrate with tests. The key considerations when
hand rolling a stub service is to make sure that the stub is accurate. It can be
very easy to make mistakes, such as inaccurately portraying the URL or
making mistakes in the response property names and values, can you see
the errors in this hand typed response?

{
 "values": [
 {
 "id": 123456,
 "givenName": "James",
 "familyName": "Gough"
 },
 {

6

 "id": 123457,
 "givenName": "Matthew",
 "familyNane": "Auburn"
 },
 {
 "id": 123456,
 "givenName": "Daniel",
 "familyName": "Bryant"
 }
]
}

This should still not put off the reader as this is still a good solution and one
of the authors has hand rolled a stub server for an IDP to replicate logging
into a service and this solution worked extremely well. We just want to
highlight that care must be taken with hand-rolling stubs.

A way to avoid these inaccuracies and to ensure that requests to URLs are
accurately captured along with the responses is use a recorder. It is possible
to use a tool, that will record the requests and responses to an endpoint and
generate files that can be used for stubbing. The following image shows
how this works.

Figure 3-8. How a recorder works

These generated files are mappings that can then be used for tests to
accurately portray requests and responses and as they are not hand rolled
we have guarantees that they are accurate. To use these generated files,
when a stub server is launched it reads the mappings files. When a request it

made to the stub server it looks at the requests and checks to see it matched
any of the mappings, if it matches then the mapped response will be
returned. Wiremock is a tool that can do this and it can be used as a
standalone service so is language agnostic, though as it is written in Java
there a specific Java integrations that can be taken advantage of. There are
many other tools available that have a similar capability in other languages
such as camouflage which is written in Typescript. Recording calls to APIs
for use of stubbing, in our opinion, this is usually a better way to go then
hand rolling a stub as it is going to be more accurate than writing them.

What you really want is a golden source of defined interactions that can be
used, and this is where contract testing can help. We’ll discuss contract
testing next, but first want to summarize the ADR guidelines for integration
testing.

http://wiremock.org/
https://github.com/testinggospels/camouflage

T
a
b
l
e
3
-
1
.
A
D
R

G
u
i
d
e
li
n
e
s
-
I
n
t
e
g
r
a
ti
o
n
t

e
s
ti
n
g

Decision Should we add integration testing to our API Testing.

Discussion Points
If your API is integrating with any other service what level of integration test
should you use?

Do you feel confident that you can just mock responses and do not
need to perform integration tests?

For creating a stub service to test against, are we able to accurately
craft the request and responses or should they be recorded?

Will you be able to keep stub services up to date and recognise if an
interaction is incorrect?

If your stubs are incorrect or become out of date, this means is possible to
have tests that pass against your stub service, however, when you deploy your
service to interact with another API it can fail due to the service changing.

Recommendations We do recommend having integration testing using recordings of interactions.
Having integration tests that can be ran locally and give confidence in an
integration, especially when refactoring, helps to ensure that changes have not
broken an integration.

Contract testing
Contract testing is a written definition of an interaction between two entities
a Consumer and a Producer and is about providing guarantees about how
two parties can interact. The beauty of defining an interaction with a
contract is that it is possible to generate tests and stubs from this.
Automated tests and stub services are what give us the ability to perform
local testing without reaching out to the actual service, though still allow us
to verify an interaction. This is really useful for APIs as that is a key
requirement when publishing an API, you want it to keep working and not
change by accident for user.

If we take the Attendee API service we want to ensure that the endpoint we
mentioned earlier /conference/{conference-id}/attendees,
continues to return the correct value. Contract testing is not the same as
saying that an API conforms to a schema. A system is either compatible
with a schema (,like OpenAPI Spec,) or it is not, while a contract is about a
defined interaction between parties and provide examples. A Matt Fellows
has an excellent piece on this titled Schema-based contract testing with
JSON schemas and Open API (Part 1).

There are only two roles for contract testing.

A Consumer requests data from an API. e.g. web client, terminal
shell.

A Producer responds to the API requests, it is producing data. e.g.
a RESTful Web Service.

Producers are also known as Providers. In this book the word Producer will
be used, though the reader should be aware that they are interchangeable
and provider is the term of choice in some contract frameworks. In the case
of the Attendee API service we say that it is a producer and the Legacy
Conference System that is calling a consumer.

https://pactflow.io/blog/contract-testing-using-json-schemas-and-open-api-part-1/

So how does a contract work? As was mentioned a contract is a shared
definition of how two entities interact. Once a definition is defined of how
two parties should interact then we can generate tests and stubs from this. If
a contract is made for the following GET request to the url endpoint
/conference/{conference-id}/attendees we state that we
expect a response that has a property “value” that contains an array of
values about the attendees. This is a sample definition of what an
interaction looks like.

Contract.make {
 request {
 description("""Get a list of all the attendees at a
conference""")
 method GET()
 url '/conference/1234/attendees'
 headers {
 contentType('application/json')
 }
 }
 response {
 status OK()
 headers {
 contentType('application/json')
 }
 body(
 value: [
 $(
 id: 123456,
 givenName: "James",
 familyName: "Gough"
),
 $(
 id: 123457,
 givenName: "Matthew",
 familyName: "Auburn"
)
]
)
 }
}

From this we can generate a test for the producer. This is possible as we
know when a request is made to the producer for at this endpoint we expect

the response to match the response in the body and the content type. We can
generate stubs as well, as we can have a stub server respond when it
receives a request that matches the input and the response returned with be
the response defined in the body. For a consumer this test allows the
consumer to validate that it is making the right request to the producer and
can handle the response. For the producer this test confirms that when the
request is made that it can generate the correct response. We see this in the
following image

Figure 3-9. Generated stubs and tests

WARNING
It is tempting to use contracts for scenario tests. e.g. first add an attendee to a
conference, second, use the get attendees to check the behavior is correct in the auto
generated tests. Frameworks do support this though also discourage it. A producer
should verify this type of behavior in component and unit tests and not in the Contracts,
Contracts are for testing interactions.

A key benefit of using contracts is that once it is confirmed the contract will
be fulfilled then this decouples the dependency of building. The consumer
has a stub service to develop against and the producer has tests to ensure
that they are building the right interaction. The contract test process saves
time as when both the consumer and producer are deployed they should
integrate seamlessly.

TIP
We have used generated stub servers to run demos for stakeholders. This was useful as
the producer for a new API was still being developed but had agreed contracts.

In order to understand how we generate our contracts, let’s look at the two
main contract methodologies.

Producer Contracts
Producer contract testing is when a producer defines its own contracts. If
you are just starting with contract testing or wanting to introduce them into
your APIs then this is a great place to start. New contracts can be created
for the producer to ensure that that service fulfils the interaction criteria and
will continue to fulfil them. If consumers are complaining that a producers
API is breaking on new releases then introducing contracts can help with
this issue.

The other common reason for using producer contract testing is when there
is a large audience for your API, such as when an API is being used outside
your immediate organization and by unknown users, i.e. external third
parties. When developing an API that has a wide public audience it will
need to maintain its integrity and though it is something that is updated and
improved, immediate feedback and individual feedback will not be applied.

A concrete example of such an API in the real world is the Microsoft Graph
API, it can be used to look at the users registered in an Active Directory
Tenant. A consumer may find it preferable to have an additional property
for adding in a preferred name on the Users endpoint of the API. This is
something that can be messaged to Microsoft as a suggestion, however, this
is not likely to be changed and if the suggestion was seen as a good idea it
would unlikely happen quickly. This is something that would have to be
weighed up and considered. Is this something that will be useful for others,
is it backwards compatible change, how does this change the interactions
across the rest of the service?

If we take the same approach with our Attendee API and say that we want
to make it available for public consumption, we do not want consumers
suggested changes to the API that only benefits them. What we care more
about in this case is using the contract to ensure that our interactions and the
data returned are consistent. Breaking changes involves versioning which
we read about in “API Versioning”

Consumer Driven Contracts
Consumer Driven Contracts (CDC) is when a consumer drives the
functionality that they wish to see. Consumers submit contracts to the
producer for new API functionality and the producer will choose to accept
or reject the contract.

CDC is very much an interactive and social process. The owners of the
applications that are consumers and producers should be within reach, e.g.
in the same organization as one another. When a consumer would like a
new interaction (e.g., API call,) or have an interaction updated (e.g., a new
property added,) then they submit a request for that feature. In our case, this

https://docs.microsoft.com/en-us/graph/api/resources/user?view=graph-rest-1.0

may mean that a pull request is submitted from the Legacy Conference
System to the new Attendee API service. The request for the new
interaction is then reviewed and discussion takes place about this new
functionality to ensure that this is something that the Attendees service
should and will fulfil and that the contract is correct. For example, let’s say
a contract is suggested for a PUT request, a discussion can take place if this
should be in fact a PATCH request. This is where a good part of the value of
contracts comes from, this discussion for both parties about what the
problem is, and using a contract to assert that this is what the two parties
accept and agree to. Once the contract is agreed, the producer (Attendees
service) accepts the contract as part of the project and can start fulfilling it.

Contracts methodology overview
These methodologies should hopefully give an overview of how to use
contracts as part of the development process. This should not be taken as
gospel as variations do exist on the exact steps. For example, one process
can ask that the consumer when writing the contract should also create a
basic implementation of the producer code to fulfil the contract. In another
example, the consumer should TDD the functionality they require and then
create the contract before submitting the pull request. The exact process that
is put in place may vary by team. Once you understand the core concepts
and patterns of CDC the exact process that is put in place is just an
implementation detail.

If starting out on a journey to add contracts it should be noted that there is a
cost to it. This cost is the setup time to incorporate contracts into a project
and also the cost of writing the contracts. It is worth looking at tooling that
can create contracts for you based on an OpenAPI Specification. 7

T
a
b
l
e
3
-
2
.
A
D
R

G
u
i
d
e
li
n
e
s
-
C
o
n
t
r
a
c
t
T
e
s

ti
n
g

Decision When building an API should you use contract testings and if so should you
use Consumer Driven Contracts or Producer Contracts?

Discussion Points
Determine whether you are ready to include contract testing as part of your
API testing.

Do you want to add an extra layer of testing to your API that
developers will be required to learn about?

If contracts have not been used before then it requires time to decide how you
will use them.

Should contracts be centralized or in a project?

Do we need to bring in additional tools and training to help people
with contracts?

If deciding to use contracts, then which methodology should be used? CDC or
Producer Contracts.

Do you know who will use this API?

Will this API be used just within our organization?

Does the API have consumers that are willing to engage with us to
help drive our functionality?

Recommendations We recommend using contract testing when building an API.
Even if there is a developer learning curve and deciding how you are going to
set up your contracts for the first time, we believe it is worth the effort.
Defined interactions that are tested save so much time when integrating
services together.

If you are exposing your API to a large external audience then it is important
to use Producer contracts.
Again having defined interactions that help ensure that your API does not
break compatability is crucial.

If you’re building an internal API then the ideal is to work towards CDC, even
if you have to start with producer contracts and evolve over to CDC.

Contracts testing frameworks
The likelihood is that when it comes to contract testing frameworks for
HTTP you are best to start looking at PACT. PACT has evolved into the
default contract testing framework due to the ecosystem that has been built
around it and the sheer number of languages it supports. There are other

https://pact.io/

contract testing frameworks available, and they can be opinionated. PACT
is opinionated that you should perform CDC and is specifically designed for
that. A test is written by a consumer and that test generates a contract, this is
an intermediate representation of what an interaction should be. It is
language agnostic, which is why PACT has such wide language usage.
Contract generation certainly is a good way to go and means that when
using PACT you have no real need to ever see a contract as it is a language
agnostic representation of the interaction. There are other frameworks that
have differing opinions, an example is Spring Cloud Contracts that does not
have a strong opinion of CDC or provider contracts, either can be achieved.
This is possible as with Spring Cloud Contracts you write the contracts by
hand opposed to having it generated. Though Spring Cloud Contracts is
language agnostic by using a containerized version of the product, to get the
most out of it you need to really be using the Spring and JVM ecosystem.

There are options for contract testing for other protocols, contract testing is
not exclusively for HTTP communications.

API Contracts Storage and Publishing
Having seen how contracts work and methodologies of incorporating them
to the development process the next question becomes where are contracts
stored and how should they be published.

There are a few options for storing and publishing contracts and these again
depend on the setup that is available to you and your organization.

Contracts can be stored alongside the Producer code in version control (e.g.
git). They can also be published alongside your build into an artifact
repository such as Artifactory.

Ultimately the contracts should be easily available for the producer to auto
generate tests and the consumer to generate stubs and be able to submit new
contracts for the project. The Producer should have control over which
contracts are accepted in the project and can ensure that undesired changes
aren’t made or additional contracts are added. The downside to this

8

https://jfrog.com/artifactory/

approach is that in a large organization it can be difficult to find all the API
services that use contracts.

Another option is to store all the contracts in a centralized location to enable
visibility into other API interactions that are available. This central location
could be a git repository, though if well organized could also be a folder
structure. The downside to this approach is that unless organized and setup
correctly it is possible and likely that contracts get pushed into a module
that the producer has no intention on fulfilling.

Yet another option for storing contracts is to use a broker. The PACT
contract framework has a broker product that can be used as a central
location to host contracts. A broker can show all contracts that have been
validated by the producer as the producer will publish those contracts that
have been fulfilled. A broker can also see who is using a contract to produce
a network diagram, integrate with CI/CD pipelines and provide even more
valuable information. This is the most comprehensive solution available and
if you use a framework that is compatible with the PACT Broker then it is
recommended.

Testing during the building of your
application
As we learned in Chapter 2 “OpenAPI Specification and Versioning”,
having an OpenAPI specification informs a user of your API how it will
work. We update our OpenAPI spec with changes made to our API to
ensure that we do not break backwards compatibility. Using tools such as
OpenAPI-Diff as part of your build offers the opportunity to validate
whether your API is still backwards compatible. This check can be
integrated into your build pipeline to diff the current version and the
deployed version of your API. OpenAPI diff tools will give a pass or fail to
declare if a schema is backwards compatible or not. If a comparison fails
then we know that we have broken the API Specification and can fix this
early in our development. This is much better than releasing a change and a
customer finding that we have broken the API spec.

https://docs.pact.io/pact_broker

At this point we may ask if we need to diff our OpenAPI specs as we have
contract tests. This is a valid point, if your contract tests are well-defined
then this might certainly be enough, however, you are putting more
responsibility on your contract tests to catch breaking changes. Adding a
diff tool to the build pipeline provides a nice clear-cut yes or no if your API
spec is backwards compatible.

Testcontainers
We have seen how we can communicate with other APIs and use contracts
to help our development. Another useful practice to aid verifying
communications across a boundary is to perform testing with a deployable
solution.

The Attendees API service will provide gRPC interface as well as the
RESTful interface we have been developing. The gRPC interface is to be
developed after the RESTful interface, but we want to provide the
developers with a gRPC interface to test against. The decision is made to
provide a smart stub service, this will be a stub that provides a few pre-
canned responses and stores information in memory. To achieve this goal a
barebones’ application is made that fulfills this objective. This gRPC stub
is then packaged up, containerized and published. This stub can be now
used by developers for testing across a boundary, i.e. they can make real
calls to this service in their tests, and this containerized stub can run locally
own their machine. The difficult thing with this is that the developer will
need to orchestrate the lifecycle of this container for their test, which is
non-trivial.

This is where Testcontainers can help. Testcontainers is a library that
integrates with your testing framework to orchestrate containers.
Testcontainers will start and stop and generally organise the lifecycle of
containers you use with your tests, in our case the stub gRPC server. It can
be beneficial to use a containerized solution as it provides a simple and
common method that others can use to deploy it.

9

https://www.testcontainers.org/

So why is this important to the development of APIs? Having libraries and
tools that run services locally are extremely valuable when testing across
boundaries for your API. Being able to package stubs, or whole services,
and distribute them over a common mechanism, like Docker, makes it
easier to perform testing.

Other containerized services
We have seen that the Attendee API service has a connection to an external
database, and so it is important to perform an integration test. The options
for testing integration boundaries for a database would be mocking out the
Database, use an inMemory Database e.g. H2 or run a local version of the
database using Testcontainers. Using a real instance of the database in your
test provides a lot of value as with mocks you can mock the wrong return
value or make an incorrect assumption. With an inmemory DB you are
assuming that the implementation matches the real DB and when you use
H2 enough you find that it normally does not. Using a real instance of the
product and the same version that you run in production means that you get
reliable testing across a boundary to be sure your integration will work
when going live.

We see in Figure 3-10 how we would structure the test to confirm proper
integration across a boundary with a database.

http://h2database.com/html/main.html

Figure 3-10. Testcontainers DAO test

Testcontainers is a powerful tool and should be considered when testing
boundaries between any external services. Other common external services
that benefit from using Testcontainers include Kafka, Redis, NGINX.

You may be asking if this type of testing is considered end-to-end testing as
we have a real instance of another service that we are testing against. This is
a valid question, for integration tests we are concerned about the
interactions across the boundaries and not what the external service is
doing. We want to call the service and get a response that is the piece we
want to check, we are not performing tests to confirm that the services are
working together to validate any behaviour within both services. That is
why the boundary of what you are testing matters, so in this case we are not
end-to-end testing, though it is possible and shall cover in the next section
“End-to-end Testing”

End-to-end Testing
The essence of end-to-end testing is to test services and their dependencies
together to verify it works as expected. It is important to validate that when
a request is made, and it reaches the front door (i.e. the request reaches your
infrastructure), the request flows all the way through and the correct
response is given. This validation gives confidence that all these systems
work together as expected. We see these tests as being part of Q2 of the
testing quadrant, these are automated tests that test core cases and validate
business functionality. As we are building and exposing APIs we care only
about the API, we want to validate this as our public interface. We do not
care about what is calling the API, we should not need to validate the
Mobile Apps or Web-UIs’ that are communicating with your API as they
are not part of our domain. .10

WARNING
If you are building an external facing API and you have multiple third parties that are
consuming it, don’t try and copy the third party UI to replicate how their UI works.
Doing so will mean that huge amounts of time will be spent trying to replicate
something out of your domain.

We do want to clarify that the ideal is to have real versions of your services
running and interacting together, however, sometimes this is not always
feasible. Therefore, it is okay to stub out some entities of a system that are
outside your organizations domain and are provided by an external party.
Such as AWS S3. You really do not want to run your tests and have to rely
on an external entity where you are connecting over the internet and the
network can go down. This is why for our end-to-end tests we need to
ensure that we define our test boundary, we also do not want to launch
services that are not needed. For an end-to-end test of our Attendee service,
we need to launch the database and the attendee service, we do not need to
launch the whole conference system. We have defined a boundary here, we
could have an end-to-end test that includes the Legacy Conference System,
this would also be valid for an end-to-end.

Figure 3-11. End-to-end test scope

Managing and co-ordinating multiple systems together is not easy to
automate and end-to-end tests can be brittle. Running end-to-end tests
locally is becoming easier, as we have just seen in “Testcontainers” with
containerization which allow you to spin up multiple systems locally.
However, the process to launch is slow and these tests are still difficult to
maintain, hence they are at the top of the testing pyramid.

One of the other parts of end-to-end testing that provides value is using
realistic payloads. This is extremely valuable, we have seen end-to-end tests
where payloads have been created that are small and concise, then when
investigating why APIs are breaking it is found that the Clients are
regularly sending very large payloads, larger than the buffers support.
Though we did say that we should not care what is interacting with our API,
you still need to know who the consumers are. If a WebUI is using your
API are you needing to support requests for CORS or CSRF?

As we look to start writing our end-to-end tests, a key point is to ensure that
you are only testing core user journeys and not testing edge cases.

This is where Behavior Driven Development (BDD) can be used as a nice
way to write your user stories as part of your business facing tests. This
may mean testing multiple endpoints to show a core user journey.

Can you test too much?
While it is recommended more time be spent on writing tests over business
logic there is a point where too much testing can be done. If too much time
is spent working on tests then the module will never be delivered. A balance
is always needed to have a good test coverage and provide confidence.
Being smart about what should be tested and what is irrelevant, such as
creating tests that duplicate scenarios, is a waste of resources.

An Architect must be able to recognize where the boundary is for excessive
testing for an API/module/application, as its value for customers and the

https://en.wikipedia.org/wiki/Cross-origin_resource_sharing
https://owasp.org/www-community/attacks/csrf
https://en.wikipedia.org/wiki/Behavior-driven_development

business is only realized when running in production. What we are implying
is that not all of this testing needs to be implemented to be able to release an
API, it may not be feasible due to time constraints and business demands.
Though what we do want the reader to take away is that ideally you would
be able to incorporate a lot of this testing at all these levels to give yourself
the best API you can.

Summary
In this chapter we have covered the core types of testing for APIs, including
what should be tested and where time should be dedicated. Key takeaways
are as follows:

Stick to the fundamentals of the Unit Testing and TDD for the core
of your API.

Perform service tests on your component and isolate the
integrations to validate incoming and outgoing traffic.

Contract testing can help you develop a consistent API and test
with other APIs.

Using end-to-end tests replicate core user journeys to help validate
your APIs all integrate correctly.

Use the ADR Guidelines as a way to work out if you should add
different tests to your API.

While we’ve given you lots of information, ideas and techniques for
building a quality API, this is by no means an exhaustive list of tools
available. We encourage you to do some research on testing frameworks
and libraries that you may want to use, to ensure you are making an
informed decision.

However, no matter how much testing is done upfront, nothing is as good as
seeing how an application actually runs in production. To learn more about
testing in production refer next to Chapter 6

1 The author’s friend owns a mouthguard company. One of the authors was on the receiving
end of hearing about the arduous process for testing the integrity of the product. No one wants
a mouthguard where the only testing takes place during the match!

2 SLOs and SLIs will be discussed in more detail in Chapter 6

3 To learn more on agile testing check out the books Agile Testing, More Agile Testing or the
video series Agile Testing Essentials

4 A Unit need not be defined exactly as a function or a class, however, you will need to define a
unit for your case.

5 Historical fact: Stubbing is known as the Classicist approach or the Chicago School and
Mocking is known as the Mockist approach or also the London School.

6 replicated id and familyNane

7 At the time of writing there are a few projects that are available, though none are actively
maintained, so it is difficult to recommend any.

8 PACT does a good job of comparing itself to other contract frameworks
https://docs.pact.io/getting_started/comparisons

9 Please refer to the book github for an implementation example

10 If these are part of the domain, and you are responsible for them then these should be
considered for your end-to-end testing. Martin Fowler discusses testing below the UI, these are
known as Subcutaneous Tests are are useful “when you want to test end-to-end behavior, but
it’s difficult to test through the UI itself”

https://learning.oreilly.com/library/view/agile-testing-a/9780321616944/
https://learning.oreilly.com/library/view/more-agile-testing/9780133749571/
https://learning.oreilly.com/videos/agile-testing-essentials/9780134683287/
https://docs.pact.io/getting_started/comparisons
https://martinfowler.com/bliki/SubcutaneousTest.html

Part III. Traffic Patterns and
Management

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the
authors’ raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the author at feedback@mastering-api.com.

This section explores how API traffic is managed. This includes both traffic
originating externally from end users that is entering (ingressing) into the
system and traffic originating internally from services that is travelling
across (service-to-service) the system.

The first chapter in this section, and where most API architects should start
their traffic management journey, examines API gateway technology for
managing ingress, or “north-south”, traffic. You will learn about core
motivations, patterns, and functionality provided by an API gateway,
alongside developing an understanding of the larger context of where this
technology sits within a typical edge stack, which often comprises of
CDNs, firewalls, and load balancers. You will explore how architectural
choices (monolith, microservices etc) impact the role of an API gateway
and learn key questions to ask when selecting your technology choice.

mailto:feedback@mastering-api.com

Although service mesh technology is relatively new, the functionality
provided for managing service-to-service, or east west, traffic is compelling
for many API architects to explore. The next chapter in this section
examines the service mesh pattern, and you will explore the fundamental
differences between this and API gateways (and older technology, such as
an ESB). You will learn about the core traffic routing, observability, and
security functionality, and explore the emerging service mesh interface
(SMI) specification. You will wrap up the chapter with a speculative look
into the future as to where this technology is heading. It is the job of an API
architect to not only choose technologies based on current requirements, but
also to understand the longer-term impact and opportunities.

Chapter 4
Chapter 5

Chapter 4. API Gateways

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the
authors’ raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be Chapter 4 of the final book.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the author at feedback@mastering-api.com.

Now that you have a good understanding of the life of an API, the protocols
involved, and how to begin testing, we can turn our attention to platforms
and tooling that are responsible for delivering APIs to end users in
production. An API gateway is a critical part of any modern technology
stack, sitting at the “edge” of systems and acting as a management tool that
mediates between a client and a collection of backend services.

In this chapter you will learn about the “why?”, “what, and “where” of API
gateways, and also explore the history of the API gateway and other edge
technologies. In order to build upon the success of previous generations of
engineers and developers, it is important that you understand the evolution
of this technology and examine how this relates to important architectural
concepts like coupling and cohesion.

You will also explore the taxonomy of API gateways, and learn how these
fit into the bigger picture of system architecture and deployment models.
You will revisit your earlier exploration of ingress (“north-south”) traffic
and service-to-service (“east-west”) traffic, and explore the technologies
that can be used to manage each traffic type. You will also explore the

mailto:feedback@mastering-api.com

challenges and potential pitfalls when mixing traffic patterns and
technologies.

An API gateway is also a very useful tool for migrating and evolving
systems, as it can act as a selective router between old and new systems and
provide a level of abstraction or encapsulation between clients and backend
systems. You’ll explore these concepts further by evolving the Conference
System case study.

Building on all of the topics above, you will conclude the chapter by
learning how to select an appropriate API gateway based on your
requirements, constraints, and use cases.

Why Use an API Gateway?
A big part of the modern software architect’s role is asking the hard
questions about design and implementation. This is no different when
dealing with APIs and traffic management and related technologies. You
need to balance both short term implementation and long term
maintainability. There are many API-related cross-cutting concerns that you
might have, including: maintainability, extensibility, security, observability,
product lifecycle management, and monetization. An API gateway can help
with all of these!

This section of the chapter will provide you with an overview of the key
problems that an API gateway can address, such as:

Reduce Coupling: Adapter / Facade Between Front Ends and Back
Ends

Simplify Consumption: Aggregating / Translating Back End
Services

Protect APIs from Overuse and Abuse: Threat Detection and
Mitigation

Understand How APIs Are Being Consumed: Observability

Manage APIs as Products: API Lifecycle Management

Monetize APIs: Account Management, Billing, and Payment

Reduce Coupling: Adapter / Facade Between Front Ends
and Back Ends
Two fundamental concepts that every software architect learns about early
in their career are coupling and cohesion. You are taught that systems that
are designed to exhibit loose coupling and high cohesion will be easier to
understand, maintain and modify. Loose coupling allows different
implementations to be swapped in easily, and internals to be modified
without experiencing unintended cascading effects on surrounding modules
or systems. High cohesion promotes understandabilty — i.e all code in a
module or system supports a central purpose — and reliability and
reusability. In our experience, APIs are often the locations in a system in
which the architectural theory meets the reality; an API is quite literally and
figuratively an interface that other engineers integrate with.

An API gateway can act as a single entry point and a facade or an adapter,
and hence promote loose coupling and cohesion. A facade defines a new
simpler interface for a system, whereas an adapter re-uses an old interface
with the goals of supporting interoperability between two existing
interfaces. Clients integrate with the API exposed at the gateway, which,
providing the agreed upon contract is maintained, allows components at the
backend to change location, architecture, and implementation (language,
framework etc) with minimal impact.

https://en.wikipedia.org/wiki/Facade_pattern
https://en.wikipedia.org/wiki/Adapter_pattern

Figure 4-1. An API gateway providing a facade between front ends and back ends

Simplify Consumption: Aggregating / Translating Back
End Services
Building on the discussion of coupling in the previous section, it is often the
case that the API you want to expose to the front end systems is different
than the current interface provided by a back end or composition of
backend systems. For example, you may want to aggregate the APIs of
several back end services that are owned by multiple owners into a single
client-facing API in order to simplify the mental model for front end
engineers, streamline data management, or hide the back end architecture.
GraphQL is often used for exactly these reasons.

ORCHESTRATING CONCURRENT API CALLS
A popular simplification approach implemented in API gateways is orchestrating
concurrent backend API calls. This is where the gateway orchestrates and coordinates
the concurrent calling of multiple independent backend APIs. Typically you want to call
multiple independent and non-coupled APIs in parallel rather than sequentially in order
to save time when gathering results for the client. Providing this in the gateway removes
the need to independently implement this functionality in each of the clients.

It is also common within an enterprise context that some protocol
translation will be required. For example, you may have several “heritage”
(money making) systems that provide SOAP-based APIs, but you only want
to expose REST-like APIs to clients. Or your legacy systems may only
support HTTP/1.1, but clients require HTTP/2 connections. Some
organizations may implement all internal service APIs via gRPC and
Protobuf, but want to expose external APIs using HTTP and JSON. The list
goes on; the key point here is that some level of aggregation and translation
is often required to meet externals requirement or provide further loose
coupling between systems.

An API gateway can provide this aggregation and translation functionality.
Implementations vary and can be as simple as exposing a single route and

https://graphql.org/

composing together (“mashing”) the responses from the associated multiple
internal system, or providing a protocol upgrade from HTTP/1.1 to
HTTP/2, all the way through to mapping individual elements from an
internal API to a completely new external format and protocol.

Figure 4-2. An API gateway providing aggregation and translation

Protect APIs from Overuse and Abuse: Threat Detection
and Mitigation
The edge of a system is where your users first interact with your
applications. It is also often the the point where bad actors and hackers first
encounter your systems. Although the vast majority of enterprise
organizations will have multiple security-focused layers to their edge stack,
such as a content delivery network (CDN) and web application firewall
(WAF), and even a perimeter network and dedicated demilitarised zone
(DMZ), for many smaller organizations the API gateway can be the first
line of defense. For this reason many API gateways include security-
focused functionality, such as TLS termination,
authentication/authorization, IP allow/deny lists, WAFs (either inbuilt or via
external integration), and rate limiting and load shedding.

Figure 4-3. API gateway overuse and abuse

A big part of this functionality is the capability to detect API abuse, either
accidental or deliberate, and for this you wil need to implement a
comprehensive observability strategy.

Understand How APIs Are Being Consumed:
Observability
Understanding how systems and applications are performing is vitally
important for ensuring business goals are being met and that customer
requirements are being satisfied. It is increasingly common to measure
business objectives via key performance indicators (KPIs), such as
customer conversion, revenue per hour, stream starts per second etc.
Infrastructure and platforms are typically observed through the lens of
service level indicators (SLIs), such as latency, errors, queue depth etc. As
the vast majority (if not all) of user requests flow through the edge of a
system, this is a vital point for observability. It is a ideal location to capture
top-line metrics, such as the number of errors, throughput, and latency, and
it is also a key location for identifying and annotating requests (potentially
with application-specific metadata) that flow throughout the system further
upstream. Correlation identifiers (such as OpenZipkin b3 headers) are
typically injected into a request via the API gateway and are then
propagated by each upstream service. These identifiers can then be used to
correlate log entries and request traces across services and systems.

Although the emitting and collecting of observability data is important at
the system-level, you will also need to think carefully how to process,
analyse, and interpret this data into actionable information that can then be
used to drive decision making. Creating dashboards for visual display and
manipulation, and also defining alerts are vital for a successful observability
strategy.

https://landing.google.com/sre/sre-book/chapters/service-level-objectives/#indicators-o8seIAcZ
https://github.com/openzipkin/b3-propagation

ADDITIONAL READING: OBSERVABILITY
Cindy Sridharan’s O’Reilly book Distributed Systems Observability is a great primer for
learning more about the topic of observability.

Manage APIs as Products: API Lifecycle Management
Modern APIs are often designed, built, and run as products that are
consumed by both internal and third-parties, and must be managed as such.
Many large organizations see APIs as a critical and strategic component
within their business, and as such will create a API program strategy, and
set clear goals, constraints, and resources. With a strategy set, the day-to-
day tactical approach is often focused on application lifecycle management.
Full lifecycle API management spans the entire lifespan of an API that
begins at the planning stage and ends when an API is retired. Engineers
interact with an associated API gateway, either directly or indirectly, within
many of these stages, and all user traffic flows through the gateway. For
these reasons, choosing an appropriate API gateway is a critical decision.

There are multiple definitions for key API lifecycle stages. The Swagger
and SmartBear communities define the five key steps as: planning and
designing the API, developing the API, testing the API, deploying the API,
and retiring the API.

The 3Scale and Red Hat teams define thirteen steps:

https://learning.oreilly.com/library/view/distributed-systems-observability/9781492033431/
https://en.wikipedia.org/wiki/Application_lifecycle_management
https://swagger.io/blog/api-strategy/what-is-api-lifecycle-management/
https://developers.redhat.com/blog/2019/02/25/full-api-lifecycle-management-a-primer/

Figure 4-4. The 3Scale and Red Hat teams approach to full API lifecycle management

The Axway team strike a good balance with 3 key components — create,
control, and consume — and 10 top stages of an API lifecycle:

Building

Designing and building your API.

Testing

Verifying functionality, performance, and security expectations.

Publishing

Exposing your APIs to developers.

Securing

Mitigating security risks and concerns.

Managing

https://developers.redhat.com/blog/2019/02/25/full-api-lifecycle-management-a-primer/
https://www.axway.com/en/products/api-management/full-lifecycle-api-management

Maintaining and managing APIs to ensure they are functional, up to
date, and meeting business requirements.

Onboarding

Enabling developers to quickly learn how to consume the APIs exposed.
For example, offering OpenAPI or ASyncAPI documentation, and
providing a portal and sandbox.

Analyzing

Enabling observability, and analyzing monitoring data to understand
usage and detect issues.

Promoting

Advertising APIs to developers, for example, listing in an API
Marketplace.

Monetizing

Enabling the charging for and collection of revenue for use of an API.
We cover this aspect of API lifecycle management as a separate stages
in the next section.

Retirement

Supporting the deprecation and removal of APIs, which happens for a
variety of reasons including, business priority shifts, technology
changes, and security concerns.

Figure 4-5. API gateway lifecycle management

Monetize APIs: Account Management, Billing, and
Payment
The topic of billing monetized APIs is closely related to API lifecycle
management. The APIs being exposed to customers typically have to be
designed as a product, and offered via a developer portal that also includes
account management and payment options. Many of the enterprise API
gateways include monetization, such as Apigee Edge and 3Scale. These
payment portals often integrate with payment solutions, such as PayPal or
Stripe, and enable the configuration of developer plans, rate limits, and
other API consumption options.

What is an API Gateway?
With the “why” of an API gateway defined, it’s now important to ask the
“what”. In a nutshell, an API gateway is a management tool that sits at the
edge of a system between a client and a collection of backend services and
acts as a single point of entry for a defined group of APIs. The client can be
an end-user application or device, such as a single page web application or
a mobile app, or another internal system or third-party application or
system.

An API gateway is implemented with two high-level fundamental
components, a control plane and data plane. These components can
typically be packaged together or deployed separately. The control plane is
where operators interact with the gateway and define routes, policies, and
required telemetry. The data plane is the location where all of the work
specified in the control plane occurs; where the network packets are routed,
the policies enforced, and telemetry emitted.

What Functionality Does an API Gateway Provide?

https://docs.apigee.com/api-platform/monetization/basics-monetization
https://3scale.github.io/

At a network level an API gateway typically acts as a reverse proxy to
accept all of the API requests from a client, calls and aggregates the various
application-level backend services (and potentially external services)
required to fulfill them, and returns the appropriate result. An API gateway
provides cross-cutting requirements such as user authentication, request rate
limiting, and timeouts/retries, and can provide metrics, logs, and trace data
in order to support the implementation of observability within the system.
Many API gateways provide additional features that enable developers to
manage the lifecycle of an API, assist with the onboarding and management
of developers using the APIs (such as providing a developer portal and
related account administration and access control), and provide enterprise
governance.

WHAT IS A PROXY? WHAT IS A REVERSE PROXY?
A proxy server is an intermediary server that forwards requests for content from
multiple clients to different servers across the Internet. For instance, a business may
have a proxy that routes and filters employee traffic to the public Internet. A reverse
proxy server, on the other hand, is a type of proxy server that typically sits behind the
firewall in a private network and routes client requests to the appropriate backend
server.

Where is an API Gateway Deployed?
An API gateway is typically deployed at the edge of a system, but the
definition of “system” in this case can be quite flexible. For startups and
many small-medium businesses (SMBs) an API gateway will often be
deployed at the edge of the data center or cloud. In these situations there
may only be a single API gateway (deployed and running via multiple
instances for high availability) that acts as the front door for the entire back
end estate, and the API gateway will provide all of the edge functionality
discussed in this chapter via this single component.

Figure 4-6. A typical startup/SMB API gateway deployment

For large organizations and enterprises an API gateway will typically be
deployed in multiple locations, often as part of the initial edge stack at the
perimeter of a data center, and additional gateways may be deployed as part
of each product, line of business, or organizational department. in this
context these gateways would more typically be separate implementations,
and may offer differing functionality depending on geographical location
(e.g. required governance) or infrastructure capabilities (e.g. running on
low-powered edge compute resources).

Figure 4-7. A typical large/enterprise API gateway deployment

As you will learn later in this chapter, the definition and exact functionality
offered within an API gateway isn’t always consistent across
implementations, and so the diagrams above should be thought of as more
conceptual rather than an exact implementation.

How Does an API Gateway Integrate with Other
Technologies at the Edge?
There is typically many components deployed at the edge of an API-based
system. This is where the clients and users first interact with the backend,
and hence many cross-cutting concerns are best addressed here. Therefore,
a modern edge technology stack or “edge stack” provides a range of

functionality that meets essential cross functional requirements for API-
based applications. In some edge stacks each piece of functionality is
provided by a separately deployed and operated component, and in others
the functionality and/or components are combined. You will learn more
about the individual requirements in the next section of the chapter, but for
the moment the diagram below should highlight the key layers of a modern
edge stack.

Figure 4-8. A modern edge stack

Now that you have a good idea about the “what” and “where” of an API
gateway, let’s now look at why an organization would use an API gateway.

A Modern History of API Gateways
Now that you have a good understanding of the “what”, “where”, and
“why” of API gateways, it is time to take a glance backwards through
history before looking forward to current API gateway technology. As Mark
Twain was alleged to have said, “history doesn’t repeat itself, but it often
rhymes”, and anyone who has worked in technology for more than a few
year will definitely appreciate the relevance this quote has to the general
approach seen in the industry. Architecture style and patterns repeat in
various “cycles” throughout the history of software development, as do
operational approaches. There is typically progress made between these
cycles, but it is also easy to miss the teachings that history has to offer.

This is why it is important that you understand the historical context of API
gateways and traffic management at the edge of systems. By looking
backwards we can build on firm foundations, understand fundamental
requirements, and also try to avoid repeating the same mistakes.

Late 1990s Onwards: Hardware Load Balancers
The concept of World Wide Web (www) was proposed by Tim Berners-Lee
in the late 1980s, but this didn’t enter the consciousness of the general
public until the mid 1990s, where the initial hype culminated in the dotcom
boom and bust of the late 90s. This “Web 1.0” period drove the evolution of
web browsers (Netscape Navigator was launched late 1994), the web server
(Apache Web Server was released in 1995), and hardware load balancers
(F5 was founded in 1996). The Web 1.0 experience consisted of users
visiting web sites via making HTTP requests using their browser, and the
entire HTML document for each target page being returned in the response.
Dynamic aspects of a website were implemented via Common Gateway

Interface (CGI) in combination with scripts written in languages like Perl or
C. This was arguably the first incantation of what we would call “Function
as a Service (FaaS)” today.

As an increasing number of users accessed each website this strained the
underlying web servers. This added the requirement to design systems that
supported spreading the increased load and also provide fault tolerance.
Hardware load balancers were deployed at the edge of the data center, with
the goal of allowing infrastructure engineers, networking specialists, and
sysadmins to spread user requests over a number of web server instances.
These early load balancer implementations typically supported basic health
checks, and if a web server failed or began responding with increased
latency then user requests could be routed elsewhere accordingly. Hardware
load balancers are still very much in use today. The technology may have
improved alongside transistor technology and chip architecture, but the core
functionality remains the same.

Early 2000s Onwards: Software Load Balancers
As the Web overcame the early business stumbles from the dotcom bust, the
demand for supporting a range of activities, such as users sharing content,
ecommerce and online shopping, and businesses collaborating and
integrating systems, continued to increase. In reaction, web-based software
architectures began to take a number of forms. Smaller organizations were
building on their early work with CGI and were also creating monolithic
applications in the emerging web-friendly languages such as Java and .NET.
Larger enterprises began to embrace modularization (taking their cues from
David Parnas’ work in the 1970s), and Service Oriented Architecture
(SOA) and the associated “Web Service” specifications (WS-*) enjoyed a
brief moment in the sun.

The requirements for high availability and scalability of web sites were
increasing, and the expense and inflexibility of early hardware load
balancers was beginning to become a constraining factor. Enter software
load balancers, with HAProxy being launched in 2001 and NGINX in 2002.
The target users were still operations teams, but the skills required meant

that sysadmins comfortable with configuring software-based web servers
were increasingly happy to take responsibility for what used to be a
hardware concern.

SOFTWARE LOAD BALANCERS: STILL A
POPULAR CHOICE TODAY

Although they have both evolved from initial launches, NGINX and HAProxy are still
widely in use, and they are still very useful for small organizations and simple API
gateway use cases (both also offer commercial variants more suitable for enterprise
deployment). The rise of cloud (and virtualization) cemented the role of software load
balancers, and we recommend learning about the basics of this technology.

This time frame also saw the rise of other edge technologies that still
required specialized hardware implementation. Content Delivery Networks
(CDNs), primarily driven by the Telco organizations, began to be
increasingly adopted in order to offload requests from origin web servers.
Web Application Firewalls (WAFs) also began to see increasing adoption,
first implemented using specialized hardware, and later via software. The
open source ModSecurity project, and the integration of this with the
Apache Web Server, drove mass adoption of WAFs.

Mid 2000s: Application Delivery Controllers (ADCs)
The mid 2000s continued to see the increasing pervasiveness of the web in
everyday life. The emergence of Internet-capable phones only accelerated
this, with BlackBerry initially leading the field, and everything kicking into
a higher gear with the launch of the first iPhone in 2007. The PC-based web
browser was still the de facto method of accessing the www, and the mid
2000s saw the emergence of “Web 2.0”, triggered primarily by the
widespread adoption in browsers of the XMLHttpRequest API and the
corresponding technique named “asynchronous JavaScript and XML
(AJAX)”. At the time this technology was revolutionary. The asynchronous
nature of the API meant that no longer did an entire HTML page have to be
returned, parsed, and the display completed refreshed with each request. By

https://github.com/SpiderLabs/ModSecurity

decoupling the data interchange layer from the presentation layer, AJAX
allowed web pages to change content dynamically without the need to
reload the entire page.

All of these changes placed new demands on web servers and load
balancers, for yet again handling more load, but also supporting more
secure (SSL) traffic, increasingly large (media rich) data payloads, and
different priority requests. This led to the emergence of a new technology
named Application Delivery Controllers (ADCs). As these were initially
implemented using specialized hardware this led to the existing networking
players like F5 Networks, Citrix, Cisco dominating the market. ADCs
provided support for compression, caching, connection multiplexing, traffic
shaping, and SSL offload, combined with load balancing. The target users
were once again infrastructure engineers, networking specialists, and
sysadmins.

THE BENEFITS, AND COSTS, OF SPECIALIZATION
By the mid 2000s nearly all of the components of a modern traffic management edge
stack were widely adopted across the industry. The benefits of the separation of
concerns were becoming clear (e.g. each edge technology had a clear and focused
purpose), but this was increasingly the siloing between teams. If a developer wanted to
expose a new application within a large organization this typically meant many separate
meetings with the CDN vendors, the load balancing teams, the InfoSec and WAF teams,
and the web/application server team. Movements like DevOps emerged, partly driven by
a motivation to remove the friction imposed by these silos. If you still have a large
number of layers in your edge stack and are migrating to the cloud or a new platform,
now is the time to potentially think about the tradeoffs with multiple layers and
specialist teams.

Early 2010s: First Generation API Gateways
The late 2000s and early 2010s saw the emergence of the API economy and
associated technologies. Organizations like Twilio were disrupting
telecommunications, with their founder, Jeff Lawson, pitching that “We
have taken the entire messy and complex world of telephony and reduced it
to five API calls.” The Google Maps API was enabling innovative user

https://avc.com/2016/06/best-seed-pitch-ever/

experiences, and Stripe was enabling organizations to easily charge for
access to services. Founded in late 2007, Mashape was one of the early
pioneers in attempting to create an API marketplace for developers.
Although this exact vision didn’t pan out (arguably it was ahead of it’s time,
looking now to the rise of “no code"/"low code” solutions), a byproduct of
the Mashape business model was the creation of the Kong API Gateway,
built upon OpenResty and the open source NGINX implementation. Other
implementations included WSO2 with Cloud Services Gateway, Sonoa
Systems with Apigee, and Red Hat with 3Scale Connect.

These were the first edge technologies that were targeted at developers in
addition to platform teams and sysadmins. A big focus was on managing the
software development lifecycle (SDLC) of an API and providing system
integration functionality, such as endpoints and protocol connectors, and
translation modules. Due to the range of functionality offered, the vast
majority of first generation API gateways were implemented in software.
Developer portals sprang up in many products, which allowed engineers to
document and share their APIs in a structured way. These portals also
provided access controls and user/developer account management, and
publishing controls and analytics. The theory was that this would enable the
easy monetization of APIs, and the management of “APIs as a product”.

During this evolution of developer interaction at the edge there was
increasing focus on the application layer (layer 7) of the OSI Networking
model. The previous generations of edge technologies often focused on IP
addresses and ports, which primarily operate at the transport layer (layer 4)
of the OSI model. Allowing developers to make routing decisions in an API
gateway based on HTTP metadata such as path-based routing or header-
based routing provided the opportunity for richer functionality.

There was also an emerging trend towards creating smaller service-based
architectures, and some organizations were extracting single-purpose
standalone applications from their existing monolithic code bases. Some of
these monoliths acted as an API gateway, or provided API gateway-like
functionality, such as routing and authentication. With the first generation of
API gateways it was often the case that both functional and cross-functional

https://openresty.org/en/
https://wso2.com/library/tutorials/introducing-wso2-cloud-services-gateway/
https://en.wikipedia.org/wiki/OSI_model

concerns, such as routing, security, and resilience, were performed both at
the edge and also within the applications and services.

WATCH FOR RELEASE COUPLING WHEN
MIGRATING AWAY FROM A MONOLITH

Extracting standalone services from a monolithic application and having the monolith
acting as a simple gateway can be a useful migration pattern towards adopting a
microservices architecture. However, beware of the costs related to coupling between
the application gateway and services that are introduced with this pattern. For example,
although the newly extracted services can be deployed on demand, their release is often
dependent on the release cadence of the monolith, as all traffic must be routed through
this component. And if the monolith has an outage, then so do all of your services
operating behind it.

2015 Onwards: Second Generation API Gateways
The mid 2010s saw the rise of the next generation of modular and service-
oriented architectures, with the concept of “microservices” firmly entering
the zeitgeist by 2015. This was largely thanks to “unicorn” organizations
like Netflix, AWS, and Spotify sharing their experiences of working with
these architectural patterns. In addition to back end systems being
decomposed into more numerous and smaller services, developers were
also adopting container technologies based on Linux LXC. Docker was
released in March of 2013, and Kubernetes followed hot on it’s heels with a
v1.0 release in July of 2015. This shift in architectural style and changing
runtimes drove new requirements at the edge. Netflix released their bespoke
JVM-based API gateway, Zuul, in mid 2013. Zuul supported service
discovery for dynamic back end services and also allowed Groovy scripts to
be injected at runtime in order to dynamically modify behaviour. This
gateway also consolidated many cross cutting concerns into a single edge
component, such as authentication, testing (canary releases), rate limiting
and load shedding, and observability. Zuul was a revolutionary API
gateway in the microservices space, and it has since involved into a second
version, and Spring Cloud Gateway has been built on top of this.

https://netflixtechblog.com/announcing-zuul-edge-service-in-the-cloud-ab3af5be08ee

WATCH FOR COUPLING OF BUSINESS LOGIC IN
THE GATEWAY

When using Zuul it was all too easy to accidentally highly couple the gateway with a
service by including related business logic in both a Groovy script (or scripts) and the
service. This meant that the deployment of a new version of a service often required
modifications to the code running in the gateway. The pinnacle of this bad coupling can
be seen when a microservice team decides to reuse an existing deployed Groovy script
for their service, and then at an some arbitrary time in the future the script is modified
by the original owning team in a incompatible way. This can quickly lead to confusion
as to why things are broken, and also to whack-a-mole type fixes. This danger wasn’t
unique to Zuul, and nearly all proxies and many gateways allowed the injection of
plugins or dynamic behaviour, but this was often only accessible to operations teams or
written in obscure (or unpopular) languages. The use of Groovy in Zuul made this very
easy for application developers to implement.

With the increasing adoption of Kubernetes and the open source release of
the Envoy Proxy in 2016 by the Lyft team, many API gateways were
created around this technology, including Ambassador, Contour, and Gloo.
This drove further innovation across the API gateway space, with Kong
mirroring functionality offered by the next generation of gateways, and
other gateways being launched, such as Traefik, Tyk, and others.
Increasingly, many of the Kubernetes Ingress Controllers called themselves
“API gateways”, regardless of the functionality they offered, and this led to
some confusion for end users in this space.

CONFUSION IN THE CLOUD: API GATEWAYS,
EDGE PROXIES, AND INGRESS CONTROLLERS

As Christian Posta noted in his blog post API Gateways Are Going Through an Identity
Crisis, there is some confusion around what an API gateway is in relation to proxy
technologies being adopted within the cloud computing domain. Generally speaking, in
this context an API gateway enables some form of management of APIs, ranging from
simple adaptor-style functionality operating at the application layer (OSI layer 7) that
provides fundamental cross-cutting concerns, all the way to full lifecycle API
management. Edge proxies are more general purpose traffic proxies or reverse proxies
that operate at the network and transport layers (OSI layers 3 and 4 respectively) and
provide basic cross-cutting concerns, and tend not to offer API-specific functionality.
Ingress controllers are a Kubernetes-specific technology that controls what traffic enters
a cluster, and how this traffic is handled.

The target users for the second generation of API gateways was largely the
same as the cohort for the first generation, but with a clearer separation of
concerns and a stronger focus on developer self-service. The move from
first to second generation of API gateways saw increased consolidation of
both functional and cross-functional requirements being implemented in the
gateway. Although it became widely accepted that microservices should be
built around the idea espoused by James Lewis and Martin Fowler of
“smart endpoints and dumb pipes”, the uptake of polyglot language stacks
mean that “microservice gateways” emerged (more detail in the next
section) that offered cross-cutting functionality in a language-agnostic way.

Coda (2017 Onwards): Service Mesh and/or API
Gateway?
In early 2017 there was increasing buzz about the use of “service meshes”,
a new communication framework for microservice-based systems. William
Morgan, CEO of Buoyant and ex-Twitter engineer, is largely credited with
coining the term. The early service meshes exclusively targeted the east-
west, service-to-service communication requirements. As Phil Calçado
writes in Pattern: Service Mesh, service meshes evolved from early in-
process microservice communication and resilience libraries, such as
Netflix’s Ribbon, Eureka, and Hystrix. Buoyant’s Linkerd was the first

https://blog.christianposta.com/microservices/api-gateways-are-going-through-an-identity-crisis/
https://kubernetes.io/docs/concepts/services-networking/ingress-controllers/
https://martinfowler.com/articles/microservices.html#SmartEndpointsAndDumbPipes
https://www.infoq.com/articles/service-mesh-ultimate-guide/
https://linkerd.io/2017/04/25/whats-a-service-mesh-and-why-do-i-need-one/
https://philcalcado.com/2017/08/03/pattern_service_mesh.html

service mesh to be hosted by the CNCF, but Google’s Istio captured the
attention of many engineers (largely thanks to Google’s impressive
marketing machine).

Although there is a lot of functional overlap between service meshes and
API gateways, and much of underlying proxy (data plane) technology is
identical, the use cases and control plane implementations are at the
moment quite different. Several service meshes offer ingress and gateway-
like functionality, for example, Istio Gateway and Consul Ingress
Gateways. However, this functionality is typically not as feature-rich or as
mature as that currently offered by existing API gateways. This is why the
majority of modern API gateways integrate effectively with at least one
service mesh.

START AT THE EDGE AND WORK INWARDS
Every production system that exposes an API will require an API gateway, but not
necessarily a service mesh. Many existing systems, and also simple greenfield
applications, are implemented as a shallow stack of services, and therefore the added
operational complexity of deploying and running a service mesh does not provide a high
enough level of benefit. For this reason it is typically the case that we recommend
engineers “start at the edge and work inwards”, i.e. select and deploy an API gateway,
and only when the number of services (and their interactions) grows consider selecting a
service mesh.

Current API Gateway Taxonomy
As can be the case with terminology in the software development industry,
there often isn’t an exact agreement on what defines or classifies an API
gateway. There is broad agreement in regards to the functionality this
technology should provide, but different segments of the industry have
different requirements, and hence different views, for an API gateway. This
has led to several sub-types of API gateway emerging and being discussed.
In this section of the chapter you will explore the emerging taxonomy of
API gateways, and learn about their respective use cases, strengths, and
weaknesses.

https://istio.io/latest/docs/reference/config/networking/gateway/
https://www.consul.io/docs/connect/gateways/ingress-gateway

Traditional Enterprise Gateways
The traditional enterprise API gateway is typically aimed at the use case of
exposing and managing business-focused APIs. This gateway is also often
integrated with a full API lifecycle management solution, as this is an
essential requirement when releasing, operating, and monetizing APIs at
scale. The majority of gateways in this space may offer an open source
edition, but there is typically a strong usage bias towards the open
core/commercial version of the gateway.

These gateways typically require the deployment and operation of
dependent services, such as data stores. These external dependencies have
to be run with high availability to maintain the correct operation of the
gateway, and this must be factored into running costs and DR/BC plans.

Micro/Microservices Gateways
The primary use case of microservices API gateway, or micro API gateway,
is to route ingress traffic to backend APIs and services. There is typically
not much provided for the management of an API’s lifecycle. These types
of gateway are often available fully-featured as open source or are offered
as a lightweight version of a traditional enterprise gateway.

The tend to be deployed and operated as standalone components, and often
make use of the underlying platform (e.g. Kubernetes) for the management
of any state. As microservices gateways are typically built using modern
proxy technology like Envoy, the integration capabilities with service
meshes (especially those built using the same proxy technology) is typically
good.

Service Mesh Gateways
The ingress or API gateway included with a service mesh is typically
designed to provide only the core functionality of routing external traffic
into the mesh. For this reason they often lack some of the typical enterprise
features, such as comprehensive integration with authentication and identity

provider solutions, and also integration with other security features, such as
a WAF.

The service gateway typically manages state using the capabilities of the
mesh itself or underlying deployment fabric (e.g. Kubernetes). This type of
gateway is also implicitly coupled with the associated service mesh (and
operational requirements), and so if you are not yet planning to deploy a
service mesh, then this is most likely not a good first choice of API
gateway.

Comparing API Gateway Types
The table below highlights the difference between the two most widely
deployed API gateway types across six important criteria.

T
a
b
l
e
4
-
1
.
C
o
m
p
a
r
i
s
o
n
o
f
E
n
t
e
r
p
r
i
s
e
,
M
i

c
r
o
s
e
r
v
i
c
e
s
,
a
n
d
S
e
r
v
i
c
e
M
e
s
h
A
P
I
g
a
t
e
w
a
y

Use case Traditional Enterprise API gateway

Microservices API gateway Service Mesh Gateway

Primary Purpose Expose, compose, and manage internal business
APIs and associated services.

Expose, compose, and manage internal
business services.

Expose internal services within the mesh.

Publishing Functionality API management team or service team registers /
updates gateway via admin API.

Service team registers / updates gateway via
declarative code as part of the deployment
process.

Service team registers / updates mesh and gateway
via declarative code as part of the deployment
process.

Monitoring Admin and operations focused e.g. meter API calls
per consumer, report errors (e.g. internal 5XX).

Developer focused e.g. latency, traffic, errors,
saturation.

Platform focused e.g. utilization, saturation, errors.

Handling and Debugging Issues L7 error-handling (e.g. custom error page).
For troubleshooting, run gateway/API with
additional logging and debug issue in staging
environment.

L7 error-handling (e.g. custom error page,
failover, or payload).
For debugging issues configure more detailed
monitoring, and enable traffic shadowing and
/ or canarying to recreate the problem.

L7 error-handling (e.g. custom error page or
payload).
For troubleshooting, configure more detailed
monitoring and/or utilise traffic “tapping” to view
and debug specific service-to-service
communication.

Testing Operate multiple environments for QA, Staging, and
Production.
Automated integration testing, and gated API
deployment.
Use client-driven API versioning for compatibility
and stability (e.g. semver)

Enables canary routing and dark launching
for dynamic testing.

Facilitate canary routing for dynamic testing.

Use contract testing for upgrade
management.

Local Development Deploy gateway locally (via installation script,
Vagrant or Docker), and attempt to mitigate
infrastructure differences with production.
Use language-specific gateway mocking and
stubbing frameworks.

Deploy gateway locally via service
orchestration platform (e.g. container, or
Kubernetes)

Deploy service mesh locally via service
orchestration platform (e.g. Kubernetes)

Evolving the Conference System Using an
API Gateway
In this section of the chapter you will learn how to install and configure an
API gateway to route traffic directly to the Attendee service that has been
extracted from the monolithic Conference System. This will demonstrate
how you can use the popular “strangler fig” pattern to evolve your system
from a monolith to a microservices-based architecture over time by
gradually extracting pieces of an existing system into independently
deployable and runnable services.

Figure 4-9. Using an API gateway to route to a new Attendees service running independently from
the monolith

Many organisations often start such a migration by extracting services but
have the monolithic application perform the routing and other cross-cutting
concerns for the externally running services. This is often the easy choice,
as the monolith already has to provide this functionality for internal
functions. However, this leads to tight coupling between the monolith and
services, with all traffic flowing through the monolithic application and the

configuration cadence determined by the frequency of deployment of the
monolith. From a traffic management perspective, both the increased load
on the monolithic application and increased blast radius if this does fail
mean the operational cost can be high. And being limited in updating
routing information or cross-cutting configuration due to a slow release
train or a failed deployment can prevent you from iterating at speed.
Because of this we generally do not recommend using the monolith to route
traffic in this fashion; particularly if you plan to extract many services
within a relatively short time scale.

As long as the gateway is deployed to be highly available and developers
have access to self-serve with routing and configuruation, extracting and
centralising application routing and cross-cutting concerns to an API
gateway provides both safety and speed. Let’s now walk through a practical
example of deploying an API gateway within the Conference System and
using this to route to the new Attenee service.

Installing Ambassador Edge Stack in Kubernetes
As you are deploying the Conference System into a Kubernetes cluster, you
can easily install an API gateway using the standard Kubernetes-native
approaches, such as applying YAML config or using Helm, in addition to
using command line utilities. For example, the Ambassador Edge Stack API
gateway can be installed using the edgectl tool, which will also create a
sample “edgestack.me” sub-domain and configure a TLS certificate using
LetsEncrypt.

Make sure you have your local Kubernetes context configured correctly so
that you can execute commands using the kubectl tool, such as kubectl
get svc -A successfully. Visit https://www.getambassador.io/docs/edge-
stack/latest/tutorials/getting-started/ and download the edgectl binary
that is suitable for your operating system. Now run edgectl install.
You’ll be prompted to enter your email address for the purpose of
LetsEncrypt being able to notify you when your TLS certificate is about to
expire.

https://www.getambassador.io/docs/edge-stack/latest/tutorials/getting-started/
https://www.getambassador.io/docs/edge-stack/latest/tutorials/getting-started/

$ edgectl install

Installing the Ambassador Edge Stack

Please enter an email address for us to notify you before your
TLS certificate
and domain name expire. In order to acquire the TLS certificate,
we share this
email with Let’s Encrypt.
Email address [daniel.bryant@redacted.co.uk]:

===
=======
Beginning Ambassador Edge Stack Installation
-> Finding repositories and chart versions
-> Installing Ambassador Edge Stack 1.14.1
-> Checking the AES pod deployment
-> Provisioning a cloud load balancer
-> Your Ambassador Edge Stack installation\'s address is
34.70.47.47
-> Checking that Ambassador Edge Stack is responding to ACME
challenge
-> Automatically configuring TLS
-> Acquiring DNS name practical-archimedes-7849.edgestack.me
-> Obtaining a TLS certificate from Let\'s Encrypt
-> TLS configured successfully

Ambassador Edge Stack Installation Complete!
===
=======

Congratulations! You\'ve successfully installed the Ambassador
Edge Stack in
your Kubernetes cluster. You can find it at your custom URL:
https://practical-archimedes-7849.edgestack.me/

With the API gateway up and running and providing an HTTPS connection
the Conference System application no longer needs to be concerned with
terminating TLS connections or listening to multiple ports. Similarly,
authentication and rate limiting can also be easily configured without
having to reconfigure or deploy your application.

Configuring Mappings from URL Paths to Backend
Services

You can now using an Ambassador Edge Stack Mapping Custom
Resource to map the root of you domain to the “conferencesystem” service
listening on port 8080 and running in the “legacy” namespace within the
Kubernetes cluster. This Mapping should be familiar to anyone that has
configured a web application or reverse proxy to listen for user requests.
The metadata provides a name for the Mapping, and the prefix
determines the path (the “/” root in this case) that is mapped to the target
service (with the format service-name.namespace:port). An example is
shown below:

apiVersion: getambassador.io/v2
kind: Mapping
metadata:
 name: legacy-conference
spec:
 prefix: /
 rewrite: /
 service: conferencesystem.legacy:8080

Another Mapping can be added to route any traffic sent to the “/attendees”
path to the new (“nextgen”) attendees microservice that has been extracted
from the monolith. The information included in the Mapping should look
familiar from the previous example. Here a rewrite is specified which
“rewrites” the matching prefix path in the URL metadata before making
the call to the target attendees service. This makes it appear to the attendees
service that the request originated with the “/” path, effectively stripping out
the “/attendees” part of the path.

apiVersion: getambassador.io/v2
kind: Mapping
metadata:
 name: legacy-conference
spec:
 prefix: /attendees
 rewrite: /
 service: attendees.nextgen:8080

This pattern of creating additional Mappings as each new microservice is
extracted from the legacy application can continue. Eventually the legacy
application becomes a small shell with only a handful of functions, and all
of the other functionality is handled by microservices, each with their own
Mapping.

Configuring Mappings Using Host or Path-based
Routing
Matching prefixes can be nested e.g. /attendees/affiliation or
use regular expressions e.g. /attendees/^[a-z].*". Most API
gateways will also let you perform host-based routing e.g. host:
attendees.conferencesystem.com An example of this using
Ambassador Edge Stack Mappings can be seen below:

apiVersion: getambassador.io/v2
kind: Mapping
metadata:
 name: attendees-host
spec:
 prefix: /
 host: attendees.conferencesystem.com
 service: attendees.nextgen:8080

Query parameter-based routing is often supported, too: e.g. /attendees?
specialcase=true. An example of this using Ambassador Edge Stack
Mappings can be seen below:

apiVersion: getambassador.io/v2
kind: Mapping
metadata:
 name: attendees-param
spec:
 prefix: /attendees/
 query_parameters:
 specialcase: true
 service: attendees.nextgen:8080

Some API gateways will enable routing based on the payload or body of a
request, but this should generally be avoided for two reasons: first, this
often leaks highly-coupled domain-specific information into the API
gateway config (e.g. a payload often conforms to a schema/contract that
may change in the application, which the gateway will now need to be
synchronized with); and second, it can be computationally expense to
deserialize and parse a large payload in order to extract the required
information for routing.

Deploying API Gateways: Understanding and
Managing Failure
Regardless of the deployment pattern and number of gateways involved
within a system, an API gateway is typically on the critical path of many, if
not all, user requests entering into your system. An outage of a gateway
deployed at the edge typically results in the unavailability of the entire
system. And an outage of a gateway deployed further upstream typically
results in the unavailability of some core subsystem. For this reason the
topics of understanding and managing failure of an API gateway are vitally
important to learn.

API Gateway as a Single Point of Failure
The first essential step in identifying single points of failure in a system is
to ensure that you have an accurate understanding of the current system.
This is typically accomplished by investigation and the continual update of
associated documentation and diagrams. Assembling a diagram that traces a
user-initiated request for each core journey or use case, all the way from
ingress to data store or external system and back to egress, that shows all
the core components involved can be extremely eye opening. This is
especially the case in large organizations, where ownership can be unclear
and core technologies can accidentally become abandoned.

In a typical web-based system, the first obvious single point of failure is
typically DNS. Although this is often externally managed, there is no
escaping the fact that if this fails, then your site will be unavailable. The
next single points of failure will typically then be the global and regional
layer 4 load balancers, and depending on the deployment location and
configuration, the security edge components, such as the firewall or WAF.

CHALLENGE ASSUMPTIONS WITH SECURITY
SINGLE POINTS OF FAILURE

Depending on the product, deployment, and configuration, some security components
may “fail open”, i.e. if the component fails then traffic will simply be passed through to
upstream components or the backend. For some scenarios where availability is the most
important goal this is desired, but for others (e.g. financial or government systems), this
is most likely not. Be sure to challenge assumptions in your current security
configuration.

After these core edge components, the next layer is typically the API
gateway. The more functionality you are relying on within the gateway, the
bigger the risk involved and bigger the impact of an outage. As an API
gateway if often involved in a software release the configuration is also
continually being updated. It is critical to be able to detect and resolve
issues, and mitigate any risks.

Detecting and Owning Problems
The first stage in detecting issues is ensuring that you are collecting and
have access to appropriate signals from your monitoring system, i.e. data
from metrics, logs, and traces. Any critical system should have a clearly
defined team that owns it and is accountable for any issues. Teams should
communicate service level objectives (SLOs), which can be codified into
service level agreements (SLAs) for both internal and external customers.

https://landing.google.com/sre/sre-book/chapters/service-level-objectives/

ADDITIONAL READING: OBSERVABILITY,
ALERTING, AND SRE

If you are new to the concept of observability, then we recommend learning more about
Brendan Gregg’s utilization, saturization, and errors (USE) method, Tom Wilkie’s rate,
errors, and duration (RED) method, and Google’s four golden signals of monitoring. If
you want to learn more about associated organisational goals and processes the Google
Site Reliability Engineering (SRE) book, is highly recommended.

Resolving Incidents and Issues
First and foremost, each API gateway operating within your system needs
an owner that is accountable if anything goes wrong with the component. In
a smaller organisation this may be the developers or SRE team that are also
responsible for the underlying services. In a larger organisation this may be
a dedicated infrastructure team. As an API gateway is on the critical path of
requests, some portion of this owning team should be on-call as appropriate
(this may be 24/7/365). The on-call team will then face the tricky task of
fixing the issue as rapidly as possible, but also learning enough (or locating
and quarantining systems and configuration) to learn what went wrong.
After each incident you should strive to conduct blameless a postmortem,
and document and share all of your learning. Not only can this information
be used to trigger remediate action to prevent this issue reoccurring, but this
knowledge can be very useful for engineers learning the system and for
external teams dealing with similar technologies or challenges. If you are
new to this space then the Learning from Incidents website is a fantastic
jumping off point.

Mitigating Risks
Any component that is on the critical path for handling user requests should
be made as highly available as is practical in relation to cost and operational
complexity. Software architects and technical leaders deal with tradeoffs;
this type is one of the most challenging. In the world of API gateways, high
availability typically starts with running multiple instances. With on-
premise/co-lo instances this translates into operating multiple (redundant)

http://www.brendangregg.com/usemethod.html
https://www.weave.works/blog/the-red-method-key-metrics-for-microservices-architecture/
https://landing.google.com/sre/sre-book/chapters/monitoring-distributed-systems/#xref_monitoring_golden-signals
https://www.learningfromincidents.io/

hardware appliances, ideally spread across separate locations. In the cloud,
this translates into designing and running the API gateway instance in
multiple availability zones/data centers and regions. If a (global) load
balancer is deployed in front of the API gateway instances, then this must
be configured appropriately with health checks and failover processes that
must be test regularly. This is especially important if the API gateways
instances run in active/passive or leader/node modes of operation.

LOAD BALANCING CHALLENGES
You must ensure that your load balancer to API gateway failover process meets all of
your requirements in relation to continuity of service. Common problems experienced
during failover events include:

User client state management issues, such as backend state not being migrated
correctly, which causes the failure of sticky sessions

Poor performance, as client are not redirected based on geographical
considerations e.g. European users being redirected to the US west coast when
an east coast data center is available

Unintentional cascading failure, such as a faulty leader election component
that results in deadlock, which causes all backend systems to become
unavailable

Care should be taken with any high availability strategy to ensure that
dependent components are also included. For example, many enterprise API
gateways rely on a data store to store configuration and state in order
function correctly. This must also be run in a HA configuration, and it must
be available to all active and passive components. It is becoming
increasingly common to split the deployment and operation of the control
plane and data plan, but you will need to understand what happens if the
control plane has an outage over a considerable period of time.

Often the biggest period of change with an API gateway is during
configuration update, for example, a release of a new API or service.
Progressive delivery techniques should be used, such as rolling upgrades,
localized rollouts, blue/green deployments, and canary releasing. These

https://redmonk.com/jgovernor/2018/08/06/towards-progressive-delivery/

allow fast feedback and incremental testing in a production environment,
and also limit the blast radius of any outage.

Finally, you can put in place reactive fallback measures to handle failure.
Examples of this include building functionality to serve a degraded version
of the website from static servers, caches, or via a CDN.

Common API Gateway Implementation
Pitfalls
We’ve already mentioned that no technology is a silver bullet, but
(continuing on the theme of technology cliches) it can be the case that when
you have a hammer, everything tends to look like a nail. There are several
traffic management use cases where an API gateway is not an exact fit.
There are also many examples of technology that became overly coupled
with the underlying application and added increasing friction to the
software delivery process being a key culprit. There are several common
API gateway common pitfalls that you should always try and avoid.

API Gateway Loopback: “Service Mesh Lite”
As with all common pitfalls, the implementation of this pattern often begins
with good intentions. When an organization has only a few services this
typically doesn’t warrant the installation of a service mesh. However, a
subset of service mesh functionality is often required, particularly service
discovery. An easy implementation is to route all traffic through the edge or
API gateway, which maintains the official directory of all service locations.
At this stage the pattern looks somewhat like a “hub and spoke” networking
diagram. The challenges present themselves in two forms: Firstly, when all
of the service-to-service traffic is leaving the network before reentering via
the gateway this can present performance, security, and cost concerns
(cloud vendors often charge for egress). Secondly, this pattern doesn’t scale
beyond a handful of services, as the gateway becomes overloaded and a
bottleneck, and it becomes a true single point of failure.

Looking at the current state of the Conference System with the two
Mappings that you have configured, you can see the emergence of this
issue. Any external traffic, such as user requests, are correctly being routed
to their target services by the API gateway. However, how does the legacy
application discover the location of the attendees service? Often the first
approach is to route all requests back through the publicly addressable
gateway e.g the legacy application makes calls to
www.conferencesystems.com/attendees Instead the legacy
application should use some form of internal service discovery mechanism
and keep all of the internal requests within the internal network. You will
learn more about how to use a service mesh to implement this in the next
chapter.

API Gateway as an ESB
The vast majority of API gateways support the extension of their out-of-the-
box functionality via the creation of plugins or modules. NGINX supported
Lua modules, which OpenResty and Kong capitalised on. Envoy Proxy
originally supported extensions in C, and now WebAssembly filters. And
we’ve already discussed how the original implementation of Netflix’s Zuul
API gateway “2015 Onwards: Second Generation API Gateways”. Many of
the use cases realised by these plugins are extremely useful, such as
authn/z, filtering, and logging. However, it can be tempting to put business
logic into these plugins, which is a way to highly-couple your gateway with
your service or application. This leads to a potentially fragile system, where
a change in a single plugin ripples throughout the organization, or
additional friction during release where the target service and plugin have to
be deployed in lockstep.

Turtles (API Gateways) All the Way Down
If one API gateway is good, more must be better, right? It is common to
find multiple API gateways deployed within the context of large
organization, often in a hierarchical fashion, or in an attempt to segment
networks or departments. The intentions are typically good: either for

providing encapsulation for internal lines of business, or for a separation of
concerns with each gateway (e.g. “this is the transport security gateway, this
is the auth gateway, this is the logging gateway…”). The common pitfall
rears its head when the cost of change is too high, e.g. you have to
coordinate with a large number of gateway teams to release a simple service
upgrade, there are understandability issues (“who owns the tracing
functionality?”), or performance is impacted as every network hop naturally
incurs a cost.

Selecting an API Gateway
Now that you learned about the functionality provided by an API gateway,
the history of the technology, and how an API gateway fits into to the
overall system architecture, next is the $1M question: how do you select an
API gateway to included in your stack?

Identifying Requirements
One of the first steps with any new software delivery or infrastructure
project is identifying the related requirements. This may appear obvious,
but it is all too easy to get distracted by shiny technology, magical
marketing, or good sales documentation!

You can look back to the earlier section “Why Use an API Gateway?” of
this chapter to explore in more detail the high-level requirements you
should be considering during the selection process:

Reducing coupling between front ends and back ends

Simplifying client consumption of APIs by aggregating and/or
translating back end services

Protecting APIs from overuse and abuse, via threat detection and
mitigation

Understanding how APIs are being consumed and how the
underlying systems are performing

Managing APIs as products i.e. API Lifecycle Management
requirements

Monetizing APIs, including the needs for account management,
billing, and payment

It is important to ask question both focused on current pain points and also
your future roadmap. For example, do you need to simply expose REST-
based backend APIs with a thin layer of load balancing and security, or do
you need comprehensive API aggregation and translation functionality
combined with enterprise-grade security?

Exploring Constraints: Team, Technologies, and
Roadmap
In addition to identifying requirements it is also essential that you identify
your organization’s constraints. Broadly speaking, we have found there are
three key areas that are well worth exploring when choosing your API
gateway: team structure and dynamics, existing technology investments,
and future roadmap.

The much discussed Conway’s law, stating that organizations design
systems mirror their own communication structure, has almost become a
cliche. But there is truth to this. As explored by Matthew Skelton and
Manuel Pais in Team Topologies your organizational structure will
constrain your solution space. For example, if your organization has a
separate InfoSec team, there is a good chance that you will end up with a
separate security gateway.

Another well discussed concept is the notion of the sunk cost fallacy, but in
the real world we see this ignored time and time again. Existing technology
deployed often constrains future decisions. You will need to investigate the
history associated with many of the big ticket technology decision making
within an organization, such as API gateway choice, in order to avoid
messy politics. For example, if a platform team has already invested
millions of dollars into creating a bespoke API gateway, there is a good

https://en.wikipedia.org/wiki/Conway%27s_law
https://itrevolution.com/team-topologies/
https://en.wikipedia.org/wiki/Sunk_cost

chance they will be reluctant to adopt another gateway, even if this is a
better fit for the current problem space.

Finally, you will need to identify and explore your organization’s roadmap.
Often this will constrain the solution space. For example, some
organizations are banning the use of certain cloud vendors or technology
vendors, for reasons related to competition or ethical concerns. Other times,
you will find that the roadmap indicates the leadership is “all-in” on a
specific technology, say, Java, and so this may restrict the deployment of a
gateway that doesn’t run on a JVM.

Build Versus Buy
A common discussion when selecting an API gateway is the “build versus
buy” dilemma. This is not unique to this component of a software system,
but the functionality offered via an API gateway does lead to some
engineers gravitating to this that they could build this “better” than existing
vendors, or that their organization is somehow “special”, and would benefit
from a custom implementation. In general, we believe that the API gateway
component is sufficiently well-established that it typically best to adopt an
open source implementation or commercial solution rather than build your
own. Presenting the case for build versus buy with software delivery
technology could take an entire book, and so in this section we only want to
highlight some common challenges:

Underestimating the Total Cost of Ownership (TCO): Many
engineers discount the cost of engineering a solution, the continued
maintenance costs, and the ongoing operational costs.

Not thinking about opportunity cost: Unless you are a cloud or
platform vendor, it is highly unlikely that a custom API gateway
will provide you with a competitive advantage. You can delivery
more value to your customers by building some functionality
closer to your overall value proposition

Not being aware of current technical solutions of products. Both
the open source and commercial platform component space moves
fast, and it can be challenging to keep up to date. This, however, is
a core part of the role of being a technical leader.

Radars, Quadrants, and Trend Reports
Although you should always perform your own experiments and proof of
concept work, we recommend keeping up to date with technology trends
via reputable IT press. This type of content can be especially useful when
you are struggling with a problem or have identified a solution and are in
need of a specific piece of technology that many vendors offer.

We recommend the following sources of information for learning more
about the state of the art of technology within the API gateway space:

ThoughtWorks Technology Radar

Gartner Magic Quadrant for Full Life Cycle API Management

Cloud Native Computing Foundation (CNCF) Tech Radar

InfoQ Trends Reports

Several organizations and individuals also publish periodic API gateway
comparison spreadsheets, and these can be useful for simple “paper
evaluations” in order to shortlist products to experiment with. It should go
without saying that you will need to check for bias across these
comparisons (vendors frequently sponsor such work), and also ensure the
publication date is relatively recent. Enterprise API gateways solutions do
not change much from month to month, but this is not true in the cloud
native and Kubernetes space.

API Gateway: A Type 1 Decision
Jeff Bezos, the CEO of Amazon, is famous for many things, and one of
them is his discussion of Type 1 decisions and Type 2 decisions. Type 1
decisions are not easily reversible, and you have to be very careful making

https://www.thoughtworks.com/radar
https://www.gartner.com/en/documents/3970166/magic-quadrant-for-full-life-cycle-api-management
https://radar.cncf.io/
https://www.infoq.com/infoq-trends-report/
https://www.businessinsider.com/jeff-bezos-on-type-1-and-type-2-decisions-2016-4

them. Type 2 decisions are easy to change: “like walking through a door —
if you don’t like the decision, you can always go back.” Usually this
concept is presented in relation to confusing the two, and using Type 1
processes on Type 2 decisions: “The end result of this is slowness,
unthoughtful risk aversion, failure to experiment sufficiently, and
consequently diminished invention. We’ll have to figure out how to fight
that tendency.” However, in the majority of cases — especially within a
large enterprise context — choosing an API gateway is very much a Type 1
decision. Ensure your organization acts accordingly!

Checklist: Selecting an API Gateway

T
a
b
l
e
4
-
2
.
S
e
l
e
c
t
i
n
g
a
n
A
P
I
G
a
t
e
w
a
y
C
h
e
c

k
l
i
s
t

Decision How should we approach selecting an API gateway for our organization?

Discussion Points Have we identified and prioritized all of our requirements associated with
selecting an API gateway?

Have we identified current technology solutions that have been deployed in
this space within the organization?

Do we know all of our team and organizational constraints?

Have we explored our future roadmap in relation to this decision?

Have we honestly calculated the “build versus buy” costs?

Have we explored the current technology landscape and are we aware of all of
the available solutions?

Have we consulted and informed all involved stakeholders in our analysis and
decision making?

Recommendations Focus particularly on your requirement to reduce API/system coupling,
simplify consumption, protect APIs from overuse and abuse, understand how
APIs are being consumed, manage APIs as products, and monetize APIs

Key questions to ask include: is there are existing API gateway in use? Has a
collection of technologies been assembled to provide similar functionality
(e.g. hardware load balancer combined with a monolithic app that performs
authentication and application-level routing)? How many components
currently make up your edge stack (e.g. WAF, LB, edge cache, etc.)

Focus on technology skill levels within your team, availability of people to
work on a API gateway project, and available resources and budget etc

It is important to identify all planning changes, new features, and current
goals that could impact traffic management and the other functionality that an
API gateway provides

Calculate the total cost of ownership (TCO) of all of the current API gateway-
like implementations and potential future solutions.

Consult with well known analysts, trend reports, and product reviews in order
to understand all of the current solutions available.

Selecting and deploying an API gateway will impact many teams and
individuals. Be sure to consult with the developers, QA, the architecture
review board, the platform team, InfoSec etc.

Summary
In this chapter you have learned what an API gateway is, and also explored
the historical context that led the to evolution of the features currently
provided by this essential component in any web-based software stack. You
have learned how an API gateway is a very useful tool for migrating and
evolving systems, and got hands-on with how to use an API gateway to
route to the Attendees service that was extracted from the Conference
System use case. You have also explored the current taxonomy of API
gateways and their deployment models, which has equipped you to think
about how to manage potential single points of failure in an architecture
where all user traffic is routed through an edge gateway. Building on the
concepts of managing traffic at the (ingress) edge of systems, you have also
learned about service-to-service communication and how to avoid common
pitfalls such as deploying an API gateway as a less-functional enterprise
service bus (ESB).

The combination of all of this knowledge has equipped you with the key
thinking points, constraints, and requirements necessary in order to make an
effective choice when selecting an API gateway for your current use cases.
As with most decisions a software architect or technical leader has to make,
there is no distinct correct answer, but there often can be quite a few bad
solutions to avoid.

Now that you have explored the functionality that API gateways provide for
managing north-south ingress traffic and related APIs, the next chapter will
explore the role of service meshes for managing east-west service-to-
service traffic.

Prospective Table of Contents
(Subject to Change)

Part I: API Fundamentals

Part II: Designing, Building, and Testing APIs

Part III: Traffic Patterns and Management

Part IV: API Operations and Security

Part V: Evolutionary Architecture with APIs

About the Authors
James Gough has worked extensively with financial systems and is the
architectural lead for Client APIs at Morgan Stanley. He has a very
pragmatic approach to building software and has been responsible for
building API Gateways and applications to support a large enterprise API
transformation.

Daniel Bryant works as a product architect at Datawire. His technical
expertise focuses on DevOps tooling, cloud/container platforms, and
microservice implementations. Daniel is a Java Champion, and contributes
to several open source projects. He also writes for InfoQ, O’Reilly, and
TheNewStack, and regularly presents at international conferences such as
OSCON, QCon, and JavaOne. In his copious amounts of free time he
enjoys running, reading, and traveling.

Matthew Auburn has worked for Morgan Stanley on a variety of financial
systems. Before working at Morgan Stanley he has built a variety of mobile
and web applications. Matthew’s Masters degree primarily focused on
security and this has fed into working in the security space for building
APIs.

	Preface
	Why Did We Write This book?
	Why Should You Read This Book?
	The Core Personas For This Book
	Developer
	Accidental Architect
	Solutions/Enterprise Architect

	What This Book is Not
	Conventions Used in This Book
	Using Code Examples
	O’Reilly Online Learning
	How to Contact Us

	I. API Fundamentals
	1. API Architecture Primer
	API Architecture Case Study
	A Brief Introduction to APIs
	From Tiered Architecture to Modelling APIs
	An Evolutionary Step
	API Infrastructure and Traffic Patterns

	Using Architecture Decision Records
	Attendees Evolution ADR
	Mastering API - ADR Guidelines

	Roadmap for our Journey
	Summary

	II. Designing, Building and Testing APIs
	2. Defining Rest APIs and Alternative API Approaches
	Introduction to REST
	The Richardson Maturity Model

	REST API Standards and Structure
	Collections and Pagination
	Filtering Collections
	Updating Data
	Error Handling
	Checklist: Choosing an API Standard

	Specifying REST APIs
	OpenAPI Specification Structure
	Visualizing OpenAPI Specifications

	Practical Application of OpenAPI Specifications
	Code Generation
	OpenAPI Validation
	Examples and Mocking
	Detecting Changes

	API Versioning
	Semantic Versioning
	API Lifecycle
	OpenAPI Specification and Versioning

	Alternative API Formats
	Remote Procedure Call (RPC)
	Implementing RPC with gRPC
	GraphQL

	Exchanges and Choosing an API Format
	High Traffic Services
	Large Exchange Payloads
	HTTP/2 Performance Benefits
	Vintage Formats
	Performance Testing Exchanges
	Checklist: Modelling Exchanges

	Multiple Specifications
	The Golden Specification
	Challenges of Combined Specifications

	Summary

	3. Testing APIs and the Test Pyramid
	Scenario for this chapter
	Testing Quadrant
	Test Pyramid

	Unit Testing
	Test Driven Development

	Service Testing
	Component tests
	Integration tests
	Contract testing

	Testing during the building of your application
	Testcontainers
	End-to-end Testing
	Can you test too much?
	Summary

	III. Traffic Patterns and Management
	4. API Gateways
	Why Use an API Gateway?
	Reduce Coupling: Adapter / Facade Between Front Ends and Back Ends
	Simplify Consumption: Aggregating / Translating Back End Services
	Protect APIs from Overuse and Abuse: Threat Detection and Mitigation
	Understand How APIs Are Being Consumed: Observability
	Manage APIs as Products: API Lifecycle Management
	Monetize APIs: Account Management, Billing, and Payment

	What is an API Gateway?
	What Functionality Does an API Gateway Provide?
	Where is an API Gateway Deployed?
	How Does an API Gateway Integrate with Other Technologies at the Edge?

	A Modern History of API Gateways
	Late 1990s Onwards: Hardware Load Balancers
	Early 2000s Onwards: Software Load Balancers
	Mid 2000s: Application Delivery Controllers (ADCs)
	Early 2010s: First Generation API Gateways
	2015 Onwards: Second Generation API Gateways
	Coda (2017 Onwards): Service Mesh and/or API Gateway?

	Current API Gateway Taxonomy
	Traditional Enterprise Gateways
	Micro/Microservices Gateways
	Service Mesh Gateways
	Comparing API Gateway Types

	Evolving the Conference System Using an API Gateway
	Installing Ambassador Edge Stack in Kubernetes
	Configuring Mappings from URL Paths to Backend Services
	Configuring Mappings Using Host or Path-based Routing

	Deploying API Gateways: Understanding and Managing Failure
	API Gateway as a Single Point of Failure
	Detecting and Owning Problems
	Resolving Incidents and Issues
	Mitigating Risks

	Common API Gateway Implementation Pitfalls
	API Gateway Loopback: “Service Mesh Lite”
	API Gateway as an ESB
	Turtles (API Gateways) All the Way Down

	Selecting an API Gateway
	Identifying Requirements
	Exploring Constraints: Team, Technologies, and Roadmap
	Build Versus Buy
	Radars, Quadrants, and Trend Reports
	API Gateway: A Type 1 Decision
	Checklist: Selecting an API Gateway

	Summary

	Prospective Table of Contents
	Part I: API Fundamentals
	Part II: Designing, Building, and Testing APIs
	Part III: Traffic Patterns and Management
	Part IV: API Operations and Security
	Part V: Evolutionary Architecture with APIs

	About the Authors

