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preface
The idea for this book came to me in the summer of 2018 after working with some
especially talented developers who had managed to go a significant portion of their
careers without learning how to write scalable code. I realized then that a lot of the
techniques for “big data” work, or what we’ll refer to in this book as “large dataset”
problems, are reserved for those who want to tackle these problems exclusively.
Because a lot of these problems occur in enterprise environments, where the mecha-
nisms to produce data at this scale are ripe, books about this topic tend to be written
in the same enterprise languages as the tools, such as Java.

 This book is a little different. I’ve noticed that large dataset problems are increas-
ingly being tackled in a distributed manner. Not distributed in the terms of distrib-
uted computing—though certainly that as well—but distributed in terms of who’s
doing the work. Individual developers or small development teams, often working in
rapid prototyping environments or with rapid development languages (such as
Python), are now working with large datasets.

 My hope is that this book can bring the techniques for scalable and distributed
programming to a broader audience of developers. We’re living in an era where big
data is becoming increasingly prevalent. Skills in parallelization and distributed pro-
gramming are increasingly vital to developers’ day-to-day work. More and more program-
mers are facing problems resulting from datasets that are too large for the way they’ve
been taught to think about them. Hopefully, with this book, developers will have the
tools to solve those big data problems and focus on the ones that got them interested
in programming in the first place.
xiii
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about this book
Who should read this book
The goal of this book is to teach a scalable style of programming. To do that, we’ll cover
a wider range of material than you might be familiar with from other programming or
technology books. Where other books might cover a single library, this book covers
many libraries—both built-in modules, such as functools and itertools, as well as third-
party libraries, such as toolz, pathos, and mrjob. Where other books cover just one tech-
nology, this book covers many, including Hadoop, Spark, and Amazon Web Services
(AWS). The choice to cover a broad range of technologies is admitting the fact that to
scale your code, you need to be able to adapt to new situations. Across all the technolo-
gies, however, I emphasize a “map and reduce” style of programming in Python.

 You’ll find that this style is a constant throughout the changing environment in
which your code is running, which is why I adopted it in the first place. You can use
it to rapidly adapt your code to new situations. Ultimately, the book aims to teach
you how to scale your code by authoring it in a map and reduce style. Along the way,
I also aim to teach you the tools of the trade for big data work, such as Spark, Hadoop,
and AWS.

 I wrote this book for a developer or data scientist who knows enough to have got-
ten themselves into a situation where they’re facing a problem caused by having too
much data. If you know how to solve your problem, but you can’t solve it fast enough
at the scale of data with which you’re working, this book is for you. If you’re curious
about Hadoop and Spark, this book is for you. If you’re looking for a few pointers on
how to bring your large data work into the cloud, this book could be for you.
xv

 



ABOUT THIS BOOK xvi
How this book is organized: A roadmap
In chapter 1, I introduce the map and reduce style of programming and what I’ll
cover in this book. I discuss the benefits of parallel programming, the basics of distrib-
uted computing, the tools we’ll cover for parallel and distributed computing, and
cloud computing. I also provide a conceptual model for the material that I cover in
this book.

 In chapter 2, I introduce the map part of the map and reduce style, and we look at
how to parallelize a problem to solve it faster. I cover the process of pickling in
Python—how Python shares data during parallelization—and we’ll tackle an example
using parallelization to speed up web scraping.

 In chapter 3, we’ll use the map function to perform complex data transformations.
In this chapter, I teach how you can chain small functions together into function pipe-
lines or function chains to great effect. I also show how you can parallelize these func-
tion chains for faster problem solving on large datasets.

 In chapter 4, I introduce the idea of laziness and how you can incorporate laziness
to speed up your large data workflows. I show how lazy functions allow you to tackle
large dataset problems locally, how you can create your own lazy functions, and how to
best combine lazy and hasty approaches to programming. We’ll use these lazy meth-
ods to solve a simulation problem.

 In chapter 5, I cover accumulation transformations with the reduce function. I
also teach the use of anonymous or lambda functions. In this chapter, we’ll use the
reduce function to calculate summary statistics on a large dataset.

 In chapter 6, I cover advanced parallelization techniques using both map and
reduce. You’ll learn advanced functions for parallelization in Python, as well as how
and when to pursue a parallel solution to your problem. In this chapter, you’ll also
learn how to implement parallel reduce workflows.

 In chapter 7, I introduce the basics of distributed computing as well as the technol-
ogies of Hadoop and Spark. You’ll write introductory programs in Hadoop and Spark,
and learn the benefits of each framework. We’ll also cover the situations in which
Hadoop is preferable over Spark, and when Spark is preferable over Hadoop.

 In chapter 8, I cover how to use Hadoop streaming to run your map-and-reduce–
style code on a distributed cluster. I also introduce the mrjob library for writing
Hadoop jobs in Python. We’ll cover how to move complex data types between Hadoop
job steps. We’ll cement these principles with hands-on examples analyzing web traffic
data and tennis match logs.

 In chapter 9, we dive into using Spark for distributing our Python code. I cover
Spark’s RDD data structure as well as convenience methods of the RDD that you can
use to implement your code in a map and reduce style. We’ll also implement the clas-
sic PageRank algorithm on the tennis match log data from chapter 8.

 In chapter 10, we look at one of the most popular applications of Spark: parallel
machine learning. In this chapter, we cover some of the basics of machine learning.
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We’ll practice these principles by implementing decision trees and forests to predict
whether mushrooms are poisonous or not.

 In chapter 11, I cover the basics of cloud computing and the nature of cloud stor-
age. We’ll put our learning into practice by loading data into Amazon S3 using both
the web GUI and the boto3 AWS API wrapper library for Python.

 In chapter 12, we use Amazon ElasticMapReduce to run distributed Hadoop and
Spark jobs in the cloud. You’ll learn how to set up an elastic Hadoop cluster from the
console using mrjob and from the AWS browser-based GUI. Once you’ve mastered
this chapter, you’ll be ready to tackle datasets of any size.

About the code
On the journey to mastering large datasets with Python, you’ll need a few tools, the
first of which is a recent version of Python. Throughout this book, any version of
Python 3.3+ will work. For the most part, you can install the remainder of the software
you’ll need with a single pip command:

pip install toolz pathos pyspark mrjob --user

If you’d like to set up a virtual environment to keep the packages installed with this
book separate from Python packages you currently have installed on your path, you
can do this with a few lines of code as well:

$ python3 -m venv mastering_large_datasets
$ pip install toolz pathos pyspark mrjob --user
$ source mastering_large_datasets/bin/active

If you set up a virtual environment, remember that you’ll need to run the source com-
mand to activate it so you can access the libraries inside of it.

 Beyond Python, the only software that you’ll need for this book is Hadoop. The
easiest way to install Hadoop is to go to the Hadoop website and follow the instruc-
tions for downloading Hadoop there: https://hadoop.apache.org/releases.html.
Hadoop is written in Java, so you’ll also need to have a Java Development Kit installed
to run it. I recommend OpenJDK. You can download OpenJDK from the OpenJDK
website: https://openjdk.java.net/.

 Finally, to complete the last two chapters of the book, you’ll need an AWS account.
You can create a new AWS account by going to https://aws.amazon.com, selecting
“Sign in to the Console,” and then creating a new AWS account. To set up your
account, you’ll need to provide a payment method. Amazon will use this method to
charge you for resources you use. For this book, you won’t need more than $5 of
resources from AWS. To ensure you don’t spend more than you’re comfortable with,
you can get a prepaid Visa card and set that up as your payment method. You can find
prepaid Visa cards at stores like CVS, Walgreens, Rite-Aid, Target, and Walmart, as well
as many convenience stores and gas stations. You won’t need an AWS account until
chapter 11.
 

https://hadoop.apache.org/releases.html
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liveBook discussion forum
Purchase of Mastering Large Datasets with Python includes free access to a private web
forum run by Manning Publications where you can make comments about the book,
ask technical questions, and receive help from the author and from other users. To
access the forum, go to https://livebook.manning.com/book/mastering-large-datasets/
welcome/v-5/discussion. You can also learn more about Manning’s forums and the
rules of conduct at https://livebook.manning.com/#!/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the author can take
place. It is not a commitment to any specific amount of participation on the part of
the author, whose contribution to the forum remains voluntary (and unpaid). We sug-
gest you try asking the author some challenging questions, lest his interest stray! The
forum and the archives of previous discussions will be accessible from the publisher’s
website as long as the book is in print.
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Part 1

Part 1 explores the map and reduce style of computing. We’ll introduce map
and reduce, as well as the helper and convenience functions that you’ll need to
get the most out of this style. In this section, we’ll also cover the basics of parallel
computing. The tools and techniques in this part are useful for large data in cat-
egories 1 and 2: tasks that are both storable and computable locally, and tasks
that are not storable locally but are still computable locally.
 



 



Introduction
This book teaches a set of programming techniques, tools, and frameworks for mas-
tering large datasets. Throughout this book, I’ll refer to the style of programming
you’re learning as a map and reduce style. The map and reduce style of programming
is one in which we can easily write parallel programs—programs that can do multi-
ple things at the same time—by organizing our code around two functions: map and
reduce. To get a better sense of why we’ll want to use a map and reduce style, con-
sider this scenario:

SCENARIO Two young programmers have come up with an idea for how to
rank pages on the internet. They want to rank pages based on the impor-
tance of the other sites on the internet that link to them. They think the

This chapter covers
 Introducing the map and reduce style of 

programming

 Understanding the benefits of parallel 
programming 

 Extending parallel programming to a distributed 
environment 

 Parallel programming in the cloud
3

 



4 CHAPTER 1 Introduction
internet should be just like high school: the more the cool kids talk about
you, the more important you are. The two young programmers love the idea,
but how can they possibly analyze the entire internet?

A reader well versed in Silicon Valley history will recognize this scenario as the
Google.com origin story. In its early years, Google popularized a way of programming
called MapReduce as a way to effectively process and rank the entire internet. This style
was a natural fit for Google because

1 Both of Google’s founders were math geeks, and MapReduce has its roots
in math.

2 Map and reduce-centric programming results in simple parallelization when
compared with a more traditional style of programming.

In this book, we’ll tackle the same issues Google tackled in their early stages. We’ll
look at a style of programming that makes it easy to take a good idea and scale it up.
We’ll look at a way of programming that makes it easy to go from doing work as an
individual to doing work on a team, or from doing work on your laptop to doing work
in a distributed parallel environment. In other words, we’ll look at how to master
large datasets.

1.1 What you’ll learn in this book
In this book, you’ll learn a style of programming that makes parallelization easy. You’ll
learn how to write scalable, parallel code that will work just as well on one machine as
it will on thousands. You’ll learn how to

 chunk large problems into small pieces
 use the map and reduce functions
 run programs in parallel on your personal computer
 run programs in parallel in distributed cloud environments

and you’ll learn two popular frameworks for working with large datasets: Apache
Hadoop and Apache Spark.

map and reduce vs. MapReduce
I’m going to refer to a map and reduce style of programming a lot in this book. Indeed,
this style is the primary means through which I’ll be teaching you how to scale up your
programs beyond your laptop. Though this style is similar in name and functionality
to MapReduce, it is distinct from and more general than MapReduce. MapReduce is
a framework for parallel and distributed computing. The map and reduce style is a
style of programming that allows programmers to run their work in parallel with minimal
rewriting and extend this work to distributed workflows, possibly using MapReduce, or
possibly using other means.
 

http://Google.com


5Why large datasets?
 This book is for the programmer who can write working data-transformation pro-
grams already and now needs to scale those programs up. They need to be able to
work with more data and to do it faster. 

1.2 Why large datasets?
You’ve probably heard conversations about an amorphous set of problems in modern
computing that revolve around the notion of big data. Big data tends to mean differ-
ent things to different people. I find that most people use that phrase to mean that
the data “feels” big—it’s uncomfortable to work with or unwieldy.

 Because one of the goals of this book is to get you comfortable with any size
dataset, we’ll work with large datasets. As I think of it, large dataset problems come in
three sizes:

1 The data can both fit on and be processed on a personal computer.
2 The solution for the problem can be executed from a personal computer, but

the data can’t be stored on a personal computer.
3 The solution for the problem can’t be executed on a personal computer, and

the data can’t be stored on one either.

You likely already know how to solve problems that fall in the first category. Most
problems—especially those that are used to teach programming—fall into this first
category. The second group of problems is a bit harder. They require a technique
called parallel computing that allows us to get the most out of our hardware. Lastly, we
have the third group of problems. These problems are expensive, requiring either
more money or more time to solve. To solve them, we’ll want to use a technique called
distributed computing.

Through this book, you’ll learn a style of programming that allows you to write code
in the same way for problems of all three sizes. You’ll also learn about parallel comput-
ing and two distributed computing frameworks (Hadoop and Spark), and we’ll explore
how to use those frameworks in a distributed cloud environment.

Dask—A different type of distributed computing 
The map and reduce style of programming puts data at the forefront and is excellent
for working with data, from small data transformations up to large distributed data
stores.

If you aren’t interested in learning a style of programming that will make your Python
code easier to read and easier to scale, but you still want to be able to manage large
datasets, one tool out there for you is Dask. Dask is a Python framework for distrib-
uted data frames with a NumPy and pandas look-alike API. If that sounds like some-
thing you’re interested in, I recommend Data Science with Python and Dask, by Jesse
Daniel (Manning, 2019; http://mng.bz/ANxg).
 

http://mng.bz/ANxg


6 CHAPTER 1 Introduction
1.3 What is parallel computing?
Parallel computing, which I’ll also refer to as parallel programming and parallelization,
is a way to get your computer to do multiple things at once. For example, referring
to the scenario you saw earlier, our young programmers are going to need to pro-
cess more than one web page at a time; otherwise, they might never finish—there
are a lot of web pages. Even processing one page per half second wouldn’t bring
them to 200,000 pages a day. To scrape and analyze the entire internet, they’re going
to need to be able to scale up their processing. Parallel computing will allow them to
do just that.

1.3.1 Understanding parallel computing

To understand parallel programming, let’s first talk about what happens in standard
procedural programming. The standard procedural programming workflow typically
looks like this:

1 A program starts to run.
2 The program issues an instruction.
3 That instruction is executed.
4 Steps 2 and 3 are repeated.
5 The program finishes running.

This is a straightforward way of programming; however, it limits us to executing one
instruction at a time (figure 1.1). Steps 2 and 3 need to resolve before we can move on
to Step 4. And Step 4 routes us back to Steps 2 and 3, leaving us in the same pickle.

In a standard linear program, if the instructions in Step 2 take a long time to execute,
then we won’t be able to move on to the next section of the problem. Imagine what
this looks like for our young programmers trying to scrape the entire internet. How
many of their instructions are going to be “scrape web page abc.com/xyz”? Probably a
lot. What’s more, we know that the scraping of one web page (like the Amazon home-
page, for instance) is in no way going to alter the content of other web pages (such as
the New York Times homepage).

Our run time is directly related to

1 2 3 4

Time

how many instructions we have.

In standard linear, procedural
computing, we process one
instruction at a time and then move
on to the next.

Figure 1.1 The procedural computing 
process involves issuing instructions and 
resolving them in sequence.
 



7What is parallel computing?
 Parallel programming allows us to execute all of these similar and independent
steps simultaneously. In parallel programming, our workflow is going to look more
like this:

1 A program starts to run.
2 The program divides up the work into chunks of instructions and data.
3 Each chunk of work is executed independently.
4 The chunks of work are reassembled.
5 The program finishes running.

By programming this way, we free ourselves from the instruction-execution loop we
were trapped in before (figure 1.2). Now we can split our work up into as many
chunks as we’d like, as long as we have a way of processing them.

This process would be much better for the young programmers wishing to scrape the
entire internet. They still need to find a way to get enough computing resources to
process all of the chunks, but every time they acquire a new machine, they make their
process that much faster. And indeed, even early-stage Google was running on a clus-
ter of thousands of computers.

1.3.2 Scalable computing with the map and reduce style

When we think about the map and reduce style of computing, it’s important to do so
in the context of both the size of our data and the capacity of the compute resources
available to us (figure 1.3). With normal-sized data—which allows us to use personal
computer-scale resources to work on data we can store on a personal computer—we
can rely on the fundamentals of the map and reduce style and standard Python code.
In this area, we won’t see much difference from other styles of programming.

 Moving up in size of data, we arrive at a place where we can use our personal com-
puter hardware to process the data, but we’re having trouble storing the data on a

In parallel programming, we will run several

Time

instructions at once, which can make
our programs faster.

Our run time is no longer directly related
to the number of instructions we have.

Notice how instructions 1, 2,
and 3 are all going to
execute at the same time.
Then instruction 4 will execute.

1

2

3

4

Figure 1.2 The parallel computing 
process divides work into chunks that 
can be processed separately from one 
another and recombined when finished.
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personal computer. At this point, we could, if we wanted to, work on our job in a clus-
ter, but it’s not a necessity. Here, the benefits of the map and reduce style start to
become apparent. We can use a slightly modified version of our code from the smaller
sized data to work on data in this size category.

 And finally, we arrive at the final and largest category of data. This is data that we
need to both process and store in a distributed environment. Here, we can use distrib-
uted computing frameworks such as Hadoop and Spark. And although we can’t use
the exact same code, we can use the principles and patterns from the smaller sizes.
We’ll often also need to use a cloud computing service, such as AWS.

Other large data technologies: Splunk, Elasticsearch, Pig, and Hive
Because this book focuses on scalable workflows, I intentionally omitted big data
tools that only make sense to operate once you’re already in a high-volume environ-
ment, including Splunk, Elasticsearch, Apache Pig, and Apache Hive. The latter two,
built on the Hadoop stack, are natural bedfellows with Hadoop and Spark. If you’re
operating with a large volume of data, investigating these tools is well worth your
while.

For the largest
problems, we’ll use
distributed computing
frameworks in the cloud.

Tools used in a map and reduce style of programming, by
dataset size and compute resources available

For medium-sized data, we
can use parallelization.

For small data workloads
and prototyping, we can
rely on the fundamentals.

Parallel andmap reduce
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Python’s built-in
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Figure 1.3 We can think of the map and reduce style of programming as a construction project: from 
blueprints, which help us organize our work; to the transformation of raw material; to the assembly 
of parts into a final product.
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We can see this at play in figure 1.3. Figure 1.3 shows how the techniques taught in
this book match up against the various sizes of data and the compute resources avail-
able. We begin by covering techniques that you can use on your laptop or personal
computer: the built-in map and reduce and parallel computing abilities of Python. In
the final two sections (from chapter 7 and on), we cover distributed computing frame-
works such as Hadoop and Spark, as well as how to deploy these services on the cloud
using Amazon Web Services EMR.

1.3.3 When to program in a map and reduce style

The map and reduce style of programming is applicable everywhere, but its specific
strengths are in areas where you may need to scale. Scaling means starting with a small
application, such as a little game you might build on your laptop in an evening as a
pet project, and applying it to a much larger use case, such as a viral game that everyone
is playing on their cell phones.

 Consider one small step in our hypothetical game: improving the AI. Say we have
an AI opponent against which all the players compete, and we want the AI to
improve every 1,000 matches. At first, we’ll be able to update our AI on a single
machine. After all, we only have 1,000 matches, and it’s trivial to process them. Even
as the number of players picks up, we’ll only have to run this improvement every few
hours. Eventually, however, if our game gets popular enough, we’ll have to dedicate
several machines to this task—the amount of information they’ll need to process
will be larger (there will be more matches in the match history), and they’ll need to
process the information faster (because the rate of plays will be faster). This would
be an excellent application for a map and reduce style because we could easily mod-
ify our code to be parallel, allowing us to scale our AI improvements up to any num-
ber of users.

1.4 The map and reduce style
The parallel programming workflow has three parts that distinguish it from the stan-
dard linear workflow:

1 Divide the work into chunks.
2 Work on those chunks separately.
3 Reassemble the work.

In this book, we’ll let the functions map and reduce handle these three parts for us.

1.4.1 The map function for transforming data

map is a function we’ll use to transform sequences of data from one type to another
(figure 1.4). The function gets its name from mathematics, where some mathemati-
cians think of functions as rules for taking an input and returning the single corre-
sponding output. Considering again our young and ambitious programmers, they
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may want to map a sequence of web pages (or the sequence of all web pages) into the
URLs that those pages contain. They could then use those URLs to see which pages
were linked to most often and by whom.

 A key thing to remember about map is that it always retains the same number of
objects in the output as were provided in the input. For example, if we wanted to get
the outbound links on 100,000 websites with map, then the resulting data structure
would be 100,000 lists of links.

NOTE map and reduce have their roots in a style of programming called
declarative programming. Declarative programming focuses on explaining
the logic of our code and not on specifying low-level details. That’s why scal-
ing our code is natural in the map and reduce style: the logic stays the same,
even if the size of the problem changes. 

It’s worth taking a look at a small example of map in action now because of how fun-
damental it is to what we’ll be doing throughout this book. Let’s imagine we want
to add seven to a sequence of four numbers: –1, 0, 1, and 2. To do this, we write a
small function called add_seven that takes a number n and returns n+7. To do this
for our sequence of numbers, we’d simply call map on add_seven and our sequence
(figure 1.5).

 You’ll note that, like we touched on previously, we have the same number of inputs
(4) as outputs (4). Also, these inputs and outputs have a direct 1 to 1 relationship: a
particular output corresponds to each and every input. 

map takes a series of inputs, such as URLs to websites,
and transforms them into another type of data.

The output of the function is another series of equalmap
size—in this case, a series of lists of links.

map

Figure 1.4 We can use the map
function to transform a sequence of 
data from one type to another, such 
as transforming web page URLs into 
lists of links found on those pages.
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1.4.2 The reduce function for advanced transformations

If we want to take that sequence and turn it into something of a different length, we’ll
need our other critical function: reduce. reduce allows us to take a sequence of data
and transform it into a data structure of any shape or size (figure 1.6). For example, if
our programmers wanted to take those links and turn them into frequency counts—
finding which pages are linked to the most—they would need to use reduce, because
it is possible that the number of pages linked to is different from the number of pages
crawled. We can easily imagine that 100 web pages might link to anywhere between 0
and 1 million external pages, depending on what the web pages in question are.

We can even use reduce to turn a sequence of data into a primitive data type if we’d
like, such as an integer or a string. For example, we could use reduce to find the num-
ber of outbound links on 100 web pages (an integer) or we could use it to find the

map
add_seven(n)

0 1 2-1

7 8 96

A simple application of is to take a sequence of numbersmap
and transform each number into a larger number.

The output of the function is another series of equalmap
size—in this case, a series of four numbers.

map depends on the
function provided to it.
In this case, it will
apply toadd_seven
each input.

Figure 1.5 A basic use of map would be to increment a sequence of numbers, such as 
changing –1, 0, 1, and 2 into 6, 7, 8, and 9.

reduce

72

We can use to take a sequence and turn it into anyreduce
other data structure, such as turning a series of links into a
count of those links.

Because can turn areduce
sequence of inputs into any
sort of output imaginable, it
is an extremely versatile and
powerful function.

Figure 1.6 We can use the 
reduce function to turn a 
sequence of data of one type 
into something else: another 
sequence or even a primitive.
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longest word in a long text document, such as a book (a string). In this way, reduce is
a lot more flexible than map.

1.4.3 Map and reduce for data transformation pipelines

Often, we’ll want to use map and reduce together, one right after another. This pat-
tern gives rise to the MapReduce programming pattern. The MapReduce program-
ming pattern relies on the map function to transform some data into another type of
data and then uses the reduce function to combine that data. A mathematical exam-
ple might be taking the sum of the greatest prime factor of a sequence of numbers.
We can use map to transform each number into its greatest prime factor and then use
reduce to take their sum. A more practical example may be finding the longest word
on a sequence of web pages, when all we have is the URLs. We can use map to turn the
URLs into text and reduce to find the longest word (figure 1.7).

1.5 Distributed computing for speed and scale 
To get the most out of parallel programming, we need to be working in a distributed
environment, that is, an environment where it’s possible to spread the workload out
across several machines. Consider the following scenario.

SCENARIO A financial trading firm has come up with a way of forecasting the
next day’s market activity based on the overnight taxi and rideshare traffic in
New York City, combined with the morning’s fish prices. The firm’s simulation

map reduceand can
be combined to execute
“transform and
consolidate” workflows.

map

"antidisestablishmentarianism"

[<str>] [<str>] [<str>] [<str>]

We can then use the
reduce function to find
the longest string from
all those lists of strings.

The function canmap
be used to turn
web pages into lists of
words as strings.

reduce

Figure 1.7 The functions map and reduce are often used together to perform complex transformations of large 
amounts of data quickly.
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is perfect, but it takes five hours to run. The traffic results are considered final
at 3:00 a.m., and the markets don’t open until 9:00 a.m. That would give it
plenty of time, except the fish prices aren’t available until 6:00 a.m. on some
days. How can the trading firm get its model to run in time?

In the above scenario, our traders are out of luck if they are hoping to input the actual
fish price data for that day. Lucky for them, it’s possible to distribute this problem over
a network of computers and have them each compute a separate scenario. That way,
no matter what the fish price data says, they’ll already have the results on hand.

 Distributed computing is an extension of parallel computing in which the com-
pute resource we are dedicating to work on each chunk of a given task is its own
machine. This can get complex. All of these machines have to communicate with the
machine that splits the tasks up and combines the results. The benefit is that many,
many complex tasks—like financial simulations—can be performed simultaneously
and have their results brought together (figure 1.8).

Importantly, for problems that we can execute in a distributed manner, we can often
speed them up simply by distributing the work over more and more machines or by
improving the capability of the machines that the tasks are being distributed across.
Which, if either, solution is going to result in faster code depends on the problem.
The good news for our financial trading firm, though, is that they probably have the
money for either one. 

Our computer determines how to split
up the problem and then distributes the
work across many “worker” machines.

With distributed computing,
we can split a problem
involving a large amount
of work across many
machines to speed
up run time.

Worker machines can
be local or far away,
private or shared. It’s
increasingly common
for them to reside in
the cloud.

When each worker is done, the
pieces of work are combined into
our desired end result.

Figure 1.8 We can use distributed computing to run sophisticated scenarios simultaneously and return the 
results to a single location.
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1.6 Hadoop: A distributed framework for map and reduce 
To learn more about distributed computing, we’ll first look at a specific form of distrib-
uted computing called Apache Hadoop, or simply Hadoop. Hadoop was designed as an
open source implementation of Google’s original MapReduce framework and has
evolved into distributed computing software that is used widely by companies processing
large amounts of data. Examples of such companies include Spotify, Yelp, and Netflix.

SCENARIO Spotify is a cloud music provider that has two signature offerings:
free music over the internet and customized, curated playlists that help you
discover new music. These custom playlists work by comparing songs you like
and listen to with what other users listen to, then suggesting songs that you
may have missed. The challenge is that Spotify has hundreds of millions of
users. How can Spotify compare the musical taste of all these users?

To create their music recommendations, Spotify uses Hadoop. Hadoop allows Spotify to
store its listening logs (petabytes of information) on a distributed filesystem and then reg-
ularly analyze that information. The volume of data is the reason Hadoop is so valuable.

 If Spotify had a smaller amount of information, it could use a relational database.
With many petabytes of data, though, that becomes infeasible. For comparison, since
we’re talking about music, a 10 PB playlist of MP3s would take about 20,000 years to
play. If someone started playing it before humans domesticated livestock, you could
finish the playlist in your lifetime.

 Using Hadoop means that the data storage and the processing both can be distrib-
uted, so Spotify doesn’t have to pay attention, necessarily, to how much data it has. As
long as it can pay for new machines to store the data on, it can pull them together with
Hadoop (figure 1.9).

Hadoop

Having a distributed filesystem for data storage allows us to store
data freely, loosely, and cheaply.

The distributed filesystems
can be stored locally, in the
cloud, or a mix.

Hadoop provides a layer of
abstraction on top of
distributed filesystems that
allows us to run highly
parallel MapReduce jobs.

Figure 1.9 Hadoop allows us to store data on a distributed file system of nodes and analyze the 
data with a highly parallel MapReduce process.
 



15AWS Elastic MapReduce—Large datasets in the cloud
1.7 Spark for high-powered map, reduce, and more
We’ll also touch on Apache Spark (or simply Spark) as a distributed computing frame-
work. Spark is something of a successor to the Apache Hadoop framework that does
more of its work in memory instead of by writing to files. The memory referenced in
this case is not the memory of a single machine but, rather, the memories of a cluster
of machines. 

 The result is that Apache Spark can be much faster than Apache Hadoop. By
Apache’s own estimations, Spark can run more than 100 times faster than Hadoop,
though both will significantly increase your speed when compared to a linear process
on a single machine. Spark also has some nice libraries for machine learning that we’ll
take a look at.

 Ultimately, whether you decide you want to use Spark or Hadoop for your work
will be up to you. Spark, like Hadoop, is being used by a lot of large organizations,
such as Amazon, eBay, and even NASA. Both are excellent choices.

1.8 AWS Elastic MapReduce—Large datasets in the cloud
One of the most popular ways to implement Hadoop and Spark today is through Ama-
zon’s Elastic MapReduce. Elastic MapReduce (EMR) joins the MapReduce framework
we’ve been talking about with Amazon’s “elastic” series of cloud computing APIs, such
as Elastic Cloud Compute (EC2). These tools have a very relevant purpose: allowing
software developers to focus on writing code and not on the procurement and mainte-
nance of hardware.

 In traditional distributed computing, an individual—or more often a company—
has to own all the machines. They then have to unite those machines into a cluster,
ensure those machines stay up to date with all the latest software, and otherwise
ensure that all of the machines stay running. With EMR, all we need to dabble in dis-
tributed computing is some spare change, and Amazon handles the rest.

 Because EMR allows us to run distributed jobs on demand, without having to own
our own cluster, we can expand the scope of problems we want to solve with parallel
programming. EMR allows us to tackle small problems with parallel programming
because it makes it cost effective. We don’t have to make an up-front investment in
servers to prototype new ideas. EMR also allows us to tackle large problems with paral-
lel programming because we can procure as many resources as we need, whether
that’s tens or thousands of machines (figure 1.10).
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Summary
 We can use the map and reduce style of programming to solve problems on our

local machine or in a distributed cloud environment.
 Parallel programming helps us speed up our programs by running many opera-

tions at the same time on different processors or on different machines.
 The map function performs one-to-one transformations and is a great way to

transform data so it is more suitable for use.
 The reduce function performs one-to-any transformations and is a great way to

assemble data into a final result.
 Distributed computing allows us to solve problems rapidly if we have enough

computers.
 We can do distributed computing a number of ways, including using the

Apache Hadoop and Apache Spark libraries.
 AWS is a cloud computing environment that makes it easy and cost-effective to

do massive parallel work.

EMR allows us to rent small amounts
of servers at a reasonable cost for
prototyping or ad hoc analysis.

Rapid prototyping High-volume workload

EMR also allows us to scale up
dramatically for super high volume
workloads.

Figure 1.10 EMR allows us to run small parallel jobs more cheaply, while also allowing 
us to expand when we need to run large jobs.
 



Accelerating large
dataset work: Map and

parallel computing
In this chapter, we’ll look at map and how to use it for parallel programming, and
we’ll apply those concepts to complete two web scraping exercises. With map, we’ll
focus on three primary capabilities:

1 We can use it to replace for loops.
2 We can use it to transform data.
3 Map evaluates only when necessary, not when called.

These core ideas about map are also why it’s so useful for us in parallel program-
ming. In parallel programming, we’re using multiple processing units to do partial
work on a task and combining that work later. Transforming lots of data from one
type to another is an easy task to break into pieces, and the instructions for doing
so are generally easy to transfer. Making code parallel with map can be as easy as
adding four lines of code to a program.

This chapter covers
 Using map to transform lots of data

 Using parallel programming to transform lots 
of data

 Scraping data from the web in parallel with map
17

 



18 CHAPTER 2 Accelerating large dataset work: Map and parallel computing
2.1 An introduction to map
In chapter 1, we talked a little bit about map, which is a function for transforming
sequences of data. Specifically, we looked at the example of applying the mathemati-
cal function n+7 to a list of integers: [–1,0,1,2]. And we looked at the graphic in figure
2.1, which shows a series of numbers being mapped to their outputs.

This figure shows the essence of map. We have an input of some length, in this case
four, and an output of that same length. And each input gets transformed by the
same function as all the other inputs. These transformed inputs are then returned
as our output.

That’s all fine and good, but most of us aren’t concerned with middle-school math
problems such as applying simple algebraic transformations. Let’s take a look at a few
ways that map can be used in practice so we can really begin to see its power.

Some Python knowledge required
We will cover some advanced topics in this book as we work up to dealing with large
datasets. That said, in the first section of this book (chapters 1 through 6), one of
my goals is to provide all my readers with background knowledge that may be missing
from their programming education. Depending on your experience, you may already
be familiar with some of the concepts, such as regular expressions, classes and
methods, higher order functions, and anonymous functions. If not, you will be by the
end of chapter 6.

By the end of this first section, my goal is to have you ready to learn about distributed
computing frameworks and processing large datasets. If at any point you feel like you
need more background knowledge on Python, I recommend Naomi Ceder’s The Quick
Python Book (Manning, 2018; http://mng.bz/vl11).

map
add_seven(n)

0 1 2-1

7 8 96

A simple application of is to take a sequence of numbersmap
and transform each number into a larger number.

The output of the function is another series of equalmap
size—in this case, a series of four numbers.

map depends on the
function provided to it.
In this case, it will
apply toadd_seven
each input.

Figure 2.1 The map function applies another function to all the values in a sequence and 
returns a sequence of their outputs: transforming [–1, 0, 1, 2] into [6, 7, 8, 9].
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SCENARIO You want to generate a call list for your sales team, but the original
developers for your customer sign-up form forgot to build data validation
checks into the form. As a result, all the phone numbers are formatted differ-
ently. For example, some will be formatted nicely—(123) 456-7890; some are
just numbers—1234567890; some use dots as separators—123.456.7890; and
others, trying to be helpful, include a country code—+1 123 456-7890.

First, let’s tackle this problem in a way that you’re probably familiar with already: for
looping. We’ll do that in listing 2.1. Here, we first create a regular expression that
matches all numbers and compile that. Then, we go through each phone number and
get the digits out of that number with the regular expression’s .findall method.
From there, we count off the digits from the right. We assign the first four from the
right as the last four, the next three as the first three, and the next three as an area
code. We assume any other digits would just be a country code (+1 for the United
States). We store all of these in variables, and then we use Python’s string formatting
to append them to a list to store our results: new_numbers.

import re 

phone_numbers = [
    "(123) 456-7890",
    "1234567890",
    "123.456.7890",
    "+1 123 456-7890"
]

new_numbers = []

R = re.compile(r"\d")     

for number in phone_numbers:      
  digits = R.findall(number)

  area_code = "".join(digits[-10:-7])     
  first_3 = "".join(digits[-7:-4])
  last_4 = "".join(digits[-4:len(digits)])

  pretty_format = "({}) {}-{}".format(area_code,first_3,last_4)
  new_numbers.append(correct_format)          

How do we tackle this with map? Similarly, but with map, we have to separate this prob-
lem into two parts. Let’s separate it like this:

1 Resolving the formatting of a phone number
2 Applying that solution to all the phone numbers we have

Listing 2.1 Formatting phone numbers with a for loop

Compiles our 
regular expression

Loops through all 
the phone numbers

Gathers the numbers 
into variables

Appends the numbers 
in the right format
 



20 CHAPTER 2 Accelerating large dataset work: Map and parallel computing
First up, we’ll tackle formatting the phone numbers. To do that, let’s create a small
class with a method that finds the last 10 numbers of a string and returns them in our
pretty format. That class will compile a regular expression to find all the numbers. We
can then use the last seven numbers to print a phone number in the format we desire.
If there are more than seven, we’ll ignore the country code.

NOTE We want to use a class (instead of a function) here because it will allow
us to compile the regular expression once but use it many times. Over the
long run, this will save our computer the effort of repeatedly compiling the
regular expression.

We’ll create a .pretty_format method that expects a misformatted phone number (a
string) and uses the compiled regular expression to find all of the numbers. Then,
just as we did in the previous example, we’ll take matches at positions –10, –9, and –8,
using e slice syntax, and assign them to a variable named area code. These numbers
should be our area code. We’ll take the matches at positions –7, –6, and –5 and assign
them to be the first three numbers of the phone number. And we’ll take the last four
numbers to be the last four of the phone numbers. Again, any numbers that occur
before –10 will be ignored. These will be country codes. Lastly, we’ll use Python’s
string formatting to print the numbers in our desired format. The class would look
something like the following listing.

import re

class PhoneFormatter:         
  def __init__(self):             
    self.r = re.compile(r"\d")
  

  def pretty_format(self, phone_number):           
    phone_numbers = self.r.findall(phone_number)
    area_code = "".join(phone_numbers[-10:-7])    
    first_3 = "".join(phone_numbers[-7:-4])
    last_4 = "".join(phone_numbers[-4:len(phone_numbers)])
    return "({}) {}-{}".format(area_code,      
                               first_3,        
                               last_4)         

Now that we’re able to turn phone numbers of any format into phone numbers in a
pretty format, we can combine our class with map to apply it to a list of phone numbers
of any length. To combine the two, we’ll instantiate our class and pass the method as the
function that map will apply to all the elements of a sequence. We can do that as shown
in the following listing.

Listing 2.2 A class for reformatting phone numbers with map

Creates a class to hold our 
compiled regular expression

Creates an initialization method to 
compile the regular expression

Creates a format method 
to do the formatting

Gathers the numbers from 
the phone number string

Returns the numbers 
in the desired 
“pretty” format
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phone_numbers = [      
  "(123) 456-7890",
  "1234567890",
  "123.456.7890",
  "+1 123 456-7890"
]

P = PhoneFormatter ()    
print(list(map(P.pretty_format, phone_numbers)))    

You’ll notice at the very bottom that we convert our map results to a list before we
print them. If we were going to use them in our code, we would not need to do this;
however, because maps are lazy if we print them without converting them to a list,
we’ll just see a generic map object as output. This isn’t as satisfying as the nicely format-
ted phone numbers that we expected.

 Another thing you’ll notice about this example is that we were set up perfectly to
take advantage of map because we were doing a 1-to-1 transformation. That is, we were
transforming each element of a sequence. In essence, we’ve turned this problem into
our middle-school algebra example: applying n+7 to a list of numbers.

 In figure 2.2, we can see the similarities between the two problems. For each prob-
lem, we’re doing three things: taking a sequence of data, transforming it with some
function, and getting the outputs. The only difference between the two is the data
type (integers versus phone number strings) and the transformation (simple arithme-
tic versus regular expression pattern matching and pretty printing).

 The key with map is recognizing situations where we can apply this three-step pat-
tern. Once we start looking for it, we’ll start to see it everywhere. Let’s take a look at
another, and more complex, version of this pattern: web scraping.

Listing 2.3 Applying the .pretty_format method to phone numbers

Initializes test data to 
validate our function

Initializes our class so 
we can use its method

Maps the .pretty_format 
method across the phone 
numbers and prints the 
results

map
pretty_format(n)

"1234567890" "123.456.7890" "+1 123 456 7890""(123) 456-7890"

"(123) 456-7890" "(123) 456-7890" "(123) 456-7890""(123) 456-7890"

mapWe can use to clean phone numbers entered in various
styles into one consistent style.

The output of our function is a series of neatly formattedmap
phone numbers.

The function
doespretty_format

all the work;
simply applies it to all

map

the inputs.

Figure 2.2 We can use map to clean text strings into a common format by applying a cleaning function to 
all of them.
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SCENARIO In the early 2000s, your company’s archrival may have posted
some information about their top-secret formula on their blog. You can
access all their blog posts through a URL that includes the date the post was
made (e.g., https://arch-rival-business.com/blog/01-01-2001). Design a script
that can retrieve the content of every web page posted between January 1,
2001, and December 31, 2010.

Let’s think about how we’re going to get the data from our archrival's blog. We’ll be
retrieving data from URLs. These URLs, then, can be our input data. And the trans-
formation will take these URLs and turn them into web page content. Thinking about
the problem like this, we can see that it’s similar to the others we’ve used map for in
this chapter.

 Figure 2.3 shows the problem posed in the same format as the previous problems
we’ve solved with map. On the top, we can see the input data. Here, however, instead of
phone numbers or integers, we’ll have URLs. On the bottom, again, we have our out-
put data. This is where we’ll eventually have our HTML. In the middle, we have a
function that will take each URL and return HTML.

2.1.1 Retrieving URLs with map

With the problem posed like this, we know we can solve it with map. The question, then,
becomes: How can we get a list of all these URLs? Python has a handy datetime library
for solving problems like this. Here, we create a generator function that takes start and
end date tuples in (YYYY,MM,DD) format and produces a list of dates between them. We
use a generator instead of a normal loop because this prevents us from storing all the
numbers in memory in advance. The keyword yield in the following listing distin-
guishes this as a generator, instead of a traditional function that uses return.

The inputs to our function are URLs, and we use map
to transform them into HTML.

The result is that we have a series of HTML
strings, each corresponding to a URL.

The url_2_html
function works
hard to retrieve
the HTML from
the internet.

map
url_2_html(url)

Figure 2.3 We also can use map to retrieve the HTML corresponding to a 
sequence of URLs, once we write a function that can do that for a single URL.
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from datetime import date      

def days_between(start, stop):        
  today = date(*start)     
  stop = date(*stop)
  while today < stop:        
   datestr = today.strftime("%m-%d-%Y")
   yield http://jtwolohan.com/arch-rival-blog/"+ datestr      
    today = date.fromordinal(today.toordinal()+1)    

TAKING ADVANTAGE OF DATETIME

The majority of the work this function does comes from Python’s datetime library’s
date class. The datetime date class represents a date and contains knowledge about
the Gregorian calendar and some convenience methods for working with dates. You’ll
notice that we import the date class directly as date. In our function, we instantiate
two of these classes: one for our start date and one for our stop date. Then, we let our
function generate new dates until we hit our stop date.

 The last line of our function uses the ordinal date representation, which is the date
as the number of days since January 1, year 1. By incrementing this value and turning
it into a date class, we can increase our date by one. Because our date class is calendar
aware, it will automatically progress through the weeks, months, and years. It will even
account for leap years.

 Lastly, it’s worth looking at the line our yield statement is on. This is where we
output URLs. We take the base URL of the website—http://jtwolohan.com/arch-rival-
blog/—and append the date formatted as a MM-DD-YYYY string to the end, just like
our problem specified. The .strftime method from the date class allows us to use a
date formatting language to turn dates into strings formatted however we want.

TURNING INPUT INTO OUTPUT

Once we’ve got our input data, the next step is coming up with a function to turn our
input data into the output data. Our output data here is going to be the web content
of the URL. Lucky for us again, Python provides some useful tools for that in its
urllib.request library. Taking advantage of that, a function like the following may work
for us:

from urllib import request

def get_url(path):
  return request.urlopen(path).read()

This function takes a URL and returns the HTML found at that URL. We rely on
Python’s request library’s urlopen function to retrieve the data at the URL. This data

Listing 2.4 A date range generating function

Imports the datetime 
library’s date class

Creates our 
generator function

Unpacks the date start and stop 
tuples to store them as dates

Loops through all the dates until 
we’ve reached our stop date

Returns the 
date as a path

Increments the
date by one day
 

http://jtwolohan.com/arch-rival-blog/
http://jtwolohan.com/arch-rival-blog/
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is returned to us as an HTTPResponse object, but we can use its .read method to
return the HTML as a string. It’s worth trying this function out in your REPL environ-
ment on a URL for a website you visit often (like www.manning.com) to see the func-
tion in action.

 Then, like in previous scenarios, we can apply this function to all the data in our
sequence, using map like this:

blog_posts = map(get_url,days_between((2000,1,1),(2011,1,1)))

This single line of code takes our get_url function and applies it to each and every
URL generated by our days_between function. Passing the start and end dates
((2000,1,1) and (2011,1,1)) to our days_between function results in a generator of
days between January 1, 2000, and January 1, 2011: every day of the first decade of
the 21st century. The values that this function returns are stored in the variable
blog_posts.

 If you run this on your local machine, the program should finish almost instantly.
How is that possible? Certainly we can’t scrape 10 years of web pages that quickly, can
we? Well, no. But with our generator function and with map, we don’t actually try to.

2.1.2 The power of lazy functions (like map) for large datasets

map is what we call a lazy function. That means it doesn’t actually evaluate when we call
it. Instead, when we call map, Python stores the instructions for evaluating the function
and runs them at the exact moment we ask for the value. That’s why when we’ve
wanted to see the values of our map statements previously, we’ve explicitly converted
the maps to lists; lists in Python require the actual objects, not the instructions for gen-
erating those objects.

 If we think back to our first example of map—mapping n+7 across a list of numbers:
[–1,0,1,2]—we used figure 2.4 to describe map.

map
add_seven(n)

0 1 2-1

7 8 96

A simple application of is to take a sequence of numbersmap
and transform each number into a larger number.

The output of the function is another series of equalmap
size—in this case, a series of four numbers.

map depends on the
function provided to it.
In this case, it will
apply toadd_seven
each input.

Figure 2.4 We initially thought about map as something that transforms a sequence of 
inputs into a sequence of outputs.
 

https://www.manning.com/
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It is, however, a little more accurate to think about map like in figure 2.5.
 In figure 2.5, we have the same input values on the top and the same function

we’re applying to all of those values; however, our outputs have changed. Where
before we had 6, 7, 8, and 9, now we have instructions. If we had the computer evalu-
ate these instructions, the results would be 6, 7, 8, and 9. Often in our programs, we
will act like these two outputs are equal. However, as programmers, we’ll need to
remember that there’s a slight difference: the default map in Python doesn’t evaluate
when called, it creates instructions for later evaluation.

 As a Python programmer, you’ve probably already seen lazy data floating around. A
common place to find lazy objects in Python is the range function. When moving
from Python2 to Python3, the Python folks decided to make range lazy so that Python
programmers (you and me) can create huge ranges without doing two things:

1 Taking the time to generate a massive list of numbers
2 Storing all those values in memory when we may only need a few

These benefits are the same for map. We like a lazy map because it allows us to trans-
form a lot of data without an unnecessarily large amount of memory or spending the
time to generate it. That’s exactly how we want it to work.

2.2 Parallel processing
Great, so now we have a way to get all of our data from the internet using map. But
using map to get that data offline one page at a time is going to be very slow. If it takes
us 1 second to scrape a single webpage, and we need to scrape 3,652 web pages, then it
will take us a little more than an hour to download all the data (3,652 pages × 1 sec-
ond per page/60 seconds per minute = 61 minutes). This is not an incredibly long
time to wait, but it’s long enough that we want to avoid it if we can. And we can.

map
add_seven(n)

0 1 2-1

A more accurate way of thinking about is to think about it asmap
something that transforms inputs into instructions for generating the
outputs; those instructions aren’t necessarily executed immediately.

Because the outputs are instructions and not values, we can’t tell what
the results of our are. If we try to use the results, Python will executemap
the instructions.

Figure 2.5 In Python, the base map turns a sequence of inputs into 
instructions for computing a sequence of outputs—not the sequence itself.
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 How can we avoid this wait? Well, what if instead of downloading a single page at a
time, we downloaded multiple pages at once? Using parallel programming, we can do
just that.

 Parallel programming means to program in such a way that we divide our problem
into chunks that can then be processed separately and simultaneously. Typically, the
work we’ll want to do on each of these chunks is going to be the same. For example, in
our case, we want to process each URL (a separate piece of data, unrelated to any
other URL) and retrieve a website at that URL (a common process).

 Figure 2.6 shows the difference between downloading URLs with standard linear
processing and with parallel processing.

Using linear processing, we’d be processing URLs and turning them into web pages
one at a time. We’d work on one URL, get the data, then work on the next URL. Par-
allel programming allows us to split this task up and process it faster. When we write
parallel code, we assign a number of “workers” (typically CPUs) to the task. Each of
these workers then takes a chunk of our data and processes it.

 In figure 2.6, the data is the same and the data transformation is the same. The
only change in our setup is the number of tasks we’re performing at once. Where
before we were doing one task at a time, now we’re doing four. This will make our
work go four times more quickly.

1 2 3 4

With linear processing, we have to wait until the
previous web page is retrieved before we can move
on to the next, increasing the total amount of time
that our program takes.

With parallel processing, we can
retrieve multiple pages at the
same time and combine them at
the end. This will reduce the overall
time our program takes to finish.

1

2

3

4

Standard linear processing

Parallel processing
Time

Figure 2.6 Reading one web page at a time is slow; we can speed 
this up with parallel programming.
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2.2.1 Processors and processing

If four is better, why not eight? Why not 10? Why not 1,000? Well, that’s a really good
question. Something most people don’t think about when they’re working on com-
puters, something that most programmers don’t even think about, is the effect
computer hardware has on how the computer behaves. Most people will know, for
example, whether they have a Mac or a PC; however, unless they have an Intel sticker
on their computer somewhere, most people probably couldn’t say what type of proces-
sor they have.

 In parallel programming, though, these processors are our heroes. Processors are
little circuit boards that are capable of executing instructions, that is, actually doing
work. Often, we think of our computer’s memory as the limiting factor to what we can
do, and it certainly can be. But our CPU can be just as important. Having a lot of
memory with a weak processor is like being in the buffet line with only one plate: sure,
there’s a lot of food, but most of it won’t ever get eaten. If our CPU has multiple cores,
it’s like getting extra plates: every time we go to the buffet, we’ll be able to bring that
much more food back to the table.

 With CPUs, like with plates, more is better. The more we have, the more we can
assign to tasks, and the more work we can do. You can check how many CPUs you have
on your machine by running the following Python command in your Python REPL:

import os
os.cpu_count()

Alternatively, you can run the following command from the terminal:

python3 -c "import os; print(os.cpu_count())"

Both of these commands do the same thing. The first bit imports the os module from
the Python standard library, and the second bit checks how many CPUs you have. The
os module, if you’re not familiar with it, is stocked full of tools for interacting with
your operating system. Depending on which operating system you’re using, the exact
details of some of these functions will change. It’s worthwhile to familiarize yourself
with the details before using too much of this module.

 These commands are useful because they tell you how much of a speed increase
you’ll get from your standard parallel programming implementation. When we imple-
ment code in parallel in Python, by default Python will use all of our CPUs. If we don’t
want it to, we’ll have to specify that we want it to use fewer.

 But that’s jumping a little ahead. What does it even look like to implement parallel
code in Python? Let’s return to our URL downloading example. We want to scrape
web pages in parallel. How much do we have to modify our code? The following list-
ing will give you an idea.
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from datetime import date      
from urllib import request

from multiprocessing import Pool

def days_between(start,stop):
  today = date(*start)
  stop = date(*stop)
  while today < stop:
    datestr = today.strftime("%m-%d-%Y")
    yield "http://jtwolohan.com/arch-rival-blog/"+datestr
    today = date.fromordinal(today.toordinal()+1)

def get_url(path):
  return request.urlopen(path).read()

with Pool() as P:     

  blog_posts = P.map(get_url,                    
                     days_between((2000,1,1),    
                                  (2011,1,1)))   

As we can see in listing 2.5, the code doesn’t have to change very much at all. Because
we organized our code using map in the first place, making our code parallel for this
problem required only two new lines of code and adding two characters to a third
line. If you have four CPUs on your machine, this program should run about four
times faster than the nonparallel version. That would cut our hypothetical one-hour
run time down to about 15 minutes.

 That was pretty easy, and it should be. This type of task falls under the umbrella of
tasks that are dismissively referred to as embarrassingly parallel. In other words, the solu-
tion to speeding up these tasks is embarrassingly easy. That said, some problems can
pop up when doing parallel programming.

 Some of the problems we may encounter when working with parallelization in
Python are

 The inability to pickle data or functions, causing our programs to not run
 Order-sensitive operations returning inconsistent results
 State-dependent operations returning inconsistent results

2.2.2 Parallelization and pickling

When we write code in parallel—for example, when we called our parallel map func-
tion previously—Python does a lot of work behind the scenes. When our paralleliza-
tions don’t work, it’s usually because we aren’t fully thinking through the work that
Python is hiding from us. One of the things that Python hides from us is pickling.

Listing 2.5 Web scraping in parallel

Imports the 
multiprocessing 
library

Gathers our processors 
with Pool()

Performs our 
map in parallel
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 Pickling is Python’s version of object serialization or marshalling, with object serial-
ization being the storing of objects from our code in an efficient binary format on the
disk that can be read back by our program at a later time. The term pickling comes
from Python’s pickle module, which provides functions for pickling data and reading
pickled data.

 The pickling and unpickling process looks something like figure 2.7.

On the left, we begin the process with our original programming environment and
our original code objects. Nothing special is going on at this point; we’re just pro-
gramming in Python as usual. Next, we pickle our code objects. Now our code objects
are saved in a binary file on a disk. Next, we read the pickled file from a new program-
ming environment, and our original code objects become accessible to us in the new
environment. Everything that we pickled in the first environment is now accessible to
us in the new one just as it was previously.

NOTE Our code can sit in the pickled format for as long as we’d like. In par-
allel programming, usually we read the file back into a Python environment
quickly, but there’s no reason we couldn’t leave the pickled objects on the
disk for a longer amount of time. However, pickling data for long-term stor-
age is not a good idea, because if you upgrade your Python version, the data
may become unreadable.

Pickling allows us to move code
objects across machines, or to store
code objects for use on the same
machine at a later point in time.

Code objects

Pickled file
my_data.pkl

Machine 1 Machine 2

The result of the pickling
process is a binary pickle
file, typically with the file
extension .pkl.

We can unpickle pickled
objects at any time and
then call those objects
directly.

Figure 2.7 Pickling allows us to save data and instructions in a 
machine-readable state so Python can reuse it later.
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Why do we use pickling in parallel programming? Remember how we talked about
parallel programming allowing our program to do multiple things at the same time?
Python pickles objects—functions and data—to transfer the work to each of the pro-
cessors that will be working on our problem. That process looks something like
figure 2.8.

We start with our code operating on only one processor; this is the standard way of
coding. To work our code in parallel, Python then divides our problem into parts that
can each be tackled by an individual processing unit. The master work stream then
pickles these parts. This pickling ensures that the processor will know how to perform
the work we need it to do. When the processing unit is ready to do the work, it reads
the pickled file from the disk and does the work. Then, finally, the worker pickles the
result and returns it to the master.

 Most of the time, this approach works flawlessly; however, only some types of
Python objects can be pickled. If we try to use parallel methods on objects that can’t
be pickled, Python will throw an error. Luckily for us, most standard Python objects
are pickleable and, therefore, usable in parallel Python code. Python can naturally
pickle the following types:

 None, True, and False
 Integers, floating-point numbers, complex numbers
 Strings, bytes, bytearrays

1

2
3

4

When we run multiprocessing in Python, we pickle
our code so we can exchange it across the
processors that will be used in our parallel workflow.

The problem then gets unpickled,
worked, and then repickled for
transfer back to the master.

This process of
pickle-work-pickle
can be worked on as
many processors as
we have access to.

The master divides the
problem up into pieces and
pickles each piece for a worker.

Figure 2.8 Pickling allows us to share data across processors or even across machines, 
saving the instructions and data and then executing them elsewhere.
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 Tuples, lists, sets, and dictionaries containing only pickleable objects
 Functions defined at the top level of a module
 Built-in functions defined at the top level of a module
 Classes that are defined at the top level of a module

We can’t pickle the following types of objects:

 Lambda functions
 Nested functions
 Nested classes

The easiest way to avoid problems with the unpickleable types is to avoid using them
when working with Python’s built-in multiprocessing module. For situations where we
absolutely must use them, a community library called pathos solves many of these prob-
lems with a module called dill (Get it? Dill pickles?). The dill module takes a dif-
ferent approach to pickling that allows us to pickle just about anything we’d like,
including the three object types we weren’t able to pickle before.

 Using pathos and dill is not much different from using the multiprocessing mod-
ule. The first thing we have to do is install the library. From the command line, run

pip3 install pathos

In addition to installing pathos, Python also will install some of the libraries pathos
depends on, including dill. With pathos installed, we can now call on it, and it will
use dill behind the scenes. If you remember back to our multiprocessing example, it
looked something like this:

from multiprocessing import Pool

# ... other code here ...

with Pool() as P:
  blog_posts = P.map(get_url,days_between((2000,1,1),(2011,1,1)))

To convert this to pathos, we just have to make a few changes. Our new code will look
like this:

from pathos.multiprocessing import ProcessPool  

# ... other code here ... 

with ProcessPool(nodes=4) as P:
  blog_posts = P.map(get_url,days_between((2000,1,1),(2011,1,1)))

Moving from multiprocessing to pathos requires only two real changes. First, we have
to import from pathos instead of from multiprocessing. Also, in pathos the pool we
want is called ProcessPool instead of just Pool. Just like Pool, ProcessPool is the
function that will recruit worker processor units for us. We need to call ProcessPool
in place of Pool. As with Pool, we only need to specify the number of nodes if we want
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to use fewer than the maximum number of nodes. We’re specifying it here for demon-
stration purposes. With our ProcessPool now accessible as P, we can call it just like we
called our multiprocessing.Pool object: P.map.

2.2.3 Order and parallelization

Another condition that can cause us problems when we’re working in parallel is order
sensitivity. When we work in parallel, we’re not guaranteed that tasks will be finished
in the same order they’re input. This means that if we’re doing work that needs to be
processed in a linear order, we probably shouldn’t do it in parallel.

 To test this for yourself, try running this command in Python:

with Pool() as P:
  P.map(print,range(100))

If we do this with a for loop, we expect to get a nice ordered list of every number
between 0 and 99 printed to our screen. With our map construction, though, we don’t
get this. With map, we get a somewhat ordered, somewhat mismatched sequence
printed to our screen and a list of Nones. What’s going on?

 When Python parallelizes our code, it chunks our problem up for our processing
units to work on. Our processing units, for their part, grab the first available chunk
every time they have capacity to work on the problem. They then work this problem
until it’s complete, then they grab the next available chunk to work. When chunks are
available out of order, they will be completed out of order. We can visualize this pro-
cess as shown in figure 2.9.

1

4

3

2

Tasks remaining

In-process tasks

Completed tasks

Tasks to be worked

Processors
retrieve the first
item in the
queue, work it,
and then grab
the next item
until there are
no more.

Pickled instructions are put in a queue to be
worked by the next available processor.

When we run multiprocessing
in Python, we pickle our code so we
can exchange it across the processors
that will be used in our parallel
workflow.

As the work is finished, it gets sent back to
the master.

Figure 2.9 Parallel processing doesn’t necessarily finish tasks in order, so we have to know if 
that is acceptable before we use parallel techniques.
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If t
is d
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In figure 2.9, our problem starts at the top. We’ve chunked the problem into 10 pieces
and put them in a queue. As the processors become available, they’ll pull a task from
the queue, work it, and send the results to the completed tasks area at the bottom.
The processors then grab the next available tasks and process them until all of the
tasks are finished. But the time it takes for these operations to finish varies. For exam-
ple, in the completed tasks area we can see that tasks 1, 2, 3, and 5 have been com-
pleted, and tasks 4, 6, 7, and 8 are currently being worked. Tasks 9 and 10 are still
queued up, unassigned to a processor. A situation like this can easily occur if tasks 1
(or 2 or 3) and 5 are short, but task 4 is long, such that two tasks can be completed in
the time it takes the single task 4 to finish.

 All that said, even though Python may not complete the problems in order, it still
remembers the order in which it was supposed to do them. Indeed, our map returns in
the exact order we would expect, even if it doesn’t process in that order. To demon-
strate that, we can run the following code:

def print_and_return(x):
  print(x); return x

with Pool() as P:
  P.map(print_and_return, range(20))

The printed output won’t be ordered, but the list that’s returned will be. The printed
output shows the order in which the chunks were worked; the list output shows the
data structure that was returned. We can see that even though Python works the prob-
lem in the “wrong” order, it still orders the results properly. When is this going to
cause problems for us? Well, if we rely on state for one.

2.2.4 State and parallelization

In object-oriented programming, we’ll often write methods that rely on the state of
the class. Consider the fizz/buzz problem. The fizz/buzz problem is a problem that’s
often used to introduce programming language syntax. It involves looping through
numbers and returning fizz if a number is not evenly divisible by three (or five, or
some other number), and returning buzz if it is. The expected output is a sequence of
fizzes and buzzes at the appropriate intervals.

 In Python, we could solve the fizz/buzz problem with a class, as shown in the fol-
lowing listing.

class FizzBuzzer: 
  def __init__(self):
    self.n = 0         
  def foo(self,_):          
    self.n += 1          
    if (self.n % 3)  == 0:    
      x = "buzz"              

Listing 2.6 Classic fizz/buzz problem with a for loop

The counter starts at 0.

foo function that decides 
on fizzes and buzzes

Increments the 
counter each time 
the function is run

he counter
ivisible by

hree, buzz.
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n

    else: x = "fizz"    
    print(x)         
    return x         

FB = FizzBuzzer()     
for i in range(21):   
  FB.foo(i)           

The class pays attention to how many times we’ve called its .foo method, and every
third time it will print and return buzz instead of fizz. We use it in a loop to demon-
strate that it’s working properly. If you run this on your local machine, you’ll see that
this works just like we expect: we print out fizzes, with a buzz interjected in every third
spot. However, something strange happens when we try to do the same thing using a
parallel map:

FB = fizz_buzzer()
With Pool() as P: 
  P.map(FB.foo, range(21))

What’s going on here? Why do we only get fizz and no buzz? Let’s return to something
we talked about earlier when we were discussing map. Remember how we said that map
doesn’t actually do the calculations, it simply stores the instructions for the calcula-
tions? That’s why we call it lazy. Well, in this case, the instructions to do the calculations
for FB.foo include the state of FB at the time we ask for it. So since FB.n is 0 at the
time we ask for the instructions, map uses FB.n = 0 for all of the operations, even if
FB.n changes by the time we use it. And since FB.n = 0 will always produce a fizz, all we
get is fizz.

 We can test this by changing FB.n to 2, which should always produce a buzz, and
running the same command. That would look something like this:

FB = FizzBuzzer()
FB.n = 2
with Pool() as P:
  P.map(FB.foo, range(21))

Here, like we expect, we store the instructions for FB.foo when FB.n = 2, and the
result is that we get all buzz and no fizz.

 What can we do instead? Often, situations like this simply require us to rethink
the problem. A common solution is to take internal state and make it an external
variable. For example, we could use the numbers generated by range instead of the
internal values stored by FB. We could then also replace the class with a simple func-
tion, like this:

  def foo(n):
    if (n % 3) == 0:
      x = "buzz"
    else: x = "fizz"
    print(x)
    return x

If it’s
ot, fizz.

Both prints 
the statement 
and returns it

Tests that the 
class is working
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This function does exactly what the .foo method does, but it relies on the value of
an external variable n instead of an internal state self.n. We can then apply this to
the numbers generated by range with a parallel map and get our results back, just
like we expect.

with Pool() as P:
  print(P.map(foo, range(1,22)))

When you run this, note that the printed values don’t return in the correct order.
That’s because, as we noted in the previous section, the processors are grabbing the
first available job off the stack and completing it as fast as they can. Sometimes, a fizz
job will go slower than a buzz, and two buzzes will be printed in a row. Other times, a
buzz will take longer, and we’ll see three or more fizzes in a row. The resulting data,
though, will be in the proper order: fizz, fizz, buzz . . . fizz, fizz, buzz . . . fizz, fizz, buzz.

 It’s worth taking a second to look at how this would be depicted visually. We’ll look
first at what happens when we attempt to do parallelization with state, then at what
happens without it. To start, let’s recall figure 2.8 (as duplicated in figure 2.10).

This graphic demonstrates what's happening when we’re performing parallel calcula-
tions: first we chop our task up into chunks—in this case, four—then we save those
chunks to the disk in a pickled format. Our processors then grab them and work them

1
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3
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When we run multiprocessing in Python, we pickle
our code so we can exchange it across the
processors that will be used in our parallel workflow.

The problem then gets unpickled,
worked, and then repickled for
transfer back to the master.

This process of
pickle-work-pickle
can be worked on as
many processors as
we have access to.

The master divides the
problem up into pieces and
pickles each piece for a worker.

Figure 2.10 When we pickle work and distribute it with a parallel map, we’re pickling 
state information as well. This allows us to execute the work in parallel but may produce 
unexpected results.
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until they’re all complete. With respect to state, it’s this second step—pickling the
data—that we need to be most aware of.

 At the first step, map provides instructions for each part of the problem. This step is
akin to our parallelization step, where we chunk the problem. Remember, map doesn’t
do the work of the problem immediately, it writes the instructions and does them
later—it’s lazy. Second, we save the instructions to a disk. map already captured these
instructions, so it’s easy to do. However, note that we’re saving the instructions for the
problem. That means that any state we needed is going to be stored as well, such as
when we store FB.n. Then, the last step, our processors read the instructions and exe-
cute them.

2.3 Putting it all together: Scraping a Wikipedia network
We’ve covered a lot of powerful stuff in this chapter. To wrap it all up, let’s consider
one final scenario involving creating a network graph, such as the one in Figure 2.11.

SCENARIO We want to create a topic network graph from Wikipedia. That is,
we want to be able to enter a term (for example: parallel computing) and find
all the Wikipedia pages in that page’s immediate network—pages that link to
that page or that that page links to. The result will be a graph of all the pages
in our network.

Let’s begin by thinking about the problem at hand and sketching out a solution. Wiki-
pedia has a nice API for getting data about Wikipedia pages, so we’ll want to use that.
And we know we’re going to start from a single page, so we’ll want to use that page as
a starting point for our network. From that page, we’ll want to get all the inbound and

A network graph is a series of nodes
connected by edges.

The nodes represent objects we
want to juxtapose, such as
Wikipedia pages.

The edges represent
connections between those
objects, such as hyperlinks.

Figure 2.11 A network graph is a series of nodes connected by edges that is 
often used to display relationships between objects, such as friendship between 
people, communication between systems, or roads between cities.
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outbound links, which will be other nodes in our graph. Then, for each of the other
nodes, we’ll want to get the nodes to which those are related.

 We can break that down further into a to-do list:

1 Write a function that gets the inbound and outbound links of a Wikipedia page.
2 Get the inbound and outbound links from our initial page.
3 Gather those pages in one long list.
4 Get the inbound and outbound links from all of those pages.
5 We’ll do this in parallel, to speed things up.
6 Represent all our links as edges between pages.
7 Bonus: Use a graphing library (like networkx) to display the graph.

Let’s first write a function to get the inbound and outbound links of a Wikipedia page
based on its title. We’ll start by importing the JSON module and the requests class
from the urllib module. You’ll remember urllib from before: this module helps us
with getting data from the internet, which is exactly what we’ll want to be doing with
our Wikipedia pages. The JSON module is a module for parsing data in JSON format.
It reads JSON into native Python types. We’ll use this to convert the data Wikipedia
provides us into an easily manageable format.

 Next, we’ll create a little function to help us turn Wikipedia page links into just the
titles of those pages. Wikipedia naturally packages these links as JSON objects—we
only want the title string.

 Then, finally, we get to creating our actual function for getting information from
Wikipedia. Our function, get_wiki_links expects a page title and turns that into a
dict of inbound and outbound links. This dict will allow us easy access to those links
later on.

 The first thing we do in this function is create the URL for our query. If you’re
curious about where the URL comes from, Wikipedia has a well-documented API
online; however, I’ll explain the pertinent parts here. The /w/api.php tells Wikipedia
that we want to use its API and not request a standard web page. The action=query
tells Wikipedia that we’ll be doing a query action. Query is one of the many actions
Wikipedia makes available. It’s tailored for getting metadata about pages, such as
which pages link to and are linked from a given page.

 The prop=links|linkshere tells the Wikipedia API that the properties we’re
interested in are the page’s links and which pages link to the page. pllimt and
lhlimit tell the API that we want to get at most 500 results. This is the maximum
number of results we can get without registering ourselves as a bot. The title param-
eter is where we put the title of the page we want, and the format parameters define
how the data returned to us should be formatted. We’ll choose JSON for conve-
nience’s sake.

 Next, with our URL set, we can pass it request.urlopen, which opens the URL with
a get request. Wikipedia takes our request to its API and passes us back the information
we requested. We can read this information into memory with the .read method, and
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we do. Since we asked Wikipedia to return this information as JSON, we can then read
the JSON string with json.reads, which turns JSON strings into Python objects. The
resulting object j is a dict that represents the JSON object that Wikipedia returns.

 Now we can wade through those objects and pull out the links, which will be four
levels deep at page['query']['pages'][0]["links"] and page['query']['pages']
[0]["linkshere"]. The former object contains the pages to which our current page
links, and the latter contains the pages that link to our current page. The Wikipedia
API defines this structure, which is how we know where to find the data we need.
These objects—the links and linkshere—as we noted before, are not the page titles
but JSON objects, with the title as an element. To get just the title, we’ll use our
link_to_title function. Because we’ll have more than one link and these links will
be in a list, we’ll use map to transform all of the objects to just their titles.

 Finally, we’ll return these objects as a dict. Altogether, that will look like the fol-
lowing listing.

import json                       
from urllib import request, parse

def link_to_title(link):        
  return link["title"]

def clean_if_key(page,key):      
    if key in page.keys():
        return map(link_to_title,page[key])
    else: return []

def get_wiki_links(pageTitle):      
    safe_title = parse.quote(pageTitle)       
    url = "https://en.wikipedia.org/w/api.php?action=query&  
prop=links|linkshere&pllimit=500&lhlimit=500&titles={}&
format=json&formatversion=2".format(safe_title)
    page = request.urlopen(url).read()             
    j = json.loads(page)                
    jpage = j["query"]["pages"][0]
    inbound = clean_if_key(jpage,"links")      
    outbound = clean_if_key(jpage,"linkshere")
    return {"title": pageTitle,         
            "in-links":list(inbound),
            "out-links":list(outbound)}

At this point, we’ve tackled item 1 on our to-do list and put ourselves in a good posi-
tion to tackle 2 and 3. We can do that now by writing a small function and creating an
only on execute section of our script. Let’s do that now.

 Next, here’s a simple function that will flatten the page’s inbound and outbound
links into one big list:

def flatten_network(page):
    return page["in-links"]+page["out-links"]

Listing 2.7 A function for retrieving a Wikipedia page’s network from its title

Imports the 
libraries we’ll need

Creates a helper function for 
getting the title from a link result

Creates a helper function that 
gets titles for the links found, 
if they exist

fines
get_
links
tion

Quotes the title to 
ensure it’s URL-safe

Sends an HTTP request 
to the URL and reads 
the response

arses the
response

as JSON
Cleans the inbound and 
outbound links if they exist

Returns the page’s title and its 
inbound and outbound links
 



39Putting it all together: Scraping a Wikipedia network
And here’s the part of our code that will run if and only if we call this script with Python3:

if __name__ == "__main__":
  root = get_wiki_links ("Parallel_computing")
  initial_network = flatten_network(root)

The if __name__ == "__main__" tells Python only to use this code if it’s called directly
as a script. The line after that says to get all the links from the parallel computing page
on Wikipedia using our function. And the last line stores the network in a variable.

 Next, let’s use this list, and the function we just wrote, to get all of the Wikipedia
pages in the network of the parallel computing page. We’ll do this in parallel to speed
things up. To do that, we’re going to want to extend the run only when executed section
of our code from before. We’ll add a few lines so it looks like this:

if __name__ == "__main__":
    root = get_wiki_links ("Parallel_computing")
    initial_network = flatten_network(root)
    with Pool() as P:
        all_pages = P.map(get_wiki_links, initial_network)

We’ve called Pool again to round up some processors to use in parallel programming.
We then use those processors to get the Wikipedia page info for each page that either
linked to or was linked to by our root page: parallel computing. Assuming we have
four processors, we’re completing this task in one-quarter the time it would take if we
got the info for the pages one by one.

 Now we want to represent each of these page objects as the edges between pages.
What is this going to look like? A good representation of this will be a tuple, with the
object in first position representing the page doing the linking and the object in sec-
ond position representing the page being linked to. If Parallel_computing links to
Python, we’ll want a tuple like this: ("Parallel_computing", "Python").

 To create these, we’ll need another function. This function will turn each page
dict into a list of these edge tuples.

def page_to_edges(page):
    a = [(page['title'],p) for p in page['out-links']]
    b = [(p,page['title']) for p in page['in-links']]
    return a+b

This function loops through each page in a page’s network, creating a list of tuples
for all the pages in the out-links, of the form (page,out-link), and for all the pages in
the in-links, of the form (in-link,page). We’ll then add these two lists together and
return them.

 We’ll also need to update the script portion of our code. That section now looks
like this:

from multiprocessing import Pool

if __name__ == "__main__":
    root = get_wiki_links ("Parallel_computing")
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    initial_network = flatten_network(root)
    with Pool() as P:
        all_pages = P.map(get_wiki_links, initial_network)
        edges = P.map(page_to_edges, all_pages)

We’ve added a line that applies this page_to_edges function to all the pages we gath-
ered with our previous function. Because we still have all those processors handy, let’s
just use them again to get this task done faster too.

 The last thing we’ll want to do is flatten this list of edges into one big list. The best
way to do so is to use Python’s itertools chain function. The chain function takes an iter-
able of iterables and chains them together so they can all be accessed one after another.
For example, it allows us to treat [[1,2,3],[1,2],[1,2,3]] as if it was [1,2,3,1,2,1,2,3].

 We’ll use this chain function on our edges object. At this point, we’re done need-
ing our processors for parallelization, so we’ll out-dent, moving out of this block of
code, and let our processors go.

from itertools import chain

edges = chain.from_iterable(edges)

The chain function is lazy by default, so we’ll need to wrap it in a list call, just like
map, if we want to print it to the screen. If you do decide to print it to the screen, don’t
expect to see much. You’ll be looking at 1,000,000 string-string tuples (1,000 tuples
for each of the 1,000 pages in our network).

NOTE We just wrote about 50 lines of code, piece by piece. When we code
like this, sometimes we can miss little things that cause our code to break. If
you ever have trouble getting your code to run, remember that you can find
the source code for this book online. Please refer to it if you ever spend more
than a few minutes debugging: www.manning.com/downloads/1961.

2.3.1 Visualizing our graph

The best way to visualize our graph is to take it out of Python and import it into Gephi,
a dedicated piece of graph visualization software. Gephi is well known in the social sci-
ences for being an excellent network and graph visualization tool. It can work with
data in many formats but prefers a custom format called .gefx. We’ll use a Python
library called networkx to export our graph to this format. That whole process will look
something like this:

import networkx as nx

G = nx.DiGraph()
    for e in edges:
        G.add_edge(*e)
    nx.readwrite.gexf.write_gexf(G,"./MyGraph.gexf")

What we’re doing here is creating a directed graph (nx.DiGraph) object and adding
edges to it by iterating through our chained edges. The graph object has a method,
 

https://www.manning.com/downloads/1961
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.add_edge, that allows us to construct a graph by declaring its edges one by one. Once
this is done, all that’s left to do is export the graph in the Gephi format, .gefx. The
networkx library has a convenience function for that called write_gefx. We’ll use that
on our graph object and provide a path name. The graph is then saved in .gefx format
at that path. On my machine, the output file is just under 36 MB.

NOTE Gephi is excellent graph visualization software; however, this is not a
book on visualizing graphs. If you don’t think you’ll find it satisfying to visual-
ize your web scraping, or if you get frustrated using Gephi, feel free to skip
ahead. We won’t use Gephi again in this book.

From here, we can load up Gephi, import our .gefx file, and view our graph. If you
don’t have Gephi installed, you can find it at https://gephi.org. Gephi is free software,
distributed under an open source license, and runs on Windows, MacOS, and Linux.

 When you open Gephi, you may have to play around with the settings a bit with the
graph to get it to show something pretty. I’ll leave the graph visualization up to you
and your creativity because I’m far from an expert in this area.

 If you’re short on patience for learning how to visualize a graph with more than
100,000 nodes, change the settings on our query to retrieve a smaller number of
pages. I’ll also leave it up to you to look back through the code and figure out how to
do that. (Hint: It’s in our request to the Wikipedia API.)

 When I request only 50 neighbors from each page, I end up with a network of
about 1,300 nodes that looks something like figure 2.12 by default in Gephi.

Figure 2.12 Network of Wikipedia pages surrounding parallel computing
 

https://gephi.org/
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2.3.2 Returning to map

Before we wrap up the chapter, it’s worth looking at how what we’ve done fits into the
map diagrams we’ve been using. Coming back to the map data transformation diagrams
is useful because it allows us to contextualize a complex task—web scraping and creat-
ing an entity network—in a simple way.

 First, let’s start with a diagram of the entire process (figure 2.13). On the left, we
start with our seed document. We apply our get_wiki_links function to this docu-
ment to get all the pages in our network: the inbound and outbound linking pages.
From there, and secondly, we map the get_wiki_links function across all of these
pages. This returns the extended network, that is, the pages that link to and are linked
from the pages that link to and are linked from our seed page. Third, we convert all of
these links into edges. This transforms the data from a more implicit data structure to
a more explicit definition of a graph. And finally, we use each of these edges to con-
struct the graph.

In this process, we used two map statements: one to turn our initial network into an
extended network, and one to turn our extended network into edges. In the first
instance, shown in figure 2.13, we take all of the links that we retrieved from our seed
scrape, we scrape these, and we return the network of each link. The result is that
where before we had a list of pages (or, if you remember what the data looked like, a
dict with the page title, the inbound links, and the outbound links), we now have a
list of lists of pages (or again: a list of these “page” dicts). Though there is a lot hap-
pening in between—we ping the Wikipedia API, the Wikipedia API fetches the page
and returns the result, we parse that result into JSON, we sort through the JSON to
find the values we want, we store them in a dict and return the dict—we can repre-
sent all of this as a data transformation from one object to the next.

1 2 3 4

We start with a seed document on
Wikipedia and get all the
documents linking to it.

We then do that same process for
each of the documents retrieved.

The edges allow us to build a
graph that shows relationships
between all the Wikipedia pages.

Next we turn these documents into
edges so we can build a graph.

Figure 2.13 We’ll turn a single seed page into a network of pages in four steps.
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 Next, we complete the third step of taking the networks retrieved in our second
step and turning them into a list of edges that we can use to define a directed graph.
We wrote a path_to_edges function to use for this purpose. What we’re doing is not
that complicated: we’re taking two lists of strings and turning them into a single list of
tuples; however, abstracting that away with the path_to_edges function allows us to
visualize the entire transformation at a higher level. This higher-level understanding
corresponds directly with our overall process and highlights what’s going on: our link
networks are being transformed into edges.

 Looking back at the Wikipedia scraping, network creation program we just wrote,
we can see that using map is quite natural for a lot of tasks. Indeed, anytime we’re con-
verting a sequence of some type into a sequence of another type, what we’re doing
can be expressed as a map. I like to refer to these situations as N-to-N transformations
because we’re converting some number of data elements, N, into that same number
of data elements but in a different format.

 In just this last example, we encountered two of these N-to-N situations. We first
turned N links into N networks of links. Then we turned N networks of links into N
edges. In each of these situations, we used a map, as we just diagrammed.

 We also used parallel programming in each of these situations to complete the task
more quickly. They were excellent candidates for parallel programming because we
had time-consuming, repetitive tasks that we could express neatly in self-contained
instructions. We used a parallel map to accomplish this. The parallel map allows us to
express our desire for parallelization and use syntax similar to what we’d use if we
were doing a nonparallel map. All in all, the amount of effort it takes to make this
problem parallel only adds up to four lines of code: one import; wrangling our proces-
sors with Pool(); and modifying our map statements to use Pool’s .map method.

2.4 Exercises

2.4.1 Problems of parallelization

Parallelization is an effective way to speed up our programs but may come with a few
problems. Earlier in this chapter, I named three. How many can you remember, and
what are they?

2.4.2 Map function

The map function is a key piece of how we’ll approach large datasets in this book.
Which sentence best describes the map function?

 map transforms a sequence of data into a different, same-sized sequence.
 map allows us to process data conditionally, replacing if-else statements.
 map replaces conditional while loops with optimized bytecode.
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2.4.3 Parallelization and speed

Parallelization is useful because it allows us to process large datasets more quickly.
Which of the following explains how parallelization works?

 Parallelization optimizes our code during compilation.
 Parallelization computes similar tasks on several compute resources.
 Parallelization removes duplication from our code and reduces the number of

expensive operations.

2.4.4 Pickling storage

Which of the following is not a good use for pickling?

 Short-term, single-machine storage
 Sharing data between compute tasks on a cluster
 Long-term storage where data integrity is key

2.4.5 Web scraping data

In web scraping, one of the most common things we’ll have to do is transform dicts
into something else. Use map to transform a list of dicts into only the page text, with
this as your input data:

[{"headers":(01/19/2018,Mozilla,300),
  "response":{"text":"Hello world!","encoding"0:"utf-8"}}, 

{"headers":(01/19/2018,Chrome,404),
  "response":{"text":"No page found","encoding":"ascii"}}, 

{"headers":(01/20/2018,Mozilla,300),
  "response":{"text":"Yet another web page.","encoding":"utf-8"}}]

Your resulting list should be ["Hello world!","No page found","Yet another web
page."].

2.4.6 Heterogenous map transformations

So far, we’ve only looked at using map to transform homogenous lists, which contain
data of all the same type. There’s no reason, though, why we couldn’t use map to trans-
form a list of heterogenous data. Write a function that turns [1, "A", False] into
[2,"B",True].

Summary
 map statements are an excellent way to transform a sequence of data (such as

data in a list or a tuple) into a sequence of data of some other type.
 Whenever we encounter a for loop, we should look for the opportunity to

replace that loop with a map.
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 Because map defines rules for transformations, instead of performing the actual
transformations, it is readily paired with parallel techniques that can allow us to
speed up our code.

 We can use map to scrape data from Wikipedia, or anywhere on the web, if we
know a sequence of URLs that we want to scrape or APIs we want to call.

 Because map creates instructions and doesn’t immediately evaluate them, it doesn’t
always play nicely with stateful objects, especially when applied in parallel.
 



Function pipelines
for mapping complex

transformations
In the last chapter, we saw how you can use map to replace for loops and how using
map makes parallel computing straightforward: a small modification to map, and
Python will take care of the rest. But so far with map, we’ve been working with sim-
ple functions. Even in the Wikipedia scraping example from chapter 2, our hardest
working function only pulled text off the internet. If we want to make parallel pro-
gramming really useful, we’ll want to use map in more complex ways. This chapter
introduces how to do complex things with map. Specifically, we’re going to intro-
duce two new concepts:

1 Helper functions
2 Function chains (also known as pipelines)

We’ll tackle those topics by looking at two very different examples. In the first, we’ll
decode the secret messages of a malicious group of hackers. In the second, we’ll
help our company do demographic profiling on its social media followers. Ultimately,

This chapter covers
 Using map to do complex data transformations

 Chaining together small functions into pipelines

 Applying these pipelines in parallel on large 
datasets
46
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though, we’ll solve both of these problems the same way: by creating function chains
out of small helper functions.

3.1 Helper functions and function chains
Helper functions are small, simple functions that we rely on to do complex things. If
you’ve heard the (rather gross) saying, “The best way to eat an elephant is one bite at
a time,” then you’re already familiar with the idea of helper functions. With helper
functions, we can break down large problems into small pieces that we can code
quickly. In fact, let’s put forth this as a possible adage for programmers:

The best way to solve a complex problem is one helper function at a time.

—J.T. Wolohan

Function chains or pipelines are the way we put helper functions to work. (The two terms
mean the same thing, and different people favor one or the other; I’ll use both terms
interchangeably to keep from overusing either one.) For example, if we were baking a
cake (a complex task for the baking challenged among us), we’d want to break that
process up into lots of small steps:

1 Add flour.
2 Add sugar.
3 Add shortening.
4 Mix the ingredients.
5 Put the cake in the oven.
6 Take the cake from the oven.
7 Let the cake set.
8 Frost the cake.

Each of these steps is small and easily understood. These would be our helper func-
tions. None of these helper functions by themselves can take us from having raw
ingredients to having a cake. We need to chain these actions (functions) together to
bake the cake. Another way of saying that would be that we need to pass the ingredi-
ents through our cake making pipeline, along which they will be transformed into a
cake. To put this another way, let’s take a look at our simple map statement again, this
time in figure 3.1.

 As we’ve seen several times, we have our input values on the top, a function that
we’re passing these values through in the middle, and on the bottom, we have our out-
put values. In this case, n+7 is our helper function. The n+7 function does the work in
this situation, not map. map applies the helper function to all of our input values and
provides us with output values, but on its own, it doesn’t do us too much good. We
need a specific output, and for that we need n+7.

 It’s also worth taking a look at function chains, sequences of (relatively) small func-
tions that we apply one after another. They also have their basis in math. We get them
from a rule that mathematicians call function composition.
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Function composition says that a complex function like j(x) = ((x+7)2–2)*5 is the
same as smaller functions chained together that each do one piece of the complex
function. For example, we might have these four functions:

1 f(x) = x+7
2 g(x) = x2

3 h(x) = x – 2
4 i(x) = x * 5

We could chain them together as i(h(g(f(x)))) and have that equal j(x). We can see
that play out in figure 3.2.

 As we move through the pipeline in figure 3.2, we can see our four helper func-
tions: f, g, h, and i. We can see what happens as we input 3 for x into this chain of

map
add_seven(n)

0 1 2-1

7 8 96

A simple application of is to take a sequence of numbersmap
and transform each number into a larger number.

The output of the function is another series of equalmap
size—in this case, a series of four numbers.

map depends on the
function provided to it.
In this case, it will
apply toadd_seven
each input.

Figure 3.1 The standard map statement shows how we can apply a single function to 
several values to return a sequence of values transformed by the function.

f(x) = x+7

g(x) = x^2

h(x) = x-2

i(x) = x*5

3

10 100

98

490

As the inputs move through
our function pipeline, each
of the individual functions is
applied.

Our function pipeline is
composed of the four
helper functions.

The value that results from
putting an input through the
function pipeline is the same
as if we applied each of the
functions in sequence.

Figure 3.2 Function composition says that if we apply a series of functions in sequence, then 
it’s the same as if we applied them all together as a single function.
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functions. First, we apply f to x and get 10 (3+7). Then we apply g to 10 and get 100
(102). Then we apply h to 100 and get 98 (100–2). Then, lastly, we apply i to 98 and
get 490 (98*5). The resulting value is the same as if we had input 3 into our original
function j.

 With these two simple ideas—helper functions and pipelines—we can achieve
complex results. In this chapter, you’ll learn how to implement these two ideas in
Python. As I mentioned in the chapter introduction, we’ll explore the power of
these ideas in two scenarios:

1 Cracking a secret code
2 Predicting the demographics of social media followers

3.2 Unmasking hacker communications
Now that we’re familiar with the concept of function pipelines, let’s explore their
power with a scenario. Here, we’ll conquer a complex task by breaking it up into many
smaller tasks. 

SCENARIO A malicious group of hackers has started using numbers in place
of common characters and Chinese characters to separate words to foil auto-
mated attempts to spy on them. To read their communications—and find out
what they’re saying—we need to write some code that will undo their trickery.
Let’s write a script that turns their hacker speak into a list of English words.

We’ll solve this problem like we’ve solved the previous problems in the book: by start-
ing with map. Specifically, we’ll use the idea of map to set up the big picture data trans-
formation that we’re doing. For that, we’ll visualize the problem in figure 3.3.

"7his is h4ck3r 73x7 "� � �

"this is hacker text" "i am more hacker text" "more text here"

"i 4m mor3 h4ck3r 73x7 "� � � � � "mor3 73x7 h3r3 "� � 	

We map hacker_translateour function across our garbled
hacker messages.

The output is clean, easily readable messages.

map
hacker_translate()

Figure 3.3 We can express our hacker problem as a map transformation in which we start with hard-
to-read hacker messages as input. Then, after we clean them with our hacker_translate function, 
they become plain English text.
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On the top, we have our input values. We can see that they’re some pretty hard-to-read
hacker communications, and at first glance they don’t make a lot of sense. In the mid-
dle, we have our map statement and our hacker_translate function. This will be our
heavy lifter function. It will do the work of cleaning the texts. And finally, on the bot-
tom, we have our outputs: plain English.

 Now this problem is not a simple problem; it’s more like baking a cake. To accom-
plish it, let’s split it up into several smaller problems that we can solve easily. For exam-
ple, for any given hacker string, we’ll want to do the following:

 Replace all the 7s with t’s.
 Replace all the 3s with e’s.
 Replace all the 4s with a’s.
 Replace all the 6s with g’s.
 Replace all the Chinese characters with spaces.

If we can do these five things for each string of hacker text, we’ll have our desired result
of plain English text. Before we write any code, let’s take a look at how these functions
will transform our text. First, we’ll start with replacing the 7s with t’s in figure 3.4.

At the top of figure 3.4, we see our unchanged input texts: garbled unreadable hacker
communications. In the middle, we have our function replace_7t, which will replace
all the 7s with t’s. And on the bottom, we have no 7s in our text anywhere. This makes
our texts a little more readable.

 Moving on, we’ll replace all the 3s in all the hacker communications with e’s. We
can see that happening in figure 3.5.

"7his is h4ck3r 73x7 "� � �

"this is h4ck3r t3xt "� � � " 4m mor3 h4ck3r 73x7 "� � � � � "mor3 t3xt h3r3 "� � 	

" 4m mor3 h4ck3r 73x7 "� � � � � "mor3 73x7 h3r3 "� � 	

We map replace_7tour function across our unmodified
hacker messages.

The output of our operationmap
is a little more readable, but we
still have a lot of work to do.

map
replace_7t()

Figure 3.4 Part of our hacker translate pipeline will involve replacing 7s with t’s. We’ll accomplish 
that by mapping a function that performs that replacement on all of our inputs.
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At the top of figure 3.5, we see our slightly cleaned hacker texts; we’ve already
replaced the 7s with t’s. In the middle, we have our replace_3e function, which works
to replace the 3s with e’s. And on the bottom, we have our now more readable text. All
the 3s are gone, and we have some e’s in there.

 Continuing on, we’ll do the same thing with 4s and a’s and 6s and g’s, until we’ve
removed all our numbers. We’ll skip discussing those functions for the sake of avoid-
ing repetition. Once we’ve completed those steps, we’re ready to tackle those Chinese
characters. We can see that in figure 3.6.

"this is h4ck3r t3xt "� � �

"this is h4cker text "� � � "i 4m more h4cker text "� � � � � "more text here "� � 	

" 4m mor3 h4ck3r t3xt "� � � � � "mor3 t3xt h3r3 "� � 	

We map replace_3eour function across our somewhat clean
hacker messages.

Now we can make out some of the words,
but some are still garbled. We’ll need to
complete the rest of the pipeline to fully
clean them.

map
replace_3e()

Figure 3.5 The second step in our hacker translate pipeline will involve replacing 3s with e’s. We’ll 
accomplish that by mapping a function that performs that replacement on all of our inputs.

"this is hacker text "� � �

"this is hacker text" "i am more hacker text" "more text here"

"i am more hacker text "� � � � � "more text here "� � 	

We map sub_chineseour function across our in-progress
hacker messages.

The output is clean, easily readable messages.

map
sub-chinese()

Figure 3.6 Subbing on Chinese characters is going to be the last step in our hacker_translate
function chain, and we can tackle it with a map statement.
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In figure 3.6, we see at the top we have mostly English sentences with Chinese charac-
ters smooshing the words together. In the middle, we have our splitting function: sub-
_chinese. And on the bottom, finally, we have our fully cleaned sentences.

3.2.1 Creating helper functions

Now that we’ve got our solution sketched out, let’s start writing some code. First, we’ll
write all our replacement helper functions.

 We’ll write all of these functions at once because they all follow a similar pattern:
we take a string, find all of some character (a number) and replace it with some other
character (a letter). For example, in replace_7t, we find all of the 7s and replace
them with t’s. We do this with the built-in Python string method .replace. The
.replace method allows us to specify as parameters which characters we want to
remove and the characters with which we want to replace them, as shown in the fol-
lowing listing.

def replace_7t(s):            
    return s.replace('7','t')
def replace_3e(s):            
    return s.replace('3','e')
def replace_6g(s):            
    return s.replace('6','g')
def replace_4a(s):            
    return s.replace('4'.,'a')

That takes care of the first handful of steps. Now we want to split where the Chinese
text occurs. This task is a little more involved. Because the hackers are using different
Chinese characters to represent spaces, not just the same one again and again, we
can’t use replace here. We have to use a regular expression. Because we’re using a
regular expression, we’re going to want to create a small class that can compile it for
us ahead of time. In this case, our sub_chinese function is actually going to be a class
method. We’ll see that play out in the following listing.

import re

class chinese_matcher:     
   
    def __init__(self): 
        self.r = re.compile(r'[\u4e00-\u9fff]+')     
   
    def sub_chinese(self,s):
        return self.r.sub(s, " ")     

Listing 3.1 Replacement helper functions

Listing 3.2 Split on Chinese characters function

Replaces all the 7s with t’s

Replaces all the 3s with e’s

Replaces all the 6s with g’s

Replaces all the 4s with a’s

We compile our regular expression 
on initialization of the class.

In this case, we want to match one
or more Chinese characters. Those
characters can be found in the 
Unicode range from 4e00 to 9fff.

Now we can use this compiled regular 
expression in a method that uses the 
expression pattern’s split method.
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The first thing we do here is create a class called chinese_matcher. Upon initializa-
tion, that class is going to compile a regular expression that matches all the Chinese
characters. That regular expression is going to be a range regular expression that
looks up the Unicode characters between \u4e00 (the first Chinese character in the
Unicode standard) and \u9fff (the last Chinese character in the Unicode standard).
If you’ve used regular expressions before, you should already be familiar with this con-
cept for matching capital letters with regular expressions like [A-Z]+, which matches
one or more uppercase English characters. We’re using the same concept here, except
instead of matching uppercase characters, we’re matching Chinese characters. And
instead of typing in the characters directly, we’re typing in their Unicode numbers.

 Having set up that regular expression, we can use it in a method. In this case, we’ll
use it in a method called .sub_chinese. This method will apply the regular expression
method .split to an arbitrary string and return the results. Because we know our regu-
lar expression matches one or more Chinese characters, the result will be that every
time a Chinese character appears in the string, we’ll change that character to a space.

3.2.2 Creating a pipeline

Now we have all of our helper functions ready and we’re ready to bake our hacker-
foiling cake. The next thing to do is to chain these helper functions together. Let’s
take a look at three ways to do this:

1 Using a sequence of maps
2 Chaining functions together with compose
3 Creating a function pipeline with pipe

A SEQUENCE OF MAPS 
For this method, we take all of our functions and map them across the results of one
another.

 We map replace_7t across our sample messages.
 Then we map replace_3e across the results of that.
 Then we map replace_6g across the results of that.
 Then we map replace_4a across the results of that.
 Finally, we map C.sub_chinese.

The solution shown in listing 3.3 isn’t pretty, but it works. If you print the results,
you’ll see all of our garbled sample sentences translated into easily readable English,
with the words split apart from one another—exactly what we wanted. Remember, you
need to evaluate map before you can print it!

C = chinese_matcher()

map(C.sub_chinese,
        map(replace_4a,

Listing 3.3 Chaining functions by sequencing maps
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            map(replace_6g,
                map(replace_3e,
                    map(replace_7t, sample_messages)))))

CONSTRUCTING A PIPELINE WITH COMPOSE

Although we certainly can chain our functions together this way, there are better ways.
We’ll take a look at two functions that can help us do this:

1 compose

2 pipe

Each of these functions is in the toolz package, which you can install with pip like you
would most python packages: pip install toolz.

 First, let’s look at compose. The compose function takes our helper functions in
the reverse order that we would like them applied and returns a function that applies
them in the desired order. For example, compose(foo, bar, bizz) would apply bizz,
then bar, then foo. In the specific context of our problem, that would look like
listing 3.4.

 In listing 3.4, you can see that we call the compose function and pass it all the func-
tions we want to include in our pipeline. We pass them in reverse order because
compose is going to apply them backwards. We store the output of our compose func-
tion, which is itself a function, to a variable. And then we can call that variable or pass
it along to map, which applies it to all the sample messages.

from toolz.functoolz import compose

hacker_translate = compose(C.sub_chinese, replace_4a, replace_6g,
                           replace_3e, replace_7t)

map(hacker_translate, sample_messages)

If you print this, you’ll notice that the results are the same as when we chained our
functions together with a sequence of map statements. The major difference is that
we’ve cleaned up our code quite a bit, and here we only have one map statement.

PIPELINES WITH PIPE

Next, let’s look at pipe. The pipe function will pass a value through a pipeline. It
expects the value to pass and the functions to apply to it. Unlike compose, pipe
expects the functions to be in the order we want to apply them. So pipe(x, foo, bar,
bizz) applies foo to x, then bar to that value, and finally bizz to that value. Another
important difference between compose and pipe is that pipe evaluates each of the
functions and returns a result, so if we want to pass it to map, we actually have to wrap
it in a function definition. Again, turning to our specific example, that will look some-
thing like the following listing.

Listing 3.4 Using compose to create a function pipeline
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from toolz.functoolz import pipe

def hacker_translate(s):
        return pipe(s, replace_7t, replace_3e, replace_6g,
                       replace_4a, C.sub_chinese)

    map(hacker_translate,sample_messages)

Here, we create a function that takes our input and returns that value after it has
been piped through a sequence of functions that we pass to pipe as parameters. In
this case, we’re starting with replace_7t, then applying replace_3e, replace_6g,
replace_4a, and lastly C.sub_chinese, in that order. The result, as with compose, is
the same as when we chained the functions together using a sequence of maps—you’re
free to print out the results and prove this to yourself—but the way we get there is a
lot cleaner.

 Creating pipelines of helper functions provides two major advantages. The code
becomes

 Very readable and clear
 Modular and easy to edit

The former advantage, increasing readability, is especially true when we have to do
complex data transformations or when we want to perform a sequence of possibly
related, or possibly unrelated, actions. For example, having just been introduced to
the notion of compose, I’m pretty confident you could make a guess at what this pipe-
line does:

my_pipeline = compose(reverse, remove_vowels, make_uppercase)

The latter advantage, making code modular and easy to edit, is a major perk when
we’re dealing with dynamic situations. For example, let’s say our hacker adversaries
change their ruse so they’re now replacing even more letters! We could simply add
new functions into our pipeline to adjust. If we find that the hackers stop replacing a
letter, we can remove that function from the pipeline.

A HACKER TRANSLATE PIPELINE

Lastly, let’s return to our map example of this problem. At the beginning, we’d hoped
to have one function, hacker_translate, that took us from garbled hacker secrets to
plain English. We can see what we really did in figure 3.7.

 Figure 3.7 shows our input values up top and our output values on the bottom, and
through the middle we see how our five helper functions change our inputs. Breaking
our complicated problem up into several small problems made coding the solution to
this problem rather straightforward, and with map, we can easily apply the pipeline to
any number of inputs that we need.

Listing 3.5 Using pipe to create a function pipeline
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3.3 Twitter demographic projections
In the previous section, we looked at how to foil a group of hackers by chaining small
functions together and applying them across all the hackers’ messages. In this section,
we’ll dive even deeper into what we can do using small, simple helper functions
chained together.

SCENARIO The head of marketing has a theory that male customers are more
likely to engage with our product on social media than female customers and
has asked us to write an algorithm to predict the gender of Twitter users men-
tioning our product based on the text of their posts. The marketing head has
provided us with lists of Tweet IDs for each customer. We have to write a
script that turns these lists of IDs into both a score representing how strongly
we believe them to be of a given gender and a prediction about their gender.

To tackle this problem, again, we’re going to start with a big picture map diagram. We
can see that in figure 3.8.

 The map diagram in figure 3.8 allows us to see our input data on the top and our
output data on the bottom, which will help us think about how to solve the problem.
On the top, we can see that we have a sequence of lists of numbers, each representing
a Tweet ID. That will be our input format. And on the bottom, we see that we have a
sequence of dicts, each with a key for "score" and "gender". This gives us a sense of
what we’ll have to do with our function gender_prediction_pipeline.

7his is h4ck3r 73x7� � �
i 4m mor3 h4ck3r 73x7� � � � �

...
mor3 73x7 h3r3� � 	

this is hacker text
i am more hacker text
...
more text here

replace_7t()

replace_3e()

replace_4a()

replace_6g()

sub_chinese()

Each of these functions will
be added to the pipeline and
play its role in cleaning the text.We have four small helper

functions to replace the
numbers with the proper
corresponding letters.

We also have one function
to remove the Chinese
characters in our pipeline.

The data coming out of
our pipeline will be clean
and clear messages.

Figure 3.7 We can solve the hacker translation problem by constructing a chain of functions that each solve 
one part of the problem.
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Now, predicting the gender of a Twitter user from several Tweet IDs is not one task; it’s
actually several tasks. To accomplish this, we’re going to have to do the following:

 Retrieve the tweets represented by those IDs
 Extract the tweet text from those tweets
 Tokenize the extracted text
 Score the tokens
 Score users based on their tweet scores
 Categorize the users based on their score

Looking at the list of tasks, we can actually break down our process into two transfor-
mations: those that are happening at the user level and those that are happening at
the tweet level. The user-level transformations include things like scoring the user
and categorizing the user. The tweet-level transformations include things like
retrieving the tweet, extracting the text, tokenizing the text, and scoring the text. If
we were still working with for loops, this type of situation would mean that we would
need a nested for loop. Since we’re working with map, we’ll have to have a map inside
our map.

3.3.1 Tweet-level pipeline

Let’s look at our tweet-level transformation first. At the tweet level, we’ll convert a
Tweet ID into a single score for that tweet, representing the gender score of that
tweet. We’ll score the tweets by giving them points based on the words they use. Some
words will make the tweet more of a “man’s tweet,” and some will make the tweet more
of a “woman’s tweet.” We can see this process playing out in figure 3.9.

[123456,114181,124115]

{"gender:"male","score":.66} {"gender":"female","score":-.33} {"gender":"male","score":1}

[191181,100311,1713987] [1977131,161141231,2001310]

We map gender_prediction_pipelineour function across
our lists of Tweet IDs.

The output is a series of s with a gender prediction anddict
a gender score corresponding to each user.

map
gender_prediction_pipeline()

Figure 3.8 The map diagram for our gender_prediction_pipeline demonstrates the beginning and end 
of the problem: we’ll take a list of Tweet IDs and convert them into predictions about a user.
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Figure 3.9 shows the several transformations that our tweets will undertake as we trans-
form them from ID to score. Starting at the top left, we see that we start with Tweet IDs
as an input, then we pass them through a get_tweet_from_id function and get tweet
objects back. Next, we pass those tweet objects through a tweet_to_text function,
which turns the tweet objects into the text of those tweets. Then, we tokenize the
tweets by applying our tokenize_text function. After that, we score the tweets with
our score_text function.

Text classification
Classifying a tweet by assigning scores to words it uses may seem simplistic, but
it’s actually not too far from how both academia and industry approach the situa-
tion. Lexicon-based methods of classification, which assign words points and then
roll those points up into an overall score, achieve remarkable performance given
their simplicity. And because they are transparent, they offer the benefit of inter-
pretability to practitioners.

In this chapter, we only approximate the real thing, but you can find a state-of-the art
classifier on my GitHub page: https://github.com/jtwool/TwitterGenderPredictor.

get_tweet_from_id()

123456
111313
...

117461

tweet_to_text()

tokenize_text()

score_text()

1
-2
...
2

3. The functiontweet_to_text
will turn tweets into their text.

5. Finally, our functionscore_text
will turn our tokens into scores
for each of the tweets.

6. Because our workflow
is a pipeline, we can
easily this processmap
across all our inputs.

4. Then our tokenize_text
function will chunk the text
into tokens for analysis.

2. We use the get_tweet_from_id
function to retrieve the tweets.

1. Tweet IDs enter
the pipeline as
our initial input.

Figure 3.9 We can chain four functions together into a pipeline that will accomplish each of the subparts of 
our problem.
 

https://github.com/jtwool/TwitterGenderPredictor
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 Turning our attention to user-level transformations, the process here is a little simpler:

1 We apply the tweet-level process to each of the user’s tweets.
2 We take the average of the resulting tweet scores to get our user-level score.
3 We categorize the user as either "male" or "female".

Figure 3.10 shows the user-level process playing out.

We can see that each user starts as a list of Tweet IDs. Applying our score_user func-
tion, across all of these lists of Tweet IDs, we get back a single score for each user.
Then, we can use our categorize_user function to turn this score into a dict that
includes both the score and the predicted gender of the user, just like we wanted at
the outset.

 These map diagrams give us a roadmap for writing our code. They help us see what
data transformations need to take place and where we’re able to construct pipelines.
For example, we now know that we need two function chains: one for the tweets and
one for the users. With that in mind, let’s start tackling the tweet pipeline.

 Our tweet pipeline will consist of four functions. Let’s tackle them in this order:

1 get_tweet_from_id

2 tweet_to_text

3 tokenize_text

4 score_text

[123456,114181,124115]
[191181,100311,1713987]

...
[1977131,161141231,2001310]

{"gender:"male","score":.66}
{"gender":"female","score":-.33}
{"gender":"male","score":1}

score_user()

categorize_user()

score_tweet()

Then, we’ll find the
average of the resulting
scores for each user.

First, we’ll our tweet-map
level pipeline across all
the input Tweet IDs.

Lastly, we’ll transform the score
into a prediction about each user.

Figure 3.10 We can chain small functions together to turn lists of users’ Tweet IDs into scores, then into 
averages, and, finally, into predictions about their demographics.
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Our get_tweet_from_id function is responsible for taking a Tweet ID as input, look-
ing up that Tweet ID on Twitter, and returning a tweet object that we can use. The eas-
iest way to scrape Twitter data will be to use the python-twitter package. You can
install python-twitter easily with pip:

pip install python-twitter

Once you have python-twitter set up, you’ll need to set up a developer account
with Twitter. (See the “Twitter developer accounts” sidebar.) You can do that at
https://developer.twitter.com/. If you have a Twitter account already, there’s no need
to create another account; you can sign in with the account you already have. With
your account set up, you’re ready to apply for what Twitter calls an app. You’ll need to
fill out an application form, and if you tell Twitter that you’re using this book to learn
parallel programming, they’ll be happy to give you an account. When you’re
prompted to describe your use case, I suggest entering the following:

The core purpose of my app is to learn parallel programming techniques. I am
following along with a scenario provided in chapter 3 of Mastering Large
Datasets with Python, by JT Wolohan, published by Manning Publications.

I intend to do a lexical analysis of fewer than 1,000 Tweets.

I do not plan on using my app to Tweet, Retweet, or “like” content.

I will not display any Tweets anywhere online.

Once you have your Twitter developer account set up and confirmed by Twitter (this
may take an hour or two), you’ll navigate to your app and find your consumer key, your
consumer secret, your access token key, and your access token secret (figure 3.11).
These are the credentials for your app. They tell Twitter to associate your requests
with your app.

 With your developer account set up and python-twitter installed, we’re finally
ready to start coding our tweet-level pipeline. The first thing we do is import the

Twitter developer accounts
Because this scenario involves Twitter scraping, the automated collection of Twitter
data, I would like to offer you the opportunity to do real Twitter scraping. Doing so
requires you to request a Twitter developer account. These developer accounts used
to be much easier to get. Twitter is beginning to restrict who can develop on its plat-
form because it wants to crack down on bots. If you don’t want to sign up for Twitter,
you don’t want to sign up for a developer account, or you don’t want to wait, you can
proceed without signing up for a developer account.

In the repository for this book, I include text that can stand in for the tweets, and you
can omit the first two functions (get_tweet_from_id and tweet_to_text) from your
tweet-level pipeline.
 

https://developer.twitter.com/
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python-twitter library. This is the library we just installed. It provides a whole host
of convenient functions for working with the Twitter API. Before we can use any of
those nice functions, however, we need to authenticate our app. We do so by initiat-
ing an Api class from the library. The class takes our application credentials, which
we get from the Twitter developers website, and uses them when it makes calls to the
Twitter API.

 With this class ready to go, we can then create a function to return tweets from
Twitter IDs. We’ll need to pass our API object to this function so we can use it to make
the requests to Twitter. Once we do that, we can use the API object’s .GetStatus
method to retrieve Tweets by their ID. Tweets retrieved in this way come back as
Python objects, perfect for using in our script.

 We’ll use that fact in our next function, tweet_to_text, which takes the tweet
object and returns its text. This function is very short. It calls the text property of our
tweet object and returns that value. The text property of tweet objects that python-
twitter returns contains, as we would expect, the text of the tweets.

 With the tweet text ready, we can tokenize it. Tokenization is a process in which we
break text up into smaller units that we can analyze. In some cases, this can be pretty
complicated, but for our purpose, we’ll split text wherever white space occurs to sepa-
rate words from one another. For a sentence like "This is a tweet", we would get a
list containing each word: ["This", "is", "a", "tweet"]. We’ll use the built-in string
.split method to do that.

 Once we have our tokens, we need to score them. For that, we’ll use our score
_text function. This function will look up each token in a lexicon, retrieve its score,

Figure 3.11 The “Keys and Tokens” tab in your Twitter developer account provides you with API keys, access 
tokens, and access secrets for your project.
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Cre

score_
func
and then add all of those scores together to get an overall score for the tweet. To do
that, we need a lexicon, a list of words and their associated scores. We’ll use a dict to
accomplish that here. To look up the scores for each word, we can map the dict’s
.get method across the list of words.

 The dict .get method allows us to look up a key and provide a default value in
case we don’t find it. This is useful in our case because we want words that we don’t
find in our lexicon to have a neutral value of zero.

 To turn this method into a function, we use what’s called a lambda function. The
lambda keyword allows us to specify variables and how we want to transform them. For
example, lambda x: x+2 defines a function that adds two to whatever value is passed to
it. The code lambda x: lexicon.get(x, 0) looks up whatever it is passed in our lexi-
con and returns either the value or 0 (if it doesn’t find anything). We’ll often use it for
short functions.

 Finally, with all of those helper functions written, we can construct our score_
tweet pipeline. This pipeline will take a Tweet ID, pass it through all of these helper
functions, and return the result. For this process, we’ll use the pipe function from the
toolz library. This pipeline represents the entirety of what we want to do at the tweet
level. We can see all of the code needed in the following listing.

from toolz import pipe      
import twitter

Twitter = twitter.Api(consumer_key="",     
                      consumer_secret="",
                      access_token_key="",
                      access_token_secret="")

def get_tweet_from_id(tweet_id, api=Twitter):       
    return api.GetStatus(tweet_id, trim_user=True)

def tweet_to_text(tweet):     
    return tweet.text

def tokenize_text(text):      
    return text.split()

def score_text(tokens):       
    lexicon = {"the":1, "to":1, "and":1,     
             "in":1, "have":1, "it":1,
             "be":-1, "of":-1, "a":-1, 
             "that":-1, "i":-1, "for":-1}
    return sum(map(lambda x: lexicon.get(x, 0), tokens))    

def score_tweet(tweet_id):       
    return pipe(tweet_id, get_tweet_from_id, tweet_to_text,
                          tokenize_text, score_text)

Listing 3.6 Tweet-level pipeline

Imports the python-
twitter library

Authenticates 
our app

Uses our app to look 
up tweets by their ID

Gets the text from 
a tweet object

Splits text on white space 
so we can analyze words

ates
our
text
tion

Creates a mini sample 
lexicon for scoring words

Replaces each word 
with its point value

Pipes a tweet 
through our pipeline
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3.3.2 User-level pipeline

Having constructed our tweet-level pipeline, we’re ready to construct our user-level pipe-
line. As we laid out previously, we’ll need to do three things for our user-level pipeline:

1 Apply the tweet pipeline to all of the user’s tweets
2 Take the average of the score of those tweets
3 Categorize the user based on that average

For conciseness, we’ll collapse the first two actions into one function, and we’ll let the
third action be a function all its own. When all is said and done, our user-level helper
functions will look like the following listing.

from toolz import compose

def score_user(tweets):        
    N = len(tweets)              
    total = sum(map(score_tweet, tweets))    
    return total/N        

def categorize_user(user_score):    
    if user_score > 0:            
        return {"score":user_score,
                "gender": "Male"}
return {"score":user_score,        
        "gender":"Female"}

pipeline = compose(categorize_user, score_user)     

In our first user-level helper function, we need to accomplish two things: score all of
the user’s tweets, then find the average score. We already know how to score their
tweets—we just built a pipeline for that exact purpose! To score the tweets, we’ll map
that pipeline across all the tweets. However, we don’t need the scores themselves, we
need the average score.

 To find a simple average, we want to take the sum of the values and divide it by the
number of values that we’re summing. To find the sum, we can use Python’s built-in
sum function on the tweets. To find the number of tweets, we can find the length of
the list with the len function. With those two values ready, we can calculate the aver-
age by dividing the sum by the length.

 This will give us an average tweet score for each user. With that, we can categorize
the user as being either "Male" or "Female". To make that categorization, we’ll create
another small helper function: categorize_user. This function will check to see if the
user’s average score is greater than zero. If it is, it will return a dict with the score and

Listing 3.7 User-level helper functions

Averages the scores of 
all of a user’s tweets

Finds the number 
of tweets

Finds the sum total of all 
of a user’s individual 
tweet scores

Returns
he sum

total
divided
by the

number
f tweets

Takes the score and 
returns a predicted 
gender as well

If the user_score is 
greater than 0, we’ll say 
that the user is male.

Otherwise, we’ll say 
the user is female.

Composes these 
helper functions into 
a pipeline function
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ur 
a gender prediction of "Male". If their average score is zero or less, it will return a
dict with the score and a gender prediction of "Female".

 These two quick helper functions are all we’ll need for our user-level pipeline.
Now we can compose them, remembering to supply them in reverse order from how
we want to apply them. That means we put our categorization function first, because
we’re using it last, and our scoring function last, because we’re using it first. The result
is a new function—gender_prediction_pipeline—that we can use to make gender
predictions about a user.

3.3.3 Applying the pipeline

Now that we have both our user-level and tweet-level function chains ready, all that’s
left to do is apply the functions to our data. To do so, we can either use Tweet IDs with
our full tweet-level function chain, or—if you decided not to sign up for a Twitter
developer account—we can use just the text of the tweets. If you’ll be using just the
tweet text, make sure to create a tweet-level function chain (score_tweet) that omits
the get_tweet_from_id and tweet_to_text functions.

APPLYING THE PIPELINE TO TWEET IDS

Applying our pipelines in the first instance might look something like listing 3.8. There,
we start by initializing our data. The data we’re starting with is four lists of five Tweet IDs.
Each of the four lists represents a user. The Tweet IDs don’t actually come from the
same user; however, they are real tweets, randomly sampled from the internet.

users_tweets = [                                              
[1056365937547534341, 1056310126255034368, 1055985345341251584,
 1056585873989394432, 1056585871623966720],
[1055986452612419584, 1056318330037002240, 1055957256162942977,
 1056585921154420736, 1056585896898805766],
[1056240773572771841, 1056184836900175874, 1056367465477951490,
 1056585972765224960, 1056585968155684864],
[1056452187897786368, 1056314736546115584, 1055172336062816258,
 1056585983175602176, 1056585980881207297]]

with Pool() as P:                       
    print(P.map(pipeline, users_tweets))

With our data initialized, we can now apply our gender_prediction_pipeline. We’ll
do that in a way we introduced last chapter: with a parallel map. We first call Pool to
gather up some processors, then we use the .map method of that Pool to apply our
prediction function in parallel.

 If we were doing this in an industry setting, this would be an excellent opportunity
to use a parallel map for two reasons:

1 We’re doing what amounts to the same task for each user.
2 Both retrieving the data from the web and finding the scores of all those tweets

are relatively time- and memory-consuming operations.

Listing 3.8 Applying the gender prediction pipeline to Tweet IDs

First, we need to 
initialize our data. 
Here, we’re using fo
sets of Tweet IDs.

Then we can apply our pipeline to 
our data with map. Here, we’re 
using a parallel map.
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To the first point, whenever we find ourselves doing the same thing over and over
again, we should think about using parallelization to speed up our work. This is espe-
cially true if we’re working on a dedicated machine (like our personal laptop or a dedi-
cated compute cluster) and don’t need to concern ourselves with hoarding processing
resources other people or applications may need.

 To the second point, we’re best off using parallel techniques in situations in
which the calculations are at least somewhat difficult or time-consuming. If the
work we’re trying to do in parallel is too easy, we may spend more time dividing the
work and reassembling the results than we would just doing it in a standard linear
fashion.

APPLYING THE PIPELINE TO TWEET TEXT

Applying the pipeline to tweet text directly will look very similar to applying the pipe-
line to Tweet IDs, as shown in the following listing.

user_tweets = [            
        ["i think product x is so great", "i use product x for everything",
        "i couldn't be happier with product x"],
        ["i have to throw product x in the trash",
        "product x... the worst value for your money"],
        ["product x is mostly fine", "i have no opinion of product x"]]

with Pool() as P:          
    print(P.map(gender_prediction_pipeline, users_tweets))

The only change in listing 3.9 versus listing 3.8 is our input data. Instead of having
tweet IDs that we want to find on Twitter, retrieve, and score, we can score the tweet text
directly. Because our score_tweet function chain removes the get_tweet_from_id and
tweet_to_text helper functions, the gender_prediction_pipeline will work exactly
as we want.

 That it is so easy to modify our pipelines is one of the major reasons why we want to
assemble them in the first place. When conditions change, as they often do, we can
quickly and easily modify our code to respond to them. We could even create two
function chains if we envisioned having to handle both situations. One function chain
could be score_tweet_from_text and would work on tweets provided in text form.
Another function chain could be score_tweet_from_id and would categorize tweets
provided in Tweet ID form.

 Looking back throughout this example, we created six helper functions and two
pipelines. For those pipelines, we used both the pipe function and the compose func-
tion from the toolz package. We also used these functions with a parallel map to pull
down tweets from the internet in parallel. Using helper functions and function chains

Listing 3.9 Applying the gender prediction pipeline to tweet text

First, we need 
to initialize our 
data. Here, we’re 
using four sets of 
Tweet IDs.

Then we can apply our pipeline to our data
with map. Here, we’re using a parallel map.
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makes our code easy to understand and modify and plays nicely with our parallel map,
which wants to apply the same function over and over again.

3.4 Exercises

3.4.1 Helper functions and function pipelines

In this chapter, you’ve learned about the interrelated ideas of helper functions and
function pipelines. In your own words, define both of those terms, then describe how
they are related.

3.4.2 Math teacher trick

A classic math teacher trick has students perform a series of arithmetic operations on
an “unknown” number, and at the end, the teacher guesses the number the students
are thinking of. The trick is that the final number is always a constant the teacher
knows in advance. One such example is doubling a number, adding 10, halving it, and
subtracting the original number. Using a series of small helper functions chained
together, map this process across all numbers between 1 and 100. How does the teacher
always know what number you’re thinking of?

EXAMPLE

map(teacher_trick, range(1,101))
>>> [?,?,?,?,...,?]

3.4.3 Caesar’s cipher

Caesar’s cipher is an old way of constructing secret codes in which one shifts the posi-
tion of a letter by 13 places, so A becomes N, B becomes O, C becomes P, and so on.
Chain three functions together to create this cypher: one to convert a letter to an inte-
ger, one to add 3 to a number, and one to convert a number to a letter. Apply this
cypher to a word by mapping the chained functions of a string. Create one new func-
tion and a new pipeline to reverse your cypher.

EXAMPLE

map(caesars_cypher,["this","is","my",sentence"])
>>> ["wklv","lv","pb","vhqwhqfh"]

Summary
 Designing programs with small helper functions makes hard problems easy to

solve by breaking them up into bite-sized pieces.
 When we pass a function through a function pipeline pipe, it expects the input

data as its first argument and the functions in the order we want to apply them
as the remaining arguments.

 When we create a function chain with compose, we pass the functions in our
function chain as arguments in reverse order, and the resulting function applies
that chain.
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 Constructing function chains and pipelines is useful because they’re modular,
they play very nicely with map, and we can readily move them into parallel work-
flows, such as by using the Pool() technique we learned in chapter 2.

 We can simplify working with nested data structures by using nested function
pipelines, which we can apply with map.
 



Processing large datasets
with lazy workflows
In chapter 2 (section 2.1.2, to be exact), I introduced the idea that our beloved map
function is lazy by default; that is, it only evaluates when the value is needed down-
stream. In this chapter, we’ll look at a few of the benefits of laziness, including how
we can use laziness to process big data on our laptop. We’ll focus on the benefits of
laziness in two contexts:

1 File processing
2 Simulations

With file processing, we’ll see that laziness allows us to process much more data
than could fit in memory without laziness. With simulations, we’ll see how we can
use laziness to run “infinite” simulations. Indeed, lazy functions allow us to work
with an infinite amount of data just as easily as we could if we were working with a
limited amount of data.

This chapter covers
 Writing lazy workflows for processing large 

datasets locally

 Understanding the lazy behavior of map

 Writing classes with generators for lazy 
simulations
68
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4.1 What is laziness?
Laziness, or lazy evaluation, is a strategy that programming languages use when decid-
ing when to perform computations. Under lazy evaluation, the Python interpreter
executes lazy Python code only when the program needs the results of that code.

 For example, consider the range function in Python, which generates a sequence
of numbers lazily. That is, we can call range(10000) and we won’t get a list of 10,000
numbers back; we’ll get an iterator that knows how to generate 10,000 numbers. This
means we can make absurdly large range calls without being concerned that we’ll use
up all our memory storing integers. For example, range(10000000000) has the same
size as range(10). You can check this yourself with only two lines of code:

>>> from sys import getsizeof
>>> getsizeof(range(10000000000)) == getsizeof(range(10))
True

Lazy evaluation like this is the opposite of eager evaluation, where everything is evaluated
when it’s called. This is probably how you’re used to thinking about programming. You
write a piece of code, then when the computer gets to that point, it computes whatever
it is you told it to compute. By contrast, with lazy evaluation, the computer takes in your
instructions and files them away until it needs to use them. If you never ask the com-
puter for a final result, it will never perform any of the intermediate steps.

 In that way, lazy evaluation is a lot like a high school student with an assignment
due far in the future. The teacher can tell the student how to write the assignment at
the beginning of the year. They can even warn the student that the assignment will be
coming due in a few weeks. But it’s not until right before the deadline that the student
actually begins to work on their assignment. The major difference: the computer will
always complete the work.

 Furthermore, just like the student is putting off doing their assignment so they can
do other things—like work on other assignments due sooner or just hang out with
their friends—our lazily evaluated program is doing other things too. Because our
program lazily evaluates our instructions, it has more memory (time) to do the other
things we ask of it (other assignments) or even run other processes altogether (hang-
ing out with its friends maybe?).

4.2 Some lazy functions to know
We’ve already discussed how two functions you’re familiar with—map and range—are
lazy. In this section, we’ll focus on three other lazy functions you should know about:

1 filter—A function for pruning sequences
2 zip—A function for merging sequences
3 iglob—A function for lazily reading from the filesystem

The filter function takes a sequence and restricts it to only the elements that meet a
given condition. The zip function takes two sequences and returns a single sequence
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of tuples, each of which contains an element from each of the original sequences.
And the iglob function is a lazy way of querying our filesystem.

4.2.1 Shrinking sequences with the filter function

The filter function does exactly what you expect it to: it acts as a filter. Specifically, it
takes a conditional function and a sequence and returns a lazy iterable with all the ele-
ments of that sequence that satisfy that condition (figure 4.1). For example, in the fol-
lowing listing, we see how filter can take a function that checks if a number is even
and return an iterable of only even numbers.

def is_even(x):
   if x%2 == 0: return True
   else: return False

print(list(filter(is_even, range(10))))
# [0,2,4,6,8]

In listing 4.1, we call list on our filter to get it to print nicely, just like we did with
map. We have to call list in both cases because filter and map are both lazy and
won’t evaluate until we’re interested in specific values. Because lists are not lazy, con-
verting our lazy objects to a list lets us see the individual values.

 The filter function is a valuable tool because we can use it to concisely define a
common operation. Four related functions are also helpful to know about, all of
which perform the same basic operation, with a twist:

Listing 4.1 Retrieving even numbers from a sequence

[1, 2, 3, 4, 5,
6, 7, 8, 9, 10]

[2,4,6,8,10]

is_even()

The inputs to our filter are
a sequence or iterable.

The outputs from our filter are an iterable.

The filter function reduces
a sequence to only the
elements that make the
function return .True

Figure 4.1 The filter function produces a new sequence that contains 
only elements that make the qualifier function return True.
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1  filterfalse
2  keyfilter
3  valfilter
4  itemfilter

Just like filter, all of these functions just do what we expect them to do. We can use the
filterfalse function when we want to get all the results that make a qualifier func-
tion return False. We can use the keyfilter function when we want to filter on the
keys of a dict. We can use the valfilter function when we want to filter on the values
of a dict. And we can use itemfilter when we want to filter on both the keys and the
values of a dict. We can see examples of all of these in action in listing 4.2.

 In listing 4.2, we use all four of these functions. The first, filterfalse, is from the
itertools module that ships with Python. When we combine iterfalse with is_even
from before, we get all the not-even (odd) numbers. For keyfilter, valfilter, and
itemfilter, we need to input a dict. When we combine keyfilter with is_even, we
get back all the items from the dict that have even keys. When we combine valfil-
ter with is_even, we get back all the items from the dict that have even values. For
itemfilter, we can evaluate both the keys and the values of the dict. In listing 4.2, we
create a small function, both_are_even, that tests if both the key and the value of an
item are even. As the listing shows, we do get back the items for which both the key
and the value are even.

from itertools import filterfalse
from toolz.dicttoolz import keyfilter, valfilter, itemfilter

def is_even(x):
    if x % 2 == 0: return True
    else: return False

def both_are_even(x):
    k,v = x
    if is_even(k) and is_even(v): return True
    else: return False

print(list(filterfalse(is_even, range(10))))
# [1, 3, 5, 7, 9]

print(list(keyfilter(is_even, {1:2, 2:3, 3:4, 4:5, 5:6})))
# [2, 4]

print(list(valfilter(is_even, {1:2, 2:3, 3:4, 4:5, 5:6})))
# [1, 3, 5]

print(list(itemfilter(both_are_even, {1:5, 2:4, 3:3, 4:2, 5:1})))
# [2, 4]

Listing 4.2 Testing variations of the filter function
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4.2.2 Combining sequences with zip

zip is another lazy function. We use zip when we have two iterables that we want to
join together so that the items in the first position are together, the items in the sec-
ond position are together, and so on. Naturally, it makes sense to think about the zip
function like a zipper. When the zipper passes over each pair of teeth, it pulls them
together into a pair (figure 4.2).

We use the zip function when we have related sequences that we want to bring
together. For instance, if an ice cream vendor knows how many ice cream cones
they’ve sold in the last two weeks, they may be interested in zipping that together with
the temperature to analyze if there are any trends, as shown in the following listing.

ice_cream_sales = [27, 21, 39, 31, 12, 40, 11, 18, 30, 19, 24, 35, 31, 12]
temperatures = [75, 97, 88, 99, 81, 92, 91, 84, 84, 93, 100, 86, 90, 75]

ice_cream_data = zip(ice_cream_sales, temperatures)
print(list(ice_cream_data))
# [(27,75), (21,97), (39,88), ... (12,75)]

Having data paired in tuples like that is helpful because tuples can easily be passed to
functions and unpacked. Because zip is lazy, the resulting iterator takes up hardly any
memory. That means we can collect and move around massive amounts of data on our
machine without holding it in memory.

 The resulting single sequence is also the perfect target for mapping a function
across because map takes a function and a sequence to which you want to apply that
function. Because map is lazy as well, we can calculate all of these sales figures without
much memory overhead. Indeed, all of our lazy functions, like map, filter, and zip,
play nicely with one another. And because they all take sequences as inputs in one way
or another, they can all be chained together and maintain their nice low-memory
overhead laziness.

Listing 4.3 Ice cream data and the zip function

[0,1,2,3,4,5,6,7,8,9]

[A,B,C,D,E,F,G,H,I,J]

[(0,A),(1,B),...]We input two sequences
into our function.zip

The function moves over the sequenceszip
and combines them into a sequence of
tuples containing elements from each sequence.

Figure 4.2 The zip function behaves like a zipper, but instead of interlocking metal 
teeth, it interlocks the values of Python iterables.
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4.2.3 Lazy file searching with iglob

The last function we'll look at here is iglob. We can use the iglob function to find a
sequence of files on our filesystem that match a given pattern. Specifically, the files
match based on the standard Unix rules. For situations where filesystem-based storage
is used, like in a lot of prototypes, this can be extremely helpful.

 For example, if we have blog posts stored as JSON objects in files, we may be able to
select all of the blog posts from June 2015 with a single line of code (the second line):

from glob import iglob

blog_posts = iglob("path/to/blog/posts/2015/06/*.json")

This type of statement would find all the JSON files in the 06 directory inside the 2015
directory inside the directory where we’re storing all our blog posts.

 For a single month, getting all the blog posts lazily may not be that big of a deal.
But if we have several posts a day and several years of posts, then our list will be sev-
eral thousand items long. Or if we’ve done some web scraping and stored each page
as a .JSON object with metadata about when it was collected, we may have millions
of these files. Holding that all in memory would be a burden on whatever processing
we want to do.

 In just a minute, we’ll see an example where this lazy file processing can be useful,
but first, let’s take a second to talk about the nitty gritty details of sequence data types
in Python.

4.3 Understanding iterators: The magic behind lazy Python
So far, we’ve talked about the benefits of laziness and about a couple functions that
can take advantage of them. In this section, we’ll dig into the details of iterators—
objects that we can move through in sequence—and talk about generators—special
functions for creating sequences. We touched on generators briefly in chapter 2, but
this time we’ll dive even deeper, including a look at small generator expressions.

 It’s important that we understand how iterators work because they are fundamen-
tal to our ability to process big data on our laptop or desktop computer. We use itera-
tors to replace data with instructions about where to find data and to replace
transformations with instructions for how to execute those transformations. This sub-
stitution means that the computer only has to concern itself with the data it is process-
ing right now, as opposed to the data it just processed or has to process in the future.

4.3.1 The backbone of lazy Python: Iterators

Iterators are the base class of all the Python data types that can be iterated over. That
is, we can loop over the items of an iterator, or we can map a function across one, like
we learned how to do in chapter 2. The iteration process is defined by a special
method called .__iter__(). If a class has this method and returns an object with a
.__next__() method, then we can iterate over it.
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THANK YOU, __NEXT__(): THE ONE-WAY NATURE OF ITERATORS.
The .__next__() method tells Python what the next object in the sequence is. We can
call it directly with the next() function. For example, if we’ve filtered a list of words
down to only the words that have the letter m in them, we can retrieve the next m
word with next().

 Listing 4.4 demonstrates calling the next function on a lazy object. We create
a small function to check if the string has an m in it. We then use that function
with filter to winnow down our words to only the words containing m. Then,
because the result of our filter is an iterable, we can call the next function on it to
get an m word.

words = ["apple","mongoose","walk","mouse","good",
         "pineapple","yeti","minnesota","mars",
         "phone","cream","cucumber","coffee","elementary",
         "sinister","science","empire"]

def contains_m(s):
    if "m" in s.lower(): return True
    else: return False

m_words = filter(contains_m, words)

next(m_words)
next(m_words)
next(m_words)

print(list(m_words))
["mars","cream","cucumber","elementary", … ]

If you run this in the console, you’ll be unsurprised to find that the next() function
gets you the next item every time you call it. Something you might be surprised by,
however, is that filter (and map, and all our lazy friends) are one-way streets; once we
call next, the item returned to us is removed from the sequence. We can never back
up and retrieve that item again. We can verify this by calling list() on the iterable
after calling next. (See figure 4.3.)

 Iterators work like this because they’re optimized for bigger data, but they can
cause us problems if we want to explore them element-by-element. They’re not meant
for by-hand inspection; they’re meant for processing big data. Losing access to ele-
ments we’ve already seen can make iterators a little clumsier than lists if we’re still tin-
kering with our code. However, when we’re confident our code is working like
expected, iterators use less memory and offer better performance.

Listing 4.4 Retrieving m words with next
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4.3.2 Generators: Functions for creating data

Generators are a class of functions in Python that lazily produce values in a sequence.
They’re a simple way of implementing an iterator. In chapter 2, we used a generator
function to produce URLs in a sequence. The benefit of that was we didn’t have to
spend memory on holding the list in place. Indeed, that’s the primary advantage of
generators and lazy functions: avoiding storing more in memory than we need to.

 As we saw in chapter 2, one way of designing a generator is by defining a function
that uses the yield statement. For example, if we wanted a function that would pro-
duce the first n even numbers, we could do that with a generator. That function would
take a number, n, and yield the value of i*2 for every i between 1 and n, as demon-
strated in listing 4.5.

GENERATOR EXPRESSIONS: INFINITE AMOUNTS OF DATA IN A SINGLE LINE OF CODE

If we’re planning on doing that kind of generation multiple times, the yield state-
ment is great. However, if we’re only planning on using those numbers once, we can
code this even more concisely with a generator expression. Generator expressions look
like list comprehensions—short declarations of how to manipulate data into a new list—
but instead of generating the list up front, they create a lazy iterator. This has the same
advantage all our other lazy approaches have had: we can work with more data with-
out incurring memory overhead.

 A generator expression for the first 100 even numbers is shown at the end of list-
ing 4.5. You’ll note that the brackets around the expression are round instead of
square. This is the syntactic distinction between a generator expression and a list
comprehension.

>>> numbers = range(10)
>>> next(numbers)
0
>>> numbers.__next__()
1
>>> list(numbers
[2,3,4,5,6,7,8,9])

We can get the next
element in an iterable
with either the next
function or by calling
the iterable’s__next__()
method.

range is a built-in iterable
generator for creating
sequences of numbers.

When an element is generated,
it’s forgotten by Python, so
calling retrieves onlylist

the remaining elements.

Figure 4.3 When we call the .__next__() method or the next() function, we get the next 
item in the iterable.
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def even_numbers(n):
    i = 1
    while i <= n:
        yield i*2
        i += 1

first_100_even = (i*2 for i in range(1,101))

To get an intuitive understanding of the difference between generator expressions
and list comprehensions, let’s open up a Python console and run nearly identical
commands: one with a generator expression and one with a list comprehension. For
these statements, we’ll use a function from the itertools module called count. The
count function produces a lazy sequence of numbers, similar to range, but it’s open-
ended; the count function won’t stop.

 If we want an infinite string of even numbers, we can run a single command (after
we’ve imported count from itertools):

from itertools import count
evens = (i*2 for i in count())

You’ll notice that this command runs instantly. If we call next() on the evens object
we just created, we’ll get an even number. We also can take chunks from this sequence
with the islice function from the itertools module (pronounced “i” “slice,” not
“is” “lice”):

from itertools import islice
islice(evens, 5,10)

Compare this with the same from a list comprehension.

WARNING The following code is not going to finish running, so you may be
better off running it in a web-based shell like https://repl.it.

Here’s the list comprehension version:

evens = [i*2 for i in count()]

Our generator expression runs quickly and easily, but our list comprehension never
finishes. That’s because the list comprehension is attempting to generate all these
numbers at once and store them in a list. That’s nice if we want access to a specific ele-
ment, or if we’ll need repeated access to the sequence. Generators lose numbers that
have been used, we can only access them once. But if we have to work with a large
amount of data, our list comprehension is going to take quite a bit more time.

Listing 4.5 Even numbers generator function
 

https://repl.it
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4.4 The poetry puzzle: Lazily processing a large dataset
Now that we’ve taken some time to review the ins and outs of iterators and lazy func-
tions, let’s take a look at two practical scenarios where we’d want to use these tools.

SCENARIO A new poem has taken global culture by storm, but nobody can
definitively identify the mysterious author. Two poets are claiming the poem
and have provided you with terabytes of their unpublished poems so you can
validate which poet is more likely to be the true author of the poem.

In this scenario, we need to process a large amount of data from two authors to con-
firm which one of them authored the popular mystery poem. We’ll use a simple but
powerful technique: comparing the frequencies of function words. Function words are
words that have little content value but help sentences do things. Among other words,
function words include the articles a and the. We’ll use the ratio of those two words, a
and the, to detect our true author (figure 4.4).

4.4.1 Generating data for this example

Because this scenario calls for a large dataset, large here being more than however
much memory you have on the computer you’re following along on, I’ve opted to
provide a data generation script in the book’s repository (https://github.com/jtwool/
mastering-large-datasets). You can use that function to generate as much data as you
want for this scenario. I suggest generating at least 100 MB if you can and then delet-
ing it all after you’ve finished this section. That said, if you have a petabyte hard drive

profile_function_words()

{
"the": .23,
"a": .07
}

{
"the": .19,
"a": .11
}

If we have some documents
by two different authors, we
can find those authors’
function-word profiles. Hamilton uses “the” more often

than Madison.

Madison uses “a” more often
than Hamilton.

Small differences in the
rates function words are
used are reliable
indicators of authorship.

Document by
A. Hamilton

Document by
J. Madison

Figure 4.4 Counting function words can give us an idea of the true author of a document.
 

https://github.com/jtwool/mastering-large-datasets
https://github.com/jtwool/mastering-large-datasets
https://github.com/jtwool/mastering-large-datasets
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laying around, feel free to fill it up. The code in this section will be able to process it
just fine—though it may take some time. Lazy functions are great at processing data,
but hardware still limits how quickly we can work through it. Another great option:
generate a tiny bit of data, finish the chapter, then generate more data and let the
code process it overnight.

 Unfortunately, because each author has provided us with so much information, we’ll
never be able to process it all in memory at once. So we’ll have to use lazy functions to
process it bit by bit. We’ll also use some of the techniques we learned in chapter 3:
breaking our large problem down into pieces we can solve with small, helper functions.

 First, let’s take a look at what we’ll need to do.

1 We want to eventually compare the ratio of a and the for each author.
2 To do that, we need to read in each file for each author.
3 We’ll also need a way to get word counts for a and the.
4 And to do that, we’ll need to break the poems into words.

Ultimately, our process is going to look like figure 4.5. First, we’ll read the files in.
Then, we’ll clean them so they’re nice workable lists of words instead of unstructured
poems. Then, we’ll filter them down to just the words in which we’re interested.
Finally, we’ll get counts and calculate a ratio.

4.4.2 Reading poems in with iglob

In section 4.2.3, we looked at iglob, a function for searching for files on a filesystem
and returning a list of matching paths as an iterable. Because our poets were generous
enough to provide us with reams of their unpublished works, we’ll want to use this
function to limit the overhead we need to spend storing these paths.

word_ratio()

read_poems()

word_counts()

clean_poems()

.32

The first thing we’ll need
to do is read the poems.

Then, we can get the word
counts of the target words.

Finally, we’ll get a float back,
representing the ratio
between the two words.

Next, we can clean the
poems—breaking them
into words and filtering
them down to desired words.

Lastly, we’ll take the ratio
of those counts to produce
a single ratio for the author.

Figure 4.5 Lots of small steps will add up to help us determine the author 
of the mystery poem.
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 A straightforward step like this is also something that’s good to get out of the way
first. To read in the poems by each author, let’s define two iterables using iglob: one
for each author. This is a quick two-liner, as we can see in the following listing.

    author1_poems = iglob("path/to/author_one/*.txt")
    author2_poems = iglob("path/to/author_two/*.txt")

4.4.3 A poem-cleaning regular expression class

Now that we have the poems, we’ll need a way to munge them into a workable data
format. As we’ve done before with text data, we’ll ultimately want to convert the long
string of text data we get when we open and read the poem files into a list of words.
Before that, however, we’ll want to remove all the punctuation using a regular expres-
sion. For poems, this would be especially important because poets are known for dis-
tinctive use of punctuation.

 Because we’ll be using a regular expression, we’ll want to create a class so that we
can compile that regular expression once and use it as many times as we’d like. We’ll
give that class an attribute with a compiled regular expression that matches all the
punctuation we want to remove and a method that uses that regular expression to
remove the punctuation. Since we’re using that method to make our text data easy to
work with, it also makes sense to add lowercasing in there to normalize our text, and
to split our words on whitespace.

 We can see how that would play out in figure 4.6, where we transform a poem into
our desired data structure. We start with the raw poem text, as the poet intended it,
but after it’s cleaned, the text is ready for us to analyze.

 Ultimately, we should end up with a class that looks like the following listing. In the
listing, I’ve chosen to remove all periods, commas, semicolons, colons, exclamation
points, question marks, and hyphens with the regular expression.

class PoemCleaner:
    def __init__(self):
        self.r = re.compile(r'[.,;:?!-]')    

    def clean_poem(self, fp):
        with open(fp) as poem:
            no_punc = self.r.sub("",poem.read())    
            return no_punc.lower().split()      

Listing 4.6 Listing the authors’ poems using iglob

Listing 4.7 A poem cleaner class

Compiles the regular 
expression to match 
all punctuation

Removes punctuation 
from the poem

Returns the no-punctuation 
poem lowercased and split 
into a list of tokens
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4.4.4 Calculating the ratio of articles

The next step we’ll work on, getting a ratio of articles, we’ll solve with two custom
functions: the filter function we’ve already looked at in this chapter and the iter-
tools.chain function we looked at in chapter 3, plus a new function from the toolz
library: frequencies. And all of this is going to be inside a wrapper function that we
can use to pass in our PoemCleaner class (figure 4.7).

 The first custom function we’ll need is a function to determine if a word should be
kept. We don’t want to spend time or memory counting all the words, because we’ll
only use a and the to determine authorship. For this, we’ll use a filter in conjunction
with a helper function to narrow a lazy sequence of all the words down to just a’s and
the’s. That helper function has to return True if a word is a or the, and False other-
wise. That helper function will look like listing 4.8.

PoemCleaner.clean_poem()

I held a jewel in my fingers
And went to sleep.
The day was warm, and winds were prosy;
I said: "'T will keep."

I woke and chid my honest fingers, --
The gem was gone;
And now an amethyst remembrance
Is all I own.

['i', 'held', 'a', 'jewel', 'in', 'my',
'fingers', 'and', 'went', 'to', 'sleep',
'the', 'day', 'was', 'warm', 'and',
'winds', 'were', 'prosy', 'i', 'said',
'"\'t', 'will', 'keep"', 'i', 'woke',
'and', 'chid', 'my', 'honest', 'fingers',
'the', 'gem', 'was', 'gone', 'and',
'now', 'an', 'amethyst', 'remembrance',
'is', 'all', 'i', 'own']

We start with a poem—in
the original format the
author wrote it.

Our clean_poem()
method implements a
regular expression split.

The classPoemCleaner
compiles a regular expression
to match the patterns we want
to split on.

After passing it through a
regular expression split,
we can break the poem

into words.

Figure 4.6 We can use a class containing a regular expression to transform a poem into a list 
of words.
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NOTE The function word method for detecting the true author of a text may
seem overly simplistic, but it’s not far removed from a technique that was
used in the most popular authorship analysis of all time: discovering the iden-
tity of the unattributed Federalist Papers. In that instance, a list of 30 function
words was used to identify James Madison as the sole or primary author of the
12 disputed essays.

def word_is_desired(w):
    return w in ["a","the"]     

Once we’ve got that function built, we can use it as the condition part of our filter
function. The input sequence for that filter is going to be our .clean_poem method
mapped across the sequence of poem paths. We’ll apply the itertools.chain func-
tion to the resulting sequences of words so we can treat them as one big sequence.

 At this point, we’ve got a way to get a sequence for each author’s uses of a and the.
Now we need to count them and find a ratio between them. For the counting, the
toolz library has a function frequencies that can do just that. It takes a sequence in
and returns a dict of items that occurred in the sequence as keys with corresponding
values equal to the number of times they occurred (figure 4.8). In other words: it pro-
vides the frequencies of items in our sequence.

 From those counts, we can write another small function to calculate the ratios.
That function needs to take a dict and return the value of the "a" key divided by the
value of the "the" key. Because we’re doing division, it’s prudent to use the .get
method of our dict with an ever-so-slightly larger than zero value so we don’t risk

Listing 4.8 Function to test if a word is a or the

word_ratio()

read_poems()

word_counts()

clean_poems()

.32

analyze_poems()

my_poems.txt
Our wrapper function will
take the same inputs as our
first function.

The wrapper function will
also provide the same
outputs as the last function.

We’ll wrap all our small
functions under one
“wrapper function” so
we can apply them all at
once in an easy way.

Figure 4.7 A large function will wrap all our smaller functions so we can readily apply our poem 
analysis pipeline.

We check if w is in the list containing 
"a" and "the" and return the result.
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dividing by zero. That helper function and the combined poem analysis functions
should look like the following listing.

def word_ratio(d):
    return float(d.get("a",0))/float(d.get("the",0.0001))

def analyze_poems(poems, cleaner):
    return word_ratio(
        toolz.frequencies(
            filter(word_is_desired,
                itertools.chain(*map(cleaner.clean_poem, poems)))))

To tie all of this together, we’ll need to create an instance of our PoemCleaner class
and apply our analyze_poems function to the iterables for each of our authors. Alto-
gether, we’ll have the code in the following listing. At the very end of the listing, I’ve
added a print statement that’ll show the authors’ different tendencies, as well as
the value found in the original poem. Running this script will tell you who the true
author is!

import toolz
import re, itertools
from glob import iglob

def word_ratio(d):
    return float(d.get("a",0))/float(d.get("the",0.0001))

Listing 4.9 Poem analysis function

Listing 4.10 Poem puzzle final script

frequencies()

"mississippi"

{"m":1,"i":4,"s":4,"p":2}

The input to our frequencies
function can be a sequence of
any type, such as a string.

The functionfrequencies
takes our sequence and returns

a containing all the uniquedict
elements in the sequence as keys

and the number of times they
occur as values.

Figure 4.8 The frequencies function takes a sequence and turns it into a 
dict of items from the original sequence and the number of times they occur.
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class PoemCleaner:
    def __init__(self):
        self.r = re.compile(r'[.,;:!-]')
    def clean_poem(self, fp):
        with open(fp) as poem:
            no_punc = self.r.sub("",poem.read())
            return no_punc.lower().split()

def word_is_desired(w):
    if w in ["a","the"]:
        return True
    else: return False

def analyze_poems(poems, cleaner):
    return word_ratio(
        toolz.frequencies(
            filter(word_is_desired,
                itertools.chain(*map(cleaner.clean_poem, poems)))))

if __name__ == "__main__":

    cleaner = PoemCleaner()
    author1_poems = iglob("path/to/author_one/*.txt")
    author2_poems = iglob("path/to/author_two/*.txt")

    author1_ratio = analyze_poems(author1_poems, cleaner)
    author2_ratio = analyze_poems(author2_poems, cleaner)

    print("""
    Original_Poem:  0.3
    Author One:     {:.2f}
    Author Two:     {:.2f}
    """.format(author1_ratio, author2_ratio))

With this script, we can parse a larger amount of data than we could handle in mem-
ory. Being able to do this is a key milestone in transitioning from a developer who can
only work with small data to a developer who can work with big(ish) data. As we saw in
this example with iglob and filter, laziness helps us a lot in this respect. Next, we’ll
see how laziness can help us in generating data.

4.5 Lazy simulations: Simulating fishing villages
The poetry puzzle covered in section 4.4 showed us how we can work with big data on
our local machine; however, we also can use the tools in this chapter for producing
big data.

SCENARIO An environmental conservation group has commissioned you to
design a simulation that illustrates the problem of overfishing. They have out-
lined a scenario involving four small villages and a lake. The people in each of
those villages have agreed to take only one fish per person per year; however,
some years a village will cheat and take twice as many fish as they’re allowed.
Each village has its own propensity for cheating, but if two villages get caught
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cheating in the same year, each village increases its propensity for cheating.
The villages will also grow each year. How many years can these villages survive?

For simulation problems like this, it’s often useful to program in a slightly different
way than we’ve been programming up to now. For simulations, we get a lot of value
from writing classes, which we haven’t talked about much outside of a way to compile
regular expressions. Classes are great because they allow us to consolidate the data
about each piece of the simulation (figure 4.9). In this specific simulation, we have
two actors that need special attention and deserve their own class:

1 The simulation as a whole
2 The villages

Considering the simulation as a class will give us a place to keep track of what year
we’re in, how many fish are remaining, and which villages are associated with the
simulation. It will give us an easy way to run lots of simulations in parallel, as we’ll
see later on.

Considering the villages as a class is useful for many of the same reasons. The villages
are all going to have their own unique bits of data, like a unique population and a
unique inclination toward cheating. The villages also will need to do certain things,
like increase population (and maybe increase their rate of cheating) each year.

 You may notice that breaking the problem up into two classes is similar to how we
were breaking large problems into chains of small helper functions in chapter 3.
Indeed, we’ll further break up the large simulation inside those two classes. The

Lake_Simulation()
Village() Village().go_fishing()

A Lake_Simulation()
class can handle the core
logic of running our
simulation.

Classes serve well as “actors” in a simulation because they
conveniently hold their own values and have their own methods.

A Village()
class can store all
the variables for our
villages and contain
methods to do all
of the village things.

A go_fishing()
method, attached to
the class,Village()
will take our villages
fishing every round of
the simulation.

Figure 4.9 We can use classes to represent actors in a complex simulation scenario, such as 
villages fishing a lake over time.
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Lake_Simulation class will get a method for handling the simulation itself, and the
fishing villages will get methods for fishing and updating.

4.5.1 Creating a village class

Between the villages and the simulation, the village is a smaller chunk of work, so let’s
start there. For the villages, we’ll create a class that has an attribute to store its popula-
tion and an attribute to store its cheating rate (figure 4.10). Each of these two attri-
butes will be unique to each village, and we don’t want to have to set them ourselves
for each simulation, so we’ll use a random variable in their place. I’m going to keep
the villages small—between 1,000 and 5,000—and the amount of cheating relatively
low—between .05 and .15.

To generate random numbers for the population and cheat rate, we’ll need to import
Python’s random module and use its uniform function, which selects a value between
two points with uniform likelihood. In other words, every number in that range has
the same likelihood of occurring. We can call the uniform function for both popula-
tion and cheat rate, as we see in the following listing.

import random
class Village:          
  def __init__(self):     
    self.population = random.uniform(1000,5000)       
    self.cheat_rate = random.uniform(.05,.15)      

Listing 4.11 The beginnings of a Village class

Village().go_fishing()

Village().update()

Village().population
Village().cheat_rate

Our class willVillage()
contain everything our
simulation needs to know
about the village.

We’ll have two methods in our class: one
for going fishing and one for updating the
village at the end of each round.

We’ll also have two attributes in our class,
one representing the village population and
another representing how often that village
cheats and overfishes.

Village()

Figure 4.10 The Village class represents everything the village is and can do, including 
going fishing and growing.

es a
lage
lass

Customizes what happens 
when the class is initialized Gives the class a population 

value uniformly selected 
between 1,000 and 5,000

Gives the class a cheating 
rate between 5% and 15%
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This lays out the core of the Village class, and we can move on to some of the stuff
the village will do: like going fishing and updating itself every round. Let’s take a look
at going fishing first.

GONE FISHING: A FIRST METHOD FOR OUR SIMULATION OBJECT

Every year, when a village goes fishing, it has the option to cheat, and all villages cheat
at a different rate. To account for that, we’ll generate a uniform random variable
between 0 and 1. If that number is below the cheat rate, the village will cheat; other-
wise, it’ll play by the rules. When a village cheats, it’ll take two fish per person. When it
doesn’t, it’ll take only one fish. And then lastly, because our simulation will need to
know if our village cheated and how many fish it took, we’ll return the amount of fish
taken and if the village cheated, as shown in the following listing.

  def go_fishing(self):
    if random.uniform(0,1) < self.cheat_rate:      
      cheat = 1
      fish_taken = self.population * 2
    else:                                
      cheat = 0
      fish_taken = self.population * 1
    return fish_taken, cheat        

A YEARLY UPDATE FUNCTION FOR THE VILLAGE CLASS

After going fishing, each village also will change a little each year. Every year, the pop-
ulation will grow, and, depending how many villages cheated that year, a given village
may increase the rate at which it decides to cheat. To keep things simple, our villages
will all grow at a rate of 2.5% each year.

 To decide whether or not we increase the cheat rate, we’ll need to know how many
cheaters there were this year of the simulation. Because that information is contained
inside the simulation class, we’ll need to pass the simulation to the .update method,
as shown in the following listing.

  def update(self, sim):
    if sim.cheaters >= 2:      
      self.cheat_rate += .05
    self.population = int(self.population*1.025)         

4.5.2 Designing the simulation class for our fishing simulation

Those two methods, .go_fishing and .update, round out our Village class. We’ll
use that class to represent villages in our simulation (figure 4.11). Additionally, as
mentioned earlier, we’ll need a class for the simulation itself. This class will keep track
of the simulation-level variables, such as what year it is and how many fish remain.

Listing 4.12 A method for going fishing

Listing 4.13 Updating our villages

Checks if the village will 
cheat; if it does, apply 
the cheat rules.

If the village doesn’t cheat, 
apply the standard rules.

At the end, return the fish the village 
took and if they cheated or not.

If we find more than two cheaters, 
increase the cheat rate.

Increase the population 
no matter what.
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Additionally, our simulation class will have a rather large method for running the sim-
ulation itself.

SETTING UP THE SIMULATION WITH THE .__INIT__ METHOD

The start of our simulation is its .__init__ method, which will set up the simulation
(listing 4.14). To set up the simulation, we only need four things:

1 The villages—Represented by a list of village objects, in our case 4
2 The fish—In this case, just the number of fish
3 A start year—Also a number, in our case 1
4 The number of cheaters—Again, an integer indicating the number of cheating

villages

We’ll assign each of these variables to the simulation class itself, so as our simulation
changes, the variables will carry with it.

class Lake_Simulation:
  def __init__(self):
    self.villages = [Village() for _ in range(4)]
    self.fish = 80000
    self.year = 1
    self.cheaters = 0

Listing 4.14 Setting up the simulation

Village().update() Village().go_fishing()

Finally, our villages
Lake_Simulation()are ready to go

fishing again.

Then we update
each of the villages.

If the simulation isn’t
ready to end, we move
on to the update step.

Each round of our
simulation is a cycle.

First, the villages
go fishing.

Figure 4.11 Our simulation is a cyclical process in which we go fishing, check if we need 
to stop the simulation, update the simulation if we’ll keep going, and then go fishing again.
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WRITING SIMULATION LOGIC IN OUR .SIMULATE METHOD

The simulation logic will go in the simulation class’s .simulate method. That means
this method will be responsible for

 finding the results of a year of fishing
 updating the simulation after each year
 ending the simulation if we run out of fish
 ending the simulation if we survive “long enough”

Because our simulation can go on forever if the lake never gets overfished, we’ll start
our .simulate method with an infinite loop; in this case, we’ll use an infinite for loop:

for _ in itertools.count():

The itertools.count() function returns a generator that produces an infinite
sequence of increasing numbers (1, 2, 3, 4, . . . 1000, 1001, 1002, . . . infinity). By
using “_ ” we tell Python to ignore the value returned by the for loop, since we won’t
be needing it.

VILLAGES GOING FISHING: INTRODUCING METHODCALLER FOR MAP AND CLASSES

With our loop set up, we can start finding the results of our year of fishing. For our
simulation, each of our villages goes fishing individually. That’s why we set up the vil-
lage classes with a .go_fishing method. To have all the villages go fishing, we can
map their .go_fishing method across the list of classes in our simulation’s .villages
attribute.

 To do this, we’ll need the operator.methodcaller function. methodcaller takes a
string and returns a function that calls the method with the name of that string on any
object passed to it. Because the map and reduce style of programming we’re looking
at in this book is so function-oriented, being able to call class methods using a func-
tion is extremely helpful This capability allows us to use functions like map and filter
on them.

 From there, because our .go_fishing method returns a tuple of fish caught and a
number indicating if that village cheated or not, our output from mapping this func-
tion across a list of villages will look as if we used the zip function on a sequence of
fish caught and a sequence of cheating indicators. Knowing this, we can unzip the
sequence of tuples and take the sums of the individual sequences, which will give us
the total number of fish caught and the total number of cheaters.

 Unzipping is the opposite of zipping. Whereas zipping takes two sequences and
returns a list of tuples, unzipping takes a single sequence and returns two. We can call
unzip by putting a star in front of the list when we call the zip function: zip(*my_
sequence). We can see unzip and the rest of the first phase of our simulate step in the
following listing.
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for _ in itertools.count():
        yearly_results = map(methodcaller("go_fishing"), self.villages)
        fishes, cheats = zip(*yearly_results) 
        total_fished = sum(fishes)         
        self.cheaters = sum(cheats)     

After we figure out how many cheaters there were and how many fish were caught,
we’ll check if the simulation should end or if we should keep going. For this, we’ll use
two if checks, each of which will break our infinite for loop.

1 The first if check will check if we’ve made it through 1,000 simulated years.
2 The second if check will check if all the fish have been fished.

If each of these conditions is triggered, we’ll print a message to the screen explaining
what happened. If we wanted to store the results of our simulation, this would be a
good place to write our simulation results to a file. The following listing shows what
this short bit of our code looks like.

if self.year > 1000:
    print("Wow! Your villages lasted 1000 years!")
    break
elif self.fish < total_fished:
    print("The lake was overfished in {} years.".format(self.year))
    break

FINAL CALCULATIONS: RESOLVING THE YEAR

If we make it past the year-end checks, we can update our simulation for the year.
Updating the simulation involves removing the fished fish from the remaining fish,
repopulating the fish some amount (fish do make more fish, after all), and updating
all the villages. If you’d like, we also may want to add a print statement here so we can
see what happens year over year.

 To update the amount of fish remaining, we’ll subtract total_fished from
self.fish and then increase self.fish by 15%. To update all the villages, we’ll again
map methodcaller across all our villages. This time, however, we’ll call for the
.update method instead of .go_fishing. Lastly, for a print statement, I recommend
including at least the year and the number of fish remaining. See the one shown in
the following listing.

Listing 4.15 All the villages go fishing

Listing 4.16 Checking if the simulation should be over

Unzips the yearly_results into 
two lists: fishes and cheats

The fishes list contains the number 
of fish fished by each village, its 
sum being the total fish fished.

The cheats list contains a 1 for each 
village that cheated, its sum being 
the number of cheaters.
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else:
    self.fish = (self.fish-total_fished)* 1.15       
    map(methodcaller("update"), self.villages)                   
    print("Year {:<5}   Fish: {}".format(self.year,
                                                 int(self.fish)))
            self.year += 1

And with that, we’ve completed our fishing simulation! Initialize a Lake_Simulation
class and call the .simulate method a few times to see what happens. You should get
a different number of years survived each time you run the simulation. The following
listing shows the full simulation code.

import random, itertools
from operator import methodcaller

class Village:
  def __init__(self):
    self.population = random.uniform(1000,5000)
    self.cheat_rate = random.uniform(.05,.15)

  def update(self, sim):
    if sim.cheaters >= 2:
      self.cheat_rate += .05
    self.population = int(self.population*1.025)

  def go_fishing(self):
    if random.uniform(0,1) < self.cheat_rate:
      cheat = 1
      fish_taken = self.population * 2
    else:
      cheat = 0
      fish_taken = self.population * 1
    return fish_taken, cheat

class Lake_Simulation:
  def __init__(self):
    self.villages = [Village() for _ in range(4)]
    self.fish = 80000
    self.year = 1
    self.cheaters = 0

  def simulate(self):
    for _ in itertools.count():
        yearly_results = map(methodcaller("go_fishing"), self.villages)
        fishes, cheats = zip(*yearly_results)
        total_fished = sum(fishes)
        self.cheaters = sum(cheats)

Listing 4.17 The .simulate method

Listing 4.18 Full fishing simulation

Updates the fish 
remaining

Updates the villages by mapping the
“update” method across them
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        if self.year > 1000:
            print("Wow! Your villages lasted 1000 years!")
            break
        if self.fish < total_fished:
            print("The lake was overfished in {} years.".format(self.year))
            break
        else:
            self.fish -= total_fished
            self.fish = self.fish*1.15
            map(lambda x:x.update(self), self.villages)
            print("Year {:<5}   Fish: {}".format(self.year,
                                                 int(self.fish)))
            self.year += 1

if __name__ == "__main__":
    random.seed("map and reduce")
    Lake = Lake_Simulation()
    Lake.simulate()
    Lake.simulate()
    Lake.simulate()
    Lake.simulate()

We can run this simulation a few times (commenting out or changing the random
seed each time) to see different results. The output of our simulation will be years,
printed to the terminal, with the amount of fish remaining in that year. Usually, we’ll
see our simulation end after around 10 years, as shown in listing 4.19. Sometimes,
though, it will go on for thousands of runs.

Year 1      Fish: 77183    
Year 2      Fish: 70035    
Year 3      Fish: 65724    
Year 4      Fish: 60766    
Year 5      Fish: 49965    
Year 6      Fish: 42644    
Year 7      Fish: 30315    
Year 8      Fish: 20046    
Year 9      Fish: 8327     
The lake was overfished in 10 years

Simulations and random seeds
When we run simulations, we’ll use lots of random number generators. Randomness
in our code can cause confusion when we share it with others and they’re expecting
to get the same results we got. One way we can get around this is by using a random
seed. By setting a seed, we can ensure that we’ll get effectively random numbers,
but that those numbers will be in the same sequence every time. Any other user run-
ning the same code with the same random seed will get the same results we do.

Listing 4.19 Fishing scenario output

In most runs of the 
scenario, the lake 
will be overfished in 
a dozen or so years.
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These long runs represent the scenarios in which the villages avoid cheating during
the early stages of the simulation. You can play around with the cheat rate, number of
fish taken, and fish population growth rate to see how the simulation behaves under
different assumptions.

4.6 Exercises

4.6.1 Lazy functions

Lazy functions are common when we use a map and reduce style in Python. Which of
the following functions are lazy?

 map 
 reduce 
 filter 
 list 
 zip 
 sum 
 range 
 len 

4.6.2 Fizz buzz generator

A classic toy programming problem is the fizz buzz problem, where we want to replace
any number divisible by 3 with fizz and any number divisible by 5 with buzz. If a num-
ber is divisible by both fizz and buzz, it should be replaced with fizz buzz. We imple-
mented a version of this using classes in chapter 2. Create a generator that solves this
problem. Hint: Remember, you can use the modulo operator (%) to check if division
produces a remainder.

4.6.3 Repeat access

When we use a built-in generator function such as range, we can only iterate through
it once. Why is that so?

4.6.4 Parallel simulations

There are many ways to run several simulations in parallel. One way is to map the
.simulate method from our Lake_Simulation class over a sequence using the with
Pool() as P: construction we introduced in chapter 2. Modify the code from listing
4.18 so you can run simulations in parallel.

4.6.5 Scrabble words

The popular game Scrabble involves spelling words by placing tiles on a board. Spell-
ing long words and words with more rare letters in them earns you more points. In a
simplified version, Z is worth 10 points; F, H, V, and W are worth 5; B, C, M, and P are
worth three; and all other letters are worth one point. Using the functions map and
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filter, reduce this list of words to only the ones that are worth more than eight
points: zebra, fever, charm, mouse, hair, brill, thorn.

Summary
 Lazy functions are those that evaluate only when we need the values they

return—no sooner and no later. We can use lazy functions like map, filter, zip,
and iglob to work with massive amounts of data on our laptops.

 Python implements laziness through iterators, which we can create ourselves,
receive from functions, or build with convenient generator functions and
statements.

 We can create generators with functions using yield statements or through
concise and powerful list comprehension-like generator expressions.

 We can only go through iterators one way; once we’ve seen an element from an
iterator, we never have access to that same element again.

 We can use the filter function to conveniently gather a subset of a list. There’s
a whole family of functions just like the filter function: filterfalse, valfilter,
keyfilter, and itemfilter.

 We can use zip to combine two lists into a single sequence of tuples—a handy
trick when combined with map.

 We can use frequencies from the toolz library to get counts of the unique ele-
ments of a sequence.

 We can apply lazy functions and generators toward solving data-intensive prob-
lems, such as text analysis and simulations.

 We can use methodcaller to map an object’s method over a sequence of that
object.
 



Accumulation
operations with reduce
In chapter 2, we learned about the first part of the map and reduce style of pro-
gramming: map. In this chapter, we introduce the second part: reduce. As we noted
in chapter 2, map performs N-to-N transformations. That is, if we have a situation
where we want to take a sequence and get a same-sized sequence back, map is our
go-to function. Among the examples of this that we’ve reviewed are file processing
(we have a list of files and we want to do something to all of them; discussed in
chapter 4) and web scraping (we have a list of websites and we want to get the con-
tent for each of them; discussed in chapter 2).

 In this chapter, we’ll focus on reduce for N-to-X transformations; that is, situa-
tions where we have some sequence but we want to get something back besides
another same-sized sequence, usually a sequence of a different size or possibly not
even a sequence at all. Note, however, that situations do exist where we’ll actually

This chapter covers
 Recognizing the reduce pattern for N-to-X data 

transformations

 Writing helper functions for reductions

 Writing lambda functions for simple reductions

 Using reduce to summarize data
94
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want to use reduce to get back a sequence of the same size. We’ll look at all of these
situations, learning about reduce and using it in some common transformations that
you’re already familiar with. Learning reduce will give us a handy tool to use in situa-
tions where map isn’t appropriate, but where we still want to benefit from using a com-
mon programming pattern.

5.1 N-to-X with reduce
When we say that reduce is a function for N-to-X transformations, we mean that when-
ever we have a sequence and want to transform it into something that we can’t use map
for, we can happily use reduce. This is one of the reasons why map and reduce pair so
neatly together: map can take care of most of the transformations in a very concise
manner, whereas reduce can take care of the very final transformation, albeit in a
somewhat less elegant fashion.

 An example of an N-to-X transformation that you’re already familiar with, and that
we’ll take a look at in more detail in section 5.2, is the summation function. In math,
this is typically represented with a Σ. In Python, we have access to the sum function
from the base library. The summation function takes a sequence of numbers (inte-
gers, floats, imaginary numbers) and returns a single number that is the total of all the
numbers in the sequence added together (figure 5.1).

For example, if we had a sequence with the numbers 10, 5, 1, 19, 11, and 203, we
could sum them up and get a single number back. This would take us from our six
original numbers down to only one resulting number. We would have transformed
our data from size N (6) down to X (1). This is the essence of the reduce pattern: tak-
ing a sequence and transforming it into something else.

55

[1, 2, 3, 4, 5,
6, 7, 8, 9, 10]

The sum function is a
classic reduction: we start
with a sequence of
numbers and end up with
just a single output.

The output of our reduction is
dependent on the helper
function we pass to our
reduction. Passing an addition
function results in summation.

reduce
add()

Figure 5.1 The sum function is a common example of the reduce pattern 
that most people already know.
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5.2 The three parts of reduce
Summing a sequence of numbers with reduce is simple, but it will still require all
three parts of a reduce function (figure 5.2):

1 An accumulator function
2 A sequence
3 An initializer

The accumulator function does the heavy lifting for reduce. It’s a special type of helper
function, like the ones we were using for map in chapters 2, 3, and 4. A sequence is an
object that we can iterate through, such as lists, strings, and generators. And our ini-
tializer is the initial value to be passed to our accumulator. In most implementations
of reduce, this parameter is optional.

 If we were to sum up a sequence of numbers, we would want

1 to have our accumulator function be an addition function
2 our sequence to be the sequence of numbers we’d like to sum
3 our initial value to be 0 to start counting at zero

In Python, that may look something like the following listing. To run this code, you’ll
need to define an addition function—my_add. We’ll do that in the next subsection on
accumulation functions.

from functools import reduce   

xs = [10,5,1,19,11,203]     

reduce(my_add, xs, 0)   

Listing 5.1 The three parts of reduce

reduce(add, [1,2,3], 0)

The reduction function requires an
accumulation function passed
to it in first position. This
function accumulates
intermediary values.

The second parameter is
a sequence of values that our
accumulation function will
reduce across.

In last position,
reduce takes an
initializer value.
The initializer value
acts as a starting
point for our
reduce function.

Figure 5.2 A reduce function has three parts: an accumulator, which specifies 
reduce’s behavior, a sequence, which we reduce over, and an initial value, which we 
use to start our reduce operation.

First, we need to import reduce 
from the functools library.

Then, we can set up our data to sum up.

When we call reduce, notice how the accumulator 
comes first, then the sequence, then the initial value.
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Listing 5.1 provides an example of how summation with reduce may look. Two things
are worth noting about this short bit of code. First, we need to import reduce from
the functools library. The reduce function is not a default import like map, though it is
available with any distribution of Python. In deprecated versions of Python (2.7 and
below), reduce was available by default.

Second, the order in which we place our parameters for reduce is specific. Like map,
the accumulator or helper function comes first, then the sequence, and then our ini-
tializer comes last. The initializer comes last because it is an optional parameter.

5.2.1 Accumulation functions in reduce

Accumulator functions are all of a common prototype. They take an accumulated
value and the next element in the sequence and return another object, typically of the
same type as the accumulated value. For example, in our sum function, we’re going to
want to take in the sum up to that point as our accumulated value, and the next ele-
ment in the sequence as our next value, and add them together. The code for that will
look like the following listing.

def my_add(acc, nxt):    
    return acc + nxt     

The one thing you’ll want to note about this one-line function is the variable names.
My preferred convention labeling the variables to a reduce accumulator function is to
use acc for the accumulated value and nxt for the next value; however, there are oth-
ers. Some more concise teams like to use a to represent the accumulator and b to rep-
resent the next value. You also may see left used to represent the accumulator and
right used to represent the next value. To understand why the accumulator function
needs to take in an accumulated value and the next element, it helps to understand
how reduce does its transformations.

Removing the reduce function from base Python
In 2002, the creator of Python, Guido van Rossum, referred to including many of the
approaches in this book as a mistake. He had the view that these approaches
harmed readability and that the reduce method in particular was hard for most people
to understand. I disagree. Reduce simply is not widely taught. Additionally, the rise
of parallel and distributed computing makes these tools extremely valuable.

In this chapter, you’ll learn about a powerful, versatile tool that the Python language
maintainers don’t want you to know about.

Listing 5.2 An accumulator function for summation

Our my_add function takes in an accumulated 
value (acc) and the next element (nxt).

It returns those two values added together, 
which will be another number, just like acc.
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HOW REDUCE WORKS

In its simplest implementations, reduce loops over a sequence, processing each ele-
ment in conjunction with an accumulated value. This accumulated value starts as
either the initializer value, if we provide one, or the first element of the sequence if we
do not. For example, when reduce is summing up 10, 5, 1, 19, 11, and 203, it’s adding
10 to 0 to get 10, then adding 5 to the current total (10) to get 15, then adding 1 to
that to get 16, then adding 19 to that to get 35, and so on until all the numbers are
processed (figure 5.3). The total value is the accumulator value. The next value in the
sequence is the next value.

When these data structures and functions are simple, reduce can seem unnecessary;
however, as the data structures, and the transformations we want to make of them,

Reducing from left to right
Because reduce loops over a sequence from left to right, some teams, as we just
mentioned, will call the accumulated value in their accumulator helper functions left
and the next value passed to those functions right. Versions of the reduce function
in other programming languages can reduce from right to left instead. In these situ-
ations, teams can easily tell which functions were written for left-to-right reductions
and which were written for right-to-left reductions.

[10, 5, 1, 19, 11, 203]

add(10, 5) => 15

add(15, 1) => 16

add(16, 19) => 35

add(35, 11) => 46

add(46, 203) => 249

The function works its wayreduce
through the sequence from left to
right, calculating intermediate values
and applying the accumulation
function on each new combination.

The final value returned is the
accumulated value after we process
all the values in the sequence.

Figure 5.3 The reduce function works by processing each element of a sequence and joining 
it with an accumulator value.
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become more complex, we can use reduce to make our transformations more trans-
parent. More sophisticated implementations of reduce, like we’ll see in chapter 6, also
allow for parallel reductions, which provide the same performance improvements we
saw with parallel map, with little to no rewriting of our code.

TESTING OUR SUMMATION FUNCTION

At this point, we have a working summation reduction. Feel free to run the combined
code from listings 5.1 and 5.2. If you wrap the reduce call in a print function, you
should see an integer printed to your screen. Unlike map and the lazy data types we
looked at in chapter 4, reduce evaluates when it’s called.

5.2.2 Concise accumulations using lambda functions

As you may have been thinking while typing up the code for listing 5.2, sometimes it
seems silly to create a whole function for a one-line statement like adding together
two numbers. In cases like this, it’s common to use a lambda function instead of defin-
ing a function.

 Lambda functions are also known as anonymous functions because we don’t save
them to the name space. Although we’re perfectly free to call our my_add function
whenever and wherever we want, the anonymous function only exists inside of the
reduce call and will not be available beyond the scope of that single command. For
small operations, this is really nice. We don’t even have to worry about naming these
functions. For larger operations, we’d rather have a callable function.

 Lambda functions in Python are defined in three parts (figure 5.4):

1 The lambda keyword
2 The parameters the function will take
3 A colon and the statement that the function will execute

For example, our my_add function could be a simple lambda function.

>>> lambda acc,nxt: acc + nxt
<function <lambda> at 0x000002D55AFC6AE8>

Our function canlambda
take any number of
comma-separated
parameters.

The functionlambda
behavior is defined with a
single Python expression.

The output is a function object
named —we canlambda
either assign this to a variable
for future use or let it
disappear if we only want to
use it once.

Figure 5.4 We can use lambda 
functions in place of standard 
functions in map or reduce
operations when we won’t need 
to use the function’s behavior 
again.
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You’ll notice the lambda keyword is the first thing in our statement, followed by our
two parameters: acc and nxt. The two parameters are separated by a comma, just like
they would be in a normal function declaration. Unlike a function declaration, how-
ever, we won’t find any name for the function. Additionally, we declare the function’s
behavior immediately after the parameters on the same line, only separated by a colon
and a space. Lastly, you’ll notice that this lambda statement returns a function. We could
assign this to a variable and use it like a normal function if we wanted to; however, usu-
ally we’ll just want to be done with our anonymous, throwaway lambda function.

 The best use for a lambda function is to declare it right inside our reduce call. To
do that, we just write the lambda statement in the first position of our reduce function
where the accumulator function goes, leaving the latter two positions for our
sequence and our initializer. For example, we could simplify the code from listings 5.1
and 5.2 down to the code in the following listing using a lambda function.

from functools import reduce

xs = [10, 5, 1, 19, 11, 203]
print(reduce(lambda acc, nxt: acc+nxt, xs, 0))    

This code achieves the same end as our previous code. This time, though, we don’t
need to save space for our addition function. In this specific case, using the lambda
function works great because our task at hand is small: we’re adding two numbers.
Other useful cases for using lambdas are when we want to expose class methods or
attributes.

 For example, we can use a lambda function to expose the .get method from the
dict class and sum the price of several products. We can see this play out in the follow-
ing listing.

from functools import reduce

my_products = [ 
    {"price": 9.99,     
     "sn": '00231'},    
    {"price": 59.99,  
     "sn": '11010'}, 
    {"price": 74.99, 
     "sn": '00013'},  
    {"price": 19.99,      "sn": '00831'},
]

reduce(lambda acc, nxt: acc+nxt.get("price", 0), my_products, 0)    

Listing 5.4 shows a classic lambda function: we need to do something that’s a bit
nuanced, like getting the value of the price key of a dict and adding it to another

Listing 5.3 Lambda function inside reduce for summation

Listing 5.4 Lambda functions can be used to expose class methods

Our lambda addition 
function goes in the 
first position of our 
reduce statement.

Our product data is 
stored in dicts, each 
containing a price and 
a serial number (sn).

We can call the .get
method of each dict in
the lambda function to

add the prices.
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value, but not something that we’ll want to necessarily ever do again. Our lambda
function is still very readable, and it would feel silly to create a whole function to get a
value from a dict and add it to another value.

5.2.3 Initializers for complex start behavior in reduce

The last piece of the reduce puzzle is the initializer parameter. The initializer is the
value that our reduce operation will use as the very first accumulated value. We can
think of it as inserting that value at the head of our sequence and shifting all the other
values to the right by 1 (figure 5.5).

For our summation reduction, adding an initializer value of 10 would increase our
entire reduce by 10. Instead of starting with the first value (the default) or with zero,
we would start adding to 10. This might be useful if we wanted to add a $10 handling
fee to all of the orders, for example.

 Most often though, we’ll want to use an initializer not when we want to change the
value of our data but when we want to change the type of the data. By seeding our
reduce with a value of a different type, our accumulator function can expect two dif-
ferent type parameters, even when we have a list in which all the values are of the same
type. We can see this play out if we change the integer 0 in our summation reduction
to a float 0, 0.0, as shown in the following listing.

0[10, 5, 1, 19, 11, 203]

add(10, 5) => 15

add(0, 10) => 10

add(15, 1) => 16

add(16, 19) => 35

add(35, 11) => 46

add(46, 203) => 249

At the beginning of our operation, an initializer valuereduce
is passed in the first position to our accumulator function in
conjunction with the first element of our sequence.

Otherwise, the reduction evaluates as normal—applying the
accumulator function iteratively across the sequence.

Figure 5.5 An initializer value shifts all the values to the right by 1, changing the start 
value of the reduce operation.
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from functools import reduce

xs = [10, 5, 1, 19, 11, 203]

print(reduce(lambda acc, nxt: acc+nxt, xs, 0.0))     

Inserting a float into our summation reduction, as seen in listing 5.5, changes the
eventual output type of our summation to a float. This happens because a float plus an
integer always returns a float in Python. This effect cascades across our reduction
because the accumulator function always has a float for its accumulator parameter
(figure 5.6).

This pattern, where we use the initializer to alter the type of our sequence, is going
to be a common occurrence. We’ll often want our accumulator to take and return a
type that is different from the type of elements that are in our list. This represents
a wider variety of transformations than we could achieve with just a single data type.
We’ll look at an example of that pattern shortly in section 5.3.2 and again later in
this chapter.

Listing 5.5 Seeding a summation function with a float

Changing the last 
parameter from an 
integer (0) to a float (0.0) 
changes the output

0.0[10, 5, 1, 19, 11, 203]

add(10.0, 5) => 15.0

add(0.0, 10) => 10.0

add(15.0, 1) => 16.0

add(16.0, 19) => 35.0

add(35.0, 11) => 46.0

add(46.0, 203) => 249.0

Changing the type of our initializer can cause
the type of our output to change.reduce

The value in the first position will always
be a float because our accumulator
always receives the same two types.

Our accumulator
function, given a float
and an integer, will
always return a float.

This carries all the way through our
reduction until the end, when a float is
returned as our ultimate value.

Figure 5.6 The type of the initializer often determines the behavior of our accumulator function.
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5.3 Reductions you’re familiar with
Having looked at the basics of reduce with the summation function, let’s look at two
more reductions that you’ve already seen in this book:

1 filter

2 frequencies

We explored both functions in chapter 4. The filter function returns a list of items
that evaluate True for a given condition. The frequencies function returns a dict
whose keys are the unique elements of a list and whose values are the counts of those
items in the list.

5.3.1 Creating a filter with reduce

For our filter reduction, let’s perform a filter operation that returns only even
numbers. That way, we can compare this code to some of the examples we worked on
in chapter 4. Before diving straight into the reduction, however, we should think
about what this reduction is going to look like (figure 5.7).

The filter function starts with a sequence of some sort, so we know that it’s a good
candidate for reduction on that ground. Our output data in this instance is going to
be a list of a length equal to or less than that of our previous sequence. For example, if
we have a sequence where all the numbers are 2 (an even number), then our reduc-
tion should return the same sequence as a list. In contrast, if all the numbers are odd,
our reduction should return an empty list.

reduce(keep_if_even, [1,2,3,4,5,6,7,8,9], [])

Our filter will take a list of some sizereduce
and return a smaller (possibly empty) list.

The keep_if_even()
accumulator function will add
only the even numbers to our
accumulated list.[2,4,6,8]

[1,2,3,4,5,6,7,8,9]

reduce
keep_if_even()

Figure 5.7 The filter reduction is an N-to-X transformation from a list of 
some size to a list of some smaller or equal size.
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 Thinking this through gives us some sense of how our reduction needs to behave
and how we need to set it up. We know we’re going to need to be able to return an
empty list in some cases, so it makes sense to initialize our reduction with an empty
list. The rest of our reduction is going to depend on the accumulator function we
design. Because we’re attempting to filter down to just the even numbers, I’m going to
call this function keep_if_even.

 The keep_if_even function is going to need to take in two things:

1 An accumulated value (a list of even numbers)
2 The next value in our sequence

The function will also need to return either the original accumulated value, if the
next value is not even, or the accumulated value plus the new value, if the next value is
even. This function is implemented in the following listing.

from functools import reduce

xs = [1, 2, 3, 4, 5, 6, 7, 8, 9]

def keep_if_even(acc, nxt):       
    if nxt % 2 == 0:           
        return acc + [nxt] 
    else: return acc                  

print(reduce(keep_if_even, xs, []))   

Much of the code in listing 5.6 will be similar to code you’ve seen before, in either this
chapter or chapter 4. One important thing to point out, however, is that we use the
construction acc + [nxt] instead of acc.append(nxt). We first used the acc and nxt
parameter names in listing 5.2 of this chapter, with acc representing the accumulated
value and nxt representing the next element in our sequence.

 We don’t use the .append method here because although .append is the preferred
way of adding values to a list, our accumulator function will always need to return a
value. By design, the .append method modifies the list in place and returns None. This
forces us to use acc + [nxt], which returns a new list.

 You’ll also note that this filter works as desired on the edge cases identified a few
paragraphs ago. If we pass in a list of all 2s, we’ll get the same-sized list back. If we pass
in a list of all odd numbers (say, 3s), we’ll get an empty list back.

5.3.2 Creating frequencies with reduce

The next type of reduction that we’ll tackle is the frequency reduction. Frequency,
which we saw in chapter 4 as frequencies, is a way of counting the elements of a
sequence. Again, let’s stop to think about the N-to-X transformation that’s going on in

Listing 5.6 An is it even? filter reduction

Our accumulator function expects 
an accumulated value (a list) and 
the next item (a number).

Checks if the next 
item is even

If it is, we add it to our accumulator 
and return a new list.

If it is not, we return the 
original accumulator.
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this function. We’ll start with a sequence (N), and we want to end up with a dict with
some number of keys, each corresponding to a unique element in the sequence, and a
value totaling their count within the sequence (figure 5.8).

The accumulator function for our frequency reduction will take a dict as an accumu-
lated value and a miscellaneous element as our next value. It will have to return a dict
as well so that, as we move through our sequence, we can ensure we always have a
dict as our accumulated value. It also will have to count the element. To do this, we’ll
increment the value of that element as a key by 1. Also, this time, let’s wrap our reduce
operation in a function so we can reuse it.

 Listing 5.7 provides the code for the accumulator and the reduction, along with
test data and some print statements that demonstrate our function is working as
desired. In those statements, we can see that our frequencies function can be used to
count up sequences of all different types. We’re able to do this because reduce doesn’t
care what type of objects we’re iterating over and because our accumulation function
doesn’t rely on the objects in a sequence being of a specific type. We also see the

reduce(make_counts, [1,2,3,4,5,6,7,8,9], {})

Our frequencies operation will take a sequencereduce
of elements and return a with those elements asdict
keys and their counts as values.

The make_counts
function has to be
responsible for
adding the keys
and counting the
objects in the
sequence.

Notice how the resulting data structure is
of the same type as the initializer value and
not the same type as the sequence we input.

{"A":4, "B": 1, "C": 2}

["A","B","C","A",
"A","C","A"]

reduce
make_counts()

Figure 5.8 Our frequency reduction transforms a list into a dict with keys 
for each unique element and values totaling their counts. We need to initialize 
with a dict because the accumulation function takes two parameters of 
different types.
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Ret
accu
valu

en
importance of initializing our reduction with an empty dict so we can use the .get
method from the start.

from functools import reduce

def make_counts(acc, nxt):       
    acc[nxt] = acc.get(nxt, 0) + 1      
    return acc                      

def my_frequencies(xs):                   
    return reduce(make_counts, xs, {})      

xs = ["A", "B", "C", "A", "A", "C", "A"]
ys = [1, 3, 6, 1, 2, 9, 3, 12]

print(my_frequencies(xs))
print(my_frequencies(ys))
print(my_frequencies("mississippi"))

5.4 Using map and reduce together
At this point, we’ve covered the basics of reduce. If you can decompose a problem
into an N-to-X transformation, all that stands between you and a reduction that solves
that problem is a well-crafted accumulation function. That said, I’d be remiss if we
wrapped up our discussion of reduce without discussing how we can use it in conjunc-
tion with map in the eponymous map-reduce pattern.

 So far, we’ve focused on situations where at least some of the data we want to end
up with comes directly from our sequence.

1 In the sum reduction (listing 5.3), we needed the values in the list.
2 In the filter reduction (listing 5.6), we wanted to end up with the values that

met a given condition.
3 In the frequency reduction (listing 5.7), we used the sequence elements as keys

for our dict.

This is not always the case. Sometimes we don’t want to work with the data in our
sequence, only data that is somewhat related to our sequence. The classic example is
that we have a sequence of file paths and want to open those files and do something
with them. We saw that in chapter 4 in the poetry puzzle example. In that example, we
had a bunch of files; however, it was the content of those files that was interesting to
us, not the files themselves.

 Another version of this problem could be a twist on the Scrabble exercise at the
end of chapter 4. What if instead of filtering our list down to the words that met some
point threshold, we summed all the points represented by the words in a list? In that
example, the list may contain the words we’ve scored to date, and their sum would
equal our total score. To find our total score, we want to convert the words to their

Listing 5.7 Finding frequencies using a reduction

Our make_counts function has the 
standard accumulator function 
parameters: acc and nxt.

For each element we come across, 
we increment the number of times 
we’ve seen that element by 1.

urns the
mulated
e at the
d of the
function Our frequency reduction 

function will only need to take 
a sequence of some kind.

Our reduce statement uses the make_counts 
function we just made, as well as an empty 
dict as an initializer object.
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scores (an N-to-N transformation) and then reduce those scores into a total score (an
N-to-X transformation) (figure 5.9). Because this process represents both an N-to-N
transformation and an N-to-X transformation, we can use both map and reduce: map to
transform the words to scores and reduce to sum them up.

To do this, we’ll need to concoct two helper functions: one for map and one for
reduce. If you completed exercise 4.6.5, you already have both of them on hand. (If
you don’t have them, you can either complete the exercise now or find the code in
this book’s source code repository at https://github.com/jtwool/mastering-large-data-
sets.) The helper function for map will need to take in a word and return a score. Just
like in exercise 4.6.5, we’ll use the simplified scoring scheme: Z is worth 10 points; F,
H, V, and W are worth 5; B, C, M, and P are worth 3; and all other letters are worth 1
point. The helper function for reduce will be either the helper function from listing
5.2 or the lambda expression from listing 5.3—either will work.

 With those two helper functions in place, to find our total score we map the scoring
function across our words and reduce over the results of that map. We can see this
entire process in the following listing.

from functools import reduce

def score_word(word):
    points = 0
    for char in word:
        if char == "z": points += 10

Listing 5.8 Scoring words with map and reduce

map
score_word()

"are" "my" "words""these"

3 4

21

99

reduce
add()

We can use and together to sum up the scoresmap reduce
of a sequence of words.

Then we’ll use
reduce to add those
scores together.

We’ll first map
each word to its
associated score.

Figure 5.9 We can use the map and reduce pattern to transform words into scores and then 
calculate a sum of those scores.
 

https://github.com/jtwool/mastering-large-datasets
https://github.com/jtwool/mastering-large-datasets
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        elif char in ["f", "h", "v", "w"]: points += 5
        elif char in ["b", "c", "m", "p"]: points += 3
        else: points += 1
    return points

words = ["these", "are", "my", "words"]

total_score = reduce(lambda acc,nxt: acc+nxt,    
                     map(score_word, words))     
print(total_score)

The power of map and reduce is in the simplicity of its execution. When we actually
go to execute our reduce and map statements, we do so in a single line of code, though
this one line implements complex behavior through the invoked helper functions. We
can use the map and reduce pattern to decouple the transformation logic—the things
we want to do to our data—from the actual transformation itself. This permits simplic-
ity and leads to highly reusable code. When working with large datasets, keeping our
functions simple becomes paramount because we may have to wait a long time to dis-
cover we made a small error.

5.5 Analyzing car trends with reduce
Before we move on from chapter 5 and start looking at reduce in parallel, let’s try our
hand at a more complex reduction scenario.

SCENARIO Your customer is a used car dealer. They have data on cars that
they’ve bought and sold in the last six months and are hoping you can help
them find what type of used cars they make the most profit on. One salesman
believes that highly fuel-efficient cars (those that get more than 35 miles per
gallon (mpg)) make the most money, while another believes that medium-
mileage cars (with odometers at 60,000 to 100,000 miles) result in the highest
average profit on resale. Given a CSV file with a variety of attributes about
some used cars, write a script to find the average profit on cars of low (<18
mpg), medium (18–35 mpg), and high (>35 mpg) fuel efficiency, as well as
low (<60,000 miles), medium (60,000–100,000 miles), and high mileage
(>100,000 miles), to settle the debate.

Before we dig into the details of the problem, let’s take a look at its fundamentals:
the data transformations. We’ll start with a series of dicts, each of which represents
a vehicle. By default, these dicts will have a lot of information we’re not interested
in and won’t have some of the information we do want, so it’ll be a good idea to
transform the data into a better format for analysis. We’ll tackle that with a map
because we want to clean up each dict. From there, we want to roll that data up into
a dict that can help us understand the profit that each type of car produces. This
will require a reduction.

This reduction is identical to 
the summation reduction we 
used at the beginning of the 
chapter, except instead of 
passing reduce a sequence of 
numbers, we pass it the result 
of our map operation.
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 Overall, the whole problem will look something like figure 5.10. On the left, we
start with the data our customer hands us. We’ll concoct a function to clean up each
record and map that across our data. Then, we’ll pass that into reduce, which itself has
an accumulator function we’ve designed to collect the necessary information. For this,
we’ll want to gather both sum and count by group—the two figures necessary to calcu-
late an average.

5.5.1 Using map to clean our car data

To design our cleaning helper function, let’s first take a closer look at the individual
elements with which we’ll be working. Each car in our dataset is going to look some-
thing like figure 5.11.

 For each entry, we’ll have a dict with lots of attributes we’re not particularly inter-
ested in, along with the four that we are interested in: price-buy, price-sell, mpg,
and odo. These four keys in our dict represent the price the car was bought at, the
price the car was sold at, the manufacturer-listed miles per gallon of the vehicle, and

Our car problem starts with tons
of data about our vehicles—we’ll
use to clean that data upmap
and select just the data we need.

In the second phase, we’ll use
reduce to transform our cleaned
data into the answer to our
question: What type of car is the
most profitable?

Final output: a
single dict
with keys for
each type of car
and values
indicating how
profitable each
sale was.Cleaned car data:

contains all the
values we need
and is in a known
format.

Car data: a
large dict
of values. Some
values we want
are missing.

map
score_word()

reduce
add()

Figure 5.10 We can solve our car data analysis task using a map step that cleans up car data and 
a reduce step that accumulates the data into one data structure that answers our question.
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the number of miles on the car. However, we’re not actually interested in the values of
any of these variables directly. Rather, we’re interested in values that we can calculate
from them.

 Instead of price bought and sold, we’re interested in total profit.
 Instead of absolute miles per gallon, we’re interested in low, medium, and

high mpg.
 Instead of absolute number of miles, we’re interested in low, medium, and high

mileage.

To that end, to clean each data entry, we’ll want to do three things:

1 Calculate profit on the vehicle from price bought and sold
2 Sort the vehicle into low, medium, and high mpg
3 Sort the vehicle into low, medium, and high mileage

To do this, we’ll create three separate functions that each handle a piece of the prob-
lem and wrap them in a single function we can map across all our data. Let’s design
each of these three helper functions now, starting with calculating profit.

 The profit calculation function is only a small change from a basic operation:
arithmetic. In other conditions, this might be a good case for a lambda function;
however, because we’re planning on using this function inside another function, we’ll
want to give it a name. Our get_profit function will find the difference between

{"id": 102112,
"year": 2003,
"make": "Hyundai",
"model: "Sonata",
"trim": "3",
"model-sub": "ST",
"mpg": 29,
"color": "white",
"transmission": "auto",
"wheel-type":"1",
"wheels":"alloy",
"odo":94023,
"nation":"ASIAN",
"size": "MEDIUM"
"name": "HYUNDAI"
"price-buy": 8325
"price-sell": 8875}

{"mpg": "med",
"odo": "med",
"profit": 550}

clean_entry()

Each observation in our dataset
will have a lot more information
than we’ll need for our analysis.

We’ll want to extract just the
information we need for our
problem: mpg, odo, and pricing.

Our function willclean_entry
take those values and convert
them to the format we want for
our analysis, then we can itmap
across all our data.

Figure 5.11 Each car in our dataset will have many attributes, only four of which we really care 
about: price-buy, price-sell, mpg, and odo. We’ll use map plus a helper function to transform those 
numerical variables into categorical variables for easier comparison.
 



111Analyzing car trends with reduce
the price the car was sold at and the price the car was bought at. We can see it in the
following listing.

def get_profit(d):
    return d.get("price-sell",0) - d.get("price-buy",0)

One thing to note about listing 5.9 is that we use the .get method of the dict instead
of the [<key>] syntax because with get we can provide a default value. We do this to
preempt the errors that a missing value would throw (though there are no missing val-
ues in the data you’ve been provided).

 Next up, we have two helper functions that provide similar functionality: one that
buckets mpg into three categories—low, medium, and high—and one that buckets
mileage into three categories—low, medium, and high. Because these functions are so
similar, let’s work on them at the same time.

 Both of these functions share a common behavior: comparing a value to a series of
break points and then assigning them to either low, medium, or high. We can write a
general function that takes a dict, a key, and two break points and returns low when
the value of the dict at the key specified is below the first break point, medium when
it’s below the second, and high when it’s above both. That function will look like the
code in the following listing.

def low_med_hi(d, k, low, high):
    if d[k] < low:          
        return "low"
    elif d[k] < high:     
        return "med"
     return "high"    

With this function written, we can start to assemble all of the pieces together. We’ll
want to do three things:

1 Take in a dict
2 Clean the dict with our select_keys function
3 Return a dict that has three keys

a A profit key indicating the profit made on the vehicle
b An mpg key indicating the vehicle’s mpg category
c An odo key indicating the vehicle’s mileage

A wrapper function for that process may look like the following listing.

Listing 5.9 Lambda function for calculating price differences

Listing 5.10 A generic low-medium-high function

If the value of the dict at the 
key of interest is below our 
first break, we return low.

If that value is below the second 
break, we return medium.

If it’s not lower than either 
break, we return high.
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def clean_entry(d):
    r = {}                
    r['profit'] = get_profit(d)       
    r['mpg'] = low_med_hi(d,'mpg',(18,35))             
    r['odo'] = low_med_hi(d,'odo',(60000,100000))      
    return r

5.5.2 Using reduce for sums and counts

With our map wrapper function written, it’s time to move on to our reduction (fig-
ure 5.12). Knowing what our map will begin returning, we can use reduce to convert
those items into our desired output data. What we want is a dict with six keys: one
each for high, medium, and low mpg and one each for high, medium, and low mile-
age. The values of each of these keys should contain the average profit on vehicles of
that type. Because we’ll need the total profit and the total number of cars sold to calcu-
late average profit, we’ll keep track of those values as well. For readability, it makes sense
to throw those values into a dict too. This will leave us with a dict with six keys—one
for each of the categories, each of which points to another dict with three keys: one for
average profit and two for the values necessary to calculate the average profit.

Listing 5.11 Wrapping our car helpers into a single function

Initializes a new dict 
for our output data Uses our profit function 

to get the profit

Uses the low-medium-
high function twice to 
get our mpg and odo 
categoriesEach use takes different parameters corresponding 

to the specifics of those variables.

{"profit": 800,
"odo": "high",
"mpg": "med" }

{"profit": 500,
"odo": "high",
"mpg": "high" }

{"profit": 1200,
"odo": "low",

"mpg": "med" }

{"profit": 1700,
"odo": "med",

"mpg": "med" }

{"mpg":
{"low": 574.23
"med": 491.12
"high": 811.52},

"odo":
{"low": 764.90
"med": 541.12
"high": 491.81}}

Our data starts as an amount of
profit and two different categories
into which we’re going to sort our
vehicle.

We’ll those values downreduce
to a single thatdict
represents all of that data.

reduce
acc_average()

Figure 5.12 We’ll reduce over the profit and vehicle category data to produce a single dict that 
contains the total, count, and average for each category.
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To do this, our accumulator function will roll the profit of each observation of our
dataset into keys of our accumulated value: one based on its mileage category and one
based on its mpg category. Because calculating the total profit, count, and average is a
little involved—more than we can accomplish with a single expression—let’s wrap this
behavior in a helper function. That helper function will take the accumulated total,
count, and average of the category of car and mix in the profit for the new car, while
also incrementing the count and calculating a new average. We can see these two
functions together in the following listing.

def acc_average(acc, profit):      
    acc['total'] = acc.get('total',0) + profit            
    acc['count'] = acc.get('count',0) + 1
    acc['average'] = acc['total']/acc['count']   
    return acc

 def sort_and_add(acc, nxt):      
     profit = nxt['profit']                      
     nxt_mpg = acc['mpg'].get(nxt['mpg'],{})
     nxt_odo = acc['odo'].get(nxt['odo'],{})
     acc['mpg'][nxt['mpg']] = acc_average(nxt_mpg,
                                          profit)           
     acc['odo'][nxt['odo']] = acc_average(nxt_odo,, profit)
     return acc

Again, in listing 5.12, as occurred several times previously in this chapter, we’re using
the dict .get method to access the key of a dict and provide a default value. In each
of these cases, we want to have a default value that provides the expected type of data
to the function using the resulting data. In our acc_average function, we use get
because our addition operation needs a number. In this case, we specify the integer 0
if we don’t have the key in question. In our sort_and_add accumulator function, we
specify an empty dict because our acc_average function expects a dict in its first
position. Because we use the .get method in both places, we can go from having no
data to having a fully populated data structure without making any assumptions about
what categories are in the underlying data. This is the same trick we used in our fre-
quencies reduction example, just on a bigger scale.

5.5.3 Applying the map and reduce pattern to cars data

With all of our helper functions written, including the data transformation for map
and the accumulator for reduce, we’re ready to process our data. One of the great
things about using a map and reduce style is that this takes only a single line of code:

reduce(sort_and_add, map(clean_entry, cars_data), {})

Listing 5.12 Profit average accumulator and helper function

Defines a helper function 
that calculates averages

Uses the .get method 
in case we find an 
empty dict

Our average value 
will be the profit 
divided by the count.

Again, our accumulator function 
will take an acc and a nxt.

Because we’ll use profit 
twice, we’ll store it in a 
variable for easy access.

We’ll modify the accumulated value
for each of the two categories in

which the car belongs.
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We use map to apply the clean_entry function to each entry in our cars data, resulting
in a cleaned sequence of data that is ready for us to reduce through. Then we call
reduce with its three parameters: the accumulator function, the data, and an optional
initializer. For the accumulator function, we use the accumulator we designed:
sort_and_add. For the data, we use the results from our map operation. For the initial-
izer, we use an empty dict.

 Altogether, our code will look like the following listing. Run the code and settle
the debate between the two car salesmen: Which car category makes the most profit?

from functools import reduce

def low_med_hi(d,k,breaks):
    if float(d[k]) < breaks[0]:
        return "low"
    elif float(d[k]) < breaks[1]:
        return "medium"
    else:
        return "high"

def clean_entry(d):
    r = {'profit':None, 'mpg':None, 'odo':None}
    r['profit'] = float(d.get("price-sell",0)) - float(d.get("price-buy",0))
    r['mpg'] = low_med_hi(d,'mpg',(18,35))
    r['odo'] = low_med_hi(d,'odo',(60000,100000))
    return r

def acc_average(acc, profit):
    acc['total'] = acc.get('total',0) + profit
    acc['count'] = acc.get('count',0) + 1
    acc['average'] = acc['total']/acc['count']
    return acc

def sort_and_add(acc,nxt):
    p = nxt['profit']
    acc['mpg'][nxt['mpg']] = acc_average(acc['mpg'].get(nxt['mpg'],{}), p)
    acc['odo'][nxt['odo']] = acc_average(acc['odo'].get(nxt['odo'],{}), p)
    return acc

if __name__ == "__main__":
    import json
    with open("cars.json") as f:
        xs = json.load(f)
    results = reduce(sort_and_add, map(clean_entry, xs), {"mpg":{},"odo":{}})
    print(json.dumps(results, indent=4))

5.6 Speeding up map and reduce
Looking back on the exercise from section 5.5, we can see that we didn’t do anything
to make our map and reduce operation any faster. From the techniques we’ve covered
so far in this book, we might think about using a parallel map from chapter 2 to speed

Listing 5.13 Map and reduce to find average used car profit
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up this process. Unfortunately, using a parallel map will counterintuitively make our
work slower—not faster.

 A parallel map will slow down our map and reduce workflow because it will force us
to iterate over the dataset twice, incurring the associated costs of storing and retriev-
ing data from memory. This happens because map, as we’ve mentioned before, is natu-
rally lazy. It stores instructions; it doesn’t evaluate. That means that we don’t evaluate
our lazy map until we’re in the reduce loop. Our parallel map, on the other hand, is
eager: it evaluates immediately. This means that by the time we’re reducing, we’ve
already looped through our data once (figure 5.13).

That we’re prevented from using parallelization here is a pretty undesirable side
effect. After all, one of the big reasons we’re exploring these techniques is that they’re
supposed to be good for big datasets. If we can’t use parallelization, we can’t scale our
processing with our data and we’ll ultimately be limited in the size of data we can use.
Fortunately for us, we can always use parallelization at the reduce level instead of at
the map level. We’ll take a look at that in the next chapter, on parallel reduce.

Parallel map

When we use inmap
parallel within a map and
reduce operation, our
parallel processesmap
all the data, and then
our operationreduce
processes again.

Lazy map

When we use our
standard it’s lazy,map,
so we don’t actually
process the data untill
we get to .reduce

Second iteration

First iteration

First iteration

Generate
instructions

reduce (add)

reduce (add)

P.map(times_2)

map(times_2)

<lazy map object>

[2,4,6,8,10,12,14,16 ... 2000]

[1,2,3,4,5,6, ,7,8 ... 1000]

1001000

1001000

Figure 5.13 Using a parallel map can counterintuitively be slower than using a lazy map in map and 
reduce scenarios—we’ll want to choose the right combination of map and reduce for the best 
performance.
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5.7 Exercises
These exercises test your knowledge of reduce and accumulator functions and rein-
force the material in this chapter.

5.7.1 Situations to use reduce

The reduce function is a powerful and flexible tool. In which of the following situa-
tions would you use reduce, and in which should you use another tool we’ve covered
in this book?

 You have a long sequence of words and you return only a sequence containing
the letter A.

 You have a sequence of users and you want to transform them into just their
User ID number.

 You have a series of users and you want to find the five who have purchased the
most from you.

 You have a sequence of purchase orders and you want to find the average price
of a purchase.

5.7.2 Lambda functions

We can use lambda functions for simple functions that we are only planning on using
once; however, there is no difference at bytecode level between these functions and
normal Python functions. Replicate the following functions with lambda functions.

def my_addition(a, b):
    return a+b

def is_odd(a):
     return a % 2 == 1

def contains(a, b):
    return b in a

def reverse(s):
     return s[::-1]

5.7.3 Largest numbers

In Python, we can use the max function to find the maximum value in a sequence and
the min function to find the minimum value in a sequence. However, sometimes we
don’t want just the largest or smallest value, we want the largest or smallest several val-
ues. Use reduce to write a function that gets the five largest (or smallest) values from a
sequence.

 Once you have it written, try extending the function to collect the largest (or small-
est) N values.
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EXAMPLE

five_largest([10,7,3,1,9,8,11,21,15,72])
>>> [72,21,15,11,10]

n_largest([10,7,3,1,9,8,11,21,15,72], n=3)
>>> [72,21,15]

5.7.4 Group words by length

Group by is a useful reduction where we take the elements of a sequence and group
them based on the results of some function applied to them. Use reduce to write a
version of this function that can group words based on their length.

EXAMPLE

group_words(["these", "are", "some", "words", "for", "grouping"])
>>> {3: ["are","for"],
     4: ["some"],
     5: ["these","words"],
     8: ["grouping"]}

Summary
 The reduce function accumulates a sequence of data (N) into something else

(X), with the help of an accumulator function and an initializer.
 Accumulator functions take two variables: one for the accumulated data (often

designated as acc, left, or a), and one for the next element in the sequence
(designated nxt, right, or b).

 reduce is useful in situations where you have a sequence of data and want some-
thing other than a sequence back.

 reduce’s behavior is heavily customizable based on the accumulator function
we pass to it.

 Anonymous lambda functions can be useful when our accumulation function is
concise, clear, and unlikely to be reused.

 We can use map and reduce together to break complex transformations up into
small contingent parts.

 map, counterintuitively, provides better performance than parallel map when
we’re using both map and reduce.
 



Speeding up map and
reduce with advanced

parallelization
We ended chapter 5 with a paradoxical situation: using a parallel method and more
compute resources was slower than a linear approach with fewer compute resources.
Intuitively, we know this is wrong. If we’re using more resources, we should at the
very least be as fast as our low-resource effort—hopefully we’re faster. We never
want to be slower.

 In this chapter, we’ll take a look at how to get the most out of parallelization in
two ways:

1 By optimizing our use of parallel map
2 By using a parallel reduce

Parallel map, which I introduced in section 2.2, is a great technique for transform-
ing a large amount of data quickly. However, we did gloss over some nuances when
we were learning the basics. We’ll dig into those nuances in this chapter. Parallel
reduce is parallelization that occurs at the reduce step of our map and reduce pattern.

This chapter covers
 Advanced parallelization with map and starmap

 Writing parallel reduce and map reduce patterns

 Accumulation and combination functions
118
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That is, we’ve already called map, and now we’re ready to accumulate the results of all
those transformations. With parallel reduce, we use parallelization in the accumula-
tion process instead of the transformation process.

6.1 Getting the most out of parallel map
Back in chapter 2, when we introduced parallel map, we covered a few of its shortfalls:

 Python’s parallel map uses pickling, a method of saving Python objects to the
disk, to share work; this causes problems when working with some data types.

 Parallel map sometimes can result in unintended consequences when we’re
working with stateful objects, such as classes.

 The results of a parallel map operation are not always evaluated in the order that
we would expect.

Ultimately, however, we concluded that there were more situations in which we could
live with those constraints than those in which we couldn’t. Indeed, up until chapter 5,
we hadn’t seen a scenario where we needed to worry about parallel map. And then we
came across the first of two situations where parallel map is slower than the lazy map.
Parallel map will be slower than lazy map when

1 we’re going to iterate through the sequence a second time later in our workflow
2 the size of the work done in each parallel instance is small compared to the

overhead that parallelization imposes

In the first situation, when we’re going to iterate through the sequence a second
time—that is, we’re going to map over a sequence and then do something later with all
of its elements—using lazy map allows us to sidestep the first iteration. Instead of iterat-
ing through our sequence to transform all the elements, with lazy map we can perform
the transformations in what would have been the second iteration. We visualized this
in figure 5.13, shown again in figure 6.1.

 Figure 6.1 shows how the lazy map outputs a lazy map object, no iteration involved,
whereas the parallel map iterates through the entire sequence. We’ll look at solving
this problem using parallel reduce in section 6.2.

6.1.1 Chunk sizes and getting the most out of parallel map

The second situation—when the sequence is split into a large number of chunks
whose overhead is large compared to the amount of work being done on those
chunks—is one we haven’t encountered yet. In these instances, parallel map will be
slower than lazy because we’re adding overhead to the task.

 If we imagine our programs as a software project, we can imagine parallelization
as the contractor. The contractor wants to get the job done with as few workers as
possible because every new worker added requires the contractor to explain the task
to them (which costs time) and pay them (which costs money). Around the margins,
this might not matter. But if the contractor has workers sitting around not doing
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work but getting paid, or they’re spending so much time explaining the project to
new workers that they can’t oversee it, the contractor would be better off with a
smaller team.

 The same is true for our parallel processing. For example, imagine we have 100
seconds of work to do, and each time we add a new parallel worker, we need to spend
1 second communicating with that worker. If we have

 2 workers working 50 seconds each, we can get the job done in 52 seconds
 4 workers working 25 seconds each, we can get the job done in 29 seconds
 25 workers working 4 seconds each, we’ll complete the task in 29 seconds
 100 workers working 1 second each, we’ll take 101 seconds

After a point, the amount of work being done is too small to justify the cost of commu-
nicating it. We need to ensure that when we assign work to our parallel jobs, we’re
assigning enough work that the processors spend a large enough amount of time
doing the work to justify taking the time to communicate it to them. The way we do
that is by specifying a chunk size.

 Chunk size refers to the size of the different pieces into which we break our tasks
for parallel processing. Larger chunk size tasks will require the processors to spend
more time working on them, whereas smaller chunk size tasks will be finished more
quickly.

Lazy map

When we use our
standard it’s lazy,map,
so we don’t actually
process the data until
we get to .reduce

Second iteration

First iteration

First iteration

Generate
instructions

reduce (add)

reduce (add)

P.map(times_2)

map(times_2)

<lazy map object>

[2,4,6,8,10,12,14,16 ... 2000]

[1,2,3,4,5,6, ,7,8 ... 1000]

1001000

1001000

reduce operation, our
parallel processesmap
all the data, and then
our operationreduce
processes again.

When we use inmap
parallel within a map and

Parallel map

Figure 6.1 Lazy map can be faster than parallel map when we’ll follow up our map statement by 
iterating over the results.
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NOTE It’s ideal to pick a chunk size that’s large—we’ll learn how to pick the
right size later in this chapter—but that still allows all the processors to fin-
ish their final task at approximately the same time. If we choose a chunk size
that’s too small, we end up in the situation described at the beginning of
the chapter: communicating the instructions takes longer than processing
our jobs. If we choose a chunk size that’s too large, we’ll end up in a posi-
tion where only one processor is working the final chunk, while the others
are waiting.

We can intuitively understand these limit behaviors by thinking about their extremes.
If we ask each of our processors to handle only a single element at a time, we then
have to

 transfer that element and the instructions for processing it,
 process it,
 and transfer that element back.

Then we have to repeat those steps for every single element. Assuming a reasonable-
sized task, this is certainly more work than just processing each element one-by-one.
In linear processing, we don’t have the added communication steps we have in paral-
lel processing.

 For the large chunk size problem, it helps to first think about an infinitely large
chunk size. Well, that’s the same as using just a single processor, because we’ll only
have one chunk. If our chunk size is half the size of our sequence, we’ll only be using
two processors. If it’s a third of our sequence, we’ll only use three. It may seem like
this might not be a problem, especially if we have a computer with only a few proces-
sors, but think about what happens when our second processor gets all the easy work
and the first processor gets all the hard work. Our first processor will continue to work
long after the second processor has stopped.

 The optimal chunk size is somewhere in between these two extremes. Unfortu-
nately, beyond this general notion that chunking too small and chunking too large are
bad, giving advice about specific chunk sizes is hard. The very reason why Python
makes chunksize available as an option is because we’ll want to vary it according to
the task at hand. I recommend starting with the default value, then increasing your
chunk size until you see runtime start to decrease.

6.1.2 Parallel map runtime with variable sequence and chunk size

Now that we know more about chunk size and differences in the behavior of parallel
map and lazy map, let’s look at some code. We’ll start by seeing how lazy and parallel
map behave over different-sized sequences, and how, for simple operations on small
data, there’s really no benefit to parallelization. Then we’ll test out parallel map with a
few different chunk sizes and see how that impacts our performance.
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SEQUENCE SIZE AND PARALLEL MAP RUNTIME

What’s the optimal size at which we should start thinking about parallelization? Well, a
lot of that depends on how complex our task is.

TIP When our tasks are complex, we benefit quickly from parallelization. When
our tasks are simple, we benefit only when there’s a large amount of data.

Consider the example at the end of chapter 2 when we were scraping data from the
web and there was web-related latency with every request. In these situations, paral-
lelization is almost always going to make sense.

 But what about when our tasks are small, such as doing arithmetic or calling meth-
ods of Python data types? Here, the situation is murky and depends on the size of the
sequence. We can prove this to ourselves if we run a lazy map and a parallel map. The
following listing shows how this can be done, using a times_two function as a simple
operation and comparing parallel map and lazy map on sequences with between 1 and
1 million elements.

from time import clock
from multiprocessing import Pool

def times_two(x):
  return x*2

def lazy_map(xs):
  return list(map(times_two, xs))

def parallel_map(xs, chunk=8500):
  with Pool(2) as P:
    x =  P.map(times_two, xs, chunk)
  return x

for i in range(0,7):
  N = 10**i
  t1 = clock()
  lazy_map(range(N))
  lm_time = clock() - t1

  t1 = clock()
  parallel_map(range(N))
  par_time = clock() - t1
  print("""
-- N = {} --
Lazy map time:      {}
Parallel map time:  {}
""".format(N,lm_time, par_time))

In the output of that code, we can see a pattern appear.

-- N = 100 --
Lazy map time:      6.0999999999991616e-05
Parallel map time:  0.007081000000000004

Listing 6.1 Comparing parallel map and lazy map on different-sized sequences
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-- N = 1000 --
Lazy map time:      0.0003589999999999982
Parallel map time:  0.007041999999999993

-- N = 100000 --
Lazy map time:      0.037799999999999986
Parallel map time:  0.019601000000000007

For small sequence sizes or processes that complete quickly, not only is it not benefi-
cial to use parallel map, it’s counterproductive. Lazy map is actually faster. However,
when we start to notice that our code is taking a while to run—when we start facing
delays of seconds or minutes—using parallel map is faster.

CHUNK SIZE AND PARALLEL MAP RUNTIME

We can run the same experiment with chunk size as well. For this experiment, instead
of varying the size of the sequence, we’ll hold the sequence constant and only vary the
size of the chunks our parallelization approach uses. We’ll have to use a large enough
sequence that we’ll see some variation, but not so long that we’ll be waiting forever for
our results. Based on our previous experiment, about 10 million will do. The code for
this experiment appears in the following listing.

from time import clock
from multiprocessing import Pool

def times_two(x):
  return x*2+7

def parallel_map(xs, chunk=8500):
  with Pool(2) as P:
    x =  P.map(times_two, xs, chunk)
  return x

print("""
{:<10}  |  {}
-------------------------""".format("chunksize","runtime"))

for i in range(0,9):
  N = 10000000
  chunk_size = 5 * (10**i)

  t1 = clock()
  parallel_map(range(N), chunk_size)
  parallel_time = clock() - t1

  print("""{:<10}  |  {:>0.3f}""".format(chunk_size, par_time))

The results of this code appear in the following output snippet. We can see that for
small chunk sizes, our runtime is high. This is because the amount of time spent on
communicating between all the workers is high, relative to the performance gained.

Listing 6.2 Comparing the effect of chunk size on parallel map runtime
 



124 CHAPTER 6 Speeding up map and reduce with advanced parallelization
By splitting the problem up into too many pieces, we make it inefficient. With too
large of a chunk size, though, we get the reverse problem: we’re not using enough
workers to solve the problem efficiently. Most of the sizes in the middle, however, give
us reasonably good performance when compared to the two extremes.

chunksize   |  runtime
-------------------------
5           4.849
50          0.753
500         0.192
5000        0.188
50000       0.195
500000      0.146
5000000     0.167
50000000    0.171
500000000   0.168

6.1.3 More parallel maps: .imap and starmap

We should be familiar with two more types of parallel maps in Python:

1 .imap for lazy(ish) parallel mapping
2 starmap for parallel mapping over sequences of tuples

We can use the .imap method to work in parallel on very large sequences efficiently
and starmap to work with complex iterables, especially those we’re likely to create
using the zip function.

USING .IMAP AND .IMAP_UNORDERED FOR LARGE SEQUENCES

We discussed the benefits to laziness in chapter 4, and when working in parallel
there’s no reason we have to give them up. If we want to be lazy and parallel, we can
use the .imap and .imap_unordered methods of Pool(). These methods both return
iterators instead of lists, as shown in the following listing. Other than that, .imap
behaves just like parallel map.

from multiprocessing import Pool

def increase(x):
  return x+1

with Pool() as P:
  a = P.map(increase, range(100))

with Pool() as P:
  b = P.imap(increase, range(100))

with Pool() as P:
  c = P.imap_unordered(increase, range(100))

print(a)           
# [1, 2, 3, ... 100]

Listing 6.3 Variations of parallel map

Our standard parallel 
map returns a list.
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print(b)                                                  
# <multiprocessing.pool.IMapIterator object at            

➥ 0x7f53207b3be0>                                        
print(c)                                                  
# <multiprocessing.pool.IMapUnorderedIterator object at   

➥ 0x7fbe36ed2828>                                        

.imap_unordered behaves the same, except it doesn’t necessarily put the sequence in
the right order for our iterator. That’s why it’s called unordered: the values are placed
in the iterator in the exact order our processor processes them. When we’re dealing
with big datasets, the laziness of these two methods can mean a big decrease in run-
time for our programs.

USING STARMAP FOR WORKING WITH ZIP IN PARALLEL

We’ve seen how useful map can be for transforming data and how we can use it in par-
allel to speed up operations on large datasets; however, map has a disappointing short-
coming: it can only be used on functions that take a single parameter. Sometimes, this
isn’t enough. We’ll want to use functions that take two or more parameters. We can
use starmap in those situations to get the same benefits.

 The starmap function unpacks tuples as positional parameters to the function with
which we’re mapping, and we can use it as a lazy function (from itertools.starmap)
or a parallel function (as a method of a Pool() object, typically P.starmap). If we zip
two sequences together, as we learned how to do in chapter 4, then we’ve got an iter-
able primed and ready to go for use with starmap.

 For example, we might want to find the largest element at each position in two
sequences. Instead of looping through the sequences and comparing them, we could
zip the sequences together and map over them. Listing 6.4 shows a comparison
between these two methods. In the first, we use a list comprehension and an enumer-
ate to compare the elements in the same places. In the second, with starmap, we zip
together our parameters and then map the relevant function across them.

from itertools import starmap      
xs = [7, 3, 1, 19, 11]           
ys = [8, 1, -3, 14, 22]

loop_maxes = [max(ys[i], x) for i,x in enumerate(xs)]      
map_maxes = list(starmap(max, zip(xs, ys))) 

print(loop_maxes)
# [8, 3, 1, 19, 22]
print(map_maxes)
# [8, 3, 1, 19, 22]

In addition to simplifying the code and bringing it into a pattern we’re familiar with
by now, starmap brings along all the benefits we’ve grown to expect from map. Both

Listing 6.4 Using starmap to use map with multiple variables

Both lazy parallel 
maps return iterator 
objects.

To use starmap, we need to 
import it from itertools.let’s

eate
ome
ting
ata.

A list comprehension 
to show how this could 
be done without map

Uses starmap and zip to
achieve the same effect
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zip and starmap are lazy, so we can work with big datasets with greater piece of mind
that we’re only holding the data we need in memory. We can also quickly convert our
starmap to work in parallel by making it a method call to a Pool() object.

6.2 Solving the parallel map and reduce paradox
At the end of chapter 5, we noticed a problem—our parallel map and reduce was
slower than our lazy map and reduce. Then in section 6.1, we explored the behavior of
parallel map in more depth. Although that helps us understand the problem better, it
doesn’t necessarily help us solve it. To solve the problem, we’ll have to do something
different: use a parallel reduce. In this section, we’ll take a look at implementing par-
allel reduce to speed up our reduction operations.

6.2.1 Parallel reduce for faster reductions

The easiest way to think of parallel reduce is as a cross between our parallel map and
our linear reduce. Parallel reduce will share the costs and benefits of parallel map,
while having the signature of linear reduce. Just like with parallel map, parallel
reduce will

 break a problem up into chunks
 make no guarantees about order
 need to pickle data
 be finicky about stateful objects
 run slower than its linear counterpart on small datasets
 run faster than its linear counterpart on big datasets

Like linear reduce, parallel reduce will

 require an accumulator function, some data, and an initial value
 perform N-to-X transformations

All things considered, we can use parallel reduce to solve the problem we faced at the
end of chapter 5. We can perform transformations and accumulate the results in a
time-friendly way.

BREAKING DOWN THE PARALLEL REDUCE PARAMETERS

When we first looked at reduce in chapter 5, one of the graphics we looked at showed
the parts of our reduce function. We saw that reduce had three parts:

1 An accumulation function
2 A sequence
3 An initializer value

That figure, shown here again in figure 6.2, lays out what we need to be able to use
reduce. In comparison to map, reduce is a little more complex—map has two parts,
whereas reduce has three—but not overly so. Parallel reduce ups the ante.
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The implementation of parallel reduce we’ll be looking at has six parts:

1 An accumulation function
2 A sequence
3 An initializer value
4 A map
5 A chunksize
6 A combination function

You should recognize most of these six parts, which are diagrammed in figure 6.3. The
first three—the accumulation function, sequence, and initializer value—come directly

The reduction function requires
an accumulation function passed
to it in first position. This
function accumulates
intermediary values.

The second parameter is
a sequence of values that
our accumulation function
will across.reduce

In last position,
reduce takes an
initializer value.
The initializer value
acts as a starting
point for our
reduce function.

reduce(add, [1,2,3], 0,)

Figure 6.2 The reduce function takes three 
parameters: an accumulator, a sequence, and 
an initial value.

Accumulation function Sequence

Initializer

A parallel map
function defines
the parallel
behavior of
parallel .reduce

A chunksize
value adjusts
how work is
broken up.

A combination
function is used
to put the chunks
of work together.

reduce(add, [1,2,3], 0, P.map, 1500, add)

Figure 6.3 Parallel reduce has six parameters: an accumulation function, a 
sequence, an initializer value, a map, a chunksize, and a combination function—
three more than the standard reduce function.
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from reduce. We just finished talking about chunksize in section 6.1.2. That leaves us
with two new parameters, and even these two are only new-ish.

 The map parameter to parallel reduce is exactly what we would expect it to be,
given its name: it’s a map function. The parallel reduce implementation we’ll use piggy-
backs off the parallelism we implemented in our parallel map. That’s why our parallel
reduce will share all of its benefits and drawbacks—a lot of the behavior is directly
inherited.

 That being said, we don’t have to pass our parallel reduce a parallel map. We are
free to pass it a lazy map. For example, we could pass it the lazy map that comes stan-
dard with Python. If we do this, we won’t have a parallel reduce, we’ll have a lazy
reduce. This is much less useful than a lazy map, however, because reduce only results
in a single accumulated value—even if that value is a complex data structure—and we
have to operate on the entire sequence to know what it is.

 The last parameter is a combination function. The combination function is like an
accumulation function, except for the parts of our parallel reduction problem. To
understand how combination functions work, let’s take a look at the parallel reduce
workflow in greater depth.

6.2.2 Combination functions and the parallel reduce workflow

Because parallel reduce is based on parallel map, the parallel reduce workflow has the
same primary parts that our parallel map workflow does (figure 6.4). We will

1 break our problem into pieces
2 do some work
3 combine the work
4 return a result

For parallel map, we need to understand all of these steps, but most of our code writing
effort will go into the second step: doing the work of transforming our data. In some
situations—when we’re specifying the chunk size—we’ll be concerning ourselves with
the first step as well: breaking the problem into pieces. With parallel reduce, we also
need to consider the third step: combining the work. This is where our combination
function comes into play.

1. Break the work into pieces

3. Combine the pieces 4. Return the result

2. Do work on each piece

Figure 6.4 Parallel reduce workflows 
involve doing one operation in parallel on 
chunks of our original sequence with an 
aggregation function and another operation 
on the data that results from the aggregation 
(combination).
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THE IMPLICIT COMBINATION FUNCTION IN PARALLEL MAP

In parallel map, we don’t need to call a combination function because the data is
always joined in the same way. As a result, the combination function is hardcoded into
the parallel map operation itself. Because map is performing an N-to-N transformation
of data—a concept introduced in chapter 2, which describes how map transforms
sequences into sequences of the same size with different elements—we know that our
combination function will always be some form of adding two sequences together.

 For any two pieces of work that our parallel map function completes, the master
can reassemble those pieces by combining them in the right order. The piece that cor-
responds to the earlier elements of the sequence goes first, and the piece that corre-
sponds to the later elements of the sequence goes next. We can imagine this function
as both the image in figure 6.5 and the code in the following listing.

def map_combination(left, right):    
  return left + right

xs = [1, 2, 3]
ys = [4, 5, 6]
print(map_combination(xs, ys))
# [1,2,3,4,5,6]

In listing 6.5, we can see what a map combination function would look like if we had to
write it ourselves. We can imagine that two sequences—in this case xs and ys—are the
parts returned by our parallel map operation, and we can use the map_combination
function to combine them. We also see that the map_combination function is similar
to an accumulation function. We’re even using two of the variant parameter names
for accumulation functions: left and right.

Listing 6.5 The implicit combination function in parallel map

Notice how the signature of the 
function looks like the signature of 
our accumulators—it takes a left 
and a right object and returns an 
object of the same type as the left.

[1,2,3,4,5,6]

[1,2,3] [4,5,6]

[1,2,3] [4,5,6]

6      15

[6,15]

21

21

3. Combine the pieces

1. Break the work into pieces 2. Do work on each piece

4. Return the result

The addition function is
used for both step 2 and
step 3 in our summation
reduce workflow.

Figure 6.5 A parallel reduce summation workflow is a simple case where we 
have the same function for the accumulation step and combination step.
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CUSTOM COMBINATION FUNCTIONS FOR PARALLEL REDUCE

With parallel reduce, however, we trade the simplicity of always having the same com-
bination function for the flexibility of more possible transformations. Let’s consider
three cases and see how we would handle the combination function in each case:

1 Summation
2 filter 
3 frequencies 

We implemented summation with reduce in section 5.2—the purpose of this function
is to add a sequence of numbers. When we use reduce for summation, we accumulate
a partial sum and continuously add new values to this partial sum until there are no
more elements in our sequence. Combining this with our parallel workflow, we get a
process that looks like figure 6.5.

 The process follows the basic parallel workflow steps we outlined at the beginning
of section 6.2.2. We first break the problem into pieces, turning our sequence into sev-
eral smaller sequences, then do some work:

 First, we sum each of the smaller sequences.
 Then, we combine our results. Combining the partial sums requires us to take

the sum of sums.
 Finally, we can return this value as our result.

In summation, we get lucky because the combination function is the same as the accu-
mulation function. The accumulation function takes two values—both of which are
numerical—adds them together, and returns their result to get an intermediary sum.
Combining our subsequence sums is the same process: we add together pairs of the
sums, each of which is a numerical value. The following listing approximates this pro-
cess and shows how we can use the accumulation function to our reduce again to
combine our partial results.

from functools import reduce

def my_add(left, right):   
  return left+right

xs = [1,2,3,4]      
ys = [5,6,7,8]
zs = [9,10,11,12]

sum_x = reduce(my_add, xs)    
sum_y = reduce(my_add, ys)    
sum_z = reduce(my_add, zs)    

print(my_add(my_add(sum_x, sum_y), sum_z))       
# 78

Listing 6.6 Approximation of parallel reduce summation

Our accumulation function 
is simple addition.

We break our long 
sequence into three parts.

We work each 
of those parts 
independently. Then, finally, we combine 

those parts—notice how 
we use my_add in both 
of the final two steps.
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We’re not always lucky enough that we get to use the same function, however. Next,
we’ll explore the parallel reduce workflow for the filter function. We first saw
filter in chapter 4, and we implemented a reduce-based version of it in section
5.3.1. The idea behind filter is that we have a large sequence and we want to create
a subsequence that contains only the elements of that sequence that cause a function
to return True.

 Our standard filter workflow is to start with an empty sequence and move
through our sequence element by element, adding only the elements that make our
condition function return True to our accumulated sequence. To make this parallel,
we will

1 break our sequence into smaller sequences
2 accumulate the elements of those small sequences that make our condition

return True in a new sequence
3 join those new sequences together
4 return the composite sequence

We can see this entire process in figure 6.6. Notice that the function for step 2, which
takes a sequence and produces a subsequence, is different from our function for step 3,
which joins the sequences together. The function for taking sequences and returning
subsequences is our accumulation function for our filter reduction from chapter 5.
The function for joining the sequences is actually the implicit combination function
from map.

 We can modify our example approximating parallel summation from listing 6.6 to
approximate a parallel filter to see this in action. First, we’ll have to create a new accu-
mulation function. Here we’ll use the keep_if_even function we wrote in section 5.3.1.

[1,2,3,4,5,6,7,8]

[1,2,] [3,4] [5,6] [7,8]

[1,2,] [3,4] [5,6] [7,8]

[2] [4] [6] [8]

[2] [4] [6] [8]

[2,4,6,8]

[2,4,6,8]

3. Combine the pieces

1. Break the work into pieces 2. Do work on each piece

4. Return the result

In the parallel filter
workflow, two different
functions are used for
the accumulation and
the combination.

combine()

filter()

Figure 6.6 In our workflow for the parallel filter, we need to use a different function for our 
accumulation step than for the combination step. This makes the operation more complex than 
our parallel summation.
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We’ll also need to add a combination function. Because we already identified this
function to be the same function from parallel map’s implicit combination step, let’s
use the function we wrote in listing 6.5. We can see the combination of the two,
approximating a filter function using parallel reduce, in the following listing.

from functools import reduce

def map_combination(left, right):   
  return left + right

def keep_if_even(acc, nxt):      
    if nxt % 2 == 0:
        return acc + [nxt]
    else: return acc

xs = [1,2,3,4]
ys = [5,6,7,8]
zs = [9,10,11,12]

f_acc = keep_if_even       
f_com = map_combination    

res_x = reduce(f_acc, xs, [])    
res_y = reduce(f_acc, ys, [])    
res_z = reduce(f_acc, zs, [])    

print(f_com(f_com(res_x, res_y), res_z))      
# [2, 4, 6, 8, 10, 12]

In listing 6.7, we can see that our accumulation function (represented by f_acc) and
our combination function (represented by f_com) are different. Like we mentioned
earlier, the accumulation function is keep_if_even, from chapter 5, and the combina-
tion function is map_combination from listing 6.5. We need both of these functions to
take our broken-up work and achieve the desired result.

 It’s important to notice that these functions expect different types of parameters.
The keep_if_even function takes a list in first position and a numerical value in sec-
ond position. The map_combination function expects lists in both positions. In our
case with filter, we know that the accumulation step always results in a list, so our
combination function takes two lists.

NOTE Combination functions always take two parameters of the same type
because each parameter is the result of the same process.

We can see this rule in our frequencies example as well. We first implemented the
frequencies function, which returns a dict of elements and their counts when pro-
vided with a sequence, in section 5.3.2. In its linear form, we went through each element

Listing 6.7 Parallel filter using different accumulation and combination functions

Creates our 
combination function

Creates our accumulation 
function from filter

Assigns our 
accumulation and 
combination functions 
to differentiate them

Uses the accumulation function 
on our broken-up sequences, 
returning intermediate results

Uses our combination 
function on those results, 
returning a final result
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of the sequence and incremented the count of each element by one every time we saw
it. In parallel, we’re going to need to do four things:

1 Break up our sequence into smaller sequences
2 Obtain counts from those smaller sequences
3 Combine the counts together
4 Return our combined counts

Figure 6.7 shows that, like filter, the frequencies process will use different func-
tions for the accumulation and combination steps. For the accumulation step, we’ll
use the make_counts function from listing 5.7. For the combination step, we’ll have to
write an entirely new function. This function will have to go through the unique keys
of our two dicts and add the values of those keys together in a new dict. We can see
that even though our frequencies process can take iterables with any number of
types of elements, we’ll always be passing dicts to our combination function because
that’s the type that our make_counts accumulation function returns.

Listing 6.8 shows an approximation of the parallel reduce version of filter. We can see
the original make_counts accumulation function and our new combination function, in
the same general pattern we saw with both our summation example and our filter
example. Again, we see one of the major benefits of adopting a map and reduce style:
we can use the same patterns of programming to solve a diverse set of problems.

from functools import reduce

def combine_counts(left, right):        
  unique_keys = set(left.keys()).\          
                union(set(right.keys()))    
  return {k:left.get(k,0)+right.get(k,0)   
          for k in unique_keys}            

def make_counts(acc, nxt):         
    acc[nxt] = acc.get(nxt,0) + 1
    return acc

Listing 6.8 Approximating a parallel reduce frequencies

frequencies()
[1,1,3,2,2,1,1] [1:4,2:2,3:1]

{"m":1, "i":4,"s":4,"p":2}

The workflow can takefrequencies
many types of sequences as input.

The output will always be a .dict
This will be the type for our
combination function.

"mississippi"

Figure 6.7 The parallel frequencies reduction workflow can take a number of types as its input, but 
it will always pass dicts into its combination step and return dicts as a result.

Creates a unique sequence of keys 
by finding a set that represents 
the union of both sets of keys

Because dict keys are of the 
keys type, we’ll have to use 
explicit set conversion.

Loops through the keys and 
returns a dict mapping keys to 
the sum of its value in each dict

The make_counts function is our 
old accumulator from chapter 5.
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xs = "miss"
ys = "iss"
zs = "ippi"

f_acc = make_counts       
f_com = combine_counts    

res_x = reduce(f_acc, xs, {})    
res_y = reduce(f_acc, ys, {})    
res_z = reduce(f_acc, zs, {})    

print(f_com(f_com(res_x, res_y), res_z))     
# {'i': 4, 'm': 1, 's': 4, 'p': 2}

We can see this reusable pattern in how similar listings 6.7 and 6.8 are. Having
abstracted the combination and accumulation into f_acc and f_com, all we needed to
change to get from one to the other was how those functions resolve. Now that we’ve
seen how summation, filter, and frequencies will work in parallel, let’s take a look
at how we can actually implement these three functions with parallel reduce.

6.2.3 Implementing parallel summation, filter, and frequencies 
with fold

So far in this chapter, we’ve looked at implementation nuances of parallelism. Specifi-
cally, we’ve looked at when we should use parallel workflows and how the parallel
reduce workflow differs from the parallel map workflow with which we were already
familiar. Now that we’ve got that down, we can finally solve the problem we noticed at
the end of chapter 5 of reduce working more slowly in parallel. We’re finally ready to
use parallel reduce.

 Like our standard map and our parallel map, the moving from standard reduce to par-
allel reduce is a little anticlimactic. Assuming that we have our accumulation and combi-
nation functions in place, implementing parallel reduce requires only three steps:

1 Importing the proper classes and functions
2 Rounding up some processors
3 Passing our reduce function the right helper functions and variables

For the first of these three steps, we have to move beyond what base Python gives us.
Python doesn’t natively support parallel reduce. One of the libraries we’ll need for
this is the pathos library, which we discussed in chapter 2 when we first introduced
parallelism and discussed some problems related to pickling. We can use pathos to
get around Python’s weaknesses in pickling and chunk up our problem up for paral-
lel reduce.

 We’ll also need to reach into the toolz library for an implementation of parallel
reduce. We used the toolz library before in chapters 2 and 4 when we borrowed handy
functions that fit the map and reduce style of programming. The parallel reduce
implementation in the toolz library is called fold. fold is an alternative name for

Assigns make_counts as the 
accumulation function and 
combine_counts as the 
combination function

Works on the split-up 
sequences using our 
accumulation functions

Combines the intermediate results 
using our combination function
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reduce, which is useful as a metaphor for reduce: folding each element into the accu-
mulator, one at a time, until only the accumulator is left.

Once we have these imports, all we need to do is call Pool to round up some proces-
sors and call our parallel reduce with all the right parameters. With summation, for
example, we’ll need to make our imports, call Pool, and pass our parallel reduce
(fold) our addition function. We can see this all in action in the following listing.

import dill as pickle                     
from pathos.multiprocessing               
   ➥ import ProcessingPool as Pool       
from toolz.sandbox.parallel import fold   
from functools import reduce              

def my_add(left, right):     
  return left+right

with Pool() as P:                           
    fold(my_add, range(500000), map=P.imap)  

print(reduce(my_add, range(500)))    
# 124750

Listing 6.9 shows that, just like calling map in parallel versus calling our regular lazy
map, calling reduce in parallel requires almost no modification to our base code. We
need to import some capabilities that are not included in base Python, sure, but there
are no substantial changes to the workflow. Importantly, we use exactly the same accu-
mulation function in each case.

TIP Listing 6.9 also shows how we call parallel map as a parameter to parallel
reduce. This is because the parallel reduce implementation in the toolz
library does not actually implement parallelism. This function has to sit on
top of a parallel map to do its parallel magic. If we wanted to, we could pass
our normal lazy map function to the fold function and we would get a linear

The toolz library
The toolz library is intended to be the functional utility library that Python never came
with. Many functional programming languages—Scala, Clojure, Haskell, and OCaml—
come with handy utilities for common sequence transformation patterns. Python
does not, and toolz fills in those convenience functions. A high-performance version
of the library is available as CyToolz. You can install CyToolz with pip install
cytoolz.

Listing 6.9 Summation in parallel with reduce

We’ll need features of the dill, 
pathos, and toolz libraries to 
perform a parallel reduce.

Creates our accumulation and combination 
function, which are the same for summation

Rounds up the processors 
we want to use

Passes the parameters to our 
parallel reduce function: fold

Includes a linear reduce 
for comparison
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reduce back. This can be useful if we’re testing our code on a small subset of
a larger dataset because we can use the fold function without parallelism and
then add the parallelism later when we’re working with a big dataset.

For a parallel filter, we see that the process is mostly the same, except that now we
need to add our combination function and an initializer. We can see this process in
the following listing.

import dill as pickle                      
from pathos.multiprocessing import ProcessingPool as Pool
from toolz.sandbox.parallel import fold
from functools import reduce

def map_combination(left, right):     
  return left + right

def keep_if_even(acc, nxt):      
    if nxt % 2 == 0:
        return acc + [nxt]
    else: return acc

with Pool() as P:
    fold(keep_if_even, range(500000), [],
         map=P.imap, combine=map_combination)    

print(reduce(keep_if_even, range(500), []))      
# [0, 2, 4, 6, 8, 10, 12, ... 484, 486, 488, 490, 492, 494, 496, 498]

Listing 6.10 shows how the parallel filter workflow incorporates the combination
function and the initializer. Just like our linear filter, we put the initializer—an
empty list—in third position. Again, we use an empty list for filter because we want
to return a list. Also, we can see how the combination function is passed to our paral-
lel reduce function in final position as a named parameter. This combination func-
tion and the parallel map parameter are the only things that distinguish our linear
reduce from our parallel reduce.

 We can see the same limited changes between linear and parallel frequencies, as
shown in the following listing. Again, what’s important is that we pass the combination
function and the parallel map.

import dill as pickle                          
from pathos.multiprocessing import ProcessingPool as Pool
from toolz.sandbox.parallel import fold
from random import choice      
from functools import reduce

Listing 6.10 filter in parallel with reduce

Listing 6.11 Implementing frequencies in parallel with parallel reduce

Our parallel reduce 
implementation 
requires the same 
imports as before.

As in listing 6.7, map_combination 
is our combination function.

keep_if_even, from chapter 5, 
is our accumulation function.

Notice the empty list being used as 
an initializer and the combination 
function map_combination.

Our standard reduce 
workflow for comparison

Uses the same 
three imports: dill, 
ProcessingPool, 
and foldImplements choice 

to generate some 
example data
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def combine_counts(left, right):                        
  unique_keys = set(left.keys()).union(set(right.keys()))
  return {k:left.get(k, 0)+right.get(k, 0) for k in unique_keys}

def make_counts(acc, nxt):          
    acc[nxt] = acc.get(nxt,0) + 1
    return acc

xs = (choice([1, 2, 3, 4, 5, 6]) for _ in range(500000))       

with Pool() as P:                   
    fold(make_counts, xs, {},
         map=P.imap, combine=combine_counts)
rand_nums = (choice([1, 2, 3, 4, 5, 6]) for _ in range(500))
reduce(make_counts, rand_nums, {})            
# {6: 87, 1: 59, 5: 88, 4: 85, 3: 93, 2: 88}

We can see again how similar the parallel reduce and the linear reduce are. With the
key exception of the combination function and the parallel map, they both use the same
parameters: the same accumulation function, the same data inputs, and the same initial-
izer. Across all three examples—parallel reduce summation, parallel reduce filter,
and parallel reduce frequencies—we have seen our combination functions increase
in complexity. Getting this combination function right is the key to successfully using
parallel reduce.

Summary
 Sometimes, parallel map can be slower than a lazy map, especially when the

amount of data is small or the work to be done is easy.
 There are several variations of map, such as starmap and .imap, that can be use-

ful in the right situation.
 We can use parallel reduce in conjunction with lazy maps for a fast map and

reduce workflow.
 Parallel reduce takes five parameters: an accumulator function, a sequence, an

initializer, a parallel map function, and an optional combiner.
 The parallel map function tells parallel reduce how to split up the workload.
 The optional combiner tells reduce how to join chunks of work completed in

parallel whose data type may be different from that of items in the sequence.
 To use parallel reduce, we need to design a combine function that can combine

the different accumulated chunks.

combine_counts 
will be our 
combination 
function.

make_counts will be 
our accumulation 
function.

Uses a generator 
expression to create 
a lot of dummy data

Calls our parallel reduce on this data, passing our 
accumulation function, the data, a dict as an initializer, 
our parallel map, and the combination function

Includes a linear 
reduce for 
comparison
 



 



Part 2

Part 2 teaches how to use two popular open source distributed computing
frameworks: Hadoop and Spark. Hadoop is the originator and foundation of
contemporary distributed computing. We’ll explore how to use Hadoop stream-
ing and how to write Hadoop jobs with the mrjob library. We’ll also learn Spark,
a modern distributed computing framework that can take full advantage of the
latest, high-memory compute resources. You can use the tools and techniques in
this part for large data in categories 2 and 3: tasks that needs parallelization to
finish in a reasonable amount of time. 
 



 



Processing truly
big datasets with

Hadoop and Spark
In the previous chapters of the book, we’ve focused on developing a foundational
set of programming patterns—in the map and reduce style—that allow us to scale
our programming. We can use the techniques we’ve covered so far to make the
most of our laptop’s hardware. I’ve shown you how to work on large datasets using
techniques like map (chapter 2), reduce (chapter 5), parallelism (chapter 2), and
lazy programming (chapter 4). In this chapter, we begin to look at working on big
datasets beyond our laptop.

 In this chapter, we introduce distributed computing—that is, computing that
occurs on more than one computer—and two technologies we’ll use to do distrib-
uted computing: Apache Hadoop and Apache Spark. Hadoop is a set of tools that
support distributed map and reduce style programming through Hadoop Map-
Reduce. Spark is an analytics toolkit designed to modernize Hadoop. We’ll focus

This chapter covers
 Recognizing the reduce pattern for N-to-X data 

transformations

 Writing helper functions for reductions

 Writing lambda functions for simple reductions

 Using reduce to summarize data
141
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on Hadoop for batch processing of big datasets and focus on applying Spark in analyt-
ics and machine learning use cases.

7.1 Distributed computing
In this chapter, we’ll review the basics of distributed computing—a method of com-
puting where we share not just a single workflow, but tasks and data long-term across a
network of computers. Computing in this way has challenges, such as keeping track of
all our data and coordinating our work, but offers large benefits in speed when we can
parallelize our work.

 In chapter 1, I laid out three sizes of datasets. Those that are

1 small enough to work with in memory on a single computer
2 too big to work with in memory on a single computer but small enough that we

can process them with a single computer
3 both too big to fit into memory on a single computer and too big to process on

a single computer

The first dataset size poses no inherent challenges: most developers can work with
these datasets just fine. Somewhere between the second size—too big for memory, but
we can still process it locally—and the third size, however, most people will start to say
they’re working with big datasets. In other words, they’re starting to have problems
doing what they want to do with the datasets, and sometimes rightfully so—if we have
a dataset of the third size and only a single computer, we’re out of luck.

 Distributed computing solves that problem (figure 7.1). It’s the act of writing and
running programs not for a single computer, but for a cluster of them. This cluster of

Eventually, a problem gets so large,
we can no longer manage it on a
single machine in any reasonable
amount of time.

The large code
symbol (</>)
represents the size of
the problem at hand.

In this case, the work
is much larger than
our computers.

Distributed computing is a good
solution when the amount of work to
be done is large, relative to the
capacity of individual computers in
the network to do work.

Figure 7.1 Distributed 
computing involves 
several computers 
working together to 
execute a single task.
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computers works together to execute a task or solve a problem. We can use distributed
computing to great effect when we pair it with parallel programming.

 If we think back to our discussions of parallel programming, the main advantage
we talked about was that parallel programming allowed us to do lots of different bits
of work all at once. We split the task at hand up into pieces and worked it several
pieces at a time. For small problems, this had few, if any, benefits. As tasks got larger,
however, we saw the value of parallelization rise. By using distributed computing, we
can multiply this effect (figure 7.2).

When we add computers to our workflow, we’re adding all the processing power of
those computers. For example, if each computer we add has four cores, every time we
add a new machine to our cluster, we’ll add four additional cores. If we started with a
four-core machine, running in parallel might cut our processing time down to one-
fourth, but with two machines, we could be down to one-eighth. Adding two more
machines might bring us down to one-sixteenth of the time it originally took to pro-
cess our data in linear time.

 And although there is a physical limit to how many processors we can reasonably
have on a single machine, there’s no limit to how many processors we can have in a
distributed network. Dedicated supercomputers might have hundreds of thousands of

It might take us 1,000 hours to
run a job on a single machine.

But if we run that same job on
100 machines, we’ll often be
able to complete that same job
in less than a day.

If our compute resources are similar in
scale to the workload, we can solve
the problem reasonably quickly.

If our job is much, much larger than
our compute power, we need a lot of
time to solve the problem.

Figure 7.2 Distributed computing allows us to reduce our compute time 
by parallelizing our work across multiple machines. We can use distributed 
computing to solve problems in days, hours, or minutes that would have 
taken weeks.
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processors across tens of thousands of machines, whereas scientific computing networks
make hundreds of thousands of computers available to researchers engaged in serious
number crunching. More commonly, companies, government entities, not-for-profits,
and researchers are all turning to the cloud for on-demand cluster computing. We’ll
talk more about that in chapter 12.

 Of course, distributed computing is not without its drawbacks. The curse of com-
munication pops up again. If we distribute our work prematurely, we’ll end up losing
performance spending too much time talking between computers and processors. A
lot of performance improvements at the high-performance limits of distributed com-
puting revolve around optimizing communication between machines.

 For most use cases, however, we can rest assured that by the time we’re considering
a distributed workflow, our problem is so time-consuming that distributing work is
sure to speed things up. One indicator is that distributed workflows tend to be mea-
sured in minutes or hours, rather than the seconds, milliseconds, or microseconds
that we traditionally use to measure compute processes.

7.2 Hadoop for batch processing
In this section, we’ll talk about the fundamentals of Apache Hadoop. Hadoop is a
prominent distributed computing framework and one that you can use to tackle even
the largest datasets. We’ll first review the different parts of the Hadoop framework,
then we’ll write a Hadoop MapReduce job to see the framework in action.

 The Hadoop framework focuses specifically on the processing of big datasets on
distributed clusters. Hadoop’s basic premise is that we can combine the map and
reduce techniques we’ve seen so far, along with the idea of moving our code (not our
data), to solve problems with small and large datasets alike.

 We can find a lot of similarities between Hadoop and the way we’ve been thinking
about computing so far in this book. I’ve been preaching that we should start small
(and local) and then scale up as we need more resources. Hadoop promises the same
thing. You can develop and test on a single local machine and then scale out to a
thousand-machine cluster hosted in the cloud. Hadoop advocates for this in much the
same way we do, through a map and reduce style of programming.

7.2.1 Getting to know the five Hadoop modules

The Hadoop framework includes five modules for big dataset processing and cluster
computing (figure 7.3):

1 MapReduce—A way of dividing work into parallelizable chunks
2 YARN—A scheduler and resource manager
3 HDFS—The file system for Hadoop
4 Ozone—A Hadoop extension for object storage and semantic computing
5 Common—A set of utilities that are shared across the previous four modules
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MapReduce is an implementation of the map and reduce steps you’ve already seen in
this book that is designed to work in parallel on distributed clusters. YARN is a job
scheduling service with cluster management features. HDFS—or Hadoop Distributed
File System—is the data storage system of Hadoop. Ozone is a new (version 0.3.0 as
I’m writing this) Hadoop project that provides for semantic object store capabilities.
Common is a set of utilities common to all the Hadoop libraries.

 We’ll touch on the first three—MapReduce, YARN, and HDFS—now. These
three libraries are the classic Hadoop stack. The Hadoop Distributed File System
manages the data, YARN manages tasks, and MapReduce defines the data process-
ing logic (figure 7.4).

HADOOP’S TWIST ON MAP AND REDUCE

The main aspect of Hadoop with which we’ll concern ourselves in this book is the
MapReduce library. Hadoop MapReduce is a massive data processing library that we
can use to scale the map and reduce style of programming up to tens of terabytes or
even petabytes by extending it across tens, hundreds, or thousands of worker
machines. MapReduce divides programming tasks into two tasks: a map task and a
reduce task—just like we saw at the end of chapter 5.

The Hadoop ecosystem is built on the Hadoop Distributed File System
or HDFS, although YARN and MapReduce are the most important
libraries for big data practitioners.

HDFS

OzoneYARN

MapReduce

Common

Figure 7.3 The Hadoop framework is made up of five pieces of software, 
each of which tackles a different big dataset processing problem.
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YARN FOR JOB SCHEDULING

YARN is a job scheduler and resource manager that splits resource and job manage-
ment into two components: scheduling and application management. The scheduler,
or resource manager, oversees all of the work that is being done and acts as a final deci-
sion maker in terms of how resources should be allocated across the cluster. Application
managers, or node managers, work at the node (single-machine) level to determine how
resources should be allocated within that machine (figure 7.5). Application managers
also monitor what’s going on within their node and report that information back to
the scheduler.

The Classic Hadoop Stack

MapReduce

YARN

HDFS

MapReduce jobs, which are
scheduled and managed by
YARN, process unstructured
data.

YARN manages resources
across the cluster and
ensures processes are
allocated intelligently.

HDFS ensures high
availability of the data and
that there is no data loss
across the cluster.

Figure 7.4 The classic Hadoop 
stack is MapReduce, running 
on top of YARN, running on top 
of HDFS.

The resource manager
oversees all the work that
occurs at the node level
and ensures the work is
properly distributed
across the nodes.

Resource manager

Node managers The node managers pay attention to the
status of individual nodes in the cluster
and report back their status to the
resource manager.

Figure 7.5 The YARN resource 
manager oversees the entire job, 
whereas a node manager oversees 
what happens within a single node.
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We can tie together resource managers in extremely high demand use cases where
thousands of nodes are not sufficient. This process is called federation. When we feder-
ate YARN resource managers together, we can treat several YARN resource managers
as a single resource manager and run them in parallel across multiple subclusters as if
they were a single massive cluster.

THE DATA STORAGE BACKBONE OF HADOOP: HDFS
The foundation of the Hadoop framework is its distributed file system abstraction,
aptly named Hadoop Distributed File System. The Hadoop authors designed HDFS to
work for cases where users want to

 process big datasets (several terabytes and up; too big for local processing)
 be flexible in their choice of hardware
 be protected against hardware failure—a common cluster computing problem

Additionally, HDFS operates based on another key observation: that moving code is
faster than moving data. When we introduced parallelization in chapter 2, we talked
about how Python’s base map moves both code and data. This is effective up to a
point, but eventually the cost of moving data around—especially if the data files are
large or numerous—becomes too much to justify parallelization. We run into the
same problem we saw at the end of chapter 5: the act of parallelization costs more
than the benefits of doing the work in parallel.

 By distributing the data across the cluster and moving the code to the data, we
avoid this problem. Code—even in its lengthiest, most obtuse forms—will be small
and cheaper to move than the data it needs to work on. In the typical case, our data is
large and our code is small.

7.3 Using Hadoop to find high-scoring words
Now that we’ve covered the fundamentals of Hadoop, let’s dive into some code to
really see how it works. Consider the following scenario. (You can find the data for the
scenario in the book’s code repository online: https://github.com/jtwool/mastering-
large-datasets.)

SCENARIO Two of your friends—one a nurse and the other a pop culture
critic—have been arguing for days about a peculiar topic: the relative sophisti-
cation of the two seemingly unrelated figures Florence and the Machine (a

Distributed file systems
HDFS is a reliable, performant foundation for high-performance distributed comput-
ing, but with that comes complexity. Because this book is not focused on data engi-
neering, I’ve chosen to omit the details of HDFS. The book Hadoop in Action (Manning,
2010) goes into HDFS in more depth and includes cookbook-style recipes for com-
mon HDFS operations. Chuck Lam, the book’s author, introduces Hadoop’s Distrib-
uted File System in section 3.1 and does a deep dive into HDFS in chapter 8.
 

https://github.com/jtwool/mastering-large-datasets
https://github.com/jtwool/mastering-large-datasets
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contemporary English rock band) and Florence Nightingale (a legendary
English nurse). To settle their dispute, you’ve been asked to count the fre-
quencies of words longer than six letters occurring in songs by Florence and
the Machine and the writings of Florence Nightingale.

To do this we’ll need to do a few things:

1 Install Hadoop
2 Prepare a mapper—a Python script to do our map transformation
3 Prepare a reducer—a Python script to do our reduction
4 Call the mapper and reducer from the command line

7.3.1 MapReduce jobs using Python and Hadoop Streaming

Before we get into the details of implementation, though, let’s take a look at what
Hadoop’s MapReduce does. Hadoop’s MapReduce is a piece of software, written in
Java, that we can use to execute MapReduce on distributed systems. When we talk
about running Hadoop MapReduce with Python, we are (generally speaking) talking
about running Hadoop Streaming, a Hadoop utility for using Hadoop MapReduce
with programming languages besides Java.

 To run that utility, we’ll call it from the command line along with options such as

 the mapper
 the reducer
 input data files
 output data location

Hadoop provides an example code snippet demonstrating this command. An anno-
tated version of this snippet appears in figure 7.6.

The code snippet in figure 7.6 calls on two Unix commands to serve as its mapper and
reducer. /bin/cat refers to the Unix concatenate software, and /bin/wc refers to the
Unix word count software. Used together like this, cat will print the text and wc will
count the words. Hadoop will ensure that these actions are performed in parallel on

mapred streaming \
-input myInputDirs \
-output myOutputDir \
-mapper /bin/cat \
-reducer /usr/bin/wc

Hadoop’s streaming utility makes it easy
for us to use the Java software with any
executables, for example, Unix tools.

All we need to do is
specify the input and
output locations.

It also makes it easy for us to
use the executables we want
to for the map and reduce
steps of the workflow.

Figure 7.6 A word count example in Hadoop, using Hadoop Streaming and Unix tools.
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the documents in the directory located at the input location and the results are writ-
ten to the output directory.

 Once run, the result will be that we can go into whatever directory we pointed out-
put to and retrieve the count of the words. Before we move on to a full-scope example,
let’s implement the word count mappers and reducers in Python. To emulate the cat
capability in Python, let’s print each word to a new line. To emulate the wc capability,
we’ll increment a counter for each word we come across. We’ll need to wrap both of
these capabilities in solo, executable scripts.

 The mapper might look like listing 7.1, and the reducer might look like listing 7.2.

#!/usr/bin/env python3
"""Print words to lines"""
import sys

for line in sys.stdin:
  for word in line.split():
    print(word)

#!/usr/bin/env python3
"""Count words"""
import sys
from functools import reduce

print(reduce(lambda x, _:x+1, os.stdin, 0))

In these two examples, some strange new things are going on. First, we’re reading
from stdin. This is because Hadoop handles the opening of files for us, along with
chopping up extra-large files into smaller bits. Hadoop is designed to be used with
massive files, so having the ability to split a big file across several processors is import-
ant. We also can use Hadoop to work with compressed data—it natively supports com-
pression formats such as .gz, .bz2, and .snappy (as shown in table 7.1).

Listing 7.1 Word count mapper in Python

Listing 7.2 Word count reducer in Python

Table 7.1 A comparison of compression formats available for use out of the box with Hadoop

Format Description Use case Hadoop Codec

.bz2 Slow compression, but shrinks 
files more than older algorithms

Semi-long-term storage, file trans-
fer between people

BZip2Codec

.gz Fast, well-supported compression 
algorithm

Transfer of files between pro-
cesses (such as Hadoop steps)

GzipCodec

.snappy New, fast compression algorithm; 
less support than .gz but better 
compression

Transfer of files between pro-
cesses (such as Hadoop steps)

SnappyCodec
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Second, both of our scripts print their output to the terminal. Again, this is because of
how Hadoop is oriented. Hadoop will capture what’s printed to stdout and use that
later on in the workflow. This creates an additional step on top of our standard work-
flow and can cause us to have to convert strings into Python objects.

 Lastly, both scripts start with the Python shebang. This line tells the computer to
use these scripts as executables. Hadoop will try to call these scripts using the program
at the designated shebang path, in this case, Python.

 If you haven’t already tried, replacing the mapper and reducer from before with
our two scripts will let us run our MapReduce job. This is shown in the following
listing.

$HADOOP_HOME/bin/hadoop  jar $HADOOP_HOME/hadoop-streaming.jar \
    -input myInputDirs \
    -output myOutputDir2 \
    -file ./wc_mapper.py \
    -mapper ./wc_mapper.py \
    -file ./wc_reducer.py
    -reducer ./wc_reducer.py \

The output of this command will be in myOutputDir2 inside a file called results. The
result should be the same as the second number that the command we called in figure
7.6 returns.

7.3.2 Scoring words using Hadoop Streaming

Let’s turn back to our example of finding the counts of long words. For Hadoop, we’ll
focus only on the words by Florence and the Machine. (We’ll save the texts of Flor-
ence Nightingale for Spark later in this chapter.) To get counts of specific words with
Hadoop—instead of simply an overall count of words—we’ll have to modify our map-
per and our reducer. Before we jump right into the code, let’s take a look at how this
process will compare with our word counting example. I’ve diagrammed both pro-
cesses, step by step, in figure 7.7.

 With our word count mapper, we had to extract the words from the document and
print them to the terminal. We’ll do something very similar for our long word fre-
quency example; however, we’ll want to add a check to ensure we’re only printing out
long words. Note that this behavior—doing our filtering and breaking our documents
into sequences of words—is very similar to how the workflow might execute in Python.
As we iterated through the sequence, both the transformation and the filter would
lazily be called on the lines of a document.

 For our word count reducer, we had a counter that we incremented every time we
saw a word. This time, we’ll need more complex behavior. Luckily, we already have this
behavior on hand. We’ve implemented a frequency reduction several times and can
reuse that reduction code here. Let’s modify our reducer from listing 7.2 so it uses the

Listing 7.3 Running a Streaming MapReduce with Python
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make_counts function we first wrote back in chapter 5. Our mapper will look like list-
ing 7.4, and our reducer will look like listing 7.5.

#!/usr/bin/env python3
import sys

for line in sys.stdin:
  for word in line.split():
    if len(word)>6: print(word)

#!/usr/bin/env python3
import sys
from functools import reduce

def make_counts(acc, nxt):          
    acc[nxt] = acc.get(nxt,0) + 1
    return acc

for w in reduce(make_counts, sys.stdin, {}):     
    print(w)

Listing 7.4 Hadoop mapper script to get and filter words

Listing 7.5 Hadoop reducer script to accumulate counts

[run, fast, for,
your, mother ... ]

12,345

[run, fast, for,
your, mother ... ]

{"mother": 2,
"father": 2,
"sisters": 2}

In our large word frequency problem, we’ll
need to filter down to only the large
words and return a dictionary of words
and their counts.

Map step

Wordcount

Large word
frequency

Reduce step

For our wordcount example, our map
step involves turning a document into a
sequence of words and then counting all
the words in the reduce step.

Figure 7.7 Counting words and getting the frequencies of a subset of words have 
similar forms but require different mappers and reducers.

This is our make_counts 
function from chapter 5.

We apply it to the sys.stdin 
stream, which is where our 
data will come in.
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The output of our MapReduce job will be a single file with a sequence of words and
their counts in it. The results should look like figure 7.8. We also should see some log
text printed to the screen. We can quickly check to see that all the words are longer
than six letters, just as we’d hoped. In chapter 8, we’ll explore Hadoop in more depth
and tackle scenarios beyond word filtering and counting.

7.4 Spark for interactive workflows
So far in this chapter, we’ve been talking about the Hadoop framework for working
with big datasets. In this section, we’ll turn our attention to another popular frame-
work for big dataset processing: Apache Spark. Spark is an analytics-oriented data pro-
cessing framework designed to take advantage of higher-RAM compute clusters that
are now available.

 Spark offers several other advantages, from the perspective of most Python
programmers:

 Spark has a direct Python interface—PySpark.
 Spark can query SQL databases directly.
 Spark has a DataFrame API—a rows-and-columns data structure that should feel

familiar to Python programmers with experience in pandas.

7.4.1 Big datasets in memory with Spark

As we touched on briefly in the introduction to section 7.3, Spark processes data in
memory on the distributed network instead of storing intermediate data to a filesys-
tem. This can lead to up to 100 times improvements in processing speed versus
Hadoop on some workflows, to say nothing about the difference between a Spark task

Our Hadoop program writes a
sequence of words to a text file.

Because we didn’t do any word
cleaning, some of the words will be
capitalized and others will have
floating punctuation.

Figure 7.8 The output of our MapReduce job 
is a sequence of words.
 



153Spark for interactive workflows
and a linear Python task. The caveat to this is that Spark requires machines with greater
memory capacity.

CHOOSING SPARK VERSUS HADOOP

Because Spark makes full use of a cluster’s RAM, we should favor Spark over Hadoop
when we

 are processing streaming data
 need to get the task completed nearly instantaneously
 are willing to pay for high-RAM compute clusters

Spark’s use of in-memory processing means we don’t necessarily have to save the data
anywhere. This makes Spark ideal for streaming data—one aspect of the conventional
definition of big data. We should reserve Hadoop for batch processing.

 Because Spark can be so much faster than Hadoop, we should use Spark when we
need near instant processing of data. Of course, this is only really feasible up to a cer-
tain point. Eventually the data will be too big to process immediately, unless we throw
an unjustifiable amount of resources at the problem.

 That situation is directly tied to the last factor in our list: if money is of no concern,
we can freely choose Spark. Because Spark runs faster when it has access to many
high-RAM machines, if we can afford to assemble a cluster of high-RAM machines,
then Spark is the obvious choice. Hadoop is designed to make the most out of low-cost
computing clusters.

 As you can imagine, the answer to which distributed computing framework to use
is not always clear cut; however, the map and reduce style we’ve developed throughout
this book will serve you well working with big datasets in either one.

7.4.2 PySpark for mixing Python and Spark

Spark was designed for data analytics, and one way we can see that is in the Spark
design team’s commitment to developing APIs for both Python and R. Like Hadoop,
Spark is written to run on the Java Virtual Machine (JVM), which would normally
make it hard for scientists, researchers, data scientists, or business analysts, who most
often use languages like Python, R, and Matlab. We saw this problem in Hadoop. We
were not able to interact directly with Hadoop through Python. Instead, we had to call
our Python functions through Hadoop Streaming, and we had to use somewhat
clumsy workarounds to work with Python data beyond strings. When we’re working
with Spark, we can use its Python API, PySpark, to get around that issue.

 With PySpark, we can call Spark’s Scala methods through Python just like we would
a normal Python library, by importing the modules and functions we need. For exam-
ple, we’ll often be using the SparkConf and SparkContext functions to set up our
Spark jobs. We’ll talk more about these functions in chapter 9 when we dive into
Spark. For now, we can work with them in Python by importing them from PySpark, as
shown in the following listing.
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from pyspark import SparkConf, SparkContext

config = SparkConf().setAppName("MyApp")
context = SparkContext(conf=config)

We’ll see this in full force later in this chapter when we dive into PySpark in section 7.5.

7.4.3 Enterprise data analytics using Spark SQL

A significant benefit of Spark is its support for SQL databases through Spark SQL.
Built on top of the widespread Java Database Connectivity—which you’ll often see
abbreviated as JDBC—Spark SQL makes it easy to work with structured data. This is
especially important if we’re working with enterprise data. Enterprise data refers to com-
mon business data—HR or employee data, financial or payroll data, and sales order or
operational data—and the most common means of storing that data—relational data-
bases, especially Oracle DB or Microsoft SQL Server.

 Because Spark is designed first and foremost for Scala, the Spark SQL Python API
is not compliant with the PEP 249 specification for Python database connections.
Nonetheless, its core functionality makes intuitive sense, and we can use it with any
database that has a JDBC connection, including popular free and open source data-
bases such as MySQL, PostgreSQL, and MariaDB. In its simplest form, querying
databases with Spark is as easy as passing our SQL query into the .sql method of a
SparkSession object.

7.4.4 Columns of data with Spark DataFrame

When we’ve queried data using Spark, our data will end up in what’s known as a Data-
Frame, a Spark class that we can think of as being equivalent to a SQL table or a
pandas.DataFrame. Unlike either a SQL table or a DataFrame from pandas though,
the DataFrame in Spark is optimized for distributed computing workflows.

 Like SQL and pandas, Spark DataFrames are organized around columns with
names. This is helpful if we want to make conditional subsets of our data for machine
learning or statistical summary. For example, if we wanted to get the average purchase
size of customers with more than 20 orders, we could use the DataFrame .filter and
.agg methods, combined with Spark’s knowledge of our column names, to get that
information. We can see this example in figure 7.9.

DataFrame’s version of .filter has a use similar to that of the filter function
we saw in chapters 4–6. In fact, a lot of the map and reduce-oriented data processing
functions make their way into the pyspark.sql.functions library, including zip as
arrays_zip. The DataFrame API is a more general API that provides a convenience
layer on top of the core Spark data object: the RDD or Resilient Distributed Dataset.
RDDs are the Hadoop-abstraction that powers Spark’s in-memory distributed process-
ing, and the PySpark RDD API provides access to all the functions we’ve become

Listing 7.6 Importing from Spark into Python
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familiar with, including map, reduce, filter, and zip. We’ll see an example of these
functions in the next section.

7.5 Document word scores in Spark
Now that we’ve covered the fundamentals of Spark, let’s dive into some code. In the
previous example in this chapter, we found all the words with more than six letters
from the songs of the band Florence and the Machine. This served as evidence of
their lyrical sophistication and also helped introduce us to Hadoop. In this section,
we’ll complete the comparison between Florence and the Machine and Florence
Nightingale by running the same process on a document by Florence Nightingale
in Spark.

 As in section 7.3, we’ll break this process down into three areas:

1 A mapper
2 A reducer
3 Running the code in Spark

Our mapper will be responsible for taking the files and turning them into sequences
of words with more than six characters, and the reducer will be responsible for count-
ing up the words we find. Running the code in Spark parallelizes the workflow for us.
We can see this process play out in figure 7.10.

DF.filter(orders>20).agg(avg)

DataFrames in Spark have built-in
methods for common operations.

The method takes a function.agg
and uses that function to aggregate
results based on other variables.

The method works.filter
just like the functionfilter
we’ve used in this book.

Figure 7.9 Spark DataFrames have a .filter method that we can use 
to quickly take subsets of our big datasets.

[run, fast, for,
your, mother ... ]

{"mother": 2,
"father": 2,
"sisters": 2}

We’ll write the map and reduce parts of the workflow in
Python and then pass a script off to Spark for parallelization.

Running the Spark job

Mapping documents to words Reducing words to counts

Figure 7.10 Counting up the big words used by Florence Nightingale involves three steps 
in Spark.
 



156 CHAPTER 7 Processing truly big datasets with Hadoop and Spark
7.5.1 Setting up Spark

Before we can jump into our Spark job, let’s take a second to set up Spark. Unlike setting
up Hadoop—which may have been a hairy process if you weren’t familiar with Java—
installing Spark is pretty straightforward. Go to https://spark.apache.org/downloads
.html and follow the download instructions on the page, and that’s it! You’ve got
everything you need to use Spark.

Now that we have Spark installed, we can run Spark jobs and interact with Spark using
PySpark. The easiest way to take either of these actions is through the utilities that Spark
provides. Just like Hadoop provided us the Hadoop Streaming utility, Spark provides
two utilities: one that sets up an interactive Python shell called pyspark and one that
allows us to run Spark jobs—similar to Hadoop streaming—called spark-submit.

EXPLORING BIG DATA INTERACTIVELY

One of the reasons why Spark is so popular is that it allows for us to interactively explore
big data through a PySpark shell REPL. This more playful style of development, where
we iterate through our problem line by line, is more familiar to a lot of data scientists
than writing out extended chunks of code all at once. It also allows us to see what our
intermediate results are or consult the Python documentation as we develop.

 We kick this process off by running the utility pyspark. That process brings up a
screen—like figure 7.11—where we can enter Python commands. Right off the bat, we

Spark clusters
Just like we didn’t do a deep dive into setting up a Hadoop cluster in this book, we
also won’t do a deep dive into setting up a Spark cluster—though we will show you
how to provision cloud resources for these technologies in chapter 12. If you’re inter-
ested in a full Spark book after the two and a half chapters we’ll spend on it here,
Manning has several books dedicated to Spark, including Spark in Action (2016) and
Spark GraphX in Action (2016).

Figure 7.11 Spark provides an interactive terminal where we can run 
Python commands with all the power of a Spark cluster behind them.
 

https://spark.apache.org/downloads.html
https://spark.apache.org/downloads.html
https://spark.apache.org/downloads.html
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have access to SparkContext and SparkSession instances as sc and spark. (The
pyspark utility imports them for us; when we write our own Spark scripts, we’ll need
to import them ourselves.) The sc variable has methods for building the Resilient Dis-
tributed Dataset instances we mentioned in section 7.4.4. We can use the spark vari-
able to bring data into DataFrames—the parallel optimized tabular data abstractions
we also mentioned in section 7.4.4. If we run python’s help command on these vari-
ables in the interactive session, we’ll see a list of methods available for each one. We’ll
go into some of them in this book, but a full list of methods for each variable is avail-
able in the online documentation.

RUNNING JOBS

When we’re not working with Spark interactively, we’ll work with it by running Spark
jobs. This is a similar process to how we ran MapReduce jobs in Hadoop. We write
some code, and then we pass it as an argument to a utility. In the case of Spark, we’ll
use the spark-submit utility and we’ll pass it a single Python script.

 In that Python script, we can create instances of any of the Spark objects we need.
We’ll have access to them once we import the pyspark module. Let’s take a look at
this method of working with Spark in action.

7.5.2 MapReduce Spark jobs with spark-submit

Turning our attention back to the question at hand—the lexical excellence of Flor-
ence Nightingale—we’ll break our work into three steps:

1 Turning a document into a sequence of words
2 Filtering those words down to those having more than six characters
3 Gathering counts of the rest

When we worked through this process in Hadoop, we accomplished step 1, turning a
document into a sequence of words, and step 2, filtering out the small words, together
in the mapper. With Spark, the three steps will all stand apart.

 To accomplish this process in Spark, the first thing we’ll want to do is bring our
data into an RDD—Spark’s powerful parallel data structure. This is a good starting
point for most work in Spark. To do that, we’ll need a SparkContext, so we’ll have to
instantiate a SparkContext instance. Then we can use the SparkContext method
.textFile to read in text files from our filesystem. This method creates an RDD with
the lines of those documents as elements.

 We can turn this dataset into a sequence of words by calling the .flatMap method
of the RDD. The .flatMap method is like map but results in a flat sequence, not a nested
sequence. .flatMap also returns an RDD, so we can use the .filter method of the RDD
to filter down to only the large words, and then the .countByValue method of that
resulting RDD to gather the counts. We can see this whole process in just a few lines in
the following listing.
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e 
#! /usr/bin/env python3
import re
from pyspark import SparkContext

if __name__ == "__main__":      
  sc = SparkContext(appName="Nightingale")     
  PAT = re.compile(r'[-./:\s\xa0]+')            
  fp = "/path/to/florence/nightingale/*"
  text_files = sc.textFile(fp)                
  xs = text_files.flatMap(lambda x:PAT.split(x))\      
                 .filter(lambda x:len(x)>6)\       
                 .countByValue()\        

  for k,v in xs.items(): 
    print("{:<30}{}".format(k.encode("ascii","ignore"),v))

When you’re done running the code, you should see a long list of large words output.
If all’s right, the words should all be over six letters in length. There will also be a
bunch of output related to the Spark job that was run to process this code. The final
result will look something like the following listing.

hurting                       10
Englishman                    1
Conceit                       1
contain                       1
deficient                     1
especially                    9
weekend                       2
pretend                       1
weaknesses,                   1
servants                      1
suppose                       2
forever                       4
stagnant                      2

Unlike Hadoop, where we’re free to print our results to get them to write to the out-
put file, with Spark, we’ll typically want to write our results directly to a file. That way,
we won’t have to dig them out of a mass of terminal messages. In the next three chap-
ters, we’ll touch on some more best practices for using Hadoop and Spark by working
through more in-depth examples.

Listing 7.7 Counting words of six letters or more in Spark

Listing 7.8 Code output from Spark, counting up large words

Because this is a script, most of the 
code will run only when called as such.

Initializes the SparkContext, 
with appName an optional 
but useful parameter

Uses a regular 
expression to mak
our splits better 
quality

.textFile will load all 
the files matched as 
an RDD.

Then, we can use 
the RDD’s .flatMap 
to turn each line 
into words.

Those words can then
be filtered down to only

the large words.
Then, lastly, we can count them 
up using a built-in method.

Prints the results 
for convenience
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7.6 Exercises

7.6.1 Hadoop streaming scripts

What are the scripts called that we write for a Hadoop Streaming job? (Choose one.) 

 Mapper and Reducer
 Applier and Accumulator
 Functor and Folder

7.6.2 Spark interface

When we interact with Spark, we’ll do it through PySpark, which is a Python wrapper
around the Spark code written in which programming language? (Choose one.)

 Clojure
 Scala
 Java
 Kotlin
 Groovy

7.6.3 RDDs

Spark’s innovations center around a data structure called an RDD. What does RDD stand
for? (Choose one.)

 Resilient Distributed Dataset
 Reliable Defined Data
 Reduceable Durable Definition

7.6.4 Passing data between steps

With Hadoop Streaming, we need to manually ensure that the data can pass between
the map and reduce steps. What do we need to call at the end of each step? (Choose
one.)

 return

 yield

 print

 pass

Summary
 Hadoop is a Java framework that we can use to run code on data across distrib-

uted clusters.
 When writing Python for Hadoop MapReduce jobs, we write one script for the

mapper and one for the reducer.
 Both the Python mapper script and the Python reducer script need to print

their results to the console.
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 In Spark, we can write a single Python script that handles both the map and
reduce portions of our problem.

 We interact with Spark through Python using the pyspark API.
 We can work with Spark in interactive mode or by running jobs—this gives us

flexibility in our development workflow.
 Spark has two high-performance data structures: RDDs, which are excellent for

any type of data, and DataFrames, which are optimized for tabular data.
 



Best practices for
large data with Apache

Streaming and mrjob
In chapter 7, we learned about two distributed frameworks for processing large
datasets: Hadoop and Spark. In this chapter, we’ll dive deep into Hadoop—the Java-
based large dataset processing framework. As we touched on last chapter, Hadoop
has a lot of benefits. We can use Hadoop to process

 lots of data fast—distributed parallelization
 data that’s important—low data loss
 absolutely enormous amounts of data—petabyte scale

This chapter covers
 Using JSON to transfer complex data structures 

between Apache Streaming steps

 Writing mrjob scripts to interact with Hadoop 
without Apache Streaming

 Thinking about mappers and reducers as key-
value consumers and producers

 Analyzing web traffic logs and tennis match logs 
with Apache Hadoop
161
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Unfortunately, we also saw some drawbacks to working with Hadoop:

 To use Hadoop with Python, we need to use the Hadoop Streaming utility.
 We need to repeatedly read in strings from stdin.
 The error messages for Java are not super helpful.

In this chapter, we’ll look at how we can deal with those issues by working through
some scenarios. We’ll analyze the skill of tennis players over time and find the most
talented players in the sport.

8.1 Unstructured data: Logs and documents
The Hadoop creators designed Hadoop to work on unstructured data—a term that
refers to data in the form of documents. Though they will often contain useful, inter-
pretable metadata—for example, author or date—the important content is typically
unrestricted in form. A classic example of unstructured data is a web page.

 The web page is written in HTML and has some general formatting requirements:

 The page starts with a head tag.
 Inside the head tag are CSS and JavaScript imports.
 There should also be some metadata inside the head tag—maybe a description

of the page or the page’s title.
 Then there’s the body tag, which is the main content of the page.

The web page has useful metadata—we could quickly write up some code to find the
title of any web page and even its keywords and description, if they’re listed as
metadata—however, none of these aspects of the page is why anyone goes to it. What
users are interested in is entirely in the body section. And, of course, the body of the
web page can contain anything its author pleases, such as text, images, videos,
music, and so on.

 Compare this to other common forms of unstructured data, such as social media
content, text or office documents, spreadsheets, and logs. If we think about a social
media post, we know that these posts have required or imputed fields (such as time of
post), but, more importantly, they also have freeform fields, such as the text of a tweet
or a Facebook status. If we think about an office document, we know that our office
software will record information like time last saved and the names of the users who
have edited the document, but the main body of the document can be anything from
a love letter to a business report. If we think about log data, we typically have more
structure—machines do more logging than people—however, logs are often saved in
file formats that are considered unstructured, such as plain text, and fall into this cat-
egory for that reason.

 Unstructured data is notoriously unwieldly. It’s not amenable to the kind of tabular
analysis that most data analysts cut their teeth on. This makes problems that involve
unstructured data more frustrating for analysts, because their standard bag of tricks
doesn’t typically work, and less satisfying for customers, because the analysis takes lon-
ger and may be less fruitful.
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 At the same time, unstructured data is one of the most common forms of data
around. Companies that have made an effort to assess how much data they have in
structured versus unstructured formats have consistently found unstructured data
makes up more than 80%, sometimes even as much as 95%, of their data. This makes
sense when we consider that technologies such as personal web pages, social media,
email, blogs, and other self-publishing platforms all produce unstructured data.

 Keeping data in an unstructured format does have some advantages, chiefly that
it’s loosely coupled with the systems that rely on it. If the format of the data is not
under your control (for example, it comes from a system owned by another group or
another company), or you’re working with data in several different formats, keeping
that data unstructured provides an advantage because you will never need to restructure
a datastore to accommodate changes. These facts about unstructured data—especially
its prevalence—make it important to have a tool like Hadoop, which is designed for
unstructured data, in one’s belt.

8.2 Tennis analytics with Hadoop
To demonstrate the power of Hadoop—and how we can use it to turn log-style data
into usable information—we’ll tackle an example from the world of tennis.

SCENARIO A new professional tennis league is forming, and they have hired
you to come up with skill estimates for professional tennis players so that they
can direct their efforts for recruiting players to the new league. They have
provided you with data for several years of matches and would like you to
return to them with a list of players and their corresponding skills.

Solving this problem will involve three steps. We need to

1 read in the data for each match
2 update the rankings of the winner and loser of each match
3 sort the rankings when all of our work is done

We’ll break each of these steps up into a Hadoop MapReduce job in the streaming
style we learned in chapter 7. Thinking back to chapter 7, we know we’ll need a map-
per script and a reducer script. Our mapper script will handle step 1, and our reducer
script will handle steps 2 and 3 (figure 8.1).

 Figure 8.1 shows what data will look like as it flows through this process. We’ll start
with our input datafiles, we’ll read the matches from those files, then we’ll reduce the
matches into ratings for each tennis player. Finally, we’ll sort the matches to return the
players in order. As the data moves, you’ll notice it changes from a comma-separated
string into key-pairs into a sequence of key-value pairs.

8.2.1 A mapper for reading match data

Because step 1 is neatly contained within our mapper script, let’s start our process
there. We’ll start by inspecting how the matches are contained within a file, part of
which is previewed in figure 8.2.
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In the file, we can see that each match is a single line—just like we’ll need it for
Hadoop—and that each line contains a number of attributes describing the match,
such as the winner, the loser, the surface, and more. For our purposes, we can concern
ourselves with these three elements: winner, loser, and surface.

 To access these elements of each match, we’ll need to split each line on the com-
mas and then call the elements we want by number: the surface is in the 2nd position,
the winner is in the 10th position, and the loser is in the 20th position. This isn’t espe-
cially clear to someone else reading our script, so we’ll pass the data on to our reducer

Mapper

2000-W-SL-AUS-01A-2000,Australian Open,Hard,...AUS,199,6-4 6-2,3,R128

Our first step is to map the data
from raw input format into an
intermediate format.

Then, we’ll reduce this intermediate
format into sorted match ratings.

{'surface': 'Hard',
'winner': 'Justine Henin',
'loser' : 'Kerry Anne Guse'}

{'Justine Henin': 1545,
'Kerry Anne Guse': 1495

...
}

Reducer

Figure 8.1 The tennis analytics problem requires three steps broken up between mapper and reducer scripts. 
In the mapper, we assemble the information we need, and in the reducer, we rank and sort the players.

The women’s tennis match data
contains a description of each match,
with values separated by commas.

Some values included are tournament ID,
tournament name, surface, size of the draw,
level of the tournament, date, and match number,
and the ID, seed, name, handedness, height,
country, age, and rank of both players.

2001-W-SL-AUS-01A-2001 ... Martina Hingis ... Katalin Marosi ... 6–1 6–1,3,R128

2001-W-SL-AUS-01A-2001 ... Els Callens ... Rachel Mcquillan ... 6–3 6–1,3,R128

2001-W-SL-AUS-01A-2001 ... Anne Kremer ... Iroda Tulyaganova ... 6–4 2–6 6–4,3,R128

2001-W-SL-AUS-01A-2001 ... Virginie Razzano ... Tatiana Panova ... 7–6(6) 6–3,3,R128

Figure 8.2 The tennis match logs contain matches as comma-separated strings.
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function using key-value pairs. Key-value pairs provide much greater interpretability
than comma-separated value data, at the cost of being bulkier to store. Key-value pairs
are more costly to store because the keys must be stored in addition to the values,
whereas a comma-separated value string needs no keys.

JSON FOR PASSING DATA BETWEEN MAPPER AND REDUCER

To pass the key-value pair between our mapper and reducer, we’ll use a data interchange
format known as JSON. JSON—or JavaScript Object Notation—is a data format used
for moving data in plain text between one place (typically a computer) and another
(again, typically a computer). Modern web developers are fond of JSON because it

 is easy for humans and machines to read
 provides a number of useful basic data types (such as string, numeric, and array)
 has an emphasis on key-value pairs that aids the loose coupling of systems

As a Python developer, you can use Python’s built-in JSON module for converting
Python objects into JSON data and back. We’ll use the json.dumps (dump string)
function to turn a Python dict into a JSON string that we can print to the stdout with
our mapper. Then we’ll use the json.loads (load string) function for reading it in
with our reducer.

 Altogether, our mapper script looks like the following listing.

#! /usr/bin/python3
import json
from sys import stdin

def clean_match(match):
  ms = match.split(',')
  match_data = {'winner': ms[10],
                'loser': ms[20],
                'surface': ms[2]}
  return match_data

if __name__ == "__main__":
  for line in stdin:
    print(json.dumps(clean_match(line)))

We bring each line in and process it with a helper function called clean_match. This is
the function that we would map across all our data. To process each match, we split it
on the comma and select the 10th, 20th, and 2nd elements of the line. These are the
positions of the winner, loser, and surface respectively. We then populate a dict with
those three elements, labeling each with an appropriate key. Finally, our clean_match
function returns the dict.

 If we were working in Python alone, this would be enough; however, we have to
move our data across the terminal as a string to use Hadoop streaming. For this reason,

Listing 8.1 Mapper for analyzing tennis scores
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we pass our data into the json.dumps function, which converts our Python dict into a
corresponding JSON format—in this case, an object.

 The other elements of the script are identical to the Hadoop Streaming scripts
you’ve already written. We use a Python3 shebang to declare how the script should be
executed, and we read data in from stdin. The shebang, #! /usr/bin/python3, tells
your machine to process the script using Python.

8.2.2 Reducer for calculating tennis player ratings

With our mapper finished, we’re ready to tackle the reducer. The reducer is responsi-
ble for turning matches into assessments of players’ skill. To do that, we’ll rely on a
simplified version of a formula that was originally developed to rate chess players: the
Elo rating system.

RATING PLAYERS BASED ON MATCH PERFORMANCE

The Elo rating system has a simple goal: take match results and use them to update
the ratings of the players who participated in that match. To do this, the system makes
statements about how often players of one rating beat players of another rating when
they compete head-to-head. Typically, a 200-point rating difference between two play-
ers corresponds to the higher-rated player having a 75% chance to beat the lower-
rated player.

 Mathematically, we’ll update players’ ratings using a simplified Elo formula that
calculates the expected chance of winning for each player and then grants the winner
the number of points staked by their opponent. Each player must stake a number of
points proportional to their likelihood of winning the match, so the higher rated
player is risking more but is also expected to win more often. We’ll also use a common
heuristic for calculating the Elo rating, such as starting off never-before-seen players at
1,400 points. We can see the concept of Elo rating illustrated in figure 8.3.

 Figure 8.3 shows how in a match between a player with a 1600 rating and a player
with a 1550 rating, the 1550 player has more to gain and less to lose. That’s because the
rating system expects the 1550 player to lose to the 1600 player more often than not.
When the 1600 player wins, they’ll still gain points, but it will be a modest amount.

 Using the techniques we learned in chapter 5, we’ll structure the score accumula-
tion in a reduce pattern. We’ll bring in new matches and use their results to adjust the
ratings for each player, which are being stored in a dict that we’re holding onto
throughout the reduce step. We can see this process in figure 8.4.

 In figure 8.4, we can see how the accumulation of player scores occurs.

 We bring in the data for the next match.
 We calculate the impact that match had on each player’s rating.
 We give the match winner the points they won.
 We deduct from the match loser the points they lost.
 If either the winner or loser are new observations, we start them at 1,400 points.
 We return the dict to be used for the next match.
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This process occurs for each match until we’ve reduced all the matches to a single
dict: our N (many matches) to X (a single dict of ratings) transformation. Lastly,
when we’re done, we can print our dict to the screen as a JSON object so we can
easily use it for further analysis down the road. The code for this process appears in
listing 8.2.

If the favorite wins, their
score will go up based on
the number of points the
underdog staked. The
underdog will lose that
many points.

vs.

The players stake different percentages of their points
based on how likely they are to win. The favorite has to stake
more points than the underdog.

If the underdog wins, their
rating goes up by the
number of points the
favorite staked. The favorite
loses those points.

Player 1 1614 (+14)
Player 2 1536 (–14)

If P
lay

er 1 wins If Player 2 wins

Player 1 (1600)
Expected to win: 57%
Points staked: 18

Player 1 (1550)
Expected to win: 43%
Points staked: 14

Player 1 1582 (–18)
Player 2 1568 (+18)

Figure 8.3 The Elo rating approach works by adjusting players’ rankings after 
each match they play, with their ratings going up in a win or down in a loss. 
Underdogs are set to gain more points in a win than they would lose in a loss.

The reducer updates the
player ratings based on the
winner and loser of the match.

The process continues until all the
matches have been processed.

The matches get fed
into the reduce process.

{
"player a": 1550,
"player b": 1525,
"player c": 1465,
...
}

[<match 1>, <match 2>, <match 3>, ... <match n>]

Player X +12
Player M –12

Reducer

Figure 8.4 To calculate player ratings, we can reduce over matches, awarding them points for wins and taking 
points away for losses.
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#! /usr/bin/python3
import json
from sys import stdin
from functools import reduce

def round5(x):
  return 5*int(x/5)

def elo_acc(acc,nxt):
  match_info = json.loads(nxt)
  w_elo = acc.get(match_info['winner'], 1400)
  l_elo = acc.get(match_info['loser'], 1400)
  Qw = 10**(w_elo/400)
  Ql = 10**(l_elo/400)
  Qt = Qw+Ql
  acc[match['winner']] = round5(w_elo + 100*(1-(Qw/Qt)))
  acc[match['loser']] = round5(l_elo - 100*(Ql/Qt))
  return acc

if __name__ == "__main__":
  xs = reduce(elo_acc, stdin, {})
  for player, rtg in xs.items():
    print(rtg, player)

In listing 8.2, we’re reducing over the matches with a function we’ve called elo_acc.
The first thing to notice about the elo_acc function is that we’re reading the line in as
a JSON string with json.loads. Because we output our dicts representing the
matches as JSON strings, we can reconstitute them using a JSON string reader. This
gives us match_info, a dict that contains the data we want about the match. Further-
more, because we’ve already done the work of creating keys for winner and loser, we
can quickly retrieve the values by their corresponding keys.

 From there, we can use this information to calculate the adjustments to the play-
ers’ ratings. In short, this process involves taking each player’s rating, dividing it by
400, and comparing those two values to come up with the amount of points that each
player has at stake during the match. I round this number off to the nearest five-point
interval out of personal preference. You can omit this step or round off to a larger
number, like 10, 25, or even 100, if you’d like. Lastly, we’ll print the players and their
ratings by unpacking the tuples that reduce created.

 Finally, we can set these two scripts as executables and run them from the com-
mand line. The command will look like the following listing.

$HADOOP/bin/hadoop jar /home/<user>/bin/hadoop/hadoop-streaming-3.2.0.jar \
  -file ./elo-mapper.py -mapper ./elo-mapper.py \
  -file ./elo-reducer.py -reducer ./elo-reducer.py \
  -input '/path/to/wta/files/wta_matches_200*.csv' \
  -output ./tennis_ratings

Listing 8.2 Reducing over matches to calculate player ratings

Listing 8.3 The Hadoop streaming command to run our rating calculator
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After it finishes running, which should only be a few seconds, you should be able to
open the results file included in the tennis_ratings directory and see output like this:

{
  "Julia Helbet": 1360,
  "Glenny Cepeda": 1400,
  "Hana Sromova": 1075,
  "Sophie Ferguson": 1130,
  "Anne Mall": 1360,
  "Nuria Llagostera Vives": 1120,
  "Maria Vento Kabchi": 1050,
  "Roxana Abdurakhmonova": 1380,
  "Zarina Diyas": 1405,
  "Stephanie Vogt": 1430,
  "Soumia Islami": 1390,
  "Pei Ling Tong": 1380,
  "Shikha Uberoi": 1160,
  "Amani Khalifa": 1410,
...
}

As we had planned, our output is a map of players and their corresponding Elo ratings,
reflecting how skillful those players are estimated to have been during the period we
analyzed. Before we move on, there is a caveat to this analysis that we’ve seen a few times
throughout this book (including chapters 2 and 6). You’ll note that if you run this anal-
ysis several times, you’ll receive different results each time. That’s because the order in
which the matches are played affects the ratings each player (and their opponents)
accumulates, altering the number of points they have at stake in each match. This was
one of the problems we saw with parallel processing back when we first learned about it
in chapter 2. For a real Elo rating, we would want to process the matches in order.

8.3 mrjob for Pythonic Hadoop streaming
Assurances about order aside, perhaps the most striking thing about working with
Hadoop streaming is that it doesn’t really feel like writing Python. Sure, we write two
Python scripts, but we keep needing to print our data to stdout instead of passing it
around inside the code. We have to resort to tricks like json.loads and json.dumps to
work with complex file formats in any way. What we really want is a Pythonic way of
working with Hadoop. For this, we can turn to mrjob—a Python library for Hadoop
Streaming that focuses on cloud compatibility for truly scalable analysis.

 Yelp originally created the mrjob library for its own Hadoop MapReduce needs,
including several high-importance recommendation systems that power the eatery
review site:

 “People who viewed this also viewed” recommendations
 Review highlights
 Text autocomplete
 Restaurant search
 Advertisements
 



170 CHAPTER 8 Best practices for large data with Apache Streaming and mrjob
The company developed the mrjob framework because the framework allowed its
engineers to use Python—a quick to write, easy to debug language—to work with mas-
sive, distributed data through Hadoop. And, indeed, massive is the operative word.
Yelp’s data systems were processing more than 100 GB of data each day when it devel-
oped the framework. The scalability is important—that’s why we want to use Hadoop
and distributed computing in the first place—but here we’ll focus on the Python.

8.3.1 The Pythonic structure of a mrjob job

A chief benefit of mrjob is that we get to write more Python. Indeed, instead of writing
two scripts and calling them from the command line (and getting weird Java-based
errors back when we make a mistake), with mrjob we can write our entire Hadoop
Streaming job in Python. The mrjob library removes the need to interact directly with
Hadoop at all.

 Yelp created mrjob to analyze web logs, and we’ll do the same to get used to the
mrjob syntax. For example, let’s consider the problem of finding the pages on a web-
site that throw a 404 error the most. The 404 error represents a page that can’t be
found, so the presence of these errors in our logs is a direct reflection of inconve-
nience for our users. In a standard map and reduce workflow, we’d break this task up
into two steps (figure 8.5):

1 A map step where we turn each line of a log into the error we’re interested in
2 A reduce step where we count up the errors and find the offending pages

map

<web logs>

<404 errors>

In our standard map and
reduce workflow, we
would the web logsmap
into a sequence of 404
errors.

We would then reduce
those errors into counts
of the offending pages.

{
'page_1.html': 20,
'file_8.pdf': 12,
'image3.png': 201

...
}

reduce

Figure 8.5 To find 404 error offenders, we'd break the task up in a standard map and 
reduce style.
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As shown in the figure, we’d start by ingesting our log files with a map. Then we would
transform each of those files into a sequence of errors and offending pages. And
finally, we’d reduce over this sequence and count up the error messages.

 To do this with mrjob, we’ll have to use a slightly different approach. mrjob keeps
the mapper and reducer steps but wraps them up in a single worker class named
mrjob. The methods of mrjob correspond directly to the steps we’re used to: there’s a
.mapper method for the map step and a .reducer method for the reduce step. The
required parameters for these two methods, though, are a little different from the map
and reduce functions we’ve come to know. In mrjob, all the methods take a key and
value parameter as input and return tuples of a key and a value as output (figure 8.6).

At first, thinking about map and reduce as consumers and producers of key-value pairs
might be a little confusing, especially because we’ve been talking about both of these
processes working on sequences of any form, not just on those that take the shape of
key-value pairs. Under the hood, however, this is how Hadoop treats map and reduce.

The key-value method of map and reduce
In Hadoop, map and reduce are implemented as two methods: .mapper and .reducer.
Each method takes a sequence of key-value pairs and produces key-value pairs in
return. The .mapper method produces intermediate key-value pairs. In other words, it
takes in data as keys and values and outputs them for the .reducer. Because the
.reducer is expecting a key-value pair, this is perfect. In fact, a hidden step between
the map and reduce steps in Hadoop sorts the keys and values Hadoop consumes
by key. This makes the .reducer job even easier.

Using keys allows Hadoop to make good use of our compute resources as it allocates
work. Intermediate records output by map with like keys will tend to go to the same
location for processing.

Both the andmap reduce
parts of our mrjob code
will expect key and
value arguments.

They will also both output
keys and values.

.mapper(self, key, value) -> key, value

.reducer(self, key, value) -> key, value

Figure 8.6 The mrjob versions of map and reduce share the same type 
signature, taking in keys and values and outputting keys and values.
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For our .mapper step in a standard MapReduce job, the key to our .mapper will be
None, and the value will be the lines we consume. Because of this, our thinking about
map and .mapper doesn’t have to change dramatically. We can ignore the key-value
expectation of .mapper by simply ignoring the first parameter.

 For the .reducer though, we will want to be aware of the key-value structure.
Hadoop, through mrjob, does a lot of the organizing of keys and values for us. We can
take advantage of that by considering the .mapper output not as a sequence but as a
dict populated with keys and sequences. In our error analysis example, we’ll set these
keys to the page URLs so we can quickly count the number of 404 errors associated
with those pages. We can see this play out in listing 8.4.

8.3.2 Counting errors with mrjob

Listing 8.4 is a small example, but because this is the first time we’ve seen mrjob code
in the book, we’ll want to look at it pretty closely. On the first line, we’re importing a
class MRJob, from the mrjob library’s job module This class contains all the core
MapReduce capability that we’ll need to interact with Hadoop. The primary thing
we’ll do when working with the mrjob library is create new classes that inherit from
the MRJob class.

from mrjob.job import MRJob

class ErrorCounter(MRJob):

  def mapper(self, _, line):
    fields = line.split(',')
    if fields[7] == '404.0':
      yield fields[6], 1

  def reducer(self, key, vals):
    num_404s = sum(vals)
    if num_404s >5:
      yield key, num_404s

if __name__ == "__main__":
  ErrorCounter.run()

Not surprisingly, the next thing we do is create a new class ErrorCounter that inherits
from the MRJob class. We’re also going to define .mapper and .reducer methods for
this class. As discussed in section 8.3.1, both of these methods expect keys and values,
and you can see that they both use three parameters: self, a key, and a value.

 For our .mapper, we’ll ignore the first of these parameters (the key), as suggested
in the previous section. To do that, we’ll use the underscore variable, which is our way
of saying we won’t do anything with this variable. We’ll name the second parameter
line because the value of our input is going to be each line of our log file. Coming

Listing 8.4 MRJob script for finding 404 error messages in a traffic log
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from working directly with Hadoop Streaming, this should feel pretty familiar. We’re
receiving the data just as if it came from stdin.

 Because the data we’re getting comes in as a comma-separated string, we’ll use
Python’s .split method to split the input line into fields. We’ll check the HTTP
response code field, which happens to be in 7th position, to see if it is a 404 error, and
if it is, we’ll return the page name—which is in 6th position—and a 1. We can visualize
that process as shown in figure 8.7.

With our .mapper sending out data as keys (page names) and values (indicator counts
of those pages), we’re ready to move on to our .reducer. For our .reducer, we’ll sum
up the number of 404s our .mapper reported and return that value along with the

The return values of mrjob methods
Earlier in this chapter, we discussed how when working with complex data structures,
it is often helpful to pass our data around as JSON so that we can quickly and easily
reconstitute it from strings. The mrjob library authors thought this was such a good
idea that they require every .mapper and .reducer output to be JSON serializable.
This means that you’ll be best served by using simple Python data structures when
you can, such as floats, ints, strings, lists, and dicts. These data structures
are serializable in base Python. That said, you can turn any Python data structure into
JSON by implementing your own method.

.txt
200.0

2. Then we check the
response code in
7th position.

3. If the response code is an
error, we’ll return the page
that the user attempted to
access (6th position).

1. Our first splits.mapper
the line from the log into
discrete fields.

71.34.59.jig,2012–02–12,23:59:59,500.

0,3570.0, 0001193125–08–215926,.txt,20

0.0,34721.0,0.0,1.0,1.0,0.0,0.0,

Figure 8.7 Our .mapper consumes lines, splits them into fields, checks the value of the error 
message field, and then returns the page name and a 1.
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original key. I’m restricting this to only pages that have more than five 404 errors
because I’m personally only interested in high-frequency offenders, but you can omit
this step if you’d like.

 This .reducer is the first place we really see how the key-value expectation changes
how we think about our map and reduce steps. We can still think about reduce mov-
ing through a sequence, but this time we’re moving through a sequence of key-value
pairs. And the value for each key is a sequence. In this specific situation, our key will
be a page name, like index.html, and our value will be a list of indicators of 404
errors, such as [1, 1, 1, 1]. Figure 8.8 shows what this looks like.

When we think about the line num_404s = sum(vals) from listing 8.4, this line works
because Hadoop has already sorted our data into a format where the key is the page
and the vals variable contains a sequence of all the indicators (1). Summing up all
those 1s then gives us a count of the number of 404 errors. Then we can return this
value along with the key to get a count of the errors associated with each page.

 Lastly, also in listing 8.4, we see the Pythonic main call at the end of our script. To
run our mrjob MapReduce job, we’ll call this script from the command line, adding
our input data as an additional parameter. We’ll need to have Hadoop still installed
from chapter 7 to run the mrjob operation:

python3 common_errors.py traffic-logs.txt

Our will result in keysmap
pointing to a collection of
the values output.

Each represents a single1
error we found.

Our step will sum allreduce
the s in those collections,1
resulting in a count of all
the errors for each page.

{
'page_1.html': 304,
'file_8.pdf':    5,
'image3.png':    9,

...}

{
'page_1.html': [1,1,1,1,1,1,1 ... 1]
'file_8.pdf':    [1,1,1,1,1],
'image3.png':    [1,1,1,1,1,1,1,1,1]
...}

reduce

Figure 8.8 Our .mapper produces key-value pairs that our .reducer then iterates through, 
operating on the key and its associated values.
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After that, we should see pages and their corresponding error counts printed to the
screen:

Using configs in /etc/mrjob.conf
No configs specified for inline runner
Creating temp directory /tmp/common-errors.jt-w.20191108.012559.032175
Running step 1 of 1...
job output is in /tmp/common-errors.jt-w.20191108.012559.032175/output
Streaming final output from /tmp/common-errors.jt-

w.20191108.012559.032175/output...
".hdr.sgml"    2
".txt"    191
"form448073_20120210093319-.xml"    1
Removing temp directory /tmp/common-errors.jt-w.20191108.012559.032175...

From this output, we can see that most of the errors on our site are coming from links
pointing to a file called “.txt”. 

8.4 Tennis match analysis with mrjob
Having seen a small mrjob MapReduce workflow, let’s return to our tennis match data
and dive into two more examples, each revolving around one of the greatest tennis
players in history: Serena Williams.

8.4.1 Counting Serena’s dominance by court type

In this scenario, we’ll analyze Serena Williams’ historical dominance and learn to
think in the key-value style that mrjob expects.

SCENARIO One of the most interesting things about tennis is that it’s one of
the few sports where the playing surface changes. Successful professionals
learn to play on courts made of grass, clay, and concrete. Regardless of court,
Serena Williams has been one of the most impressive tennis players in history.
A sports writer has asked us to analyze the match logs and count her wins and
losses on each court type.

If we were to think about this process in our old map and reduce way of thinking, we
could imagine mapping each file into dicts that contained the information we’d be
interested in and then reducing over that information to get the counts (figure 8.9).
To use mrjob, though, we want to be thinking about keys and values. What data do we
want to end up as keys in our final output, and what data should be in the values?

 Well, we know we want to have the data organized by surface, so that makes sense
as a key. As a value, we want Serena’s record: a count of her wins and a count of her
losses. We can accumulate those counts in our .reducer by using our frequencies
function—the same one we wrote back in chapter 5 when we introduced reduce—if
we have a list of wins and losses. What we’ll want to output from our .mapper is the
surface and either a W for a win or an L for a loss. Consider how this compares to our
traditional map and reduce style approach in figure 8.9.
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To implement this arrangement, we’ll make a new class that inherits from MRJob
called SerenaCounter with a .mapper method that returns either the surface and a W
or the surface and an L. That class also will need to have a .reducer method that gets
the frequencies of her results for each surface. To do that, we’ll bring back our
frequencies code from chapter 5. We can see what this process looks like in the fol-
lowing listing.

from mrjob.job import MRJob
from functools import reduce

def make_counts(acc, nxt):
    acc[nxt] = acc.get(nxt,0) + 1
    return acc

def my_frequencies(xs):
    return reduce(make_counts, xs, {})

class SerenaCounter(MRJob):

  def mapper(self, _, line):
    fields = line.split(',')
    if fields[10] == 'Serena Williams':
        yield fields[2], 'W'

Listing 8.5 Counting Serena Williams’ wins and losses by surface with MRJob

map

<matches>

<wins/losses + surface>

In our standard map and
reduce workflow, we
would all the matchesmap
into a sequence of Serena’s
matches + match surfaces.

We would then reduce
those into Serena’s record
across the different surfaces.

{
'hardcourt': {'W':204,'L':30},
'grass': {'W':30,'L':5},
...
}

reduce

Figure 8.9 A traditional map and reduce solution would map information into dicts to allow 
us to count Serena’s wins.
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    elif fields[20] == 'Serena Williams':
        yield fields[2], 'L'

  def reducer(self, surface, results):
    counts = my_frequencies(results)
    yield surface, counts

if __name__ == "__main__":
  SerenaCounter.run()

Our .mapper method ingests the lines from our match logs and checks the winner
and loser fields for Serena’s name. If we find her in the winner field, we’ll output the
court type and a W. If we find her in the loser field, we’ll output the court type and an
L. If we don’t find her in either field, we won’t output anything.

 The .reducer method receives that information by key, which we take in through
the surface parameter, and value, which we take in through the results parameter.
Because we passed the court type out in first position in our .mapper, that value will
be read as the key. The results will be accessible for each court type as a sequence,
like ['W', 'L', 'W', 'W', . . . ]. We can use our frequencies function to get a
dict of the counts of each unique element. We’ll output the surface and counts at
the end of our .reducer to see the court type with which each grouping of wins and
losses is associated.

 When we’re ready to run the script, we can run it from the command line:

python3 serena_counter.py '/path/to/tennis/matches/wta_*.txt'

Shortly after, we should see something like the following printed to the screen.

"Carpet"  {"W": 15, "L": 3}
"Clay"    {"L": 34, "W": 145}
"Hard"    {"W": 418, "L": 67}
"Grass"   {"W": 84, "L": 10}

MRJob combs through each record in all the match log files and sums up all of Ser-
ena’s wins and losses, providing us her record by court type. From this, we can see that
she’s a dominant grass court player, winning more than eight matches for every loss.
On clay comparatively, she’s the most human, winning just shy of 75% (67 wins in 90
matches) of her matches. On hard courts, where she plays most of her matches, she
has racked up more than 240 wins, claiming victory more than 80% (243 wins in 290
matches) of the time.

8.4.2 Sibling rivalry for the ages

Serena Williams is not alone in the Williams family when it comes to dominance in the
sport of tennis.

SCENARIO Serena Williams’ story is made all the more interesting by her
rivalry with another tennis great, her sister: Venus Williams, an Olympic gold
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medalist and five-time Wimbledon winner. Coming to terms with the fact that
a story about Serena’s dominance across court types is not going to be very
interesting—she’s amazing, we get it—the same sports writer has asked us to
assess which sister has the advantage over the other on each type of court.

We’ll attack this scenario just like the last one: working our way backwards from the
results we want to the transformations we need to make. We know we’ll need our data
organized by court type—that’s what the reporter wants to see—and we’ll also need
counts of each sister’s victories on those courts. Sounds like our court types should be
the keys, and the winners and wins should be our values.

 Because we know that both Williams sisters will play in all the matches they play
against each other, it’s enough to count the winner—the loser of the match will be
whoever doesn’t win. Our .mapper, then, will check to see if it’s a match between the
sisters, and if it is, it’ll output the surface and the winner. Our .reducer will count up
the wins for each sister by surface type. This process is illustrated in figure 8.10.

Programmatically, we’ll have to create another class inheriting from the MRJob class.
This one we’ll call WilliamsRivalry. The WilliamsRivalry class will need two meth-
ods: a .mapper and a .reducer. The .mapper will split the lines up into fields, check
that both Venus and Serena Williams are playing, and output the winning sister and

map

<matches>

{'hardcourt': {'Serena', 'Venus', 'Serena')
...
}

Our workflow willMRJob
map the matches into
keys, with a sequence of
Serenas and Venuses as
Values.

The functionfrequencies
will count those values
into s of keys anddict
counts, representing the
wins for each sister.

{
'hardcourt': {'Serena':9,'Venus':5}
...
}

reduce

Figure 8.10 The MRJob workflow uses keys and values to count up wins for the Williams 
sisters by surface.
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the surface they played on. The .reducer will need to count up each sister’s victories
on the different types of courts. The code will look like the following listing.

from mrjob.job import MRJob
from functools import reduce

def make_counts(acc, nxt):
    acc[nxt] = acc.get(nxt,0) + 1
    return acc

def my_frequencies(xs):
    return reduce(make_counts, xs, {})

class WilliamsRivalry(MRJob):

  def mapper(self, _, line):
    fields = line.split(',')
    players = [fields[10], fields[20]]
    if 'Serena Williams' in players and 'Venus Williams' in players:
      yield fields[2], fields[10]

  def reducer(self, surface, results):
    counts = my_frequencies(results)
    yield surface, counts

if __name__ == "__main__":
  WilliamsRivalry.run()

A lot of the code in listing 8.6 is similar to the code in listing 8.5. In fact, the only sub-
stantive change is in the .mapper method. The new .mapper method breaks each line
up into fields like our old .mapper, then creates a players variable—a string that
holds the names of the winning and losing players. We use this to check that each of
the Williams sisters is playing. If we find both sisters’ names in the players variable,
we can then output the surface type, which is stored in the 2nd position, and the win-
ner, which is stored in the 10th position.

 Then, because our my_frequencies function counts up whatever is passed to it, we
can achieve the desired results without changing our .reducer at all. Instead of count-
ing up wins and losses by surface type, the counter will count up the winners by sur-
face type. Ultimately, the .reducer will output the surface type and a dict containing
each sister’s name and the number of times they bested the other on that surface.

 We can run this code from the command line, remembering to pass the path to
the data as an argument, and we should see output like this:

"Clay"    {"Serena Williams": 2}
"Grass"   {"Venus Williams": 2, "Serena Williams": 4}
"Hard"    {"Serena Williams": 10, "Venus Williams": 6}

Listing 8.6 Evaluating the Williams sisters’ rivalry with MRJob
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From the output, we can see that the siblings are competitive across both grass and
hard courts. Venus won two of the grass-court matches, and Serena won four (66%).
In hard-court matches, Serena is besting her sister in a similar percentage of the
matches they play (64%). For Serena, winning 64% of the matches is a poor showing—
remember that she won nearly 80% of her matches against the professional circuit at
large on hard courts and nearly 90% of her matches on grass.

8.5 Exercises

8.5.1 Hadoop data formats

Which data format does MRJob use to share data between the map step and the reduce
step? (Choose one.)

 Binary
 Raw text
 JSON
 Pickle

8.5.2 More Hadoop data formats

True or False: Parallel processes like Hadoop MapReduce jobs are deterministic—
their outputs are always produced in the same order.

8.5.3 Hadoop’s native tongue

Which of the following languages is Hadoop written in? (Choose one.)

 Haskell
 C++
 JavaScript
 Java

8.5.4 Designing common patterns in MRJob

When working with MRJob, we’ll achieve better performance if we attempt to code in
an MRJob style—using keys and values along with mappers and reducers. Implement
some of the common map and reduce style patterns we’ve seen so far. 

NOTE The code snippets here illustrate the functionality of the desired func-
tions. You’ll want to implement the MRJob class for each snippet.

 Filter—Take a sequence and return a subset of that sequence.

>>> filter(is_even, [1,2,3,4,5])  # [2,4]

 Frequencies—Take a sequence and count the things in that sequence.

>>> frequencies([1,2,1,1,2])  # {1:3, 2:2}
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 GroupBy—Group a sequence by values resulting from a function.

>>> group_by(is_even, [1,2,3,4,5])  # {True: [2,4], False: [1,3,5]}

 CountBy—Get counts of keys resulting from a function.

>>> count_by(is_even, [1,2,3,4,5])  # {True: 2, False: 3}

Summary
 JSON is a data format that we can use to pass complex data structures between

the mapper and reducer steps of an Apache Hadoop Streaming MapReduce job.
 We use the json.dumps() and json.loads() functions from Python’s json library

to achieve this transfer.
 We can use the mrjob library to write MapReduce jobs without having to inter-

act directly with Hadoop.
 The mrjob library forces us to think about our map and reduce steps as taking in

and spitting out key-value pairs.
 Hadoop uses these keys under the hood to allocate data to the proper location.
 The mrjob library enforces JSON data exchange between the mapper and

reducer phases, so we need to ensure that our output data is JSON serializable.
 The mrjob library was designed for big data processing in the cloud—it has

excellent support for Amazon Web Services’ Elastic MapReduce, which we will
cover in chapter 12.
 



PageRank with map
and reduce in PySpark
In chapter 7, we learned about Hadoop and Spark, two frameworks for distributed
computing. In chapter 8, we dove into the weeds of Hadoop, taking a close look at
how we might use it to parallelize our Python work for large datasets. In this chap-
ter, we’ll become familiar with PySpark—the Scala-based, in-memory, large dataset
processing framework.

 As mentioned in chapter 7, Spark has some advantages:

 Spark can be very, very fast.
 Spark programs use all the same map and reduce techniques we learned

about in chapters 2 through 6.
 We can code our Spark programs entirely in Python, taking advantage of the

thorough PySpark API.

This chapter covers
 Options for parallel map and reduce routines 

in PySpark

 Convenience methods of PySpark’s RDD class 
for common operations

 Implementing the historic PageRank algorithm 
in PySpark
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In this chapter, we’ll take a look at how we can make the most of PySpark by focusing
on its foundational class: the RDD—Resilient Distributed Dataset. We’ll explore the
map and reduce-like methods of the RDD that we can use to perform familiar map and
reduce workflows in parallel. We’ll learn about some of the RDD class’s convenience
methods that make our lives easier. And we’ll learn all this by implementing the Page-
Rank algorithm—the simple but elegant ranking algorithm that once formed the
backbone of Google’s search.

9.1 A closer look at PySpark
In chapter 7, we introduced Spark and saw that we could use it to write Python code
and have that code translated into fast parallel map and reduce programs. This pro-
cess of translation—from Python into Scala—was reflected in the style of our Python
code. In this chapter, we’ll take a look at the map and reduce style utilities available to
us through PySpark’s RDD class.

 The RDD class has methods that we can group into three categories:

1 map-like methods—Methods we can use to replicate the function of map
2 reduce-like methods—Methods we can use to replicate the function of reduce
3 Convenience methods—Methods that solve common problems

We’ve seen functions throughout this book that fall into each of these categories; for
example, the map variations (imap, starmap) all fall into map-like methods, and func-
tions like filter and frequencies fall into the convenience methods. PySpark has its
own tools that offer similar convenience as well as PySpark RDD-based parallelization.

9.1.1 Map-like methods in PySpark

We’ll start our closer look at PySpark by examining map-like methods: .map, .flatMap,
.mapValues, .flatMapValues, .mapPartitions, and .mapPartitionsWithIndex. You’re
already familiar with the first two—we’ve seen them in previous chapters. The second
two are unique to Spark and require us to dive a little more into how Spark works. In
this section, we’ll take a look at how we can use these methods to replicate the map
behaviors we’ve seen in previous chapters.

REFRESHER Resilient Distributed Dataset objects are the foundation of Spark’s
power. They are an abstraction that allows programmers to use high-level
methods (like .map and .reduce) to execute parallel operations in-memory
across a distributed system. Because RDDs hold as much data in memory as
possible, Spark can be much, much faster than Hadoop. In PySpark, most of
the parallel operations we’ll want to take advantage of are implemented as
methods to an RDD class. This class represents the Resilient Distributed Data-
set we’re operating on.

The RDD’s .map method, as we would expect, takes a function and applies it to each of
the elements of our RDD. For example, if we open some text files with SparkContext’s
.textFile method (which we introduced in chapter 7), we would map a function
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over the resulting strings. We can imagine a function make_words that splits a string
into words and would turn our list of text strings into a list of word lists, with one word
list for each string. We can see this process in figure 9.1.

 Like we saw in listing 7.7, though, sometimes we’ll want one big sequence instead
of a sequences of sequences. For that, we can use the RDD .flatMap method. .flatMap
is equivalent to map, but it returns a flattened sequence of the elements. Using the
same example from figure 9.1, .flatMap would return a single long sequence of
words, disregarding the information about which string they came from. Figure 9.2
shows an example of this.

 The .mapValues and .flatMapValues methods are like .map and .flatMap, except
they operate only on the values of key-value pairs. For example, we may have data
about web pages on our site and the IP addresses that visited them, and we’re interested

"lorem ipsum
dolor sit amet"

["lorem", "ipsum",
"dolor", ...]

[<str>, ...]

[<str>, ...][<str>, ...]

<str>

my_rdd.map(make_words)

<str> <str>

Our has fourRDD
partitions, each of which
contains some text data.

The .map(make_words)
method will transform the
data in the partitions.

The text data is transformed
into a sequence of strings.

Our text data starts as a
big string.

Figure 9.1 The RDD .map method maps across the RDD, in this case turning words in each string into a list 
of strings.
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in the number of unique visitors for each page. Assuming we had this data stored as
key-value pairs, we could then use .mapValues to retain the information in the key
(the web page) but alter each value, transforming a list of IP addresses into a count.
We can see this example in figure 9.3.

We start with an of strings andRDD
can transform that withRDD
either or ..map .flatMap

The method applies the.map
provided function across each of the
items in our , in this case,RDD
returning a list for each item.

The method applies the.flatMap
provided function across each of the
items in our and then chainsRDD
the returned items together,
resulting in a single list of elements.

Figure 9.2 The RDD .flatMap method returns a flattened sequence and is useful when 
we’re interested in the elements of each partition all together.

Our starts containing a sequence of keys andRDD
values, where the values are themselves sequences.

We can use the RDD .mapValues
method and the built-in functionlen
to get counts of the sequences for
each key, without altering any data
for those keys.

Figure 9.3 You can use the RDD’s .mapValues method to retain the keys while altering the values.
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Lastly, the .mapPartions and the .mapPartionsWithIndex methods of the RDD class
are variations of map that are partition aware—they know which partition of our RDD the
data being processed resides on. Partitions, as we mentioned in chapter 7, are the
abstraction that RDDs use to implement parallelization. The data in an RDD is split up
across different partitions, and each partition is handled in memory. It is common in
(very) large data tasks to partition an RDD by a key. For example, if we have an enor-
mously popular web page—going back to the example we just discussed in figure 9.3—
we may partition the website by page using the RDD’s .partitionBy method. Using this
partitioning strategy, we could perform operations on each page in memory in a single
partition (in other words, we’d perform those operations quickly). .mapPartitions and
.mapPartitionsWithIndex are the .map and .mapValues equivalents for partitions.
An example of this is shown in figure 9.4.

[("fruit", "apple")
("fruit", "orange"),

("vegetable", "lettuce"),
("vegetable", "potato")]

[("fruit", "kiwi")
("fruit", "strawberry"),

("vegetable", "carrot"),
("vegetable", "leek")]

[
("fruit", "apple")
("fruit", "orange"),
("fruit", "kiwi")
("fruit", "strawberry")

]

<RDD>.partitionBy(0)

The 0 indicates
partitioning by
the value in the 0
position (the key).

Our has two partitions,RDD
each of which has a mix of
key-value pairs in it.

If we repartition on those
keys, the data is organized
more logically and we can
process data faster.

[
("vegetable", "carrot"),
("vegetable", "leek"),
("vegetable", "lettuce"),
("vegetable", "potato")
]

Figure 9.4 Partitioning a large dataset by logical keys optimizes our compute processes and makes future join 
operations easier.
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9.1.2 Reduce-like methods in PySpark

Of course, while we need map to do our data transformation, we also need reduce to
summarize our data. The RDD class has three methods that I consider reduce-like:

 .reduce

 .fold

 .aggregate

Each of these methods has a byKey variation:

 .reduceByKey

 .foldByKey

 .aggregateByKey

The methods .reduce, .fold, and .aggregate are all similar to Python’s reduce func-
tion you’ve gotten to know, except that they each have differing levels of assumptions—
with .reduce being the most presumptive, .aggregate being the most flexible, and
.fold falling in between.

 The RDD .reduce method provides reduce functionality—taking a sequence and
accumulating it into some other data structure—however, we can’t provide either an
initializer value or a combination function to RDD’s .reduce method. This means that
to use the RDD .reduce method, we’ll expect to have the same data type all the way
through the operation—including our ultimate data structure. A good example of the
type of operation this would be suited for is summation. In summation, all of our ele-
ments will be numeric data types, and our output value will be a numeric data type.

 Slightly more nuanced, the .fold method allows us to provide an initializer value
in addition to an aggregation operation. This makes .fold suitable in situations
where we may want to have a guaranteed value that doesn’t exist in our sequence. For
example, if we wanted to find the minimum value of a sequence of numbers but we
wanted to ensure that it would be at least as small as one, we could use .fold with the
min function and 1 as an initializer.

 The .aggregate method provides all the functionality of a parallel reduce. We can
provide an initializer value, an aggregation function, and a combination function. (We
introduced combination functions in chapter 6 on parallel reduce. They provide the
instructions for how to join work accumulated in parallel by the accumulation functions
and may be different from the accumulation functions in complex workflows.) We can
use this method for anything .reduce and .fold can do, and anything else we may want
to use a parallel reduce for. Table 9.1 summarizes the differences between the methods.

Table 9.1 Differences between the RDD’s .reduce, .fold, and .aggregate methods

Method Aggregate Initialize Combine

RDD.reduce() Yes No No

RDD.fold() Yes Yes No

RDD.aggregate() Yes Yes Yes
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As mentioned, each of the three methods we just looked at—.reduce, .fold, and
.aggregate—also has a byKey variation: .reduceByKey, .foldByKey, and .aggregate-
ByKey. Each of these methods works like the previous methods, but they operate on
the values of a sequence of key-value pairs and only accumulate one value per key. For
example, if we had a sequence of keys and values indicating pages and the number of
seconds a user spent on a page during a single visit to it, we could get totals for each
page using the .reduceByKey method. This is illustrated in figure 9.5 and shown in
listing 9.1.

>>> page_visits = sc.parallelize([("index.html", 3), ("cart.html", 11),
                                 ("checkout.php", 2), ("index.html", 6),
                                 ("search.html", 2), ("cart.html", 3)])
>>>> page_vists.reduceByKey(sum)
("index.html", 9)
("cart.html", 14)
. . .

Listing 9.1 Counting page visit time with .reduceByKey

Our starts containing a sequence of keys and values. TheRDD
keys represent web pages, and the values are amounts of
time—in seconds—that users spent on those pages.

If we using , we’ll.reduceByKey sum
get back the sums for each key—in
this case, the total number of times
that users spent on each page.

Figure 9.5 You can use the .reduceByKey method (as well as .foldByKey and 
.aggregateByKey) to accumulate values specifically for each key in a sequence of 
key-value pairs.
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9.1.3 Convenience methods in PySpark

Lastly, PySpark provides a number of convenience methods for manipulating RDDs.
Many of these mirror the convenience functions in the functools, itertools, and toolz
libraries we’ve seen already in chapters 4 and 6. Others are Python mirrors of methods
that exist in Scala—the language in which Spark is written. Methods you should be
aware of include

 .countByKey()

 .countByValue()

 .distinct()

 .countApproxDistinct()

 .filter()

 .first()

 .groupBy()

 .groupByKey()

 .saveAsTextFile()

 .take()

THE .FILTER, .FIRST, AND .TAKE METHODS OF SPARK’S RDD
Let’s start with the ones that have direct mirrors in previous chapters: .filter, .first,
and .take. The RDD class’s .filter method behaves like Python’s filter function: it
uses a function to return a new sequence with only elements that pass the filter by
making the function return True. The RDD class’s .first method returns the first value
in the sequence. And the .take method, like take from toolz, allows us to retrieve the
first however many elements of a sequence.

COUNTING ELEMENTS OF AN RDD WITH .COUNTBYKEY AND .COUNTBYVALUE

Next, we have .countByKey and .countByValue. These methods behave like the
frequencies function—both the one we built ourselves and the one implemented in
toolz. We can use these methods to get a key-value sequence of things and their
counts. .countByKey returns counts of the keys in the RDD, whereas .countByValue
returns counts of the values. We can see an example of how the two differ in the fol-
lowing listing.

>>> xs = sc.paralellize(["Spark", "is", "great"])
>>> xs.map(lambda x:(x, len(x))).countByKey()
[("Spark", 1), ("is", 1), ("great", 1)]

>>> xs.map(lambda x:(x, len(x)).countByValue()
[(5, 2), (2, 1)]

Listing 9.2 shows that if we have an RDD of words and their lengths as tuples, we can
use the .countByKey method to get a count of all the unique words and the .countBy-
Value method to get a count of the unique lengths. In this case, the words are acting

Listing 9.2 PySpark RDD’s .countByKey and .countByValue methods
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as the keys because they’re in first position, and the lengths are acting as the values
because they’re in second position.

COUNTING UNIQUE THINGS WITH RDD’S .COUNTAPPROXDISTINCT

Another counting method that’s useful—especially when working with large datasets—
is the .countApproxDistinct method. Often, we want to know how many unique
elements are in our dataset. How many unique words were used in a document col-
lection? How many unique IP addresses are in our logs? How many unique sessions
visited our site? Spark provides the .distinct method for when we have a small
enough dataset that it’s fine to calculate an exact number. The problem when we
have large datasets is that these counts are time expensive; they require a full pass
of often very long sequences. .countApproxDistinct allows that process to be sped
up and parallelized, if a small window of error is allowable. It uses an approxima-
tion algorithm that is parallelizable, allowing us to benefit from the time savings of
parallelization

COLLECTING ELEMENTS OF AN RDD WITH .GROUPBY AND .GROUPBYKEY.
Another category of convenience methods we’ll want to know about are two methods—
.groupBy and .groupByKey—we can use for restructuring our RDD. Each of these
methods collects all the instances of items in our RDD and returns an RDD of key-value
tuples. For .groupByKey, the items are organized using the keys of the existing key-
value tuples. For .groupBy, the items are organized under new keys resulting from a
function (that we get to provide) applied to each element of the RDD.

 For example, if we had a sequence of words and wanted to collect them based on
their first letter, we would pass a function to .groupBy that returned the first character
of a string.

>>> xs = sc.parallelize(["apple", "banana", "cantaloupe"])
>>> xs.groupBy(getFirstLetter)
[("a",["apple"]), ("b", ["banana"]), ("c", ["cantaloupe"])]

If we had a sequence where we already had key-value tuples, we could use .group-
ByKey, similarly, to obtain groupings of the elements that shared a key.

>>> xs = sc.parallelize([("pet", "dog"), ("pet", "cat"),
                         ("farm", "horse"), "farm", "cow")])
>>> xs.groupByKey()
[("pet", ["dog", "cat"]), ("farm", ["horse", "cow"])]

Somewhat counterintuitively, .groupBy is a special implementation of the .groupBy-
Key method, so whenever you’re given a choice between the two, it’s better to use
.groupByKey.

SAVING RDDS TO TEXT FILES

Lastly, there’s the .saveAsTextFile method, which does what its name implies it
does: it saves an RDD to a text file. Each element of the RDD will be written in string
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form to a text file, separated from the next element by a newline. This is excellent
for a few reasons:

1 The data is in a human-readable, persistent format.
2 We can easily read this data back into Spark with the .textFile method of

SparkContext.
3 The data is well structured for other parallel tools, such as Hadoop’s MapReduce.
4 We can specify a compression format for efficient data storage or transfer.

First, having the data in a persistent, human-readable format puts us in a good posi-
tion to have high-quality data for a long time. Because the data is human readable,
it can be manually inspected—even by nonprogrammers—to ensure that it’s free
from errors. Because the data is in plain text and not bytecode, we have some secu-
rity that changes to our operating system or our runtime environment won’t render
the data obsolete.

 Second, we can quickly read the data back in using the .textFile method of
SparkContext. This is excellent if we have textual data where we want to be working
with strings, or if we have simply structured data. If our data is complex, we may not
want to store the data in this format; the process of reconstituting it could be painful.
Most of the work we’ll do in Spark will use straightforward data structures.

 Third, this format is excellent for Hadoop’s MapReduce, which expects a file with
lines to process. If you have MapReduce code that you like and you’re doing work in
Spark as well, this can be a great way to share data between the two processes. This is a
common use case, with lots of teams having legacy MapReduce jobs they like but start-
ing to incorporate more and more Spark into their work.

 Fourth, and finally, we can specify a compression format for the text file so it’s
saved in a space-efficient way. A wide range of codecs are available for this, including
two common codecs: bz2 and gzip. Between bz2 and gzip, bz2 is the slower, more com-
pressed format, and gzip is the faster, less compressed format. Specifying a compres-
sion format will make the data unreadable by a human until it is decompressed.
However, we don’t need to decompress the data before using it again in Spark or
Hadoop jobs.

 To specify a compression format, we have to call the format’s full Hadoop codec
name. The full name for bz2 is org.apache.hadoop.io.compress.BZip2Codec, and
the full name for gzip is org.apache.hadoop.io.compress.GzipCodec.

>>> my_rdd.saveToText("./path/to/file.bz2",                 
                      "org.apache.hadoop.io.compress.BZip2Codec")

>>> my_rdd.saveToText("./path/to/file.gz",                 
                      "org.apache.hadoop.io.compress.GzipCodec")

It’s convention to save a bz2 compressed file with a .bz2 ending and a gzip compressed
file with a .gz ending.
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9.2 Tennis rankings with Elo and PageRank in PySpark
Now that we have the basics of Spark under us, let’s use it to build one of the classic
large dataset algorithms: PageRank. Consider the scenario from chapter 8.

SCENARIO A new professional tennis league is forming, and they have hired
you to come up with skill estimates for professional tennis players so that they
can direct their efforts for recruiting players to the new league. They have
provided you with data for several years of matches and would like you to
return to them with a list of players and their corresponding skills.

9.2.1 Revisiting Elo ratings with PySpark

We looked at how we could solve this problem using Elo ratings—a ranking system
that iteratively adjusts players’ scores after each win and loss—with Hadoop MapReduce.
We can implement this solution in Spark as well, using Spark’s reduce capabilities. To
do that, we’ll need to

1 write Spark code to bring in the data
2 copy the elo_acc accumulator function from listing 8.2
3 call the elo_acc function with the right Spark reduce-like method

We can see what this will look like in the following listing.

#! /usr/bin/env python3

import re
from pyspark import SparkContext

def round5(x):
  return 5*int(x/5)

def clean_match(match):
  ms = match.split(",")
  match_data = {"winner": ms[10],
                "loser": ms[20],
                "surface": ms[2]}
  return match_data

def elo_acc(acc,nxt):
    w_elo = acc.get(nxt["winner"],1600)
    l_elo = acc.get(nxt["loser"],1600)
    Qw = 10**(w_elo/400)
    Ql = 10**(l_elo/400)
    Qt = Qw+Ql
    acc[nxt["winner"]] = round5(w_elo + 25*(1-(Qw/Qt)))
    acc[nxt["loser"]] = round5(l_elo - 25*(Ql/Qt))
    return acc

def elo_comb(a,b):
    a.update(b)
    return a

Listing 9.3 Elo rating reduction in Spark
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if __name__ == "__main__":
  sc = SparkContext(appName="TennisElos ")
  text_files = sc.textFile("/path/to/my/data/wta_matches*")
  xs = text_files.map(clean_match) \
                 .aggregate({},elo_acc, elo_comb)

  for x in sorted(xs.items(), key=lambda x:x[1], reverse=True)[:20]:
      print("{:<30}{}".format(*x))

The majority of the code in the listing comes from chapter 8 and needs little further
explanation. We reviewed the clean_match and elo_acc functions in section 8.2.2.
These are the two major differences between the code in listing 9.3—written for
PySpark—and the code from listing 8.2:

1 This code does without any of the stdin/stdout and JSON we had to concern
ourselves with using MapReduce.

2 We use Spark methods to read in the data, clean the data, and aggregate over
the data.

The thing that we’re probably most happy with about the PySpark version of our Elo
rating code is that the code is entirely in Python—without any need to interact with
the terminal through stdout or stdin and without any need to translate our data
types into JSON. By using PySpark, we use Python data types everywhere, and we don’t
even need to import the JSON module. This is a pretty big advantage in terms of conve-
nience, especially if we’re dealing with more sophisticated data structures that may
not convert neatly into JSON.

 It’s also important that we can use Spark methods to handle all our data processing:

1 The first method we call, .textFile, brings in the text data.
2 The .textFile method returns an RDD, which has a .map method we can use to

clean the data with our clean_matches function, so we do that next.
3 Then, lastly, we use the .aggregate method with our elo_acc function and a

new elo_comb function to score the players.

We use the .aggregate method in this instance because it’s the simplest reduce-like
method that meets our needs. We need an empty dict to start with, so we can’t use the
.reduce method because that has no space for an initializer. And we also need a differ-
ent combine function than the aggregate function, so we can’t use .fold—.fold has
no room for a combine function. The only reduce-like method left is .aggregate,
which gives us the opportunity to specify all three pieces of our parallel reduce.

 That covers the substantive changes to the code; however, you may have noticed
one cosmetic change in listing 9.3. It’s subtle, but in the middle of our map and
reduce workflow, we insert a backslash character and move to the next line. This is a
PySpark convention and an aspect of the Scala programming language adapted for
Python. In Scala, you can chain methods, with each method on a new line by default.
If we do that in Python, Python will throw an error. That’s because Python is famously
white-space aware. We can get around this error by adding a backslash after our method
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call, as shown in the following listing. The backslash character is Python’s manual line
wrap character.

# Example Scala code
my_dataset.map(foo)
          .reduce(bar)

# Example Python code (no wrap)
my_dataset.map(foo).reduce(bar)

# Example Python code (with wrap)
my_dataset.map(foo)\
          .reduce(bar)

If you’re working with other PySpark developers, they’re more likely than not going to
be aware of this convention. For traditional Python developers, however, this conven-
tion might seem strange or even incorrect.

 Ultimately, though, we’ll run our script and receive Elo ratings for our tennis play-
ers that look something like figure 9.6. Here, we can see a sorted collection of players
and their rankings.

9.2.2 Introducing the PageRank algorithm

Now we can rank players based on their Elo rating with both MapReduce and Spark,
but what if we didn’t want to use Elo ratings? What if we wanted a system that didn’t pun-
ish players for losing matches but only rewarded players for beating opponents? What
if we wanted to reward players extra for beating high-quality opponents, encouraging

Listing 9.4 Method chaining in Scala, and two ways in Python

The players’
names

And the
players’ ratings

Figure 9.6 When we calculate the Elo ratings of tennis players using PySpark, our output 
will be a sequence of players and their ratings—the higher the rating, the better the player.
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top-ranked players to play competitive matches against one another? We can design a
system like that using a variation of the PageRank algorithm.

 PageRank is famous as the former backbone to Google’s ranking system. Websites
that had a higher PageRank score would show up higher in the Google search results,
and websites with low PageRank scores may not show up at all. Over time, this process
has changed, but the algorithm’s simple and powerful assumptions have led to its lon-
gevity, and it’s still used outside of Google searches (including in a variety of capacities
related to sports analytics).

The basic premise of PageRank was to treat website rankings like an election, with
somewhat unique rules. The general rules are as follows:

1 Every page has a number of points: its PageRank score.
2 Every page votes for the pages that it links to, distributing to each page a num-

ber of points equal to the linking page’s PageRank score divided by the number
of pages it links to.

3 Each page then receives a new PageRank score, based on the sum of all the
votes it received.

4 The process is repeated until the scores are “good enough.”

Of course, tennis players don’t link to other tennis players. We can, however, use play-
ers’ losses as a vote for the players who are better than them. For example, if Venus
Williams defeats her sister Serena at tennis, then Serena will vote for Venus with some
of her points. A small-scale example of the PageRank algorithm for tennis rankings is
shown in figure 9.7.

 In the figure, we see five tennis players, each with 100 points to distribute.

 Player 1 lost to players 2, 3, and 5 (3 total).
 Player 2 lost to players 1 and 4 (2 total).
 Player 3 lost to players 1 and 2 (2 total).
 Player 4 lost to players 2 and 3 (2 total).
 Player 5 lost to everyone (4 total).

PageRank and Google search
The PageRank algorithm was the result of a research project by then Stanford PhD stu-
dents Larry Page (who named the algorithm after himself) and Sergey Brin. The two
would go on to use the algorithm as the backbone of Google’s search engine. Histori-
ans credit Google’s success to the ease of distributing the algorithm, which allowed
Google to scale, and the way the algorithm naturally aligns with human assessments
of importance.

Over time, Google’s search engine has become more complex. The search algorithm
now uses hundreds of features. Google still uses a version of PageRank to assess
the reliability and authority of websites. The Google Knowledge Graph and Google’s
preference for mobile-friendly and social-friendly content are the most evident forces
in contemporary Google search.
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Because three players have two losses, it’s hard to tell immediately who’s the best, but
PageRank will help us figure it out. Player 1 distributes 33 (1/3) of their 100 points to
players 2, 3, and 5. Players 2, 3, and 4 each vote with 50 points to the players to whom
they lost. And player 5 votes with 25 points to each other player.

 Next, we would add up all the votes. Player 2 ends up with the most points at 158
(50+50+25+33), followed by player 1 with 125 (50+50+25), followed by player 3 at 108
(50+33+25), player 4 at 75 (50+25), and player 5 at 33, from their lone victory over
player 1. In a more robust example, we would then repeat this process a few times so
that victories over higher rated players would be worth more. For example, players 1
and 4 should get lots of points for their victory over player 2—who is the best player—
whereas beating player 5, who lost to everyone, should adjust the ratings much less.
After three iterations, the players would be rated as follows:

1 Player 2—145 points
2 Player 1—125 points
3 Player 3—101 points
4 Player 4—81 points
5 Player 5—47 points

One of the largest advantages of the PageRank algorithm, which we’ll see in the next
section, is that it’s naturally parallelizable. We can do all the point giving and point

Player 1 Player 2 Player 3 Player 4 Player 5

Players’ scores, represented by the height of the
bars, are dependent on how many players they
defeated, the scores of those players, and how
many losses those players had.

Player 2 has many inbound
arrows (victories), resulting in a
high score and a first place
ranking.

Player 5 lost to each of
players through ,1 4
represented by the
outbound arrows, and
defeated player ,1
represented by the
inbound arrow.

Figure 9.7 We can apply the PageRank algorithm to tennis players, where each player 
contributes points to the players who are better than them.
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summing in parallel with our most strict assumptions about parallelization. This is one
of the reasons why it worked so well for Google—they were able to parallelize their
problem and scale it to the massive dataset they were working with. In the next sec-
tion, we’ll implement a parallel PageRank algorithm with PySpark.

9.2.3 Ranking tennis players with PageRank

Now that we have an idea of how PageRank works, how should we go about imple-
menting it in PySpark? Well, we know our implementation will need to have five steps:

1 Read in the data.
2 Structure the data in the right way.
3 Do an initial point allocation.
4 Do several rounds of point allocation until we’re satisfied with the results.
5 Return some ratings.

Figure 9.8 illustrates the first four steps.

To read in the data, we’ll use the same method we’ve been using so far in this book:
the .textFiles method from SparkContext. This method returns an RDD, which is
the Spark class that has all the nice parallel map and reduce options we’ll want to use
to build our programs.

 Next, we’ll move on to structuring the data. For that, we’ll use the RDD’s .map
method to retrieve the winners and losers of each match, and we’ll use the RDD’s

match_data = sc.textFile ("/path/to/wta_matches*")

match_data.aggregate(acc, allocate_points, combine_scores)

First, we’ll read the data into an .RDD

And finally, we’ll allocate points
using PageRank until we’re
satisfied with the results.

We’ll initialize the scores
for our first round of
points allocation.

Then we’ll clean the data.

match_data.map (get_winner_loser)\
.groupByKey()\
.mapValues(initialize_for_voting)

Figure 9.8 Using the PageRank algorithm for rating tennis players in PySpark requires both custom 
Python functions and parallel PySpark methods.
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.groupByKey method to get a list of defeats for each player. To ensure that .group-
ByKey does what we want, we’ll return winners and losers as a tuple in the form of:
(<loser>, <winner>). From there, we’ll use another .map statement to add some
metadata that will be helpful when calculating the PageRank scores.

 With the data in the right format, we’ll reduce over our data several times. Each
time, we’ll calculate the PageRank scores for each player, based on who defeated who,
by looping through the losing players and giving a fraction of their score to each
player who defeated them. Every new round, we’ll use the latest score of the player.

 Lastly, after a few rounds, we can sort our players, return their scores, and call it a
day. All in all, the solution we’ll draw up for this problem will be a pretty large pro-
gram. You can find the full script in the code repository for this book (https://github
.com/jtwool/mastering-large-datasets). Here, I think it’s worth focusing our attention
on three major areas:

1 The data preparation process with .groupByKey and .mapValues
2 The allocate points aggregator function and the combine_scores combiner
3 The iterative score calculations and the partial application of the allocate points

function

PREPARING THE TENNIS MATCH DATA WITH .GROUPBYKEY AND .MAPVALUES

The first section, data preparation, revolves around this bit of code:

xs = match_data.map(get_winner_loser)\
                 .groupByKey()\
                 .mapValues(initialize_for_voting)

In this section, we’ve already read the data into a variable called match_data, so
we’re working with an RDD of strings. We know that what we want to have is an RDD of
keys (player names) with dicts as their values. Each of those dicts must have the
information we need to calculate PageRank scores later on. To that end, they’ll need
the players the player lost to, the number of those players, and the player’s current
page rank score.

 To get from a match string to this value will be a three-step process:

1 We’ll map the match data into tuples of losers and winners.
2 We’ll group the matches by the losing player.
3 We’ll map a transformation across the keys and values to prepare our data for

PageRank.

Altogether, this process will look like figure 9.9.
 As we can see in figure 9.9, our first map step involves taking a subset of the

match data and arranging it into tuples. This will return an RDD of tuples, which we
can use .groupByKey on to return an RDD of keys and values. The keys in these
 

https://github.com/jtwool/mastering-large-datasets
https://github.com/jtwool/mastering-large-datasets
https://github.com/jtwool/mastering-large-datasets
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instances represent the losing players, whereas the values are a sequence of players
to whom the losing player lost. Lastly, we can use the initialize_for_voting func-
tion to add metadata and convert the list into a dict for a clearer workflow down
the road.

ALLOCATING POINTS AND COMBINING THE SCORES

The next two parts of the process we’ll want to pay extra attention to are the aggrega-
tion and combination functions. These are the functions we call during the reduce
step that constitute the heavy lifting of our program. These functions are how we
implement PageRank, and we can see them in figure 9.10.

 Our aggregation function—allocate_points—is responsible for taking in a new
player, their losses, and associated metadata, and assigning points to the players who
defeated them. The points are then stored in a dict, with players’ names as keys and
players’ PageRank scores as values. We can see this process in figure 9.11.

Match data—a
sequence of
strings for each
line of each file

.groupByKey gives us a sequence
of players and iterates over the
players they lost to.

.mapValues adds
metadata to the values
that we’ll need during
PageRank.

pyspark.resultiterables
are special pickleable
iterables for PySpark.

Our matches are transformed
into winner, loser s, withtuple
the loser in key position.

Figure 9.9 We prepare tennis match data for PageRank in PySpark with .map, .groupByKey, and 
.mapValues.
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Step 1. We’ll allocate points by having all the
losing players “vote” for the players who
defeated them. This is our accumulation function.

We’ll store the points for each player in
a that has some of thedict
metadata about wins and losses.

Step 2. Once we’ve allocated the points
for each player, we then sum up
the points to arrive at the
total scores. This is our
combination function.

prepared_data.aggregate(acc, allocate_points, combine_scores)

Figure 9.10 We can parallelize the ranking step of PageRank into a two-step parallel reduce workflow.

The data coming into our accumulate function
is a sequence of players with metadata, and a
dict of players, metadata, and scores.

The output is a similar ofdict
players, metadata, and scores, except all
the players who defeated the player just
processed all have their scores increased.

Because the player
being processed has 3
losses and a rating of
150, each player who
defeated them will
receive 50 points.

{
"player_1": 120,
"player_2": 150,
"player_3": 0

}

{
"player_1": 170,
"player_2": 200,
"player_3": 50

}

allocate_points(acc, nxt)

{
rating: 150,
n_losses: 3,
losses:["player_1",

"player_2",
"player_3"]

}

Figure 9.11 The allocate_points function takes in players’ information and updates the 
accumulation variable to reflect the players’ updated scores.
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Taking a look at the code for the allocate_points function, we can see precisely how
this works. We split the player into a key and value because we had the player data stored
as a two-tuple coming out of our .mapValues step from the previous subsection.

def allocate_points(acc, nxt):
  k,v = nxt
  boost = v['rating'] / (v['n_losses'] + .01)
  for loss in v['losses']:
    if loss not in acc.keys():
      acc[loss] = {'losses':[], 'n_losses': 0}
    opp_rating = acc.get(loss,{}).get('rating',0)
    acc[loss]['rating'] = opp_rating + boost
  return acc

Next, we calculate the boost that each player who defeated the current player will
receive. Each player allocates their entire rating uniformly to all those who defeated
them. This means that the amount of the boost a player receives by beating our cur-
rent player is equal to that player’s rating divided by their number of losses. To pre-
vent a divide by zero error, I add a small value to the number of losses a player has, in
the event they’re undefeated.

 Then, we allocate those points to each player who has defeated our current player—
updating the accumulation variable. We do this by setting the opposing player’s rating
equal to their current rating plus the boost factor. After this, we return the accumula-
tor and move on to the next player.

 This takes care of the accumulation step of our parallel reduce. As we know from
chapter 6, though, parallel reduce has two parts: the parallel accumulation and the
combination. In our combination step, we have to join together all the values we accu-
mulated in parallel. Typically, this is the challenging part of parallel reduce because
we’ll concoct complex data structures—no such problems here.

 Coming out of our reduce step, we’ll want to join dicts with keys as strings and val-
ues that are integers, such that the resulting dict has all the keys of both dicts and
the values are the sums of the values. We can see this process in figure 9.12.

 In Python, we’ll implement this process by looping through all the elements of one
dict and attempting to add the values to the current value for that key in the other
dict. As we do that, we’ll update the dict that we aren’t looping through. If we
don’t find a key from the dict we are looping through in the other, we’ll update the
other so that key is equal to the value from our looping dict. Finally, we’ll return
the dict we didn’t loop through, since that’s the dict we’ve been updating. Here’s
how that looks:

def combine_scores(a, b):
  for k,v in b.items():
    if k in a:
      a[k]['rating'] = a[k]['rating'] + b[k]['rating']
    else:
      a[k] = v
  return a
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Together, these two steps represent a single round of PageRank. One of the beauties
of the PageRank algorithm is that we can do the entire process in parallel. We can
take advantage of this fact if we need to rank large amounts of information quickly. By
increasing our compute capacity, we can decrease the time we spend ranking.

ITERATIVELY CALCULATING SCORES

The last step we’ll want to pay extra attention to is the way we iteratively calculate
these scores. In the first round of a PageRank process, each of the pages—in our case,
tennis players—are rated evenly. I decided to start everyone with 100 points, but any
number of points will do. Having a uniform number of points, however, doesn’t
reflect reality. Some web pages are more important than others, and some tennis play-
ers are better than others. A link from the New York Times web page will mean more
traffic than a link from a high school newspaper’s web page, and a victory over Serena
Williams is more notable than a victory over a career journeywoman.

 To resolve this problem, we run the PageRank process several times. Each time we
do the same thing, but we’ll use the scores from the previous round to inform our rat-
ings. This way, wins over Serena or links from the New York Times become more import-
ant in each subsequent round.

 To do this, we’ll insert our reduce step inside a for loop and bookend it with some
code to set up the next round of the reduction:

When we call the parallel
reduce process, we begin
to process our data on
separate machines.

We then process that
data separately, before
joining it back together.

Joining together some types of data is easy—
such as integers, which we’ll usually join with
addition or subtraction. Other types of data—
such as s or s—are moredict tuple
challenging because there are fewer
guarantees about their behavior.

Figure 9.12 Combining the players’ PageRank ratings together requires 
joining dicts into a single dict.
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  for i in range(7):
    if i > 0:
      xs = sc.parallelize(zs.items())
    acc = dict(xs.mapValues(empty_ratings).collect())
    zs = xs.aggregate(acc, allocate_points, combine_scores)

Before we start our reduce step, we need to set up our accumulation variable: acc.
This is the variable that holds all the players and their updated ratings. To get this vari-
able, we’ll empty the ratings of all the keys from our dict of dicts.. This will give each
player a fresh new rating of 0 at the beginning of each PageRank step. From there, we
can reduce.

 Then, after each reduce step beyond the first, we’ll create a new sequence of play-
ers to reduce over. This sequence will have all the metadata from our initialization,
plus the new ratings that we can use in the next PageRank iteration.

 Importantly, though, our reduce process—which we call using the RDD .aggregate
method—returns a dict. We need an RDD so that we can take advantage of Spark’s
parallelization. To get an RDD, we’ll need to explicitly convert the items of that dict
into an RDD using the .parallelize method from our SparkContext: sc.

 Once our iteration is complete, we’ll have a dict with the players as keys and their
scores as values. When you run this script, remember to run it with the spark-submit
utility to take advantage of Spark’s parallelization. You can run it with your local
Python runtime as well, but it won’t take advantage of the full power of Spark. We can
see the script’s output in figure 9.13.

>>> spark-submit spark-page-rank.py

After running our script with thespark-page-rank.py
spark-submit utility, we’ll get back a list of players in
rank order based on their PageRank scores.

Players’ names Players’ PageRank scores

12.0 4150
12.0 4010
12.0 3985
11.9 3875
11.9 3760
11.8 3685
11.7 3360
11.3 2585
11.3 2540
11.2 2395

Justine Henin
Serena Williams
Venus Williams
Kim Clijsters
Amelie Mauresmo
Lindsay Davenport
Elena Dementieva
Svetlana Kuznetsova
Maria Sharapova
Patty Schnyder

The log of players’ PageRank scores

Figure 9.13 The output of our PageRank process shows the top players and their 
PageRank scores.
 



204 CHAPTER 9 PageRank with map and reduce in PySpark
Note that in addition to the PageRank scores, we also include the log of the players’
PageRank scores. Taking the log of each player’s scores groups players whose scores
are similar. When Google released the PageRank toolbar, they revealed a log-scaled
version of their PageRank scores instead of the PageRank scores themselves. The log-
scaled scores may be better representations of PageRank scores, as the difference
between 4100 and 3990 is quite small.

9.3 Exercises

9.3.1 sumByKey

A common situation in which you’ll find yourself in Spark will be having an RDD of
keys and values in two-tuples. A common operation on those keys and values will be
summing all the values by key. This operation can be called sumByKey. Use the right
reduce-like method of the RDD to sum the values in an RDD by key.

>>> xs = sc.parallelize([("A", 1), ("A", 1), ("A", 2),
...                     ("B", 2), ("A", 1),
...                     ("C", 1),
...                     ("D", 7), ("D", -2)])
>>> sumByKey(xs)
[("A", 4), ("B", 3), ("C", 1), ("D", 5)]

9.3.2 sumByKey with toolz

The toolz library has a reduceBy function that takes a key function, an operation, and
a sequence to achieve the same effect as the Spark reduceByKey. Implement sumByKey
using the toolz reduceBy function for use in non-Spark workflows.

9.3.3 Spark and toolz

One of the great things about Spark is that it has many of the same convenience meth-
ods that we’ve already learned to love from the toolz library. In Scala, replicate the fol-
lowing transaction written using toolz. Bonus: Use Spark-style method chaining for
added readability.

>>> import toolz
>>> xs = [("orange", "O"), ("apple", "A"), ("tomato", "T"),
          ("kiwi", "K"), ("lemon", "L")]
>>> toolz.take(toolz.frequencies((filter(lambda x: "a" in x[0], xs)), 10)
[{"O":1}, {"A": 1}, {"T": 1}]

9.3.4 Wikipedia PageRank

PageRank works for ranking tennis players, but it was designed to rank web pages in a
network. Modify the code we wrote in this chapter to perform a PageRank of the
pages from the Wikipedia network we collected in chapter 2. A dataset for this exer-
cise is provided for your convenience in the code repository for this book (https://
github.com/jtwool/mastering-large-datasets).
 

https://github.com/jtwool/mastering-large-datasets
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https://github.com/jtwool/mastering-large-datasets
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Summary
 The RDD class has three different reduce-like methods: .reduce, for operations

where the data is the same all the way through, .fold, for when we want to spec-
ify an initializer value, and .aggregate, for when we want an initializer and a
custom combiner function.

 The RDD class’s .saveAsTextFile method is an excellent way to persist an RDD
on-disk for long-term storage or for sharing with others—we can even use it to
save our data in a compressed format!

 To take advantage of Spark’s parallelization, we need to ensure that our data is
in the RDD class. We can turn data into an RDD with the SparkContext class’s
.parallelize method.

 Spark programs often use \ characters in their method chaining to increase
their readability.

 Using the byKey variations of methods in PySpark often results in significant
speed-ups because like data is worked on by the same distributed compute worker.
 



Faster decision-making
with machine learning

and PySpark
Chapter 9 showed how we can write Python and take advantage of Spark, one of the
most popular distributed computing frameworks. We saw some of Spark’s raw data
transformation options, and we used Spark in the map and reduce style we’ve been
exploring throughout the book. However, one of the reasons why Spark is so popu-
lar is its built-in machine learning capabilities.

 Machine learning refers to the design, training, application, and study of judg-
mental algorithms that adjust themselves based on input data. A familiar example
of machine learning is the spam filter. Spam filter designers feed spam into their
spam filter algorithms, which either are or contain machine learning algorithms.

This chapter covers
 An introduction to machine learning

 Training and applying decision tree classifiers 
in parallel with PySpark

 Matching problems and appropriate machine 
learning algorithms

 Training and applying random forest regressors 
with PySpark
206
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Then the spam filter algorithm learns to make judgments about whether or not an
email is spam (figure 10.1).

In this chapter, we’ll look at how to use PySpark for machine learning. First, we’ll
explore what machine learning is in greater depth. Then we’ll build two machine
learners in PySpark:

1 One that uses PySpark’s decision tree classifier—a classifier that makes judge-
ments by following learned yes/no rules

2 One that uses the random forest classifier—a classifier that has multiple deci-
sion trees vote on an outcome

10.1 What is machine learning?
Before we look at implementing machine learning algorithms in the later sections of
this chapter, it makes sense to delve deeper into what machine learning is. I’ve offered
a definition of machine learning:

DEFINITION Machine learning refers to the design, training, application, and
study of judgmental algorithms that adjust themselves based on input data.

In this section, we’ll examine that definition in greater depth and take a look at some
machine learning applications with which you may already be familiar.

Spam filters take in messages, letting
only the good messages pass through
and sending the rest to a spam folder.

The messages the machine
learner judges to be spam
are sent to a spam folder.

Hopefully, all the messages
you want to read end up in
your inbox!

The filter mechanism is a
machine learning algorithm
that uses information about
the message to judge it as
spam or earnest mail.

Figure 10.1 Spam filters are machine learning algorithms that learn how to judge emails as spam 
or not by looking at lots of spam emails and nonspam emails.
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10.1.1 Machine learning as self-adjusting judgmental algorithms

Let’s examine a few examples to better understand our definition, which has four
core components (figure 10.2):

1 There must be an algorithm involved.
2 That algorithm must make judgments.
3 The algorithm must adjust itself.
4 That adjustment must take place based on data.

The first of these components insists that all machine learning must involve at least
one algorithm: a sequence of computations that we can use to solve a problem. This is
good because it means that any type of machine learning we’ll want to do can be
solved using computers.

 Second, I consider only algorithms that make judgments to be machine learning
algorithms. That means that algorithms that describe data, such as summation, or
algorithms that simply transform data, such as a doubling algorithm, are not machine
learning. However, that doesn’t mean the judgments have to be important, true, or
difficult. Silly, wrong, and simple judgments count too.

More on machine learning from Manning Publications
Machine learning is a complex and rapidly evolving topic. Though we don’t need to go
into mathematical proofs to understand the big picture of machine learning, I suspect
many readers of this book will be interested in the finer details. Manning has some
excellent and accessible books and other resources geared toward the topic of machine
learning. I’d recommend three in particular.

Machine learning requires
four components

Algorithms
The machine learner
can be described
with computational
instructions.

Self-adjusting
The machine learner
must modify itself to
get better at judging.

Data
The machine learner
must use data—for
self-adjusting and
judging.

Judging
The machine learner
must result in a
system for making
judgments about
new observations.

Figure 10.2 Machine learning has four components: algorithms, judging, self-
adjusting, and data.
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Third, machine learning algorithms must be self-adjusting. This is what makes them
machine learning algorithms instead of just machine judging algorithms. The algorithms
must define rules for them to get better at judging. Consider the Elo rating example
from chapters 8 and 9 (figure 10.3): we defined some rules, then the algorithm
applied those rules to judge who the best players were and make judgments about
how likely they were to beat one another. We didn’t tell the algorithm anything about
the players, it learned all that itself.

Fourth and finally, the algorithm must adjust itself based on data. Again, looking at
our Elo rating example from chapters 8 and 9, the match data was necessary to obtain
ratings for the players. We didn’t go in and encode player ratings based on how we felt

First, for someone looking to get an overview of machine learning, is Grokking Machine
Learning, by Luis G. Serrano (2020). This book teaches machine learning with an
emphasis on conceptual understanding instead of mathematical proofs. It’s a great
entry point into the material. Chapter 5 covers decision trees.

Machine Learning in Action, by Peter Harrington (2012), has an entire chapter—
chapter 3—dedicated to decision trees in Python. This chapter would be a good start-
ing point for anyone interested in more detail on decision trees than I go into here.
The rest of the book is solid as well.

AWS Machine Learning in Motion, a Manning LiveVideo by Kesha Williams, covers
implementing machine learning on AWS. That course expands on the overlap
between concepts introduced in this chapter, as well as the next two chapters on
cloud computing.

Elo rating system as
machine learning

Algorithms
The rules for
assigning ratings can
be listed as step-by-
step instructions.

Self-adjusting
The system adjusts
itself after each match.

Data
The Elo rating
system uses match
data to learn to make
judgments.

Judging
The learned system is
capable of judging
which player is more
likely to win a match.

Figure 10.3 We can consider calculating Elo ratings to be machine learning: the 
rating rules define a learning process, and the algorithm can use the output ratings to 
judge future match win likelihoods.
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about the players personally. This last component gives machine learning algorithms
their mystique. Business, science, and government are all interested in the hidden
insights that algorithms can find that humans would typically overlook. If these algo-
rithms learn differently than humans, the theory goes, perhaps they’re capable of
learning better than humans.

 This interest becomes especially great when we take machine learning into the
realm of large datasets. One of the hallmarks of large datasets—those you can process
but not store on your laptop, and larger—is that manually they’re almost impenetra-
ble. People have a variety of cognitive biases and shortcuts that make them ill-suited
at assessing large datasets. Computers, which excel at repeating simple behaviors
again and again, doing exactly what they are told and nothing else, excel at assessing
large datasets.

10.1.2 Common applications of machine learning

Because machine learning goes so neatly hand-in-hand with large datasets, many com-
mon machine learning applications are large dataset applications. Consider a few:

 Media content recommendations—Judging what new songs, videos, or clips you
might like based on what you’ve listened to or watched in the past

 Online review summarization—Judging what words best encapsulate the meaning
of a restaurant, video, or other product review

 Website feature testing—Judging what features of web pages best improve user
experience

 Image recognition—Adding metadata to images or identifying objects in images
 Medical diagnoses—Judging which diseases are most likely to be causing the

symptoms of a patient
 Voice recognition—Judging which words a speaker intended 

Most of these areas are only a decade and a half old. Media content recommendation,
for example, is perhaps most famously recognized on platforms like Netflix and You-
Tube, which both have recommendations prominently featured in their applications.
These organizations didn’t come into their own until the mid-2000s, when Google
purchased YouTube and Netflix launched its video streaming service. Let’s look at
these five applications of machine learning and identify the four components of
machine learning involved in each application.

MEDIA CONTENT RECOMMENDATIONS

Media organizations use machine learning to recommend new content to their audi-
ence based on information that the organizations accumulate about the tastes and
interests of viewers. The primary goal of these machine learning algorithms is to rec-
ommend new content that the media consumer would like to continue consuming
(typically to sell more advertising).

 These algorithms learn to judge what a user will like from logs that indicate which
users have consumed which media (figure 10.4). For example, in the case of YouTube,
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its algorithm would compare the videos you’ve watched there against the site’s records
of which videos all of its users have watched. The algorithm would judge videos that
users similar to you liked, but you haven’t yet seen, as good videos for you to watch.

ONLINE REVIEW SUMMARIZATION

Another area where machine learning overlaps with large datasets is when online
retailers, like Amazon, summarize reviews of their products. The goal of these machine
learning algorithms is to judge which reviews are related and how to best describe
those review groupings. Shoppers can then use the groupings to look for specific
product information.

 Amazon developers write programs to learn which words best describe which
reviews (figure 10.5). These programs—machine learning algorithms—take in a large
dataset of product reviews and adjust themselves until they can accurately group and
summarize reviews. Then, once these programs have learned enough, developers can
incorporate them into the product page for customers to interact with.

Media content recommender
as machine learning

Algorithms
The instructions can
be written out as
code.

Self-adjusting
The systems adjust
themselves as the
user base changes and
new content is added.

Data
The systems’ log data
about what users have
enjoyed in the past is
used to inform
judgments.

Judging
The systems judge
what users will enjoy.

Figure 10.4 Media content recommendation algorithms are an example of machine 
learning, where an algorithm learns to judge which content a user would like based on 
what previous, similar users have liked.

Figure 10.5 Amazon uses machine learning to find short phrases that best encapsulate 
product reviews on its website. Those summaries help shoppers learn about the products 
from other shoppers.
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WEBSITE FEATURE TESTING

In the pursuit of constantly improving user experience, many websites will show sub-
sets of their visitors features that are under development. For example, a company
may want to test whether making a purchase button yellow, red, or green results in the
most purchases. Developers can write programs that learn users’ favorite features
from what users do on the site.

 Like the media content recommender programs, these programs also learn from
user log data. Instead of grouping users together, however, these programs learn to
judge which features make users more likely to engage in behaviors that the website
designers value, such as spending more time on the site, adding more items to their
shopping cart, or purchasing more products from the website.

IMAGE RECOGNITION

An area in machine learning where advances are being rapidly made is in image rec-
ognition. The goal of this subfield is to identify objects in images, or otherwise gener-
ate metadata about the image (such as where it was taken), based on visual cues alone.
Facebook is famous for using image recognition on all the photos uploaded to its site.
For example, when I upload my author photo to Facebook, it provides these tags:
photo of one person, smiling, beard, close-up (figure 10.6).

 We can see another example of object detection in figure 10.6. This form of
image recognition attempts to put boxes around items that the algorithm identifies.
In this case, our algorithm recognized three boats in the picture. Amazon is using this

Some image recognition systems, like
one used by Facebook, are tasked with
detecting “traits” of images and applying
metadata corresponding to those traits.

Others are tasked with identifying
objects in photos, such as this system,
which identifies boats.

{"metadata":
["person", "smiling",
"beard", "close up"
]

}

Figure 10.6 These photos demonstrate two examples of image recognition: metadata tagging of 
images (top) and object detection (bottom).
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technology—along with others—in an attempt to create point-of-sale-free stores where
machine learning technology identifies what you’ve placed in your bag.

MEDICAL DIAGNOSES

Yet another place where machine learning is being used is in the arena of medical
diagnoses. There, programmers, doctors, and scientists are collaborating to improve
how we judge which illness someone has based on their symptoms, medical history,
and test results. For example, machine learning allows radiologists to work on lower
quality images than they previously could, because the machine learning algorithms
can learn to judge unclear or blurry images better than humans can.

 These algorithms learn from large datasets of electronic health information to
judge health outcomes, much like doctors themselves learn diagnostics during medi-
cal school. However, unlike medical students, who are taught by experienced doctors,
these algorithms teach themselves. And sometimes they’ll learn patterns that are
entirely different from what trained experts expect.

VOICE RECOGNITION

The last machine learning example is voice recognition. In voice recognition, pro-
grammers are attempting to write code that can take in sound from a person’s voice
and judge which words the speaker intended (figure 10.7). You may be familiar with
this technology from voice-to-text capabilities on your smartphone or an Amazon
Alexa, Google Home, or Facebook Portal device.

Programmers write these programs to learn which sounds suggest which words by pro-
cessing large datasets of sound files with corresponding transcripts. The often lackluster
performance of these programs compared to the relative ease with which people are
able to understand one another’s voices highlights a difference in how algorithms learn
versus how people learn. Even the best voice recognition algorithms have not taught
themselves how to understand words as well as most elementary school children do.

A sound wave is generated
by a speaker and captured
by a listening device, such
as a microphone.

Mastering ... Large ... Datasets

After processing the sound
wave, machine learning
algorithms can judge which
words were most likely said.

Figure 10.7 Voice recognition machine learning attempts to judge which words a speaker 
meant by analyzing sound waves produced by their speech.
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 Now that we’ve gone over five (plus two) examples of machine learning and how
to think about them as self-learning judgment algorithms, we’re ready to try our hand
at some machine learning. In the next section, we’ll take a look at using PySpark’s
decision tree classifier, a type of machine learning algorithm that learns to judge alter-
native outcomes by learning yes/no rules from the data.

10.2 Machine learning basics with decision tree classifiers
For our introduction to machine learning, we’ll be looking at decision tree classifiers.
Decision tree classifiers are an excellent choice of machine learning algorithm when
we want interpretable results, because the yes/no rules are intuitively simple. Even the
mathematically uninclined can usually trace their way down a decision tree to see how
the algorithm arrived at its judgment. Because of this, they’re a great way to solve the
scenario we’ll be approaching in this chapter.

SCENARIO A group of hikers is tired of having to bring snacks on the trail.
They’ve collected a bunch of data about mushrooms—such as the mush-
rooms’ size, color, and cap shape—and they want you to use that data and
come up with a way to judge whether or not a mushroom is safe to eat. Design
a machine learning algorithm that can provide the hikers rules for choosing
which mushrooms are edible and which are poisonous. 

WARNING The information on mushrooms in this section is for learning pur-
poses only and is not to be used for identifying mushrooms. Eating wild mush-
rooms can have serious and possibly fatal consequences.

With this setup, we know we’re in a good situation to use machine learning. We have a
judgment problem—judging which mushrooms are poisonous and which are safe to
eat—and we have historical data from which we can learn. That takes care of two of
the criteria. The two remaining can be met by writing some code to learn to make
judgments from the data. That part is up to us.

10.2.1 Designing decision tree classifiers

Before we write our decision tree classifier code, let’s take a look at how decision tree
classifiers work. Table 10.1 shows what a subset of the mushroom data might look like.

Table 10.1 A subset of mushroom data for a small decision tree classifier

Is it edible? Cap color Odor Habitat

Poison Brown Almond Meadow

Poison Red Spicy Meadow

Poison Purple Musty Woods

Edible Brown Musty Meadow

Edible Grey Musty Woods
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The decision tree classifier we’ll write works by learning a series of rules against which
to judge new mushrooms. For example, for the data in table 10.1, our decision tree
classifier may learn to ask three questions (figure 10.8):

1 Does that mushroom smell musty?
2 Was the mushroom found in the woods?
3 Is the mushroom purple?

By answering these three questions, we can judge all of the five mushrooms in our
dataset. We can represent these rules as a series of if-else statements or a tree of
yes/no questions. In fact, the decision tree algorithm gets its name from the fact that
these rules can be represented in a flowchart-like tree diagram.

 For the miniature example in this section, the process of learning these rules
would be fast. There are only three variables to test and only a few options for each
variable. As noted, our self-adjusting algorithm would need to learn to judge based on
only two rules. With more data, there are more calculations to make, and the process
takes longer.

 At each step in the rule-making process, the decision tree algorithm learns to cre-
ate rules that optimally separate the group into maximally similar categories. In our
case, the algorithm will learn to maximally separate edible and poisonous mushrooms

A decision tree can break
down a judgment into a
series of yes/no decisions
about an observation.

By answering the questions,
we can find that musty
mushrooms that aren’t from
the woods, or musty
mushrooms that are from
the woods but are not purple,
are edible.

Does the mushroom
smell musty?

No Yes

No

No

Is the mushroom
purple?

Was the mushroom
found in the woods?

Yes

Yes

Figure 10.8 Decision tree algorithms learn to construct binary rules against which they can 
judge new data.
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at each step. This is why smell would be the first question our algorithm would learn
to ask. If the mushroom is musty smelling, then it will be safe to eat 2 times out of 3.
We can see that in table 10.1. Indeed, none of the mushrooms in our small dataset
that don’t smell musty are edible.

 Compare this to if we had chosen to split on color. If we split on color first, we
would have almost no new information. Each of the mushrooms is a different color!
Sure, we could go through each of the colors one by one, but we prefer to ask the
questions in an order such that the groups separate more quickly.

 We can refer to this process of sorting data into groups of similar classification
items as maximizing homogeneity. As users of decision trees, we’ll often face the
choice of which measurement to use for this process. The two common metrics
you’ll hear of are called Gini impurity and information gain. I won’t go into detail on
either of these terms—for the purposes of an introduction to PySpark’s machine
learning capabilities, it’s enough to know they’re both measures of the differences
in a grouping of data.

 Figure 10.9 shows how our algorithm may judge a new observation. We can see that
first, it checks the smell. The smell is musty, so we move on to the second rule. The
mushroom was found in the woods, so we move on to the final question. Indeed, this
mushroom was purple, so we put it aside: our decision tree expects this mushroom to
be poisonous.

Decision trees try to separate
the data as much as possible
as quickly as possible.

Asking the first question splits
the mushrooms into two groups:
one with only poisonous
mushrooms and one with 2/3
edible mushrooms.

By the end of our tree,
all our mushrooms are
perfectly sorted.

3 2

2 0

0 1

0 1 1 0

1 1

1 2

Before asking any questions, we
have 3 poisonous mushrooms
and 2 edible mushrooms.

Does the mushroom
smell musty?

Was the mushroom
found in the woods?

Is the mushroom
purple?

No

No

No

Yes

Yes

Yes

Figure 10.9 Decision tree algorithms work by learning to group the data into the most similar chunks. The 
algorithm will judge new data based on the grouping that data would end up in if it was applied against the tree.
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Now that we’ve taken a look at how our decision tree algorithms work, let’s take a look
at using them in PySpark.

10.2.2 Implementing a decision tree in PySpark

PySpark’s machine learning capabilities live in a package called ml. This package itself
contains a few different modules categorizing some of the core machine learning
capabilities, including

 pyspark.ml.feature—For feature transformation and creation
 pyspark.ml.classification—Algorithms for judging the category in which a

data point belongs
 pyspark.ml.tuning—Algorithms for improving our machine learners
 pyspark.ml.evaluation—Algorithms for evaluating machine leaners
 pyspark.ml.util—Methods of saving and loading machine learners

All of these modules are similar in style to the PySpark methods we looked at in chap-
ters 7 and 9. However, all of PySpark’s machine learning features expect us to have
our data in a PySpark DataFrame object—not an RDD, as we’ve been using. The RDD is
an abstract parallelizable data structure at the core of Spark, whereas the DataFrame is
a layer on top of the RDD that provides a notion of rows and columns. If you remem-
ber, back in chapter 7 when we introduced PySpark, I mentioned that PySpark Data-
Frames are Spark’s preferred data type for interacting with SQL databases. This is
because the Spark DataFrame provides a tabular interface to data stored in an RDD, just
like SQL databases provide tabular storage and retrieval.

 Bringing the data into a DataFrame will be the first step in our machine learning
process. The other steps include running our decision tree learner and evaluating the
decision tree we’ve built.

BRINING DATA INTO A DATAFRAME

The first step in our machine learning process is getting the data ready for our anal-
ysis. This step includes any preprocessing we might want to do—such as changing
formats of the variables and data cleaning. In this case, we’re lucky: our data is com-
ing in clean.

 For RDDs, Spark provided a simple method—.textFile—that we could use to read
in text data and process it. Similarly, for DataFrames, we have several convenient
options. If the data is already in an RDD, we can call DataFrame on the RDD and convert
it. If the data is in a database, we can use SparkSession’s .sql method to return a
DataFrame representation of the results of a SQL query.

 For our example, we have our data in a flat file (which you can find on this book’s
repository online: https://www.manning.com/downloads/1961). To handle that for-
mat, PySpark has a method called .csv that returns a DataFrameReader. We can turn a
CSV file into a PySpark DataFrame by calling SparkSession.read.csv and passing in
the name of our file. The method has options for just about anything you would need
 

https://www.manning.com/downloads/1961
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to ensure your tabular flat-file data is coming in properly. One of my favorites is
inferSchema, which is used in the following listing.

from pyspark import sql

spark = sql.SparkSession.builder \
                        .master("local") \
                        .appName("Decision Trees") \
                        .getOrCreate()

df = spark.read.csv("mushrooms.data", header=True, inferSchema=True)

The inferSchema option of the .csv method tells Spark to make a guess at the type of
the variables in our data. If you remember, in the last two chapters, unless the data was
coming in as JSON, we had to explicitly cast our data to the types we wanted it to be.
For small datasets, this isn’t a challenge, but if we have hundreds of variables, this can
be a tiresome process. In these cases, inferSchema can be a real time saver.

ORGANIZING THE DATA FOR LEARNING

Now that we have data in a DataFrame, we’re one step closer to feeding it into a Spark
machine learner. Before we can do that, however, we have to get the data into the spe-
cific type of DataFrame format that Spark insists on.

 Spark’s machine learning classifiers look for two columns in a DataFrame:

1 A label column that indicates the correct classification of the data
2 A features column that contains the features we’re going to use to predict

the label

Your DataFrame can contain as many columns as you would like, with whatever names
you’d like, but these two columns are the ones that Spark will use for its machine
learning. The label column is what Spark’s machine learning classifiers learn to
judge—is the data the algorithm sees more like this label or that label? The features
column is the data about each observation that the machine learning algorithm will
learn to use to make that judgment.

 Furthermore, Spark expects specific data types for these columns. For our numerical
data—data that would be represented as floats and integers in Python—Spark knows
what to do. For categorical data, we’ll have some choices to make. The simplest way to
handle such data is to use PySpark’s StringIndexer. The StringIndexer transforms cat-
egorical data stored as category names (using strings) and indexes the names as numer-
ical variables. StringIndexer indexes categories in order of frequency—from most
common to least common—not in order observed. The most common category will be
0, the second most common category 1, and so on (figure 10.10).

 When we use StringIndexer, Spark returns a new DataFrame, with our old col-
umns and our new indexed column (figure 10.11). Spark has to return a new Data-
Frame because most data structures in Spark are immutable—they can’t be changed

Listing 10.1 Reading in text data
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once they’re created. That’s a property of the Scala programming language in which
Spark is written. For our purposes, this is great because it means we can write a small
reduce statement and update our DataFrame, as we can see in the following listing.

from pyspark.ml.feature import StringIndexer

def string_to_index(label, df):         
     return StringIndexer(inputCol=label,          
                outputCol="i-"+label).fit(df) \   
                .transform(df)                    

Listing 10.2 Transforming strings to indexed categorical variables with StringIndexer

StringIndexer
can take a column
of string values
and convert it
into numerical
category indexes.

The resulting numbers
indicate the category.
More common categories
get lower numbers.

Purple
Brown
Brown

Red
Brown

Red
Purple
Brown

Red
Red
Red

Brown
Brown
Brown

Red

StringIndexer()

2
0
0
1
0
1
2
0
1
1
1
0
0
0
1

Figure 10.10 Spark’s StringIndexer transforms categorical variables as strings into 
numerical categories. More common categories have lower indexes.

Transformers take a dataset
in and change a column in it.

The output of the Transformer
is the same dataset, but with
another column containing the
transformed data.

Transformer()

Figure 10.11 Transformers in PySpark, such as StringIndexer, return a DataFrame that 
contains all the columns of the original, plus a new column, specified by the transformation.

Defines a helper function for our reduce 
statement—instead of acc—and next 
we’ll use label and df

Takes column labels—input and 
output—as parameters and appends 
to the DataFrame a transformed 
version of the input column with 
the new labelThe .fit and .transform methods 

apply the changes and return a 
new DataFrame.
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f 

 

categories = ['cap-shape', 'cap-surface', 'cap-color']  
df = reduce(string_to_index, categories, df)  

Listing 10.2 shows this process in action. We first write a helper function that will apply
the StringIndexer to a given column. The helper function calls StringIndexer and
passes it an input label, which is specified by the parameter in first position, and an
output label, in this case, that variable preceded by an "i-". Our transformed columns
will be added into the DataFrame, so they need to have unique names. All columns in a
DataFrame must have unique names.

 Then, we select some categories we want to transform. In listing 10.2, I’ve chosen
to use cap-shape, cap-surface, and cap-color. I’m hoping that mushroom caps can tell
me something about whether a mushroom is poisonous or not. We can then call
reduce, passing it our helper function, our categories, and our DataFrame.

 This process results in a DataFrame with three additional columns:

1 i-cap-shape—An indexed transformation of cap-shape
2 i-cap-surface—An indexed transformation of cap-surface
3 i-cap-color—An indexed transformation of cap-color

Spark’s machine learning classifiers, though, only want one column named features.
To use these three columns as features, we’ll have to gather them up in another col-
umn. Conveniently, PySpark has a class for this as well: VectorAssembler. Vector-
Assembler is a Transformer like StringIndexer—it takes some input column names
and an output column name and has methods to return a new DataFrame that has all
the columns of the original, plus the new column we want to add (figure 10.12).

Unlike StringIndexer, which expects to work on one column at a time, Vector-
Assembler expects to round up a host of columns. For our transformation, we only
need a single call to VectorAssembler, as shown in the following listing.

We’ll need a sequence o
columns to transform—
this is what we’ll reduce
over.Lastly, we’ll call reduce and

transform our data frame.

The vector assembler takes columns
we specify and creates a new
column, containing a vector with the
data from the selected columns.

The original dataset is returned,
with our new column that we can
use for machine learning in Spark.

VectorAssembler()Our dataset

Figure 10.12 VectorAssembler is a Transformer that can take several columns and 
gather them up as a vector in a single column. This class is especially useful for preparing 
features for machine learning.
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from pyspark.ml.feature import VectorAssembler
df = VectorAssembler(inputCols=["i-cap-shape",    
                                "i-cap-surface",
                                "i-cap-color"],
         outputCol="features").transform(df)     

In listing 10.3, we can see an example of how VectorAssembler works. We can see that
we’re passing the three columns we want to use as features to the inputCols parame-
ter as a list, and the outputCol parameter is set to "features". This tells Vector-
Assembler to gather those three columns up and make a new column called features.
At the end of this step, our DataFrame will contain all the columns of the original
DataFrame, plus four new columns—one for each categorical variable we indexed and
one containing all of them together.

 At this point, the only thing we need before we can move on to machine learning
is the labels. Our labels are contained in a column called edible?, which has two
labels—edible or poisonous—both represented as strings. Again, we can use String-
Transformer. Instead of looping through a sequence of column names though, we
only need to worry about one column: edible?, as shown in the following code.

df = StringIndexer(inputCol="edible?",
                   outputCol='label').fit(df) \
                                     .transform(df)

In listing 10.4, you can see that we specify the edible? column as we initialize
StringIndexer, along with the name label, which Spark’s machine learning classifier
will be looking for. Just like when we transformed our feature columns, we call .fit
and .transform and then assign this DataFrame back on top of our original variable.

With these transformations complete, we have our DataFrame prepared just like Spark
needs. We have a label column, which contains the labels the algorithm will learn to
judge, and we have a features column, which has the features the algorithm will use
to do the judging. Finally, we’re ready to learn.

Listing 10.3 Gathering features for machine learning with VectorAssembler

Label names and data frames
Because Spark’s DataFrames are immutable and we’ll usually want to transform our
label column before using it with Spark’s machine learning, we can run into prob-
lems if the original column name is "label". When this happens, we’ll need to
rename the column when we transform it. Spark will not let you overwrite columns
in a DataFrame. We can, however, pick an alternate column name by specifying the
labelCol parameter of our machine learning function, such as DecisionTree-
Classifier(labelCol="my-column-name").

We initialize VectorAssembler 
with the names of the columns 
we want to assemble and the 
desired output column name.

Calling .transform on a DataFrame returns a
new DataFrame with an additional column.
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RUNNING OUR DECISION TREE LEARNER

Running the machine learning classifier in Spark will feel similar to transforming the
data. We’ll use a class from Spark’s ml.classifier library called DecisionTreeClassifier,
and we’ll call its .fit method on the DataFrame we have prepared. For the amount of
math that’s going on behind the scenes, you would think that this process would be
more difficult than two short lines:

tree = DecisionTreeClassifier()
model = tree.fit(df)

However, these two lines show all the code that’s necessary to run a decision tree clas-
sifier on our DataFrame. The first line initializes the classifier with the default parame-
ters, and the second fits the classifier to the data. The classifier’s .fit method returns
a model—this is the tree that has learned to judge our label based on our data. In our
case, the model is a type of DecisionTreeClassificationModel object. Each classifier
in PySpark has a .fit method that produces a corresponding model object. These
models describe the model that’s been learned and have convenient functions for
inspecting them.

For example, DecisionTreeClassificationModel has a method called .toDebug-
String that shows us all the rules that the model uses to make judgments. We can
print that string to the screen to see the rules by using print(model.toDebugString).

 In the following code lines, we can see these rules written as if-else statements.
You’ll notice that none of the feature names are included. This is because the features
column we assembled with VectorAssembler doesn’t hold onto the names of the
inputs. To use this decision tree manually, you would have to remember the order in
which you placed the variables. If we’re writing a script and not working in the termi-
nal interactively, we can usually find this in our script.

If (feature 1 in {2.0,3.0})
 If (feature 2 in {0.0,2.0,4.0,6.0,7.0})
  If (feature 2 in {0.0,2.0,7.0})
   If (feature 0 in {0.0,1.0,2.0,4.0})
    Predict: 0.0
   Else (feature 0 not in {0.0,1.0,2.0,4.0})
    Predict: 1.0

.fit and .transform in Spark
You may have noticed a lot of .fit and .transform floating around in this chapter.
That’s because the classes upon which much of the Spark machine learning capability
is built share these methods. .fit is inherited from Spark’s Estimator class. This
class is used for learning information about data, such as when we learn how to index
a dataset or how to make judgments about data with a decision tree. The .fit method
returns a Model. A Model inherits from a Transformer, which provides a .transform
method. This method executes the transformation that we learn with the Estimator.
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  Else (feature 2 not in {0.0,2.0,7.0})
   If (feature 2 in {6.0})
    Predict: 1.0
   Else (feature 2 not in {6.0})
    Predict: 0.0
 Else (feature 2 not in {0.0,2.0,4.0,6.0,7.0})
  If (feature 2 in {3.0})
   Predict: 1.0
  Else (feature 2 not in {3.0})
   Predict: 0.0

For example, we can see in the following listing the order of our variables. The first
column label we specified, in this case, i-cap-shape, will be variable 0; the second,
i-cap-surface, will be variable 1; and so on.

from pyspark.ml.feature import VectorAssembler
df = VectorAssembler(inputCols=["i-cap-shape",     
                                "i-cap-surface",
                                "i-cap-color"],
                     outputCol="features").transform(df)

EVALUATING THE JUDGMENTS OF A DECISION TREE

After the machine learning algorithm is trained, a good question to ask is: How good
is the algorithm at actually making judgments? This is the question that PySpark’s
ml.evaluation module is designed to answer. The evaluation module contains classes
that compute different evaluation metrics for different machine learners:

 BinaryClassificationEvaluator—For evaluating cases learners with two pos-
sible outcomes

 RegressionEvaluator—For evaluating continuous value judgments
 MulticlassClassificationEvaluator—For evaluating multiple label judgments

Because in our case we only have two options—poisonous or edible—we want to use
the BinaryClassificationEvaluator. Using this Evaluator should feel similar to
using our machine learner or our Transformers. We’ll first initialize the Evaluator,
then we’ll call its .evaluate method on a modeled version of our DataFrame:

bce = BinaryClassificationEvaluator()
bce.evaluate(model.transform(df))
# 0.633318

When we initialize the BinaryClassificationEvaluator, we have the opportunity to
pick an evaluation metric. The area under the receiver operating characteristic (con-
fusingly known by two acronyms: AUC and ROC) curve is the default choice and the
one I recommend using for most problems (figure 10.13). This metric is one way of
evaluating the trade-off between false-positive and false-negative assessments.

Listing 10.4 Gathering features for machine learning with VectorAssembler

i-cap-shape will be 
feature 0, i-cap-surface 
will be feature 1, and 
i-cap-color will be 
feature 2
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The curve represents the balance between making true positive and false positive
judgments. In our case, it represents how good we are at judging poisonous mush-
rooms to be poisonous, without misidentifying edible mushrooms as poisonous. The
model is a curve because the more we favor identifying mushrooms as poisonous—to
prevent people from dying—the more we will misjudge edible mushrooms as poison-
ous. The curve helps us find an acceptable point.

 With both metrics—area under the receiver operating characteristic curve and
area under the precision-recall curve—we’re hoping to have as large a number as pos-
sible. If we have an area under the receiver operating characteristic curve value of 1,
that means we can correctly judge all poisonous mushrooms as poisonous, without
judging a single edible mushroom to be inedible. Anything less than 1, and there’s
some room for improvement. A 0.63 area under the receiver operating characteristic
curve is not great, but it’s acceptable for an early pass. Next, we’ll take a look at some
ways we can improve our model.

10.3 Fast random forest classifications in PySpark
In the previous section, we built a decision tree to judge whether a mushroom was poi-
sonous or not. However, the area under the receiver operating characteristic curve
suggests that we can do better. One way we can try to do better is to use a random for-
est classifier—a machine learning algorithm that’s closely related to the decision tree.

A good model will judge the
mushrooms correctly more than it
judges them incorrectly.
(AUC > .5)
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Chance the model says the
mushroom is poisonous when it is not

A poor model will judge
mushrooms correctly only as often
as it judges them incorrectly.
(AUC = .5)

AUC (area under the
curve) is the proportion
of the space on the
graph below the line.
Higher AUC means
better judgments.

Figure 10.13 The receiver operating characteristic (ROC) curve allows us to balance making cautious 
judgments about poisonous mushrooms, while judging a reasonable number of mushrooms as safe.
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In this section, we’ll look at random forests and implement one in PySpark to achieve
better results.

10.3.1 Understanding random forest classifiers

Random forest classifiers work by growing lots of different decision trees and then tak-
ing a poll of them. During the learning phase, they grow a diverse selection of trees by
randomly selecting features to use. During the judgment phase, each tree classifies
the observation based on its rules and votes for the classification that results from
those rules—the random forest judges the observation to belong to the category with
the most votes (figure 10.14).

As an example, consider a reduced version of the mushrooms dataset that only has
seven features related to the mushroom’s caps and gills:

1 Cap shape
2 Cap surface
3 Cap color
4 Gill attachment
5 Gill spacing
6 Gill size
7 Gill color

Random Forest Model

The random forest model uses
many different decision trees
to make a judgment.

Each of those decision trees
makes its own judgment.

The random forest picks the
judgment that results from
the consensus of the decision
tree models.

Figure 10.14 A random forest classifier relies on growing different decision trees, each 
seeded with different randomly selected features. Those trees then vote to classify new 
observations.
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A simple random forest might grow five classifiers from these. The first might contain
cap shape, gill spacing, gill size, and gill color; the second might contain cap surface,
gill attachment, gill color, and gill size; and so on (table 10.2). Each tree has the fea-
tures it can use randomly selected.

When we have a new observation we want to label, we can pass it to the random for-
est, and the random forest will poll each tree in it. For example, trees 1, 2, and 4
might judge the observation to be edible, whereas trees 3 and 5 might say that it’s
poisonous. Between the five of them, the vote is 3 to 2 in favor of edible. That
would be the class that the random forest would ultimately judge the new observa-
tion to be.

 This process works because the randomization of features available to the decision
trees makes random forests resilient to overfitting: a problem in machine learning
where the algorithms disproportionately use one feature to make judgments. The
improved resilience, high performance, and overall versatility of random forest models—
which can be used for any type of judgment problem: binary classification, multiclass
classification, and regression—makes random forest models a popular machine learn-
ing tool.

10.3.2 Implementing a random forest classifier

To build our random forest classifier, we’ll start off the same way we started with our
decision tree: by bringing in the data and arranging it into a label column and a fea-
tures column. Unlike our previous attempt with decision trees, this time we won’t
make any assumptions about which features will be useful and which won’t be. This
time, we’ll select all the features and let the random forest sort it out.

 To use all the features, we’ll use the same reduce strategy as before. This time,
though, instead of passing in a list where we name every feature we want, we’ll cre-
ate the list from the DataFrame’s columns attribute and pop the label off, as shown
in listing 10.5 We’ll also need to construct a list that has the new labels. To do this,
I like to use a list comprehension that prepends the feature indicator to the fea-
ture name.

Table 10.2 Five randomly seeded decision trees for an example random forest

Tree 1 Tree 2 Tree 3 Tree 4 Tree 5

Cap shape Gill spacing Gill size Gill color Cap surface

Gill attachment Gill color Gill size Cap surface Cap color

Gill attachment Gill color Cap shape Cap color Gill attachment

Gill size Cap color Gill attachment Gill spacing Gill size
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    df = spark.read.csv("mushrooms.data", header=True, inferSchema=True)
    categories = df.columns      
    categories.pop(categories.index('edible?'))      
    df = reduce(string_to_index, categories, df)       
    indexes = ["i-"+c for c in categories]    

    df = VectorAssembler(inputCols=indexes,
                         outputCol="features").transform(df)
    df = StringIndexer(inputCol='edible?',
                       outputCol='label').fit(df).transform(df)

With the DataFrame in good shape, we’re ready to start building our random forest.
We’ll build the random forest similarly to how we built the decision tree earlier in this
chapter:

 First, we’ll import the RandomForestClassifier class.
 Then, we’ll instantiate the class using the default settings.

But we’ll also do some things a little differently:

 We’ll use a parameter grid to optimize hyperparameters.
 We’ll use a cross validator to ensure our results are more robust.

In the decision tree example, you may have noticed that we evaluated our decision
tree on the same dataset that we learned it from. This is fine for getting used to writ-
ing PySpark machine learning code, but the results will not be reliable. To get a better
assessment of how well our machine learners judge new observations, we should
always cross-validate our models by testing them on data that we’ve held out from the
learning process.

 Two types of cross-validation are worth knowing about:

1 K-fold cross-validation
2 Train-test-evaluate validation

As shown in figure 10.15, in k-fold cross-validation we split the dataset up into K
chunks, then we rotate through the chunks, considering one chunk the evaluation
data and all the other chunks the test data. This process can be time-consuming if
both K and your dataset are large, because you’ll end up training a machine learning
model many times on a large dataset. Common values of K include 5, 10, 100, and the
total number of observations in your dataset.

 In train-test-evaluate validation, the dataset is split into three chunks: a large training
chunk, a small testing chunk, and an even smaller evaluation chunk. The training chunk
is used for training the model. The testing chunk is used during an iterative training

Listing 10.5 Reading and preparing data for random forest classification

Our categories will include all the 
columns in our DataFrame.

The only 
category we 
don’t want is 
the label, so 
we’ll pop 
that out.

Transforms all these
strings into indexes

We can use a list comprehension to get 
a list of index names—we’ll need this 
to assemble the indexes.
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cycle, as shown in figure 10.16. Whenever we have an idea about how to improve the
algorithm, we make the improvement, relearn from the training chunk, and test on the
testing chunk. Then, when we’re happy with the model we have, we can judge the evalu-
ation data and use that to assess our model. The trick here is to keep the evaluation set
removed from the process as much as possible. If you can stick to rarely judging the eval-
uation chunk, train-test-evaluation may work for you. Otherwise, you may be better off
using k-fold cross-validation. With the train-test-evaluate approach, it’s common to use
70% of the dataset as training data, 20% as testing data, and 10% as evaluation data.

 To implement cross-validation in PySpark, we’ll use the CrossValidator class,
which we can use to do k-fold cross-validation. The CrossValidator needs to be ini-
tialized with

 An estimator—The classifier we want to use
 A parameter estimator—A ParamGridBuilder object
 An evaluator—We’ll use the BinaryClassificationEvaluator we used in our deci-

sion tree example. I like to do 10-fold validation unless I have a compelling reason
not to—we also pass this choice into the CrossValidator class as we initialize it.

Training

Training

Training Training

Training

Evaluation

Evaluation

Evaluation
Evaluation

Evaluation

For k-fold cross-validation, the
dataset is split up into K chunks.

The chunks provide a small sample
from which we can begin to
estimate the effectiveness of our
machine learner’s judgments.

Then the machine learner is trained
on all but one of the chunks, while
the remaining chunk is used to
evaluate the performance.

K=5

1 2 3 4 5

Figure 10.15 K-fold cross-validation splits the data into K groups and then learns a model from 
all the other groups to judge the selected group.
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f 
Listing 10.6 shows the training of the random forest classifier. You’ll notice that instead
of using the classifier directly to fit the data, we pass the RandomForestClassifier to
the CrossValidator object and use the CrossValidator‘s .fit method. From there,
though, the evaluation process is similar. We can find the area under the operating
receiver characteristic curve using the BinaryClassificationEvaluator. Lastly, we
can print the best model from our cross-validation attempts and see what rules we
ended up with.

from pyspark.ml.classification import RandomForestClassifier
forest = RandomForestClassifier()         
grid = ParamGridBuilder().\                                  
           addGrid(forest.maxDepth, [0, 2]).\  
           build()                                      
cv = CrossValidator(estimator=forest, estimatorParamMaps=grid,
                    evaluator=bce,numFolds=10,
                    parallelism=4)                 
cv_model = cv.fit(df)
area_under_curve = bce.evaluate(cv_model.transform(df))       
print("Random Forest AUC: {:0.4f}".format(area_under_curve))
#
print(cv_model.bestModel.toDebugString)  
#

Listing 10.6 A robust random forest model using PySpark

Train-test-evaluate validation splits the
dataset into three chunks: a training chunk,
a testing chunk, and an evaluation chunk.

The training and testing chunks are used
to iterate and develop the machine learner.

Training Testing Evaluation
The evaluation
chunk should be
used rarely, for
evaluating the
performance of
the model.

Figure 10.16 Train-test-evaluate validation splits the data into three chunks, two 
of which are used for iterative learning and testing. The remaining one is used rarely 
to evaluate the model.

Creates an instance o
our desired classifier

Creates a parameter grid 
search over some parameters

Initializes the cross-validator 
to train several models

Fits the models

Prints the best model
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In these rules, we can see the different trees that make up the decision forest. In your
own output, you’ll notice that some trees have the same rules—this must be a good
way to make judgments about mushrooms!

Tree 0 (weight 1.0):
   If (feature 7 in {0.0})
    Predict: 0.0
   Else (feature 7 not in {0.0})
    Predict: 1.0
 Tree 1 (weight 1.0):
   If (feature 4 in {0.0,4.0,5.0,8.0})
    Predict: 0.0
   Else (feature 4 not in {0.0,4.0,5.0,8.0})
    Predict: 1.0
 Tree 2 (weight 1.0):
   If (feature 11 in {0.0,2.0,3.0})
    Predict: 0.0
   Else (feature 11 not in {0.0,2.0,3.0})
    Predict: 1.0
 Tree 3 (weight 1.0):
   If (feature 20 in {1.0,2.0,3.0,4.0,5.0})
    Predict: 0.0
   Else (feature 20 not in {1.0,2.0,3.0,4.0,5.0})
    Predict: 1.0

Summary
 PySpark’s SQL module has a tabular DataFrame structure that provides table-

like features, such as column names, on top of RDD-powered parallelization.
 PySpark has a machine learning library that includes tools for every step of the

machine learning pipeline, including data ingestion, data preparing, machine
learning, cross-validation, and model evaluation.

 Machine learners in PySpark are represented as classes that learn using the
.fit method. They return a model object, which can judge data using the
.transform method.

 We can use PySpark’s feature creation classes—such as StringIndexer and
VectorAssembler—to format DataFrames for machine learning.

 The feature creation classes are Transformer-class objects, and their methods
return new DataFrames, rather than transforming them in place.
 



Part 3

Part 3 explains how to bring the tools and techniques we’ve covered through-
out this book into the cloud. We’ll cover the fundamentals of cloud computing,
object storage in the cloud, and how to set up your own computing clusters in
the cloud. Through hands-on examples, we’ll run the distributed computing
frameworks covered in Part 2—Hadoop and Spark—in the cloud. This part focuses
on large data category 3: data that is too big for either storing or processing
locally. Once you’ve mastered the content in this chapter, you’ll be able to tackle
data of any size.
 



 



Large datasets in the
cloud with Amazon

Web Services and S3
In chapters 7–10, we saw the power of the distributed frameworks in Hadoop and
Spark. These frameworks can take advantage of clusters of computers to parallelize
massive data processing tasks and complete them in short order. Most of us, how-
ever, don’t have access to physical compute clusters.

 In contrast, we can all get access to compute clusters from cloud service provid-
ers such as Amazon, Microsoft, and Google. These cloud providers have platforms
that we can use for storing and processing data, along with a variety of services that
automate common tasks we may want to do. In this chapter, we’ll take the first step
of analyzing big data in the cloud by uploading data to Amazon’s Simple Storage
Service (S3). First, we’ll review the basics of S3; then we’ll create a bucket and
upload an object using the browser-based AWS console; and finally we’ll upload sev-
eral objects to a bucket with the boto3 software development kit.

This chapter covers
 Understanding distributed object storage in the 

cloud

 Using the AWS web interface to set up buckets 
and upload objects

 Working with the boto3 library to upload data 
to an S3 bucket
233
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11.1 AWS Simple Storage Service—A solution for 
large datasets
Amazon Web Service’s Simple Storage Service, better known as S3, is a data storage
service used to hold some of the largest datasets, such as the datasets of General Elec-
tric, NASA, Netflix, the UK Data Service, Yelp, and—of course—Amazon itself. S3 is
the go-to service for large datasets for the following five reasons:

1 S3 has effectively unlimited storage capacity. We never have to worry about our data-
set becoming too large.

2 S3 is cloud-based. We can scale up and down quickly as necessary.
3 S3 offers object storage. We can focus on organizing our data with metadata and

store many different types of data.
4 S3 is a managed service. Amazon Web Services takes care of a lot of the details for

us, such as ensuring data availability and durability. They also take care of secu-
rity patches and software updates.

5 S3 supports versioning and life cycle policies. We can use them to update or archive
our data as it ages.

CLOUD OPTIONS: AWS, AZURE, AND GOOGLE CLOUD The three prominent cloud
providers—Amazon (AWS), Microsoft (Azure), and Google (Google Cloud)—
all offer a standard suite of core services. The core services include virtual
machines for computing and object-based storage. In this chapter, I’ll go into
detail on Amazon’s S3 service because AWS is the most popular of the cloud
platforms. That said, the principles in this chapter apply to all the object stor-
age systems of the three cloud providers. Indeed, we can use everything in
this chapter and chapter 12 on Microsoft Azure and Google Cloud.

In this section, I’ll go over the five advantages to using S3 and, in the process, explain
what S3 is and how it works.

11.1.1 Limitless storage with S3

When a dataset becomes so big that we start to worry about where and how to store it,
we know we’re dealing with a large dataset. For these situations, S3 is always an option
because it allows for effectively limitless (but potentially costly) storage (figure 11.1).
In fact, S3 is such a good option for large datasets, AWS even has a service designed to
help organizations migrate local petabyte-scale datasets into S3.

 What makes S3 effectively limitless? Large data centers with lots of disk space.
There’s no secret when it comes to cloud-based storage. AWS stores the data on disk
volumes much like you would if you were to store it locally. What makes it so appealing
for us is that instead of us buying the disk space and managing it ourselves, AWS is will-
ing to rent it to us. And when we need more, AWS is willing to rent us more.
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11.1.2 Cloud-based storage for scalability

Because S3 is a cloud-based storage service, we get scalability benefits that we wouldn’t
get if we were storing the data ourselves. In the cloud, we never need to buy more
physical storage devices, we only need to pay for more of the storage service. And we
can purchase more of that service anytime we want and give it up anytime we want
(figure 11.2). AWS refers to this as elasticity, and others refer to it as scalability.

 Consider the following scenario: you’re running a small survey company, and
you’ve bought some storage to hold the survey data for your first few customers. This
has a few drawbacks:

 You need to find a good way to estimate how much space the surveys will
require.

 You need to pay for the storage space all at once.

Because S3 is in the cloud, we can avoid both these problems. With S3, we pay for the
storage we use for our data when we store it, and we can be confident that there will
always be storage available when we’re ready to purchase it.

 Now imagine that your first round of surveys went so well that a hospital has asked
you to run a massive nationwide survey for them. You need to prepare to hold their

Amazon Web Services operates massive
data centers that provide data and
compute for many different organizations.Our compute

and data

Other people’s compute and data Available compute and data
for new or existing AWS
customers.

Figure 11.1 Because AWS data centers are so large in proportion to the size of our 
data, S3 offers effectively limitless storage.
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data—and fast. You have a new challenge: you need to quickly find and set up a large
data storage solution.

 If you were storing your data in S3, the large data storage solution could be the
same as your smaller data storage solution: it could all go in S3. Because the service is
limitless and available on demand, when there’s more data for us to store, we can pay
more to store it.

11.1.3 Objects for convenient heterogenous storage

Another advantage of S3 is that it follows the object storage paradigm. Object storage—
as opposed to traditional file storage—is a storage pattern that focuses on the what of
the data instead of the where. With traditional file storage, a file is referred to by its
name and which directory it’s in. With object storage, we recognize objects by a
unique identifier (figure 11.3).

 Because unique identifiers themselves are not usually enough to help humans
keep track of their data, object storage supports arbitrary metadata. This means that
we can tag our objects flexibly based on our needs. Do we need to tag data by day? By
user or customer? By product or marketing campaign? By the tides or the moon? We
can apply any tags we want. Additionally—though we won’t cover them in this book—
querying tools are available for S3 that allow SQL-like querying of these metadata tags
for metadata analysis.

We start with only the
resources we need.

Early Late

Then we can scale up as our
needs increase—paying only
for the services we use.

If our needs change in the
future, we can always scale
down or scale up even higher.

Figure 11.2 Cloud-based storage is useful when we need to be flexible, because the storage space is available 
to us on-demand as we have more and more data to store.
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Having unique identifiers as the approach to calling all our objects means that we can
store heterogenous data in the same way. Say we’re running a social media platform,
and our users are uploading pictures and videos to our website. We can store both of
those file types in S3 and tag them with the same metadata even though they’re differ-
ent types.

11.1.4 Managed service for conveniently managing large datasets

One problem that we’d run into if we were managing a large dataset ourselves is the
day-to-day maintenance of the dataset. If we want our data to be highly available, we
have to take steps to replicate the data in multiple storage environments while also set-
ting up failovers, so that when our data is unavailable in one location, we can find it
quickly in another. For large datasets, this is no trivial matter.

 Because S3 is a managed service, Amazon Web Services handles all of the low-level
implementation of our data and ensures high durability and availability. That means
that we can expect our data to be available when we need it without having to think
about it too much. This will free us up to do other things, like actually working on the
large dataset we now have stored in S3.

11.1.5 Life cycle policies for managing large datasets over time

One of the issues we’ll have with large datasets—which we’ve already alluded to in this
section—is that large datasets are growing datasets. Over time, our dataset grows
larger and larger. That said, not all of the data in that large dataset stays relevant.

 Image we’re a running subscription-based online video service. We want to store
records of all the videos our users have watched so we can make recommendations to
them about which other videos they may enjoy. That said, we may want to limit the rec-
ommendations we generate so that we’re only generating recommendations for cur-
rently subscribing users and only using data from the last year.

 One way to go about doing this would be to filter the data. We’ve used filter opera-
tions throughout the book—starting in chapter 4—and we’ve seen that they’re natural to

a201fna819rm
key:value, key:value,
key:value, key:value

Object format associates an object with an
ID, used for lookup, and metadata, which
is used for organization and querying.

Object MetadataObject ID

Figure 11.3 Object storage associates data with a unique identifier, which 
we can call to perform file operations on the object.
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implement with the Hadoop and Spark frameworks. Filtering still requires us to pay for
the data to be available to us and pay to process it. Another option would be to archive
data we know we don’t need, such as old log files that we wouldn’t regularly analyze.

 For this, S3 has a life cycle policy feature that we can use to make data that we’re
unlikely to need less available and store it more cheaply. A standard approach (fig-
ure 11.4) is to

 start the data we have in S3 Standard
 then when we need it less, relegate it to S3 Infrequent Access
 then when we’re ready to archive the data, move it to S3 Glacier

The different storage formats all have different cost structures. Table 11.1 summarizes
the differences between the storage classes.

S3 Standard has the greatest storage cost but the lowest per-transaction cost, which is
great when we have data we’ll be using a lot. S3 Infrequent Access has lower storage

Table 11.1 Three major S3 storage classes are available, depending on how often you need to access
your data.

S3 storage class Cost to store Cost to use Availability

S3 Standard Low Very low Very high

S3 Infrequent Access Very Low Low Very high

S3 Glacier Lowest *Medium Low

*Includes the cost of moving an object from S3 Glacier to another S3 format before use

When objects are new,
the most obvious
place to store them is
standard storage.

If we have a life cycle
policy, the object will
automatically be moved
to Infrequent Access storage
as age and use change.

As the object becomes
needed even less, we can
move it to Glacier
storage for archiving.

Infrequent Access

Glacier storage

Standard storage

Figure 11.4 We can use the life 
cycle policy to ensure that old data 
we’re less likely to want to analyze 
costs us less, while still maintaining 
the same storage strategy.
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costs than S3 but greater transaction costs—storing data in this format is cost-effective
when we’ll be accessing the data less, but we want it available for when we do need it.
S3 Glacier has the lowest storage cost but must be elevated to another S3 type for us to
use it. The time it takes to do this can be adjusted in the range of several minutes to
several hours.

 In general, using S3 Standard is fine. I recommend using S3 Infrequent Access and
S3 Glacier only if you have specific needs. For example, if you know you’ll only need
to analyze the data once each month, you could consider storing it in S3 Infrequent
Access. If you need the data only for quarterly or annual analysis and can plan ahead,
you may want to use S3 Glacier for cost savings.

11.2 Storing data in the cloud with S3
S3 is a place we can store large datasets. In this section, we’ll go over two ways we can
store that data by using

 a browser-based graphical interface
 the boto Amazon Web Services/Python Software Development Kit (SDK)

The browser-based interface is a convenient and user-friendly way to upload data and
manage metadata. We can use the Python SDK library, boto, to harness the full power
of Python and embed S3 actions in our scripts and software.

11.2.1 Storing data with S3 through the browser

We’ll start with learning how to store data in S3 through the browser. The browser-
based interface to S3 buckets offers some advantages over the programmatic SDK
access we’ll look at later. In particular, the browser

 provides visuals queues that aid in understanding the concepts of S3 storage
 has wizards that enumerate the available options

These advantages make the browser-based interface a good option for getting used to
S3 storage.

 Loading data into S3 is a two-step process:

1 Set up a bucket—a place to store the data.
2 Upload an object—a piece of data to be stored.

We’ll tackle these steps in order. First, we’ll set up a bucket and talk about the options
available to us there; then we’ll upload an object and talk about object-level options.

SETTING UP BUCKETS IN S3
Buckets are areas in S3 where we can store data. When we upload data to S3, we
upload that data to a specific bucket. When the object is uploaded, it becomes accessi-
ble to only those who have access to the bucket. This makes buckets a great way to sep-
arate our data and control access to it.

WORKING ON AWS In this section through the rest of the book, the exercises
involve using live Amazon Web Services resources. These services are a business
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for Amazon. To follow along, you’ll need to set up an AWS account with a
credit card, debit card, or prepaid cash card. The resources needed for the
examples in chapters 11 and 12 cost less than $5 as I’m writing this. To con-
serve cost, make sure you shut down all your compute resources when you
no longer need them. Idle compute clusters can quickly raise the cost of
using AWS.

For example, imagine we’re an airline and we have an application that allows users
to see where all our planes are flying at any given time. We might want to store full
flight location logs in S3 so that we can access this data for future analysis. At the
same time, we want to keep curious third parties—potentially our competitors—
from downloading our data. Buckets and their privacy controls allow us to limit
access to such data.

 To start setting up a bucket, we’ll need to navigate to the S3 page in AWS. We can
find Amazon Web Services at https://aws.amazon.com. From there, you can click the
Services drop-down menu in the upper left corner of the screen and select S3, which
you can find under Storage. Additionally, we could search for S3 in the Services
search (figure 11.5).

This will take us off of the main AWS landing page and onto the S3 landing page. This
page will list the buckets we have once we have one or more buckets set up. For now,
though, it offers us a search bar and a button that we can click to launch the S3 Create
Bucket wizard (figure 11.6). Click that button.

Figure 11.5 To navigate to the S3 landing page, we can always use the Services navigation drop-down menu and 
either do a search or find S3 under Storage.
 

https://aws.amazon.com
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Once we enter the Create Bucket wizard, it will walk us through the options for setting
up an S3 bucket. The first two options we’ll face are deciding on a bucket name and
selecting a region for our bucket. The name of our S3 bucket has several restrictions.
The three major restrictions for S3 bucket names are that they

 must be unique among all S3 bucket names (see figure 11.7)
 can’t use capital letters or underscores
 must be between 3 and 63 characters

A common way to name S3 buckets is to break bucket names into a series of labels. For
example, wolohan.mastering.largedata could be a bucket for this book. That name
consists of three labels—wolohan, mastering, and largedata—each of which is sepa-
rated by a period. If I wanted to create a second bucket for a similar purpose, I could
create wolohan.mastering.largedata2. If I wanted to create a bucket for a book on
small data, I could call it wolohan.mastering.smalldata. Another common approach is
to use hyphens instead of periods.

Figure 11.6 The S3 Create Bucket wizard and bucket search are available 
from the S3 landing page.

Figure 11.7 The bucket wizard is helpful in selecting a bucket name, which must be unique across all S3 
buckets, and a region.
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Additionally, on the first Create Bucket page, we need to select a region for our
bucket. The region refers to the group of data centers where AWS will store the
bucket’s data. In AWS parlance, a region is a group of availability zones, which are
themselves data centers or groupings of data centers (figure 11.8). The availability
zone level offers the lowest redundancy and fault tolerance (which is still quite good),
with a region-level service offering more fault tolerance (which is great), and a multi-
region setup offering the most fault tolerance (excellent).

Managed services in AWS typically run at the region level. Services that we manage
ourselves—such as basic compute and traditional block storage—are run at the avail-
ability zone level. We can replicate managed services and self-managed services across
regions if we need the extra redundancy or need to make our application available to
customers in a different part of the world. For our purposes, any region will do. Pick
the one closest to you and click Next.

 The next two screens in the S3 Create Bucket wizard allow us to select optional fea-
tures and permissions for our buckets. In the Configure Options screen, the two
options that I want to draw our attention to are the Versioning and Tags features (fig-
ure 11.9).

 S3 versioning is a very useful feature because it allows us to keep track of objects
through time. For example, we can use S3 to store snapshots of a database all in a

Availability zones are independent
data centers but are connected by
private high-speed cable and in a
similar geographic area known as
a region.

By default, services we manage exist in
one availability zone and managed
services exist across a region.

We can achieve even
greater reliability by
replicating our services
across regions if we
need to—this protects
us from geography-
related failures.

West Coast AZ 1 East Coast AZ 1

West Coast AZ 2

Figure 11.8 Regions and availability zones in AWS refer to the data centers that are used to run compute 
operations or store data. Moving from small scale (availability zone) up to large scale (multiple regions) 
improves fault tolerance.
 



243Storing data in the cloud with S3
single object. That being said, with S3, we do pay to store every version of the object
uploaded. If we upload four versions of an object at 10 MB, we’re paying for 40 MB or
storage. If we store 100 versions of an object at 100 GB each, we’re paying for 10 TB of
storage. Versioning is an important feature, but don’t get caught off-guard if you’re
versioning large objects.

 The Tags option for S3 buckets allows us to use arbitrary metadata to keep track of
projects. For example, it may make sense for you to enter a tag for your S3 bucket with
a key of “project” and a value of “chapter-11.” You can add as many of these tags as you
need for your project. For example, if you have a bucket for movies, you may want to
add a key of “content” and a value of “movies.” Once you’re done adding tags, click
through to the next screen.

 From the Set Permissions screen, we can set restrictions on the public access of our
bucket. Public access refers to access that comes in directly from the public internet.
For data analysis, assuming we want to do our analysis on AWS as I demonstrate next
chapter, we won’t need this (figure 11.10). For other use cases, public access can be
helpful. Amazon recommends limiting public access to S3 buckets as much as possi-
ble. Go ahead and block all public access for this bucket, click through the next two
pages, and create the bucket.

 At this point, we’ve created an S3 bucket. You should see a bucket show up on the
main S3 landing page. Click on the bucket’s link, and you’ll be brought to a landing

Figure 11.9 Configure Options offers options for generating S3 buckets in the AWS browser wizard.
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page specific to that bucket. As long as that bucket is empty, it will show you a landing
page giving you three options (figure 11.11):

 Upload an object
 Set object properties
 Set object permissions

Of these three, we’ll want to upload an object. If we click the blue Upload button in
the top left corner, we’ll be brought to another wizard like the one we just went
through. This wizard is for adding data to an S3 bucket.

Figure 11.10 Public access to S3 buckets is not generally necessary for analytics workflows.

Figure 11.11 The main thing we’ll do with S3 buckets is upload objects to them.
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The bucket Upload wizard (figure 11.12) allows us to upload a single file or multiple
files. Go ahead and click Add Files and choose a file from your file system. The chap-
ter 11 repository (you can find it at this link: https://www.manning.com/downloads/
1961) for this book includes several files for the programmatic example later in this
chapter that you can use for this part.

Click through the next screen, selecting to use the bucket-level permissions, and
you’ll be brought to a Set Properties screen (figure 11.13). On this screen, we can
select the storage class of the object we’re uploading.

 We covered three of these storage classes in section 11.1.5:

1 Standard storage is appropriate for most use cases.
2 Infrequent Access storage is for data we want to have available but won’t need

often.
3 Glacier storage is for data we want to keep but will need infrequently and about

which we’ll have plenty of notice before we need it.

On this screen, we can see those three classes, plus several more. You’ll notice that
AWS provides its own descriptions of when the different storage classes are useful. At
the top of the page in the wizard, the link to the current S3 pricing will let us compare

Figure 11.12 The bucket Upload wizard allows us to upload files to an S3 bucket.
 

https://www.manning.com/downloads/1961
https://www.manning.com/downloads/1961
https://www.manning.com/downloads/1961
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the costs of the different storage options. I recommend using S3 Standard for this
upload and other uploads where the case for another class is not obvious.

 Additionally, via this screen, we have the option of adding metadata tags to our
object (figure 11.14). These tags are key-value pairs that can be anything we want.
They can be helpful for storing our data. For me, I’m uploading the data file named
2014-01.json—which I know is a JSON file with data from January 2014 in it. For that
reason, I’ll give it three tags:

 A header declaring the content type of the object
 A custom tag indicating the month of the object
 A custom tag indicating the year of the object

I can use these tags in the future to find the object among all of the objects that I
upload to this bucket.

 Once you’ve added the metadata you want, click through this screen, review your
choices, and upload the object to your bucket. Now, when you’re on the landing page
of your S3 bucket, you should see a listing of all the objects in that bucket. There
should only be one object: the one you just uploaded. Click on that object, and you’ll
be brought to an object page (figure 11.15).

Figure 11.13 The storage classes in S3 are all tailored to a different use case. The standard S3 storage class is 
appropriate for most use cases.
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Figure 11.14 Adding metadata to S3 objects helps us find those objects later when we 
need to use them.

Figure 11.15 The S3 object page shows metadata about the object and lists actions—
such as downloading the object or opening the object—that we can take.
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The object page shows you properties of the object you just uploaded, including

 the owner of the object
 the date the object was last modified
 the storage class of the object
 the size of the object

Additionally, options at the top of the page indicate actions we can take. Try to open
the object using the open option, and you’ll be brought to an error page. Why is this
happening?

 We’re getting the error page because we’re attempting to access the object from
our browser over the public internet, and we blocked public internet access to all the
objects in our bucket. This is the same response that anyone else would see if they
were trying to access our object. If we want to preview the JSON file, a convenient way
to do that is on the Select From tab.

 The Select From tab gives us options for querying our data (figure 11.16). If we
select the JSON file format and JSON lines type, AWS will give us a preview of
the document. We can also click through and use SQL-like expressions to query our
document. For large files, this may be an effective way of preprocessing our data,
although we also can use the map and filter techniques we have learned through
this book.

Uploading objects manually is useful because it can be a good introduction or a
reminder of all the options that are available to us. It does, however, require a lot of click-
ing. In the next section, we’ll look at how we can upload an object programmatically.

Parquet: A concise tabular data store
In figure 11.16, you’ll notice three file format options: CSV, JSON, and Parquet. The
first two we’ve already used in this book. CSV is a simple, tabular data store, and
JSON is a human-readable document store. Both are common in data interchange
and are often used in the storage of distributed large datasets. Parquet is a Hadoop-
native tabular data format.

Parquet uses clever metadata to improve the performance of map and reduce oper-
ations. Running a job on Parquet can take as little as 1/100th the time a comparable
job on a CSV or JSON file would take. Additionally, Parquet supports efficient com-
pression. As a result, it can be stored at a fraction of the cost of CSV or JSON.

These benefits make Parquet an excellent option for data that primarily needs to be
read by a machine, such as for batch analytics operations. JSON and CSV remain
good options for smaller data or data that’s likely to need some human inspection.
For more on Parquet, see chapter 7 of Spark in Action, Second Edition, by Jean-Georges
Perrin: http://mng.bz/eD7P.
 

http://mng.bz/eD7P
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11.2.2 Programmatic access to S3 with Python and boto

Although the browser-based interface to S3 is nice, at times we want to upload objects
to S3 without as much human involvement. For these situations, we can use one of the
AWS SDKs. For Python, that would be the boto library.

 Boto is a library that provides Pythonic access to many of the AWS APIs, including
the S3 API. We can use boto to write Python code—including all of the map and
reduce perks we’ve used so far in this book—to upload objects to S3. The current ver-
sion of boto is boto3, and we can install it using pip:

pip install boto3

Figure 11.16 We can use S3 Select to preview JSON, CSV, or Apache Parquet files that we’ve 
uploaded to S3. S3 Select provides SQL-like access to data in all three formats.
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We’ll be able to use boto to interact with AWS on our behalf. To do so, we need to give
it authorization. This authorization comes in the form of an access key and an access
key secret. To create these keys, we’ll have to go back to AWS in our browser. Specifi-
cally, we’ll want to go to our Identity Access and Management (IAM) console.

A SECURE CLOUD WITH IAM
Through the Amazon Web Services IAM interface, we can create accounts with differ-
ent access permissions. For example, we may want to give our developers access to our
compute resources but restrict the finance team to only the billing. This is a powerful
tool—similar to user accounts on an operating system.

 By default in AWS, we operate as root. As you may know from working on a Unix
system, root access gives us a lot of power, but it also can allow a malicious or ignorant
actor to cause a lot of damage. For that reason, we want to limit the amount of time we
spend at root. To do so, we’ll create separate IAM accounts to work from.

 Navigate to the Users tab of the IAM console by doing one of the following:

 Clicking your name in the top right corner, then Security Credentials, then
Users in the sidebar

 Going to https://console.aws.amazon.com/iam/home?#/users

From here, you’ll see a blank list of users. It’s blank because we haven’t created any
IAM users yet. Up top, there will be a big blue Add User button. Click that button, and
you’ll be brought to yet another AWS wizard (figure 11.17). This wizard will walk us
through setting up an IAM user.

 In the first screen, give the user a User Name and check the box for Programmatic
Access. This will provide that user credentials to use the Python SDK for AWS: boto.
Don’t click the checkbox for AWS Management Console Access. Leaving it unchecked
will prevent that user from accessing AWS over the web.

Figure 11.17 The AWS Create User wizard will help us create a user that will have programmatic-only access to 
our AWS resources.
 

https://console.aws.amazon.com/iam/home?#/users


251Storing data in the cloud with S3
Click through to the second page, and you’ll be asked to set the user permissions (fig-
ure 11.18). This is where we decide what the user can and can’t do. We’ll want our
user to be able to access and modify AWS resources necessary for working on large
datasets. AWS refers to this type of user as a data scientist. To give the user we’re creat-
ing the permissions of a data scientist, do the following:

 Click Attach Existing so we can see the AWS suggested permissions policies.
 Type DataScientist in the search bar and select the result that appears.

Note that AWS has a variety of other permissions sets for other roles—such as system
administrators, billing only, read only, and database administration only—that we can use
to ensure folks only have access to what they need. See table 11.2 for more information.

Table 11.2 Useful AWS Security Policies and common situations in which you would assign them

AWS Security Policy Use case

AdministratorAccess Individuals who need to be able to manage other users; start up and 
shut down all services

DataScientist Users who are performing general data analytics tasks, requiring a 
mix of S3, EC2, and Elastic MapReduce services

AmazonElasticMapReduceRole Users who need to use the Elastic MapReduce cluster-computing 
abilities of AWS

AmazonS3FullAccess Programs/scripts that need to both read and write data to AWS S3

AmazonS3ReadOnlyAccess Programs/scripts that only need to read data from AWS S3

PowerUserAccess Users who need to access all features of all services but don’t need 
to manage other users

Figure 11.18 Adding a data scientist policy to our new IAM user will allow the user to access the resources 
necessary for working with large datasets in the cloud, but nothing else.
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Once you’re ready—click through the next two screens until you see a success mes-
sage indicating the user has been created. On this page, you’ll see an option to
download a .csv file. This file contains the user credentials for the user you just cre-
ated, including the access key and the secret key we’ll need to programmatically
access S3 through boto. Download this file and get it ready—we’re about to write
some code.

AWS SCRIPTING WITH THE PYTHON SDK BOTO3
In the repository for this chapter, there’s data on car accidents. We’ll analyze this data
in the cloud in the next chapter—but first, we need to load it up into S3 buckets. To
do this, we’ll use the familiar map pattern that we first introduced in chapter 2. For
this map operation, we’ll need two things:

 A sequence of file paths indicating all the files we want to upload
 A helper function that does the work of uploading those files

Let’s start with the helper function to get working with boto3. Our map helper func-
tions typically have taken one parameter, but for this map helper function, let’s design
it to take two parameters. The first will be the path to the file we’re trying to upload,
and the second will be the bucket to which we want to upload. This will let us reuse
the function for other buckets if we’d like.

 We’ll start by focusing on the first parameter of the function: the file path. Let’s
take this file path and use the os.path.split function to extract the filename from the
path. We’ll assign the file this name—the same name that it has on our local system—
when we upload it to S3.

 From here, we’re ready to create an AWS client instance. The client instance is a
class that has methods representing actions we can take on AWS, such as uploading
files to a bucket. This is available in boto as .client, and we’ll initialize it with three
parameters:

 The name of the service we want to use—in this case "s3"
 The access key id for the DataScientist account we created
 The secret access key for the DataScientist account we created

Importantly, we don’t want to pass these keys in as plain text. Doing so could poten-
tially expose our account credentials if we upload our code to a code repository.
Instead, we want to read them from environment variables. You can assign the access
key and access secret to environment variables with the export command on a Unix
machine or from the environment variables wizard on a PC.

export AWS_ACCESS_KEY=YOUR-ACCESS-KEY-HERE
export AWS_SECRET_KEY=YOUR-ACCESS-SECRET-HERE
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Providing those three parameters returns a client that can take S3 actions on our
behalf. This client has a method .upload_file that we can use to upload our files.
We’ll also pass three parameters to the .upload_file method:

1 The file path of the file we want to upload
2 The name of the bucket to which we want to upload
3 The name of the file as we want it to show up on S3

This method performs the upload to AWS and may return an HTTP response. Let’s
take this response and return it, along with the file name, as the value of our function
upon completion. We can see this helper function in full in the following listing.

import boto3 as aws #A
import os

def upload_file(file_path, bucket):
    _, file_name = os.path.split(file_path)
    s3 = aws.client("s3",
        aws_access_key_id = os.environ["AWS_ACCESS_KEY"],
        aws_secret_access_key = os.environ["AWS_SECRET"]
    )
    response = s3.upload_file(file_path, bucket, file_name)
    return file_name, response

To use this function, we need to map it across a sequence of files. Use the iglob func-
tion, which we covered in chapter 4, to assign a sequence of the files we’re interested
in to a variable for that purpose. Once we have that sequence, we need to apply our
upload_file function to each of the files, as shown in the following listing.

Credentials, AWS, and boto3
You have several ways to establish your identity when using boto3. The method I’ve
chosen here balances ease and security. Two other popular options are to specify
your access key and secret key in a credentials or configuration file, located at either
~/.aws/credentials or ~/.aws/config. Amazon provides information on how to
set up those files in their AWS Command Line Interface documentation: http://mng
.bz/O9oo.

An advantage of the credentials file is that you can specify multiple profiles—for
example, for development and environments—and easily alternate between them
when setting up a boto3 session. That’s beyond the scope of this chapter, but I
encourage you to take a look at the boto3 configuration documentation for more infor-
mation: http://mng.bz/G4ER.

Listing 11.1 A helper function to upload files to S3
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from glob import iglob

if __name__ == "__main__":
    files = iglob("/path/to/data/files/*")
    [upload_file(f, bucket="your-bucket-name") for f in files]

Running this code will take some time, but it shouldn’t provide you with any clues of
its completion in the terminal. Instead, navigate in the browser to the S3 bucket you
created. Once there, you should see a bucket full of data files ready to analyze (fig-
ure 11.19).

In the next chapter, we’ll use those files and this bucket to learn how to analyze large
datasets in the cloud.

11.3 Exercises

11.3.1 S3 Storage classes

Which S3 storage class is best for each of the following three situations?

1 Data we know we’ll only need rarely and with plenty of warning
2 Data we know we’ll only need a few times each month
3 Data we'll need access to regularly

11.3.2 S3 storage region

AWS resources exist inside either availability zones or regions. Does highly durable S3
storage exist in an availability zone or across a region?

Listing 11.2 Uploading files from the filesystem to S3

Figure 11.19 Your browser shows the traffic data files that have been uploaded to an AWS Simple Storage 
Service bucket.
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11.3.3 Object storage

Which three elements are the integral components of object storage?

 Object, object name, object location
 Object, object path, object color
 Object, object size, metadata
 Object, object ID, metadata

Summary
 Amazon Web Services Simple Storage Solution—known as S3—is a great option

for large datasets we’ll want to operate on in the cloud because it’s effectively
limitless in size.

 S3 is also a managed service—AWS acts as a custodian for our data, and we can
focus on getting value from it.

 In S3, objects, which can be any data file we upload, are stored in buckets. We
can assign metadata tags to both buckets and objects for organization.

 We can store S3 objects in the Standard storage class, if we’ll access them fre-
quently; an Infrequent Access storage class, if we’ll access them infrequently;
and Glacier storage class for archiving.

 We can create buckets and upload objects through the browser using AWS’s graph-
ical interface. The interface shows us lots of options for every action we take.

 We also can upload objects through the Python software development kit for
AWS: boto3.
 



MapReduce in the cloud
with Amazon’s Elastic

MapReduce
Throughout this book, we’ve been talking about the ability to scale code up. We
started by looking at how to parallelize code locally; then we moved on to distrib-
uted computing frameworks; and finally, in chapter 11, we introduced cloud com-
puting technologies. In this chapter, we’ll look at techniques we can use to work
with data of any scale. We’ll see how to take the Hadoop and Spark frameworks we
covered in the middle of the book (chapters 7 and 8 for Hadoop; chapters 7, 9, and
10 for Spark) and bring them into the cloud with Amazon Elastic MapReduce.
We’ll start by looking at how to bring Hadoop into the cloud with mrjob—a frame-
work for Hadoop and Python that we introduced in chapter 8. Then, we’ll look at
bringing Spark and its machine learning capabilities into the cloud. 

This chapter covers
 Launching and configuring cloud compute 

clusters with Elastic MapReduce

 Running Hadoop jobs in the cloud with mrjob

 Distributed cloud machine learning with Spark
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12.1 Running Hadoop on EMR with mrjob
In chapter 8, we reviewed two methods of working with Hadoop:

1 Hadoop Streaming—Which uses Python scripts for its mappers and reducers 
2 mrjob—Which we can use to do Hadoop jobs using only Python code

When we used both of these approaches, we focused on implementing the map and
reduce style in Hadoop. With the techniques in chapter 8, you could take advan-
tage of a Hadoop cluster if you already had one available, but most people don’t. In
this section, we’ll review running Hadoop jobs on Amazon Web Services’ Elastic
MapReduce (EMR), a service we can use to create compute clusters whenever we
need them.

12.1.1 Convenient cloud clusters with EMR

Hadoop clusters used to be reserved for only those who needed them often or could
afford to have a large amount of computing resources laying around idle much of the
time. This meant that 10 years ago, for the most part, only corporations and academic
institutions had cluster computing. Now, with the cloud increasing in popularity,
everyone can have access. One convenient way to get access to a compute cluster is
Amazon’s Elastic MapReduce service.

Amazon Web Services’ EMR is a managed data cluster service. We specify general
properties of the cluster, and AWS runs software that creates the cluster for us. When
we’re done using the cluster, Amazon absorbs the compute resources back into its net-
work. You can think of this like the S3 cloud storage. Because Amazon has so much
compute power, we can ask for some whenever we want, and they’ll rent it to us. Then,
when we don’t need it anymore, Amazon is happy to take it back.

 With this setup, if we need to run a large data processing task once a month or
even once a year, we don’t need to pay to maintain the cluster all month or all year. We
can ask AWS to provide us the compute resources when we need to do the processing,
then we can return the compute resources to Amazon when we’re done. If we need to

Other cloud compute services
Amazon is not the only provider of cloud-based clustering computing services. Their
two major competitors, Microsoft Azure and Google Cloud, both offer services you’ll
find similar to Amazon Web Services. Microsoft’s Azure HDInsight service and Goo-
gle’s Cloud Dataproc service both support Hadoop and Spark. That means you can
use the knowledge from chapters 7–10 with both of those services. mrjob, which we
covered in chapter 8 and go into more depth on in this section, also supports Google
Cloud Dataproc. mrjob doesn’t support Azure HDInsight.

In this chapter, we’ll use AWS because we’ll want to work with the resources we used
in the previous chapter. 
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do this work more often, or at irregular intervals, we can maintain a small cluster that
can grow based on usage.

 For example, say we run text analytics on all the comments posted about our prod-
ucts on Facebook, Twitter, and Instagram every six hours. We may maintain a small
cluster all the time to reduce startup time and then have the cluster expand based on
how much new data there is to analyze. If there are only a few thousand comments
about our products, we might get by without expanding our small cluster. If some-
thing surprising happens—say an A-list celebrity is caught using a product of ours—
and we have hundreds of thousands of comments to parse through, our cluster can
automatically expand to accommodate the increased volume.

 Importantly, too, the pricing model for Amazon’s EMR service is a per-compute-
unit per-second charge. If we run 100 machines and our job finishes in 2 minutes,
we’ll pay the same amount as if we processed it on one machine and it took us 200
minutes. That means there are no cost savings to doing things slowly. Amazon encour-
ages us to parallelize our problems away. All three cloud providers—Microsoft, Goo-
gle, and Amazon—price their managed compute services in this way, though prices
vary by provider.

12.1.2 Starting EMR clusters with mrjob

The easiest way to start an EMR cluster is by using a Python library we’re already famil-
iar with: mrjob. Although we can—and did, in chapter 8—use mrjob locally, mrjob
was designed to automate the procurement of EMR clusters. By writing a Hadoop job
with EMR and specifying the right settings, we can quickly set up a Hadoop cluster in
the cloud.

 Because we’ll do machine learning with Spark later in this chapter (section 12.2),
let’s do a bit of data analysis that will help us understand the files we uploaded to S3 in
chapter 11. Back in chapter 11, we uploaded data about car accidents, including fea-
tures such as the time of day and the number of vehicles involved. For our first
Hadoop job on EMR, let’s write a MapReduce job that counts up the number of times
crashes occurred with different numbers of vehicles (figure 12.1).

 To do this, we’ll create a custom class that inherits from the main mrjob class.
Then we’ll write two methods for that class:

1 A .mapper that takes in the line and returns the number of vehicles involved
2 A .reducer that groups the vehicles and sums the counts

Because our data is stored in the JSON lines format, when we process each line with
our .mapper, we’ll read it into a Python object using json.loads, as shown in listing 12.1.
From there, we can use dictionary notation to retrieve the number of vehicles involved
in the crash. Yielding this value and a 1 in a tuple will put us in good shape to count
the values up in our .reducer.
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from mrjob.job import MRJob
import json

class CrashCounts(MRJob):

    def mapper(self, _, line):
        crash_report = json.loads(line)
        vehicles = crash_report['Number of Vehicles Involved']
        yield vehicles, 1

    def reducer(self, key, values):
        yield key, sum(values)

if __name__ == '__main__':
    CrashCounts.run()

In our .reducer, we use the standard counting reduction. The key stays the key, but
the value becomes the sum of all the values. If we ran this locally, the result would be a
sequence of keys and values printed to the terminal. The first value indicates the num-
ber of vehicles involved, and the second value indicates how many crashes involved
that number of vehicles. If you have the data files locally, you can run the mrjob script
and validate this for yourself.

Listing 12.1 Counting crashes by number of vehicles with mrjob

Figure 12.1 We can use EMR to scale our MapReduce jobs up to any size. In this case, we’ll use 
EMR to analyze the number of car crashes with different numbers of vehicles involved. 
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 To run this in the cloud on EMR, we need to pass three additional parameters to
our mrjob script on the command line, as shown in listing 12.2:

1 The first parameter we need to specify is called the runner. This tells mrjob how
to process our command. By default, it processes locally. To process on EMR, we
will need to specify -r emr.

2 Next, we’ll need to provide a path to our input files. So far, we’ve been using
blob syntax and pointing to where those files reside locally. Here, though, we
have our data in S3. That path will need to be our bucket.

3 Lastly, let’s specify a folder to which we’ll write our output. We can place it in
the same bucket or in a separate bucket.

 python mrjob_crash_counts.py \
       -r emr \ 
       s3://your-bucket-name-here/ \
       --output-dir=s3://your-other-bucket-name/crash-counts

In addition to these variables, which define where the script will go, we need to pro-
vide our credentials. mrjob uses them to create a compute cluster on our behalf. To
keep these credentials secret, mrjob insists that you have these variables exported to
your local environment. This prevents you from exposing your credentials in plaintext
in your source code. If you didn’t provide your credentials in chapter 11 when using
boto3 to upload data to S3, the following listing shows how to do that for Mac and
Linux. For Windows, search for “environment variables” and follow the wizard.

export AWS_ACCESS_KEY_ID=<your AWS access key>
export AWS_SECRET_ACCESS_KEY =<your secret AWS access key>

Once you have your environment variables set, you’ll be able to run mrjob on EMR with
the command from listing 12.2. By default, this command will spin up a small test clus-
ter for you. For learning the tool, this small cluster is plenty. For bigger jobs, you’ll want
to use more resources. A common way to use more resources is to use an mrjob config
file. This file allows us to use YAML notation to specify the type of cluster we’d like.

 For example, if we wanted to

 run our Hadoop job with 20 instances
 have all those instances be m1.large
 have those resources be in the us-west-1 region (Northern California)
 tag those resources with a “project” tag that had a value of “Mastering Large

Datasets”

we could specify all of that in the config file. We can see an example of a config file for
just that in the following listing.

Listing 12.2 Running Hadoop on EMR with mrjob

Listing 12.3 Setting AWS credentials for mrjob 
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runners:
  emr:
    num_core_instances: 20
    image_version: 5.24.0
    instance_type: m1.large
    region: us-west-1
    tags:
      project: Mastering Large Datasets

Specifying settings in a configuration file makes it possible for us to use and reuse
multiple settings. For example, it may be enough to use 20 instances to run a nightly
extract-transform-load process. For the monthly executive report, though, we may
need to use 100 instances. We can use two configuration files to allow us to save our
parameters.

 We can pass those parameters to mrjob on the command line when we invoke it
with Python using the conf-path parameter. The following listing shows an example
of this action.

python mrjob_crash_counts.py \
       -r emr \ 
       s3://your-bucket-name-here/ \
       --output-dir=s3://your-other-bucket-name/crash-counts
       --conf-path=</path/to/your/config/file.conf>

Once you’ve successfully run your Hadoop job on EMR with mrjob, we can open up
the AWS console to see what happened. 

12.1.3 The AWS EMR browser interface

In section 12.1.2, we looked at how we can use AWS EMR with the mrjob tool. In this
section, we’ll look at how we can use the browser interface to run Spark jobs. Just as AWS
provides a browser-based interface to S3, the object storage system that we looked at in
chapter 11, AWS also provides a browser-based interface to EMR. You can access that
interface by going to https://console.aws.amazon.com/elasticmapreduce/home.

 If you ran the job from section 12.1.2 and that job completed successfully, you
should see a task with the status “Terminated—All steps completed” (figure 12.2). If you
see another message, the job may still be running, or there may have been an error.

Listing 12.4 An example configuration file for mrjob

Listing 12.5 Adding a config file to an mrjob call

Figure 12.2 The Amazon browser-based console provides a convenient overview of the status of our clusters, 
including their names, IDs, status, time started, and total uptime.
 

https://console.aws.amazon.com/elasticmapreduce/home
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VIEWING CLUSTER STATUS FROM THE AWS CLUSTER CONSOLE

Whatever you see after you run the job, click on the name of the cluster, and you’ll
arrive at the cluster-specific console page. On this page, you’ll see the name and status
of the instance along with other information about your cluster (figure 12.3).

Click the Steps tab, and you’ll find a list of all the steps submitted to your cluster. In
EMR, steps are tasks that we send to the cluster through the EMR API—either using
the console, through an SDK like boto3, or through the command-line AWS tools. In
our case, there should be only a single step (figure 12.4). AWS created this step when
we ran mrjob with the EMR runner. 

 It’s possible to submit multiple steps to the same cluster. If we do that, the steps will
run one after another. Each step will wait until all steps in front of it have finished
before it begins. If we want to run multiple steps simultaneously, we can request multi-
ple clusters at the same time from EMR. 

 This tab is useful because it provides convenient access to the logs for each step. If
your EMR steps fail—which they inevitably will if you use the service enough—this
page can be helpful in your debugging process. Additionally, when jobs fail, mrjob will
parse through the logs created by the Hadoop job and attempt to provide you with a
user-friendly diagnosis of what went wrong. Hadoop’s logs are Java logs, and Java error
messages can require some getting used to. If you’re more familiar with Python than
with Java, the mrjob diagnosis can be quite a benefit.

Figure 12.3 The cluster console shows information specific to that AWS cluster, such as the ID of the cluster 
and the number of machines in it. You can also use this console to modify the settings of running clusters.
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RUNNING LOTS OF SMALL EMR JOBS

On this tab, you will also note the amount of time that was spent working each partic-
ular step. For example, in figure 12.4 you can see that my crash counts script only
spent 1 minute running. Compare that to figure 12.3, where the cluster as a whole ran
for 13 minutes. The remaining time was spent in setup and teardown. In the setup
phase, the machines are procured and connected, and the necessary software is
installed on them (such as Python, Java, and Hadoop). In the teardown phase, AWS
returns the resources and produces logs. 

 If you’ll be running lots of small tasks, that’s a use case where you may want to sub-
mit multiple steps to a single cluster. mrjob makes it easy for us to set up clusters with
the create-cluster command. We can pass this command to our configuration file so
the cluster behaves just like it would if we created it with a single job. Additionally, the
cluster will keep running after our job has finished. When we do run a persistent clus-
ter like this, we’ll usually want to specify a maximum number of hours it can be idle
before it shuts down entirely:

mrjob create-cluster --max-hours-idle 1 --conf-path=path/to/conf/file.conf

This prevents us from paying for resources we don’t need.
 To submit jobs to an existing cluster, we’ll need to specify the cluster ID to which

we want to submit our code. On the command line, the parameter is --cluster-id,
and it should be followed by the ID of the cluster on which we want to run.

 Another parameter to note is emr_action_on_failure (in the config file) or
--emr-action-on-failure (on the command line). These parameters specify what
should happen to the cluster if our jobs fail. When we run a single step, this defaults
to TERMINATE_CLUSTER. Having terminate on fail as the default means that if our job

Figure 12.4 The step-specific detail screen of the EMR console shows information about tasks we’ve asked our 
cluster to work on.
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has any errors, our cluster will shut down. The two other options for emr_action
_on_failure are CANCEL_AND_WAIT and CONTINUE. 

CANCEL_AND_WAIT tells the cluster to cancel the other steps that have been queued
up and to hold off on doing anything. This is useful if your steps are related. For
example, if you have three steps in an extract-transform-load workflow—one for each
extract, transform, and load—you don’t want your load step running if your transform
step hasn’t completed properly. 

CONTINUE tells the cluster to go ahead and work the other steps. This is useful when
the steps aren’t related; for example, if you’re running batch analytics. The results of
one analytics step won’t necessarily impact the next step, so it’s fine to continue with
our analytics jobs if we have errors in one of them. We use CONTINUE in the following
listing.

runners:
  emr:
    num_core_instances: 6
    image_version: 5.24.0
    instance_type: m1.large
    region: us-west-1
    cluster_id: j-000000000            
    emr_action_on_failure: CONTINUE    
    tags:
      project: Mastering Large Datasets

VIEWING OUR OUTPUT IN S3
Let’s take a look at the output of our Hadoop job. When we called our mrjob script,
we specified an output directory. This was a folder in an S3 bucket. Our output was
written as objects to that bucket. If you navigate to that bucket in the browser, you
should see a list of objects (figure 12.5).

 Each of these objects was created as a result of our crash counts Hadoop process
and contains a part of the results. Each line of these files will have the same pattern as
the output from our mrjob class’s .reducer. The first element on each line will be the

Listing 12.6 Specifying cluster ID and failure behavior in an mrjob config file

Specifying a cluster ID and an action 
on failure from the command line 
allows us to save time repeatedly 
setting up clusters to run fast jobs.

Figure 12.5 In your browser, the bucket lists the objects created as a result of our Hadoop process.
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number of vehicles involved in the crash, and the second element will be the number
of times we saw a crash involving that number of vehicles. 

 If we don’t want to have our results stored to an S3 bucket, omitting the --output-
dir parameter will instead print those values to our screen. Outputting the values to
our screen can be useful in situations where we know we won’t need to use those results
in future workflows through EMR. One example might be when we’re testing our job.
We can run it with a few small instances and print the results locally for testing, then use
many instances and save the results when we’ve validated that the job works.

 In this section, we’ve reviewed how to submit a Hadoop job to a cloud-compute
cluster using mrjob and Amazon Web Services’ EMR. Hadoop on EMR is excellent for
large data processing workloads, such as batch analytics or extract-transform-load. In
the next section, we’ll review using Spark on EMR. 

12.2 Machine learning in the cloud with Spark on EMR
When I introduced Hadoop and Spark in chapter 7, I introduced both of them as
frameworks for distributed computing. Hadoop is great for low-memory workloads
and massive data. Spark is great for jobs that are harder to break down into map and
reduce steps, and situations where we can afford higher memory machines. In this
section, we’ll focus on how we can use Spark to train a machine learning model on
large data in the cloud on EMR.

12.2.1 Writing our machine learning model

Before we can run our machine learner in the cloud, let’s start by building a model
locally on some testing data. This will mirror a process we might perform if we were
running machine learning algorithms on a truly large dataset:

1 Get a sample of the full dataset.
2 Train and evaluate a few models on that dataset.
3 Select some models to evaluate on the full dataset.
4 Train several models on the full dataset in the cloud.

This process has the virtue of making it possible for you to test lots of models quickly
and cheaply on your local machine. And later, because we’re using scalable frame-
works and a scalable computing style, we can bring the models we like into the cloud
and test them on the full dataset (figure 12.6).

 For this scenario, we’ll continue to work with the car crash data we uploaded in
chapter 11 and explored in the first section of this chapter.

SCENARIO: CAR CRASH ANALYSIS Root-cause analysis of car crashes is a key way
governments and safety organizations make driving safer. We’ve been asked
by one such organization to develop a machine learning model that can pre-
dict which conditions lead to crashes that involve several vehicles (three or
more) and which conditions lead to crashes that involve only one vehicle.
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If you worked through chapter 10, where we learned about machine learning in
Spark, you may want to try this part yourself as a challenge. We’ll use a naïve Bayes
classifier as the machine learning model for this scenario. The naïve Bayes algorithm
is a simple, probabilistic classifier that is often used for baseline assessments of the dif-
ficulty of machine learning problems, especially in text analytics. Problems where
naïve Bayes algorithms perform poorly can be considered difficult, whereas problems
where naïve Bayes algorithms perform well are easy. 

 The first thing we need to do to run a naïve Bayes algorithm is the same as the first
thing we did for decision trees in chapter 10: we need to read in data. Our data is in
the JSON lines format, so the best way to read in our data is to use the .textFile
method of a SparkContext and then chain .map methods together to transform the
data into a version ready for transformation into a Spark DataFrame. Spark Data-
Frames are the required data format for Spark’s built-in machine learning libraries.

 To transform the data from JSON lines into a sequence of Python objects, we first
need to split the data into lines. We can do this with a .flatMap and a .split on all
newline characters. We use .flatMap here instead of normal .map because our origi-
nal sequence is a sequence of files. If we used a standard .map, we’d have a sequence of
sequences resulting from each file being transformed into a sequence of lines. What we
want is a single sequence of lines. The .flatMap method flattens our sequence of

Cloud dataset

Cloud

Local subset of
cloud dataset

Many machine learners are
trained on the local sample data.

The best learners get brought
into the cloud.

Those models are tested against the
full dataset, and then an ultimate
best model emerges.

Local

Figure 12.6 A common machine learning process for large datasets is to sample many models locally and 
then evaluate the best models in the cloud.
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sequences into a single sequence. From here, we can map the loads function from
the JSON module across all the lines. This method, which we’ve used a few times
already, converts a JSON-formatted string into a Python object.

 Additionally, we’ll want to improve the way the times are recorded. In the data, the
times are recorded as raw times. That’s not useful because our machine learning
model likely won’t have enough data to learn that 11:45 a.m. and 1:03 p.m. are closely
related, but 3:45 p.m. and 5:03 p.m. likely have very different driving conditions
(because of the beginning of evening commute traffic). Listing 12.7 includes a small
function that makes some sense of the times.

 Once we have the data in a sequence of Python objects, we also want to make two more
cleanup transformations. First, we’ll want to group the crashes into three categories:

1 Single-vehicle crashes
2 Two-vehicle crashes
3 Three-or-more-vehicle crashes

The number of crashes will be the target variable for our analysis. To do this grouping,
we’ll need to write a helper function that transforms the 'Number of Vehicles
Involved' field, as shown in the following listing.

def group_crashes(x):
    if int(x['Number of Vehicles Involved']) > 3:
        x['Number of Vehicles Involved'] = "3"
    return x

def improve_times(x):
    time = x['Time']
    if time < "5:00":
        x['Time'] = "Early morning"
    elif time < "7:00":
        x['Time'] = "Morning"
    elif time < "9:00":
        x['Time'] = "Morning commute"
    elif time < "12:00":
        x['Time'] = "Late morning"
    elif time < "16:00":
        x['Time'] = "Afternoon"
    elif time < "18:30":
        x['Time'] = "Evening commute"
    elif time < "22:00":
        x['Time'] = "Evening"
    else:
        x['Time'] = "Late night"
    return x

  sc = SparkContext(appName="Crash model")
  spark = SparkSession.builder \
                      .master("local") \
                      .getOrCreate()

Listing 12.7 Reading and cleaning crash data from JSON lines
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  texts = sc.textFile("/path/to/your/files/")
  xs = texts.flatMap(lambda x:x.split("\n")) \
            .map(json.loads) \
            .map(group_crashes) \
            .map(improve_times)

From this point, we’re ready to convert our RDD into a DataFrame and prepare our
DataFrame for Spark’s machine learners. To transform the RDD into a DataFrame, we
use the .createDataFrame method of our SparkSession (figure 12.7). SparkSession
objects are central to Spark’s SQL, DataFrame, and machine learning capabilities and
serve as a mirror to SparkContext objects for RDDs.

Once we have our data in a DataFrame, we need to use the StringIndexer to trans-
form our variables into the indexed format that Spark expects (listing 12.8). We won’t
go into the details of the indexer code here, because our focus for this section is on
Spark and EMR. If you’d like a refresher, we originally discussed these concepts in
chapter 10, specifically section 10.2.2 with listings 10.2, 10.3, and 10.4.

from pyspark import SparkContext
from pyspark.sql import SparkSession
sc = SparkContext (appName=“Crash model”)
spark = SparkSession.builder \

.master(“local”) \

.getOrCreate()

texts = sc.textFile(“/path/to/your/files/”)
xs = texts.flatMap(lambda x:x.split(“\n”)) \

.map(json.loads) \

.map(group_crashes) \

.map(improve_times) \

df = spark.createDataFrame(xs)

When we set up our machine
learning job, we can import both
the andSparkContext
SparkSession utilities to use
both the andRDD DataFrame
methods.

We can use the methodsRDD
to read in JSON files and do some
preprocessing with the map
and reduce methods provided
by .RDDs

When we’re ready, we can
explicitly convert our toRDD
a .DataFrame

Figure 12.7 We can use both the SparkContext and the SparkSession to take advantage of 
RDDs and DataFrames. We’ll need to explicitly convert our RDD to a DataFrame when we want to 
use the DataFrame methods for machine learning.
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  df = spark.createDataFrame(xs)

  feature_labels = df.columns
  feature_labels.pop(feature_labels.index('Number of Vehicles Involved'))
  df = reduce(string_to_index, feature_labels, df)
  indexes = ["i-"+f for f in feature_labels]

  df = VectorAssembler(inputCols=indexes,
                       outputCol="features").transform(df)

  df = StringIndexer(inputCol='Number of Vehicles Involved',
                     outputCol='label').fit(df).transform(df)

With our DataFrame ready for machine learning, the last step is to set up the actual
machine learning algorithm. As noted earlier, for this example we want to use a naïve
Bayes algorithm. Like in our final example from chapter 10, we’ll use cross-validation
to assess model performance. As you might guess from the algorithm’s name (naïve),
the naïve Bayes model has relatively few parameters compared to more sophisticated
models, so we’ll only optimize a single parameter of the model: smoothing. The
smoothing parameter refers to how much additive smoothing is used in the model.
The additive smoothing process prevents zeros from dominating the model, instead
treating zeros as very small numbers. Typical values are 1/1000, 1/100, 1/10, and 1.
You can see the machine learning code in the following listing. You’ll notice a lot of
similarities between this code and the code we wrote for our random forest classifier
in section 10.3.2.

mce = MulticlassClassificationEvaluator()
nb = NaiveBayes()

grid = ParamGridBuilder().addGrid(nb.smoothing, [.0001, .001, .01, 1]) \
                         .build()
cv = CrossValidator(estimator=nb, estimatorParamMaps=grid,
                    evaluator=mce,numFolds=5,
                    parallelism=4)
cv_model = cv.fit(df)
transformed = cv_model.transform(df)
f1 = mce.evaluate(transformed)
print("NB F1: {:0.4f}".format(f1))
cv_model.bestModel.save("/path/to/your/model")

One thing you may notice about this code that’s different from the code in chapter 10
is that we refer to our evaluation metric as F1 instead of AUC. F1, like AUC, is a metric
that assesses trade-offs between false positives and false negatives. It’s most promi-
nently used in information retrieval and document classification. For our purposes,

Listing 12.8 Preparing the crashes RDD for machine learning

Listing 12.9 A naïve Bayes classifier for vehicles in crashes
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it’s enough to know that F1 scores can range between 0 and 1, with higher numbers
being better.

 You can run this code locally, pointing the .textFiles method and the .best-
Model.save method to locations on your local machine. For the inputs to .text-
Files, I recommend using a subset of the full crashes dataset. This will speed up the
test process—the entire dataset will take several minutes to process on a single
machine. For the output, you’re specifying a location where Spark will try to create a
directory and store a description of the model. This should be a directory that doesn’t
exist yet.

REMINDER: SPARK-SUBMIT Remember to run your Spark code with the spark-
submit utility instead of Python. The spark-submit utility queues up a Spark
job, which will run in parallel locally and simulate what would happen if you
ran the program on an active cluster. 

12.2.2 Setting up an EMR cluster for Spark

To run this machine learning job in the cloud, we’ll need a cluster on which to run
our Spark job. Earlier in this section, we saw two ways to set up an EMR cluster pro-
grammatically using mrjob:

1 We can set up single-step clusters by submitting a Hadoop job with the -r emr
flag set.

2 We can set up persistent clusters by running the mrjob create-cluster utility.

In this subsection, I’ll show you how to set up a Spark cluster with mrjob and intro-
duce you to the EMR cluster wizard.

SETTING UP A SPARK CLUSTER WITH MRJOB

Back in section 12.1, we set up EMR clusters using mrjob so that we could run our
Hadoop jobs in the cloud. As part of this, we wrote an mrjob config file (listing 12.4).
The mrjob config file was a declaration of what we wanted our cluster to look like, as
shown in listing 12.10. We can use that same approach to set up a Spark cluster. All
we’ll need to do is specify a few extra options.

runners:
  emr:
    num_core_instances: 20
    image_version: 5.24.0
    instance_type: m1.large
    region: us-west-1
    tags:
      project: Mastering Large Datasets

Note that this configuration defines a cluster of 21 machines—20 workers and 1 master.
Those machines are of type m1.large and are using AMI version 5.24.0. Additionally,

Listing 12.10 Refresher: mrjob config for EMR
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we’ll be setting the cluster up in the us-west-1 region and tagging it with “project: Master-
ing Large Datasets.”

 For our Spark cluster, the first thing we’ll need to do is change the instances we’re
using to one that has more memory. Hadoop, as I’ve mentioned before, was designed
to take advantage of low computing power environments. Spark has greater resource
requirements. For Spark, the smallest instance type we can us is m1.xlarge. When run-
ning Spark jobs in production, we can achieve better performance by using the AWS
C-series instances, which are compute optimized.

Next, we’ll need to tell mrjob that we want to use Spark. For this, mrjob provides an
option called bootstrap_spark. This takes a boolean variable, so we’ll set that to true.

 Lastly, we’ll want to be able to access our instance over the command line through
SSH. SSH is a utility we can use to log in to and run commands on remote servers. To set
up the cluster so we can log in through SSH, we’ll need to specify an AWS .pem key pair.

 If you haven’t set up an AWS EC2 key pair, you can create one using the AWS com-
mand line tool, which you installed along with boto3. The command for that is aws
ec2 create-key-pair. You’ll also want to set the mandatory --key-name option so
that you can refer to your key.

aws ec2 create-key-pair --key-name my-emr-key > /path/to/my/key.pem

AWS EC2 keys are region specific, and this command will create the key in your
default region. If you’re not sure what your default region is, you can go to https://
console.aws.amazon.com. The region will display as a parameter in the URL; for
example, http://mng.bz/ZeA5.

 With that, we’ll have a configuration file ready to set up a Spark cluster. Our Spark
mrjob configuration file looks like the following listing.

runners:
  emr:
    num_core_instances: 4
    image_version: 5.24.0

EC2 instance types and clusters
We’ll want to know about three types of EC2 instances for cluster computing: M-series,
C-series, and R-series. M-series instances are the default for cluster computing.
These instances are solid, general-purpose instances. I recommend using them
for Hadoop jobs, and for testing Spark jobs. AWS provides C-series instances for
compute-heavy workloads, which includes Spark analytics. Batch Spark jobs are best
run in production on C-series instances. Lastly, the R-series of instances is a high-
memory series. We’ll want to use this series of instances if we’re dealing with stream-
ing analytics. 

Listing 12.11 mrjob configuration file for a Spark EMR cluster
 

https://console.aws.amazon.com/
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    max_hours_idle: 1
    instance_type: m1.xlarge
    region: us-west-1
    bootstrap_spark: true     
    ec2_key_pair: my-emr-key    
    tags:
      software: Spark
      project: Mastering Large Datasets

You can run this cluster with the create-cluster command. When you do, you
should receive a JSON string as a response. You’ll also be able to go to the AWS EMR
Console and see your cluster setting up. Once you’re satisfied that the cluster is run-
ning, feel free to shut it down. To do that, merely select the checkbox next the cluster
and click the Terminate button at the top of the screen.

THE AWS EMR CLUSTER WIZARD

In addition to setting up EMR clusters using mrjob, we can also do so using the AWS
console. Like we saw in chapter 11 with S3, the AWS console is a good way to see all of
the options that we have when we use AWS. To get started, navigate to the EMR con-
sole main page: https://console.aws.amazon.com/elasticmapreduce/.

 On this page, you should see a list of clusters, including the ones you may have cre-
ated while running the Hadoop jobs and the one you created from the previous sub-
section on Spark and mrjob. At the top of this page, you should see a button inviting
you to create a cluster. That button launches the AWS EMR cluster wizard.

 When you click it, you’ll immediately be brought to a quick setup page. On this
page, there are four sets of options:

1 General options that describe our cluster
2 Software options that tell AWS what we’ll be doing on the cluster
3 Hardware options that tell AWS which instances to reserve for us
4 Security options that tell AWS how we’ll be accessing the cluster

In the general options (General Configuration) section (figure 12.8), you’ll want to
give your cluster a name you’ll recognize. There are two other options there defining
the Logging behavior and Launch Mode—these are both fine by default. Next, in the
software options (Software Configuration) (also figure 12.8), you’ll want to use the lat-
est EMR release and select the software configuration that contains Spark. This tells
AWS to install Spark when it’s setting up our cluster.

 Scroll down and you’ll see hardware and security configuration options (figure 12.9).
For the hardware options (Hardware Configuration), set Instance Type to m1.xlarge
and the Number of Instances to 3. If you change the number of instances, you’ll
notice that the number of core nodes—the nodes that will run work on your cluster—
is always one less than the total number of instances you’ve selected. This is because
one instance always needs to serve as the master instance. Lastly, select your EC2 Key
Pair from the drop-down menu. If you don’t see your key pair listed here, try changing
availability zones using the drop-down menu in the top right corner of the screen.

Tells EMR to install 
Spark on the cluster

Provides EMR the name of 
the key we’ll use for SSHing 
into the cluster
 

https://console.aws.amazon.com/elasticmapreduce/
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If you proceeded from here to launch your cluster, you’d launch a cluster that is more
or less the same as the cluster you launched using mrjob. Instead, though, go to the
top of the page and select Go to Advanced Options. This will take you to a four-step
wizard that shows you all of the options for an EMR cluster.

Figure 12.8 The General Configuration section of the AWS EMR wizard lets you specify the Cluster Name and 
other configuration options.

Figure 12.9 The hardware and security configuration options in the EMR setup wizard offer a simple GUI for 
launching a right-sized cluster.
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 First, you’ll see a long list of software that is available to you, including

1 Hadoop 
2 Spark
3 JupyterHub
4 Hive
5 Pig
6 TensorFlow

We’ve covered the first two pieces of software—Hadoop and Spark—in this book:
Hadoop in chapters 7 and 8, and Spark in chapters 7, 9, and 10. Additionally, we’ve
looked at both Hadoop and Spark in this chapter. Depending on your background,
you may be familiar with the remaining four tools.

 JupyterHub is a cluster-ready version of the popular Jupyter Notebook software.
Installing that software means you can run interactive Spark and Hadoop jobs from a
notebook environment. This is a great tool for data analysts and data scientists. 

 Hive and Pig are similar tools that provide SQL or SQL-like interfaces to large
datasets. Analysts can use Hive to compile SQL code to Hadoop MapReduce jobs.
Likewise, we can use Pig to compile Pig-latin commands to run Hadoop MapReduce
jobs. Both pieces of software are aimed at making large datasets accessible to tradi-
tional business analysts.

 The last of the four, TensorFlow, is a popular deep learning library. The library is
used for many state-of-the-art implementations of deep learning. The ability to run
TensorFlow on AWS can reduce training time dramatically, because it enables us to
run jobs on GPU (Graphic Processing Unit—processors designed for fast arithmetic)
clusters or TPUs (Tensor Processing Units—processors designed for deep learning)
that would be cost-prohibitive if not in the cloud. 

 If you click through to the next page in the wizard, you’ll see detailed options for
defining the hardware available to your cluster (figure 12.10). In particular on this page,
pay attention to the instance groups at the bottom. You’ll notice that here you not only

Figure 12.10 The advanced hardware configuration options allow us to bid for spot instances and set up auto-
scaling for our cluster.
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have the ability to define which type of instance you want, you also can see and set
resource and pricing information for those instances. For example, we can see that the
m3.xlarge instance that AWS suggests for us has 8 virtual cores and 15 GB of memory.

 Additionally, we can select either On-Demand or Spot pricing for our instances.
Spot pricing is a short-term market rate price that we can use to save money on our
compute jobs. When we enable spot pricing, Amazon gives us access to unused
instances at a low rate. This low rate comes with some risk, though. If the spot price
ever exceeds what we bid—such as when demand for AWS resources is high—Amazon
may shut down our instances and lease them to another buyer. That said, if we’re run-
ning batch analytics jobs over night, this is often an excellent way to save money.

 Lastly, in the Create Cluster—Advanced Options view, we can see the Auto Scaling
option. When we turn Auto Scaling on, AWS will watch our resource usage and scale
our cluster up or down as necessary. For example, if we’re running a big Spark job, the
cluster may scale up to the maximum number of instances we’ve set. When that job
finishes, the cluster will eventually scale down to the minimum until we’re ready to
run another job.

 Clicking through to the next two pages, you’ll be able to

 define logging settings 
 add free-form key-value tags to your cluster
 add an EC2 key pair for SSH access

Once you’ve had a chance to look at all the options available to you on these pages,
you can create a cluster using either the Quick or Advanced settings. If you preferred
using mrjob, you also can relaunch your cluster with the mrjob create-cluster com-
mand from the previous subsection. You’ll need a running cluster, with Spark, with an
attached EC2 key pair for the next subsection when we will SSH into our cluster.

NOTE You can run the examples in this chapter for less than $5 at the time of
this writing.

12.2.3 Running PySpark jobs from our cluster

Once we have our cluster up and running, we’re almost ready to run our machine
learning job. There are only five steps left:

1 Modifying our script for the cloud
2 Adding our script to S3
3 SSHing into the master node
4 Installing the required software
5 Configuring our Spark cluster to run Python3
6 Running our Spark job

These steps will take us from having a local-only machine learning script to having run
our machine learning job on the cloud. But first, we need to make two small modifica-
tions to our machine learning script.
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 In the naïve Bayes script from earlier in this section, we used local file paths as
inputs and outputs. That was important because we wanted to test the script locally.
When we’re running the script in the cloud, we won’t have access to our local
resources—only resources that are in the cloud. We’ll need to change those paths to
point to cloud locations. Specifically, we’ll point both of them to S3 locations. 

 To reference an S3 bucket, prepend S3:// to the name of your bucket. For exam-
ple, if you had a bucket named my-favorite-S3-bucket, the path to that bucket would
be S3://my-favorite-S3-bucket/. For S3 folders, you can add any word after the bucket
name. Point the input path to target the bucket that contains your car crash data files
and point the output path to target a folder in another bucket, as shown in the follow-
ing listing. Once you’ve done that, save this as a new file.

texts = sc.textFile("S3://your-crash-data-bucket/")
. . .
cv_model.bestModel.save("S3://your-output-bucket/nb-model")

With these paths defined, we have a cloud-ready script. Unfortunately, we can’t access
this script from the cloud if it’s on our local machine. We also need to move the script
into the cloud. Again, we’ll use S3. If you’re up for a challenge, you can try on your
own to create a new bucket and upload the script there using either the AWS console
or boto3. Otherwise, you can follow the instructions from section 11.2.1 to create a
new bucket and upload your new script.

 Once the script is uploaded, we’re ready to log in to our cluster. If you’re on a Mac
or Linux machine, you’ll be able to use the built-in SSH utility. On Windows, you’ll
need to download a terminal emulator that supports SSH: PuTTY is the conventional
choice for this. You can download it here: http://mng.bz/RP4D.

 Once you know you’ll be able to use SSH, head to the EMR console in your
browser and find your running EMR cluster. At the top of the page you’ll see a path to
the cluster (figure 12.11). This is the path you’ll SSH into.

 To enter the cluster, open up your terminal or PuTTY and enter the address of the
cluster. (AWS provides documentation for connecting using PuTTY at http://mng.bz/
2Jn9.) Additionally, you’ll need to identify yourself by pointing SSH to your key:

ssh -i /path/to/your/key.pem ec2-00-000-000-00.compute-1.amazonaws.com

Listing 12.12 Cloud-ready paths for input and output

Figure 12.11 You can find the address of the master node of your cluster at the top of the console page for your 
cluster.
 

http://mng.bz/RP4D
http://mng.bz/2Jn9
http://mng.bz/2Jn9
http://mng.bz/2Jn9
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If this goes through successfully, you should see EMR in ASCII art on your terminal
screen (figure 12.12). This is how you’ll know you’re logged into the master node. From
this screen, the entire cluster is in your control. You can install software and run scripts
just like you would if you were at the command line of your local machine. For our
machine learning script, we’ll need NumPy—a Python library for numerical processing.
Let’s make sure it’s installed, and we’ll install the toolz package for good measure.

The way we install Python libraries doesn’t change whether we’re on our local machine
or on a remote server; we use pip. Because we want to use Python3, however, we’ll
need to install pip3, which doesn’t come installed by default. You can install pip3 with
the command sudo yum install -y pip3. You can then use pip3 to install NumPy and
toolz with the command sudo pip3 install -y numpy toolz. Additionally, you can
install any other software you may wish to use. Installing software on the master node
will replicate this install across all of the other nodes.

 At this point, if you want to test NumPy, toolz, or any other library, you can

 call Python with the python3 command
 import the library you want to test
 run any Python code you’d like from the console

Now our Python3 environment is set up to run our machine learning script. Unfortu-
nately, Spark is still configured to run with legacy Python. Let’s configure our Spark
environment so it runs Python3. To do this, we’ll need to modify a shell file on the
server. On the server, we can only use terminal-based text editors. The easiest of these
editors to use is nano.

Figure 12.12 Some nice EMR ASCII art will greet you when you log in to an 
EMR cluster.
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 To open a file in nano, we type nano and then the file’s name. To open the file
where the Spark environment variables are stored, we’ll type

nano $SPARK_HOME/conf/spark-env.sh 

When you open this up, you’ll see a shell script. At the bottom of the script, modify
the line that says PYSPARK_PYTHON so it reads PYSPARK_PYTHON=python3. When you’re
done, you can save and exit the file by pressing the following keys (these will be the
same on Mac, PC, and Linux):

1 Control-O—Begins to save the file
2 Enter—Writes the file to the disk
3 Control-X—Begins to exit nano
4 Y—Tells nano that yes, you want to exit

Finally, to put these changes into action, activate the Spark environment you just
modified:

source $SPARK_HOME/conf/spark-env.sh

Now we’re ready to run our Spark machine learning script! You can run your PySpark
script just like you did on your local machine. Remember that your script lives in an
S3 bucket, and you’ll need to point PySpark to the file there.

spark-submit S3://bucket-holding-my-script/my-script.py

When you run your script, you’ll see the standard output from Spark. It will tell you
what it’s doing and give you progress on the task. Depending on how many instances
you allocated to this cluster, this job may take a little or some time. When it’s finished,
you’ll be able to go into the S3 bucket you targeted for your output and see a folder
named nb-model. This folder contains the compressed description of the naïve Bayes
model you trained.

12.3 Exercises

12.3.1 R-series cluster

Write an mrjob config file that you could use to start a cluster of five R-series instances. 

12.3.2 Back-to-back Hadoop jobs

Configure an EMR cluster to be persistent and then execute two Hadoop MapReduce
jobs on that cluster. For example, select only a few fields from JSON-line data with the
first job, then transform that data into CSV format with another job.
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12.3.3 Instance types

We use three major instance types in cluster compute workflows: M, C, and R. Which
of these types is good for each of the following?

 Streaming workflows
 Hadoop workflows
 Test workflows
 Spark workflows

Summary
 Elastic MapReduce, known by the acronym EMR, is an AWS managed service we

can use to quickly and conveniently obtain cluster computing capability.
 We can run Hadoop jobs on EMR with the mrjob library, which allows us to

write distributed MapReduce and procure cluster computing in Python.
 We can use mrjob’s configuration files to describe what we want our clusters to

look like, including which instances we’d like to use, where we’d like those
instances to be located, and any tags we may want to add.

 When running Hadoop on EMR, we can operate directly on data in S3, which
facilitates petabyte-scale analytics and extract-transform-load operations.

 When we need to run advanced analytics and machine learning on large data-
sets, AWS EMR also supports Spark.

 Running Spark jobs on EMR requires more powerful instances than Hadoop
jobs, which can increase cost. But for some workflows, Spark jobs will be faster
than Hadoop jobs.
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