
Modern
Full-Stack
Development

Using TypeScript, React, Node.js,
Webpack, and Docker
—
Frank Zammetti

Modern Full-Stack
Development

Using TypeScript, React, Node.js,
Webpack, and Docker

Frank Zammetti

Modern Full-Stack Development

ISBN-13 (pbk): 978-1-4842-5737-1			 ISBN-13 (electronic): 978-1-4842-5738-8
https://doi.org/10.1007/978-1-4842-5738-8

Copyright © 2020 by Frank Zammetti

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Louise Corrigan
Development Editor: James Markham
Coordinating Editor: Nancy Chen

Cover designed by eStudioCalamar

Cover image designed by Ekrulila from Pexels

Distributed to the book trade worldwide by Springer Science+Business Media New York, 1 New York Plaza,
New York, NY 10004. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or
visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is
Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware
corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484257371. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Frank Zammetti
Pottstown, PA, USA

https://doi.org/10.1007/978-1-4842-5738-8

Dedicated to Traci, Andrew, and
Ashley – the only people I want to share

a shed in the woods with when the zombies come!

(Okay, maybe not the “only” ones…
but they get the good canned beans.)

v

Table of Contents

Chapter 1: Server-Side Action: Node and NPM�� 1

Of JavaScript Runtimes and Building (Mostly) Servers��� 2

First Baby Steps with Node: Installation��� 5

More Useful: Executing JavaScript Source Files�� 7

Node’s Partner in Crime: NPM��� 8

A Few More NPM Commands��� 10

Initializing a New NPM/Node Project�� 11

Adding Dependencies�� 13

A Quick Aside: Semantic Versioning��� 14

Fisher Price’s “My First Node Web Server”��� 15

Bonus Example��� 18

Summary��� 20

Chapter 2: A Few More Words: Advanced Node and NPM��������������������������������������� 21

NPM: More on package.json�� 21

NPM: Other Commands��� 25

Auditing Package Security��� 26

Deduplication and Pruning��� 26

Finding/Searching for Packages sans Browser��� 27

About the Author��xv

About the Technical Reviewer��xvii

Acknowledgments���xix

Introduction���xxi

vi

Updating Packages�� 28

Publishing/Unpublishing Packages�� 28

Node: Standard Modules��� 29

File System (fs)�� 30

HTTP and HTTPS (http and https)��� 32

OS (os)�� 34

Path (path)�� 35

Process��� 36

Query Strings (querystring)�� 37

URL (url)��� 38

Utilities (util)��� 39

The Rest of the Cast��� 40

Summary��� 42

Chapter 3: Client-Side Adventures: React��� 43

A Brief History of React��� 43

Yeah, Okay, History Nerd, That’s All Great, but What IS React?!�������������������������������������� 46

The Real Star of the Show: Components�� 48

Components Need Info: Props�� 55

Components (Sometimes) Need Memory: State��� 57

Making Them Look Good: Style�� 60

In the End, Why React?�� 62

Summary��� 63

Chapter 4: A Few More Words: Advanced React��� 65

A Better Way to Write React Code: JSX��� 65

Yeah, Okay, So What Does It LOOK LIKE?!�� 66

A Slight Detour into Babel Land��� 68

Compile JSX��� 71

And Now, Put It All Together��� 72

Table of Contents

vii

Whither Props?�� 76

Default Props�� 77

Typing Props��� 80

Component Lifecycle��� 83

Summary��� 86

Chapter 5: Building a Strong Foundation: TypeScript�� 87

What Is TypeScript?��� 87

Jumping into the Deep End��� 89

Beyond the Playground�� 91

Configuring TypeScript Compilation��� 92

The Nitty Gritty: Types�� 93

String�� 94

Number�� 94

Boolean�� 95

Any��� 95

Arrays��� 95

Tuples��� 96

Enums�� 97

Function��� 98

Object��� 99

Null, Void, and Undefined��� 99

Custom Type Aliases��� 101

Union Types�� 102

TypeScript == ES6 Features for “Free”!��� 103

The let and const Keywords��� 103

Block Scope��� 103

Arrow Functions��� 104

Template Literals�� 105

Default Parameters�� 105

Table of Contents

viii

Spread and Rest (and as an Added Bonus: Optional Arguments)����������������������������� 106

Destructuring��� 107

Classes��� 109

Summary��� 116

Chapter 6: A Few More Words: Advanced TypeScript�� 119

Interfaces�� 119

Argument/Object Interfaces��� 120

Methods in Interfaces�� 122

Interfaces and Classes��� 123

Extending Interfaces�� 124

Namespaces and Modules�� 125

Namespaces��� 125

Modules�� 129

Decorators��� 131

Decorator Factories�� 134

Third-Party Libraries��� 135

Debugging TypeScript Apps��� 136

Source Maps�� 137

Summary��� 140

Chapter 7: Tying It Up in a Bow: Webpack��� 141

What’s a Bundle, and How Do I Make One?��� 142

What’s Webpack All About?��� 143

Dependency Graph��� 143

Entry��� 144

Output��� 144

Loaders�� 145

Plugins��� 146

Modes��� 147

Browser Compatibility�� 148

Table of Contents

ix

Getting Started with Webpack��� 148

Getting More Complex�� 150

Configuration�� 153

Using Modules��� 156

Wither TypeScript?�� 157

Summary��� 159

Chapter 8: Delivering the Goods: MailBag, the Server��� 161

What Are We Building?�� 161

Basic Requirements��� 162

Setting Up the Project��� 163

Source File Rundown��� 164

Adding Node Modules�� 165

Adding Types�� 166

A More Convenient Development Environment�� 168

The Starting Point: main.ts�� 170

A Quick Detour: Time to Take a REST��� 170

Another Quick Detour: Express, for Fun and Profit��� 176

Back to the Code!��� 177

Gotta Know What We’re Talking to: ServerInfo.ts�� 187

Time to Send the Mail: smtp.ts�� 189

A Quick Detour: Nodemailer��� 190

Another Quick Detour: Generics��� 190

Back to the Code!��� 193

Time to Get the Mail (and Other Stuff): imap.ts��� 195

A Quick Detour: emailjs-imap-client and mailparser��� 195

Back to the Code!��� 196

Reach Out and Touch Someone: contacts.ts��� 204

A Quick Detour: NoSQL��� 204

Another Quick Detour: NeDB�� 207

Table of Contents

x

Back to the Code!��� 209

Testing It All��� 212

Optional Tooling�� 215

Suggested Exercises��� 216

Summary��� 217

Chapter 9: Delivering the Goods: MailBag, the Client�� 219

What Are We Building?�� 219

Basic Requirements��� 223

Setting Up the Project��� 224

Source File Rundown��� 228

The Starting Point: index.html��� 230

The Starting Point, Redux: main.tsx�� 230

A Quick Detour: State’ing the Obvious��� 231

Back to the Code!��� 234

A Bit of Configuration: config.ts��� 237

A Worker for All Seasons��� 237

A Quick Detour: AJAX��� 238

Mirroring the Server Part 1: Contacts.ts��� 242

Mirroring the Server Part 2: IMAP.ts��� 244

Mirroring the Server Part 3: SMTP.ts�� 247

A Cavalcade of Components�� 247

A Quick Detour: Material-UI�� 248

BaseLayout.tsx��� 253

A Quick Detour: Functional Components�� 260

Toolbar.tsx�� 261

MailboxList.tsx��� 264

ContactList.tsx�� 266

ContactView.tsx�� 268

MessageList.tsx��� 273

Table of Contents

xi

MessageView.tsx�� 275

WelcomeView.tsx��� 280

Suggested Exercises��� 280

Summary��� 281

Chapter 10: Time for Fun: BattleJong, the Server��� 283

What Are We Building?�� 284

Basic Requirements�� 285

Setting Up the Project��� 286

Some tsconfig.json Changes��� 287

Adding Node Modules��� 289

Adding Types��� 289

Source File Rundown�� 289

The Starting Point (the ONLY Point, in Fact!): server.ts�� 289

A Quick Detour: WebSockets�� 290

Back to the Code!��� 293

Serving the Client: The Express Server�� 294

Handling Messages: The WebSocket Server and Overall Game Design������������������� 294

Finishing Up the WebSocket Server��� 299

Of Tiles and Board Layouts��� 300

Suggested Exercises��� 303

Summary��� 304

Chapter 11: Time for Fun: BattleJong, the Client��� 305

What Are We Building?�� 305

Basic Requirements�� 306

Setting Up the Project��� 307

Some tsconfig.json Changes�� 308

Some webpack.config.js Changes��� 309

Adding Libraries�� 311

Table of Contents

xii

Adding Types��� 311

Source File Rundown�� 311

The Starting Point: index.html��� 312

The REAL Starting Point: main.tsx��� 313

The Basic Layout: BaseLayout.tsx��� 313

Feedback and Status: ControlArea.tsx�� 316

Scores�� 317

Game State Messages�� 318

Where the Action Is: PlayerBoard.tsx�� 319

A Quick Detour: Custom-Type Definitions��� 320

Back to the Code!�� 321

The Render Process��� 322

Talking to the Server: socketComm.ts��� 326

Handling Server-Sent Messages�� 327

Sending Messages to the Server��� 329

The Main Code: state.ts��� 329

A Few Interface for Good Measure��� 330

The Beginning of the State Object�� 330

Back to the Code!��� 332

Message Handler Methods��� 334

The Big Kahuna: tileClick()��� 335

Suggested Exercises��� 344

Summary��� 345

Chapter 12: Bringing the Dev Ship into Harbor: Docker�� 347

An Introduction to Containers and Containerization�� 347

The Star of the Show: Docker�� 349

Installing Docker��� 350

Your First Container: “Hello, World!” of Course!�� 352

Table of Contents

xiii

A Quick Rundown of Key Docker Commands�� 353

Listing Images�� 353

Listing Containers�� 353

Starting (and Stopping) Containers�� 354

Remove Containers and Images��� 355

Pulling Images�� 355

Searching for Images��� 355

Attaching to a Container��� 356

Viewing Container Logs�� 356

Creating Your Own Image�� 357

Deploying to Docker Hub��� 362

Wrapping Up MailBag and BattleJong��� 363

Suggested Exercises��� 365

Summary��� 365

Index�� 367

Table of Contents

xv

About the Author

Frank Zammetti is an application architect for a major financial firm with nearly 25

years of professional experience (plus almost 15 years of nonprofessional experience

before that). He is an author of, including this one, 12 technical books for Apress.

Frank has also authored over two dozen certification exams for SHL as well as several

independent articles for various publications. He is also a fiction author (shameless plug:

look him up on Amazon if you like sci-fi) and a musician of some renown (and here,

“some” should be taken to mean very little). Frank has been married for 25 years (to the

same woman even!) and they have two children together.

xvii

About the Technical Reviewer

Kenneth Fukizi is a software engineer, architect, and consultant with experience in

coding on different platforms internationally. Prior to dedicated software development,

he worked as a lecturer for a year and was then head of IT in different organizations.

He has domain experience working with technology for companies in a wide variety

of sectors. When he’s not working, he likes reading up on emerging technologies and

strives to be an active member of the software community.

xix

Acknowledgments

I’d like to acknowledge the exceptional team at Apress for allowing me to write not one

but twelve books for them over the last decade or so. I’ve worked with so many great

people, and it’s virtually impossible not to forget someone in a list like this, but among

the crew for sure are Ami Knox, Arockia Rajan Dhurai, Beth Christmas, Dulcy Nirmala

Chellappa, Chris Mills, Christine Ricketts, Dominic Shakeshaft, Douglas Pundick, Frank

Parnell, Frank Pohlmann, Gary Cornell, Jill Balzano, Julie Miller, Katie Stence, Kelly

Gunther, Kelly Winquist, Kevin Shea, Kim Wimpsett, Kimberly van der Elst, Krishnan

Sathyamurthy, Laura Cheu, Laura Esterman, Leah Weissburg, Leonard Cuellar, Liz

Welch, Louise Corrigan, Marilyn Smith, Michelle Lowman, Nancy Chen, Nicole Faraclas,

Nirmal Selvaraj, Richard Dal Porto, Sharon Wilkey, Sofia Marchant, Stephanie Parker,

Steve Anglin, Tina Nielsen, and Tracy Brown Collins.

As I said, I’m sure I’ve forgotten someone, but rest assured it was not on purpose!

Thank you all for giving me a shot and allowing me to continue this journey. I most

definitely could not have done it alone and I thank you all, unreservedly!

xxi

Introduction

You know, when I started learning how to program, it was a piece of cake!

You’d turn on the computer and be greeted by a nice little “Ready” prompt. You’d

start typing in some code (BASIC), and eventually, you’d type run, hit Enter, and watch

whatever it was you put in there spit back something (my first program was a man drawn

with various keyboard characters doing jumping jacks). You might save that program to a

cassette – yes, kids, a cassette! – and hand it to your friends if you wanted to share.

But that was it. It was just that easy.

Nowadays, though, the story is very different.

Writing even a trivial application now involves layers upon layers of abstractions and

complexities that you must mix together, like baking the world’s most complicated cake,

hoping it all works in the end. Then, should you want to distribute the technological

terror you’ve constructed (sorry, Aldearan), you’ve got even more challenges to

overcome.

How anyone learns to program from scratch these days, I’m not sure!

But I’m hoping to help there!

With this book, I’m going to look at the ingredients that go into baking a cake – err,

building an application – these days. To be sure, it won’t cover everything. And no one

recipe is necessarily the same anyway – there are lots of choices available to a developer

now. But I believe I’ve chosen the ones most commonly used to build modern full-stack

applications.

What exactly is a full-stack application anyway? Well, simply put, it’s an application

that includes both a front-end “client,” like a web site, and a back-end “server,” like, well,

a server! We’re talking about building an application that combines those two halves

into a coherent whole. Most application development these days is web-based in some

way (where “web” doesn’t have to mean something available on the public Internet, but

something built with web technologies like HTML, JavaScript, and CSS), so that’s what

we’re going to be doing in this book.

To do this, we’re going to use React, which is one of the most popular libraries for

building clients out there today. And we’ll use Node.js, which is a popular choice for

back-end development. We’re also going to use TypeScript, a language that enhances

xxii

JavaScript on both sides of the fence to make our coding lives better. We’re going to

touch on several other tools that relate to all of this including Babel and Webpack. We’ll

talk about some strategies for connecting the client to the server including REST and

WebSockets. Finally, you’ll learn about packaging up applications using the very popular

Docker.

All this will be combined to build two full, real applications. This way, it’s not just

simple, contrived examples. No, it’ll be real code, practical solutions to real problems

encountered in building them, and real techniques for putting all these pieces together

and making sense of all this complexity.

In the end, you’ll have a solid foundation for building modern full-stack applications

that you can go forward with on your own to create greatness.

I mean it’ll never be as great as my guy doing jumping jacks written in BASIC and

loaded off a cassette, but you gotta have goals.

So let’s get to it. There’s work to be done, learning to be accomplished, and, I hope,

fun to be had!

Introduction

1
© Frank Zammetti 2020
F. Zammetti, Modern Full-Stack Development, https://doi.org/10.1007/978-1-4842-5738-8_1

CHAPTER 1

Server-Side Action: Node
and NPM
Welcome to the book! I hope you’ve got a comfy chair under you, a tasty drink on

the table next to you and perhaps a light snack (may I suggest some dark chocolate

biscotti?), and your brain ready to soak up a ton of knowledge on modern web

development, ‘cause that’s what the show is all about and the curtains are about to be

drawn!

In this book, we’ll be building two full apps that will demonstrate all the concepts

that we’ll be discussing along the way in a practical manner. Far from being just simple,

contrived bits of code, these are two full apps which are functional and useful (and

even fun, given that one of them is a game, which will provide you a whole new way of

looking at coding). As we do so, you’ll get insight into the thinking that went into them,

their design and architecture, so you get a holistic picture of what’s involved in building

something like these two apps. You will even, here and there, get some notes about

issues I faced and how I resolved them, things that will almost certainly help you achieve

your goals as you charge onward into your own projects.

To start, we’ll look at what is most usually (though not exclusively, as you’ll learn!)

the purview of the server side. Remember that we’re talking “full-stack” development

here, which means you’ll be learning about coding clients as well as the server code they

make use of in order to form a cohesive, whole application. In this chapter, we’ll begin by

looking at two extremely popular tools for developing servers: Node.js and NPM.

2

�Of JavaScript Runtimes and Building (Mostly)
Servers
Ryan Dahl – that cat has some talent, I tell ya!

Ryan is the creator of a fantastic piece of software called Node.js (or just plain Node,

as it is often written, and as I’ll write it from here on out). Ryan first presented Node at

the European JSConf in 2009, and it was quickly recognized as a potential game-changer,

as evidenced by the standing ovation his presentation received (I presume Ryan is an

excellent presenter generally as well).

Node is a platform for running primarily, though not exclusively, server-side

code that has high performance and is capable of handling large request loads with

ease. It is based on the most widely used language on the planet today: JavaScript. It’s

straightforward to get started with and understand, yet it puts tremendous power in the

hands of developers, in large part thanks to its asynchronous and event-driven model

of programming. In Node, almost everything you do is nonblocking, meaning code

won’t hold up the processing of other request threads. Most types of I/O, which is where

blocking comes into play most, are asynchronous in Node, whether it’s network calls

or file system calls or database calls. This, plus the fact that to execute code, Node uses

Google’s popular and highly tuned V8 JavaScript engine, the same engine that powers its

Chrome browser, makes it very high performance and able to handle a large request load

(assuming that you as the developer don’t botch things of course!).

It’s also worth noting that, as weird as it may sound, Node is single-threaded. It at

first seems like this would be a performance bottleneck, but in fact, it’s a net benefit

because it avoids context-switching. However, this is a little bit of a misnomer in that

it’s more correct to say that Node is event-driven and single-threaded with background

workers. When you fire off some type of I/O request, Node will generally spawn a new

thread for that. But, while it’s doing its work, that single event-driven thread continues

executing your code. All of this is managed with an event queue mechanism so that

the callbacks for those I/O operations are fired, back on that single thread, when the

responses come back. All of this means that there is no (or at least minimal) context-

switching between threads but also that the single thread is never sitting idle (unless

there is literally no work to do of course), so you wind up with that net positive benefit I

mentioned.

Chapter 1 Server-Side Action: Node and NPM

3

Note  In later chapters, you’ll see that Node isn’t specific to the server side of
the equation, and in fact, you don’t always build apps with Node; sometimes you
use it to install and execute tools for various purposes on your own development
machine. Hold on to that thought; we’ll be coming back to before long a few
chapters from now.

None of these technical details are especially important to use as a Node developer,

but the performance it yields is what makes it no wonder that so many significant players

and sites have adopted Node to one degree or another. These aren’t minor outfits we’re

talking about, we’re talking names you doubtless know, including DuckDuckGo, eBay,

LinkedIn, Microsoft, Netflix, PayPal, Walmart, and Yahoo, to name just a few examples.

These are large businesses that require top-tier performance, and Node can deliver on

that promise (again, with the caveat that you as the developer don’t mess things up,

because that’s always possible).

Node is a first-class runtime environment, meaning that you can do such things as

interacting with the local file system, access relational databases, call remote systems,

and much more. In the past, you’d have to use a “proper” runtime, such as Java or .Net

to do all this; JavaScript wasn’t a player in that space. With Node, this is no longer true. It

can compete not only on performance but also in terms of what capabilities it provides

to developers. If you can think of it, chances are you can do it with Node, and that wasn’t

always the case with JavaScript.

To be clear, Node isn’t in and of itself a server. You can’t just start up Node and

make HTTP requests to it from a web browser. It won’t do anything in response to your

requests by default. No, to use Node as a server, you must write some (straightforward

and concise, as you’ll see) code that then runs on the Node “runtime.” Yes, you effectively

write your own web server and app server, if you want to split hairs (or potentially FTP,

Telnet, or any other type of server you might wish to). That’s a very odd thing to do as

a developer – we usually apply the “don’t reinvent the wheel” mantra for stuff like that

and pull one of the hundreds of existing options off the shelf. Plus, writing such servers

sounds (and probably actually is) daunting to most developers, and for good reason! To

be sure, it absolutely would be if you tried to write a web server from scratch in many

other languages, especially if you want it to do more than just serve static content files.

But not with Node!

Chapter 1 Server-Side Action: Node and NPM

4

But remember, acting as a server is just one capability that Node provides as a

JavaScript runtime, and it can provide this functionality only if you, as a developer, feed it

the code it needs to do so! In fact, a great many developer tools, and other types of apps,

use Node as their runtime nowadays. Node really is all over the place!

Note  As you’ll see, React, Webpack, and TypeScript, three things that are primary
focuses of this book (Docker being the outlier), use Node to run and/or to be
installed (well, NPM is used to install them if we’re being accurate, but we’ll get to
NPM in just a moment). These are tools, not servers, which is the main point: Node
is useful for much more than just creating servers!

Node allows you to use the same language and knowledge on both client and server,

something that was difficult to accomplish before. In fact, aside from Java and some

Microsoft technologies (see project Blazor, which seeks to do the same thing with C#,

if you’re curious), there never has really been an opportunity to do so until Node came

along. It’s a pretty compelling opportunity.

Another critical aspect of Node is a driving design goal of the project, which

is keeping its core functionality to an absolute minimum and providing extended

functionality by way of APIs (in the form of JavaScript modules) that you can pick and

choose from as needed. Node gets out of your way as much as possible and allows you

only to introduce the complexity you really need, when you need it. Node ships with an

extensive library of such modules, but each must be imported into your code, and then

there are literally thousands of other modules that you can bring in as needed, some of

which you’ll see as we progress throughout this book.

In addition to all of this, getting, installing, and running Node are trivial exercises,

regardless of your operating system preference. There are no complicated installs with

all sorts of dependencies to manage, nor is there a vast set of configuration files to mess

with before you can bring up a server and handle requests. It’s a five-minute exercise,

depending on the speed of your Internet connection and how fast you can type! There

is also no required tooling to work with Node. In fact, a simple text editor is enough, in

simplest terms (though that isn’t to say you won’t want a robust IDE with Node support

later, but at least for this book I won’t be assuming anything other than Notepad or some

equivalent text editor).

Chapter 1 Server-Side Action: Node and NPM

5

All of this makes working with Node so much more straightforward than many

competing options while providing you with top-notch performance and load handling

capabilities. Moreover, it does so with a consistent technological underpinning as that

which you develop your client applications.

That’s Node in a nutshell!

Next, let’s see about getting it onto your machine so that you can start playing with

some code together and we can look at Node in a little more depth.

Note  If you aren’t a JavaScript expert, don’t worry, we won’t be getting too fancy.
Even when we get to the apps, I’ll consciously keep things as simple as possible. It
is expected that you have some experience with JavaScript though, but you don’t
need to be Brendan Eich or Doug Crockford (but if you have no experience with
TypeScript, that’s fine; we’ll start from square one with it later).

�First Baby Steps with Node: Installation
To get started, there’s only one address to remember:

http://nodejs.org

That’s your one-stop shop for all things Node, beginning, right from the front page,

with downloading it, as you can see in Figure 1-1.

Chapter 1 Server-Side Action: Node and NPM

6

Usually, I would tell you to install the latest version available, but in this case, it might

be better to choose a long-term support (LTS) version, because they tend to be more

stable. However, it shouldn’t (he said, with fingers crossed) matter which you choose, for

the purposes of this book. For the record, however, I developed all the code using version

10.16.3, so if you encounter any problems, I would suggest choosing that version, which

you can get from the Other Downloads link and then the Previous Releases link (you’ll

be able to download any past version you like from there).

The download will install in whatever fashion is appropriate for your system, and

I leave this as an exercise for the reader. For example, on Windows, Node provides a

perfectly ordinary and straightforward installer that will walk you through the necessary

(and extremely simple) steps. On macOS X, a typical install wizard will do the same.

Figure 1-1.  Node has a simple web site, but it gets the job done!

Chapter 1 Server-Side Action: Node and NPM

7

Once the install completes, you will be ready to play with Node. The installer should

have added the Node directory to your path. So, as a first simple test, go to a command

prompt or console prompt, type node, and press Enter. You should be greeted with a

> prompt. Node is now listening for your commands in interactive mode. To confirm,

type the following:

console.log("Hello, you ugly bad of mostly water!");

Press Enter, and you should be greeted with something like what you see in Figure 1-2

(platform differences excepted, I’m a Windows guy myself, unashamedly, so that’s where

the screenshots throughout this book will be from, perhaps with a few exceptions later).

If you find that this doesn’t work, please take a moment and ensure that Node is

indeed in your path. It will make things a lot easier going forward.

�More Useful: Executing JavaScript Source Files
Interacting with Node in CLI (Command-Line Interface) mode like this is fine and dandy,

but it’s limited. What you really want to do is execute a saved JavaScript file using Node. As it

happens, that’s easy to do. Create a text file named test.js (it could be anything, but that’s a

pretty good choice at this point), and type the following code into it (and, of course, save it):

let a = 5;

let b = 3;

let c = a * b;

console.log(`${a} * ${b} = ${c}`);

Figure 1-2.  The rather uppity (though technically accurate) first greeting, proving
Node is alive

Chapter 1 Server-Side Action: Node and NPM

8

To execute this file, assuming you are in the directory in which the file is located, you

simply must type this:

node test.js

Press Enter after that, and you should be greeted with an execution, such as the one

you see in Figure 1-3.

Clearly, this little bit of code is unexceptional, but it does demonstrate that Node can

execute plain old JavaScript just fine. It demonstrates that we’re dealing with at least the

ES2015 specification as well, being more specific, thanks to the use of let and template

literals (or string interpolation if you prefer). You can experiment a bit if you like, and you

will see that Node should run any basic JavaScript that you care to throw at it like this.

�Node’s Partner in Crime: NPM
NPM, which stands for Node Package Manager, is a companion app that installs

alongside Node (though it is developed separately and can be updated on a different

schedule than Node). With it, you can download packages, which are reusable JavaScript

modules (and any supporting stuff they might need) from a central package registry (or a

private repository if you have one). The central repository you can find at

www.npmjs.com

You can visit it through a web browser and look through all the packages available,

which makes finding exactly what you need easy.

Figure 1-3.  It ain’t much, but it’s a real program running with Node!

Chapter 1 Server-Side Action: Node and NPM

9

Using NPM is simple: it’s merely another command to run from a command

prompt, just like Node is. For example, let’s say you create a directory named

MyFirstNodeProject. In it, you execute the following:

npm install express

Here, npm is the CLI program that is NPM itself, and install is one command you

can issue to it. Then, express is an argument to that command, and this is the general

form that most of your interactions with NPM will take.

Note  Most NPM commands have a shorter form as well. For example, rather than
type install, you can just type i, and it will do the same thing. Consult the NPM
docs for these shortcuts, or be pedantic like your favorite author and always type it
long-form, err, for clarity or something!

If you execute that, you’ll find that a directory called node-modules has been created,

and inside it will be a lot of…well, a lot of stuff you typically don’t need to worry about

too much! In short, though, it’s all the code that makes up the Express module (which

doesn’t matter right now, but is a JavaScript module, or package if you prefer, which we’ll

be using in the MailBag app a few chapters hence… but we’ll get to that app in due time,

we’ve got a fair bit of ground to cover before then, so for now suffice it to say it’s one of

the two apps we’re going to be building with the technologies discussed over the first six

chapters), plus whatever modules Express itself depends on (and whatever they might

depend on, and so on). NPM takes care of fetching all those dependencies for you. You’ll

also notice a file named package-lock.json has been created, and for our purposes

here, you don’t need to worry about that except to know not to delete it as NPM needs it

to do its job.

When you use the install command like this, the modules you name are installed

in the current directory, and this is referred to as the local cache, or project cache. You

can also install the module into what’s called the global cache by adding an argument to

the command:

npm install -g express

Chapter 1 Server-Side Action: Node and NPM

10

Now, Express will be installed in a location outside the current directory and will

be shared by all Node projects (or, more precisely, it will be available to all projects,

because, of course, a project won’t use a globally installed module unless you tell it to).

Most usually, you will want to install dependencies in the project cache so that different

projects can use different version of a given module than other projects (there is always a

single version of a given module in the global cache, if any are present at all).

�A Few More NPM Commands
Aside from install, there are many other NPM commands, but you’ll probably only use

a subset most of the time. For example, to find out what modules are installed in your

project, you can issue this command:

npm ls

Like on a *nix system, ls is short for list, and that’s what it does: lists the installed

modules. What you’ll see is a textual tree that shows the modules and then the modules

they depend on. In other words, more will likely be shown than just the modules you

explicitly installed (some modules don’t have dependencies, but in the NPM ecosystem,

those tend to be the exception rather than the rule).

Tip  One very helpful tip I can give is that if you want to see just the top-level
modules, whether in the global or local cache, you can add --depth=0 to the ls
command.

If you want to see what’s installed in global cache instead, you can do

npm -g ls

In fact, keep that -g option in mind because you can add that to most NPM

commands to differentiate between the local and global caches.

You can also update a given module:

npm update express

Just provide the name of the module to update, and NPM will take care of it, updating

to the latest available version. If you don’t provide a package name, then NPM will dutifully

update all packages. And yes, you can drop a -g on it either way to target the global cache.

Chapter 1 Server-Side Action: Node and NPM

11

You can, of course, uninstall packages too:

npm uninstall express

Execute that and NPM will wipe Express from the local cache, along with its transient

dependencies (so long as nothing else that remains that depends on them).

These few commands represent likely the majority of what you’ll need to interact

with NPM. I refer you to the NPM docs for other commands (and note that just typing

npm and hitting Enter at a command prompt will show you a list of available commands,

and you can then type npm help <command> to get information about each).

�Initializing a New NPM/Node Project
Now, in all of this, I did skip one step that clearly is optional but is, in fact, typical, and

that’s initializing a new project. With most Node/NPM projects, you’ll also have a file

named package.json in the root directory of the project. This file is the project manifest

file, and it provides metadata information to NPM (and Node, at least indirectly) about

your project that it needs to do certain things. It will tell NPM what modules to install if

they haven’t been installed yet for one thing (which makes giving a project to another

developer very easy!). It will also contain information like the name and version of the

project, its main entry point, and lots of other information (most of which is optional, but

we’ll look at that a bit more in the next chapter).

While you can write this file by hand or even go entirely without it, it’s a good idea to

have it, and it’s a good idea to let NPM create it for you, which you can do by executing

this command:

npm init

If you are following along, please make sure the directory you run this from is empty

(delete node_modules and package-lock.json if present, both of which will be described

later). This will trigger an interactive process that walks you through the creation of the

package.json file, something like you see in Figure 1-4.

Chapter 1 Server-Side Action: Node and NPM

12

This will walk you through an interactive, step-by-step process wherein you can

enter whichever information is relevant to your project, if any. You can just hit Enter on

each option to use the default (or a blank value, whichever is applicable), or you can

enter the values that are appropriate to you. For our purposes here though, you indeed

can and should simply hit Enter on each prompt in the process.

Figure 1-4.  Initializing a project with NPM

Chapter 1 Server-Side Action: Node and NPM

13

Opening the generated package.json file should look something like this:

{

 "name": "temp",

 "version": "1.0.0",

 "description": "Init'ing a project",

 "main": "test.js",

 "scripts": {

 "test": "echo \"Error: no test specified\" && exit 1"

 },

 "author": "Frank W. Zammetti",

 "license": "ISC"

}

�Adding Dependencies
Now, let’s say you want to add that Express package I mentioned to this project. There

are two choices. First, you could edit package.json yourself, adding this element:

"dependencies": {

 "express": "^4.16.1"

}

However, doing just that won’t have any effect. The module isn’t installed at this

point. To do that, you now must issue a command:

npm install

NPM will now (using Node as a runtime, it should be mentioned, because NPM is

just a JavaScript application that runs on Node) go fetch the Express package from the

central repository, will determine all the dependencies it needs, and will download

and install all of them in the node_modules directory under the current directory. All

these modules are now in the project cache (not global cache, it should be noted) and

ready for you to use (normally, you wouldn’t use the transient dependencies of Express

directly, though you certainly could, but it’s good form to declare all the modules you

intend to use explicitly in package.json as dependencies).

Another alternative, and the one generally favored by developers, is not to edit the

file directly and instead let NPM do it by issuing a command like this:

npm install express --save

Chapter 1 Server-Side Action: Node and NPM

14

This will cause NPM to add the dependency entry in package.json for you. This

avoids the possibility of accidentally fat-fingering something and having a broken

experience (or, worse, handing the project to another developer only to get the dreaded

“It won’t even start up!” call).

Note  You can also replace --save with --save-dev. This results in a
devDependencies entry being added to package.json. The difference is
that devDependencies are modules that you only need during development,
but which your project code itself doesn’t depend on. As you’ll see later, two
good examples of this are TypeScript and Webpack. Also, when uninstalling
dependencies, --save and --save-dev can also be used to remove the
dependency from package.json.

The reason this is all important is that, now, let’s say you want to give this project

to someone else. You typically do not want to provide them with all the dependencies

your project requires, all the content of node_modules, if for no other reason that that

directory can quickly grow to a large size. Instead, they can recreate it using the

package.json file just by doing this:

npm install

That will cause NPM to read the package.json file and automatically install all

the dependencies! Now, the person you’re working with has the same development

environment as you as far as project dependencies go for this project without having to

do any leg work themselves! Pretty sweet, right?

As you can guess, there’s quite a bit more to NPM than just what I’ve shown here, but

these are the real basics.

�A Quick Aside: Semantic Versioning
The dependencies section also lists the version(s) of each dependency, using a

technique called semantic versioning (often called SemVer). SemVer versions are in the

form major.minor.patch.

In this model, changes in the major number are meant to represent an update that

contains breaking changes that would require changes to your code to remediate.

Chapter 1 Server-Side Action: Node and NPM

15

Changes to the minor number are intended to constitute an update that is backward-

compatible but which provides new functionality and, optionally, contains old

functionality that while still functional is now deprecated and will be removed in a future

release (minor number changes can also represent major internal refactoring but which

produces no outward-facing changes). The patch number represents bug fix changes only.

On top of this, the tilde (~), caret (^), and asterisk (*) characters have special

meaning. Tilde is used when dealing with patch versions, while caret is used when

dealing with minor versions, and asterisk has the typical “wildcard” meaning you’re

probably familiar with in other contexts.

To give you a very brief overview, here are some of the most common dependency

versions you might see in package.json, using Express as an example:

•	 “express” : “1.2.3” – NPM will grab this specific version only.

•	 “express”: “~1.2.3” – NPM will grab the most recent patch version.

(So, ~1.2.3 will find the latest 1.2.x version but not 1.3.x or anything

below 1.2.x.)

•	 “express”: “^1.2.3” – NPM will grab the most recent minor version.

(So, ^1.2.3 will find the latest 1.x.x version but not 1.3.x or anything

below 1.x.x.)

•	 “express”: “*” – NPM will grab the newest version available. (There is

also an explicit latest value that does the same thing.)

There’s quite a lot more to SemVer than this (and there’s also no shortage of criticism

and folks who aren’t exactly fans of it), but this should cover the most common features

you’re likely to encounter. Indeed, this should be all you will need for this book.

Note  When using the npm install <package> command, you can add
@major.minor.patch after the package name to specify the version to install
using all the SemVer rules described in the preceding text.

�Fisher Price’s “My First Node Web Server”
Now that you know a bit about Node and NPM, the very basics at least, let’s write some

actual code, beyond the simple example shown earlier, that is, and run it with Node.

Chapter 1 Server-Side Action: Node and NPM

16

When I say that Node makes writing server software trivial, that may well be the

understatement of the year! Perhaps the simplest example (that does something “real,” at

least) is this:

require("http").createServer((inRequest, inResponse) => {

 inResponse.end("Hello from my first Node Web server");

}).listen(80);

That remarkedly small bit of code is all it takes in Node to write a web server. Even

though it’s not necessary, just for practice, go ahead and create a directory and use NPM

to init it as a project (and this time, add a -y to the init command, which will use the

defaults for all the prompts rather than making it interactive). Then, type that code into a

file, save it as server.js. Now, at this point, you could start it up like so:

node server.js

But let’s do one more thing first. Open the generated package.json file, and in the

scripts section, add a new attribute to the object:

"start": "node server.js"

What this does is it effectively defines a custom command for NPM. The start

command is one that already exists, but it’s one that does nothing until you add this

entry in package.json, so it may as well not exist! Once you add that entry though, NPM

will look for that start key, take its value, and execute whatever the command is that

you provide in it. The benefit of doing this is that every project you create with Node

and NPM will be startable the same way. Without this, a developer would need to figure

out what file is the main entry point to launch it with Node (and note that the main key

in package.json may not be enough to tell someone this, as is the case here, since the

default value of index.js would be wrong for this project).

Once you add that, go ahead and start the app:

npm start

Yep, that’s it! NPM knows what to do now and will launch Node and tell it to execute

server.js.

Now fire up your favorite web browser and visit http://127.0.01. You’ll be greeted

with the text “Hello from my first Node Web server”. Note, however, that if anything else

on your system is already listening on port 80 then the app won’t actually start, you’ll get

Chapter 1 Server-Side Action: Node and NPM

17

an error instead. In that case, simply change the listen(80) call to a free port and you’ll

be good to go (and, naturally, add the port to the end of the URL in that case too).

If that isn’t a little bit amazing to you, then you’ve probably seen the Flying Spaghetti

Monster (FSM) travel one too many times around your neighborhood and have been

totally desensitized to the amazing! (FSM – yeah, uhh, I’m not gonna even try and

explain what the FSM is; here’s a link: www.venganza.org).

Obviously, this is a simplistic example, but it should get the basic idea across well

enough. But what exactly is going on in that simple example at a code level? As it

happens, quite a bit, and most of it is key to how Node works.

The first concept is the idea of importing modules. In the example code, http is a

module. This is one of the core Node modules that Node comes with out of the box, and,

as such, it is compiled directly into the Node binary. Therefore, you won’t find a separate

JavaScript file for it in the Node installation directory for it. This is true of all the Node

core modules, all of which you can find in the Node documentation on the Node site. To

import any of them, you just require() them by name.

Note  We’ll look at some of the more commonly used modules in the next
chapter.

You can create your own modules too just by adding other .js files to your project

and require()-ing them. This gets a little more involved, with discussions of things like

scope and exports, and we’ll get to all of that in time. But for now, I wanted to mention

it at least in case you really are entirely new to Node so that you can find the appropriate

section in the Node docs to describe this if you want to jump ahead.

The require() function returns an object that is essentially the API provided by the

module. This object can include methods, attributes, or whatever you want. In fact, it

could conceivably be just a variable with some data in an array. More times than not,

though, it will be an object with some methods and attributes. In the case of http in

this example, one of the methods the object returned is createServer(). This method

creates a web server instance and returns a reference to it.

The argument you pass to this method is a function that serves as a request listener;

that is, the function executed any time a request is made to the server.

Chapter 1 Server-Side Action: Node and NPM

http://www.venganza.org

18

This function handles all incoming HTTP request. You can do anything you need to

there, including such things as the following:

•	 Interrogate the incoming request to determine the HTTP method.

•	 Parse the request path.

•	 Examine header values.

You can then perform some branching logic on any or all of these, perhaps access

a database or other durable storage mechanism, and return an appropriate and fully

dynamic response for the specific request.

Creating a web server alone won’t actually do anything. It won’t respond to requests

until you do a little more work. As mentioned, the createServer() method returns a

reference to the web server instance, which itself contains the method listen(). That

method accepts a port number on which the server should listen and, optionally, the

hostname/IP address on which to listen. In the example, the standard HTTP port 80 is

specified, and by default, the local machine loopback address 127.0.0.1 is used if no IP

address is specified, as is the case here. Once you call this method, the server will begin

listening for requests (i.e., assuming nothing else is already using that port on your

system!), and for each request that comes in, it will call the anonymous function passed

to createServer().

This callback function (callback functions being one mechanism by which Node

provides nonblocking functionality, the others being Promises and async/await)

receives two arguments, inRequest and inResponse, which are objects representing

the HTTP request and response, respectively. In this simple example, all this callback

function does is call the end() method on the response object, passing the response

you want to send back. By default, an HTTP 200 response code header will be added

automatically, so this completes the handling of a given request.

With just this little bit of code, you, in fact, know the basics of what you would

require for writing a server for the MailBag app later! But, when we get to that app, we’ll

use something a little more robust (Express, as mentioned earlier), but this gives you a

fundamental idea of what it takes.

�Bonus Example
Let’s take this web server code just a little further to roll in some more NPM goodness,

just to use almost everything discussed so far.

Chapter 1 Server-Side Action: Node and NPM

19

To begin, let’s add a dependency to our project. We’re going to use the not-very-

creatively-but-very-accurately-named request module, which will provide to our server

an elementary HTTP client for it to use to make remote calls:

npm install request --save

With that done, copy that server.js file and name it server_time.js, then replace

its contents with the following code:

require("http").createServer((inRequest, inResponse) => {

 const requestModule = require("request");

 requestModule(

 "http://worldtimeapi.org/api/timezone/America/New_York",

 function (inErr, inResp, inBody) {

 inResponse.end(

 `Hello from my first Node Web server: ${inBody}`

);

 }

);

}).listen(80);

As you probably recognize, it’s the same code as before, but now with a bit more

inside the callback function provided to createServer(). What we’re doing now is

firstly to import the request module and to give it the name requestModule (just to help

disambiguate it from the inRequest object passed into the callback function). The API

for this module is straightforward: pass a URL to the constructor, plus a callback, and

a call will be made to the URL, and the provided callback will be executed when the

response to that call comes back. The URL here is to the World Time API, which you

can read about here: http://worldtimeapi.org. This particular form of the URL (the

API provides a few) takes in a time zone, America/New_York here (though you should

certainly feel free to replace that with a time zone you prefer – you can access http://

worldtimeapi.org/api/timezone in a browser to see a list of available time zones).

What we get back is a chunk of JSON, which is then written to the response that is

returned to the browser.

Chapter 1 Server-Side Action: Node and NPM

http://worldtimeapi.org/
http://worldtimeapi.org/api/timezone
http://worldtimeapi.org/api/timezone

20

The final step is you’ll need to edit package.json to change that start value to

indicate the new JavaScript file, after which you can launch the app and try it. The

response you’ll see now isn’t necessarily pretty:

Hello from my first Node Web server: {"week_number":36,"utc_offset":

"-04:00","utc_datetime":"2019-09-06T17:22:45.406437+00:00","unixtime":

1567790565,"timezone":"America/New_York","raw_offset":-18000,"dst_until":

"2019-11-03T06:00:00+00:00","dst_offset":3600,"dst_from":"2019-03-10T07:

00:00+00:00","dst":true,"day_of_year":249,"day_of_week":5,"datetime":

"2019-09-06T13:22:45.406437-04:00","client_ip":"12.198.42.69",

"abbreviation":"EDT"}

…but it gets the job done (and, if like me, you have a browser extension that

automatically “prettifies” JSON, then what you’ll see will be, well, prettier!).

This is a good example not only of adding dependencies to a project and using

them but also of the asynchronous nature of Node I talked about earlier. Here, the

call to the World Time API takes some time, and the response to the request coming

from the browser is queued up and awaits that response before executing the callback

passed to the requestModule() constructor, which then produces the final response to

the browser. But, all that time, Node was free to handle other incoming requests; work

wasn’t held up awaiting the remote request, that’s the key thing.

�Summary
In this chapter, we looked at Node and NPM and discussed the very basics of their

usage. But, because Node and NPM are, conceptually, pretty simple things, these basics

are, by and large, all you need to write real applications. You now know how to execute

JavaScript code, how to create an NPM project, and how to add dependencies. You

understand the difference between the global cache and the local (project) cache, and

you even know how to write a basic web server!

In the next chapter, we’ll continue looking at these two tools in a bit more detail,

getting to some slightly more advanced stuff with them, to expand the foundation from

which we’ll build our two apps later in the book.

Chapter 1 Server-Side Action: Node and NPM

21
© Frank Zammetti 2020
F. Zammetti, Modern Full-Stack Development, https://doi.org/10.1007/978-1-4842-5738-8_2

CHAPTER 2

A Few More Words:
Advanced Node and NPM
In the last chapter, we began looking at Node and NPM, and you even built a quick

Node-based web server to demonstrate the concepts. I said then that you now have the

basics you’d need in both things to start working on some apps. But, before we get to

that, let’s look at them both in just a little more detail.

Since Node got the pole position in the last chapter, let’s flip the script for this one

and give NPM the head start this time out of the gate (yeesh, how many metaphors can

be mixed in one sentence?!).

�NPM: More on package.json
In the last chapter, you learned how to init a project with NPM, which generates a

package.json file. I said then that most of its contents were optional, and that’s definitely

true, but let’s talk about what’s available in that file, discussing each of the keys available

(remember it’s just a JSON file, which means it’s defining a JavaScript object, which has

keys or properties or attributes or even elements – all these terms are generally taken to be

interchangeable in this context):

•	 name – We start with a simple one: the name of the thing you’re

coding! The name element’s value must be no more than 214

characters, cannot start with a dot or an underscore, can have no

uppercase letters, and must be URL-safe.

•	 author – The author is a single person and is defined by an object

with three potential attributes: name, email, and url (where name is

required, and both email and url are optional). Alternatively, you

can make the value a single string in the form "<name> <email>

(<url>)" and NPM will parse it for you automatically.

22

•	 bin – Some packages require executables to be installed to do their

work and added to the path. That’s where the bin element comes

in. You can make the value an object (or map, which is probably the

more appropriate term here) that maps a command to an executable

and NPM will take care of “installing” it for you when you install the

package by creating the appropriate symlink.

•	 browser – Some modules are meant to be used in a browser, not in

Node, and for those packages, you can use this element instead of

the main element (coming up shortly!) to hint to the users of your

package that it depends on primitives available to JavaScript that

aren’t available in Node.

•	 bugs – If your project has an issue tracker, then you can reference

it with the bugs element. The value of this is an object with two

attributes, url and email, and you can specify either or both (but you

must specify at least one, or NPM will complain).

•	 bundledDependencies – Some projects need to preserve NPM

packages locally or through a single download. For those, this

element allows you to specify an array of package names that will be

bundled with your package when you publish it.

•	 config – If you need to have parameters available in the environment

when your package is used, then the config element might do the

trick. Here, you can specify a value like "config" : { "port" :

"8888" } and then in your code you can reference npm_package_

config_port as an environment variable to get the value configured.

•	 contributors – The contributors element is just like the author element

except that this is an array of people who helped with the project.

•	 cpu – If your code is only meant to run on certain system architectures,

you can specify which as an array of strings with the cpu element.

•	 dependencies – You saw the dependencies element in the previous

chapter, but I’ll also mention that in addition to specifying a package

name and optionally a version to be pulled down from the NPM

registry, you can also specify a URL to a tarball to be downloaded or a

Git/GitHub URL or a local file system path.

Chapter 2 A Few More Words: Advanced Node and NPM

23

•	 description – A freeform string that describes your package. It’s as

simple as that!

•	 devDependencies – Again, one I mentioned in the previous chapter,

and it’s simply the same as dependencies, but it names packages that

are only needed during development.

•	 directories – This element allows you to describe the structure

your package, things like the location of library components binary

content, man pages, Markdown documentation, examples, and tests.

See the Common JS package specification for details on this.

•	 engines – This element allows you to specify what version(s) of Node

your package works on. You can also use this element to define what

version(s) of NPM is capable of properly installing the package.

•	 files – When your package is installed as a dependency, NPM will

need to know what files to include. It will by default assume all, but if

you want or need to be specified, then the files element will let you

do that. It works a lot like a .gitignore file, but in reverse: anything

listed in this element will be included, not ignored.

•	 homepage – If your project has a web site, then you can specify the

URL of its homepage with this element.

•	 keywords – The keywords element is an arbitrary array of strings that

can be used to help people find your package (more on this in the

next section).

•	 license – The value of the license element is the license your

package is released under. The value of this must be a currently

registered SPDX license identifier (see spdx.org for a list).

Alternatively, if you are using a custom license or one that doesn’t yet

have an SPDX identifier, then you can set the value to "SEE LICENSE

IN <filename>" and place the <filename> license file alongside the

package.json file. Or, if you don’t grant rights to use your package to

anyone (vis-à-vis, you want to make it private and/or unpublished),

then you can use a value of "UNLICENSED".

Chapter 2 A Few More Words: Advanced Node and NPM

http://spdx.org

24

•	 man – With this element you can specify a single file or an array of

filenames to put in place for the Linux man program to display for

your package.

•	 main – This is the primary entry point to your package. For example,

if your package is named super_duper_cool_package, then a user

will expect to be able to do require("super_duper_cool_package")

after they install it. To allow this, the main element must point to the

file that exports your package’s main export object.

•	 optionalDependencies – If your package has dependencies and

NPM can’t install them, then it will fail the installation of your

package. If, however, you want to specify that some dependencies

are okay to be missing and that NPM should go ahead with the

installation anyway, then optionalDependencies is where you can

list them.

•	 os – Just like cpu, if your package only works on certain OSs, then this

element is where you can have an array of strings naming those it

runs on.

•	 peerDependencies – Sometimes, a package will function as a plugin

to others, and so you’ll need a way to define what other packages

yours is compatible with. The peerDependencies element allows you

to do that.

•	 private – If you want to ensure that you can’t accidentally publish

your package, then set private to false, and NPM will refuse to publish

it (more to come on publishing in the next section).

•	 publishConfig – This element is an object that defines many pieces

of metadata that come into play with publishing your package to the

NPM registry. This includes things like tags and such. This can get

fairly involved, and we won’t (for the most part) be worrying about

any of it in this book beyond a few words in the next section, so I’ll

leave this one to the NPM documentation if and when you need it.

•	 repository – If you’d like to specify where the code for your package

lives, whether GitHub or something else, whether public or private,

the repository element is where you do that.

Chapter 2 A Few More Words: Advanced Node and NPM

25

•	 scripts – As mentioned in the previous chapter, the scripts element

allows you to specify a dictionary of commands that can be run at

various points in the lifecycle of your package for various purposes.

Like publishConfig, this can get a bit involved, so I defer to the NPM

docs for details.

•	 version – This is the version of your module, and it must use SemVer

as discussed in Chapter 1. The name and version values together

form a unique “coordinate” to your package, an identifier that

is assumed to be completely unique. If you plan to publish your

package, then name and version are the most important elements

in package.json (if you don’t publish it, then they’re a bit less

important, but for your own sanity, you should probably make them

meaningful anyway!).

You know, I said a few times that I’m deferring to the NPM docs on a few things, but

that’s true of all of those! This isn’t meant to be a reference guide detailing every option;

it’s just meant to be a survey of the elements, so you have a rough idea what’s available.

If and when you need to use these, at least for the ones that aren’t simple, single values,

then the NPM docs at docs.npmjs.com are where you’ll need to visit. There’s a section

dedicated to the contents of package.json that goes over every last detail you could

need or want.

�NPM: Other Commands
Although you’ve already seen the essential NPM commands, let’s talk about a few more

that you might find yourself needing to use from time to time. As with the previous

section, this is not intended to be an in-depth reference guide, and it’s not a list of every

available NPM command. But, between what was shown in the previous chapter and

what’s in this section, I believe you’ll have exposure to probably 95% of the commands

you’ll need a majority of the time (and there may be one or two more shown as we

progress in later chapters as well).

Chapter 2 A Few More Words: Advanced Node and NPM

http://docs.npmjs.com

26

�Auditing Package Security
The sad reality is that, sometimes, packages you use will be discovered to have security

vulnerabilities, just like any other software you use. But, being aware of this, the NPM

team has constructed a useful command for dealing with this:

npm audit

Running this command will scan your package.json file (or global packages if you

use -g) and submit the list of dependencies to the default NPM registry requesting a

report on any known vulnerabilities in them. This report will also include information on

how to remediate. But, if you want the quick answer, execute this command:

npm audit fix

That will cause NPM to update any vulnerable packages with the newest available

version that hasn’t had the vulnerability reported in it.

If you’d like to see a detailed audit report, execute

npm audit --json

or, if you prefer plain text

npm audit --readable

Finally, if you’d like to see what npm audit fix would do but without literally doing

it, you can use

npm audit fix --dry-run

�Deduplication and Pruning
One of the complaints you’ll commonly see about NPM and Node is that the size of the

node_modules directory can balloon in a hurry. Fortunately, you rarely will need to dive

into it, but it’s still a question of disk space, and while disk space is cheap these days, it’s

still not chic to be wasteful!

NPM provides two commands for dealing with this situation, starting with

npm dedup

Chapter 2 A Few More Words: Advanced Node and NPM

27

The dedup command searches through the tree of packages in node_modules and

looks for opportunities where packages can be moved up the tree and shared between

dependencies, thereby reducing redundancy and saving space. The package tree is built

up as you install packages and as NPM installs the packages, it depends on, and so on.

Sometimes, packages will have dependencies in common, but being a tree, branches

(read: packages) are mostly independent. This command attempts to reorganize those

branches to make it more efficient.

The second command is this:

npm prune

This command will examine the installed packages and look for any that may no

longer be needed. This typically happens when you uninstall packages and especially if

you’ve done a dedup at some point. Any package that is not listed in the parent package’s

dependency list is considered “extraneous” and therefore subject to being pruned.

Note  In regular operation, prune will be run automatically any time you install
something, so you shouldn’t need to run this manually, but sometimes, as the
saying goes, poo happens, so it’s good to know about it anyway.

�Finding/Searching for Packages sans Browser
It’s easy enough to browse the central NPM registry for packages of interest via a web

browser, but it’s not your only choice. NPM itself provides a search capability, an

example of which you can see in Figure 2-1.

Figure 2-1.  A simple NPM search for “express”

Chapter 2 A Few More Words: Advanced Node and NPM

28

You can use the search command in a few ways, but searching via description

like this is perhaps the most common. In fact, this search will examine all metadata

for packages, not just the description, which is why you see some name and keyword

matches highlighted as well.

�Updating Packages
Once you have a project set up, you may on occasion want to update the packages it

depends on. This is very easy to do:

npm update

Yep, that’s it! NPM will go off and update all packages to the latest version, respecting

your SemVer settings. You naturally can stick a -g in there too in order to update global

packages.

�Publishing/Unpublishing Packages
The final NPM topic I want to touch on is publishing (and optionally unpublishing)

packages, usually to the central NPM registry (though nothing says you can’t have your

own private registry to work with).

Publishing to a registry is quite easy! First, you’ll need to, well, write your package!

Gotta have something to publish, right? You don’t need to do anything special, but npm

init your project and cobble your code together.

Once that’s done, create an account on the registry’s web site. Next, you’ll need to log

into that account from the command line:

npm login

This will prompt you for your username, password, and eMail address. Once you’re

logged in, publishing is a snap:

npm publish

As long as you’re in your package’s root directory (the one you ran npm init in and

that now has your package.json file), it will be published.

Chapter 2 A Few More Words: Advanced Node and NPM

29

Well, hold up, there’s one thing that can go wrong: your package name could already

be taken. It’s always a good idea to do an npm search for the name first, but assuming

the name isn’t taken (or you’ve changed it after discovering a collision), then it’ll be

published and available in the registry immediately.

Tip  If the name you really want isn’t available, NPM also lets you publish to a scope.
This means, for example, you can change the name to @<username>/<package-
name> (or do npm init --scope=<username>). You’ll then also need to add
--access public to the publish command. That way, as long as your package
name is unique within the scope, then you’re good to go; the name can be used in
other scopes without issue (and no scope is effectively the default scope!). So, if, like
domain names, the one you want is taken, there’s a way around it in NPM land.

If you for some reason down the line decide you need to remove your package from

the registry, it’s as simple as

npm unpublish [<@scope>/]<package-name>[@<version>]

If you don’t specify a version, then all versions will be removed.

Two important notes here: First, removing a package is generally considered bad

form because others may be depending on it. The better thing to do is to use another

command: deprecate. That will mark your package as deprecated, optionally applying

a message you can specify about what happens. Second, it’s essential to understand that

even if you unpublish a package, the name and/or name-plus-version combination can

never be reused. So again, if you want to be a good citizen, it’s best not to unpublish but

instead deprecate the package (better still not to publish something you later have to

remove or deprecate – but it happens, so NPM has you covered in either case with these

two commands).

�Node: Standard Modules
Now that we’ve given NPM its due, let’s swing back to the Node side. Here, we’ll take

a look at some of the modules that come with Node and that you can use at any time

without having to install anything else. Again, let me say that this is in no way meant to

be an exhaustive look at everything available. There are many more modules available,

Chapter 2 A Few More Words: Advanced Node and NPM

30

and you definitely should take a look at the Node documentation to see what they are.

I’m just going to give you a quick overview of what, from my experience, will be the ones

you’ll likely use most often and then only briefly.

�File System (fs)
The File System module is one of the more often-used modules available. It provides you

an API for working with the local file system in a pattern that closely matches that of the

standard POSIX functions.

To use this module, you’ll need to require() it:

const fs = require("fs");

This, in fact, is necessary for all but one of the modules described here (and it’s true

for most of the modules you’ll find in the Node documentation). That’s what the string

in parenthesis after each title is: it’s the value you need to require() (you can, of course,

assign it to a variable of whatever name you wish, though I tend to make the variable

name and the require() value the same).

Now that we have the module imported, what can we do with it? Well, here’s some of

what I think are the handier bits of functionality this module offers:

•	 fs.copyFile() – As you would guess, it allows you to copy a file. You

supply to it the source file to copy, and the destination location where

to put it and Node will send the request to the underlying operating

system to perform. Note that as is the case with most of Node, this

call will be asynchronous. Therefore, it allows you to pass it a callback

function to execute once the copy completes. Alternatively, there is

a fs.copyFileSync() method that is synchronous and so will block

your code until the operation completes. This pattern, of passing

a callback or offering a synchronous version of the function, is a

pattern repeated in much of this module and even other modules

when asynchronous operations come up, so keep that in mind as

we proceed, though I won’t mention it again. To be clear, it’s not

something you’ll find available in every case, but in many, perhaps

even most.

Chapter 2 A Few More Words: Advanced Node and NPM

31

•	 fs.readFile() – Yep, it reads a file and passes the data from it to a

function you supply, wherein you can do whatever you like with it.

And yes, there is, of course, a matching fs.writeFile() method,

with which you can do things like writing a JavaScript object that you

JSON.stringify() to marshal into a string to a file.

•	 fs.unlink() – If you want to delete a file, you actually want to

“unlink” it in POSIX-speak, so this module offers an fs.unlink()

method. Pass it the path to the file, and thy bidding will be done!

(You can also remove symlinks with this.)

•	 fs.mkdir() – Not only can you work with files with this module but

you can work with directories too. The fs.mkdir() method allows

you to create directories. I should also note at this point that all

the methods so far also accept an object with various options. For

example, this method allows you to pass a mode key in the options

object to specify the permissions for the directory (although note

that this is not supported on Windows). This is a typical pattern that

repeats itself frequently in this module as well. To delete a directory,

the fs.rmdir() method is provided.

•	 fs.stat() – If you’re looking for information about a file or directory,

things like its size, last access time, and when it was created, then

fs.stat() is your friend. It returns an fs.Stats object, which is an

object within the File System module, and it contains many pieces

of information including the size of the file or directory (size) and

when it was created (birthtime).

•	 fs.readdir() – This method allows you to read in the contents of a

directory given its path, and returns to you an array of filenames, or

an array of Buffer objects containing the names, or an array of

fs.Dirent objects, one per file (which you get depends on the options

you pass in, with an array of string filenames being the default).

In later versions of Node, starting around v10, a new subsection of the File System

module was introduced: the Promises API. Basically, it provides methods matching

the fs methods seen here and most of the others this module offers, but that return

Chapter 2 A Few More Words: Advanced Node and NPM

32

Promises. So, if you prefer a Promise-based coding style (or async/await on top of that),

then have a look at the section on that in the docs. Other than different names (e.g., fs.

fsPromises.copyFile() and fs.fsPromises.readFile()) and the obvious syntactic

differences, they otherwise are mostly the same as the non-Promise versions.

�HTTP and HTTPS (http and https)
Although Node isn’t exclusively for writing servers, whether web servers or other kinds

of servers, it is, in fact, best known for writing web servers (or, to be more precise, HTTP

servers). As such, you’d reasonably expect to find one or more modules related to such

activities, and you would be very right to do so!

The HTTP module is where you’ll find most of what you need to write servers that

use the HTTP protocol. If you’re into the whole security thing (and, uhh, you are into the

whole security thing…right?!), then there is also an HTTPS module.

You already saw the http.Server class, if only briefly, in the last chapter, because

it’s what you get back from the http.createServer() method, which is one method

available in the HTTP package. You saw how to call the listen() method on that

http.Server instance, but you can also find out if the instance is listening by

interrogating its listen property (a simple boolean). You can also call the close()

method on the instance to stop it from accepting requests. You can call setTimeout() on

it to set how long a socket to a client lives for (two minutes by default) and you can set

the maxHeadersCount property to limit how many HTTP headers your server will accept

(defaults to 2000).

The HTTPS module builds on top of the HTTP module and provides the ability to

create servers that use TLS to secure connections. The only real difference is some extra

information about certificates and keys that you must provide when constructing the

server:

const fs = require("fs");

const server = require("https").createServer(

 {

 key : fs.readFileSync("my_key.pem"),

 cert : fs.readFileSync("my_cert.pem")

 },

Chapter 2 A Few More Words: Advanced Node and NPM

33

 (inRequest, inResponse) => {

 inResponse.writeHead(200);

 inResponse.end("I am protected by TLS!");

}).listen(443);

Aside from that, the API available is virtually identical.

But the HTTP and HTTPS modules aren’t just about servers: they also provide the

means for your Node-based code to make HTTP requests! Here is an example, using the

http.request() method:

let finalResponse = "";

const request = require("http").request(

 {

 hostname : "www.some_remote_system.com",

 port : 80,

 path : "/someAPI",

 method : "POST"

 },

 (inResponse) => {

 console.log(`STATUS: ${inResponse.statusCode}`);

 inResponse.setEncoding("utf8");

 inResponse.on("data", (inDataChunk) => {

 finalResponse += inDataChunk.

 });

 inResponse.on("end", () => {

 console.log(finalResponse);

 });

 }

);

request.write("Some data to send to the remote system");

request.end();

Chapter 2 A Few More Words: Advanced Node and NPM

34

Here, we build up an http.Request object, providing to it all the pertinent

connection details in the first object passed to the http.request() method. Then, we

send some arbitrary data string to the remote server and build up a response string.

The on event fires every time the server sends back a chunk of data, so we add it to

the finalResponse string, which is displayed when the end event fires, signifying the

complete response has been received. We are, of course, free to do whatever we wish

with the response at that point.

�OS (os)
The OS module provides a set of operating system–level utility functions that allow your

code to be aware of the environment it’s running in and make any necessary allowances

for it. Some of what it offers include the following:

•	 os.EOL – Provides you the end-of-line character the operating system

uses

•	 os.cpus() – Returns an object array where each object gives you

information about the CPU(s) in the system including information

like their model, speed, and times (e.g., how long the CPU has spent

in user mode)

•	 os.freemem() – Returns an integer value that is the number of free

system memory available in bytes

•	 os.homedir() – Returns a path to the current home directory of the

user running the process

•	 os.hostname() – Returns the machine’s host name

•	 os.tempdir() – Returns a path to the default system temporary

directory

You’ll also find an os.constants property that is an object with several keys, things

like SIGHUP, SIGFPE, SIGCHILD, and SIGSTOP. These are commonly used OS-specific

constants for things like error codes and, as in these examples, process signals. These

will, of course, change from system to system to at least some extent, but it’s good to

know such a collection of information like this exists and is made available to you thanks

to the OS module!

Chapter 2 A Few More Words: Advanced Node and NPM

35

�Path (path)
You’ll notice that in several modules discussed thus far, you need to reference file and

directory paths. Node provides some additional functions for working with them housed

in the Path module.

For example, the path.basename() method returns the last portion of a path:

path.basename("/my/path/index.htm"); // "index.html"

By contrast, if you want just the path portion:

path.dirname("/my/path/index.htm"); // "/some/path"

And if you just want the extension:

path.extname("/my/path/index.htm"); // ".htm"

Finally, the path.parse() method is handy for, in a way, doing in one call what all of

those do, plus a bit more:

path.parse("/home/users/mydata/accounts.dat");

This will return you an object in the form:

{ root : "/", dir : "/home/users/mydata",

 base : "accounts.dat", ext : ".dat", name : "accounts" }

If you need to know the platform-specific path delimiter (; for windows and : for ∗nix

systems), then you can get the value from the path.delimiter property.

Then there is the path.join() method which joins path segments into a final form

that uses the platform-specific separator automatically (this example is on a Windows

system):

path.join("/my", "path", "index.htm"); // "my\path\index.htm"

Because it is common to have to build paths dynamically in code, and because that

process can result in munged string easily, Node offers a helpful method to deal with

such issues in the path.normalize() method:

path.normalize("C:////tmp\\/\\/dat.md") // "C:\\temp\\dat.md"

Chapter 2 A Few More Words: Advanced Node and NPM

36

Here, assume that some logic produced the string passed to path.normalize(), and

that logic has to take a lot of things into account, so it can wind up with some sequences

as you see that need to be reduced down to platform-specific and valid sequences. That’s

what path.normalize() can do for you.

�Process
Unlike the other modules, this one is a global, which means it is always available, and

there is no need to import anything. You simply call methods on the intrinsic process

reference or access its properties.

That, of course, is good to know, but what does this module do for us? Well, the

answer is quite a lot! In short, it allows you to retrieve information and control the

current Node process. Here are just a few of the items it offers:

•	 process.abort() – This method aborts the Node process, ending

your program. However, that unceremoniously kills the process, so

what you likely want to use is process.exit() instead, to which you

can pass an exit code to return to the process that started Node.

•	 process.version – This contains the version of Node itself.

•	 process.uptime() – How long has the Node process been running

for? This method will tell you!

•	 process.mainModule – Here, you can find the name of the .js file

that was launched by Node. Note that Node also provides a handful

of global variables that contain important information like this,

__filename being the equivalent to this property (they generally all

start with two underscores like that). For reference, __dirname will

provide the name of the directory where the script was launched

from, which tends to be an often-needed piece of information.

•	 process.env – This contains an object whose keys are user

environment variables.

There’s quite a bit more that the process module offers, but in my experience, much

beyond these is a bit more unusual to use, so I’ll leave its exploration as an exercise for

the reader.

Chapter 2 A Few More Words: Advanced Node and NPM

37

�Query Strings (querystring)
When building HTTP(S) servers with Node, having to examine the query string is

commonly needed (I mean that’s not limited to just Node of course: dealing with query

strings, either parsing them or creating them, is a big part of what web developers do!).

The Query String module offers a handful of methods for such times.

When talking about query strings on the input side of the fence, querystring.parse()

is the primary tool in your toolbox (assume this code is within a server event handler as

you’ve previously seen, and the URL in the comment is the request that came in):

// "http://mysite.com/?account=36764&add=125";

let parsedURL = url.parse(request.url);

let parsedParams = querystring.parse(parsedURL);

Now, you’re getting a bonus look-ahead here to the next module we’ll be checking

out: URL. The url.parse() method takes in a URL and returns an object like so:

{

 protocol: 'http:',

 slashes: true,

 auth: null,

 host: 'mysite.com',

 port: null,

 hostname: 'mysite.com',

 hash: null,

 search: '?account=36764&add=125',

 query: 'account=36764&add=125',

 pathname: '/',

 path: '/?account=36764&add=125',

 href: 'http://mysite.com/?account=36764&add=125'

}

All by itself, that’s useful, but if all we’re interested in are those query parameters

account and add, then that’s where the querystring.parse() method comes in. What

you get back from that is an object:

{ account : "36764", add : "125" }

Chapter 2 A Few More Words: Advanced Node and NPM

38

From there out, you can do whatever you like with the data. Note that there is also a

querystring.decode(), which is just an alias for querystring.parse().

What about if you need to construct a query string? Well, that’s where the

querystring.stringify() method (and its querystring.encode() alias) fit in:

const qs = querystring.stringify({

 account : 36764, add : 125

});

// Returns "account=36764&add=125"

Finally, there are the querystring.escape() and querystring.unescape()

methods, which are the yin and yang of encoding and decoding parameter names and

values in query strings so that they are safe for inclusion in URLs. Note that you typically

wouldn’t call these directly as they’re used by querystring.parse() and querystring.

stringify() internally and automatically, but they are there if you need them.

Well, how about that. This is the first (and only) module where everything it offers is

described here! It’s not a big module, but it’s a somewhat important one!

�URL (url)
In the previous section, you saw the url.parse() method used, and that’s just one thing

the URL module offers. Some others are as follows:

•	 URL – Okay, this is going to sound weird, but the URL module

exposes the URL class, and the URL class is where a large chunk of

the functionality of this module resides. For example, the

url.URL.hash property returns the fragment portion of a URL

(e.g., new url.URL("http://mysite.com/page.html#sectionA").

hash will have the value #sectionA). Similarly, you can get the host (which

will include the port, if specified), the hostname (which will not include the

port), the username and password portion of a URL (if specified), and the

port or protocol, in the same way, all properties of a URL instance.

•	 url.pathToFileURL() and url.fileURLToPath() – Respectively, these

methods ensure that a path is resolved absolutely and that the URL

control characters are correctly encoded when converting into a file

URL and that correct decoding of percent-encoded characters in a file

URL is done while ensuring the result is a valid cross-platform path.

Chapter 2 A Few More Words: Advanced Node and NPM

http://mysite.com/page.html#sectionA”

39

�Utilities (util)
The final module we’re going to look at briefly is a little bit of a catch-all, or maybe it’s

better to say it contains functions that support Node internally, but which also provides

generic JavaScript functionality that might be useful to application code.

For example, if you want to format a string using a printf-like format, you can do

util.format("%s:%s", "aa", "bb", "cc") // "aa:bb cc"

What if you have an asynchronous function, like fs.stat() let’s say, that uses the

common pattern seen in Node where the callback receives an error object first and

then a value object and you want to make it use Promises, but you don’t want to have to

rewrite the code? Well, then there’s this:

const newStat = util.promisify(fs.stat);

Now, you can call it like so:

newStat("/home/fzammetti")

.then((inStats) => { console.log(inStats);

})

.catch((inError) => { console.log(inError);

});

Nice, right?

Do you have a variable and need to know its type? Then Utilities has you covered:

util.types.isArrayBuffer(), util.types.isBigInt64Array(), util.types.

isBooleanObject(), util.types.isDate(), util.types.isMap(), util.types.

isPromise(), and util.types.isUint32Array() are available just to name a few.

Finally, the util.inspect() method can be used to get a string representation of an

object intended for debugging purposes. This method accepts a whole bunch of options,

including being able to specify whether you want to show hidden fields, how far down

into the object to go if it contains nested objects (depth) and if you wish to sort the keys

in the stringified object that is returned. It’s important to note though that this method’s

documentation states that the representation this produces can change at any time, so

you, therefore, should never try to use this programmatically. Printing the string to the

console is fine, but trying to parse it wouldn’t be a great idea lest you find your code

randomly broke at some point in the future after a Node upgrade.

Chapter 2 A Few More Words: Advanced Node and NPM

40

�The Rest of the Cast
As of this writing, the other modules Node provides, which we won’t be looking at in

detail but which I wanted to at least make you aware of, are as follows:

•	 Assertion Testing – The Assert module provides a simple set of

assertion tests that can be used to test invariants.

•	 Async Hooks – The async_hooks module provides an API to register

callbacks tracking the lifetime of asynchronous resources created

inside a Node application.

•	 Buffer – This is, in fact, a class, not a module, and as such, it's in

global scope. Either way, it's a class created before JavaScript offered

the TypedArray that provides the ability to work with streams of

binary data.

•	 C++ Addons – Node addons are dynamically linked shared objects,

written in C++, that can be loaded into Node using the require()

function and used just as if they were an ordinary Node module. They

are mainly used to provide an interface between JavaScript running

in Node and C/C++ libraries. This module allows you to work with

them. The N-API module goes along with this and enables you to

build them.

•	 Child Processes – The child_process module provides the ability to

spawn child processes outside of Node.

•	 Cluster – A single instance of Node runs in a single thread. To take

advantage of multi-core systems, the user will sometimes want to

launch a group of Node processes to handle the load. The cluster

module allows easy creation of child processes that all share server

ports.

•	 Console – The console module provides a simple debugging console

that is like the JavaScript console mechanism provided by web

browsers.

•	 Crypto – The crypto module provides cryptographic functionality

that includes a set of wrappers for OpenSSL's hash, HMAC, cipher,

decipher, sign, and verify functions.

Chapter 2 A Few More Words: Advanced Node and NPM

41

•	 DNS – The dns module contains functions belonging to two different

categories: methods that use the underlying operating system

facilities to perform name resolution and methods that connect to an

actual DNS server to achieve name resolution.

•	 HTTP/2 – The http2 module provides an implementation of the

HTTP/2 protocol. It’s just like http and https, but newer and better!

•	 Inspector – The inspector module provides an API for interacting

with the V8 inspector.

•	 Net – The net module provides an asynchronous network API for

creating stream-based TCP or IPC servers and clients.

•	 Performance Hooks – The Performance Timing API, by way of

the perf_hooks module, provides an implementation of the W3C

Performance Timeline specification. The purpose of the API is to

support the collection of high-resolution performance metrics.

This is the same Performance API as implemented in modern web

browsers.

•	 Readline – The readline module provides an interface for reading

data from a readable stream (such as process.stdin) one line at a

time.

•	 REPL – The repl module provides a Read-Eval-Print-Loop (REPL)

implementation that is available both as a stand-alone program and

includible in other applications.

•	 Stream – A stream is an abstract interface for working with streaming

data in Node assertion testing.

•	 String Decoder – The string_decoder module provides an API for

decoding Buffer objects into strings in a manner that preserves

encoded multi-byte UTF-8 and UTF-16 characters.

•	 Timers – The timer module exposes a global API for scheduling

functions to be called at some later time.

•	 TLS/SSL – The tls module provides an implementation of the

Transport Layer Security (TLS) and Secure Socket Layer (SSL)

protocols that are built on top of OpenSSL.

Chapter 2 A Few More Words: Advanced Node and NPM

42

•	 TTY – The tty module provides the tty.ReadStream and

tty.WriteStream classes and deals with reading and writing output

and input to the terminal.

•	 UDP/Datagram – The dgram module provides an implementation of

UDP/Datagram sockets.

•	 V8 – The v8 module exposes APIs that are specific to the version of V8

built into the Node binary.

•	 VM – The vm module provides APIs for compiling and running code

within V8 virtual machine contexts.

•	 Worker Threads – The worker module provides a way to create

multiple environments running on independent threads and to

create message channels between them.

•	 Zlib – The zlib module provides compression functionality

implemented using Gzip and Deflate/Inflate, as well as Broutil.

Note  There are a few modules listed in the Node documentation, but I did not
include any here that were marked for deprecation.

�Summary
In this chapter, we delved into just a little more detail on Node and NPM, talking about

package.json in more detail, some other NPM commands you might need, and we took

a look at the standard libraries that ship with Node, at least those that I believe most

developers would find of most significant interest.

In the next chapter, we’ll look at the next technology we’ll need to build the two

coming apps: React.

Chapter 2 A Few More Words: Advanced Node and NPM

43
© Frank Zammetti 2020
F. Zammetti, Modern Full-Stack Development, https://doi.org/10.1007/978-1-4842-5738-8_3

CHAPTER 3

Client-Side Adventures:
React
In the previous two chapters, we talked about Node and its good friend NPM, two of the

most popular tools for building server-side applications. Now, let’s look at the client side

of the fence.

The big joke – which is less a joke and more an observation really – is that there

seems to be a new framework/library/toolkit for building web-based client applications

every day. That is both the benefit and the curse of having such a vibrant development

community! But, over the last couple of years, a few popular options have floated to the

top of the pile and React is one of them. That’s what we’re going to look at in this chapter

and the next.

�A Brief History of React
React (the logo for which you can see in Figure 3-1 because why not?), which is

sometimes referred to as React.js or ReactJS (but I’ll stick with React because, like the

Dude, I’m into the whole brevity thing), is a product of everyone’s favorite (or the exact

opposite of favorite – there seems to be no middle ground) company: Facebook. React, in

simplest terms, is a library for building web-based user interfaces.

44

It all started back in around 2010 when Facebook developers who, despite any

feelings about the company you may have, are quite talented began to run into a lot of

issues with code maintenance. That’s nothing unusual in the modern web development

world: especially when building Single-Page Apps (SPAs), it’s easy to make a massive

mess of things if you don’t have robust architecture and disciplined adherence to it.

As you bring more developers onto the team, doing that becomes exponentially more

difficult.

Facebook faced this issue and found that their development velocity was slowing

down immensely and their delivered quality was suffering for it, all of which are bad for a

company trying to make a buck.

In 2010, the engineers introduced XHP into their PHP stack. XHP is an extension to

PHP that augments the syntax and, so the argument goes at least, makes your PHP code

easier to read. Perhaps the most significant thing it provides is the notion of composite

components, which allows for an interface to be broken down into mostly independent

but easily integrated units of functionality.

Then, in 2011, the first notion of what would become React emerged in large part

based on some of the core concepts of XHP: FaxJs. This was a project created by an

engineer by the name of Jordan Walke. FaxJs had several critical characteristics we now

see in React, including the following:

Figure 3-1.  The React logo in all its React-y glory!

Chapter 3 Client-Side Adventures: React

45

•	 Views are automatically updated any time their state changes. This

is termed a reactive interface, and it essentially means that when

the data the interface deals with changes, the interface will update

appropriately to reflect it, all without the developer having to write

code to do so explicitly.

•	 High performance is a key consideration right from the start. While

FaxJs achieved this in large part thanks to a string concatenation

approach, React instead uses something a little more robust: virtual

DOM. I’ll come back to this in the next section.

•	 Perhaps most importantly, FaxJs at a high level was based on the

notion of components. Everything you did was a component, and then

you composed these components into the interface seen by the user.

Possibly the big turning point in the history of React was in 2012 when Facebook

started running into a lot of problems managing the ads displayed on the site. Since

ads usually are served by someone else’s server and you aren’t in complete control of

what they are, it’s easy for them to break your site. So, the engineers at Facebook started

looking for a solution, and FaxJs jumped out at them.

At that point, Jordan Walke started working on an initial prototype and, before long,

React emerged.

But just creating React and even using it internally wouldn’t have changed the

world even if it helped Facebook tremendously. No, something else had to happen,

and that something else was in April of 2012 when Facebook acquired Instagram. This

was important because Instagram wanted to use React, but at that point the library was

tightly coupled, relatively speaking, to Facebook’s site itself and its code. And, of course,

it was entirely internal for Facebook and maintained by, for the most part, one (brilliant)

person. No, if Facebook was going to let others, even a new acquisition, start to use

React, they would have to open source it, and they would have to build a community

around it to continue driving the ball down the field.

The primary driving force of this shift was a guy named Pete Hunt. Pete, along with

Jordan, got React open sourced in May of 2013. Interestingly, at its initial release, there

was a lot of skepticism about React and many people, for various reasons, saw it as a bit

of a step backward. It didn’t take long, however, for the momentum to shift as people got

a better look and some experience with it, and by the end of 2013, things were looking a

lot better for React.

Chapter 3 Client-Side Adventures: React

46

During 2014, several things occurred to shift the currents in React’s favor. For

example, React Developer Tools were released as an extension of Chrome Developer

Tools, giving React developers a robust development toolset to use to develop and debug

their React apps. A significant number of conferences and meetups were held to expand

exposure to React. Many editors and IDEs begin to introduce native support for React.

All of this began to take React mainstream.

2015 and 2016 are when it really started to go mainstream. Flipboard, Netflix, and

Airbnb all using React most definitely helped a lot. Many more conferences and the

release of more robust React tooling did too.

Since the end of 2017, React has continued to grow and is now one of, if not the, most

popular library for building client-side web applications.

Note  I keep emphasizing the client-side nature of React, and that’s primarily
because that’s how we’re going to use it in this book. But it’s worth noting that
React can also render content on the server side. That’s a whole other topic of
conversation that I won’t be covering in this book, but I wanted to make you aware
of it. Should you wish to Google for it, the somewhat obvious term applied to this
is Server-Side Rendering, or SSR. It’s not exclusive to React, but React makes it
considerably better.

�Yeah, Okay, History Nerd, That’s All Great, but What
IS React?!
You might actually be surprised to see how little there fundamentally is to React. It

doesn’t ship with a bunch of interface widgets like grids and buttons and sliders and

such as many more “robust” toolkits do. It doesn’t provide a rigid structure to your

application like many frameworks do.

At a very high level, the point of React is to make it easy to reason about the

structure of your interface at any given moment in time. This is accomplished by way of

components, which you can think of as self-contained pieces of the interface. Combine a

whole bunch of widgets and you have yourself a user interface.

Chapter 3 Client-Side Adventures: React

47

Getting into a little more detail, but still in possibly simplest terms, React supplies

just four things: the aforementioned components (more precisely, an approach for

building them), props, state, and style (some might argue this fourth shouldn’t be

included since it’s outside React itself, but I think it’s reasonable to include it).

Well, you might consider there to be a fifth thing too, given that it’s so fundamental to

React, and that’s virtual DOM.

You won’t be using virtual DOM directly, but React will be using it extensively.

Presumably, you know what the regular DOM is, but if not, it’s the Document Object

Model, which is to say the tree structure that the browser builds as it parses your

HTML. All the elements, denoted by tags, in the HTML, become nodes in this tree.

Typically, when you do something that makes a change to the page, whether it be as

a result of user action or programmatically, the browser has to perform some relatively

intensive and expensive work, primarily to repaint the screen (any change that doesn’t

affect the flow of the page falls in this category, things like changing the color of text) and

reflow (any changes that can affect the layout, say, inserting a new <div> element). This

DOM, therefore, has a direct tie to what you see on the screen, and it offers an API to

manipulate it with. All of this takes computing time obviously, and sometimes a lot of

it – enough to impact the user experience.

So React uses the concept of a virtual DOM. This is, in essence, a secondary DOM

that sits conceptually on top of the real DOM in memory. Rather than manipulate

the real DOM directly, you instead allow React to mediate the changes that could

occur to the page. React will update the virtual DOM and then will intelligently figure

out, via a diffing algorithm, the least amount of real DOM work that can be done to

accomplish the update. Most importantly, this allows React to batch up real DOM

changes and apply them all in one go, which is much more efficient than doing each

one individually. The result is better performance than can typically be achieved with

direct DOM manipulation (there’s always exceptions, but this tends to be generally

true).

Putting virtual DOM aside, since it’s in a sense just an internal React implementation

detail, let’s talk about each of the other four in turn, and in the process, let’s build

ourselves an elementary React app to see it all in action!

Chapter 3 Client-Side Adventures: React

48

�The Real Star of the Show: Components
Let’s start things off by creating ourselves a plain old HTML document, like that shown in

Listing 3-1.

Listing 3-1.  A basic HTML document to start building our simple React app with

(if you don’t understand this already, then, Houston, we have a problem!)

<!DOCTYPE html>

<html>

 <head>

 <meta charset="UTF-8" />

 <title>Intro To React</title>

 </head>

 <body>

 </body>

</html>

Yep, that ain’t exactly rocket science!

Now, to it, let’s add two lines into the <head> of the document to bring React into the

fold:

<script crossorigin src="https://unpkg.com/react@16/umd/react.development.js">

</script>

<script crossorigin src="https://unpkg.com/react-dom@16/umd/react-dom.

development.js"></script>

Here, I’m using a CDN to download the main React code (react.development.js) as

well as the react-dom package, which you can think of as the bridge between React itself

and the browser’s DOM. React can talk to different renderers, which are the bits of code

that produce the visual output. It might be possible to have a renderer that produces,

say, bitmap images for display in a desktop operating system, allowing you to write

desktop apps with React. The react-dom package is that but targeting the browser DOM

and HTML. Note that for both, I’m specifying the development builds rather than the

production builds, which are also available. This aids in debugging during development

since the code isn’t’ minified and munged and whatnot.

Chapter 3 Client-Side Adventures: React

49

Note  For performance, it would usually be better to move the two React imports
to the bottom of the document, as well as the code in start( ), and not call it onLoad.
That’s page optimization 101. I did it this way because I think it’s slightly easier to
grasp what’s happening in a more deterministic fashion, and in this example the
page will load fast enough that the difference won’t matter much anyway.

If you reload the page at this point, nothing will happen, because we’re not using

React yet. React will just happily sit there in the background not bugging us! So, now, let’s

introduce some React action, as shown in Listing 3-2.

Listing 3-2.  Our first usage of React!

<!DOCTYPE html>

<html>

 <head>

 <meta charset="UTF-8" />

 <title>Intro To React</title>

 �<script crossorigin src="https://unpkg.com/react@16/umd/react.

development.js"></script>

 �<script crossorigin src="https://unpkg.com/react-dom@16/umd/react-dom.

development.js"></script>

 <script>

 function start() {

 const rootElement =

 React.createElement("div", { },

 React.createElement("h1", { }, "Bookmarks"),

 React.createElement("ul", { },

 React.createElement("li", { },

 React.createElement("h2", { }, "Etherient"),

 React.createElement("a",

 { href : "https://www.etherient.com" },

 "The home page of Etherient"

)

),

Chapter 3 Client-Side Adventures: React

50

 React.createElement("li", { },

 React.createElement("h2", { },

 "Frank's Home"

),

 React.createElement("a",

 { href: "https://www.zammetti.com" },

 "The web home page of Frank Zammetti"

)

)

)

);

 ReactDOM.render(rootElement,

 document.getElementById("mainContainer")

);

 }

 </script>

 </head>

 <body onLoad="start();">

 <div id="mainContainer"></div>

 </body>

</html>

Warning  You might encounter a problem with the loading of the two React
files from CDN related to CORS (Cross-Origin Resource Sharing). I ran into it with
Firefox, but it won’t happen for every user or in every browser. If you do find that
the example doesn’t work though, and you see errors in your developer tools
console talking about CORS, the easy solution is to download the two files from
the URLs shown here, save them to the same directory as the example file, then
change the two <script> tags in the example to reference the local copies rather
than from CDN. You’ll also likely need to remove the crossorigin attribute to
make it finally work. Keep this warning in mind as you look at the code throughout

Chapter 3 Client-Side Adventures: React

51

this book since I can’t know for sure who will hit this problem and who won’t
(I ran into it, but my technical reviewer apparently didn’t, e.g., it seems to depend
on various factors local to each machine, so I’m just throwing this out there as a
general warning in case it comes up, but hopefully it won’t for you!).

This will result in the screen shown in Figure 3-2. It’s nothing complex, but it gets the

point across pretty well.

Okay, so what’s going on here?! To start, we have a function start() called when the

page loads. This function uses what is probably one of the most important things React

offers, the React.createElement() method. The method signature for it is

React.createElement(type, {props}, ...children);

This method will construct a new React element, which is the smallest building block

of the visual interface of a React app. These are plain old JavaScript objects and thus are

cheap and fast to create, as compared to DOM nodes. React will take care of updating the

DOM to match all the elements that are a part of that virtual DOM (creating real DOM

nodes from the elements and inserting them as appropriate essentially).

It should be noted that, typically, you’ll be working with React components.

Components are composed of elements, that’s the difference. The type you specify

here can be a tag name, as shown here, or it can be a React component type, or a React

fragment, which allows you to create multiple nested elements at once.

Figure 3-2.  Our first React app gets its close-up!

Chapter 3 Client-Side Adventures: React

52

In this start() function, React.createElement() is used to build up a tree of

elements, all of which are children of the top-level div element that the variable

rootElement holds a reference to. Each call to React.createElement() after that first

one is creating a child of the element above it in the tree. Then, when that tree is built up,

the ReactDOM.render() method is called, passing it a reference to that top-level element

as well as a real DOM node to render it to. The ReactDOM.render() method takes that

built-up virtual DOM tree and renders it to the real DOM, and voila, we have stuff on the

screen!

Now, if at this point, you’re probably thinking “wow, React is verbose and looks

annoying to write” and well, I would agree with you! However, what you’re going to find

in the next chapter is that people usually don’t write React apps like this. Instead, they

use something called JSX, and that makes it considerably easier to write React apps

with. We’ll get into that in the next chapter, but the key thing though is that when you

write a React app with JSX, under the covers, it will produce code similar to this, so I

think it makes a lot of sense to understand how React is doing things in the end. Plus,

there may be a reason specifically you want to write your apps this way, one of which is

when you want to add some React components to an existing app. In such a case, you’re

likely not going to rewrite the whole thing in JSX. You’ll more likely just want to insert

some components somewhere onto your existing page. With code like this, you can do

precisely that.

But I glossed over a few things here. One of which, props, I’m going to get into more

in the next section, but you can start to get a sense of what they’re about in the line:

React.createElement("a",

 { href : "https://www.etherient.com" },

 "The home page of Etherient"

)

It doesn’t take much to figure out that props are how you pass data into an element

(or component, as it happens). But there’s a bit more to it than that, so let’s come back to

that in the next section.

One thing that you should realize here is that we really haven’t dealt with

components at all, and, hey, that’s the title of this section! I’ve also said that components

are really the foundation of React, so let’s remedy having not seen them yet by rewriting

the code a bit, as shown in Listing 3-3.

Chapter 3 Client-Side Adventures: React

53

Listing 3-3.  Finally, some of those components he’s been on about!

<!DOCTYPE html>

<html>

 <head>

 <meta charset="UTF-8" />

 <title>Intro To React</title>

 �<script crossorigin src="https://unpkg.com/react@16/umd/react.

development.js"></script>

 �<script crossorigin src="https://unpkg.com/react-dom@16/umd/react-dom.

development.js"></script>

 <script>

 function start() {

 class Bookmark extends React.Component {

 render() {

 return (

 React.createElement("li", { },

 React.createElement("h2", { },

 this.props.title),

 React.createElement("a",

 { href : this.props.href },

 this.props.description

)

)

);

 }

 }

 const rootElement =

 React.createElement("div", { },

 React.createElement("h1", { }, "Bookmarks"),

 React.createElement("ul", { },

 React.createElement(

 Bookmark, {

 title : "Etherient",

 href : "https://www.etherient.com",

Chapter 3 Client-Side Adventures: React

54

 description : "The home page of Etherient"

 }

),

 React.createElement(

 Bookmark, {

 title : "Frank's Site",

 href : "https://www.zammetti.com",

 description :

 "The web home of Frank W. Zammetti"

 }

)

)

);

 ReactDOM.render(rootElement,

 document.getElementById("mainContainer")

);

 }

 </script>

 </head>

 <body onLoad="start();">

 <div id="mainContainer"></div>

 </body>

</html>

The Bookmark class is how we define a proper React component, which is why it extends

the React.Component class. React components have several characteristics that you’ll see

throughout this book, but perhaps the most important is a render() method. Without

that, it won’t be much of a component! The render() method, which is the only thing your

component is required to contain, is responsible for returning one of several things:

•	 Another React component

•	 A React element

•	 An array of either of those

•	 A fragment

Chapter 3 Client-Side Adventures: React

55

•	 A portal (a more advanced topic that won’t be covered in this book)

•	 A string or a number (these are rendered as plain text nodes in the

DOM)

•	 A boolean or null (results in nothing being rendered)

Of these, the first two are almost always going to be what you return. You would think

that arrays or fragments would be common too, but it’s more common to return a single

component or element that itself has children, which accomplishes much the same goal.

You can also now see the other side of props, meaning how you use them within

a component. The this.props member will be present on any component thanks to

React, and React populates it for you when you use the component using whatever you

pass as the second argument to React.createElement(), and you can use the data in

props as appropriate inside the component. Here, it’s just rendering the three props

(title, href, and description) as part of the elements returned.

Speaking of using a component, you can see that being done in the rootElement

definition. This time, we call React.createElement() but now we pass it the name of the

React component as the first argument, React instantiates that component for us, passes

the props to it, and whatever that component’s render() method returns effectively is

inserted at that point in the tree.

Hopefully, you can start to see some of the benefits of this componentized approach.

Now, you can avoid having a bunch of redundant React.createElement() calls and

instead encapsulate it inside a component and reuse the component wherever you need

a Bookmark to appear. There are no real rules about how you break the interface down;

I could have created a custom component to encapsulate the <h1> elements and maybe

called it a BookmarkGroup component. Whatever makes sense to you is the answer.

�Components Need Info: Props
As you saw in the previous section, props, which is short for properties, is how

information is passed into components. For the simple HTML elements created earlier,

that can be the attributes of those elements that you’re familiar with: href for a link or the

text inside an <h2> element (the text isn’t technically an attribute of the <h2> tag itself, it’s

actually a text node nested inside the <h2>, but at least in practice it’s the same thing).

For custom components, you get to define whatever props it needs. For the Bookmark

component, that’s title, href, and description.

Chapter 3 Client-Side Adventures: React

56

What’s important to realize about props is three things. First, they are always passed

down from a parent component to a child. In the case of the topmost component, you

can consider React itself to be the “parent component” conceptually. In any case, the

source of the information is always the parent component. Now, where the data that is

the value of a prop comes from in the parent can be many things. It could be literal text

as you see in the example code we’re dealing with here. It could be the value of a variable

inside the parent component. It could be a value that comes from some other object that

the parent retrieves. But, from the perspective of the child component, the value comes

from the parent always.

Second, props are only given to the child component when it’s being created. This is

a crucial point because it ties in with the third thing, which is that props are immutable.

This will strike you as odd at first because, I mean, how could that be?! What if we wanted

to change the description of one of our Bookmark components in response to the user

editing it somehow? Clearly, that’s gonna be a problem if props can’t be altered.

But it’s true: once set, props cannot be changed.

The way it works is that any time a change must occur to a component, React will

re-render part of the DOM tree. Remember all that stuff about virtual DOM and how

React does diffs to determine what to redraw? Well, the level above that is that some

data in your code needs to change that React recognizes for it to know it has to do any

of that work. We’re going to look at something called state next, but where that matters

in terms of props is that when state changes, whatever that is, React will determine what

components need to be re-rendered as a result.

Not just re-rendered in fact, but destroyed and recreated from scratch! That means

that the component will need to be passed its props from the parent again. If the state

impacts those props – because remember I said the values of props could come from

many places, and state is one of them – then the new values will be passed to the

component when it is recreated. In that way, the description of a Bookmark could

“change” because we will, in fact, wind up with a whole new Bookmark component with a

new description value.

So, yes, props can’t be changed once they are passed to the child and the component

is created with them, but nothing says the component can’t be destroyed and recreated

with all-new prop values, and that’s precisely what happens under the covers.

Chapter 3 Client-Side Adventures: React

57

�Components (Sometimes) Need Memory: State
Effectively, there are two types of data that serve to control component in some way.

You’ve already seen one: props. Now let’s look at the other: state.

Props, you know now, are read-only and do not change during the lifetime of a

component. If props need to change, then the component will be destroyed and recreated.

If you think there must be a more efficient way to deal with data that you know will change,

then you’d be correct, and that way is state. Changes to state do not cause React to destroy

and recreate a component. Instead, it will change just the tiniest portion of the virtual

DOM tree that the change demands, and then the minimum real DOM changes will result.

Let’s see a concrete example. Building on the previous code, let’s make some

changes to our Bookmark class. It will now be (the complete code is Listing 3-4 in the

code bundle accompanying this book):

Listing 3-4.  The Bookmark class (and, by extension, React component)

class Bookmark extends React.Component {

 constructor(props) {

 super(props);

 console.log("Bookmark component created");

 this.title = this.props.title;

 }

 render() {

 return (

 React.createElement("li", { },

 React.createElement("h2", { }, this.title),

 React.createElement("a",

 { href : this.props.href }, this.props.description

),

 React.createElement("button", {

 onClick : () => {

 this.title = this.title + "-CHANGED";

 this.setState({});

 }
 }, "Click me")
)
);

 }

Chapter 3 Client-Side Adventures: React

58

The first thing to note is the constructor that I’ve added. There are two reasons to

have a constructor (it is otherwise optional). The first is so that when you try this code

out (you are following along and trying the code out, right?!), you will see that when state

changes, the constructor does not fire after the two initial times (one per Bookmark in

the tree), proving that state changes don’t result in component recreation. Note that in a

constructor for a React.Component instance, you must call the superclass’s constructor

and pass it the props that will be passed into the constructor. You’ll get some nasty

JavaScript errors in your dev tools console if you fail to do this (ask me how I know!).

The second reason is the line where title is set as a member variable, and its initial

value is taken from the props that are passed in. This variable becomes the state of

this Bookmark component. There are no rules with how you store the state inside your

component. Many people choose to have a single state variable that is an object that

contains all the state for the component, and I frankly tend to do that too. But it can simply be

“naked” class members like this too. Whatever makes sense to you, React will accommodate.

Now, down in the call to React.createElement() that creates the <h2> element,

note the change there: rather than getting the value from this.props like before, it now

comes from this.title. That’s key, as you’re about to see!

A new child element has been added at the end, this one a <button> HTML element.

Now, the first interesting thing is that the second argument to React.createElement(),

which you’ll recall is the props to pass to the component, can include functions! At the

end of the day, this argument is just an object, and what’s in it can be virtually anything,

so long as it has meaning to your component (or will just be ignored by it, that’s a valid

possibility too). Here, because we’re creating a button and because buttons typically do

something when clicked, an onClick event handler function is passed in. React knows

how to create a <button> HTML element and it knows how to attach that function, so we

get a button that does something when clicked, just as we need. The ‘‘something” it does

when clicked is to change the title property of the class.

Now, if that’s all it did, then nothing would happen, at least nothing evident on

the screen. Yes, the value of the variable would change, but React wouldn’t know that

anything had happened. You see, React isn’t monitoring your state and proactively re-

rendering the screen as appropriate. No, you have to inform it that state has changed,

and that’s precisely what the setState() method is for. This method is provided by the

base React.Component class that our Bookmark custom component class extends. It

informs React that this component, and its children, may need to be re-rendered (React

will make the final determination).

Chapter 3 Client-Side Adventures: React

59

The argument passed to setState() is one of two things: either a function or an

object. If it’s a function, then it’s what is called an updater function. This function

receives two arguments: the current state of the object and its props. This function

must then return an object that will be the new state of the component. It’s important to

understand that this function must not mutate the state object passed in! Instead, it must

create a new object and return it. If you change the incoming state object, then nothing

will appear to happen (unless you return that same object, but that’s a code smell and

can sometimes lead to some real nastiness, so don’t do that).

Alternatively, and what I’ve done in the example, is pass setState() an object, an

empty object in this case. What this does causes React to perform a shallow merge of the

object with the component’s current state. In this case, since I’ve already altered the state

variable, that means that the resulting object has the new value, so what’s returned is a

valid new state object.

Note  In general, it’s probably better to always use an updater function. While it
involves a little more code and work on your part, it tends to be safer. For a simple
example like this, it hardly matters, but as a rule I’d suggest always doing it that
way. And, plus, it’s definitely more of a functional approach, which is a popular
paradigm these days, so if nothing else, you’ll be hangin’ with the cool kids this way!

A crucial thing to understand about setState() is that it is more of a request than

a demand. What I mean is that React will enqueue setState() calls, and the work it

results in, and may batch many requests to optimize DOM updates. So, you aren’t so

much telling React to update the component right now; you’re asking it to do so at some

point in the future. Of course, we’re not talking about hours or even minutes or seconds

later, but the change won’t necessarily be immediate. It is asynchronous in other words,

and as a result, you can also pass a second argument to setState(), a callback function.

This function will be called after the update has occurred. This callback mechanism isn’t

relevant in such a simple example, but you may find times where you do need it, when

you need to trigger some action but only after the screen has been updated.

In the world of React, there’s quite a lot more to state than this (if you’ve ever heard

the term Redux, then that’s one such thing: it’s another way of dealing with state more

globally, but it’s a topic I won’t be covering in this book). But, at an elementary and

fundamental level, this is what state is all about, and you absolutely can use what you’ve

learned in this section alone to deal with state in your React apps.

Chapter 3 Client-Side Adventures: React

60

Note  One other point of terminology: as you’ve seen, not all components have
state. These are, quite obviously, termed stateless components. Any component
that has state is, equally as obviously, called a stateful component.

�Making Them Look Good: Style
The final thing I want to touch on is styling in a React app.

Now, at the end of the day, when building an app with React we’re still talking

about HTML, JavaScript, and CSS. Components will always render down into some

combination of those. So, we can do things very directly if we wish. For example, if we

want to make the color of our Bookmark titles red, we could add this to the page:

<style>

 h2 {

 color : red;

 }

</style>

That’ll get the job done. Of course, we could put this in a separate .css file and

import it into the document, just like always with CSS.

Another alternative is to explicitly name a CSS class to use in the component’s code.

So, let’s alter that style definition a little bit:

<style>

 .bookmarkTitle {

 color : red;

 }

</style>

Now, in our Bookmark code, the call to React.createElement() that creates the <h2>

for the title specifically, let’s use that style:

React.createElement("h2", { className : "bookmarkTitle" }, this.title)

Since class is a reserved word in JavaScript, React makes us use className instead.

But that will result in the style being applied all the same.

Chapter 3 Client-Side Adventures: React

61

You could also define the style inline with the element, like this:

React.createElement("h2", { style : { color : "red" } }, this.title)

The style prop must be an object mapping CSS attributes to values. This approach

is an important one because it leads to a concept termed CSS-in-JS. If you notice, you’re

effectively defining your CSS in JavaScript here. Further, there’s absolutely no reason you

couldn’t take that object that defines the styles for the <h2> element out of the React.

createElement() call and define it independently:

const bookmarkTitle = { color : "red" }

Then you just do

React.createElement("h2", { style : this.bookmarkTitle }, this.title)

You could put all your style objects for your entire application like those in separate

styles.js file, and now you’ve started down the path of skipping CSS, in a sense, and

doing it all in JavaScript. Oh, to be sure, you’re still dealing with CSS obviously, but in an

arguably more flexible way.

However, components are meant to be self-contained entities, remember? Given

that, shouldn’t that include their style too? But, then, isn’t it better code structure to keep

the styles at least somewhat separate from the layout code? Most people think so. All that

taken together, you might wind up with something that looks like this (Listing 3-5 in the

code bundle):

Listing 3-5.  The Bookmark component, now with 100% more style

class Bookmark extends React.Component {

 constructor(props) {

 super(props);

 console.log("Bookmark component created");

 }

 title = this.props.title;

 titleStyle = { color : "red" }

 render() {

 return (

 React.createElement("li", { },

Chapter 3 Client-Side Adventures: React

62

 React.createElement("h2",

 { style : this.titleStyle }, this.title

),

 React.createElement("a",

 { href : this.props.href }, this.props.description

),

 React.createElement("button", {

 onClick : () => {

 this.title = this.title + "-CHANGED";

 this.setState({});

 }

 }, "Click me")

)

);

 }

Now, the Bookmark component’s style is defined within the Bookmark class, achieving

encapsulation, but then within the class the style information is abstracted from the

code that produces the layout in the render() method. This is arguably a cleaner way to

write component code.

Whichever approach you choose, whatever meets your needs, the bottom line is

that React offers several approaches to styling your components, and thus your user

interface.

�In the End, Why React?
All of that is fine and dandy, but it doesn’t answer a fundamental question: why would

anyone want to use React?

I think, at least in my mind, a few critical points in React’s favor are the following:

•	 Simplicity – As you’ve seen, React amounts to four fundamental

pillars: components, props, state, and style. There isn’t much to it

as a basic level. It doesn’t take much to get started with it, as you

saw, and it doesn’t have a lot of complicated baggage like some

other frameworks do (the counterargument, of course, is that all

that complexity provides additional power, and ultimately that’s the

judgment call you have to make as a developer).

Chapter 3 Client-Side Adventures: React

63

•	 Easy to integrate into existing projects by not being overly
opinionated – You can add React to an existing project little by little if

you want, and this is in large part thanks to the fact that React doesn’t

impose a rigid application architecture on you like other options do.

Like with the simplicity argument, there is a negative to this: it’s more

possible to screw things up with React than with something like, say,

Angular, precisely because of that lack of opinionated mindset.

•	 A bit of luck! – React began growing in popularity right around the

time something else was happening: Google’s Angular framework,

another popular front-end development tool, jumped from version 1

to version 2. This was a significant event for Angular users because

the version change was not backward-compatible and, frankly,

caused a lot of headaches for a lot of people. Many of those people

began looking for a more straightforward option that didn’t seem as

likely to repeat that mistake, and React was gaining a foothold right

around that time. So, Google and Angular’s misstep aided React, if

only indirectly.

•	 Backing – Many people have less than positive feelings about

Facebook these days, but one thing you can’t deny is that they

are a large corporation, and when a development tool has

sizeable corporate backing, it tends to become a “safe” choice for

technologists to suggest on the job. React has had that going for it

right from the start.

�Summary
In this chapter, you took your first steps into the world of React. You got a brief tour of

where it all started, why it came into being, and who’s responsible. We talked a bit about

what it offers, why that’s valuable, and why it’s become so popular. Then, you saw some

basic React code and got familiar with the four main pillars of React: components, props,

state, and style.

In the next chapter, we’ll look at a few more advanced React concepts and dive just a

little deeper into what React has to offer us as application developers.

Chapter 3 Client-Side Adventures: React

65
© Frank Zammetti 2020
F. Zammetti, Modern Full-Stack Development, https://doi.org/10.1007/978-1-4842-5738-8_4

CHAPTER 4

A Few More Words:
Advanced React
In the last chapter, we began looking at React, the popular JavaScript application

framework. There, you were introduced to the basic concepts that every React developer

deals with.

In this chapter, we’ll delve a little bit deeper, looking at a few more concepts that are

important when writing React apps. Perhaps most importantly is JSX, which provides us

a better way (in most developers’ opinion, I think it’s fair to say) to write React apps.

�A Better Way to Write React Code: JSX
JSX, which stands for JavaScript XML, is an extension to the JavaScript language that

adds XML syntax to the language. In a sense, it allows us to embed XML inside JavaScript

without having to resort to things like string concatenation or even DOM methods. At its

core, JSX is interested in allowing us to define tree structures with attributes in a more

elegant way than all those JavaScript function calls you saw in the last chapter.

If you think back to Chapter 1 and the discussion of components, there might be a

light bulb above your head right now! React is nothing but trees (of components) with

attributes (props)!

However, although it’s effectively an extension of JavaScript, it’s not a part of

JavaScript! No, it’s a bolted-on thing that requires a preprocessing step, the output

of which is pure JavaScript. But I’m jumping ahead a bit. We’ll get to that in the next

section!

The reason JSX came about – aside from the obvious of developers not liking to

code their UIs as a series of function calls – is because the React team realized that it’s

kind of pointless to separate rendering logic from UI logic. That’s something we’ve been

66

doing for a long time. For example, you put your markup in an HTML file, but then you

(usually) put your UI logic in a JavaScript file. But these things are intrinsically coupled.

How events are handled, how the state of your application changes in response to user

interactions, how data is prepared for display, all of that is mixed together, so does it

really make sense to separate on technology like that?

An argument can be made that no, it doesn’t make sense, and that’s the argument

React makes. Instead, the division in React is on boundaries based on concerns. That’s

where components come into play: they are separating the various concerns a UI has

(a button is concerned with letting the user trigger an action, a grid is concerned with

displaying data, etc.). But each component is an encapsulated whole: it contains the

logic that knows how to render itself as well as the logic that knows how to deal with the

various events that can affect it.

While you absolutely can do all of this without JSX just by adhering to some

architectural principles and being disciplined with your code, JSX provides, arguably,

a more elegant way to do so. But, especially since most developers are coming from an

HTML/JS/CSS background, JSX provides a more natural way into the world of React by

allowing them not to have to think in terms of React.createElement() but in something

more akin to what they’re already familiar with.

�Yeah, Okay, So What Does It LOOK LIKE?!
So, what does JSX look like? Well, here’s a simple example using a MaterialButton

component (which we’ll assume is a real component and is available to our code, but

this could be any component if course):

const button = <MaterialButton color="red"

 onClick="alert('clicked');">

 Click Me

</MaterialButton>;

Huh? If you’ve looked at JavaScript at all (which, remember, I’m assuming you have

for our purposes here!) that will probably give you cold chills because obviously that

wouldn’t be valid JavaScript syntax! You can’t set markup like that, XML like that, as the

value of a variable! Not without putting it in quotes and making it a string anyway.

Earlier, I mentioned a preprocessing step that we have to do with JSX. That step,

simply put, is to compile it into standard JavaScript. But, before we even get to that,

Chapter 4 A Few More Words: Advanced React

67

what do we expect that final JavaScript to look like? The answer is that it’s going to look

something like this:

React.createElement(

 MaterialButton,

 { color : "red",

 onClick : function() { alert('clicked'); }

 },

 "Click Me"

)

That should look familiar to you at this point!

What’s more, if you embed components in JSX

const button = <MaterialButton color="red"

 onClick="alert('clicked');">

 <ButtonLabel text="Click Me" />

</MaterialButton>;

you’ll get nested calls as you would expect, given what JSX compiles down to:

React.createElement(

 MaterialButton,

 { color : "red",

 onClick : function() { alert('clicked'); }

 },

 React.createElement(ButtonLabel, { text : "Click Me" })

)

Okay, so that’s JSX in simplest terms. But, clearly, if we load that in a browser, it’s

gonna spit it back at us unceremoniously because it’s not valid JavaScript. How do we get

valid JavaScript from JSX? To explain that, we have to take a quick detour and talk about

something called Babel.

Chapter 4 A Few More Words: Advanced React

68

�A Slight Detour into Babel Land
When a new version of JavaScript comes out, it takes time for browsers, and the JavaScript

engines they use, to catch up. There is a period of time when there may be some cool new

features in the language that you can’t use without risking some of your customers not

being able to run your code. This is true for the JavaScript engine that underpins Node

too: you may have to avoid some language features as you write your code until the engine

is updated. Sometimes, a particular browser or engine might never implement a feature

you want to use, and certainly trying to keep track of which environment your great new

code will run in and which it won’t becomes a headache in a hurry.

To give a concrete example, consider this bit of JavaScript:

const newArray = [44, 55, 66].map((num) => n * 2);

That code will work in the latest version of Chrome, Firefox, and Opera. But it won’t

work in Internet Explorer 11. If your work requires that you support that browser, then

you’ve got a problem if you really want to write your code like that.

That’s a problem that has existed for a long time, but JavaScript has been evolving

quickly over the last decade or so as its usage has increased dramatically, so the problem

has only gotten worse over time. Solutions do exist, though: every new feature in the

language can be refactored and written using the earlier language features, often with

some compromises, but essentially functioning as the new features do. This approach is

often called a polyfill.

That’s not an ideal solution, though, because it’s a lot of work for developers, whether

directly (developing and testing the polyfill itself and ensuring it works across all target

browsers) or indirectly (waiting for someone else to do it and release it to the world).

This is where Babel comes in. Rather than have to go through that effort, Babel allows

you to write your code using the new language features you want. What happens next

is you run that code through Babel, and Babel takes care of generating the appropriate

polyfill code. Babel is considered a transpiler, meaning it transforms and compiles at the

same time. That means your workflow is altered: there is now a step you must do before

you can actually run your code.

To use Babel, you first have to install it. Before that, though, let’s begin a new project.

Choose a directory and npm init the project, using all the default options. Once that’s

done, you can install Babel:

npm install --save-dev @babel/core @babel/cli

Chapter 4 A Few More Words: Advanced React

69

Once that’s done, you’ll be able to run Babel. To do so, issue the command

npx babel

The npx command is something that is installed by newer versions of NPM. It’s an

executable, installed alongside the npm executable, that is a proxy allowing you to run

packages and the CLI tools some packages provide. In the past, you would usually be

directed to install Babel globally, which would add the appropriate path entries to your

system, allowing you to run it. Now though, the advice usually given is to install Babel

local to the project (so that different projects can use different versions of Babel as

appropriate). But doing that doesn’t give you those same path entries. That’s where npx

comes in: it lets you run those tools without those path entries.

Now, running Babel like this won’t do anything yet. That’s because, first, you have to

tell it what to transpile. So, let’s create a file called test.js and into it put the code from

before:

const newArray = [44, 55, 66].map((num) => n * 2);

Then, execute

npx babel test.js

What happens? Well, uhh, still nothing, actually! Babel will echo back the code

from the file, but nothing is changed, nothing is produced. That’s because out of the

box, Babel doesn’t do anything – it doesn’t know how to transform the code. You have

to add some plugins to it to give it that knowledge. Plugins are what define the rules for

transpiling one language (or version of a language) into another. If you want to see a list

of all the plugins available, check out this site: https://babeljs.io/docs/en/plugins.

For our purposes though, we’ll just need one, which we, of course, can install with NPM:

npm install --save-dev @babel/plugin-transform-arrow-functions

Now, there’s still another step, and that’s to tell Babel to use that plugin. To do that,

we have to create one more file: the .babelrc configuration file. Its contents should be

{

 "plugins": ["@babel/plugin-transform-arrow-functions"]

}

Chapter 4 A Few More Words: Advanced React

https://babeljs.io/docs/en/plugins

70

With that in place, Babel now knows to use this plugin when processing our file,

which it will do if we execute the npx babel test.js command again. The output you’ll

then see should be

const newArray = [44, 55, 66].map(function (num) {

 return n * 2;

});

Notice how the arrow function was replaced with standard function() syntax?

That’s Babel doing its thing!

You’ll likely want to write that output to a file rather than the console, and to do so is

simple enough:

npx babel test.js --out-file test_new.js

Sure enough, this is a very simple example, and the code looks fairly similar before

and after transpilation occurs. But, for more complex JavaScript, the difference can be

rather drastic.

One final thing, do you think it might be inconvenient to have to install a plugin for

every single JavaScript feature you want to be able to transpile? The answer is, hopefully,

a clear yes! For this reason, Babel provides the notion of presets. These effectively are

logical groupings of plugins that can be enabled all in one batch. There are several

presets, but the two most used are env and react.

The env preset allows you to do this in your .babelrc file:

{ "presets": [

 ["@babel/preset-env", {

 "targets" : {

 "browsers" : ["last 3 versions", "safari >= 6"]

 }

 }]

]

}

That tells Babel, “I want you to produce code that will work in the last three versions

of all browsers, and for Safari, support anything from version 6 on up”. Babel will take

care of installing the appropriate plugins. Also, if you’re working in Node and don’t care

about browsers, you can do

Chapter 4 A Few More Words: Advanced React

71

{ "presets" : [

 ["@babel/preset-env", {

 "targets" : { "node" : "7.00" }

 }]

]

}

That tells Babel to support Node back to version 7.

To make use of this preset, you need to install a single plugin:

npm install --save-dev @babel/preset-env

Once that’s done, and .babelrc altered as shown in the preceding text (removing the

@babel/plugin-transform-arrow-functions plugin), the output will now be

"use strict";

var newArray = [44, 55, 66].map(function (num) {

 return n * 2;

});

That’s the same as before, only now with the "use strict"; at the top and, critically,

not having to explicitly tell it which plugins to use!

�Compile JSX
The previous section described the env preset, but what about the react preset? That’s

the key to being able to produce plain old JavaScript from our JSX files. To do that, we

have to make some changes. First, we’ll need to install the preset:

npm install @babel/preset-react --save-dev

You will then need to add a new preset in .babelrc to let Babel know how to

deal with JSX (and some related React plumbing):

{ "presets" : [

 ["@babel/preset-react"]

]

}

Chapter 4 A Few More Words: Advanced React

72

Note  You only need the react preset, you don’t need the env preset, so if you’re
following along, then you can remove the env dependency from package.json.
However, it does no harm to leave it there, so it’s entirely up to you.

Now, rename the test.js file to test.jsx and replace its contents with the JSX

from earlier:

const button = <MaterialButton color="red"

 onClick="alert('clicked');">

 Click Me

</MaterialButton>;

With those tasks complete, you can now run Babel against the test.jsx file, just as

you did against the test.js file before, but now the output should be

const button = React.createElement(MaterialButton, {

 color: "red",

 onClick: "alert('clicked');"

}, "Click Me");

Just as expected, we get some plain old JavaScript from the JSX, and what’s more, it

looks just like the sort of JavaScript we wrote in the previous chapter!

�And Now, Put It All Together
Now that we know what JSX is, what it looks like, and how to compile it into valid

JavaScript, let’s put all the pieces together! Here, we’ll take the very simple example from

the previous chapter and rewrite it using JSX.

First, let’s take the simple project created in the last section and rename test.jsx

to main.jsx. That’s our source file that will be compiled into plain JavaScript. But, to do

anything with that final product, we’ll also need an HTML file. So, create a file named

index.html and insert the following content into it:

<!DOCTYPE html>

<html>

 <head>

 <meta charset="UTF-8" />

Chapter 4 A Few More Words: Advanced React

73

 <title>Intro To React</title>

 �<script crossorigin src="https://unpkg.com/react@16/umd/react.

development.js"></script>

 �<script crossorigin src="https://unpkg.com/react-dom@16/umd/react-dom.

development.js"></script>

 <script src="main.js"></script>

 </head>

 <body onLoad="start();">

 <div id="mainContainer"></div>

 </body>

</html>

That’s basically the same as what you saw in the previous chapter, minus all the

React code. Instead, the main.js file, which we don’t have yet, is being imported.

So, let’s now get that main.js file! First, we need some JSX to compile into it. To do

that, replace the contents of main.jsx with this:

function start() {

 class Bookmark extends React.Component {

 constructor(props) {

 super(props);

 console.log("Bookmark component created");

 }

 title = this.props.title;

 titleStyle = { color : "red" }

 render() {

 return (

 <h2 style={this.titleStyle}>{this.title}</h2>

 {this.props.description}

 <button onClick={() => {

 this.title = this.title + "-CHANGED";

 this.setState({});

 }}>

Chapter 4 A Few More Words: Advanced React

74

 Click me

 </button>

);

 }

 }

 ReactDOM.render(

 <div>

 <h1>Bookmarks</h1>

 <Bookmark title={"Etherient"}

 href={"https://www.etherient.com"}

 description={"The home page of Etherient"}

 />

 <Bookmark title={"Frank's Site"}

 href={"https://www.zammetti.com"}

 description={"The web home of Frank W. Zammetti"}

 />

 </div>,

 document.getElementById("mainContainer")

);

}

All I’ve done is I’ve taken the code for the final example in the last chapter, and I’ve

replaced all the React.createElement() calls with their JSX equivalents. I’ve done this

in both the custom Bookmark component’s definition and the component tree created

in the ReactDOM.render(). Hopefully, you’ll agree that looks a lot cleaner and easier to

understand.

With that in place, now we can compile our JSX:

npx babel main.jsx --out-file main.js

Chapter 4 A Few More Words: Advanced React

75

Oh, but if you do that right now, you’re going to be greeted by an error message

“Support for the experimental syntax ‘classProperties’ isn’t currently enabled.” To deal with

that, we need to install another Babel plugin to provide support for that language feature:

npm install --save-dev @babel/plugin-proposal-class-properties

We also need to tell Babel to use it, so an entry is added to .babelrc:

{

 "presets": ["@babel/preset-react"],

 "plugins": ["@babel/plugin-proposal-class-properties"]

}

Once that’s done, the compilation should be successful, and we’ll have a main.js file

ready to be used. The contents of that file should look something like this:

function _defineProperty(obj, key, value) { if (key in obj) { Object.

defineProperty(obj, key, { value: value, enumerable: true, configurable:

true, writable: true }); } else { obj[key] = value; } return obj; }

function start() {

 class Bookmark extends React.Component {

 constructor(props) {

 super(props);

 _defineProperty(this, "title", this.props.title);

 _defineProperty(this, "titleStyle", {

 color: "red"

 });

 console.log("Bookmark component created");

 }

 render() {

 return React.createElement("li", null,

 React.createElement("h2", {

 style: this.titleStyle

 }, this.title), React.createElement("a", {

 href: this.props.href

 }, this.props.description),

Chapter 4 A Few More Words: Advanced React

76

 React.createElement("button", {

 onClick: () => {

 this.title = this.title + "-CHANGED";

 this.setState({});

 }

 }, "Click me"));

 }

 }

 �ReactDOM.render(React.createElement("div", null, React.

createElement("h1", null, "Bookmarks"), React.createElement("ul", null,

React.createElement(Bookmark, {

 title: "Etherient",

 href: "https://www.etherient.com",

 description: "The home page of Etherient"

 }), React.createElement(Bookmark, {

 title: "Frank's Site",

 href: "https://www.zammetti.com",

 description: "The web home of Frank W. Zammetti"

 }))), document.getElementById("mainContainer"));

}

Well, not exactly what we wrote in the previous chapter, but it does bear some

resemblance to it at a high level, and that’s what matters because it proves that our JSX

was compiled into plain JavaScript that uses React properly. Now, if you load index.html

in your browser, you should be greeted with the same screen as this example produced

in the previous chapter, complete with button click event handling.

That, in a nutshell, is JSX!

�Whither Props?
JSX lets us pass props into our components just as easily – maybe even easier – as we do

with the direct React.createElement() calls. You saw it earlier when the color of the

MaterialButton was set. But what about when the value of a prop isn’t static like that?

Chapter 4 A Few More Words: Advanced React

77

That’s where prop expressions come into play. Here’s an example of passing a prop, in

this case, a variable color to the MaterialButton component from earlier:

const buttonColor = "red";

const button = <MaterialButton color={buttonColor}

 onClick="alert('clicked');">

 Click Me

</MaterialButton>;

Now, the buttonColor variable’s value will be passed as the value of the color prop

when the MaterialButton component is created.

Any valid JavaScript expression can be contained within the braces, so we could do

color={buttonColor + "Alt"}

You can also pass string literals using expressions. So, color="red" is equivalent to

color={"red"}. There’s no real reason to prefer one over the other except perhaps if you

want to use expression notation consistently. React and JSX don’t really care either way

though.

Note too that props in JSX syntax will default to true if you pass nothing for

their value. So, in <MaterialButton enabled /> is equivalent to <MaterialButton

enabled={true} />.

You can also use the spread operator for a prop value when you want to pass all the

properties of an existing object as props to a component. For example:

<MaterialButton color={"red"} enabled={true} />

You could write this differently using the spread operator:

const props = { color : "red", enabled : true };

<MaterialButton {...props} />

This can be handy if you have several prop values that need to be dynamic, and you

need to “calculate” the values elsewhere in your code before the component is constructed.

�Default Props
Recall from earlier, in the last chapter, actually, I said that parent components always

pass props down to their children, which then use them however they wish (or not

at all – entirely their choice!). This works great in most cases, but what happens if a

Chapter 4 A Few More Words: Advanced React

78

component doesn’t pass a particular prop down to the child? There’s nothing that

enforces a parent passing all props down to its children, so it’s something that can

happen.

One simple thing you can do is, in the child component, something like this:

class Bookmark extends React.Component {

 constructor(props) {

 super(props);

 console.log("Bookmark component created");

 }

 title = this.props.title;

 titleStyle = { color : "red" }

 render() {

 return (

 <h2 style={this.titleStyle}>{this.title}</h2>

 {this.props.description || "Unknown" }

 <button onClick={() => {

 this.title = this.title + "-CHANGED";

 this.setState({});

 }}>

 Click me

 </button>

);

 }

}

Take a look at the <a> element there. Notice the || in the expression that defines the

text of the element? If the parent doesn’t pass down a description in the props, then

using the or operator like this will result in “Unknown” being the text of the <a>.

While that will work, sprinkling or’s all over the place doesn’t exactly make for clean

code, and React recognizes this. So, instead, you can use the defaultProps property.

Chapter 4 A Few More Words: Advanced React

79

This is a special property that React makes available on the component class, and it is

where you can define default values for props:

class Bookmark extends React.Component {

 constructor(props) {

 super(props);

 console.log("Bookmark component created");

 }

 static defaultProps = { description : "Unknown" };

 title = this.props.title;

 titleStyle = { color : "red" }

 render() {

 return (

 <h2 style={this.titleStyle}>{this.title}</h2>

 {this.props.description}

 <button onClick={() => {

 this.title = this.title + "-CHANGED";

 this.setState({});

 }}>

 Click me

 </button>

);

 }

}

Here, we go back to just referencing this.props.description in the <a> definition

like before, but now the defaultProps definition right after the constructor provides the

“Unknown” value when the parent doesn’t pass a description down. You can supply

default values for all props, or any subset you want to in this way.

It's a handy facility that makes for much cleaner code, so it’s usually a good idea to

define defaultProps. Remember that if you don’t do so and a prop isn’t passed, its value

is going to be undefined. That might be okay in some usages, but not all (e.g., indeed, we

wouldn’t want to show “undefined” for the text of that <a> element).

Chapter 4 A Few More Words: Advanced React

80

�Typing Props
In the next two chapters, and for the remainder of this book, we’re going to be writing

our code not in JavaScript, as all the examples thus far have been written in, but in

TypeScript. Not to jump ahead, but TypeScript adds the notion of data types to the

normally type-less JavaScript (well, loosely typed to be really more accurate, but to a

large extent, the distinction doesn’t matter).

However, even if you wanted to stick with plain old JavaScript, having some notion

of data types is usually a Very Good Thing(tm). Imagine if you had a prop on a component

that expects a number, which maybe it does some calculations with, and then displays

the output. What happens if you mistakenly pass a string instead? Well, React and

JavaScript underneath it are going to do their best to work with what you gave them. In

some cases, you might get a valid result displayed. In others, though, the type coercion

that will happen under the covers might result in a gibberish answer.

To avoid that, React introduces something called propTypes. This is like

defaultProps in that it’s another property of a component class, but this time it’s one

used to tell React what the types of your props are. If you then pass an incorrect type at

runtime, React will output a helpful message to the JavaScript console.

To use it, you must do two things. First, add propTypes to the component class:

function start() {

 class Bookmark extends React.Component {

 constructor(props) {

 super(props);

 console.log("Bookmark component created");

 }

 static propTypes = { description : PropTypes.number };

 title = this.props.title;

 titleStyle = { color : "red" }

 render() {

 return (

 <h2 style={this.titleStyle}>{this.title}</h2>

 {this.props.description}

Chapter 4 A Few More Words: Advanced React

81

 <button onClick={() => {

 this.title = this.title + "-CHANGED";

 this.setState({});

 }}>

 Click me

 </button>

);

 }

 }

 ReactDOM.render(

 <div>

 <h1>Bookmarks</h1>

 <Bookmark title={"Etherient"}

 href={"https://www.etherient.com"}

 description={"The home page of Etherient"}

 />

 <Bookmark title={"Frank's Site"}

 href={"https://www.zammetti.com"}

 description={"The web home of Frank W. Zammetti"}

 />

 </div>,

 document.getElementById("mainContainer")

);

}

Here, I’m doing something kind of silly just to prove the point: I’m defining the

type of the description prop as a number. That doesn’t make much sense, but it will

demonstrate how this works well enough.

Chapter 4 A Few More Words: Advanced React

82

But, if you compile that and try to use it, you’ll hit an error because PropTypes isn’t

known, and that value is what tells React what type the prop is. So, we need to import

that. All you need to do is add a <script> tag to the index.html file:

<!DOCTYPE html>

<html>

 <head>

 <meta charset="UTF-8" />

 <title>Intro To React</title>

 �<script crossorigin src="https://unpkg.com/react@16/umd/react.

development.js"></script>

 �<script crossorigin src="https://unpkg.com/react-dom@16/umd/react-dom.

development.js"></script>

 �<script crossorigin src="https://unpkg.com/prop-types@15.6/prop-types.

js"></script>

 <script src="main.js"></script>

 </head>

 <body onLoad="start();">

 <div id="mainContainer"></div>

 </body>

</html>

PropTypes is supplied in a separate module, so that’s what we need to import. Once

both those things are done, and after you compile the JSX file and open the HTML page

in your browser, you’ll see the following error in the dev tools console:

react.development.js:1818 Warning: Failed prop type: Invalid prop

`description` of type `string` supplied to `Bookmark`, expected `number`.

in Bookmark

Perfect! React is aware of the type of the description prop and flags it when we pass

a string rather than a number. This makes finding some otherwise tricky to ferret out

bugs very easy, so it’s generally good advice to always supply propTypes on your custom

components, right alongside defaultProps.

There are about two dozen prop types available as of this writing, and you can find

a list of them here: https://reactjs.org/docs/typechecking-with-proptypes.html.

These types are actually functions and are called validators. As such, it’s quite possible

Chapter 4 A Few More Words: Advanced React

https://reactjs.org/docs/typechecking-with-proptypes.html

83

for you to add your own just by appending them on to the PropTypes class or, more

usually, just passing a function in propTypes:

static propTypes = { description : descriptionValidator };

The descriptionValidator() function will be passed the collection of props, the

name of the prop being validated, and the name of the component. If it then returns

null, then React assumes everything is okay; otherwise, the function would return

an Error object (another class provided by the PropTypes module) that describes the

problem.

Note  One that is worth calling out is PropTypes.element.isRequired. This
tells React that your component requires one and only one child component. This is
common enough that I wanted to mention it specifically.

�Component Lifecycle
The final topic I want to talk about concerning React is the component lifecycle. You’ve

already seen one: the render() method. But, while render() is really the final thing

we’re trying to get to with a component, it’s not the whole picture.

Every single React component goes through a series of distinct stages in a well-defined

order, which is illustrated in Figure 4-1.

Chapter 4 A Few More Words: Advanced React

84

In sequence, during initial construction, the order will be as follows:

	 1.	 The component class’s constructor is called. That should be

pretty obvious: it’s a JavaScript class after all, and if they define a

constructor, then that always gets called first (and if they don’t specify

a constructor, then an automatically added one will be called).

	 2.	 The getDerivedStateFromProps() method is called. This is

responsible for returning an object to update the state, or null

if there is nothing to update. This is called during the initial

construction of the component, called “mounting” because it’s

when the component is constructed, of course, but is also when

it is added, or “mounted,” to the virtual DOM, as well as during

subsequent updates.

	 3.	 The render() method is called. You already know about this one!

	 4.	 The componentDidMount() method is called immediately after the

component is inserted into the virtual DOM. This is where you

can do initialization that required actual DOM nodes.

Figure 4-1.  The lifecycle events of a React component

Chapter 4 A Few More Words: Advanced React

85

During an update, the sequence will be as follows:

	 1.	 The getDerivedStateFromProps() method is called.

	 2.	 The shouldComponentUpdate() method is called. The results

of this tell React whether the component’s output is affected

by the current change in state or props. By default, the method

automatically supplied will result in re-rendering on every state

change, and unless you have good reason to do otherwise you

should rely on this functionality.

	 3.	 The render() method is called.

	 4.	 The getSnapshotBeforeUpdate() method is called. The

job of this method is to capture some information from the

DOM, like perhaps scroll position, right before the render

output is committed to the DOM, potentially changing it. Like

shouldComponentUpdate(), most of the time, you should just let

the default version of this method do its thing.

	 5.	 Finally, the componentDidUpdate() method is called. Things like

network requests for data you need to display are often done here.

But you can ignore this if you don’t need it.

You can override any of these, or none of them (except for render(), of course,

which you have to override) as your needs dictate.

Note  There are a small handful of other available methods, but they are now
considered legacy, and developers are discouraged from using them, so I’m not
describing them here. I wanted to mention this though in case you see code using
them you will be aware that it’s probably valid code, but no longer code you should
follow, and it’s also code that, it’s a good bet, will be broken by a future React
update when support for those lifecycle events are removed from React entirely.

Chapter 4 A Few More Words: Advanced React

86

�Summary
In this chapter, you got a look at a few more React concepts, including JSX, the

component lifecycle, PropTypes, and default props. Going along with JSX you got a brief

introduction to Babel. This places all the necessary tools for working with React in your

toolbox, preparing you for the application code to come.

But there’s one more preparatory topic to look at before the application train leaves

the station, and that’s where we migrate from JavaScript to TypeScript.

Chapter 4 A Few More Words: Advanced React

87
© Frank Zammetti 2020
F. Zammetti, Modern Full-Stack Development, https://doi.org/10.1007/978-1-4842-5738-8_5

CHAPTER 5

Building a Strong
Foundation: TypeScript
In the previous four chapters, where we looked at Node and React, in both of those, you

saw code written in JavaScript. That makes total sense given that Node uses Google’s

V8 JavaScript engine to execute code, and React is (most usually at least) used to create

browser-based applications, and browsers speak JavaScript (along with HTML and CSS

of course).

But there is, at least arguably, a better option, one that overcomes many of the

perceived shortcomings of JavaScript and makes for more robust code and easy

maintenance of JavaScript-based applications. That option is called TypeScript, and in

this chapter and the next, I’ll introduce to you the core concepts associated with what

has become one of the hottest languages around.

As with Node and React, this chapter and the next are not an exhaustive discussion

of the topic. You won’t learn every last nook and cranny TypeScript has to offer. But these

chapters will build the foundation. Further concepts will be introduced in context in the

coming chapters as necessary.

�What Is TypeScript?
Somewhere around October of 2010, Microsoft started to realize that JavaScript, while

becoming very popular, had several shortcomings that frequently lead to more error-

prone code written by developers. In the eyes of some people, both inside and outside of

Microsoft, JavaScript wasn’t a mature enough language for what was being built with it.

So, the company began an internal project to address what they, and many others,

saw as problems with JavaScript. In October of 2010, they made public that project and

called it TypeScript.

88

TypeScript can be thought of as a wrapper, of sorts, around JavaScript, or an extension

to it. A key point to remember is that all valid JavaScript code is also valid TypeScript code.

TypeScript, however, adds things on top of JavaScript, the key thing being data types, as

the name clearly implies. This is a significant benefit because it allows IDEs and other

developer tools to provide IntelliSense to the developer, that is, hints about what types

are allowed in what situations. With JavaScript and its loosely typed nature, mistakes

are easy to make, for example, passing a string where a numeric value is expected. With

TypeScript, those sorts of errors are spotted quickly and easily by various tooling.

Over the next seven years, Microsoft evolved the language, adding additional

features to make TypeScript more robust. Fast-forward to today and TypeScript (version

3.6.3 at the time of this writing) is one of the most popular languages for building

(primarily) web-facing applications.

One key element that makes TypeScript different from JavaScript, however, is

that you can’t run TypeScript code in a browser or Node, not natively at least. Neither

browsers nor Node understands TypeScript; they only understand JavaScript. So, when

working with TypeScript, there is a pre-execution step: you must compile TypeScript.

One can imagine a day when, perhaps, browsers and Node will speak TypeScript

natively, and no compilation will be necessary, but whether that day comes, it is not this

day! So, for now, TypeScript must be compiled, or transpiled, as it is frequently termed,

into JavaScript for execution.

But here’s where it gets interesting: what do you compile TypeScript to, exactly?

The answer might surprise you:

TypeScript gets compiled to JavaScript!

When TypeScript is compiled to JavaScript, all the TypeScript-y bits are stripped out,

leaving just plain old JavaScript. Data types, for example, are purely a development-time

construct. Once compilation occurs, they are gone. But, because they were there during

development, the compiler will flag type-related errors at that time, rather than having

them be discovered at runtime, which is the case with JavaScript generally.

In addition to types, another big advantage of TypeScript is that it supports more

modern JavaScript language features but can compile them down to older versions of

JavaScript. This means that you can use newer features, such as arrow functions and

async/await, even in browsers that don’t natively support them, because the compiler

produces code that implements them for you in the older JavaScript dialect that the

browser understands. In the last chapter, we talked about Babel, and in a real sense, the

TypeScript compiler (which we’re going to discuss very soon) does the same thing Babel

does in this regard.

Chapter 5 Building a Strong Foundation: TypeScript

89

�Jumping into the Deep End
Now that you have a general idea of what TypeScript is, let’s get right down to business

and see it in action! To do this, we’re going to first take advantage of a facility that you’ll

find on TypeScript’s home page at typescriptlang.org called “the playground.” You’ll

find it at typescriptlang.org/play, and on that playground, you can enter arbitrarily the

TypeScript code provided below and execute it. It’s a great way to experiment with the

language and a handy way for me as an author to give you your first look at TypeScript

before we need to install any tooling for it!

In Figure 5-1, you can see what it should look like after you enter the example code.

In this figure, I’ve executed the code, which you can see on the left. Now, there’s

a couple of things to notice. First, see the red squiggly line underneath the humanName

argument? If you hover over that, it will tell you that humanName implicitly has an any

type. We’ll get to what this means shortly, but for now it’s enough to realize that the

TypeScript playground is examining your code in real time and is pointing out that you

haven’t specified a type for the argument (which may or may not be an error, which is

why you can execute this code despite that being flagged). The critical point is that it

does this before you run the code. That’s the point of types!

However, perhaps the bigger problem related to types is that you’ll notice that the

alert() message doesn’t do what we expect, at least not based on what you’d logically

conclude the point of the sayHi() function is. It’s intended to greet someone by name,

but in this case, we’re passing an object to it. JavaScript doesn’t care of course, there’s

nothing that tells it that humanName really should be a string that contains a person’s

Figure 5-1.  TypeScript in action, on the playground!

Chapter 5 Building a Strong Foundation: TypeScript

http://typescriptlang.org
http://typescriptlang.org/play

90

name, so it just produces an alert() message with the object passed in generically,

which in this case doesn’t give us anything particularly useful and definitely not what we

actually want it to produce.

With TypeScript, though, we can fix this! To do so, we add what’s called a type

annotation to the argument by changing the sayHi() function’s definition to this:

function sayHi(humanName: string) {

The value after the colon is the type annotation, and this is the secret sauce you’ll

see time and again in TypeScript code. With that change made, re-running the example

will result in the red squiggly going away from the humanName argument – because we’re

now telling TypeScript what type we expect it to be – but now, we get a red squiggly

underneath the entire object passed to sayHi(). If you hover over it, you will see the

message “Argument of type ‘{ humanName: string }’ is not assignable to parameter of

type ‘string’.” TypeScript is telling us, in no uncertain terms, that we can’t pass an object

to a function that expects a string. Cool, right?

Of course, if we change the call to sayHi() to

sayHi("Luke Skywalker");

then the alert() shows us exactly what we expect: “Hello, Luke Skywalker!”

A few more things to note about this simple example is that TypeScript, based on

the error message from the object, seems to have known that the value of the humanName

property of the object passed to sayHi() was a string even though we didn’t explicitly

tell it. This implicit typing is called type inference, and TypeScript does it any time you

declare and initialize a variable in one go (which, obviously, works for object properties

like here too). If you declare a variable without initializing it, though, or when a function

argument doesn’t specify a type, then TypeScript assumes a specialized type: any. This

effectively mimics how JavaScript works in that the variable or argument can take a value

of any type at any time.

If you’re thinking that using TypeScript with nothing but type any references would

be kind of silly, then you would be right! As a rule, in TypeScript, you should always

declare your types. In fact, even when declaring and initializing in one statement, it’s

still probably a good idea to declare the type. There may be situations where any makes

sense, but you should explicitly decide that if so (and yes, you can declare a variable of

argument as being of type any expressly).

Chapter 5 Building a Strong Foundation: TypeScript

91

�Beyond the Playground
Now, the playground is a useful thing to have available, but clearly you aren’t going to be

using it to develop your real applications. Instead, you’ll need to be able to compile and

execute TypeScript code on your own machine, and that’s where your new best friend,

tsc – the TypeScript compiler – comes in!

Installing it is simple, using our friend NPM:

npm install typescript

As usual, it’s your choice whether you want to install it locally or globally (remember

that adding the -g argument installs an NPM package globally). Either way, this installs

several TypeScript-related things, but the key thing that we care about here is tsc, the

compiler, which is your one-stop shop for working with TypeScript code. It can act as a

task runner and a bundler and can take the place of Babel, as previously mentioned.

Using it is simplicity itself: all you need to do is execute tsc and tell it what file to

compile by doing

tsc <filename>

Let’s go ahead and take it for a spin! Drop to a command line and navigate to an

empty directory. Install TypeScript and then create a new file named index.html with

the following contents:

<html>

 <head></head>

 <body>

 <script src="app.js"></script>

 </body>

</html>

Now, create a file named app.ts and in it put the code we just executed on the

playground.

Once that’s done, compile it using tsc with this command:

tsc app.ts

After that, load up index.html in your favorite browser, and you should see the

alert() message, just like on the playground.

Chapter 5 Building a Strong Foundation: TypeScript

92

If you look in the directory, you’ll see that an app.js file was created. That’s your

compiled code, which is then loaded by index.html (notice that we do not load app.ts

in index.html because the browser wouldn’t know what to do with it).

Looking at app.js, you can see what tsc has produced from your code:

function sayHi(humanName) {

 alert("Hello, " + humanName + "!");

}

sayHi("Luke Skywalker");

In this simple example, the only real difference is that the type information for

humanName was stripped off, which confirms what I said earlier: types are only for

development time, not runtime.

�Configuring TypeScript Compilation
Now that you’ve seen how to install and use tsc, let’s talk a little bit more about it and

about TypeScript projects.

Usually, your projects will be a bit more complex than just a single file to compile.

Typically, you’ll have multiple .ts files to compile. You could pass all the names on the

command line to tsc, but that will get burdensome in a hurry. Instead, you can create

a file named tsconfig.json that will allow you to define your project a little bit and

configure how tsc works.

You don’t need to write this file by hand, though! The tsc tool comes with a handy

option, -init, that will create a basic tsconfig.json file for you. Go ahead and, in the

same directory as the last section, run

tsc -init

You’ll find a tsconfig.json file has been created. The presence of that file effectively

makes this directory the root of a TypeScript project as far as tsc goes.

One of the first benefits this provides is that now, you can execute tsc without any

arguments, and it will dutifully compile any .ts files in the current directory, as well as

subdirectories. That’s already worth the effort, right?

The tsconfig.json file isn’t required, as you saw earlier, and it has no required

elements in it either. However, it does provide a large number of options to configure

your project. I won’t be going over all of them here, but you can see all available options

online at typescriptlang.org/docs/handbook/tsconfig-json.html.

Chapter 5 Building a Strong Foundation: TypeScript

https://www.typescriptlang.org/docs/handbook/tsconfig-json.html

93

I will, however, introduce options as needed throughout the remainder of these

chapters, but for the most part, default options will be used. In fact, when you run that

init comment, only the following options are enabled (with their default value shown in

parentheses):

•	 target (es5) – Specifies the ECMAScript (JavaScript) target version

that the generated JavaScript will adhere to: es3, es5, es2015, es2016,

es2017, es2018, es2019, or esnext

•	 module (commonjs) – Specifies the module loader system that will

be used (modules and loaders will be discussed in the next chapter):

none, commonjs, amd, system, umd, es2015, or esnext

•	 strict (true) – Enables all strict type-checking options

•	 esModuleInterop (true) – Enables generation of interoperability

code to allow for interoperability between CommonJS and ES

modules via the creation of namespace objects for all imports

As I mentioned, by default, tsc will compile all files in the current directory and

subdirectories (if necessary) if a tsconfig.json file is present. If you know you need it to

skip specific files though, you can add the exclude element, and then list the files not to

compile. You can also explicitly include things with the files element. These are probably

two of the most commonly used additional options, hence why I’m mentioning them here.

�The Nitty Gritty: Types
Now, let’s get to the main event in TypeScript and discuss the various types that it

supports. As previously mentioned, types are declared with the :<type> syntax. This can

be in a function declaration to type the arguments:

function sayHi(humanName: string) {

You can also declare the type a function returns:

function concatStrings(str1: string, str2: string): string { }

It can also be used in a variable declaration of course:

let a: string = "Hello";

Chapter 5 Building a Strong Foundation: TypeScript

94

In all cases, it’s just a colon, followed by one of the supported types, which we’ll look

at now.

�String
You’ve already seen the string type a few times, and it’s no different from the normal

string in JavaScript:

const bestShowEver = "Babylon 5";

As mentioned earlier, TypeScript automatically infers the type of bestShowEver as

string, which means this will result in a compiler error:

bestShowEver = 42;

But also, as I said before, it’s better to (nearly) always declare the type:

const bestShowEver: string = "Babylon 5";

Now there are no games to be played: bestShowEver is a string, and that’s the end of it!

�Number
TypeScript offers a single number type. There are no integer vs. floating-pointing values in

TypeScript; they’re all simply numbers. So you can do

const a: number = 42;

And you can also do

const b: number = 3.14;

And, of course, you’ll get an error if you try to do either of these:

a = "42";

b = "3.14";

As with JavaScript, TypeScript allows for hexadecimal and octal literals, though the

way you specify octal is different than JavaScript:

const a: number = 0xf00d;

const b: number = 0o744; // Zero followed by lower-case o

Chapter 5 Building a Strong Foundation: TypeScript

95

�Boolean
The TypeScript boolean type is as simple as it gets; it has a value of true or false and

nothing else:

const isThisTheBestBookEver: boolean = true;

Note that even though 0 and 1 are oftentimes interchangeable for boolean values and

will be evaluated as boolean values in logic statements in at least some cases, TypeScript

does not allow it:

const isThisTheBestBookEver: boolean = 1; // Compiler error

This extra rigidity helps avoid some tricky bugs, so let’s all say a hearty “thank you” to

TypeScript for saving us from ourselves!

�Any
The any type, which I mentioned earlier, is the type that a variable, argument, or function

return will have if you don’t specify a type explicitly:

let accountBalance;

accountBalance = 15000;

accountBalance = "15000";

Either of those assignments will be okay with tsc because TypeScript will infer type

any for the variable.

Of course, you can explicitly declare it to be any as well:

let food: any = "pizza";

food = 123; // This is now okay

Even if you’re using the any type (which you should consider carefully if you think

you need to, because often you don’t really want to use it!), it’s still probably a good idea

to always define it, so that anyone reading your code knows you intended it to be any.

�Arrays
TypeScript supports arrays, of course, what good language doesn’t? Just like with

variables, if you don’t specify a type, the type will be inferred from the initialization values:

const pets = ["Belle", "Bubbles"];

Chapter 5 Building a Strong Foundation: TypeScript

96

If you initialized an empty array, or had to initialization at all, then type any will be

inferred, just like with variables.

This pets array becomes an array of strings, so you can’t later do

pets = [42];

TypeScript will complain about that because the pets array can only hold strings now.

You can also explicitly type an array with just subtly different syntax than for scalar

variables:

const pets: string[] = ["Belle", "Bubbles"];

You still use the :<type> syntax, but the array [] notation must be appended after

the type.

Now, what if you have an array where you really do want to allow for strings and

numbers, and perhaps other types? Well, this is a case where that any type may well be

exactly what you want to use:

const pets: any[] = ["Belle", 42];

But, again, consider this carefully! Is that really what you want to do, or might it be

better to have two separate arrays? Only you can decide, I’m just suggesting that think it

through either way.

�Tuples
A tuple is just an array with a specific number of elements of specific types. In plain

JavaScript, that might look like

const authors = ["Frank", 46];

But, critically, there is no enforcement of anything in JavaScript. You could shove a

number as the first element and even have a third element in the array. In TypeScript

though, that’s all enforced, and the way it’s declared is with slightly different syntax:

const authors: [string, number] = ["Frank", 46];

Here, we’re saying that the authors array must have two elements, and the first must

be a string, and the second must be a number. As a result, this will not compile:

const authors: [string, number] = [46, "Frank"];

Chapter 5 Building a Strong Foundation: TypeScript

97

The types of the elements are wrong here (they’re reversed). When you then access

an element, say authors[1], the correct type will be returned, a string in that case.

Since it’s a string, you could call substr() on it, for example, but trying to do the same

on the element returned by authors[0] would result in an error since a number does not

have that method available. Note too that accessing an element outside the set of known

indices results in an error, so authors[2] will result in an error.

�Enums
While JavaScript offers a string, a boolean, and a number type (despite it being a loosely-

typed language, the types do still technically exist), enums are something that JavaScript

does not natively offer; they are purely a TypeScript construct. Enums serve to make

specific sequences of numbers more human-readable and expressive. Take, for example,

this plain JavaScript code:

const Pizza = 0;

const FriedChicken = 1;

const IceCream = 2;

It’s nice that we don’t need to remember that a value of 1 means fried chicken

in our, I guess, horribly unhealthy food truck sales system – we can use the variable

FriedChicken anywhere we need it – but it’s still kind of ugly that way to a lot of

developers. With enums in TypeScript, which you declare with the new enum keyword,

you can do it more elegantly:

enum Food { Pizza, FriedChicken, IceCream };

let myFavoriteFood: Food.FriedChicken;

alert(myFavoriteFood);

That alert() call will show one because TypeScript begins assigning numbers to the

named elements in the Food enum starting from zero. That’s the value Pizza gets. It then

increments by one for each subsequent value, so FriedChicken gets assigned one, and

IceCream gets assigned two (and so on, if we added more foods).

You can assign specific values if you wish too, either from the first element onward or

anywhere in between. For example:

enum Food { Pizza, FriedChicken = 500, IceCream };

let myFavoriteFood: Food.FriedChicken;

alert(myFavoriteFood);

Chapter 5 Building a Strong Foundation: TypeScript

98

Now, the value shown will be 500. But Food.Pizza would still have a value of zero

since we didn’t assign it a specific value.

Now, here’s a good mystery for you: without trying it on the playground, what value

will IceCream have? Does it have two, maybe, since TypeScript keeps numbering from

where it left off? Or does it perhaps restart numbering, so assigns it zero?

No, it gets a value of 501. Anywhere you explicitly define a value, TypeScript will keep

numbering subsequent items, by one, from that value on.

�Function
TypeScript lets you declare a function type. This is a way of saying that a variable must

reference a function with a particular signature. For example:

let myMathFunction: (num1: number, num2: number) => string;

Now, myMathFunction can only be assigned a value that is a function with two

number arguments, and that returns a string. So, this is okay:

function add(n1: number, n2: number): string {

 return "" + n1 + n2;

}

myMathFunction = add;

But this is not:

function multiply(a: number, b: number): number {

 return a * b;

}

myMathFunction = multiply;

Even though the type being returned by multiply() seems to be correct –

multiplying two numbers will yield a number – the contract that was defined for the

myMathFunction variable says any function it references must return a string, whether

that makes sense or not. Note that argument names don’t matter, only types do.

Chapter 5 Building a Strong Foundation: TypeScript

99

�Object
Earlier, you saw an error message that seemed to indicate that TypeScript was performing

type inference on object properties. As it happens, that’s precisely what it does:

let person = {

 firstName : "John", lastName : "Sheridan", age : 52

};

Here, TypeScript infers the type of the object, including its properties, and this is

termed an object type. That means that from this point on, person may only reference an

object with three properties, firstName, lastName, and age, and they must have the types

string, string, and number, respectively. Even trying to assign person = { } later will

result in an error because TypeScript will see that as the property types not matching.

Similarly, trying to do person = { a :"John", b : "Sheridan", age : 52 } will

be an error because, in contrast to function types, with object types the property names

do matter (it’s only logical: object properties can be in any order, so there’s no way for

TypeScript to reliably determine the types except by name).

Of course, you can also be more explicit if you wish:

let person: {

 firstName: string, lastName: string, age: number

} = {

 firstName : "John", lastName : "Sheridan", age : 52

};

Note that the properties and values within the object definition do not have types

defined. That would be redundant as they are already defined in the object type definition.

�Null, Void, and Undefined
Three other types are, conceptually, related to one another, so I’ve grouped them

together here. Let’s start with null:

let favoriteCar = "Camaro";

favoriteCar = null;

Chapter 5 Building a Strong Foundation: TypeScript

100

Yes, TypeScript has a null type that is different from other “null-like” types.

Interestingly, null is considered subtypes of all other types, which means you can assign

them to anything:

let myFavoriteNumber: number = null;

let myFavoriteString: string = null;

That is okay, as would a null assignment to a variable of any other type.

In a similar vein as null is undefined:

let favoriteCar;

Here, favoriteCar will have a value of undefined, which is different than null (a

comparison of a variable with a value of null and another with a value of undefined will

not evaluate as equal). But, like null, undefined is taken to be a subtype of every other

type, so similarly you can do a literal assignment with it:

let favoriteCar = undefined;

But what if you do want to ensure a variable is never null? In that case, tsconfig.

json is your friend! Under the compilerOptions section, add a key strictNullChecks

and give it a value of true. With that done, the compiler will complain if you assign null

or undefined to any variable except if it is declared as type any.

Note  If you want to have your mind blown, you could do let
myFavoriteNumber: null = null;. This would mean you can only assign
the value null to myFavoriteNumber. Similarly, let myFavoriteString:
undefined = undefined; will only be allowed to have undefined assigned
to it. It’s probably not useful in any way, but it’s a curious side effect of these two
types. Finally, doing let favoriteCar = null; will result in favoriteCar
having an inferred type of null, not any like you might expect, so effectively this
variable can only ever be assigned a value of null!

Finally, the void type is conceptually like the opposite of any: it’s like having no type

at all! The void type is typically only seen as the return type of a function, to indicate the

function returns no value. While you declare a variable as type void, you can only ever

assign a value of null to it (and then, only if strictNullChecks isn’t enabled). Note that

Chapter 5 Building a Strong Foundation: TypeScript

101

TypeScript will figure out the return type by default, so most of the time, it isn’t necessary

to specify void, though as long as you know that’s correct, then it’s probably better to be

explicit.

�Custom Type Aliases
Let’s say you want to create an object type to represent a person. You saw that earlier:

let person = {

 firstName : "John", lastName : "Sheridan", age : 52

};

That’s all well and good, but what happens when you need to create two people? In

that situation, you’re going to write something like this:

let person1 = {

 firstName : "John", lastName : "Sheridan", age : 52

};

let person2 = {

 firstName : "Michael", lastName : "Garibaldi", age : 53

};

As you can imagine, that’s not a great way to do things. As a rule, developers like to

avoid duplicate code like that. Instead, TypeScript offers custom type aliases, which lets

you provide a custom name for a type. To do so, you use the new type keyword, like so:

type PersonType = {

 firstName: string, lastName: string, age: number

};

From then on, you can use it like any other type:

let person1: PersonType = {

 firstName : "John", lastName : "Sheridan", age : 52

};

let person2: PersonType = {

 firstName : "Michael", lastName : "Garibaldi", age : 53 };

You can choose any name you like; it doesn’t have to have type in it as it does here.

That way, if you want to change the type definition, you can do it in just one place.

Chapter 5 Building a Strong Foundation: TypeScript

102

You can even alias native types if you want:

type MyAwesomeString = string;

let str: MyAwesomeString = "test";

There probably isn’t a whole lot of reason to do that, but you can (some people use it

as a form of documentation in effect, but I personally would counsel against doing so).

�Union Types
Sometimes, you’ll have a situation where you want a variable to be able to hold one of

several different types, or you want an argument to accept one of various kinds, but you

don’t want to use any. In that case, union types are the answer.

Take this code, for example:

let myAge: any;

myAge = 46;

myAge = "46";

It might be okay that myAge can store a number or a string because maybe the rest of

your code can handle either. Maybe you’ve got some code like this:

if (typeof myAge == "string") {

 alert(parseInt(myAge) * 2);

} else if (typeof myVar == "number") {

 alert(myAge * 2);

}

But what if you tried to do this?

myAge = true;

Unfortunately, that will be allowed because myAge is of type any, and being able

to assign a boolean to it would be bad since our code doesn’t handle that (plus, for a

variable that, presumably, stores a person’s age, a boolean doesn’t make sense).

So, instead, we can use a union type, which is denoted with the pipe character:

let myAge: number | string;

myAge = 46;

myAge = "46";

myAge = true;

Chapter 5 Building a Strong Foundation: TypeScript

103

You can read that as saying that myAge can be of type number or type string.

Therefore, the first two assignment statements will be okay, but the third, trying to assign

a boolean, will result in a compiler error.

�TypeScript == ES6 Features for “Free”!
When you compile a TypeScript file with tsc, it’s really doing a transpilation. It’s

“compiling” from TypeScript to JavaScript. Earlier, I said that tsc does much the

same thing as Babel does, and that’s true in this regard. The implication of this is that

TypeScript supports most ES6 features. It doesn’t support all of them, though, so it’s

good to know which you should avoid. Fortunately, there is a handy chart you can use

here: kangax.github.io/compat-table/es6.

Let’s not be negative though, let’s talk about some of the features you can use! Note

that the assumption is that you already have some JavaScript knowledge, so I’m not

going to cover every last thing in intricate detail, but certainly, these are probably the

most important things that you should be aware of.

�The let and const Keywords
First, as all the example code I’ve shown so far do, you can freely use the let and const

keywords (let for variables you want to be able to change the value of later, const for

those you don’t). Yes, you can still use the var keyword too, but it’s suggested you don’t

since both let and const have block scope rather than var’s global scope, which helps

avoid a lot of insidious bugs.

�Block Scope
Speaking of block scope, that’s another important one! In JavaScript, variables for a long

time could only be declared with var. Such variables have function scope (or global

scope when declared outside of any function). That means that you can do some “weird”

things like this:

function test() {

 if (true) {

 var greeting = "hello";

 }

Chapter 5 Building a Strong Foundation: TypeScript

https://kangax.github.io/compat-table/es6/

104

 alert(greeting);

}

test();

Most people see it as a bit weird that you can alert(greeting) there and have it

work despite greeting being declared inside the if block. Well, with let, that problem

is solved! That same code, by just changing var to let, results in greeting only being

available inside the block it’s declared in, the if statement in this case. If you enter

that on the TypeScript playground, it will even flag it as an error. This helps avoid some

interesting problems that can crop up when using var. The same is true for const, but

with that you get the addition of not being able to change the variable’s value later. As a

general rule, you should use const whenever possible, or let when it’s not, and avoid

var unless you have a specific reason to use it.

�Arrow Functions
With all the examples shown so far, I’ve used the standard function definition format

that uses the function keyword. If, like the Dude from The Big Lebowski, you’re into the

whole brevity thing though, you can use arrow functions instead:

const test = (name) => {

 alert(`Hello, ${name}`);

}

test("Jack");

Arrow functions allow you to skip typing the function keyword all the time. They can

be even shorter if the function returns a value:

const addNums = (a, b) => a + b;

alert(addNums(2, 3));

Here, we don’t need to type the function keyword, and we don’t even need to type

the return keyword!

But we’re talking about TypeScript, and yet there are no types here; this is just plain

JavaScript. Not to worry, you can type things as well with arrow functions:

const addNums = (a: number, b: number): number => a + b;

alert(addNums(2, 3));

Chapter 5 Building a Strong Foundation: TypeScript

105

But brevity isn’t the only benefit of arrow functions, and maybe not even the

biggest. That distinction probably goes to how the keyword this is handled. In plain

JavaScript, what this points to can vary depending on how functions are called. With

arrow functions, though, lexical scope is used, which means that whatever contains the

function is what this will point to at execution time. If the function is in global scope,

then this will point to the window object (assuming we’re executing in a browser). If the

function is inside an object, then this will point to that object. It’s simple and consistent,

and TypeScript makes it available to you!

�Template Literals
Something worth noting in that last example is another ES6 feature that you can use in

TypeScript: template literals. The backtick ` character denotes a template literal string,

and within it you can insert any valid JavaScript (or TypeScript) expression by wrapping

it in ${}. Note that I said expression there because while you can insert variables as

shown, you can do arbitrarily complex things:

alert(`Hello, ${name.toUpperCase().substr(2)}`);

Another great thing about template literals is that they can span multiple lines of

source code:

alert(`Hello,

 your name is

 ${name}

`);

Try that with a plain old string, and you’ll face syntax errors, but with template

literals, it works just fine.

�Default Parameters
With TypeScript you also can use default parameter values. That means that you can do

this:

const multNums = (a: number, b: number = 10): number => a * b;

alert(multNums(3));

Chapter 5 Building a Strong Foundation: TypeScript

106

Here, we’re saying that if the second number isn’t supplied when multNums() is

called, then it should have the default value 10. Hence, we get 30 in the alert() when

this is executed. This is a simple thing that winds up saving you a lot of time and extra

code, so it’s truly nice to have in TypeScript too.

�Spread and Rest (and as an Added Bonus: Optional
Arguments)
The spread operator, which is three periods together, allows an iterable item, things like

arrays or strings, to be expanded in places where zero or more arguments (in the case of

function calls) or elements (for array literals) are expected, or an object expression to be

expanded in places where zero or more key-value pairs (for object literals) are expected.

As an example:

const addNums = (a: number, b: number): number => a + b;

const nums: number[] = [5, 6];

alert(addNums(...nums));

The idea here is that we want to “spread” the values in the nums array into the

arguments passed to addNums. This is in contrast to writing something like

alert(addNums(nums[0], nums[1]));

However, if you try that code, you’ll find that there is an error on the ...nums spread

argument passed to addNums() that says “Expected 2 arguments, but got 0 or more”. The

issue here is that because there’s a variable number of possible arguments, TypeScript

can’t make a proper determination about what to do. Fortunately, there are at least two

ways to fix this. First, you could do this:

const addNums = (a?: number, b?: number): number => a + b;

const nums: number[] = [5, 6];

alert(addNums(...nums));

See those question marks after the arguments of the addNums() function? Those

are how you indicate optional arguments in TypeScript. Doing that tells TypeScript that

the argument may or may not be present. In this case, we’re saying that both can be

optional. Now, that doesn’t make much sense from the perspective of what the function

does, but it does result in TypeScript not flagging this as an error. Note that when using

Chapter 5 Building a Strong Foundation: TypeScript

107

optional arguments, they must always come last, meaning you can’t do (a?: number,

b: number) because a required argument can’t come after an optional one.

However, note that if you pass in three or more values in the nums array, only the first

two are added. The function works the same as it did before; the optional arguments

only serve to get around the syntax error situation.

The other way you could fix this is by the use of the rest operator, which is simply the

spread operator in a different place:

const addNums = (...a: number[]): number =>

 a.reduce((acc, val) => acc + val);

const nums: number[] = [5, 6];

alert(addNums(...nums));

Any argument prefixed with the … operator means that zero or more arguments can

be in that place. The result is that you’ll get an array inside the function, named as the

argument is named, that contains all passed in values in that place. As with optional

arguments, rest arguments must come last. With this approach, given we have an array,

we can use the reduce() method to add up all the numbers passed in. In contrast to the

optional argument approach, this solution results in all the numbers being added, no

matter how many are passed in, so it is functionally different, and therefore, which way

you go depends on what you’re trying to do.

�Destructuring
TypeScript supports two forms of destructuring: object and array. And while knowing

that is great, knowing what destructuring is would be even better, no?

Consider the following object:

const person = {

 firstName : "Billy", lastName : "Joel", age : 70

};

Now, if you want to grab the values out of that object, you might do

const firstName = person.firstName;

const lastName = person.lastName;

const age = person.age;

Chapter 5 Building a Strong Foundation: TypeScript

108

That’ll work, but it’s an awful lot of typing! With destructuring, you can get at that

data more concisely:

const { firstName, lastName, age } = person;

Now, you’ll have three separate variables named firstName, lastName, and age, and

their values will be taken from the person object, because TypeScript (really JavaScript)

knows, by virtue of you using the curly braces around the variables, the names of the

properties in the object you want to pull out and does so for you. Sweet!

Arrays can be destructured in the same way:

const vals = ["Billy", "Joel", 70];

const [firstName, lastName, age] = vals;

alert(firstName);

alert(lastName);

alert(age);

Here, of course, it’s based on order: TypeScript is essentially just doing

firstName=vals[0] and lastName=vals[1] and age=vals[2] for you under the covers.

And, as a bonus, for your next job interview, if you get asked the question of how

to swap the value of two variables without using a third, here’s an answer using array

destructuring in TypeScript:

let x = 1;

let y = 2;

[x, y] = [y, x];

alert(x); // 2

alert(y); // 1

Here, the array being destructured is created on the fly on the right-hand side of the

equals, and then it’s just array destructuring as described in the preceding text. “You’re

welcome” in advance for when you ace that interview and make a ton of money at your

new job!

Chapter 5 Building a Strong Foundation: TypeScript

109

�Classes
The final topic I want to cover in this chapter is classes. JavaScript, at least of the

ECMAScript 5 and higher variety, supports classes, but TypeScript alters the syntax a bit

and adds a fair bit of – wait for it – class! It really classes the place up is what I’m saying! (I

know, I know, terrible dad joke!)

�Properties

First, when it comes to properties, rather than having to declare them in a constructor,

you can do them a little more elegantly. Instead of this

class Planet {

 constructor() {

 this.name = null;

 this.mass = null;

 }

}

you can instead do this:

class Planet {

 name: string;

 mass: number;

}

It may not be a huge difference, but it makes JavaScript look a lot more like other

object-oriented languages syntactically.

As you would expect, you can declare your types for the properties like anywhere else

in TypeScript as you see there, but now, you don’t need to embed them in a constructor.

You, of course, still can have a constructor, and that looks the same as in plain JavaScript,

but your property declarations are external to the constructor now, if you supply one at all.

Naturally, if you want to set property values at construction time, then you can still

do that in the constructor:

class Planet {

 name: string;

 mass: number;

Chapter 5 Building a Strong Foundation: TypeScript

110

 constructor(inName: string, inMass: number) {

 this.name = inName;

 this.mass = inMass;

 }

}

�Member Visibility

TypeScript adds the notion of member visibility to classes. With plain JavaScript classes,

all members are public, that is, available to all other code (there are some tricks you

can play to simulate private members so that they are only available to the code of the

class itself, but it’s not something offered by the language intrinsically). As with plain

JavaScript, TypeScript’s default visibility is public, but now you can have both private

and protected members:

class Planet {

 private name: string = "none";

 protected mass: number;

 constructor(inName: string, inMass: number) {

 this.name = inName;

 this.mass = inMass;

 }

 public printName() {

 alert(this.name);

 }

}

Here, the name property will only be accessible by code within this class. The mass

property will be accessible by code within this class as well as by code in any class that

extends this one. Putting public before the printName() method is optional since that’s

the default, but you definitely can do so if you want to be explicit. Note too that, as I’ve

done for name, you can assign a value as part of the declaration if you wish.

Chapter 5 Building a Strong Foundation: TypeScript

111

�Inheritance

When I described protected, I said that it allows the member to be accessible to code

within the class and to code in classes that extend it. That provides for inheritance, which

is another capability that TypeScript adds (or, more precisely, augments). Let’s create a

specific planet:

class Jupiter extends Planet {

 private colorBands: boolean = true;

 constructor() {

 super("Jupiter", 1234);

 }

}

Now we can do

let j: Jupiter = new Jupiter();

Now we’ve got an object of type Jupiter, which extends from the Planet class. A few

things of note here. First, members can be added to the subclass, as with the colorBands

property. Second, calling j.printName() works as expected, because printName() has

public visibility. But, if you try to do alert(j.name), then you’ll find that you get an

error from TypeScript saying that “Property ‘name’ is private and only accessible within

class ‘Planet’.” The same is true if you try to alert(j.mass).

However, understand that while j.printName() will print Jupiter’s name, if you try

to put a method in the Jupiter class itself that accesses name, that won’t work. Private

members are not inherited, so while the code of the Planet class knows about name and

can work with it, the code in the Jupiter class does not and so can’t do anything with it

(you could, of course, call methods in the base class from the child class to work with it

though).

Another thing of note is that if a subclass has a constructor, as Jupiter does, then it

must call the superclass’s constructor via the super() reference.

An interesting point to understand is that you can override anything in the

superclass in the child class, as you can in any good object-oriented language. You must

be aware, though, that for properties, those defined in the body of the child class will

override any value passed into the constructor. So, if you add protected mass: number

= 5555; to the Jupiter class, then the value of its mass property will be 5555 no matter

what you pass into the constructor.

Chapter 5 Building a Strong Foundation: TypeScript

http://j.name

112

With TypeScript, you can override members in the parent class as in most other

object-oriented languages, and that works as you’d expect. However, TypeScript doesn’t

support method overloading in the way most people expect. For example, this won’t

work in the Planet class:

public calcSuperMass(): number {

 return this.mass * 2;

}

public calcSuperMass(): string {

 return "" + this.mass * 2;

}

The compiler will complain that you have a duplicate function implementation even

though the return types are different. Even a different argument list isn’t enough:

public calcSuperMass(): number {

 return this.mass * 2;

}

public calcSuperMass(a: number): string {

 return "" + this.mass * a;

}

That still won’t be allowed for the same reason. Now, all hope is not lost, though: you

can, in effect, achieve overloading by using optional parameters or default parameters.

So, you could do either of the following:

public calcSuperMass(massMultiple?: number): number {

 if (massMultiple) {

 return this.mass * massMultiple;

 }

 return this.mass * 2;

}

// Or:

public calcSuperMass(massMultiple: number = 2): number {

 return this.mass * massMultiple;

}

Chapter 5 Building a Strong Foundation: TypeScript

113

In the first approach, since massMultiple is marked optional, you can effectively

have calcSuperMass() work whether you pass in an argument or not, at the cost of the

branching inside the function. In the second approach, you can skip that logic because

now a has a default value even if you don’t pass it.

I would suggest the second is the better way, but either will achieve the goal. Now, if

you instead want to overload the type of an argument, you could use a union type:

public calcSuperMass(a: number | string): number {

 if (typeof a === "number") {

 return this.mass * a;

 } else {

 return this.mass * parseInt(a);

 }

}

That, too, will work. However, it’s probably worse than either of the other two since

you are in a sense (kinda/sorta/maybe) going around the type system. But, while it

probably doesn’t make much sense in this instance, you certainly could have situations

where you do want a single function to handle multiple types, in which case this

approach gives you a way to do overloading like you want.

�Getters and Setters

It is generally considered an excellent pattern to make data members in classes private

and then, when necessary, provide outside access to them via getter methods (or

accessor methods). Similarly, allowing private members to be set through setter (or

mutator) methods is also typically considered good form. Especially for setters, this

enables you to have some code that checks incoming values to ensure they are valid in

whatever way makes sense for your application.

Because this is so common a pattern, TypeScript offers syntax specifically for these

types of methods:

class Planet {

 private _name: string = "No name set";

 get name() {

 return `This planet's name is '${this._name}'.`;

 }

Chapter 5 Building a Strong Foundation: TypeScript

114

 set name(inName: string) {

 if (inName === "Pluto") {

 this._name = "Not a planet";

 } else {

 this._name = inName;

 }

 }

}

let p: Planet = new Planet();

alert(p.name); // 'No name set'.

p.name = "Pluto";

alert(p.name); // 'Not a planet' (sorry, little guy!)

p.name = "Venus";

alert(p.name); // 'Venus'

The get and set keywords prefixing a method indicate a getter and setter method,

respectively. What this does for you is it allows you to access the member by the name of

the method. In other words, p.name is the same as executing p.name() would be, but you

can’t call p.name() because TypeScript will tell you that “This expression is not callable.

Type ‘String’ has no call signatures.”, which is just a fancy way of saying that getters and

setters aren’t methods in the usual sense, but they do execute when you access or set the

property that matches the method’s name. Note too the use of the _name identifier for

the actual property name. TypeScript doesn’t require the underscore – you can use any

name you wish – but the key point is that the getter and setter method names cannot be

the same as that of the private property they access, and prefixing with an underscore is

a popular choice to ensure they aren’t the same but are still related in some logical way.

Also, worth noting is that you can make read-only properties by only supplying

a getter. Another way to achieve this is by prefixing the property with the readonly

keyword:

class Planet {

 readonly name: string = "No name set";

}

let p: Planet = new Planet();

alert(p.name); // Okay

p.name = "Neptune"; // Error

Chapter 5 Building a Strong Foundation: TypeScript

http://p.name
http://p.name
http://p.name

115

Remember, name will be public by default, which means you normally can do p.name

= "Neptune". But, with readonly before it like that, tsc will give an error on that line. This

is a good choice if you have properties that you do want accessible, but you know can

never be changed by outside code since it will save you from having to provide even a

getter. As with much of newer JavaScript and TypeScript, saving a little typing appears to

be the primary goal sometimes!

�Static Members

TypeScript classes also provide for static members, both properties and methods:

xxx

class Planet {

 static theBorgLiveHere: boolean = true;

}

alert(Planet.theBorgLiveHere); // true

Notice that, in contrast to all the properties and methods you’ve seen so far that are

tied to instances of a class and are thus called instance members, we can access the value

of theBorgLiveHere without an instance of Planet being created first. That’s the very

definition of static, and it’s just that easy with TypeScript!

�Abstract Classes

The final topic related to classes to discuss is abstract classes. An abstract class is simply

one that cannot itself be instantiated. It is always meant to be a base class that others

extend from. They serve a similar function as interfaces, a topic we’ll look at in the next

chapter, but the primary difference is that an abstract class can provide some amount of

implementation for methods while an interface cannot.

So, by way of example:

abstract class BasePlanet {

 name: string;

 radius: number;

 constructor(inName: string, inRadius: number) {

 this.name = inName;

 this.radius = inRadius;

 }

Chapter 5 Building a Strong Foundation: TypeScript

http://p.name

116

 abstract collapseToBlackHole(inMoreMass: number): void;

 calcDiameter() {

 return this.radius * 2;

 }

}

Given this class, with the abstract keyword before the class keyword indicating this

is an abstract class, we can never have an instance of BasePlanet. Instead, we can only

have, perhaps, Earth instances:

class Earth extends BasePlanet {

 collapseToBlackHole(inAdditionalMass: number) {

 // Perform physics-breaking 2001-like monolith magic here

 }

}

The other thing to note is that while BasePlanet implements calcDiameter() –

because calculating the diameter of a planet from its radius is the same for all

planets (well, basically the same; this is a book about programming after all, not

astrophysics, so we can ignore some intricacies I think!) – it does not implement

collapseToBlackHole(). The declaration of that method inBasePlanet is declared

abstract, just like that class, which is a thing you can totally do! And besides, it has

no function body, so it wouldn’t do much even if that were syntactically allowed. That

means that an extending class must implement it, as the Earth class does (and, again,

since Stephen Hawking is not here to correct us – rest in peace, good sir – we’ll ignore the

fact that collapsing any body to a black hole essentially comes down to enough mass in

a small enough diameter, so you probably wouldn’t need each child class to implement

that method either). This is an excellent way to “push” the common functionality into

a base class while still ensuring that an extending class implements those things that it

really must implement to be a valid instance of the base class in a logical sense.

�Summary
In this chapter, you got your first look at TypeScript. You got some historical perspective

and then saw some of the biggest things it adds to JavaScript, including types (obviously!),

ES6 features like arrow functions, template literals, and classes. You learned how to

compile TypeScript to JavaScript and a little about how to configure that compilation.

Chapter 5 Building a Strong Foundation: TypeScript

117

In the next chapter, we’ll look at more of what TypeScript brings to the table,

including concepts like namespaces, modules, interfaces, decorators, and a bit about

debugging. Once through this chapter and the next, you’ll have the foundational

knowledge about TypeScript on which we can begin to build some projects, along with

Node, React, and a few other tools. But let’s not put the cart before the horse. Jump over

to the next chapter to continue on with TypeScript!

Chapter 5 Building a Strong Foundation: TypeScript

119
© Frank Zammetti 2020
F. Zammetti, Modern Full-Stack Development, https://doi.org/10.1007/978-1-4842-5738-8_6

CHAPTER 6

A Few More Words:
Advanced TypeScript
In the last chapter, we started looking at TypeScript as a replacement for JavaScript in

our projects (though, of course, you now know that it’s not actually replacing JavaScript

at all, it’s just enhancing it significantly). Now it’s time to turn the dial up to eleven and

explore some other aspects of TypeScript.

The title of this chapter includes the word “advanced” in it, though whether the

things in this chapter are especially advanced or not as people typically mean the

word is up for debate. It’s probably more accurate to say this chapter is just covering

some additional TypeScript topics which aren’t necessarily more advanced than the

others from the previous chapter. I’ll also include some extra things that are specific to

TypeScript and which aren’t found (directly, at least) in JavaScript.

Please note that all the code in this chapter is meant to be executed in the

playground. You certainly can compile it with tsc, but to run it, you’ll need an HTML file

to load it. The playground is doing all that for you, so for quick, small things like are in

this chapter, it’s easier just to use the playground.

�Interfaces
Interfaces offer a way to define “contracts” within your code or for code that must

interface with your code to follow. While types by themselves do this to some degree,

interfaces take the concept to a much greater extent and provide much more power to

you as a developer.

120

�Argument/Object Interfaces
To begin our discussion of interfaces in TypeScript, let’s first look at a simple TypeScript

example:

function greet(person: any) {

 alert(`Hello, ${person.firstName}`);

}

const person = { firstName : "Frank" };

greet(person);

That, of course, will alert “Hello, Frank” at runtime. But if person didn't have a

firstName property, then you would instead see “Hello, undefined”. That’s not even a

TypeScript thing, that’s just basic JavaScript.

Situations like these are where interfaces come in: that act as a contract that your

code must adhere to in order to avoid such situations. Let’s modify that example by

creating an interface:

function greet(person: { firstName: string }) {

 alert(`Hello, ${person.firstName}`);

}

const person = { name : "Frank" };

greet(person);

The interface is defined directly inline in the argument list of the greet() function.

Rather than naming a type for the person argument, we instead provide an object, and

within that object, we list the properties and their types that the object must have. With

that in place, the call to greet() will result in a compiler error since the object passed

to greet() here doesn't have the firstName property, it has a name property, which is

wrong according to the contract defined by the interface. That proves that TypeScript is

performing type checking against the defined interface.

Now, it should be evident that defining the interface “inline” like that probably isn’t

the best way to do things. If we had another function that we wanted to require the same

contract, we’d need to duplicate the interface in two places. TypeScript, as I’m sure you

can guess, gives us a way to define the interface separate from its usage:

interface IPerson {

 firstName: string;

};

Chapter 6 A Few More Words: Advanced TypeScript

121

The name of the interface can be anything you wish, but I like to put a capital I in

front of it like here so that I can at a glance differentiate it as an interface from, say, a class

name.

Now, we can use that interface in the same way as when it was defined inline:

function greet(person: IPerson) {

 alert(`Hello, ${person.firstName}`);

}

function greetLouder(person: IPerson) {

 alert(`HELLO, ${person.firstName}!!!!`);

}

const person = { firstName : "Frank", hairColor : "Black" };

greet(person);

greetLouder(person);

Here, take note that the object you pass to greet() can have other properties not

named in the interface. That’s fine. It simply must have those defined by the interface,

though, or the contract isn’t met.

Somewhat curiously, if you pass an object literal, in that case you can only specify

properties that are in the interface. Otherwise, you'll get a compiler error. In other words,

while the previous code works, this will not:

function greet(person: IPerson) {

 alert(`Hello, ${person.firstName}`);

}

function greetLouder(person: IPerson) {

 alert(`HELLO, ${person.firstName}!!!!`);

}

greet({ firstName : "Frank", hairColor : "Black" });

Chapter 6 A Few More Words: Advanced TypeScript

122

You can either define the object separately, as in the first example, or you can use

optional parameters to avoid the problem. If you add a ? after the property’s name in the

interface, then that means it's optional, and now it will work:

interface IPerson {

 firstName: string;

 age?: number;

};

function greet(person: IPerson) {

 alert(`Hello, ${person.firstName}`);

}

greet({ firstName : "Frank" }); // Okay

�Methods in Interfaces
Interfaces aren’t just about object properties though; you can define methods in

interfaces as well:

interface IPerson {

 firstName: string;

 getGreeting(lastName: string): string;

};

const person = {

 firstName : "Frank",

 getGreeting(lastName: string) {

 return `Hello, ${this.firstName} ${lastName}`;

 }

};

function greet(person: IPerson) {

 alert(person.getGreeting("Zammetti"));

}

greet(person);

Chapter 6 A Few More Words: Advanced TypeScript

123

The result is that when defining an object that will be passed to a function that

demands an interface, the methods listed in the interface must be implemented in the

object, same as the properties, as getGreeting() is implemented in this one.

�Interfaces and Classes
In most object-oriented languages that provide classes and interfaces, classes can

implement interfaces to ensure they provide a given contract, and TypeScript is no

different:

interface IPerson {

 firstName: string;

 greet(): void;

};

class Person implements IPerson {

 firstName: string;

 constructor(inFirstName: string) {

 this.firstName = inFirstName;

 }

 greet() {

 alert(`Hello, ${this.firstName}`);

 }

}

const p = new Person("Frank");

p.greet();

You can, of course, add other properties and methods to the class as you wish, but as

with interfaces for function arguments, you must implement what the interface declares

at a minimum with any class that implements it.

Note that classes can implement more than one interface at a time. You simply name

them all in a comma-separated list after the implements keyword. And, naturally, you

must fulfill the contracts defined by all of them.

Chapter 6 A Few More Words: Advanced TypeScript

124

�Extending Interfaces
As with classes, interfaces can extend other interfaces so that you can build them up as

needed:

interface IPerson {

 firstName: string;

}

interface INinja extends IPerson {

 numberOfSwords: number;

}

let ninja = {} as INinja;

ninja.firstName = "Ryuki";

ninja.numberOfSwords = 2;

Here, you can see how the INinja interface extends the IPerson interface.

Something else you can see is the use of the as keyword. This tells the TypeScript type

checker to treat an object as being of a given type. An empty object, as ninja starts out

as, isn’t an INinja automatically as far as TypeScript knows. It’s just a plain old object,

after all! But, when you say as INinja, that’s telling TypeScript exactly what type you

want that object to be treated as for the purposes of type checking at compilation time.

That means that any rules and conditions the ninja object must meet according to the

interface named will be checked. Some of them get checked anyway, as you saw in some

of the previous examples, but this is a more explicit way to ensure they happen as you

expect. It’s a good idea to explicitly type using as in cases like this where the type isn’t

implicit anyway, such as when instantiating a class.

Note  Interfaces do not get compiled to JavaScript in any way, shape, or form.
They are entirely a TypeScript construct used at compile time. If you look at any of
the code produced by these examples (which, remember, you can always see on
the right-hand side of the TypeScript playground in real time), you’ll see that all the
interface information is stripped away entirely.

Chapter 6 A Few More Words: Advanced TypeScript

125

�Namespaces and Modules
Namespaces and modules are two concepts that help you to organize your TypeScript

code by partitioning them in some logical fashion. We’ll start with the simpler of the two

(in my estimation at least), namespaces.

�Namespaces
A namespace is, simply put, an object that contains other code. It provides a wrapper,

of sorts, for that code, thus keeping it out of global scope (avoiding global scope

pollution in JavaScript is always crucial to avoiding unforeseen consequences, and since

TypeScript compiles down to JavaScript, the rule applies in TypeScript just as much).

A namespace is easy to create:

namespace MyFirstNamespace {

 export let homeworld = "Jakku";

 export function sayName() { alert("Rey"); };

}

The namespace keyword, unsurprisingly, denotes a namespace definition, which

you then give a name (MyFirstNamespace) and then open and close the block as you

would any other code block, with braces. Inside the block, anything you define is only

accessible within that namespace unless you export it. As you can see, you can export

variables and functions, both of which you can then access as follows:

alert(MyFirstNamespace.homeworld);

MyFirstNamespace.sayName();

You can also export classes and interfaces from a namespace:

namespace MyFirstNamespace {

 export class Jedi { }

 export interface RebelScum { }

}

Chapter 6 A Few More Words: Advanced TypeScript

126

To get a handle on this, it can be informative to look at the JavaScript code produced

from this TypeScript code:

"use strict";

var MyFirstNamespace;

(function (MyFirstNamespace) {

 MyFirstNamespace.homeworld = "Jakku";

 function sayName() { alert("Rey"); }

 MyFirstNamespace.sayName = sayName;

 ;

})(MyFirstNamespace || (MyFirstNamespace = {}));

alert(MyFirstNamespace.homeworld);

MyFirstNamespace.sayName();

As you can see, TypeScript uses the IIFE (Immediately Invoked Function Expression)

pattern to keep the namespace’s contents separate from everything else on the page

when the code finally executes, thereby keeping global scope nice and clean (aside from

the namespace object itself, obviously).

Because what’s inside the namespace is partitioned off from everything outside, it

means that you could have a homeworld variable elsewhere, and they will not conflict:

namespace MyFirstNamespace {

 export let homeworld = "Jakku";

}

const homeworld = "Coruscant";

alert(MyFirstNamespace.homeworld); // Jakku

alert(homeworld); // Coruscant

You don’t need to worry about naming conflicts when you use namespaces properly,

which is indeed a nice problem to avoid in a large codebase!

While namespaces can help organize your code within a single file, they become a

bit more useful when you realize that you can break them up into multiple files:

// app.ts

SomeNS.someFunc1();

SomeNS.someFunc2();

// file1.ts

namespace SomeNS { export someFunc1() { } }

Chapter 6 A Few More Words: Advanced TypeScript

127

// file2.ts

namespace SomeNS { export someFund2() { } }

But, to make this work, you must import both of the resultant .js files (file1.js and

file2.js) in the HTML file that you execute to run your app (and, of course, you also

need to import app.js). Just because they’re used in app.ts (and ultimately app.js)

doesn’t mean that they are automatically available for use like that. Instead of having to

import multiple .js files in the HTML document, you can instead have tsc bundle them

for you:

tsc --outFile main.js file1.ts file2.ts app.ts

This will result in a single main.js file being produced that includes the (compiled)

contents of file1.ts, file2.ts, and app.ts.

Note  When bundling like this, you must be aware that order can matter. The files
are concatenated in the order you provide, so if the result of that concatenation is
that some code references other code that isn’t in proper source order in the
final output file, then you can wind up with a runtime error. Here, if you had
app.ts before file1.ts and file2.ts, then code found in app.ts might
throw a runtime error when it tries to use something defined in either of those files
since they will appear after the app.ts contents in the final main.js file.

Even better than having to bundle or import separate .js files and worry about their

order is to use a TypeScript-specific syntax for important namespaces, the /// symbol.

To use it, in the app.ts file, you would write

/// <reference path="file1.ts" />

/// <reference path="file2.ts" />

TypeScript, at compile time, will take care of bundling those files together. In this

case, you only name the output file, not all the files that go into it, and TypeScript will

take care of the rest, including that things are in the correct order.

Once you have the code bundled or properly imported, something else you can do is

save yourself some typing by aliasing things in a namespace:

import h = MyFirstNamespace.homeworld;

Chapter 6 A Few More Words: Advanced TypeScript

128

This way, you can just do alert(h) to see “Jakku.” You can dig into nested

namespaces if you need to (meaning alias as many levels down in nested namespaces as

you wish) or alias the entire namespace itself if you want a shorter/simpler/more logical

name.

Oops, I mentioned nested namespace there, didn’t I? That’s the final thing about

namespaces I want to mention: they can indeed be nested! Take a look:

namespace SomeNS {

 export namespace InnerNS {

 export someFunc() { }

 }

}

SomeNS.InnerNS.someFunc();

Referencing someFunc() requires that we dig down through the nested namespace

hierarchy, which is what I was talking about before with aliases. If you wanted, you could

do

import sf = SomeNS.InnerNS.someFunc;

sf();

That’s much more concise – though whether it’s actually better is only a call you

can make!

With namespaces, nested or otherwise, how you organize and group your code is

entirely up to you, whatever makes the most sense, that’s the big takeaway.

If it strikes you that namespaces are a lot like classes and interfaces, then I’d say

that’s a reasonable observation. They aren’t the same, of course – you don’t instantiate

namespaces as you do classes, and you don’t implement namespaces as you do

interfaces, to name two differences – but they do serve a similar partitioning function.

But namespaces are more lightweight and are purely about code organization, whereas

classes are about things and interfaces are about contracts, so as with anything, choose

the tool appropriate to the task at hand.

Chapter 6 A Few More Words: Advanced TypeScript

129

�Modules
Modules are another way of organizing your code, a more powerful way, in fact, than

namespaces in many ways.

A module is defined as any TypeScript source file that contains one or more import

or export statements at the top level (meaning not inside a function). Any source file

that doesn’t meet that requirement is considered an ordinary script source file, and its

contents will be made available in global scope like always.

Modules represent their own scope, which is another way of saying that anything

inside the module is not visible to anything outside the module unless explicitly

exported (and subsequently imported elsewhere), nor can any code inside the module

touch anything outside of itself unless explicitly imported. That’s similar to a namespace,

but remember that a namespace always results in at least the namespace object itself

existing in global scope, that’s the big difference.

At the code level, you can export anything you like from a module (assume this is in a

file named Modules):

// Variable

export let captain = "Picard";

// Interface

export interface CaptainChecker {

 isGreat(inName: string): boolean;

}

// Function

export function addFirst(inLast: string): string {

 return "Jean Luc " + inLast;

}

// Class

export class Ship {

 const name = "Enterprise";

}

// Type alias

export type cap = captain;

Chapter 6 A Few More Words: Advanced TypeScript

130

To then make use of this, in another source file, you would import the things you

need from the module:

Import { addFirst } from "./MyModule"

After that, you can execute it like any other function:

addFirst("Riker"); // Wrong last name, but not the point!

Alternatively, you could write your module like so:

function addFirst(inLast: string): string {

 return "Jean Luc " + inLast;

}

export addFirst;

It’s really just a matter of style choice whether you want to separate the export

from the definition of what you’re exporting. But, with the latter approach, you can do

something else:

export { addFirst as myAddFirstFunc }

Now, addFirst will not be available for import, myAddFirstFunc will be instead. In

this fashion, you can have a different name internal to the module as what is externally

exposed. Again, it’s a matter of style and little else.

If you want to import an entire module, there is a handy shortcut for that:

import * as TheModule from "./MyModule"

Modules can also have a single default export. You simply use the keyword default

after the export keyword for the item you want to make the default export:

export default let captain = "Picard";

What that does for you is that now your import can be this:

import cap from "./MyModule"

It’s just a bit simpler of a statement, that’s all.

One nice thing about modules is that you never have to worry about ordering,

meaning what order the various JavaScript files get loaded in. Modules are declarative,

meaning everything is based on imports and exports. The reason this can work is that

modules require a loader. You see, browsers don’t know how to deal with modules

Chapter 6 A Few More Words: Advanced TypeScript

131

on their own. Instead, a loader, which is just some JavaScript that knows how to load

modules, takes care of it.

There are several competing module formats and loader mechanisms that have

evolved over the years. Some offer slightly different syntax for importing and exporting.

Perhaps the best-known module loader, and most used, is called SystemJS. To use it, you

must install it first:

npm install --save systemjs

Then, in the HTML file that loads your app, instead of loading, say, app.js directly,

you instead load the module loader:

<script src="./node_modules/systemjs/dist/system.js"></script>

Naturally, you can move that file to another location if you wish, there’s no need to

leave it in node_modules. But either way, after that, you add some new code to the page:

SystemJS.config({ baseURL : "/",

 packages : { "/" : { defaultExtension : "js" } }

});

SystemJS.import("app.js");

This configures the module loader, providing it the base URL from which modules

are resolved, and allows you to specify which modules are to be loaded (here it’s just

saying load whichever are present in the directory). After that, you tell the loader to load

your starting file, app.js, and it takes care of the rest! Any imports in app.js, as well

as any exports in any modules, will now be handled by the loader. All the imports and

exports that you wrote in your original TypeScript source files will be compiled down to

JavaScript that knows how to interact with the module loader, which will then take care

of loading everything and ensuring everything is in the right order as necessary.

�Decorators
Decorators are an interesting addition to JavaScript that is still in the proposal stage

at the time of this writing, but which TypeScript offers as an experimental feature. In

order to use them, you have to add the experimentalDecorators:true option to your

tsconfig.json file (or, optionally, you can pass the --experimentalDecorators switch

to tsc, which you can, in fact, do for most options in tsconfig.json if you would prefer

not to have the config file at all but still use these sorts of options).

Chapter 6 A Few More Words: Advanced TypeScript

132

Decorators are essentially metadata that you can add to the definition of a number of

code elements. If you’ve ever seen annotations in other languages, like Java, then you are

already familiar with the basic concept. Decorators are expressed in the form @<name>,

where name must evaluate to a function at runtime. This function will be passed

information about the element decorated.

For example, say we want to provide some logging in the constructor function of a

class. Let’s further say that for whatever reason, we don’t want to modify the code within

the class (maybe we didn’t write it ourselves and don’t want to mess around with code

provided by someone else). For this, you can use a class decorator. You can do that as

follows:

function logConstructor(inConstructor: Function) {

 console.log(inConstructor);

}

@logConstructor

class Spaceship {

 constructor() { console.log("constructor"); }

}

const s = new Spaceship();

Here, we have a function, logConstructor(), that we decorate the Spaceship class

with. The class just has a simple constructor in it. If you run this in the playground and

look in the console of your browser’s dev tools, you should see something like this:

VM68:9 class Spaceship {

 constructor() { console.log("constructor"); }

}

VM68:12 constructor

When the class is instantiated, the function is called. A class decorator like this is

always passed just the constructor, but remember that it’s the runtime constructor,

which is why we get the entire Spaceship function and not the constructor defined at the

source level. In this example, that constructor is logged. Then, the actual constructor of

the class that is defined in it executes, which is where the second log output comes from.

This decorator mechanism provides us an opportunity to modify the class definition

if we want, even potentially returning an entirely new class definition (though, as you

might imagine, you can really muck things up by doing that if you aren’t careful).

Chapter 6 A Few More Words: Advanced TypeScript

133

Note  You may see different VM values here, or you might not see any at all,
or it might be on the right-hand side. Any of these are okay. The VM notation is
something Chrome dev tools (and some other browsers’ dev tools as well) does
when it can’t identify the source of some JavaScript. VM stands for virtual machine
and refers to the JavaScript virtual machine, which of course is ultimately the
source of the code. This frequently happens when using the JavaScript eval( )
function, and given what the TypeScript playground does, it’s not hard to imagine
that probably comes into play at some point to make it all work, so seeing those
VM strings somewhere isn’t surprising. They’re also irrelevant for what we’re doing
here, but it’s good to know what it’s all about so as to avoid any potential confusion
about why what you may see when you run the code isn’t 100% identical to what’s
printed here.

The other types of decorators are the following:

•	 Method – Placed just before a method declaration, the decorator

function will be passed either the constructor for a static class or

the prototype of the class for an instance member, the name of the

decorated method, and a descriptor for the method.

•	 Accessor – Placed just before an accessor declaration, the decorator

function will be passed either the constructor for a static class or

the prototype of the class for an instance member, the name of the

decorated accessor, and a descriptor for the accessor.

•	 Property – Placed just before a property declaration, the decorator

function will be passed either the constructor for a static class or the

prototype of the class for an instance property and the name of the

decorated property.

•	 Parameter – Placed just before the name of the parameter in a

function argument list, the decorator function will be passed either

the constructor for a static class or the prototype of the class for an

instance member, the name of the decorated parameter, and the

ordinal index of the parameter in the function’s argument list.

Chapter 6 A Few More Words: Advanced TypeScript

134

�Decorator Factories
Sometimes, you’ll want to be able to pass information to a decorator in order to vary

what the decorator does. To achieve that, you can create a decorator factory. In simplest

terms, this is a function that returns a function. The function returned is the actual

decorator function, and the function that returns it is the decorator factory.

That may seem a bit confusing, so let’s see it in code:

function logConstructorFactory(inEnabled: boolean) {

 if (inEnabled) {

 return function(inConstructor: Function) {

 console.log(inConstructor);

 }

 } else {

 return function() { };

 }

}

@logConstructorFactory(true)

class Spaceship {

 constructor() { console.log("Spaceship constructor"); }

}

@logConstructorFactory(false)

class Spacestation {

 constructor() { console.log("Spacestation constructor"); }

}

const s = new Spaceship();

const t = new Spacestation();

The logConstructorFactory() function is the factory. It returns a function, but what

function it returns depends on the inEnabled argument passed in. This will give us the ability

to enable or disable logging: when true, we get the function that contains the console.log()

call; when false, we get an empty function so that no logging will occur in the latter case.

Then, the decorator attached to the Spaceship and Spacestation classes now

pass a boolean value to it, enabling logging for the Spaceship class and disabling it for

Spacestation. When executed, in the console you’ll see

Chapter 6 A Few More Words: Advanced TypeScript

135

VM73:11 class Spaceship {

 constructor() { console.log("Spaceship constructor"); }

}

VM73:16 Spaceship constructor

VM73:22 Spacestation constructor

As expected, the constructor of the Spaceship class is logged, but the constructor of

Spacestation is not.

As with plain old decorators, you can use decorator factories for all five types of

decorators, not just class decorators.

�Third-Party Libraries
TypeScript, all by itself, is pretty great, but modern software is virtually never built with a

language alone. Almost certainly, you’ll want to bring in third-party libraries to help you

along, and you most definitely can do that with TypeScript.

First, to state the obvious, you can use any of the JavaScript libraries you already

know and love. Once your TypeScript is compiled down to JavaScript, it neither knows

nor cares what other JavaScript code you use.

But you can also bring in third-party TypeScript libraries, and that’s really what

this section is talking about. Most frequently, you’ll use NPM to import them into your

project, the same as any other module you use from NPM.

Let’s say, for example, that you want to use the popular Lodash library in your code.

First, you’ll need to install Lodash like any other NPM module:

npm install --save lodash

But now, there’s an additional step: you must also import another related library:

npm install --save-dev @types/lodash

This extra library is called a type declaration file, or a type binding file sometimes,

and it’s what tells TypeScript (tsc, more specifically) all about the types that Lodash uses

and provides. With that done, you can now use Lodash in your TypeScript code:

Chapter 6 A Few More Words: Advanced TypeScript

136

import * as _ from "lodash";

_padStart("TypeScript + Lodash = COOL!", 10, "*");

It’s that easy! What’s better is that because of that type declaration file, tsc (and your

TypeScript dev tool of choice) knows about Lodash in terms of TypeScript so that it can

provide all the same warnings, errors, and IntelliSense, just like it does with your own

code.

In NPM, most libraries that provide TypeScript bindings have a secondary library

prefixed with @types, so you should look for those when choosing a library. Not all

libraries offer them, of course, but that may well factor into your decisions about what

libraries you use and which you don’t.

Caution  One caveat to be aware of: if you use a library like this, you will almost
certainly want to add an exclusion in tsconfig.json to skip the node_modules
directory. If you don’t do this, tsc will try to recompile any .ts file in it.

�Debugging TypeScript Apps
Since TypeScript compiles down to JavaScript, you, of course, could debug the JavaScript

directly with all the same tooling you use at other times, be that browser dev tools or

a full IDE of some sort. But that isn’t ideal because you aren’t debugging the code you

wrote, and that’s rarely something you want to do. Besides, the output JavaScript can

look very different than the input TypeScript, so it might be challenging to do even if you

wanted to.

Given that TypeScript isn’t something that executes directly, that would seem to

preclude the ability to use a debugger to step through the code, or do any of the other

things a debugger allows you to do. Sure, you can always revert to good ole’

console.log() debugging, and sometimes that’s even easier than a full debugger, but

most developers prefer having proper, purpose-made tooling, a debugger being one.

Fortunately, there is a solution available to allow you to use most of the same

debugging tools as you do regular JavaScript, and it’s pretty simple: source maps.

Chapter 6 A Few More Words: Advanced TypeScript

137

�Source Maps
A source map is an additional file that is generated by tsc when you append the

--sourceMap option to it:

tsc --sourceMap app.ts

With that option, you’ll find that alongside the app.js file that is produced, there will

also now be an app.js.map file. This file provides debugging tools with… wait for it… a

map (bet you didn’t see that coming!) that correlates the original TypeScript source to

the generated JavaScript source.

It really is just that simple!

Wanna see what such a file looks like? Here you go:

{

 "version": 3,

 "file": "app.js",

 "sourceRoot": "",

 "sources": ["app.ts"],

 "names": [],

 �"mappings": "AAAA,SAAS,KAAK,CAAC,SAAiB;IAC9B,KAAK,CAAC,YAAU,SAAS,MAAG,CAAC,

CAAC;AAChC,CAAC;AACD,KAAK,CAAC,gBAAgB,CAAC,CAAC"

}

Note that if you look at a real file it’s all on one line, but I’ve expanded it here to make

it a bit easier to comprehend. Now, to be clear, you really aren’t meant to look at this

file yourself. The truth is it doesn’t make much sense to me either when you get to the

mappings property (though the rest is pretty obvious I’d say)! I’m sure I could go look up

how this file works, but in the end, it doesn’t matter. The tools know what to do with it,

which is what matters.

Now, let’s go back in time to Chapter 5 and the example code there. Remember that,

as shown in Figure 6-1?

Chapter 6 A Few More Words: Advanced TypeScript

138

To refresh your memory, here’s the code behind that wondrous display:

function sayHi(humanName) {

 alert("Hello, " + humanName + "!");

}

sayHi("Luke Skywalker");

//# sourceMappingURL=app.js.map

Hey, wait a minute. That’s not the same as in Chapter 5! Indeed, that last line

wasn’t there. That’s the line that tells your tooling that a source map file exists and it’s

something else the --source Map option does. With that in place, the magic happens, as

you can see in Figure 6-2.

Figure 6-2.  The magic of the source map line

Figure 6-1.  It’s a simple example, but it gets the job done – again!

Chapter 6 A Few More Words: Advanced TypeScript

139

As you can see, Chrome dev tools sees that line, and as a result, it can even tell you

that a source map has been detected. If you look over on the left, you’ll see something

else: there is now an app.ts file listed! Even though Chrome doesn’t speak TypeScript

natively, that file is now available, and clicking it reveals what you see in Figure 6-3,

which shouldn’t be at all surprising.

Yep, we have our existing code now! Note, however, that for this to work, the app.ts

file must be available. So, on a real web site, you would need to deploy this file to your

server as well as the final .js file. Therefore, this isn’t something you generally will want

to do on a production server. Source maps are a development tool, not a production

support tool.

With access to the original source code, we can now use all the debugger goodness

Chrome dev tools offers, including breakpoints, as you can see in Figure 6-4.

Figure 6-3.  Hey, look, we have our original code!

Figure 6-4.  Using Chrome dev tools to debug TypeScript

Chapter 6 A Few More Words: Advanced TypeScript

140

Execution has paused on the alert() line, and we can inspect variables, step into

the code, and do all the other things that a proper debugger allows.

Pretty cool, right?

�Summary
In this chapter, you learned about a few more TypeScript concepts, things that might be

considered “advanced” (though that adjective is up for debate). Things like interfaces,

namespaces, modules, decorators, third-party library usage, and debugging with source

maps were discussed. Between this chapter and the previous one, you now have a solid

foundation of TypeScript knowledge.

In the next chapter, we’ll look at one more tool that we’ll need in order to start

building apps: Webpack.

Chapter 6 A Few More Words: Advanced TypeScript

141
© Frank Zammetti 2020
F. Zammetti, Modern Full-Stack Development, https://doi.org/10.1007/978-1-4842-5738-8_7

CHAPTER 7

Tying It Up in a Bow:
Webpack
In the good old days of web development, things were simple. You created a directory,

maybe some subdirectories, if you were a bit more organized, and into it, you poured all

your resources: a stylesheet or two here, a sprinkling of images, some HTML files, and a

heaping helping of JavaScript files. Then, a single HTML file served as your entry point,

and it would go out and load, by way of script tag references, to load all your JavaScript

files, as well as your CSS files and images.

Now, at a fundamental level, that’s precisely still how things work technically, but

over time the picture has gotten… messier. Developers will frequently make use of a

large number of smaller, more focused libraries and toolkits. What we build is orders of

magnitude more complex with far more moving parts, things you need to include.

Of course, people have realized that this isn’t efficient. Each networked request is a

new connection to the server, and many of those requests must occur serially, so nothing

happens until the resources are loaded (and processed in some way). And worse, what if

a script file is loaded at the start that isn’t needed until the user performs some specific

action? What if they never perform that action? You’ve just wasted a bunch of time and

bandwidth and maybe slowed the whole site down for something that you didn’t wind

up even needing!

And that’s before we even talk about how you have to self-organize the code, think of

things like ensuring scripts are loaded in the proper order and that everything that one

script depends on is both included and loaded before it’s used, that code that references

other code can find one another at runtime.

And all that is before we talk about newer JavaScript tricks like modules and the

problem of cross-browser development and the desire to use more modern coding

techniques while still supporting older browsers (to a point at least).

142

As this evolution has occurred, before long, developers were looking for a way out

of this mess, and that’s when the notion of bundles was born. In this chapter, we’ll talk

about one specific bundler: Webpack.

�What’s a Bundle, and How Do I Make One?
In simplest terms, a bundle is a conglomeration of various resources that a web page

needs to function. The obvious component of a bundle is JavaScript, but in some cases it

also includes CSS and even images, encoded for use in data URLs (if you aren’t familiar

with the concept, that’s where an image, or other file, is Base64-encoded and included

as a string as the source, most commonly, of an tag using the data: prefix). A

bundle most frequently is a single file, though no rule says it must be (well, I would

argue that a bundle is always a single file, and if you have multiple files, then you, in fact,

have multiple bundles – but either way the basic concept is the same). The benefit of

a bundle is that it is, usually, just a single request across the network, plus the fact that

when creating a bundle, you can layer on other optimizations like code minification and

compression and such.

How does one create a bundle? Well, at the most fundamental level, you could do

it manually by merely concatenating all your JavaScript files together into one. Do that,

and you’ve got yourself a bundle! But, in that case, it’s a bundle of only JavaScript, no

other resources like CSS or images, and perhaps, more importantly, is that when you do

that you have to take on responsibility for ensuring everything is in the right order and

that there are no conflicts. IIFEs, or Immediately Invoked Function Expressions, are a

way to solve these problems. If each thing you concatenate is inside an IIFE, then there

are no worries (well, mostly at least) about scope collisions. Plus, that way, the order

no longer matters. The problem with this solution though is that any time a single file

changes, you have to rebundle everything.

Plus, it becomes difficult to determine if things are being included that are no longer

necessary (the term tree-shaking refers to determining when an included dependency

is not actually being used, and that’s more difficult in this approach than what Webpack

does, as you’ll see). Aside from that, there is also sometimes code that shouldn’t be in the

bundle for other reasons, maybe because it’s only for development, or because it’s only

needed in specific versions of the page. Then, you’ll probably need to create some sort

of simple tooling (maybe just some shell scripts) to exclude things that aren’t necessary

(and consider if you use a library like, say, React: what if there are parts of the library you

Chapter 7 Tying It Up in a Bow: Webpack

143

don’t use? It would be nice if you could leave those out and make the bundle smaller,

thereby improving load performance, wouldn’t it?)

Further, when thinking of JavaScript, wouldn’t it be nice if you could use modules

to organize your code and know it would work across all browsers? That’s not the case

today: not all browser versions support them and those that do have some variances to

deal with. This is true whether you start from plain JavaScript or TypeScript, but with

TypeScript it’s more complicated because you have the compile step to worry about

as well. If you could organize your code with modules and not have to worry about

compiling your TypeScript, you’d have the best of all possible worlds, right?

For all these reasons, a good tool that can do bundling intelligently is a must, and

that’s where Webpack comes in.

�What’s Webpack All About?
Webpack isn’t the only bundler out there, but it has quickly become the de facto

standard and is, by probably most web developers, considered the best. Although it used

to have a reputation for not being exceptionally easy to work with, that has changed with

the latest version. It’s now quite easy to get started!

Webpack can do a lot more than merely bundling code, though. For example, it can

transpile TypeScript and even knows how to work with React and its .tsx files. So, in the

end, Webpack can be more than a bundler; it can be a right and proper and full-featured

build tool for your web applications. Most of this is optional and can be added on as you

need it, so at the start, Webpack is rather simple, but it is highly extensible so can meet

your needs every step of the way.

There are just a few core concepts that you must have at least a basic grasp of to use

Webpack with your applications.

�Dependency Graph
Start with a basic web page. You have an HTML file, one or more JavaScript files,

probably a stylesheet or two, and maybe some images. If you start with the HTML page,

it’s easy to understand that it depends on those JavaScript, stylesheet, and image files.

Sure, a browser can render that HTML without those things, but it may not look anything

like you expect without those additional resources.

Chapter 7 Tying It Up in a Bow: Webpack

144

When you tell Webpack to bundle your application, it looks at all the files it finds in

it (or that you explicitly name – we’ll see how to configure Webpack shortly). It examines

them and determines which files depend on which others. It builds what’s called a

dependency graph from that analysis, and with that, it can determine what needs to be

included, what can be dropped, what order things need to be in, and so on. Without

the dependency graph, nothing Webpack does would be possible, so while you won’t

be dealing with it directly in any way, it’s essential to understand that’s how Webpack is

doing its work on your behalf.

With it, though, Webpack can intelligently create bundles for you that have the

minimum amount of code required to make your web site or web app work like it should

while ensuring that it loads as efficiently as possible in the process.

�Entry
When Webpack builds the dependency graph, it’s constructing a tree structure under

the covers, and any tree structure must begin from a single point, or node, or in the case

of Webpack and web applications: a module. By default, Webpack will assume the entry

point is called ./src/index.js, relative to the directory it’s run in. But you, of course,

can name a different starting entry point, and we’ll see how to do that soon. Regardless,

from that starting point, the dependency graph is built as Webpack examines the entry

point and then recursively examines each file that it in any way depends on.

�Output
In the previous section, take note of the location of the default entry point: a src

directory (short for source, obviously). That’s the typical model that Webpack follows:

a src directory where all your unbundled source code lives. But where does Webpack

put your bundled code? The answer, by default, is a directory named dist (short for

distribution). Further, by default, the name of the bundle that will be created is main.js

(most of the time, you’ll get a single bundle, and in fact for our discussions here, we’re

going to assume that’s all you ever get because multiple output bundles are a bit more

advanced of a topic and nothing we need to be concerned with for the purpose of this

book). All of this can be altered, of course, to ensure you get the output you want exactly

where you want it, but we’re just considering the default case right now and the basic

concepts.

Chapter 7 Tying It Up in a Bow: Webpack

145

�Loaders
Once you know where your code starts, how Webpack will produce a dependency

graph from analyzing it, and where it will put the resultant bundle, it’s time to look at

the concept of loaders, which are components that transform dependencies in some

way. Out of the box, Webpack only understands one thing: JavaScript (well, it also

understands JSON files, but given that JSON is a subset, or component, of JavaScript,

it’s still really just one thing). To understand anything else, you need to specify a loader

for it. But, whether you use only the default JavaScript loader or add more, the job of a

loader is simple: to process some type of file and convert them into valid modules that

can be added to the dependency graph and ultimately to be bundled and consumed by

your application later.

A loader has two critical attributes associated with it: a test property and a use

property. The test property enables Webpack to determine which files it should

transform. The use property specifies what loader to use for it. When put together, a

rule is formed that Webpack will follow that basically says: “Hey, Webpack, when you

encounter a reference to a file whose path matches the test property, go ahead and

process that file with the loader specified by the use property, pretty please?”

As an example, say that you want to include images in your final bundle, and you

want those images to be Base64-encoded in JavaScript. Webpack can’t do this by default,

so you’ll need to add a loader, in this case, one called url-loader. To jump ahead a bit,

Webpack has a config file, just like TypeScript and NPM do. In it, you would add a rule:

module : {

 rules : [

 { test : /\.(jpg|png)$/, use : { loader : "url-loader" } }

]

}

Now, any time Webpack encounters a file in your src directory with an extension of

.jpg or .png, which will match the regex specified in the test property, it will use the url-

loader loader to encode it and add it to the bundle.

Don’t get hung up on those details, we’ll get into it all shortly, but that should give

you a good idea how loaders are used. And remember if all you have are JavaScript files,

then this isn’t necessary because Webpack knows how to handle those automatically.

Chapter 7 Tying It Up in a Bow: Webpack

146

�Plugins
Plugins are another mechanism available to you in Webpack. Conceptually, they are

similar to loaders, but they serve a fundamentally different purpose, and that purpose is

virtually anything!

Need to optimize your bundle? Plugin! Need to insert some environment variables

into your bundle? Plugin! Need to add I18n resources to your bundle? Plugin! Want to

add some sort of copyright notice to the top of each generated bundle? Plugin!

I think you get the point!

Like loaders, plugins require an entry in the Webpack configuration file that I briefly

mentioned earlier and that we’ll get into more soon. Webpack ships with a good number

of plugins, including the following:

•	 BabelMinifyWebpackPlugin – Used for minification with babel-

minify

•	 BannerPlugin – Adds a banner to the top of each generated chunk

•	 CommonsChunkPlugin – Extracts common modules shared

between chunks

•	 CompressionWebpackPlugin – Prepares compressed versions of

assets to serve them with Content-Encoding

•	 ContextReplacementPlugin – Overrides inferred context of a require

expression

•	 CopyWebpackPlugin – Copies individual files or entire directories to

the build directory

•	 DefinePlugin – Allows global constants configured at compile time

•	 DllPlugin – Splits bundles in order to drastically improve build time

•	 EvalSourceMapDevToolPlugin – Enables a more fine-grained

control of eval source maps

•	 ExtractTextWebpackPlugin – Extracts text (CSS) from your bundles

into a separate file

•	 HotModuleReplacementPlugin – Enables Hot Module Replacement

(HMR)

Chapter 7 Tying It Up in a Bow: Webpack

147

•	 HtmlWebpackPlugin – Creates HTML files to serve your bundles

•	 I18nWebpackPlugin – Adds i18n support to your bundles

•	 IgnorePlugin – Excludes certain modules from bundles

•	 LimitChunkCountPlugin – Sets min/max limits for chunking

•	 LoaderOptionsPlugin – Used for migrating from Webpack 1 to 2

•	 MinChunkSizePlugin – Keeps chunk size above the specified limit

•	 MiniCssExtractPlugin – Creates a CSS file per JS file

•	 NoEmitOnErrorsPlugin – Skips emit phase on compilation errors

•	 NormalModuleReplacementPlugin – Replaces resource(s) that

matches a regex

•	 NpmInstallWebpackPlugin – Auto-installs missing dependencies

during development

•	 ProgressPlugin – Reports compilation progress

•	 ProvidePlugin – Uses modules without having to use import/require

•	 SourceMapDevToolPlugin – Enables fine-grained control of source

maps

•	 TerserPlugin – Enables control of the version of Terser

•	 UglifyjsWebpackPlugin – Enables control of the version of UglifyJS

•	 ZopfliWebpackPlugin – Prepares compressed versions of assets with

node-zopfli

You can also add all sorts of third-party plugins, but that’s a much larger

conversation that you may never need to have if the built-in ones are sufficient, but at

least now you know what to Google for if it comes up.

�Modes
Whenever Webpack performs a build, it can be done in one of several modes: development,

production, or none. Which mode is used determines which of the built-in plugins are

used, if any, and controls what options are passed to them to do their work. In simplest

terms, the mode determines what optimizations Webpack does to your bundles.

Chapter 7 Tying It Up in a Bow: Webpack

148

When the mode is none, as you might guess, it does no optimizations at all.

When the mode is development, the NamedChunksPlugin and NamedModulesPlugin

are enabled. Also, the option process.env.NODE_ENV on the DefinePlugin is set to a

value of development (as the name implies, this is associated with using Webpack for

Node code, which you absolutely do if you want; Webpack isn’t necessarily just about

client-side code!).

When the mode is production, the process.env.NODE_ENV on DefinePlugin is again

set, but now the plugins FlagDependencyUsagePlugin, FlagIncludedChunksPlugin,

ModuleConcatenationPlugin, NoEmitOnErrorsPlugin, OccurrenceOrderPlugin,

SideEffectsFlagPlugin, and TerserPlugin are all enabled. The result is a much more

optimized bundle, as you would expect to have for a production release.

The mode of a Webpack build can be set in its configuration file, or it can be passed

in as a command-line argument, so you have flexibility in that.

�Browser Compatibility
In short, Webpack, by default, supports all ES5-compliant browsers (Internet Explorer 8

and lower are not supported). Webpack requires the Promise object to implement

import() statements and require.ensure() statements. You can still support older

browsers if you wish, but to do so requires loading a polyfill before using those sorts

of statements. There is a section in the Webpack documentation that discusses this at

webpack.org, but it’s a topic I won’t be covering here, I just wanted to make you aware of it.

�Getting Started with Webpack
Okay, enough with the theory, let’s get down to brass tacks and see Webpack in action!

To get started, create an empty directory somewhere and initialize a new NPM project:

npm init -y

Note  This is the first_example for this chapter in the source code for this book,
if you’re not following along (which I would frankly suggest you do rather than
just go directly to the existing source code so that you get a feel for doing all this
yourself).

Chapter 7 Tying It Up in a Bow: Webpack

http://webpack.org

149

Next, you’ll need to install Webpack itself. Let’s install it locally to this project so that

we can manage the dependency within the project:

npm install --save-dev webpack

Next, create a src directory, and in it, create a file named index.js. For the contents

of that file, write

let a = 2;

let b = 5;

let c = a * b;

alert(c);

Okay, while that code is clearly nothing special and really doesn’t benefit from

Webpack, we can still bundle it with Webpack just fine, and at this point, we’re ready

to do just that! Because Webpack isn’t installed globally, we know that we can’t just

execute it straight away (if it was installed globally, you could simply execute webpack at

a command prompt right now). So, to execute it, we’ll have to use npx, as discussed in

Chapter 4:

npx webpack

When you do this, Webpack will request that you install the webpack-cli module,

and you should say yes to allow it since you won’t get much further than this if you don’t!

This is what will allow you to execute Webpack commands. You’ll only need to do this

the first time you execute Webpack.

Note  You should see a warning about the mode option not being set when you
execute this command. That’s okay! Webpack will default to production mode if
you don’t set the mode in the configuration file or pass it on the command line as
previously discussed, and this is fine for our purposes here.

When this completes, you should find that you now have a dist directory, and

within it should be a main.js file. Recall from earlier that by default, Webpack looks for

src/index.js as the entry point and creates dist/main.js, and that’s precisely what we

see here, entirely without telling Webpack anything at all about our project.

Chapter 7 Tying It Up in a Bow: Webpack

150

Typically, you won’t care too much about what’s in the output file, but I think it’s

informative to see:

!function(e){var t={};function r(n){if(t[n])return t[n].exports;var

o=t[n]={i:n,l:!1,exports:{}};return e[n].call(o.exports,o,o.exports,r),

o.l=!0,o.exports}r.m=e,r.c=t,r.d=function(e,t,n){r.o(e,t)||Object.define

Property(e,t,{enumerable:!0,get:n})},r.r=function(e){"undefined"!=typeof

Symbol&&Symbol.toStringTag&&Object.defineProperty(e,Symbol.toStringTag,

{value:"Module"}),Object.defineProperty(e,"__esModule",{value:!0})},

r.t=function(e,t){if(1&t&&(e=r(e)),8&t)return e;if(4&t&&"object"==typeof

e&&e&&e.__esModule)return e;var n=Object.create(null);if(r.r(n),Object.def

ineProperty(n,"default",{enumerable:!0,value:e}),2&t&&"string"!=typeof e)

for(var o in e)r.d(n,o,function(t){return e[t]}.bind(null,o));return n},

r.n=function(e){var t=e&&e.__esModule?function(){return e.default}:

function(){return e};return r.d(t,"a",t),t},r.o=function(e,t){return

Object.prototype.hasOwnProperty.call(e,t)},r.p="",r(r.s=0)}([function(e,t)

{alert(10)}]);

If nothing else, that proves that Webpack has definitely done some transformations

on our code because that doesn’t look even remotely like what we wrote! However, if

you start to dig through it, you can start to see how it related to the original code and

how it was optimized. For example, Webpack is smart enough to realize that the value of

variable c is always going to be 10, so it was optimized away and you can see in the final

alert() near the end how it has a hardcoded value of 10.

This is a crucial point to understand: in general, you’ll rarely look at the final bundle,

and you’ll even less commonly debug it. You effectively must trust that Webpack is doing

the right thing for you and that though it may look vastly different, the code it produces

does what your original code was intended to do. Yes, you might, at times, find that a

bug in Webpack (or a loader or plugin) is an issue, but just like with a compiler, you must

have a level of trust in the tooling.

�Getting More Complex
So far, we haven’t done any Webpack configuration at all, and instead we have just relied

on its default behavior. In a project of any real complexity, that’s likely not going to be

enough. So, let’s get into configuring Webpack. To do so, we’ll need a configuration file:

Chapter 7 Tying It Up in a Bow: Webpack

151

Note  This is the second_example for this chapter in the source code for this book.

npx webpack init

The result of this is an interactive process shown in Figure 7-1. In the end, we get a

file named webpack.config.js. But we actually get a lot more than that!

As you can see, there are a series of questions you’re asked, beginning with whether

your application will have multiple bundles. As stated earlier, this is a bit of a more

advanced topic that I won’t be covering in this book, so a terse “no” is the right answer.

Then, we are asked for the entry point, and here I’ve just selected the default that is

presented, which is also the case for the folder to store the output in.

After that, you are asked whether your project will use ES6 or TypeScript. As you can

guess, for the projects in the subsequent chapters, we’ll be using TypeScript, but for now,

we’ll stick with plain old JavaScript, version ES6 in this case. We’re also asked about CSS

solutions, things like SASS or LESS, but we don’t need any of that here.

After that, it asks if it’s okay to overwrite a few files, and the answer is yes in all cases.

Typically, you likely wouldn’t have created the index.js file first, so there would be

no need to overwrite that, but in this case, there is. Also, if you had Webpack installed

Figure 7-1.  The Webpack initialization process

Chapter 7 Tying It Up in a Bow: Webpack

152

globally, then you wouldn’t need to do the npm init step first either; you could go

directly to doing

webpack init

Since that also creates an NPM package.json file, it’s all you really need to do, but

it only works if Webpack is installed globally. Since in this case it’s not, we had to install

it first, hence why we did npm init first, and why Webpack now is asking to overwrite

package.json.

After that, an npm install is automatically executed to install all the dependencies

that Webpack added to package.json, all the things it needs to do its work.

And, then, it does that work! It processes our source file and generates a bundle

from it. But it does a lot more than that! Remember when we ran Webpack without a

configuration file? We got the output file as we expected, but we had no way to use it. At

that point, we would have created an HTML file to load the main.js file so we could see

our alert(10) as we expect. When you initialize a Webpack project like this, though,

Webpack, in effect, does that step for us behind the scenes. What’s more: it provides a

web server for it to run on! All you need to do, as seen in Figure 7-1, is execute

npm run start

That will start up a small web server and even launches the page in your default web

browser! Once it does, open your web developer tools, and you should see a message in

the console “Hello World from your main file!”

But, oops, we do not see the alert(10) as we should. That’s because we allowed

Webpack to overwrite the index.js file we originally wrote with a “starter” file, so to speak,

and as a result now we have an index.js with the following content:

console.log("Hello World from your main file!");

To get back to where we want to be, let’s now open that index.js file and copy into

it the example code from earlier. Do that, save the file, and watch what happens: like

magic, after a few seconds, the page automatically refreshes in the browser, and you

see the alert(10) message as we expect! What happened is that Webpack continues to

monitor the source files and when it seems them change it does a build automatically. It

then, also automatically, deploys the updated code to the web server, and thanks to the

code on the page it created for us, it refreshes the page for us.

Chapter 7 Tying It Up in a Bow: Webpack

153

At this point, I encourage you to also look at the code in your browser (using View

Source) to see the HTML file. Then, also be sure to look at the JavaScript file that it

references. I think you’ll be rather surprised what’s in there! It’s far beyond even the

already kind of verbose code we saw in the earlier example. But all of it is what allows

Webpack to perform all this magic for us. Again, you’ve got to trust your tools for things

like this; there’s little choice (I know that I would not want to debug the code I see there!).

�Configuration
When you executed the webpack init command, a file named webpack.config.js was

created. Let’s look now at that file (minus the comments, for brevity):

const path = require('path');

const webpack = require('webpack');

const HtmlWebpackPlugin = require('html-webpack-plugin');

module.exports = {

 mode: 'development',

 entry: './src/index.js',

 output: {

 filename: '[name].[chunkhash].js',

 path: path.resolve(__dirname, 'dist')

 },

 plugins: [

 new webpack.ProgressPlugin(), new HtmlWebpackPlugin()

],

 module: {

 rules: [

 {

 test: /.(js|jsx)$/,

 include: [path.resolve(__dirname, 'src')],

 loader: 'babel-loader',

Chapter 7 Tying It Up in a Bow: Webpack

154

 options: {

 plugins: ['syntax-dynamic-import'],

 presets: [

 [

 '@babel/preset-env',

 {

 modules: false

 }

]

]

 }

 }

]

 },

 optimization: {

 splitChunks: {

 cacheGroups: {

 vendors: {

 priority: -10,

 test: /[\\/]node_modules[\\/]/

 }

 },

 chunks: 'async',

 minChunks: 1,

 minSize: 30000,

 name: true

 }

 },

 devServer: {

 open: true

 }

};

Chapter 7 Tying It Up in a Bow: Webpack

155

This is code that will eventually be executed by Node on behalf of Webpack, so it

begins with imports to provide the node path module and the Webpack Node module

itself. The html-webpack-plugin module is then imported, which is the Webpack plugin

responsible for the creation of that HTML file that loads the finished bundle and allows

us to do real-time edits.

After that comes module.exports, the contents of which are targeted to Webpack

itself, to configure its operation. The mode property defines the mode of operation, as

previously discussed. As you can see, it defaults to development. The entry point is also

named, so if you wanted to change the source file that is the top of the dependency graph

tree, you could do it right there by simply providing the filename and relative path to it.

Next comes some configuration of the output, including where it goes (the dist

directory) and the name of the final bundle file. The name specified here is a little more

unusual than you would usually write yourself because when an automatic build is done,

that is when Webpack sees some changed source files, it produces a unique bundle

name so that caching in the browser doesn’t defeat the autoload mechanism. The [name]

and [chunkhash] are internal tokens that Webpack provides to ensure the filename is

unique on each rebuild (look at the JavaScript file imported into the generated HTML file

to see that in action).

Then comes the plugins property, which is an array of plugin objects. As you can

see, the html-webpack-plugin is instantiated (an instance of the HtmlWebpackPlugin

class, as defined in the associated source file) and added to the array. But before that

comes another plugin: webpack.ProgressPlugin. As you probably have surmised, this is

responsible for showing progress updates on the screen during build operations.

After that comes the module property. This allows you to tell Webpack how to build

your bundle. The goal here is to provide a set of rules. Each rule has a test, which is a regex

that matches one or more files. For each rule that matches, the loader(s) specified will be

used to transform the files, and you can provide options for each loader. Here, we can see

that Webpack has added Babel to the mix and specified that any .js or .jsx file should be

handled by it. The configuration for the Babel loader should look somewhat familiar: you

can see the presets being used as we saw in previous chapters. In addition, a plugin is added

for this loader: the syntax-dynamic-import plugin. This is responsible for determining what

code can be left out of the bundle based on what is imported and what isn’t.

After that comes a section for the optimizations to apply. There are quite a few

options available here, and rather than echo the Webpack documentation, and I’ll

instead just point you in its direction: https://webpack.js.org/configuration/

optimization. The one seen here, the splitChunks optimization, is actually

Chapter 7 Tying It Up in a Bow: Webpack

https://webpack.js.org/configuration/optimization
https://webpack.js.org/configuration/optimization

156

just configuration for the SplitChunksPlugin. The job of this plugin is to ensure

duplicate resources aren’t included. For example, if two modules reference a third,

the dependency graph would have the third module listed twice. At bundle time, you

wouldn’t want it to be included twice, though. This plugin, and the configuration for

it here, avoids that. For further details on its configuration, see the documentation.

However, it should be noted that the default configuration is expected to be sufficient for

most projects, so in reality this is mostly boilerplate that you can ignore unless and until

a time comes where you need to dig into the details.

Finally, the devServer property is what is responsible for enabling the built-in web

server function, as well as monitoring for source file changes.

Quite honestly, even this configuration is more than you might need. But that’s

the beautiful thing about Webpack: it is highly configurable, so when a need arises, a

quick trip to the documentation is all that’s likely to be required to find just the right

configuration you need.

�Using Modules
So far, the examples we’ve looked at have been straightforward JavaScript examples.

What happens though when we want to use more advanced concepts like modules? As

you’re aware from previous chapters, modules aren’t universally supported across all

browsers. Not only that but there are several competing module formats available, and

they aren’t usually interoperable.

This is where Webpack really starts to earn its keep.

Note  This is the third_example for this chapter in the source code for this book.

To see it in action, let’s take the second example and modify it. First, replace index.

js with the following:

import getA from "./module1";

import getB from "./module2";

alert(getA() * getB());

Next, create a file in the src directory named module1.js and in it put this:

export default function getA() { return 20; }

Chapter 7 Tying It Up in a Bow: Webpack

157

Finally, create a file named module2.js, again in the src directory, and in it put

export default function getB() { return 30; }

Now, as you do this, if you happened to have executed npm run start and didn’t

stop it, you should see that Webpack is dutifully rebuilding as you go. Probably you will

have seen some build failures along the way if you did things in the order I said here,

and that’s fine. If you edit index.js first, Webpack will try to build it, but won’t be able

to find module1.js and module2.js yet. Hence, you’ll get a build error. That’s fine and

completely expected.

Ultimately though, once you’ve made the change to index.js and added the

other two files, you should get a successful build (or, if Webpack wasn’t monitoring,

just execute npm run start again). Either way, you should get the page launched in

your browser, and you should see an alert() message showing 600, proving that both

modules were bundled together with the entry point, and everything works as we expect

it to.

That demonstrates how modules can be used and how Webpack will resolve them

correctly and bundle them. It also shows that this will now work across browsers, even

on those that don’t know about modules. This is arguably the real power of Webpack

because now you can organize your code well using modules and know that it’s going to

work across all browsers (or Node, if this isn’t code that you’ll be running in a browser).

�Wither TypeScript?
As a final topic, let’s talk about how we could use TypeScript instead of plain old

JavaScript. We’ll take the third example from before and change the three source files to

TypeScript.

Note  This is the fourth_example for this chapter in the source code for this book.

To start, we need to add TypeScript itself to the project, and we also need to

introduce a new loader for Webpack to know how to work with TypeScript, the

ts-loader. Begin by installing both:

npm install --save-dev typescript ts-loader

Chapter 7 Tying It Up in a Bow: Webpack

158

Next, we need to initialize a TypeScript project, and you know how to do that already,

but remember, with TypeScript installed in the project, we’ll need to use npx:

npx tsc -init

That gives us the tsconfig.json file that Webpack needs, and its default form should

work for this example.

Tip  If we had initialized the Webpack project with TypeScript support from the
beginning, then this would have been done for us already, but since we’re building
on the previous project, we can’t do that (well, we could re-initialize the project
as we did earlier, but as you now know, that would overwrite a bunch of files,
and this time we want to avoid that to show the progression of adding additional
capabilities to the project on the fly).

After that, we must tell Webpack to use the ts-loader. To do that, go into the

webpack.config.js file and look for this chunk:

{

 test: /.(js|jsx)$/,

 include: [path.resolve(__dirname, 'src')],

 loader: 'babel-loader',

 options: {

 plugins: ['syntax-dynamic-import'],

 presets: [

 [

 '@babel/preset-env',

 {

 modules: false

 }

]

]

 }

}

Chapter 7 Tying It Up in a Bow: Webpack

159

That’s the module configuration that Webpack created for us earlier. Replace it with this:

{

 test: /\.ts?$/,

 use: 'ts-loader',

 exclude: /node_modules/,

}

Now, Webpack is ready to deal with .ts files and knows to ignore the node_modules

directory. Getting some .ts files to work with is the next step! Go into the src directory

and change the three files there from .js extensions to .ts extensions. Since, as you’ll

recall, all valid JavaScript is all valid TypeScript, that should be all we have to do.

But, in fact, there is one more thing we need to do it turns out: in the (now) index.ts

file, update the imports to specify module1.ts and module2.ts (just adding the

extensions). Failing to do that will result in a compilation failure saying the modules

can’t be found. It’s a minor change, but a change none the less.

With all that done, if you still have Webpack monitoring for changes, then you should

have a clean build, and the page should have refreshed and shown the proper alert()

message. If not, do npm run start again and make sure everything works as expected.

That’s all it takes to use TypeScript instead of JavaScript! Now you can use all the

goodness you learned about in the previous two chapters in TypeScript land to make

your projects that much more robust!

And, with that, you now know all the basics about Webpack that you need to build

most applications. To be sure, there’s much more to Webpack, and indeed you could

read an entire book on it and all the options it provides, and I would definitely encourage

you to at some point! It’s a potent tool that will serve you well if you learn more about

it. But this (plus some other things we’ll see in later chapters) covers the bases that any

project of virtually any complexity will use, and that’s the point: building a foundation.

�Summary
In this chapter, we looked at Webpack. You learned what it is, the basic concepts

underlying it, how to install it, how to create a basic project with it, and how to configure

it, at least at a basic level.

And, with that, we now have all the tools we need to start building our project! When

you’re ready, jump on into the next chapter so we can start having some fun!

Chapter 7 Tying It Up in a Bow: Webpack

161
© Frank Zammetti 2020
F. Zammetti, Modern Full-Stack Development, https://doi.org/10.1007/978-1-4842-5738-8_8

CHAPTER 8

Delivering the Goods:
MailBag, the Server
Alright! The stage is set, the players at the ready, and the houselights dimmed… It’s time

to draw the curtains and start the show!

In this chapter, and the next three, it’s time to take all you’ve learned in the preceding

chapters and put it to use building some real apps! For each, we’ll build a server

component with Node, and a client component with React, but that’s about where the

similarities end. These will be quite different apps from one another, and each will

use a host of supporting technologies to do its thing. We’ll use different techniques,

approaches, and architectures so that you’ll gain as wide a field of view as possible of

what modern full-stack application development looks like in the real world.

�What Are We Building?
The first application will be dubbed MailBag. This is a generic term for a particular

type of bag typically used for collecting, carrying, categorizing, and classifying different

types of postal material. If you’ve ever seen your friendly neighborhood spider… err,

mailman… carrying a bag with mail around, that’s a mailbag. If you’ve ever seen an old

John Wayne western with a guy riding a horse carrying a bag with mail, that too is a…

wait for it… MAILBAG!

In our case, though, there are no horses involved and no postal materials. No,

instead, what we’re concerned with is digital mail, electronic mail, or email! Squish the

two words together to form MailBag, and what we have is an email application or, as it’s

more commonly known, a webmail system. That’s what we’re building!

162

�Basic Requirements
Any time you build an application, it helps to have a list of requirements. So, let’s make

such a list for MailBag. Understand that we’re not out to exactly copy Gmail or Outlook

Mail or any of the other well-known webmail systems out there. No, we’re going to

build just a small subset of what those offer, but we’ll cover what are probably the most

essential elements, and we’ll choose them such that they allow us to build a good,

useful, and, most critical for you the reader, educational application while not being

overwhelming in its scope:

•	 MailBag will be in two parts: a server, which will act as a proxy and

will be what communicates with a mail server somewhere, and the

client, which will talk to our server to do its work.

•	 The MailBag server will communicate with an email server whose

details will be stored in a text file on the MailBag server (so this is a

single-user system), and it will communicate with that email server

via the popular IMAP protocol for retrieving mail (sorry POP3 users!)

and SMTP for sending messages.

•	 The MailBag server will provide an API to the client that allows it to

get a list of mailboxes for the account, a list of messages for a selected

mailbox, and pertinent message details for display by the client.

It will allow the user to delete and send messages. Finally, the server

will provide for storage of contacts and the associated add and delete

functions for maintaining them.

•	 This chapter is all about the server, so details about the client will

come in the next chapter. However, in high-level terms, it helps to have

a picture in your mind. I’m sure you’ve seen a webmail application like

Gmail before, and MailBag will be no different fundamentally.

The client will be a web-based application that can be viewed in any web

browser. It will provide the user a list of mailboxes in their account,

the ability to see a list of messages within a selected mailbox, and the

ability to choose and view a message, as well as delete it. It will also,

of course, allow the user to compose and send a new message to an

entered email address. We’ll also give them a list of contacts that they

can add people to (and remove from) and initiate an email too quickly.

Chapter 8 Delivering the Goods: MailBag, the Server

163

For now, that’s all we need to know. It’s helpful sometimes, when doing full-stack

development, to use this sort of “tunnel vision” approach: we at this point aren’t

concerned with the client beyond the broad strokes here. Instead, you begin by thinking

primarily about just the API your client needs first, and then you worry about building

the client itself later. When the two are combined, you get the complete MailBag

application. But that’s all much easier to do when you aren’t overwhelming yourself by

trying to look at the whole thing as one big entity. As I said, a little tunnel vision can be a

good thing, so we’ll break this into two parts and attack each separately.

�Setting Up the Project
To get started with MailBag, we’ll create a directory that will be the root of our project.

Since there are two components to this, a client and a server, we’ll then create a client

directory and a server directory, and within each of those, we’ll create a src directory

and a dist directory. Each of the client and server directories constitutes a separate

project that we can work with individually, and each has a set of course files, obviously,

and a directory where the compiled files will go (dist, short for distribution). The src

directory is where our source files will be found, and dist is where the compiled (read:

executable) files will go after compilation.

Once that’s done, navigate to the server directory from a command line. Since we’re

building a Node project, and since most Node projects are NPM projects, the first step it

to initialize an NPM project:

npm init

Just accept all the default values, perhaps just providing a name like “server” or even

“MailBag server,” whatever you like, it’s not critical.

Now, since we know we want to write out code in TypeScript, let’s go ahead and

install TypeScript itself as a dev dependency:

npm install –save-dev typescript

You can ensure TypeScript is now available by executing tsc from a command prompt.

D’oh! It doesn’t work!

That’s right, you must use npx to execute it when installed local to the project directory:

npx tsc

Chapter 8 Delivering the Goods: MailBag, the Server

164

That should work now, displaying basic usage information.

Next, let’s initialize this as a TypeScript project too:

npx tsc -init

After that, you should have not only the package.json file but also the package-

lock.json and tsconfig.json files.

Now, we have to make a few tweaks to the tsconfig.json file, specifically the following:

•	 Uncomment the "outDir" element and set its value to "./dist".

We want all our compiled files to go into a dist subdirectory.

•	 After the "compilerOptions" element, add "include":

["src/**/*"]. So, the file should have this form when you’re done:

{

 "compilerOptions": {

 ...lots of compiler options...

 },

 "include": ["src/**/*"]

}

This will ensure that tsc only tries to compile files in the src directory.

•	 Although not necessary, also uncomment the "sourceMap" option

and ensure it’s set to true, to make debugging easier.

And, at its most basic level, that’s the entire development environment!

�Source File Rundown
Now that the basic project structure is set up, let’s talk about the relatively small handful

of source files, again found in the /server/src directory, that will constitute the server

codebase. We’ll look at each file in turn, but for a quick summary, they will be as

follows:

•	 main.ts – This will be the main entry point and is where we’ll define

the functions that will constitute the API the server presents to the

client (much more on this in the next section!).

Chapter 8 Delivering the Goods: MailBag, the Server

165

•	 ServerInfo.ts – This will be a configuration file that provides details

about the IMAP and SMTP server(s) the server will connect to and

where that information will be stored.

•	 IMAP.ts – Code that talks to an IMAP server to list mailboxes and

messages and to retrieve messages. There will be a Worker class

within this. That is what the rest of our application code will use,

along with some interfaces we’ll need.

•	 SMTP.ts – Code that talks to an SMTP server to send messages. Like

IMAP, this will have a Worker class.

•	 contacts.ts – Code dealing with contacts (listing, adding, and

deleting them). Once again, a Worker class will be present, along with

an interface to describe a contact object.

In addition to those, we’ll have that configuration file I mentioned for IMAP and

SMTP server information stored in the /server directory named serverInfo.json. We’ll

get into that soon.

That, aside from the NPM/Node and TypeScript config files, is all there is to the

server codebase. It’s not much, but it gets the job done.

�Adding Node Modules
The next step is to add the modules and library dependencies we’re going to use. There

are only five of them, but they’re key to the whole thing! We’re going to go over each in

some detail later, but for now, let’s get them added:

npm install --save emailjs-imap-client

npm install --save express

npm install --save mailparser

npm install --save nedb

npm install --save nodemailer

Just to give you a preview, emailjs-imap-client will provide all the IMAP functionality

we need; express will allow us to build our API quickly and easily; mailparser will be

needed to gain access to the actual content of a message; nedb will provide us some data

storage capabilities; and nodemailer will provide the message-sending SMTP capabilities.

Chapter 8 Delivering the Goods: MailBag, the Server

166

�Adding Types
Adding dependencies is all well and good, but since we’re using TypeScript and not plain

old JavaScript, we want TypeScript bindings for them, too, assuming they are available.

That begs the question: how do you tell if there are TypeScript bindings for a given

library? Well, you can certainly just randomly try to install them:

npm install --save-dev @types/express

Almost always, @types/XXX, where XXX is the name of the library, will work. But not

always. There must be a better way to tell, right? Indeed, there is definitelytyped.org. This

is a web site that, among other things, provides a simple search interface, as you can see

in Figure 8-1.

Figure 8-1.  The definitelytyped.org search engine

Chapter 8 Delivering the Goods: MailBag, the Server

http://definitelytyped.org
http://definitelytyped.org

167

As you can see, there are several possible matches, so you can then click one to see if

it’s what you need. The first one is almost certainly what we’re looking for, so clicking it

reveals Figure 8-2.

Ah, that’s the right one!

I’ll save you the time hunting down the others and tell you that the commands you

need to execute, in addition to the Express one previously shown, are

npm install --save-dev @types/mailparser

npm install --save-dev @types/nedb

npm install --save-dev @types/node

npm install --save-dev @types/nodemailer

Figure 8-2.  Clicking a link from the search engine brings you to a detail page on
npmjs.com

Chapter 8 Delivering the Goods: MailBag, the Server

http://npmjs.com

168

Remember that the type bindings are only relevant at development time, not

runtime, hence, why --save-dev is used. Also note that at the time of this writing,

there was no binding available for emailjs-imap-client. This will cause us some minor

trouble later, as you’ll see, but nothing too significant. Finally, note that Node itself has

TypeScript bindings, and we’ll, of course, want those for sure!

�A More Convenient Development Environment
At this point, you can compile the source code (err, assuming there was source code in

the src directory that is!) with tsc. But then, of course, you’d need to start up the server

to do anything with it. Assuming main.ts was our main entry point (hint: it is!), then after

compiling we’d find a main.js file in dist, so we could start it up easy enough, assuming

we were in the server directory:

node ./dist/main.js

But that’s not all that convenient: we need to manually compile when we change

a source file and then manually start the server (and manually shut it down first if it’s

already running). There’s gotta be an easier way, right? Yes, there is!

In our package.json file, there’s a scripts section. Here, we can provide NPM

commands that we’ll be able to use on the command line, associated with what they do.

In simplest terms, you define a command and then tell NPM what the command line

would be if you were doing it manually.

Let’s say we want to have a command that will compile all our source code and then

start up the server. That’s easy enough:

scripts: { "compile" : "npx tsc && node ./dist/main.js" }

Note that you might have to adjust it for your particular operating system, but

ultimately, the value of the "compile" key is what you would manually do: execute npx

tsc, followed by executing node ./dist/main.js to recompile the source files and start

up the server.

This alone, though, would be problematic if the server was already running. You

would need to shut it down yourself first, still manually. And, plus, we again must

manually execute this command (which you can do with npm run compile), which is

only slightly better.

Chapter 8 Delivering the Goods: MailBag, the Server

169

To solve this problem, we’ll add one more development dependency:

npm install --save-dev nodemon

Nodemon is a handy module that can monitor your JavaScript source files for

changes and automatically restart the app when any are detected. Now, we can do

node ./node_modules/nodemon/bin/nodemon.js ./dist/main.js

After that, any time main.js changes, nodemon will see that and restart it. That for

sure is better, but we can do even better! Let’s add a second script, so that the scripts

element in package.json is now this:

"scripts": {

 "compile": "npx tsc && node ./dist/main.js",

 �"dev": "node ./node_modules/nodemon/bin/nodemon.js -e ts --exec \"npm run

compile\""

}

What we’ve done is added a dev command that used nodemon. But, in contrast

to before, we now add an argument to nodemon, the -e option. By default, nodemon

watched for changes in .js, .mjs, .coffee, .litcoffee, and .json files. With -e though,

we can tell it to watch other types of tiles, .ts files in this case. The --exec option is used

to tell nodemon what to do when those files change, so now any time nodemon sees

changes to our TypeScript source files, it will execute the compile command.

With that all in place, if we execute npm run dev, nodemon will begin monitoring

our source TypeScript files. When any change, it will compile them and then start up the

resultant main.js file. Now, we’ve got ourselves a nice little workflow: we can happily

peck away at our source files, and then compile and restart will be automatic, making

our work quicker and our life easier!

Note  If compiler errors occur, nodemon will still try to start up the app because it
doesn’t know not to. That obviously isn’t going to go well, so you need to keep an
eye on your console when you make changes to ensure they’re valid and running
when you expect them to be.

Chapter 8 Delivering the Goods: MailBag, the Server

170

�The Starting Point: main.ts
Okay, now that we have our development environment and our project directories all set

up, we can finally start to hack some code together!

That is, we would be able to, if we didn’t have a few short detours to make along the

way first! There are a few concepts we need to discuss before getting to the code, but

it won’t take long, I promise! Once that’s done, we can get to the main.ts file, which is

where our application begins.

�A Quick Detour: Time to Take a REST
REpresentational State Transfer (REST) is a set of principles that, when combined,

describe how common standards, HTTP usually, can be used to define a remote system

interface in a client-server system. Although REST can work over other protocols, in

practice it is rarely used with anything but HTTP. REST is a programming and operating

system-neutral architecture. It really is just a set of best practices, or patterns, and it’s

not even all that rigid! But what it allows you to do is to create a web-based API in a

de facto, standard way. In fact, the World Wide Web is an implementation of the REST

architectural style, whether you know it or not!

The underlying concept is that of resources. In the REST world, a resource is an

abstract concept that coherently and meaningfully can be represented in a form that can

be transmitted over HTTP. A bank account, a user record, a product description, and a

student list for a class described in JSON, XML, or even plain-text document form are all

valid examples of resources. This document form represents the state of a thing, whether

it’s the current state (when a client retrieves the resources from a server) or an updated

state (a new version of a resource a client sends to a server). The client initiates a “state

transition” by requesting a representation of a resource from a server or sending a new

representation to the server. When this design is used, the API presented to clients is said

to be RESTful.

Perhaps the primary benefit of REST is its simplicity and reduction of overhead.

Rather than complex XML messages that must be created and parsed on both sides of

the conversation, simpler data formats, most notably JSON, are typically used. These

formats are generally easier to create and consume, though at the cost of less rigidity,

which is sometimes a problem in terms of validation.

Chapter 8 Delivering the Goods: MailBag, the Server

171

Three components go into the idea of REST. One is the matter of URLs and how

you use them to address a given resource or collection of resources. The other is HTTP

methods and their meaning. The third is the data format representation of an addressed

resource against which you are acting. Let’s look at each of these concerns individually.

�URLs for Fun and Profit

Simply put, a URL allows you to identify a thing, or set of things, with which you want to

interact. In the REST world, a URL identifies a resource or a collection of resources. Of

course, you know all about URLs, because you use them every day in your browser. You

also know about resources, even if you don’t realize that you do, because a web page

itself is a type of resource.

With REST, your URLs will nearly always refer to nouns. For example, let’s say your

web site is www.mysite.com. Given that, in the REST world, the URL www.mysite.com/

users might refer to the collection of users available on your web site. The /users

portion is the resource in which you’re interested. If you were using such a RESTful API,

you would expect to get back a list of users and some data about them (putting aside the

question of data format for the moment).

What if, instead, you want to retrieve information about a specific user with the

username bill_gates? The URL, in that case, might be as follows:

 www.mysite.com/users/bill_gates

Note that, unlike the more typical URLs you see associated with web pages, you

aren’t using query string parameters.

 www.mysite.com?user=bill_gates

Instead of something like that, the parts of the URL path itself serve the same

purpose. The critical thing to note here is that we don’t deal with verbs in the URL. In

other words, you don’t write this:

 www.mysite.com/users/add

The word add is a verb, which makes this a non-RESTful URL. Only nouns go into the

URL because nouns describe things or states of things. The verbs, the action to perform

on the specified resource, are determined by the HTTP method.

Chapter 8 Delivering the Goods: MailBag, the Server

http://www.mysite.com
http://www.mysite.com/users
http://www.mysite.com/users

172

Note  Although I’ve shown it here, when you see a RESTful API described,
you will usually see it shown without the domain name: just /users, /users/
bill_gates, or /users/add, for example. The domain name is still necessary,
of course, to ensure that the reference to the specific resource is unique across the
entire Internet.

�Giving Methods Meaning

HTTP methods are the set of values valid in an HTTP method header attribute. When

you launch www.google.com in your browser, for example, you are making an HTTP GET

request, where GET is the method. If you were to sniff the traffic, as I’ve done in Figure 8-3,

you could see the requests and the GET method associated with them (the initial request

is for www.google.com, then the subsequent requests are for the resources that page

then loads).

Figure 8-3.  Sniffing some HTTP traffic

Chapter 8 Delivering the Goods: MailBag, the Server

http://www.google.com
http://www.google.com/

173

With a RESTful interface, the most common HTTP methods, namely, GET, POST,

PUT, and DELETE, are given specific meanings:

•	 GET – Retrieve a resource (or resources). GET is the only method

considered “safe,” meaning it doesn’t result in a data change on the

server.

•	 POST – Create a new resource (unsafe).

•	 PUT – Update an existing resource (unsafe).

•	 DELETE – Delete an existing resource (unsafe).

Now, if you go out on the Web and look up REST, you may see some different

meanings for these methods, typically for POST and PUT. Sometimes you’ll see it

stated that PUT is for both create and updates of a single resource while POST is for

multiple updates. Sometimes you’ll also see it said that you should use POST for both.

Another school of thought is that POST should be for things that don’t precisely fit

the REST model, like a user login request. Any of these approaches are valid because

they still adhere to the underlying REST principle of URLs addressing resources, HTTP

methods describing actions, and a representation of the current state of an object being

transitioned to or from. There is flexibility in the interpretation of REST; that’s the point.

�Data Format Smackdown

The third part of the REST trifecta is that of state and representing that state. When we

talk about state, we mean either the current state of a given resource or the future state

of it. When you make a GET request, you are requesting the current state of the resource.

When you POST, PUT, or DELETE the resource, the client is saying what the future state

of the resource should be after the operation completes.

When you perform a GET or DELETE, all the information required to complete the

operation is specified as part of the URL and HTTP header. The method is in the header,

and the resource is in the URL, whether it refers to a collection of resources (perhaps

/users) or a single resource (maybe /users/bill_gates). When you perform a PUT or

POST, there will usually be more information to be transmitted. For a user, that might

be the username and password. In those cases, the data is transmitted in the body

of the HTTP request. Similarly, when you GET a resource, the transmitted state is also

in the body.

Chapter 8 Delivering the Goods: MailBag, the Server

174

What form will the data you transmit to the server, or the data the server returns to

you, take? The short answer is it can be in any format that can be sent via HTTP, and it

will still be valid REST. However, JSON is by far the most common state representation

format. The reason for this is most likely that producing and consuming JSON in

JavaScript in a browser is trivial, and this is what most RESTful APIs are accessed from.

JSON is inherently a simple data format that, even if you had to write code to produce

it by hand, is extremely easy to do (usually no more complicated than calling JSON.

stringify(x) for object x, and similarly, JSON.parse(x) where x is some JSON, to get

an actual object). It’s simpler than XML, and it doesn’t require a unique XML-based

language, such as SOAP (Simple Object Access Protocol, the format used for classic non-

RESTful web services).

The downside to JSON is that it isn’t very rigid about data types and structure. While

there have been attempts to produce something along the lines of XML schemas for

JSON, the idea being that you can validate a JSON document against its schema, they

haven’t met with much success. In part, this is because JSON is hugely flexible, and that

flexibility plus its simplicity is desirable.

Whether you use JSON or not, any HTTP request, whether going to or coming from

the server, should specify the Content-Type header so that the receiver of the state

representation knows how to handle it. Sometimes this handling will be automatic, and

it will happen without you specifically coding for it because of the library you used to

make your remote calls.

There is a debate about what the response for the various HTTP methods should

be for methods other than GET (which is self-evident). When you DELETE a resource,

what should be returned? Some say that the resource deleted should be returned, while

others say that some sort of simple indicator that the operation was successful should

be displayed. Similarly, when you POST a new resource, do you get back the unique

resource identifier that you would use to GET the resource? Alternatively, is a copy of the

resource you sent in echoed back? Perhaps just a simple “OK” identifier would suffice?

You’ll see the choices that I made for this project soon, but it’s ultimately a question

you’ll need to answer for yourself because, as with the meaning of the HTTP methods,

there is no “one-size-fits-all” answer.

�A Bonus Pillar: Response Status Codes

Although I said there were three main pillars of REST, in a sense, there’s a fourth: what

type of HTTP status code your API gives back for various operations.

Chapter 8 Delivering the Goods: MailBag, the Server

175

Setting an appropriate response code on the server for your clients can be a crucial

component to making the interaction as smooth as possible. Once again, you can come

up with some different meanings and still be doing valid REST. There is somewhat less

debate, however, on what the meanings of various response codes should be and how

they should be used, if you’re going to use them at all. Sometimes, you’ll encounter

services that give back an HTTP 200 for anything that’s not an outright error. That’s

perfectly acceptable, but it perhaps isn’t the most useful approach.

The following list summarizes probably the most common meaning for the various

HTTP status responses:

•	 200 – OK: This response code indicates a successful operation.

Usually, this would be used when you DELETE a resource or PUT

changes to a resource.

•	 201 – CREATED: This response code is frequently used for POST

creation of a new resource.

•	 400 – BAD REQUEST: This response code is usually used to indicate

that the data format sent when PUT updating or POST creating a

resource was invalid or malformed in some way (500 is frequently

used instead of 400).

•	 401 – UNAUTHORIZED: This response code is used to indicate that

you need to authenticate before performing the requested operation.

•	 405 – METHOD NOT ALLOWED: This response code is used when

the requested HTTP method isn’t supported (e.g., perhaps in a

read-only interface, you wouldn’t support POST or PUT, and 500 is

frequently used instead of this).

•	 500 – INTERNAL SERVER ERROR: This response code is generally

used when some sort of error occurs that is not covered by the

previous scenarios.

In general, the response codes fall into fairly well-defined ranges: codes 100–199

are considered “informational” responses, things the client may want to know but

which aren’t critical to the API’s functionality; 200–299 represent successful responses

(while 200 is most common, there are others that are useful, such as 201 Created and

202 Accepted – it’s just a question of how detailed you want your API to be for your

clients); 300–399 represent redirect conditions of some sort, which may or may not need

Chapter 8 Delivering the Goods: MailBag, the Server

176

to be handled by a client; 400–499 are for client errors, 400 Bad Request if they passed

in invalid request parameters, for example, or 401 Not Authorized if you have security

set up and the client isn’t allowed to make the request; and 500–599 represent various

types of server errors, whether a generic 500 Internal Server Error or perhaps 501 Not

Implemented if an HTTP method was requested that your services don’t support. You

can dig into the many codes online and determine if you want to use more specific codes

in various situations – there are many to choose from!

Now you know the core concepts behind REST. Now, let’s talk a bit about how

you might write the code of a RESTful API on the server using a popular Node library:

Express.

Note  For the sake of simplicity, MailBag will forego using codes as shown in the
preceding text and just return 200s in all non-error cases.

�Another Quick Detour: Express, for Fun and Profit
Express (https://expressjs.com), which is perhaps the most popular Node module

around, is a minimal framework for creating web applications that offers developers a

set of robust features that eliminates a lot of boilerplate-type code from your application

code. Express offers a broad set of APIs, utility methods, and what it calls middleware to

provide many of the everyday things modern web applications need. Being a minimal, thin

framework means that Express delivers excellent performance on top of everything else.

Express is especially useful for, but is in no way specific to, writing RESTful API code.

If you look back to Chapter 2, where you saw the basic for a web server in node, you’ll

notice that there’s no mention of HTTP methods there. In fact, every request of any

type will be handled by the one callback function supplied. That means if you want to

implement a RESTful service, that callback will need to interrogate the request object,

determine the HTTP method, and then branch accordingly. That’s not especially difficult

to do, but it’s code you have to write yourself, which can get messy. Then, since REST is

based on URL structure, you’ll need to write code to parse the URL to figure out what

resource to deal with. Again, it’s not rocket science, but it’s work you must do yourself.

Chapter 8 Delivering the Goods: MailBag, the Server

https://expressjs.com

177

Using Express avoids all of that. Instead, you write code like this:

const app = express();

app.get("/cars/:vin", function(inRequest, inResponse) {

 // Return a car object with the specific VIN number

});

app.listen(8080);

Here, you create an Express application instance, which is the basis of everything

you do with Express. Then, you tell the app that for a GET request to a URL in the form

/cars/:vin, execute the given function. The :vin part of the URL tells Express that after

/cars in the URL will come a value that you want to have presented in the collection

of parameters that Express parses out of the URL, and you want to name it vin (which

you can then access in the function by doing inRequest.params.vin). In case you are

unaware, VIN is short for “Vehicle Identification Number,” and it’s a unique number that

identifies every car manufactured. So, assuming you have a database of VIN numbers, a

GET request to this URL can return an object representing the car associated with the VIN

number specified. Finally, you just have to start up the Express app by telling it what port

to listen on. That’s it! No parsing the URL yourself, no handling different request methods,

not even creating a server yourself. Express takes care of all those details for you!

You can, of course, specify handlers for all the other HTTP methods, and you can do

whatever you like in the function, return whatever you want, set the status code as you

see fit, and so on.

As with everything we’ve talked about so far, there’s quite a bit more that Express

can do, and you’ll see some of it in the server code here, but we’ll just be scratching the

surface. Express is a potent tool in the Node toolbox for sure!

�Back to the Code!
Okay, so finally, here we are, looking at the code in main.ts! It begins boringly enough:

Note  For all the source code listings in this chapter and the next three, all
comments have been removed from the code, and the code may have been
condensed and reformatted a bit to save some space on the printed page. The actual
executable code is the same in the book as in the source code bundle, though.

Chapter 8 Delivering the Goods: MailBag, the Server

178

import path from "path";

import express,

 { Express, NextFunction, Request, Response } from "express";

import { serverInfo } from "./ServerInfo";

import * as IMAP from "./IMAP";

import * as SMTP from "./SMTP";

import * as Contacts from "./Contacts";

import { IContact } from "./Contacts";

We have several things to import, and we’ll get to what each of them is as each is

encountered in the code. Note, though, that the first two imports are for a core Node

module (path) and Express and some Express-related things. The remaining four are

application imports, code that we’ll be writing.

The first real code after the imports is this:

const app: Express = express();

That creates our Express app, as discussed in the previous section. Now, it’s time to

add some middleware to Express, that is, some additional bits of functionality that we

need our Express app to use:

app.use(express.json());

This middleware takes care of parsing incoming request bodies that contain JSON,

as many of ours will. Our application code will, thanks to this middleware, receive a

JavaScript object resulting from the incoming data, saving us the hassle of parsing it

ourselves.

Next, we have to think about what this server has to do. First, of course, it will need

to provide RESTful endpoints that our client application can call on to do its work. But

it has to do something else: it needs to serve our client code to a browser that requests

it. When we discussed Express earlier, I mentioned that while it’s great for writing REST

APIs, that’s not all it’s good for. It can also act as a basic web server (which makes sense

given you know Node itself can do that on its own!) and enabling that is very simple:

app.use("/",

 express.static(path.join(__dirname, "../../client/dist"))

);

Chapter 8 Delivering the Goods: MailBag, the Server

179

The static middleware is another built-in middleware that Express provides for

serving static resources. All you need to do is tell it where those resources are, and any

requests that come in that map to those requests will be served. We haven’t built those

resources yet – that’s what the next chapter is all about – but given the directory structure

we created, you know they must be in the client directory, and further you can assume

that they’re in a dist directory, just like the server is. We need a proper full path to this

directory, though, which is where that path module comes in to play, and specifically

its join() method. Here, we use a built-in variable that node supplies, __dirname, which

is the name of the directory the current script is in, and combine that with a relative

path pointing to the client/dist directory. The path.join() method will take care of

disambiguating all of that, and we’ll wind up with a fully qualified path, complete with

proper separators for the current operating system, that is passed to express.static(), and

that’s all it takes to make Express act as a web server for our soon-to-be-built client code.

Next, we need to play one little trick to make our REST functions later work:

app.use(function(inRequest: Request, inResponse: Response,

inNext: NextFunction) {

 inResponse.header("Access-Control-Allow-Origin", "*");

 inResponse.header("Access-Control-Allow-Methods",

 "GET,POST,DELETE,OPTIONS"

);

 inResponse.header("Access-Control-Allow-Headers",

 "Origin,X-Requested-With,Content-Type,Accept"

);

 inNext();

});

The problem is that if you try to execute any of the REST endpoints that we’ll

be adding next, you’ll run into a CORS (Cross-Origin Resource Sharing) limitation,

depending on how you make the call. For example, if you want to just load the client

later directly from the file system, without it being served from the server (which is

precisely how I was doing development most of the time!), then you will run smack into

a CORS limitation and not be able to do so. CORS is a security mechanism built into

web browsers that ensures that only certain domains can call your REST services. If you

were on the job and writing a REST service, you may only want your clients to be able

to call it, not anyone in the world. CORS protects you from that by forcing you to specify

Chapter 8 Delivering the Goods: MailBag, the Server

180

the domains that you’ll accept calls from. This can also come into play if you want to call

a REST service from a web page you loaded from your file system, which is a common

thing to do during development. It can also come into play if you want to make requests

using a tool for testing REST services, something we’ll talk about later in this chapter. In

many of these cases, CORS will, by default, result in your calls being rejected, which is

good for security but awful for development!

CORS depends on several headers, provided by the server to clients, that all begin

with Access-Control-Allow. The browser will interrogate the server before making a

request to get these headers, and the values determine what the browser will or won’t be

allowed to do.

To begin, rather than having to specify specific domains to allow (since I don’t know

them!), CORS has a catch-all setting that will enable you to make calls from anywhere.

The way it works is that the server must return a header Access-Control-Allow-Origin

that lists the domains that can call it. If the value of that header is an asterisk, then the

browser will allow the call regardless of where it’s launched from. This, as it happens, is

precisely what we want! So, adding this little bit of custom middleware ensures that all

requests to our Express server will be allowed.

But that’s not all there is to it! We also have to determine what HTTP methods we’ll

allow. Without doing so, CORS will again stop our requests even though we allow them

from any domain. That’s where the second line comes into play. The Access-Control-

Allow-Methods header is where we list what HTTP methods we’ll accept from clients.

Finally, we need to also tell CORS what additional headers we’re going to accept, and

this is done with the Access-Control-Allow-Headers header. Specifically, for MailBag,

the Content-Type header is sent by the client to indicate that content is JSON (for the

operation where we’re sending an email or adding a contact, as you’ll see later).

But I added a few other headers that are typically needed as well. The point is you can

determine what is needed for your services and configure these headers as appropriate

for your use case.

Writing custom middleware, which is what this bit of code is doing, is a simple matter

of supplying a function to the app.use() method. When you do something like express.

json() from earlier, it is, in fact, passing a function to app.use(). In this case, though,

we must supply our own. This function must have a specific structure; it is passed the

incoming request, the generated response, and a reference to the next function.

You see, when Express handles a request, all the middleware that was registered

with the app via the app.use() calls forms a chain. Each is executed in turn. So, it makes

Chapter 8 Delivering the Goods: MailBag, the Server

181

sense that each link in the chain must execute the next to keep the chain going (or it

might also abort the request, if that’s necessary). That’s why after setting the header on

the request object, our custom middleware function calls inNext(). That continues the

chain, so the request can continue to be processed as required.

�REST Endpoint: List Mailboxes

With those preliminaries out of the way, we can begin to add the various endpoints our

service must provide to our client, beginning with a function to get a list of mailboxes:

app.get("/mailboxes",

 async (inRequest: Request, inResponse: Response) => {

 try {

 const imapWorker: IMAP.Worker = new IMAP.Worker(serverInfo);

 const mailboxes: IMAP.IMailbox[] = await imapWorker.listMailboxes();

 inResponse.json(mailboxes);

 } catch (inError) {

 inResponse.send("error");

 }

 }

);

Remember that REST tells us that retrieving a resource should usually use the GET

method, so app.get() is used to register this path. The resource we’re getting is a list of

mailboxes, so /mailboxes is a logical choice for the path.

All the app.XXX() calls (where XXX is an HTTP method) require a callback function to

execute when a matching request is received, and they all receive the incoming request

and the response object used to produce the response to the caller. Here, because we’re

going to make some asynchronous calls using the await keyword, we have to throw an

async keyword before the function.

Now, what the function does is simple: it instantiates an IMAP.Worker object –

something we’ll be looking at later – and then calls its listMailboxes() method,

capturing the array of IMAP.IMailbox objects it returns. Even without seeing that code,

hopefully, it’s pretty obvious what’s going on at a conceptual level. It then passes that

array to the json() method of the passed-in response object, which marshals that array

Chapter 8 Delivering the Goods: MailBag, the Server

182

into JSON and returns it to the caller. Should any exceptions be thrown along the way,

we’ll instead send a plain text "error" response back using the inResponse.send()

method. The client will need to react appropriately to that, but that’s a story for the next

chapter!

This basic pattern you will see repeated in all the remaining endpoint handler

methods, with minimal variation. In a sense, our Express app is just acting as a proxy

to the IMAP (and also SMTP and Contacts) object, which are responsible for the real

functionality. That’s a pretty common pattern to implement since it nicely segregates

duties. It also means that we can test our IMAP, SMTP, and contact-handling code

individually without Express having to be in the mix. Nothing says that you have to

organize your code this way, but it’s a logical way to do so and has a lot of benefits.

�REST Endpoint: List Messages

Now that we have a handler for getting a list of mailboxes, let’s create one for getting a list

of messages in a specific mailbox:

app.get("/mailboxes/:mailbox",

 async (inRequest: Request, inResponse: Response) => {

 try {

 const imapWorker: IMAP.Worker = new IMAP.Worker(serverInfo);

 const messages: IMAP.IMessage[] = await imapWorker.listMessages({

 mailbox : inRequest.params.mailbox

 });

 inResponse.json(messages);

 } catch (inError) {

 inResponse.send("error");

 }

 }

);

Yep, as I said, that’s the same basic pattern, with just a few logical different: we

call IMAP.Worker.listMessages() this time, and of course, we get an array of IMAP.

IMessage objects this time. Finally, we need to be able to specify the name of the

mailbox to get messages for, and as you can see, we have :mailbox on the end of the

path (anything beginning with a semicolon in the path is taken to be such a replacement

Chapter 8 Delivering the Goods: MailBag, the Server

183

token). This is a cue to Express that there will be some dynamic value after /mailboxes/

in the path, and we want that value presented to our code as a request parameter, which

we can access with inRequest.params.mailbox.

�REST Endpoint: Get a Message

Next, we need a function to get the body contents of a specific message in a specific

mailbox because the function to get the list of messages will only get metadata about

each message, not the actual message itself:

app.get("/messages/:mailbox/:id",

 async (inRequest: Request, inResponse: Response) => {

 try {

 const imapWorker: IMAP.Worker = new IMAP.Worker(serverInfo);

 const messageBody: string = await imapWorker.getMessageBody({

 mailbox : inRequest.params.mailbox,

 id : parseInt(inRequest.params.id, 10)

 });

 inResponse.send(messageBody);

 } catch (inError) {

 inResponse.send("error");

 }

 }

);

Once again, the same basic pattern, which just a few minor differences. This time,

we need two tokens in the path: the name of the mailbox and the ID of the message to

retrieve. After that, we call a different method (getMessageBody()) this time, and now

we get a simple string back, which is the content of the message. Also, note that because

request parameters are always string, but the getMessageBody() function requires an

integer for the ID, that’s why parseInt() is needed. Finally, the retrieved message body

is returned as plain text via a call to inResponse.send() (the client will be responsible for

dealing with the case where this might be an HTML-based message).

Chapter 8 Delivering the Goods: MailBag, the Server

184

�REST Endpoint: Delete a Message

Next, the client will need the ability to delete a message:

app.delete("/messages/:mailbox/:id",

 async (inRequest: Request, inResponse: Response) => {

 try {

 const imapWorker: IMAP.Worker = new IMAP.Worker(serverInfo);

 await imapWorker.deleteMessage({

 mailbox : inRequest.params.mailbox,

 id : parseInt(inRequest.params.id, 10)

 });

 inResponse.send("ok");

 } catch (inError) {

 inResponse.send("error");

 }

 }

);

This looks almost identical to the endpoint for getting a message in that it requires

the same path to allow the client to identify a message uniquely. Beyond that, it’s a

simple call to imapWorker.deleteMessage(), passing it the mailbox and integer-ized

message ID, so to speak, and we’re good to go. Also, take note that now we’re using the

HTTP DELETE method, to be good REST citizens, so the app.delete() method is used

to register this endpoint.

�REST Endpoint: Send a Message

Now, it’s time to implement the endpoint for sending a message:

app.post("/messages",

 async (inRequest: Request, inResponse: Response) => {

 try {

 const smtpWorker: SMTP.Worker = new SMTP.Worker(serverInfo);

 await smtpWorker.sendMessage(inRequest.body);

 inResponse.send("ok");

Chapter 8 Delivering the Goods: MailBag, the Server

185

 } catch (inError) {

 inResponse.send("error");

 }

 }

);

Once again, very simple: the HTTP POST method is used to send a message, so app.

post() is used to register the handler function. In that function, the incoming request

body will contain all the information we need to send a message, including target email

address, subject, and message text, and the express.json middleware will have nicely

parsed that into an object for us to pass along to smtpWorker.sendMessage(). Since the

IMAP protocol is responsible for retrieving mailboxes and messages while the SMTP

protocol is used to send them, it makes sense to have a separate module for each. But, as

you’ll see later, each of them presents a Worker class that contains the methods we call.

We return a simple "ok" string here, nothing more is needed.

�REST Endpoint: List Contacts

With all mailbox and message functionality built, we now need to turn our attention to

the endpoints needed to deal with contacts. There are three of them, beginning with a

function to list contacts:

app.get("/contacts",

 async (inRequest: Request, inResponse: Response) => {

 try {

 const contactsWorker: Contacts.Worker = new Contacts.Worker();

 const contacts: IContact[] = await contactsWorker.listContacts();

 inResponse.json(contacts);

 } catch (inError) {

 inResponse.send("error");

 }

 }

);

Chapter 8 Delivering the Goods: MailBag, the Server

186

Well, this is getting a little repetitive, isn’t it?! Yes, indeed, it’s the same pattern that

you are by now very familiar with, just dealing with contacts now, and the Contacts

module and its Worker class. And now, we’re dealing with IContact objects (what that is,

it’s coming up, I promise!), but other than that, there’s nothing new here.

�REST Endpoint: Add Contact

Similarly, adding a contact is just like sending a message in that it’s another HTTP POST

function handler:

app.post("/contacts",

 async (inRequest: Request, inResponse: Response) => {

 try {

 const contactsWorker: Contacts.Worker = new Contacts.Worker();

 �const contact: IContact = await contactsWorker.addContact

(inRequest.body);

 inResponse.json(contact);

 } catch (inError) {

 inResponse.send("error");

 }

 }

);

The contactsWorker.addContact() method will do all the real work, given the

object produced by the express.json middleware from the request body content, and

here we’re actually returning the added contact that is returned by contactsWorker.

addContact(). This is necessary because, as you’ll see later, this object will contain a

unique identifier added during the save process, and the client will need to display that

new contact in the list and will need to know that ID in case the user decides to delete

the contact. We could certainly not do this and have the client call the GET contacts

endpoint again to get the entire contacts list, which would now include the added

contact, but that’s kind of wasteful of resources. Returning the added object allows the

client to do what it needs to without that additional request, and this is also a pervasive

pattern to follow with REST services.

Chapter 8 Delivering the Goods: MailBag, the Server

187

�REST Endpoint: Delete Contact

We have just one endpoint left to implement, and that’s the one for deleting a contact.

As you can probably guess, it looks extremely similar to the endpoint for deleting a

message:

app.delete("/contacts/:id",

 async (inRequest: Request, inResponse: Response) => {

 try {

 const contactsWorker: Contacts.Worker = new Contacts.Worker();

 await contactsWorker.deleteContact(inRequest.params.id);

 inResponse.send("ok");

 } catch (inError) {

 inResponse.send("error");

 }

 }

);

The path is different, of course, and this time it includes the ID of the contact to

delete, and naturally we’re using the Contacts module and its Worker class and its

deleteContact() method, but beyond that it’s just more of the same. A little boring

perhaps, but there’s something to be said for logical self-consistency too!

Now that the RESTful API is defined and Express is ready to handle those requests,

let’s get into the details of those Worker classes to see the actual work done. But, before

we can do that, we have one other source file we need to look at for the rest to make

sense.

�Gotta Know What We’re Talking to: ServerInfo.ts
The Worker classes for IMAP and SMTP, it should be apparent, will need to know

about the server(s) they are talking to. Without an IMAP server and an SMTP server

somewhere, the code won’t be able to receive or send an email. That’s where the

ServerInfo.ts file comes into play:

const path = require("path");

const fs = require("fs");

Chapter 8 Delivering the Goods: MailBag, the Server

188

First, we begin by importing the Node path module again, as well as the fs module,

which is the File System module. Note that when importing Node modules, you don’t

typically type the variables that reference them.

We need these modules in order to read the stored information about the servers.

This information will be stored in a file named serverInfo.json in the /server

directory. The contents of that file will be

{

 "smtp" : {

 "host" : "mail.mydomain.com", "port" : 999,

 "auth" : { "user" : "user@domain.com", "pass" : "xxx" } },

 "imap" : {

 "host" : "mail.mydomain.com", "port" : 999,

 "auth" : { "user" : "user@domain.com", "pass" : "xxx" } }

}

You’ll need to create this file and supply the applicable information before MailBag

will work. I’m gonna go out on a limb here and assume that file is self-explanatory.

Now, we’ll define an interface that mimics that file:

export interface IServerInfo {

 smtp : {

 host: string, port: number,

 auth: { user: string, pass: string }

 },

 imap : {

 host: string, port: number,

 auth: { user: string, pass: string }

 }

}

And we’ll declare a variable typed to that interface:

export let serverInfo: IServerInfo;

Chapter 8 Delivering the Goods: MailBag, the Server

189

Now, the goal is to read the serverInfo.json file in and create an object that

adheres to the IServerInfo interface and that the serverInfo variable points to. That’s a

trivial exercise with Node:

const rawInfo: string =

 fs.readFileSync(path.join(__dirname, "../serverInfo.json"));

serverInfo = JSON.parse(rawInfo);

The file is read in as a plain string with the fs.readFileSync() function, again using

path.join() to get a fully qualified path to the file. Finally, we parse the string into an

object and assign it to serverInfo. That’s it! After that, we have an object in memory

that contains the information needed to connect to the server! Yes, that means that

MailBag is a single-user webmail application, and it means you can’t change the server

information through the UI itself (well, you’ll have to trust me about that until the next

chapter I suppose, but it’s true), which we can consider a feature, not a bug! However,

you may want to keep an eye out for the “Suggested Exercises” section later. Hint! Hint!

�Time to Send the Mail: smtp.ts
Alright, with the basic API built in Express, let’s start to look at the code behind one of

the two Worker classes, the SMTP.Worker, for sending emails. This class, which is found in

the SMTP.ts source file, makes use of a Node module to do the grunt work, and that’s the

first thing we need to look at in order to make sense of the application code:

import Mail from "nodemailer/lib/mailer";

import * as nodemailer from "nodemailer";

import { SendMailOptions, SentMessageInfo } from "nodemailer";

const nodemailer = require("nodemailer");

Of course, we begin with some imports, as most modules do. The first three are

related to the nodemailer module, which we’re going to take a quick detour and look

at next, so let’s skip those for now. In addition to those, we have the IServerInfo from

the ServerInfo.ts file that we looked at earlier to contain the information needed to

connect to the SMTP server.

Chapter 8 Delivering the Goods: MailBag, the Server

190

After that, we begin to define the Worker class:

export class Worker {

 private static serverInfo: IServerInfo;

 constructor(inServerInfo: IServerInfo) {

 Worker.serverInfo = inServerInfo;

 }

When instantiated, the server information must be sent in, and it is then stored in

the static serverInfo member. Making this member static is superfluous frankly because

this class is instantiated with each usage, so there’s no real point in it being static. I just

did it this way as a reminder that in TypeScript, classes can have static members (and

there’s no harm to it being static in this case).

The sendMessage() method of this class is where the real action is, but before we can

look at that, we have a quick detour (or two, as it happens) to take.

�A Quick Detour: Nodemailer
The nodemailer module (https://nodemailer.com/about) is a Node module for Node

applications to allow “easy as cake” email sending (not my words, that’s what the author

says about it – though I do agree with the sentiment!). This module is nice because it’s just

a single module and has no dependencies, which is frankly kind of rare in the Node world.

Using it is simple: you create a “transport”, which is an object that knows how to talk a

particular protocol to send mail with, most usual SMTP, providing the transport whatever

information is needed to connect, and then you call the sendMail() method on the

transport, passing it the details of the message to send. That, really, is all there is to it! In

fact, it’s so simple that I’m not going to show a bit of sample code here and will instead

just show you the real code used in MailBag and have that effectively be the example!

�Another Quick Detour: Generics
But first, before we go into the code, I have to touch on a TypeScript topic that until now

hasn’t been necessary: generics.

Generics, in simplest terms, is a way to write code that can work on multiple types.

It’s not a concept specific to TypeScript, but it comes up often in TypeScript. The classic

example to demonstrate generics is this:

function echoMe(inArg: string): string { return inArg; }

Chapter 8 Delivering the Goods: MailBag, the Server

https://nodemailer.com/about/

191

It’s a simple function that does nothing but returns the argument passed in. Since

the argument and the return type are the same, this is a very limited function: it will

only work for the string type. What if we wanted to do the same for the number type, for

example? Well, there are two choices. One is this:

function echoMe(inArg: any): any { return inArg; }

Typing the argument and return as any (or specifying to type and allowing

TypeScript to infer any) will work, but it gives up a lot of the core benefits of TypeScript

in terms of type safety and IDE auto-completion and all that good stuff. Another option

is to change echoMe() to echoString() and then add a second function:

function echoNumber(inArg: number): number { return inArg; }

That, of course, will work too, but now we can’t just call echoMe() for a string or

number, which would be the ideal answer, wouldn’t it?

Well, that’s where generics come in! With generics, you can do this:

function echoMe<T>(inArg: T): T { return inArg; }

The trick is to add <T> after the function name. This is referred to as a type variable

(sometimes called type parameters or generic parameters, but they all mean the same

thing, and I personally prefer type variable). The letter T is simply a placeholder – you

could use any valid identifier there. But T is most typical, so I’m going with it! With this

in place, we can specify T anywhere else, like in the argument list as the type of inArg,

and as the return. TypeScript will now allow any type to be passed in but can still provide

warning and errors about type issues where appropriate (and possible). You can then

call this as you normally would:

alert(echoMe("hello"));

However, you get more benefit if you now write it like this:

alert(echoMe<string>("hello"));

That way, TypeScript will enforce the argument being a string. When it’s just a static

string like that, you don’t gain anything, but imagine something like this:

// a is some array passed into your function

for (let i = 0; i < a.length; i++) {

 echoMe<string>(a[i]);

}

Chapter 8 Delivering the Goods: MailBag, the Server

192

Now, TypeScript will complain if it the array isn’t typed as string, but you can still

use echoMe() for numbers or any other type the same way.

Note that you do not have to use the same type for the return. For example:

function echoMe<T>(inArg: T): string {

 return "-" + inArg + "-";

}

alert(echoMe<number>(42));

Here, the type of inArg will be number, but we’re returning a string.

Generics aren’t just for function arguments and return types, though. We can apply

them to interfaces too:

interface Args<K, L>{ arg1: K, arg2: L }

function logTypes<T, U>(inArg1: T, inArg2: U): Args<T, U> {

 console.log(typeof(inArg1), typeof(inArg2));

 let args: Args<T, U> = {

 arg1: inArg1, arg2: inArg2

 };

 return args;

}

console.log(logTypes<string, number>("frank", 42));

The Args interface is defined, and generics are used for the two properties it

contains. Yes, you read that right: generics, plural! You can, in fact, declare as many

type variables as you wish and use them however you wish. Here, I want each of the two

arguments to have different types potentially, so I declare two type variables. And, to

prove that T is nothing special, I used K and L as identifiers. No problem! I could even

have written

interface Args <arg1Type, arg2Type>{

 arg1: arg1Type, arg2: arg2Type

}

But that would strike me as a bit superfluous, but it does make the point: you really

can use any valid identifier you want; it doesn’t need to be a single letter even.

Next, the logTypes() function is declared, and it too has two type variables. I also

specify that the return type must adhere to the Args interface contract, and generics

Chapter 8 Delivering the Goods: MailBag, the Server

193

are again used here to ensure any types will be allowed. Inside the function, it’s just

outputting the types of the two incoming variables to the console and then returning

an object of type Args with the passed in arguments assigned to its properties. When

executing, in the console you will see a line that says “string number,” proving that the

types were correctly applied when logTypes() is called and throughout logTypes()

and in Args as appropriate. Remember that appending <string, number> when calling

logTypes() is optional because TypeScript will infer the types if you don’t, but I’d

suggest it’s good form to do so anyway.

While that’s not all you can do with generics in TypeScript, those are the basics, and

everything else is just variations on a theme, so I think this is good enough for the basics.

Remember that it doesn’t always make sense to use generics, but sometimes it very

much does, and sometimes you may find that you have to. We’ll see one such case soon.

�Back to the Code!
Okay, now we can have a look at the sendMessage() method, which is the only other

thing in the Worker class.

�Worker.sendMessage( )

The sendMessage() method takes in an object that must adhere to the SendMailOtions

interface, defined by nodemailer. The inOptions object can contain fields like the from

address, the to address, carbon copy addresses (cc), blind carbon copy addresses (bcc),

the subject of the message, and the text of the message (text). MailBag, being a simple

client, will only support from, to, subject, and text:

public sendMessage(inOptions: SendMailOptions):

Promise<string> {

 return new Promise((inResolve, inReject) => {

 const transport: Mail = nodemailer.createTransport(Worker.serverInfo.smtp);

 transport.sendMail(inOptions,

 (inError: Error | null, inInfo: SentMessageInfo) => {

 if (inError) {

 inReject(inError);

 } else {

Chapter 8 Delivering the Goods: MailBag, the Server

194

 inResolve();

 }

 }

);

 });

}

An issue arises here in that nodemailer doesn’t natively provide an async/await-

compatible API. It instead uses the callback approach. But, if you go back to the code of

main.ts, you’ll see that async/await is used everywhere when calling the Worker classes.

How can that be?

Any time you have a callback-based API, you can wrap a call to it in a Promise. You

then return the Promise from the function that makes the call, and that caller can then

use async/await to call it. Then, in the function, you simply have the callback passed to

the underlying function reject or resolve as appropriate.

So, here, all the calls to nodemailer are wrapped up in the created Promise object.

Inside it, the nodemailer.createTransport() method is first called, passing it the

server information. That gets us a connection to the SMTP server. Then, the transport.

sendmail() method is called, passing it inOptions, which contains the message details

passed in from the client. A callback function is the second argument to transport.

sendMail(), and that callback is passed an Error object and information about the sent

message. Note that the error object can be null, which to TypeScript is a different type.

To avoid a compilation error, we have to use what’s called a union type, which is what

Error | null is. This tells TypeScript that the inError can be one of two types: either

Error or null (we also could have inError as any; that would accomplish the goal too,

but is less TypeScript-y, so to speak!). Finally, inside the callback, if there is an error

object, then something went wrong, and the Promise must reject. Otherwise, it was

successful and is resolved.

One final subtle issue comes up here, and it’s where that detour into generics earlier

comes in! Notice the return type here is Promise<string>. The Promise part makes

sense: any function that is to be called with async/await must return a Promise. But why

do we have a generic <string> there? Well, TypeScript is smart enough to look at what is

ultimately being returned, whether as a result of a resolve or reject, from the function. If

the caller specifies a type for the variable that gets the eventual outcome of the Promise,

as is good form in TypeScript and as such is done in main.ts, then that type must

match, or TypeScript will complain. So, with Promise<string>, we’re essentially saying to

Chapter 8 Delivering the Goods: MailBag, the Server

195

TypeScript: “this function returns a Promise, but it promises to return a string eventually,

so make sure the variable that the returned value goes into is that type.” The generic

variable declaration is how we express that promised final type to TypeScript.

�Time to Get the Mail (and Other Stuff): imap.ts
Having seen how to send messages, now it’s time to see how to receive them – as well

as listing mailboxes and messages in them! This functionality is housed in the IMAP.ts

source file.

Before we look at the actual code, though, we have another one of those detours I

appear to be so fond of, this time to discuss two Node modules, this time for dealing with

the IMAP protocol and for parsing the body of receive emails.

�A Quick Detour: emailjs-imap-client and mailparser
The emailjs-imap-client module (https://github.com/emailjs/emailjs-imap-client)

is the one responsible for interacting with the IMAP server on behalf of MailBag. It

describes itself as a “low-level IMAP client for all your IMAP needs.” Short, but sweet!

Using it is rather simple. First, you create a client:

const client = new ImapClient(host[,port][,options]);

The port and options are optional, only the host is required. Once that’s done, you

initiate a connection:

client.connect().then(() => { /* Do what you want */ });

In a nutshell, that’s all there is to using it. Of course, getting real work done requires

more code. For example, to get a list of mailboxes and log them to the console:

client.listMailboxes().then((mailboxes) => {

 console.log(mailboxes);

});

For many operations, you need to select a mailbox first. That’s easy to do:

client.selectMailbox(<mailbox_name>).then(mailbox) {

 // Do your work

});

Chapter 8 Delivering the Goods: MailBag, the Server

https://github.com/emailjs/emailjs-imap-client

196

You get the idea, I’m sure. Pretty much everything you can do with emailjs-imap-

client is done in this same way. However, you can also use an async/await approach, as

you’ll see in the MailBag code itself.

In addition to this module, we’ll also be using the mailparser module (https://

nodemailer.com/extras/mailparser). The reason is that when we retrieve a message,

its structure is relatively complex, and it can be tricky to consume. For example, what if

the body contains embedded images? How do you deal with them? How do you get all

the header information into an easy-to-use form, things like from, to, and bcc addresses?

If you wrote the code to handle such a message yourself, you would quickly find its

complexity ballooning. Better to let a suitable module do the job, and that’s precisely

what mailparser does.

In simplest form, you can use the simpleParser that mailparser provides:

const simpleParser = require("mailparser").simpleParser;

simpleParser(source[,options], (err, parsed) => {});

The source argument is the only one required, and it will, of course, be the

message that, in our case, emailjs-imap-client, retrieves for us. What you’ll get back is a

ParsedMail object. This object contains several properties, including subject, from, to,

date, and text (the body of the message in plain text).

As with emailjs-imap-client, the API is set up for async/await calls, and that’s how

the MailBag code will use mailparser as well.

�Back to the Code!
Okay, now to actual code! As always, we begin with some imports:

const ImapClient = require("emailjs-imap-client");

import { ParsedMail } from "mailparser";

import { simpleParser } from "mailparser";

import { IServerInfo } from "./ServerInfo";

Those should be self-explanatory at this point. We know we need the two modules

discussed in the last section, and they won’t work without server information, so let’s

move on to the first interface defined:

Chapter 8 Delivering the Goods: MailBag, the Server

https://nodemailer.com/extras/mailparser/
https://nodemailer.com/extras/mailparser/

197

export interface ICallOptions {

 mailbox: string,

 id?: number

}

There are four functions that we need to build here: one to list mailboxes, one to list

messages within a mailbox, one to retrieve a message, and one to delete a message. Of

those, the last three require the caller to specify the name of the mailbox and the ID of

the message. Well, to be more precise, all of them require the mailbox name, but only

retrieving and deleting a message requires the ID. Therefore, the id property is defined

as optional so that we can use it in all cases.

Next, we need an interface for a message itself:

export interface IMessage {

 id: string, date: string,

 from: string,

 subject: string, body?: string

}

This will be used when listing messages in a mailbox as well as when retrieving

an individual message. The difference is that when listing messages, the body of the

message will not be returned. We’ll have a separate function for the client to call for that.

We’ll do this to save bandwidth: no sense returning the entire body if we don’t know if

we need it, which is the case when listing messages. Until the user clicks a message, the

body, which is the bulk of a message obviously (in most cases at least), isn’t needed.

That’s why body is optional.

Next, we need an interface for a mailbox:

export interface IMailbox { name: string, path: string }

That’s pretty simple! The name is obviously what will be shown on the screen, and

the path is how code will identify a mailbox for operations like listing mailboxes and

retrieving a message. The name and path need not match; hence, we need to separate

fields for them.

Next, we have a single line of code that will execute when the module loads:

process.env.NODE_TLS_REJECT_UNAUTHORIZED = "0";

Chapter 8 Delivering the Goods: MailBag, the Server

198

This is (most likely) necessary to make the calls to the IMAP server work. The issue

is that, by default, Node will attempt to validate the certificate presented by the server

when connecting over TLS (Transport Layer Security – if by chance you’re unfamiliar

with TLS, here’s a great reference: https://tls.ulfheim.net). This setting tells Node to

skip that step. To be clear, this makes a TLS connection insecure, since you can’t be sure

you’re talking to the legitimate server, which is the point of validating the certificate. But

there can be a fair bit of work that goes into getting that validation to work, so this setting

allows us to skip that. To be clear, if you intend to use MailBag in production, then you

will want to change this! But, as a learning exercise, one that will be connecting to an

IMAP server you provide and so know to be good, it’s sufficient, I think. Also note that

if you aren’t connecting to the server over TLS in the first place, then naturally this is all

irrelevant.

Now we come to the Worker class. Just like the SMTP.ts file, and just like the

contacts.ts file you’ll see later, the Worker class here is what the code in main.ts

interacts with:

export class Worker {

 private static serverInfo: IServerInfo;

 constructor(inServerInfo: IServerInfo) {

 Worker.serverInfo = inServerInfo;

 }

As with SMTP.Worker, the serverInfo field is defined static, not because it must be,

but just as a reminder that it can be in TypeScript. And, also like SMTP.Worker, the server

information is passed in to the constructor and stored.

Now, the first real method we come to is connectToServer(). This is to avoid

redundancy: all the other methods will make use of this when connecting to the IMAP

server. It is responsible for creating the emailjs-imap-client object and connecting it to

the server:

private async connectToServer(): Promise<any> {

 const client: any = new ImapClient.default(

 Worker.serverInfo.imap.host,

 Worker.serverInfo.imap.port,

 { auth : Worker.serverInfo.imap.auth }

);

Chapter 8 Delivering the Goods: MailBag, the Server

https://tls.ulfheim.net/

199

 client.logLevel = client.LOG_LEVEL_NONE;

 client.onerror = (inError: Error) => {

 console.log(

 "IMAP.Worker.listMailboxes(): Connection error",

 inError

);

 };

 await client.connect();

 return client;

}

The client is created, passing in the host and port from serverInfo. We also need to

pass in a username and password. That’s done in the third argument, which you’ll recall

from earlier is an optional options argument. One of the attributes it can contain is auth,

which must be an object containing a user (username) field and pass (password) field.

I then set the logLevel property on the client to the LOG_LEVEL_NONE constant (also

from the client). I did this to keep the output when running quiet because without that,

you get a fair bit of logging about what’s going on. It’s helpful if you need it, but most of

the time it’s just a lot of noise that we don’t need.

After that, an error handler is set up on the client. This will be used when the client.

connect() method is called if a connection to the server can’t be established. In this

case, I didn’t get fancy: the error is logged, but that’s it. No re-trying or anything like that.

We’ll just let the server blow up in such a case because there really isn’t much we could

do anyway. Finally, the connection is established, and the client returned to the caller.

�Worker.listMailboxes( )

The first of the four primary methods is up next, and it’s the one for listing mailboxes:

public async listMailboxes(): Promise<IMailbox[]> {

 const client: any = await this.connectToServer();

 const mailboxes: any = await client.listMailboxes();

 await client.close();

 const finalMailboxes: IMailbox[] = [];

 const iterateChildren: Function =

 (inArray: any[]): void => {

 inArray.forEach((inValue: any) => {

Chapter 8 Delivering the Goods: MailBag, the Server

200

 finalMailboxes.push({

 name : inValue.name, path : inValue.path

 });

 iterateChildren(inValue.children);

 });

 };

 iterateChildren(mailboxes.children);

 return finalMailboxes;

}

First, we get a client using that connectToServer() method from before. Then, it’s

a simple call to client.listMailboxes() to get the list. We then call client.close()

since the connection isn’t needed any longer (and note that there are conditions under

which the client actually cannot be reused, so to avoid problems and to keep things

simple, I just assumed that it was always true; hence, the connection is closed and a new

client constructed with each method call).

Now, there’s one complication here: the list of mailboxes you get is hierarchical. For

example, what you get might be this:

{ "root": true,

 "children": [

 {

 "name": "INBOX", "delimiter": "/", "path": "INBOX",

 "children": [],

 "flags": ["\\HasNoChildren"],

 "listed": true, "subscribed": true

 },

 {

 "name": "[Gmail]", "delimiter": "/", "path": "[Gmail]",

 "flags": ["\\Noselect","\\HasChildren"],

 "listed": true, "subscribed": true,

 "children": [

 {

 "name": "All Mail", "delimiter": "/",

 "path": "[Gmail]/All Mail",

 "children": [],

Chapter 8 Delivering the Goods: MailBag, the Server

201

 "flags": ["\\HasNoChildren","\\All"],

 "listed": true, "specialUse": "\\All",

 "specialUseFlag": "\\All", "subscribed": true

 }

]

 }

]

}

That’s a problem because on the client, I want to present a flat list of mailboxes. In

addition to that problem, the client will only care about name and path, none of the other

attributes supplied here. So, we have some work to do!

The iterateChildren() function is called recursively to deal with the hierarchy.

For each mailbox encountered, regardless of level in the hierarchy, it will be added to

finalMailboxes. But what’s added is a new object that contains just the name and path.

The children property is then passed to iterateChildren() to continue through the

hierarchy.

In the end, finalMailboxes will be a one-dimensional array of objects, each

containing name, and path, exactly like the client will want. Perfect!

�Worker.listMessages( )

For listing messages in a named mailbox, the listMessages() method is provided:

public async listMessages(inCallOptions: ICallOptions):

Promise<IMessage[]> {

 const client: any = await this.connectToServer();

 const mailbox: any = await client.selectMailbox(inCallOptions.mailbox);

 if (mailbox.exists === 0) {

 await client.close();

 return [];

 }

 const messages: any[] = await client.listMessages(

 inCallOptions.mailbox, "1:*", ["uid", "envelope"]

);

Chapter 8 Delivering the Goods: MailBag, the Server

202

 await client.close();

 const finalMessages: IMessage[] = [];

 messages.forEach((inValue: any) => {

 finalMessages.push({

 id : inValue.uid, date: inValue.envelope.date,

 from: inValue.envelope.from[0].address,

 subject: inValue.envelope.subject

 });

 });

 return finalMessages;

}

In this case, after instantiating and configuring the client, we need to select a mailbox

to operate against. The inCallOptions object will contain the name of the mailbox in its

mailbox field, so we pass that to client.selectMailbox(), and we get back a mailbox

object. Note that there doesn’t appear to be a type for this though; hence, any is used

(this is also true for the client). Next, we need to find out how many messages there are.

It’s a little weird to me, but the value of the exists property of the mailbox object tells us

this. If there are no messages, then an empty array is returned.

If there are messages, however, we need to retrieve them. To do so requires a call to

the client.listMessages() method. This method takes in the name of the mailbox,

what messages to retrieve, and what properties we want. The second argument is a query

that determines what messages we’ll get. Here, I’ve specified that we want messages

beginning with the first one and all messages after it (asterisk, as is typical, means all, or

any value). If you wanted to implement a paging mechanism, you could maybe get the

first ten with "1:10", but then the code becomes a lot more complicated pretty quickly

(the next ten would be "11:20", and so on, and you’d need to pass that information from

the client and keep track of it, and so on). For each message, I want just the unique ID of

the message and the metadata about it, called the envelope. Critically, we do not want the

body at this point.

For each message returned, an object is constructed, pulling the information the

client will need out of the object returned by client.listMessages(): the unique

message id, the date it was sent, where it’s from (just the email address, which is in the

address property of the object returned), and the subject. The finalMessages array

containing those objects is ultimately returned, and our work here is done!

Chapter 8 Delivering the Goods: MailBag, the Server

203

�Worker.getMessageBody( )

Since listMessages() doesn’t return message bodies, we need a function to get that,

and that’s where getMessageBody() comes in:

public async getMessageBody(inCallOptions: ICallOptions):

Promise<string> {

 const client: any = await this.connectToServer();

 const messages: any[] = await client.listMessages(

 inCallOptions.mailbox, inCallOptions.id,

 ["body[]"], { byUid : true }

);

 const parsed: ParsedMail = await simpleParser(messages[0]["body[]"]);

 await client.close();

 return parsed.text;

}

There’s no special function in emailjs-imap-client to get bodies, you simply use the

listMessages() method, but this time specifying that we want the body. More precisely,

because the body can be in multiple parts, it’s actually an array that we request. Note

here that we are specifying a specific message ID in the call, and to do that we have

to pass the fourth argument, { byUid : true }, to tell the method that we’re listing

messages based on a specific ID. Unlike listMessages(), where we were dealing with

a range of messages based on their ordinal number, here it’s a unique ID for a specific

message; hence, that option is required.

Once we have the message, we can then pass it along to the simpleParser()

constructor, which parses the message into a ParsedMail object. After closing the

connection, we just return the text property of that object, which is the plain text body

content, all necessary concatenation of multiple body parts dealt with for us. Note that

the client already has any metadata needed for this message; hence, it’s only the body

content we care about here.

Chapter 8 Delivering the Goods: MailBag, the Server

204

�Worker.deleteMessage( )

Finally, we come to the final method this Worker class must provide, the one for deleting

a message:

public async deleteMessage(inCallOptions: ICallOptions):

Promise<any> {

 const client: any = await this.connectToServer();

 await client.deleteMessages(

 inCallOptions.mailbox, inCallOptions.id, { byUid : true }

);

 await client.close();

}

This method is similar to getMessageBody() in terms of the call to the client; this

time, it’s the deleteMessages() method. We again pass it the mailbox name and the

unique ID of the message to delete, and we again must tell it that we are, in fact, passing

it a unique ID. But, unlike getMessageBody(), we’re basically done at that point, save for

closing the connection, of course.

�Reach Out and Touch Someone: contacts.ts
Now that you’ve seen how to send and receive mail, let’s go in a different direction and

look at what goes into the contacts functionality. This will take us until some side topics,

and that requires two quick detours!

�A Quick Detour: NoSQL
For this app, we need to store data, namely, our contacts. There are, of course, many

ways to do this. You could write them out to plain text files. You could store them in

cookies in the browser or perhaps the LocalStorage mechanism in the browser. You

could store them in a good ole’ database on a server. In fact, that last one is what we’re

going to do: a database that lives on the server. That way, our contacts are there when we

need them regardless of where we access MailBag from.

Most people think of an RDBMS (Relational DataBase Management System) like

Oracle, SQL Server, MySQL, or PostgreSQL when you say the word database. In such a

Chapter 8 Delivering the Goods: MailBag, the Server

205

database, you have tables, each with rows of data records and each table having columns

of data attributes. If you want to get the list of customers in a table, as an example, the

magic of the Structured Query Language (SQL) allows us to write a query like so:

select * from test.customers

This will get you a list of all users in the table and all the data attributes defined in the

table for each.

Now, that’s straightforward and highly useful and, I bet, nothing new to you. This is

the bread and butter of databases.

The problem, as some see it at least, is that each row in that table has a rigid

structure. Each row, which logically represents a customer, has, perhaps, a unique ID, a

first name, a last name, a credit card number (don’t get any ideas; they’re bogus!), and

a number of purchases. That’s all there is, and every customer you stuff into that table

must adhere to that structure. If you need to add attributes later, say, a middle name, you

can add a column to the table, but now all of the existing items will have blank or null

values in that field (assuming you allow empty or null values) unless you do some extra

work. That could be a problem if the code that uses this database doesn’t account for it.

While adding a column is usually a benign enough change, sometimes what’s required is

a more complex change than that, and you can easily break things, especially where the

relationship between rows is concerned (and remember it’s a relational database; after

all, relationships matter!).

SQL and the RDBMSs it works with are very powerful constructs, and they are

appropriate for all sorts of use cases.

Underlying the power of an RDBMS is the concept of ACID, an acronym for

Atomicity, Consistency, Isolation, and Durability. ACID describes the ability of the

RDBMS to ensure that the data is always in a consistent state at the end of every

operation. This is accomplished by many hard rules that you must follow, which results

in nothing that might violate ACID being allowed.

While ACID is likely what you want in a banking application, for example, there

are some situations where it isn’t, arguably, optimal. Sometimes, you don’t care about

relationships (much), and you don’t want to have a rigid structure to your data, and data

integrity might not be the highest consideration even.

That’s where the NoSQL concept comes into play.

Chapter 8 Delivering the Goods: MailBag, the Server

206

In contrast to ACID, the BASE model underpins NoSQL: Basic Availability, Soft state,

and Eventual consistency. This term leads you into a lot of computer science theory,

such as the CAP theorem and horizontal vs. vertical scaling, but for developers, it boils

down to the idea that the persistent data store loosens the rules!

For a start, you no longer must define a rigid database schema up-front. There are

no tables at all to define, so you don’t have to specify what attributes a customer has, for

example, by creating columns in a table for each. That usually means getting started with

NoSQL is faster than with an RDBMS.

Instead of tables and rows, you have collections of documents, each document

identified by a key value. What goes in those documents can be virtually anything, and

the structure of the document doesn’t need to be rigidly defined. In fact, you can have

documents with very different structures in a collection at a single time.

You could literally store an image, such as a GIF file, as a document in a collection,

or even an executable file if you wanted to. It’s simply mapped to a unique key, and that

key, among other mechanisms, can be used to retrieve it. You can also store a chunk of

textual data in common formats like XML, JSON, or CSV.

The bottom line, though, is that whatever you happen to be storing, it’s always

mapped to a unique key value. That is, pardon the pun again, the key idea! Because of

this, there are no SQL queries to write. You look documents up by specific key values or

iterate over a collection of documents looking for those that match some criteria you

define.

At first, it may seem like there’s no way to query a NoSQL database, but that’s not

the case. It is still, in fact, possible to query a NoSQL database if what you’re storing is

structured in some way. If you’re storing JSON documents, for example, you might have

a customer document like so:

{ FirstName : "Jack", LastName : "Miller", CreditCardNumber : 123456789,

NumberOfPurchases : 6 }

Some key value will identify that, but it’s also possible to find only the document with

a LastName of Miller without knowing any of the keys. You don’t give up those sorts of

capabilities by going to NoSQL; it’s just that you no longer have to write SQL queries.

Now, instead, and depending on which NoSQL implementation you use, you might write

code more like this to find a customer with FirstName “Jack”:

var c = Customers.find({ FirstName : "Jack" });

Chapter 8 Delivering the Goods: MailBag, the Server

207

Without getting into the specifics of the code (because for this discussion it doesn’t

really matter), Customers is a collection of documents, and find() looks for any that

have attributes matching the specified criteria. You’ll get back an array of, in this case,

JavaScript objects.

At this point in time, JSON is clearly the most used data storage format when working

with NoSQL, and for a good reason, NoSQL plays very well with JavaScript, so JSON is a

natural choice. JSON is what we’re going to be storing for MailBag.

Now that you have the basic idea behind NoSQL down, let’s look at the library that

allows us to implement it in MailBag: NeDB.

�Another Quick Detour: NeDB
NeDB (https://github.com/louischatriot/nedb) by Louis Chatriot is a Node library

that presents to our code a simple NoSQL database API. There are TypeScript bindings

available for it, so we can use all the TypeScript goodness we want with it too.

You’ve undoubtedly heard of the popular NoSQL database MongoDB. It is almost

certainly the most well-known NoSQL database. I thought about using it for this

project, but I decided against it because MongoDB is a separate server that you run and

make calls to from your code. I went with NeDB because it is just a library, so it’s fully

embedded in the server side of MailBag, no additional server to set up and connect to.

But here’s the good news: NeDB seeks to mimic a useful subset of MongoDB’s API,

meaning that most of what you’re about to learn will translate easily to MongoDB if you

ever want or need to use it.

Under the covers, NeDB stores its data in plain text files that you can open in a text

editor if you want, which is helpful in case you ever need to recover anything. It has

(most) of the critical features of MongoDB, certainly everything you’ll need: creating

documents, updating them, finding them and deleting them, and allowing you to do so

across different collections of documents.

To give you a quick flavor of working with NeDB, here’s a simple example:

const db = new nedb({

 filename : "people.db", autoload : true

});

Chapter 8 Delivering the Goods: MailBag, the Server

https://github.com/louischatriot/nedb

208

db.insert({ firstName : "Billy", lastName : "Joel" },

 function (inError, inDocument) {

 if (inError) {

 console.log(`Error: ${inError}`);

 } else {

 db.findOne({ firstName : "Billy" },

 function (inError, inDocument) {

 if (inError) {

 console.log(`Error: ${inError}`);

 } else {

 console.log(inDocument);

 }

 }

);

 }

 }

);

You create an instance of a database by providing NeDB with the filename of

that database and also telling NeDB to load it at that point automatically (or you can

manually open it later if you want to). Then, you can call the insert() method, passing

it an object to insert, and a callback function. The callback function can do whatever

makes sense. In this case, I just retrieve the document that was just inserted using

a query and log it to the console (NeDB will add an _id property to the object, so if

I wanted to I could have done db.findOne({ _id : inDocument._id}) instead, to

retrieve it by its unique key). Remember that NeDB is almost always asynchronous, so

you’ll need to deal with callbacks (or build a Promise-based wrapper around it if you

prefer). The findOne() method does exactly that: finds a specific single document based

on some query, here based on the firstName attribute. Of course, if there’s a chance

there is more than one document with a firstName of Billy, then chances are you want

to use the find() method instead, which returns an array of matching documents.

For this server, you won’t need too much more NeDB than this, but know that it

provides a very rich API, so if you need a simple database module that doesn’t have any

outside dependencies (as in no additional server to run) and want to use the NoSQL

approach, then NeDB is, in my opinion, one of the best choices available in the world of

Node development.

Chapter 8 Delivering the Goods: MailBag, the Server

209

�Back to the Code!
Okay, let’s kick things off, as we always do, with some imports:

import * as path from "path";

const Datastore = require("nedb");

That’s not much, is it? We need NeDB, naturally, and we need path, as you know

from the previous section, to get a path to the data file.

Now, let’s define an interface to describe a contact:

export interface IContact {

 _id?: number, name: string, email: string

}

We’re going to use this for all use cases, meaning when we add or delete a contact,

as well as when listing contacts. In the case of adding a contact, the _id field won’t be

populated initially, meaning the client won’t supply it. Instead, NeDB will be populating

that for us, so we have to mark it as optional here; otherwise, our add operation wouldn’t

meet the contract as a result of not having an _id field.

With that ready to go, we can start to define the Worker class:

export class Worker {

 private db: Nedb;

 constructor() {

 this.db = new Datastore({

 filename : path.join(__dirname, "contacts.db"),

 autoload : true

 });

 }

Upon construction, a NeDB Datastore object is created, and a path to the contacts.

db file is given. We tell NeDB to load it automatically, and NeDB will create the file for us

if it doesn’t already exist. This is all we need to prepare for the remainder of the methods

this class must provide.

Chapter 8 Delivering the Goods: MailBag, the Server

210

�Worker.listContacts( )

First up is providing a list of contacts, which is what the aptly named listContacts()

method does:

public listContacts(): Promise<IContact[]> {

 return new Promise((inResolve, inReject) => {

 this.db.find({ },

 (inError: Error, inDocs: IContact[]) => {

 if (inError) {

 inReject(inError);

 } else {

 inResolve(inDocs);

 }

 }

);

 });

}

As with nodemailer, NeDB doesn’t provide an async/await-based API, so we have to

do the same sort of trick with wrapping it in Promises as we did with nodemailer in order

to be able to write our code with async/await. Inside the Promise, it’s a simple matter

of calling the find() method on the DataStore referenced by this.db and passing no

search criteria as the first argument (well, technically an empty search criteria object,

to be pedantic). That returns us all the records in the contacts.db file, which is our

contacts collection, in NoSQL parlance. Since we know that the objects that will be

returned will match the IContact interface’s structure, we can type the inDocs argument

as such, even though technically NeDB doesn’t know about our type. It doesn’t have to,

though: this is all TypeScript territory. Then, just like with nodemailer, we either reject

the Promise, passing the error to the caller, or else we return the array of documents,

which are our contact objects. Notice the use of generics for the return type: here, we’re

promising to resolve with an array of IContact objects, which TypeScript is happy to see!

That’s all there is to it!

Chapter 8 Delivering the Goods: MailBag, the Server

211

�Worker.addContat( )

Next up is addContact(), called to add a new contact to the collection:

public addContact(inContact: IContact): Promise<IContact> {

 return new Promise((inResolve, inReject) => {

 this.db.insert(inContact,

 (inError: Error, inNewDoc: IContact) => {

 if (inError) {

 inReject(inError);

 } else {

 inResolve(inNewDoc);

 }

 }

);

 });

}

It’s even simpler than listMessages(), but follows the same basic structure. The

insert() method this time is what we need, passing the contact to add as the first

argument. This method passes the added object to the callback, which will now include

an _id field, so we return that object to the caller, and eventually the client, so that it can

add it to the screen as appropriate (all of which you’ll see in the next chapter).

�Worker.deleteContact( )

Finally, we need to implement a deleteContact() method for removing a contact:

public deleteContact(inID: string): Promise<string> {

 return new Promise((inResolve, inReject) => {

 this.db.remove({ _id : inID }, { },

 (inError: Error, inNumRemoved: number) => {

 if (inError) {

 inReject(inError);

 } else {

 inResolve();

 }

 }

Chapter 8 Delivering the Goods: MailBag, the Server

212

);

 });

}

Here, the remove() method is used, and for the first time, we need to provide a

query. This method receives just the ID of the contact to delete, and we need a match on

the _id field, hence the query object seen here. This method takes a second argument,

an options argument, that provides some additional flexibility (at the time of this writing,

the only option was whether to remove multiple documents if more than one matches

the selection criteria – when using the _id field though, that would never be the case,

so an empty options object is sufficient here). In this case, the callback is passed the

number of documents removed. Given the way the code is structured and how the

client will be written, there’s really no situation where anything but a value of 1 would be

passed, so I saw no real purpose in returning anything at all when resolving the Promise.

As long as it’s not rejected, we treat it as a successful removal.

And, with this final method, we’ve now explored all the code of the MailBag server!

�Testing It All
Let’s talk a bit about testing. We’ve built the server side of MailBag, but how do you go

about testing it? Obviously, you could write some code, maybe in main.ts, to call the

various Worker methods to see if everything works, but that doesn’t test the whole thing:

how do we know the client-facing API is working right?

To do this sort of holistic testing, without having the client written yet, is a good idea

because then we know the server is working correctly and any problems we face while

writing the client are likely client-specific issues.

Perhaps the simplest way to do such testing is with the well-known command-line

program curl (https://curl.haxx.se/). If you’re on a ∗nix system, then you likely have

it already. If you’re on Windows, like me, then you’ll need to download it separately.

Fortunately, there’s no installation: just explode the archive, and you’re ready to use curl.

As a first example, how do we test the function to get mailboxes with curl? That’s very

easy:

curl localhost/mailboxes

Chapter 8 Delivering the Goods: MailBag, the Server

https://curl.haxx.se/

213

That presumes the server is running on the same machine, of course, but that’s a

reasonable expectation at development time. By default, curl will make a GET request

to the URL you specify. Assuming the server is running, you should see a response,

displayed directly in the console, something like what you see in Figure 8-4 (obviously,

what you actually see will depend on the server you connect to and what mailboxes the

account has).

We can similarly get a list of messages in a mailbox with

curl localhost/mailboxes/INBOX

Figure 8-5 is the type of response you can expect to see.

Then, we can get the body of the message easily:

curl localhost/messages/INBOX/103319

Figure 8-6 is something like you would see if you had this message on your server

and in your inbox.

Figure 8-5.  A listing of messages in my inbox

Figure 8-4.  A simple API test with curl

Chapter 8 Delivering the Goods: MailBag, the Server

214

To delete that message, we must use the DELETE method of course, and curl

supports that as well:

curl -X DELETE localhost/messages/INBOX/103319

Figure 8-7 shows the result, followed by listing the inbox messages again to show that

it’s now empty of that message.

What about sending messages, you ask? That’s easy, too, but it requires a little more

curl work:

curl -d '{ "to" : "fzammetti@gmail.com", "from" : "fzammetti@etherient.

com", "subject" : "This is a test", "message" : "If you see this then it

worked!" }' -H "Content-Type:application/json" -X POST localhost/messages

Since sending a message requires sending data in the body, we must define that

data, and that’s where the -d (for “data”) switch comes into play. We can supply

the JSON directly after it. Optionally, you can store the JSON in a file and specify -d

<json_filename>. We also must tell curl to let the server know that we’re sending

JSON, and that’s what -H is for. This allows us to set arbitrary request headers, Content-

Type:application/json in this case.

Figure 8-7.  Message gone, inbox empty!

Figure 8-6.  The boring contents of a boring email!

Chapter 8 Delivering the Goods: MailBag, the Server

215

Caution  On Windows, you’ll need to replace the single quotes surrounding the
JSON with double quotes and then escape each of the quotes inside. Otherwise,
this won’t work.

I’m going to skip the functions for contacts here since it’s just more of the same, and

I’m pretty sure you get the idea by this point.

�Optional Tooling
Now, curl is good for sure, and you can do much more with it than what’s shown here,

but there are arguably better tools for doing this sort of testing (well, at least, better in

some ways). One of the most popular is called Postman (www.getpostman.com). You

could think of it as curl but with a pretty face! Figure 8-8 shows an example of testing one

of our endpoints with Postman.

Here, I’ve exercised the function to list mailboxes.

Figure 8-8.  An example of using Postman for RESTful web service endpoint
function testing

Chapter 8 Delivering the Goods: MailBag, the Server

http://www.getpostman.com

216

There are some interesting things to note here. First, looking on the left, you can see

that with Postman, you can organize your requests into collections. I’ve got a collection

for MailBag tests, and I’ve got another collection for some Amazon AWS tests that I was

working on at the time for another project. Over on the right, you can see that each open

request gets a tab along the top, so you can quickly and easily jump between, say, listing

mailboxes and listing the messages within a mailbox. You can select the method there,

GET, in this case, and, of course, specify the URL. You can append whatever you need

to append to the URL, a mailbox name, for example, to get messages for it. Then, below

the URL, you can see various tabs are available for settings headers, cookies, request

parameters (if needed), or basic auth information if applicable. You can also directly

enter your body content there, so the JSON for sending a message, for example. Then,

on the right, you can see the response from the last request. Postman is kind enough

to parse the JSON for us and present it in a nicely readable form. That’s much easier to

examine than what curl gives us!

Postman isn’t just for REST testing: any type of HTTP request can be tested here.

And Postman isn’t the only such tool around! Another popular one is Insomnia

(https://insomnia.rest), and there are certainly others. But, in my experience,

Postman and Insomnia do tend to be the most commonly used.

In the end, it doesn’t matter whether you choose one of these, a different tool, or just

go with basic curl itself. What matters is testing your service endpoints so that when you

get ready to build the client for them, you know the server is reliable.

�Suggested Exercises
It’s always good, I think, to take existing code and try and extend and change it a bit.

It’s an excellent way to get some practice without having to think through everything

yourself. With that in mind, here are a few ideas of things you might attempt on your own

to sharpen your skills:

•	 Add an updateContact() function using the PUT method to be able

to change an existing contact. You’ll need to accept the potentially

new name and email address, plus the existing _id, and then write

the NeDB code to update it.

Chapter 8 Delivering the Goods: MailBag, the Server

https://insomnia.rest/

217

•	 Set HTTP response codes according to the discussion in the section

on REST rather than using 200 for everything. This will give you some

experience working with Express and some practice using Postman,

Insomnia, or curl to test your changes.

•	 Write some curl commands to test the contact functions. Then, do

the same with Postman to make sure you got these concepts.

�Summary
In this chapter, you learned quite a lot! You learned about writing a RESTful API with

Node and Express. You learned about finding TypeScript bindings for the Node modules

you might want to use, and you learned about several modules, including emailjs-

imap-client and nodemail. You got a look at the NoSQL concept and the NeDB module

for storing data using it. In the process, you got a look at some new TypeScript goodness

in generics and generally got to see a lot of TypeScript in action.

Now that we have a server built and an API ready, we can begin to build the client

portion with React, which is what the next chapter is all about!

Chapter 8 Delivering the Goods: MailBag, the Server

219
© Frank Zammetti 2020
F. Zammetti, Modern Full-Stack Development, https://doi.org/10.1007/978-1-4842-5738-8_9

CHAPTER 9

Delivering the Goods:
MailBag, the Client
With the server side of MailBag ready to go, it’s time now to move on to the client side

of things! Here, we’ll get back to playing with our good friend React, along with some

supporting libraries, and we’ll hook it all up to the server that was built in the previous

chapter. In the end, we’ll have ourselves a fully functional webmail application that you

could use for real if you wanted to!

�What Are We Building?
Unlike the server part of MailBag, the client part is something we can easily take a look

at because it is, by its nature, a visual thing. That makes describing what we’re going to

build easy for an author like me! So let’s begin with Figure 9-1, which shows MailBag as

it would appear after initial launch (well, in a general sense, what you would actually see

would depend on the mail account you hook it up to, but this is linked to my account, so

it gives you a general idea at least).

220

I make no representation that this app can compete with the likes of Gmail or

Outlook, but it gets the primary job of a webmail application done. Up top, you see

that you can create a new message, and you can create a new contact. A list of existing

contacts is over on the right, and on the left is the list of mailboxes that the IMAP server

used returns. In the center, at the top, is a list of messages in the currently selected

mailbox. For example, if I click the INBOX button on the left, I see some messages in

Figure 9-2.

Figure 9-1.  Our first look at MailBag’s client

Chapter 9 Delivering the Goods: MailBag, the Client

221

In this screenshot, I’ve also gone ahead and clicked one of the messages, which

shows its details at the bottom. As you can see, I can reply to the message, or I can delete

it (and none of the fields above the buttons are editable). When you click the NEW

MESSAGE button in the toolbar, you see the same basic screen except that the ID and the

date are hidden, the From field becomes a To field, and there is just a single Send button

(and everything is editable, naturally).

When you click a contact on the right or when you click the NEW CONTACT button,

you wind up at essentially the same place, which is shown in Figure 9-3.

Figure 9-2.  A few messages in my inbox (I get A LOT of spam – this was a good day!)

Chapter 9 Delivering the Goods: MailBag, the Client

222

Similar to the view of a message, clicking an existing contact shows a screen that is

essentially the same except that in that case, the SAVE button becomes a DELETE button

(and the fields are read-only).

Note  Although this section is just meant as a walkthrough, you of course can
(and maybe even should) fire up MailBag now and talk a look at it in action.
Assuming you’ve already gone through Chapter 8 and downloaded the source code
bundle and installed dependencies, you can fire up the MailBag server, and the
client is then available at http://localhost automatically.

Figure 9-3.  Adding a contact

Chapter 9 Delivering the Goods: MailBag, the Client

223

�Basic Requirements
Now that you know what the app looks like, let’s catalog the basic functionality it must

provide. As I said, we’re not challenging Google’s webmail supremacy, so the list isn’t all

that extensive (and, given what you saw in the last chapter, you effectively already know

what the list must contain):

•	 The server must be consulted for a list of mailboxes under a single

configured IMAP account once at startup.

•	 The user can select a mailbox from the list, which will double as a

refresh action. The messages will be displayed in a tabular form and

will show the date received, subject, and sender.

•	 Clicking a message shows it below the list, including subject, sender,

ID on the server, date received, and, of course, the message itself, as

plain text.

•	 The user must be able to delete the message being viewed.

•	 The user can begin a new message in reply to the message being

viewed. The subject will automatically have “Re:” prepended to it,

and the original message will be shown below a bit of marker text.

•	 A list of contacts will be stored on the server. The user can select a

contact from a list and can delete the contact or begin a message to

them. They can also, of course, add a new contact.

•	 Like mailboxes, the server will be consulted once at startup for the list

of contacts.

In addition to the requirements, since this is an interface, we need to discuss the

overall structure of it, if for no other reason than to provide a common vocabulary to use

going forward. The screenshots make it fairly obvious, but the overall structure, or layout,

of the interface is described in Figure 9-4.

Chapter 9 Delivering the Goods: MailBag, the Client

224

As you can see, in block form, it mimics the arrangement shown in the screenshots.

However, how we achieve that layout is the critical piece of the puzzle, and that’s

something we’re going to talk about a bit later on, after a necessary detour. But, before

we get to that, we have to set up the project, so let’s do that now!

�Setting Up the Project
Setting up the client project is very similar to setting up the client. Create a client

directory under the project root directory alongside the server directory. Then, create a

src directory in it.

Typically, I would detail the initialization steps to take at this point, but I think you’ve

seen those steps enough between the server code and previous examples, so let’s save

some time, and instead, I’ll just show you what the package.json file should be after

doing a basic npm init and then installing all the necessary dependencies:

{

 "name": "mailbag",

 "version": "1.0.0",

 "description": "MailBag",

Figure 9-4.  The overall layout of the client in block form

Chapter 9 Delivering the Goods: MailBag, the Client

225

 "main": "main.tsx",

 "scripts": { "build": "webpack --mode production" },

 "author": "Frank W. Zammetti",

 "license": "ISC",

 "devDependencies": {

 "awesome-typescript-loader": "^5.2.1",

 "babel-plugin-syntax-dynamic-import": "^6.18.0",

 "css-loader": "^3.3.0",

 "html-loader": "^0.5.5",

 "html-webpack-plugin": "^3.2.0",

 "style-loader": "^1.0.1",

 "ts-loader": "^6.2.1",

 "typescript": "^3.7.3",

 "webpack": "^4.41.2",

 "webpack-cli": "^3.3.10",

 "webpack-dev-server": "^3.9.0"

 },

 "dependencies": {

 "@material-ui/core": "^4.6.0",

 "@material-ui/icons": "^4.5.1",

 "axios": "^0.19.0",

 "normalize.css": "^8.0.1",

 "react": "^16.11.0",

 "react-dom": "^16.11.0",

 "@types/material-ui": "^0.21.7",

 "@types/react": "^16.9.16"

 }

}

If you download the source archive for this book, that’s what you’ll find, and you can

just do an npm install at this point to get everything installed. Otherwise, just overwrite

this file with this content (and this is true of the remaining configuration files we’re about

to discuss).

Chapter 9 Delivering the Goods: MailBag, the Client

226

As you can see, TypeScript is installed, and then too is Webpack. Also, several

Webpack loaders and plugins are installed (and some of those results in some additional

dependencies being automatically added by NPM).

Note  I also added a script that can be used to execute a build, so now npm run
build is all we need to do to kick off the build. Also note that Axios didn’t have
type bindings at the time of this writing and normalize.css isn’t a library of code,
it’s a stylesheet, so typing doesn’t factor into it.

We’ll get back to Webpack in just a moment, but this effectively takes care of the

development dependencies. But what about runtime dependencies? Well, I’ve also

installed those as well, and they are as follows:

•	 React – Of course!

•	 normalize.css – A CSS reset to ensure we start with a consistent

client-side environment across browsers as far as styles go

•	 Axios – A library for server communications (more on this later)

•	 Material-UI – A library providing UI widgets to build our UI with

based on Google’s Material guidelines (more on this later too)

Now, when TypeScript was installed, we got a default tsconfig.json file, and that

needs to be modified a bit also. Again, I’ll just show you what the final file should look

like (remember that you will have other content commented out since the tsc -init will

produce it, but this is the content that should be enabled with the appropriate values):

{

 "compilerOptions" : {

 "esModuleInterop" : true,

 "sourceMap" : true,

 "noImplicitAny" : false,

 "module" : "commonjs",

 "target" : "es6",

 "lib" : ["es2015", "es2017", "dom"],

 "removeComments" : true,

 "jsx" : "react",

Chapter 9 Delivering the Goods: MailBag, the Client

227

 "allowJs" : true,

 "baseUrl" : "./",

 "paths" : { "components/*" : ["src/components/*"] }

 }

}

So far, these are the same basic steps that were done when building the server. But,

unlike the server, there are some additional installation and configuration steps we must

do because the client will be using Webpack. It will have been installed at this point, but

we must initialize this project with Webpack too:

npx webpack init

That creates a default webpack.config.js file. As an aside, you also should go ahead

and delete the .yo-rc.json file that’s created since it won’t be needed (you can keep the

README.md file if you want though). For our purposes here, the answers you give during

this step won’t matter because we’re just going to overwrite the file with the following:

const HtmlWebPackPlugin = require("html-webpack-plugin");

module.exports = {

 entry : "./src/code/main.tsx",

 resolve : { extensions : [".ts", ".tsx", ".js"] },

 module : {

 rules : [

 { test : /\.html$/, use : { loader : "html-loader" } },

 { test : /\.css$/,

 use : ["style-loader", "css-loader"] },

 { test : /\.tsx?$/, loader: 'awesome-typescript-loader' }

]

 },

 plugins : [

 new HtmlWebPackPlugin({ template : "./src/index.html",

 filename : "./index.html" })

],

 performance : { hints : false },

 watch : true, devtool : "source-map"

};

Chapter 9 Delivering the Goods: MailBag, the Client

228

You can see the rules defined for handling HTML, CSS, and TSX files, using the

loaders installed before.

The HtmlWebPackPlugin has a particular purpose. We tell Webpack what HTML

file in our source code to start with via the entry attribute, and it then modifies it as

needed (including adding a proper module loader) so that our app can be launched after

Webpack has transformed it. This plug is responsible for that.

The performance attribute is necessary because, by default, Webpack will produce a

warning or error, depending on various factors, if the final bundle is over 250Kb. Setting

performance : { hints : false } disables this behavior.

Setting watch:true serves much the same purpose as the scripts entries in the server

did: Webpack will watch our source files and automatically rebuild the client if any files

change. That gives us that nice, fast turnaround for changes we so liked when working

with the server code, but we get it “for free” with Webpack just by adding this attribute!

Finally, devtool set to "source-map" ensures that a source map is created for the

final bundle, allowing us to do some debugging when necessary.

�Source File Rundown
Of course, you know we’re dealing with files in the client directory and, more

precisely, in the src directory. Like the server code, the client code is laid out the same

fundamental way. Critically, the final “executable” client code winds up in the dist

directory (which would have been created when the Webpack initialization step was

done, but you can, of course, add it manually if you skipped that step). But let’s talk

about the files that make up this application in the src directory (and the subdirectories

in it):

•	 src/index.html – The main entry point of the application.

•	 src/css/main.css – A regular old CSS file with some shared styles.

•	 src/code/main.ts – The main code entry point. This is where React

will begin to build our UI from.

•	 src/code/Contacts.ts – Like the server, this is the file that contains

a Worker class for dealing with contacts (this is what talks to the

server side of MailBag for contacts).

•	 src/code/IMAP.ts – Like Contacts.ts, this contains a Worker for

performing all the IMAP functions, in conjunction with the server.

Chapter 9 Delivering the Goods: MailBag, the Client

229

•	 src/code/SMTP.ts – Just like IMAP.ts, but for the SMTP (send)

functionality.

•	 src/code/config.ts – A simple configuration file that will contain

information about the server component and your email address.

•	 src/code/state.ts – This is where most of the action of the app

actually is, but we’ll get to that in due time!

•	 src/code/components/BaseLayout.tsx – A React component that

houses all others.

•	 src/code/components/Toolbar.tsx – A React component that is the

toolbar.

•	 src/code/components/MaliboxList.tsx – A React component that

is the list of mailboxes on the left.

•	 src/code/components/ContactList.tsx – A React component that

is the list of contacts on the right.

•	 src/code/components/MessageList.tsx – A React component that

is a list of messages in a selected mailbox.

•	 src/code/components/WelcomeView.tsx – A React component that

serves as just a simple splash screen when the app starts up or when

certain operations occur.

•	 src/code/components/ContactView.tsx – A React component that

is the presentation of the contact view when a contact is selected or a

new one is being created.

•	 src/code/components/MessageView.tsx – A React component

that is the presentation of a message or when a message is being

composed.

As always, we’ll be examining each of these in turn, but I think that gives you a good

rundown of what code we’ll be looking at. It seems like a lot of files, but really, most of

them are very small.

Chapter 9 Delivering the Goods: MailBag, the Client

230

�The Starting Point: index.html
This is where it all begins: the entry point to the application:

<!DOCTYPE html>

<html lang="en">

 <head>

 <meta charset="utf-8">

 <title>MailBag</title>

 </head>

 <body></body>

</html>

Well, that’s kind of anticlimactic, isn’t it? Remember earlier when I said that

Webpack will transform this file as appropriate to make the app work. Because of that,

there’s not much for us to do here, so it’s a nice, simple HTML document with no real

content. It’s a little weird that we don’t even import any JavaScript because obviously,

that must happen at some point, or else MailBag isn’t going to do much! But that’s what

Webpack takes care of for us, so we don’t even have to think about that much.

�The Starting Point, Redux: main.tsx
Okay, now it’s time to get to some real code! The first file to look at is main.tsx, which is

the main entry point code-wise. This is where React will start to execute our application

from. Given the .tsx extension, we know that this is a JSX file that is written in

TypeScript. And it begins simply enough:

Note  For the remainder of this chapter, to save some trees, I’ve removed all
imports except where they are something unique, as is the case here.

import "normalize.css";

import "../css/main.css";

It may seem a bit odd to see CSS files imported into a code file like this, but it’s okay

because JSX and the TypeScript compiler (and Webpack) know how to deal with that on

our behalf. That’s also why index.html doesn’t have them imported, as you’d normally do.

Chapter 9 Delivering the Goods: MailBag, the Client

231

Now, as far as what those files are, normalize.css is a CSS reset, meaning that it

normalizes initial style conditions on a page across browsers. It takes care of ensuring

every browser has the same padding around a given HTML element, for example, or that

the margins on the document itself are consistent across browsers. All of that stuff can be

different from browser to browser, so using a reset helps ensure that the styles our app

uses, which are in the main.css file, are applied on a stable, consistent foundation. You

don’t use any styles in normalize.css yourself directly; they’re strictly something that

gets applied automatically before your app’s styles do (which is why normalize.css must

be imported first, by the way).

With the imports out of the way, it’s time for some code:

const baseComponent = ReactDOM.render(

 <BaseLayout />, document.body

);

That kicks off the React portion of the proceedings, rendering the BaseLayout

component, which we’ll be looking at soon, into the body of the document. With that, we

have an app on the screen!

Before we get there, though, there’s a fair number of other stops this train must make,

starting with application state.

�A Quick Detour: State’ing the Obvious
Every React application – well, any nontrivial application anyway – is going to need some

sort of state, as was discussed in Chapters 3 and 4. Exactly how you maintain this state is

a topic of much debate in the React community. I mentioned Redux in Chapter 3. Redux

is a way to have a centralized state object that all the components in the application

share. It’s a popular approach, but it’s just one of many. And you don’t need to look

outside of React itself if you don’t want to because React offers the notion of state by

default, and that’s what I did with MailBag. The trick, though, is that to have components

sharing that state, you have to push it up the component tree as far as needed.

In other words, recall that React always constructs a component tree. Any tree has a

single element at the top with children beneath it, and those children can have children,

and so on. So, where you place your state object becomes a question, and you answer

it by determining which components in the tree need access to it. You simply find the

highest component in the tree that is a parent to all that need it, and that’s where you put

your state.

Chapter 9 Delivering the Goods: MailBag, the Client

232

In MailBag, you’re going to find that we have a single component, BaseLayout, that is

a parent to all the rest. This is the most logical place to place state then.

However, what is state in MailBag, exactly? Well, state in React is nothing but a

JavaScript object. You could define it directly within the BaseLayout.tsx code file, but

I wanted to have it be separate, just to organize the code a little cleaner. That’s what the

state.ts file is all about. It defines an object that BaseLayout will include, and it’s where

all state for the application will live, along with the methods needed to mutate state.

But it’s not quite as simple as defining an object. We have to play some games in order to

make this work, which is why this file’s code begins in not quite the way you might expect:

export function createState(inParentComponent) {

Rather than just exporting a literal object, we have a function. This function takes in a

reference to the component that contains it, BaseLayout, in our case, for reasons that will

become apparent shortly. Then, this function simply returns an object, our state object:

 return {

 pleaseWaitVisible : false,

Our state consists of a series of properties in the object, starting with

pleaseWaitVisible. This is a flag that will tell our code whether a “please wait” popup,

which we’ll show every time we call the server, is visible or not. More on this later!

We also need to maintain a list of contacts that the user has created, and that’s where

the contacts array property comes in:

 contacts : [],

Similarly, a list of mailboxes is needed:

 mailboxes : [],

And, assuming a mailbox has been selected, we need the list of messages within it:

 messages : [],

When the user clicks a mailbox or clicks the NEW MESSAGE or NEW CONTACT

button or clicks a contact in the list, what they see in the middle of the screen changes.

This we refer to as the “view,” and what view is current must be known for React to

render the correct content:

 currentView : "welcome",

Chapter 9 Delivering the Goods: MailBag, the Client

233

It starts out with the "welcome" view and then changes to one of "welcome",

"message" (when viewing a message), "compose" (when creating a message), "contact"

(when viewing a contact), and "contactAdd" (when adding a contact). How this changes

the view is something you’ll see later.

Earlier, I mentioned the array of messages in the currently selected mailbox, but how

do we know what the current mailbox is? As it happens, we have a property for that:

 currentMailbox : null,

Then, we must think about what state is necessary when either viewing or creating a

message. For that, we have a series of properties:

 messageID : null,

 messageDate : null,

 messageFrom : null,

 messageTo : null,

 messageSubject : null,

 messageBody : null,

I’d imagine those are all obvious. Note that messageID would only ever be populated

when viewing an existing message, and it’s the ID of the message on the server.

Similar, when viewing or creating a contact, we’ll need some state too:

 contactID : null,

 contactName : null,

 contactEmail : null,

The state object also contains a collection of methods that the remainder of the

application code calls on to mutate state in various ways. These are termed “state

mutator methods,” and I’m going to introduce each of those methods as they are first

encountered.

So, to wrap this up in a bow, what will happen is that this createState() function

will be called at some point inside BaseLayout, and the state object will be returned.

That object will then be a member of BaseLayout, and we’re good to go.

Well, mostly… but we’ll get to a small problem next!

Chapter 9 Delivering the Goods: MailBag, the Client

234

�Back to the Code!
Now that you have an idea of what state is in play, we can get back to the code in main.tsx:

baseComponent.state.showHidePleaseWait(true);

Once the UI is built, the next task that must be accomplished is to call the server

and get a list of mailboxes available for the account and a list of contacts the user has

created. Any time we call the server, we’re going to display a “please wait” popup, so the

user knows something is happening. This will also serve the purpose of blocking the UI

for a moment so that the user can’t go and do something that causes problems while the

server works. The showHidePleaseWait() method of the state object, the first of the state

mutator methods we’ve encountered, does this for us:

showHidePleaseWait : function(inVisible: boolean): void {

 this.setState({ pleaseWaitVisible : inVisible });

}.bind(inParentComponent)

You must remember that with React, you don’t directly tell components to do

things. Instead, you mutate state in some way, using the setState() method on the

component that holds the state, which causes React to repaint the pertinent parts of the

UI as needed. In this case, to show the please wait popup, all we need to do is update

the pleaseWaitVisible state attribute, setting it to true. React will then redraw the UI,

and what will happen, something you’ll see later, is that the popup element will now

be set to visible. This will make sense when we look at the MainLayout.tsx file, but just

keep in mind for now that pleaseWaitVisible is set to true when we want the please

wait popup to be shown and false when we want it hidden and that React will see that

change in state and redraw the screen as needed. That’s the key thing right now.

The little problem I alluded to earlier is that since we are limited to calling the

setState() method on the component that contains the state object, any code that tries

to call it must execute within the context of that component. When we define a separate

object for state as I did in order to break it out into its own source file, the this reference

in the methods inside state won’t be what we need. In other words, any method inside

the state object won’t have access to setState() because its execution context, at least in

some instances, won’t be the BaseLayout component.

That’s where the bind() statements come in, and you’ll see these on every function

in the state object. When the state object is constructed via the call to createState(), a

reference to the BaseLayout instance was passed in. That’s what we bind all the mutator

Chapter 9 Delivering the Goods: MailBag, the Client

235

functions to. That way, they will always have access to setState() as we need. Note that

if any of them needs to touch the state object itself, which they obviously would need to

in at least some cases, they can do so by accessing this.state, since components always

expose their state via that property.

With the please wait popup showing, we can now call the server:

async function getMailboxes() {

 const imapWorker: IMAP.Worker = new IMAP.Worker();

 const mailboxes: IMAP.IMailbox[] = await imapWorker.listMailboxes();

 mailboxes.forEach((inMailbox) => {

 baseComponent.state.addMailboxToList(inMailbox);

 });

}

We know that getting a list of mailboxes is an IMAP operation from our look at

the server code, and since the IMAP Worker class on the client seeks to mimic that

API that is exposed by the server to the IMAP Worker class there, it makes sense that

we’d be calling IMAP.Worker.listMailboxes() here too. And the code looks almost

identical to the endpoint handler function code on the server as a result. We’ll look at

the client-side IMAP close a bit later, but I think you’ll find it rather trivial. The bottom

line, though, is that we get back an array of mailboxes, and we then iterate them and

call the addMailboxToList() method on the state object (which we can do because we

have a reference to the BaseLayout component via the baseComponent variable). That

will update the mailboxes array in state, causing React to render the screen to show the

mailboxes on the left.

And addMailboxToList() method is the next state mutator we’ve hit:

addMailboxToList : function(inMailbox: IMAP.IMailbox): void {

 const cl: IMAP.IMailbox[] = this.state.mailboxes.slice(0);

 cl.push(inMailbox);

 this.setState({ mailboxes : cl });

}.bind(inParentComponent)

First, you have always to remember that when you call setState(), you should never

pass references to objects in state. That may sound weird, but it’s easy to understand

when dealing with arrays, as we are here. Your first inclination would be to directly push

Chapter 9 Delivering the Goods: MailBag, the Client

236

inMailbox into state.mailboxes and then try to call this.setState({this.state.

mailboxes}). Everyone tries that at first because it seems reasonable! However, it won’t

work because what you pass into setState() replaces what’s in state at the time, and

trying to do that with what’s already there… well, let’s just say React won’t like you very

much!

Instead, we make a copy of the array via slice(0), then push the new mailbox into

that copy, and finally pass that copy to setState(). Now, everything works as expected.

Note that you only have to do this sort of copying/updating/setting when dealing with

objects and collections.

If you’re paying attention so far, you will have noticed that we haven’t actually called

the server to get the list of mailboxes yet, we’ve only defined a function to do so. That’s

because the function that calls imapWorker.listMailboxes() must be marked async

since we’re await’ing the response. getMailboxes() is marked async, so now we need to

call it:

getMailboxes().then(function() {

 async function getContacts() {

 const contactsWorker: Contacts.Worker = new Contacts.Worker();

 const contacts: Contacts.IContact[] = await contactsWorker.listContacts();

 contacts.forEach((inContact) => {

 baseComponent.state.addContactToList(inContact);

 });

 }

 getContacts().then(() =>

 baseComponent.state.showHidePleaseWait(false));

});

We don’t want to get the list of contacts until the list of mailboxes is done so that

we know that all server calls are done before the please wait popup is hidden, so we

use the then() syntax to chain them. Inside the then() callback, another function

is defined, getContacts() this time, for the same reason: async/await usage. Once

defined, we can call getContacts() and again use the then() syntax so that we can call

showHidePleaseWait(), passing false this time, to cause React to hide the please wait

popup.

Chapter 9 Delivering the Goods: MailBag, the Client

237

The addContactToList() state mutator method is used in there, and it’s virtually

identical to addMailboxToList():

addContactToList : function(inContact: Contacts.IContact): void {

 const cl = this.state.contacts.slice(0);

 cl.push({ _id : inContact._id,

 name : inContact.name, email : inContact.email });

 this.setState({ contacts : cl });

}.bind(inParentComponent)

In this case, I’ve constructed the object push()’ed into the contacts array explicitly,

not for any particular reason other than to show that you can. If you wanted the client

contact objects to have different fields than the server-supplied objects for some reason,

this is how you can do that translation.

�A Bit of Configuration: config.ts
For the client app to talk to the server, it, of course, has to know its address. The config.ts

file meets that need:

export const config: {

 serverAddress: string, userEmail: string } =

{ serverAddress : "http://localhost", userEmail : user@human.com };

It’s quite simple: it’s just a literal object with a serverAddress property that gives the

address of the MailBag server. During development, this is likely to be localhost. Also,

note that it must contain the protocol prefix. This object also contains the userEmail that

provides your eMail address. I’m gonna guess that’s not your email address, so go ahead

and update it as appropriate! This file will be imported into the Worker classes as needed.

Hey, speaking of Worker classes, that’s exactly what’s up next!

�A Worker for All Seasons
Just like the server side of MailBag, we have three “Worker” classes on the client

side: Contacts.ts, IMAP.ts, and SMTP.ts. These are the interface between the client

application itself and the MailBag server, and they break down functionally in the same

way as their server counterparts. Before we look at the React code itself that defines out

Chapter 9 Delivering the Goods: MailBag, the Client

238

UI and makes it functional, let’s take a look at these Worker classes so that when you see

them being used, you’ll know what they’re doing.

But how, exactly, does the code in these workers talk to the server? For that, we must

take a quick detour!

�A Quick Detour: AJAX
AJAX is a technique that came to life, so to speak, at the hands of one Jesse James Garrett

in an essay he wrote in February 2005. There, he coined the term AJAX, which stands

for Asynchronous JavaScript and XML. The interesting thing about AJAX, though, is

that it doesn’t have to be asynchronous (but virtually always is), doesn’t have to involve

JavaScript (but virtually always does), and doesn’t need to use XML at all (but probably

doesn’t 99+% of the time).

AJAX is, at its core, an exceedingly simple and, by no stretch of the imagination,

original concept: it is not necessary to refresh the entire contents of a web page for

each user interaction, or each “event,” if you will. When the user clicks a button, it is no

longer necessary to ask the server to render an entirely new page, as is the case with the

“classic” Web. Instead, you can define regions on the page to be updated and have much

more fine-grained control over user event handling as a result. No longer are you limited

to simply submitting a form to a server for processing or navigating to an entirely new

page when a link is clicked.

The interesting thing about AJAX is that it is in no way, shape, or form new, and it

actually wasn’t even when Mr. Garrett coined the term. A decade ago, when AJAX was

still somewhat new, I liked to say that you could always tell who has done AJAX before

and who hadn’t because those who had are mad that it was a big deal and they didn’t get

credit for “inventing” it themselves!

Nowadays, the term AJAX isn’t used as much as before. People tend to talk about

“out-of-band requests” or simply “asynchronous requests” or, indeed, simply “server

requests” because it’s pretty much the de facto way of communicating with a server on

the Web when you aren’t refreshing the entire page.

At its core, AJAX works because of something invented originally by Microsoft: the

XMLHttpRequest object. This is a JavaScript object that allows you to write code like this:

let req;

Chapter 9 Delivering the Goods: MailBag, the Client

239

let which;

function retrieveURL(url) {

 if (window.XMLHttpRequest) {

 req = new XMLHttpRequest();

 req.onreadystatechange = processStateChange;

 try {

 req.open("GET", url, true);

 } catch (e) {

 alert(e);

 }

 req.send(null);

 } else if (window.ActiveXObject) {

 req = new ActiveXObject("Microsoft.XMLHTTP");

 if (req) {

 req.onreadystatechange = processStateChange;

 req.open("GET", url, true);

 req.send();

 }

 }

}

function processStateChange() {

 if (req.readyState == 4) {

 if (req.status == 200) {

 document.getElementById("urlContent").innerHTML = req.responseText;

 } else {

 alert("Problem: " + req.statusText);

 }

 }

}

Even if this is your first time seeing such code, I bet you can understand it without

much trouble. In short, you create an XMLHttpRequest object (branching based on

Chapter 9 Delivering the Goods: MailBag, the Client

240

whether the object exists or not, because for a while, not all browsers exposed the

object in the same way). You then hook a callback function up to it that will be called

whenever the state of the object changes (e.g., when it connects to the server or when

the response comes back – the object has an entire lifecycle you can hook into). You

give it the URL to connect to, optionally tell it about any data you’re sending (in this

case, there is none), and finally, send the request. The callback function will be called,

multiple times, in fact, based on the lifecycle events provided. We only care about the

readyState 4, which is what occurs when a response comes back. Then, assuming we

got an HTTP 200 back, we take the responseText, which is what the server sent, and

insert it into a DOM node, presumably a <div>, or do whatever else we want with it.

That’s it, that’s all there is to it.

Nowadays, you wouldn’t even write that most likely, and instead, you’d use the

newer Fetch API. Although not quite ubiquitous across all browsers, it’s not supported by

the majority, so now you can write code like this:

const response = await fetch(url);

Yep, that’s much better, isn’t it?

However, aside from the browser having to support this API, it also must support

async/await, as you can see. If you want to reach the widest audience possible, but you

don’t want to write all the XMLHttpRequest code as in the preceding text, you’ll probably

want to use a capable library that abstracts all of this away from you (and, most likely,

provides many other benefits). For MailBag, that’s exactly what we’re going to do!

�Getting Some Help: Axios

Rather than doing “naked” AJAX, we’ll instead use a popular library for it instead: Axios

(https://github.com/axios/axios). In simplest terms, Axios is a Promise-based HTTP

client that works in both browsers and Node. It uses XMLHttpRequest under the covers

in a browser and uses the Node http library when used in a Node-based app. Being

Promise-based means that you can use async/await with it (or the more “classical”

Promise approach), which makes for a very nice API.

Axios offers some more advanced capabilities, including the ability to hook into the

request and response cycle to make modifications broadly (think cross-cutting concerns

in Aspect-Oriented Programming, or AOP, for things like logging and security). Or, it

offers the ability to transform request and response data in various ways automatically

and the ability to cancel requests, if necessary.

Chapter 9 Delivering the Goods: MailBag, the Client

https://github.com/axios/axios

241

Using Axios also means security because it includes protection against client-side

XSRF, or Cross-Site Request Forgery. This is a trick nefarious sorts can use to transmit

requests to the server, masquerading as you, a legitimate user. That’s bad news,

obviously, and Axios can keep your application safe from it without doing anything

special on your part.

Axios has broad browser support and is as easy to use as

const response = await axios.get("your_server_url");

Or if you don’t want to use async/await (what’s wrong with you?!):

axois.get("your_server_url").then(function(response) {

 // Do something with the response.

});

Do you need to POST some data to the server? No problem:

axios.post("your_server_url",

 { firstName : "Burt", lastName : "Reynolds" }

);

Axios will automatically serialize that object into JSON for transmission to the server

(naturally, you can pass an object reference there, it doesn’t need to be an object literal

like that). It will also automatically deserialize a JSON response so that you have a nice

JavaScript object to play with.

You can use any other HTTP method there too: DELETE, HEAD, OPTIONS, PUT,

PATCH, whatever you need, it’s all there for you.

You can optionally pass a configuration object to any of the request methods after

the URL (or even in place of the URL if the object itself contains the URL), which allows

you to modify the requests in many ways. The options available are numerous, so I won’t

go through them all, but a few of particular interest are the following:

•	 transformRequest – You provide a function here, and this will allow

you to modify the response before it’s passed to the response handler

function (or returned to the variable specified in an await call).

You can do the same for the request with the transformResponse

property.

•	 params – You can provide a list of URL parameters to append to the

URL with this.

Chapter 9 Delivering the Goods: MailBag, the Client

242

•	 timeout – By default, Axios waits forever for a response (well, at least

until the browser itself times out). With this option, you can specify

how long to wait.

•	 proxy – Does your network require you to go through a proxy? If so,

you can specify that information with this property.

•	 onDownloadProgress – This is a function to be called periodically

while a response is downloading, allowing you the ability to show a

progress bar or spinner or similar UI element (you can do this with

onUploadProgress in the opposite direction too).

Axios is a very robust but extremely simple-to-use library that, for me, is the obvious

choice for our server communication needs in MailBag.

�Mirroring the Server Part 1: Contacts.ts
The first Worker class we’re going to talk about is in the Contacts.ts file, which, of

course, means we’re dealing with the Contacts Worker class. But, even before the Worker

class, we find that we have an interface present:

export interface IContact {

 _id?: number, name: string, email: string

}

If you look back at the Contacts.ts file on the server side, you’ll find this same

interface. That should make sense to you: after all, we’re passing objects back and forth

that need to have the same structure on both sides of the conversation!

After that, the Worker class begins:

export class Worker {

Nothing special there, and again identical to the server. Within the Worker, we find a

series of methods, beginning with listContacts().

Chapter 9 Delivering the Goods: MailBag, the Client

243

�Listing Contacts

When we want a list of contacts to display on the screen, we need to ask the server for

that. We know that, via the Express-based RESTful interface, we ultimately need the

Worker.listContacts() method in the Contacts.ts file on the server to be executed, so

we mimic that interface design with listContacts() in the client-side Worker class:

public async listContacts(): Promise<IContact[]> {

 const response: AxiosResponse =

 await axios.get(`${config.serverAddress}/contacts`);

 return response.data;

}

Here, you can see Axios used, as we discussed in the previous section. The

serverAddress from the config object is used to construct the appropriate path, and

this is of course a get request, so that’s the Axios method executed. Then, the response

is returned, and we’re done. Very simple, right? But it serves the important purpose

architecturally of abstracting away the MailBag client application from the server.

Think of it this way: if you wanted to change the server to use an XML-based message

exchange, and you didn’t want to use Axios, you’d only need to change the code in this

class (and the server, obviously), but the rest of the MailBag client app would be none the

wiser. That’s good architectural flexibility.

Note  I’m going to go through the rest of these methods, as well as those in the
IMAP and SMTP Worker classes, pretty quickly, because they follow the same
pattern, which is to mimic the server. No need to linger, I think! But you should
still take the time to examine the code and make sure you do understand what’s
happening, simple though it generally is, for each method presented.

�Adding a Contact

To add a contact, the aptly named addContact() method is called, accepting an object

adhering to the IContact interface:

Chapter 9 Delivering the Goods: MailBag, the Client

244

public async addContact(inContact: IContact):

 Promise<IContact> {

 const response: AxiosResponse = await axios.post(

 `${config.serverAddress}/contacts`, inContact

);

 return response.data;

}

Once more, it’s a simple Axios call, this time a post(), passing inContact as the

second argument. Axios takes care of serializing that to JSON and sending it in the

request body for us. We get back the same object but now with the _id field added, so

that is returned so the caller can add it to the list of contacts for display (we’ll get into all

of that later).

�Deleting a Contact

Deleting a contact is the final bit of functionality this Worker must provide:

public async deleteContact(inID): Promise<void> {

 await axios.delete(

 `${config.serverAddress}/contacts/${inID}`);

}

Well, that’s pretty simple, isn’t it? Here, you can see the contact’s ID added to the

URL, as per our REST interface server design.

�Mirroring the Server Part 2: IMAP.ts
The second Worker to look at is in the IMAP.ts files. Just like with contacts, we begin with

an interface:

export interface IMailbox { name: string, path: string }

And also, just like with contacts, this mimics the interface of the same name found in

the server version of IMAP.ts. Similarly, we have the same IMessage interface as on the

server too:

Chapter 9 Delivering the Goods: MailBag, the Client

245

export interface IMessage {

 id: string, date: string, from: string,subject: string,

 body?: string

}

After that, the Worker class begins, and we have some methods to look at.

�Listing Mailboxes

Listing mailboxes is just like listing contacts in terms of the call to the server, and we find

a similar listMailboxes() method for it:

public async listMailboxes(): Promise<IMailbox[]> {

 const response: AxiosResponse =

 await axios.get(`${config.serverAddress}/mailboxes`);

 return response.data;

}

Yep, just a slightly different URL to call and different interfaces, but otherwise, the

same as listing contacts.

�Listing Messages

Listing messages in a mailbox is just a trivial thanks to the listMessages() method:

public async listMessages(inMailbox: string):

 Promise<IMessage[]> {

 const response: AxiosResponse = await axios.get(

 `${config.serverAddress}/mailboxes/${inMailbox}`

);

 return response.data;

}

Here, we just need the path of the mailbox to get messages for, which we get from the

inMailbox argument. Then, it’s just an Axios get() call again.

Chapter 9 Delivering the Goods: MailBag, the Client

246

�Getting the Body of a Message

Remember that the server, when sending a list of messages, does not send the message

bodies. We only get the body of a selected message when needed, and that’s where

getMessageBody() factors in:

public async getMessageBody(inID: string, inMailbox: String):

 Promise<string> {

 const response: AxiosResponse = await axios.get(

 `${config.serverAddress}/messages/${inMailbox}/${inID}`

);

 return response.data;

}

We need the ID of the message and the path to the mailbox it’s in, but other than

that, it’s not substantially different from getting a list of mailboxes.

�Deleting a Message

The final method in this Worker is for deleting messages, the deleteMessage() method:

public async deleteMessage(inID: string, inMailbox: String):

 Promise<void> {

 await axios.delete(

 `${config.serverAddress}/messages/${inMailbox}/${inID}`

);

}

By this point, I’m betting you’re pretty comfortable with these Worker methods and

how they interact with the server. There’s nothing that says I had to mimic the basic

layout of the server code on the client. I could have had a drastically different structure to

these methods here. So long as they eventually call the server as expected, that’s all that

matters. But hopefully, you’ll agree that mirroring them like this helps keep it all straight

in your mind.

Chapter 9 Delivering the Goods: MailBag, the Client

247

�Mirroring the Server Part 3: SMTP.ts
The final worker, the one for the SMTP operation of sending a message, is, of course,

found in the SMTP.ts file. In this file, there are no interfaces to deal with, and just a single

method, so the entire file is this:

import axios from "axios";

import { config } from "./config";

export class Worker {

 public async sendMessage(

 inTo: string, inFrom: string, inSubject: string,

 inMessage: string

): Promise<void> {

 await axios.post(`${config.serverAddress}/messages`, {

 to : inTo, from : inFrom, subject : inSubject,

 text : inMessage

 });

 }

}

I’m going to go out on a limb here and say you probably don’t even need this

explained at this point! So, with that assumption, let’s now move on to the true React

code that makes use of the Workers we just looked at.

�A Cavalcade of Components
To build a web app usually requires a user interface, and a user interface usually requires

widgets, or components. Sometimes you use the basic ones that HTML itself provides,

and it’s enough. Sometimes, you build your own using those primitives as building

blocks. And, sometimes, you find a good library that suits your needs.

For MailBag, we’ll be doing the latter, and the choice I landed on to provide out

components is Material-UI.

Chapter 9 Delivering the Goods: MailBag, the Client

248

�A Quick Detour: Material-UI
Around 2014, Google realized that most of the web app products were going in

different directions in terms of look, feel, and function. Android, too, was a completely

different beast visually, and in fact, Android is where the eventual solution began. They

determined that this wasn’t a sustainable direction to go and they needed to come up

with something to unify their products.

As a result, the Material Design language was created (https://material.io).

Although it’s not terribly important for our work here, I think a very brief description of

Material Design itself is in order.

Material Design is a set of design principles that are informed by how people interact

with real objects in the physical world. Primarily influenced by print media, Material

Design begins with concepts like sheets of paper and their digital equivalents. When you

read a book, you turn pages, and that motion is encapsulated in Material Design, just as

the underlying pattern of the sheet of paper itself is.

Material Design is concerned with how layers of content can slide over each

other, for example, and those slides, those animations, are key elements. Everything is

intended to be reactive to touch (remember that this all started with Android, at least in

its initial implementation, so touch was automatically a key part of Material Design).

As I said, knowing this doesn’t make a huge difference in our work here, but a little

context never hurt anybody!

Now, what does matter is the Material-UI library itself (https://material-ui.com).

Simply put, this is a library of React components built on top of Google’s Material Design

language. Being a React library means you simply add it to your project with NPM like

any other library, import the appropriate parts of it, and use it in your code. For example,

if you want to put a button on the screen:

import React from "react";

import Button from "@material-ui/core/Button";

const App = () => (

 <Button variant="contained" color="primary">

 Hello World

 </Button>

);

Chapter 9 Delivering the Goods: MailBag, the Client

https://material.io/
https://material-ui.com/

249

Now, I’m glossing over something important here, but we’re going to get to it soon

(in the section on functional components), but focus on what matters here: React was

imported naturally, and too was the Button component from Material-UI. Then, it’s

simply a matter of dropping a <Button> tag into the code, and we have ourselves a

Material-UI button.

The Material-UI library offers a wealth of components with which to build a user

interface. It has all the usual suspects like buttons, checkboxes, radio buttons, drop-

down lists, grids, lists, progress bars, alert dialogs, menus, and a lot more. The web site

referenced in the preceding text does a great job of presenting it all. You’ll find a list of

components with numerous simple examples for each and then links for the API of each

that details the properties and options available.

It really is an easy-to-use library that also makes your apps look and function great

with minimal effort on your part. You’ll only see a small portion of what it has to offer

in MailBag, so I highly encourage you to spend some time on the Material-UI web site

exploring all it has to offer. I think you’ll be very impressed, and it will, I bet, quickly

become your favorite collection of widgets for building UIs with React.

�Another Quick Detour: CSS Grid

One of the first questions you must answer when developing a web app is how you’re

going to lay out your components. There are lots of methods, each with their own pluses

and minuses. But, given that we’re trying to use relatively modern techniques in this

book, we’re going to go with the newest darling on the street: CSS Grid.

Virtually any web page layout can be described in terms of a grid (in fact, I’m not

sure there’s any that can’t be). It’s all just columns and rows in the end, whether there’s

only one of each (read: just a single block of content) or whether there are nested grids

inside nested grids. All of it just rows and columns.

Let’s start with some simple markup (Listing 9-1).

Listing 9-1.  CSS Grid example markup

<html>

 <head>

 <title></title>

 </head>

Chapter 9 Delivering the Goods: MailBag, the Client

250

 <body>

 <div class="container">

 <div style="background-color:#ff0000;">A</div>

 <div style="background-color:#00ff00;">B</div>

 <div style="background-color:#0000ff;">C</div>

 <div style="background-color:#ff00ff;">D</div>

 <div style="background-color:#ffff00;">E</div>

 <div style="background-color:#00ffff;">F</div>

 </div>

 </body>

</html>

When loaded in your browser, you’ll simply see six rows of content, stacked one right

on top of the other, as shown in Figure 9-5.

To introduce CSS Grid to the mix, in order to create a more interesting layout, we

start with a container element, which we have here. Then, on this element, you define

the grid, that is, the rows and columns contained within the grid. The container element

already has a class attribute, so we just need to define that style rule:

.container {

 display : grid;

 grid-template-columns : 150px 50px 100px;

 grid-template-rows : 100px 100px;

}

Figure 9-5.  You can’t see the colors on the printed page, but trust me, they’re there!

Chapter 9 Delivering the Goods: MailBag, the Client

251

Now, if you reload the page, you’ll see two rows of items with three columns in

each, as shown in Figure 9-6. The six <div> elements get dropped into each of the areas

defined by the intersection of the rows and columns.

What’s even better is when you start to add some styling to one or more <div>’s to tell

them where in the grid they should live. For example, let’s add some style to element E:

<div style="background-color:#ffff00;grid-column:1/4;grid-row:1/1;">E</div>

Now, reload the page, and you’ll find that the first <div> shown, E, extends across

the entire grid, as seen in Figure 9-7. The meaning of the grid-column and grid-row

attributes is that it tells the grid what columns and rows the element should cover, but it

does so using the grid lines, not the boxes that make up the grid.

Figure 9-6.  Our beautiful, beautiful grid!

Chapter 9 Delivering the Goods: MailBag, the Client

252

In other words, when you have three columns, you have four grid lines: the two

between the three columns, of course, and the one before the first column and after the

last one. So, here we’re saying that this <div> should stretch from that first grid line to

the fourth one, the last one, which results in it covering the entire row. Figure 9-8 should,

expect, make this all clear.

Figure 9-7.  A more interesting grid (well, I think so at least!)

Figure 9-8.  The numbers across the top are the column lines; the ones down the
side are the row lines

Chapter 9 Delivering the Goods: MailBag, the Client

253

Also, because <div> E now takes up the entire first row, <div>’s A, B, and C use the

second row, which pushes D and F down. Sometimes, it takes a little tweaking to get your

grid to work precisely the way you want it to, but when you do, you’ll find that laying out

pages is a piece of cake with CSS Grid.

It’s also important to realize that you can nest grid. So say we want to have some

grid layout within <div> B, we can absolutely do that, and you do it in exactly the same

way: apply the display:grid style to a container <div> (along with the grid-template-

columns and grid-template-rows as appropriate) inside <div> B and then define the grid

in exactly the same way, but now that grid will be constrained to <div> B. And it’s exactly

this nesting that will allow us to lay out the MailBag UI as shown earlier, as you’ll see in

action shortly.

�Yet Another Quick Detour: main.css

In the source code for this app, you’ll find the main.css file in the src/css directory. This

is an ordinary CSS stylesheet, absolutely nothing special about it. Usually, I would go

through it here, but I think it will make much more sense to look at the relatively small

handful of CSS rules it contains in context as we go through the various components.

So, that’s precisely what I’m going to do! And, given that, we can move on to the code

of BaseLayout.tsx.

�BaseLayout.tsx
Earlier, I mentioned that a single React component will be the parent to all the others, as is

always the case, and now it’s time to look at it: BaseLayout, as found in BaseLayout.tsx:

class BaseLayout extends Component {

First, we start by creating a class that extends React’s Component class. Next, we have

to get the state into the component, as discussed earlier:

state = createState(this);

Hopefully, you’re having a “Eureka!” moment right about now. This is where

createState() is called, and a reference to the BaseLayout instance itself is passed in so

that all the state mutator methods can be bound to it.

Chapter 9 Delivering the Goods: MailBag, the Client

254

After that, we come to the one method we know must be present: render():

render() {

 return (

 <div className="appContainer">

Remember that we’re going to be doing the layout of the UI via CSS Grid, so that

means that whatever element is at the very top of the page must be our container

element, and so it is: a <div> with the appContainer class applied. That class, found in

main.css (as they all are), is as follows:

.appContainer {

 display : grid;

 grid-template-columns : 150px 1fr 240px;

 grid-template-rows : 50px 1fr;

 width : 100vw;

 height : 100vh;

}

That’s just like the example from earlier as far as defining the grid goes, but now

you see width and height set using vw and vh units, respectively. The v in those units

stands for viewport. So what we’re really saying is “make this container element 100%

of the width and height of the viewport.” In other words, our grid fills the screen, which,

of course, is what we want for MailBag (in contrast to the earlier CSS Grid examples

where that wasn’t the case, the grid used only as much space as was specified in its style

definition).

Next, we need to define the please wait popup, and for it, we’ll use a Dialog

component, supplied by Material-UI:

<Dialog open={ this.state.pleaseWaitVisible }

 disableBackdropClick={ true }

 disableEscapeKeyDown={ true }

 transitionDuration={ 0 }>

 <DialogTitle style={{ textAlign:"center" }}>

 Please Wait

 </DialogTitle>

Chapter 9 Delivering the Goods: MailBag, the Client

255

 <DialogContent><DialogContentText>

 ...Contacting server...

 </DialogContentText></DialogContent>

</Dialog>

It may seem odd that something like a popup dialog, something that is transient,

actually exists at all times and is just hidden and shown, but that’s a common thing with

React. Here, the open prop gets its value from the pleaseWaitVisible property in state,

which you’ll recall from earlier I said to keep in mind. When the hideShowPleaseWait()

state mutator method is called, that property gets changed, and React notices that. So it

will re-render the page, now either hiding or showing this dialog based on the changed

prop value.

We don’t want this dialog to be dismissible by the user, which it would be by default.

So, the disableBackdropClick prop is set to true, which stops the user from clicking

outside of the dialog to dismiss. Additionally, disableEscapeKeyDown is also set to true

to prevent them from pressing the ESC key to dismiss it. I also set transitionDuration

to 0 so that the animation that it normally does by default doesn’t occur, since the call to

the server, in some cases, could actually be faster than the transition itself! Indeed, it’s

expected that, in most cases, this dialog will appear and disappear so fast that the user

will just see a flash. But, for times when the network is a bit slower, it’s nice to have

it there.

The actual Dialog has as a child a DialogTitle component, and here I set style so

that its text is centered (which I just thought looked better) and a DialogContent child,

which itself has a DialogContentText child. This is simply the text displayed in the

Dialog itself. As an aside, the Material-UI Dialog component is much more robust and

can have buttons you define, or even input elements, virtually anything you can imagine

can wind up in a Dialog. It doesn’t need to be simple static text as here, but since that’s

all we need, that’s all it is in this case.

With the please wait popup defined, it’s finally time to start defining the UI that is

always visible, starting with the toolbar:

<div className="toolbar">

 <Toolbar state={ this.state } />

</div>

Chapter 9 Delivering the Goods: MailBag, the Client

256

Notice the pattern here, which you’ll see throughout this component: state is passed

down to the Toolbar component (the definition of which we’ll see in the next section).

Every component that is a child to BaseLayout, save for one (WelcomeView), needs state,

and they all get it the same way. That’s the other half of what I was talking about earlier

in terms of choosing the right component to contain state: just putting the state in a

component higher up the component tree doesn’t do much unless you pass that state to

child components as needed.

Now, as far as the toolbar style rule goes, that’s as follows:

.toolbar {

 grid-column : 1 / 4;

 grid-row : 1 / 1;

 border-bottom : 1px solid #e0e0e0;

 padding-top : 8px;

 padding-left : 4px;

}

As you can see, we want the toolbar to stretch across the three columns of the

grid, just like in the earlier example. I also add some padding to keep the buttons from

touching the edges of the screen on the left and top (again, it just looks better to my eyes

that way). I also added a border on the bottom to give some separation from the rest of

the UI contents (this, too, is a pattern repeated throughout).

Next, we need our list of mailboxes on the left:

<div className="mailboxList">

 <MailboxList state={ this.state } />

</div>

Hopefully, you’re seeing the pattern now! Ignoring for the moment what the

MailboxList component is and how it’s implemented, the basic idea is the same as for

the Toolbar. The mailboxList style rule BaseLayout is

.mailboxList {

 grid-column : 1 / 1;

 grid-row : 2 / 2;

 border-right : 1px solid #e0e0e0;

 padding-top : 6px;

Chapter 9 Delivering the Goods: MailBag, the Client

257

 padding-left : 4px;

 overflow : auto;

}

That’s not much different from the toolbar style rule either, with the exception of

overflow set to auto to ensure that the list can scroll if there are more mailboxes than the

vertical space allows for.

Next up is the area of the screen below the toolbar and in between the mailbox list on

the left and contact list on the right – the center area!

<div className="centerArea">

 <div className="messageList">

 <MessageList state={ this.state } />

 </div>

This is a situation where we’re going to be nesting CSS Grids, so while the outer

<div> is the content of the second column in the second row of the top-level grid, we

also need the contents within this <div> to have its own grid structure. The centerArea

style rule defines that:

.centerArea {

 display : grid;

 grid-template-rows : 200px 1fr;

}

Here, we only need two rows, we don’t need any columns, so it’s a simpler definition.

The first row in this sub-grid, so to speak, is the MessageList component, our list of

messages in the selected mailbox in other words. So, we need to place it in this sub-grid,

and the messageList style rule does that:

.messageList {

 border-bottom : 1px solid #e0e0e0;

 grid-row : 1 / 1;

 overflow : auto;

}

Pretty simple, right? Once again, we need this area to scroll, since a message list can

be arbitrarily long, so overflow is again set to auto.

Chapter 9 Delivering the Goods: MailBag, the Client

258

Next up is the second row of this sub-grid, and this is what I’ve termed the “view

area.” It’s where the contact and message views will go, plus the welcome view. Which is

showing depends on the state of the app, so we’re going to need some logic for React to

determine which to render:

<div className="centerViews">

 { this.state.currentView === "welcome" && <WelcomeView /> }

 { (this.state.currentView === "message" ||

 this.state.currentView === "compose") &&

 <MessageView state={ this.state } />

 }

 { (this.state.currentView === "contact" ||

 this.state.currentView === "contactAdd") &&

 <ContactView state={ this.state } />

 }

</div>

Here is a bit of a trick that is very common in React code: if you want to conditionally

render or not render a component, usually based on some value in state, you can use the

general syntax:

{ <some_variable> === <some_value> && <some_component> }

Remember that { } denotes an expression in JSX syntax. Also remember that in

JavaScript, && is a short-circuit boolean and operation. That means that whatever is on

the right of it will only be evaluated if what’s on the left is true. Therefore, here, if the

boolean outcome on the left is false, then the component won’t be rendered because it

won’t even be evaluated.

So, for the <WelcomeView> component to render, for example, the currentView

property in state must equal "welcome". If it doesn’t, then React won’t render that

component. For the MessageView component to render, currentView must be "message"

or "compose" (the view does double duty for both of those, as you’ll see later). Finally, for

ContactView to render, currentView must be "contact" or "contactAdd". In the end,

we’ll only ever get one of these components rendered as a result, so only one view will

ever be shown, and changing currentView in state will allow us to flip between these

views. Pretty nifty, right?

Chapter 9 Delivering the Goods: MailBag, the Client

259

What about the centerViews style rule? That’s easy:

.centerViews {

 grid-row : 2 / 2;

 padding-top : 4px;

 padding-left : 4px;

 padding-right : 4px;

 overflow : auto;

}

That places this content in the second row of the sub-grid and provides some

padding about it to avoid any of its content bunching up on the edges.

Finally, we have only one more component to place, and that’s the list of contacts on

the right:

<div className="contactList">

 <ContactList state={ this.state } />

</div>

And, of course, its associated style rule:

.contactList {

 grid-column : 3 / 3;

 grid-row : 2 / 2;

 border-left : 1px solid #e0e0e0;

 padding-top : 4px;

 padding-left : 4px;

 overflow : auto;

}

Finally, of course, we need to export this component:

export default BaseLayout;

And with that, our BaseLayout component is done! Now, let’s look at the individual

components that we just saw used – well, right after one last quick detour, that is!

Note  Each of the remaining components has a single export at the end, just like
BaseLayout, but I’m going to skip showing you that over and over again.

Chapter 9 Delivering the Goods: MailBag, the Client

260

�A Quick Detour: Functional Components
In the previous Material-UI example, I dropped a little bit of coolness on you out of the

blue, something called functional React components. In the past, and with BaseLayout,

you’ve seen components defined this way:

class Welcome extends React.Component {

 render() { return <h1>Hello, { this.props.name }</h1>; }

}

Sometimes Component is written React.Component, but it’s the same thing, it’s just

a question of how your imports are done. Either way, what’s important to remember,

though, is that, fundamentally, a React component is just an object with a render()

method at minimum. And recall that the syntax you see here is JSX. Because of that, you

can also define this component in a more concise form:

const Welcome = () => (<h1>Hello, { this.props.name }</h1>);

Using functional syntax like this works because JSX is aware of it and can process

it. It’s clearly not valid JavaScript because if you tried to have HTML embedded in a

function like that, it simply wouldn’t work. But JSX allows you to do just that. A valid

component will be created, and the HTML you see there, the component tree it

represents to be more precise, will be returned from an automatically created render()

method.

Why would you choose the class-based approach over the functional approach?

There are two primary reasons, beyond whether you prefer the brevity of the functional

code or not: lifecycle event needs and state needs. If you need access to lifecycle events,

then you can’t use the functional approach – at least, not without introducing the topics

of Hooks, which is something that was added a little later in React, and something I’m

not covering in this book because it’s a bit of a more advanced topic and not a necessary

component of React coding. The same is true of state: if you need your component to

have its own state, then you’ll need to use the class-based approach (but again, Hooks

provides a solution here too).

However, note that with state, it’s possible to hoist the state up to a component

higher in the component tree and then pass it into the component. So, in a sense, the

state limitation is no limitation at all, even before you get into Hooks. You’ll be seeing

exactly this approach in MailBag because the state object discussed earlier is used in

exactly this fashion.

Chapter 9 Delivering the Goods: MailBag, the Client

261

�Toolbar.tsx
Now, back to our components, beginning with the Toolbar component, found in the

Toolbar.tsx file, which is defined in a functional way just described:

const Toolbar = ({ state }) => (

 <div>

 <Button variant="contained" color="primary"

 size="small" style={{ marginRight:10 }}

 onClick={ () => state.showComposeMessage("new") } >

 <NewMessageIcon style={{ marginRight:10 }} />New Message

 </Button>

 <Button variant="contained" color="primary" size="small"

 style={{ marginRight:10 }}

 onClick={ state.showAddContact } >

 <NewContactIcon style={{ marginRight:10 }} />New Contact

 </Button>

 </div>

);

At a high level, it’s a simple component: it just has two Button components in it,

courtesy of the Material-UI library. The Button component has several options to change

how it looks and functions, and here I’ve used its variant=“contained” to make it look

like a more traditional button rather than the text-only buttons that are common on

Android (it has elevation and fill in this form, to be more precise). I also set the color

to primary, which, by default, will give it a blue appearance. The size=“small” prop

makes the buttons smaller than usual, to gain a bit more space in the UI. For the NEW

MESSAGE button, I also added a margin on the right so that there would be separation

between it and the NEW CONTACT button.

Within each Button is an icon, also provided by Material-UI. The library contains

numerous icons, and most have their own components, as NewMessageIcon and

NewContactIcon do. For each, I also again add margin on the right so that the icon has

space between it and the text. And, speaking of text, that’s the second child of each

Button, just literally static text.

Chapter 9 Delivering the Goods: MailBag, the Client

262

A button without some sort of click handler code wouldn’t be of much use, so both

buttons have such a handler hook up to it through the onClick prop. In the case of the

NEW MESSAGE button, there is an anonymous function defined, and from it, state.

showComposeMessage() is called. This is necessary because the "new" value needs to be

passed to it in order to indicate that the MessageView component, which we’ll look at later,

should display in the new message composition mode. When the user clicks a message in

the message list, by contrast, the same view is shown, but there will be different fields and

buttons, and what is passed to showComposeMessage() determines all that.

In fact, here is that method now:

showComposeMessage : function(inType: string): void {

 switch (inType) {

 case "new":

 this.setState({ currentView : "compose",

 messageTo : "", messageSubject : "", messageBody : "",

 messageFrom : config.userEmail

 });

 break;

 case "reply":

 this.setState({ currentView : "compose",

 messageTo : this.state.messageFrom,

 messageSubject : `Re: ${this.state.messageSubject}`,

 messageBody : messageFrom : config.userEmail,

 `\n\n---- Original Message ----

 \n\n${this.state.messageBody}`

 });

 break;

 case "contact":

 this.setState({ currentView : "compose",

 messageTo : this.state.contactEmail,

 messageSubject : "", messageBody : "",

 messageFrom : config.userEmail

 });

 break;

 }

}.bind(inParentComponent)

Chapter 9 Delivering the Goods: MailBag, the Client

263

As you can see, there are three possibilities. The first, for a value of "new", is when

the user wants to compose a brand-new message. In all three cases, the goal is to set

currentView in state so that the appropriate view is shown ("compose" in all cases)

and to set up any state properties as necessary. For the "new" case, that means clearing

out the messageTo, messageSubject, messageBody, and messageFrom fields. The first

three will be populated by the user when they enter the values on the compose view

(something you’ll see a bit later), and messageFrom is set from what’s in the config

object.

Second, when the user clicks the REPLY button when viewing a message, it’s still

ultimately the "compose" view we want to go to, but now we pre-fill the messageTo,

messageSubject, and messageBody variables in state.

Third, the "contact" case is when the user clicks the Send Email button when

viewing a contact. It’s just like the "reply" state except that the messageTo property

comes from the contact itself while messageSubject and messageBody are blanked out.

Now, going back to our Toolbar, the second button, NEW CONTACT, doesn’t need to

do this sort of logic. As a result, there’s no need for an anonymous function like for NEW

MESSAGE. Instead, we can reference the state.showAddContact() method directly, and

that method is

showAddContact : function(): void {

 this.setState({ currentView : "contactAdd",

 contactID : null, contactName : "", contactEmail : "" });

}.bind(inParentComponent)

Once again, it’s just a case of setting currentView appropriately and clearing out any

state properties that are involved in user input. In this case, the contact won’t have an ID

until we save it to the server, so contactID is null, while contactName and contactEmail

start off as empty strings, which will be reflected initially in the text fields that the user

will enter the values in.

Note  For the remainder of these components, I’m just going to show the content
of the function, since that’s all that’s different in them, aside from the obvious of
the component’s name and export.

Chapter 9 Delivering the Goods: MailBag, the Client

264

�MailboxList.tsx
Next, we’ll look at the MailboxList component from the MailboxList.tsx file:

<List>

 state.mailboxes.map(value => {

 return (

 <Chip label={ `${value.name}` } onClick={ () =>

 state.setCurrentMailbox(value.path)

 }

 style={{ width:128, marginBottom:10 }}

 color={ state.currentMailbox === value.path ?

 "secondary" : "primary" } />

);

 }) }

</List>

It all begins with a Material-UI List component. Material-UI has several

components for displaying collections of data in various ways, and List is one of them,

and perhaps the most used. Within it, you have one or more child components, one per

item in your list.

The list of mailboxes is, of course, in the mailboxes array property of the state

object, so we use the map() function on that array to process each item. For each

element, a Chip component is returned, which is again a component from Material-UI.

A Chip is a lot like a Button, and in fact, for how it’s used here, a Button could have been

just as good. Typically, Chips are used to represent things like contacts, but there are no

real rules for their use. They look a bit different than buttons, which is why I went with it

(that, and just to show you a different component!) But, at the end of the day, each Chip

has some label text, which is the name of the mailbox, some styling to set its size and

ensure spacing between them, and color. The color prop is interesting because we want

the currently selected mailbox to be a different color. The state.currentMailbox stores

the path of the currently selected mailbox, so we can do some logic to set the color. If the

path of the element of the array being processed is the same as currentMailbox, then

the secondary color will be used, which is red. Otherwise, the primary color (blue) will

be used. As long as currentMailbox changes when a mailbox Chip is clicked, then we’ll

get the highlighting of the current mailbox as we want.

Chapter 9 Delivering the Goods: MailBag, the Client

265

And speaking of clicking a Chip, the onClick handler is defined pointing to state.

setCurrentMailbox() for that purpose. Again, because we need to pass the path of the

clicked mailbox to that method, we need to use an anonymous function to call state.

setCurrentMailbox(), the code for which is

Note  If you tried to set onClick={ state.setCurrentMailbox } to avoid
the anonymous function, then what would be passed to it would be an Event
object. While it might be possible to drill down into that object to get at the path of
the mailbox, using the anonymous function approach decouples the code a little
bit from React or even the browser event model in general and, in my mind, makes
what’s happening clearer.

setCurrentMailbox : function(inPath: String): void {

 this.setState({ currentView : "welcome",

 currentMailbox : inPath });

 this.state.getMessages(inPath);

}.bind(inParentComponent)

Sure enough, we can see that currentMailbox is indeed set, which highlights it once

React sees that state change and re-renders the appropriate part of the component tree.

The currentView is also changed to "welcome" because until the user selects a message,

there’s nothing to show in the view area, and any time that situation arises, I defaulted it

to the welcome view.

The other thing that should occur at this point is that the list of messages in the

mailbox, if any, should be retrieved. This is accomplished by the getMessages() method:

getMessages : async function(inPath: string): Promise<void> {

 this.state.showHidePleaseWait(true);

 const imapWorker: IMAP.Worker = new IMAP.Worker();

 const messages: IMAP.IMessage[] = await imapWorker.listMessages(inPath);

 this.state.showHidePleaseWait(false);

 this.state.clearMessages();

 messages.forEach((inMessage: IMAP.IMessage) => {

 this.state.addMessageToList(inMessage);

 });

}.bind(inParentComponent)

Chapter 9 Delivering the Goods: MailBag, the Client

266

Note that this also means that the user can click the current mailbox Chip any time

they like to refresh the list. The getMessages() method first shows the please wait

dialog, then uses the IMAP.Worker class to call the server for the list of messages. Once

returned, the first thing to do is to clear any current list of messages, which is where the

clearMessages() method comes in:

clearMessages : function(): void {

 this.setState({ messages : [] });

}.bind(inParentComponent)

It’s a simple matter of setting a blank array into state for the messages property. Then,

for each mailbox object returned, it is added to the list of mailboxes just cleared, via a call

to addMessagestoList():

addMessageToList : function(inMessage: IMAP.IMessage): void {

 const cl = this.state.messages.slice(0);

 cl.push({ id : inMessage.id, date : inMessage.date,

 from : inMessage.from, subject : inMessage.subject });

 this.setState({ messages : cl });

}.bind(inParentComponent)

As you’ve seen before, the list of mailboxes is copied first, then a new item pushed

into it, an object constructed from the object passed in. Once again, just adding

inMessage to the array would be okay, but doing it this way provides more flexibility it

we want to alter the object at all. Finally, the updated array is passed to setState(), and

React does its thing to update the list of messages.

�ContactList.tsx
While it might seem most logical at this point to jump into the message list and message

view code, I want to save those for a little later just because it’s where most of the

complexity (relatively speaking) is. Instead, I want to hit on the two contact-related

pieces of code first, starting with the ContactList component itself, in the ContactList.

tsx file, which is the list of contacts on the right-hand side of the screen:

Chapter 9 Delivering the Goods: MailBag, the Client

267

<List>

 {state.contacts.map(value => {

 return (

 <ListItem key={ value } button onClick={ () =>

 state.showContact(value._id,

 value.name, value.email

)

 }>

 <ListItemAvatar>

 <Avatar><Person /></Avatar>

 </ListItemAvatar>

 <ListItemText primary={ `${value.name}` } />

 </ListItem>

);

 })}

</List>

As with the mailbox list, we have a List component. But, unlike the mailbox list,

which just had a series of Chip components as children, here, we’re going to use some

components that are more typically used within a List. Here, you have one or more

child components of type ListItem. In this case, the items come from the array of

contacts in state, so like with mailboxes, map() is used to iterate them. For each, a

ListItem is created. Every ListItem must have a unique key, though what the value

is isn’t something List defines – it’s up to us. So, in this case, I simply make it the next

contact object from the contacts array itself. Then, for each, an onClick handler prop is

attached that calls state.showContact(), passing it the unique ID of the contact along

with the name and email properties.

The showContact() method is this:

showContact : function(inID: string, inName: string, inEmail: string): void {

 this.setState({ currentView : "contact", contactID : inID,

 contactName : inName, contactEmail : inEmail });

}.bind(inParentComponent)

Chapter 9 Delivering the Goods: MailBag, the Client

268

As you can see, currentView is set to "contact" and the three values passed in are

set in the corresponding state properties. That way, when the contact view is shown,

which we’ll be looking at next, the contact’s name and email address are showing.

Backing up a bit, the List component and its child ListItem components don’t

define what the look of an individual item in the list is. You are free to do whatever

you like. So, I use another Material-UI component, ListItemAvatar, which is used to

display an avatar, usually a small image of some sort, for each contact. ListItemAvatar

demands an Avatar child that is the image to display. If we had real avatar images for

each contact, we could insert it here (hint: that’d make a good suggested exercise!). But,

here, I make each contact have the same image, using the Person icon that Material-UI

supplies. Finally, I want to put the name of the contact next to the image, so for that, we

add a ListItemText component. The primary prop is the text to show (there is also a

secondary prop you could use to, perhaps, show the email address below the name).

�ContactView.tsx
When a contact in the contact list is clicked or the NEW CONTACT button in the toolbar

is clicked, the contact view is shown in the view area. This content is provided by the

ContactView component in the ContactView.tsx file, and it begins thusly (“thusly”?

Who talks like that?!):

<form>

Strictly speaking, the form isn’t necessary. But remember that render() must always

return a single element (and that doesn’t change when using the functional component

approach – the code here still winds up in a render() method), whether it has children

or not. While a <div> would work just as well here, I thought <form>, given its children,

made sense.

For its children, we begin with a Material-UI TextField:

<TextField margin="dense" id="contactName" label="Name"

 value={ state.contactName } variant="outlined"

 InputProps={{ style : { color : "#000000" } }}

 disabled={ state.currentView === "contact" }

 style={{ width:260 }}

 onChange={ state.fieldChangeHandler } />

Chapter 9 Delivering the Goods: MailBag, the Client

269

As the name implies, the TextField allows users to enter text. Here, we’re looking

for the contact’s name. The margin prop set to dense reduces the space around the field,

purely a visual choice in this instance. Similarly, setting variant to outlined results in

the field having the border around it, which I felt looked better, rather than being just a

single line, which is the default look. The label prop is, of course, the text that tells you

what field this is (and which moves above the field from inside it as soon as you start

typing, which is a nice Material-ish thing to do). The value comes from state, just like

you’d expect, whether it’s an empty string in the case of creating a new contact or the

contact’s name when selecting one from the list. The InputProps prop is used to style

the underlying HTML <input> element, which is what provides the base functionality

that Material-UI then builds upon. The problem here is that when a TextField is

disabled, which is done by setting the disabled prop (which here is true when state.

currentView is "contact" because that’s what it will be when the user clicked a contact

in the list and so is viewing the contact in a non-editable mode), the text is a gray color.

That makes it hard to read. So, by explicitly setting the color to black (#000000), that

problem is solved, and it remains readable. I also set an explicit width for the field, one

large enough to support the maximum characters allowed.

You may be wondering (a) why I skipped the id prop and (b) how the field knows

what the maximum length is, because it’s not defined here. The answer is in the

onChange handler that’s attached:

fieldChangeHandler : function(inEvent: any): void {

 if (inEvent.target.id === "contactName" &&

 inEvent.target.value.length > 16) { return; }

 this.setState({ [inEvent.target.id] :

 inEvent.target.value });

}.bind(inParentComponent)

This handler is used on all the editable fields in MailBag, in fact, and you can see

where the id prop matters here. If you recall from earlier when discussing the mailbox

list, I mentioned that if you don’t use an anonymous function in the event handler and

instead reference the state mutator method directly, then you’ll wind up getting an

event object passed in. For that situation, that was problematic, but here it’s perfect

because the target attribute of the event object is the component triggering the event.

That includes the id prop value. So, we can start by checking if this is the contactName

Chapter 9 Delivering the Goods: MailBag, the Client

270

field based on the id. If it is, and if the length of the value passed in is greater than 16,

which is our maximum name length, then we return immediately. That effectively limits

the maximum length of the field. If there’s still room, or this isn’t the contactName field,

then the id again comes into play because we use it to set the appropriate state property.

If you look back at the state object, you’ll find that the fields associated with editing a

contact match the id’s used on the TextFields in this code. This is similarly true for the

MessageView later. The result is that we have a generic event handler that can be used for

all these TextFields, and that will mutate the correct property on the state object.

Note that a
 element follows the TextField; otherwise, the two TextFields

here would be on the same line. And, speaking of both TextFields, here’s the next, this

one for entering the eMail address:

<TextField margin="dense" id="contactEmail" label="Email"

 value={ state.contactEmail } variant="outlined"

 InputProps={{ style : { color:"#000000" } }} disabled={

 state.currentView === "contact" } style={{ width:520 }}

 onChange={ state.fieldChangeHandler } />

As you can see, aside from the id and label and the width, it’s the same as the name

field (there’s no maximum length for this field so nothing to consider there – the width is

simply arbitrary). So, let’s move on to the next thing in this code:

{ state.currentView === "contactAdd" &&

 <Button variant="contained" color="primary" size="small"

 style={{ marginTop:10 }} onClick={ state.saveContact }>

 Save

 </Button>

}

As in BaseLayout, the conditional render trick is used here because the SAVE button

should only be visible when we’re adding a contact. Otherwise, this is a Material-UI

button as you’ve seen before, so let’s go explore its click handler, saveContact(), in the

state object:

saveContact : async function(): Promise<void> {

 const cl = this.state.contacts.slice(0);

 this.state.showHidePleaseWait(true);

Chapter 9 Delivering the Goods: MailBag, the Client

271

 const contactsWorker: Contacts.Worker = new Contacts.Worker();

 const contact: Contacts.IContact = await contactsWorker.addContact({

 name : this.state.contactName,

 email : this.state.contactEmail });

 this.state.showHidePleaseWait(false);

 cl.push(contact);

 this.setState({ contacts : cl, contactID : null,

 contactName : "", contactEmail : "" });

}.bind(inParentComponent)

We begin, as you’ve seen a few times before, copying the contacts array. Next, the

please wait dialog is shown, and then a call to Contacts.Worker.addContact() is made,

passing it an object formed from the contactName and contactEmail fields in state,

whose values will have been set when the user typed them in the two TextFields from

before. When that call comes back, please wait is hidden, the returned contact (which

now includes the _id field) is pushed into the contacts array, and finally setState()

is called to update the array. I also clear out the properties associated with editing a

contact so that the field is clear, in case the user wants to add another contact right away.

After that, we have two more buttons to deal with:

{ state.currentView === "contact" &&

 <Button variant="contained" color="primary" size="small"

 style={{ marginTop:10, marginRight:10 }}

 onClick={ state.deleteContact }>

 Delete

 </Button>

}

{ state.currentView === "contact" &&

 <Button variant="contained" color="primary" size="small"

 style={{ marginTop:10 }}

 onClick={ () => state.showComposeMessage("contact") }>

 Send Email

 </Button>

}

Chapter 9 Delivering the Goods: MailBag, the Client

272

These two are only shown when a contact has been clicked from the list, and they

provide the user the opportunity to delete the contact or send a new eMail to them. Note

that for both, I added some margin on the top to separate them from the eMail field,

and for the DELETE button, I also have some on the right so the buttons themselves

don’t bunch up. For the DELETE button, the onClick handler can point directly at the

deleteContact() method in the state object because that method will already have

access to everything it needs to do the delete (namely, the contactID property in state),

but for sending an eMail, we need to know the source of the action, as you saw earlier,

hence why we need to use the anonymous function approach here.

As far as that deleteContact() goes, here it is:

deleteContact : async function(): Promise<void> {

 this.state.showHidePleaseWait(true);

 const contactsWorker: Contacts.Worker = new Contacts.Worker();

 await contactsWorker.deleteContact(this.state.contactID);

 this.state.showHidePleaseWait(false);

 const cl = this.state.contacts.filter(

 (inElement) => inElement._id != this.state.contactID

);

 this.setState({ contacts : cl, contactID : null,

 contactName : "", contactEmail : "" });

}.bind(inParentComponent)

It’s much the same as what you’ve seen before: show please wait, call server via

Contacts.Worker.deleteContact() method, and then remove it from the list. To

remove it, we must find it first. The filter() method of the contacts array in state

allows us to do that. For each element in the array, the function we provide to filter()

is executed and is passed the next element. If the _id property of the element isn’t

state.contactID, then true is returned, which filter() takes to mean we want the

element included in the new array that it’s constructing. Simply put, all elements in

state.contacts will be copied into the new array cl except for the contact being deleted.

What that new array built, we can pass it to setState(), which results in React re-

rendering the list, sans that contact. As with adding a contact, the contact editing-related

properties in state are cleared, and we’re done.

Chapter 9 Delivering the Goods: MailBag, the Client

273

�MessageList.tsx
Next up is the message list, which means the MessageList component in the

MessageList.tsx file. Here’s pretty much the whole thing:

<Table stickyHeader padding="none">

 <TableHead>

 <TableRow>

 <TableCell style={{ width:120 }}>Date</TableCell>

 <TableCell style={{ width:300 }}>From</TableCell>

 <TableCell>Subject</TableCell>

 </TableRow>

 </TableHead>

 <TableBody>

 { state.messages.map(message => (

 <TableRow key={ message.id }

 onClick={ () => state.showMessage(message) }>

 <TableCell>

 { new Date(message.date).toLocaleDateString() }

 </TableCell>

 <TableCell>{ message.from }</TableCell>

 <TableCell>{ message.subject }</TableCell>

 </TableRow>

)) }

 </TableBody>

</Table>

The Table component is another Material-UI component for displaying data like

List that you saw earlier, but this one essentially mimics an HTML table. That’s ideal

for the message list because it should look like a typical table, or grid as it’s sometimes

called. We have a header row, which we want to ensure stays “stuck” at the top even if

you user scrolls to see the list, and that’s what the stickyHeader prop set to true does

for us. Then we have three columns, one each for Date, From, and Subject. So, inside

the Table component goes firstly a TableHead component, which demarks the header.

Inside that is a TableRow, since the header row is, in fact, a row like any other despite it

being the header. Finally, inside that TableRow goes three TableCell components, one

Chapter 9 Delivering the Goods: MailBag, the Client

274

for each column in the table. The first two have specific widths assigned, which will

cause the third, the Subject column, so take up the remaining horizontal space.

After the TableHead comes a TableBody, again, just like a plain old HTML table.

Inside the TableBody goes a TableRow for each message. We iterate the list of messages

found in state.messages with map() like you’ve seen for mailboxes and contacts. For

each of the three data elements to display, we drop a TableCell into the TableRow and

render the appropriate properties from the message object into it. That’s about all there

is to it!

You’ll also, no doubt, notice that there is an onClick prop on the TableRow housing

the message. When the row is clicked, we need to display in the view area below, which

is what the showMessage() state mutator method does:

showMessage : async function(inMessage: IMAP.IMessage): Promise<void> {

 this.state.showHidePleaseWait(true);

 const imapWorker: IMAP.Worker = new IMAP.Worker();

 const mb: String = await imapWorker.getMessageBody(

 inMessage.id, this.state.currentMailbox

);

 this.state.showHidePleaseWait(false);

 this.setState({ currentView : "message",

 messageID : inMessage.id, messageDate : inMessage.date,

 messageFrom : inMessage.from,

 messageTo : "", messageSubject : inMessage.subject,

 messageBody : mb

 });

}.bind(inParentComponent)

Once the please wait popup is shown, the IMAP.Worker.getMessageBody() method

is called, passing it the ID of the message and the path of the current mailbox. The server

is called, the body returned, and please wait hidden. Finally, the setState() call is made

to change the view and populate all the message details, including the body. The result

is that the message is displayed, all pertinent details visible to the user in the view area

below the message list.

Chapter 9 Delivering the Goods: MailBag, the Client

275

�MessageView.tsx
MessageView is perhaps the most complex of all the components, and even it isn’t

anything that’ll hurt your brain! It all begins with a plain old HTML form:

<form>

As with ContactView, we need a single container for fields here, and a <form> again

makes sense, though it doesn’t need to be a <form> element.

Speaking of the fields that follow:

{ state.currentView === "message" &&

 <InputBase defaultValue={ `ID ${state.messageID}` }

 margin="dense" disabled={ true } fullWidth={ true }

 className="messageInfoField" />

}

{ state.currentView === "message" &&
 }

First, we need a field to display the ID of the message. Since this isn’t something that

will ever be editable, a TextField isn’t needed. And, while it certainly could have just

been a plain old <div>, I decided to use another Material-UI component, just to give you

a little more exposure to it. The InputBase component serves as the basis for many of

Material-UI’s form field components and provides a minimal set of style rest and state

logic. It’s perfect for our purposes because it looks an awful lot like TextField from an

API standpoint, but is a bit simpler. The defaultValue prop is the message ID, prefixed

with a static “ID” text to serve as a label of sorts. The margin prop is again set to dense

to reduce space around it and the field should always be disabled, so that prop is set to

true. The fullWidth prop, set to true, stretched the field across the entire width of its

container, which ensures we always have enough space to display the content. Finally,

a little bit of styling is needed, but this time it’s done with a className prop rather than

inlining the styles, and that leads us to the last style rule in our main.css file:

.messageInfoField {

 color : #000000!important;

}

Chapter 9 Delivering the Goods: MailBag, the Client

276

That serves much the same purpose as the styling on the TextFields you saw earlier

to make the text readable when the field is disabled. Note that appending !important

was required here to get the color to override the default gray color, not an uncommon

thing to have to do with CSS.

After that comes another InputBase component, this time for the message’s date:

{ state.currentView === "message" &&

 <InputBase defaultValue={ state.messageDate } margin="dense"

 disabled={ true } fullWidth={ true }

 className="messageInfoField" />

}

{ state.currentView === "message" &&
 }

Of course, conditional rendering is used to only show these fields with currentView

is "message", that is, when viewing an existing message, as opposed to when this view is

shown for composing a message.

One last field remains after that:

{ state.currentView === "message" &&

 <TextField margin="dense" variant="outlined"

 fullWidth={ true } label="From"

 value={ state.messageFrom }

 disabled={ true }

 InputProps={{ style : { color : "#000000" } }} />

}

{ state.currentView === "message" &&
 }

The From field is again only shown when viewing an existing message, and like the

previous two InputBase fields, this one stretches across the entire container thanks to

fullWidth being set to true. Of course, this field is never editable, hence disabled set to

true with no logic.

Now we get into some fields that are shown only when composing a message:

{ state.currentView === "compose" &&

 <TextField margin="dense" id="messageTo" variant="outlined"

 fullWidth={ true } label="To"

 value={ state.messageTo }

Chapter 9 Delivering the Goods: MailBag, the Client

277

 InputProps={{ style : { color : "#000000" } }}

 onChange={ state.fieldChangeHandler } />

}

The To field is obviously needed, and like From, we stretch it across the entire

container to allow the user as much room to enter long addresses as possible. You can

see our friendly neighborhood state.fieldChangeHandler() method again being used,

which means that the id here must match the state property that should get the value of

whatever the user enters here, which it does.

Then, we need a subject field:

{ state.currentView === "compose" &&
 }

<TextField margin="dense" id="messageSubject" label="Subject"

 variant="outlined" fullWidth={ true }

 value={ state.messageSubject }

 disabled={ state.currentView === "message" }

 InputProps={{ style : { color : "#000000" } }}

 onChange={ state.fieldChangeHandler } />

There’s nothing new there frankly, so let’s move on to the field where the user will

enter the actual text of the message:

<TextField margin="dense" id="messageBody" variant="outlined"

 fullWidth={ true } multiline={ true } rows={ 12 }

 value={ state.messageBody }

 disabled={ state.currentView === "message" }

 InputProps={{ style : { color : "#000000" } }}

 onChange={ state.fieldChangeHandler } />

Ah, here we have a few new props! When multiline is set to true, Material-UI will

render an HTML <textarea> under the covers. That implies that we can set rows and

cols value, and we can, though only rows is used here because fullWidth is set to true.

So, what we wind up with is a <textarea> that fills the entire available horizontal space

and allows for 12 rows of text to be input (it will, of course, scroll to accommodate more

as necessary, as a <textarea> does by default). Other than that, though, this is the same

as the other fields.

Chapter 9 Delivering the Goods: MailBag, the Client

278

After the fields, we must work on the buttons that we need, beginning with the one to

send the message being composed:

{ state.currentView === "compose" &&

 <Button variant="contained" color="primary" size="small"

 style={{ marginTop:10 }}

 onClick={ state.sendMessage }>

 Send

</Button>

}

That’s a pretty straightforward Button component, isn’t it? Given there’s nothing

new, let’s jump right to that sendMessage() state method referenced in the onClick

prop:

sendMessage : async function(): Promise<void> {

 this.state.showHidePleaseWait(true);

 const smtpWorker: SMTP.Worker = new SMTP.Worker();

 await smtpWorker.sendMessage(this.state.messageTo,

 this.state.messageFrom, this.state.messageSubject,

 this.state.messageBody

);

 this.state.showHidePleaseWait(false);

 this.setState({ currentView : "welcome" });

}.bind(inParentComponent)

Again, this code is very much like other methods you’ve seen. We show the please

wait dialog; call the appropriate Worker method, passing it the properties from state

that will have been populated as the user typed values into the fields, thanks to that

fieldChangeHandler() method; hide please wait; and finally change the view to the

welcome view, since it doesn’t make much sense to go somewhere else or even to stay

on the compose view at that point.

Next, we have a button that only shows up when the user clicks a message from the

message list, namely, the one to reply to the message:

{ state.currentView === "message" &&

 <Button variant="contained" color="primary" size="small"

 style={{ marginTop:10, marginRight:10 }}

Chapter 9 Delivering the Goods: MailBag, the Client

279

 onClick={ () => state.showComposeMessage("reply") }>

 Reply

 </Button>

}

For all intents and purposes, it’s the same as the NEW MESSAGE button in the

toolbar, but the one difference is that showComposeMessage() must be called and passed

a different value, so it’s anonymous function time again! And, of course, this button is

only shown when state.currentView is "message", not when it’s "compose".

Similarly, the last button to deal with, DELETE, is also only shown when viewing an

existing message from the message list:

{ state.currentView === "message" &&

 <Button variant="contained" color="primary" size="small"

 style={{ marginTop:10 }}

 onClick={ state.deleteMessage }>

 Delete

 </Button>

}

By this point, you should have a very good handle on Material-UI Buttons, right? I

expect so! Therefore, it’s time for the final method in state, the deleteMessage() method,

hooked to this button via its onClick prop:

deleteMessage : async function(): Promise<void> {

 this.state.showHidePleaseWait(true);

 const imapWorker: IMAP.Worker = new IMAP.Worker();

 await imapWorker.deleteMessage(

 this.state.messageID, this.state.currentMailbox

);

 this.state.showHidePleaseWait(false);

 const cl = this.state.messages.filter(

 (inElement) => inElement.id != this.state.messageID

);

 this.setState({ messages : cl, currentView : "welcome" });

}.bind(inParentComponent)

Chapter 9 Delivering the Goods: MailBag, the Client

280

This is very much the same as the deleteContact() method, except that it calls

IMAP.Worker.deleteMessage() of course, passing it the message’s ID and the path to the

current mailbox, and then filtering the state.messages array to remove it from the list.

We have just one more component left to examine, and here it comes!

�WelcomeView.tsx
I saved perhaps the simplest component for last – WelcomeView:

<div style={{

 position:"relative", top:"40%", textAlign:"center",

 color:"#ff0000"

}}>

 <h1>Welcome to MailBag!</h1>

</div>

Yep, that’s literally it! The styling here serves to center the text (well, it’s actually a

hair closer to the top than the bottom, which I think looks a little better) and then just a

big, red <h1> element.

And that, my friend, is MailBag, all done and ready to serve your email needs!

�Suggested Exercises
As with the server, I’ve left some things that you could do to enhance the MailBag client

app that I think would serve as excellent learning experiences to put what you’ve learned

to the test:

•	 Did you notice that all emails are treated as plain text, whether they

are or not? Wouldn’t it be nice to see HTML messages displayed as

they’re intended to? I think so! See if you can pull that off. As a hint,

the server will need to be altered to return HTML instead of plain text

(should be a one- or two-line change), and then the client will need

to display it (you might try just inserting the content into a <div>, or

perhaps an <iframe>, but either will require you to make additional

changes to MessageView.tsx).

Chapter 9 Delivering the Goods: MailBag, the Client

281

•	 Allow the user to upload pictures for their contacts. There are several

approaches, but you might consider using a plain old HTML form

with a <file> element, but then you’ll need to consider how to alter

the server to accept it. Then, store the image in a temporary location

and make the client fetch it to display it. Then figure out how to store

it in NeDB when they save it (hint: Base64-encoded is probably a

good answer there). Note that this most likely would not be part of

the RESTful API of the server, so you’ll need to figure out how to make

this coexist with the existing service endpoints.

�Summary
In this chapter, we completed the MailBag app, building the client side of it. In the

process, you learned about things like conditional rendering with React, the Material-

UI component library, a bit about AJAX and the Axios library for doing it, and CSS Grid.

The result is a complete application, MailBag, that, while pretty basic, does the job as a

webmail client pretty well.

One project down, just one to go! And the next one is going to be something quite a

bit different: a game!

Chapter 9 Delivering the Goods: MailBag, the Client

283
© Frank Zammetti 2020
F. Zammetti, Modern Full-Stack Development, https://doi.org/10.1007/978-1-4842-5738-8_10

CHAPTER 10

Time for Fun: BattleJong,
the Server
In my professional capacity as an architect and team lead, I am sometimes asked by

junior developers what they can do to improve their skills. Should they watch YouTube

videos about various topics in software development? Are there good books they should

read? What about side projects?

My advice has always been the same: to get better at anything, software development

very much included, you’ve got actually to do the thing you want to get better at! Nothing

beats experience. So yes, side projects are the way to go.

However, not all experience is equal. With programming, there is one thing that I

genuinely believe improves developer skills more than any other type of side project,

and that’s games. Even if you’re a business developer like me, games are where it’s at.

Why is that? Simply put, games force us to confront many different software

development challenges: algorithms, data structures, optimization, smart design,

flexible architecture, and so on. That’s before you even think about the more obvious

things like visual design and graphics. They also, by their nature, are an exciting

challenge to face because they are, by their nature, meant to be fun! Shouldn’t the

process of making a game be fun too? Indeed, it is, even when being challenging – and it

will be challenging, and in ways you can’t predict!

So, in this chapter and the next, we’re going to take that philosophy to heart and

build ourselves a game using React, TypeScript, and Node, as well as a few other

things. To be sure, this isn’t going to be a AAA game title ala Halo or even something

as addicting as Minecraft. But it will afford you the chance to view what you’ve learned

through a different lens and use some different development muscles, all of which will

provide you some new perspectives – along with some new skills – with which to create

going forward.

284

�What Are We Building?
In all probability, you’ve played Mahjong before, but if not, Figure 10-1 shows you what it

looks like.

To be more accurate, what’s depicted there is actually called Mahjong Solitaire. Plain

old Mahjong is a little different, though they both are played with tiles depicting various

Chinese symbols – perfectly logical given that the game was invented in China during

the Qing dynasty (1636–1911). Mahjong is vaguely similar to Poker in that you are trying

to create “hands” using tiles you are given at the start plus the tiles on the board, and you

play with multiple people, usually four.

Mahjong Solitaire, on the other hand, is, as the name implies, played in solitude by

one person. The goal is to find matching tiles and remove them from the board. The trick

is that the board is three-dimensional: there are five layers of tiles in that screenshot,

and you can only match and remove pairs that are “free,” which means that there is no

tile above them and none to either the left or right of each. You continue until you either

remove all the tiles, which is considered a win, or you have no more legal moves left,

which is regarded as a “dead-ended” board.

Now, our little game here, BattleJong, is going to be a bit different. First, we’ll do away

with the Chinese symbols and go with something… different. We’ll get to that in the next

chapter! Also, we’re going to make this a bit more social: as the word “Battle” in the name

implies, you’re going to play against another person.

Figure 10-1.  A basic Mahjong Solitaire layout

Chapter 10 Time for Fun: BattleJong, the Server

285

The way it will work is that you’ll play simultaneously with someone else. You’ll get

up to ten points per matched tile pair. However, how long it takes you to find a match will

deduct from that number. You’ll always get at least one point per match, but you could

get anything from one to ten, depending on how long you take each time. In the end,

whoever has the highest score wins.

It’s not a complicated game mechanic to be sure, and it’s not even original, as

versions of Mahjong like this were done as far back as the mid-1990s in the DOS days.

But, for our purposes here, it’s perfect: being not too complicated means it won’t be

overwhelming, and the need to play against someone introduces the need for some sort

of server. And it’s not just any server: we need it to be real time, and the server needs

to be able to send data to the client at any time. This makes for a challenge and, more

importantly, allows me to introduce some new things to the mix.

�Basic Requirements
Before we get to the code (which there is surprisingly little of, as you’ll see), let’s outline

the exact requirements, and let’s also note whether it’s (at least primarily) and client

concern, a server concern, or both:

•	 Each player should see a board similar (but a bit different) from

Figure 10-1 (client).

•	 They should be able to click a tile, have it highlighted in some way,

and then click another (client).

•	 If they match, the pair should be removed, and the server must be

told how many points resulted from the match. The server must then

update the other player with that information and keep track of the

cumulative score of both (both).

•	 Logic should be in place to ensure each player can only select “free”

tiles (client).

•	 When a player launches the client, it must contact the server and

“register” the user. Once two players are registered, the game will

begin automatically (server).

Chapter 10 Time for Fun: BattleJong, the Server

286

•	 Whenever a player clears the board, or it is determined that there are

no more valid moves left, the server should be told (both).

•	 Once both players register the board completed, the server will

determine who won based on score and inform both players (server).

As you can see, most of the work is really client side, which means it’ll be covered in

the next chapter. However, the server certainly does have some work to do, so let’s get to

work building it!

�Setting Up the Project
First things first: let’s create the project by creating a directory and then executing the

NPM commands that, by now, you probably know by heart:

npm init

Just accept all defaults, as usual, to create an NPM/Node project. Then

npm install typescript --save-dev

npx tsc -init

That gets TypeScript all set up. Finally, to ensure we can develop without having to

constantly build and restart ourselves, let’s add nodemon to the mix:

npm install nodemon --save-dev

That gives us the basic setup we need for the server.

Note  You may be wondering why, in the two projects presented in this book, I
didn’t use Webpack on the server side. Indeed, you can do so. However, my feeling
is that since server-side code by its nature isn’t being shipped down to a browser,
there’s less need for Webpack there. Bundling up your code efficiently matters
less when it’s just going to be sitting on a server. I’d rather keep the workflow
more uncomplicated and not introduce another tool to the toolchain when working
on that code, so I left Webpack out of the server-side mix for those reasons, not
because of any technical issues.

Chapter 10 Time for Fun: BattleJong, the Server

287

�Some tsconfig.json Changes
At this point, you would have yourself a default tsconfig.json file for TypeScript configuration.

For the most part, the default configuration will suffice, but there are a few changes needed,

or at least desired. Here is the effective tsconfig.json used for this project:

{

 "compilerOptions": {

 "target": "es5",

 "module": "commonjs",

 "sourceMap": true,

 "outDir": "./dist",

 "strict": true,

 "noImplicitAny": true,

 "strictNullChecks": true,

 "strictFunctionTypes": true,

 "strictBindCallApply": true,

 "strictPropertyInitialization": true,

 "noImplicitThis": true,

 "alwaysStrict": true,

 "esModuleInterop": true,

 "forceConsistentCasingInFileNames": true

 },

 "include": ["src/**/*"]

}

Most of this you’ve seen before in the previous project and examples, but what’s new

is the setting that is collectively under the heading of “Strict Type-Checking Options,” from

the “strict” property to the “alwaysStrict” property. These are concerned with helping us

write better TypeScript code by tightening the screws of the rules imposed on us a bit:

•	 strict – This enables all strict type-checking options. That means

that it will enable noImplicitAny, noImplicitThis, alwaysStrict,

strictBindCallApply, strictNullChecks, strictFunctionTypes,

and strictPropertyInitialization. You can override any of these

as you wish though, and explicitly enabling them is redundant, but

does no harm.

Chapter 10 Time for Fun: BattleJong, the Server

288

•	 noImplicitAny – This will cause tsc to raise an error any time it

detects that a variable as part of an expression or declaration was of

type any implicitly (in other words, if you don’t specify a type, even if

it’s any). This forces you to declare types more consistently.

•	 strictNullChecks – In strict null checking mode, the null and

undefined values are not in the domain of every type and are only

assignable to themselves and any (the one exception being that

undefined is also assignable to void).

•	 strictFunctionTypes – With this enabled, function-type parameter

positions are checked contravariantly instead of bivariantly (both

contravariant and bivariant). This topic can get pretty complicated

and would take a lot of space to explain properly here, so I’m going

to refer you to some existing documentation to do the job for me:

http://www.stephanboyer.com/post/132/what-are-covariance-

and-contravariance.

•	 strictBindCallApply – Simply put, this enables stricter checks when

you use the bind(), call(), and apply() functions. Since these can

get you into trouble if you aren’t careful, having them checked more

robustly is a Very Good Thing!

•	 strictPropertyInitialization – This ensures that non-undefined class

properties are initialized in the constructor. Note that this option

requires that strictNullChecks be enabled to take effect.

•	 noImplicitThis – This will cause tsc to raise an error if it encounters

“this” expressions with an implied any type.

•	 alwaysStrict – This causes tsc to parse your code in ES6 strict mode

and also to include the "use strict" directive at the top of output

JavaScript files to enable a stricter ES6 adherence policy at runtime.

As a rule, I suggest always enabling these checks. It will lead to writing better

TypeScript code in almost all situations. You could run into some cases where you need

to disable them for one reason or another, but I’d start with them enabled and only

disable if you really need to.

Chapter 10 Time for Fun: BattleJong, the Server

http://www.stephanboyer.com/post/132/what-are-covariance-and-contravariance
http://www.stephanboyer.com/post/132/what-are-covariance-and-contravariance

289

�Adding Node Modules
Next, we need to add the Node modules that we’ll be using. For this project, there’s only

two:

npm install express --save

npm install ws --save

Express you already know about, and the ws library is what we’ll use for client-server

communications. But I can’t get into that just yet because there’s a bit of precursor

explanation that has to happen. That’ll be coming in short order, but before that, we

need to complete the project setup.

�Adding Types
Finally, since we’re using TypeScript, we like to have types for as much of what we’re

using as possible. Fortunately, there are types available for everything this project uses:

npm install @types/node --save-dev

npm install @types/express --save-dev

npm install @types/ws --save-dev

With those installed, we’re good to go for the server side of BattleJong.

�Source File Rundown
Believe it or not, but for this project, there is only a single source file to deal with, and it’s

not even all that large (under 150 lines of actual code!).

So let’s get right into it!

�The Starting Point (the ONLY Point, in Fact!):
server.ts
The server.ts file begins, not surprisingly, with a few imports:

import path from "path";

Chapter 10 Time for Fun: BattleJong, the Server

290

As you’ve seen before, the path library that Node itself provides is used to construct

directory paths on our server; in this case, it’ll be used to get a path to the static resources

that make up the client so that they can be loaded via HTTP. And, to make HTTP

available, we need Express:

import express, { Express } from "express";

Finally, we’ll need that mysterious ws library that you saw added earlier:

import WebSocket from "ws";

Ooh, WebSocket, that sounds interesting! You may have even heard the term before,

and now “ws” probably starts to make some sense! Let’s see what that’s all about now,

shall we?

�A Quick Detour: WebSockets
The World Wide Web was initially conceived as a place where it was the client’s

responsibility to request information from a server, and indeed that’s how most

interactions today still occur. Everything is initiated by the client requesting some

information, or requesting some operation be performed. But that eliminates a host of

interesting possibilities or at least makes them more difficult and nonoptimal since you

wind up having to use various clever hacks.

For example, if you have a machine that provides stock prices to a client to display

in a dashboard, the client must continuously request updated prices from the server.

This is what’s referred to as the “polling” approach. The downsides, primarily, are that it

requires constant new requests from the client to the server (read: lots of network traffic),

and the prices will only be as fresh as the polling interval, which you typically don’t want

to make too frequent for fear of overloading the server. The prices, therefore, aren’t truly

real time, something that can be very bad if you’re an investor.

With the advent of AJAX techniques, developers started to investigate ways to have

bidirectional communication, in which the server could push new stock prices out to the

client. One such method is called “long polling.” Sometimes called Comet, long polling is

a technique by which the client opens a connection with a server, as usual. But then, the

server holds the request open. It never sends the HTTP response completion signal, so

the connection persists. Then, when the server has something to transmit to the client,

the connection is already established, and the information can be sent immediately to

Chapter 10 Time for Fun: BattleJong, the Server

291

the client. This trick is sometimes referred to as a “hanging-GET” or “pending-POST,”

depending on the HTTP method used to establish the connection.

This can be tricky to implement for many reasons, but probably the key one is

that the connection processing thread is held on the server. Given that it’s an HTTP

connection and HTTP servers have some limit on the number of such request processing

threads they can support, the overhead to keeping them alive for a long time is not at

all inconsequential. Before long, your server can be brought to its knees, even without

seemingly having all that many clients connected.

The WebSocket protocol was created to allow this sort of persistent connection without

all the problems of long polling or other approaches. WebSockets is an Internet Engineering

Task Force (IETF) standard that enables bidirectional communication between a client and

a server. It does this by a special handshake when a regular HTTP connection is established.

To do this, the client sends a request that looks something like this:

GET ws://websocket.apress.com/ HTTP/1.1

Origin: http://apress.com

Connection: Upgrade

Host: websocket.apress.com

Upgrade: websocket

First, notice the protocol in the GET URL: ws. This indicates a WebSocket

connection. Then, notice that Upgrade header value. That’s the magic bit. When the

server sees this, and assuming it supports WebSockets, it will respond with a reply such

as this:

HTTP/1.1 101 WebSocket Protocol Handshake

Date: Mon, 21 Dec 2017 03:12:44 EDT

Connection: Upgrade

Upgrade: WebSocket

The server “agrees to the upgrade,” in WebSockets parlance. Once this handshake

completes, the HTTP request is torn down, but the underlying TCP/IP connection it rode

in on, so to speak, remains. That’s the persistent connection with which the client and

server can communicate in real time, without having to reestablish a connection every

time. To be clear, there is still overhead the server must maintain, but because TCP/IP

requires considerably fewer resources than does HTTP riding on top of it, more persistent

connections can be maintained with WebSockets than with any clever HTTP hack.

Chapter 10 Time for Fun: BattleJong, the Server

292

WebSockets also comes with a JavaScript API, supported by all current browsers,

that you can use to establish connections, and both send and receive messages (and

messages is what we call data that is transmitted over a WebSocket connection, in either

direction). We’ll get into that API in the next chapter when we build the client, but for

now, we need to think about how WebSockets is used on the server side.

There are several options available to us, but I’m going to use perhaps the simplest

and the one that mimics the browser API as closely as possible. That API is contained in

a library called, simply enough, ws. You can read about it here: https://github.com/

websockets/ws. But, to give you the core concepts quickly and easily, here’s a complete

example of using it:

import WebSocket from "ws";

const wsServer = new WebSocket.Server({ port : 8080 });

wsServer.on("connection", (socket: WebSocket) => {

 socket.on("message", inMsg => {

 socket.send(inMsg);

 });

});

Simply put, you begin – after importing the library, of course – by constructing a

WebSocket server and tell it what port to listen on. Since port 80 is normally for HTTP

traffic, I went with 8080, so that it’s similar, but different.

The next part is vital: you must define what happens when messages are received

from the client (I suppose you don’t have to do this, but then not much is ever going

to happen in your application!). To do this, you have to first listen for the “connection”

event, which you do by calling the on() method of the WebSocket.Server instance,

as shown. Several events occur (message, close, error, headers, and listening, in

addition to connection), but connection is the most important one because it’s the

first time you have reference to the WebSocket object that will be associated with this

client going forward. Each connected client will have its own WebSocket instance, so you

need to hook up a “message” event handler function to that WebSocket. It’s important

to understand that you’re hooking it up to each individual WebSocket that’s created

by a client connecting, not to the WebSocket.Server. This is a common mistake, so be

careful!

Chapter 10 Time for Fun: BattleJong, the Server

https://github.com/websockets/ws
https://github.com/websockets/ws

293

From that point on, any messages that are sent from the client (however that

happens – it doesn’t matter right now!) will be handled by this function. In this case, all

it does is echoes the message back to the client, and here you can see how information

is sent from the server to the client: the send() method of the WebSocket instance for

that client. Note that any code that has a reference to this WebSocket can send messages

to the client, not just code inside the message event handler. For example, as long as

you keep a reference to the WebSocket in global scope, you could have some code in a

timeout() firing every ten seconds to send a message to the client.

That, basically, is how the ws library is used on the server side, minus one or two

other things that we’ll get to as we look at the code. WebSockets, in general, isn’t a

complicated thing from a developer standpoint, and you’ll see that’s true on the client

side as well in the next chapter.

�Back to the Code!
Okay, now that we know about WebSockets, we can get to examining the rest of the

code in server.ts. Ironically, after the imports, the first thing we encounter is not

WebSockets-related at all:

const players: any = { };

When a player connects to the server, they will be added to this object. Each property

in this object will be a player, and each property will be an object in the form:

{ score: number, stillPlaying: boolean }

The score is, obviously, the player’s current score. The stillPlaying property will

be true to start and will remain true until the client signals that the player has either

cleared the board, or they have no more valid moves available, at which point it will flip

to false. The two objects in this players object are keyed by PID, or Player ID.

This object and its children, in essence, represent the “game state” at any given

moment in time, at least as far as the server is concerned.

Chapter 10 Time for Fun: BattleJong, the Server

294

�Serving the Client: The Express Server
Our client app, which we’ll build in the next chapter, needs to be served by the server so

a player can load it in their browser. To provide this functionality, we’ll use the Express

library:

const app: Express = express();

app.use("/", express.static(path.join(__dirname, "../../client/dist")));

app.listen(80, () => {

 console.log("BattleJong Express server ready");

});

That should look familiar to you because it is essentially the same code you saw in

the MailBag app. For BattleJong, though, we’re not defining a RESTful interface, so all we

need is the static middleware to serve the contents of the client/dist directory.

At this point, we have an HTTP server listening on port 80. Next, we need to set up

another server, this one for WebSocket connections (yes, you absolutely can create

multiple servers from a single Node source file!).

�Handling Messages: The WebSocket Server and Overall
Game Design
Before we get into the code, let’s talk about the overall flow of events in the game from

the server’s perspective. There is a well-defined sequence of events – and corresponding

messages – that occurs during the game from start to finish. Figure 10-2 shows a

flowchart of that sequence.

Chapter 10 Time for Fun: BattleJong, the Server

295

When the client is initially loaded, it connects to the server via WebSockets. Although

there is nothing our code has to do at that point as far as WebSockets is concerned,

the code sends a “connected” message to the client. As part of this message, the PID is

sent. All subsequent messages from the client must include this as it’s how the server

identifies the correct player for various operations.

Once there are two players connected, the server sends the “start” message to both

players. This message includes a shuffled layout. We’ll get into all of that later. For now,

suffice to say it’s the arrangement of tiles that the client should display.

From that point on, the client will send one of two messages: “match” or “done”. The

match message is for when they match a tile pair. The server needs to know the PID and

Figure 10-2.  The overall sequence flow of events that makes BattleJong work

Chapter 10 Time for Fun: BattleJong, the Server

296

how many points the player got, so those are part of the message. This message can be

sent multiple times during the course of gameplay.

Once the player either clears the board or there are no more valid moves left, the

“done” message is sent. All the server needs to know is the PID in that case (because it

doesn’t care whether the board was cleared or dead-ended), so that’s all that’s sent.

Once the server sees that both players have sent the done message, then it looks

at the scores and sends to both players the PID of the winning player. The client will

determine what to do based on that (which will be covered in the next chapter, but in

short, either a “you won” or a “you lost” message will be shown).

Now that you understand the overall flow, let’s look at the code that makes it work, at

least on the server side of the fence. We begin by constructing a WebSocket.Server:

const wsServer = new WebSocket.Server({ port : 8080 }, function() {

 console.log("BattleJong WebSocket server ready");

});

wsServer.on("connection", (socket: WebSocket) => {

 ...Interesting Stuff Here...

});

It’s even simpler than Express: instantiate WebSocket.Server, courtesy of the

ws library, and tell it what port to listen on. That’s the bare minimum we need to do.

Optionally, you can supply a callback function to execute once the server is ready, and

here I use it to display a log message.

Once that’s done, the key thing we must do is handle that “connection” event, as

previously discussed. You’ll recall that inside of it is where you hook up a handler for the

“message” event, and that’s exactly what the “Interesting stuff here” is (I just felt it would

be more intuitive to see this code separate from the code it’s contained in):

socket.on("message", (inMsg: string) => {

 const msgParts: string[] = inMsg.toString().split("_");

 const message: string = msgParts[0];

 const pid: string = msgParts[1];

 switch (message) {

 ...More Interesting Stuff Here...

 }

});

Chapter 10 Time for Fun: BattleJong, the Server

297

Every message that comes from the client, or that is sent from the server, will be

in the form “<message>_<pid>_*” where <message> is the message being received or

sent, <pid> is a unique ID associated with each player (more on this shortly), and ∗ is

additional data (not needed by all messages).

I’ll describe each of the messages in turn next and show the code associated with

each.

�Message: “match”

Okay, so the game is in motion, and the players are matching tiles. Each tile they do so,

the server must be told about it with a message in the form “match_<pid>_<score>”.

The code that handles this message is the first case of our switch (message) statement:

case "match":

 players[pid].score += parseInt(msgParts[2]);

 wsServer.clients.forEach(

 function each(inClient: WebSocket) {

 inClient.send(`update_${pid}_${players[pid].score}`);

 }

);

break;

The score that the client sends is added to the player’s current score by adding it

to the score property of the object corresponding to this player in the players object

(remember that this object’s properties are keyed by PID). Now, the client that sent this

message knows its score, of course, but the other player needs to be told about it. To keep

things simple, we’re going to broadcast, so to speak, the score to both players and let

them act appropriately.

To do so, we must iterate over the connection of connected clients. Note here

that this is a property of the WebSocket.Server instance, not the particular client’s

WebSocket that initiated this message, like most of this code has been using. It makes

sense: the WebSocket server itself would be the thing that knows about all connected

clients, not an individual client’s WebSocket. For each client, the iteration provides us

the WebSocket for that client, so we can call send() on each to send a message in the

form “update_<pid>_<score>”. The client will take that information and update its

display accordingly (as you’ll see in the next chapter, the score of both players is updated

in real time on each player’s screen).

Chapter 10 Time for Fun: BattleJong, the Server

298

�Message: “done”

When either a player clears the board or the board has no more valid moves left (“dead-

ended”), the done message is sent, in the form “done_<pid>”:

case "done":

 players[pid].stillPlaying = false;

 let playersDone: number = 0;

 for (const player in players) {

 if (players.hasOwnProperty(player)) {

 if (!players[player].stillPlaying) {

 playersDone++;

 }

 }

 }

 if (playersDone === 2) {

 let winningPID: string;

 const pids: string[] = Object.keys(players);

 if (players[pids[0]].score > players[pids[1]].score) {

 winningPID = pids[0];

 } else {

 winningPID = pids[1];

 }

 wsServer.clients.forEach(

 function each(inClient: WebSocket) {

 inClient.send(`gameOver_${winningPID}`);

 }

);

 }

break;

There’s a bit more work here that needs to happen, but not all that much. First, the

player that sent this message is marked as done by changing the stillPlaying property

of the object associated with it in the players collection to false. Next, we need to see if

both players are done. Since players is an object and not an array, we can’t just access

players[0] and players[1] to do this check. Instead, we have to iterate the properties

of the object. That’s where the for loop comes in. But we have to be careful to only look

Chapter 10 Time for Fun: BattleJong, the Server

299

at properties defined on the object itself, not any that may come from its prototype,

which is why we do players.hasOwnProperty(player). After that, it’s a simple matter of

incrementing playersDone if stillPlaying is false for each player.

If we finish that loop and playersDone is 2, then the game has ended. In this case, it’s

time to determine a winner! That’s easy enough: we get an array of keys in the players

object and then compare the scores of both, pulling the PID of the winning player out.

Finally, the “gameOver_<winningPID>” message is broadcast to both players, and our

work here is done!

Note  Eagle-eyed readers will notice that the iteration in the check of
stillPlaying could have been done the same way as the score comparison was
made, thus avoiding the iteration (or vice versa). This is true, and I just did it two
different ways to give you some different approaches to consider for accomplishing
these things. If I were writing this code “for real,” so to speak, I’d have done it with
Object.keys both times I think, but as they say on the Interwebs: YMMV (Your
Mileage May Vary).

�Finishing Up the WebSocket Server
At this point, our WebSocket server is set up to handle the two messages the client can

send, but there’s still a little bit left to be done inside the callback function passed to the

wsServer.on("connection") statement (remember that what we’ve been looking at is

all contained in that!).

First, we have to generate the PID I’ve been talking about:

const pid: string = `pid${new Date().getTime()}`;

Nothing fancy required here; we just use the current time. Next, we need to add an

object to the players object to represent this player:

players[pid] = { score : 0, stillPlaying : true };

Now, the server is ready to go. So, the next step is to inform the user of their PID,

which is done by sending a “connected_<pid>” message:

socket.send(`connected_${pid}`);

Chapter 10 Time for Fun: BattleJong, the Server

300

Finally, if we now have two players ready to go, then we can start the game! To do so,

a "start_<layout>" message is sent:

if (Object.keys(players).length === 2) {

 const shuffledLayout: number[][][] = shuffle();

 wsServer.clients.forEach(

 function each(inClient: WebSocket) {

 inClient.send(

 `start_${JSON.stringify(shuffledLayout)}`

);

 }

);

}

Naturally, we need to broadcast this message, as you’ve seen before. But what gets

sent to both players is a shuffled layout, meaning the random distribution of tiles on the

board. That random layout is produced by a call to the shuffle() function, and that’s

our next (and last, as it happens) stop on the BattleJong server train!

�Of Tiles and Board Layouts
I’ve mentioned the board layout a few times, but what does that really mean in terms of

code? Well, recall earlier that I described a Mahjong Solitaire layout as being multiple

levels of stacked tiles. If you want to model that in code, there’s probably more than

one way, but perhaps the most natural is a multidimensional array. Each primary

dimension of the array is one of five layers of tiles, starting with the bottom-most layer.

The secondary dimension will then represent each row. The tertiary dimension will then

represent a column, or a specific tile, in the row.

In other words, what we’re dealing with is simply five grids laid on top of one

another. In each position of each layer, there either can be a tile or not. And, in the case

of Mahjong, and BattleJong by extension, a tile can be one of 42 types.

But that’s jumping ahead just a bit. We don’t need to worry about types yet; we just

need to worry about which positions have tiles and which don’t. For that, we have the

layout construct, which is that multidimensional array I described:

Chapter 10 Time for Fun: BattleJong, the Server

301

const layout: number[][][] = [

 [

 [0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0],

 [0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0],

 [0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0],

 [0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0],

 [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],

 [0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0],

 [0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0],

 [0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0],

 [0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0],

],

 [

 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

 [0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0],

 [0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0],

 [0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0],

 [0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0],

 [0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0],

 [0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0],

 [0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0],

 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

],

 ... Three more layers' worth of data ...

];

To save space, I’ve only shown the first two layers’ worth of data, but there are simply

three more arrays of arrays for those layers. Simply stated, where you see a zero, there is

no tile. Where you see a one, there is a tile.

As you look at this, if you can sort of mentally strip away the 0’s and just try to

visualize the pattern of the 1’s and you compare it to the Mahjong layout shown at the

start of this chapter, you should be able to begin to see how the overall layout is built up

from these layers (note that I altered the arrangement from the standard Mahjong layout

just a little, purely for aesthetic reasons – I like perfect symmetry!).

That provides us the basic layout of the tiles, but it doesn’t tell us which tiles (which 1’s)

are which type of tile. For that, we need the shuffle() function.

Chapter 10 Time for Fun: BattleJong, the Server

302

�Shuffling the Board

The goal of the shuffle() function is to take that underlying layout array of arrays (of

arrays!) and change all the 1’s to other values that correspond to tile types. I mentioned

earlier that there are 42 tile types, which is the standard number for Mahjong, so I stuck

with that. When we get to the client code, you’re going to find that there are 42 image

files named 101.png, 102.png, 103.png, and so on. Therefore, our goal here is to change

each 1 in layout to 101, 102, 103, and so on.

Let’s see how that’s done:

function shuffle(): number[][][] {

 const cl: number[][][] = layout.slice(0);

 let numWildcards: number = 0;

 const numTileTypes: number = 42;

 for (let l: number = 0; l < cl.length; l++) {

 const layer: number[][] = cl[l];

 for (let r: number = 0; r < layer.length; r++) {

 const row: number[] = layer[r];

 for (let c: number = 0; c < row.length; c++) {

 const tileVal: number = row[c];

 if (tileVal === 1) {

 row[c] = (Math.floor(Math.random() * numTileTypes)) + 101;

 if (row[c] === 101 && numWildcards === 3) {

 row[c] = 102;

 } else {

 numWildcards += numWildcards;

 }

 }

 }

 }

 }

 return cl;

}

Chapter 10 Time for Fun: BattleJong, the Server

303

Before we get into this, I want to point out that this uses the American-style shuffle,

which is a purely random shuffle and can lead to an unsolvable arrangement. In our

case, that’s okay because since both players will be using the same layout, it doesn’t so

much matter that there’s no path to clearing the board, what matters is that they’re on an

even playing field regardless.

We begin by cloning the layout array. We don’t want to alter it in case we want to

start a new game, so a clone it is. Next, we’re going to allow our layout to have up to four

wildcard tiles. Wildcard tiles are tiles that can match any other tile type. Some Mahjong

variants have wildcards, and some don’t. I decided to include them, but they will be

random like the tiles, which means not all shuffles will produce a layout with wildcards.

But, because I don’t want there to be more than four, we’re going to need to keep track of

how many are randomly selected, if any.

So, the real work is done by iterating over each layer in the layout, then each row in a

layer, and finally, each tile (or column) in the row. Every time we hit a 1, it’s time to select

a tile randomly! We choose a random number from 0 to 41 (numTileTypes is 42, which

gives us our upper bounds, non-inclusive, to the random selection) and then add 101 to

it to get a value that will correspond to one of our tile images on the client.

Now, if the value chosen is 101, that’s going to be the value for a wildcard. In that

case, we need to see how many wildcards have already been selected. If we’ve already

filled our quota of wildcards, then the value is bumped to 102 so that it’s no longer a

wildcard.

Finally, the non-randomized layout is returned and will then be sent to the client as

you saw earlier.

At this point, we’ve got ourselves a BattleJong server in search of a client to make it a

complete game!

�Suggested Exercises
It’s a bit tough to suggest exercises for this chapter because most of what I might

recommend would require changes on the client side as well. However, here’s a couple

to consider:

•	 Rather than use Express to serve the client, can you write “naked”

Node code to do it? You must ensure that it doesn’t conflict with the

WebSocket server, of course, but it’s not really as hard as it may at first

seem.

Chapter 10 Time for Fun: BattleJong, the Server

304

•	 Can you rework the shuffle() function such that it only produces a

shuffle that is winnable? You’ll have to research how to do this (and

there are multiple approaches) and then implement the algorithm.

�Summary
In this chapter, we built the not especially complicated server side of the BattleJong

equation. In the process, you learned about WebSockets and started to exercise your

game programming skills a bit.

In the next chapter, we’ll tackle the client side of the game and see how to hook it

up to the server to complete the puzzle and have ourselves a fully playable two-person

game.

Chapter 10 Time for Fun: BattleJong, the Server

305
© Frank Zammetti 2020
F. Zammetti, Modern Full-Stack Development, https://doi.org/10.1007/978-1-4842-5738-8_11

CHAPTER 11

Time for Fun: BattleJong,
the Client
In the last chapter, we began building BattleJong, our little “social” Mahjong game.

Now, it’s time to dive in and create the client side, which is where most of the game

code is found.

Let’s begin by talking about what we’re building, where you can finally see what this

thing is going to look like!

�What Are We Building?
In the previous chapter, you saw what a typical Mahjong game looks like. BattleJong will

look substantially the same, but because I’m such a huge sci-fi nerd, I’m going to give it a

sci-fi bend, as you can see in Figure 11-1.

306

The layout is very simple here: your playboard on the left and a “control” area

in the upper right. In the control area will be shown your current score and your

opponent’s current score, along with messages below that will change according to

what state the game is in. You can see too that I’ve clicked the topmost tile to show it in

its highlighted state.

That, really, is all there is to the client side of BattleJong visually.

�Basic Requirements
Given the aforementioned simplicity, the requirements are all straightforward:

•	 Upon loading the client in the browser via accessing the server’s URL,

if you’re the first player, you’ll be in a “waiting” state until another

player connects to the server.

•	 Once the other player connects, or if you were the second player to

connect, the game will begin automatically, the board appearing on

the left.

Figure 11-1.  An ancient Chinese game meets the future!

Chapter 11 Time for Fun: BattleJong, the Client

307

•	 You play according to the basic rules of Mahjong Solitaire, as

discussed in the previous section until the board is cleared or dead-

ended. Once either happens, you will be in a waiting state again until

your opponent also finishes.

•	 Once both players finish, the winner is shown in the control area.

•	 Clicking a tile, assuming it’s free, highlights it.

There’s not much more to it than that!

�Setting Up the Project
Setting up this project is simple enough; most of it you’ve seen and done before:

npm init (use all defaults)

npm install --save-dev typescript

npx tsc -init

npm install webpack --save-dev

npm install webpack-cli --save-dev

npm install html-webpack-plugin --save-dev

npm install awesome-typescript-loader --save-dev

npm install style-loader --save-dev

npm install css-loader --save-dev

npm install html-loader --save-dev

npm install url-loader --save-dev

Naturally, you can (and probably should, unless you want to do it all from scratch)

download the source code bundle for this book and execute npm install to get all the

dependencies installed (the initialization steps will have already been done for you).

The one new element here is the url-loader dependency, which is a Webpack loader.

Let’s talk about that after we talk about the TypeScript config file.

Chapter 11 Time for Fun: BattleJong, the Client

308

�Some tsconfig.json Changes
The effective TypeScript config file for the client side of this project is

{

 "compilerOptions": {

 "target": "es5",

 "module": "commonjs",

 "lib": ["es2015", "es2017", "dom"],

 "jsx": "react",

 "sourceMap": true,

 "outDir": "./dist",

 "strict": true,

 "noImplicitAny": true,

 "strictNullChecks": true,

 "strictFunctionTypes": true,

 "strictBindCallApply": true,

 "strictPropertyInitialization": true,

 "noImplicitThis": false,

 "alwaysStrict": true,

 "noUnusedParameters": true,

 "noImplicitReturns": true,

 "noFallthroughCasesInSwitch": true,

 "baseUrl": "./",

 "esModuleInterop": true,

 "forceConsistentCasingInFileNames": true

 },

 "paths" : { "components/*" : ["src/components/*"] }

}

If you compare this to the version for the server, you’ll find them to be nearly

identical, and most of the differences are related to one being client-side code and one

being server-side code.

For example, the lib element here is needed to ensure we have included the library

code associated with ES2015, ES2017, and the browser DOM, which, of course, isn’t

required on the server. The jsx element is needed on the client too given we’re building

the app with React, but not the server. The baseURL option is necessary for the client in

Chapter 11 Time for Fun: BattleJong, the Client

309

order for dependencies to be resolvable at runtime, and again, the server doesn’t need

that. Finally, in this case, we have a paths element to tell Webpack where our React

component source files are, but on the server side, we just needed the include element

to point it at the src directory.

One thing I skipped there, a difference, is the noImplicitThis option. As you can

see, strict is set to true, which means that all the strict checks are enabled (and as I

mentioned in the previous chapter, it’s redundant, though not an error, to then have each

explicitly enabled). However, this option causes lots of compiler errors in socketComm.

ts and state.ts to be reported, and I didn’t see a clean way to have it enabled while

avoiding the errors. So, this is one of those cases I mentioned in the previous chapter

where disabling the option that otherwise is good to enable is needed. This also shows

that you definitely can enable and disable individual checks, and the setting overrides

the strict setting. There’s no conflict there, which is nice since it provides you granular

control over these checks.

�Some webpack.config.js Changes
Now, let’s jump back to Webpack and see its config file:

const HtmlWebPackPlugin = require("html-webpack-plugin");

module.exports = {

 entry : "./src/code/main.tsx",

 resolve : {

 extensions : [".ts", ".tsx", ".js"]

 },

 module : {

 rules : [

 {

 test: /\.png$/,

 use : { loader : "url-loader",

 options : { limit : 65536, esModule : false, }

 }

 },

Chapter 11 Time for Fun: BattleJong, the Client

310

 {

 test : /\.html$/,

 use : { loader : "html-loader" }

 },

 {

 test : /\.css$/,

 use : ["style-loader", "css-loader"]

 },

 {

 test : /\.tsx?$/,

 loader: 'awesome-typescript-loader'

 }

]

 },

 plugins : [

 �new HtmlWebPackPlugin({ template : "./src/index.html", filename : "./

index.html" })

],

 performance : { hints : false },

 watch : true,

 devtool : "source-map"

};

Save for one thing, it’s the same as what you saw for MailBag, but the one thing is

very interesting and that’s the url-loader, the dependency you saw imported as part of

the project setup.

The question we must answer here is: how do we include images in a project that

Webpack will package for us? It turns out there are several answers, but the one I’m

using is the url-loader. What this does for us is it encodes any images it finds (note the

test for the loader matching .png) in Base64 and then embeds it into the final bundle.

This is nice because it overall generally leads to better performance in terms of load

time because the browser doesn’t need to open new connections to the server to fetch

images. They’re already there in what was initially downloaded!

The module allows us to set a size limit too. Here, for any image larger than 64k,

Webpack will use the file-loader, which is what it uses by default. This would load the

images in the usual way a browser usually would.

Chapter 11 Time for Fun: BattleJong, the Client

311

The esModule config option is essential here because, by default, this loader will

generate JS modules that use the ES module syntax. In order to be able to import

the images in our code files and treat them like any other code module – which is

exactly what we want to do and will be doing later – we need to set this option to true.

Otherwise, you will run into compilation problems with TypeScript.

�Adding Libraries
As far as libraries go, there are no new ones needed for this project, just React, naturally,

and normalize.css:

npm install normalize.css --save

npm install react --save

npm install react-dom --save

That didn’t take long, did it?

�Adding Types
As with libraries, there are only a few TypeScript types needed:

npm install @types/react --save-dev

npm install @types/react-dom --save-dev

That gets us all the TypeScript goodness we can have for this project, so now we can

dive into what the files are that make up the project.

�Source File Rundown
Although not as minimal as the server’s single source file, the client doesn’t have that

many files to consider either:

•	 src/index.html – Our main entry point

•	 src/css/main.css – A single stylesheet

Chapter 11 Time for Fun: BattleJong, the Client

312

•	 src/code/d.ts – A file we’ll get into later for something for TypeScript

that you haven’t seen yet

•	 src/code/main.tsx – Our main code entry point

•	 src/code/socketComm.ts – Contains the code that communicates

with the server via WebSockets

•	 src/code/state.ts – A state object, just like in MailBag (and similarly,

most of the interesting code is here)

•	 src/code/components/BaseLayout.tsx – Also as with MailBag, a

base React component to sit at the top of our component tree

•	 src/code/components/ControlArea.tsx – A component for the

control area in the upper right

•	 src/code/components/PlayerBoard.tsx – The primary component

of the app in essence, where the gameboard is

There is also an img directory that contains 42 files named tile101.png,

tile102.png, and so on. There are, obviously enough, the 42 tile images that are

used on the board.

�The Starting Point: index.html
As with MailBag, it all starts with a simple HTML document, index.html:

<!DOCTYPE html>

<html lang="en">

 <head>

 <meta charset="utf-8">

 <title>BattleJong</title>

 </head>

 <body></body>

</html>

And, also as with MailBag, there isn’t much to see here because React will be

constructing the UI, and for that, we need some code, and that leads us to…

Chapter 11 Time for Fun: BattleJong, the Client

313

�The REAL Starting Point: main.tsx
We begin in the main.tsx file, with a few imports:

import "normalize.css";

import "../css/main.css";

As with MailBag, we want a clean slate as far as styles go, so normalize.css is

brought in. Then, our application-specific stylesheet, main.css, is likewise imported.

There aren’t many style definitions in that file, but I’ll introduce pieces of it as we

encounter the style classes throughout the rest of the code.

After that, React is imported:

import React from "react";

import ReactDOM from "react-dom";

Finally, the BaseLayout component is as well. This will be the component at the top

of the component hierarchy that will contain state for all the child components:

import BaseLayout from "./components/BaseLayout";

And, once that’s all imported, it’s time to render us an interface:

ReactDOM.render(<BaseLayout />, document.body);

At this point in app execution, you’d have the basic screen up, though the playboard

is initially hidden (unless you are the second player to connect to the server), so it’s

mostly an empty screen. Still, it’s a start!

Now, let’s see what that BaseLayout component has in store for us.

�The Basic Layout: BaseLayout.tsx
The BaseLayout component starts with some React imports, as you’d reasonably expect

for a React component:

import React, { Component } from "react";

Chapter 11 Time for Fun: BattleJong, the Client

314

Then, we have three application imports, one for the ControlArea component, one

for the PlayerBoard component, and one for our state object code:

import ControlArea from "./ControlArea";

import PlayerBoard from "./PlayerBoard";

import { createState } from "../state";

After that, it’s time to build a component. This is how it starts:

class BaseLayout extends Component {

 state = createState(this);

I again use the same pattern as in MailBag, where state is housed in the topmost

object, and the state object is constructed via a call to createState(), which is code

you’ll see later.

Next, we run into the render() method:

render() {

 return (

 <div className="appContainer">

 <div className="playerBoard">

 <PlayerBoard state={ this.state } />

 </div>

 <div className="controlArea">

 <ControlArea state={ this.state } />

 </div>

 </div>

);

}

Everything is contained with a single <div>, and that <div> has the appContainer

style class from main.css applied, which is as follows:

.appContainer {

 position : absolute;

 height : 750px;

 left : 50%;

 top : 50%;

Chapter 11 Time for Fun: BattleJong, the Client

315

 transform : translate(-50%, -50%);

 border : 2px solid #0000ff;

 border-radius : 10px 10px 10px 10px;

 -moz-border-radius : 10px 10px 10px 10px;

 -webkit-border-radius : 10px 10px 10px 10px;

 display : grid;

 grid-template-columns : 960px 300px;

 -webkit-box-shadow : 0 0 25px 0 rgba(255, 200, 0, 0.75);

 -moz-box-shadow : 0 0 25px 0 rgba(255, 200, 0, 0.75);

 box-shadow : 0 0 25px 0 rgba(255, 200, 0, 0.75);

}

The entire element is to be centered both horizontally and vertically, which is

where the left and top values come into play. But that only works if position is set to

absolute and if the element has a defined height, so those are both done. Then, one

final piece of the centering puzzle is needed: the translate transformation. This shifts the

topmost <div> halfway left and up, which, all together, gets the centering I want.

I also apply a blue border and round the corners to make it look nice and apply a

drop shadow around the whole thing (extending in all four directions) so that it has

something of a glowing yellow look to it. Finally, display is set to grid, and two columns

are defined, the first for the gameboard and the second for the control area.

Speaking of the gameboard, that’s the next element in the hierarchy, the one with the

playerBoard style class applied, and that class is

.playerBoard {

 grid-column : 1 / 2;

}

As you know from the previous project, that puts this <div> into the first column.

Then, into this <div> goes a PlayerBoard component, passing it the state object.

Obviously, we’ll be looking at that shortly.

The second child <div> is the second column and is where the control area goes. It

has the following style applied:

.controlArea {

 height : 240px;

 margin : 10px;

 padding : 10px;

Chapter 11 Time for Fun: BattleJong, the Client

316

 grid-column : 2 / 3;

 border : 1px solid #000000;

 border-radius : 10px 10px 10px 10px;

 -moz-border-radius : 10px 10px 10px 10px;

 -webkit-border-radius : 10px 10px 10px 10px;

}

In this case, I don’t want the control area to take up the entire column, so I define

a height. I also add some margin and padding to keep its contents from bumping up

against the border (and to give some separation between the outer border and the

control area’s border). Of course, I have to tell the grid layout where this element goes

in the grid, so that’s done. Finally, the control area is given a border with some rounded

corners, again just for aesthetics.

The control area houses the aptly named ControlArea component, and why not

jump right into that now?

�Feedback and Status: ControlArea.tsx
The ControlArea component is the area in the upper right-hand corner where the scores

are displayed, as well as messages at various points in the lifecycle of the game. It’s not at

all complex, but it does introduce a new React concept:

const ControlArea = ({ state }: any) => (

 <React.Fragment>

What’s that React.Fragment about? Well, as you’ll recall, the render() method

must always return a single component. That component can, of course, have as many

children as you like, but ultimately, it’s a single top-level component being returned.

But what happens when what you really need to return is a list of components? You’re

going to have to find some component to be its parent. While that’s often easy (and there

are frequently many choices, with <div> being very common), wouldn’t it be nice if you

could return a list of components without adding extra nodes to the DOM? Because

remember, that’s what’s going to happen when you return a component: HTML will be

produced and added to the DOM. And sometimes, it won’t be so simple: remember that

each component you add to the hierarchy has a render() method, and all of them must

return a single component.

Chapter 11 Time for Fun: BattleJong, the Client

317

To illustrate this, imagine you were trying to render a plain old HTML table, and you

create a Table component along with a TableHeader component for the header that you

nested under your Table component. HTML tables usually have multiple headers for the

columns, so the TableHeader component might be something like

const TableHeader = () => (

 <th>Column 1</th>

 <th>Column 2</th>

 <th>Column 3</th>

);

Hopefully you see the problem: you’ll hit a compiler warning (or error, depending on

settings) because you’re trying to return multiple items from render() (remember that

render() is implicit when using the functional approach to components like this). If you

try to wrap all the <th> elements in a <div>, that would solve the compiler issue, but it

will result in invalid HTML because <div> isn’t valid at that point in a table. So, that’s not

a good solution.

That’s where React.Fragment comes in. It acts as a parent component, but unlike

<div> (and most other components), it doesn’t output any HTML itself. It’s strictly a

container for children. In this case, I have a list of <div> elements, as well as some

elements that I want to return, and essentially, it’s just a list of such elements, all at the

same level in the hierarchy. Using React.Fragment here makes a lot of sense.

�Scores
Here's the first batch of children that go inside the React.Fragment:

<div style={{ float:"left", width:"130px" }}>

 Your score:

</div><div>{state.scores.player}</div>

<div style={{ float:"left", width:"130px" }}>

 Opponent score:

</div><div>{state.scores.opponent}</div>

<hr style={{ width:"75%", textAlign:"center" }} />

Chapter 11 Time for Fun: BattleJong, the Client

318

The two scores use a total of four elements, two for each label and two for each actual

score. The labels are floated left and given a specific width so that the <div> elements

that follow them, where the scores are, will be lined up nicely. The scores come from

state, of course, and specifically the scores property. But we’ll get to that later.

�Game State Messages
While the scores are always present, the messages that can appear below them are not,

and they change. So, we’re going to use some conditional rendering again as you saw in

MailBag, and the first message that may be shown is what you see when you’re waiting

for an opponent to join:

{ state.gameState === "awaitingOpponent" &&

 <div style={{ color:"#ff0000", fontWeight:"bold",

 textAlign:"center" }}>Waiting for opponent to join</div>

}

As I’m sure you’ve surmised, the gameState property of the state object tells us what

state the game is in. We can be waiting for an opponent, actually playing, waiting for the

game to end because our board has dead-ended or has been cleared, and the game can

be over. The first state is when we’re waiting for an opponent, so appropriate verbiage is

shown, as you can see.

When the board is dead-ended, we again show a suitable message:

{ state.gameState === "deadEnd" &&

 <div style={{ color:"#ff0000", fontWeight:"bold",

 textAlign:"center" }}>

 You have no moves left.

 Waiting for opponent to finish.

 </div>

}

Similarly, when the board has been cleared, we congratulate the player, because

that’s super cool of them:

{ state.gameState === "cleared" &&

 <div style={{ color:"#ff0000", fontWeight:"bold",

Chapter 11 Time for Fun: BattleJong, the Client

319

 textAlign:"center" }}>

 Congratulations!

 You've cleared the board!

Waiting for opponent

 to finish.

 </div>

}

Finally, when the game is over, we tell them that, along with who the winner was, as

determined by the server:

{ state.gameState === "gameOver" &&

 <div style={{ color:"#ff0000", fontWeight:"bold",

 textAlign:"center" }}>

 The game is over.

 { state.gameOutcome }

 </div>

}

Like I said, this isn’t a tough component, not much in it. But the next one is where

most of the action is, naturally enough, since it’s where the game is played!

�Where the Action Is: PlayerBoard.tsx
The PlayerBoard component is what you see on the left-hand side of the screen and is

where the player plays the game. It begins with some imports, as always:

import React, { CSSProperties, ReactElement } from "react";

Oh, but look, we have two new ones: CSSProperties and ReactElement. Keep those

in mind, as we’ll see them in use soon, and I’ll explain what they’re all about then.

Before that, though, we have a series of imports, 42 of them to be precise, and that

number should ring a bell:

import tile101 from "../../img/tile101.png";

import tile102 from "../../img/tile102.png";

...40 more...

Chapter 11 Time for Fun: BattleJong, the Client

320

Yes indeed, one for each image! As you’ll recall, Webpack will include our images

as Base64-encoded strings in the final bundle and will also wrap them up in a module

definition. That’s why we can import them here. It may seem weird to import images –

and I’d agree it is! – but essentially, at this point, they are code, and we’ll be using them

as such. But, before we can, we must solve for one small problem, and it’s where the d.ts

file comes into play.

�A Quick Detour: Custom-Type Definitions
Any time you see a d.ts file – and you’ll see them frequently with TypeScript – it means

that the developer has provided TypeScript some additional type information about an

API written in JavaScript. This allows TypeScript to do its thing, ensuring that types are

correctly used and everything else it provides. This contrasts with the other alternative:

rewriting the API in TypeScript. Imagine if you want to use jQuery, but there isn’t a

TypeScript version available. As long as you have a declaration file for it, you can still use

it in TypeScript, complete with all the checking (and IntelliSense inside an IDE) that it

provides.

Note F requently, you’ll see index.d.ts instead of d.ts. Anything *.d.ts is
a TypeScript declaration file, the name is more convention than anything else, so
some variation is normal.

This all comes into play with the image imports. If you don’t have this d.ts file,

you’ll find that tsc flags each of those imports as an error saying that the module can’t

be found. You can technically still get them to import using require() notation, but it’s

something of an eyesore to use import everywhere but require() just for the images, so

better to make it work the ideal way I figure. The way to solve this is to declare a module

for TypeScript, which is what we find in the d.ts file:

declare module "*.png" {

 const value: any;

 export = value;

}

Now, TypeScript will know that the image files, any module name ending in .png in

fact, are a valid module. The code will compile, and everything will work as expected.

Chapter 11 Time for Fun: BattleJong, the Client

321

Remember definitelytyped.org? If you go there and pull up a random module in

the search engine, when you get to the NPM page for the module, you should see a link

somewhere to where the files were exported from. Click that link, and you should see

some sort of *.d.ts file in the list of files. Doing that, you can view the type information

provided for any JavaScript module you want to use.

�Back to the Code!
Getting back to the PlayerBoard component’s code, we begin by functionally

constructing the component:

const PlayerBoard = ({ state }: any) => {

Note here that I need to specify the type of any for the state object because otherwise,

I’ll get a compiler warning due to the noImplicitAny check being turned on (this wasn’t

the case in MailBag).

Next, we have some variables that define metadata about the tiles:

const tileWidth: number = 72;

const tileHeight: number = 88;

const tileShadowWidth: number = 11;

const tileShadowHeight: number = 11;

To lay the tiles out properly on the screen, we need to know their width and height.

But we also need to know the width and height of the drop shadow on each because the

board will be constructed by overlapping these shadows.

Next, we have two other variables that express metadata:

const xAdjust: number = 10;

const yAdjust: number = 36;

These are used to push the arrangement of tiles down and right a little bit so that the

tiles are centered within the left-hand column and not touching up against the border on

the top and left.

After that, we have an array that will contain components, one per tile, when we

render them later:

const tiles: ReactElement[] = [];

Chapter 11 Time for Fun: BattleJong, the Client

322

The problem here is in determining the type (which we must do since the

noImplicitAny check won’t allow us to either choose a type or explicitly use any, which

you usually should try and avoid wherever possible for maximum TypeScript goodness).

As you’ll see soon, we’re going to be rendering an element for each tile. We’re

going to populate this tiles array with those elements. So, what’s the appropriate type?

The ReactElement class is the answer.

Instances of this class are virtual DOM elements that represent an instance of a DOM

element (like an), a React component, or a fragment. A ReactElement describes

what you literally see on the screen, whereas a component is a level above that: a single

component can be composed of numerous ReactElement instances even.

You can roughly think of ReactElement as a base class in an object-oriented

language in the sense that you can usually have a generic reference to a more specific

object through a variable typed as the base class. For example, in Java, a variable of type

Object can reference any other type of object because Object is the base class of all

other classes in Java. ReactElement isn’t precisely the same because it’s not an object-

oriented relationship, but you can effectively treat it like it is, which is exactly why the

type of the tiles array can be ReactElement (an array of them, to be more precise) and

we can later have instances in it and TypeScript won’t complain about the typing.

Finally, we have two more variables:

let xOffset: number = 0;

let yOffset: number = 0;

These aren’t metadata, though; these are used throughout the render process to

determine where to place tiles.

�The Render Process
The render process is what’s next, and it begins thusly:

for (let l: number = 0; l < state.layout.length; l++) {

 xOffset = xOffset + tileShadowWidth;

 yOffset = yOffset - tileShadowHeight;

 const layer: number[][] = state.layout[l];

Chapter 11 Time for Fun: BattleJong, the Client

323

The overall flow here is that we’re going to iterate over the layers in the layout (which

can be found in the state object that we’ll look at later, but for now understand that

it’s simply the layout passed from the server in the same form that you saw in the last

chapter). Then, for each layer, we’ll iterate the rows in it. Then, for each tile in the row,

we’ll render it. The xOffset and yOffset will result in the tiles of each layer being shifted

right and up a little bit, enough so that the tiles overlap the previously rendered ones,

and we get the correct appearance from the board.

Next, after pulling the layer data out of the layout, we iterate the rows in it:

for (let r: number = 0; r < layer.length; r++) {

 const row: number[] = layer[r];

 for (let c: number = row.length; c >= 0; c--) {

 let tileVal: number = row[c];

For each row, we iterate the tiles in it, and for each we grab its value. With that, we do

some logic:

if (tileVal > 0) {

 �const xLoc: number = ((c * tileWidth) - (c * tileShadowWidth)) +

xOffset + xAdjust;

 �const yLoc: number = ((r * tileHeight) - (r * tileShadowHeight)) +

yOffset + yAdjust;

First, only a value great than zero is rendered because zero means there is no tile

in a given grid slot, and negative one would mean the file has been cleared. So, we

need to figure out where to place the tile. Every tile will be positioned absolutely, so we

need to figure out the x and y location (left and top in style terms). Since what we’re

really rendering is a grid, the math is straightforward. For xLoc, it’s the column number

(variable c) multiplied by the width of the tile, which gives us a horizontal row of tiles.

Then, we have to account for the tile shadow since we want them to overlap, so we

subtract out the width of the shadow times the column again. Next, we need to account

for the 3D look of the grid. To do this, each layer shifts the tiles in it by a little bit up and

right. That’s where xOffset comes into play. Finally, with the location determined, we

need to ensure that the entire grid of tiles is pushed away from the upper-left border, so

xAdjust is added.

The vertical location yLoc is calculated in the same way but now using tile and

shadow height and the row number as a multiplier.

Chapter 11 Time for Fun: BattleJong, the Client

324

Now, I said there that each tile would be positioned absolutely, and this is where that

CSSProperties import from earlier is used:

const style: CSSProperties = {

 position : "absolute",

 left : `${xLoc}px`,

 top : `${yLoc}px`

};

The issue being solved here is that when I render the tags, they’re all going

to have a similar style definition, just being different in the xLoc and yLoc values. So, it

makes sense to have that be a common element, a common object, which is what it is

here. However, the value of the style attribute, as you’ll see soon, can’t just be a string,

or even a plain old JavaScript object. It must be a CSSProperties instance, so that’s

the type used here and why it had to be imported. But, the type aside, it really is just an

object, nothing special otherwise.

Next, we have to account for the possibility that the tile is highlighted because

it’s selected. This is implemented by applying a style class to it. We know it must be

highlighted if its value is greater than 1000, so:

let className: string = "";

if (tileVal > 1000) {

 className = "highlightTile";

 tileVal = tileVal - 1000;

}

Of course, the values of our tiles are numbered 101–142, so in order to get the right

tile displayed, we need to subtract 1000 from tileVal.

Now, as for the highlightTile style class applied, that’s as follows:

.highlightTile {

 -webkit-filter : drop-shadow(0px 0px 50px #ff0000)

 contrast(150%) saturate(200%);

 filter : drop-shadow(0px 0px 10px #ff0000)

 contrast(150%) saturate(200%);

}

Chapter 11 Time for Fun: BattleJong, the Client

325

I apply a red drop shadow to the element, but with no horizontal or vertical offset

and a big blue, which gives the effect of a glowing edge all around it. I also bump the

contrast and saturation up so that it stands out a bit more. It’s a simple way to implement

a highlight but rather effective.

The final piece of the puzzle is actually to render the tiles:

switch (tileVal) {

 case 101 : tiles.push(<img style={style} src={tile101}

 className={className}

 onClick={()=>state.tileClick(l, r, c)} alt="" />); break;

 case 102 : tiles.push(<img style={style} src={tile102}

 className={className}

 onClick={()=>state.tileClick(l, r, c)} alt="" />); break;

 ...40 more...

}

For each of the 42 tile types, we have a case in a switch. They’re all the same save

for the value of the src attribute. Here, you can see how the CSSProperties style

object is used and how the src points to one of the imported image modules (see, I

told you we’re using those like code!). Each also gets the className, which is blank

for all but the highlighted tile, if any. Finally, each tile gets an onClick handler that

calls the tileClick() method in the state object, passing it the layer, row, and column

number of the tile. We’ll look at that in the section about the state object. Oh, the alt

attribute also has to be defined to avoid a compiler warning (or at least an IDE warning

in my IDE of choice).

Once all the tiles have been pushed into the tiles array, we can finally return the

output of this (implicit) render() method:

return (<React.Fragment>{ tiles }</React.Fragment>);

Once again, React.Fragment is used to be the one component returned, but now

it has a child that is the tiles array. React will dutifully recognize that we want all the

elements in the array to be children of the React.Fragment and we’re good to go.

Chapter 11 Time for Fun: BattleJong, the Client

326

Note T he imports and the switch statement frankly bother me because having
42 of each would usually be seen as redundant coding, and I would agree!
However, I see no way to do like you can in Java and do a star import to get all
the images imported in one line, nor do I see a way dynamically name the tile in
the tag. The type of src isn’t a string, so simple concatenation won’t do,
and I couldn’t see a way to reference it dynamically either (something like, maybe,
const s: any = tile[tileVal];). Perhaps you’re more clever than I am
and can figure something out, and I wouldn’t mind hearing about it if you did – you
can teach me something! – but sometimes there is no elegant solution (at least no
obvious one), so you just gotta do what you gotta do.

�Talking to the Server: socketComm.ts
Next, let’s look at the socketComm.ts source file, which contains the code that talks to the

server via WebSockets. It begins with a single import:

import React from "react";

As it happens, this import is only needed for TypeScript purposes – if this were plain

JavaScript, it wouldn’t be needed – and where it’s needed is the very next line:

export function createSocketComm(

 inParentComponent: React.Component

) {

Much like the state object that you saw in MailBag (and like the state object you’ll

see next in this project), a function is necessary to return an object that will be used by

the rest of the code due to binding requirements. The argument passed in is a React.

Component, so that’s why we need the import: to be able to specify the type of this

argument (contrast this with the argument to the createState() method in the MailBag

state object where it wasn’t typed, so this import wasn’t needed there).

Next, it’s time to connect up to the server:

 const connection: WebSocket = new WebSocket("ws://localhost:8080");

Chapter 11 Time for Fun: BattleJong, the Client

327

The browser provides the WebSocket object (assuming a relatively newer version:

IE11+, Edge 18+, Firefox 11+, Chrome 78+, Safari 13+, Opera 64+), and our app just needs

a single instance, pointed to the server and using the ws protocol prefix. You, of course,

can change this URL as appropriate, so long as the server is changed accordingly. This

line establishes communication with the server, assuming it’s listening.

Next, an event listener is hooked up to the WebSocket object to log a message when

the connection is opened:

connection.onopen = () => {

 console.log("Connection opened to server");

};

That’s all we need to do in this instance, so there’s not much to see. Also, handling

errors in some way is a good thing to do, so that event handler is hooked up next:

connection.onerror = error => {

 console.log(`WebSocket error: ${error}`)

};

Since error recovery can be a whole topic on its own, I went the simple route and

just ensured that the error is logged. As relatively simple as this API is, I felt that this was

sufficient.

�Handling Server-Sent Messages
Now, we get to the heart of things: handling the various messages that can come from

the server at various points in the game. For this, we have a single event handler function

set up:

connection.onmessage = function(inMessage: any) {

 console.log(`WS received: ${inMessage.data}`);

 const msgParts: string[] = inMessage.data.split("_");

 const message: string = msgParts[0];

First, it should be noted that what you receive in this function is an object. This

object, most importantly to us, has a data attribute. This is the string message that was

sent from the server.

Chapter 11 Time for Fun: BattleJong, the Client

328

After logging the message that was received, the message is broken into its

constituent part. The first part of the message is a specific message. I know you’re

shaking your head right now at that sentence – I realize it’s confusing! Let me try and

clear it up: the client WebSocket receives a message from the server, and the inMessage

argument represents that. Let’s call this the WebSocket message. But, within that

WebSocket message string is a message that pertains to the game itself, something

application-defined, so that you can call that the game message.

This game message is what this function is concerned with primarily because, next, a

switch statement is used:

switch (message) {

 case "connected":

 this.state.handleMessage_connected(msgParts[1]);

 break;

 case "start":

 this.state.handleMessage_start(JSON.parse(msgParts[1]));

 break;

 case "update":

 this.state.handleMessage_update(

 msgParts[1], parseInt(msgParts[2])

);

 break;

 case "gameOver":

 this.state.handleMessage_gameOver(msgParts[1]);

 break;

}

}.bind(inParentComponent);

Each of the four game messages that the server can send is forwarded along to

an appropriate method in the state object to do the actual work associated with each

message, and we’ll be looking at those in the next section. With those calls go the

Chapter 11 Time for Fun: BattleJong, the Client

329

information in the WebSocket message string following the game message portion,

which is specific to each message. For all but the update message, there’s just a single

piece of information to send, so it’s the second element in the array produced by the call

to split() earlier. For update, two pieces of information are sent.

Finally, because we need all of this to execute within the context of the BaseLayout

component, this onmessage event handler function is bound to inParentComponent.

�Sending Messages to the Server
The final bit of code found in this source file is a simple method for sending messages to

the server:

this.send = function(inMessage: string) {

 console.log(`WS sending: ${inMessage}`);

 connection.send(inMessage);

};

That’s really all there is to it! The caller is presumed to have constructed a valid

message, and the send() method exposed on the WebSocket instance is all it takes to

send it. It couldn’t be easier!

At this point, createSocketComm() in socketComm.ts is done, save for one key thing:

return this;

That’s the final line in this function. That allows the caller to save a reference to the

object, which is needed to be able to call the send() method later.

�The Main Code: state.ts
Okay, now we come to the final source file that makes up BattleJong, and it’s where most

of the real work is: state.ts. As with MailBag, this code is concerned with constructing

an object that will contain the application state that will be housed in the BaseLayout

component and then flow down to any child components that need it. The methods

exposed as part of this object are concerned with mutating state in some way, but in this

app, that really means it winds up containing a good chunk of the core game logic since

that logic will ultimately mutate state, so it’s logical for it to be here.

Chapter 11 Time for Fun: BattleJong, the Client

330

It begins, as most of our modules do, with some imports:

import React from "react";

import { createSocketComm } from "./socketComm";

React is obvious – we won’t get very far building a React app without importing React

itself! – and socketComm, you of course know, is how we talk to the server.

�A Few Interface for Good Measure
Next up, we find a few interfaces. Note that these are in the TypeScript module that

state.ts represents, but it’s not in the state object that will ultimately be constructed

and used in the rest of the app:

interface ISelectedTile { layer: number,

 row: number, column: number, type: number }

interface IScores { player: number, opponent: number }

The first, ISelectedTile, is the definition for an object that describes a tile that is

currently selected. It contains all the information that is needed to identify a tile (layer,

row, and column) and it also contains the type of tile it is, and you’ll see why that is

needed very soon.

The IScores interface describes an object that stores the current score of the player

and the remote opponent.

Both of these are used to avoid duplication of code: without them, we’d need to

copy and paste these type definitions in a couple of places in this file’s code – unless we

wanted to skip typing entirely – neither of which is a great option in general.

�The Beginning of the State Object
Now, it’s finally time to start building the state object itself. This begins very much like

the state object in MailBag did, with a function:

export function createState(

 inParentComponent: React.Component

) {

 return {

Chapter 11 Time for Fun: BattleJong, the Client

331

We’re returning an object literal, and I usually like to put all my object fields (or

properties) first, and that is indeed what we find first:

layout : <number[][][]>[]

The server, you’ll recall, sends the layout of the board to each client when the game

begins. This is where that layout gets stored. But something new is presenting itself here,

and as a result, I think it’s time for…

�A Quick Detour: TypeScript-Type Assertions

As in many object-oriented languages, typecasting is sometimes necessary. Typecasting,

in general terms, is when you assign a value of one type to a variable declared as another.

That will sound weird if you’ve never seen it before, but in terms of object-oriented

languages, it makes sense.

Imagine you define a class called Shape. You then define a class called Circle

that extends from Shape. Object orientation tells us that all Circle instances are

also Shape instances due to that inheritance relationship. Therefore, you can have a

variable declared as type Shape that points to an object of type Circle. There’s a bit

more to casting in some cases, but for our purposes here, this is enough to give you

the basic idea.

Casting isn’t purely about objects and classes, though. You can also type primitive

types. For example, in most languages, a variable of type double can reference an int

value because a double can fully contain the value of an int.

In TypeScript, these situations are called type “assertions,” but it essentially means

the same as casting. It’s a purely compile-time mechanism as it has no effect at runtime

(it does no special type checking or data restructuring or anything like that), and it’s a

way for you as the programmer to tell the compiler “look, I know more about this type

than you do, so trust me, this is what it is.” That is sometimes necessary because as good

as tsc is, it can’t always determine the type of a reference, and sometimes it’s tricky for

you to be able to tell it.

Such is the case with this layout property. The first problem is that because this is

part of an object literal definition, which means that the colon is already used to separate

the property name from its value, there’s no way to attach a type. In other words, this

won’t work:

layout: number[][][] : []

Chapter 11 Time for Fun: BattleJong, the Client

332

It will yield a compiler error due to the ambiguous meaning of the two colons. So,

from a purely syntactical point of view, we need something else. That’s where the angle

brackets placed before the value comes in. This says to tsc: “this value is of the specified

type, whether you know it or not!” Here, you know that the layout passed from the server

is a three-dimensional array of numbers, so we need to express the same type here.

The other problem is that in this case, TypeScript has no way to know what the type

of the value is. Without the cast, all it knows is that it’s an array, but it doesn’t know what

the elements of the array are. Yes, we could, in theory, define it as any[][][], but we’d

still need the cast syntax due to this being a property in an object literal.

Note that there is a second form of casting in TypeScript: using the as keyword. This

line could have been written:

layout : [] as number[][][]

There’s no technical difference between the two forms – they mean the same thing –

so it’s a matter of preference. However, note that in a .tsx file, you must use the as

keyword because the angle bracket approach can yield syntax errors in JSX when used

with TypeScript.

Note A s a general statement, it seems that most TypeScript developers have
taken to favoring the as keyword approach. I’m an old Java guy, so my brain
automatically goes to angle brackets. The bottom line is that it’s up to you, but you
may be more in line with most other TypeScript developers by sticking with the as
keyword approach.

�Back to the Code!
Now, getting back to the code in state.ts, we have more properties to declare on the

state object:

selectedTiles : <ISelectedTile[]>[]

This property, which uses the interface defined earlier as its type (again using type

casting), is where the selected tiles are stored.

Chapter 11 Time for Fun: BattleJong, the Client

333

Next, we have a property to hold our scores:

scores : <IScores>{ player : 0, opponent : 0 }

After that, we have a key property to making everything work, one that tells us what

“state” the game is in:

gameState : <string>"awaitingOpponent"

The game can be in one of five states at a given moment: “awaitingOpponent” (when

you are the first player to connect to the server and are waiting for another to connect),

“playing” (when the game is being played, obviously!), “deadEnd” (when your board

has dead-ended), “cleared” (when you have cleared your board), and “gameOver”

(when both players have either cleared or dead-ended the board and a winner has been

determined). This gameState value changes as various events occur and is primarily

what is used to show the appropriate message in the control area.

The next property is needed when the game has ended:

gameOutcome : <string>""

This value will be set when the server tells the client which player won.

Speaking of players, each has a unique ID, as you saw in the last chapter, and we

need to store that in state:

pid : <string>""

The next property is our socketComm object:

socketComm : <Function>createSocketComm(inParentComponent)

Note that the type is Function because that’s effectively what gets return by the call

to createSocketComm().

Finally, we need to keep track of how long it takes the player to clear a tile or, more

precisely, how long it’s been since their last match:

timeSinceLastMatch : <number>0

Those properties represent all the state (plus the odd socketComm instance, which

isn’t state, per se) needed to make BattleJong work.

Chapter 11 Time for Fun: BattleJong, the Client

334

�Message Handler Methods
After the properties are defined, we find a series of simple methods, the ones called

from the socketComm code in response to the messages that can be sent by the server,

beginning with the handler function for the connected message:

handleMessage_connected : function(inPID: string) {

 this.setState({ pid : inPID });

}.bind(inParentComponent),

All we need to do when this message is received is store the player ID sent to the

client in state, so that one is very easy.

The next handler is for the start message, send when the second player connects to

the server, and the game begins:

handleMessage_start: function(inLayout: number[][][]) {

 this.setState({

 timeSinceLastMatch : new Date().getTime(),

 layout : inLayout,

 gameState : "playing"

 });

}.bind(inParentComponent),

We need an initial time so that we can determine how long it takes to match the first tile

pair. Of course, we need to store the layout sent from the server too. Finally, the gameState

needs to transition to the playing state. The result of this all being set in state is that the

board will now appear, with the shuffle done by the server showing the appropriate tiles, as a

result of React seeing the change in state and the PlayerBoard component reacting to it.

The next message we need to deal with is update, sent whenever either player clears a tile:

handleMessage_update:

 function(inPID: string, inScore: number) {

 if (inPID !== this.state.pid) {

 const scores: IScores = { ...this.state.scores };

 scores.opponent = inScore;

 this.setState({ scores : scores });

 }

}.bind(inParentComponent),

Chapter 11 Time for Fun: BattleJong, the Client

335

This method received the player ID of the player the update is for and the new score

for that player. So, we need to see if the message is for the current player or not. If it’s

not, then the scores property is cloned, the opponent’s score is updated, and the scores

object is set back into state, resulting in a screen update. Note that nothing needs to be

done if the update message was for this player because the score will already have been

updated, as you’ll see the code for soon.

The final message is for when the game ends:

handleMessage_gameOver: function(inPID: string) {

 if (inPID === this.state.pid) {

 this.setState({ gameState : "gameOver",

 gameOutcome : "**** YOU WON! ****" });

 } else {

 this.setState({ gameState : "gameOver",

 gameOutcome : "Tough luck, you lost :(" });

 }

}.bind(inParentComponent),

All we need to do is see if the winning player, as specified by the server, is this

player, based on the player ID. If it is, the “you won” message is set in the state object’s

gameOutcome property; otherwise, the “you lost” message is set. The message will be

displayed on the screen once React triggers the update.

�The Big Kahuna: tileClick()
Now we come to what is the longest, probably most complex (though it’s still nothing

overly complicated!) and certainly key bit of code that makes BattleJong tick: the one that

gets called any tile you click a tile:

tileClick : function(inLayer: number, inRow: number,

 inColumn: number) {

Chapter 11 Time for Fun: BattleJong, the Client

336

The tileClick() method is passed the layer, row, and column of the tile that the

player clicked. That’s all it needs to do its work. But, before it even gets to the real work,

there are a few trivial rejections that need to be done:

if (this.state.gameState !== "playing") {

 return;

}

The board isn’t visible until gameState is either “playing” or “gameOver”, but in

the latter case, we don’t want the player to be able to click tiles, so we’ll abort early if

gameState isn’t “playing”.

Next, we need to determine if a tile can be selected:

if (!this.state.canTileBeSelected(inLayer, inRow, inColumn)) {

 return;

}

The canTileBeSelected() is a helper function that tells us whether a tile is free, in

terms of Mahjongg rules. Let’s jump over to that function now.

�Helper Function: canTileBeSelected()

This function, in its entirety, is

canTileBeSelected : function(inLayer: number, inRow: number, inColumn:

number): boolean {

 return

 (inLayer == 4 ||

 this.state.layout[inLayer + 1][inRow][inColumn] <= 0

) &&

 (inColumn === 0 || inColumn === 14 ||

 this.state.layout[inLayer][inRow][inColumn - 1] <= 0 ||

 this.state.layout[inLayer][inRow][inColumn + 1] <= 0

);

}.bind(inParentComponent),

Chapter 11 Time for Fun: BattleJong, the Client

337

The test here is simple:

•	 If the tile is in the topmost layer (4) OR there is no tile above it

•	 AND if the tile is in the first (0) or last (14) column OR there is no tile

to either the left or right of it

•	 THEN it’s free, ELSE it’s not

At this point, we know that the tile can be selected, so we can start the real work,

beginning with cloning the layout (since we’re going to alter it):

const layout: number[][][] = this.state.layout.slice(0);

Next, we need to see what the selected tile is, what its type is:

const currentTileValue: number = layout[inLayer][inRow][inColumn];

We need to determine that because of this next check:

if (currentTileValue <= 0) {

 return;

}

This keeps the player from trying to select a blank space.

Following that, we have to grab some other values out of state:

const scores: IScores = { ...this.state.scores };

let gameState: string = this.state.gameState;

let timeSinceLastMatch: number = this.state.timeSinceLastMatch;

let selectedTiles: ISelectedTile[] = this.state.selectedTiles.slice(0);

We need to clone scores because we might be updating it. Likewise, gameState

might be changing (if they clear or dead-end the board), so that’s grabbed too. To

determine how many points they get, if they match a pair (if this is the second tile being

clicked), we will need to know how long it took, so timeSinceLastMatch is needed.

Finally, one way or another, the values in selectedTiles will be changing regardless, so

that gets cloned now too. Doing all of this now just makes the code later a bit cleaner and

removes some redundancy.

Chapter 11 Time for Fun: BattleJong, the Client

338

With that done, the true logic can begin. First, we need to deal with the case where

the tile they clicked was already highlighted. In that case, we want to de-highlight it.

When a tile is highlighted, its tile type value gets 1000 added to it, so that’s the basic

check:

if (currentTileValue > 1000) {

 layout[inLayer][inRow][inColumn] = currentTileValue - 1000;

 for (let i: number = 0; i < selectedTiles.length; i++) {

 const selectedTile: ISelectedTile = selectedTiles[i];

 if (selectedTile.layer == inLayer &&

 selectedTile.row == inRow &&

 selectedTile.column == inColumn

) {

 selectedTiles.splice(i, 1);

 break;

 }

 }

} else {

 layout[inLayer][inRow][inColumn] = currentTileValue + 1000;

 selectedTiles.push({ layer : inLayer, row : inRow,

 column : inColumn, type : currentTileValue });

}

First, we revert the value so that it’s back to just its basic tile type value (101–142).

Next, we need to remove it from the selectedTiles array. Because this is an array and

not a keyed object, we have little choice but to examine all members of the array; find

the one that has the layer, row, and column value of the tile that was clicked; and then

splice() that element out. There are several ways this code could be written, but I chose

to just do a straight iteration over the array elements to find the match, then break out of

the loop when found (I chose this route not for any specific reason other than it seemed

simplest to me).

The else branch deals with the case where the tile wasn’t previously highlighted. In

that case, we add 1000 to the tile type value to indicate it’s highlighted and then push an

object into the selectedTiles array for this tile.

Chapter 11 Time for Fun: BattleJong, the Client

339

With the highlighting taken care of, we now need to see if there are two tiles selected,

in which case we have some more work to do:

if (selectedTiles.length === 2) {

 if (selectedTiles[0].type === selectedTiles[1].type ||

 selectedTiles[0].type == 101 ||

 selectedTiles[1].type == 101

) {

If the type of both tiles matches, or if either of them is a wildcard (101), then that’s a

matched pair. When that happens, we first must clear the pair by setting their tile type to

–1 in the layout:

layout[selectedTiles[0].layer][selectedTiles[0].row]

 [selectedTiles[0].column] = -1;

layout[selectedTiles[1].layer][selectedTiles[1].row]

 [selectedTiles[1].column] = -1;

Recall that the PlayerBoard component won’t render anything in a given position

when it sees a tile type of –1.

Next, it’s time to calculate how many points they get:

let calculatedPoints: number = 10;

const now: number = new Date().getTime();

const timeTaken: number = now - timeSinceLastMatch;

const numHalfSeconds: number = Math.trunc(timeTaken / 500);

calculatedPoints -= numHalfSeconds;

if (calculatedPoints <= 0) {

 calculatedPoints = 1;

}

scores.player += calculatedPoints;

timeSinceLastMatch = now;

The way this works is that they start with ten points for a match. From that, we

subtract a point for every half a second taken. But we want to be nice here, so they always

get a minimum of one point. Finally, the player’s score is updated (which is why the logic

is what it is in the “update” message handler as you saw earlier), and we record the new

time in timeSinceLastMatch so that we start counting from this moment toward their

next match.

Chapter 11 Time for Fun: BattleJong, the Client

340

Next, we have to let the server know what happened via a "match" message:

this.state.socketComm.send(

`match_${this.state.pid}_${calculatedPoints}`

);

The server needs to know the player ID and how many points they got, so that’s the

message that is constructed.

With that out of the way, the next task is to see if the board is either cleared or dead-

ended. For that, another helper function is employed:

const anyMovesLeft: string = this.state.anyMovesLeft(layout);

�Helper Function: anyMovesLeft( )

The anyMovesLeft() function is somewhat complicated, so let’s break it down into bite-

sized nuggets:

anyMovesLeft : function(inLayout: number[][][]): string {

 let numTiles: number = 0;

 const selectableTiles: number[] = [];

 for (let l: number = 0; l < inLayout.length; l++) {

 const layer = inLayout[l];

 for (let r: number = 0; r < layer.length; r++) {

 const row = layer[r];

 for (let c: number = 0; c < row.length; c++) {

 const tileVal: number = row[c];

 if (tileVal > 0) {

 numTiles += 1;

 if (this.state.canTileBeSelected(l, r, c)) {

 if (tileVal === 101) {

 return "yes";

 }

 selectableTiles.push(tileVal);

 }

 }

 }

 }

 }

Chapter 11 Time for Fun: BattleJong, the Client

341

Remember that it’s the cloned layout array that we need to examine right now

because the layout property in state hasn’t been updated yet, so that’s why it gets passed

to anyMovesLeft(). Once there, the first task is to get a list of all free tiles. To do this, we

need to iterate through the entire layout – and remember it’s a three-dimensional array.

Thus, we have nested loops here – and for each, call the canTileBeSelected() function.

Now, if a tile is determined to be free, and it’s a wildcard, then we automatically

know that the board has not dead-ended because a wildcard can match any other tile

type. And, because we start with an even number of tiles, and they only ever get removed

in pairs, that means that there must be at least two tiles left. Therefore, there is at least

one move left for sure and we can short-circuit this function by returning “yes” right

then and there.

Otherwise, the tile is pushed into the selectableTiles array for further scrutiny.

That scrutiny begins with a simple check:

if (numTiles === 0) {

 return "cleared";

}

Obviously, if there are no tiles at all, then there can be no more moves left! This case

means that the player just cleared the board, so we let the caller know with the return

value “cleared”. By the way, this should make it apparent now why this function can’t

return a simple boolean true or false: because there are actually three outcomes! There

could be a move left, there could be no moves left due to a dead end, or there could be

no moves left due to the board being cleared. The caller needs to differentiate those

outcomes, so a string is returned instead.

At this point, we know that there are still selectable tiles, and we know that there are

no wildcards (i.e., no selectable wildcards – there still could be some unselectable ones).

Therefore, the next trick is to see if there are any matches.

Your initial thought here might be that you would need to iterate over this array and

compare each element to every other element to find at least one match. And certainly,

that would work. But there is a more efficient approach:

const counts: number[] = [];

for (let i: number = 0; i < selectableTiles.length; i++) {

 if (counts[selectableTiles[i]] === undefined) {

 counts[selectableTiles[i]] = 1;

Chapter 11 Time for Fun: BattleJong, the Client

342

 } else {

 counts[selectableTiles[i]]++;

 }

}

First, you count how many times each tile type occurs. This uses an associative array,

meaning that the tile type becomes the key of an array element. With that done, the

check to see if there are any matches left becomes very simple:

for (let i: number = 0; i < counts.length; i++) {

 if (counts[i] >= 2) {

 return "yes";

 }

}

That’s it! If any element of the array has a value greater than or equal to two, then

that means there is a match left to be made because, remember, we already checked that

these tiles are selectable.

If there are no such values found in the array, then the final possible return value is

returned:

 return "no";

So, jumping back to the code in tileClick(), now that we know if there are any

moves left, we can act accordingly:

switch (anyMovesLeft) {

 case "no":

 gameState = "deadEnd";

 this.state.socketComm.send(`done_${this.state.pid}`);

 break;

 case "cleared":

 scores.player += 100;

 gameState = "cleared";

 this.state.socketComm.send(`match_${this.state.pid}_100`);

 this.state.socketComm.send(`done_${this.state.pid}`);

 break;

}

Chapter 11 Time for Fun: BattleJong, the Client

343

A return from anyMovesLeft() of “no” indicates a dead-ended board, so gameState is

transitioned to that state, and the server is notified that this player is done. A return value

of “cleared” indicates the board was cleared, in which case we give them a point bonus,

in addition to transitioning gameState and telling the server that they are finished. Note

that we must send two messages here because the server needs to know about the point

bonus too. There’s no special message for that, though; we simply tell the server that

another match occurred via the “match” message. It doesn’t matter that one technically

hasn’t occurred. The server only needs the number of points to add here, so we can force

that message to do double duty.

Now, all that logic was for dealing with a pair of tiles being selected, but what

happens if this tile click event was the second tile of an unmatched pair? Well, that’s

where the else branch of the opening if statement comes in:

} else {

 layout[selectedTiles[0].layer][selectedTiles[0].row]

 [selectedTiles[0].column] = �layout[selectedTiles[0].layer]

[selectedTiles[0].row]

 [selectedTiles[0].column] - 1000;

 layout[selectedTiles[1].layer][selectedTiles[1].row]

 [selectedTiles[1].column] = �layout[selectedTiles[1].layer]

[selectedTiles[1].row]

 [selectedTiles[1].column] - 1000;

}

In this situation, all we need to do is revert the tile value of the two tiles to their

101–142 range, and we’re done.

Regardless of whether we just handled a matched pair or not, both tiles would be

either cleared or de-selected now, so they need to be removed from selectedTiles:

selectedTiles = [];

Only one thing remains to be done, but it is absolutely key:

this.setState({

 gameState : gameState,

 layout : layout,

 selectedTiles : selectedTiles,

Chapter 11 Time for Fun: BattleJong, the Client

344

 scores : scores,

 timeSinceLastMatch : timeSinceLastMatch

});

None of the code in tileClick() to this point will have altered state, but that needs

to occur lest nothing change on the screen! So, a quick call to setState() takes care of it.

I didn’t want to introduce any sort of conditional updates here either; I figured it was

easier just to update everything that could have changed, whether it actually did or not.

And with that, our journey through BattleJong is complete!

�Suggested Exercises
One great thing about a game is there’s never a shortage of things you could do to it

to expand it. I’ll suggest just a few things, some relatively straightforward, some that

would be significantly more challenging (and therefore more useful as a learning

experience):

•	 Introduce the idea of “attack tiles.” Choose one of the existing tile

types and declare it an “attack” type, just like how the wildcards are

handled. When the player matches two of them, they gain an “attack.”

With it, they can click a button (that you’ll add to the control area)

and it will send a message to the server that is then sent to their

opponent. The result is that the opponent loses 50 points and gets,

say, four tile pairs added back. Nasty, but fits in with the “battle” part

of BattleJong well! I’d suggest using Material-UI for this, but maybe

you should instead find a different UI library for React, just to get

some other experience?

•	 Add the ability for a player to shuffle their board up to five times per

game. This is often a part of Mahjong Solitaire’s implementations.

It allows a player to get through a dead-ended board, at least a few

times.

•	 Provide alternate tilesets and let the player choose the one they like.

You’ll have to come up with X∗42 tile graphics, where X is how many

tilesets you want to provide.

Chapter 11 Time for Fun: BattleJong, the Client

345

�Summary
In this chapter, we built the client side of BattleJong, making it a complete game. You

learned a little more about Webpack, dealing with images specifically, and you saw the

client side of the WebSocket equation. Of course, you got some experience with basic

game design as well, but that was inevitable when building a game, wasn’t it?!

In the next – and final – chapter, we’ll cover one last topic, something that plays a

role in modern application development: app deployment using containers and Docker

specifically.

Chapter 11 Time for Fun: BattleJong, the Client

347
© Frank Zammetti 2020
F. Zammetti, Modern Full-Stack Development, https://doi.org/10.1007/978-1-4842-5738-8_12

CHAPTER 12

Bringing the Dev Ship into
Harbor: Docker
With both MailBag and BattleJong built, it’s time to touch on one last topic that has

become very common in modern application development to deal with the problem

of application distribution: Docker. In this chapter, you’ll learn what Docker is and

what containerization generically is, and you’ll learn how to “wrap up” both of the

applications we built over the last four chapters together with Docker so that it is quick

and easy to distribute them to other developers (and possibly even end users).

�An Introduction to Containers and Containerization
Before we even talk about containers, let’s talk about virtual machines, or VMs.

A VM is essentially an emulation of a real, physical computer. You have your actual

computer, which is considered the “host” for a VM, and then on top of that host, you

have some sort of hypervisor. This may sound a bit circular, but a hypervisor is an entity

that allows VMs to be run on top of it. In other words, it’s an abstraction layer between a

VM and the physical host machine it’s running on. The job of a hypervisor is to distribute

the resources of the physical machine – CPU, memory, and so on – between VMs

running on it, and these VMs we call “guests.”

Hypervisors come in two flavors: hosted hypervisors or hardware hypervisors.

The difference is that hosted hypervisors run on top of the host OS, while hardware

hypervisors run underneath the OS. The primary difference is performance: hardware

hypervisors provide much better performance than hosted hypervisors.

However, with either type, a crucial consideration is that the virtual machine

approach is fundamentally heavyweight. What I mean is there is a lot of overhead

involved because, remember, a VM is essentially an emulation of a machine. That’s

right, it’s emulating everything: including the hardware. On any given piece of

348

physical hardware, regardless of hypervisor type, there will be a limit to how many

VMs you can run on it because of this, and performance will never be quite as good

as a non-VM situation.

Containers seek to avoid this “weight” issue in favor of something lighter on

resources so that physical server resources can be used more efficiently and shared

between more deployed apps, thereby allowing a server to do more.

In contrast to a VM, a container performs operating-system-level virtualization. This

is achieved by abstracting what’s known as “user space,” that is, where your applications

run. There is no emulation occurring with containers. Instead, they actually share kernel

space with the host OS. But a container looks like a VM in most other regards in that

they represent an isolated user space where your applications can run. In this way, you

can have many containers running, all with their own user space but sharing the kernel

resources of the host operating system. This is a far more efficient approach than VMs

and allows for many more containers to run on a given host system.

A key point about containers is that they allow you to package up not only your

application but also its runtime environment. Yes, that means things like a JDK for a Java

application and JavaScript libraries for a Node app, but it also means the underlying

operating system environment. When you create a container, you start from a blueprint

known as an image. The image almost always begins with an operating system and then

has stuff added to it, building up to the final image. So, if you want to package up your

Node application, you will also, in a container, package up a version of, say, Linux that it

will run on.

Containers function as if they were the sole OS on the hardware. Anything running

in them is unaware that they are on a shared system, just like a VM, but it’s still just a

process running on a host system, not a fully emulated computer and OS on top of it, and

it’s not going through a hypervisor like a VM is.

A container relates to an image in that the image is the blueprint, and a container

is an instance of the image. You can think of it like a class-object relationship: classes

are essentially the blueprint that is used to build instances of that class that we then call

objects.

This yields what is perhaps the most significant benefit of containers: a consistent

runtime environment without the overhead of a VM. The host operating system mostly

doesn’t matter (with some caveats concerning cross-platform containers, vis-à-vis

Windows containers on Linux hosts and vice versa). Only what’s in the container

matters, and only what’s in the container will impact the functioning of the app(s) in

Chapter 12 Bringing the Dev Ship into Harbor: Docker

349

that container. You can change the host operating system and know that what’s in the

container will still be the same environment you originally build and so everything will

work as it always has, no fear of breakage due to the host change.

Another benefit of containers is that they start fast, almost instantly in most cases,

which makes them easy to scale. If you have an application running in a container

and the load on it starts getting too heavy, it’s relatively quick and easy (assuming your

application code allows for this) to spin up more containers with instances of your app

running to share the load.

Container capabilities have been built into Linux for many years, but it only began to

gain traction with the introduction of something that made dealing with the technology

much easier: Docker.

�The Star of the Show: Docker
Using “naked” containers on Linux is… not pleasant. It can be complex to get them

working and, even more so, to manage all the images and containers you may spawn

from them. It’s doable, but it was difficult enough for a long time that containerization

didn’t get used very much. You must deal with two key features of Linux: control groups,

or cgroups, and namespaces. These deal with how processes and their resources can

be grouped, isolated, and managed as a unit by the kernel and limits on what a given

process can see. If that sounds kind of technical and complicated, well, that’s because it

is! Even for those well-versed in Linux, it can get hairy.

That all changed with the introduction of Docker, which is the product of a company

named – not surprisingly – Docker! In simplest terms, Docker is just a set of tools that

makes it easy, from a command line, to build images, create containers, and manage it

all, including interacting with remote repositories of images. For a while, Docker was a

Linux-only technology, but that’s changed in recent years, and you can now use Docker

on every major operating system.

There are three main components to Docker:

•	 Docker daemon – This is a background process that runs on a

host machine that is responsible for various tasks, including the

management, building, running, and distribution of containers. This

is what interacts with the underlying containerization capabilities,

the thing that is kind of not fun to deal with.

Chapter 12 Bringing the Dev Ship into Harbor: Docker

350

•	 Docker client – This is a CLI that you interact with, which makes

calls to the daemon on your behalf. This, combined with the daemon,

makes your human interface to the underlying containerization

capabilities much easier to use.

•	 Docker Hub – A public registry of images maintained by the

company Docker. Using Docker Hub is entirely optional, and you

even can set up your own if you wish. In either case, it’s a repository

of images that you can easily pull from to “spin up” containers

(“spin up” is a common phrase for when you create a container

from an image).

Once you get Docker installed, it’s the Docker client, and perhaps Docker Hub, that

you’ll interact with. So, let’s see about getting it installed so we can start playing with all

this stuff!

�Installing Docker
How you install Docker varies from operating system to operating system, so I couldn’t

detail the process for every possible variation here. However, I can tell you that on

Windows, it’s just a regular application installation (assuming you’re running Windows

10 – older versions of Windows are a bit more involved to get set up), and on Linux, it’s

just installing a small handful of packages.

The URL you need to have in mind is this: https://docs.docker.com/install/.

This is the official Docker installation page. There, you will find instructions for installing

Docker for a variety of systems. Please visit there and follow the instructions applicable

to your system.

Once you do, the final step will be to test that Docker is running and ready for you to

play with. To do that, drop to a command prompt and execute this command:

docker info

At this point, it doesn’t matter what OS you’re using, the commands you issue to

Docker are the same across all of them. You should see a dump of information, most of

which won’t mean much to you yet (though you’re smart and I’m sure you can figure

a lot of it out!). Figure 12-1 is an example of what you might see (the actual data could

differ on your system).

Chapter 12 Bringing the Dev Ship into Harbor: Docker

https://docs.docker.com/install/
https://docs.docker.com/install/

351

If you don’t see this, then take the time to go over the installation instructions again

for your system so that you have a reliable Docker environment before we move on.

Figure 12-1.  Output of the docker info command execution

Chapter 12 Bringing the Dev Ship into Harbor: Docker

352

�Your First Container: “Hello, World!” of Course!
Okay, so, Docker is installed and ready to go, what can we do with it? As is customary

when talking about seemingly anything in programming, we’ll start by spinning up a

“Hello, World!” container. As luck would have it, Docker Hub, the central and public

image repository run by Docker, has just such an image available! We can pull the

image down to our local machine and use it to create a container all with one, simple

command:

docker run hello-world

Go ahead and execute that, and after a couple of seconds, you should see something

like Figure 12-2 greet you.

Figure 12-2.  The Docker hello-world, up and running!

Chapter 12 Bringing the Dev Ship into Harbor: Docker

353

As I said, this did a couple of things for you automatically, and in fact, part of what it

did was to output, well, precisely what it did! That’s helpful, isn’t it?

Now, if you execute that command again, you’ll find that it’s even faster this time,

and that’s because the image has already been downloaded from Docker Hub and is

stored on your system, so that step can be skipped. Instead, Docker spins up a new

container virtually instantly.

In short, the docker run command is how you start new containers.

�A Quick Rundown of Key Docker Commands
For most Docker work, only a small handful of commands are needed. Anything more

would constitute more advanced Docker functionality, and as this is meant as only an

introduction, most of that won’t be covered. But let’s look at the basics now.

�Listing Images
How can you tell what images and containers there are available on your system? Well,

that’s easy:

docker images

That will list all the images downloaded onto your system. Figure 12-3 shows what it

might look like after trying the first example.

Figure 12-3.  A list of images on your system

�Listing Containers
For listing containers, it’s just as easy:

docker ps

Chapter 12 Bringing the Dev Ship into Harbor: Docker

354

That shows your containers, but it only shows you running containers. After this

example container finishes its work, it shuts down immediately. Therefore, you won’t see

it listed there. However, the container still exists in a sense, and you can see it by adding

an option to the previous command:

docker ps -a

Figure 12-4 shows the result which, if you’ve been following along, should show two

containers in the Exited state.

Figure 12-4.  The non-running containers on the system

�Starting (and Stopping) Containers
You could start a container again if you want:

docker start <container_id_or_name>

For this hello-world container, however, nothing will happen when you do this, and

the container will exit immediately. It only seems to show that helpful information when

initially run.

You can also stop a running container:

docker stop <container_id_or_name>

As a quick aside, at this point, you may realize that entering the container IDs

that Docker generates can get annoying in a hurry (and, plus, you’ve seen me write

<container_id_or_name>, implying you can do something other than using the default

ID). Fortunately, Docker also generates a name for each container, as you can see in the

ps output (and it can often be quite entertaining to see what it spits out!). However, it’s

more user-friendly to give it a name yourself, which you can do with an option:

docker run --name MyAwesomeContainer hello-world

Now you should see a container with the specified name, which you can then use to

interact with it.

Chapter 12 Bringing the Dev Ship into Harbor: Docker

355

�Remove Containers and Images
You’ll probably want to clean up those containers at some point, and there’s a command

for that:

docker rm <container_id_or_name>

If the container is running, Docker won’t let you remove it until you stop it.

Likewise, you can remove images:

docker rmi <image_id_or_name>

As with containers, Docker won’t allow you to delete an image that’s used by a

container, regardless of whether it’s running or not, so you’ll need to clean up the

containers first.

�Pulling Images
What if you want to download some images but not immediately start containers based

on them? That’s easy enough:

docker pull hello-world

Now, the image will be downloaded if it’s not already on your system (if it is, docker

will try to update it if the latest version is newer than what’s on your system). After that,

you can do a docker run to spin up containers like before.

You can push images to a repository as well, but we’ll get to that later.

�Searching for Images
While I think it’s much easier to go to Docker Hub through the Web to look for images,

which you can do at https://hub.docker.com/, you also can search for an image

directly from the command line:

docker search hello-world

This returns a list of many images that include the string “hello-world” in their name.

Chapter 12 Bringing the Dev Ship into Harbor: Docker

https://hub.docker.com/
https://hub.docker.com/

356

�Attaching to a Container
Sometimes, you’ll want to treat containers like VMs and log into them. To demonstrate

that, we’ll need a container that will continue running, so let’s use Nginx for that:

docker run -d -p 8080:80 -name my_nginx nginx

The -d option “detaches” the terminal session from the container, which causes

it to run in the background (assuming whatever is inside the container doesn’t exit

immediately). You’ll be returned to your command prompt, but the container will

continue to run. The -p option is for exposing network ports. Here, we’re saying that port

8080 inside the container should be exposed on port 80 of the host machine’s network

interface.

Once you execute this command, do a docker ps, and you should see a running

container for the first time.

Now, with a container running, we can go ahead and attach to it:

docker exec -it my_nginx /bin/bash

Here, you can see a few things. First, the -i option keeps STDIN open so that it can

be interacted with. The -t option allocates a new pseudo-tty terminal session. The

/bin/bash at the end is a command that is executed after the container is started. All

three combined results in you being “inside” the container. The command prompt

you see at that point is the command prompt inside the container itself. Go ahead and

do some bash-y stuff (e.g., ls), and you should notice that what you see differs from

your host operating system (though if you’re using Ubuntu, then it’s going to look very

similar anyway). Execute the exit command and you’ll be dropped back to your actual

command prompt.

�Viewing Container Logs
Finally, without attaching to a container, you can view the logs produced inside of it:

docker logs my_nginx

Here, “logs” include anything routed to standard out, barring any specific

configuration done inside the container.

At this point, you know most of the basics for using Docker. But all of that was based

on existing images. What about creating your own? Let’s do that now!

Chapter 12 Bringing the Dev Ship into Harbor: Docker

357

�Creating Your Own Image
Now, as cool as I hope you find Docker at this point, it would be considerably more

useful if we could create images ourselves, wouldn’t it? Let’s do it and find out!

First, we’ll need something to stick in the container. So, let’s start by creating a very

simple Node app. To begin, create a directory – name it dockernode – and then initialize

a new NPM project in it:

npm init

Just accept all defaults for it. Next, add Express to it:

npm install –save express

Finally, create a server.js file and put the following code in it:

const express = require("express");

const app = express();

app.get("/", (inRequest, inResponse) => {

 inResponse.send("I am running inside a container!");

});

app.listen("8080", "0.0.0.0");

console.log("dockernode ready");

You can, at this point, start this little server:

node server.js

You should be able to access it at http://localhost:8080.

Of course, what it returns, “I am running inside a container!”, is a dirty lie at this

point! So, let’s go ahead and make it true!

To do so, we must add another file to the mix: Dockerfile. Yes, that’s literally the

name! A Dockerfile is a file that tells Docker how to build an image. In simplest terms, it

is basically a list of commands that Docker will execute, as if it were you, the user, inside

a container. Virtually any valid bash commands can be put in it, as well as a few Docker-

specific ones. Docker will execute the commands in the order they appear in the file and

whatever the state of the container is at the end becomes the final image.

Chapter 12 Bringing the Dev Ship into Harbor: Docker

358

So, here’s what we need to put in this Dockerfile for this example:

FROM node:10

WORKDIR /usr/src/app

COPY package*.json ./

COPY server.js ./

RUN npm install

EXPOSE 8080

CMD ["node", "server.js"]

The first command, FROM, is a Docker-specific command (the only one required, in

fact) that tells Docker what the base image is. All images must be based on some existing

image. If you want to start “from scratch,” the closest you can generally get is to choose

an image that is nothing but an operating system. In this case, however, since we’re

using Node, we can start from an image that, yes, has an operating system, but then also

has Node already installed on top of it. Alternatively, we could start with an image like

ubuntu, and then put the commands into the Dockerfile that would install Node (apt-

get install nodejs), and we would wind up with an image that is basically the same as

this. But let’s be lazy and use what’s already there!

Note I mages can have tags attached to them, which you can roughly think of as
version numbers. Here, we’re telling Docker that we want to use the latest image
named node that includes Node v10.x. The tags are image-specific, so you’ll need
to consult Docker Hub (or whatever repository you’re using) to see what it means
for a given image.

The next command, WORKDIR, really does two things, potentially. First, it creates the

named directory if it doesn’t already exist. Then, it does the equivalent of a cd to that

directory, making it the current working directory for subsequent commands.

Next, two COPY commands are used. This is another Docker command that copies

content from a source directory on the host to a destination directory in the image’s file

system. The command is in the form COPY <src> <dest>, so here we’re saying to copy

from the current working directory on the host (which should be the project directory) to

the current working directory in the image (which is now the one created by the WORKDIR

command) any file named package*.json (which means package.json and package-

lock.json) and our server.js file.

Chapter 12 Bringing the Dev Ship into Harbor: Docker

359

After that, we must think as if we’re executing these commands ourselves.

If someone gave us this Node project, we would next need to install the dependencies

listed in package.json. So the Docker RUN command is used, which tells Docker to

execute whatever command follows as if we were doing it ourselves at a command

prompt (because remember that basically is what a Dockerfile is!). You know all

about the npm install at this point, so after this is done, all the necessary code for the

application to run is present in the image.

Now, in this case, we need to expose a network port; otherwise, our host system,

let alone any other remote systems, won’t be able to reach our Node app inside the

container. It’s a simple matter of telling it which port to expose, which needs to match

the one specified in the code, obviously.

Finally, we want to specify a command to execute when the container starts up.

There can be only one of these in the file, but we can do virtually anything we want. Here,

we need to execute the equivalent of node server.js as we did manually to test the app.

The CMD command allows us to do this. The format this command takes is an array

of strings where the first element is an executable, and all the remaining elements are

arguments to pass to it.

Once that file is created, it’s time to build the image! That just takes a simple

command invocation:

docker build -t dockernode .

Do that, and you should see an execution something like Figure 12-5.

Chapter 12 Bringing the Dev Ship into Harbor: Docker

360

Now, if you do a docker images, you should see the dockernode image there. If it is,

you can spin up a container based on it:

docker run --name dockernode -p 8080:8080 -d dockernode

Figure 12-5.  Building the dockernode example image

Chapter 12 Bringing the Dev Ship into Harbor: Docker

361

At this point, the container should be running (confirm with docker ps), and the app

should be reachable from a web browser. Also, if you do

docker logs dockernode

you should now see the “dockernode ready” string. You could attach to the

container if you wanted to now and play around.

Note  Don’t get confused here: dockernode is the name (tag) of an image,
but it’s also the name assigned to a running container (and also the name of
the project directory). It’s perfectly allowed to have an image tag that matches
a container name; however, you may generally want not to do that to avoid any
potential confusion.

One final thing I want to mention is that it’s a good idea after you build an image – or

if you’re troubleshooting an image that isn’t building right – to check its contents. The

quickest and easiest way to do that is

docker run -it <image_id_or_name> sh

That’s another way to get an interactive shell into a running container, but it should

generally work with virtually any image and, most importantly, it will work even if the

container shuts down immediately. To be clear, if nothing is running in the container,

that won’t change. If your app crashes on startup, for example, it will still do so. But, now,

you’ll be able to browse the file system, including, critically, any log files that may have

been written.

Of course, if there’s a problem at a lower level, like at the OS level, then this, in fact,

may not work. In such instances, another useful command to know is

docker image inspect <image_id_or_name>

This will provide you detailed information about the image and its history (there is

also a literal docker image history <image_id_or_name> command too that delves

into an image’s actual build history more).

Chapter 12 Bringing the Dev Ship into Harbor: Docker

362

�Deploying to Docker Hub
Now that you’ve built an image, let’s talk about getting it into a repository, Docker Hub,

specifically (though this all applies to any repository you might interact with).

First, to put an image into Docker Hub (referred to as pushing), you need an account.

So, head on over to hub.docker.com and create an account for yourself. You will be

allowed to have one private repository (where a repository refers to an image essentially)

with a free account, as well as unlimited public ones. That’ll be plenty good enough for

what we’re doing here.

Once you set up the account, the next step is to create a repository. To do so,

assuming you’re viewing your account in the Docker Hub web site in a web browser

right now, you should see a Create Repository button right there near the top. Click

that, and then give your repository a name. For the sake of what we’re doing, name it

<your_username>/modern-full-stack-development-dockernode (it’s a good idea to

namespace any of your repositories with your username unless you’re building some

sort of official image that many people would be interested in, think things like Nginx,

Node, or Ubuntu).

Assuming you have the dockernode image built, it’s time to push it to Docker Hub!

To do so, you will first need to log the Docker CLI into Docker Hub. That’s easy enough:

docker login --username <your_username>

You will then be prompted for your password. Note that if you’ve elected to set up

two-factor authentication, then it won’t be your password you enter but will instead be

the authentication key created when you set that up. But, either way, you should see

something like Figure 12-6.

Figure 12-6.  Logging into Docker Hub from the Docker CLI

Chapter 12 Bringing the Dev Ship into Harbor: Docker

http://hub.docker.com

363

At that point, you’re ready to push your image:

docker push <your_username>/modern-full-stack-development-dockernode

If you refresh your account page on Docker Hub, you should now see some changes.

Click the repository, and you should see a “latest” tag has been created. That’s it. Your

image is now on Docker Hub!

If you want to test it, delete the image on your system (docker rmi dockernode)

and then pull the image (docker pull <your_username>/modern-full-stack-

development-dockernode) and you should be able to spin up a container based on that.

You could now make that repository public if you wanted, which would then allow

anyone else who wants it to pull your image and use it, or perhaps base their own image on it.

�Wrapping Up MailBag and BattleJong
Now, you have everything you need to containerize MailBag and BattleJong, which is the

ultimate goal we’ve been working toward.

We’ll start with the source code for MailBag, and for the sake of this exercise, do not

run npm install in either the client or server directories. We want just the “naked”

source code here. All you really need to do is add a Dockerfile:

FROM node:10

WORKDIR /usr/app/mailbag

COPY client ./client

COPY server ./server

WORKDIR /usr/app/mailbag/client

RUN npm install

RUN npx webpack --mode production

WORKDIR /usr/app/mailbag/server

RUN npm install

RUN npx tsc

EXPOSE 80

CMD ["node", "./dist/main.js"]

Chapter 12 Bringing the Dev Ship into Harbor: Docker

364

As with dockernode, we’ll start with the plain node image. From that, we create a

directory in the image for the project. Then, we make it our work directory and copy in

both the client and server directories to it. Note that when you copy a directory into an

image, you need to specify the target directory explicitly. Just putting a period won’t work

as it does with files.

After that, since I said not to install the dependencies, we need to get them into the

image. Otherwise, this project won’t run (in fact, it won’t build, let alone run, and you

should realize that we do indeed have to build it since it’s not in its executable form as it

stands). So, the npm install is run after switching to the client directory.

But we still have to build the client because it’s not in its final form – there’s no dist

directory yet – so then it’s just running Webpack to do the job for us. That produces the

dist directory and its contents.

Then, we need to do the same thing for the server, though there we’re just compiling

with tsc, no Webpack involvement there.

Finally, we expose port 80, since that’s what the server listens on, and then start the

server by executing the equivalent of node ./dist/main.js.

Now, if you do this, you will hit a problem when Docker gets to the RUN npm

webpack –mode production line: it will hang, never completing the image. The reason

is straightforward: remember that we configured Webpack to monitor our files and

automatically rebuild when they change? Well, that’s exactly what it’s going to do as

the image is being built, so it will never complete. To fix that, you need to go into the

webpack.config.js file and set watch to false. After that, the build should be successful

and everything else should work as expected.

For BattleJong, it’s almost exactly the same! Aside from the directory names in the

Dockerfile needing to be changed, of course, everything else should be the same except

for one thing: the final line in the Dockerfile needs to be changed to

CMD ["node", "./dist/server.js"]

The name of the file that is our server is different, but besides that, it’s the same.

Note I have created images for both of these apps on Docker Hub, as well
as dockernode, and you can pull them any time you want. They are named
fzammetti/modern-full-stack-development-dockernode, fzammetti/
modern-full-stack-development-mailbag, and fzammetti/modern-
full-stack-development-battlejong.

Chapter 12 Bringing the Dev Ship into Harbor: Docker

365

�Suggested Exercises
This is another of those chapters where suggesting exercises specific to its topic is a

little tough by its very nature. However, one thing immediately comes to mind, and it’s

something that would test all your skills in one go, not just Docker knowledge:

Create a new app using everything you’ve learned throughout this book, package
it with Docker, and push it to Docker Hub for all the world to see!

How about your own game of some sort? Or, maybe a calculator? Perhaps an address

book for contacts? What about copying Google Keep for taking notes? You could always

write an app to store bookmarks.

Basically, anything that interests you, go for it! It doesn’t need to be anything world-

changing; it just has to touch on most, if not all, of the topics I’ve covered in this book. If

you can accomplish that, then I’ve succeeded in my task of teaching you a thing or two!

�Summary
With this chapter, our journey together through modern application development is

complete! Here, you learned about Docker and containerization, learned how to create

an image from the applications we built together, and saw how to run them.

I genuinely hope you’ve had a great experience with this book and that you’d learned

a great deal. I hope I’ve helped provide you the tool you need to go out into the world

and build wonderful applications using modern tools and techniques. And hey, if you

create the next big thing and get all rich, maybe remember where you got the skills to do

so and throw a coin to your favorite tech author!

Chapter 12 Bringing the Dev Ship into Harbor: Docker

367
© Frank Zammetti 2020
F. Zammetti, Modern Full-Stack Development, https://doi.org/10.1007/978-1-4842-5738-8

Index

A
addContact() method, 243
addContactToList() state mutator

method, 237
addMailboxToList() method, 235
AJAX, 238
alert() message, 89, 91, 157
anyMovesLeft() function, 340
app.delete() method, 184
Async_hooks module, 40
Axios, 240

B
BattleJong

BaseLayout component, 313–316
building, 305, 306
ControlArea component

defining, 316
gameState property, 318, 319
React.Fragment, 316, 317
scores property, 317, 318

index.html, 312
libraries, adding, 311
Mahjong Solitaire, 284
main.tsx file, 313
node modules, adding, 289
PlayerBoard component, 319, 320

noImplicitAny check, 321, 322
ReactElement, 322

project, setting up, 307
TypeScript config file, 308, 309
Webpack, 309, 310

render process
CSSProperties, 324
highlightTile style, 324, 325
onClick handler, 325
xOffset and yOffset, 323

requirements, 285, 306, 307
server, socketComm.ts source file

sending messages, to server, 329
sent messages, 327, 329
WebSockets, 326, 327

setting up project, 286
source file, 311
state.ts

anyMovesLeft() function, 340–344
canTileBeSelected (), 336–339
IScores interface, 330
message handler methods, 334
properties, 332, 333
socketComm, 330
tileClick(), 336
TypeScript-type assertions, 331, 332

tsconfig.json file, 287–289
types, adding, 311

Bookmark component, 55

https://doi.org/10.1007/978-1-4842-5738-8

368

C
canTileBeSelected() function, 336, 341
clearMessages() method, 266
client.connect() method, 199
collapseToBlackHole(), 116
componentDidMount() method, 84
componentDidUpdate() method, 85
contacts.ts file

addContact(), 211
deleteContact(), 211, 212
listContacts(), 210
NeDB, 207, 208
NoSQL, 204–207
server

adding contacts, 243
deleting contacts, 244
listing contacts, 243

Contacts.Worker.deleteContact()
method, 272

Containers/Containerization
function, 348
hypervisors, 347
VM, 347, 348

COPY commands, 358
createServer() method, 18, 233, 326
Cross-Origin Resource Sharing

(CORS), 179

D, E
dedup command, 27
deleteContact() method, 211, 272, 280
deleteMessage() method, 249, 279
descriptionValidator() function, 83
devServer property, 156
Dist directory, 163
Docker

commands
attaching to container, 356
container logs, view, 356
containers and image, remove, 355
listing containers, 354
listing images, 353
pulling images, 355
searching for images, 355
starting and stopping

containers, 354
components, 349, 350
creating own image

CMD command, 359
COPY commands, 358
Dockerfile, 357, 358
dockernode, 357, 360, 361
WORKDIR command, 358

deploying Hub, 362, 363
installing, 350, 351
MailBag and BattleJong, wrapping up,

363, 364

F
fieldChangeHandler() method, 278
filter() method, 272
fs.copyFileSync() method, 30
fs.mkdir() method, 31
fs.rmdir() method, 31
fs.unlink() method, 31

G
getDerivedStateFromProps()

method, 84, 85
getMessages() method, 265, 266
getSnapshotBeforeUpdate() method, 85
greet() function, 120

Index

369

H
hideShowPleaseWait() state mutator

method, 255
http.createServer() method, 32
http.request() method, 33, 34

I
IMAP.Worker.getMessageBody()

method, 274
IMAP.ts file

Contacts.ts file, 198
deleteMessages() method, 204
emailjs-imap-client module, 195, 196
getMessageBody() method, 203
import, 196
listMessages() method, 201, 202
logLevel property, 199
Worker.listMailboxes(), 199–201
server

deleting message, 246
getting body message, 246
IMessage interface, 244
listing mail, 245
listing message, 245

Immediately Invoked Function
Expressions (IIFEs), 142

INinja interface, 124
InputProps prop, 269
Internet Engineering Task Force (IETF)

standard, 291

J, K
JavaScript

APIs, 4
asynchronous and event-driven

model, 2

HTTP requests, 3
node installation, 5, 6
single-threaded, 2
source file execution, 7, 8

join() method, 179

L
listContacts() method, 210
listen() method, 32
listMailboxes() method, 181, 245
listMessages() method, 245
logConstructorFactory() function, 134
logConstructor() function, 132

M
Mailbag

AJAx
Axios, 240–242
definition, 238
XMLHttpRequest object, 238–240

client, 219–222
client project, setting up

index.html, 230
npm init, 224
performance attribute, 228
src directory, 228, 229
TypeScript, 226, 227
Webpack, 226

configuration, 237
contacts.ts (see contacts.ts file)
full-stack development, 163
IMAP (see IMAP.ts file)
main.ts (see main.ts file)
project, set up, 163

adding dependencies, 166, 167
adding modules, 165

Index

370

development environment,
168, 169

source files, 164, 165
redux, main.tsx

BaseLayout component, 231–233
normalize.css, 231
state mutator methods, 234,

236, 237
requirements, 223, 224
scope, 162
ServerInfo.ts file, 187, 189
SMTP.ts file, 189, 190

generics, 190–193
nodemailer module, 190
sendMessage() method, 193–195

testing
curl, 213, 214
holistic, 212
JSON, 214
optional tooling, 215, 216

webmail system, 161
main.ts file

Content-Type header, 180
CORS, 179, 180
data format, 173, 174
express, 176, 177
HTTP methods, 172, 173
imports, 178
response status code, 175, 176
REST, 170
RESTful endpoints, 178, 179
URL, 171

Material-UI component library
BaseLayout

Dialog, 253–255
MessageList component, 257

MessageView component, 258
Toolbar component, 256

ContactList. tsx file, 266, 268
ContactView component

deleteContact(), 272
InputProps prop, 269
onChange handler, 269
setState(), 271
TextField, 268, 270

CSS Grid, 249, 251, 253
functional syntax, 260
MailboxList.tsx file, 264–266
Material Design, 248, 249
MessageList.tsx file, 273, 274
MessageView

InputBase component, 275, 276
onClick prop, 278–280

Tollbar.tsx file, 261–263
WelcomeView, 280

module property, 155

N
Node

modules, 40–41
file system (fs), 30, 31
HTTP and HTTPS, 32, 33
OS, 34
path, 35, 36
process access, 36
query string, 37–38
URL, 38
utilities, 39

node_modules directory, 159
Node Package Manager (NPM)

commands, 10, 11
auditing package security, 26

Mailbag (cont.)

Index

371

deduplication and pruning, 26, 27
packages, searching, 27
packages, updating, 28
publishing/unpublishing

packages, 28, 29
dependencies, add, 13, 14
node-modules, 9
package.json file, 21–25
project initializing, 11–13
semantic versioning, 14, 15
web server, 16, 17

npx command, 69

O
onClick event handler function, 58
on() method, 292

P
path.join() method, 35, 179
plugins property, 155
Polyfill, 68
PropTypes, 82

Q
querystring.escape() method, 38
querystring.parse() method, 37
querystring.stringify() method, 38
querystring.unescape() method, 38

R
React

components
action, 49, 50

HTML document, 48
lifecycle events, 84, 85
memory state, 57–59
props, 55, 56
React.createElement(), 51
ReactDOM.render(), 52
render(), 54, 55
style, 60–62

definition, 43
FaxJs, 44, 45
JSX

compile, 71, 72
main.js file, 73, 75, 76
MaterialButton component,

66, 67
npx command, 69
polyfill, 68
ReactDOM.render(), 74
transpile, 69–71

Props
defaultProps property, 78, 79
MaterialButton component, 77
PropTypes, 80, 82, 83

simplicity, 62, 63
sizeable corporate backing, 63
virtual DOM, 47
XHP, 44

React.createElement() method,
51, 55, 66

ReactDOM.render() method, 52
reduce() method, 107
remove() method, 212
render() method, 54, 62, 83, 268, 316
REpresentational State Transfer

(REST), 170
require.ensure() statements, 148
require() function, 17, 40

Index

372

REST Endpoint
add contact, 186
delete contact, 187
deleting messages, 184
getting messages, 183
list contacts, 185
list mailboxes, 181, 182
list messages, 182
sending messages, 184

S
sayHi() function, 89, 90
Secure Socket Layer (SSL), 41
sendMessage() state method, 278
send() method, 293, 329
setState() method, 58, 234
shouldComponentUpdate() method, 85
showHidePleaseWait() method, 234
shuffle() function, 300–302, 304
Spaceship function, 132
splitChunks optimization, 155
state.fieldChangeHandler() method, 277
string_decoder module, 41
super() reference, 111

T
Test property, 145
tileClick() method, 325, 336
Transport Layer Security (TLS), 41
transport.sendmail() method, 194
Tunnel vision approach, 163
TypeScript, 87, 157–159

advantages, 88
any type, 95
arrays, 95
boolean type, 95

classes
getters/accessor methods, 113, 115
inheritance, 111–113
member visibility, 110
properties, 109
setters/mutator methods, 113, 115

code execution, 89
custom type aliases, 101, 102
decorators

factory, 134, 135
logConstructor (), 132
Spaceship function, 132
types, 133

destructuring, 107, 108
development-time construct, 88
enums, 97–98
ES6 feature

arrow functions, 104, 105
block scope, 103
default parameter, 105
let and const keywords, 103
template literals, 105

flag type-related errors, 88
function type, 98
humanName argument, 90
index.html, 91
init comment, 93
installation, 91
interfaces

argument/object, 120–122
classes, 123
INinja, 124
methods, 122, 123

JavaScript, 88
modules, 129–131
namespaces, 125–128
null, void, and undefined number

type, 94

Index

373

object, 99
source maps, 137, 139, 140
spread operator, 106, 107
string, 94
third-party libraries, 135, 136
tsconfig.json file, 92
tuples, 96–97
union type, 102, 103

U, V
updateContact() function, 216
url.parse() method, 37, 38
Use property, 145

W, X, Y
Webpack

alert(10) message, 152
browser compatibility, 148
bundle, 142–143
configuration, 153–156
dependency graph, 144
entry point, 144
initialization process, 151
loaders, 145

main.js file, 152
modes, 147
modules, 141, 156, 157
NPM package.json file, 152
src directory, 149
webpack-cli module, 149

WebSocket
definition, 291
express server, 294
JavaScript API, 292
protocol, 291
server and game design

BattleJong work, 294, 295
connection event, 296
layout construct, 300, 301
message “done”, 298
message “match”, 297
players object, 299, 300
shuffle(), 302, 303

timeout(), 293
WORKDIR command, 358
Worker.listContacts() method, 243

Z
zlib module, 42

Index

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Server-Side Action: Node and NPM
	Of JavaScript Runtimes and Building (Mostly) Servers
	First Baby Steps with Node: Installation
	More Useful: Executing JavaScript Source Files

	Node’s Partner in Crime: NPM
	A Few More NPM Commands
	Initializing a New NPM/Node Project
	Adding Dependencies
	A Quick Aside: Semantic Versioning

	Fisher Price’s “My First Node Web Server”
	Bonus Example

	Summary

	Chapter 2: A Few More Words: Advanced Node and NPM
	NPM: More on package.json
	NPM: Other Commands
	Auditing Package Security
	Deduplication and Pruning
	Finding/Searching for Packages sans Browser
	Updating Packages
	Publishing/Unpublishing Packages

	Node: Standard Modules
	File System (fs)
	HTTP and HTTPS (http and https)
	OS (os)
	Path (path)
	Process
	Query Strings (querystring)
	URL (url)
	Utilities (util)
	The Rest of the Cast

	Summary

	Chapter 3: Client-Side Adventures: React
	A Brief History of React
	Yeah, Okay, History Nerd, That’s All Great, but What IS React?!
	The Real Star of the Show: Components
	Components Need Info: Props
	Components (Sometimes) Need Memory: State
	Making Them Look Good: Style

	In the End, Why React?
	Summary

	Chapter 4: A Few More Words: Advanced React
	A Better Way to Write React Code: JSX
	Yeah, Okay, So What Does It LOOK LIKE?!
	A Slight Detour into Babel Land
	Compile JSX
	And Now, Put It All Together

	Whither Props?
	Default Props
	Typing Props

	Component Lifecycle
	Summary

	Chapter 5: Building a Strong Foundation: TypeScript
	What Is TypeScript?
	Jumping into the Deep End
	Beyond the Playground
	Configuring TypeScript Compilation

	The Nitty Gritty: Types
	String
	Number
	Boolean
	Any
	Arrays
	Tuples
	Enums
	Function
	Object
	Null, Void, and Undefined
	Custom Type Aliases
	Union Types

	TypeScript == ES6 Features for “Free”!
	The let and const Keywords
	Block Scope
	Arrow Functions
	Template Literals
	Default Parameters
	Spread and Rest (and as an Added Bonus: Optional Arguments)
	Destructuring
	Classes
	Properties
	Member Visibility
	Inheritance
	Getters and Setters
	Static Members
	Abstract Classes

	Summary

	Chapter 6: A Few More Words: Advanced TypeScript
	Interfaces
	Argument/Object Interfaces
	Methods in Interfaces
	Interfaces and Classes
	Extending Interfaces

	Namespaces and Modules
	Namespaces
	Modules

	Decorators
	Decorator Factories

	Third-Party Libraries
	Debugging TypeScript Apps
	Source Maps

	Summary

	Chapter 7: Tying It Up in a Bow: Webpack
	What’s a Bundle, and How Do I Make One?
	What’s Webpack All About?
	Dependency Graph
	Entry
	Output
	Loaders
	Plugins
	Modes
	Browser Compatibility

	Getting Started with Webpack
	Getting More Complex
	Configuration

	Using Modules
	Wither TypeScript?
	Summary

	Chapter 8: Delivering the Goods: MailBag, the Server
	What Are We Building?
	Basic Requirements

	Setting Up the Project
	Source File Rundown
	Adding Node Modules
	Adding Types
	A More Convenient Development Environment

	The Starting Point: main.ts
	A Quick Detour: Time to Take a REST
	URLs for Fun and Profit
	Giving Methods Meaning
	Data Format Smackdown
	A Bonus Pillar: Response Status Codes

	Another Quick Detour: Express, for Fun and Profit
	Back to the Code!
	REST Endpoint: List Mailboxes
	REST Endpoint: List Messages
	REST Endpoint: Get a Message
	REST Endpoint: Delete a Message
	REST Endpoint: Send a Message
	REST Endpoint: List Contacts
	REST Endpoint: Add Contact
	REST Endpoint: Delete Contact

	Gotta Know What We’re Talking to: ServerInfo.ts
	Time to Send the Mail: smtp.ts
	A Quick Detour: Nodemailer
	Another Quick Detour: Generics
	Back to the Code!
	Worker.sendMessage()

	Time to Get the Mail (and Other Stuff): imap.ts
	A Quick Detour: emailjs-imap-client and mailparser
	Back to the Code!
	Worker.listMailboxes()
	Worker.listMessages()
	Worker.getMessageBody()
	Worker.deleteMessage()

	Reach Out and Touch Someone: contacts.ts
	A Quick Detour: NoSQL
	Another Quick Detour: NeDB
	Back to the Code!
	Worker.listContacts()
	Worker.addContat()
	Worker.deleteContact()

	Testing It All
	Optional Tooling

	Suggested Exercises
	Summary

	Chapter 9: Delivering the Goods: MailBag, the Client
	What Are We Building?
	Basic Requirements

	Setting Up the Project
	Source File Rundown

	The Starting Point: index.html
	The Starting Point, Redux: main.tsx
	A Quick Detour: State’ing the Obvious
	Back to the Code!

	A Bit of Configuration: config.ts
	A Worker for All Seasons
	A Quick Detour: AJAX
	Getting Some Help: Axios

	Mirroring the Server Part 1: Contacts.ts
	Listing Contacts
	Adding a Contact
	Deleting a Contact

	Mirroring the Server Part 2: IMAP.ts
	Listing Mailboxes
	Listing Messages
	Getting the Body of a Message
	Deleting a Message

	Mirroring the Server Part 3: SMTP.ts

	A Cavalcade of Components
	A Quick Detour: Material-UI
	Another Quick Detour: CSS Grid
	Yet Another Quick Detour: main.css

	BaseLayout.tsx
	A Quick Detour: Functional Components
	Toolbar.tsx
	MailboxList.tsx
	ContactList.tsx
	ContactView.tsx
	MessageList.tsx
	MessageView.tsx
	WelcomeView.tsx

	Suggested Exercises
	Summary

	Chapter 10: Time for Fun: BattleJong, the Server
	What Are We Building?
	Basic Requirements
	Setting Up the Project
	Some tsconfig.json Changes
	Adding Node Modules
	Adding Types
	Source File Rundown
	The Starting Point (the ONLY Point, in Fact!): server.ts
	A Quick Detour: WebSockets
	Back to the Code!
	Serving the Client: The Express Server
	Handling Messages: The WebSocket Server and Overall Game Design
	Message: “match”
	Message: “done”

	Finishing Up the WebSocket Server
	Of Tiles and Board Layouts
	Shuffling the Board

	Suggested Exercises
	Summary

	Chapter 11: Time for Fun: BattleJong, the Client
	What Are We Building?
	Basic Requirements
	Setting Up the Project
	Some tsconfig.json Changes
	Some webpack.config.js Changes

	Adding Libraries
	Adding Types
	Source File Rundown
	The Starting Point: index.html
	The REAL Starting Point: main.tsx
	The Basic Layout: BaseLayout.tsx
	Feedback and Status: ControlArea.tsx
	Scores
	Game State Messages

	Where the Action Is: PlayerBoard.tsx
	A Quick Detour: Custom-Type Definitions

	Back to the Code!
	The Render Process

	Talking to the Server: socketComm.ts
	Handling Server-Sent Messages
	Sending Messages to the Server

	The Main Code: state.ts
	A Few Interface for Good Measure
	The Beginning of the State Object
	A Quick Detour: TypeScript-Type Assertions

	Back to the Code!
	Message Handler Methods
	The Big Kahuna: tileClick()
	Helper Function: canTileBeSelected()
	Helper Function: anyMovesLeft()

	Suggested Exercises
	Summary

	Chapter 12: Bringing the Dev Ship into Harbor: Docker
	An Introduction to Containers and Containerization
	The Star of the Show: Docker
	Installing Docker
	Your First Container: “Hello, World!” of Course!
	A Quick Rundown of Key Docker Commands
	Listing Images
	Listing Containers
	Starting (and Stopping) Containers
	Remove Containers and Images
	Pulling Images
	Searching for Images
	Attaching to a Container
	Viewing Container Logs

	Creating Your Own Image
	Deploying to Docker Hub
	Wrapping Up MailBag and BattleJong
	Suggested Exercises
	Summary

	Index

