

Node.js: Novice to Ninja
Copyright © 2022 SitePoint Pty. Ltd.

Ebook ISBN: ISBN 978-1-925836-53-0

Product Manager: Simon Mackie
Technical Editor: Ivaylo Gerchev
English Editor: Ralph Mason
Cover Designer: Alex Walker

Notice of Rights
All rights reserved. No part of this book may be reproduced, stored in a
retrieval system or transmitted in any form or by any means, without the prior
written permission of the publisher, except in the case of brief quotations
embodied in critical articles or reviews.

Notice of Liability
The author and publisher have made every effort to ensure the accuracy of
the information herein. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors and
SitePoint Pty. Ltd., nor its dealers or distributors will be held liable for any
damages to be caused either directly or indirectly by the instructions
contained in this book, or by the software or hardware products described
herein.

Trademark Notice
Rather than indicating every occurrence of a trademarked name as such, this
book uses the names only in an editorial fashion and to the benefit of the
trademark owner with no intention of infringement of the trademark.

Published by SitePoint Pty. Ltd.

10-12 Gwynne St, Cremorne, VIC, 3121
Australia
Web: www.sitepoint.com
Email: books@sitepoint.com

About SitePoint
SitePoint specializes in publishing fun, practical, and easy-to-understand
content for web professionals. Visit http://www.sitepoint.com/ to access our
blogs, books, newsletters, articles, and community forums. You’ll find a
stack of information on JavaScript, PHP, design, and more.

About the Author
Craig is a UK-based freelance full-stack web developer, writer, and speaker
who’s passionate about standards and performance.

He began coding in the 1980s and started client-side JavaScript development
on its release in 1995 when DHTML, spacer GIFs, and marquees were
considered sophisticated. You may have encountered his work at SitePoint,
where he’s written more than 1,200 tutorials, and books including Jump Start
Web Performance, Browser DevTool Secrets, and Docker for Web
Developers.

Craig used Node.js from the start and hopes this book is a great first step on
your server-side JavaScript journey. Contact him on Twitter @craigbuckler
or at craigbuckler.com.

http://www.sitepoint.com/
https://www.sitepoint.com/premium/books/jump-start-web-performance/
https://www.sitepoint.com/premium/books/browser-devtool-secrets/
https://www.sitepoint.com/premium/books/docker-for-web-developers/

Preface
This book will help you get started with Node.js in the shortest possible time.
Within a day or two you should have enough knowledge to write simple
applications.

Prerequisites

This book is for web developers taking their first steps with Nodes.js. Ideally,
you should understand web development concepts and technologies:

web browsers (client-side HTML, CSS, and JavaScript)
web servers (code to serve web pages and APIs)

It will help if you already know some JavaScript—perhaps from writing
client-side scripts. This book explains some aspects of JavaScript in relation
to Node.js, but you won’t find deep dives into variables, loops, functions,
objects, and so on.

A little knowledge of the command line, Git, and code editors such as VS
Code will also be useful.

Conventions Used

Code Samples

Code in this book is displayed using a fixed-width font, like so:

<h1>A Perfect Summer's Day</h1>

<p>It was a lovely day for a walk in the park.

The birds were singing and the kids were all back at school.</p>

Some lines of code should be entered on one line, but we’ve had to wrap
them because of page constraints. An ➥ indicates a line break that exists for

formatting purposes only, and should be ignored:

URL.open("https://www.sitepoint.com/responsive-web-

➥design-real-user-testing/?responsive1");

You’ll notice that we’ve used certain layout styles throughout this book to
signify different types of information. Look out for the following items.

Tips, Notes, and Warnings

Hey, You!

Tips provide helpful little pointers.

Ahem, Excuse Me ...

Notes are useful asides that are related—but not critical—to the topic at hand.
Think of them as extra tidbits of information.

Make Sure You Always ...

... pay attention to these important points.

Watch Out!

Warnings highlight any gotchas that are likely to trip you up along the way.

Where to Find Help
PHP and MySQL are moving targets, so chances are good that, by the time
you read this, some minor detail or other of these technologies has changed
from what’s described in this book. Thankfully, SitePoint has a thriving
community of PHP developers ready and waiting to help you out if you run
into trouble, and we also maintain a list of known errata for this book you can
consult for the latest updates.

The SitePoint Forums

The SitePoint Forums are discussion forums where you can ask questions
about anything related to web development. You may, of course, answer
questions, too. That’s how a discussion forum site works—some people ask,
some people answer, and most people do a bit of both. Sharing your
knowledge benefits others and strengthens the community. A lot of fun and
experienced web designers and developers hang out there. It’s a good way to
learn new stuff, have questions answered in a hurry, and just have fun.

The SitePoint Forums include separate forums for PHP and MySQL:

PHP
Databases & MySQL

The Code Archive

As you progress through this book, you’ll note a number of references to the
code archive. This is a GitHub repository that contains each and every line
of example source code that’s printed in this book. If you want to cheat (or
save yourself from carpal tunnel syndrome), go ahead and download the
archive. Select the example from the dropdown that says Branch, then
choose Clone or Download, and you can download a .zip file for that
example.

Alternatively, if you’re familiar with Git, you can clone the repository.

Your Feedback

If you’re unable to find an answer through the forums, or if you wish to
contact us for any other reason, the best place to write is
books@sitepoint.com. We have a well-staffed email support system set up
to track your inquiries, and if our support team members are unable to answer
your question, they’ll send it straight to us. Suggestions for improvements, as
well as notices of any mistakes you may find, are especially welcome. You
can also report and discuss issues in the book’s GitHub repository.

https://www.sitepoint.com/community/
https://www.sitepoint.com/community/c/php/31
https://www.sitepoint.com/community/c/databases/38
https://github.com/spbooks/phpmysql7

Let’s Go

Now that I’ve introduced myself, given you some broad tips, and shown you
where to find help, it’s time to get started! You’ll begin by setting up a
development environment, and you’ll be writing your first lines of code very
shortly.

Chapter 1: What is Node.js
Node.js is a JavaScript runtime, which means it runs programs written in
JavaScript. Most developers use it to create command-line tools or web
server applications.

Skip Ahead?

That’s everything you need know about Node.js. If you’re eager to start
programming, skip ahead to Chapter 2. That said, it’s worth revisiting this
chapter later to learn about Node’s advantages and core features.

JavaScript, JScript, ECMAScript, ES6, ES2015?

To make learning more confusing for beginners, JavaScript has many names.
It started life as “Live Script” in 1994. Netscape rebranded it as “JavaScript”
following a hasty deal with Sun Microsystems, despite it bearing little
resemblance to Java or lightweight scripting. Microsoft couldn’t use that
name, so it became “JScript” in Internet Explorer.

In 2005, Mozilla (which grew out of Netscape) joined ECMA International
and standardized the language as “ECMAScript”. Versions 1 to 3
documented the evolution of JavaScript up until 1999. Version 4 was
abandoned, but ECMAScript 5 became the standard supported by most
browsers in 2009.

Work then started on ECMAScript 6—or “ES6”. The final specification was
approved in 2015, which led to yet another name: “ES2015”. New
specifications now arrive every year.

Rightly or wrongly, this course refers to “JavaScript” throughout. References
to specific versions (such as ES9/ES2018) are only made if they affect the
version of Node.js you need to use.

Node.js was initially developed by Ryan Dahl. He took the V8 JavaScript

https://www.ecma-international.org/publications-and-standards/standards/ecma-262/

engine from Google’s Chrome browser, added some APIs, wrapped it in an
event loop, and launched it as an open-source product on Linux and macOS
in 2009. The Windows edition arrived in 2011.

The Node Package Manager (npm) was introduced in 2010. It allowed
developers to use code modules published by others in their own projects.
There was no official ECMAScript module standard at the time, so Node.js
and npm adopted CommonJS.

The first (non-beta) release of Node.js arrived in 2015, with updates promised
every six months.

Node.js wasn’t the first JavaScript runtime, but unlike other options—such as
Rhino and SpiderMonkey—its popularity grew exponentially. Even those
writing PHP, Python, Ruby or other languages often use Node.js tools to
supplement their development processes.

Why Learn Node.js?
JavaScript is the most-used language on GitHub, and it’s ranked highly by
developers. Companies including Netflix, Uber, Trello, PayPal, LinkedIn,
eBay, NASA and Medium have adopted Node.js, and most professional
developers will have encountered Node.js tools.

Below, we’ll look at some of the reasons you should consider using Node.js.

It’s JavaScript

JavaScript is used on trillions of web pages, where it has a browser
monopoly. Every professional web developer requires JavaScript knowledge
to program client-side applications.

Server-side languages are more diverse. Historically, developers could opt for
PHP, Ruby, Python, C# (ASP.NET), Perl, or Java, but these have different
syntaxes and concepts. It can be difficult to switch contexts, so larger project
teams often split into frontend and backend developers.

https://github.com/mozilla/rhino
https://spidermonkey.dev/
https://madnight.github.io/githut/
https://insights.stackoverflow.com/survey/2021#most-popular-technologies-language

Node.js allows a developer with frontend JavaScript knowledge to leverage
their skills on the backend. It won’t make you a full-stack developer
overnight, but the concepts are similar, and there’s less rigmarole when
formatting JSON, handling character sets, using WebSockets, and so on.

JavaScript Alternatives

Some developers prefer languages such as TypeScript, PureScript,
CoffeeScript, Reason, and Dart, which can transpile to JavaScript and run in
a browser or Node.js. Ultimately, it still results in JavaScript code.

It’s Fast

Most server-side languages are fast enough, but few match the speed of
Node.js. The V8 engine is quick, and it evolves rapidly, having the weight of
Google and Chrome behind its development. Node.js also has a non-
blocking, event-driven I/O.

Let’s go through that again with less jargon. Most languages use synchronous
blocking execution. When you issue a command—such as fetching
information from a database—that command will halt further processing and
complete before the runtime progresses to the next statement. To ensure that
multiple users can have access at the same time, web servers such as Apache
create a new processing thread for every request. This is an expensive
operation, and Apache has a default limit of 150 concurrent connections.
Busy servers can become overloaded.

Node.js code (and browser JavaScript) runs on a single processing thread.
Long-running tasks such as a database query are processed asynchronously,
which doesn’t halt execution. The task runs in the background, and Node.js
continues to the next command. When the task is complete, the returned data
is passed to a callback function. A Node.js program can have many hundreds
of ongoing operations that are completed whenever they’re finished, meaning
that the processor is free to tackle other tasks.

Asynchronous programming has challenges, but it’s possible to create fast
Node.js applications that scale well.

It’s Real-time

Web platform features such as WebSockets and server-sent events permit
real-time functionality—such as instant data updates, live chat, multiplayer
games, and more. These can be difficult to implement in traditional server-
side languages, where they often require third-party services. Real-time
functionality in Node.js is significantly easier.

It’s Lightweight

The Node.js runtime is small and cross-platform. As well as catering for
Linux, macOS, and Windows, you find editions for embedded systems, the
Raspberry Pi, and even SpaceX rockets.

It’s Modular

Node offers a minimal standard library with good documentation. It contains
basic functions for error handling, file system access, network operations, and
logging.

For everything else …

It’s Extendible

Node.js has the largest package registry in the world, with more than one
million modules. You’ll find pre-written code for task runners, loggers,
database connectors, image processors, code compilers, web servers, API
managers, and even client-side libraries.

The npm command-line tool is provided with Node.js and makes it easy to
install, update, and remove modules. You can also use it to install global
modules so Node.js scripts can run as commands from anywhere on your
system.

It’s Open Source

Node.js is an open-source project. The runtime is free to use without any

https://developer.mozilla.org/Web/API/WebSockets_API
https://developer.mozilla.org/Web/API/Server-sent_events
https://nodejs.org/api/

commercial restrictions. The majority of modules are also free, because
they’re submitted by the community for the benefit of other developers.

It’s Everywhere

This course concentrates on web applications, but you can use Node.js to
create serverless functions, deployment scripts, cross-platform command-line
tools, and even complex graphical apps such as VS Code, Slack, and Skype
—all of which use the Electron framework.

As a web developer, you’ll almost certainly encounter Node.js, even if it’s
not a core part of your technology stack. Knowing a little Node.js could help
your projects and career. You’ll have a better insight into the possibilities
available to modern web applications.

What About Deno?

Node.js is a cross-platform, V8-based JavaScript runtime released by Ryan
Dahl in 2009.

Deno is a cross-platform, V8-based JavaScript runtime released by Ryan
Dahl in 2020.

Deno smooths over some cracks and inconsistencies of Node.js, with the
benefit of a decade’s worth of hindsight. It directly supports TypeScript
without a compiler, uses ES6 modules rather than CommonJS, replicates
many browser APIs (window, addEventListener, Fetch, Web Workers, etc.),
and provides built-in tools for linting, testing, and bundling.

Deno is great—but it’s new, and yet to achieve a fraction of Node’s
popularity. The frameworks are similar: if you know one, it’s easy to switch
to the other.

Summary
In this chapter, you’ve learned that Node.js is a popular JavaScript runtime
that’s uniquely suited to web development. I’ve summarized it in this

https://www.electronjs.org/
https://deno.land/
https://vimeo.com/707851157/54ff5cc8b6

chapter’s video. Chapter 2 describes how to install Node.js on your platform
of choice.

Quiz
Many chapters in this course end with a quick quiz to ensure you’ve grasped
the concepts. Beware! Some questions are designed to catch you out, so make
sure you’ve been paying attention! Answers can be found in Appendix A, at
the back of the book.

1. What is Node.js?

a. A JavaScript runtime.
b. A tool for creating command-line, GUI, and web applications.
c. A cross-platform programming framework.
d. All of the above.

2. What is JavaScript’s relationship to Java?

a. JavaScript is a cut-down version of Java.
b. JavaScript is a cross-platform version of Java.
c. JavaScript is Java that runs in a web browser.
d. JavaScript is a marketing name.

3. What is not another name for JavaScript?

a. ECMAScript
b. TypeScript
c. JScript
d. ES2015

4. What best describes the Node.js non-blocking, event-driven I/O?

a. Code that runs in separate processing threads.
b. Code that runs synchronously; the next command runs after the
current command has completed.
c. Code that runs asynchronously; the next command could run before
the current command has completed.

d. Code that runs in parallel with other processes.

5. What is npm short for?

a. Node Package Manager
b. Node Program Maintenance
c. Node Parsing Methods
d. Node.js Perfect Manual

Chapter 2: Install Node.js
You won’t get far on your Node.js journey without installing the runtime
first! You have three primary options:

Install Node.js on your local development machine running Linux,
macOS, or Windows.

This is the easiest choice, and the best way to get started—and it’s the
option we’ll be taking here.

Install Node.js via a virtual machine (typically Linux) running on
Hypervisor software such as VMware, VirtualBox, Parallels, or Hyper-
V.

This won’t affect your main OS, so you can experiment without risk.

Windows users should also consider the Windows Subsystem for Linux
2 (WSL2), which offers a highly integrated Linux environment. Follow
the Linux instructions accordingly (found below in the “How to Install
Node.js on Linux (or Windows WSL2)” section).

Containerization software such as Docker.

Docker provides a wrapper around applications known as a container.
You’ll use Docker in later chapters to install software such as databases,
but you can also develop, debug, and deploy Node.js apps in a similar
way.

A configured container runs identically on every OS, so it’s ideal when
working in teams where members have different devices.

Node.js apps will work cross-platform, but there are differences in file
systems and supported software. Web applications are typically deployed to a
Linux server, so developing on a Linux OS, virtual machine, or Docker
container can help to avoid compatibility issues.

https://www.vmware.com/
https://www.virtualbox.org/
https://www.parallels.com/
https://docs.microsoft.com/virtualization/
https://www.sitepoint.com/wsl2/
https://www.docker.com/

Node Version Manager

Node Version Manager (nvm) is a tool that allows multiple editions of
Node.js to be installed on the same Linux, macOS, or Windows WSL system.
This can be practical if you’re working on two or more projects using
different versions of Node.js.

Choosing a Node.js Version

Install a recent release of Node.js unless you’re supporting a legacy
application with specific requirements.

Even-numbered Node.js versions—such as 16, 18, and 20—focus on stability
and security with long-term support (LTS). Updates are provided for at least
two years, so I recommend them for live production servers. You should
install an identical version on your development machine.

Odd-numbered versions—such as 15, 17, 19—are under active development
and may have experimental features. They’re fine for development if you’re
learning, experimenting, or upgrading frequently.

Node.js 16 was used to develop the example code in this course. However,
Node.js generally has good backward compatibility, and applications written
in earlier editions of the framework usually run in later versions.

How to Install Node.js on Linux (or Windows
WSL2)

Open the nodejs.org home page in your browser and you’ll be directed to
download an installation package appropriate for your OS. However, it’s
most practical to use the package manager built into your OS. Ubuntu and
Debian binaries are available from NodeSource and, using version 16.x as an
example, you can install Node.js from an Ubuntu bash terminal like so:

curl -fsSL https://deb.nodesource.com/setup_16.x | sudo -E bash -

sudo apt-get install -y nodejs

https://github.com/nvm-sh/nvm
https://nodejs.org/
https://nodejs.org/en/download/package-manager/
https://github.com/nodesource/distributions/blob/master/README.md

Verify that Node.js and npm are installed correctly by running the following
commands in the terminal to view their version numbers:

node -v

npm -v

Configuring npm Global Permissions on Linux

The Node Package Manager command-line tool is provided with Node.js and
makes it easy to install, update, and remove modules. Where practical,
Node.js apps can be installed globally and run from anywhere—such as the
Rollup bundler for optimizing client-side JavaScript:

npm install rollup --global

This command results in a EACCES permission error, because you’re not
running as a superuser or using sudo. However, sudo grants unlimited
permissions to global scripts. I’d rather not run my own code that way, let
alone someone else’s!

A better option is to change the default npm directory to one owned by you.
Create a new directory for global modules, then configure npm, like so:

mkdir ~/.npm-global

npm config set prefix '~/.npm-global'

Then, open ~/.bashrc or ~/.profile in an editor such as nano:

https://rollupjs.org/
https://docs.npmjs.com/resolving-eacces-permissions-errors-when-installing-packages-globally

nano ~/.bashrc

Next, add the following lines to the end of the file:

export NPM_GLOBAL="$HOME/.npm-global"

export PATH="$NPM_GLOBAL/bin:$PATH"

Restart the Bash terminal or update the system manually with source
~/.bashrc.

You can now install global modules without sudo—including updates to npm
itself:

npm install npm --global

How to Install Node.js on macOS
Open the nodejs.org home page in your browser and you’ll be directed to
download the Node.js .pkg installer for macOS. Launch the file, agree to the
terms, and continue the installation.

Verify that Node.js and npm are installed correctly by running the following
commands in the terminal to view their version numbers:

node -v

npm -v

How to Install Node.js on Windows
You can perform a Windows installation of Node.js in three ways:

on Windows directly
on a Linux distro installed in WSL2 (refer to the “How to Install Node.js
on Linux (or Windows WSL2)” section above)
on both Windows and Linux!

To install on Windows, open the nodejs.org home page in your browser and
you’ll be directed to download the Node.js .msi installer. Launch the file,

https://nodejs.org/
https://nodejs.org/

agree to the terms, and continue the installation.

Verify that Node.js and npm are installed correctly by running the following
commands in the terminal to view their version numbers:

node -v

npm -v

How to Install Node.js on Other Devices
If you’re using another device, chances are you’ll find a Node.js distribution
somewhere. It may not be on the standard nodejs.org website, so try Googling
“install Node.js on [my-device’s-name]”.

For example, searching for “Install Node.js on Raspberry Pi” provides many
resources for installing Node.js on different editions of the hardware.

Run JavaScript Commands in the Node.js
REPL
Node.js provides a read-evaluate-print loop (REPL) language environment. It
will be familiar if you’ve ever opened a browser’s developer tools console,
and it’s useful for testing snippets of code.

Start the REPL from your terminal by entering node. You’ll see a prompt
such as this:

Welcome to Node.js v16.12.0.

Type ".help" for more information.

>

Enter a JavaScript command or expression at the > prompt. For example:

> const myname = 'World';

(Replace “World” with your own name in quotes.)

You’ll see undefined returned, because the expression doesn’t output

https://nodejs.org/
https://gist.github.com/stonehippo/f4ef8446226101e8bed3e07a58ea512a

anything. Now enter the following, to see “Hello World” (or whatever name
you used):

> console.log(`Hello ${ myname }`);

Again, undefined is shown because console.log() outputs a string and
doesn’t return a value.

You can enter any JavaScript expression. It’s not necessary to wrap it in a
console.log(). For example:

$ node

Welcome to Node.js v16.12.0.

Type ".help" for more information.

> 2+2

4

> const myname = 'World'

undefined

> `Hello ${ myname }`

'Hello World'

>

Finally, press Ctrl | Cmd + D to exit the REPL console.

You’re unlikely to use the REPL environment on a daily basis, but it can be
useful for evaluating simple expressions before adding them to a script.

Summary
In this chapter, you’ve learned how to install Node.js on a variety of devices
and run JavaScript commands in the REPL console. I've summarized it in this
chapter's video. In the next chapter, you’ll write your first JavaScript-
powered console and web applications.

Quiz
1. Versions of Node.js are available for:

a. most Linux distributions

https://vimeo.com/707851379/8058d096ad

b. macOS
c. Microsoft Windows
d. all of the above

2. What is nvm used for?

a. It’s an alternative to the standard npm.
b. It can install and manage different versions of Node.js on one device.
c. It’s a module search system.
d. It’s a text editor specifically designed for JavaScript applications.

3. What is REPL short for?

a. read-evaluate-print loop
b. read-execute-print loop
c. run-evaluate-print loop
d. read-execute-primary loop

Chapter 3: Your First Node.js
Application
In this chapter, you’ll write, run, and debug your first Node.js programs. To
keep it simple, these won’t use any third-party modules or npm. They’re self-
contained scripts that use the standard library provided in Node.js.

Your First Console App

Command-line console applications can be useful for automating tasks,
formatting data, manipulating files, or any other laborious job that’s best
handled by a computer.

Create a directory for your project, such as console:

mkdir console

cd console

Then add a file named hello.js with the following content:

#!/usr/bin/env node

// output message

console.log('Hello World!');

Save and run it from the command line:

node hello.js

You should now see Hello World!.

https://nodejs.org/api/

#!/What?

The first line in hello.js—#!/usr/bin/env node—is known as a shebang
or hashbang. It’s entirely optional and ignored when you run node
hello.js, because you’re passing the script to the Node.js runtime which
executes the code.

However, the shebang can be useful in Linux and macOS because it specifies
which runtime to use—in this case, node. You can run the script using
./hello.js alone but, before you can do that, you must permit direct
execution by entering the following OS command in your terminal:

chmod +x ./hello.js

From then on you can run the script from the command line using this:

./hello.js

The OS analyses the shebang and runs the code using Node.js. It’s not
necessary to enter the full node hello.js command, although that will
continue to work.

This is beyond the scope of Node.js and we won’t use it again, because npm
provides some cross-platform options. It’s there should you need it.

To make the script more useful, you could pass a name on the command line.

The process.argv property in the standard library returns an array containing
the command-line arguments:

the first (element 0) is the node command itself
the second (element 1) is the script you’re running (hello.js)
the third (element 2) is the first argument passed

Edit your hello.js script to extract the second argument and output it in the
console.log() statement:

#!/usr/bin/env node

// fetch name from command or fallback

const nameArg = (process.argv[2] || 'world');

// output message

console.log(`Hello ${ nameArg }!`);

Save this, then run node hello.js Craig to see Hello Craig!.

If you omit the parameter (node hello.js), the app falls back to Hello
world.

https://nodejs.org/api/process.html

The fallback text of “world” is a little boring, so you could fetch the user’s
name stored in the OS’s environment variables. The process.env property
returns an object containing environment variable name/value pairs. Try
entering process.env in the REPL. (See the section “Run JavaScript
Commands in the Node.js REPL” in Chapter 2 for more on this.)

Linux and macOS devices define a USER variable, while Windows sets
USERNAME. Ensure your script is cross-platform by examining both when
declaring nameArg:

// fetch name from command argument, environment, or fallback

const nameArg = (process.argv[2] || process.env.USER ||

process.env.USERNAME ||

➥ 'world');

Run the script with node hello.js and you’ll see Hello <yourname>. You
can still override your OS name by passing a parameter such as node
hello.js Craig.

You can add a finishing touch to your console app by capitalizing the initial
letter of any name. Here’s the final script:

#!/usr/bin/env node

// fetch name from command argument, environment, or fallback

const nameArg = capitalize(process.argv[2] || process.env.USER ||

➥process.env.USERNAME || 'world');

https://nodejs.org/api/process.html#process_process_env

// output message

console.log(`Hello ${ nameArg }!`);

// capitalize the first letter of all words

function capitalize(str) {

 return str

 .trim()

 .toLowerCase()

 .split(' ')

 .map(word => word.charAt(0).toUpperCase() + word.slice(1))

 .join(' ');

}

Run the script with this:

node hello.js "from my node.js script"

You’ll now see Hello From My Node.js Script!.

You can see a video demonstration of this in action here.

Your First Web Server App
Web applications require a web server to return HTML web pages when
they’re requested by a browser. The browser may then request other assets
such as CSS stylesheets, client-side JavaScript, images, and Ajax-powered

https://vimeo.com/707851527/a5abf8497a

APIs.

Dedicated web servers such as Apache and NGINX are often used for this
task. If Apache receives a request for a PHP file, it passes the content to the
PHP interpreter, which runs the code. Apache receives the resulting output
and returns it to the user’s browser. PHP developers often access Apache
server variables or tweak permissions to enhance their code.

Node.js takes a different approach: your JavaScript application is a web
server. This sounds as though it’s complex to code, but the HTTP and
HTTPS standard libraries do much of the work for you.

https://nodejs.org/api/http.html
https://nodejs.org/api/https.html

Create a directory for your project, such as server:

mkdir server

cd server

Then add a file named webhello.js with the following content:

#!/usr/bin/env node

const

 port = (process.argv[2] || process.env.PORT || 3000),

 http = require('http');

http.createServer((req, res) => {

 console.log(req.url);

 res.statusCode = 200;

 res.setHeader('Content-Type', 'text/html');

 res.end(`<p>Hello World!</p>`);

}).listen(port);

console.log(`Server running at http://localhost:${ port }/`);

Run it with node webhello.js and you’ll see Server running at
http://localhost:3000/ or similar. Open that address in your web browser
to view a web page with a “Hello World!” paragraph.

The code does the following:

It defines a variable for the server’s port. This can be passed on the
command line, a PORT environment variable, or it falls back to 3000.
It uses the HTTP createServer library to create a web server which
listens on that port. When its callback function receives a request, it can
examine the details in the req object and return a response using the res
object.

This is a simple example, and the server returns the same “Hello World!”

https://nodejs.org/api/http.html#http_http_createserver_options_requestlistener

response regardless of the URL. Try accessing http://localhost:3000/,
http://localhost:3000/abc/, or http://localhost:3000/abc/123/: every
page is the same.

Port 3000?

Web servers listen for HTTP requests on port 80 and HTTPS requests on port
443. You can set a different port, but you must specify it on the URL.

Using the standard ports has drawbacks:

They may be in use by other software, such as other web servers or
Skype.
Linux and macOS block apps listening on ports below 1000 unless
they’re launched by a superuser. This grants your script unlimited rights,
where it could do anything such as wiping your OS or posting
passwords to Twitter. Remember, you’re running your code as well as
hidden code inside Node.js and any modules you’ve installed.

It’s safer to run web applications with standard permissions on a higher port.
Live production servers can use a web server such as NGINX to forward
requests to Node.js.

Let’s improve the application by saying “hello” to a string passed on the
URL. The URL is available in req.url, so you can strip any non-word
characters and capitalize as before. Update the script to this:

#!/usr/bin/env node

const

 port = (process.argv[2] || process.env.PORT || 3000),

 http = require('http');

http.createServer((req, res) => {

 console.log(req.url);

 const nameArg = capitalize(req.url.replace(/[^\w.,-]/g, '

').replace

 ➥(/\s+/g, ' ').trim() || 'world');

 res.statusCode = 200;

 res.setHeader('Content-Type', 'text/html');

 res.end(`<p>Hello ${ nameArg }!</p>`);

}).listen(port);

console.log(`Server running at http://localhost:${ port }/`);

// capitalize the first letter of all words

function capitalize(str) {

 return str

 .trim()

 .toLowerCase()

 .split(' ')

 .map(word => word.charAt(0).toUpperCase() + word.slice(1))

 .join(' ');

}

Now open http://localhost:3000/from/Node.js in your browser. Chances
are that you’ll see “Hello World!”, because your previous application
instance is still running!

Switch to the terminal and press Ctrl | Cmd + C to stop the application. Restart
it with node webhello.js, return to your browser, and refresh the page to see
“Hello From Node.js!”

Experiment with different URL paths and analyze the nameArg declaration to
understand how it works.

Switch back to the Node.js terminal after you’ve tried a few URLs. It’s
logging each request, and you’ll see something like this:

$ node webhello.js

Server running at http://localhost:3000/

/from/Node.js

/favicon.ico

/craig

/favicon.ico

What are those unexpected /favicon.ico requests? You’ll investigate further
and debug in the next chapter.

Restarting Node.js Applications with Nodemon

You must restart a running Node.js application every time you make a
change. Pressing Ctrl | Cmd + C and launching again will quickly become
tiresome.

Nodemon is a utility that monitors your source files for changes and
automatically restarts the application. Install it globally with npm:

npm install -g nodemon

You can now use nodemon in place of node to launch any Node.js application.
For example:

nodemon webhello.js

(You can pass any arguments as before.)

When you save a code change, Nodemon restarts the application and you’ll
see a log entry in the terminal:

[nodemon] restarting due to changes...

[nodemon] starting `node webhello.js`

If it doesn’t work, try running nodemon with the --legacy-watch / -L
argument:

nodemon -L webhello.js

Refer to the Nodemon documentation for more options.

Executing Scripts from Windows Powershell

By default, Windows Powershell won’t let you execute third-party scripts
such as nodemon. Enter this command in a Powershell window to permit
script execution:

Set-ExecutionPolicy RemoteSigned -Scope CurrentUser

https://nodemon.io/
https://github.com/remy/nodemon

You can find a video demonstration of the web application in action here.

Web Application Considerations

Complexity Ahead

This section covers some advanced topics. Don’t worry if it doesn’t make
sense now. We’ll revisit the information later.

It’s astonishing that this lightweight script implements a functional web
server. The app is permanently on, and it can retain its own state regardless of
the number of users. For example, it could establish a database connection
once at start-up, then reuse that same connection on every request.
Apache/PHP environments are usually stateless, so every page request must
load configuration parameters and connect to a database before running a
query.

However, Node.js applications run on a single processing thread:

If your app fails, it fails for everyone and won’t restart unless you have
appropriate monitoring in place. Options including PM2 and forever can
help.
If a single user triggers a long-running JavaScript function that takes ten
seconds to complete, every user accessing at that time will be waiting at
least ten seconds for a response. Asynchronous code solves the problem,
but it takes time to understand the concepts.
Scaling an application can be difficult. Throwing more RAM or CPUs
onto an Apache/PHP server will improve response times. Node.js still
runs on a single CPU core even when that CPU has 15 more at its
disposal. Solutions such as clustering, PM2, and Docker containers can
help by launching multiple instances of the same application.

In addition, Node.js web servers are not efficient at serving static files such as
images, stylesheets, and client-side JavaScript. Production sites often use a
front-end NGINX web server to serve static files or direct the request to the
Node.js application when appropriate. This is known as a reverse proxy and it
has benefits, such as:

https://vimeo.com/707851682/165b441f04
https://pm2.keymetrics.io/
https://www.npmjs.com/package/forever
https://nodejs.org/api/cluster.html
https://pm2.keymetrics.io/

Static assets are served without any Node.js interaction. This avoids
unnecessary processing and improves performance.
Settings such as HTTPS certificates can be handled by NGINX rather
than Node.js. This is especially practical when you have more than one
instance of the same Node.js application running.
A Node.js app can run on a port above 1000, so it doesn’t need elevated
superuser permissions.

Write Stateless Applications

Suppose your single Node.js app kept count of the number of logged-in users
in single global variable named userCount.

What would happen if you wanted to improve performance by launching two
or more instances of the same app—perhaps on other servers? Any instance
could handle a user login. The userCount value would be different—and
wrong—on each running instance of the app.

During development, you’ll often work on a single running instance.
However, I recommend you make it stateless to ensure it can scale and be
more resilient. Always presume:

multiple instances could be running anywhere, possibly on different
ports or servers
an instance can be started or stopped at any time
a frontend web server will direct a single user’s request to any instance
—regardless of which instance handled a previous request

In essence, avoid storing application or user state in variables or local files
that could differ across instances. Use a database to retain state so every
instance of the application can be synchronized.

Summary
In this chapter, you’ve learned how to write simple console and web server
applications using Node.js libraries alone. You’ve also seen how nodemon can
automatically restart your app after updating code.

In the next chapter, you’ll discover options for debugging and fixing
problems in your Node.js code.

Quiz
1. Which of the following statements is true:

a. Node.js can only run web apps.
b. Node.js web apps require web server software such as NGINX to run.
c. Node.js web apps don’t require web server software, but NGINX or
similar can be beneficial on production sites.
d. Node.js isn’t suitable for running production web applications.

2. Which steps are necessary after modifying a Node.js app?

a. Use a tool such as nodemon to monitor for changes and restart the
application.
b. If it’s already running, stop the application with Ctrl | Cmd + C and
restart it.
c. Close the terminal, open a new one, and start the application again.
d. Any of the above.

3. Which Node.js object property returns command line arguments?

a. process.arg
b. process.argv
c. process.argument
d. process.env

4. Which Node.js object property returns environment variables?

a. process.env
b. process.envv
c. process.environment
d. process.arg

5. Can you launch multiple instances of the same Node.js app to improve
resilience and performance?

No. Only a single instance of a Node.js app can be launched at a time.
Yes, but each instance must be on a separate real or virtual server.
Yes, but containerization software such as Docker is essential.
Yes, but the application should be stateless and receive requests via a
load balancer or web server.

Chapter 4: How to Debug
Node.js Scripts
Tutorials often describe debugging in the final chapters. This can be
frustrating if you encounter a problem at the start of your coding journey—
which you will. Software development is complex.

If you’re lucky, your code will crash with an obvious error message. If you’re
unlucky, your application will carry on regardless but not generate the results
you expect. If you’re really unlucky, everything will work fine until the first
user to arrive discovers a catastrophic, disk-wiping bug.

Skip Ahead?

This is a long chapter that describes several debugging options. You can skip
ahead to the “Exercise: Debugging webhello.js” section (near the end of the
chapter) if you’d like to get going. That said, a little learning now could save
hours of effort later!

What is Debugging?

Debugging is the black art of fixing software defects. Fixing a bug is often
easy; a corrected character or additional line of code solves the problem.
Finding that bug is another matter, and developers can spend many
frustrating hours locating the source of an issue. Fortunately, Node.js has
some great tools to help trace problems.

How to Avoid Bugs

You can often prevent bugs before you test your application. Let’s look at
some ways.

Use a Good Code Editor

A good code editor offers features such as:

line numbering to locate where an error occurred
type checking—for example, to ensure a number variable can’t have a
string assigned
color-coding to catch syntax issues, such as invalid statements or
missing quotes
auto-completion of variable names, function names, properties, etc.
bracket matching to highlight problems in nested structures
auto-indentation that uses the correct tab or space characters
variable renaming across files and projects
snippet saving and reuse
parameter prompts for functions, properties, and methods
function navigation to jump to a declaration
unreachable code detection
refactoring tools to rearrange messy code

Node.js developers are spoiled for choice, with editors such as VS Code,
Atom, and Sublime Text.

Use a Code Linter

A linter reports faults such as syntax errors, poor indentation, undeclared
variables, mismatching brackets, and your own preferences (semicolons,
quote usage, etc.) before you save and test your code. Popular options for
JavaScript and Node.js include ESLint, JSLint, and JSHint.

These can be installed as global Node.js modules. For example, here’s how to
install ESLint globally using npm:

npm install eslint -g

You can then check files from the command line:

eslint myscript.js

https://code.visualstudio.com/
https://atom.io/
https://www.sublimetext.com/
https://eslint.org/
https://www.jslint.com/
https://jshint.com/

However, most linters have code editor plugins, such as ESLint for VS Code
and linter-eslint for Atom, which check your code as you type.

https://marketplace.visualstudio.com/items?itemName=dbaeumer.vscode-eslint
https://atom.io/packages/linter-eslint

Use Source Control

A source control system such as Git can help safeguard your code and
manage revisions. It becomes easier to discover where and when a bug was
introduced and who should receive the blame! Online repositories such as
GitHub and Bitbucket offer free space and management tools.

Adopt an Issue-tracking System

Does a bug exist if no one knows about it? An issue-tracking system is used
to report bugs, find duplicates, document reproduction steps, determine
severity, calculate priorities, assign developers, record discussions, and track
progress of fixes.

Online source code repositories often offer basic issue tracking, but dedicated
solutions such as Jira, FogBugz, or Bugzilla may be appropriate for larger
teams and projects.

https://git-scm.com/
https://github.com/
https://bitbucket.org/
https://www.atlassian.com/software/jira
https://fogbugz.com/
https://www.bugzilla.org/

Use Test-driven Development

Test-driven development (TDD) is a development process that encourages
developers to write code to test the operation of a function before that
function is written—as in is X returned when function Y is passed input Z?

Tests are run as you develop code to prove the resulting function works as
expected. The same test can be rerun to spot issues as further changes are
made. Of course, your tests could have bugs too!

Further resources:

TDD overview at Wikipedia
“What is Test Driven Development”
“Master Test-driven Development in Node.js”

Node.js Debugging Environment Variables

Environment variables set within the host operating system control Node.js
application settings. The most common is NODE_ENV, which is typically set to
development when debugging or production on a live server.

Environment variables can be set on Linux/macOS:

NODE_ENV=development

This is the Windows Command Prompt:

set NODE_ENV=development

This is for Windows Powershell:

$env:NODE_ENV="development"

Internally, your own application can detect the setting and enable debugging
messages when necessary. For example:

// running in development mode?

const DEVMODE = (process.env.NODE_ENV !== 'production');

https://en.wikipedia.org/wiki/Test-driven_development
https://www.browserstack.com/guide/what-is-test-driven-development
https://www.sitepoint.com/premium/courses/master-test-driven-development-in-node-js-2932
https://nodejs.org/api/cli.html#environment-variables

if (DEVMODE) {

 console.log('application started in development mode');

}

NODE_DEBUG enables debugging messages using the Node.js util.debuglog.
(See the “Node.js util.debuglog” section below.) You should also consult
the documentation of your primary modules and frameworks to discover
further logging options.

Node.js Debugging Command-line Options
Various command-line options can be passed to the node or nodemon runtime
when launching an application. One of the most useful is --trace-warnings,
which outputs stack traces when promises don’t resolve or reject as expected:

node --trace-warnings index.js

Other options include:

--enable-source-maps: enable source maps when using a transpiler
such as TypeScript
--throw-deprecation: throw errors when deprecated features are used
--inspect: activate the V8 inspector (see the “Node.js V8 Inspector”
section below)

Console Debugging
One of the easiest ways to debug an application is to output values to the
console during execution:

console.log(myVariable);

Never Use console.log()?!

Some developers claim you should never use console.log(), because you’re
changing code and there are better debugging options. This is true—but
everyone does it!

https://nodejs.org/api/cli.html

Use whatever tool makes you productive. Console logging can be a quick and
practical option. Finding a bug is more important than the method you used
to find it.

Few developers delve beyond the standard console.log() command, but
they’re missing out on many more possibilities:

console method Description
.log(msg) output a message to the console
.log('%j',

obj)
output an object as a compact JSON string

.dir(obj,opt) uses util.inspect to pretty-print objects and properties
.table(obj) outputs arrays of objects in tabular format
.error(msg) output an error message

.count(label)
a named counter reporting the number of times the line has
been executed

.countReset[la

bel]
resets a named counter

.group(label) indents a group of log messages
.groupEnd(labe

l)
ends the indented group

.time(label) starts a timer to calculate the duration of an operation
.timeLog([labe

l]
reports the elapsed time since the timer started

.timeEnd(label

)
stops the timer and reports the total duration

.trace() outputs a stack trace (a list of all calling functions)

.clear() clear the console

console.log() accepts a list of comma-separated values. For example:

let x = 123;

console.log('x:', x);

// x: 123

However, ES6 destructuring offers similar output with less typing effort:

console.log({ x });

https://nodejs.org/api/console.html
https://nodejs.org/api/console.html#console_console_log_data_args
https://nodejs.org/api/console.html#console_console_dir_obj_options
https://nodejs.org/api/util.html#utilinspectobject-options
https://nodejs.org/api/console.html#console_console_table_tabulardata_properties
https://nodejs.org/api/console.html#console_console_error_data_args
https://nodejs.org/api/console.html#console_console_count_label
https://nodejs.org/api/console.html#console_console_countreset_label
https://nodejs.org/api/console.html#console_console_group_label
https://nodejs.org/api/console.html#console_console_groupend
https://nodejs.org/api/console.html#console_console_time_label
https://nodejs.org/api/console.html#console_console_timelog_label_data
https://nodejs.org/api/console.html#console_console_timeend_label
https://nodejs.org/api/console.html#console_console_trace_message_args
https://nodejs.org/api/console.html#console_console_clear
https://www.sitepoint.com/es6-destructuring-assignment/

// { x: 123 }

util.inspect can format objects for easier reading, but console.dir() does
the hard work for you:

console.dir(obj, { depth: null, color: true });

Node.js util.debuglog
The Node.js util module offers a built-in debuglog method that
conditionally writes log messages to STDERR:

const util = require('util');

const debuglog = util.debuglog('myapp');

debuglog('myapp debug message [%d]', 123);

When the NODE_DEBUG environment variable is set to myapp (or a wildcard
such as * or my*), debugging messages are displayed in the console:

MYAPP 9876: myapp debug message [123]

(9876 is the Node.js process ID.)

Debugging with Logging Modules
Third-party logging modules are available should you require more
sophisticated options for messaging levels, verbosity, sorting, file output,
profiling, reporting, and more. Popular solutions include:

cabin
loglevel
morgan (Express middleware)
pino
signale
storyboard
tracer
winston

https://nodejs.org/api/util.html#utilinspectobject-options
https://nodejs.org/api/util.html#utildebuglogsection-callback
https://www.npmjs.com/package/cabin
https://www.npmjs.com/package/loglevel
https://www.npmjs.com/package/morgan
https://www.npmjs.com/package/pino
https://www.npmjs.com/package/signale
https://www.npmjs.com/package/storyboard
https://www.npmjs.com/package/tracer
https://www.npmjs.com/package/winston

Node.js V8 Inspector

The following sections use the webhello.js script developed in the previous
chapter to illustrate debugging concepts.

Node.js is a wrapper around the V8 JavaScript engine. V8 includes its own
inspector and debugging client. Use the inspect argument to start an
application (not to be confused with the --inspect flag—which is covered
below in the “Debugging Node.js Apps with Chrome” section):

node inspect webhello.js

The debugger pauses at the first line and displays a debug prompt:

$ node inspect webhello.js

< Debugger listening on ws://127.0.0.1:9229/8bf7669c-b3b4-43e6-

9f96-3b40abbcb479

< For help, see: https://nodejs.org/en/docs/inspector

<

connecting to 127.0.0.1:9229 ... ok

< Debugger attached.

<

Break on start in webhello.js:4

 2

 3 const

> 4 port = (process.argv[2] || process.env.PORT || 3000),

 5 http = require('http');

 6

Enter help to view a list of commands. You can step through the application
with these options:

cont or c: continue execution
next or n: run the next command
step or s: step into a function being called
out or o: step out of a function and return to the calling command
pause: pause running code

Other options include:

watching variable values with watch('myvar')

https://nodejs.org/api/debugger.html
https://nodejs.org/api/debugger.html#debugger_watchers

setting breakpoints with the setBreakpoint()/sb() command (although
it’s easier to insert a debugger; statement in your code)
restart a script
.exit the debugger (the initial . is required)

If this sounds horribly clunky, it is. Only use the built-in debugging client
when there’s absolutely no other option or you’re feeling masochistic.

Debugging Node.js Apps with Chrome
Start the Node.js V8 inspector with the --inspect flag:

node --inspect webhello.js

(nodemon can be run instead of node if necessary.)

This starts the debugger listening on 127.0.0.1:9229, which any local
debugging client can attach to:

Debugger listening on ws://127.0.0.1:9229/20ac75ae-90c5-4db6-

af6b-d9d74592572f

If you’re running the Node.js application on another device or Docker
container, ensure port 9229 is accessible and grant remote access using this:

node --inspect=0.0.0.0:9229 webhello.js

Alternatively, use --inspect-brk to halt processing the first statement so you
can step through the application line by line.

Open the Chrome browser and enter chrome://inspect in the address bar.

https://nodejs.org/api/debugger.html#debugger_breakpoints

Not Using Chrome?

Chromium, Edge, Opera, Vivaldi, and Brave all have the same debugger as
Chrome. The chrome://inspect address should work identically.

Remote Target

If the Node.js application doesn’t appear as a Remote Target, ensure
Discover network targets is checked, then click Configure to add the IP
address and port of the device where the application is running.

Click the Target’s inspect link to launch DevTools. This will be immediately
familiar to anyone who’s used browser developer tools.

In the Sources pane, click + Add folder to workspace, select where your
Node.js files are located, and hit Agree. Open webhello.js in the left-hand
pane or by pressing Ctrl | Cmd + P.

Click any line number to set a breakpoint denoted by a blue marker. A
breakpoint specifies where the debugger should pause processing so you can

inspect the state of the program. You can define any number of breakpoints.

Debugger Statement

Processing also halts at any debugger statement in your code when it runs
using the V8 inspector. This may be practical when sharing code or
debugging across multiple devices, although you may want to remove those
commands before committing the code to source control or releasing on a
live server.

Refresh/open http://localhost:3000/ in your browser and code execution stops
when that breakpoint is reached.

http://localhost:3000/

The right-hand panels include:

a Watch pane, which allows you to monitor variables by clicking the +
icon and entering their name
a Breakpoints pane, which shows a list of all breakpoints and allows
them to be enabled or disabled
a Scope pane, which shows the state of all available local and global
variables
a Call Stack pane, which shows the functions that were called to reach
this point

The row of icons above the Paused on breakpoint message is pictured
below.

These options perform the following actions (from left to right):

1. resume execution: continue processing until the next breakpoint
2. step over: execute the next command but stay within the current

function; don’t jump into any function it calls
3. step into: execute the next command and jump into any function it calls
4. step out: continue processing to the end of the function and return to the

calling command
5. step: similar to step into, except it won’t jump into async functions
6. deactivate all breakpoints
7. pause on exceptions: halt processing whenever an error occurs

You can find a video demonstration of debugging with Chrome here.

Debugging Node.js Apps with VS Code
Node.js debugging in VS Code requires no configuration when you run a
Node.js application on your local system. Open the starting file (use
webhello.js here), activate the Run and Debug pane, click the Run and
Debug Node.js button, and choose the Node.js environment.

https://vimeo.com/707851882/991fa1f38f

The debugging screen is similar to the DevTools screen, with a Variables,
Watch, Call stack, Loaded scripts, and Breakpoints list. Set a breakpoint
by clicking the left-hand gutter next to the line number. A red dot icon
appears. Refresh http://localhost:3000/ in your browser and execution will
halt on the breakpoint line so you can examine the program state.

http://localhost:3000/

The icons in the debugging toolbar at the top are used to resume execution,
step over, step into, step out, restart, or stop the application. Identical options
are available from the Run menu.

You can also right-click a line number.

Once you’ve done that, you can set the following:

A standard breakpoint.
A conditional breakpoint that halts the program when criteria are met—
such as count > 3.
A logpoint. This is effectively console.log() without code! Enter any
string with evaluated expressions in curly braces. For example, URL: {
req.url } outputs the value of the req.url property.

The DEBUG CONSOLE displays the logpoint value when the web page is
refreshed.

For more information, refer to “Debugging in Visual Studio Code”.

Advanced Debugging Configuration

VS Code configuration is necessary when you’re debugging code on another
device, a virtual machine, or you want to use different launch options. VS
Code stores launch configurations in a launch.json file inside a .vscode
folder in your project. To generate the file, click the create a launch.json file
link at the top of the Run and Debug pane and choose the Node.js
environment.

https://code.visualstudio.com/docs/introvideos/debugging

You can add any number of configuration setting objects to the
"configurations": [] array. Click the Add Configuration button to add an
appropriate option. VS Code can either:

Launch a process using Node.js itself
Attach to a Node.js inspector process, perhaps running on a remote
machine or Docker container

The screenshot above shows a nodemon launch configuration. The Add
Configuration button provides a nodemon option; it’s only necessary to edit
the "program" property to point at ${workspaceFolder}/webhello.js.

Save launch.json, then select nodemon from the drop-down list at the top of
the Run and Debug pane, and click the green run icon.

nodemon will launch your application. You can edit the code and set
breakpoints or logpoints as before.

For further information, refer to the VS Code launch configurations.

VS Code can debug any Node.js application, but the following extensions can
make life easier:

Remote - Containers: connect to apps running in Docker containers
Remote - WSL: connect to apps running on Linux in WSL on Windows

Other Node.js Debugging Tools
The Node.js Debugging Guide provides advice for other IDEs and editors
including Visual Studio, JetBrains, WebStorm, Gitpod, and Eclipse. Atom
also has a node-debug extension.

ndb offers an improved debugging experience with powerful features such as
attaching to child processes and script blackboxing so that only code in
specific folders is shown.

The IBM report-toolkit for Node.js works by analyzing data output when
node runs with an --experimental-report option.

Finally, commercial services such as LogRocket and Sentry.io integrate with

https://code.visualstudio.com/docs/editor/debugging#_launch-configurations
https://marketplace.visualstudio.com/items?itemName=ms-vscode-remote.remote-containers
https://marketplace.visualstudio.com/items?itemName=ms-vscode-remote.remote-wsl
https://nodejs.org/en/docs/guides/debugging-getting-started/
https://atom.io/packages/node-debug
https://github.com/GoogleChromeLabs/ndb
https://github.com/ibm/report-toolkit
https://logrocket.com/
https://sentry.io/

your live web application on both the client and the server to record errors as
they’re encountered by real users.

Exercise: Debugging webhello.js
The webhello.js code has a strange bug where an unexpected /favicon.ico
request is logged. To examine what’s happening, launch VS Code and open
the folder containing webhello.js. Then:

1. Switch to the Run and Debug pane.
2. Click create a launch.json file and choose the Node.js environment.
3. Click the Add Configuration button and choose Node.js: Nodemon

setup. (You’ll now have two objects inside the "configurations"
array. You can delete the second one.)

4. Change the "program" value to "${workspaceFolder}/webhello.js".
5. Save the file and open webhello.js.
6. Click the + icon in the Watch pane and add the expression req.url.
7. Click the + icon in the Watch pane and add the expression nameArg.
8. Add a breakpoint to the line starting res.end by clicking to the left of

the line number. A red circle icon will appear.
9. Click the nodemon green start icon at the top of the Run and Debug

pane.
10. The web application will start.

Now open http://localhost:3000/ in your browser and processing will halt at
the breakpoint. Assuming you haven’t used a different path on the URL, the
Watch pane will show:

req.url: `/`

nameArg: `World`

Click the Continue icon or press F5 to resume processing. At this point, the
browser will show “Hello World!”—but the breakpoint will trigger again.

http://localhost:3000/

The Watch pane shows:

req.url: `/favicon.ico`

nameArg: `Favicon.ico`

(If this doesn’t happen, try a hard refresh in your browser—usually Ctrl +
F5 on Windows and Linux or Cmd + R on macOS.)

When a browser makes its first request for a web page, it also requests a
favicon.ico image. This is the icon shown to the left of the page’s title in
the browser tab.

A web server would normally send an appropriate image or return an HTTP
404 Not found error. However, your Node.js application treats it like any
other request and returns the HTML text "Hello Favicon.ico", which the
browser can’t use.

It’s not a catastrophic bug, but both the browser and server are doing
unnecessary work. Fix it by adding a check at the top of the createServer
callback function, which returns a 404 error:

http.createServer((req, res) => {

 // abort favicon.ico request

 if (req.url.includes('favicon.ico')) {

 res.statusCode = 404;

 res.end('Not found');

 return;

 }

Save webhello.js, and nodemon will restart the application. Try refreshing
your browser again and the breakpoint triggers just once.

To finish debugging, click the red square Stop icon in the debugging toolbar.

You can find a video demonstration of debugging with VS Code here.

Summary

https://vimeo.com/707852019/3d44975aba

This chapter has illustrated options for debugging Node.js applications. Use
whatever makes you productive, but I generally use console logging for quick
and dirty bug hunting and VS Code when things get complicated.

In the next chapter, you’ll start to write more complex Node.js code using
npm and third-party modules.

Debugging Terminology

Debugging has its own selection of obscure jargon. We’ve covered most
aspects throughout this chapter, but you could encounter terms like the ones
shown below.

Term Explanation
breakpo

int
a line at which a debugger halts a program so its state can be
inspected

breakpo
int

(conditi
onal)

a breakpoint triggered by a certain condition, such as a value
reaching 100. Also known as a watchpoint

debugge
r

a tool that offers debugging facilities such as running code line by
line to inspect internal variable states

duplicat
ion

a reported bug that has already been reported—perhaps in a
different way

feature as in the claim: “it’s not a bug, it’s a feature”. You’ll find yourself
saying this at some point

frequen
cy how often a bug occurs

it
doesn’t

work
the most-often made but least useful bug report

logpoint a debugger instruction that shows the value of an expression during
execution

logging output of runtime information to the console or a file

logic

error the program works but doesn’t act as intended

priority where a bug is allocated on a list of planned updates
race

conditio
n

hard-to-trace bugs dependent the sequence or timing of
uncontrollable events

refactor
ing rewriting code to help readability and maintenance

regressi
on

re-emergence of a previously fixed bug perhaps owing to other
updates

related a bug that’s similar or related to another
reprodu

ce the steps required to cause the error

RTFM
error

user incompetence disguised as a bug report, typically followed by
a developer’s response that they should “Read The Friendly
Manual”

step into when running code line by line in a debugger, step into the
function being called

step out when running line by line, complete execution of the current
function and return to the calling code

step
over

when running line by line, complete execution of a command
without stepping into a function it calls

severity
the impact of a bug on system. For example, data loss would
normally be considered more problematic than a one-pixel UI
alignment issue unless the frequency of occurrence is very low

stack
trace the historical list of all functions called before the error occurred

syntax
error typographical errors, such as console.lug()

user
error

an error caused by a user rather than the application. This may still
incur an update, depending on the seniority of the person who
caused it!

watch a variable or expression output during debugger execution

Quiz

1. You can debug Node.js apps by:

a. using the command-line V8 inspector
b. attaching to the process using Chrome DevTools
c. using a suitable editor such as VS Code
d. all of the above

2. What command would be suitable for outputting the values contained in a
JavaScript object?

a. console.log('%j', obj)
b. console.table(obj)
c. console.dir(obj, { depth: null, color: true })
d. any of the above

3. A breakpoint is:

a. triggered by console.log()
b. a point at which processing halts during execution
c. a statement to stop the program, such as exit
d. the moment a developer chooses to stop work

4. A logpoint is:

a. used to show the value of an expression during execution
b. an alternative name for a breakpoint
c. a reference to a console.log() statement
d. a specific line in an output log

5. console.log():

a. should never be used
b. should only be used when there’s no other option
c. should be used if it’ll help locate a bug
d. is impractical for debugging

Chapter 5: Getting Started with
Express
In this chapter, you’ll create a web server application that constructs and
returns simple web pages. It will help you become more familiar with:

npm (Node Package Manager)
ES6 modules
the Express framework
URL routing
HTML template engines

Why use Express?

You created a small web server application in Chapter 3. It’s fast, and it
works well, but a complex web application requires features such as URL
routing, query string parsing, posted data decoding, HTML templates, image
serving, and more. You could write this yourself, but much of that effort is
already implemented in Express.

Express is a Node.js web server framework that promotes itself as “fast,
unopinionated, and minimalist”. It allows you to concentrate on your
application’s business logic without having to worry too much about web
server technicalities such as URL routing, parsing data, setting HTTP
headers, and so on.

Various web server frameworks are available in the Node.js ecosystem,
including Fastify, Koa, and Hapi. These may be more recent, more regularly
maintained, faster, and a better fit for your application. However, Express
was one of the first web frameworks and influenced all that followed. It’s
stable, easy to use, and remains popular, with 18 million downloads per
week. You’re more likely to encounter Express than another framework.

https://expressjs.com/
https://www.fastify.io/
https://koajs.com/
https://hapi.dev/

Express Version

At the time of writing, Express 4 is the active recommended release and
Express 5 is in alpha. All the examples below should work in either, but
switch to version 4 if you have problems.

Create a New Node.js Project

Create and access a project directory for your new application. A name such
as express is fine:

mkdir express

cd express

Create a New Git Repository

For real projects, I recommend creating a new Git repository and cloning it
accordingly. This is easier than attempting to Git-ify a partially written
project later.

Run npm init to initialize a new Node.js project. npm will prompt you for
values, but you can hit Enter to accept the defaults.

npm saves the settings to a new package.json file in your project’s root
directory:

{

 "name": "express",

 "version": "1.0.0",

 "description": "Example Express app",

 "main": "index.js",

 "scripts": {

 "test": "echo \"Error: no test specified\" && exit 1"

 },

 "author": "Craig Buckler",

 "license": "MIT"

}

package.json provides a single place to configure your application. It
contains the name, the version, the main entry/starting script, useful
application scripts, configuration data, and module dependencies.

Semantic Versioning

Most Node.js projects use semantic versioning, with three
MAJOR.MINOR.PATCH numbers such as 1.2.33. When a change occurs, you
increment the appropriate number and zero those that follow:

MAJOR for major updates with incompatible API changes
MINOR for new functionality that doesn’t affect backwards compatibility
PATCH for bug fixes

Switch to ES6 Modules
Ensure your project uses standard ES6 modules by adding "type":
"module", to package.json in your editor (it can go anywhere in the root
object, but is placed above "main" here):

{

 "name": "express",

 "version": "1.0.0",

 "description": "Example Express app",

 "type": "module",

https://semver.org/

 "main": "index.js",

 "scripts": {

 "test": "echo \"Error: no test specified\" && exit 1"

 },

 "author": "Craig Buckler",

 "license": "MIT"

}

ES6 modules are identical to those used in web browsers. Node.js uses
CommonJS by default, but ES6 support arrived in version 13. ES6 modules
will become predominant over time, so we’ll use ES6 throughout this course.

Node can import CommonJS modules using ES6 syntax. It will also make
suggestions if there’s a potential issue or conflict. However, you may
encounter problems with some modules written in CommonJS syntax,
especially if they haven’t been updated for a few years.

Install Express
Install Express from your project directory using npm:

npm install express

After completion, your package.json file will have a new "dependencies"
object, which lists the modules required when your project runs. It contains a
reference to "express" and its latest version number (the leading ^ means

Express can upgrade to a compatible version such as 4.17.2 or 4.18.0 but
not 5.0.0):

{

 "name": "express",

 "version": "1.0.0",

 "description": "Example Express app",

 "type": "module",

 "main": "index.js",

 "scripts": {

 "test": "echo \"Error: no test specified\" && exit 1"

 },

 "author": "Craig Buckler",

 "license": "MIT",

 "dependencies": {

 "express": "^4.17.1"

 }

}

You’ll also find the following:

a new package-lock.json file for npm internal use, which lists all the
installed modules
a new node_modules folder, which contains the Express module and all
submodules code (around 2MB of files)

Runtime Dependencies and Development Dependencies

A module such as Express is required for your application to run. It’s a
dependency.

You can also install development dependencies, which are typically build
tools that are only required on your development PC. Examples include
JavaScript bundlers such as Rollup, CSS preprocessors such as Sass, and live
reload systems such as Browsersync.

npm presumes a module is a runtime dependency unless you add the --save-
dev switch during installation. For example:

npm install browser-sync --save-dev

https://rollupjs.org/
https://sass-lang.com/
https://browsersync.io/

This installs Browsersync, but references it in a "devDependencies" object in
package.json. Running npm install on a production server where the
NODE_ENV environment variable is set to production would not install
Browsersync.

The distinction between a dependency and a development dependency is not
always straightforward. For example, you could run Rollup on a production
server to create minified JavaScript files.

Create the Express Entry Script
You can now write code that uses Express to create a web application. Add a
new index.js file in the project directory with the following code:

// Express application

import express from 'express';

// configuration

const

 cfg = {

 port: process.env.PORT || 3000

 };

// Express initiation

const app = express();

// home page route

app.get('/', (req, res) => {

 res.send('Hello World!');

});

// start server

app.listen(cfg.port, () => {

 console.log(`Example app listening at http://localhost:${

cfg.port }`);

});

To make starting this app a little easier, edit package.json and change the
"scripts" object to this:

 "scripts": {

 "start": "nodemon index.js"

 },

https://rollupjs.org/

If you don’t have nodemon installed, you can install it globally with npm
install nodemon -g. If you’d rather use node directly, use "node
index.js" as your "start" script (but you’ll need to stop and restart your
app every time you want to test a change).

Start the application with npm start and browse to http://localhost:3000.

The script imports the express module and creates an instance named app.

http://localhost:3000

A single routing function is defined to handle HTTP GET requests to the root
/ path:

// home page route

app.get('/', (req, res) => {

 res.send('Hello World!');

});

What Is Routing?

Routing determines which functions Express executes when it receives a
request for a specific URL, such as / or /another/path/.

Ultimately, one function will return an HTTP response and terminate further
processing. The order of your routing functions is therefore critical: a
function won’t run if an earlier function completes the request.

A routing function is passed these two objects:

An Express HTTP Request object (req), which contains details about
the browser’s request.
An Express HTTP Response object (res), which provides methods used
to return a response to the browser. It sends “Hello, World!” text.

Try adding another routing function below the / handler to handle HTTP
GET requests to /hello/:

// another route

app.get('/hello/', (req, res) => {

 res.send('Hello again!');

});

Once the application has restarted, open http://localhost:3000/hello/ in your
browser to see a “Hello again!” message.

No other URL routes are defined. Entering a different URL path in the
browser—such as http://localhost:3000/abc—returns Cannot GET /abc.
Routing is a central part of Express, and the framework provides options for
parsing and responding to different URLs.

https://expressjs.com/en/4x/api.html#req
https://expressjs.com/en/4x/api.html#res
http://localhost:3000/hello/
http://localhost:3000/abc
https://expressjs.com/en/4x/api.html#router

The end of the script has an app.listen() call to start the Express server
listening on the defined port.

See the course code/ch05/express01 directory and associated video to run
the code created so far.

Should You Switch to HTTPS?
Probably not.

All the Node.js examples in this course respond to HTTP requests on port
3000 by default:

// start server

app.listen(cfg.port, () => {

 console.log(`Example app listening at http://localhost:${

cfg.port }`);

});

HTTPS requires a Secure Socket Layer (SSL) certificate. These are issued by
certificate authorities for use on a specific domain to encrypt tamper-proof
data between the browser and server.

For local testing, developers often create their own self-signed certificates
using the command line or online tools.

If you have a private key file named server.key, and a site certificate named
server.crt, an Express app can read the SSL files, create an HTTPS server,
and pass the Express app object as a listener:

// start HTTPS server

import { createServer } from 'https';

import { readFileSync } from 'fs';

createServer(

 {

 key: fs.readFileSync('./server.key'),

 cert: fs.readFileSync('./server.crt')

 },

 app

).listen(cfg.port);

https://github.com/spbooks/ultimatenode1/tree/main/ch05/express01
https://vimeo.com/707852179/3a792263ec
https://linuxize.com/post/creating-a-self-signed-ssl-certificate/
https://www.selfsignedcertificate.com/
https://nodejs.org/dist/latest/docs/api/fs.html#fsreadfilesyncpath-options
https://nodejs.org/dist/latest/docs/api/https.html#httpscreateserveroptions-requestlistener

(This replaces the HTTP app.listen() code above.)

Your application will now accept requests to https://localhost:3000/
—although your browser will warn that the certificate has not been issued by
a recognized Authority.

Problems with this approach include the following:

You must manage different sets of certificates for production, staging,
and every development PC.
You still need an HTTP server to forward invalid HTTP requests to
HTTPS.
There are subtle differences when using real and self-signed certificates.
For example, browsers don’t cache data from a self-signed server.
Applications could run fine locally but experience cache-related issues
in production.
The Node.js app must listen on port 443 when deployed to a production
server. It must be launched by a superuser (sudo node index.js), but
this grants the app permission to do anything. It could accidentally wipe
all system files!

A better approach is to use a web server such as NGINX as a reverse proxy.
It can handle SSL, HTTP requests, and static files, but forward all requests to
the Node.js app (over HTTP) when necessary. (See chapter 18 for
deployment options.)

Serve Static Files
Most web applications contain static files that return the same response to all
users. These could include images, favicons, CSS stylesheets, client-side
JavaScript, pre-rendered HTML pages, or any other asset.

It would be painful to programmatically assign routes for every file. Express
allows you to define a single directory that contains static assets and returns
any file that matches the URL path.

Create a directory named static in your project folder and add a file named

https://localhost:3000/
https://www.nginx.com/

page.html with the following content:

<!DOCTYPE html>

<html lang="en">

<head>

<meta charset="UTF-8">

<title>Static page</title>

<meta name="viewport" content="width=device-width,initial-

scale=1" />

</head>

<body>

 <h1>This is a static page</h1>

</body>

</html>

Edit your index.js file and add the following code after the final app.get()
route:

// serve static assets

app.use(express.static('static'));

(The following “Express Middleware Functions” section explains this code.)

Save and restart the application, then open http://localhost:3000/page.html in
your browser.

http://localhost:3000/page.html

Try adding pages, images, or other assets to the static directory or a
subdirectory within it. For example, an image at
/static/images/myimage.png can be viewed in the browser at
http://localhost:3000/images/myimage.png.

Efficient Static Assets

In this example, Express only checks the file system for a matching static
asset when it can’t be handled by a routing function. However, you could
check for assets first if your application mostly consists of static files.

On production servers, it’s more efficient to use a frontend web server such
as NGINX to serve static assets and bypass Node.js processing entirely.

Express Middleware Functions
The app.use() method used above to define the static directory introduces

https://expressjs.com/en/4x/api.html#app.use

the concept of Express middleware. Middleware functions run in the
sequence defined in the code, and can typically:

run code on every request
manipulate or change the request and response objects
terminate a response—perhaps if the user isn’t logged in
call the next middleware function

In this case, express.static('static') returns a middleware function
that handles static directory processing.

All middleware functions receive three arguments:

req: the Express HTTP Request object.
res: the Express HTTP Response object.
next: a callback that passes control to the next middleware function.
Middleware functions must always call next() unless they complete or
terminate the current request.

The following middleware function logs every URL request to the terminal:

// log every request to the terminal

app.use((req, res, next) => {

 console.log(req.url);

 next();

});

You should place this function before any others that could end processing.
No logging would occur if you placed it after URL routing or static asset
middleware that succeeded in returning a response.

Define Working Directories
A hard-coded static directory is used above. That’s fine for Express, but
what if another module needed to locate the same directory to read or write a
file?

We can define a fully qualified reference to all working directories in the cfg
configuration object. This used to be easy in CommonJS (see Chapter 8 for

http://expressjs.com/en/guide/using-middleware.html
https://expressjs.com/en/4x/api.html#req
https://expressjs.com/en/4x/api.html#res

more on this topic) because Node provided a __dirname constant with the full
directory of the current module. The situation is more complex in ES6
modules, because they’re referenced by URL—not by file. The URL of the
current module is available in import.meta.url, so it can be parsed to a file
path using the standard Node.js library:

import { fileURLToPath } from 'url';

import { dirname, sep } from 'path';

const __dirname = dirname(fileURLToPath(import.meta.url)) +

sep;

The url module provides a fileURLtoPath() function, which converts a
file:// URL to a fully qualified file path.

The path module provides a dirname() function to extract the directory from
a path and a sep constant with the platform-specific path separator (/ on
POSIX, \ on Windows).

Update the top of index.js accordingly:

// Express application

import express from 'express';

import { fileURLToPath } from 'url';

import { dirname, sep } from 'path';

// configuration

const

 __dirname = dirname(fileURLToPath(import.meta.url)) + sep,

 cfg = {

 port: process.env.PORT || 3000,

 dir: {

 root: __dirname,

 static: __dirname + 'static' + sep

 }

 };

console.dir(cfg, { depth: null, color: true });

// Express initiation

// ...rest of code

Then change the reference to the hard-coded static directory:

https://nodejs.org/dist/latest/docs/api/modules.html#__dirname
https://nodejs.org/dist/latest/docs/api/url.html
https://nodejs.org/dist/latest/docs/api/url.html#urlfileurltopathurl
https://nodejs.org/dist/latest/docs/api/path.html
https://nodejs.org/dist/latest/docs/api/path.html#pathdirnamepath
https://nodejs.org/dist/latest/docs/api/path.html#pathsep

// serve static assets

app.use(express.static(cfg.dir.static));

The application shows the configuration settings when starting, but the static
page at http://localhost:3000/page.html should work as before.

Other modules can’t access the cfg object unless you export it. The active
app object can also be useful, so add the following code at the end of
index.js:

// export defaults

export { cfg, app };

Compressing HTTP Responses

http://localhost:3000/page.html

To improve web application performance, you should compress assets before
they’re returned to the browser over the network. The compression
middleware module can handle this for you. Stop your app, then install the
module:

npm install compression

The dependencies section of your package.json file updates accordingly:

 "dependencies": {

 "compression": "^1.7.4",

 "express": "^4.17.1"

 }

Load the module at the top of index.js:

// Express application

import express from 'express';

import compression from 'compression';

Then add it as one of the first middleware functions (before routers and static
file handlers):

// HTTP compression

app.use(compression());

It won’t make a noticeable difference to performance here, but addressing
performance at the start of a project puts you one step ahead of most teams!

Disable Express Identification
By default, Express sets the following HTTP response header:

X-Powered-By: Express

It doesn’t do any harm, but you can disable it with app.disable() in
index.js:

// Express initiation

const app = express();

https://www.npmjs.com/package/compression
http://expressjs.com/en/4x/api.html#app.disable

// do not identify Express

app.disable('x-powered-by');

It will save a few bytes on every HTTP request, and will also give malicious
hackers less information about your Node.js technology stack.

Handle 404 Not Found Errors
Add the following code as the last middleware function to gracefully handle
errors when a page or asset can’t be found:

// 404 error

app.use((req, res) => {

 res.status(404).send('Not found');

});

This returns a “Not Found” message with a 404 HTTP header code, but you
could also do one of the following options:

redirect to an appropriate page
show suggested pages to the user
log bad requests to a file for further analysis

See the course code/ch05/express02 directory and associated video to run
the code created so far.

Add an HTML Template Engine
Node.js has a wide range of HTML template engines that create HTML pages
or snippets for output. A typical engine will take an HTML template and:

substitute variables with actual values
allow the inclusion of partials such as headers, footers, menus, and so on
permit basic programming functionality, such as conditions and loops

Template Performance

Ideally, your HTML templates should do as little as possible at runtime. You

http://expressjs.com/en/5x/api.html#res.redirect
https://github.com/spbooks/ultimatenode1/tree/main/ch05/express02
https://vimeo.com/707852263/638c6e5c29

may be able to pre-render some parts of a template, such as including other
files (partials) so your app has less work to do when rendering a page.

Popular templating options include Pug, Nunjucks, and EJS, which we’ll use
here, because it’s one of the simplest, fastest, and most popular options.
Many HTML template engines work with Express, but most provide
instructions in situations where there’s no direct support.

In this example, you’ll create a simple message.ejs template that’s used to
display single messages such as “Hello World!” in an <h1> tag. Stop your
server and install EJS with npm install ejs.

The dependencies section of your package.json file updates accordingly:

 "dependencies": {

 "compression": "^1.7.4",

 "ejs": "^3.1.6",

 "express": "^4.17.1"

 }

Now create a views subdirectory in your project. Add a file to it named
message.ejs with the code to output a title variable:

<%- include('partials/_htmlhead'); -%>

<h1><%= title %></h1>

<%- include('partials/_htmlfoot'); -%>

This template includes other partials, so create a partials subdirectory in
views with a _htmlhead.ejs file:

<!DOCTYPE html>

<html lang="en">

<head>

<meta charset="UTF-8">

<title><%= title %></title>

<meta name="viewport" content="width=device-width,initial-

scale=1" />

</head>

<body>

https://pugjs.org/
https://mozilla.github.io/nunjucks/
https://ejs.co/
https://expressjs.com/en/resources/template-engines.html

Also create an _htmlfoot.ejs file:

</body>

</html>

Open the Express entry index.js file and add a new cfg.dir.views property
that points at the views directory:

// configuration

const

 __dirname = dirname(fileURLToPath(import.meta.url)) + sep,

 cfg = {

 port: process.env.PORT || 3000,

 dir: {

 root: __dirname,

 static: __dirname + 'static' + sep,

 views: __dirname + 'views' + sep

 }

 };

Add this code before any routes and middleware:

// use EJS templates

app.set('view engine', 'ejs');

app.set('views', cfg.dir.views);

This sets EJS as the Express view engine with files contained in the views
directory.

EJS is invoked using the Express Response render() method in a routing
function. Update the functions /, /hello/, and the 404 handler:

// home page route

app.get('/', (req, res) => {

 res.render('message', { title: 'Hello World!' });

});

// another route

app.get('/hello/', (req, res) => {

 res.render('message', { title: 'Hello again!' });

});

// serve static assets

app.use(express.static(cfg.dir.static));

http://expressjs.com/en/4x/api.html#res.render

// 404 errors

app.use((req, res) => {

 res.status(404).render('message', { title: 'Not found' });

});

The render method is passed the name of the template ('message'—the .ejs
extension can be omitted) and an object containing name/value pairs. A
title is set in this example.

Start your Express server with npm start, then open http://localhost:3000/ in
a browser.

http://localhost:3000/

The result may not be significantly different, but it’s a fully rendered HTML
page with an <h1> title. (View the source, Luke.)

Advanced Routing
URL routing is at the heart of Express processing. You’ve developed simple
routes that run functions for specific matching URLs, but there are more
options:

path expressions: handling many routes with one function
path parameters: parsing routes to extract values
HTTP methods: using GET, POST, DELETE, PUT and so on
route handlers: grouping related route handler functions into one file

Routing Path Expressions

Simple URL routes are defined in the examples above. For example:

// another route

app.get('/hello/', (req, res) => {

 res.send('Hello again!');

});

The route handles HTTP GET requests to /hello/, although Express will do
the following:

Ignore casing. The paths /Hello/ and /HELLO/ will match the /hello/
route unless you add app.set('case sensitive routing', true) to
index.js.
Ignore closing slashes. The paths /hello/ and /hello match the same
route unless you add app.set('strict routing', true) to index.js.

As well as exact routes, you can define regular expression patterns to match a
range of URLs. For example:

? denotes that the preceding character is optional. A route of /ab?cd/
matches the URL paths /abcd/ and /acd/.

+ denotes that the preceding character must appear one or more times. A
route of /ab+cd/ matches the URL paths /abcd/, /abbcd/, /abbbbbcd/
and so on.
* denotes any number of characters. A route of /ab*cd/ matches the
URL paths /abcd/, /ab123cd/, /ab-node.js-cd/ and so on.
A more complex route of /.+Script$/ matches the URL paths
/JavaScript/ and /ECMAScipt/, but not /Scripting/.

Express uses the Path-to-RegExp module to parse paths. The Express Route
Tester tool can help you build and debug more complex URLs.

Routing Path Parameters

Route parameters are named path segments preceded by a colon (:) to
identify a variable in the URL. For example, the route /user/:id matches
any URL path starting /user/ that has a single segment—such as /user/123
or /user/abc.

Captured values are available in the Request params object, so
req.params.id would be set to 123 or abc in the examples above.

Any number of URL parameters can be defined. The following route function
would run for the path /author/Craig-Buckler/book/Node.js:

// return a value for a user

app.get('/author/:name/book/:bookName', (req, res, next) => {

 console.log(`author: ${ req.params.name }`); // "Craig-

Buckler"

 console.log(` book: ${ req.params.bookName }`); // "Node.js"

 next();

});

HTTP Route Methods

The examples above handle HTTP GET requests by defining an app.get()
function. Express supports all the other HTTP methods, including:

https://www.npmjs.com/package/path-to-regexp
http://forbeslindesay.github.io/express-route-tester/
http://expressjs.com/en/4x/api.html#req.params
https://developer.mozilla.org/Web/HTTP/Methods

HTTP POST with app.post()
HTTP PUT with app.put()
HTTP DELETE with app.delete()

app.all() handles all HTTP methods to a specific route. The function can
examine the req.method property to determine which HTTP method was
used.

Creating a Route Handler

Defining all route handler functions in the entry index.js script becomes
impractical as your application grows in complexity. A better option is to
create route handling middleware in separate files with related functionality.

The following example updates the Express code so that requests to any URL
starting /hello/ are handled in a single router file. Two GET requests are
implemented:

/hello/:name returns a page saying hello to someone by name. For
example, /hello/craig displays “Hello Craig!”
/hello/:lang/:name returns a page saying hello to someone by name in
a specific language. For example, /hello/fr/craig switches to French
and displays “Bonjour Craig!”

Before doing this, create a lib subdirectory in your project folder for generic
library modules. Add a new file at lib/locale.js with the following code:

// localisation

// international greetings

export const hello = {

 au: 'G\'day',

 cn: 'Nǐ hǎo',

 en: 'Hello',

 de: 'Hallo',

 es: 'Hola',

 fr: 'Bonjour',

 jp: 'Kon\'nichiwa'

};

http://expressjs.com/en/4x/api.html#app.all

Then add lib/string.js with the following code:

// string functions

// capitalize the first letter of all words

export function capitalize(str) {

 return str

 .trim()

 .toLowerCase()

 .split(' ')

 .map(word => word.charAt(0).toUpperCase() + word.slice(1))

 .join(' ');

}

Next, create a new routes subdirectory in your project folder for routing
middleware. Add a new file at routes/hello.js with code to define the two
routing functions:

// /hello/ route

import { Router } from 'express';

import { hello } from '../lib/locale.js';

import { capitalize } from '../lib/string.js';

export const helloRouter = Router();

// say hello in English

helloRouter.get('/:name', (req, res, next) => {

 res.render(

 'message',

 { title: `${ hello.en } ${ capitalize(req.params.name) }!`

}

);

});

// say hello in a specific language

helloRouter.get('/:lang/:name', (req, res, next) => {

 res.render(

 'message',

 { title: `${ hello[req.params.lang] || hello.en } ${

capitalize(req.params.

 ➥name) }!` }

);

});

This defines an Express Router object named helloRouter. Routers are mini
applications that can perform routing and middleware functions.

The first route defines a function for the parametrized path /:name. (You
should not specify the full /hello/:name route, because this router file will
become the handler for all /hello/ paths.) The function renders the message
template with a title that says “Hello” (in English) to the :name value
passed on the URL (req.params.name).

The second route defines a function for the parametrized path /:lang/:name.
Again, this renders the message template with a title that uses a localized
version of “Hello” as defined in lib/locale.js.

To use your Router file, open index.js then remove these lines:

// another route

app.get('/hello/', (req, res) => {

 res.send('Hello again!');

});

Replace them with this code:

// /hello/ route

import { helloRouter } from './routes/hello.js';

app.use('/hello', helloRouter);

app.use() defines the helloRouter middleware rather than a single
app.get() route.

If necessary, restart your Express app with npm start and open a URL in
your browser, such as http://localhost:3000/hello/craig to see “Hello
Craig!”

http://expressjs.com/en/4x/api.html#router

Switch to an Australian greeting with the URL
http://localhost:3000/hello/au/craig.

See the course code/ch05/express02 directory and associated video to run
the code created so far.

Exercises
Attempt the following updates to improve your Express coding experience:

Improve the message template to add a stylesheet. (Hint: the CSS could
be a static file.)
Create and use a new template that also outputs the current URL to the
page. (Hint: the Express Request object passed as req can help.)
Create a new router to say “Goodbye” in a similar way to the “Hello”
example.

Summary
This chapter introduced the Express framework for server-side web
applications. Other Node.js server frameworks follow similar conventions
and some are compatible with Express middleware.

This is just the start of the possibilities. In the following chapters, we’ll look
at ways to process form data, implement REST APIs, and manipulate
databases in your Express applications.

Quiz
1. Express is:

a. similar to Apache or NGINX but programmable with Node.js code
b. a Node.js server-side application framework
c. one of several Node.js web server frameworks
d. all of the above

2. Express is typically installed in a project as:

a. a global module

https://github.com/spbooks/ultimatenode1/tree/main/ch05/express03
https://vimeo.com/707852354/684d060d48
http://expressjs.com/en/4x/api.html#req

b. a development dependency
c. a dependency
d. a single static JavaScript file

3. A package.json file is used to:

a. store configuration information about a Node.js application
b. store application runtime data
c. configure npm
d. all of the above

4. An Express middleware function:

a. is an internal Express module
b. runs when an Express app starts
c. can handle or manipulate the HTTP request and response
d. runs when an Express app shuts down

5. Middleware functions are passed the following parameters in order:

a. the next function, the Request object, the Response object
b. the Request object, the Response object, the next function
c. the next function, the Response object, the Request object
d. the Response object, the Request object, the next function

Chapter 6: Processing Form
Data with Express
Unless you’re creating a static website, processing user data posted from an
HTML form is at the heart of all web applications. In this chapter, you’ll
learn how Express can:

parse query string data typically sent in an HTTP GET request (see the
“Processing HTTP GET Query Strings” section)
parse posted body data typically sent in an HTTP POST request (see the
“Processing HTTP Post Body Data” section)
receive uploaded files typically sent in a multipart/form-data HTTP
POST (see the “Processing Uploaded Files” section)

Code Examples

The Express examples provided below purposely omit some of the options
recommended in the previous chapter. Dropping features such as
compression, router middleware, and 404 pages makes for more concise code
—but be sure not to forget them in your projects!

Sanitize User Input

The rules of data processing club:

1. Never trust user data.
2. See #1.

User data must always be sanitized on the server. You may have robust
HTML and JavaScript validation, but there’s no guarantee the request came
from a browser or worked as you expected. Always check data before it’s
used elsewhere—especially if it’s output to an HTML page. (Note that the
EJS <%= escapes HTML.)

Incoming field data will be a string, so you can check for specific formats
using regular expressions and parse to types such as numbers, dates, or
objects to check for errors. The express-validator module provides a range of
validation and sanitization functions.

For brevity, the examples below don’t check any incoming data, so please
don’t use them on a live server!

Processing HTTP GET Query Strings
Data can be passed on the URL query string denoted by a ? and a series of
name=value pairs separated by &—such as http://localhost:3000/?
a=1&b=2&c=3. Query strings are usually added to HTTP GET requests,
although they can be used by any method.

Express automatically parses query strings and returns a name/value object in
the Request .query property. The example URL above returns an object:

{

 a: 1,

 b: 2,

 c: 3

}

The example code in code/ch06/express-get provides a simple example.
The template views/form.ejs implements an HTML <form>, which posts to
itself with its method set to "get". A table at the top shows all name/value
pairs passed in a data object:

<%- include('partials/_htmlhead'); -%>

<h1><%= title %></h1>

<% if (data) { %>

 <p>Data received in last request:</p>

 <table>

 <% for (const name in data) { %>

 <tr>

 <th>

 <%= name %>:</th>

 <td>

https://developer.mozilla.org/Web/JavaScript/Guide/Regular_Expressions
https://developer.mozilla.org/Web/JavaScript/Reference/Global_Objects/parseFloat
https://developer.mozilla.org/Web/JavaScript/Reference/Global_Objects/Date/parse
https://developer.mozilla.org/Web/JavaScript/Reference/Global_Objects/JSON/stringify
https://express-validator.github.io/
http://expressjs.com/en/4x/api.html#req.query
https://github.com/spbooks/ultimatenode1/tree/main/ch06/express-get

 <%= data[name] %>

 </td>

 </tr> <% } %>

 </table>

<% } %>

<p>Submission form:</p>

<form action="/" method="get">

 <div>

 <label for="name">name</label>

 <input type="text" id="name" name="name" value="<%= data.name

%>" />

 </div>

 <div>

 <label for="job">job</label>

 <input type="text" id="job" name="job" value="<%= data.job %>"

/>

 </div>

 <div>

 <label for="nodejs">like Node.js?</label>

 <input type="checkbox" id="nodejs" name="nodejs" value="yes"<%

if

 ➥(data.nodejs) { %> checked<% } %> />

 </div>

 <input type="hidden" name="date" value="<%= new Date(); %>" />

 <button>submit</button>

</form>

<%- include('partials/_htmlfoot'); -%>

(Note that views/partials/_htmlhead.ejs provides a little inline CSS
styling.)

The index.js entry script sets the EJS template engine and renders the form
template when a GET request is made to the root / URL. The template is
passed an object containing:

the page title
a data property set to req.query

// Express application

import express from 'express';

// configuration

const cfg = { port: process.env.PORT || 3000

};

// Express initiation

const app = express();

// use EJS templates

app.set('view engine', 'ejs');

app.set('views', 'views');

// render form

app.get('/', (req, res) => {

 res.render('form', {

 title: 'Parse HTTP GET data',

 data: req.query

 });

});

// start server

app.listen(cfg.port, () => {

 console.log(`Example app listening at http://localhost:${

cfg.port }`);

});

Following an npm install to install the Express and EJS dependencies, start
the server running with npm start and navigate to http://localhost:3000/ in a
browser.

http://localhost:3000/

Enter some data and hit submit. The URL query string changes, and all
name/value pairs are displayed. (Note that the date is passed as a hidden
input value.)

See the course code/ch06/express-get directory and associated video to run
this code.

https://github.com/spbooks/ultimatenode1/tree/main/ch06/express-get
https://vimeo.com/707852459/64d97f0a1e

Processing HTTP Post Body Data

An HTTP POST sent via an HTML <form> with its method set to "post"
places all data in the body of the request. Express doesn’t parse this data by
default and requires an express.urlencoded() middleware function to
populate a Request .body property with an object containing name/value
pairs.

The body-parser Module

Older editions of Express didn’t include a body parsing function, so you may
see references to a body-parser module in other tutorials.

The code in code/ch06/express-post provides a simple example. The
template views/form.ejs is identical to that shown in the GET example
above (in the “Processing HTTP GET Query Strings” section), except the
<form> method is set to "post".

The index.js entry script sets the EJS template engine and then defines the
body parsing middleware like so:

// body parsing

app.use(express.urlencoded({ extended: true }));

The extended syntax option uses the qs module to create a richer Request
body object with nested properties and arrays if you’ve defined form fields
appropriately.

The initial page load for the root / URL is an HTTP GET request, while the
form submission is an HTTP POST request. Rather than define these as
separate routes, the index.js entry script uses app.all() so a single function
processes all HTTP methods. It renders the form template and passes an
object where the data property is set to req.body:

// Express application

import express from 'express';

// configuration

const cfg = { port: process.env.PORT || 3000

http://expressjs.com/en/4x/api.html#express.urlencoded
http://expressjs.com/en/4x/api.html#req.body
https://www.npmjs.com/package/body-parser
https://github.com/spbooks/ultimatenode1/tree/main/ch06/express-post
https://www.npmjs.com/package/qs
http://expressjs.com/en/4x/api.html#app.all

};

// Express initiation

const app = express();

// use EJS templates

app.set('view engine', 'ejs');

app.set('views', 'views');

// body parsing

app.use(express.urlencoded({ extended: true }));

// render form

// use .all to handle initial GET and POST

app.all('/', (req, res, next) => {

 if (req.method === 'GET' || req.method === 'POST') {

 res.render('form', {

 title: 'Parse HTTP POST data',

 data: req.body

 });

 }

 else {

 next();

 }

});

// start server

app.listen(cfg.port, () => { console.log(`Example app listening

at

 ➥http://localhost:${ cfg.port }`);

});

Following an npm install to install the Express and EJS dependencies, start
the server running with npm start and navigate to http://localhost:3000/ in a
browser.

http://localhost:3000/

Enter some data and hit submit. The data is posted and all name/value pairs
are displayed. (Note the date is passed as a hidden input value.)

See the course code/ch06/express-post directory and associated video to
run this code.

https://github.com/spbooks/ultimatenode1/tree/main/ch06/express-post
https://vimeo.com/707852546/d64437ee51

Processing Uploaded Files

Receiving file uploads in Express is gloriously simple compared to some
languages. However, it requires a third-party module such as formidable to
parse incoming streamed data to one or more files.

The example code in code/ch06/express-file has a package.json file
where Express, EJS, and Formidable are declared as project dependencies:

"dependencies": {

 "ejs": "^3.1.6",

 "express": "^4.17.1",

 "formidable": "^2.0.1"

}

The template views/form.ejs defines a <form> with its method set to "post"
and enctype set to "multipart/form-data". A field that allows images to be
uploaded is also added:

<input type="file" id="image" name="image" accept="image/*" />

The received data <table> also checks for an imageurl property in the data
object and displays it using an tag when found:

<table>

<% for (const name in data) { %>

 <tr>

 <th><%= name %>:</th>

 <td>

 <%= data[name] %>

 <% if (name === 'imageurl') { %>

 <img src="<%- data[name] %>" alt="uploaded image" />

 <% } %>

 </td>

 </tr>

<% } %>

</table>

The index.js entry script defines an uploads subdirectory, where uploaded
files are stored:

// Express application

https://www.npmjs.com/package/formidable
https://github.com/spbooks/ultimatenode1/tree/main/ch06/express-file

import express from 'express';

import formidable from 'formidable';

import { fileURLToPath } from 'url';

import { dirname, parse, sep } from 'path';

// configuration

const

 __dirname = dirname(fileURLToPath(import.meta.url)) + sep,

 cfg = {

 port: process.env.PORT || 3000,

 dir: {

 root: __dirname,

 uploads: __dirname + 'uploads' + sep

 }

 };

(Create this uploads subdirectory in your project. A project is somewhere
within your home directory should already have write permissions, but run
chmod 666 uploads if necessary.)

The script then initializes Express and sets uploads as a static directory. This
makes it easy to display an uploaded image for the purposes of this example,
but you’d normally move a valid file to a safer location—perhaps outside the
project directory—to ensure that it can’t be accidentally deleted or
overwritten. (See the “Exercises” section below for pointers.)

// Express initiation

const app = express();

// use EJS templates

app.set('view engine', 'ejs');

app.set('views', 'views');

// static assets

app.use(express.static(cfg.dir.uploads));

Note that the express.urlencoded() middleware is no longer required,
because formidable will also parse the form fields.

The app.all() route uses a single function for all HTTP methods. When this
routing function runs:

http://expressjs.com/en/4x/api.html#app.all

It initializes a new formidable object with the upload directory and a
setting to keep the file extension.
The .parse() method is called with the Express Request object (req)
and a callback function that runs once the upload has completed. The
callback is passed an error message (err), the (non-file) data fields, and
a files object.
If a single, non-empty image property exists in files, the data object is
supplemented with information about the image. Formidable places it in
the uploads directory with a unique GUID filename to ensure it can’t
clash with previous uploads.
The data.imageurl property is defined by extracting the filename from
the file path and prepending a slash / to define a URL that resolves to
the static directory.

// render form

// use .all to handle initial GET and POST

app.all('/', (req, res, next) => {

 if (req.method === 'GET' || req.method === 'POST') {

 // parse uploaded file data

 const form = formidable({

 uploadDir: cfg.dir.uploads,

 keepExtensions: true

 });

 form.parse(req, (err, data, files) => {

 if (err) {

 next(err);

 return;

 }

 if (files && files.image && files.image.size > 0) {

 data.filename = files.image.originalFilename;

 data.filetype = files.image.mimetype;

 data.filesize = Math.ceil(files.image.size / 1024) + '

KB';

 data.uploadto = files.image.filepath;

 data.imageurl = '/' + parse(files.image.filepath).base;

 }

 res.render('form', { title: 'Parse HTTP POST file data',

data });

https://github.com/node-formidable/formidable#parserequest-callback

 });

 }

 else {

 next();

 }

});

// start server

app.listen(cfg.port, () => {

 console.log(`Example app listening at http://localhost:${

cfg.port }`);

});

Callback Functions

The callback function passed to form.parse() is the first callback example
we’ve used. This function is called asynchronously: the Node.js runtime can
perform other tasks while the callback waits for data.

Understanding JavaScript callbacks, promises, and async/await is essential
for Node.js development. They’re discussed further in Chapter 9.

Following an npm install to install the Express, EJS, and Formidable
dependencies, start the server running with npm start and navigate to
http://localhost:3000/ in a browser.

http://localhost:3000/

Enter some data, choose an image file, and hit submit. The data is posted and
all name/value pairs are displayed with the image URL displayed in an
tag.

See the course code/ch06/express-file directory and associated video to
run this code.

Exercises
Modify any of the examples so that:

a new email field is added to the HTML form
the receiving route only permits data expected in the HTML form—but
nothing else
the user values are validated—especially the email address (a basic
regular expression is fine)
adapt the EJS template to show errors as necessary

For some big bonus points, write code to delete files from the uploads
directory—perhaps those uploaded more than 24 hours ago. You’ll require
Node.js file system methods such as readdir() to read a directory, stat() to
fetch file information, and unlink() to delete a file.

Summary
This chapter has built on your Express knowledge to illustrate how you can
receive and process data uploaded to the server. This is essential for any web
application and Express makes life a little easier for developers.

Quiz
1. Data passed on the URL query string:

a. is not parsed in Express by default
b. is available in an object returned by the Request .query property
c. is available in an object returned by the Request .querystring
property
d. is available in an object returned by the Request .body property

https://github.com/spbooks/ultimatenode1/tree/main/ch06/express-file
https://vimeo.com/707852620/114d319e3a
https://developer.mozilla.org/docs/Web/JavaScript/Guide/Regular_Expressions
https://nodejs.org/dist/latest/docs/api/fs.html
https://nodejs.org/dist/latest/docs/api/fs.html#fspromisesreaddirpath-options
https://nodejs.org/dist/latest/docs/api/fs.html#fspromisesstatpath-options
https://nodejs.org/dist/latest/docs/api/fs.html#fspromisesunlinkpath

2. Body data in an HTTP POST request:

a. is not parsed in Express by default
b. is available in an object returned by the Request .query property
c. is available in an object returned by the Request .querystring
property
d. is available in an object returned by the Request .body property

3. File upload data in an HTTP POST request:

a. is not parsed in Express by default
b. requires a third-party module to process the incoming data
c. should be handled asynchronously in Node.js
d. all of the above

Chapter 7: How to Use the npm
Node Package Manager
You can attribute much of Node’s success—and frustration—to npm. Node
Package Manager provides ways to find, install, update, manage, publish, and
remove Node.js packages. A package could be anything from a simple, one-
line JavaScript module to a full application.

npm is the world’s largest software registry. Almost 1.5 million packages
have been published at registry.npmjs.org and the majority are free to include
in your own projects. You can publish your own package with a single
command, and almost 1,000 developers do that every day.

Earlier chapters in this course introduced some npm concepts, but the
following sections explain options you’ll use daily (plus a few you’ll use less
frequently). The information is important, although you can skim it and use
this chapter for reference later.

npm Alternatives

npm isn’t the only Node.js package manager, and you can try alternatives
such as Yarn and pnpm. However, npm is installed with Node.js and it’s
good enough for most developers.

Global vs Local Packages

By default, npm installs packages in the local project directory so it can be
used in an application.

You can also install packages globally so that they’re available across your
whole system. This is most practical for command-line applications and
utilities that could be used at any time from any directory.

https://registry.npmjs.org/
https://github.com/yarnpkg/yarn
https://github.com/pnpm/pnpm

For example, to install the ESLint JavaScript validator globally, run npm
install eslint --global.

You can then run eslint <file.js> from any directory to validate a
JavaScript file.

However, you could install eslint in a project directory if you wanted to
guarantee all team members had the module and fixed their errors before
committing code to a project.

npm link

npm link symlinks the current project directory so it acts like a global
package. A script can then be run from any other directory. This can be
useful when developing a package you intend to use globally. There’s no
need to publish and install it as a global package every time you make a
change.

npm uninstall <name> --global removes the symlink.

Don’t worry if this isn’t clear now. You’re unlikely to use this feature until
you start sharing modules with other developers.

npm Help
npm documentation is available at docs.npmjs.com, but help is also available
from the command line: npm help. For further details, enter npm help npm,
or request help about a specific npm command. For example:

npm help install

npm help list

npm help config

npm help package.json

npm Configuration
You’ll rarely need to change npm configurations, but you can view your

https://eslint.org/
https://docs.npmjs.com/

defaults with npm config list, or you can view a complete list of settings
with npm config list -l.

An individual setting can be viewed. For example, show the default author
name:

npm config get init-author-name

A setting can also be changed:

npm config set init-author-name="Craig Buckler"

From this point forward, npm won’t prompt for the author name when
initializing any project.

A setting can be unset (or deleted) with npm config delete init-author-
name.

Project Initialization
To start a new project, you should create a new directory, navigate to it, and
run npm init.

This prompts for information about the project—such as it name, description,
Git repository, and so on. Use npm init --yes to accept all defaults without
prompting.

npm init creates a configuration file named package.json. You can adapt
this from another project or edit it manually if you prefer. The file contains
information about your project and its dependencies. For example:

{

 "name": "express",

 "version": "1.0.0",

 "description": "Example Express app",

 "type": "module",

 "main": "index.js",

 "scripts": {

 "start": "nodemon index.js"

 },

 "author": "Craig Buckler",

 "license": "MIT",

 "dependencies": {

 "compression": "^1.7.4",

 "ejs": "^3.1.6",

 "express": "^4.17.1"

 }

}

Your project can then be installed on another device using npm install,
which downloads all the required dependencies for the application.

Common package.json values include:

name description

name
the project name—which must be unique if you want to publish on
the npm registry (see the “Publishing Packages” section below)

version
the semantic version number (see the “Semantic Versioning”
section below)

descrip

tion
a short description of the project

type either "module" for ES6 modules or "commonjs" (the default)
keyword

s
an array of strings to help others discover the project

reposit

ory
the code repository, often on GitHub

homepag

e
the project home page URL (often the GitHub README.md file)

bugs the project issue tracker URL (often the GitHub Issues panel)

licence
a license for usage restrictions (if any)—set "private" if you’re
not sharing the project

main the main entry/starting script

scripts
script commands (see the “Using npm Scripts” section below)
which typically build, test, launch, or deploy a project

depende

ncies

project dependencies (see the “Project Dependencies” section
below) required at runtime

devDepe

ndencie

s

development dependencies (see the “Development Dependencies”
section below) required during development

https://github.com/

Lesser-used values include:

name description
config application runtime configuration parameters such as ports

publishConf

ig
configuration parameters used at publish time

engines the Node.js version required—such as"node": ">=14.0.0"

os an array of compatible operating systems—such as ["linux",
"darwin", "win32"]

cpu an array of compatible CPU architectures—such as ["x64"]

browser
the main entry/starting script for client-side JavaScript
packages installed with npm (used instead of main)

funding a funding page URL

files
an array of file patterns that specifies the files included when
the package is installed as a dependency

bin a list of one or more executable files to install in the PATH
man one or more manual page files

peerDepende

ncies
compatibility of your package with another

bundledDepe

ndencies
other packages bundled with the package

optionalDep

endencies
an optional dependency; the package should run without it

private
set "true" and npm will never publish the package to the npm
registry

See the online help documentation or run npm help package.json for a full
description.

Semantic Versioning

Always use a semantic version for your project with MAJOR.MINOR.PATCH
numbers separated by a period (.).

When a change occurs, you should increment the appropriate number and
zero those that follow. Assuming a current version of 1.2.33:

https://docs.npmjs.com/configuring-npm/package-json

a new bug fix would update the PATCH number to version 1.2.34
new functionality that didn’t break backward compatibility would
update the MINOR number to version 1.3.0
a major update with incompatible API changes would update the MAJOR
number to version 2.0.0

Not all developers follow this convention, so read the documentation
carefully!

Project Dependencies

A package such as Express is (usually) required at runtime. It’s a dependency
for your application; the app would fail to run without it.

Project dependencies are listed in the dependencies section of
package.json. When your project is deployed to another machine (such as a
live production server), running npm install installs all dependencies.

Development Dependencies

Packages such as the Browsersync live reload server or the ESLint JavaScript
validator are (usually) used during development. They aren’t required by
your application when it runs, so they aren’t required on a live production
server.

Development dependencies are listed in the devDependencies section of
package.json. They aren’t installed if you run npm install when the
NODE_ENV environment variable is set to production. This can be set on
Linux or macOS:

NODE_ENV=production

This is the Windows cmd prompt:

set NODE_ENV=production

And this for Windows Powershell:

$env:NODE_ENV="production"

http://expressjs.com/
https://browsersync.io/
https://eslint.org/

Searching for Packages
You’ll need to install and use a third-party dependency for your application at
some point. Always consider whether you really need it. npm is often
criticized for reasons such as:

There may be dozens of packages that perform a similar function. How
long will it take to evaluate the best option?
Installation can cause an avalanche of further installations, as each
package requires others that have further dependences. You can even
end up with multiple versions of the same package in the same project.
Every third-party package and subpackage raises security implications.
npm has a registry of known vulnerabilities, but information won’t be
available for new or less popular packages.

Is it more practical to write the code yourself?

A small module specific to your application is a good candidate. You’ll learn
more and be able to write fully customizable code that’s fast and lean. Over
the long term, it may even take less time and effort than maintaining a
regularly updated third-party package.

Larger or more generic modules such as frameworks (Express), database
drivers, or image compressors are full projects in their own right. It makes
sense to leverage the many hours of development and real-world testing.

There’s an infinite array of situations between these extremes. Only you can
make a judgement, but you may find yourself using fewer packages as your
Node.js and JavaScript knowledge increases.

Development Dependency Limits?

Development tools (in devDependencies) have no direct effect on your
application. That said, using a large number will increase installation times,
require ongoing maintenance, and may confuse new team members.

Perhaps start by browsing a list of curated Node.js packages:

github.com/sindresorhus/awesome-nodejs
nodejs.libhunt.com

Alternatively, you can search for packages from the command line using npm
search <term>. For example, to find a MongoDB database driver, enter npm
search mongodb.

More practically, it’s best to use an online search engine:

npmjs.com: the official repository
npms: a fast search that ranks packages by quality
snyk.io/advisor/: ranks packages with a health percentage

https://github.com/sindresorhus/awesome-nodejs
https://nodejs.libhunt.com/
https://www.npmjs.com/
https://npms.io/
https://snyk.io/advisor/

There are tools for comparing two or more packages:

npmcompare.com
moiva.io

Or tools to extract package information:

anvaka.com: dependency visualization
npm-stat.com: download and usage statistics

Hardcore coders can even examine the JSON data used by npm at
registry.npmjs.org! Add the package name to the URL—for example,
registry.npmjs.org/express.

If you’re struggling to choose, opt for a package that’s popular with a non-
restrictive usage license, recent and regular updates, a small size, the fewest
dependencies, and no major outstanding issues.

Installing Packages
To install a development dependency, run npm install, followed by one or
more space-separated package names. For example:

npm install express mongodb

To install a package as a development dependency, add --save-dev to the
command:

npm install browser-sync --save-dev

These options install the latest package into the node_modules directory and
update package.json with the name and current version number.

.gitignore node_modules

There’s no need to add the node_modules directory to your Git (or other)
repository, because npm install can re-create the dependency tree.

https://npmcompare.com/
https://moiva.io/
http://npm.anvaka.com/
https://npm-stat.com/
https://registry.npmjs.org/
https://registry.npmjs.org/express

If you require a specific or earlier package, add @ and the version number to
the package name. For example:

npm install ejs@2.7.4

To install a package globally so it’s available in any directory, add --global
to the command:

npm install eslint --global

Shortcut Aliases

Most npm commands and switches have shorter aliases. Either i or add can
be used in place of install, and -g can be used instead of --global. For
example:

npm i eslint -g

Semantic Constraints

package.json uses special codes to indicate which version of a package can
be installed on a clean machine using MAJOR.MINOR.PATCH semantic
versioning (see the “Semantic Versioning” section above):

1.2.33: install an exact version
>1.2.33: install a version greater than 1.2.33 (2.0.0 is permitted)
>=1.2.33: install a version greater than or equal to 1.2.33
<1.2.33: install a version less than 1.2.33
<=1.2.33: install a version less than or equal to 1.2.33
^1.2.33: install any greater or equal compatible version with the same
MAJOR number—such as 1.3.0 but not 2.0.0 (this is the default)
~1.2.33: similar to ^ but won’t go beyond the next MINOR number—that
is, a maximum of 1.3.0
* (or an empty string): install any version

Versions can be combined—for example, <2.0.0 || >=3.0.0, to skip
version 2.x.x.

The installation of each package (and subpackage) is recorded in package-
lock.json. This ensures subsequent installs are identical regardless of
available updates. The file can be added to your code repository, although
you can run into problems if the application is installed on different operating
systems. Personally, I prefer to set the exact version in package.json, omit
package-lock.json from the Git repo, and then update and test manually
whenever new packages are available. (See the “Finding Outdated Packages”
section below.)

“No-install” Execution
The npx command allows you run a package command without installing it
locally. For example, try running the cowsay talking cow package:

npx cowsay "I love Node.js!"

You’ll be prompted to agree to the download the first time this command is
run. From then on, the version in the npm cache is used.

npx Local Execution

A package such as eslint or rollup can’t be run directly from the command
line when it’s installed locally. The following command fails if ESLint is
installed locally:

https://www.npmjs.com/package/cowsay

eslint file.js

Rather than installing it globally, you can run a local package by defining an
npm script (see the “Using npm Scripts” section below) or using npx. This
command works:

npx eslint file.js

Listing Packages
To list all the packages installed in your project, enter npm list (or use the
aliases ls, la, or ll in place of list).

Older versions of npm show all packages and child packages. Add --depth=0
to view the top-level installations only:

npm list --depth=0

The --depth argument can be used to view the package dependency tree to a
specific level. For example, npm list --depth=1 shows your installed
packages and their immediate dependencies but doesn’t go any deeper.

You can list globally installed packages using npm list --global.

Finding Outdated Packages
Find local packages that have received updates using npm outdated or global
packages with updates using npm outdated --global.

Older packages are listed with their current and latest version. The wanted
column indicates which version will be installed if you run npm update.

To update a local package, you can do one of the following:

run npm update to update all packages according to semantic constraints
(see the “Semantic Constraints” section above)
run npm update <package> to update one or more space-separated

packages according to semantic constraints (see the “Semantic
Constraints” section above)
edit package.json, change any necessary version numbers, and rerun
npm install

To update global packages, run npm install <package> --global. Again,
any number of space-separated packages can be listed.

Update npm with npm

npm itself is a global package that you can update with npm install npm --
global or the shorter npm i npm -g.

Removing Packages
You should always remove unused packages. They increase installation
times, use disk space, could have vulnerabilities, and are likely to confuse
other developers working on the project. Remove packages with npm
uninstall <package>, (or use the aliases remove, rm, r, un, or unlink in
place of uninstall).

package.json is updated and the package is removed from the dependencies
or devDependencies section. There’s no need to specify the type.

Global packages can be removed with the --global switch. For example:

npm uninstall eslint --global

Using npm Scripts
The "scripts" section of package.json lists useful script aliases you can run
during development, testing, building, deployment, and so on. A script is
useful when you find yourself repeatedly retyping the same command.

Consider the JavaScript bundler Rollup, which can build a single optimized
client-side JavaScript file from multiple source files. The command to
compile a development build is long. For example:

https://rollupjs.org/
https://www.sitepoint.com/rollup-javascript-bundler-introduction/

npx rollup --config --environment NODE_ENV:development --

sourcemap --watch

 ➥--no-watch.clearScreen

It can therefore be defined as a script in package.json. For example:

"scripts": {

 "rollup": "rollup --config --environment NODE_ENV:development -

-sourcemap

 ➥--watch --no-watch.clearScreen"

}

Note that npx isn’t required in the command, because npm can execute
locally installed packages.

You can now start the rollup command with npm run rollup.

Any number of scripts can be added to package.json, but each must have a
unique name.

Special Scripts

The following script names can be defined when appropriate:

"start": starts your application. You used it in previous chapters to
launch "nodemon index.js".
"test": runs tests on your application code using a test runner such as
Mocha, Jest, or AVA.
"stop": stops your application. This may only be necessary if your
application starts in the background. I’ve never used it!

The run command isn’t required, so you can launch these scripts with npm
start, npm test, and npm stop.

Pre and Post Scripts

Any script can have one or both of these:

a "pre<name>" script, which automatically runs before "<name>"
a "post<name>" script, which automatically runs after "<name>"

https://mochajs.org/
https://jestjs.io/
https://github.com/avajs/ava

For example:

"scripts": {

 "prebuild": "rm -rf build",

 "build": "rollup --config",

 "postbuild: "echo build complete"

}

Running npm run build runs all three scripts in the order shown above.

Life Cycle Scripts

npm permits life cycle scripts that automatically execute at certain points
during package publication (see the “Publishing Packages” section below) or
installation. The reserved script names are prepare, prepublish,
prepublishOnly, prepack, and postpack.

You’re unlikely to use these in your own projects, but avoid using these
names for other purposes.

Sophisticated Scripting

npm scripts are simple but powerful. Developers often use them instead of
dedicated JavaScript task runners such as Grunt and Gulp.

Consider the following scripts to clean a build directory then generate
HTML, CSS, and JavaScript using (imaginary) Node.js tools:

"scripts": {

 "clean" : "rm -rf build",

 "build:html" : "sitegen ./src/content/ ./build/ --compress",

 "build:css" : "cssgen ./src/css/main.css --out ./build/css/",

 "build:js" : "jsgen ./src/js/main.js ./build/js/main.js --

minify"

}

A single build script could run the clean script followed by all build tools in
parallel:

"build" : "clean && (build:html & build:css & build:js)"

https://docs.npmjs.com/using-npm/scripts
https://gruntjs.com/
https://gulpjs.com/

Executing npm run build performs all tasks in a bash shell. However, it
won’t work in Windows or other shells that don’t support & and && command
chaining.

Cross-platform scripts can be created using task packages such as yall-scripts,
concurrently, or npm-run-all. The rimraf package can also replace the rm
command.

You can install cross-platform modules:

npm install yall-scripts rimraf --save-dev

Then update package.json to use them:

"scripts": {

 "clean" : "rimraf build",

 "build:html" : "sitegen ./src/content/ ./build/ --compress",

 "build:css" : "cssgen ./src/css/main.css --out ./build/css/",

 "build:js" : "jsgen ./src/js/main.js ./build/js/main.js --

minify",

 "buildcode" : "yall --parallel build:*",

 "build" : "yall --sequential clean buildcode"

}

npm run build will now work on any platform that can run Node.js.

Publishing Packages
Your own packages can be published to the npm repository. This may be
practical when you want to share code with others or create your own
libraries for use in several projects. Skip down to the “Exercises” section if
you’d rather think about this later!

Publication Preparation

Publishing code to the npm repository makes it public. Always ensure it
doesn’t contain private information such as Git or database credentials.

Authors of popular packages receive regular requests for support or feature

https://www.npmjs.com/package/yall-scripts
https://www.npmjs.com/package/concurrently
https://www.npmjs.com/package/npm-run-all
https://www.npmjs.com/package/rimraf

updates. Add a disclaimer to the README.md file in the root of your project if
you’d rather not offer a free consultancy service! That said, you can request
funding and watch the cash roll in as your package becomes an essential part
of every Node.js project.

To publish a package, you must sign up for an account at npmjs.com. A valid
email address is required, and it will be publicly added to the metadata of any
package you publish.

Two-factor Authentication

Accounts are secured with 2FA, so you’ll need an app such as Google
Authenticator, Microsoft Authenticator, Authy, or andOTP.

Before publishing, update your package package.json file:

1. Use a unique "name".

All npm projects must have a unique name. Naming is difficult. You
have 1.5 million competitors, so use a tool such as the npm-package-
name-checker to check availability. If you can’t find a decent name,
prefix the name with your account ID—such as @username/my-package.

2. Set the next semantic "version" number (See the “Semantic
Versioning” section above).

You can’t overwrite an existing package with the same version number.
The next unique version must be set every time you publish.

3. Add an optional array of "files" glob patterns.

You can define which files are included in the package. The following
example includes all files and subdirectories in the dist and doc
directories. All other files except package.json are omitted:

"files": [

 "dist/**/*",

 "doc/**/*"

],

https://docs.npmjs.com/cli/v8/configuring-npm/package-json#funding
https://www.npmjs.com/signup
https://play.google.com/store/apps/details?id=com.google.android.apps.authenticator2
https://www.microsoft.com/authenticator
https://authy.com/
https://github.com/andOTP/andOTP
https://remarkablemark.org/npm-package-name-checker/
https://en.wikipedia.org/wiki/Glob_(programming)

4. Add optional "bin" command(s) aliases.

To run your package by its package.json "name", define a relative path
to its script as a "bin" value. For example:

"name": "myapp",

"bin": "./dist/myapp.js"

The myapp command can be run from the command line when the
package is installed globally. (npx myapp can be used for local
installations.)

"bin" can also be set to an array if you have more than one script or
require aliases. For example:

"name": "myapp",

"bin": [

 "myapp": "./dist/myapp.js",

 "ma": "./dist/myapp.js",

 "myapp2": "./dist/myapp2.js"

]

To publish, navigate to your project directory, then log in at the terminal with
npm login. Publish your package with npm publish.

Assuming there are no errors, npm will publish your package so it can be
installed from anywhere. At this point, it’s best to commit the code to your
repository to ensure the codebases are the same.

Publishing Tips

You’re unlikely to publish many packages at the start of your Node.js
journey, but the following tips may help as you develop more complex
projects:

Create packages that meet your needs to solve a specific problem.
Create small, focused packages that do one thing well and can be reused
across many projects.
It may be better to create a new package than complicate an existing
one.

https://docs.npmjs.com/cli/v8/configuring-npm/package-json#bin

In summary: keep it simple.

Exercises
Attempt the following exercise to improve your npm knowledge:

1. Initialize a new Node.js project, ideally using a name that’s not already
taken in the npm registry.

2. Search for packages that can output colors to the terminal.
3. Install your chosen package into the project.
4. Create a small command-line application that’s passed a string and color

argument. Output the string in that color.
5. Optionally, publish the code to npm, then install it as a global package

so you can run it from anywhere.

The video for this chapter describes a solution that’s available in the example
code, the npm registry, and GitHub.

Summary
This chapter has expanded on your npm knowledge so you can find, install,
update, manage, publish, and remove Node.js packages in any project.

The next chapter looks at the options for using these packages and your own
modules in Node.js applications.

Quiz
1. npm help is available from:

a. online documentation
b. the npm help command
c. using npm help <command>
d. any of the above

2. A Node.js package.json file can be initialized with:

https://vimeo.com/707852741/b28b04f622
https://github.com/spbooks/ultimatenode1/tree/main/ch07/concol
https://www.npmjs.com/package/concol
https://github.com/craigbuckler/concol

a. npm new
b. npm init
c. npm start
d. any of the above

3. Your project’s package.json "version" is currently "1.2.33" and you
are adding a new feature (it won’t break backward compatibility). The new
version number should be:

a. 2.0.0
b. 1.3.0
c. 1.3.1
d. 1.2.34

4. How do you install a package for use in your project?

a. npm add <name> --local
b. npm require <name>
c. npm install <name>
d. any of the above

5. How do you list all the packages installed in your project without viewing
any child dependencies?

a. npm list
b. npm ll
c. npm ls --depth=0
d. any of the above

6. How can you find packages that have newer updates in the local project?

a. npm outdated
b. npm old
c. npm newer
d. npm update

Chapter 8: Using ES2015 and
CommonJS Modules
The previous chapter explained how npm can be used to find and install
packages containing multiple JavaScript files, or modules. In this chapter,
we’ll examine how modules are used in Node.js.

Skip Ahead?

The information in this chapter is important, since you’ll encounter issues
with older Node.js packages. However, all the packages referenced in this
course have been tested for compatibility, so you can skip ahead and return
when you eventually run into a problem!

Modules provide a way to define functionality in one file and use it in
another. Developers often create encapsulated code libraries responsible for
handling related tasks. The benefits include:

code can be split into smaller files with self-contained functionality
the same modules can be shared and reused across any number of
applications
modules need never be examined or updated by others once they’ve
been proven to work
code referencing a module understands it’s a required dependency
modules prevent naming conflicts: function x() in module1.js can’t
clash with function x() in module2.js

Bizarrely, there was no concept of modules in JavaScript during its first
twenty years. You couldn’t directly reference or include one JavaScript file in
another. Client-side developers would either:

add multiple <script> tags to an HTML page
concatenate scripts into a single file, perhaps using a bundler such as
webpack or task runners such as Grunt and Gulp

https://webpack.github.io/
https://gruntjs.com/
https://gulpjs.com/

use a module loading library such as RequireJS or SystemJS—all of
which adopted syntaxes such as CommonJS, AMD, or UMD

It would have been inconceivable for Node.js not to support modules when it
was released in 2009. CommonJS syntax was chosen as the Node.js module
standard, and support was added to npm.

CommonJS
A CommonJS module makes a function or value publicly available using
module.exports. For example:

// lib.js

const PI = 3.1415926;

// add values

function sum(...args) {

 log('sum', args);

 return args.reduce((num, tot) => tot + num);

}

// multiply values

function mult(...args) {

 log('mult', args);

 return args.reduce((num, tot) => tot * num);

}

// private logging function

function log(...msg) {

 console.log(...msg);

}

module.exports = { PI, sum, mult };

A require statement includes a module by referencing either:

its relative file path (./lib.js, ../lib.js)
a fully qualified file path (/path/lib.js)
its npm name following installation (express, chalk, etc.)

The module is included at the point it’s referenced during execution of the
script.

http://requirejs.org/
https://github.com/systemjs/systemjs
http://www.commonjs.org/
https://github.com/amdjs/amdjs-api/wiki/AMD
https://github.com/umdjs/umd

You can require specific named exported items:

const { sum, mult } = require('./lib.js');

console.log(sum(1,2,3,4)); // 10

console.log(mult(1,2,3,4)); // 24

Or you can require all exported items using a (namespaced) variable:

const lib = require('./lib.js');

console.log(lib.PI); // 3.1415926

console.log(lib.add(1,2,3,4)); // 10

console.log(lib.mult(1,2,3,4)); // 24

A module with a single exported item can be defined as a default. For
example:

// myclass.js

class MyClass {}

module.exports = MyClass;

And it can be defined using any name:

const

 MyNewClass = require('myclass.js'),

 myObj = new MyNewClass();

CommonJS dynamically imports file names by default, and can also import
JSON data as a JavaScript object. For example:

const

 file = `data${ Math.round(Math.random() * 3) }.json`,

 data = require(file);

console.log(data.propertyOne || 'propertyOne not set');

However, top-level await isn’t supported. Asynchronous calls must be
wrapped in an immediately invoked function expression (IIFE)—a function
that runs as soon as it’s defined. For example:

function waitOneSec() {

 return new Promise(

 (resolve) => setTimeout(resolve, 1000)

);

}

(async () => {

 await waitOneSec();

})();

CommonJS was the Node.js module standard until the arrival of ES2015
modules.

ES2015 Modules (ESM)
A native JavaScript module standard was proposed in ES2015 (ES6).

Everything inside an ES2015 module is private by default and runs in strict
mode (there’s no need for 'use strict'). Public properties, functions, and
classes are exposed using export. For example:

// lib.js

export const PI = 3.1415926;

// add values

export function sum(...args) {

 log('sum', args);

 return args.reduce((num, tot) => tot + num);

}

// multiply values

export function mult(...args) {

 log('mult', args);

 return args.reduce((num, tot) => tot * num);

}

// private logging function

function log(...msg) {

 console.log(...msg);

}

Alternatively, a single export statement can declare one or more public
items. For example:

// lib.js

const PI = 3.1415926;

// add values

function sum(...args) {

 log('sum', args);

 return args.reduce((num, tot) => tot + num);

}

// multiply values

function mult(...args) {

 log('mult', args);

 return args.reduce((num, tot) => tot * num);

}

// private logging function

function log(...msg) {

 console.log(...msg);

}

export { PI, sum, mult };

An import statement includes ES modules using either:

a relative URL (starting ./ or ../)
a fully qualified URL (such as file:///home/path/lib.js)
its npm name following installation (express, chalk, etc.)

Importing External URLs

Deno and browser JavaScript can import URLs from other domains:

import { someFunction } from 'https://example.com/lib.js';

This isn’t supported in Node.js but will arrive in a future release. You can use
an HTTPS loader, although it’s slower than disk access, the module isn’t
cached, and there are security implications.

All ES modules and their submodules are resolved and imported once before
your script executes. It doesn’t matter where they’re declared in your script.

You can import specific named items:

import { sum, mult } from './lib.js';

https://nodejs.org/dist/latest/docs/api/esm.html#https-loader

console.log(sum(1,2,3,4)); // 10

console.log(mult(1,2,3,4)); // 24

Or imports can be aliased to resolve naming conflicts:

import { sum as addAll, mult as multiplyAll } from './lib.js';

console.log(addAll(1,2,3,4)); // 10

console.log(multiplyAll(1,2,3,4)); // 24

Alternatively, all public items can be imported into a namespaced variable:

import * as lib from './lib.js';

console.log(lib.PI); // 3.1415926

console.log(lib.add(1,2,3,4)); // 10

console.log(lib.mult(1,2,3,4)); // 24

A module with a single item to export can set a default. For example:

// moduleWithDefault.js

export default function() { ... };

Or:

// moduleWithDefault.js

function x() { ... };

export default x;

The default is imported without curly braces and can use any name. For
example:

import myDefault from './moduleWithDefault.js';

This is effectively the same as this:

import { default as myDefault } from './moduleWithDefault.js';

Dynamic module loading—perhaps from a generated value—is possible
using the import() function, which returns a promise. For example:

const

 script = `./script${ Math.round(Math.random() * 3) }.js`

 randomImport = await import(script);

This affects performance and makes code validation difficult. Only use the
import() function when there’s no other option—for example, an imported
script is created after the application starts.

Node.js version 17 and above also support JSON loading and parsing using
the import() function:

import data from './data.json' assert { type: 'json' };

Finally, ESM supports top-level await. For example:

function waitOneSec() {

 return new Promise(

 (resolve) => setTimeout(resolve, 1000)

);

}

await waitOneSec();

Comparison of CommonJS and ES2015
Modules
CommonJS and ES2015 module syntaxes are superficially similar, but they
work in different ways:

Each CommonJS require references a file that’s dynamically loaded on
demand during execution.
Each ESM import references a URL that’s hoisted and pre-parsed to
resolve further imports. This occurs before your code is executed.
Dynamic importing of modules isn’t directly supported or
recommended.

Consider this ES2015 module:

// ESM two.mjs

console.log('running two');

export const hello = 'Hello from two';

It's imported by this script:

// ESM one.mjs

console.log('running one');

import { hello } from './two.mjs';

console.log(hello);

This is the output when running node one.mjs:

running two

running one

hello from two

Now consider this CommonJS module:

// CommonJS two.cjs

console.log('running two');

module.exports = 'Hello from two';

It's required by this script:

// CommonJS one.cjs

console.log('running one');

const hello = require('./two.cjs');

console.log(hello);

This is the output when running node one.cjs:

running one

running two

hello from two

Execution order is critical in some applications—and what would happen if
ES2015 and CommonJS modules were mixed in the same file?

It took several years for ESM support to arrive in Node.js. The following
approach was adopted to resolve potential compatibility problems:

CommonJS is the default (or set "type": "commonjs" in
package.json).
Any file with a .cjs extension is parsed as CommonJS.
Any file with a .mjs extension is parsed as ESM.

Running node --input-type=module index.js parses the entry script
as ESM.
Setting "type": "module" in package.json parses the entry script as
ESM.

Importing CommonJS Modules in ES2015
Node.js can import a CommonJS module into an ESM file. For example:

import lib from './lib.cjs';

This usually works well, and Node.js makes syntax suggestions when
problems occur.

Requiring ES2015 Modules in CommonJS
You can’t require an ES module in a CommonJS file. ESM modules load
asynchronously, so they aren’t compatible with synchronous loading and
execution in CommonJS.

One way around this is the dynamic import() function, which loads a
module on demand:

// CommonJS script

(async () => {

 const lib = await import('./lib.mjs');

 // ... use lib ...

})();

Alternatively, the esm package provides a way to import ESM code in
CommonJS.

This chapter’s video demonstrates how CommonJS and ESM modules can be
used interchangeably.

https://developer.mozilla.org/docs/Web/JavaScript/Reference/Statements/import#dynamic_import
https://www.npmjs.com/package/esm
https://vimeo.com/707852989/6808c19c71

Using ES2015 Modules in Browsers

This section isn’t specific to Node.js, but it may be useful if you’re
developing a cross-platform JavaScript library that works both client-side and
server-side (it’s isomorphic).

Browsers load ES modules asynchronously and defer execution until the
DOM is ready. They run in the order specified by each <script> tag:

<script type="module" src="./runsfirst.js"></script>

<script type="module" src="./runssecond.js"></script>

Or as specified by an inline import:

<script type="module">

import { something } from './somewhere.js';

// ...

</script>

Browsers without ESM support don’t load scripts with a type="module"
attribute. Browsers with ESM support don’t load scripts with a nomodule
attribute:

<script type="module" src="runs-when-ESM-supported.js"></script>

<script nomodule src="runs-when-ESM-is-not-supported.js">

</script>

Modules must be served with the MIME type application/javascript or
text/javascript. A CORS header such as Access-Control-Allow-Origin:
* must also be set if a module can be imported from another domain.

Summary

The module situation in Node.js can be confusing. It has reached a point
where:

some libraries are CommonJS
some libraries are ESM
some libraries provide builds for both CommonJS and ESM

https://developer.mozilla.org/Web/HTTP/CORS

CommonJS was the only option for several years. There’s little benefit
converting a large project to ESM, especially where it uses older modules
with compatibly issues.

Moving forward, ES2015 module syntax is the JavaScript standard
implemented in browsers and the Deno runtime. Personally, I like
CommonJS, but I recommend ES modules for new Node.js projects. All the
examples in this course use ESM. Importing CommonJS modules into ESM
is usually possible, but you may need to consider alternative packages if
problems occur.

For more information, refer to:

JavaScript modules on MDN
CommonJS modules on nodejs.org
ECMAScript modules on nodejs.org

Quiz
1. Node.js natively supports the following module syntaxes:

a. CommonJS and ECMAScript modules
b. CommonJS and AMD
c. ECMAScript modules and UMD
d. AMD and UMD

2. Which syntax does CommonJS use to declare and use public module
functions?

a. export and import
b. module.exports and import
c. module.exports and require
d. export and require

3. Which syntax do ES modules use to declare and use public functions?

a. export and import
b. module.exports and import

https://deno.land/
https://developer.mozilla.org/docs/Web/JavaScript/Guide/Modules
https://nodejs.org/dist/latest/docs/api/modules.html
https://nodejs.org/dist/latest/docs/api/esm.html

c. module.exports and require
d. export and require

4. Which of the following is true?

a. CommonJS and ESM operate identically
b. you can usually import a CommonJS modules in ESM
c. you can usually require an ES module in CommonJS
d. all of the above

5. The import() function:

a. can import an ES module into CommonJS
b. can dynamically load an ES module after the application starts
c. returns a promise
d. all of the above

Chapter 9: Asynchronous
Programming in Node.js
This chapter discusses the benefits and challenges of asynchronous
programming in JavaScript. Asynchronous concepts are rarely evident in
other languages, but it’s impossible to avoid them in Node.js.

You may have written asynchronous event handling functions in client-side
JavaScript. These should run quickly, and pages don’t remain open for long;
a bug could cause problems for an individual user, but a browser restart or
page reload would fix it. However, your Node.js app is the central point of
access for all users and must remain active without a restart. A small
asynchronous bug can generate memory leaks that eventually crash the
application.

This is one of the biggest causes of confusion when developers migrate from
other languages, so please don’t skip this chapter! Asynchronous
programming can seem complex, but a few pointers will help you avoid
common pitfalls.

Single-threaded Non-blocking I/O Event-
looping What?

Imagine you’re running a pizza restaurant on your own. You take all the
orders and prepare all the pizzas but can only manage one task at a time. You
receive your first order, then prepare the dough (20 minutes), add the
toppings (20 minutes), pop it in the oven, watch while it cooks (20 minutes),
and serve to the customer. The process takes one hour; you’re then free to
take another order.

To make your restaurant more efficient, you hire three chefs: one to make
dough, one to add toppings, and one to bake. The chefs are in different
kitchens and can’t talk to each other, but they’ll report back to you when their
specific task is complete.

It still takes an hour to create one pizza (although the three chefs together can
prepare three pizzas every hour). What’s important is that you’re no longer
involved in the cooking process. You’re passing instructions to chefs and
receiving an alert when they’ve completed their job. You’re free to take
customer orders whenever they arrive.

Both JavaScript and Node.js are single-threaded: the runtime can only do
one thing at a time. It would be like a restaurant with a single chef, except
JavaScript offloads input and output operations to the operating system
kernel (other “chefs” who operate in parallel). A Node.js app may start a file
write, database read, or HTTP request, but it won’t wait for that operation to
finish. Instead, it asks for a callback function to be run when it’s complete
and success or error data is available.

Callbacks in Action

Consider this PHP code to write text to a file:

<?php

echo 'saving file';

$err = file_put_contents('file.txt', 'Hello from PHP');

if ($err !== false) echo 'file saved';

echo 'processing complete';

?>

The program outputs this:

saving file

file saved

processing complete

The PHP interpreter processes the file_put_contents() statement and
waits until the file is fully written before progressing to the next command.

This is the equivalent code in Node.js:

https://www.php.net/manual/function.file-put-contents.php

import { writeFile } from 'fs';

console.log('saving file');

writeFile('file.txt', 'Hello Node.js', 'utf8', err => {

 if (!err) console.log('file saved');

});

console.log('processing complete');

The program outputs this:

saving file

processing complete

file saved

Processing completes before the file saves!

The fourth argument passed to writeFile() is an anonymous ES6 callback
function with a single err parameter. The callback runs when the file has
saved (or fails to save and raises an error passed in err). File saving may only
take a few milliseconds, but it runs in the background, so the 'processing
complete' command executes immediately.

Asynchronous callbacks are at the heart of all client-side and server-side
JavaScript applications.

It’s standard practice to handle errors and return an error object or string
message as the first argument to a callback function (like err above). When
no error occurs, the callback’s first parameter should be null, undefined or
any other falsy value.

The Event Loop
Why does the Node.js program above continue to run after the last line has
executed?

All Node.js applications initialize an event loop. Once the last statement
completes execution, Node.js loops back and checks for any outstanding:

timers (such as setTimeout)
pending callbacks

https://nodejs.org/dist/latest/docs/api/fs.html#fswritefilefile-data-options-callback
https://developer.mozilla.org/Web/API/setTimeout

polling data connections

These are run in the order they’re received (know as “first in, first out”, or
FIFO).

A seemingly idle application won’t end if it’s waiting for something to
complete or if something could occur at a future point (such as a server
listen on a specific port).

Avoid Blocking the Event Loop

Long-running JavaScript calculations or processes block the event loop and
delay the processing of incoming requests. Process-intensive tasks should
either be:

split into smaller sub-tasks with timers
run in the background using a worker thread or a child process (options
that are discussed in Chapter 12).

Callback Conundrums
Using callbacks in asynchronous functions isn’t always easy. Your code can
look correct and run without errors, but it eventually causes the Node.js
runtime to crash.

Two severe issues are:

failing to terminate an asynchronous function after a callback
accidentally making an asynchronous function synchronous

These are best explained with examples. Consider this simple asynchronous
function which waits for ms milliseconds:

// wait for ms milliseconds

function wait(ms, callback) {

 setTimeout(callback, ms);

https://nodejs.org/dist/latest/docs/api/worker_threads.html
https://nodejs.org/dist/latest/docs/api/child_process.html

}

// wait for one second

wait(1000, () => {

 console.log('waited 1000ms');

});

Let’s improve the function by returning the following arguments to the
callback:

an error when ms is not a number, less than 1, or more than 3000
the value of ms waited

Our initial implementation:

// wait for ms milliseconds

function wait(ms, callback) {

 ms = parseFloat(ms);

 // invalid ms value?

 if (!ms || ms < 1 || ms > 3000) {

 const err = new RangeError('Invalid ms value');

 callback(err, ms);

 }

 // wait ms before callback

 setTimeout(callback, ms, null, ms);

}

// call wait

wait(500, (err, ms) => {

 if (err) console.log(err);

 else console.log(`waited ${ ms }ms`);

});

Execution returns the expected waited 500ms result.

However, what happens when we pass an invalid ms value such as 0?

We get the error we expected, but the setTimeout also runs and we see
waited 0ms. The callback function executes twice, because the function
didn’t terminate when the error occurred. We can solve this by putting the
setTimeout in an else statement or adding a return in the error condition:

// wait for ms milliseconds

function wait(ms, callback) {

 ms = parseFloat(ms);

 // invalid ms value?

 if (!ms || ms < 1 || ms > 3000) {

 const err = new RangeError('Invalid ms value');

 callback(err, ms);

 return; // terminate function

 }

 // wait ms before callback

 setTimeout(callback, ms, null, ms);

}

There’s another, subtler issue: the callback runs immediately when an error
is raised. At that point, the function is no longer asynchronous—it’s
synchronous. It won’t cause an obvious problem here, but it can lead to
memory leaks in larger, long-running Node.js applications. Your app will
eventually crash with an obscure “memory overflow” error message.

A Function Must be 100% Synchronous or 100% Asynchronous

No path through an asynchronous function should ever lead to a callback
being run immediately.

A simple way to solve this is the setImmediate() timer. This calls a function
during the next iteration of the event loop:

// wait for ms milliseconds

function wait(ms, callback) {

 ms = parseFloat(ms);

 // invalid ms value?

 if (!ms || ms < 1 || ms > 3000) {

 const err = new RangeError('Invalid ms value');

 setImmediate(callback, err, ms);

 return;

 }

 // wait ms before callback

 setTimeout(callback, ms, null, ms);

}

process.nextTick()

https://nodejs.org/dist/latest/docs/api/timers.html#setimmediatecallback-args

You may see process.nextTick(callback) used in some applications. This
works similarly to setImmediate(), except that the callback runs before the
end of the current iteration of the event loop. This can cause the event loop to
never restart if nextTick() is recursively called.

Callback Hell

In complex Node.js applications, you’ll often make a series of asynchronous
function calls—such as when fetching something from a database, making an
API call, loading a file, and so on. A callback may be used in one place only,
so it makes sense to declare an inline anonymous function. This can quickly
descend into deeply nested callback hell:

wait(100, (err) => {

 console.log('wait 1');

 wait(200, (err) => {

 console.log('wait 2');

 wait(300, (err) => {

 console.log('wait 3');

 });

 });

});

There are syntactical ways to flatten this structure, typically by naming each
function and ensuring each calls others in turn. Fortunately, the JavaScript
gods addressed the problem with promises.

Promises
A Promise object represents the eventual completion or failure of an
asynchronous operation with its resulting value. Promises provide a clearer
syntax that makes it easier to chain asynchronous calls that run in series.
Developers can also avoid the callback issues raised in the previous sections.

Promises were introduced in ES6/2015 and are syntactical sugar; callbacks

https://nodejs.org/dist/latest/docs/api/process.html#processnexttickcallback-args

are still used under the hood. To make a function asynchronous, a Promise
object must be returned immediately. The Promise constructor is passed two
callback functions as parameters:

resolve: the function that’s run when processing successfully completes
reject: the function that’s run when an error occurs

In the case of our wait() function, it can be rewritten to return a promise that
calls resolve(ms) after the timeout or reject(error) when an invalid ms
parameter is passed:

// wait for ms milliseconds

function pWait(ms) {

 ms = parseFloat(ms);

 return new Promise((resolve, reject) => {

 if (!ms || ms < 1 || ms > 3000) {

 reject(new RangeError('Invalid ms value'));

 }

 else {

 setTimeout(resolve, ms, ms);

 }

 });

}

util.promisify()

util.promisify() converts any callback-based function with an error as the
first argument into a promise. Rather than re-writing wait(), you could
create a promisified alternative named pWait():

import { promisify } from 'util';

const pWait = promisify(wait);

Anything that returns a promise can have:

a then() method, which is passed a function that takes the result from
the previous resolve()

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://nodejs.org/dist/latest/docs/api/util.html#utilpromisifyoriginal

a catch() method, which is passed a function that runs when an error is
returned from any reject()
a finally() method, which is called at the end regardless

pWait(100)

 .then(ms => console.log(`waited ${ ms }ms`));

 .catch(err => console.log(err))

 .finally(() => console.log('all done'))

Each .then() function can return a value or another promise so that
sequential asynchronous function calls can be chained. For example:

pWait(100)

 .then(ms => {

 console.log(`waited ${ ms }ms`);

 return pWait(ms + 100);

 })

 .then(ms => {

 console.log(`waited ${ ms }ms`);

 return pWait(ms + 100);

 })

 .then(ms => {

 console.log(`waited ${ ms }ms`);

 })

 .catch(err => {

 console.log(err);

 });

then() Functions Are Promisified

The final then() in the code above runs a synchronous function, but
JavaScript automatically converts it into a promise-based asynchronous
function so you can append further then() methods when necessary.

Parallel Promises

The example above executes each asynchronous function call one after the
other. This is only necessary if the result from one function is required as
input for the next.

You’ll often encounter situations when several asynchronous functions are
required but they aren’t related to each other. For example, given a book ID,
such as an ISBN, you want to:

retrieve book information such as the title, author, etc. from a local
database (getBook(ID))
call a stock control system API to determine how may of those books
are available (getStock(ID))
get the latest recommended retail price from the publisher
(getPrice(ID))

Assume each function returns a promise where resolve() returns an
information object.

The following promise chain works but is inefficient, because each call
occurs one after the other:

// book data object

const bookData = { id: 123 };

getBook(bookData.id)

 .then(book => {

 bookData.title = book.title;

 bookData.author = book.author;

 bookData.description = book.description;

 getStock(bookData.id);

 })

 .then(stock => {

 bookData.stock = stock;

 getPrice(bookData.id);

 })

 .then(price => {

 bookData.price = price;

https://www.isbn-international.org/

 })

 .catch(err => {

 console.log(err);

 })

A better option is Promise.all(), which takes an array of promises, runs
each in parallel, and returns a new outer promise where resolve() returns an
array of output values in the same order. This code is as fast as the slowest
function:

// book data object

const bookData = { id: 123 };

Promise.all([

 getBook(bookData.id),

 getStock(bookData.id),

 getPrice(bookData.id)

])

 .then(result => {

 bookData.title = result[0].title;

 bookData.author = result[0].author;

 bookData.description = result[0].description;

 bookData.stock = result[1];

 bookData.price = result[2];

 })

 .catch(err => {

 console.log(err);

 })

The .catch() is triggered whenever a single promise reject() runs, so any
pending promises are aborted.

Similar options include:

Promise.allSettled()

Runs all promises in the array and waits until every one has resolved or
rejected. Each item in the returned array is an object with a .status
property (either 'fulfilled' or 'rejected') and a .value property

https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Promise/all
https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Promise/allSettled

with the returned value.

Promise.any()

Runs all promises in the array but resolves as soon as the first promise
resolves. A single value is returned.

Promise.race()

Runs all promises in the array but resolves or rejects as soon as the first
promise resolves or rejects. A single value is returned.

Promising Problems

Promises help prevent callback hell, but I found them confusing at first, and
it’s easy to mangle the .then()/.catch() chain syntax. You should also note
that the whole promise chain is asynchronous, so any function using a series
of promises should return its own promise (or it could run a callback to
confuse other developers!)

async/await

ES2017 introduced the async and await keywords, which enable
asynchronous, promise-based behavior to be written in a cleaner and clearer
syntax. Again, they’re more syntactical sugar, but they make promises
sweeter.

A promise chain to make three successive pWait() calls is long and difficult
to read:

pWait(100)

 .then(ms => {

 console.log(`waited ${ ms }ms`);

 return pWait(ms + 100);

 })

 .then(ms => {

 console.log(`waited ${ ms }ms`);

 return pWait(ms + 100);

 })

https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Promise/any
https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Promise/race

 .then(ms => {

 console.log(`waited ${ ms }ms`);

 })

 .catch(err => {

 console.log(err);

 });

This is the equivalent code using await:

try {

 const p1 = await pWait(100);

 console.log(`waited ${ p1 }ms`);

 const p2 = await pWait(p1 + 100);

 console.log(`waited ${ p2 }ms`);

 const p3 = await pWait(p2 + 100);

 console.log(`waited ${ p3 }ms`);

}

catch(err) {

 console.log(err);

}

Put the await keyword before any promise-based asynchronous function and
the JavaScript interpreter will appear to wait until it’s resolved or rejected.
The syntax is cleaner and looks much like a series of synchronous function
calls.

The code above is a top-level await because it’s not contained in a function.
This works in ES2015 modules, but not in CommonJS, where you must wrap
it in an asynchronous immediately invoked function expression (IIFE):

(async () => {

 try {

 const p1 = await pWait(100);

 console.log(`waited ${ p1 }ms`);

 const p2 = await pWait(p1 + 100);

 console.log(`waited ${ p2 }ms`);

 const p3 = await pWait(p2 + 100);

 console.log(`waited ${ p3 }ms`);

 }

 catch(err) {

 console.log(err);

 }

})();

Any function that contains one or more await statements must have async
prepended to indicate it’s asynchronous. In effect, this turns it into a promise-
based function:

// async function

async function waitSeries(ms) {

 try {

 const p1 = await pWait(ms);

 console.log(`waited ${ p1 }ms`);

 const p2 = await pWait(p1 + 100);

 console.log(`waited ${ p2 }ms`);

 const p3 = await pWait(p2 + 100);

 console.log(`waited ${ p3 }ms`);

 }

 catch(err) {

 console.log(err);

 }

}

// top-level await to run the async function

await waitSeries(100);

Promise.all() is Still Necessary

There’s no async/await equivalent for Promise.all() and similar functions.
However, async functions return a promise, so they can be passed in the
processing array.

try/catch is Ugly

async functions silently exit if you omit try/catch and the current await is
rejected. Unless you can examine the error type, it’s not possible to know
which await triggered the problem, so multiple try/catch blocks may be
necessary.

You could consider using a higher-order function to catch errors when they
can be processed in the same way. For example:

// async function

async function waitSeries(ms) {

 const p1 = await pWait(ms);

 console.log(`waited ${ p1 }ms`);

 const p2 = await pWait(p1 + 100);

 console.log(`waited ${ p2 }ms`);

 const p3 = await pWait(p2 + 100);

 console.log(`waited ${ p3 }ms`);

}

// higher-order function handle errors

function catchErrors(fn) {

 return function(...args) {

 return fn(...args).catch(err => {

 console.log('ERROR', err);

 });

 }

}

// top-level await

await catchErrors(waitSeries)(100);

Whether this results in more readable code is another matter.

Asynchronous Awaits in Synchronous Loops

Be wary about using await in looping methods such as forEach(), which are
passed a function. Loops are synchronous and continue to run even when the
function they call is asynchronous. Consider this example:

const ms = [100, 200, 300];

let totalWait = 0;

ms.forEach(async i => {

 console.log(i);

 const w = await pWait(i);

 console.log(`waited ${ w }ms`);

 totalWait += w;

});

console.log(`total wait time: ${ totalWait }ms`);

You might expect to see the following output:

100

waited 100ms

200

waited 200ms

300

waited 300ms

total wait time: 600ms

The actual result is surprising, as pictured below.

Each iteration of the loop won’t await until it’s complete. This will be a
problem if the result of one await is required in the next call.

Standard for(), while() and async iterator loops may be necessary. The code
above can be fixed with this:

const ms = [100, 200, 300];

let totalWait = 0;

https://developer.mozilla.org/docs/Web/JavaScript/Reference/Statements/for
https://developer.mozilla.org/docs/Web/JavaScript/Reference/Statements/while
https://developer.mozilla.org/docs/Web/JavaScript/Reference/Statements/for-await...of

for (let i = 0; i < ms.length; i++) {

 console.log(ms[i]);

 const w = await pWait(ms[i]);

 console.log(`waited ${ w }ms`);

 totalWait += w;

}

console.log(`total wait time: ${ totalWait }ms`);

The result is pictured below.

Exercises
Write a small application that fetches three random questions from the Open
Trivia Database using the following REST URL requests:

General knowledge:

https://opentdb.com/api.php?type=multiple&amount=1&category=9

Computers:

https://opentdb.com/api.php?type=multiple&amount=1&category=18

Gadgets:

https://opentdb.com/api.php?type=multiple&amount=1&category=30

https://opentdb.com/
https://opentdb.com/api.php?type=multiple&amount=1&category=9
https://opentdb.com/api.php?type=multiple&amount=1&category=18
https://opentdb.com/api.php?type=multiple&amount=1&category=30

HTTP Requests

Unless you’re using Node.js 18 or above, which offers a native Fetch() API,
you’ll need use a third-party HTTP request module such as node-fetch.

Format the question data into a single array and output it in JSON format into
a file named questions.json.

For bonus points, make your application more efficient by running all URL
requests in parallel.

This chapter’s video demonstrates a solution.

Summary

Asynchronous programming takes some time to understand and will catch
you out. The following tips will help you write more robust Node.js
applications.

Ensure JavaScript functions run quickly and don’t block the event loop.
Pass callback functions to an asynchronous function so they can be
called when an operation is complete.
The first argument of the callback function must be an error object or
string message.
Always ensure a function return occurs after a callback runs.
An asynchronous function must be 100% asynchronous: no path should
lead to an immediate callback. Pass a callback to setImmediate() to run
it during the next iteration of the event loop if necessary.
Learn how to create your own promise functions or create them from a
callback-based function using util.promisify().
You can await for a promise to complete inside an async function.
Where possible, run promises in parallel using options such as
Promise.all() or Promise.allSettled().

Useful links:

The Node.js event loop

https://www.npmjs.com/package/node-fetch
https://vimeo.com/707853188/418897e1b3
https://nodejs.org/dist/latest/docs/api/timers.html#setimmediatecallback-args
https://nodejs.org/dist/latest/docs/api/util.html#utilpromisifyoriginal
https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Promise/all
https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Promise/allSettled
https://nodejs.org/en/docs/guides/event-loop-timers-and-nexttick/

Don’t block the event loop (or the worker pool)
MDN promise documentation
MDN async and await
The “Promises” and “Async functions” sections of Chapter 11,
JavaScript: Novice to Ninja
Chapters 8 and 9 of JavaScript: The New Toys

Quiz
1. A callback function:

a. runs before an operation starts
b. calls an asynchronous function
c. is called when an asynchronous operation completes
d. all of the above

2. An asynchronous function:

a. completes at a later time
b. allows subsequent JavaScript commands to be executed
c. can be implemented with callbacks, promises, or async
d. all of the above

3. The Node.js event loop:

a. reruns when there are outstanding timers or callbacks
b. runs asynchronous functions
c. is another name for callbacks
d. none of the above

4. A Promise object completes by running:

a. a resolve or reject function
b. a fulfilled or error function
c. a resolve or error function
d. a fulfilled or reject function

5. An async function:

https://nodejs.org/en/docs/guides/dont-block-the-event-loop/
https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/docs/Web/JavaScript/Reference/Statements/async_function
https://developer.mozilla.org/docs/Web/JavaScript/Reference/Operators/await
https://www.sitepoint.com/premium/books/javascript-novice-to-ninja-2nd-edition
https://www.sitepoint.com/premium/books/javascript-the-new-toys

a. can call promise-based functions using await
b. returns a promise
c. uses try/catch blocks to handle errors
d. all of the above

Chapter 10: Using Database
Storage
The previous chapters explained programming practices that affect all
Node.js applications. This chapter applies these fundamentals to the specific
challenge of data storage using database solutions such as MongoDB and
MySQL.

Web applications often require data that persists between page loads and
application restarts. Consider a content management system such as
WordPress: it stores articles, metadata, media, user profiles, comments,
settings, plugin configurations, and more. Multiple users can log in at any
time to view and update content.

The most common solution to data persistence is a database such as
MongoDB, MySQL, or PostgreSQL. All database systems have the same
purpose: to provide the ability to store and query data fast and frequently.
They differ in how they achieve those goals.

Skip Ahead?

Databases may not be the most exciting topic, but it’s one of the most
significant differences between frontend and backend engineering. You can
skip sections about specific systems, but the following chapters will be more
difficult to understand without some database knowledge.

A Database-driven Web Application Example

The sections below explain how to create a web page hit counter service.
Your grandparents will tell you how popular they were in the 1990s.

https://www.mongodb.com/
https://www.mysql.com/
https://www.postgresql.org/

A page using this service includes an image:

<img src="http://localhost:8001/hit.svg" alt="hits"

referrerpolicy="unsafe-url" />

(Note that the referrerpolicy is required in modern browsers so they send
referral information in the HTTP header.)

The image is returned from a Node.js Express application, which:

1. Extracts the page URL from the request’s referer HTTP header.
2. Cleans and transforms the URL to a 32-character hash using the MD5

algorithm. All URLs therefore resolve to a 32-character string no matter
how long they are. (In theory, two different URLs could generate the
same hash, but it’s unlikely to occur for a few billion years.)

3. Stores the hash in a new database record with the user’s IP address, user
agent string, and current date/time.

4. Counts all references to the hash in the database.
5. Generates and returns an SVG image with that count.

Three applications are provided in the code directory:

1. A MongoDB version (see the “MongoDB” section below) using the
native mongodb driver.

2. A MySQL version (see the “MySQL” section below) using the native
mysql2 driver.

3. A Sequelize ORM version (see the “Sequelize ORM” section below).

https://en.wikipedia.org/wiki/MD5
https://github.com/spbooks/ultimatenode1/tree/main/ch10
https://www.npmjs.com/package/mongodb
https://www.npmjs.com/package/mysql2

This also connects to a MySQL database using mysql2, but you don’t
use it directly.

All three use the same Node.js code except for a lib/pagehit.js file, which
communicates with a specific database to add and query records.

It’s impossible to describe every option in every database, but this example
code provides a head start when developing your own applications.

Installing and Configuring Database Software

You can download, install, and configure MySQL, MongoDB, or any other
database on Linux, macOS, and Windows. That’s beyond the scope of this
course, so prepare yourself for several hours of effort.

An easier option is Docker. This is often shrouded in mystery, but Docker
provides a way to download, install, and configure pre-built applications in
minutes. Install Docker on your system, then follow the steps below to run
MySQL, MongoDB, and the Adminer database client. The page hit service
runs as a Node.js application on your device that connects to this database.

MongoDB
MongoDB is a popular NoSQL database that became associated with Node.js
in the same way MySQL is often paired with PHP. MongoDB groups JSON-
like documents into one or more collections (analogous to tables) and
implements querying with JavaScript-like objects.

NoSQL has become a catch-all term for any database that doesn’t follow
SQL conventions (see the “MySQL” section below). In general, NoSQL
databases implement fewer rules. Repeated (denormalized) data is
encouraged, and there’s no need to define data structures, defaults,
constraints, or relationships.

NoSQL software and storage mechanisms vary. Some offer basic key–value
pairs. Some use JSON documents. Others are use-case specific, such as Redis
for in-memory caching, and Elasticsearch for search-engine indexing.

https://www.npmjs.com/package/mysql2
https://www.docker.com/
https://dockerwebdev.com/tutorials/install-docker/
https://www.adminer.org/
https://www.mongodb.com/
https://redis.io/
https://www.elastic.co/

A NoSQL database can be practical when data is more organic and
relationships are looser. Consider an address book storing telephone numbers
for individual contacts:

You could allocate a single telephone field in an SQL database, but it’s
too restrictive: contacts may have home, work, and mobile numbers.
Allocating three telephone fields would be wasteful for some contacts,
but not enough for others. A separate telephone table is the most
flexible option, but this increases complexity.

In a NoSQL database, telephone numbers can be defined as an unlimited
array of objects associated with a contact. For example:

{

 "firstName": "Contact",

 "lastName": "One",

 "telephone": [

 { "home": "1-01234567890" },

 { "work": "2-01234567890" },

 { "iPhone": "3-01234567890" },

 { "Android phone": "4-01234567890" },

 { "Test phone": "5-01234567890" }

]

}

Start the MongoDB Application

To use the MongoDB-based application, navigate to the pagehit-mongodb
directory and start MongoDB and the Adminer client with docker-compose
up.

Your Own MongoDB Installation?

Database configuration parameters are defined in the project’s .env file. It
configures Docker, and the Node.js application reads it using the dotenv
module.

If you’re using your own installation of MongoDB, edit the .env file and
change the configuration parameters accordingly. In most cases, only the root
user’s password need be changed (MONGO_INITDB_ROOT_PASSWORD).

https://www.npmjs.com/package/dotenv

In another terminal, install the Node.js express, mongodb, and dotenv
dependencies referenced in package.json:

npm install

Then start the page hit application:

npm start

Finally, start a web server in another terminal so you can load test pages:

npx small-static-server 8888 ./test

You now have four services running:

the MongoDB database at http://localhost:27017
the Adminer database client at http://localhost:8080/
the page hit service at http://localhost:8001/
a test page web server at http://localhost:8888/

Different ports can be defined in the .env file if you have clashes.

Visit http://localhost:8888/page1.html or http://localhost:8888/page2.html to
view page counters. Refresh and watch the counter increase.

You can examine the database data using the Adminer panels at
http://localhost:8080/. Log on with the credentials specified in .env:

System: MongoDB
Server: host.docker.internal (or your network IP address if not using
Docker Desktop)
Username: root
Password: rootuserpw
Database: pagehitmongo

https://www.npmjs.com/package/express
https://www.npmjs.com/package/mongodb
https://www.npmjs.com/package/dotenv
http://localhost:8888/page1.html
http://localhost:8888/page2.html
http://localhost:8080/

Click the hit collection followed by Select data.

View this chapter’s video to see the code in action.

MongoDB Functionality

The lib/pagehit.js file handles all MongoDB functionality. It loads the
required modules and extracts the configuration parameters from the .env file
using the dotenv module:

import dotenv from 'dotenv';

import { MongoClient } from 'mongodb';

import httpReferrer from './httpreferrer.js';

// load .env configuration

dotenv.config();

You require a Node.js package to communicate with a database. These are
often referred to as database clients, connectors, or drivers, and the
MongoDB native driver is used here. It provides low-level methods to
construct and execute any MongoDB command.

A connection string is passed to the MongoClient driver constructor, which
sets the database user’s name, password, host, and port. The asynchronous
.connect() method is called to establish a connection:

// connect to MongoDB

const client = new MongoClient(

 `mongodb://${ process.env.MONGO_INITDB_ROOT_USERNAME }:${

process.env.MONGO_

 ➥INITDB_ROOT_PASSWORD }@${ process.env.MONGO_INITDB_HOST }:${

process.env.

 ➥MONGO_INITDB_PORT }/`,

 { useNewUrlParser: true, useUnifiedTopology: true }

);

await client.connect();

The code then connects to a specific database (pagehitmongo) and references
a hit collection for later use (a collection is a group of similar JSON-like
documents):

const

https://vimeo.com/707853300/f72d657727
https://www.npmjs.com/package/dotenv
https://www.npmjs.com/package/mongodb

 db = client.db(process.env.MONGO_INITDB_DATABASE),

 hit = db.collection('hit');

MongoDB allows you to arbitrarily add data to a document in a collection
without describing that data up front (although it’s possible to define a
schema so you can benefit from data validation). However, you should index
regularly queried values to make searches faster and more efficient.

What Is a Database Index?

An index is a list of the data in one or more fields in a specific order—much
like the index in a book. For example, you could have a number of user
records created as each person registers. When someone logs in, you must
locate a user’s record by their email address:

Without an index, the database must search through every user record
one by one until the correct email is found.
With an index on the email field in ascending alphabetical order, the
database can locate a matching record far faster.

Indexes should be used on fields that you frequently query. It’s tempting to
create indexes on every field, but the more you add, the longer it takes to
write new records and update all indexes.

The hit collection has an index created on the URL hash and time. This runs
every time the application starts, but is ignored after the first attempt:

// add collection index

await hit.createIndex({ hash: 1, time: 1 });

lib/pagehit.js exports a single default asynchronous function. It generates
a hash from the referring page’s URL, but returns null when no referrer is
found:

// count handler

export default async function(req) {

 // hash of referring URL

 const hash = httpReferrer(req);

 // no referrer?

 if (!hash) return null;

The browser’s IP address (ip), user agent (ua), and access time (time) are
then determined:

// fetch browser IP address and user agent

const

 ipRe = req.ip.match(/(?:\d{1,3}\.){3}\d{1,3}/),

 ip = ipRe?.[0] || null,

 ua = req.get('User-Agent') || null,

 time = new Date();

This data is added as a new document into the hit collection using the
insertOne() method. By default, all MongoDB documents also have a
unique _id added to every document:

try {

 // store page hit

 await hit.insertOne({ hash, ip, ua, time });

A count of all documents with the same hash is then returned:

// fetch page hit count

return await hit.countDocuments({ hash });

An error is thrown if any database operation fails:

 }

 catch (err) {

 throw new Error('DB error', { cause: err });

 }

}

The main index.js script loads this module:

import pagehit from './lib/pagehit.js';

It uses it within a middleware function that sets req.count to the returned
page count. This is available to subsequent (next()) middleware functions,
but any error terminates the request immediately:

https://docs.mongodb.com/manual/reference/method/db.collection.insertOne/

// page hit count middleware

app.use(async (req, res, next) => {

 try {

 req.count = await pagehit(req);

 if (req.count) {

 next();

 }

 else {

 res.status(400).send('No referrer');

 }

 }

 catch(err) {

 res.status(503).send('Pagehit service down');

 }

});

A single /hit.svg route is defined, which returns an SVG image containing
the req.count value:

// SVG counter response

app.get('/hit.svg', (req, res) => {

 res

 .set('Content-Type', 'image/svg+xml')

 .send(`<svg xmlns="http://www.w3.org/2000/svg" width="${

String(req.count).

 ➥length * 0.6 }em" height="1em"><text x="50%" y="75%" font-

family=

 ➥"sans-serif" font-size="1em" text-anchor="middle" dominant-

baseline=

 ➥"middle">${ req.count }</text></svg>`);

});

The response ends once the SVG is returned to the calling browser.

Stop the MongoDB Application

Stop both the Node.js page hit application and test page server by pressing
Ctrl | Cmd + C in their terminals. From the same project directory, stop the
MongoDB database and Adminer client with docker-compose down.

MySQL
MySQL is a popular SQL database. SQL (Structured Query Language) is a
standard for managing data in a relational database management system
(RDBMS). Data is stored in tables and should ideally be defined in one place
without duplication (known as normalization).

Consider a book store inventory. Each book has an ID, title, author, and
publisher, and is added as a new row (record) to a book table:

id title author publisher
1 Introduction to Node.js Craig Buckler SitePoint
2 Jump Start Web Performance Craig Buckler SitePoint

3 DevTool Secrets Craig Buckler SitePoint
4 Learn to Code with JavaScript Darren Jones SitePoint

An author and publisher can have more than one book. Rather than repeat the
same values, it’s more practical to create author and publisher tables where
each record has a unique ID.

Here’s the author table:

id name country
2 Craig Buckler UK
3 Darren Jones UK

Here’s the publisher table:

id name country
1 SitePoint AU

You can reference those IDs in the book table:

id title author_id publisher_id

https://www.mysql.com/

1 Introduction to Node.js 2 1
2 Jump Start Web Performance 2 1
3 DevTool Secrets 2 1
4 Learn to Code with JavaScript 3 1

If a publisher changes their name or address, you can update the data in the
publisher table without affecting related book records.

A brief overview of SQL:

Database table structures must be defined before data can be stored.
SQL offers simple declarative CRUD operations such as INSERT,
SELECT, UPDATE, and DELETE, but is powerful enough for complex
operations.
Queries can JOIN tables to examine related data in a single command.
Data integrity and relationships can be enforced. For example, it
becomes impossible to delete an author if they have one or more books.
Most systems can wrap multiple updates into a single transaction. If one
operation fails, the data rolls back to the state before the first update.
SQL is a fairly loose standard. Similar syntaxes are implemented across
relational database management systems, but features and syntax can
differ.
SQL was initially devised in the early 1970s, so software, tools,
documentation, and resources are plentiful.

Other popular SQL databases include MariaDB, PostgreSQL, SQLite,
Microsoft SQL Server, and Oracle.

Start the MySQL Application

To use the MySQL-based application, navigate to the pagehit-mysql
directory and start MySQL and the Adminer client with docker-compose up.

Your Own MySQL Installation?

As before, database configuration parameters are defined in the project .env
file, which you can edit if you’re using your own MySQL installation.

https://mariadb.org/
https://www.postgresql.org/
https://www.sqlite.org/
https://www.microsoft.com/sql-server/
https://www.oracle.com/database/

Docker automatically runs the mysql/init.sql script to initialize the
database tables and indexes. You must run this manually before starting the
Node.js application, either by running it in a MySQL client or using the
terminal command:

mysql -h localhost -u pagehituser pagehitmysql < mysql/init.sql

(Change the host, user, or database names as necessary.)

In another terminal, install the Node.js express, mysql2, and dotenv
dependencies referenced in package.json:

npm install

Then start the page hit application:

npm start

Finally, start a web server in another terminal so you can load test pages:

npx small-static-server 8888 ./test

You now have four services running:

the MySQL database at http://localhost:3306
the Adminer database client at http://localhost:8080/
the page hit service at http://localhost:8001/
a test page web server at http://localhost:8888/

Different ports can be defined in the .env file if you have clashes.

Visit http://localhost:8888/page1.html or http://localhost:8888/page2.html to
view page counters. Refresh and watch the counter increase.

You can examine the database data using the Adminer panels at
http://localhost:8080/. Log on with the credentials specified in .env:

System: MySQL
Server: host.docker.internal (or your network IP address if not using
Docker Desktop)

https://www.npmjs.com/package/express
https://www.npmjs.com/package/mysql2
https://www.npmjs.com/package/dotenv
http://localhost:8888/page1.html
http://localhost:8888/page2.html
http://localhost:8080/

Username: pagehituser
Password: pagehitpw
Database: pagehitmysql

Then click select next to the hit table.

MySQL Functionality

You can’t store data in an SQL RDBMS until the data structure (its schema)
is defined. The MySQL database schema is defined in mysql/init.sql,
which runs automatically when using Docker:

-- MySQL database initialization

USE pagehitmysql;

CREATE TABLE IF NOT EXISTS hit (

 id bigint unsigned NOT NULL AUTO_INCREMENT COMMENT 'record ID',

 hash binary(16) NOT NULL COMMENT 'URL hash',

 ip int(4) unsigned DEFAULT NULL COMMENT 'client IP address',

 ua varchar(200) DEFAULT NULL COMMENT 'client useragent string',

 time timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP COMMENT 'hit

time',

 PRIMARY KEY (id),

 KEY hash_time (hash, time)

) ENGINE=InnoDB DEFAULT CHARSET=utf8 COMMENT='page hits';

The lib/pagehit.js file handles all MySQL functionality. It loads the
required modules and extracts the configuration parameters from the .env file
using the dotenv module:

import dotenv from 'dotenv';

import mysqlPromise from 'mysql2/promise';

import httpReferrer from './httpreferrer.js';

// load .env configuration

dotenv.config();

The mysql2 driver has been chosen for MySQL communication. It provides
promise-based, low-level methods to construct and execute any SQL
command.

A MySQL connection pool is configured using defaults from the .env file.
Connection pools reduce the time spent connecting to a MySQL server by
reusing previous connections:

// connect to MySQL

const db = await mysqlPromise.createPool({

 host: process.env.MYSQL_HOST,

 port: process.env.MYSQL_PORT,

 database: process.env.MYSQL_DATABASE,

 user: process.env.MYSQL_USER,

 password: process.env.MYSQL_PASSWORD,

 waitForConnections: true,

 connectionLimit: 10,

 queueLimit: 0

});

Like before, lib/pagehit.js exports a single default asynchronous function.
It generates a hash from the referring page’s URL, returns when no referrer is
found, and determines the browser’s IP address (ip), and user agent (ua):

https://www.npmjs.com/package/dotenv
https://www.npmjs.com/package/mysql2

// count handler

export default async function(req) {

 // hash of referring URL

 const hash = httpReferrer(req);

 // no referrer?

 if (!hash) return null;

 // fetch browser IP address and user agent

 const

 ipRe = req.ip.match(/(?:\d{1,3}\.){3}\d{1,3}/),

 ip = ipRe?.[0] || null,

 ua = req.get('User-Agent') || null;

No Time?

The time of record insertion is automatically handled by MySQL, which sets
the CURRENT_TIMESTAMP by default.

The data is added as a new record into the hit table by executing an SQL
INSERT statement:

try {

 // store page hit

 await db.execute(

 'INSERT INTO `hit` (hash, ip, ua) VALUES (UNHEX(?),

INET_ATON(?), ?);',

 [hash, ip, ua]

);

This is an example of a prepared statement, where each ? character is
substituted by an associated (and escaped) value in the array.

UNHEX? INET_ANON?

A couple of MySQL-specific functions are used in the SQL statement above
to make smaller, more efficient numeric fields that use less space and are
quicker to search:

https://dev.mysql.com/doc/refman/en/insert.html

UNHEX() converts the 32-character hash string to a binary value.
INET_ATON() converts a dotted-quad IPv4 network address string to an
integer.

Never Build SQL Strings!

Never programmatically build SQL strings. This is the biggest cause of SQL
injection attacks:

b.execute(`SELECT * FROM user WHERE email='${ email }' AND

 ➥password='${ password }';`);

A user could enter the email address: boss@company.com'; --. This
comments out the password check, so anyone can log in as the boss!

A more dangerous example would wipe the user table:

boss@company.com'; DROP TABLE user; --

You should validate all incoming user data, but a prepared statement makes
SQL injection attacks far more difficult.

A count of all records with the same hash is then returned:

// fetch page hit count

const [res] = await db.query(

 'SELECT COUNT(1) AS `count` FROM `hit` WHERE hash = UNHEX(?);',

 [hash]

);

return res?.[0]?.count;

An error is thrown if any database operation fails:

 }

 catch (err) {

 throw new Error('DB error', { cause: err });

 }

}

As before, the main index.js script loads the lib/pagehit.js module, sets

https://dev.mysql.com/doc/refman/en/string-functions.html#function_unhex
https://dev.mysql.com/doc/refman/8.0/en/miscellaneous-functions.html#function_inet-aton

req.count in a middleware function, and outputs it in a generated SVG in the
/hit.svg route.

Stop the MySQL Application

Stop both the Node.js page hit application and test page server by pressing
Ctrl | Cmd + C in their terminals. From the same project directory, stop the
MongoDB database and Adminer client with docker-compose down.

Sequelize ORM
The MySQL and MongoDB examples in their respective sections above use
native drivers to communicate directly with a database using its SQL or
NoSQL command syntax. This has some disadvantages:

Your application is tied to a specific database.
You must learn and implement the language used by that database.
You must track your own data and schema updates to ensure database
changes are pushed to all installations of the application.

An object-relational mapping (ORM) module can make development easier
by providing an abstract layer between your code and the database. Rather
than running SQL/NoSQL commands directly, your code manipulates data
objects that are saved and restored from a representation in a database.

sequelize is a popular Node.js ORM that supports MySQL, MariaDB,
PostgreSQL, SQLite, SQL Server, and other SQL databases. It still requires a
native database driver such as mysql2, but there’s no need to write SQL
statements.

Start the Sequelize ORM Application

To use the ORM-based application, navigate to the pagehit-orm directory
and start MySQL and the Adminer client with docker-compose up.

Your Own MySQL Installation?

https://www.npmjs.com/package/sequelize
https://www.npmjs.com/package/mysql2

As before, database configuration parameters are defined in the project .env
file, which you can edit if you’re using your own MySQL installation. In this
case, there’s no initialization script, because it’s handled by Node.js code.

In another terminal, install the Node.js express, sequelize, mysql2, and
dotenv dependencies referenced in package.json:

npm install

Then start the page hit application:

npm start

Finally, start a web server in another terminal so you can load test pages:

npx small-static-server 8888 ./test

You now have four services running:

the MySQL database at http://localhost:3306
the Adminer database client at http://localhost:8080/
the page hit service at http://localhost:8001/
a test page web server at http://localhost:8888/

Different ports can be defined in the .env file if you have clashes.

Visit http://localhost:8888/page1.html or http://localhost:8888/page2.html to
view page counters. Refresh and watch the counter increase.

You can examine the database data using the Adminer panels at
http://localhost:8080/. Log on with the credentials specified in .env:

System: MySQL
Server: host.docker.internal (or your network IP address if not using
Docker Desktop)
Username: pagehituser
Password: pagehitpw
Database: pagehitorm

https://www.npmjs.com/package/express
https://www.npmjs.com/package/sequelize
https://www.npmjs.com/package/mysql2
https://www.npmjs.com/package/dotenv
http://localhost:8888/page1.html
http://localhost:8888/page2.html
http://localhost:8080/

Then click select next to the hits table.

Sequelize ORM Functionality

The lib/pagehit.js file handles all Sequelize functionality. It loads the
required modules and extracts the configuration parameters from the .env file
using the dotenv module:

import dotenv from 'dotenv';

import Sequelize from 'sequelize';

import httpReferrer from './httpreferrer.js';

// load .env configuration

dotenv.config();

(There’s no need to import the mysql2 module, as Sequelize loads it.)

The database name, user, and password connection parameters are passed to
the Sequelize object constructor. A fourth options object defines the
database type, host, and port:

// initialize ORM connection

const sequelize = new Sequelize(

 process.env.MYSQL_DATABASE,

 process.env.MYSQL_USER,

 process.env.MYSQL_PASSWORD,

 {

 host: process.env.MYSQL_HOST,

 port: process.env.MYSQL_PORT,

 dialect: 'mysql'

 }

);

Rather than defining a table, you create a JavaScript class from a
Sequelize.Model class. The static init() method defines the property data
types and indexes (note that each model has a default id, createdAt, and
updatedAt date):

// define Hit class

class Hit extends Sequelize.Model {}

Hit.init(

 {

https://www.npmjs.com/package/dotenv
https://sequelize.org/master/manual/model-basics.html
https://sequelize.org/master/class/lib/model.js~Model.html#static-method-init

 hash: {

 type: Sequelize.STRING(32),

 allowNull: false

 },

 ip: {

 type: Sequelize.STRING(15),

 allowNull: true

 },

 ua: {

 type: Sequelize.STRING(200),

 allowNull: true

 }

 },

 {

 indexes: [

 { fields: ['hash', 'createdAt'] }

],

 sequelize,

 modelName: 'hit'

 }

);

The asynchronous sync() method synchronizes all data models with the
database. In this case, a hits table is defined from the Hit model:

// synchronize model with database

await sequelize.sync();

Like before, lib/pagehit.js exports a single default asynchronous function.
It generates a hash from the referring page’s URL, returns when no referrer is
found, and determines the browser’s IP address (ip), and user agent (ua):

// count handler

export default async function(req) {

 // hash of referring URL

 const hash = httpReferrer(req);

 // no referrer?

 if (!hash) return null;

 // fetch browser IP address and user agent

 const

 ipRe = req.ip.match(/(?:\d{1,3}\.){3}\d{1,3}/),

https://sequelize.org/master/class/lib/sequelize.js~Sequelize.html#instance-method-sync

 ip = ipRe?.[0] || null,

 ua = req.get('User-Agent') || null;

A new Hit record is created with the data:

try {

 // store page hit

 await Hit.create(

 { hash, ip, ua }

);

A count of all items with the same hash is then returned:

// fetch page hit count

const res = await Hit.findAndCountAll({

 where: { hash }

});

return res?.count;

An error is thrown if any operation fails:

 }

 catch (err) {

 throw new Error('DB error', { cause: err });

 }

}

As before, the main index.js script loads the lib/pagehit.js module, sets
req.count in a middleware function, and outputs it in a generated SVG in the
/hit.svg route.

How to Choose the Right Database
An SQL database such as MySQL is the best option when requirements are
clearly defined and data integrity is essential—such as for banking,
ecommerce, stock control, and so on. A money transfer requires an amount to
be debited from one account and credited to another: transactions guarantee
that both or neither update is successful.

https://sequelize.org/master/class/lib/model.js~Model.html#static-method-create

A NoSQL database such as MongoDB could be ideal for projects where
organic data flexibility is important—such as content management, social
networks, web analytics, and so on.

In general:

A NoSQL database can be easier to use at the start of a project, but may
become more difficult as you identify data relationships.
An SQL database requires more careful data planning up front, but this
can return dividends toward the end of a project—(unless requirements
change radically!)

Complex projects could benefit from using two or more databases. For
example, a blog stored in MySQL could use Elasticsearch for Google-like
search queries. However, maintaining data integrity between two or more
databases is complex and cumbersome. It may also be unnecessary, because
the distinction between SQL and NoSQL has blurred:

some SQL databases have adopted NoSQL features, such as JSON and
XML fields
some NoSQL databases have adopted SQL features, such as JOINs and
transactions

Research the options, browse usage reports, and consult others to make sure a
database has the features and support you need. Try to abstract your data
manipulation code so it becomes easier to switch to another system if that
becomes necessary.

Native vs ORM Drivers

Think of an ORM as an abstract database framework. The benefits include:

They can be easier to learn than specific SQL or NoSQL dialects.
Development time is reduced, because a good ORM will manage
security and data integrity.
You can create data models in the application code. There’s no need to
directly create or alter tables.
ORMs track changes and can migrate schemas as necessary.

https://db-engines.com/en/ranking

ORMs support multiple databases, which could be important if you’re
distributing web software for others to install.

The downsides of an ORM:

They can still be difficult to learn. The Sequelize manual is daunting,
and that knowledge won’t be applicable elsewhere.
An ORM won’t save you from poor data decisions.
More complex queries can be difficult to express.
ORMs are slower, and queries won’t necessarily be optimized.
You’ll be unable to use advanced options provided in a specific
database.
Database-related bugs may be more difficult to debug.

An ORM can be ideal for prototypes and smaller projects. Native drivers with
optimized, hand-crafted queries are better for larger projects where data
requirements are more critical.

If I could offer one piece of advice: learn SQL.

Unlike most development technologies, SQL has persisted for half a century,
and the skills are transferable to other databases. You’ll become more adept
at modeling data and creating efficient applications that require less code.
You’ll have fewer reasons to consider an ORM.

Exercises
Adapt any of the page hit counter projects so different routes can return:

Page hits during the past 24 hours.
Page hits from the current IP address.
Page hits from the same browser (Chrome, Edge, Safari, Firefox, etc.).
This is tricky! Browser user agent strings purposely obfuscate the
application! You may also need to parse and output another field to
make searches more efficient.

Summary

https://sequelize.org/master/

Databases are a core web application technology. If your database functions
well, it won’t necessarily matter whether you write the business logic using
Node.js, PHP, Python, Ruby, or .NET.

You need to start somewhere, so pick a database and create example projects.
Choosing an SQL database with a native driver will have a steep learning
curve, but persevere! It will make you a better web developer.

SQL and NoSQL resources:

Simply SQL
“SQL vs NoSQL: The Differences”
“SQL vs NoSQL: How to Choose”

MongoDB resources:

MongoDB website, documentation, downloads, and Docker image
“An Introduction to MongoDB”
mongo-express (Docker image), Mongoku (Docker image), and Robo
3T MongoDB clients
mongodb and mongoose Node.js database drivers

MySQL resources:

MySQL website, documentation, downloads and Docker image
“How to Install MySQL”
Adminer (Docker image) and phpMyAdmin (Docker image) MySQL
clients
mysql, mysql2, and sequelize ORM Node.js database drivers
“Using MySQL with Node.js and the mysql JavaScript Client”

You could also consider the MySQL-compatible MariaDB database system:
documentation, downloads, Docker image, and mariadb Node.js module.

PostgreSQL resources:

PostgreSQL website, documentation, downloads, and Docker image
Adminer (Docker image) and other PostgreSQL clients

https://www.sitepoint.com/premium/books/simply-sql
https://www.sitepoint.com/sql-vs-nosql-differences/
https://www.sitepoint.com/sql-vs-nosql-choose/
https://www.mongodb.com/
https://docs.mongodb.com/manual/
https://www.mongodb.com/download-center/community
https://hub.docker.com/_/mongo
https://www.sitepoint.com/an-introduction-to-mongodb/
https://github.com/mongo-express/mongo-express
https://hub.docker.com/_/mongo-express
https://www.npmjs.com/package/mongoku
https://hub.docker.com/r/huggingface/mongoku
https://robomongo.org/download
https://www.npmjs.com/package/mongodb
https://www.npmjs.com/package/mongoose
https://www.mysql.com/
https://dev.mysql.com/doc/
https://www.mysql.com/downloads/
https://hub.docker.com/_/mysql
https://www.sitepoint.com/how-to-install-mysql/
https://www.adminer.org/
https://hub.docker.com/_/adminer
https://www.phpmyadmin.net/
https://hub.docker.com/r/phpmyadmin/phpmyadmin
https://www.npmjs.com/package/mysql
https://www.npmjs.com/package/mysql2
https://www.npmjs.com/package/sequelize
https://www.sitepoint.com/using-node-mysql-javascript-client/
https://mariadb.org/
https://mariadb.org/documentation/
https://downloads.mariadb.org/
https://hub.docker.com/_/mariadb
https://www.npmjs.com/package/mariadb
https://www.postgresql.org/
https://www.postgresql.org/docs/manuals/
https://www.postgresql.org/download/
https://hub.docker.com/_/postgres
https://www.adminer.org/
https://hub.docker.com/_/adminer
https://wiki.postgresql.org/wiki/PostgreSQL_Clients

node-postgres, postgres, and Sequelize ORM Node.js database drivers

SQLite is a small, free, file-based SQL database engine. It’s not
recommended for busy websites, but it can be ideal for demonstration
projects, embedded systems, desktop, and mobile applications.

SQLite website, documentation, and downloads
better-sqlite3, sqlite3, sqlite, and Sequelize ORM Node.js database
drivers

Quiz
1. SQL is short for:

a. Simple Query Language
b. Structured Query Language
c. Statistical Query Language
d. Small & Quick Language

2. A MySQL database table can store:

a. table data
b. JSON data
c. XML data
d. all of the above

3. A MongoDB database can:

a. be used without a data schema
b. be used with a data schema
c. join data in two collections
d. all of the above

4. ORM is short for:

a. object-relational mapping
b. object-reference model
c. ordered-reference map

https://www.npmjs.com/package/pg
https://www.npmjs.com/package/postgres
https://www.npmjs.com/package/sequelize
https://www.sqlite.org/
https://www.sqlite.org/docs.html
https://www.sqlite.org/download.html
https://www.npmjs.com/package/better-sqlite3
https://www.npmjs.com/package/sqlite3
https://www.npmjs.com/package/sqlite
https://www.npmjs.com/package/sequelize

d. ordered-results management

5. A database index:

a. defines data in a specific order
b. is automatically used when required
c. should make queries faster
d. all of the above

Chapter 11: Using WebSockets
This chapter demonstrates how to use WebSockets—a technology that
makes it possible to open a two-way, interactive communication channel
between a browser and a server. In the past, this was difficult to achieve on
most platforms, and often required a third-party service. Node.js makes it
easy, although we’ll delve into some deeper challenges.

Skip Ahead?

It’s possible to become a respected senior developer without touching
WebSockets! You can skip this chapter, but the technology opens a world of
opportunities you may not have considered before.

What Are WebSockets?

The web is a request–response communication platform. Your browser
requests a web page and receives HTML as the response from a web server.
The page may reference assets such as images, fonts, CSS, and JavaScript;
the browser makes an additional request for each.

The browser initiates every request. A web server can’t arbitrarily push data
to a user. It must be requested first.

Ajax techniques can be used to make web apps look as though they update in
real time by initiating a polling request every few seconds. This can check for
new data from a web server and update the DOM as necessary.

Few apps need go beyond this request–response model, because data changes
infrequently in a typical web application. However, it’s not ideal for true real-
time applications such as stock price dashboards, chat apps, and multiplayer
games. Polling every second would be inefficient at certain times, and too
slow at others. It’s also difficult for a server to determine what changed
between two polling intervals: every browser could be asking for different
data.

WebSockets provide a solution for real-time apps. The browser makes an
initial WebSocket request, which opens a communication channel. At that
point, either the browser or server can send a message that raises an event on
the other device.

https://developer.mozilla.org/Web/API/WebSockets_API

Two things to be aware of:

A browser can only send a message to the WebSocket server.
The WebSocket server can send a message to any of its connected
clients.

One browser can’t directly message another. It can only send a message to
the central WebSocket server and hope it gets forwarded as necessary.

Example WebSocket Chat Application
The sections below explain how to create a simple real-time chat app using
WebSockets. Chat apps are the “Hello, World!” of WebSocket
demonstrations, so I apologize for being unoriginal—but they show the
concepts without too much code.

To get started, navigate to the wschat code directory in your terminal and
install the Node.js dependencies with npm install.

https://github.com/spbooks/ultimatenode1/tree/main/ch11/wschat

Run the application with npm start.

Open http://localhost:3000/ in a number of browser tabs (you can also define
your chat name on the query string—such as http://localhost:3000/?Craig).
Type something in one window, then press SEND or hit Enter, and you’ll
see it appear in every window.

View the video to see the chat application in action.

http://localhost:3000/
http://localhost:3000/?Craig
https://vimeo.com/693630979/e0ba9705dd

WebSocket Walkthrough

The application works by starting two server processes in the index.js file:

An Express app with an EJS template to serve a single page with client-
side HTML, CSS, and JavaScript. This runs at http://localhost:3000/ and
uses the browser WebSocket API to send and receive messages.

A WebSocket server, which listens for incoming client connections,
receives messages, sends messages, and monitors disconnections. This
runs at ws://localhost:3001/ and uses the Node.js ws library.

A "connection" event is raised when a connection is received from
a browser. The handler function receives a socket object used to
communicate with that individual device.

A socket "message" event is raised when a client sends a
message. The chat application’s handler function broadcasts that
message to every connected client.

A socket "close" event is raised when the client disconnects
(typically when the browser tab is closed or refreshed).

Here’s the full server JavaScript code:

// WebSocket server

import WebSocket, { WebSocketServer } from 'ws';

const ws = new WebSocketServer({ port: cfg.wsPort });

// client connection

ws.on('connection', (socket, req) => {

 console.log(`connection from ${ req.socket.remoteAddress }`);

 // received message

 socket.on('message', (msg, binary) => {

 // broadcast to all clients

 ws.clients.forEach(client => {

 client.readyState === WebSocket.OPEN && client.send(msg, {

http://localhost:3000/
https://developer.mozilla.org/Web/API/WebSocket
https://www.npmjs.com/package/ws

binary });

 });

 });

 // closed

 socket.on('close', () => {

 console.log(`disconnection from ${ req.socket.remoteAddress

}`);

 });

});

The client-side browser JavaScript:

1. caches HTML dom nodes for later use
2. sets a default username from the query string or a random string
3. determines the ws:// WebSocket connection address using the page’s

domain plus the port defined in the HTML page template

// get page DOM nodes

const dom = { form: 0, chat: 0, name: 0, message: 0 };

for (let n in dom) dom[n] = document.getElementById(n);

// set user's name

dom.name.value =

decodeURIComponent(location.search.trim().slice(1,1 + window.

➥cfg.nameLen)) || 'Anonymous' + Math.floor(Math.random() *

99999);

wsInit(`ws://${ location.hostname }:${ window.cfg.wsPort }`);

A wsInit() function is called with the WebSocket server address to initiate
the connection. An open event is triggered when a connection is established.
At this point, the handler function sends an “entered the chat room” message
by calling sendMessage():

// handle WebSocket communication

function wsInit(wsServer) {

 const ws = new WebSocket(wsServer);

 // connect to server

 ws.addEventListener('open', () => {

 sendMessage('entered the chat room');

 });

The sendMessage() function fetches the user’s name and message from the
HTML form, although the message can be overridden by any passed setMsg
argument. The values are converted to a JSON object that’s sent over the
WebSocket channel using its ws.send() method:

// send message

function sendMessage(setMsg) {

 let

 name = dom.name.value.trim(),

 msg = setMsg || dom.message.value.trim();

 name && msg && ws.send(JSON.stringify({ name, msg }));

}

The message is received by the server’s "message" handler and broadcast to
every connected client—including the client that sent the message. This
triggers a "message" event on each client, with the event’s data property set
to the original JSON. The handler function parses this back to a JavaScript
object and updates the chat window:

// receive message

ws.addEventListener('message', e => {

 try {

 const

 chat = JSON.parse(e.data),

 name = document.createElement('div'),

 msg = document.createElement('div');

 name.className = 'name';

 name.textContent = (chat.name || 'unknown');

 dom.chat.appendChild(name);

 msg.className = 'msg';

 msg.textContent = (chat.msg || 'said nothing');

 dom.chat.appendChild(msg).scrollIntoView({ behavior: 'smooth'

});

 }

 catch(err) {

 console.log('invalid JSON', err);

 }

});

Finally, new messages are sent using sendMessage() whenever the form’s
"submit" handler is triggered:

// form submit

dom.form.addEventListener('submit', e => {

 e.preventDefault();

 sendMessage();

 dom.message.value = '';

 dom.message.focus();

}, false);

This chapter’s second video also explains the basics of the chat application’s
functionality.

Advanced WebSockets Considerations
WebSocket technology is easy in Node.js: one device sends a message using
a send() method, which triggers a "message" event on the other. How each
device creates and responds to messages is more challenging.

Consider an online multiplayer game. The game could have many universes
playing separate instances of the game—such as universeA, universeB, and
universeC. Each player can connect to a single universe:

universeA: joined by player1, player2, and player3
universeB: joined by player99

You could do one of the following:

1. Use a separate WebSocket server for each game universe.

https://vimeo.com/693631161/ff1fbaca38

This would make user management easy: a player action in universeA
would never be seen by those in universeB. However, launching and
managing separate server instances could be difficult. Would you stop
universeC because it has no players, or continue to pay for that
resource?

2. Use a single WebSocket server for all game universes.

This would use fewer resources and be easier to manage, but the
WebSocket server must record which universe each player joins. When
player1 performs an action, it should only be broadcast to player2 and
player3—not player99.

You must then consider game mechanics and messaging efficiency. For
example:

How do you synchronize a player’s actions across all client devices?

If player1 can’t currently be seen by player2 (because they’re in
another room), is it necessary for player2 to receive a message about
their actions?

How do you cope with network latency—or communication lag? Would
someone with a faster machine and connection have an unfair
advantage?

Fast action games have to make compromises. In essence, you’re playing the

game on your local device but some objects are influenced by the activities of
other people. Rather than sending the exact position of every object at all
times, games can send simpler, less frequent messages. For example:

objectX has appeared at pointX
objectY has a new direction and velocity
objectZ has been destroyed

… and so on.

Each client game fills in the gaps. When objectZ explodes, it rarely matters
whether the explosion looks the same on every device.

This all explains why you were unfairly beaten in your favorite game by a
seemingly invisible player!

Multiple WebSocket Servers

The example chat application can cope with dozens of concurrent users, but
at some point, it’ll crash as popularity rises. More RAM can help, but there
are limits. You’ll eventually require another server.

Each WebSocket server can only manage its own connected clients. A
message sent from a user to serverA wouldn’t be broadcast to those
connected to serverB. It may be necessary to implement backend, pub–sub
messaging systems such as Kafka, Redis, or RabbitMQ.

What is Pub–sub?

Publisher–subscriber services provide asynchronous communication services.
An application can send (publish) a message to the pub–sub system.
Applications can subscribe to those messages and be instantly alerted when a
new one arrives.

Therefore:

1. WebSocket serverA wants to send a message to all clients. It publishes
the message on the pub–sub system.

2. All WebSocket servers subscribed to the pub–sub system receive a new
message event (including serverA). Each can handle the message and
broadcast it to their connected clients as necessary.

The example real-time quiz at the end of this course uses PostgreSQL to
provide pub–sub functionality.

Exercise
Adapt the chat application to store the most recent 30 messages and send
them to any new user entering the chat room. For big bonus points, store
message data in a database so it persists between application restarts.

You could also experiment with sending different types of messages. For
example, allow private messages to be sent to a single user.

Summary

Node.js makes it easy to handle WebSockets. It won’t make real-time
applications easier to design or code, but the technology won’t hold you
back.

Note that ws isn’t the only Node.js option. Almost 1,000 other WebSocket
packages are available. Some provide their own browser client libraries or
integrate with JavaScript frameworks to make usage easier.

You could also consider server-sent events if your app only needs to receive
updates from a central server.

Quiz
1. WebSockets offer:

a. two-way browser/server communication
b. real-time messaging
c. an event-driven API
d. all of the above

2. A WebSocket server:

a. responds to connections and messages from clients
b. passes connection requests to and from a web server
c. initiates the WebSocket connection
d. all of the above

3. A message sent on a WebSocket connection must be:

a. a string
b. JSON
c. binary data
d. any text or binary data

4. A browser WebSocket client can message another user’s browser by:

a. sending a direct peer-to-peer message that bypasses the server
b. sending a message to the WebSocket server that forwards as

https://www.npmjs.com/search?q=keywords:WebSockets
https://developer.mozilla.org/Web/API/Server-sent_events/Using_server-sent_events

necessary
c. adding the other user’s IP address to the message
d. all of the above

5. Which best describes WebSocket code as used in the ws library?

a. a message() call that triggers a "sent" event on the other device
b. a send() call that triggers a "message" event on the other device
c. a transmit() call that triggers a "received" event on the other
device
d. a send() call that triggers a "receive" event on the other device

Chapter 12: Useful Node.js APIs
This chapter demonstrates a selection of regularly used APIs that are built in
to the standard Node.js runtime. You’ve seen some in previous chapters of
this book, but I hope the following sections will pique your interest and
encourage you to browse the Node.js API documentation.

Module node: URL Imports

Node.js 14 and above support node: imports for both ESM and CommonJS
modules. Rather than using the API’s module name:

import path from 'path';

… you can reference it using an absolute node: URL:

import path from 'node:path';

This might be practical if you had another module named path or want to
distinguish built-in APIs in your code.

Process

The process object provides information about your Node.js application as
well as control methods. process is available globally: you can use it without
import, although the Node.js documentation recommends you explicitly
reference it:

import process from 'process';

We’ve used process.argv in other scripts to fetch commmand-line
arguments:

const firstArg = process.argv[2];

process.argv returns an array where the first two items are the Node.js

https://nodejs.org/dist/latest/docs/api/
https://nodejs.org/api/esm.html#node-imports
https://nodejs.org/dist/latest/docs/api/process.html
https://nodejs.org/dist/latest/docs/api/process.html#processargv

executable path and the script name. The item at index 2 is the first argument
passed.

Other useful properties and methods include:

process.env: returns an object containing environment name/value
pairs—such as process.env.NODE_ENV.

process.cwd(): returns the current working directory.

process.platform: returns a string identifying the operating system:
'aix', 'darwin' (macOS), 'freebsd', 'linux', 'openbsd', 'sunos',
or 'win32' (Windows).

process.uptime(): returns the number of seconds the Node.js process
has been running.

process.cpuUsage(): returns the user and system CPU time usage of
the current process—such as { user: 12345, system: 9876 }. Pass
the object back to the method to get a relative reading.

process.memoryUsage(): returns an object describing memory usage in
bytes.

process.version: returns the Node.js version string—such as 18.0.0.

process.report: generates a diagnostic report.

process.exit(code): exits the current application. Use an exit code of
0 to indicate success or an appropriate error code where necessary.

process is also an event emitter (see the “Events” section): you can attach
event handler functions to events such as 'beforeExit' to clean up before
the process terminates. For example:

// clean up when the Node.js process terminates

process.on('beforeExit', code => {

 // ...

});

https://nodejs.org/dist/latest/docs/api/process.html#processenv
https://nodejs.org/dist/latest/docs/api/process.html#processcwd
https://nodejs.org/dist/latest/docs/api/process.html#processplatform
https://nodejs.org/dist/latest/docs/api/process.html#processuptime
https://nodejs.org/dist/latest/docs/api/process.html#processcpuusagepreviousvalue
https://nodejs.org/dist/latest/docs/api/process.html#processmemoryusage
https://nodejs.org/dist/latest/docs/api/process.html#processversion
https://nodejs.org/dist/latest/docs/api/report.html
https://nodejs.org/dist/latest/docs/api/process.html#processexitcode
https://nodejs.org/dist/latest/docs/api/process.html#exit-codes
https://nodejs.org/dist/latest/docs/api/process.html#process-events

exit Events

You can also define an exit handler function. However, this can’t run
asynchronous functions such as disconnecting from a database or outputting a
log file, because the Node.js event loop will end on the current iteration and
the program will terminate.

OS

The os API has similarities to process (see the “Process” section above), but
it can also return the following:

os.cpus(): returns an array of objects with information about each
logical CPU core. The “Clusters” section below references os.cpus() to
fork the process. On a 16-core CPU, you’d have 16 instances of your
Node.js application running to improve performance.

os.hostname(): the OS host name.

os.version(): a string identifying the OS kernel version.

os.homedir(): the full path of the user’s home directory.

os.tmpdir(): the full path of the operating system’s default temporary
file directory.

os.uptime(): the number of seconds the OS has been running.

Util

The util module provides an assortment of useful JavaScript methods. One
of the most useful is util.promisify(function), which takes an error-first
callback style function and returns a promise-based function. (See the code in
Chapter 9 for a demonstration.)

Further methods include:

https://nodejs.org/dist/latest/docs/api/os.html
https://nodejs.org/dist/latest/docs/api/os.html#oscpus
https://nodejs.org/dist/latest/docs/api/os.html#oshostname
https://nodejs.org/dist/latest/docs/api/os.html#osversion
https://nodejs.org/dist/latest/docs/api/os.html#oshomedir
https://nodejs.org/dist/latest/docs/api/os.html#ostmpdir
https://nodejs.org/dist/latest/docs/api/os.html#osuptime
https://nodejs.org/dist/latest/docs/api/util.html
https://nodejs.org/dist/latest/docs/api/util.html#utilpromisifyoriginal
https://github.com/spbooks/ultimatenode1/blob/main/ch09/05-promisify.mjs

util.callbackify(function): takes a function that returns a promise
and returns a callback-based function.

util.isDeepStrictEqual(object1, object2): returns true when
there’s a deep equality between two objects (all child properties must
match).

util.format(format, [args]): returns a string using a printf-like
format.

util.inspect(object, options): returns a string representation of an
object for debugging. This is similar to using console.dir(object, {
depth: null, color: true });.

util.stripVTControlCharacters(str): strips ANSI escape codes
from a string.

util.types provides type checking for common JavaScript and Node.js
values. For example:

import util from 'util';

util.types.isDate(new Date()); // true

util.types.isMap(new Map()); // true

util.types.isRegExp(/abc/); // true

util.types.isAsyncFunction(async () => {}); // true

URL
URL is another global object that lets you safely create, parse, and modify web
URLs. For example:

const myURL = new URL('https://example.org:8000/path/?

abc=123#target');

console.dir(myURL, { depth: null, color: true });

The code above outputs this:

{

 href: 'https://example.org:8000/path/?abc=123#target',

https://nodejs.org/dist/latest/docs/api/util.html#utilcallbackifyoriginal
https://nodejs.org/dist/latest/docs/api/util.html#utilisdeepstrictequalval1-val2
https://nodejs.org/dist/latest/docs/api/util.html#utilformatformat-args
https://en.wikipedia.org/wiki/Printf_format_string
https://nodejs.org/dist/latest/docs/api/util.html#utilinspectobject-options
https://nodejs.org/dist/latest/docs/api/util.html#utilstripvtcontrolcharactersstr
https://nodejs.org/dist/latest/docs/api/util.html#utiltypes
https://nodejs.org/dist/latest/docs/api/url.html

 origin: 'https://example.org:8000',

 protocol: 'https:',

 username: '',

 password: '',

 host: 'example.org:8000',

 hostname: 'example.org',

 port: '8000',

 pathname: '/path/',

 search: '?abc=123',

 searchParams: URLSearchParams { 'abc' => '123' },

 hash: '#target'

}

You can view and change any property. For example:

myURL.port = 8001;

console.log(myURL.href);

// https://example.org:8001/path/?abc=123#target

You can then use the URLSearchParams API to modify query string values.
For example:

myURL.searchParams.delete('abc');

myURL.searchParams.append('xyz', 987);

console.log(myURL.search);

// ?xyz=987

There are also methods for converting file system paths to URLs and back
again.

The dns module provides name resolution functions so you can look up the
IP address, name server, TXT records, and other domain information.

File System
The fs API can create, read, update, and delete files, directories, and
permissions. Recent releases of the Node.js runtime provide promise-based
functions in fs/promises, which make it easier to manage asynchronous file
operations.

fs and path

https://nodejs.org/dist/latest/docs/api/url.html#class-urlsearchparams
https://nodejs.org/dist/latest/docs/api/url.html#urlpathtofileurlpath
https://nodejs.org/dist/latest/docs/api/url.html#urlfileurltopathurl
https://nodejs.org/dist/latest/docs/api/dns.html
https://nodejs.org/dist/latest/docs/api/fs.html
https://nodejs.org/dist/latest/docs/api/fs.html#promises-api

You’ll often use fs in conjunction with path to resolve file names on
different operating systems.

The example code has a filecompress project, which compresses a text file
(typically HTML, CSS, or JS) by removing whitespace and comments. (It’s a
demonstration—so please don’t use it on real files! The compression process
is simplistic and will mangle some files.)

The project has a lib/fileinfo.js module that returns information about a
file system object using the stat and access methods:

// fetch file information

import { constants as fsConstants } from 'fs';

import { access, stat } from 'fs/promises';

export async function getFileInfo(file) {

 const fileInfo = {};

 try {

 const info = await stat(file);

 fileInfo.isFile = info.isFile();

 fileInfo.isDir = info.isDirectory();

 }

 catch (e) {

 return { new: true };

 }

 try {

 await access(file, fsConstants.R_OK);

 fileInfo.canRead = true;

 }

 catch (e) {}

 try {

 await access(file, fsConstants.W_OK);

 fileInfo.canWrite = true;

 }

 catch (e) {}

 return fileInfo;

}

When passed a filename, the function returns an object with information

https://nodejs.org/dist/latest/docs/api/path.html
https://github.com/spbooks/ultimatenode1/tree/main/ch12/filecompress
https://nodejs.org/dist/latest/docs/api/fs.html#fspromisesstatpath-options
https://nodejs.org/dist/latest/docs/api/fs.html#fspromisesaccesspath-mode

about that file. For example:

{

 isFile: true,

 isDir: false,

 canRead: true,

 canWrite: true

}

The main filecompress.js script uses path.resolve() to resolve input and
output filenames passed on the command line into absolute file paths, then
fetches information using getFileInfo() above:

#!/usr/bin/env node

import path from 'path';

import { readFile, writeFile } from 'fs/promises';

import { getFileInfo } from './lib/fileinfo.js';

// check files

let

 input = path.resolve(process.argv[2] || ''),

 output = path.resolve(process.argv[3] || ''),

 [inputInfo, outputInfo] = await Promise.all([

getFileInfo(input),

 ➥getFileInfo(output)]),

 error = [];

The code validates the paths and terminates with error messages if necessary:

// use input file name when output is a directory

if (outputInfo.isDir && outputInfo.canWrite && inputInfo.isFile)

{

 output = path.resolve(output, path.basename(input));

}

// check for errors

if (!inputInfo.isFile || !inputInfo.canRead) error.push(`cannot

read input file

➥${ input }`);

if (input === output) error.push('input and output files cannot

be the same');

if (error.length) {

 console.log('Usage: ./filecompress.js [input file] [output

file|dir]');

 console.error('\n ' + error.join('\n '));

 process.exit(1);

}

The whole file is then read into a string named content using readFile():

// read file

console.log(`processing ${ input }`);

let content;

try {

 content = await readFile(input, { encoding: 'utf8' });

}

catch (e) {

 console.log(e);

 process.exit(1);

}

let lengthOrig = content.length;

console.log(`file size ${ lengthOrig }`);

JavaScript regular expressions then remove comments and whitespace:

// compress content

content = content

 .replace(/\n\s+/g, '\n') // trim leading space

from lines

 .replace(/\/\/.*?\n/g, '') // remove inline //

comments

 .replace(/\s+/g, ' ') // remove whitespace

 .replace(/\/*.*?*\//g, '') // remove /* comments

*/

 .replace(/<!--.*?-->/g, '') // remove <!-- comments

-->

 .replace(/\s*([<>(){}}[\]])\s*/g, '$1') // remove space around

brackets

 .trim();

let lengthNew = content.length;

The resulting string is output to a file using writeFile(), and a status
message shows the saving:

let lengthNew = content.length;

https://nodejs.org/dist/latest/docs/api/fs.html#fspromisesreadfilepath-options
https://nodejs.org/dist/latest/docs/api/fs.html#fspromiseswritefilefile-data-options

// write file

console.log(`outputting ${output}`);

console.log(`file size ${ lengthNew } - saved ${

Math.round((lengthOrig -

➥lengthNew) / lengthOrig * 100) }%`);

try {

 content = await writeFile(output, content);

}

catch (e) {

 console.log(e);

 process.exit(1);

}

Run the project code with an example HTML file:

node filecompress.js ./test/example.html ./test/output.html

View the demonstration video to see the code in action.

Events
You often need to execute multiple functions when something occurs. For
example, a user registers on your app, so the code must add their details to a
database, start a new logged-in session, and send a welcome email:

// example pseudo code

async function userRegister(name, email, password) {

 try {

 await dbAddUser(name, email, password);

 await new UserSession(email);

https://vimeo.com/707860731/3c15352d3f

 await emailRegister(name, email);

 }

 catch (e) {

 // handle error

 }

}

This series of function calls is tightly coupled to user registration. Further
activities incur further function calls. For example:

// updated pseudo code

try {

 await dbAddUser(name, email, password);

 await new UserSession(email);

 await emailRegister(name, email);

 await crmRegister(name, email); // register on customer system

 await emailSales(name, email); // alert sales team

}

You could have dozens of calls managed in this single, ever-growing code
block.

The Node.js Events API provides an alternative way to structure the code
using a publish–subscribe pattern. The userRegister() function can emit an
event—perhaps named newuser—after the user’s database record is created.

Any number of event handler functions can subscribe and react to newuser
events; there’s no need to change the userRegister() function. Each handler
runs independently of the others, so they could execute in any order.

Events in Client-side JavaScript

Events and handler functions are frequently used in client-side JavaScript—
for example, to run a function when the user clicks an element:

// client-side JS click handler

 document.getElementById('myelement').addEventListener('click',

https://nodejs.org/dist/latest/docs/api/events.html

e => {

 // output information about the event

 console.dir(e);

 });

In most situations, you’re attaching handlers for user or browser events,
although you can raise your own custom events. Event handling in Node.js is
conceptually similar, but the API is different.

Objects that emit events must be instances of the Node.js EventEmitter
class. These have an emit() method to raise new events and an on() method
for attaching handlers.

The event example project provides a class that triggers a tick event on
predefined intervals. The ./lib/ticker.js module exports a default class
that extends EventEmitter:

// emits a 'tick' event every interval

import EventEmitter from 'events';

import { setInterval, clearInterval } from 'timers';

export default class extends EventEmitter {

Its constructor must call the parent constructor. It then passes the delay
argument to a start() method:

constructor(delay) {

 super();

 this.start(delay);

}

The start() method checks delay is valid, resets the current timer if
necessary, and sets the new delay property:

start(delay) {

 if (!delay || delay == this.delay) return;

 if (this.interval) {

 clearInterval(this.interval);

 }

https://developer.mozilla.org/docs/Web/API/CustomEvent
https://nodejs.org/dist/latest/docs/api/events.html#class-eventemitter
https://nodejs.org/dist/latest/docs/api/events.html#emitteremiteventname-args
https://nodejs.org/dist/latest/docs/api/events.html#emitteroneventname-listener
https://github.com/spbooks/ultimatenode1/tree/main/ch12/event

 this.delay = delay;

It then starts a new interval timer that runs the emit() method with the event
name "tick". Subscribers to this event receive an object with the delay value
and number of seconds since the Node.js application started:

 // start timer

 this.interval = setInterval(() => {

 // raise event

 this.emit('tick', {

 delay: this.delay,

 time: performance.now()

 });

 }, this.delay);

 }

}

The main event.js entry script imports the module and sets a delay period
of one second (1000 milliseconds):

// create a ticker

import Ticker from './lib/ticker.js';

// trigger a new event every second

const ticker = new Ticker(1000);

It attaches handler functions triggered every time a tick event occurs:

// add handler

ticker.on('tick', e => {

 console.log('handler 1 tick!', e);

});

// add handler

ticker.on('tick', e => {

 console.log('handler 2 tick!', e);

});

A third handler triggers on the first tick event only using the once() method:

https://nodejs.org/dist/latest/docs/api/perf_hooks.html#performancenow
https://nodejs.org/dist/latest/docs/api/events.html#emitteronceeventname-listener

// add handler

ticker.once('tick', e => {

 console.log('handler 3 tick!', e);

});

Finally, the current number of listeners is output:

// show number of listeners

console.log(`listeners: ${ ticker.listenerCount('tick') }`);

Run the project code with node event.js.

The output shows handler 3 triggering once, while handler 1 and 2 run on
every tick until the app is terminated.

Press Ctrl | Cmd + C to terminate the application.

View the demonstration video to see the code in action.

Streams
The file system example code above (in the “File System” section) reads a
whole file into memory before outputting the minified result. What if the file
was larger than the RAM available? The Node.js application would fail with
an “out of memory” error.

https://vimeo.com/707860827/8f96f81048

The solution is streaming. This processes incoming data in smaller, more
manageable chunks. A stream can be:

readable: from a file, a HTTP request, a TCP socket, stdin, etc.
writable: to a file, a HTTP response, TCP socket, stdout, etc.
duplex: a stream that’s both readable and writable
transform: a duplex stream that transforms data

Each chunk of data is returned as a Buffer object, which represents a fixed-
length sequence of bytes. You may need to convert this to a string or another
appropriate type for processing.

The example code has a filestream project which uses a transform stream to
address the file size problem in the filecompress project. As before, it
accepts and validates input and output filenames before declaring a
Compress class, which extends Transform:

import { createReadStream, createWriteStream } from 'fs';

import { Transform } from 'stream';

// compression Transform

class Compress extends Transform {

 constructor(opts) {

 super(opts);

 this.chunks = 0;

 this.lengthOrig = 0;

 this.lengthNew = 0;

 }

 _transform(chunk, encoding, callback) {

 const

 data = chunk.toString(), // buffer to

string

 content = data

 .replace(/\n\s+/g, '\n') // trim leading

spaces

 .replace(/\/\/.*?\n/g, '') // remove //

comments

 .replace(/\s+/g, ' ') // remove

whitespace

 .replace(/\/*.*?*\//g, '') // remove /*

https://nodejs.org/dist/latest/docs/api/buffer.html
https://nodejs.org/dist/latest/docs/api/buffer.html#buftostringencoding-start-end
https://github.com/spbooks/ultimatenode1/tree/main/ch12/filestream
https://nodejs.org/dist/latest/docs/api/stream.html#class-streamtransform

comments */

 .replace(/<!--.*?-->/g, '') // remove <!--

comments -->

 .replace(/\s*([<>(){}}[\]])\s*/g, '$1') // remove bracket

spaces

 .trim();

 this.chunks++;

 this.lengthOrig += data.length;

 this.lengthNew += content.length;

 this.push(content);

 callback();

 }

}

The _transform method is called when a new chunk of data is ready. It’s
received as a Buffer object that’s converted to a string, minified, and output
using the push() method. A callback() function is called once chunk
processing is complete.

The application initiates file read and write streams and instantiates a new
compress object:

// process stream

const

 readStream = createReadStream(input),

 writeStream = createWriteStream(output),

 compress = new Compress();

console.log(`processing ${ input }`);

The incoming file read stream has .pipe() methods defined, which feed the
incoming data through a series of functions that may (or may not) alter the
contents. The data is piped through the compress transform before that output
is piped to the writeable file. A final on('finish') event handler function
executes once the stream has ended:

readStream.pipe(compress).pipe(writeStream).on('finish', () => {

 console.log(`file size ${ compress.lengthOrig }`);

 console.log(`output ${ output }`);

https://nodejs.org/dist/latest/docs/api/stream.html#transform_transformchunk-encoding-callback
https://nodejs.org/dist/latest/docs/api/fs.html#fscreatereadstreampath-options
https://nodejs.org/dist/latest/docs/api/fs.html#fscreatewritestreampath-options
https://nodejs.org/dist/latest/docs/api/stream.html#readablepipedestination-options
https://nodejs.org/dist/latest/docs/api/stream.html#event-finish

 console.log(`chunks ${ compress.chunks }`);

 console.log(`file size ${ compress.lengthNew } - saved ${

Math.round((

 ➥compress.lengthOrig - compress.lengthNew) /

compress.lengthOrig * 100) }%`);

});

Run the project code with an example HTML file of any size:

node filestream.js ./test/example.html ./test/output.html

View the demonstration video to see the code in action.

This is a small demonstration of Node.js streams. Stream handling is a
complex topic, and you may not use them often. In some cases, a module
such as Express uses streaming under the hood but abstracts the complexity
from you.

You should also be aware of data chunking challenges. A chunk could be any
size and split the incoming data in inconvenient ways. Consider minifying
this code:

<script type="module">

 // example script

 console.log('loaded');

</script>

Two chunks could arrive in sequence:

<script type="module">

https://vimeo.com/707860949/e4cbb2403a

 // example

And:

script

 console.log('loaded');

</script>

Processing each chunk independently results in the following invalid minified
script:

<script type="module">script console.log('loaded');</script>

The solution is to pre-parse each chunk and split it into whole sections that
can be processed. In some cases, chunks (or parts of chunks) will be added to
the start of the next chunk.

Minification is best applied to whole lines, although an extra complication
occurs because <!-- --> and /* */ comments can span more than one line.
Here’s a possible algorithm for each incoming chunk:

1. Append any data saved from the previous chunk to the start of the new
chunk.

2. Remove any whole <!-- to --> and /* to */ sections from the chunk.

3. Split the remaining chunk into two parts, where part2 starts with the
first <!-- or /* found. If either exists, remove further content from
part2 except for that symbol.

If neither is found, split at the last carriage return character. If none is
found, set part1 to an empty string and part2 to the whole chunk.

If part2 becomes significantly large—perhaps more than 100,000
characters because there are no carriage returns—append part2 to part1
and set part2 to an empty string. This will ensure saved parts can’t grow
indefinitely.

4. Minify and output part1.

5. Save part2 (which is added to the start of the next chunk).

The process runs again for each incoming chunk.

That’s your next coding challenge—if you’re willing to accept it!

Worker Threads
Chapter 9 discussed how Node.js applications run on a single thread. Assume
a user could trigger a complex, ten-second JavaScript calculation in your
Express application. The calculation would become a bottleneck that halted
processing for all users. Your application can’t handle any requests or run
other functions until it completes.

Asynchronous Calculations

Complex calculations that process data from a file or database may be less
problematic, because each stage runs asynchronously as it waits for data to
arrive. Processing occurs on separate iterations of the event loop.

However, long-running calculations written in JavaScript alone—such as
image processing or machine-learning algorithms—will hog the current
iteration of the event loop.

One solution is worker threads. These are similar to browser web workers
and launch a JavaScript process on a separate thread. The main and worker
thread can exchange messages to trigger or terminate processing.

Workers and Event Loops

Workers are useful for CPU-intensive JavaScript operations, although the
main Node.js event loop should still be used for asynchronous I/O activities.

The example code has a worker project that exports a diceRun() function in
lib/dice.js. This throws any number of N-sided dice a number of times and
records a count of the total score (which should result in a Normal
distribution curve):

https://nodejs.org/dist/latest/docs/api/worker_threads.html
https://developer.mozilla.org/docs/Web/API/Web_Workers_API
https://github.com/spbooks/ultimatenode1/tree/main/ch12/worker
https://en.wikipedia.org/wiki/Normal_distribution

// dice throwing

export function diceRun(runs = 1, dice = 2, sides = 6) {

 const stat = [];

 while (runs > 0) {

 let sum = 0;

 for (let d = dice; d > 0; d--) {

 sum += Math.floor(Math.random() * sides) + 1;

 }

 stat[sum] = (stat[sum] || 0) + 1;

 runs--;

 }

 return stat;

}

The code in index.js starts a process that runs every second and outputs a
message:

// run process every second

const timer = setInterval(() => {

 console.log(' another process');

}, 1000);

Two dice are then thrown one billion times using a standard call to the
diceRun() function:

import { diceRun } from './lib/dice.js';

// throw 2 dice 1 billion times

const

 numberOfDice = 2,

 runs = 999_999_999;

const stat1 = diceRun(runs, numberOfDice);

This halts the timer, because the Node.js event loop can’t continue to the next
iteration until the calculation completes.

The code then tries the same calculation in a new Worker. This loads a script

https://nodejs.org/dist/latest/docs/api/worker_threads.html#new-workerfilename-options

named worker.js and passes the calculation parameters in the workerData
property of an options object:

import { Worker } from 'worker_threads';

const worker = new Worker('./worker.js', { workerData: { runs,

numberOfDice } });

Event handlers are attached to the worker object running the worker.js
script so it can receive incoming results:

// result returned

worker.on('message', result => {

 console.table(result);

});

… and handle errors:

// worker error

worker.on('error', e => {

 console.log(e);

});

… and tidy up once processing has completed:

// worker complete

worker.on('exit', code => {

 // tidy up

});

The worker.js script starts the diceRun() calculation and posts a message to
the parent when it’s complete—which is received by the "message" handler
above:

// worker thread

import { workerData, parentPort } from 'worker_threads';

import { diceRun } from './lib/dice.js';

// start calculation

const stat = diceRun(workerData.runs, workerData.numberOfDice);

// post message to parent script

parentPort.postMessage(stat);

The timer isn’t paused while the worker runs, because it executes on another
CPU thread. In other words, the Node.js event loop continues to iterate
without long delays.

Run the project code with node index.js.

You should note that the worker-based calculation runs slightly faster
because the thread is fully dedicated to that process. Consider using workers
if you encounter performance bottlenecks in your application.

View the demonstration video to see the code in action.

Child Processes
It’s sometimes necessary to call applications that are either not written in
Node.js or have a risk of failure.

A Real-world Example

I worked on an Express application that generated a fuzzy image hash used to
identify similar graphics. It ran asynchronously and worked well—until
someone uploaded a malformed GIF containing a circular reference
(animation frameA referenced frameB which referenced frameA).

The hash calculation never ended. The user gave up and tried uploading
again. And again. And again. The whole application eventually crashed with
memory errors.

The problem was fixed by running the hashing algorithm in a child process.
The Express application remained stable because it launched, monitored, and
terminated the calculation when it took too long.

The child process API allows you to run sub-processes that you can monitor
and terminate as necessary. There are three options:

spawn: spawns a child process.
fork: a special type of spawn that launches a new Node.js process.
exec: spawns a shell and runs a command. The result is buffered and
returned to a callback function when the process ends.

Unlike worker threads, child processes are independent from the main
Node.js script and can’t access the same memory.

https://vimeo.com/707861063/783a9237e7
https://nodejs.org/dist/latest/docs/api/child_process.html
https://nodejs.org/dist/latest/docs/api/child_process.html#child_processspawncommand-args-options
https://nodejs.org/dist/latest/docs/api/child_process.html#child_processforkmodulepath-args-options
https://nodejs.org/dist/latest/docs/api/child_process.html#child_processexeccommand-options-callback

Clusters

Is your 64-core server CPU under-utilized when your Node.js application
runs on a single core? Clusters allow you to fork any number of identical
processes to handle the load more efficiently.

The initial primary process can fork itself—perhaps once for each CPU
returned by os.cpus(). It can also handle restarts when a process fails, and
broker communication messages between forked processes.

Clusters work amazingly well, but your code can become complex. Simpler
and more robust options include:

process managers such as PM2, which offer an automated Cluster Mode
a container management system such as Docker or Kubernetes

Both can start, monitor, and restart multiple isolated instances of the same
Node.js application. The application will remain active even when one fails.

Write Stateless Applications

This was mentioned in Chapter 3, but it’s worth reiterating: make your
application stateless to ensure it can scale and be more resilient. It should be
possible to start any number of instances and share the processing load.

Exercises

Browse the Readline API documentation and write a small console
application that prompts the user for their name before displaying a “Hello
<name>” greeting.

Examine the Performance hooks API documentation to discover how you can
monitor and improve code efficiency. The worker threads code (from the
“Worker Threads” section above) illustrates basic use of performance marks
and measurements.

For big bonus points, improve the stream example (from the “Streams”

https://nodejs.org/dist/latest/docs/api/cluster.html
https://nodejs.org/dist/latest/docs/api/cluster.html#clusterisprimary
https://nodejs.org/dist/latest/docs/api/os.html#oscpus
https://pm2.keymetrics.io/
https://pm2.keymetrics.io/docs/usage/cluster-mode/
https://www.docker.com/
https://kubernetes.io/
https://nodejs.org/dist/latest/docs/api/readline.html
https://nodejs.org/dist/latest/docs/api/perf_hooks.html
https://nodejs.org/dist/latest/docs/api/perf_hooks.html#performancemarkname-options
https://nodejs.org/dist/latest/docs/api/perf_hooks.html#performancemeasurename-startmarkoroptions-endmark

section) to parse incoming data chunks, as discussed above.

Summary
This chapter has provided a sample of the more useful Node.js APIs, but I
encourage you to browse the documentation and discover them for yourself.
The documentation is generally good and shows simple examples, but it can
be terse in places. Where necessary, search for more thorough tutorials on
SitePoint.

The next chapter will build on your Node.js knowledge to develop a real-
time, multiuser quiz application.

Quiz
1. The process object provides:

a. a way to launch a new thread
b. information about your application and environment
c. tools to manage application execution
d. all of the above

2. The File System API is named:

a. filesystem
b. file-system
c. fsystem
d. fs

3. Objects that emit events:

a. are instances of the EventEmitter class
b. run an emit() method
c. provide on() event handlers
d. all of the above

4. A Node.js stream provides:

https://nodejs.org/dist/latest/docs/api/
https://www.sitepoint.com/

a. data processing on smaller more manageable chunks
b. custom event management
c. processing threads management
d. asynchronous function management

5. Worker threads are best used to run:

a. asynchronous I/O activities
b. CPU-intensive JavaScript operations
c. non-Node.js applications
d. child processes

Chapter 13: Example Real-time
Multiplayer Quiz: Overview
This chapter demonstrates a real-time multiplayer quiz written in Node.js.
The application is a step up from the simpler, self-contained examples shown
in previous chapters. It has a more complex architecture, but it isn’t using any
modules or techniques you haven’t seen before. I recommend that you
progress through the explanations at your own pace and examine the code in
an editor so you can follow what’s happening.

The game allows any player to start a new quiz using their own configuration
options—such as the number of questions, scoring, time limits, and so on.
Any number of other players can join that quiz using a unique code.

Any number of quiz games can be running concurrently. Players may be
connected to different HTTP and WebSocket servers, which must keep
themselves synchronized as events occur.

This chapter describes how to run and play the game. The following chapters
will cover these topics:

the application’s architecture (Chapter 14)
the Express code (Chapter 15)
the WebSocket code (Chapter 16)

Source Code

The source code is provided in the code/ch13/nodequiz/ directory, although
you may find it more practical to pull the repository from
github.com/craigbuckler/nodequiz using the following Git command:

git clone https://github.com/craigbuckler/nodequiz

https://github.com/spbooks/ultimatenode1/tree/main/ch13/nodequiz
https://github.com/craigbuckler/nodequiz

Quizzing Quick Start

The application uses Docker and Docker Compose to download and run
Node.js and database servers.

What is Docker?

Docker provides a way to quickly install, configure, and run applications
such as databases. Each application launches in an isolated environment
known as a container. It behaves a little like a Linux virtual machine, but it’s
lightweight and requires no ongoing maintenance.

Docker Compose can run any number of containerized applications from a
single command. This makes it ideal for managing web application
dependencies, and it behaves identically on all platforms—whether you’re
using Windows, macOS, or Linux. A similar environment can also be
deployed to a production server.

The Docker for Web Developers book and a video course are available from
SitePoint if you want to learn more.

Once you’ve installed Docker, navigate to the project root directory
(nodequiz) and start the application in development mode with docker-
compose up.

All software dependencies download and initialize, so the first run can take
several minutes. The terminal shows a log of database and server activities.

Once started, access the quiz in a browser at http://quiz.localhost/.

https://docs.docker.com/get-docker/
https://docs.docker.com/compose/install/
https://www.sitepoint.com/premium/books/docker-for-web-developers/
https://www.sitepoint.com/premium/courses/docker-for-web-developers-3111
https://dockerwebdev.com/tutorials/install-docker/
http://quiz.localhost/

You must import some questions before starting a quiz, so click Import
questions... to retrieve a selection from the Open Trivia Database—which is
a free-to-use, user-contributed trivia question database. You’re then prompted

https://opentdb.com/

to JOIN an existing game.

Or you can START a new game.

Any number of games can be running concurrently with different
configurations, leading to different strategies based on time limits and
whether you guess or decline to answer a question.

Once started, a game is assigned a unique code—such as a23, as shown
below. Others can join this game by entering the code on the JOIN screen
and entering the lobby.

Any player can start the game, which progresses to the first question. A
countdown timer starts after the first person has answered so everyone else
must respond within the allotted time.

The score is displayed between questions and at the end of the game. A timer
indicates that the next question is coming.

To shut down the quiz, navigate to the project root directory (nodequiz) in
another terminal and run docker-compose down.

View the demonstration video to see the game running.

Summary
The quiz is developed in Node.js using a few third-party modules, vanilla
ES6, and less than 60KB of code. It’s also scalable: you can add more
Node.js HTTP and WebSocket servers as traffic increases. This leads to some
considerable software engineering challenges, which we’ll discuss in the next
chapter.

https://vimeo.com/707861186/54bfc2d363

Chapter 14: Example Real-time
Multiplayer Quiz: Architecture
This chapter describes the quiz application’s architecture and dependencies. It
does get complex, so you can skip it if you’d rather concentrate on the
Node.js and Express parts (Chapter 15) and WebSocket code (Chapter 16).
That said, technical decisions described in those chapters are based on the
architecture, so it’s good to understand the basics.

Why Develop Using Multiple Servers?

You could develop and run the quiz on a single server running a database and
a single Node.js application that launches both the HTTP and WebSocket
servers. It would be easier to develop, and it would support dozens of
concurrent users. However, problems will arise as traffic grows. If your
application crashes, it fails for everyone, and it’s difficult to scale the quiz:

Node.js applications run on a single CPU core.

Using a multi-core CPU has negligible benefit: Node.js will use one.
You could use clustering (see Chapter 12), but it’s a considerable coding
effort, and you’re still limited to the number of physical CPUs.

You can’t launch multiple application instances.

A process manager such as PM2 can launch multiple isolated instances
of your application on different domains and/or HTTP ports. Two
players wanting to join the same quiz would have to ensure they’re
connected to the same instance.

The quiz therefore uses a multi-server architecture running at least seven
individual stateless applications. New Node.js application instances can be
started on the same server—or even different servers—and the they’ll start to
handle incoming traffic. A server can fail and restart without noticeable

https://nodejs.org/api/cluster.html
https://pm2.keymetrics.io/

downtime.

The only reliable way to develop this application is to use an appropriate
architecture from the start.

The video for this chapter and the following sections describe the setup.

1. One PostgreSQL Database Server
A single PostgreSQL database server implements a quiz database with the
following data tables:

question: question text
answer: answer text with correct/incorrect flags
game: individual game instances and configurations
player: players connected to each game
pubsub: data shared to all WebSocket servers when specific events occur

https://vimeo.com/707861327/f5cb3de305
https://www.postgresql.org/

The database guarantees data integrity using constraints defined in the
schema. For example:

it’s impossible to add two questions with the same text
changing the id of a question automatically updates the question_id for
associated answer records
deleting a game record automatically deletes player and pubsub records
associated with that game

PostgreSQL was chosen for the project because it offers a publisher–
pubscriber (or pub–sub) service. It’s possible to trigger events when an
application changes database data (publishes), which can notify all
subscribers. This means we don’t require a dedicated pub–sub solution as
another dependency.

The .env file in the project root configures the database connectivity
credentials. The /db/001-quiz.sql file creates the table schema when
PostgreSQL is first launched.

Note that Express and WebSocket applications use the same Node.js module

defined at libshared/quizdb.js for all database activities.

2. Two Express HTTP Web Servers
An Express application handles:

importing questions from the Open Trivia Database
allowing a player to start a new game with specific defaults
allowing other players to join that game

It serves all the client-side HTML, CSS, and JavaScript files. Eventually, all
users on the same game end up at the URL
/game/<gameCode>/<playerName> where:

<gameCode> is a unique code for a specific quiz game
<playerName> is the player’s name

At this point, each user connects to a WebSocket server that controls further
interaction—such as starting and answering questions.

The system starts two isolated instances of the web server. This offers
improved performance and redundancy: if one web server fails, the other
remains active while the first restarts. An incoming HTTP request from any
user can be handled by either server.

The code is defined in the web directory. The .env configuration file and
libshared directory also provide code shared across all components.

3. Three WebSocket Servers
A WebSocket server uses the ws library to handle:

the initial connection from a player joining a game
starting the game for all connected players
sending questions and answers to all players
responding to player choices and keeping score
disconnecting users when they leave or the game completes

http://expressjs.com/
https://opentdb.com/
https://www.npmjs.com/package/ws

The system starts three isolated instances of the WebSocket server. This
offers improved performance and some redundancy. If a server fails, a game
should continue for those connected to a different server.

When a player connects, they remain connected to the same WebSocket
server throughout the duration of their session. However, two players on the
same quiz game could connect to different WebSocket servers!

Games are kept in sync using the pub–sub functionality in PostgreSQL:

1. When an event occurs on one WebSocket server, such as the user
answering a question, that server inserts a new record into the pubsub
table.

2. PostgreSQL activates a trigger, which sends an event containing the new
data to all WebSocket servers (the subscribers) running the same
instance of a specific game.

3. Each WebSocket server (including the one that originally received the
request) runs a handler that acts on the incoming event data.

The code is defined in the ws directory. The .env configuration file and
libshared directory also provide code shared across all components.

4. One Traefic Load Balancer
Traefic is a reverse proxy and load balancer that directs all incoming HTTP
and WebSocket requests to the appropriate (and least-busy) server.

When the application is running, the Traefic dashboard can be accessed and
monitored at http://localhost:8080/.

5. Adminer Database Client
An (optional) Adminer database client is launched in development mode so
you can examine PostgreSQL table data. Access it at http://adminer.localhost/
with the following credentials:

https://traefik.io/traefik/
http://localhost:8080/
https://www.adminer.org/
http://adminer.localhost/

System: PostgreSQL
Server: dbserver (or host.docker.internal or your PC’s IP address)
Username: quizuser
Password: quizpass
Database: quiz

If you’d rather use your preferred client application to access the database,
enter localhost as the Server name. Popular options including Beekeeper
Studio, DBeaver, and Postbird should be compatible.

Docker Development Environment
Installing, configuring, and launching all seven applications (eight with
Adminer) on a single server wouldn’t leave much time for development!
Fortunately, the whole environment can be managed with Docker so it starts
in a few seconds and still supports live Node.js restarts using nodemon.

For this reason, Docker is the only software dependency you need to install.
Even the Node.js runtime is managed by Docker.

A full Docker tutorial is beyond the scope of this book, but the web and ws
directories have Dockerfile configurations (web.Dockerfile and
ws.Dockerfile), which tell Docker how to build and run the Express and
WebSocket applications from a lightweight Node.js 16 Alpine Linux base.

Both create a Docker image. You can think of it like a disk image containing
all the files, libraries, and executables required to run an application.

You can start any number of Docker image instances. A running instance is
known as a container. Think of it as an isolated Linux Virtual Machine that’s
running a single executable such as a database or Node.js application.

Launching a container requires a single docker run command. Fortunately,
Docker Compose can manage and run all containers using a development
environment configuration defined in docker-compose.yml. This does the
following:

https://beekeeperstudio.io/
https://dbeaver.io/
https://github.com/paxa/postbird
https://docs.docker.com/get-docker/
https://dockerwebdev.com/tutorials/install-docker/
https://www.sitepoint.com/premium/books/docker-for-web-developers/
https://docs.docker.com/compose/install/

Declares all containers, replicas, and restart policies.

Defines all environment variables from the .env file.

Attaches disk storage volumes so there’s no need to re-initialize the
database on every launch. It also mounts the libshared modules
directory in both the web and ws projects.

Overrides some Dockerfile settings to use nodemon and launch Node.js
debugging servers.

Connects all containers to the same internal Docker network.

Configures the Traefic load balancer.

Start the whole environment in development mode from the project’s root
directory:

docker-compose up

The terminal shows a live activity log and any errors. nodemon restarts the
web and ws applications whenever a JavaScript file is changed.

To gracefully shut down all applications, run the following command in
another terminal from the project root:

docker-compose down

Docker Production Environment
docker-compose-production.yml defines production-level settings, so the
quiz application can be run on a live server. The configuration is simpler,
because there’s no need to override Dockerfile settings or launch Adminer.

Start the application in production mode with:

docker-compose -f ./docker-compose-production.yml up

Is Docker Compose Suited to Production?

Probably not. It’s not efficient to run PostgreSQL in a container, and there are
better options such as Docker Swarm and Kubernetes to manage containers
across multiple servers. But that’s beyond the scope of this and most Docker
books!

Summary
Setting up a development environment is complex, but the choices you make
at the start can affect the long-term success of your project. We’re now in a
good position to create a (mostly) stateless application, starting with the
Express server in the next chapter.

https://docs.docker.com/engine/swarm/
https://kubernetes.io/

Chapter 15: Example Real-time
Multiplayer Quiz: Express Code
The Express part of the quiz application:

imports questions from the Open Trivia Database
allows a player to create and start a new game with specific defaults
allows other players to join that game

It serves all the client-side HTML, CSS, and JavaScript files. Eventually,
users on the same game end up at the URL
/game/<gameCode>/<playerName>, where the WebSocket server (see Chapter
16) takes over and controls the gameplay.

Docker starts two isolated HTTP servers and a single request could be
directed to either by the Traefic load balancer. Even two requests from the
same user on the same page—such as a CSS and JavaScript file—could be
delivered by different servers. This is rarely an issue, because the web is
stateless by default: the application avoids storing state on one server that
wouldn’t be available on the other.

Before we delve into the Express code, we’ll take a look at the database code.

Database Library

PostgreSQL database connectivity is handled by the Node.js pg library (see
the documentation). This is loaded in the libshared/quizdb.js module,
which provides a selection of functions to INSERT, UPDATE, SELECT, and
DELETE records in the quiz database. The same module is used by both the
web and ws servers.

The code initially imports the pg library and defines integer type parsers. By
default, pg returns all record fields as strings, so a parser can convert it to the
correct type:

https://opentdb.com/
https://www.npmjs.com/package/pg
https://node-postgres.com/

import pg from 'pg';

// data type parsers

pg.types.setTypeParser(pg.types.builtins.INT2, v => parseInt(v,

10));

pg.types.setTypeParser(pg.types.builtins.INT4, v => parseInt(v,

10));

pg.types.setTypeParser(pg.types.builtins.INT8, v =>

parseFloat(v));

The code then defines a “connection pool” using the environment variable
defaults:

const pool = new pg.Pool({

 host: process.env.POSTGRES_SERVER,

 port: process.env.POSTGRES_PORT,

 database: process.env.POSTGRES_DB,

 user: process.env.POSTGRES_QUIZUSER,

 password: process.env.POSTGRES_QUIZPASS

});

A pool provides a reusable set of database connection clients you can check
out, use, release, and reuse. This has benefits including:

There’s no initial handshake delay when a client is reused.
Each client is a separate connection to the database. Unlike a single
connection, they can make simultaneous requests.

Here’s a basic parameterized SQL query example that returns all records
from the question table with an id between 1 and 10 using one of the pool
connections:

// DB connection

const client = await pool.connect();

try {

 // fetch all questions with ids between 1 and 10

 const result = await client.query(

 'SELECT * FROM question WHERE id >= $1 AND id <= $2;',

 [1, 10]

);

}

catch(err) {

 console.log(err);

https://node-postgres.com/features/pooling

}

finally {

 // release client

 client.release();

}

The SQL SELECT string references $1 and $2, which are substituted with
values in the first and second elements in the array. An array of row objects is
returned when the query executes successfully.

Creating individual SQL commands can be cumbersome, and it’s easy to
miss or transpose array parameters. The libshared/quizdb.js module has
private dbSelect(), dbInsert(), dbUpdate(), and dbDelete() functions,
which make development easier. For example, the public playerCreate()
function is used when adding a new player record for a specific game:

// create a new player

export async function playerCreate(game_id, name) {

 return await dbInsert({

 table: 'player',

 values: { game_id, name },

 return: 'id'

 });

}

This calls the private dbInsert() function with a table name, a values
object containing name/value pairs, and a return to fetch the id of the added
record. The dbInsert() function returns the added id or false when an error
occurs:

// database INSERT

// pass object: { table: <tablename>, values: <{ n1: v1,... }>,

return: <field> }

async function dbInsert(ins) {

 const

 ret = ins.return ? ` RETURNING ${ ins.return }` : '',

 key = Object.keys(ins.values),

 sym = key.map((v,i) => `$${i + 1}`),

 sql = `INSERT INTO ${ ins.table } (${ key.join() }) VALUES(${

sym.join() })

 ➥${ ret };`,

 client = ins.client || await pool.connect();

 let success = false;

 try {

 // run insert

 const i = await client.query(sql, Object.values(ins.values

));

 // successful?

 success = i.rowCount === 1;

 // return value?

 if (success && ins.return) {

 success = i.rows[0][ins.return];

 }

 }

 catch(err) {

 }

 finally {

 if (!ins.client) client.release();

 }

 return success;

}

The const values at the top are responsible for creating the SQL string:

INSERT INTO player (game_id, name) VALUES ($1, $2) RETURNING id;

There are four things to note here:

key defines an array of property names extracted from the values
object.
sym defines an array of $1 to $N strings, which match the number of
items in the key array.
The property values from values are passed to the SQL query using
Object.values(ins.values).
The calling function can pass its own pool.connect() object. This is
necessary when it’s running a series of updates in a database transaction.

The private dbUpdate() method is similar, although it also receives a where
object with name/value pairs to create an SQL string, such as:

UPDATE game SET time_started=$1 WHERE game_id=$2;

The function ensures the names and values resolve correctly:

// database UPDATE

// pass object: { table: <tablename>, values: <{ n1: v1,... }>,

// where: <{ n1: v1,... }> }

async function dbUpdate(upd) {

 const

 sym = [...Object.values(upd.values), ...Object.values(

upd.where)],

 vkey = Object.keys(upd.values),

 val = vkey.map((k, i) => `${ k }=$${ i + 1 }`),

 ckey = Object.keys(upd.where),

 cond = ckey.map((k, i) => `${ k }=$${ i + val.length + 1 }`

),

 sql = `UPDATE ${ upd.table } SET ${ val.join() } WHERE ${

cond.join() };`,

 client = upd.client || await pool.connect();

 let updated = 0;

 try {

 // run update

 const u = await client.query(sql, sym);

 // successful?

 updated = u.rowCount;

 }

 catch(err) {

 }

 finally {

 if (!upd.client) client.release();

 }

 return updated;

}

Record deletion SQL is simpler. For example:

DELETE FROM game WHERE id=$1;

Therefore, so is the dbDelete() function:

// database delete

// pass object: { table: <tablename>, where: <{ n1: v1,... }> }

// logical AND is used for all where name/value pairs

async function dbDelete(del) {

 const

 key = Object.keys(del.values).map((v, i) => `${ v }=$${ i+1

}`),

 sql = `DELETE FROM ${ del.table } WHERE ${ key.join(' AND ')

};`,

 client = del.client || await pool.connect();

 let deleted = false;

 try {

 // run delete

 const d = await client.query(sql, Object.values(del.values

));

 deleted = d.rowCount;

 }

 catch(err) {

 }

 finally {

 if (!del.client) client.release();

 }

 return deleted;

}

Finally, dbSelect() is the simplest function of all, since you must specify
your own sql string and array of arguments:

// database SELECT

// pass SQL string and array of parameters

async function dbSelect(sql, arg = []) {

 const client = await pool.connect();

 try {

 const result = await client.query(sql, arg);

 return result && result.rows;

 }

 catch(err) {

 console.log(err);

 }

 finally {

 client.release();

 }

}

The reason is that SQL SELECT queries can be varied and complex. Some
database libraries provide object–relational mapping (ORM) methods to build
SQL query strings, but this would have been overkill for this project!

Question Database Initialization
Data is downloaded from the Open Trivia Database—a free-to-use repository
of user-contributed questions and answers with a REST API. Questions and
their associated answers are stored in the question and answer database
tables. This action can be initiated by a user when the quiz home page is
accessed for the first time.

Initializing Data on Application Start?

The application could initialize the questions when the web server starts.
However, any number of application instances can be launched and each
would attempt to load questions. Making it into a user request ensures only
one server will load questions at a time.

The .env file defines environment variables—including database credentials
and QUIZ_QUESTIONS_MAX=500—to limit the number of imported questions.
The web/index.js entry script loads modules and configures the Express
server:

// Express

import express from 'express';

import compression from 'compression';

https://www.sitepoint.com/premium/books/php-mysql-novice-to-ninja-7th-edition/read/12/kye1h4y2/
https://opentdb.com/
https://opentdb.com/api_config.php

// modules

import { questionCount, gameCreate, gameFetch } from

'./libshared/quizdb.js';

import { questionsImport } from './lib/questionsimport.js';

import * as libId from './libshared/libid.js';

// configuration

const cfg = {

 dev: ((process.env.NODE_ENV).trim().toLowerCase() !==

'production'),

 port: process.env.NODE_PORT || 8000,

 domain: process.env.QUIZ_WEB_DOMAIN,

 wsDomain: process.env.QUIZ_WS_DOMAIN,

 title: process.env.QUIZ_TITLE,

 questionsMax: parseInt(process.env.QUIZ_QUESTIONS_MAX, 10)

};

// Express initiation

const app = express();

// use EJS templates

app.set('view engine', 'ejs');

app.set('views', 'views');

// GZIP

app.use(compression());

// body parsing

app.use(express.urlencoded({ extended: true }));

By default, the home page / route fetches the number of questions in the
database using the questionCount() function in libshared/quizdb.js (see
the else block):

// home page

app.get('/', async (req, res) => {

 if (typeof req.query.import !== 'undefined') {

 // import new questions and redirect back

 res.redirect(`/?imported=${ await questionsImport() }`);

 }

 else {

 // home page template

 res.render('home', {

 title: cfg.title,

 questions: await questionCount(),

 questionsMax: cfg.questionsMax,

 imported: req.query?.imported || null

 });

 }

});

This count and questionsMax is passed to an HTML view at
web/views/home.ejs. It shows a link to the home page with an /?import
query string when further questions can be loaded:

<% if (questions < questionsMax) { %>

 <p>Import questions…</p>

<% } %>

When clicked, it reloads the home page with an ?import query string, which
triggers the if block above. This executes questionsImport() in
web/lib/questionsimport.js and returns the number of questions imported.

The code then redirects back to the home page with an ?imported=N query
string, which shows the number of imported questions. Assuming there’s at
least one question in the database, the web/views/home.ejs view displays the
START and JOIN game options:

<% if (questions) { %>

 <section class="tabs">

 <article id="new">

 <h2>START A NEW GAME</h2>

 <!-- more code -->

<% } %>

Why Does the Number of Imported Questions Vary?

The Open Trivia Database API returns a random set of questions. Some may

https://opentdb.com/

be duplicates of previously imported questions, but the database’s
question.text field has a UNIQUE flag to ensure a question can only be
added once.

The questionsImport() function is a little long, so examine
web/lib/questionsimport.js in an editor. It uses a series of promise-based
functions to make up to ten concurrent calls to the Open Trivia API at
https://opentdb.com/api.php with Promise.allSettled(). Data is fetched
using the node-fetch module.

Native Node.js Fetch()

Deno usefully implements the browser Fetch API, so you can use it in a
server application. A similar Fetch API arrived in Node.js version 18, but it’s
experimental. A third-party module is used here for backward compatibility.

The Open Trivia API returns JSON data such as:

{

 "response_code": 0,

 "results": [

 {

 "category": "History",

 "type": "multiple",

 "difficulty": "medium",

 "question": "The crown of the Empire State Building was

originally built

 ➥for what purpose?",

 "correct_answer": "Airship Dock",

 "incorrect_answers": [

 "Lightning Rod",

 "Antennae",

 "Flag Pole"

]

 },

 {

 "category": "Entertainment: Cartoon & Animations",

 "type": "multiple",

 "difficulty": "easy",

 "question": "Which of these is NOT a Disney cartoon

character?",

 "correct_answer": "Daffy Duck",

 "incorrect_answers": [

https://opentdb.com/api.php
https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Promise/allSettled
https://www.npmjs.com/package/node-fetch
https://developer.mozilla.org/docs/Web/API/Fetch_API

 "Donald Duck",

 "Daisy Duck",

 "Scrooge McDuck"

]

 },

 {

 "category": "History",

 "type": "multiple",

 "difficulty": "hard",

 "question": "What was the original name of New York City?",

 "correct_answer": "New Amsterdam",

 "incorrect_answers": [

 "New London",

 "New Paris",

 "New Rome"

]

 }

]

}

This is converted to JavaScript values, formatted, and each question/answer
set is added to the database using a call to the questionAdd(question,
answer) function in libshared/quizdb.js. Each question and answer set is
inserted within a database transaction so that, if any SQL INSERT operation
fails, they all fail:

// add a new question and answer set

export async function questionAdd(question, answer) {

 const client = await pool.connect();

 let commit = false;

 try {

 // new transaction

 await client.query('BEGIN');

 // add question

 const qId = await dbInsert({

 client,

 table: 'question',

 values: {

 text: question

 },

 return: 'id'

 })

 if (qId) {

 // insert answers in sequence

 let inserted = 0;

 for (let item of answer) {

 const a = await dbInsert({

 client,

 table: 'answer',

 values: {

 question_id: qId,

 text: item.text,

 correct: item.correct

 }

 });

 if (a) inserted++;

 }

 // answers added?

 commit = inserted === answer.length;

 }

 }

 catch(err) {

 }

 finally {

 // commit or rollback transaction

 if (commit) {

 await client.query('COMMIT');

 }

 else {

 await client.query('ROLLBACK');

 }

 client.release();

 }

 return commit;

}

Sequential Database INSERTs

The code could run multiple database INSERT commands in a short period.
This is faster, but question and answer IDs would appear in a seemingly
random order in the database tables. For example, the question record with
an id of 1 could have associated answer records with the ids 17, 22, 52, and
54.

This isn’t a problem for an indexed database, but it can make the tables more
difficult to read during development! For this reason, questions and answers
are inserted sequentially, one at a time. It also means that ordering by
answer.id returns an alphabetically ordered list without requiring an
additional answer.order field.

Starting a New Game
The web/views/home.ejs template defines an HTML form to configure and
start new games:

<form action="/newgame/" method="post">

 <div class="formgrid">

 <label for="namenew">your name:</label>

 <div><input type="text" name="name" id="namenew" value=""

minlength="1"

 maxlength="10" pattern="[A-Za-z0-9]{1,10}" required /></div>

 <label for="questions_asked">number of questions:</label>

 <div><input type="number" name="questions_asked"

id="questions_asked"

 value="10" min="1" max="50" required /></div>

 <label for="timeout_answered">time limit after first answer:

</label>

 <div><input type="number" name="timeout_answered"

id="timeout_answered"

 value="5" min="5" max="60" required /> seconds</div>

 <label for="score_correct">score for correct answer:</label>

 <div><input type="number" name="score_correct"

id="score_correct" value="1"

 min="-100" max="100" required /> points</div>

 <label for="score_fastest">bonus for fastest player:</label>

 <div><input type="number" name="score_fastest"

id="score_fastest" value="1"

 min="-100" max="100" required /> points</div>

 <label for="score_incorrect">score for incorrect answer:

</label>

 <div><input type="number" name="score_incorrect"

id="score_incorrect"

 value="-1" min="-100" max="100" required /> points</div>

 <label for="score_noanswer">score for no answer:</label>

 <div><input type="number" name="score_noanswer"

id="score_noanswer" value="0"

 min="-100" max="100" required /> points</div>

 </div>

 <button>ENTER QUIZ LOBBY…</button>

</form>

The form HTTP POSTs data to the /newgame/ URL, which is handled by the
route defined in web/index.js:

// create a new game

app.post('/newgame', async (req, res) => {

 const

 gameId = await(gameCreate(req.body)),

 playerName = libId.clean(req.body.name);

 if (gameId === null) {

 // game creation error?

 res.status(500).render('error', {

 title: cfg.title,

 error: 'Game could not be started?'

 });

 }

 else {

 // redirect to game page using slug and user name

 res.redirect(`/game/${ libId.encode(gameId) }/${ playerName

}`);

 }

});

The code calls the gameCreate() function in libshared/quizdb.js and
passes the req.body object containing the form data. This inserts a new
record into the database game table and returns its id—by calling the private
dbInsert() function (shown above in the “Database Library” section):

// create a new game

export async function gameCreate(data) {

 const qCount = await questionCount();

 return await dbInsert({

 table: 'game',

 values: {

 question_offset : Math.floor(Math.random() * qCount), //

random start q

 questions_asked : clamp(1, data.questions_asked, 50),

 timeout_answered: clamp(5, data.timeout_answered, 60),

 score_correct : clamp(-100, data.score_correct, 100),

 score_fastest : clamp(-100, data.score_fastest, 100),

 score_incorrect : clamp(-100, data.score_incorrect, 100),

 score_noanswer : clamp(-100, data.score_noanswer, 100)

 },

 return: 'id'

 });

}

Note the following:

Each game record has a unique id integer which identifies the game.

The number can become long and is easy to guess. If you’re currently
playing game 99, you could try joining game 100 or 101 and have a high
success rate.

For this reason, game IDs are encrypted into a string using encode() and
decode() in libshared/libid.js. This string also avoids using similar-
looking characters such as zero and uppercase “o” or one and uppercase
“i”.

A player can then tell others to join game a23 rather than game 1.

clamp() is a private function that ensures a value is between a lower and
upper limit:

// return integer between low and high values

function clamp(min = 0, value = 0, max = 0) {

 return Math.max(min, Math.min(parseInt(value || '0', 10)

|| 0,

 ➥max));

}

game.question_offset defines the starting question. It’s set to a
random number between 0 and the number of database questions.

game.time_created is automatically set to the date/time the game was
created by the database (time_created timestamp NOT NULL DEFAULT
NOW()).

game.time_started is initially NULL, but is eventually set to the
date/time the game is started. This value is checked when you join a
game to ensure players can’t jump in mid-way through a quiz.

Assuming a game record is created, the browser redirects the user to the URL
/game/<gameCode>/<playerName>—such as /game/a23/Craig. A failure
shows a message using the view at web/views/error.ejs.

Joining a Game
The web/views/home.ejs template also defines an HTML form for joining a
game that HTTP POSTs the user’s name and game code to the /joingame/
route:

<form action="/joingame/" method="post">

 <div class="formgrid">

 <label for="namejoin">your name:</label>

 <div><input type="text" name="name" id="namejoin" value=""

minlength="1"

 maxlength="10" pattern="[A-Za-z0-9]{1,10}" required /></div>

 <label for="slug">game code:</label>

 <div><input type="text" name="slug" id="slug" value=""

minlength="3"

 maxlength="8" autocomplete="off" required /></div>

 </div>

 <button>ENTER QUIZ LOBBY…</button>

</form>

The form HTTP POSTs data to the /joingame/ URL, which is handled by
the route defined in web/index.js:

// join an existing game

app.post('/joingame', (req, res) => {

 // redirect to game page using slug and user name

 res.redirect(`/game/${ libId.clean(req.body.slug

).toLowerCase() || 'x' }/${

 ➥ libId.clean(req.body.name) }`);

});

This receives the data, cleans the strings, and redirects the user to the URL
/game/<gameCode>/<playerName>—such as /game/a23/Craig.

Quiz Page
All players starting or joining a game reach the URL
/game/<gameCode>/<playerName>, where:

<gameCode> is the unique code for a specific quiz game
<playerName> is a player’s name

This is handled by the Express routing function at web/index.js:

// game page

app.get('/game/:slug/:name', async (req, res) => {

 // get game ID and player name

 const

 slug = req.params.slug,

 gameId = libId.decode(slug),

 game = gameId === null ? null : await gameFetch(gameId),

 gameValid = game && gameId === game.id,

 playerName = libId.clean(req.params.name) || 'Player';

 if (gameValid && game.time_started === null) {

 // game open for players

 res.render('game', {

 domain: cfg.domain,

 wsDomain: cfg.wsDomain,

 slug,

 title: cfg.title,

 game,

 playerName

 });

 }

 else {

 // game has been started or is invalid

 const url = `${ cfg.domain }/game/${ slug }`;

 res.status(gameValid ? 403 : 404).render('error', {

 title: cfg.title,

 error: gameValid ? `You were too late to join the game at

${ url }` : `The

 ➥game at ${ url } is not valid. Did you enter it

correctly?`

 });

 }

});

The function decodes the game code to an integer and fetches the game
information from the database by calling gameFetch() in
libshared/quizdb.js:

// fetch game data

export async function gameFetch(gameId) {

 const game = await dbSelect('SELECT * FROM game WHERE id=$1;',

[gameId]);

 return game?.[0];

}

Assuming the game ID is valid and the game’s time_started value is NULL,
the code renders the template at web/views/game.ejs. Configuration
variables are passed to a client-side script in the template:

<script type="module">

window.cfg = {

 wsDomain: '<%= wsDomain %>',

 gameId: <%= game.id %>,

 playerName: '<%= playerName %>'

};

</script>

<script type="module" src="/js/main.js"></script>

This configures values used in the client-side script at
web/static/js/main.js.

When necessary, errors are shown using the template at
web/views/error.ejs:

An invalid game ID returns an HTTP 404 Not found error.
A started game (where time_started is not NULL) returns an HTTP 403
Forbidden error.

Summary
The Express part of the application illustrates how URL routes can be
resolved to trigger server-side functionality.

At this point, all players joining a game have loaded the
web/views/game.ejs template. All further quiz game processing is now
handled using client-side JavaScript and WebSocket server messaging (see
Chapter 16). Express has completed its job!

Chapter 16: Example Real-time
Multiplayer Quiz: WebSocket
Code
Chapter 11 introduced WebSockets, which establish a two-way interactive
communication channel between a client browser and server.

Our quiz application starts three WebSocket servers, and there’s no limit to
the number of servers that could be started. However:

A user will connect to a single server and remain connected to it
throughout their session.
Two users on the same game could be connected to different WebSocket
servers.

Messages sent to and from the WebSocket server are typically simple strings,
but we have the added challenge of coordinating messages across all servers!

Initiating a WebSocket Connection

The client-side JavaScript at web/static/js/main.js initiates a connection
to the WebSocket server’s address and sends a gameInit message when it’s
established. Note that window.cfg.wsDomain, window.cfg.gameId, and
window.cfg.playerName are values passed by Express to the
web/views/game.ejs template:

// client-side code

// handle WebSocket communication

const ws = new WebSocket(window.cfg.wsDomain);

// connect to server and send game ID and initial player name

ws.addEventListener('open', () => {

 sendMessage('gameInit', { gameId: window.cfg.gameId,

playerName: window.cfg.

 ➥playerName });

});

// send message

function sendMessage(type, data = null) {

 ws.send(`${ type }:${ JSON.stringify(data) }`);

}

An event handler function can now receive incoming messages from the
WebSocket server:

// receive message

ws.addEventListener('message', e => {

 // process...

});

The server-side script at ws/index.js initializes a ws library
WebSocketServer object and listens for new client connections and incoming
messages:

// server

ws = new WebSocketServer({ port: cfg.wsPort, perMessageDeflate:

false });

// client connected

ws.on('connection', (socket, req) => {

 console.log(`connection from ${ req.socket.remoteAddress }`);

 // message received from client

 socket.on('message', async (msg) => {

 // process...

 });

}

WebSocket Message Format

The quiz application uses the same format for all WebSocket messages sent
by the client or server. An identifying type string is followed by a colon

https://www.npmjs.com/package/ws

character and payload data in JSON format:

messageType:{ jsondata }

For example, the gameInit message shown above passes the game ID and
player name to the server shortly after initiating the WebSocket connection:

gameInit:{ "gameId": "a23", "playerName": "Craig" }

When receiving a message from a player, the WebSocket server may perform
some actions immediately. However, most messages are forwarded to all
WebSocket servers where users are connected to the same game. Each
WebSocket server (including the one that originally received the message)
then process the message and, in most cases, transmits it back to its
connected clients where DOM and game state updates occur.

PostgreSQL Pub–sub

Messages are broadcast to all WebSocket servers using PostgreSQL’s pub–
sub functionality. The pubsub table has the following fields:

id: an auto-incrementing integer
game_id: the (non-encoded) game ID integer (a foreign key for the
game.id)
type: the type of message
data: the message payload in fast JSONB binary format
queued: the current timestamp

When a single WebSocket server wants to share an event, it inserts a new
record into the pubsub table using a broadcast() function in
libshared/quizdb.js:

// broadcast an event

export async function broadcast(game_id, type, data) {

 return await dbInsert({

 table: 'pubsub',

 values: { game_id, type, data },

 return: 'id'

 });

}

A database trigger named pubsub_insert_trigger calls a
sub_insert_notify() function whenever a record is inserted into the pubsub
table. This executes a PostgreSQL pg_notify() command, which sends the
record to all subscribers:

CREATE OR REPLACE FUNCTION pubsub_insert_notify()

 RETURNS trigger AS

$BODY$

 BEGIN

 PERFORM pg_notify('pubsub_insert', row_to_json(NEW)::text);

 RETURN NULL;

END;

$BODY$

 LANGUAGE plpgsql VOLATILE

 COST 100;

CREATE TRIGGER "pubsub_insert_trigger"

 AFTER INSERT ON public.pubsub FOR EACH ROW

 EXECUTE FUNCTION pubsub_insert_notify();

A PubSub object, which extends the Node.js EventEmitter class, is defined

https://nodejs.org/dist/latest/docs/api/events.html#class-eventemitter

in libshared/quizdb.js:

// pubsub event emitter

class PubSub extends EventEmitter {

 constructor(delay) {

 super();

 }

 async listen() {

 if (this.listening) return;

 this.listening = true;

 const client = await pool.connect();

 client.on('notification', event => {

 try {

 const payload = JSON.parse(event.payload);

 if (payload) {

 this.emit(

 `event:${ payload.game_id }`,

 {

 gameId: payload.game_id,

 type: payload.type,

 data: payload.data

 }

);

 }

 }

 catch (e) {

 }

 });

 client.query('LISTEN pubsub_insert;');

 }

}

A single object instance named pubsub is instantiated and exported. The
listen() method is called, which connects to the database and defines a

handler function when a notification event occurs. This emits a Node.js
event named event:<gameId> with a payload object containing the gameId,
type string, and JSON-parsed data object:

export const pubsub = new PubSub();

await pubsub.listen();

Game instances on each server then subscribe to event:<gameId> event using
the pubsub.on method:

import * as db from '../libshared/quizdb.js';

// abbreviated code

class Game {

 #handlerFunction = async e => await this.#eventHandler(e);

 // initialize game

 async create(gameId) {

 this.gameId = gameId;

 // monitor incoming events

 db.pubsub.on(`event:${ this.gameId }`,

this.#handlerFunction);

 }

}

The private #eventHandler() function is called when an event occurs. It
receives the incoming data and can react accordingly:

// incoming event sent to all game servers

async #eventHandler({ gameId, type, data }) {

 console.log('Shared server event', type, data);

 // ...

 // handle server event (on all servers)

 switch (type) {

 //...

 }

}

https://nodejs.org/dist/latest/docs/api/events.html#emitteremiteventname-args

Game Logic

This section provides an overview of the game logic as it progresses from
joining, to starting, playing, and finishing a quiz. Note the following:

The client-side JavaScript at web/static/js/main.js sends messages
from a client to the WebSocket server when an event occurs—such as
answering a question.

The WebSocket server-side JavaScript at ws/index.js receives a
message from a client and executes appropriate functionality. In most
cases, messages are broadcast to all WebSocket servers running the
same game. They receive the data and transmit it back to all connected
clients on that game.

The client-side JavaScript at web/static/js/main.js receives
incoming messages and updates the DOM or game state accordingly.

The HTML <body> class is set to the incoming message type. This can
trigger CSS to show or hide specific elements according to the game
state.

In some cases, an action occurring on a client does nothing until it has been
received back from the server after it has been transmitted to all WebSocket
servers and their connected clients!

Joining a Game

When a player accesses a valid game at the URL
/game/<gameCode>/<playerName>—such as /game/a23/Craig—the client
establishes a WebSocket connection with a single server and sends a
gameInit message. For example:

gameInit:{ "gameId": "a23", "playerName": "Craig" }

This triggers the message event handler function on a WebSocket Server,
which initiates the game (the if block):

// message received from client

socket.on('message', async (msg) => {

 // parse message

 msg = parseMessage(msg);

 // initialize player and game

 if (!player && msg.type === 'gameInit' && msg.data) {

 player = new Player();

 const pId = await player.create(msg.data.gameId,

msg.data.playerName,

 ➥socket);

 if (!pId) player = null;

 }

 else {

 // pass message to game object

 msg.data = msg.data || {};

 msg.data.playerId = player.id;

 await player.game.clientMessage(msg);

 }

});

A new Player object is created using the class defined in ws/lib/player.js.
Its create(gameId, playerName, socket) method is run:

// initialize new player

async create(gameId, playerName, socket) {

 // player properties

 this.name = playerName;

 this.#socket = socket;

 // initialize game

 this.gameId = gameId;

 this.game = await GameFactory(gameId);

 if (!this.game) return null;

 // send existing players to new player

 this.send('player', this.game.playerAll())

 // create this player

 this.id = await db.playerCreate(this.gameId, playerName);

 if (!this.id) return null;

 // add player to game

 this.game.playerAdd(this);

 return this.id;

}

Why Run a create() Method?

The Player class has a constructor function that runs when an instance of
an object is created. Unfortunately, constructor functions can’t be
asynchronous, so it’s necessary to run another method to handle initialization.

Player objects keep track of the user’s ID, game ID, name, score, and the
WebSocket connection is used by the send() method to send a message to an
individual player:

// send message to player

send(type = 'ws', data = {}) {

 if (this.#socket) {

 this.#socket.send(`${ type }:${ JSON.stringify(data) }`);

 }

}

Player create() passes the gameId to a GameFactory() function defined in
ws/lib/game.js:

// active games

const gameActive = new Map();

// create and manage active game objects

export async function GameFactory(gameId) {

 // game instance not exists?

 if (!gameActive.has(gameId)) {

 // create new game instance

 const game = new Game();

 if (await game.create(gameId)) {

 gameActive.set(gameId, game);

 }

 console.log(`Game ${ gameId } added - active games on this

server: ${

 ➥gameActive.size }`);

 }

 return gameActive.get(gameId) || null;

}

Game objects keep track of the game state and connected players. They’re
responsible for receiving a message from a single client, broadcasting that
message to all WebSocket servers, and receiving the message back again, and
sending it to all connected clients on the same game.

The GameFactory() function creates and returns a new Game object when the
first player joins a specific game on each WebSocket server. This object is
referenced in a gameActive JavaScript Map using the game ID integer as the
reference. All subsequent players to join the same game on the same
WebSocket server receive the same Game object.

Next, the joining client is sent a player message with an array of all existing
player IDs and names (from the Game object’s playerAll() method). When
received, an init() function in the client-side web/static/js/player.js
script adds each player to an HTML <table> and stores DOM references in a
Map named player:

// CLIENT-SIDE CODE

const

 pList = document.getElementById('player'),

 pNum = document.getElementById('pnum'),

 player = new Map();

// add new players

export function init(pAll, showScore = false) {

 clear(pList);

 player.clear();

 pAll.forEach(p => add(p, showScore));

}

// add a new player

https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Map

export function add(p, showScore = false) {

 if (!p.id || player.has(p.id)) return;

 const item = document.createElement('tr');

 (item.appendChild(document.createElement('th'))).textContent =

p.name;

 const info = item.appendChild(document.createElement('td'));

 info.textContent = showScore ? p.score || 0 : 'joined';

 const pObj = {

 name: p.name,

 node: pList.appendChild(item)

 };

 pObj.info = pObj.node.getElementsByTagName('td')[0];

 player.set(p.id, pObj);

 pNum.textContent = player.size;

}

The player is now added to the player table in the database by calling the
playerCreate() function in libshared/quizdb.js:

// create a new player

export async function playerCreate(game_id, name) {

 return await dbInsert({

 table: 'player',

 values: { game_id, name },

 return: 'id'

 });

}

Assuming the player can be inserted into the database, the Player object
(this) is passed to the Game object’s playerAdd() method:

// add player to game

async playerAdd(player, broadcast = true) {

 // add player to this server

 this.player.set(player.id, player);

 // broadcast event

 if (broadcast) {

 await db.broadcast(

 this.gameId,

 'playerAdd',

 { id: player.id, game_id: this.gameId, name: player.name }

);

 }

}

This broadcasts a playerAdd message with the new player’s ID, game ID,
and name to all WebSocket servers. These send it to all connected clients on
the same game (including the joining player). When received, the add()
function in the client-side web/static/js/player.js script (shown above)
adds the new player to the same HTML <table>.

Starting a Game

After joining, any player can hit the START QUIZ button. This sends a
start message to one WebSocket server, which broadcasts it to all servers
and back to all clients. Each client calls a start() function in the client-side
web/static/js/player.js script that shows which player started the game
and initializes a five-second countdown timer using the startTimer()
function in web/static/js/timer.js:

// CLIENT-SIDE JAVASCRIPT

// started

export function start(pId) {

 if (!player.has(pId)) return;

 player.get(pId).info.textContent = 'started game';

 startTimer();

}

The Game object on the WebSocket server (ws/lib/game.js) receives the
start message and calls the private #questionNext() method:

// incoming client event

async clientMessage({ type, data }) {

 console.log('Data from client', type, data);

 // handle client event (on single server)

 switch (type) {

 case 'start':

 // fetch first question

 this.#state.current = type;

 // no question found?

 if (!await this.#questionNext(timerDefault)) {

 await db.broadcast(this.gameId, 'gameover');

 };

 break;

The #questionNext() method determines whether more questions can be
asked, fetches the next question from the database, and broadcasts it using a
questionactive message type to all WebSocket servers after a five-second
delay:

// fetch and broadcast next question

async #questionNext(delay) {

 // can ask next question?

 if (this.#state.question >= this.cfg.questions_asked) return;

 // fetch next question and answer set

 const qSet = await db.questionFetch(this.#state.question +

this.cfg.

 ➥question_offset);

 if (!qSet) return;

 qSet.num = this.#state.question + 1;

 this.#setTimer(async () => {

 await db.broadcast(this.gameId, 'questionactive', qSet);

 }, delay || 1);

 return qSet.num;

}

The questionFetch() function defined in libshared/quizdb.js returns an
object containing the question text and an array of answer objects where one
has a correct property set to true:

// fetch next question and answer set

export async function questionFetch(qNum) {

 // fetch question

 const

 qCount = await questionCount(),

 question = await dbSelect('SELECT * FROM question ORDER BY id

LIMIT 1

 ➥OFFSET $1', [qNum % qCount]);

 if (question.length !== 1) return null;

 // fetch answers

 const answer = await dbSelect('SELECT * FROM answer WHERE

question_id=$1 ORDER

 ➥BY id;', [question[0].id]);

 if (!answer.length) return null;

 return {

 text: question[0].text,

 answer: answer.map(a => { return { text: a.text, correct:

a.correct }})

 };

}

Note that the PostgreSQL OFFSET clause fetches the next question according
to the random question_offset defined for the current game.

Answering a Question

When each client receives the questionactive message it runs the show()
function in the client-side web/static/js/question.js script to display the
question and possible answer buttons:

// CLIENT-SIDE JAVASCRIPT

// show question

export function show(q) {

 currentQuestion = q;

 currentQuestion.answered = null;

 clear(question);

 clear(answers);

https://www.postgresql.org/docs/current/queries-limit.html

 answers.classList.remove(answeredClass);

 qNum.textContent = q.num;

 question.innerHTML = q.text;

 currentQuestion.answerNode = [];

 q.answer.forEach((ans, idx) => {

 const button = document.createElement('button');

 button.value = idx;

 button.innerHTML = `${ idx+1 }: ${ ans }`;

 currentQuestion.answerNode[idx] =

answers.appendChild(button);

 });

}

When the player answers a question—by clicking a button or pressing an
associated number (1 to 4) on the keyboard—the questionAnswered()
function in the client-side web/static/js/question.js script verifies it’s
valid, highlights the button, and raises a custom event named answered:

// CLIENT-SIDE JAVASCRIPT

// answer event handlers

answers.addEventListener('click', questionAnswered);

window.addEventListener('keydown', questionAnswered);

// user answers a question

function questionAnswered(e) {

 // already answered?

 if (!currentQuestion || currentQuestion.answered !== null)

return;

 let ans = null;

 if (e.type == 'click') {

 // button click

 ans = e.target && e.target.nodeName === 'BUTTON' ?

parseInt(e.target.value,

 ➥ 10) : null;

 if (ans > currentQuestion.answer.length) ans = null;

 }

 else {

 // keypress

 ans = e.key >= '1' && e.key <=

String(currentQuestion.answer.length) ?

 ➥parseInt(e.key, 10) - 1 : null;

 }

 if (ans === null) return;

 // highlight answer

 currentQuestion.answered = ans;

 answers.classList.add(answeredClass);

 currentQuestion.answerNode[ans].classList.add(answeredClass);

 // raise custom event

 document.dispatchEvent(new CustomEvent('answered', { detail:

ans }));

}

This triggers a handler function in the client-side web/static/js/main.js
script, which sends a questionanswered message to the connected
WebSocket server:

// CLIENT-SIDE JAVASCRIPT

// question answered event

document.addEventListener('answered', e => {

 if (state.current === 'questionactive')

sendMessage('questionanswered', {

 ➥answer: e.detail });

});

This triggers the Game object's clientMessage() function in
ws/lib/game.js:

// incoming client event

async clientMessage({ type, data }) {

 console.log('Data from client', type, data);

 // handle client event (on single server)

 switch (type) {

 // ...

 case 'questionanswered':

 // player answers question

 if (this.#state.current !== 'questionactive') return;

 // calculate player score

 const correct = this.#state.activeQuestion.answer[

data.answer].correct;

 data = {

 playerId: data.playerId,

 score: correct ? this.cfg.score_correct :

this.cfg.score_incorrect,

 fastest: correct && !this.#state.correctGiven

 };

 // fastest correct bonus?

 if (data.fastest) data.score += this.cfg.score_fastest;

 // first answer controls flow

 if (!this.#state.playersAnswered) {

 let timeout = 100;

 // first response?

 if (!this.#state.playersAnswered && this.player.size > 1)

{

 // send question timeout warning

 timeout =this.cfg.timeout_answered * 1000;

 await db.broadcast(this.gameId, 'questiontimeout', {

timeout });

 }

 // complete question

 if (timeout) {

 this.#setTimer(async () => {

 // broadcast correct answer

 await db.broadcast(this.gameId, 'questioncomplete',

{

 correct:

this.#state.activeQuestion.answer.findIndex(a => a.

 ➥correct)

 });

 // show scoreboard

 this.#setTimer(async () => {

 await db.broadcast(this.gameId, 'scoreboard');

 // next question or game over?

 if (!(await this.#questionNext(timerDefault))) {

 await db.broadcast(this.gameId, 'gameover');

 };

 });

 }, timeout);

 }

 }

 break;

 }

 // broadcast message to all servers

 if (type) await db.broadcast(this.gameId, type, data);

}

It calculates the player’s score if they’re correct, incorrect, or the fastest to
respond based on the game settings. This is broadcast to all servers, which
update their player scores when they’re received by the #eventHandler()
method (they aren’t broadcast to their clients):

// incoming event sent to all game servers

async #eventHandler({ gameId, type, data }) {

 console.log('Shared server event', type, data);

 if (gameId !== this.gameId || !type) return;

 // handle server event (on all servers)

 switch (type) {

 // ...

 // player answers question

 case 'questionanswered':

 if (this.#state.current !== 'questionactive') return;

 const p = this.player.get(data.playerId);

 if (p) {

 p.scoreQuestion = data.score;

 this.#state.correctGiven = data.fastest;

 this.#state.playersAnswered++;

 }

 // ...

 }

 // send to all clients

 if (type) this.#clientSend(type, data);

 // clean up completed game

 if (this.#state.current === 'gameover') {

 db.pubsub.off(`event:${ this.gameId }`,

this.#handlerFunction);

 await gameComplete(this.gameId);

 }

}

A chain of events then commences on the WebSocket server that received the
first answer response:

1. It broadcasts a questiontimeout to all servers and clients. When
received, each client starts a timer of game.timeout_answered seconds,
which indicates how long users have to respond (see
web/static/js/main.js):

// CLIENT-SIDE JAVASCRIPT

// receive message

ws.addEventListener('message', e => {

 const { type, data } = parseMessage(e.data);

 if (!type || !data) return;

 console.log('Data from server:', type, data);

 switch (type) {

 case 'questiontimeout':

 startTimer(data.timeout);

 break;

2. An identical timer is started on the server. After it has elapsed, it
broadcasts a questioncomplete message with the correct answer. On
receipt, each client runs the correctAnswer() function in the client-side
web/static/js/question.js script to highlight the appropriate button:

// CLIENT-SIDE JAVASCRIPT

// receive message

ws.addEventListener('message', e => {

 const { type, data } = parseMessage(e.data);

 if (!type || !data) return;

 console.log('Data from server:', type, data);

 switch (type) {

 case 'questioncomplete':

 question.correctAnswer(data.correct);

 break;

3. After another five seconds have elapsed, the server broadcasts a
scoreboard message to each server. When received, each server
appends the calculated player total scores to the message and sends it to
its connected clients in the Game #eventHandler() method
(ws/lib/game.js):

// incoming event sent to all game servers

async #eventHandler({ gameId, type, data }) {

 console.log('Shared server event', type, data);

 if (gameId !== this.gameId || !type) return;

 // handle server event (on all servers)

 switch (type) {

 // show scoreboard

 case 'scoreboard':

 if (this.#state.current !== 'questioncomplete') return;

 this.#state.current = type;

 this.player.forEach(p => p.scoreTotal +=

p.scoreQuestion);

 data = this.playerAll();

 break;

 }

 // send to all clients

 if (type) this.#clientSend(type, data);

On receipt, each client executes the score() function in
web/static/js/player.js to update the player totals. This regenerates
the player table with the updated scores with the highest scoring player
at the top:

// CLIENT-SIDE JAVASCRIPT

// update scores

export function score(pAll) {

 init(pAll.sort((a, b) => b.score - a.score), true);

}

4. The server calls the Game object’s #questionNext() method to fetch the
next question. This is sent as a new questionactive message after
another five seconds, and the process restarts.

The method returns undefined when the number of questions reaches
the game.questions_asked. When this occurs, the server broadcasts a
gameover message to all servers, which is handled by the
#eventHandler() method in (ws/lib/game.js):

// incoming event sent to all game servers

async #eventHandler({ gameId, type, data }) {

 console.log('Shared server event', type, data);

 if (gameId !== this.gameId || !type) return;

 // handle server event (on all servers)

 switch (type) {

 // game over

 case 'gameover':

 this.#state.current = type;

 data = {};

 break;

 }

 // send to all clients

 if (type) this.#clientSend(type, data);

 // clean up completed game

 if (this.#state.current === 'gameover') {

 db.pubsub.off(`event:${ this.gameId }`,

this.#handlerFunction);

 await gameComplete(this.gameId);

 }

}

Each server runs a gameComplete() function to delete the Game object
and the associated record in the database game table (only the first will
succeed). This causes a cascade of deletions from the player and
pubsub tables for that game:

// remove active game

async function gameComplete(gameId) {

 if (!gameActive.has(gameId)) return;

 await db.gameRemove(gameId);

 gameActive.delete(gameId);

 console.log(`Game ${ gameId } removed - active games on

this server:

 ➥${ gameActive.size }`);

}

The same gameover message is sent to all connected clients. When
received, each client shows the Game over messages with links to start
or join a new game.

Leaving a Game

If the user closes or refreshes their browser, a WebSocket close event
handler is triggered on the server in ws/index.js:

// client connection closed

socket.on('close', async () => {

 // remove player

 if (player) {

 await player.game.playerRemove(player);

 }

 console.log(`disconnection from ${ req.socket.remoteAddress

}`);

});

It calls the Game object's playerRemove() method in ws/lib/game.js:

// remove player from game

async playerRemove(player) {

 // delete from database

 await db.playerRemove(player.id);

 // broadcast event

 await db.broadcast(

 this.gameId,

 'playerRemove',

 { id: player.id }

);

}

This deletes the player from the database player table using the
playerRemove() function in libshared/quizdb.js:

// remove a player

export async function playerRemove(playerId) {

 return await dbDelete({

 table: 'player',

 values: { id: playerId }

 });

}

It then broadcasts a playerRemove message to all WebSocket servers. This is
received by their Game #eventHandler(), which deletes the player reference:

// incoming event sent to all game servers

async #eventHandler({ gameId, type, data }) {

 console.log('Shared server event', type, data);

 if (gameId !== this.gameId || !type) return;

 // handle server event (on all servers)

 switch (type) {

 // remove player

 case 'playerRemove':

 if (this.player.has(data.id)) {

 this.player.delete(data.id);

 }

 break;

Finally, the same playerRemove message is sent to all clients. On receipt,
each client executes the remove() function in web/static/js/player.js to
delete the player from memory and the DOM:

// remove existing player

export function remove(p) {

 if (!p.id || !player.has(p.id)) return;

 pList.removeChild(player.get(p.id).node);

 player.delete(p.id);

}

Exercises
Try debugging the quiz application using the instructions provided in Chapter
4. It’s not as straightforward as before, because a single user could be
communicating with any of the HTTP or WebSocket servers.

Fortunately, each player can only connect to one WebSocket server at a time.
Examine the Docker log when you start or join a game:

ws_1 | connection from ::ffff:172.18.0.3

In this case, the user is connecting to the first WebSocket server ws_1. Run
the following command in another terminal to list the active Docker
containers:

docker container ls

Note the NAMES and PORTS mappings:

PORTS NAMES

0.0.0.0:59961->8001/tcp, 0.0.0.0:59962->9229/tcp nodequiz_ws_1

0.0.0.0:59956->8001/tcp, 0.0.0.0:59957->9229/tcp nodequiz_ws_2

0.0.0.0:59958->8001/tcp, 0.0.0.0:59959->9229/tcp nodequiz_ws_3

0.0.0.0:59952->8000/tcp, 0.0.0.0:59953->9229/tcp nodequiz_web_1

0.0.0.0:59954->8000/tcp, 0.0.0.0:59955->9229/tcp nodequiz_web_2

0.0.0.0:5432->5432/tcp dbserver

0.0.0.0:59951->8080/tcp

nodequiz_adminer_1

0.0.0.0:80->80/tcp, 0.0.0.0:8080->8080/tcp

nodequiz_reverse-proxy_1

In this example, the following ports are exposed on nodequiz_ws_1:

localhost:59961 maps to the ws_1 WebSocket service running on port
8001

localhost:59962 maps to the ws_1 WebSocket server’s debugger
running on port 9229

Open chrome://inspect/#devices in Google Chrome, hit Configure, and
add localhost:59962 as a target.

An inspect link to the Remote Target should appear within a few seconds.
Click it to open the WebSocket server’s debugger.

Next, consider how you could improve the quiz app. For example:

limit imported questions to specific categories, difficulties, or types
create administrative screens to add, edit, or remove questions
allow the user to refresh the page but remain active
display which players have already answered
show which choice each player made on the answer screen
provide “restart game” functionality, which enrolls all current players on
a new quiz
make a game fully recoverable if one or more WebSocket servers fail

Summary
This quiz illustrates how a scalable, multi-server, multi-user, real-time web
application can be developed in Node.js using a few third-party modules,
vanilla ES6, and less than 60KB of code. Admittedly, negotiating messages
between all servers and clients is complex, but that’s the nature of multi-

https://opentdb.com/api_config.php

player games rather than WebSocket technologies.

In the final chapters, we’ll look at a selection of popular Node.js development
and deployment tools that you may find useful.

Chapter 17: Node.js Tools and
Resources
I hope you now feel confident enough to write your own Node.js programs
and find appropriate packages when necessary. The success of the runtime
has one downside: you’re spoiled for choice! There are 1.5 million packages
available, ranging from full application development suites to simple, one-
function modules. This can lead to choice paralysis, and the moment you
settle on one package, a better option will inevitably arrive.

This chapter provides a list of popular and proven npm packages for use in
various situations. They provide a head start, but please don’t think you have
to use them. Only you can judge whether a package is or isn’t useful for your
project.

I’ll also reiterate a point made throughout this book: only use third-party
modules that are absolutely necessary. It makes sense to leverage the years of
development and real-world testing received by frameworks, database
drivers, image optimizers, and so on. You can write smaller modules yourself
—such as string or date manipulation functions. It may take longer initially,
but should save you time over the long term, because there’s no need to
search for appropriate packages, manage updates, assess security issues, or
switch to alternatives.

Perfect Package Pursuit

The following sites provide curated lists of npm packages:

github.com/sindresorhus/awesome-nodejs
nodejs.libhunt.com

You can search for npm packages from the command line. For example:

$ npm search mysql

https://github.com/sindresorhus/awesome-nodejs
https://nodejs.libhunt.com/

NAME | DESCRIPTION | AUTHOR | DATE

| VERSION

mysql | A node.js dri… | =felixge… |

2020-01-23 | 2.18.1

knex | A… | =tgriesser… |

2022-03-13 | 1.0.4

sequelize | Sequelize i… | =janaameier… |

2022-02-25 | 6.17.0

mysql2 | fast mysql driv… | =sidorares… |

2021-11-14 | 2.3.3

sails-mysql | MySQL adapter … | =particlebanan… |

2021-10-15 | 2.0.0

waterline | An ORM for Node… | =particlebanan… |

2021-10-22 | 0.15.0

egg-mysql | MySQL plugin fo… | =jtyjty99999… |

2022-02-11 | 3.1.0

tunnel-ssh | Easy extendable … | =agebrock |

2021-10-03 | 4.1.6

@mysql/xdevapi | MySQL… | =ltangvald… |

2022-01-18 | 8.0.28

hapi-plugin-mysql | Hapi plugin … | =adrivanhoudt |

2022-01-03 | 7.2.6

mysql-abstraction | Abstraction la… | =rwky |

2022-02-22 | 5.1.4

mysqlconnector | MySQL connector | =pteyssedre |

2021-10-26 | 1.0.21

anytv-node-mysql | Our version… | =freedom_sherw… |

2022-01-19 | 1.0.0

sql-template-strings | ES6 tagged templ… | =felixfbecker |

2016-09-17 | 2.2.2

@keyv/mysql | MySQL/Mari… | =jaredwray… |

2022-01-25 | 1.3.0

aws-xray-sdk-mysql | AWS X-Ray Patc… | =aws-sdk-team… |

2021-11-11 | 3.3.4

winston-mysql | MySQL transp… | =charles-zh |

2021-09-22 | 1.1.1

data-elevator-mysql | Flexible util… | =kaasdude… |

2021-09-29 | 4.0.0

An online search engine offers a better interface:

npmjs.com: the official repository
npms: a fast search, which ranks packages by a quality
snyk.io/advisor/: ranks packages with a health percentage based on their
popularity, maintenance, security issues, and contributor community

https://www.npmjs.com/
https://npms.io/
https://snyk.io/advisor/

There are tools for comparing two or more packages:

npmcompare.com
moiva.io

Or tools to extract package information:

anvaka.com: dependency visualization
npm-stat.com: download and usage statistics

If you’re struggling to choose, opt for a package that:

is popular
has a non-restrictive usage license
receives recent and regular updates
has a small size
has the fewest dependencies
has no major outstanding issues

Most of the packages discussed below satisfy these criteria.

Development Tools
The following packages are tools that aid development rather than form part
of your Node.js project. You’ll normally install them globally with npm
install <package> -g or add them as a devDependency in the project folder
with npm install <package> --save-dev:

nvm (Node Version Manager): manages multiple installations of Node.js
ESLint: finds and fixes JavaScript code problems
TypeScript: adds variable types and other features to the language and
compiles to standard JavaScript
Rollup: a JavaScript module bundler (tutorial here)
esbuild: a fast module bundler written in Go
PostCSS: CSS transformer and optimizer (tutorial here)
JSDoc: generates API documentation from JavaScript comments
small-static-server: a tiny static file web server

https://npmcompare.com/
https://moiva.io/
http://npm.anvaka.com/
https://npm-stat.com/
https://github.com/nvm-sh/nvm
https://eslint.org/
https://www.typescriptlang.org/
https://rollupjs.org/
https://www.sitepoint.com/rollup-javascript-bundler-introduction/
https://esbuild.github.io/
https://golang.org/
https://postcss.org/
https://www.sitepoint.com/an-introduction-to-postcss/
https://www.npmjs.com/package/jsdoc
https://www.npmjs.com/package/small-static-server

nodemon: restarts Node.js applications when source files change
Browsersync: browser live reloads when client-side HTML, CSS, or
JavaScript updates

nodemon has been used throughout this book. Use it in place of node when
running a script during development to restart the application if a script or
any of its modules is changed:

nodemon index.js

Browsersync is effectively a client-side version of nodemon with a few
superpowers. The following command starts a web server that can serve
HTML files and other assets. Client-side scripts are dynamically reloaded if
any .js file changes:

browser-sync start --server --files "js/*.js"

Finally, you’ll need a good Node.js-compatible editor such as VS Code,
Atom, or Sublime Text. Most offer extensions for linting, debugging, and
source-code management.

Testing
Writing tests for your application’s internal functions helps ensure updates
are robust and won’t break existing functionality. Node.js doesn’t provide a
built-in test runner, but the following packages are popular:

Testing Library
Jest
Mocha
AVA
uvu
Tap

The main difference between these packages is the download size and syntax.
Most allow you to write English-like assertions, so choose whichever appeals
to you or your team.

https://nodemon.io/
https://browsersync.io/
https://code.visualstudio.com/
https://atom.io/
https://www.sublimetext.com/
https://testing-library.com/
https://jestjs.io/
https://mochajs.org/
https://github.com/avajs/ava
https://github.com/lukeed/uvu
https://node-tap.org/

All suites provide unit testing facilities to verify the result of a function given
known inputs. This example uses uvu to test the Math.sqrt() method:

import { test } from 'uvu';

import * as assert from 'uvu/assert';

test('Math.sqrt()', () => {

 assert.is(Math.sqrt(4), 2);

 assert.is(Math.sqrt(144), 12);

 assert.is(Math.sqrt(2), Math.SQRT2);

});

test.run();

The following packages provide headless browser automation tools used for
integration testing—that is, testing routes through an application by
programmatically clicking buttons and filling in forms to observe an expected
result:

Puppeteer: Chrome automation
Playwright: supports all mainstream browsers
Cypress: commercial option with remote testing

Logging
If you outgrow console.log(), third-party logging modules provide more
sophisticated logging with messaging levels, verbosity, sorting, file output,
profiling, reporting, and more. Popular options include:

cabin: Node.js, middleware, and browser logging
loglevel: a lightweight Node.js equivalent to the browser console API
signale: a highly configurable logger
pino: a fast and popular Node.js and middleware logger
winston: a comprehensive and configurable logger
morgan: Express middleware logging
storyboard: a logging library that can output to a Chrome DevTools
extension
tracer: simple log formatting

https://github.com/lukeed/uvu
https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Math/sqrt
https://pptr.dev/
https://playwright.dev/
https://www.cypress.io/
https://www.npmjs.com/package/cabin
https://www.npmjs.com/package/loglevel
https://www.npmjs.com/package/signale
https://www.npmjs.com/package/pino
https://www.npmjs.com/package/winston
https://www.npmjs.com/package/morgan
https://www.npmjs.com/package/storyboard
https://www.npmjs.com/package/tracer

Full-stack Frameworks

The following frameworks can be used to create full web applications and
typically allow rendering on the server, the client, or a mixture, as
appropriate. They may offer hydration techniques where initial content is
generated on the server in HTML before client-side components take over for
full interactivity.

Next.js: based on React components
Nuxt.js: based on Vue components
SvelteKit: based on Svelte components
Sails: the Node.js equivalent to Ruby on Rails

Server-side Frameworks

If you’d rather have full control over client and server development, the
following frameworks primarily handle server-side rendering of HTML
content and/or Ajax responses in JSON or any other format:

Express: one of the first and most popular frameworks
Koa: a modern framework designed by the Express team
Fastify: claims to be one of the fastest options
Hapi: focuses on simplicity, security, and scalability
NestJS: offers concepts similar to the Angular client-side framework
Adonis: the Node.js equivalent to PHP Laravel
Feathers: a lightweight framework for real-time applications and REST
APIs
restify: optimized for REST web services

Node.js in Client-side Frameworks

Client-side JavaScript (and CSS) frameworks that run in the browser don’t
generally require Node.js. However, they often use the runtime to provide
build tools to scaffold project folders, bundle modules, implement testing, run
development servers, or optimize assets at build time.

https://nextjs.org/
https://reactjs.org/
https://nuxtjs.org/
https://vuejs.org/
https://kit.svelte.dev/
https://svelte.dev/
https://sailsjs.com/
https://rubyonrails.org/
https://expressjs.com/
https://koajs.com/
https://www.fastify.io/
https://hapi.dev/
https://nestjs.com/
https://angular.io/
https://adonisjs.com/
https://laravel.com/
https://feathersjs.com/
http://restify.com/

Web Publishing, Content Management
Systems, and Blogging

The following platforms provide administration panels where content editors
can write content that’s pulled into a site template theme when visitors access
the site. These are effectively Node.js alternatives to the PHP-based
WordPress.

Ghost: a commercial, hosted service is also available at ghost.org
Hexo: closer to an SSG (see the “Static Site Generators” section below),
but administration panels can be added via a plugin

Headless Content Management Systems

https://github.com/TryGhost/Ghost
https://ghost.org/
https://hexo.io/
https://github.com/jaredly/hexo-admin

The following packages provide editing panels and make content available
via an API. Articles and other data can be pulled into your application or a
static site generator for output to a web page, app, ebook, PDF, or elsewhere:

Strapi
Keystone
Apostrophe

Static Site Generators
Static site generators (SSGs) pull content—typically from Markdown files or
a headless CMS—and place it into templates at build time. The result is a full
site pre-rendered as HTML files that can be hosted on any web server without
language runtimes, databases, security, or performance implications. You
may see this referred to as Jamstack, which originally meant JavaScript,
APIs, and Markup, but is now used in a wider context:

Eleventy: Markdown to HTML, with support for many template engines
MetalSmith: a simple pluggable SSG
Gatsby: based on React components
VuePress: based on Vue components
Gridsome: based on Vue components

Database Drivers
Database drivers—also known as connectors or clients—provide APIs that
allow you to connect, query, and update database data. The following
packages are native drivers: they support a single system, replicate standard
commands, and often have official support from the database developers:

mysql: for MySQL
mysql2: a faster MySQL alternative
mariadb: for MariaDB
pg: for PostgreSQL
mongodb: for MongoDB
mssql: for Microsoft SQL Server

https://strapi.io/
https://keystonejs.com/
https://apostrophecms.com/
https://www.sitepoint.com/learn-jamstack/
https://www.11ty.dev/
https://www.metalsmith.io/
https://www.gatsbyjs.com/
https://reactjs.org/
https://vuepress.vuejs.org/
https://vuejs.org/
https://gridsome.org/
https://vuejs.org/
https://www.npmjs.com/package/mysql
https://www.npmjs.com/package/mysql2
https://www.npmjs.com/package/mariadb
https://www.npmjs.com/package/pg
https://www.npmjs.com/package/mongodb
https://www.npmjs.com/package/mssql

oracledb: for Oracle
couchbase: for Couchbase
redis: for Redis
sqlite: for SQLite
sqlite3: an asynchronous SQLite alternative
sqlite-async: a promise-based version of sqlite3

An object-relational mapping (ORM) module can make development easier
by providing an abstract layer between your code and the database. Rather
than running commands directly, your code manipulates data objects that are
saved and restored from a representation in a database. This allows you to
switch between systems, but you’ll also need to install a native driver, and the
full database feature set may not be available. Examples include:

mongoose: for MongoDB
sequelize: for MySQL, MariaDB, PostgreSQL, SQLite, DB2, and
Microsoft SQL Server
typeorm: for MySQL, MariaDB, PostgreSQL, SQLite, Oracle, and
Microsoft SQL Server

Refer to Chapter 10 for database usage examples.

Templating
Most templating systems generate HTML by inserting values into appropriate
blocks. Some provide programming constructs such as file includes, loops,
and conditions to optimize development. Popular options include:

EJS
Nunjucks
Handlebars
Pug

Pug differs from others in that you use a concise, indented-style document
rather than HTML tags. For example, assume a title value is set to “My
Site” in the following Pug template:

doctype html

https://www.npmjs.com/package/oracledb
https://www.npmjs.com/package/couchbase
https://www.npmjs.com/package/redis
https://www.npmjs.com/package/sqlite
https://www.npmjs.com/package/sqlite3
https://www.npmjs.com/package/sqlite-async
https://www.npmjs.com/package/mongoose
https://www.npmjs.com/package/sequelize
https://www.npmjs.com/package/typeorm
https://ejs.co/
https://mozilla.github.io/nunjucks/
https://handlebarsjs.com/
https://pugjs.org/

html

 head

 title #{title}

 body

 h1 #{title}

 p#intro Welcome to my site.

The resulting HTML is this:

<!DOCTYPE html>

<html>

 <head>

 <title>My Site</title>

 </head>

 <body>

 <h1>My Site</h1>

 <p id="intro">Welcome to my site</p>

 </body>

</html>

You’ll typically use a template system in server-side frameworks such as
Express. Chapter 5, Chapter 6 and Chapter 15 of this book use EJS. For
example, render an <h1> title between a header and footer defined in partials:

<%- include('partials/_htmlhead'); -%>

<h1><%= title %></h1>

<%- include('partials/_htmlfoot'); -%>

Command Line
The following packages can be useful when creating command-line
applications using Node.js:

commander: parse command-line arguments
cliffy: implement interactive CLIs
chalk: output color console messages
terminal-link: output clickable hyperlinks
boxen: output boxes
progress: a simple progress bar

https://www.npmjs.com/package/commander
https://www.npmjs.com/package/cliffy
https://www.npmjs.com/package/chalk
https://www.npmjs.com/package/terminal-link
https://www.npmjs.com/package/boxen
https://www.npmjs.com/package/progress

progress [=====] 29%

File System
The standard Node.js library provides an extensive file system API for
creating, altering, reading, and deleting files and directories. These are fairly
low-level functions, so the following packages provide easier file
manipulation options:

fs-extra: provides a range of file system methods
globby: file name string (glob) matching
chokidar: cross-platform file watching
del and rimraf: file and directory deletion

Network
The following packages provide a number of network APIs.

Note that a native version of the HTTP Fetch API arrived in Node.js 18. It
should become less necessary to use a third-party module as developers and
hosts update their installations.

node-fetch: HTTP Fetch
axios: HTTP Fetch
got: HTTP Fetch
get-port: get an available TCP port
ssh2: SSH client and server methods

WebSockets
WebSockets establish a two-way interactive communication channel between
a browser and server, which permits real-time updates and applications. The
following packages provide server-side APIs that can send messages to and
from the browser WebSocket API:

ws: fast lightweight server

https://nodejs.org/dist/latest/docs/api/fs.html
https://www.npmjs.com/package/fs-extra
https://www.npmjs.com/package/globby
https://www.npmjs.com/package/chokidar
https://www.npmjs.com/package/del
https://www.npmjs.com/package/rimraf
https://developer.mozilla.org/docs/Web/API/Fetch_API
https://www.npmjs.com/package/node-fetch
https://www.npmjs.com/package/axios
https://www.npmjs.com/package/got
https://www.npmjs.com/package/get-port
https://www.npmjs.com/package/ssh2
https://developer.mozilla.org/en-US/docs/Web/API/WebSocket
https://www.npmjs.com/package/ws

socket.io: full client and server library

See Chapter 11 and Chapter 16 for WebSocket examples using the ws library.

Images
Node.js applications can create, examine, and modify images in most popular
formats (JPG, GIF, PNG, etc.) Packages typically provide options to resize,
crop, flip, and rotate, or apply filters such as sharpening, blurring, greyscale,
and opacity. Popular options include:

jimp: scaling, flipping, filters, and pixel analysis
image-js: Node.js and browser image manipulation
sharp: fast image conversion
imagemin: image minification

The following example uses jimp to load an image, convert it to greyscale,
reduce the width and height by 50%, and output the modified version:

import Jimp from 'jimp';

Jimp.read('one.png').then(image => {

 image

 .greyscale()

 .scale(0.5)

 .write('one-bw-small.png');

});

Email

The most popular Node.js package for sending email is Nodemailer. The
following code sends a single email via an SMTP account:

https://www.npmjs.com/package/socket.io
https://www.npmjs.com/package/ws
https://www.npmjs.com/package/jimp
https://www.npmjs.com/package/image-js
https://www.npmjs.com/package/sharp
https://www.npmjs.com/package/imagemin
https://www.npmjs.com/package/jimp
https://nodemailer.com/

const nodemailer = require('nodemailer');

const transport = nodemailer.createTransport({

 host: 'smtp.example.com',

 port: 587,

 secure: false,

 auth: {

 user: 'username',

 pass: 'password',

 },

});

await transport.sendMail({

 from: '"Sender" <me@sender.com>',

 to: 'you@recipient.com',

 subject: 'new email',

 text: 'Hello world!', // plain text body

 html: '<p>Hello world!</p>', // HTML body

});

An alternative is node-email, which provides a wrapper around the open-
source Sendmail application. Either option is fine for sending ad-hoc emails
such as user registration or password reset confirmations.

Bulk email messaging—such as newsletters—is better handled using a
dedicated service such as Mailgun, SendGrid, MailerSend, or Mailchimp.
These often offer their own Node.js APIs to efficiently manage email
transmission.

Finally, imap-simple provides a way to connect to and read from an IMAP
inbox if you need to provide automated email responses.

Security and Authentication
Passport is one of the most popular Express-compatible authentication
packages for Node.js. It supports more than 500 strategies (plugins) ranging
from basic usernames and passwords to passwordless and single-sign-on
OAuth options for Google, GitHub, Facebook, Twitter, and LinkedIn.

An alternative option is grant, which supports more than 200 OAuth
providers.

https://www.npmjs.com/package/email
https://en.wikipedia.org/wiki/Sendmail
https://www.mailgun.com/
https://sendgrid.com/
https://www.mailersend.com/
https://mailchimp.com/
https://www.npmjs.com/package/imap-simple
https://www.passportjs.org/
https://www.passportjs.org/packages/
https://www.passportjs.org/concepts/authentication/password/
https://www.passportjs.org/packages/passport-passwordless/
https://www.npmjs.com/package/grant

Summary

The Node.js ecosystem is enormous and growing exponentially. Third-party
packages are generally designed to handle a single, specific task, so you’ll
find a range of appropriate options for every situation. The downsides:

It’s easy to become overwhelmed and suffer choice paralysis as you
expend time and energy evaluating packages.

You can become increasingly dependent on third-party solutions. Your
development career may descend into writing tedious code to glue
packages together.

The more third-party packages you use, the more time you require to
maintain and update that software. You’ll often need to update your
code as APIs evolve.

There’s no such thing as a perfect Node.js package, and I make no apology
for repeating my mantra: only use third-party modules that are absolutely
necessary. Spend most of your time writing code, not choosing tools and
resources!

I hope you now have a few simple web projects ready to reveal to the world.
The next chapter delves into deployment.

Chapter 18: Node.js Application
Deployment
You’ll eventually want to release your Node.js web app to the world.
Deployment options have grown exponentially since the runtime was
released in 2009. This chapter describes general types of production hosting,
with links to appropriate companies, but the range of services and prices
changes daily.

Pages vs Applications

Many readers of this book will be familiar with PHP—the world’s most-used
web programming language. WordPress alone runs almost half of all
websites. A PHP application consists of .php files that are interpreted by the
PHP runtime when they’re accessed via a server such as Apache. HTML or
data is then returned to the user’s browser.

https://w3techs.com/technologies/details/cm-wordpress

The following points are important to note:

Each page load is stateless. It knows nothing about the application’s
state, so if a user is logged in, their state must be retrieved from a token
or database record during every page request.

Changing a .php file instantly updates the application, because the code
is executed when a user requests that resource.

A .php file that causes an error is less likely to cause problems on other
pages. Of course, that .php file may provide functions shared across
multiple pages, but the server and other parts of the application will
usually remain active.

A Node.js web project is a full application that handles web requests. It
doesn’t (necessarily) require a server such as Apache and runs continuously
after the code is loaded from .js files.

Therefore:

State can be retained. If necessary, a server application could store a
JavaScript object for every logged-in user. (I recommend you write
stateless apps, but it’s not enforced!)

Changing a .js file has no impact on the running application. It will
only be loaded after the node process has been stopped and restarted.

If any part of your application causes a crash, it goes down for everyone
forever! No user will be able to access any part of the system and it will
lose any state retained in memory.

The Node.js model has advantages and disadvantages over PHP, but
deploying an application to a production server is more challenging.

Most budget shared server hosts support PHP because it can be run by
uploading a .php file to a server directory. Far fewer offer Node.js, because
you require OS-level access to launch an application, which could hog

resources as it runs continuously.

Some offer Node.js facilities via systems such as cPanel, where you can
define an application’s start-up command and configuration. However, these
often impose restrictions such as CPU limits or no access to npm.

Node.js Application Preparation

Your development and deployment environments will differ. As a bare
minimum, live servers should set the NODE_ENV environment variable to
production:

NODE_ENV=production

When set, the Express framework disables verbose logging and enables
template caching to improve performance. Other modules may offer similar
optimizations, but check their README files and documentation.

Internally, your application can detect the NODE_ENV value and disable
terminal debugging messages, or make other changes such as logging to a
file. For example:

// running in development mode?

const DEVMODE = (process.env.NODE_ENV !== 'production');

if (DEVMODE) {

 console.log('application started in development mode');

}

else {

 writeToLog('application started in production mode');

}

Other environment variables may be required to define application
configurations or database connections.

Finally, production servers should normally launch the application with the
node runtime command rather than nodemon or similar. Command-line
options such as --inspect and --enable-source-maps shouldn’t be used.

Dedicated Server Hosting

In Node’s early days, there was little choice but to spin up a real or virtual
Linux server. It probably remains the most-used method of application
deployment and requires DevOps personnel to:

1. provision appropriate CPUs, RAM, and disk space
2. install an appropriate version of the Node.js runtime
3. pull the application from a repository
4. npm install all project and global dependencies
5. launch the application with node app.js as appropriate

Steps 3 to 5 are repeated for every update, although continuous integration
and/or continuous deployment solutions can automate the process.

Many hosts offer virtual servers, including DigitalOcean Droplets, Amazon
EC2, Google Compute Engine, and Azure Virtual Machines.

sudo-not

Avoid using sudo to run your Node.js application with administrator
privileges. The application or any of its modules would have rights to do
anything—such as wiping OS files.

HTTP and HTTPS Considerations

Chapter 5 showed how to configure SSL certificates in Express. This isn’t
recommended on production servers, because the application must be
launched using sudo to permit use of HTTP ports below 1,000 (port 80 for
HTTP or port 443 for HTTPS).

A better option is to launch the application on a non-standard port—such as
3000—then use a reverse proxy (see the “Use a Reverse Proxy” section
below) to forward incoming traffic.

The examples in this book launch development servers on an insecure HTTP
connection. This is fine for testing, although care must be taken when
referring to internal URLs throughout the frontend and backend code.

Some developers create a fake self-signed certificate for their development
server, which makes it more difficult to introduce inconsistent HTTP/HTTPS
URLs. The browser will throw an “invalid certificate” error, but you can
choose to ignore it. I don’t recommend this practice: it has burned me in the

https://www.digitalocean.com/products/droplets
https://aws.amazon.com/ec2/
https://cloud.google.com/compute
https://azure.microsoft.com/en-gb/services/virtual-machines/

past! Browsers often behave differently when they encounter fake
certificates. For example, they disable caching, which can lead to strange
bugs on live servers.

I recommend you do either of the following:

Use HTTP during development but be wary when referring to internal
URLs that could be HTTPS on production servers.

Generate a real, locally trusted SSL certificate using mkcert. These can
be used on your own development PC, although you can’t share them
with other team members (so they’ll need to generate their own
certificates).

Process Management

Node.js applications run on a single processing thread. In other words, 63
cores in your 64-core server CPU are sitting idle.

You can implement your own clustering code to run an application on all
available CPU cores, but this can be difficult (see Chapter 12, as well as the
Node.js documentation). A better solution is to use a process manager,
which makes your live application more efficient by:

running multiple instances across different CPU cores
restarting an instance if (when) it crashes

For this to work, your application must be stateless. Avoid storing
application or user state in variables or local files that could differ across
instances.

https://github.com/FiloSottile/mkcert
https://nodejs.org/dist/latest/docs/api/cluster.html

PM2 is the primary contender for Node.js process management. After
installing globally, you can start a Node.js application in cluster mode across
all available CPU cores:

pm2 start app.js -i max

PM2 Port Clashes

PM2 magically manages ports. If sixteen instances of your Express
application all listen on port 3000, PM2 ensures they won’t clash. A single
request sent to port 3000 gets forwarded to one application instance. The next
request may go to another.

Note that PM2 port management can fail if you launch your application using
an npm script.

Running processes can be monitored with pm2 status.

Use a Reverse Proxy

A reverse proxy passes an incoming request to your Node.js web application.
Most web servers can be configured as reverse proxies—including NGINX.

This has several advantages:

Any number of domains and applications can be configured on the same
server.
Your Node.js application can be clustered and launched without using
sudo.
SSL certificates for HTTPS can be managed by the web server.
The web server can be configured to serve static assets—such as client-
side images, CSS, and JavaScript. This is more efficient than passing the
request to Express, because most web servers are multi-threaded.

An NGINX configuration file at /etc/nginx/sites-available/default can
define the incoming ports, set the SSL certificates, look for static files, and
resolve requests to the Node.js application when a static file isn’t found:

https://pm2.keymetrics.io/
https://www.nginx.com/

server {

 listen 80;

 listen 443 ssl;

 # live domain

 server_name myapp.com;

 # HTTPS certificates

 ssl_certificate /etc/nginx/ssl/server.crt;

 ssl_certificate_key /etc/nginx/ssl/server.key;

 # static file?

 location / {

 root /home/node/myapp/static/;

 index index.html;

 try_files $uri $uri/ @nodejs;

 }

 # Node.js reverse proxy

 location @nodejs {

 proxy_pass http://localhost:3000;

 proxy_http_version 1.1;

 proxy_set_header Upgrade $http_upgrade;

 proxy_set_header Connection 'upgrade';

 proxy_set_header Host $host;

 proxy_cache_bypass $http_upgrade;

 }

}

The NGINXConfig configuration tool can help create a setup suitable for
your requirements.

Static Site Hosting (Jamstack)
If your application primarily uses client-side HTML, CSS, and JavaScript, it
may not be necessary to deploy a Node.js application or use any server-side
runtime. A static site generator (SSG) builds directory-based HTML files
using content (typically in Markdown format) and templates. There are
numerous SSGs, but Eleventy is one of the more popular Node.js options.

The resulting build files can be uploaded to any web server. The pages offer:

https://www.digitalocean.com/community/tools/nginx
https://jamstack.org/generators/
https://www.11ty.dev/

excellent performance: they’re just files with no server-side processing
robust security: there’s no database or runtime to exploit
portability: you can host anywhere with no vendor lock-in
minimum-cost deployments: often for free

This simpler approach to web development has become increasingly popular
over the past few years. Facilities such as Amazon S3 hosting have been
overtaken by platform-as-a-service (PaaS) hosts such as GitHub Pages,
CloudFlare Pages, Heroku, Vercel, and Netlify.

Some services offer a simple command-line deployment tool, while others
require you to push a branch to a Git repository.

Build PHP-powered Static Sites with Node.js

I often use Node.js SSGs for smaller websites. These sometimes require basic
server-side functionality such as forwarding old URLs or parsing contact
forms. Rather than deploy a Node.js server, I output a few .php files so the
site can be deployed to any PHP host.

Serverless/Lambda Functions
If your app requires more comprehensive server-side processing such as
database storage, you could consider serverless functions. Despite the name,
serverless functions run on a server but there’s no need for you to manage
the OS, runtime, or even use a framework such as Express.

Serverless functions usually respond on a network endpoint. For example,
data posted to https://myapp.com/store-contact/ passes the HTTP request to a
function defined in store-contact.js, which stores the information and
returns a result. The following Netlify serverless function at
functions/hello.js returns a message when requesting the /hello/
endpoint:

exports.handler = async (event, context) => {

 return {

 statusCode: 200,

 body: 'Hello World'

https://docs.aws.amazon.com/AmazonS3/latest/userguide/WebsiteHosting.html
https://pages.github.com/
https://pages.cloudflare.com/
https://www.heroku.com/
https://vercel.com/
https://www.netlify.com/
https://www.sitepoint.com/cloudflare-pages-jamstack-deployment/
https://myapp.com/store-contact/

 };

};

You could therefore choose to write a monolithic web application as a series
of small stateless functions. These are started on demand, but they usually
remain active on busy servers and can scale according to rises in traffic. If a
serverless function fails, it’s restarted on the next request and won’t usually
affect or conflict with other functions.

Most cloud hosts offer Node.js serverless functions including AWS, Azure,
Google, Cloudflare, Heroku, Vercel, and Netlify.

AWS Everywhere

Many serverless hosts, including Netlify and Vercel, deploy serverless
functions to AWS Lambda but offer a simpler or improved developer
experience.

Serverless functions can be ideal for many applications. They can simplify
DevOps and reduce costs on smaller services, but there are downsides:

Usage limitations: not all npm packages can be used, especially if they
depend on other OS utilities.
Start-up delay: the first request can take some time as the function is
initialized.
Shut-down timeout: functions may have processing limits, so long-
running activities such as WebSocket servers may not be possible.
Vendor lock-in: you must adhere to the host’s APIs, rules, and updates.
It may be difficult to switch to another service.
Incalculable costs: serverless functions are often priced according to
compute time. You may have heard anecdotes from developers who
deployed a non-terminating recursive function that led to an eye-
watering bill.

Container Hosting
You may require more robust hosting as your Node.js service increases in

https://aws.amazon.com/lambda/
https://azure.microsoft.com/en-gb/services/functions/
https://cloud.google.com/functions
https://www.cloudflare.com/en-gb/learning/serverless/glossary/serverless-and-cloudflare-workers/
https://www.heroku.com/
https://vercel.com/
https://www.netlify.com/

popularity. The multiplayer quiz in Chapter 12 uses Docker containers to
launch multiple load-balanced instances of the HTTP and WebSocket
applications. The same concept can be applied on production servers.
Solutions such as Kubernetes and Docker Swarm can launch, manage,
update, and restart containers across any number of servers in any number of
locations throughout the world.

At this point, you’ll require a dedicated DevOps team to manage
deployments costing millions every year. That’s unlikely to be a problem: if
your app is successful, venture capitalists can’t give you enough money, and
Google/Microsoft/Apple/Facebook are circling for a potential takeover.

Summary
Node.js hosting options are varied, with extensive ecosystems and prices
ranging from free to exorbitant. Personally, I like to write apps that are
service agnostic and could be hosted anywhere, but that has become more
challenging over recent years. We’ve reached a weird point where you should
probably choose a host before you write any code. We have numerous
hosting solutions, but many companies still select AWS because … many
companies select AWS!

Whichever hosting route you choose, you can’t go wrong writing stateless
web apps. I may have mentioned that a few times before …

https://kubernetes.io/
https://docs.docker.com/engine/swarm/

Chapter 19: Epilogue
Congratulations! You’ve reached the end of the beginning of your Node.js
journey. You’ve learned a lot, and I hope this course jump-starts your
development while helping you avoid some of the pitfalls.

We’ve covered many topics, from command-line tools, debugging, web
applications, and modules, through to real-time, database-driven, multi-player
games. No one will fully grasp every topic on their first read, but knowing
that a solution exists is half the battle.

I hope you enjoy Node.js development. It has a lot of advantages, such as:

It’s quick to learn the basics and be productive.

Node.js exposes possibilities you may never have encountered in other
runtimes.

It allows web developers to leverage their client-side JavaScript skills to
create useful libraries, frameworks, command-line tools, and even
desktop apps.

Node.js programming can be fun.

Is Node.js for You?

Node.js blossomed from being a niche engine to an indispensable developer
runtime within a matter of years. Even those using other languages often have
Node.js installed, because it offers a range of tools you won’t necessarily find
elsewhere.

The reason: JavaScript. Web development has become the primary vehicle
for platforming applications, so it’s difficult to avoid browser-based coding.
Using the same language on the frontend and backend lowers the cognitive
overhead. Node.js won’t make you a full-stack developer overnight, but

there’s less context switching, and you’ll avoid simple errors such as using
the wrong quote character, forgetting a semicolon, or making the wrong
method call.

Of course, Node.js isn’t without its criticisms:

1. Some programmers detest JavaScript.

No language is perfect, but JavaScript was developed in ten days, and
it’s unlikely Brendan Eich, its inventor, ever considered it might be used
for full-scale enterprise level applications. Some issues have been
addressed with ES6 and types in JavaScript compilers such as
TypeScript.

Personally, I love JavaScript—warts and all. Those who complain
loudest are usually comparing it to their favorite language and have been
bitten by JavaScript’s oddities, such as prototypal inheritance. If it’s not
to your taste, either persevere or consider one of the many server-side
alternatives.

2. npm is cumbersome.

npm is partly responsible for the success of Node.js. It’s easy to install,
update, and remove any of the 1.5 million packages. Understandably,
not every package is good, and some have been downright dangerous—
laced with malware and crypto-mining code. npm has addressed many
issues, but others will occur.

Your node_modules directory will also grow to many megabytes and,
despite recent optimizations, npm can still recursively download the
same packages across different projects. Package maintenance can
become increasingly laborious over the long term.

Remember, npm is just a tool. Only install the packages you need and
you’ll minimize the impact of third-party code.

3. CommonJS vs ES6 module mess.

Node.js is migrating toward ES6 modules, but the process has been
painful and some legacy packages may never support it. The situation is
improving, though, and I was pleasantly surprised by how few problems
I encountered while writing this book.

4. Asynchronous programming is a challenge.

You won’t necessarily encounter asynchronous programming in other
languages, and it’s easy to make mistakes that lead to application
instability. I devoted the whole of Chapter 9 to this topic, because it’s so
important in Node.js programs.

Understanding callbacks can be tricky for novice JavaScript coders, but
it’s impossible to avoid event handling either on the client or server.
Promises and async/await help, although I initially struggled to
understand the concepts.

That said, asynchronous programming makes real-time web applications
possible. Instantly updated dashboards, live chat, and multi-player games are
far easier in Node.js.

1. Node.js isn’t as good/fast/popular/stable/secure as runtimeX.

There will always be alternatives that handle some aspect of application
programming in a better way. But Node.js is good enough in most
respects for web application and command-line utility development.

To quote C++ designer Bjarne Stroustrup: “There are only two kinds of
languages: the ones people complain about and the ones nobody uses.”

Is Deno Better?
Ryan Dahl released Deno in 2020 and it addresses many of his Node.js
regrets. Deno offers:

Better security. An application must be granted specific rights when it
needs access to environment variables, the file system, the network, and
other resources.

https://deno.land/
https://www.youtube.com/watch?v=M3BM9TB-8yA

Native TypeScript support. You can write applications in JavaScript or
TypeScript without an additional third-party compiler.

ES6 modules only. Modules are loaded from a URL: there’s no npm
equivalent, and packages can be cached so there’s one instance on your
system across all projects.

Built-in tools. Linting, formatting, testing, benchmarking, bundling,
documentation generation, task running, and more are available from the
deno runtime.

Replicated browser APIs. Features such as window, addEventListener,
Fetch, and web workers all work in Deno.

Replicated Node.js APIs. Deno supports features such as fs, events,
http, os, process, stream, url, util, and CommonJS when running in
Node.js compatibility mode.

Deno is a great option, but it’s new and not as fast, as popular, or well
supported as Node.js. Perhaps we’ll all be using Deno in a decade’s time, and
Node.js will be consigned to the history books. But it’s too early to tell.
There’s no harm writing a few small utilities or example apps in Deno … but
should you adopt it for a long-term, mission-critical application when it’s
difficult to find programmers with more than a couple of months’
experience?

Deno is similar enough to Node.js that it’s easy to switch between the
runtimes. Learn Node.js today, then consider Deno tomorrow.

Thank You for Reading!
I hope you enjoyed this book and are ready to embark on the next stage of
your programming career. Check out some tips in the final video for this
course.

If you have any feedback or suggestions, please contact me directly on
Twitter @craigbuckler or send your message to SitePoint.

https://www.sitepoint.com/premium/tech-talks/techexeter-2020/a-first-look-at-deno/
https://vimeo.com/sitepoint/download/707861438/3aa79388c9
https://twitter.com/craigbuckler
https://www.sitepoint.com/contact-us/

Best of luck!

Appendix: Quiz Answers
Here are the solutions to the quizzes.

Chapter 1

1. d.
2. d. Other than some superficial syntactical similarities, JavaScript has no

technical relationship to Java whatsoever!
3. b. TypeScript can compile to JavaScript, but it’s a superset of the

JavaScript syntax so isn’t JavaScript itself!
4. c.
5. a.

Chapter 2

1. d.
2. b.
3. a.

Chapter 3

1. c.
2. d. … although c. is somewhat extreme!
3. b.
4. a.
5. d. Bonus points if you knew that Docker isn’t essential, although it

could make Node.js deployments easier!

Chapter 4

1. d.
2. d.
3. b.

4. a.
5. Well, I’m going to say c. It’s heavily opinionated, but I don’t believe

any developer who says they never use console.log()! It’s not always
the best option and it’s too easy to go down a deep console logging
rabbit hole, but finding the cause of a bug is more important than the
technique you used to get there

Chapter 5

1. d.
2. c.
3. a.
4. c.
5. b.

Chapter 6

1. b.
2. a. But d. could be correct if you defined a parsing middleware function!
3. d.

Chapter 7

1. d.
2. b.
3. b.
4. c.
5. d. Bonus points if you realized that a. and b. would list all dependencies

in older versions of npm.
6. a.

Chapter 8

1. a.
2. c.
3. a.
4. b.

5. d.

Chapter 9

1. c.
2. d.
3. a.
4. a.
5. d.

Chapter 10

1. b.
2. d.
3. d.
4. a.
5. d.

Chapter 11

1. d.
2. a.
3. d.
4. b.
5. b.

Chapter 12

1. b.
2. d.
3. d.
4. a.
5. b.

	Node.js: Novice to Ninja
	Notice of Rights
	Notice of Liability
	Trademark Notice
	About SitePoint
	About the Author
	Preface
	Prerequisites
	Conventions Used
	Code Samples
	Tips, Notes, and Warnings

	Where to Find Help
	The SitePoint Forums
	The Code Archive

	Your Feedback
	Let’s Go

	Chapter 1: What is Node.js
	Skip Ahead?
	JavaScript, JScript, ECMAScript, ES6, ES2015?
	Why Learn Node.js?
	It’s JavaScript
	JavaScript Alternatives

	It’s Fast
	It’s Real-time
	It’s Lightweight
	It’s Modular
	It’s Extendible
	It’s Open Source
	It’s Everywhere
	What About Deno?

	Summary
	Quiz

	Chapter 2: Install Node.js
	Node Version Manager
	Choosing a Node.js Version
	How to Install Node.js on Linux (or Windows WSL2)
	Configuring npm Global Permissions on Linux

	How to Install Node.js on macOS
	How to Install Node.js on Windows
	How to Install Node.js on Other Devices
	Run JavaScript Commands in the Node.js REPL
	Summary
	Quiz

	Chapter 3: Your First Node.js Application
	Your First Console App
	#!/What?

	Your First Web Server App
	Port 3000?

	Restarting Node.js Applications with Nodemon
	Executing Scripts from Windows Powershell

	Web Application Considerations
	Complexity Ahead
	Write Stateless Applications

	Summary
	Quiz

	Chapter 4: How to Debug Node.js Scripts
	Skip Ahead?
	What is Debugging?
	How to Avoid Bugs
	Use a Good Code Editor
	Use a Code Linter
	Use Source Control
	Adopt an Issue-tracking System
	Use Test-driven Development

	Node.js Debugging Environment Variables
	Node.js Debugging Command-line Options
	Console Debugging
	Never Use console.log()?!

	Node.js util.debuglog
	Debugging with Logging Modules
	Node.js V8 Inspector
	Debugging Node.js Apps with Chrome
	Not Using Chrome?
	Remote Target
	Debugger Statement

	Debugging Node.js Apps with VS Code
	Advanced Debugging Configuration

	Other Node.js Debugging Tools
	Exercise: Debugging webhello.js
	Summary
	Debugging Terminology

	Quiz

	Chapter 5: Getting Started with Express
	Why use Express?
	Express Version

	Create a New Node.js Project
	Create a New Git Repository
	Semantic Versioning

	Switch to ES6 Modules
	Install Express
	Runtime Dependencies and Development Dependencies

	Create the Express Entry Script
	What Is Routing?

	Should You Switch to HTTPS?
	Serve Static Files
	Efficient Static Assets

	Express Middleware Functions
	Define Working Directories
	Compressing HTTP Responses
	Disable Express Identification
	Handle 404 Not Found Errors
	Add an HTML Template Engine
	Template Performance

	Advanced Routing
	Routing Path Expressions
	Routing Path Parameters
	HTTP Route Methods
	Creating a Route Handler

	Exercises
	Summary
	Quiz

	Chapter 6: Processing Form Data with Express
	Code Examples
	Sanitize User Input
	Processing HTTP GET Query Strings
	Processing HTTP Post Body Data
	The body-parser Module

	Processing Uploaded Files
	Callback Functions

	Exercises
	Summary
	Quiz

	Chapter 7: How to Use the npm Node Package Manager
	npm Alternatives
	Global vs Local Packages
	npm link

	npm Help
	npm Configuration
	Project Initialization
	Semantic Versioning
	Project Dependencies
	Development Dependencies

	Searching for Packages
	Development Dependency Limits?

	Installing Packages
	.gitignore node_modules
	Shortcut Aliases
	Semantic Constraints

	“No-install” Execution
	npx Local Execution

	Listing Packages
	Finding Outdated Packages
	Update npm with npm

	Removing Packages
	Using npm Scripts
	Special Scripts
	Pre and Post Scripts
	Life Cycle Scripts
	Sophisticated Scripting

	Publishing Packages
	Publication Preparation
	Two-factor Authentication
	Publishing Tips

	Exercises
	Summary
	Quiz

	Chapter 8: Using ES2015 and CommonJS Modules
	Skip Ahead?
	CommonJS
	ES2015 Modules (ESM)
	Importing External URLs

	Comparison of CommonJS and ES2015 Modules
	Importing CommonJS Modules in ES2015
	Requiring ES2015 Modules in CommonJS
	Using ES2015 Modules in Browsers
	Summary
	Quiz

	Chapter 9: Asynchronous Programming in Node.js
	Single-threaded Non-blocking I/O Event-looping What?
	Callbacks in Action

	The Event Loop
	Avoid Blocking the Event Loop

	Callback Conundrums
	A Function Must be 100% Synchronous or 100% Asynchronous
	process.nextTick()
	Callback Hell

	Promises
	util.promisify()
	then() Functions Are Promisified
	Parallel Promises
	Promising Problems

	async/await
	Promise.all() is Still Necessary
	try/catch is Ugly
	Asynchronous Awaits in Synchronous Loops

	Exercises
	HTTP Requests

	Summary
	Quiz

	Chapter 10: Using Database Storage
	Skip Ahead?
	A Database-driven Web Application Example
	Installing and Configuring Database Software

	MongoDB
	Start the MongoDB Application
	Your Own MongoDB Installation?

	MongoDB Functionality
	What Is a Database Index?

	Stop the MongoDB Application

	MySQL
	Start the MySQL Application
	Your Own MySQL Installation?

	MySQL Functionality
	No Time?
	UNHEX? INET_ANON?
	Never Build SQL Strings!

	Stop the MySQL Application

	Sequelize ORM
	Start the Sequelize ORM Application
	Your Own MySQL Installation?

	Sequelize ORM Functionality

	How to Choose the Right Database
	Native vs ORM Drivers

	Exercises
	Summary
	Quiz

	Chapter 11: Using WebSockets
	Skip Ahead?
	What Are WebSockets?
	Example WebSocket Chat Application
	WebSocket Walkthrough
	Advanced WebSockets Considerations
	Multiple WebSocket Servers
	What is Pub–sub?

	Exercise
	Summary
	Quiz

	Chapter 12: Useful Node.js APIs
	Module node: URL Imports
	Process
	exit Events

	OS
	Util
	URL
	File System
	fs and path

	Events
	Events in Client-side JavaScript

	Streams
	Worker Threads
	Asynchronous Calculations
	Workers and Event Loops

	Child Processes
	A Real-world Example

	Clusters
	Write Stateless Applications

	Exercises
	Summary
	Quiz

	Chapter 13: Example Real-time Multiplayer Quiz: Overview
	Source Code
	Quizzing Quick Start
	What is Docker?

	Summary

	Chapter 14: Example Real-time Multiplayer Quiz: Architecture
	Why Develop Using Multiple Servers?
	1. One PostgreSQL Database Server
	2. Two Express HTTP Web Servers
	3. Three WebSocket Servers
	4. One Traefic Load Balancer
	5. Adminer Database Client
	Docker Development Environment
	Docker Production Environment
	Is Docker Compose Suited to Production?

	Summary

	Chapter 15: Example Real-time Multiplayer Quiz: Express Code
	Database Library
	Question Database Initialization
	Initializing Data on Application Start?
	Why Does the Number of Imported Questions Vary?
	Native Node.js Fetch()
	Sequential Database INSERTs

	Starting a New Game
	Joining a Game
	Quiz Page
	Summary

	Chapter 16: Example Real-time Multiplayer Quiz: WebSocket Code
	Initiating a WebSocket Connection
	WebSocket Message Format
	PostgreSQL Pub–sub

	Game Logic
	Joining a Game
	Why Run a create() Method?

	Starting a Game
	Answering a Question
	Leaving a Game

	Exercises
	Summary

	Chapter 17: Node.js Tools and Resources
	Perfect Package Pursuit
	Development Tools
	Testing
	Logging
	Full-stack Frameworks
	Server-side Frameworks
	Node.js in Client-side Frameworks

	Web Publishing, Content Management Systems, and Blogging
	Headless Content Management Systems
	Static Site Generators
	Database Drivers
	Templating
	Command Line
	File System
	Network
	WebSockets
	Images
	Email
	Security and Authentication
	Summary

	Chapter 18: Node.js Application Deployment
	Pages vs Applications
	Node.js Application Preparation
	Dedicated Server Hosting
	sudo-not
	HTTP and HTTPS Considerations
	Process Management
	PM2 Port Clashes

	Use a Reverse Proxy

	Static Site Hosting (Jamstack)
	Build PHP-powered Static Sites with Node.js

	Serverless/Lambda Functions
	AWS Everywhere

	Container Hosting
	Summary

	Chapter 19: Epilogue
	Is Node.js for You?
	Is Deno Better?
	Thank You for Reading!

	Appendix: Quiz Answers
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12

