
Practical 
Node.js

Building Real-World Scalable Web Apps
—
Second Edition 
—
Azat Mardan

www.allitebooks.com

http://www.allitebooks.org


Practical Node.js
Building Real-World Scalable  

Web Apps

Second Edition

Azat Mardan

www.allitebooks.com

http://www.allitebooks.org


Practical Node.js

ISBN-13 (pbk): 978-1-4842-3038-1				    ISBN-13 (electronic): 978-1-4842-3039-8
https://doi.org/10.1007/978-1-4842-3039-8

Library of Congress Control Number: 2018958762

Copyright © 2018 by Azat Mardan

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the 
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, 
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information 
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now 
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with 
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an 
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the 
trademark. 

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not 
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to 
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, 
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or 
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the 
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Louise Corrigan
Development Editor: James Markham
Coordinating Editor: Nancy Chen

Cover designed by eStudioCalamar

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street, 
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member 
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a 
Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and 
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales 
web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to 
readers on GitHub via the book's product page, located at www.apress.com/9781484230381. For more 
detailed information, please visit www.apress.com/source-code.

Printed on acid-free paper

Azat Mardan
San Francisco, California, USA

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-3039-8
http://www.allitebooks.org


To Vladimir Nabokov and The Defense

www.allitebooks.com

http://www.allitebooks.org


v

About the Author������������������������������������������������������������������������������������������������������xv

Acknowledgments��������������������������������������������������������������������������������������������������xvii

Introduction�������������������������������������������������������������������������������������������������������������xix

Table of Contents

Chapter 1: �Setting up Node.js and Other Essentials�������������������������������������������������� 1

Installing Node.js and npm������������������������������������������������������������������������������������������������������������ 1

One-Click Installers������������������������������������������������������������������������������������������������������������������ 2

Installing with HomeBrew or MacPorts������������������������������������������������������������������������������������ 4

Installing from a Tar File����������������������������������������������������������������������������������������������������������� 5

Installing Without sudo������������������������������������������������������������������������������������������������������������� 6

Installing from Source Code����������������������������������������������������������������������������������������������������� 6

Multiversion Setup with NVM��������������������������������������������������������������������������������������������������� 7

Multiversion Setup with NVM for Windows������������������������������������������������������������������������������ 8

Alternative Multiversion Systems��������������������������������������������������������������������������������������������� 8

Updating npm��������������������������������������������������������������������������������������������������������������������������� 9

Checking the Installation���������������������������������������������������������������������������������������������������������� 9

Node.js Console (REPL)����������������������������������������������������������������������������������������������������������� 10

Launching Node.js Scripts����������������������������������������������������������������������������������������������������������� 11

Node.js Basics and Syntax����������������������������������������������������������������������������������������������������������� 12

Loose Typing��������������������������������������������������������������������������������������������������������������������������� 12

Buffer—Node.js Super Data Type������������������������������������������������������������������������������������������� 13

Object Literal Notation������������������������������������������������������������������������������������������������������������ 14

Functions�������������������������������������������������������������������������������������������������������������������������������� 15

Arrays������������������������������������������������������������������������������������������������������������������������������������� 18

Prototypal Nature�������������������������������������������������������������������������������������������������������������������� 19

Conventions���������������������������������������������������������������������������������������������������������������������������� 21

www.allitebooks.com

http://www.allitebooks.org


vi

Node.js Globals and Reserved Keywords������������������������������������������������������������������������������� 24

__dirname vs. process.cwd��������������������������������������������������������������������������������������������������� 29

Browser Application Programming Interface Helpers������������������������������������������������������������ 29

Node.js Core Modules������������������������������������������������������������������������������������������������������������� 31

Handy Node.js Utilities������������������������������������������������������������������������������������������������������������ 33

Reading to and Writing from the File System in Node.js�������������������������������������������������������� 34

Streaming Data in Node.js������������������������������������������������������������������������������������������������������ 35

Installing Node.js Modules with npm������������������������������������������������������������������������������������� 35

Taming Callbacks in Node.js��������������������������������������������������������������������������������������������������� 36

Hello World Server with HTTP Node.js Module����������������������������������������������������������������������� 37

Debugging Node.js Programs������������������������������������������������������������������������������������������������������ 38

Core Node.js Debugger����������������������������������������������������������������������������������������������������������� 39

Debugging with Node Inspector��������������������������������������������������������������������������������������������� 40

Node.js IDEs and Code Editors����������������������������������������������������������������������������������������������������� 45

Watching for File Changes����������������������������������������������������������������������������������������������������������� 49

Summary������������������������������������������������������������������������������������������������������������������������������������� 50

Chapter 2: �Using Express.js to Create Node.js Web Apps���������������������������������������� 51

What Is Express.js?���������������������������������������������������������������������������������������������������������������������� 52

How Express.js Works������������������������������������������������������������������������������������������������������������������ 56

Express.js Installation������������������������������������������������������������������������������������������������������������������ 57

Express.js Generator Version�������������������������������������������������������������������������������������������������� 57

Express.js Generator Installation�������������������������������������������������������������������������������������������� 58

Local Express.js���������������������������������������������������������������������������������������������������������������������� 59

Express.js Scaffolding������������������������������������������������������������������������������������������������������������������ 61

Express.js Command-Line Interface��������������������������������������������������������������������������������������� 63

Routes in Express.js��������������������������������������������������������������������������������������������������������������� 65

Middleware as the Backbone of Express.js���������������������������������������������������������������������������� 68

Configuring an Express.js App������������������������������������������������������������������������������������������������ 69

Pug Is Haml for Express.js/Node.js����������������������������������������������������������������������������������������� 69

Final Thoughts Scaffolding����������������������������������������������������������������������������������������������������� 70

Table of Contents



vii

The Blog Project Overview����������������������������������������������������������������������������������������������������������� 70

Submitting the Data���������������������������������������������������������������������������������������������������������������� 72

Express.js Hello World Example��������������������������������������������������������������������������������������������������� 76

Setting Up Folders������������������������������������������������������������������������������������������������������������������ 76

npm init and package.json����������������������������������������������������������������������������������������������������� 77

Dependency Declaration: npm install������������������������������������������������������������������������������������� 79

The App.js File������������������������������������������������������������������������������������������������������������������������ 80

Meet Pug: One Template to Rule Them All������������������������������������������������������������������������������ 85

Running the Hello World App�������������������������������������������������������������������������������������������������� 86

Summary������������������������������������������������������������������������������������������������������������������������������������� 87

Chapter 3: �TDD and BDD for Node.js with Mocha���������������������������������������������������� 89

Installing and Understanding Mocha������������������������������������������������������������������������������������������� 90

Understanding Mocha Hooks������������������������������������������������������������������������������������������������������� 94

TDD with the Assert��������������������������������������������������������������������������������������������������������������������� 96

Chai Assert����������������������������������������������������������������������������������������������������������������������������� 99

BDD with Expect������������������������������������������������������������������������������������������������������������������������ 101

Expect Syntax����������������������������������������������������������������������������������������������������������������������� 103

Project: Writing the First BDD Test for Blog�������������������������������������������������������������������������������� 104

Putting Configs into a Makefile�������������������������������������������������������������������������������������������� 108

Summary����������������������������������������������������������������������������������������������������������������������������������� 111

Chapter 4: �Template Engines: Pug and Handlebars����������������������������������������������� 113

Pug Syntax and Features����������������������������������������������������������������������������������������������������������� 114

Tags�������������������������������������������������������������������������������������������������������������������������������������� 114

Variables/Locals������������������������������������������������������������������������������������������������������������������� 117

Attributes������������������������������������������������������������������������������������������������������������������������������ 118

Literals���������������������������������������������������������������������������������������������������������������������������������� 120

Text��������������������������������������������������������������������������������������������������������������������������������������� 121

Script and Style Blocks�������������������������������������������������������������������������������������������������������� 122

JavaScript Code�������������������������������������������������������������������������������������������������������������������� 122

Comments���������������������������������������������������������������������������������������������������������������������������� 123

Table of Contents



viii

Conditions (if)����������������������������������������������������������������������������������������������������������������������� 124

Iterations (each loops)���������������������������������������������������������������������������������������������������������� 124

Filters����������������������������������������������������������������������������������������������������������������������������������� 125

Interpolation������������������������������������������������������������������������������������������������������������������������� 126

Case�������������������������������������������������������������������������������������������������������������������������������������� 126

Mixins����������������������������������������������������������������������������������������������������������������������������������� 127

Include���������������������������������������������������������������������������������������������������������������������������������� 128

Extend����������������������������������������������������������������������������������������������������������������������������������� 129

Standalone Pug Usage��������������������������������������������������������������������������������������������������������������� 129

Handlebars Syntax��������������������������������������������������������������������������������������������������������������������� 134

Variables������������������������������������������������������������������������������������������������������������������������������� 134

Iteration (each)��������������������������������������������������������������������������������������������������������������������� 135

Unescaped Output���������������������������������������������������������������������������������������������������������������� 136

Conditions (if)����������������������������������������������������������������������������������������������������������������������� 137

Unless����������������������������������������������������������������������������������������������������������������������������������� 138

With�������������������������������������������������������������������������������������������������������������������������������������� 138

Comments���������������������������������������������������������������������������������������������������������������������������� 139

Custom Helpers�������������������������������������������������������������������������������������������������������������������� 140

Includes (Partials)����������������������������������������������������������������������������������������������������������������� 142

Standalone Handlebars Usage��������������������������������������������������������������������������������������������������� 142

Pug and Handlebars Usage in Express.js����������������������������������������������������������������������������������� 146

Pug and Express.js��������������������������������������������������������������������������������������������������������������� 148

Handlebars and Express.js��������������������������������������������������������������������������������������������������� 149

Project: Adding Pug Templates to Blog�������������������������������������������������������������������������������������� 150

layout.pug����������������������������������������������������������������������������������������������������������������������������� 150

index.pug������������������������������������������������������������������������������������������������������������������������������ 154

article.pug����������������������������������������������������������������������������������������������������������������������������� 156

login.pug������������������������������������������������������������������������������������������������������������������������������� 157

post.pug�������������������������������������������������������������������������������������������������������������������������������� 158

admin.pug���������������������������������������������������������������������������������������������������������������������������� 160

Summary����������������������������������������������������������������������������������������������������������������������������������� 163

Table of Contents



ix

Chapter 5: �Persistence with MongoDB and Mongoskin����������������������������������������� 165

Easy and Proper Installation of MongoDB���������������������������������������������������������������������������������� 166

How to Run the Mongo Server��������������������������������������������������������������������������������������������������� 168

Data Manipulation from the Mongo Console������������������������������������������������������������������������������ 170

MongoDB Console in Detail�������������������������������������������������������������������������������������������������������� 172

Minimalistic Native MongoDB Driver for Node.js Example��������������������������������������������������������� 175

Main Mongoskin Methods���������������������������������������������������������������������������������������������������������� 182

Project: Storing Blog Data in MongoDB with Mongoskin����������������������������������������������������������� 186

Project: Adding MongoDB Seed Data������������������������������������������������������������������������������������ 186

Project: Writing Mocha Tests������������������������������������������������������������������������������������������������ 188

Project: Adding Persistence�������������������������������������������������������������������������������������������������� 191

Running the App������������������������������������������������������������������������������������������������������������������������� 202

Summary����������������������������������������������������������������������������������������������������������������������������������� 204

Chapter 6: �Security and Auth in Node.js���������������������������������������������������������������� 205

Authorization with Express.js Middleware��������������������������������������������������������������������������������� 206

Token-Based Authentication������������������������������������������������������������������������������������������������������ 207

JSON Web Token (JWT) Authentication�������������������������������������������������������������������������������������� 209

Session-Based Authentication��������������������������������������������������������������������������������������������������� 216

Project: Adding E-mail and Password Login to Blog������������������������������������������������������������������ 218

Session Middleware������������������������������������������������������������������������������������������������������������� 219

Authorization in Blog������������������������������������������������������������������������������������������������������������ 220

Authentication in Blog���������������������������������������������������������������������������������������������������������� 224

Running the App������������������������������������������������������������������������������������������������������������������� 227

The oauth Module���������������������������������������������������������������������������������������������������������������������� 227

Twitter OAuth 2.0 Example with Node.js OAuth�������������������������������������������������������������������� 228

Everyauth����������������������������������������������������������������������������������������������������������������������������� 230

Project: Adding Twitter OAuth 1.0 Sign-in to Blog with Everyauth��������������������������������������������� 231

Adding a Sign-in with a Twitter Link������������������������������������������������������������������������������������ 231

Configuring the Everyauth Twitter Strategy�������������������������������������������������������������������������� 232

Summary����������������������������������������������������������������������������������������������������������������������������������� 236

Table of Contents



x

Chapter 7: �Boosting Node.js and MongoDB with Mongoose���������������������������������� 239

Mongoose Installation���������������������������������������������������������������������������������������������������������������� 240

DB Connection in a Standalone Mongoose Script���������������������������������������������������������������������� 240

Mongoose Schemas������������������������������������������������������������������������������������������������������������������� 244

Hooks for Keeping Code Organized�������������������������������������������������������������������������������������������� 248

Custom Static and Instance Methods���������������������������������������������������������������������������������������� 248

Mongoose Models���������������������������������������������������������������������������������������������������������������������� 250

Relationships and Joins with Population����������������������������������������������������������������������������������� 253

Nested Documents��������������������������������������������������������������������������������������������������������������������� 257

Virtual Fields������������������������������������������������������������������������������������������������������������������������������ 259

Schema Type Behavior Amendment������������������������������������������������������������������������������������������� 261

Express.js + Mongoose = True MVC������������������������������������������������������������������������������������������ 263

Summary����������������������������������������������������������������������������������������������������������������������������������� 276

Chapter 8: �Building Node.js REST API Servers with  Express.js and Hapi������������� 277

RESTful API Basics��������������������������������������������������������������������������������������������������������������������� 279

Project Dependencies���������������������������������������������������������������������������������������������������������������� 281

Test Coverage with Mocha and Superagent������������������������������������������������������������������������������� 283

REST API Server Implementation with Express and Mongoskin������������������������������������������������ 289

Refactoring: Hapi REST API Server��������������������������������������������������������������������������������������������� 298

Summary����������������������������������������������������������������������������������������������������������������������������������� 305

Chapter 9: �Real-Time Apps with WebSocket, Socket.IO, and DerbyJS������������������ 307

What Is WebSocket?������������������������������������������������������������������������������������������������������������������ 308

Native WebSocket and Node.js with the ws Module Example��������������������������������������������������� 309

Browser WebSocket Implementation����������������������������������������������������������������������������������� 309

Socket.IO and Express.js Example��������������������������������������������������������������������������������������������� 313

Collaborative Online Code Editor Example with DerbyJS, Express.js, and MongoDB����������������� 319

Project Dependencies and package.json������������������������������������������������������������������������������ 319

Server-side Code������������������������������������������������������������������������������������������������������������������������ 321

DerbyJS App������������������������������������������������������������������������������������������������������������������������� 323

Summary����������������������������������������������������������������������������������������������������������������������������������� 330

Table of Contents



xi

Chapter 10: �Getting Node.js Apps Production Ready��������������������������������������������� 331

Environment Variables��������������������������������������������������������������������������������������������������������������� 332

Express.js in Production������������������������������������������������������������������������������������������������������������� 332

Error Handling���������������������������������������������������������������������������������������������������������������������������� 335

Multithreading with Cluster������������������������������������������������������������������������������������������������������� 337

Multithreading with pm2������������������������������������������������������������������������������������������������������������ 340

Event Logging and Monitoring��������������������������������������������������������������������������������������������������� 341

Monitoring���������������������������������������������������������������������������������������������������������������������������� 342

Winston��������������������������������������������������������������������������������������������������������������������������������� 345

Building Tasks with Grunt���������������������������������������������������������������������������������������������������������� 346

A Brief on Webpack�������������������������������������������������������������������������������������������������������������������� 350

Locking Dependencies��������������������������������������������������������������������������������������������������������������� 353

Git for Version Control and Deployments����������������������������������������������������������������������������������� 356

Installing Git�������������������������������������������������������������������������������������������������������������������������� 356

Generating SSH Keys����������������������������������������������������������������������������������������������������������������� 357

Creating a Local Git Repository�������������������������������������������������������������������������������������������� 360

Pushing the Local Repository to GitHub������������������������������������������������������������������������������� 360

Running Tests in Cloud with TravisCI����������������������������������������������������������������������������������������� 362

TravisCI Configuration����������������������������������������������������������������������������������������������������������� 363

Summary����������������������������������������������������������������������������������������������������������������������������������� 364

Chapter 11: �Deploying Node.js Apps��������������������������������������������������������������������� 365

Deploying to Heroku������������������������������������������������������������������������������������������������������������������� 365

Deploying to Amazon Web Services������������������������������������������������������������������������������������������� 372

Keeping Node.js Apps Alive with forever, Upstart, and init.d������������������������������������������������������ 377

forever���������������������������������������������������������������������������������������������������������������������������������� 378

Upstart Scripts���������������������������������������������������������������������������������������������������������������������� 378

init.d������������������������������������������������������������������������������������������������������������������������������������� 381

Serving Static Resources Properly with Nginx�������������������������������������������������������������������������� 383

Caching with Varnish����������������������������������������������������������������������������������������������������������������� 386

Summary����������������������������������������������������������������������������������������������������������������������������������� 388

Table of Contents



xii

Chapter 12: �Modularizing Your Code and Publishing Node.js Modules to npm����� 389

Recommended Folder Structure������������������������������������������������������������������������������������������������ 391

Modularizing Patterns���������������������������������������������������������������������������������������������������������������� 392

Composing package.json����������������������������������������������������������������������������������������������������������� 395

Publishing to npm���������������������������������������������������������������������������������������������������������������������� 397

Not-Locking Versions����������������������������������������������������������������������������������������������������������������� 398

Summary����������������������������������������������������������������������������������������������������������������������������������� 399

Chapter 13: �Node HTTP/2 Servers������������������������������������������������������������������������� 401

Brief Overview of HTTP/2����������������������������������������������������������������������������������������������������������� 401

SSL Key and Certificate������������������������������������������������������������������������������������������������������������� 404

HTTP/2 Node Server������������������������������������������������������������������������������������������������������������������� 407

Node HTTP/2 Server Push���������������������������������������������������������������������������������������������������������� 413

Summary����������������������������������������������������������������������������������������������������������������������������������� 416

Chapter 14: �Asynchronous Code in Node�������������������������������������������������������������� 417

async Module����������������������������������������������������������������������������������������������������������������������������� 418

Promises������������������������������������������������������������������������������������������������������������������������������������ 421

Async Functions������������������������������������������������������������������������������������������������������������������������� 426

Summary����������������������������������������������������������������������������������������������������������������������������������� 429

Chapter 15: �Node Microservices with Docker and AWS ECS��������������������������������� 431

Installing Installations���������������������������������������������������������������������������������������������������������������� 432

Installing Docker Engine������������������������������������������������������������������������������������������������������� 432

Getting an AWS Account������������������������������������������������������������������������������������������������������� 434

Installing AWS CLI����������������������������������������������������������������������������������������������������������������� 436

Dockerizing Node Microservice������������������������������������������������������������������������������������������������� 437

Creating/Copying the Node Project�������������������������������������������������������������������������������������� 437

Creating a Node.js Dockerfile����������������������������������������������������������������������������������������������� 439

Use Docker Networks for Multi-container Setup����������������������������������������������������������������������� 445

Creating a Docker Network�������������������������������������������������������������������������������������������������� 445

Launch App into a Network�������������������������������������������������������������������������������������������������� 446

Table of Contents



xiii

Node Containers in AWS with EC2 ECS�������������������������������������������������������������������������������������� 449

Creating a Registry (ECR)����������������������������������������������������������������������������������������������������� 450

Create a New Task Definition������������������������������������������������������������������������������������������������ 457

Creating Cluster�������������������������������������������������������������������������������������������������������������������� 464

Creating the Cloud Container Service and Verifying it���������������������������������������������������������� 469

Terminate Service and Cluster/Instances����������������������������������������������������������������������������� 472

Summary����������������������������������������������������������������������������������������������������������������������������������� 472

Chapter 16: �Serverless Node with AWS Lambda��������������������������������������������������� 473

Creating a DynamoDB Table������������������������������������������������������������������������������������������������������� 474

Creating an IAM Role to Access DynamoDB������������������������������������������������������������������������������� 475

Creating an AWS Lambda Resource������������������������������������������������������������������������������������������� 478

Creating an API Gateway Resource�������������������������������������������������������������������������������������������� 484

Testing the RESTful API Microservice���������������������������������������������������������������������������������������� 489

Cleaning Up�������������������������������������������������������������������������������������������������������������������������������� 493

Summary����������������������������������������������������������������������������������������������������������������������������������� 494

Chapter 17: �Conclusion������������������������������������������������������������������������������������������ 495

Author Contact��������������������������������������������������������������������������������������������������������������������������� 496

Further Learning������������������������������������������������������������������������������������������������������������������������ 496

�Index���������������������������������������������������������������������������������������������������������������������� 497

Table of Contents



xv

About the Author

Azat Mardan works in technology leadership at Indeed.com, 

the world leader in job search. Azat is a JavaScript/Node.

js expert with dozens of published online courses on Node 

University, edX, and Udemy, and books including much 

praised top-sellers React Quickly (Manning, 2017), Full Stack 

JavaScript (Apress, 2015), Practical Node.js (Apress, 2014), 

Pro Express.js (Apress, 2014) and many others.

Two of Azat’s self-published books, Rapid Prototyping 

with JS and Express.js Guide, became bestsellers on Amazon in 

their categories before being revised and published by Apress.

In 2016 alone, Azat spoke at over a dozen tech conferences, including JSConf, Node 

Summit, NDC, Node Interactive, ConFoo, ForwardJS, All Things Open, GDG DevFest, 

Great Wide Open, and others. Over the years, Azat has shared a speaking platform with 

prominent software gurus such as Douglas Crockford, Christian Heilmann, Jeff Atwood, 

Dan Shaw, Mikeal Rogers, John Papa, Axel Rauschmayer, Kyle Simpso, Samer Buna, 

James Halliday, Maxwell Ogden, Rey Bango, and many others.

Azat is an ex-Technology Fellow at Capital One, a top U.S. bank. At various times, 

Azat has worked as software engineer and technology leader in different organizations, 

including U.S. federal government agencies, Fortune 200 companies, small startups, 

and medium-sized corporations. During his career, Azat has worked on teams with 

prominent tech people such as Raquel Vélez (first engineer at npm), Jim Jagielski 

(founder of Apache Foundation), Bobby Calderwood (contributor to ClojureScript), and 

Mitch Pirtle (co-founder of Joomla!).

Azat has taught in-person and face-to-face over a thousand software engineers at 

prominent U.S. and global corporations including Cisco, Walmart, Starbucks, Michael 

Kors, Salesforce, 20th Century Fox/Fox Studios, VMWare, CapitalOne, OnDeck, 

Northwestern Mutual, HubSpot, UC Davis, The University of Arizona, Intuit, DocuSign, 

Intuit, Macy’s, Twillio, The Orchard, and Apple.

In his spare time, Azat enjoys a cup of Americano with ghee while recording videos 

for Node University (https://node.university), where thousands of developers 

sharpen and master their Node skills. 

https://node.university/


xvii

Acknowledgments

Thank you to the supporters of my Kickstarter campaign. Without you, I probably would 

have not worked on this release so hard, and maybe wouldn’t have worked at all. You are 

awesome because you made this new edition a reality. Not only that but you have made 

this book available on GitHub for the entire world to read and learn Node, the greatest 

technology for building web applications ever.

In particular, a great many thanks to individual Kickstarter supporters (who will be 

getting the signed print edition books and other rewards): Matthew Amacker, Jordan 

Horiuchi, Tim Chen, Alexey Bushnev, Aleksey Maksimov, Maurice van Cooten, Ryan, Ng 

Yao Min, Kommana Karteek, Elias Yousef, Arhuman, Javier Armendariz, Dave Anderson, 

and Edithson Abelard. You guys are brilliant!

I can’t not mention the biggest supporter, DevelopIntelligence, which is one of the 

best training companies, if not the best (www.developintelligence.com). If you need 

to train your software engineers in anything, e-mail them. Seriously, DevelopIntelligence 

has been around for more than 20 years and has great teachers and great technical 

classes. I was one of their instructors, so I know.

I convey my gratitude to all the wonderful people I’ve encountered in my software 

engineering career. These people supported, mentored, and trusted me with new 

challenges, helped me to find mistakes, and pushed my limits.

Of course, this book wouldn’t be possible without the assistance, research, and 

championing done by my wonderful Apress editors. I especially thank Louise Corrigan, 

James Markham, Cat Ohala, and Peter Elst.

Also, appreciation and many thanks go to the readers who kindly provided feedback 

to the first edition of Practical Node.js, my Webapplog.com (http://webapplog.com) 

blog posts, and my prior books.

http://www.developintelligence.com/
http://webapplog.com/


xix

Introduction

More and more books and online resources are being published that cover Node.js 

basics (typically, how-to’s of Hello World and simple apps). For the most part, these 

tutorials rely on core modules only or maybe one or two npm packages. This “sandbox” 

approach of tutorials is easy and doesn’t require many dependencies, but it couldn’t be 

further from the actual Node.js stack.

This is especially true with Node.js, the core of which—by design—is kept lean and 

minimal. At the same time, the vast “userland” (that is, npm) provides an ecosystem 

of packages/modules to serve specific granular purposes. Therefore, there is a need 

to show how Node.js is used in the industry and to have it all in one place—the all-

encompassing practical resource that can be used as a learning tool, code cookbook, and 

reference.

�What This Book Is and What It’s Not
Practical Node.js: Building Real-World Scalable Web Apps is a hands-on manual for 

developing production-ready web applications and services by leveraging the rich 

ecosystem of Node.js packages. This is important because real applications require 

many components, such as security, deployment, code organization, database drivers, 

template engines, and more. That’s why I include extensive 12-chapter coverage of third-

party services, command-line tools, npm modules, frameworks, and libraries.

Just to give you some idea, Practical Node.js is a one-stop place for getting started 

with Express.js 4, Hapi.js, DerbyJS, Mongoskin, Mongoose, Everyauth, Mocha, Jade, 

Socket.IO, TravisCI, Heroku, Amazon Web Services (AWS), and many other technologies. 

Most of these are vital for any serious project.

In this book we’ll create a few projects by building, step by step, a straightforward 

concept into a more complicated application. These projects can also serve as a 

boilerplate for jump-starting your own development efforts. The examples also show 

industry best practices to help you avoid costly mistakes. Last but not least, many topics 

and chapters serve as a reference to which you can always return later when you’re faced 

with a challenging problem.



xx

Practical Node.js aims to save you time and make you a more productive Node.js 

programmer. Although the first chapter is dedicated to installations and a few important 

differences between Node.js and browser JavaScript, I didn’t want to dilute the core 

message of making production-ready apps, or make the book even larger and more 

convoluted. Therefore, this book is not a beginner’s guide, and there is no extensive 

immersion into the inner workings of the Node.js platform and its core modules.

I also can’t guarantee that I’ve explained each component and topic to the extent 

you need, because the nature of your project might be very specific. Most chapters in the 

book help you to get started with the stack. There is simply no realistic way to fit so many 

topics in one book and cover them comprehensively.

Another caveat of this book (and virtually any programming book) is that the 

versions of the packages we use will eventually become obsolete. Often, this isn’t an 

issue because, in this book, versions are stated and locked explicitly. So, no matter what, 

the examples will continue to work with book’s versions. Even if you decide to use the 

latest versions, in many cases that might not be an issue because essentials remain the 

same. However, if you go this off-path route, once in a while you might be faced with a 

breaking change introduced by the latest versions.

�Who Can Benefit from This Book
Practical Node.js is an intermediate- to advanced-level book on programming with 

Node.js. Consequently, to get the most out of it, you need to have prior programming 

experience and some exposure to Node.js. I assume readers’ prior knowledge of 

computer science, programming concepts, web development, Node.js core modules, 

and the inner workings of HTTP and the Internet.

However, depending on your programming level and ability to learn, you can fill 

in any knowledge gaps very quickly by visiting links to official online documentation 

and reading external resources referenced in this book. Also, if you have a strong 

programming background in some other programming language, it should be relatively 

easy for you to start Node.js development with Practical Node.js.

Written as it was for for intermediate and advanced software engineers, there are 

categories of programmers who can most benefit from it:

	 1.	 Generalist or full-stack developers including development 

operation (DevOps) and quality assurance (QA) automation 

engineers

Introduction



xxi

	 2.	 Experienced front-end web developers with a strong background 

and understanding of browser JavaScript

	 3.	 Skilled back-end software engineers coming from other languages, 

such as Java, PHP, and Ruby, who don’t mind doing some extra 

work getting up to speed with JavaScript.

�What You’ll Learn
Practical Node.js takes you from an overview of JavaScript and Node.js basics, through 

installing all the necessary modules, to writing and deploying web applications, and 

everything in between. It covers libraries including but not limited to Express.js 4 and 

Hapi.js frameworks, Mongoskin and the Mongoose object-relational mapping (ORM) 

library for the MongoDB database, Jade and Handlebars template engines, Auth and 

Everyauth libraries for OAuth integrations, the Mocha testing framework and Expect 

test-driven development/behavior-driven development language, and the Socket.IO and 

DerbyJS libraries for WebSocket real-time communication.

In the deployment chapters (Chapters 10 and 11), the book covers how to use Git 

and deploy to Heroku, and it provides examples of how to deploy to AWS, daemonize 

apps, and use NGINX, Varnish Cache, Upstart, init.d, and the forever module.

The hands-on approach of this book walks you through iterating on the Blog project 

we’ll be building, in addition to many other smaller examples. You’ll build database 

scripts, representational state transfer (RESTful) application programming interfaces 

(APIs), tests, and full-stack apps—all from scratch. You’ll also discover how to write your 

own Node.js modules and publish them on npm.

Practical Node.js will show you how to do the following:

•	 Build web apps with Express.js 4, MongoDB, and the Jade template 

engine

•	 Use various features of Jade and Handlebars

•	 Manipulate data from the MongoDB console

•	 Use the Mongoskin and Mongoose ORM libraries for MongoDB

•	 Build REST API servers with Express.js 4 and Hapi.js

•	 Test Node.js web services with Mocha, Expect, and TravisCI

Introduction



xxii

•	 Use token and session-based authentication

•	 Implement a third-party (Twitter) OAuth strategy with Everyauth

•	 Build WebSocket apps using Socket.IO and DerbyJS libraries

•	 Prepare code for production with Redis, Node.js domains, and the 

cluster library using tips and best practices

•	 Deploy apps to Heroku using Git

•	 Install necessary Node.js components on an AWS instance

•	 Configure NGINX, Upstart, Varnish, and other tools on an AWS 

instance

•	 Write your own Node.js module and publish it on npm

You already know what Node.js is. It’s time to learn what you can do with it and see 

how far you can take it.

�Why You Should Read This Book
Practical Node.js was designed to be one stop for going from Hello World examples to 

building apps in a professional manner. You get a taste of the most widely used Node.js 

libraries in one place, along with best practices and recommendations based on years 

of building and running Node.js apps in production. The libraries covered in the book 

greatly enhance the quality of code and make you more productive. Also, although the 

material in this book isn’t groundbreaking, the convenience of the format will save you 

hours of frustration researching on the Internet. Practical Node.js is here to help you to 

jump-start your Node.js development.

�Notation
The book and all its source code follow StandardJS (https://standardjs.com) coding 

style. When it comes to showing the code in the book, this book follows a few formatting 

conventions. Code is in monospace font. This is inline code, var book = {name: 

'Practical Node.js'};, and this is a code listing:

Introduction

https://standardjs.com/


xxiii

server.on('stream', (stream, headers) => {

  // Stream is a Duplex

  stream.respond({

    'content-type': 'text/html',

    ':status': 200

  })

  stream.end('<h1>Hello World<h1>')

})

Unfortunately, book pages are narrower than expandable code editor windows. 

That’s why some code formatting in books may be slightly different than StandardJS, 

because by necessity sometimes there are more line breaks.

For this reason, be especially careful in the code listings about maintaining proper 

syntax, avoiding typos, and not having extra line breaks. If in doubt, always refer to the 

GitHub source code instead of relying on the book because the GitHub source code will 

always have more proper formatting (StandardJS) and may even contain a bug fix that 

somehow sneaked into a code listing in the book.

If the code begins with $, that means it’s meant to be executed in the terminal/

command line. However, if the code line starts with >, the code is meant for the virtual 

environment (the console—either Node.js or MongoDB). If the Node.js module name 

is in code font, that means it’s the npm name and you can use it with npm and the 

require() method, such as superagent .

�Source Code
Learning is more effective when we apply our knowledge right away. For this reason, 

virtually every chapter in Practical Node.js ends with a hands-on exercise. For your 

convenience, and because the publisher and I believe in open source and transparency, 

all the book’s examples are available publicly (free of charge) for exploration and 

execution on GitHub at https://github.com/azat-co/practicalnode.

Introduction

https://github.com/azat-co/practicalnode


xxiv

�Errata and Contacts
If you spot any mistakes or typos (and I’m sure you will), please open an issue—or,  

even better, make a pull request and fix it on the GitHub repository of the book’s 

examples at https://github.com/azat-co/practicalnode. For all other updates 

and contact information, the canonical home of Practical Node.js on the Internet is 

http://practicalnodebook.com.

Introduction

https://github.com/azat-co/practicalnode
http://practicalnodebook.com/


1
© Azat Mardan 2018 
A. Mardan, Practical Node.js, https://doi.org/10.1007/978-1-4842-3039-8_1

CHAPTER 1

Setting up Node.js 
and Other Essentials
In many technologies, it’s vital to have the proper foundation set up first, before moving 

on to solving more complex problems. With Node.js, proper foundation is even more 

important because of all the bad syntax and quirks that JavaScript brings to Node. In this 

chapter, we cover the following:

•	 Node.js and npm (Node package manager) installation

•	 Node.js script launches

•	 Node.js syntax and basics

•	 Node.js integrated development environments (IDEs) and  

code editors

•	 Awareness of file changes

•	 Node.js program debugging

�Installing Node.js and npm
Although your operating system (OS) might have Node.js installed on it already, you 

should update to at least version 8.x, which is the latest recommended long-term 

support (LTS) version as of this writing (July 2018). Version 8 is used in the examples and 

projects of this book. Version 8 is LTS and the recommended choice because it will be 

supported until October 2019 according to the Node official release schedule.  

If you are reading the book after October 2019, please use the next LTS version for your 

real-life projects. You can still use Node.js version 8 for this book’s projects to ensure 

https://github.com/nodejs/Release#release-schedule


2

smooth execution and lack of conflicts. In the following subsection, we examine a few 

different approaches to installing Node.js:

•	 One-click installers: Probably the easiest and fastest way to get started 

with the platform

•	 Installing with HomeBrew or MacPorts: Straightforward installation 

for macOS users

•	 Installing from a tar file: An alternative installation from an  

archive file

•	 Installing without sudo: The best way to avoid needing sudo  

(admin rights) when using the node and npm commands

•	 Installing from a Git repo: An option for advanced developers who 

need the latest version and/or contribute to the project

•	 Multiversion setup with Nave: a must-have for developers 

contributing to projects that use different Node.js versions

•	 Multiversion setup with Node Version Manager (NVM): alternative to 

Nave (see previous entry)

A note about Long-Term Support (LTS) and non-LTS versions: LTS versions have 

longer maintenance window. This means that LTS versions will have patches and 

updates longer than non-LTS versions. Thus LTS versions are recommended for most 

users and production deployment (not because non- LTS is not proven but simply 

because LTS has a longer support time).

LTS versions are even numbers, such as 4, 6, 8, 10, and so on. And non-LTS versions 

are odd numbers. Non-LTS versions have the latest features before they are rolled out 

to the next LTS version. We will be using LTS version 8.x. For more information and the 

current release schedule, please see https://github.com/nodejs/LTS.

�One-Click Installers
First, let’s go to http://nodejs.org and download a one-click installer for your OS 

(Figure 1-1) by clicking on the Install button. Don’t choose binaries or source code 

unless you know what to do with them or your OS is not present there (i.e., not Windows 

or Mac).

Chapter 1  Setting up Node.js and Other Essentials

https://github.com/nodejs/LTS
http://nodejs.org/


3

The installers come with npm, Node package manager, which is an important tool 

for managing dependencies.

If there’s no installer for your OS on the download page (page https://nodejs.

org/en/download), you can get the source code and compile it yourself (Figure 1-2).

Figure 1-1.  One-click installers for Node.js

Chapter 1  Setting up Node.js and Other Essentials

https://nodejs.org/en/download
https://nodejs.org/en/download


4

Note  For older macOS machines, you can pick 32-bit versions.

�Installing with HomeBrew or MacPorts
If you already have HomeBrew (brew) installed, first update the brew itself, and run 

install commands:

$ brew update

$ brew install node

To install the latest Node version, run:

$ brew upgrade node

Figure 1-2.  Multiple options for downloading

Chapter 1  Setting up Node.js and Other Essentials



5

If your macOS does not have HomeBrew, go to http://brew.sh or install it with the 

following command:

$ ruby -e "$(curl -fsSL https://raw.github.com/Homebrew/homebrew/go/

install)"

Similarly, for MacPorts, run:

$ sudo port install nodejs

�Installing from a Tar File
To install from a tar file (which is type of archive), set up a folder for the latest Node.js as 

follows:

$ echo 'export PATH=$HOME/local/bin:$PATH' >> ~/.bashrc

$ . ~/.bashrc

$ mkdir ~/local

$ mkdir ~/node-latest-install

$ cd ~/node-latest-install

Note A dvanced users who choose to make their own Node.js builds need to have 
certain compilers installed first. For more information about building Node from 
source, refer to the official documentation (https://github.com/nodejs/
node/blob/master/BUILDING.md).

Download the tar file with CURL and unpack it:

$ curl http://nodejs.org/dist/node-latest.tar.gz | tar xz --strip-

components=1

$ ./configure --prefix=~/local

Build Node.js and install it:

$ make install

$ curl https://npmjs.org/install.sh | sh

Chapter 1  Setting up Node.js and Other Essentials

http://brew.sh/
https://github.com/nodejs/node/blob/master/BUILDING.md
https://github.com/nodejs/node/blob/master/BUILDING.md
https://github.com/nodejs/node/blob/master/BUILDING.md


6

Tip I f you find yourself getting errors when trying to install the module globally 
via npm ($ npm install -g <packagename>), reinstall Node.js and npm 
with the “Installing Without sudo” solution —discussed in the next section—to 
eliminate the need to use sudo with the installation command.

�Installing Without sudo
Sometimes, depending on your configuration, npm asks users for sudo —root user 

permissions. To avoid using sudo, advanced developers can use the following:

$ sudo mkdir -p /usr/local/{share/man,bin,lib/node,include/node}

$ sudo chown -R $USER /usr/local/{share/man,bin,lib/node, 

include/node}

Note P lease be sure you are comfortable with the functionality of the chown 
command before you run it.

Then, proceed with a normal installation:

$ mkdir node-install

$ curl http://nodejs.org/dist/node-v0.4.3.tar.gz | tar -xzf - -C 

node-install

$ cd node-install/*

$ ./configure

$ make install

$ curl https://npmjs.org/install.sh | sh

�Installing from Source Code
If you want to use the latest core Node.js code, and maybe even contribute to the Node.

js and npm projects, your best choice is to use the installation from the source code that 

is in Node repository on GitHub. This will allow you to change the Node code itself, and 

then compile and run it.

Chapter 1  Setting up Node.js and Other Essentials



7

This step requires Git. To install it, go to http://git-scm.com and click Download. 

For basic Git commands, refer to Chapter 11, which explores deployment.

For full, detailed instructions, go to https://github.com/nodejs/node/blob/

master/BUILDING.md. Here is the short version of the instructions:

	 1.	 Make the folders and add the path:

$ mkdir ~/local

$ echo 'export PATH=$HOME/local/bin:$PATH' >> ~/.bashrc

$ . ~/.bashrc

To clone the original Node.js repo from nodejs/node 

(alternatively, you can fork it and clone your own repository), do 

the following:

$ git clone git@github.com:nodejs/node.git

$ cd node

$ ./configure --prefix=~/local

	 2.	 Build Node with the make command:

$ make install

	 3.	 Repeat for npm:

$ git clone https://github.com/npm/npm

$ cd npm

$ make install

�Multiversion Setup with NVM
If you plan to work on various Node projects, you might have to switch between multiple 

versions of Node.js. To make things easier, I recommend using a version manager that 

will allow you to install multiple versions and switch between them quickly and without 

a hassle.

One of the most trusted and battle-tested version managers is nvm (Node Version 

Manager): https://github.com/creationix/nvm. Install NVM as follows:

$ curl https://raw.github.com/creationix/nvm/master/install.sh | sh

Chapter 1  Setting up Node.js and Other Essentials

http://git-scm.com/
https://github.com/nodejs/node/blob/master/BUILDING.md
https://github.com/nodejs/node/blob/master/BUILDING.md
https://github.com/creationix/nvm


8

or

$ wget -qO- https://raw.github.com/creationix/nvm/master/ 

install.sh | sh

Then you should be ready to start using NVM and its install. For example, to 

install Node v0.10, use this magic formula:

$ nvm install 0.10

After installing Node v0.10, to switch to the 0.10 version, apply the use command. 

For example:

$ nvm use 0.10

NVM won’t move global npm modules from one version to another. If you are 

switching from y to x, then use nvm install x --reinstall-packages-from=y to 

reinstall all the global packages from “y” in the new “x”. For example, to move packages 

to Node v8 from Node v6, use nvm install 8.4.0 --reinstall-packages-

from=6.11.2.

�Multiversion Setup with NVM for Windows
Node Version Manager (nvm) for Windows is a separate project from original nvm which 

is for macOS and Linux. nvm for Windows is (ironically) written in Go.

To download nvm for Windows, simply go to https://github.com/coreybutler/

nvm-windows releases and select the latest version of the installer.

�Alternative Multiversion Systems
The most popular and used alternatives to NVM include the following tools:

•	 n (https://github.com/visionmedia/n): The original and simple 

Node version manager without subshells (I still use it today on my 

personal computers)

•	 nave (https://github.com/isaacs/nave): The version manager 

written by the creator of npm Isaac Schelueter and that supports 

subshells

•	 ndevn (https://github.com/riywo/ndenv): Node.js version 

manager based on rbenv

Chapter 1  Setting up Node.js and Other Essentials

https://github.com/coreybutler/nvm-windows
https://github.com/coreybutler/nvm-windows
https://github.com/coreybutler/nvm-windows
https://github.com/tj/n
https://github.com/visionmedia/n
https://github.com/isaacs/nave
https://github.com/isaacs/nave
https://github.com/riywo/ndenv
https://github.com/riywo/ndenv


9

�Updating npm
You might have npm already, but due to big changes between npm versions 3 through 5, 

it’s recommended to update npm to version 5, 6 or 7. Luckily, you can use npm to  

update npm!

npm i -g npm@latest

�Checking the Installation
To test your installation, run the following commands in your Terminal or iTerm app  

(or in the command line cmd.exe for Windows):

$ node -v

$ npm -v

You should see the latest versions of Node.js and npm that you just downloaded and 

installed, as shown in Figure 1-3.

Figure 1-3.  Checking Node.js and npm installations

Chapter 1  Setting up Node.js and Other Essentials



10

That’s it! Now you have Node.js and npm installed, and you should be ready to dig 

deeper into using the platform. The simplest way to run Node.js is through its virtual 

environment, which is often called read–eval–print–loop, or REPL.

�Node.js Console (REPL)
Like most platforms/languages (e.g., Java, Python, Ruby, and PHP), Node.js comes with 

a virtual environment called read–eval–print loop (REPL). Using this shell program, 

we can execute pretty much any Node.js/JavaScript code. It’s even possible to include 

modules and work with the file system! Other REPL use cases involve controlling drones 

nodecopters (http://nodecopter.com) and debugging remote servers (more about 

that in Chapter 10). To start the console, run the following command in your terminal:

$ node

The prompt should change from $ to > (or something else, depending on your shell). 

From this prompt, we can run any JavaScript/Node.js (akin to the Chrome Developer 

Tools console) we want. For example:

> 1+1

> "Hello"+" "+"World"

> a=1;b=2;a+b

> 17+29/2*7

> f = function(x) {return x*2}

> f(b)

The result of the preceding snippet is shown in Figure 1-4.

Chapter 1  Setting up Node.js and Other Essentials

http://nodecopter.com


11

There are slight deviations in ECMAScript implementations between Node.js and 

browsers, such as the Chrome Developer Tools console. For example, require() is a 

valid method in Node.js REPL, whereas the same code produces ReferenceError in 

the Chrome DevTools console, because browsers don’t support Node.js modules feature. 

However, for the most part, Node.js REPL and the Chrome/Firefox consoles are similar.

�Launching Node.js Scripts
To start a Node.js script from a file, simply run $ node filename —for example,  

$ node program.js. If all we need is a quick set of statements, there’s a -e option that 

allows us to run inline JavaScript/Node.js—for example, $ node -e "console.log(new 

Date());".

Figure 1-4.  Executing JavaScript in Node.js REPL

Chapter 1  Setting up Node.js and Other Essentials



12

If the Node.js program uses environmental variables, it’s possible to set them right 

before the node command. For example:

$ NODE_ENV=production API_KEY=442CC1FE-4333-46CE-80EE 

-6705A1896832 node server.js

Preparing your code for production is discussed later in Chapter 10.

�Node.js Basics and Syntax
Node.js was built on top of the Google Chrome V8 engine and its ECMAScript, 

which means most of the Node.js syntax is similar to front-end JavaScript (another 

implementation of ECMAScript), including objects, functions, and methods. In this 

section, we look at some of the most important aspects—let’s call them Node.js/

JavaScript fundamentals:

•	 Loose typing

•	 Buffer—Node.js super data type Object literal notation

•	 Functions Arrays

•	 Prototypal nature Conventions

�Loose Typing
Automatic typecasting works well most of the time. It’s a great feature that saves a lot of 

time and mental energy! There are only a few types of primitives:

•	 String

•	 Number (both integer and real)

•	 Boolean

•	 Undefined

•	 Null

Everything else is an object. Class is an object. Function is an object. Array is an 

object. RegExp is an object. Objects are passed by reference whereas primitives are 

passed by values.

Chapter 1  Setting up Node.js and Other Essentials



13

Also, in JavaScript, there are String, Number, and Boolean objects that contain 

helpers for the primitives, as follows:

'a' === new String('a') *// false*

but

'a' === new String('a').toString() *// true*

or

'a' == new String('a') *// true*

By the way, == performs automatic typecasting, whereas === does not.

�Buffer—Node.js Super Data Type
Buffer is the data type. It is a Node.js addition to five primitives (boolean, string, 

number, undefined and null) and all-encompassing objects (arrays and functions are 

also objects) in front- end JavaScript. Think of buffers as extremely efficient data stores. 

In fact, Node.js tries to use buffers any time it can, such as when reading from a file 

system and when receiving packets over the network.

Buffer is functionally similar to JavaScript’s ArrayBuffer. We use the class name 

Buffer to work with buffer objects.

To create a buffer object, use from. Buffer can be created from an array, another 

buffer, ArrayBuffer or a string:

const bufFromArray = Buffer.from([0x62, 0x75, 0x66, 0x66, 0x65, 0x72])

console.log(bufFromArray.toString()) // "buffer"

const arrayBuffer = new Uint16Array(2)

arrayBuffer[0] = 5

arrayBuffer[1] = 7000

// Shares memory with `arrayBuffer`

const bufFromArrayBuffer = Buffer.from(arrayBuffer.buffer)

// Prints: <Buffer 05 00 58 1b>

console.log(bufFromArrayBuffer)

Chapter 1  Setting up Node.js and Other Essentials

https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/ArrayBuffer


14

// Changing the original Uint16Array changes the Buffer also

arrayBuffer[1] = 7001

// Prints: <Buffer 05 00 59 1b>

console.log(bufFromArrayBuffer)

As you saw in the preceding code, to convert Buffer to a string, you can use 

toString() method. By default, it will convert to UTF–8 encoding, but other encoding 

options are possible too, such as ASCII, HEX, or others:

const bufFromString = Buffer.from('¿Cómo está?')

console.log(bufFromString.toString('utf8')) // ¿Cómo está?

console.log(bufFromString.toString()) // ¿Cómo está?

console.log(bufFromString.toString('ascii')) // B?CC3mo estC!?

const bufFromHex = Buffer.from('c2bf43c3b36d6f20657374c3a13f', 'hex')

console.log(bufFromHex.toString()) // ¿Cómo está?

�Object Literal Notation
Node object notation is the same as JavaScript, which means it is super readable and 

compact:

const car = {

  color: "green",

  type: "suv",

  owner: {

    ...

  },

  drive: function() {

    ...

  }

}

Chapter 1  Setting up Node.js and Other Essentials



15

Node version 8 supports all the ES2015 (ES6) features, which allows developers to 

use new object literal syntax. This ES6 syntax makes defining objects so advanced that 

they resemble classes more than ES5 objects. For example, you can extend another 

object, define fields dynamically, invoke super() and use shorter syntax for functions:

const serviceBase = {

  port: 3000,

  url: 'azat.co'

}

const getAccounts = () => {

  return [1,2,3]

}

const accountService = {

  __proto__: serviceBase,

  getUrl() { // define method without "function"

    return "http://" + this.url + ':' + this.port

  },

  getAccounts() // define from an outer-scope function

  toString() { // overwrite proto method

    return JSON.stringify((super.valueOf()))

  },

  [ 'valueOf_' + getAccounts().join('_') ]: getAccounts()

}

console.log(accountService) // ready to be used

�Functions
In Node.js (as well as in JavaScript), functions are first-class citizens, and we treat them as 

variables, because they are objects! Yes, functions can even have properties/attributes. 

First, let’s learn how to define/create a function.

Chapter 1  Setting up Node.js and Other Essentials



16

�Define/Create a Function

The three most common ways to define/create a function are to use a named expression, 

an anonymous expression assigned to a variable, or both. The following is an example of 

a named expression:

function f() {

  console.log('Hi')

  return true

}

An anonymous function expression assigned to a variable looks as follows (note that 

it must precede the invocation, because the function is not hoisted, unlike the previous 

example):

const f = function() {

  console.log('Hi')

  return true

}

The new ES6 alternative of the anonymous function definition we just gave is a fat 

arrow function syntax. This new syntax has an added benefit of safer this due to its 

value always remaining an outer this:

// outer "this"

const f = () => {

  // still outer "this"

  console.log('Hi')

  return true

}

The following is an example of both approaches, anonymous and named:

const f = function f() {

  console.log('Hi')

  return true

}

Chapter 1  Setting up Node.js and Other Essentials



17

A function with a property (remember, functions are just objects that can be 

invoked/initialized) is as follows:

const f = function() {console.log('Boo')}

f.boo = 1

f() *//outputs Boo*

console.log(f.boo) *//outputs 1*

Note T he return keyword is optional. When it is omitted, the function returns 
undefined on invocation. I like to call functions with return, expressions  
(see upcoming section “Function Invocation vs. Expression”).

�Pass Functions as Parameters

JavaScript treats functions like any other objects, so we can pass them to other functions 

as parameters (usually, callbacks in Node.js):

const convertNum = function(num) {

  return num + 10

}

const processNum = function(num, fn) {

  return fn(num)

}

processNum(10, convertNum)

�Function Invocation vs. Expression

The function definition is as follows:

function f() {

}

On the other hand, the function invocation looks like the following:

f()

Chapter 1  Setting up Node.js and Other Essentials



18

Expression, because it resolves to some value (which could be a number, string, 

object, or boolean), is as follows:

function f() {

  return false

}

f()

A statement looks like this:

function f(a) {

  console.log(a)

}

There’s also an implicit return when you are using the fat arrow function. It works 

when there’s just one statement in a function:

const fWithImplicitReturn = (a,b) => a+b

�Arrays
Arrays are also objects that have some special methods inherited from the Array.

prototype (https://developer.mozilla.org/en-US/docs/Web/JavaScript/

Reference/Global_Objects/Array/prototype#Properties) global object. 

Nevertheless, JavaScript arrays are not real arrays; instead, they are objects with unique 

integer (usually 0-based) keys:

let arr = []

let arr2 = [1, "Hi", {a:2}, () => {console.log('boo')}]

let arr3 = new Array()

let arr4 = new Array(1,"Hi", {a:2}, () => {console.log('boo')})

arr4[3]() // boo

Chapter 1  Setting up Node.js and Other Essentials

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/prototype#Properties
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/prototype#Properties
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array


19

�Prototypal Nature
There are no classes in JavaScript because objects inherit directly from other objects, 

which is called prototypal inheritance. There are a few types of inheritance patterns in 

JavaScript:

•	 Classical

•	 Pseudoclassical

•	 Functional

This is an example of the functional inheritance pattern in which two function 

factories create objects user and agent:

let user = function (ops) {

  return { firstName: ops.firstName || 'John',

    lastName: ops.lastName || 'Doe',

    email: ops.email || 'test@test.com',

    name: function() { return this.firstName + this.lastName}

  }

}

let agency = function(ops) {

  ops = ops || {}

  var agency = user(ops)

  agency.customers = ops.customers || 0

  agency.isAgency = true

  return agency

}

With class introduced in ES2015 (ES6), things are somewhat easier, especially for 

object-oriented programmers. A class can be extended, defined, and instantiated with 

extends, class, and new.

For example, this base class has constructor and a method:

class baseModel {

  constructor(options = {}, data = []) { // class constructor

    this.name = 'Base'

Chapter 1  Setting up Node.js and Other Essentials



20

    this.url = 'http://azat.co/api'

    this.data = data

    this.options = options

  }

  getName() { // class method

    console.log(`Class name: ${this.name}`)

  }

}

Then we can create a new class using the base class. The new class will have all the 

functionality of a base class from which it inherits and then some more:

class AccountModel extends baseModel {

  constructor(options, data) {

    super({private: true}, ['32113123123', '524214691'])  

// call the parent method with super

    this.name = 'Account Model'

    this.url +='/accounts/'

  }

  get accountsData() { // calculated attribute getter

    // ... make XHR

    return this.data

  }

}

let accounts = new AccountModel(5)

accounts.getName()

console.log('Data is %s', accounts.accountsData)

The results will be:

Class name: Account Model

Data is %s 32113123123,524214691

Chapter 1  Setting up Node.js and Other Essentials



21

�Conventions
It’s important to follow the most common language conventions. Some of them are  

listed here:

•	 Semicolons

•	 camelCase

•	 Naming

•	 Commas

•	 Indentations

•	 Whitespace

These JavaScript/Node.js conventions (with semicolons being an exception) are 

stylistic and highly preferential. They don’t impact the execution; however, it’s strongly 

suggested that you follow one style consistently, especially if you are a developer working 

in teams and/or on open-source projects. Some open-source projects might not accept 

pull requests if they contain semicolons (e.g., npm) or if they don’t use comma-first style 

(e.g., request ).

�Semicolons

Almost all statements in JavaScript and thus Node.js must be terminated with a 

semicolon. However, JavaScript engines have an automatic semicolon insertion feature. 

It inserts semicolons for developers by following a set of language rules. As with any 

programming language, developers should learn the syntax rules. Typing extra symbols 

is counterproductive. Hence, the use of semicolons is optional and counter-productive.

Learn the rules of ASI and you’ll be more productive. Here’s my very short and 

probably not complete version of the rules. Do not use semicolons, except for these cases:

	 1.	 In loop constructions such as for (var i=0; i++; i<n)

	 2.	 When a new line starts with parentheses or square brace or 

regular expression, such as when using an immediately invoked 

function expression (IIFE): ;(function(){...}())

	 3.	 When doing something weird like empty statements (see Automatic 

semicolon insertion in JavaScript)

Chapter 1  Setting up Node.js and Other Essentials

http://2ality.com/2011/05/semicolon-insertion.html
http://2ality.com/2011/05/semicolon-insertion.html


22

In this, as well as in my other best-selling books such as React Quickly, or Full 

Stack JavaScript, I don’t use semicolons. There are a few reasons why. If you use 

semicolons and forget or omit one, then your code will still work, but you’ll end up with 

inconsistency, which will require a linter or a similar tool to check for your syntax. Let’s 

say you spotted a missing semicolon or saw a warning from a linter, then you need to go 

to your code and fix it. Why go through all this trouble?

Semicolon-less code works perfectly fine except for two cases shown prior and 

when you try to write multiple statements on one line. But developers should NOT 

write multiple statements in one line. That’s a job for a bundler/minimizer. The bottom 

line: I recommend that developers focus on their work and not on looking for missing 

semicolons when the language has a feature (Automatic Semicolon Insertion) to make 

semicolons redundant.

�camelCase

camelCase is the main naming pattern in JavaScript, except for class names, which are 

CapitalCamelCase. An example follows:

let MainView = Backbone.View.extend({...})

let mainView = new MainView()

�Naming

_ and $ are perfectly legitimate characters for literals (jQuery and Underscore libraries 

use them a lot). Private methods and attributes start with _ (it does nothing by itself 

because it’s just a code convention and not something enforced by the language).

�Commas

One in a while you might see comma-first style. An example of a comma-first style is as 

follows:

const obj = { firstName: "John"

  , lastName: "Smith"

  , email: "johnsmith@gmail.com"

}

Chapter 1  Setting up Node.js and Other Essentials



23

I recommend avoiding comma-first style. The erroneous (in my view) reason for 

using comma-first style is that it can make a developer’s work easier. But although it 

simplifies the removal of the last line, it complicates the removal of the first line.

Moreover, with ES2017/ES8 developers can use trailing commas in function calls (for 

arguments) in addition to object literals and arrays. I recommend using traditional style 

(with or without the trailing comma). This shows a trailing comma:

const obj = { firstName: "John",

  lastName: "Smith",

  email: "johnsmith@gmail.com", // trailing comma - okay

}

�Indentation

Indentation is usually done using either a tab, four- or two-space indentation, with 

supporting camps split almost religiously between the two options. I recommend using 

two spaces because it leaves more room on the screen and believe me, you’ll need all the 

width of your code editor due to nested promises and callbacks.

I recommend having the closing curly brackets on the same indentation level as the 

opening statement. It’ll be easier to find the matching brackets. For example, like this:

if (error) {

  console.error(error)

  process.exit(1)

}

�Whitespace

Usually, there is a space before and after the =, +, {, and } symbols. There is no space on 

invocation (e.g., arr.push(1); ). And there’s no space when we define an anonymous 

function: function() {}.

Chapter 1  Setting up Node.js and Other Essentials



24

For example, these function definition and invocation do not have space after word 

function but there’s space before and after = and +. This example puts the closing curly 

brace at the same level as the beginning of the logical block const.

const f = function(a, b) {

  return a + b

}

f(1, 2)

�Node.js Globals and Reserved Keywords
Despite being modeled after one standard, Node.js and browser JavaScript differ when 

it comes to globals. As you may know, in browser JavaScript we have a window object. 

However, in Node.js it is absent (obviously we don’t deal with a browser window), but 

developers are provided with new objects/keywords:

•	 process

•	 global

•	 module.exports and exports

So, let’s take a look at the main differences between Node.js and JavaScript.

�Node.js Process Information

Each Node.js script that runs is, in essence, a system process. For example, a POSIX 

(Linux, macOS, etc.) command ps aux | grep 'node' outputs all Node.js programs 

running on a machine. Conveniently, developers can access useful process information 

in code with the process object (e.g., node -e "console.log(process.pid)" ), as 

shown in Figure 1-5.

Chapter 1  Setting up Node.js and Other Essentials



25

�Accessing Global Scope in Node.js

Node.js is JavaScript, which is a good news for front-end developers who are already 

familiar with JavaScript. You’ll learn Node quickly. But there are huge differences when it 

comes to global objects. In a sense, the window object from front-end/browser JavaScript 

metamorphosed into a combination of global and process objects. Needless to say, 

the document object, which represents the DOM (Document Object Model) of the web 

page, is nonexistent in Node.js.

global can be accessed from anywhere. It has special methods, including the 

familiar to you console, setTimeout(), as well as new to you Node-specific  

global.process, global.require() and global.module.

Figure 1-5.  Node.js process examples using pid (process ID) and cwd (current 
working directory)

Chapter 1  Setting up Node.js and Other Essentials



26

Node.js has a lot of useful information and methods in global.process, including 

but not limited to the following:

•	 process.pid: This process’s ID

•	 process.argv: A list of command-line argument supplied to this 

process

•	 process.env: A list of environment variables

•	 process.platform: Platform name, such as darwin for macOS

•	 process.release: This Node’s release URL

•	 process.versions: A list of versions of Google Chrome V8, zlib,  

uv, etc.

•	 process.stdin(): The standard input (for reading)

•	 process.stdout(): The Standard output (for writing)

•	 process.uptime(): Time of how long this process is running

•	 process.memoryUsage(): Resident set size, total heap and used 

heap memory usage

•	 process.exit(): Terminating this process

•	 process.kill(): Termination of another process

�Exporting and Importing Modules

One of the bad parts of browser JavaScript is that there is no easy way to include other 

JavaScript files (modules), at least not until ES Modules become widely supported. Browser 

JavaScript files are supposed to be linked together using a different language (HTML), 

but everything from an included file is just run without name spacing and dependency 

management is hard because managing a lot of <script> tags and files is not fun.

CommonJS (http://www.commonjs.org) and RequireJS (http://requirejs.

org) solve this problem with the AJAX-y approach. ES6 solved the issue on the standard 

level, but lacks implementations. Node.js offers modules natively. No tools or hacks are 

needed. Node.js borrowed many things from the browser CommonJS concept but took 

the implementation steps further than CommonJS.

Chapter 1  Setting up Node.js and Other Essentials

https://github.com/nodejs/Release#release-schedule
http://www.commonjs.org
https://github.com/nodejs/Release#release-schedule
http://requirejs.org
http://requirejs.org


27

Node.js modules are simple to learn and use. They allow of import/export only 

specific targeted functionality, making name spacing easier, unlike when you include a 

browser JavaScript file with a <script> tag.

To export an object in Node.js, use exports.name = object;. An example follows:

const messages = {

  find: function(req, res, next) {

  ...

  },

  add: function(req, res, next) {

  ...

  },

  format: 'title | date | author'

}

exports.messages = messages

You can use let or var for messages in the module above, but const makes more 

sense since we are not updating this object, and can use an extra safety of const, which 

respects the logical scope and prevents re-declaration. const will still allow you to 

modify object properties.

While in the file where we import the aforementioned script (assuming the path and 

the file name is route/messages.js ), write the following:

const messages = require('./routes/messages.js')

However, sometimes it’s more fitting to invoke a constructor, such as when we attach 

properties to the Express.js app (which is explained in detail in a blog post Express.

js FUNdamentals: An Essential Overview of Express.js (http://webapplog.com/

express-js-fundamentals) [2013]). In this case, module.exports is needed:

module.exports = (app) => {

  app.set('port', process.env.PORT || 3000)

  app.set('views', __dirname + '/views')

  app.set('view engine', 'jade')

  return app

}

Chapter 1  Setting up Node.js and Other Essentials

https://github.com/nodejs/Release#release-schedule
https://github.com/nodejs/Release#release-schedule
http://webapplog.com/express-­js-­fundamentals
http://webapplog.com/express-­js-­fundamentals


28

In the file that includes the previous sample module, write:

...

let app = express()

const config = require('./config/index.js')

app = config(app)

...

The more succinct code is to skip the config variable declaration:

const express = require('express')

let app = express()

require('./config/index.js')(app)

The most common mistake when including modules is creating a wrong path 

to the file. For core Node.js modules, use the name without any path—for example, 

require('name'). The same goes for modules in the node_modules folder (more on 

this when we examine npm later in the chapter).

For all other files (i.e., not modules), use . with or without a file extension. An 

example follows:

const keys = require('./keys.js'),

  messages = require('./routes/messages.js')

In addition, for including files it’s advisable to use statements with __dirname and 

path.join() to insure the paths work across platforms. For example, to include a file 

messages.js in a routes folder, which itself is inside a folder where the currently running 

script is, use:

const messages = require(path.join(__dirname, 'routes',  

'messages.js'))

Using path.join() is a recommended approach, because path.join() will produce 

a path with valid slashes (forward or backward depending on your OS). You’ll also use 

absolute path, which will make require() behave in a more robust and predictable 

manner.

Chapter 1  Setting up Node.js and Other Essentials



29

Oh yeah, if require() points to a folder, Node.js attempts to read the index.js 

file in that folder. For example, the following statement will import file index.js in the 

folder routes/messages if there’s no file messages.js in routes:

const messages = require(path.join(__dirname, 'routes', 'messages'))

That’s not it. There’s another special Node variable related to paths.

�__dirname vs. process.cwd
__dirname is an absolute path to the folder with the source code script (a file in which 

the global variable is called), whereas process.cwd is an absolute path to the folder 

from which the process that runs the script was launched. They are the same in the 

example of node program.js.

The cwd value will be different from __dirname, if we started the program from a 

different folder. For example, for the process $ node ./code/program.js, __dirname 

will have code but cwd wont’ because it’ll be one folder above in the directory tree.

On POSIX systems (macOS, Linux, and its distributions), Node developers can also 

use process.env.PWD, which works similarly to process.cwd.

�Browser Application Programming Interface Helpers
There are myriad helper functions in Node.js from the browser JavaScript application 

programming interface (API). The most useful come from String, Array, and Math 

objects. To make you aware of their existence, or to remind you, here is a list of the most 

common functions and their meanings:

•	 Array

•	 some() and every(): Assertions for array items

•	 join() and concat(): Conversion to a string

•	 pop(), push(), shift(), and unshift(): Working with stacks 

and queues

•	 map(): Model mapping for array items

Chapter 1  Setting up Node.js and Other Essentials



30

•	 filter(): Querying array items

•	 sort(): Ordering items

•	 reduce(), reduceRight(): Computing

•	 slice(): Copying

•	 splice(): Removing

•	 indexOf(): Lookups of finding the value in the array

•	 reverse(): Reversing the order

•	 The in operator: Iteration over array items

•	 Math

•	 random(): random real number less than one

•	 String

•	 substr() and substring(): extracting substrings

•	 length: length of the string

•	 indexOf(): index of finding the value in the string

•	 split(): converting the string to an array

In addition, we have setInterval(), setTimeout(), forEach(), and console 

methods in Node.js. For the complete list of methods and examples of the String, 

Array and Math Node.js classes (really objects), visit the following Mozilla Developer 

Network documentation pages:

•	 String: https://developer.mozilla.org/en-US/docs/Web/

JavaScript/Reference/Global_Objects/String

•	 Array: https://developer.mozilla.org/en-US/docs/Web/

JavaScript/Reference/Global_Objects/Array

•	 Math: https://developer.mozilla.org/en-US/docs/Web/

JavaScript/Reference/Global_Objects/Math

Chapter 1  Setting up Node.js and Other Essentials

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math


31

�Node.js Core Modules
Unlike other programming technologies, Node.js doesn’t come with a heavy standard 

library. The core modules of Node.js are a bare minimum, and the rest can be cherry-

picked via the npm registry. The core is small but it has enough modules to build almost 

any networking application. Networking is at the core of Node.js!

The main (though not all) core modules, classes, methods, and events include the 

following:

•	 http (http://nodejs.org/api/http.html#http_http): Allows 

to create HTTP clients and servers

•	 util (http://nodejs.org/api/util.html): Has a set of utilities

•	 querystring (http://nodejs.org/api/querystring.html): 

Parses query-string formatted data

•	 url (http://nodejs.org/api/url.html): Parses URL data

•	 fs (http://nodejs.org/api/fs.html): Works with a file system 

(write, read)

Let’s dive deeper into each of these core modules.

�http (http://nodejs.org/api/http.html)

http is the main module responsible for the Node.js HTTP server. The main methods 

are as follows:

•	 http.createServer(): Returns a new web server object

•	 http.listen(): Begins accepting connections on the specified port 

and hostname

•	 http.createClient(): Creates a client and makes requests to other 

servers

•	 http.ServerRequest(): Passes incoming requests to request 

handlers

Chapter 1  Setting up Node.js and Other Essentials

http://nodejs.org/api/http.html#http_http
http://nodejs.org/api/util.html
http://nodejs.org/api/querystring.html
http://nodejs.org/api/url.html
http://nodejs.org/api/fs.html
http://nodejs.org/api/http.html)
http://nodejs.org/api/http.html)


32

•	 data: Emitted when a part of the message body is received

•	 end: Emitted exactly once for each request

•	 request.method(): Returns the request method as a string

•	 request.url(): Returns the request URL string

•	 http.ServerResponse(): Creates this object internally by an 

HTTP server—not by the user —and is used as an output of request 

handlers

•	 response.writeHead(): Sends a response header to the request

•	 response.write(): Sends a response body

•	 response.end(): Sends and ends a response body

�util (http://nodejs.org/api/util.html)

The util module provides utilities for debugging. One method is as follows:

•	 util.inspect(): Returns a string representation of an object, which 

is useful for debugging

�querystring (http://nodejs.org/api/querystring.html)

The querystring module provides utilities for dealing with query strings. Some of the 

methods include the following:

•	 querystring.stringify(): Serializes an object to a query string

•	 querystring.parse(): Deserializes a query string to an object

�url (http://nodejs.org/api/url.html)

The url module has utilities for URL resolution and parsing. One method is as follows:

•	 parse(): Takes a URL string and returns an object

Chapter 1  Setting up Node.js and Other Essentials

http://nodejs.org/api/util.html)
http://nodejs.org/api/util.html)
http://nodejs.org/api/querystring.html)
http://nodejs.org/api/querystring.html)
http://nodejs.org/api/url.html)
http://nodejs.org/api/url.html)


33

�fs (http://nodejs.org/api/fs.html)

fs handles file system operations such as reading to and writing from files. There are 

synchronous and asynchronous methods in the library. Some of the methods include 

the following:

•	 fs.readFile(): Reads files asynchronously

•	 fs.writeFile(): Writes data to files asynchronously

There is no need to install or download core modules. To include them in your 

application, all you need is to use the following syntax:

const http = require('http')

Node comes with core modules, but most developers rely on the vast ecosystem of 

community- created FOSS (free and open-source) modules. These modules often allow 

developers to not write code because a module has all the functionality needed. With 

large number of modules, it’s important to find just the right one for the job. The best 

place to start your search for a module is your favorite search engine such as Google, 

Bing, or DuckDuckGo. A list of noncore modules is found at the following locations:

•	 npm search: https://www.npmjs.com/browse/keyword/search: 

The main npm search by npm itself

•	 node-modules.com (http://node-modules.com): Search for npm

•	 npms.io (https://npms.io): Another search for npm

�Handy Node.js Utilities
Although the core of the Node.js platform was, intentionally, kept small, it has some 

essential utilities, including the following:

•	 Crypto (http://nodejs.org/api/crypto.html): Has randomizer, 

MD5, HMAC-SHA1, and other algorithms

•	 Path (http://nodejs.org/api/path.html): Handles system 

paths

•	 String decoder (http://nodejs.org/api/string_decoder.

html): Decodes to and from Buffer and String types

Chapter 1  Setting up Node.js and Other Essentials

http://nodejs.org/api/fs.html)
http://nodejs.org/api/fs.html)
http://www.npmjs.com/browse/keyword/search
http://www.npmjs.com/browse/keyword/search
http://node-modules.com
http://node-modules.com
https://npms.io
https://npms.io
http://nodejs.org/api/crypto.html)
http://nodejs.org/api/crypto.html
http://nodejs.org/api/path.html)
http://nodejs.org/api/path.html
http://nodejs.org/api/string_decoder.html
http://nodejs.org/api/string_decoder.html
http://nodejs.org/api/string_decoder.html


34

The method we use throughout is path.join and it concatenates the path using an 

appropriate folder separator ( / or \\ ).

�Reading to and Writing from the File System in Node.js
Reading from files is done via the core fs module (http://nodejs.org/api/fs.html). 

There are two sets of reading methods: async and sync. In most cases, developers should 

use async methods, such as fs.readFile (http://nodejs.org/api/fs.html#fs_

fs_readfile_filename_options_callback):

const fs = require('fs')

const path = require('path')

fs.readFile(path.join(__dirname,

  '/data/customers.csv'),

  {encoding: 'utf-8'}, (err, data) => {

  if (err) {

    console.error(err)

    process.exit(1)

  } else {

    console.log(data)

  }

})

To write to the file, execute the following:

const fs = require('fs')

fs.writeFile('message.txt',

  'Hello World!', (err) => {

  if (err) {

    console.error(err)

    process.exit(1)

  } else {

    console.log('Writing is done.')

  }

})

Chapter 1  Setting up Node.js and Other Essentials

http://nodejs.org/api/fs.html
http://nodejs.org/api/fs.html
http://nodejs.org/api/fs.html#fs_fs_readfile_filename_options_callback
http://nodejs.org/api/fs.html#fs_fs_readfile_filename_options_callback


35

�Streaming Data in Node.js
Streaming Data in Node.js means processing data by Node.js application while 

transmission is in progress. Node supports streams. This feature is useful for extra large 

datasets, such as video or database migrations.

Here’s a basic example of using streams that reads a file as a stream and outputs the 

binary file content back to the standard output:

const fs = require('fs')

fs.createReadStream('./data/customers.csv').pipe(process.stdout)

By default, Node.js uses buffers for streams. For more immersive instruction, take 

a look at stream-adventure (http://npmjs.org/stream-adventure) and Stream 

Handbook (https://github.com/substack/stream-handbook).

�Installing Node.js Modules with npm
npm comes with the Node.js platform and allows for seamless Node.js package 

management. The way npm install works is similar to Git in the way it traverses 

the working tree to find a current project (https://npmjs.org/doc/files/npm-

folders.html). For starters, keep in mind that we need either the package.json file 

or the node_modules folder to install modules locally with $ npm install name. For 

example, to import superagent first install it with $ npm install superagent and 

then in the program.js write: const superagent = require('superagent') to 

import the superagent module.

The best thing about npm is that it keeps all the dependencies local, so if module 

A uses module B v1.3, and module C uses module B v2.0 (with breaking changes 

compared with v1.3), both A and C will have their own localized copies of different 

versions of B. This proves to be a more superior strategy than that of Ruby and other 

platforms that use global installations by default.

The best practice is not to include a node_modules folder in the Git repository when 

the project is a module that is supposed to be used in other applications. However, 

it’s recommended to include node_modules for deployable applications to prevent 

breakage caused by unfortunate dependency updates.

Chapter 1  Setting up Node.js and Other Essentials

http://npmjs.org/stream-adventure)
https://github.com/substack/stream-handbook
https://github.com/substack/stream-handbook
https://github.com/substack/stream-handbook
https://npmjs.org/doc/files/npm-folders.html
https://npmjs.org/doc/files/npm-folders.html
https://npmjs.org/doc/files/npm-folders.html
https://npmjs.org/doc/files/npm-folders.html


36

Note T he npm creator likes to call it npm lowercase (http://bit.
ly/2MRRakD).

�Taming Callbacks in Node.js
Callbacks (https://github.com/maxogden/art-of-node#callbacks) are able to 

make Node.js code asynchronous, yet programmers unfamiliar with JavaScript, who 

work with Java or PHP, might be surprised when they see Node.js code described on 

Callback Hell (http://callbackhell.com):

fs.readdir(source, (err, files) => {

  if (err) {

    console.log('Error finding files: ' + err)

  } else {

    files.forEach((filename, fileIndex) => {

      console.log(filename)

      gm(source + filename).size((err, values) => {

        if (err) {

          console.log('Error identifying file size: ' + err)

        } else {

          console.log(filename + ' : ' + values)

          aspect = (values.width / values.height)

          widths.forEach((width, widthIndex) => {

            height = Math.round(width / aspect)

            console.log('resizing ' + filename + 'to ' + height + 'x' 

+ height)

            this.resize(width, height).write(destination + 'w' + 

width + '_' + filename, (err) => {

              if (err) console.log('Error writing file: ' + err)

            })

          }.bind(this))

        }

      })

Chapter 1  Setting up Node.js and Other Essentials

http://bit.ly/2MRRakD)
http://bit.ly/2MRRakD)
http://bit.ly/2MRRakD)
https://github.com/maxogden/art-of-node#callbacks
https://github.com/maxogden/art-of-node#callbacks
http://callbackhell.com
http://callbackhell.com


37

    })

  }

})

There’s nothing to be afraid of here as long as two-space indentation is used. ;-) 

However, callback code can be rewritten with using event emitters or promises, or using 

the async library (see Chapter 14).

�Hello World Server with HTTP Node.js Module
Although Node.js can be used for a wide variety of tasks, it’s used primarily for building 

networking applications including web apps. Node.js thrives in networks as a result of its 

asynchronous nature and built-in modules such as net and http.

Here’s a quintessential Hello World example in which we create a server object, 

define the request handler (function with req and res arguments), pass some data back 

to the recipient, and start up the whole thing ( hello.js ):

const http = require('http')

const port = 3000

http.createServer((req, res) => {

  res.writeHead(200, {'Content-Type': 'text/plain'})

  res.end('Hello World\n')

}).listen(port, () => {

  console.log(`Server running at http://localhost:${port}`)

})

Let’s break it down a bit (if you know this already, skip to the next section). The 

following loads the core http module for the server (more on the modules later):

const http = require('http')

const port = 3000

This snippet below creates a server with a callback function that contains the 

response handler code:

const server = http.createServer((req, res) => {

To set the right header and status code, use the following:

  res.writeHead(200, {'Content-Type': 'text/plain'})

Chapter 1  Setting up Node.js and Other Essentials



38

To output Hello World with the line end symbol, use

  res.end('Hello World\n')

})

The req and res arguments have all the information about a given HTTP request 

and response correspondingly. In addition, req and res can be used as streams (see the 

previous section).

To make the server accept requests, use the following:

}).listen(port, () => {

  console.log(`Server running at http://localhost:${port}`)

})

From the folder in which you have server.js, launch in your terminal the following 

command:

$ node server.js

Open localhost:3000 (http://localhost:3000) or 127.0.0.1:3000 

(http://127.0.0.1:3000) or any other address you see in the terminal as a result of the 

console.log() function, and you should see Hello World in a browser. To shut down the 

server, press Control+C (on macOS X).

Note T he name of the main file could be different from server.js (e.g., 
index.js or app.js ). In case you need to launch the app.js file, just use  
$ node app.js.

�Debugging Node.js Programs
Modern-day software developers, especially those who use compiled languages such as 

Java, have gotten accustomed to rich tool sets for debugging purposes. Back in the day, 

before JavaScript and AJAX apps were starting to gain momentum (~2005–2007), the 

only way to debug was to put a bunch of alert() statements everywhere.

Chapter 1  Setting up Node.js and Other Essentials



39

Now, there are amazing environments such as Chrome Developer Tools and Firefox 

Firebug, and because Node.js has a lot of things in common with the browser JavaScript 

environment, we have plenty of options for debugging in Node.js, including the 

following:

•	 Core Node.js Debugger: A non-graphic user interface (non-GUI) 

minimalistic tool that works everywhere

•	 Node Inspector: Port of Google Chrome Developer Tools

•	 IDEs: WebStorm, VS Code and other IDEs (covered in the next 

section)

�Core Node.js Debugger
The best debugger is console.log(), because it doesn’t break/interrupt the flow, 

and it is fast and informative. However, to use it, we first need to know where to put it. 

Sometimes, we just don’t know where to put the logs! Other times, we need to see the 

call stack and orient ourselves in the async code a bit more. To do this, put debugger 

statements in your code and use $ node inspect program.js to start the debugging 

process (http://nodejs.org/api/debugger.html).

For example, the Hello World from the previous section can be enhanced with 

debugger in two places: when an instance is created and when a request is made  

(hello-debug.js):

const http = require('http')

const port = 3000

debugger

http.createServer((req, res) => {

  res.writeHead(200, {'Content-Type': 'text/plain'})

  debugger

  res.end('Hello World\n')

}).listen(3000, () => {

  console.log(`Server running at http://localhost:${port}`)

})

Chapter 1  Setting up Node.js and Other Essentials

http://nodejs.org/api/debugger.html)
http://nodejs.org/api/debugger.html)
http://nodejs.org/api/debugger.html)


40

Now, if we run the previous snippet (hello-debug.js), just like we did earlier  

($ node hello-debug.js), nothing changes, because we need to use $ node 

inspect hello-debug.js. And only then the execution will halt at the first line, and 

then again on the next debugger statement if we use the cont command.

The main node debug commands are as follows:

•	 next, n: step to the next statement

•	 cont, c: continue until the next debugger/break point

•	 step, s: step inside the function call

•	 out, o: step outside the function call

•	 watch(expression): watch the expression

The full list of commands is available through the help command or on the official 

web site (http://nodejs.org/api/debugger.html).

So, in our example ( hello-debug.js ), after we start the debugger client and 

execute cont or c twice (first for the first line, and second for our debugger on the 

second line), the server will be up and running. After that, we can open the browser at 

http://localhost:3000 or execute $ curl "http://localhost:3000/" in the 

Terminal/Command line, and the debugger client stops inside the request handler (line 

5). Now we can type repl and console.log(req) to inspect the HTTP response object 

dynamically.

�Debugging with Node Inspector
The built-in Node.js debugger client is extensive, but it’s not intuitive because of the lack 

of a GUI. Therefore, for a more developer-friendly interface than the core Node.js  

debugger provides, Node Inspector comes to the rescue! Node Inspector is the  

node-inspector npm module (https://github.com/node-inspector/node-

inspector).

To download and install Node Inspector, we use our beloved npm in the global mode 

( -g or –global ):

$ npm install -g node-inspector

Then, we start Node Inspector with the following (Figure 1-6):

$ node-inspector

Chapter 1  Setting up Node.js and Other Essentials

http://nodejs.org/api/debugger.html)
http://nodejs.org/api/debugger.html)
http://nodejs.org/api/debugger.html)
https://github.com/node-inspector/node-inspector
https://github.com/node-inspector/node-inspector
https://github.com/node-inspector/node-inspector


41

Figure 1-6.  Running the Node Inspector tool

Now start the program in a new terminal window/tab/session with -–debug or 

--debug-brk flags (not just debug; see Figure 1-7). For example:

$ node --debug-brk hello-debug.js

or

$ node --debug hello-debug.js

Chapter 1  Setting up Node.js and Other Essentials



42

Figure 1-7.  Running node server in -–debug mode

Chapter 1  Setting up Node.js and Other Essentials



43

Open http://127.0.0.1:8080/debug?port=5858 (or http://localhost:8080/ 

debug?port=5858) in Chrome (it must be Chrome and not another browser because 

Node Inspector uses the Web Developer Tools interface). You should be able to see the 

program halted at a breakpoint. Clicking the blue play button resumes the execution, as 

shown in Figure 1-8.

Figure 1-8.  Resuming execution in Node Inspector

If we let the server run and open http://localhost:1337/ in a new browser tab, 

this action pauses the execution on the second breakpoint, which is inside the request 

handler. From here, we can use Node Inspector’s right GUI and add a res watcher 

(Figure 1-9), which is way better than the terminal window output!

Chapter 1  Setting up Node.js and Other Essentials

http://127.0.0.1:8080/debug?port=5858


44

Figure 1-9.  Inspecting the res object in Node Inspector

Chapter 1  Setting up Node.js and Other Essentials



45

�Node.js IDEs and Code Editors
One of the best things about Node.js is that you don’t need to compile the code, because 

it’s loaded into memory and interpreted by the platform! Therefore, a lightweight text 

editor is highly recommended, such as Sublime Text (Figure 1-11), vs. a full-blown 

IDE. However, if you are already familiar and comfortable with the IDE of your choice, 

such as Eclipse (http://www.eclipse.org), NetBeans (http://netbeans.org), or 

Aptana (http://aptana.com), feel free to stick with it.

Figure 1-10.  Writing to response (i.e., the res object) from the Node Inspector 
console

In addition, we can follow the call stack, explore scope variables, and execute any 

Node.js command in the console tab (see Figure 1-10)!

Chapter 1  Setting up Node.js and Other Essentials

http://www.eclipse.org
http://www.eclipse.org
http://netbeans.org
http://netbeans.org
http://aptana.com
http://aptana.com


46

The following is a list of the most popular text editors and IDEs used in web 

development:

•	 Visual Studio Code (https://code.visualstudio.com/nodejs): 

A free, cross-platform, feature-rich editor by Microsoft powered by 

Node.js. It includes a built-in terminal, Node.js debugging, and lots of 

handy extensions (Figure 1-12). I highly recommend using this editor! 

(At least until something new comes out in the next few years.)

Figure 1-11.  Sublime Text code editor home page

Chapter 1  Setting up Node.js and Other Essentials

https://code.visualstudio.com/nodejs
https://code.visualstudio.com/nodejs


47

•	 Atom (https://atom.io): A free, cross-platform editor by GitHub 

(also powered by Node.js) comparable to Visual Studio Code.

•	 TextMate (http://macromates.com): Editor for macOS, free  

30-day trial for v1.5, dubbed The Missing Editor for macOS.

•	 Sublime Text (http://www.sublimetext.com): Editor for macOS 

and Windows, an even better alternative to TextMate, with an 

unlimited evaluation period

•	 Coda (http://panic.com/coda): An all-in-one editor with an FTP 

browser and preview, has support for development with an iPad

•	 Aptana Studio (http://aptana.com): A full-size IDE with a  

built-in terminal and many other tools

Figure 1-12.  VS Code has intelligent autocomplete based on the object type/class/
library as well as many other features

Chapter 1  Setting up Node.js and Other Essentials

https://atom.io
https://atom.io
http://macromates.com
http://macromates.com
http://www.sublimetext.com
http://www.sublimetext.com
http://panic.com/coda)
http://panic.com/coda)
http://aptana.com
http://aptana.com


48

•	 Notepad++ (http://notepad-plus-plus.org): A free, Windows-

only lightweight text editor with the support of many languages

•	 WebStorm IDE (http://www.jetbrains.com/webstorm):  

A feature-rich IDE that allows for Node.js debugging, developed by 

JetBrains and marketed as “the smartest JavaScript IDE” (Figure 1-13)

Figure 1-13.  WebStorm IDE work space

For most developers, a simple code editor such as Sublime Text 2, TextMate, or 

Emacs is good enough. However, for programmers who are used to working in IDEs, 

there’s WebStorm by JetBrains (http://www.jetbrains.com/webstorm). For an 

example of the WebStorm work space, see Figure 1-13.

Chapter 1  Setting up Node.js and Other Essentials

http://notepad-plus-plus.org
http://notepad-plus-plus.org
http://www.jetbrains.com/webstorm)
http://www.jetbrains.com/webstorm)
http://www.jetbrains.com/webstorm


49

�Watching for File Changes
If you are familiar with tools that are watching for file changes and restarting Node apps, 

or if it’s not an issue for you, feel free to skip this section. All other developers must pay 

attention.

Node.js applications are stored in memory, and if we make changes to the source 

code, we need to restart the process (i.e., node). We do this manually by killing the 

process and starting a new one (Control+C on macOS and Ctrl+C on Windows).

However, it’s faster for development if this constant sequence of restarts is 

automated. There are brilliant tools that leverage the watch method (http://bit.ly/ 

2xPKCgr) from the core Node.js fs module and restart servers when we save changes 

from an editor:

•	 node-dev (https://npmjs.org/package/node-dev):  

A development tool to restart your Node servers

•	 nodemon (https://npmjs.org/package/nodemon): Another 

development tool to restart your Node servers

•	 supervisor (https://npmjs.org/package/supervisor):  

A tool which was used in production to restart your Node servers, but 

which can be used in development as well

•	 pm2-dev (http://npmjs.org/pm2): A development version of the 

production-level pm2 tool

•	 forever (http://npmjs.org/forever): A production tool similar to 

pm2 but older (we examine this topic in Chapter 11)

Any one of these tools is as easy to use as installing globally with $ npm install -g 

node-dev, then running the Node.js script with $ node-dev program.js. Just replace 

node-dev with another module name.

For a comparison between these tools, refer to Comparison: Tools to Automate 

Restarting Node.js Server After Code Changes (http://bit.ly/2QSEDAm).

Chapter 1  Setting up Node.js and Other Essentials

http://bit.ly/2xPKCgr
http://bit.ly/2xPKCgr
https://npmjs.org/package/node-dev
https://npmjs.org/package/node-dev
https://npmjs.org/package/nodemon
https://npmjs.org/package/nodemon
https://npmjs.org/package/supervisor
https://npmjs.org/package/supervisor
http://npmjs.org/pm2)
http://npmjs.org/pm2
http://npmjs.org/forever
http://npmjs.org/forever
http://bit.ly/2QSEDAm
http://bit.ly/2QSEDAm
http://bit.ly/2QSEDAm


50

Tip I t’s good to know that Express.js reloads a template file for every new 
request by default. So, no server restart is necessary. However, we can cache 
templates by enabling the view cache setting. For more on Express.js setting, 
take a look at one of the best books I ever wrote Pro Express.js 4 (Apress, 2014) at 
http://amzn.to/1D6qiqk.

�Summary
In this chapter, we explored Installing Node.js and npm, and launching Node.js scripts 

from the command line. We also looked at the essential concepts of Node.js syntax and 

the platform. Lastly, I provided the lists of Node.js IDEs and libraries for development 

were provided.

In the next chapter, we dive deep into using the most popular Node.js framework for 

creating web apps.

Chapter 1  Setting up Node.js and Other Essentials

http://amzn.to/1D6qiqk


51
© Azat Mardan 2018 
A. Mardan, Practical Node.js, https://doi.org/10.1007/978-1-4842-3039-8_2

CHAPTER 2

Using Express.js to Create 
Node.js Web Apps
It’s only logical that, by using frameworks, software engineers become more productive 

and can achieve results faster. Often, the results are of a better quality because the 

frameworks are used and maintained by many other developers and contributors. Even 

if developers build everything from scratch, they end up with their own framework in the 

end. It's just a very customized one!

Node.js is a relatively young platform when it comes to frameworks (unlike Ruby 

or Java), but there's already a leader that has become a de facto standard used in the 

majority of Node.js projects: Express.js.

Express.js is an amazing framework for Node.js projects, and it's used in the majority 

of web apps, which is why this second chapter is dedicated to getting started with this 

framework.

In this chapter we cover the following topics, which serve as an introduction to 

Express.js:

•	 What Express.js is

•	 How Express.js works

•	 Express.js Installation

•	 Express.js scaffolding (command-line tool)

•	 The Blog Project overview

•	 Express.js Hello World example



52

�What Is Express.js?
Express.js is a web framework based on the core Node.js http module and Connect 

(http://www.senchalabs.org/connect) components. The components are 

called middleware and they are the cornerstones of the framework philosophy, 

which is configuration over convention. In other words, Express.js systems are highly 

configurable, which allows developers to freely pick whatever libraries they need for a 

particular project. For these reasons, the Express.js framework leads to flexibility and 

high customization in the development of web applications.

If you write serious Node web apps using only core Node.js modules (refer to the 

following snippet for an example), you most likely find yourself reinventing the wheel by 

writing the same code continually over and over for similar boring mundane tasks, such 

as the following:

•	 Parsing of HTTP request bodies Parsing of cookies

•	 Getting information from URL

•	 Reading query string data from URLs or request bodies (payloads) 

Managing web sessions

•	 Organizing routes with a chain of if conditions based on URL paths 

and HTTP methods of the requests

•	 Determining proper response headers based on data types

The list could go on and on, but a good example is worth hundreds of words. To 

illustrate my point, here is an example of a two-route representational state transfer 

(REST) API server, i.e., we have only two endpoints and they are also called routes. In this 

application, we use only core Node.js modules for server functions. A single "userland"/

external module native MongoDB driver is used for persistence. This example is taken 

from my another best selling book on Node, beginner-friendly Full Stack JavaScript, 2nd 

Edition (https://github.com/azat-co/fullstack-javascript) (Apress, 2018). 

Pay attention to how I had to use if/else and parse the incoming data.

const http = require('http')

const util = require('util')

const querystring = require('querystring')

const mongo = require('mongodb')

Chapter 2  Using Express.js to Create Node.js Web Apps

http://www.senchalabs.org/connect
http://www.senchalabs.org/connect)
https://en.wikipedia.org/wiki/Representational_state_transfer
https://en.wikipedia.org/wiki/Representational_state_transfer
https://github.com/azat-co/fullstack-javascript
https://github.com/azat-co/fullstack-javascript
https://github.com/azat-co/fullstack-javascript


53

const host = process.env.MONGOHQ_URL ||

    'mongodb://@127.0.0.1:27017'

// MONGOHQ_URL=mongodb://user:pass@server.mongohq.com/db_name

mongo.Db.connect(host, (error, client) => {

  if (error) throw error;

  let collection = new mongo.Collection(

    client,

    'test_collection'

  );

  let app = http.createServer(

    (request, response) => {

      if (

        request.method === 'GET' &&

        request.url === '/messages/list.json'

      ) {

        collection.find().toArray((error, results) => {

          response.writeHead(

            200,

            {'Content-Type': 'text/plain'}

          );

          console.dir(results);

        response.end(JSON.stringify(results));

        });

      };

      if (request.method === "POST" &&

        request.url === "/messages/create.json"

      ) {

        request.on('data', (data) => {

          collection.insert(

            querystring.parse(data.toString('utf-8')),

            {safe: true},

            (error, obj) => {

            if (error) throw error;

            response.end(JSON.stringify(obj));

            }

Chapter 2  Using Express.js to Create Node.js Web Apps



54

          );

        });

      };

    }

  );

  const port = process.env.PORT || 5000

  app.listen(port)

})

As you can see, developers have to do a lot of manual work themselves, such as 

interpreting HTTP methods and URLs into routes, and parsing input and output data. 

And I didn’t even use URL parameters such as /message/ID. Not nice!

Express.js solves these and many other problems as abstraction and code 

organization. The framework provides a model-view-controller-like (MVC-like) structure 

for your web apps with a clear separation of concerns (views, routes, models).

For the models (the M in MVC), we can use Mongoose (http://mongoosejs.com) 

or Sequelize (http://sequelizejs.com) libraries in addition to Express.js—more on 

this later in the book in Chapter 7. In this chapter we'll cover just the basics of Express.js. 

This will be enough for you to start building your own small Express apps.

Built on top this framework, Express.js applications can vary from bare-bones, 

back-end-only REST APIs to full-blown, highly scalable, full-stack (with jade-browser 

(https://npmjs.org/package/jade-browser) and Socket.IO (http://socket.io)) 

real-time web apps. To give some analogies to developers who are familiar with Ruby 

and Ruby on Rails, Ruby on Rails is convention over configuration. Other frameworks 

like Sails and Loopback are more like Ruby’s Ruby on Rails framework. Express.js on 

the other hand is often seen as another Ruby framework Sinatra, which has a very 

different approach to the Ruby on Rails framework. Express.js and Sinatra promote 

configurability, whereas Ruby on Rails promotes convention over configuration.

Although Express.js is one of the most popular libraries on npm (16 million 

downloads only for June 2018), and is the most mature and most used Node.js framework, 

the playing field is still relatively level with many different frameworks, and new ones are 

released every month. Some of them, such as Meteor (http://meteor.com) and Hapi 

(https://www.npmjs.com/package/hapi), show an interesting trend in attempts to 

merge front-end and back-end code bases. For a hand-picked list of Node.js frameworks, 

refer to the Node Framework (http://nodeframework.com) resource.

Chapter 2  Using Express.js to Create Node.js Web Apps

http://mongoosejs.com
http://mongoosejs.com
http://sequelizejs.com
http://sequelizejs.com
https://www.npmjs.com/package/jade-browser
https://npmjs.org/package/jade-
http://socket.io
http://socket.io
http://meteor.com
http://meteor.com
https://www.npmjs.com/package/hapi
http://www.npmjs.com/package/hapi)
http://nodeframework.com
http://nodeframework.com


55

When evaluating a Node.js framework for your project, use these easy steps to  

guide you:

•	 Build a sample app, which is usually provided by the creators of 

frameworks on GitHub or official web sites. See how the app feels in 

terms of styles and patterns.

•	 Consider the type of application you're building: prototype, 

production app, minimum viable product (MVP), small scale, large 

scale, and so on.

•	 Consider the libraries already familiar to you and determine whether 

you can or plan to reuse them, and whether your framework plays 

nicely with them. Provide out-of-the-box solutions: template engines, 

database object-relational mapping (http://en.wikipedia.org/

wiki/Object-relational_mapping) libraries (ORMs)/drivers, 

Cascading Style Sheets (http://en.wikipedia.org/wiki/

Cascading_Style_Sheets) (CSS) frameworks.

•	 Consider the nature of your application: REST API (with a separate 

front-end client), a traditional web app, or a traditional web app with 

REST API endpoints (such as Blog).

•	 Consider whether you need the support of reactive templates with 

WebSocket from the get-go (or use the Meteor framework).

•	 Evaluate the number of stars and follows on npm and GitHub to 

judge the popularity of the framework. More popular typically means 

more blog posts, books, screencasts, tutorials, and programmers 

exist; less popular means it’s a newer framework, a niche/custom 

choice, or a poor choice. With newer frameworks, there is a greater 

chance that contributing back to them will be valued, so pick your 

comfortable spot.

•	 Evaluate npm, GitHub pages, and a framework's website for the 

presence of good API documentation with examples or open issues/

bugs. If there are more than a few hundred, depending on popularity, 

this may not be a good sign. Also, determine the date of the last 

commit on the GitHub repository. Anything older than six months is 

not a good sign.

Chapter 2  Using Express.js to Create Node.js Web Apps

http://en.wikipedia.org/wiki/Object-relational_mapping
http://en.wikipedia.org/wiki/Object-relational_mapping
http://en.wikipedia.org/wiki/Cascading_Style_Sheets)
http://en.wikipedia.org/wiki/Cascading_Style_Sheets)


56

�How Express.js Works
Express.js usually has an entry point, a.k.a., the main file. The names of this file typically 

are server.js, app.js or index.js. Most of the time, this is the file that we start with 

the node command, or export it as a module, in some cases. And in this file, we do the 

following:

	 1.	 Include third-party dependencies as well as our own modules, 

such as controllers, utilities, helpers, and models

	 2.	 Configure Express.js app settings, such as template engine and its 

file extensions

	 3.	 Connect to databases such as MongoDB, Redis, or MySQL 

(optional)

	 4.	 Define middleware such as error handlers, static file folder, 

cookies, and other parsers

	 5.	 Define routes

	 6.	 Start the app

	 7.	 Export the app as a module (optional)

When the Express.js app is running, it's listening to requests. Each incoming  

request is processed according to a defined chain of middleware and routes, starting from 

top to bottom. This aspect is important in controlling the execution flow. For example, 

routes/middleware that are higher in the file have precedence over the lower definitions.

Because we can have multiple middleware functions processing each HTTP request, 

some of the functions are in the middle (hence the name middleware). Here are some 

examples of middleware purposes:

	 1.	 Parse cookie information and put it in request object for 

following middleware/routes.

	 2.	 Parse parameters from the URL and put it in request object for 

following middleware/routes.

Chapter 2  Using Express.js to Create Node.js Web Apps



57

	 3.	 Get the information from the database based on the value of the 

parameter, if the user is authorized (cookie/session), and put it in 

request object for following middleware/routes.

	 4.	 Authorize users/requests (or not).

	 5.	 Display the data and end the response.

�Express.js Installation
The Express.js app can be created using two methods:

	 1.	 express-generator: A global npm package that provides 

the command-line tool for rapid app creation (scaffolding)—

recommended for quick prototyping and server-side rendering 

(thick server) apps.

	 2.	 express: A local package module in your Node.js app's  

node_modules folder— recommended for any project which 

needs to import express with require() or import.

�Express.js Generator Version
Before we proceed with installations, let's check the Express.js versions. We'll use an 

exact version 4.15.4 to avoid confusion resulting from potential future changes to the 

Express.js skeleton-generating mechanism and the module API.

For the Express.js Generator, which is a separate module, we'll use version 4.15.5, 

which is compatible with Express.js 4.15.5 and most likely with any other Express version 

which starts with number 4. Luckily, Express Generator will write the version of express 

it needs in package.json so we, developers, don’t have to preoccupy ourselves too 

much with keeping versions compatible.

If you already have Express Generator, then check the version with $ express -V. 

Yes, the actual command for Express Generator is confusingly enough is not express-

generator like its npm name but just express. WHAT?! Go figure… Subsequently, any 

Express Generator commands are invoked with express NAME.

Chapter 2  Using Express.js to Create Node.js Web Apps



58

You can uninstall generator using $ sudo npm uninstall -g express-

generator. Or $ sudo npm uninstall -g express for Express.js 2.x and 3.x 

because before, version 4.x, Express.js Generator was a part of the Express.js module 

itself. After you've uninstalled the older versions, install the proper version with the next 

section's commands.

Alternatively, you can just install a new version, and it should overwrite any prior 

installations. Here’s the command to install the latest version:

npm i -g express-generator@latest

Let’s see some other ways to install Express Generator.

�Express.js Generator Installation
To install the Express.js Generator as global package, run $ npm install -g express-

generator@4.15.5 from anywhere on your computer. This downloads and links 

the $ express terminal command to the proper path, so that later we can access its 

command-line interface (CLI) for the creation of new apps.

Note  For macOS and Linux users, if there is an error installing globally, most 
likely your system requires root/administrator rights to write to the folder. In this 
case, $ sudo npm install -g express-generator@4.15.0 might 
be needed. Refer to Chapter 1 for more information on changing npm ownership.

Of course, we can be more vague and tell npm to install the latest version of 

express-generator:

$ npm i –g express-generator@4.15.5. But in this case your results might be 

inconsistent with the book's examples.

Here are the results of running the aforementioned command:

/usr/local/bin/express -> /usr/local/lib/node_modules/express-

generator/bin/express-cli.js

+ express-generator@4.15.5

updated 1 package in 1.793s

Chapter 2  Using Express.js to Create Node.js Web Apps



59

Please notice the path: /usr/local/lib/node_modules/express-generator. 

This is where, on macOS/Linux systems, npm puts global modules by default. We verify 

the availability of Express.js CLI by running this:

$ express --version

Express is used with require(), and it’s a local project dependency. Let’s built a 

quick Hello World with Express.

�Local Express.js
For the local Express.js 4.15.5 module installation, let's create a new folder hello-

simple somewhere on your computer: $ mkdir hello-simple. This will be our 

project folder for the chapter. Now we can open it with $ cd hello-simple. When we 

are inside the project folder, we can create package.json manually in a text editor or 

with the $ npm init terminal command.

The following is an example of the package.json file with vanilla $ npm init 

options (the license and author are configured by defaults in npm config):

{

  "name": "hello-simple",

  "version": "1.0.0",

  "description": "",

  "main": "index.js",

  "scripts": {

    "test": "echo \"Error: no test specified\" && exit 1"

  },

  "keywords": [],

  "author": "Azat Mardan (http://azat.co/)",

  "license": "MIT"

}

Lastly, we install the module using npm (no need for --save in npm v5+):

$ npm install express@4.15.4 --save --exact

Or, if we want to be less specific, which is not recommended for this example, use:

$ npm i express -E

Chapter 2  Using Express.js to Create Node.js Web Apps



60

Note D epending on your npm version, if you attempt to run the aforementioned 
$ npm install express command without the package.json file or the 
node_modules folder, the smart npm will traverse up the directory tree to the 
folder that has either of these two things. This behavior mimics

Git's logic somewhat. For more information on the npm installation algorithm, please 

refer to the official documentation (https://npmjs.org/doc/folders.html).

Alternatively, we can update the package.json file by specifying the dependency 

("express": "4.15.4" or "express": "4.x") and run $ npm install.

The following is the package.json file with an added Express.js v4.15.4 

dependency:

{

  "name": "hello-simple",

  "version": "1.0.0",

  "description": "",

  "main": "index.js",

  "scripts": {

    "test": "echo \"Error: no test specified\" && exit 1"

  },

  "keywords": [],

  "author": "Azat Mardan (http://azat.co/)",

  "license": "MIT",

  "dependencies": {

    "express": "4.15.4"

  }

}

Now when someone downloads this project, they can install all dependencies from 

package.json with either of the following two commands:

$ npm install

$ npm i

Here are the result of installing Express.js v4.15.4 locally into the node_modules 

folder. Please notice the package-lock.json file created in the project root. It helps to 

lock versions to avoid breaking your code with new versions of dependencies.

Chapter 2  Using Express.js to Create Node.js Web Apps

https://npmjs.org/doc/folders.html
https://npmjs.org/doc/folders.html


61

$ npm i express -E

npm notice created a lockfile as package-lock.json. You should commit 

this file.

npm WARN hello-simple@1.0.0 No description

npm WARN hello-simple@1.0.0 No repository field.

+ express@4.15.4

added 43 packages in 4.686s

If you want to install Express.js to an existing project and save the dependency  

(a smart thing to do!) into the package.json file, which is already present in that 

project’s folder, run $ npm install express@4.15.5 --save.

Create a server.js file in the hello-simple folder:

const express = require('express')

let app = express()

app.all('*', (req, res) => {

  res.send('Welcome to Practical Node.js!')

})

app.listen(3000,

  () => {console.log('Open at localhost:3000')}

)

Then launch it with node server.js to see “Welcome to Practical Node.js!” in a 

browser at http://localhost:3000. You first Express app is working!

Now let’s actually see how to use the generator cause let’s admit it because who 

doesn’t like to have software to write our software?

�Express.js Scaffolding
So far, we've covered Express.js installation and a simple Express server. When it comes 

to prototyping, it's vital to be able to get started quickly with the solid app skeleton, 

which is why many modern frameworks provide some type of scaffolding. Now is the 

time to explore its rapid app-creation mechanism, Express.js Generator!

Chapter 2  Using Express.js to Create Node.js Web Apps



62

Comparable with Ruby on Rails and many other web frameworks, Express.js comes 

with a CLI for jump-starting your development process. The CLI generates a basic 

foundation for the most common cases.

If you followed the global installation instructions in the installation section, 

you should be able to see the version number 4.15.0 if you run $ express -V from 

anywhere on your machine. If we type $ express -h or $ express --help, we 

should get a list of available options and their usage. The list of options is broken down 

below in this section to serve you, my dear readers, as a reference.

To generate a skeleton Express.js app, we need to run a terminal  

command— express [options] [dir|appname] —the options for which are the 

following:

•	 -v, --view <engine>: Add view support (dust|ejs|hbs|hjs|jade|pug|t

wig|vash) (defaults to pug)

•	 -c <engine>, --css <engine>: Add stylesheet <engine> 

support, such as LESS (http://lesscss.org), Stylus (http://

learnboost.github.io/stylus) or Compass (http://compass-

style.org) (by default, plain CSS is used)

•	 --git: Add .gitignore

•	 -f, --force: Force app generation on a nonempty directory

If the dir/appname option is omitted, Express.js creates files using the current folder 

as the base for the project. Otherwise, the application is in the folder with the name 

provided.

Now that we're clear on the express Express Generator command and its options, 

let's go step by step to create an app with the scaffolding:

	 1.	 Check the Express.js version, because the app-generating code is 

prone to changes.

	 2.	 Execute the scaffolding command with options.

	 3.	 Run the application locally.

	 4.	 Understand the different sections, such as routes, middleware, 

and configuration.

	 5.	 Peek into the Pug template (more on this in Chapter 3).

Chapter 2  Using Express.js to Create Node.js Web Apps

http://lesscss.org
http://lesscss.org
http://compass-style.org/
http://learnboost.github.io/stylus)
http://learnboost.github.io/stylus)
http://compass-style.org/
http://compass-style.org/
http://compass-style.org/


63

�Express.js Command-Line Interface
Now we can use the CLI to spawn new Express.js apps. For example, to create an app 

with Stylus support, type the following:

$ express -c styl express-styl

Then, as the instructions in the terminal tell us (Figure 2-1), type:

$ cd express-styl && npm install

$ DEBUG=my-application ./bin/www

Figure 2-1.  The result of using Express.js Generator

Open the browser of your choice at http://localhost:3000 and you’ll see “Express 

Welcome to Express” styled with a CSS which is coming from a Stylus file (.styl). If you 

go to http://localhost:3000/users, then you’ll see “respond with a resource”. If 

everything is working, then kudos, you’ve created an Express app with the Stylus support.

Chapter 2  Using Express.js to Create Node.js Web Apps



64

If you don't have computer in front of you right now, here's the full code  

of express-styl/app.js using Express.js Generator v4.15.0. The server file has routes 

from the routes folder, Stylus, and a rudimentary error handler. You know I don’t like 

semicolons. The ; and var style are preserved from the code generated by the tool.

const express = require('express');

const path = require('path');

const favicon = require('serve-favicon');

const logger = require('morgan');

const cookieParser = require('cookie-parser');

const bodyParser = require('body-parser');

const stylus = require('stylus');

const index = require('./routes/index');

const users = require('./routes/users');

let app = express();

// view engine setup

app.set('views', path.join(__dirname, 'views'));

app.set('view engine', 'jade');

// uncomment after placing your favicon in /public

//app.use(favicon(path.join(__dirname, 'public', 'favicon.ico')));

app.use(logger('dev'));

app.use(bodyParser.json());

app.use(bodyParser.urlencoded({ extended: false }));

app.use(cookieParser());

app.use(stylus.middleware(path.join(__dirname, 'public')));

app.use(express.static(path.join(__dirname, 'public')));

app.use('/', index);

app.use('/users', users);

// catch 404 and forward to error handler

app.use(function(req, res, next) {

  var err = new Error('Not Found');

  err.status = 404;

  next(err);

});

Chapter 2  Using Express.js to Create Node.js Web Apps



65

// error handler

app.use(function(err, req, res, next) {

  // set locals, only providing error in development

  res.locals.message = err.message;

  res.locals.error = req.app.get('env') === 'development' ? err : {};

  // render the error page

  res.status(err.status || 500);

  res.render('error');

});

module.exports = app;

The Express app is exported with module.exports and is launched with listen() 

in the bin/www file. Let’s see the main parts of the server file app.js that was created by 

the Express Generator.

�Routes in Express.js
When you open express-styl/app.js, you see two routes in the middle:

const index = require('./routes/index');

const users = require('./routes/users');

...

app.use('/', routes);

app.use('/users', users);

The first one basically takes care of all the requests to the home page, such as 

http://localhost:3000/. The second takes care of requests to /users, such as  

http://localhost:3000/users. Both of the routes process URLs in a case-insensitive 

manner and in a same way as with trailing slashes.

By default, Express.js doesn't allow developers to route by query string arguments, 

such as the following:

GET: www.webapplog.com/?id=10233

GET: www.webapplog.com/about/?author=10239

GET: www.webapplog.com/books/?id=10&ref=201

Chapter 2  Using Express.js to Create Node.js Web Apps



66

However, it's trivial to write your own middleware. It might look like this:

app.use((req, res, next) => {

})

That’s right. The middleware is just a function with three argument. Two of which are 

good old friends: request and response. Then third argument is a callback that is invoked 

when all is done:

app.use((req, res, next) => {

  next()

})

Developers can also finish the response with send(), end(), render() or any other 

Express method, or pass an error object to the next() callback:

app.use((req, res, next) => {

  if (!req.session.loggedIn) // User didn't log in

    return next(new Error('Not enough permissions'))

  if (req.session.credits === 0) // User has not credit to play

    return res.render('not-enough-credits.pug')

  next()

})

Let’s take a look at another example that has some logic to deal with a query string 

data using the req.query object:

app.use((req, res, next) => {

  if (req.query.id) {

    // Process the id, then call next() when done

  else if (req.query.author) {

    // Same approach as with id

  else if (req.query.id && req.query.ref) {

    // Process when id and ref present

  } else {

    next();

  }

});

Chapter 2  Using Express.js to Create Node.js Web Apps



67

app.get('/about', (req, res, next) => {

    // This code is executed after the query string middleware

});

What’s useful is that each req or request object in the subsequent middleware 

functions or request handler functions (i.e., routes) is the same object for the same 

request. This allows developers to decorate a reference or a value. For example,  

by having this middleware we can ensure that all subsequent middleware and routes 

have access to:

app.use((req, res, next) => {

  req.db = const db = mongoskin.db('mongodb://@localhost:27017/test')

})

app.use((req, res, next) => {

  req.articles = req.db.collection('articles')

})

app.post('/users', (req, res, next) => { // use req.db or req.articles

  req.db.collection('users').insert({}, {}, (error, results)=>{

    req.articles.insert({}, {}, (error, results)=>{

      res.send()

    })

  })

})

Back to the app.js file. The request handler for the root route, that is /, is 

straightforward (routes/index.js, in this case). Everything from the HTTP request is 

in req and it writes results to the response in res. Here’s routes/index.js:

var express = require('express');

var router = express.Router();

/* GET home page. */

router.get('/', function(req, res, next) {

  res.render('index', { title: 'Express' });

});

module.exports = router;

Chapter 2  Using Express.js to Create Node.js Web Apps



68

Here’s routes/users.js in which we define and export a route:

var express = require('express');

var router = express.Router();

/* GET users listing. */

router.get('/', function(req, res, next) {

  res.send('respond with a resource');

});

module.exports = router;

�Middleware as the Backbone of Express.js
Each line/statement above the routes in express-styl/app.js is middleware:

const express = require('express');

const path = require('path');

const favicon = require('serve-favicon');

const logger = require('morgan');

const cookieParser = require('cookie-parser');

const bodyParser = require('body-parser');

const stylus = require('stylus');

//...

app.use(favicon(path.join(__dirname, 'public', 'favicon.ico')));

app.use(logger('dev'));

app.use(bodyParser.json());

app.use(bodyParser.urlencoded());

app.use(cookieParser());

app.use(express.static(path.join(__dirname, 'public')));

The middleware includes pass-through functions that either do something 

useful or add something helpful to the request as it travels along each of them. For 

example, bodyParser() and cookieParser() add HTTP request payload (req.

body) and parsed cookie data (req.cookie), respectively. And in our app.js, app.

use(logger('dev')); is tirelessly printing in the terminal pretty logs for each request. 

In Express.js 3.x, many of these middleware modules were part of the Express.js module, 

Chapter 2  Using Express.js to Create Node.js Web Apps



69

but not in version 4.x. For this reason, Express Generator declared and included in app.

js and package.json, and we installed with npm additional modules like static-

favicon, morgan, cookie-parser and body-parser.

�Configuring an Express.js App
Here is how we define configuration statements in a typical Express.js app (the app.js 

file) with the use of app.set() methods, which take the name as a first argument and 

the value as the second:

app.set('views', path.join(__dirname, 'views'));

app.set('view engine', 'pug');

And then in the bin/www file, you will see the statement that saves the value of 

the port, which will be used later during the server bootup. The value is coming either 

from the environment variable or the hard-coded value of 3000 as a fallback when the 

environment variable PORT is undefined:

app.set('port', process.env.PORT || 3000);

An ordinary setting involves a name, such as views, and a value, such as path.

join( dirname, 'views'), the path to the folder where templates/views live.

Sometimes there is more than one way to define a certain setting. For example,  

app.enable('trust proxy') for Boolean flags is identical (a.k.a., sugar-coating) to  

app.set('trust proxy', true). Chapter 11 explains why we might need to trust 

proxy.

�Pug Is Haml for Express.js/Node.js
The Pug template engine is akin to the Ruby on Rails’ Haml in the way it uses whitespace 

and indentation, such as layout.pug:

doctype html

html

  head

    title= title

    link(rel='stylesheet', href='/stylesheets/style.css')

  body

    block content

Chapter 2  Using Express.js to Create Node.js Web Apps



70

Yes, it might look weird, and yes, you might hate it (https://webapplog.com/

jade) in the beginning because of a missing white space that breaks your app, but 

believe me: Pug is awesome… when you know it. Luckily, there’s a whole chapter 

(Chapter 4) dedicated to templates, and you can learn Pug in there.

�Final Thoughts Scaffolding
As you've seen, it's effortless to create web apps with Express.js. The framework is 

splendid for REST APIs as well. If you feel like the settings and other methods mentioned 

in this chapter just flew over your head, don't despair! Pro Express.js: Master Express.

js: The Node.js Framework For Your Web Development (Apress, 2014) is dedicated 

solely to the Express.js, and its interface and can server as a good reference. This book 

published in 2014 is still relevant in 2018 and will be in 2019 because the book covers 

Express version 4 and its still the latest version because this version is very mature and 

“complete”. Get the book on Amazon: https://amzn.to/2tlSwNw. For now, the next 

step is to create a foundation for our project: the Blog app.

�The Blog Project Overview
Our Blog app consists of five main parts from the user perspective:

•	 A home page with a list of articles (Figure 2-2)

Chapter 2  Using Express.js to Create Node.js Web Apps

https://webapplog.com/jade
https://webapplog.com/jade
https://webapplog.com/jade
https://amzn.to/2tlSwNw


71

•	 An individual article page with the full-text article

•	 An admin page for publishing and removing content

•	 A login page for accessing the aforementioned admin page

•	 A post article page for adding new content

From a developer's point of view, the app has the following elements:

•	 Main file app.js: Settings, inclusions of routes, and other important 

logic. This is the file we typically run with node to start the server.

•	 Routes: All the logic related to pages and abstracted from app.js 

based on functional meaning, such as getting the data from the 

database and compiling the data into HTML

Figure 2-2.  The home page of the Blog app

Chapter 2  Using Express.js to Create Node.js Web Apps



72

•	 Node.js project file package.json: Dependencies and other meta 

data

•	 Dependencies in node_modules: Third-party modules installed via 

package.json

•	 Database: An instance of MongoDB and some seed data

•	 Templates: The *.pug files

•	 Static files: Such as *.css or browser *.js

•	 Configuration file config.json: Security-insensitive  

application-wide settings, such as app title

Although somewhat primitive, this application contains all the CRUD (create, read, 

update, and delete) elements of modern web development. In addition, we use two 

approaches in Blog when sending the data to the server:

	 1.	 Submit data via traditional forms with full page refresh

	 2.	 Submit data via REST API (AJAX HTTP requests) without page 

refresh

The source code for this mini-project is under the ch2/hello-world folder of 

practicalnode GitHub repository: https://github.com/azat-co/practicalnode.

�Submitting the Data
The first approach, which is depicted in Figure 2-3, is called traditional or thick server, 

and is more SEO (search engine optimization) friendly. With this approach, all HTML 

is rendered on the server. Almost all of the logic is on the server as well. This is how web 

was designed to work. This is how all web apps worked in late 1990s.

Chapter 2  Using Express.js to Create Node.js Web Apps

https://github.com/azat-co/practicalnode


73

Traditional server-side approach

user

user

url

url

full HTML page

full DOM

browser

browser

server

server

find data

generate HTML

Figure 2-3.  Traditional server-side approach

However, this traditional approach requires the reloading of the entire webpage. 

Thus it takes longer for users (especially on mobile) and is not as smooth and snappy as 

working with desktop apps. For this reason, developers started to move rendering and 

other logic to clients (browser). This is the second approach called thick client or client-

side rendering and depicted in Figure 2-4.

Chapter 2  Using Express.js to Create Node.js Web Apps



74

Sending and receiving data via REST API/HTTP requests and rendering HTML on 

the client side is used with front-end frameworks such as React, Backbone.js, Angular, 

Ember, and many others (http://todomvc.com) (Figure 2-4). The use of these 

frameworks is becoming more and more common nowadays because it allows for more 

efficiency (HTML is rendered on the client side, and only the data is transmitted) and 

better code organization.

REST API/AJAX approach

user

user

browser

browser

url

url

static HTML

AJAX request

JSON

JSON

full DOM

find data

static page

page sans data
(Loading...)

server

server

Figure 2-4.  REST API approach diagram

Chapter 2  Using Express.js to Create Node.js Web Apps

http://todomvc.com


75

Unlike the previous sections of this chapter, which dealt with scaffolding with CLI, 

in this practical exercise I intentionally wanted to show how to create an Express.js app 

manually, because it will give you a better understanding of how things really work 

together in the framework.

Let's wait no more, and start by creating our project folders.

Figure 2-5.  The admin page of Blog

Under the hood, virtually all front-end frameworks use jQuery's ajax() method. 

So, to give you a realistic example, the admin page uses REST API endpoints via jQuery 

$.ajax() calls to manipulate the articles, including publish, unpublish, and remove 

(Figure 2-5).

Chapter 2  Using Express.js to Create Node.js Web Apps



76

�Express.js Hello World Example
This is the second and the last Hello World example in this book! :-) The goal is to show 

readers how easy is it to create Express.js apps from scratch without generators, fancy 

modules, and middleware. We'll go through these sections:

•	 Setting up folders

•	 npm init and package.json

•	 Dependency declaration The app.js file

•	 Meet Pug

•	 Running the app

�Setting Up Folders
Express.js is very configurable, and almost all folders can be renamed. However, there 

are certain conventions that may help beginners to find their way through many files. 

Here are the two main folders that we use in this chapter, and their meaning:

•	 node_modules: Dependencies (third-party modules) live here as 

well as Express.js and Connect libraries

•	 views: Pug (or any other template engine) files

That's it for now, but if you want to create a few more folders for other examples for 

later chapters, then go ahead and create these:

•	 routes: Node.js modules that contain request handlers

•	 db: Seed data and scripts for MongoDB

•	 public: All the static (front-end) files, including HTML, CSS, 

JavaScript (browser), and Stylus (or any other CSS-language 

framework files)

Let's choose a project folder called hello-world, and create these directories with 

the Finder macOS app or with the following terminal command, which works on macOS 

and Linux (Figure 2-6):

$ mkdir {public,public/css,public/img,public/js,db,views,views/

includes,routes}

Chapter 2  Using Express.js to Create Node.js Web Apps



77

Now we're all set to add project metadata with npm.

�npm init and package.json
For this example we will be creating the Express.js app from scratch, i.e., without Express.

js Generator. We'll start with defining dependencies with package.json and npm.

npm is used not only as a registry, but also as a dependency management tool. 

Therefore, it's essential to set up the project file, package.json. Although it's possible 

to create the package.json file manually in a text editor, we can use the $ npm init 

command. Run this command in your project folder and answer all the questions (or 

leave them blank):

$ npm init

Figure 2-6.  Setting up folders

Chapter 2  Using Express.js to Create Node.js Web Apps



78

After the wizard has finished and the package.json file is there (don't worry if 

there's not much information there yet), we can install modules conveniently and add 

entries to package.json at the same time with $ npm install <package-name> 

--save. For example this is how you can install express:

$ npm install express --save

The previous command uses the latest stable version available on the npm  

registry at the moment. We recommend being more specific and ask for a specific 

version using @. Specific versions are better because new versions may have some 

breaking changes and simply will break your code. Specific versions are more robust in 

the land of the rapidly growing Node.js community.

$ npm install express@4.15.4 --save

For the Blog app, we need the following modules, which are the latest as of this writing:

•	 Express.js: 4.15.4

•	 Pug: 2.0.0-rc.4

•	 Stylus: 0.54.5

Warning  Feel free to update to newer versions. However, your results might vary, 
because it's very common in the Node.js ecosystem (“userland”) to see breaking 
changes introduced by new versions. This usually happens unintentionally by the 
dependency of a dependency.

For example, even if we include a specific version of Express.js, such as 3.4.5, that 

module includes Pug with a wildcard *. This means after every npm i the latest version 

of Pug will be downloaded. One sunny wonderful day a new version of Pug will have 

some breaking update like a removal of a method which your app uses. Boom! Your app 

will suffer a great damage and will be broken.

There are several strategies to mitigate such breaking behavior. Most of them involve 

locking the versions. And one cure is to just commit your node_modules folder along 

with the rest of the source code to a Git repository and use that instead of fetching 

modules according to package.json each time on deployment. That’s what we did 

at DocuSign. We just committed entire node_modules. It worked well. Or use npm's 

shrinkwarp or package-lock features. Read more about this issue in Chapter 12.

Chapter 2  Using Express.js to Create Node.js Web Apps



79

�Dependency Declaration: npm install
Another way to create a package.json file (without using $ npm init ) is to type or 

copy and paste package.json and run $ npm install:

{{

  "name": "hello-advanced",

  "version": "0.0.1",

  "private": true,

  "scripts": {

    "start": "node app.js"

  },

  "dependencies": {

    "express": "4.15.4",

    "pug": "2.0.0-rc.4"

  }

}

In the end, the node_modules folder should be filled with the corresponding 

libraries.

If you noticed, one of the questions npm init asked was about the so-called entry 

point. In our case, it's the app.js file, and it's the home for most of the application's 

logic. To run it, simply use one of the following commands:

•	 $ node app.js

•	 $ node app

•	 $ npm start

Another approach is to name the entry point index.js. In this case, we get the 

benefit of running the script with the $ node. command.

Let's create the first iteration of app.js.

Chapter 2  Using Express.js to Create Node.js Web Apps



80

�The App.js File
The app.js file is the main file for this example. A typical structure of the main Express.

js file app.js consists of the following areas (this may be a partial repeat from an earlier 

section, but this is important, so bear with me):

	 1.	 Require dependencies

	 2.	 Configure settings

	 3.	 Connect to database (optional)

	 4.	 Define middleware

	 5.	 Define routes

	 6.	 Start the server on a particular port

	 7.	 Start workers with clusters to scale (a term spawn workers is also 

used for this) (optional)

The order here is important, because requests travel from top to bottom in the chain 

of middleware.

Let's perform a quintessential programming exercise: writing the Hello World 

application. This app transitions smoothly into the Blog example project, so no effort is 

wasted!

Open app.js in a code editor of your choice and start writing (or just copy code 

from GitHub (http://github.com/azat-co/blog-express)).

First, all the dependencies need to be included with require():

const express = require('express');

const http = require('http');

const path = require('path');

Then, the Express.js object is instantiated (Express.js uses a functional pattern):

let app = express();

One of the ways to configure Express.js settings is to use app.set(), with the name 

of the setting and the value. For example:

app.set('appName', 'hello-advanced');

Chapter 2  Using Express.js to Create Node.js Web Apps

http://github.com/azat-co/blog-express))


81

Let's define a few such configurations in app.js:

•	 port: A number on which our server should listen to requests

•	 views: Absolute path to the folder with template ( views in our 

example)

•	 view engine: File extension for the template files (for example, pug, 

html )

If we want to use the port number provided in the environmental variables (env vars 

for short), this is how to access it: process.env.PORT.

So let's write the code for the settings we listed earlier:

app.set('port', process.env.PORT || 3000);

app.set('views', path.join(__dirname, 'views'));

app.set('view engine', 'pug');

Next comes the middleware section of the application. Middleware is the backbone 

of the Express.js framework, and it comes in two flavors:

•	 Defined in external (third-party) modules, e.g., app.

use(bodyParser.json()); with bodyParser.json being 

imported from body-parser

•	 Defined in the app or its modules, e.g., app.use(function(req, 

res, next){...});

Middleware is a way to organize and reuse code and, essentially, middleware is 
nothing more than a function with three parameters: request, response, and next. 

We'll use more middleware (for example, for authorization and for persistence) in 

Chapter 6, but for now, its use will be minimal.

The next components in the app.js file are routes. Routes process requests. An 

illustration in Figure 2-7 shows how an HTTP request is processed. So the next section 

of app.js is where we define routes themselves (the order in app.js matters). The way 

routes are defined in Express.js is with helpers app.VERB(url, fn1, fn2, ..., fn), 

where fnNs are request handlers, url is on a URL pattern in RegExp, and VERB values 

are as follows:

•	 all: Catch any requests, i.e., all HTTP methods

•	 get: Catch GET requests

Chapter 2  Using Express.js to Create Node.js Web Apps



82

•	 post: Catch POST requests

•	 put: Catch PUT requests

•	 patch: Catch PATCH requests

•	 del: Catch DELETE requests

browser

Following a simple request in an Express.js app.

browser

give me a resource

look up URL
in routes

rule is found

compile data and template
into HTML
or JSON/XML/etc

send HTML
or JSON/XML/etc back

give me data

give me a template

the template

find the template

the data

find data

app

app

db

db

view

view

Figure 2-7.  Following a simple request in an Express.js app

Chapter 2  Using Express.js to Create Node.js Web Apps



83

Note  del and delete methods are aliases in older versions of Express.  
Just remember that delete is a valid operator in JavaScript/ECMAScript,  
and therefore in Node.js. The operator removes a property from an object,  
e.g., delete books.nodeInAction.

Routes are processed in the order in which they are defined. Usually, routes are put 

after middleware, but some middleware may be placed following the routes. A good 

example of such middleware, found after routes, is an error handler.

Figure 2-7 shows how a trivial request might travel across the web and the Express.js 

app, with the dotted lines being the connection inside it.

In this Hello World example, a single route is used to catch requests of all methods 

on all URLs ( * wildcard):

app.all('*', (req, res) => {

  ...

})

Inside the request handler, a template is rendered with the res.render() function 

using name of the template index as the first argument and the data object as a second 

argument. The data has a message msg as the property of the second argument:

app.all('*', function(req, res) {

  res.render('index', {msg: 'Welcome to Practical Node.js!'})

})

For reference, in res.render(viewName, data, callback(error, html)) 

where parameters mean the following:

•	 viewName: A template name with filename extension or if view 

engine is set without the extension

•	 data: An optional object that is passed as locals ; for example, to 

use msg in Pug, we need to have {msg: "..."}

•	 callback: An optional function that is called with an error and 

HTML when the compilation is complete

Chapter 2  Using Express.js to Create Node.js Web Apps



84

res.render() is not in the Node.js core and is purely an Express.js addition that, if 

invoked, calls core res.end(), which ends/completes the response. In other words, the 

middleware chain doesn't proceed after res.render(). res.render is highlighted in 

Chapter 4.

Last but not least are the instructions to start the server. In the previous Hello World 

app, you saw app.listen(), but http.createServer(app).listen() will work too. 

It consists of the core http module and its createServer method. In this method, the 

system passes the Express.js app object with all the settings and routes:

http.createServer(app).listen(app.get('port'), () => {

  console.log(`Express server listening on port ${app.get('port')}`)

})

You can also use https.createServer(app).listen() for the HTTPS support 

when you are ready to deploy your server to production.

Here's the full source code of the app.js file for your reference:

const express = require('express')

const http = require('http')

const path = require('path')

let app = express()

app.set('port', process.env.PORT || 3000)

app.set('views', path.join(__dirname, 'views'))

app.set('view engine', 'pug')

app.all('*', (req, res) => {

  res.render(

    'index',

    {msg: 'Welcome to Practical Node.js!'}

  )

})

http

  .createServer(app)

  .listen(

    app.get('port'),

Chapter 2  Using Express.js to Create Node.js Web Apps



85

    () => {

      console.log(`Express.js server is listening on port ${app.

get('port')}`)

    }

  )

Before we can run this server, we need to create the index.pug file in the views 

folder.

�Meet Pug: One Template to Rule Them All
Pug is an absolutely amazing template engine that allows developers to type less code 

and to execute powerfully almost all JavaScript functions. It also supports top-to-bottom 

and bottom-to-top inclusion and other useful things. Like its brother from the Ruby 

world, Haml, Pug uses whitespace/indentation as a part of its language. It's a convention 

to use two-space indentation.

The Pug syntax and its features are covered more extensively in Chapter 4. For now, 

just keep in mind that the way Pug works is that the first word is used as an HTML tag 

(HTML element), and the text that follows, which is inner text or inner content, is put 

inside this element. For example, here are two sibling elements <h1> and <p> with text 

inside of them. The space after the Pug elements h1 and p is super important!

h1 hello

p Welcome to the Practical Node.js!

That produces the following HTML code:

<h1>hello</h1>

<p>Welcome to the Practical Node.js!</p>

If we want to output a value of a variable (called locals), we use =. For example:

p= msg

For this example, create index.pug in the views folder that outputs a header and a 

paragraph with the value msg variable inside of that paragraph (i.e., inner text):

h1 hello

p= msg

Chapter 2  Using Express.js to Create Node.js Web Apps



86

I included more advanced examples of Pug later in this book. For now, everything is 

set for the first demo!

�Running the Hello World App
Run the $ node app command from the project root. When your app is running you 

can open a browser at http://localhost:3000. Now you should see the Hello World 

text as it appears in Figure 2-8.

Figure 2-8.  The Hello World app in action

Nothing fancy so far, but it's worth pointing out that it took us just a few lines (the 

app.js file) to write a fully functional HTTP server! In the next chapter, we add more 

new and exciting pages using Pug instructions.

Chapter 2  Using Express.js to Create Node.js Web Apps



87

�Summary
In this chapter we learned what Express.js is and how it works. We also explored different 

ways to install it and use its scaffolding (command-line tool) to generate apps. We 

went through the Blog example with a high-level overview (traditional vs. REST API 

approaches), and proceeded with creating the project file, folders, and the simple Hello 

World example, which serves as a foundation for the book's main project: the Blog app. 

And then lastly, we touched on a few topics such as settings, a typical request process, 

routes, AJAX versus server side, Pug, templates, and middleware.

In the next chapter we’ll examine an important aspect of modern web development 

and software engineering: test-driven development. We look at the Mocha module and 

write some tests for Blog in true TDD/BDD style. In addition, the next chapter deals with 

adding a database to Blog routes to populate these templates, and shows you how to turn 

them into working HTML pages!

Chapter 2  Using Express.js to Create Node.js Web Apps



89
© Azat Mardan 2018 
A. Mardan, Practical Node.js, https://doi.org/10.1007/978-1-4842-3039-8_3

CHAPTER 3

TDD and BDD for Node.js 
with Mocha
Test-driven development (TDD), as many of you may know, is one of the main agile 

development techniques. The genius of TDD lies in increased quality of code, faster 

development resulting from greater programmer confidence, and improved bug 

detection (duh!).

Historically, web apps have been hard to autotest, and developers relied heavily on 

manual testing. But certain parts such as standalone services and REST APIs can be and 

should be tested thoroughly by the TDD. At the same time, rich user interface (UI)/user 

experience (UX) can be tested with headless browsers such as Selenium or Puppeteer.

And before you start yawning and thinking about skipping this chapter because—well, 

I won’t be far off in saying that a lot of developers like testing as much as they might like 

a warm can of beer on a hot Sunday afternoon at the beach, please think about testing 

as the time saver. With proper tests in place and a bit of time spent on writing them, 

developers save time in the long term. The longer the long term, the more the payoff. It’s 

not uncommon for a good module to have two to three times (2–3x) more tests than the 

code itself. Crazy? No. It’s not an overkill but a smart and pragmatic strategy!

But what is BDD then? The behavior-driven development (BDD) concept is based 

on TDD. It differs from TDD in language/interface, which is more natural. Thus, BDD is 

the preferred way of writing tests. An example of a BDD interface is expect such as in 

expect(response.status).to.equal(200). Compare that to the dryness of TDD 

with assert, such as in assert.equal(response.status, 200)



90

Similar to building apps themselves, most of the time software engineers should use 

a testing framework. To get you started with the Node.js testing framework, Mocha, in 

this chapter, we cover the following:

•	 Installing and understanding Mocha TDD with the assert

•	 BDD with Expect.js

•	 Project: Writing the first BDD test for Blog

The source code for this chapter is in the code/ch3 folder of the azat-co/

practicalnode GitHub repository, which is located at https://github.com/azat-

co/practicalnode.

�Installing and Understanding Mocha
Mocha is a mature and powerful testing framework for Node.js. To install it globally, 

simply run the following shell command:

$ npm i –g mocha@4.0.1

Note  We use a specific version (the latest as of this writing is 4.0.1) to prevent 
inconsistency in this book's examples caused by potential breaking changes in 
future versions of Mocha.

If you encounter the lack-of-permissions issue discussed in Chapters 1 and 2, run the 

following “super user” shell command:

$ sudo npm i –g mocha@4.0.1

To avoid using sudo, follow the instructions in Chapter 1 on how to install Node.js 

correctly… or just install Mocha locally.

Tip  It's possible to have a separate version of Mocha for each project by simply 
pointing to the local version of Mocha, which you install like any other npm module 
into node_modules. The command for macOS/Linux will be:

$ ./node_modules/.bin/mocha test_name

Chapter 3  TDD and BDD for Node.js with Mocha

https://github.com/azat-co/practicalnode
https://github.com/azat-co/practicalnode


91

For a more advanced example, refer to “Putting Configs into a Makefile” later in this 

chapter. For my Windows users, who cannot use . or /, modify to this command:

$ node_modules\.bin\mocha test_name

Most of you have heard about TDD and why it's a good thing to follow. Do you 

have an idea how it works? The main process of TDD can be summed up in the three 

following steps:

	 1.	 Implement a test

	 2.	 Implement the code to make the test pass

	 3.	 Verify that the test passes and repeat the cycle

BDD is a specialized version of TDD that specifies what needs to be unit-tested from 

the perspective of business requirements. It's possible to just write tests with the good 

old plain core Node.js module assert. However, as in many other situations, using 

a special testing library is more preferable. You might also want to use a test runner 

(sometimes also called a testing framework). For both TDD and BDD, we'll be using the 

Mocha testing framework because by doing so we gain many things for “free.” Among 

them are the following:

•	 Reporting

•	 Asynchronous support

•	 Rich configurability

•	 Notifications

•	 Debugger support

•	 Common interface with before, after

•	 hooks File watcher support

There are many more features and benefits to using Mocha. Here is a list of some of 

the optional parameters (options) that the $ mocha [options] command takes (the 

full list is obtainable with mocha -h):

•	 -h or --help: Print help information for the Mocha command

•	 -V or --version: print the version number that’s being used

•	 -r or --require <name>: Require a module with the name provided

Chapter 3  TDD and BDD for Node.js with Mocha



92

•	 -R or --reporter <name>: Use a reporter with the name provided

•	 -u or --ui <name>: Use the stipulated reporting user interface (such 

as bdd, tdd)

•	 -g or --grep <pattern>: Run tests exclusively with a matching 

pattern

•	 -i or --invert: Invert the --grep match pattern

•	 -t or --timeout <ms>: Set the test case time out in milliseconds (for 

example, 5000)

•	 -s or --slow <ms>: Set the test threshold in milliseconds (for 

example, 100)

•	 -w or --watch: Watch test files for changes while hanging on the 

terminal

•	 -c or --colors: Enable colors

•	 -C or --no-colors: Disable colors

•	 -G or --growl: Enable macOS Growl notifications

•	 -d or --debug: Enable the Node.js debugger—$ node --debug

•	 --debug-brk: Enable the Node.js debugger breaking on the first 

line—$ node --debug-brk

•	 -b or --bail: Exit after the first test failure

•	 -A or --async-only: Set all tests in asynchronous mode

•	 --recursive: Use tests in subfolders

•	 --globals <names>: Provide comma-delimited global names

•	 --check-leaks: Check for leaks in global variables

•	 --interfaces: Print available interfaces

•	 --reporters: Print available reporters

•	 --compilers <ext>:<module>,...: Provide compiler to use

Chapter 3  TDD and BDD for Node.js with Mocha



93

Figure 3-1 shows an example of Nyan cat reporter with the command $ mocha 

test-expect.js - R nyan. I mean, Nyan cat is important in a testing framework, 

right?! Right?

Figure 3-1.  Mocha Nyan reporter hints that Mocha has a lot of reporters to  
choose from

Usually, when it comes to choosing a type of framework, there are a few options. 

Mocha is one of the more robust and widely used. However, the following alternatives to 

Mocha are worth considering:

•	 Jest (https://facebook.github.io/jest): A framework for 

mostly React and browser testing, which is built on Jasmine and has a 

lot of things included

•	 Jasmine: (https://jasmine.github.io): A BDD framework for 

Node and browser testing, which follows Mocha notation

•	 Vows (http://vowsjs.org): A BDD framework for asynchronous 

testing

Chapter 3  TDD and BDD for Node.js with Mocha

https://facebook.github.io/jest
https://facebook.github.io/jest
https://jasmine.github.io
https://jasmine.github.io
http://vowsjs.org
http://vowsjs.org


94

•	 Encyme (http://airbnb.io/enzyme): A language mostly for 

React apps, which has a jQuery-like syntax and is used with Mocha, 

Jasmine, or other test frameworks

•	 Karma (https://karma-runner.github.io/1.0/index.html):  

A testing framework mostly for Angular apps

•	 TAP (http://www.node-tap.org): A Test-Anything-Protocol library 

for Node.js, which is simpler and ascetic than Mocha or Jasmine

Given that there are a lot of options, my suggestion is that you can’t go wrong with 

Mocha for Node testing and with Jest for React frontend testing.

�Understanding Mocha Hooks
A hook is some logic, typically a function or a few statements. If you thought we’ll be 

talking about something more exciting such as pirates… sorry. So this type of a hook 

is executed when the associated event happens; for example, in Chapter 7 we'll use 

hooks to explore the Mongoose library pre hooks. Mocha has hooks that are executed in 

different parts of suites—before the whole suite, before each test, and so on.

In addition to before and beforeEach hooks, there are after(), and 

afterEach() hooks. They can be used to clean up the testing setup, such as some 

database data that was used for testing.

All hooks support asynchronous modes. The same is true for tests as well. For 

example, the following test suite is synchronous and won't wait for the response to 

finish:

  describe('homepage', () => {

    it('should respond to GET', () => {

      superagent

        .get(`http://localhost:${port}`)

        .end((error, response) => {

          �expect(response.status).to.equal(200)  

// This will never happen

      })

    })

  })

Chapter 3  TDD and BDD for Node.js with Mocha

http://airbnb.io/enzyme
http://airbnb.io/enzyme)
https://karma-runner.github.io/1.0/index.html
https://karma-runner.github.io/1.0/index.html
http://www.node-tap.org
http://www.node-tap.org/


95

But as soon as we add a done parameter to the test's function, our test case waits for 

the HTTP request to come back. We call done() to let Mocha (or Jasmine or Jest, since 

they share this syntax) know that “Hey, you can move on, nothing else to assert here.” If 

this done() is omitted, then the test will time out because no one will let the test runner/

framework know about the finish.

  describe('homepage', () => {

    it('should respond to GET', (done) => {

      superagent

        .get(`http://localhost:${port}`)

        .end((error, response) => {

          expect(response.status).to.equal(200)

          done()

      })

    })

  })

Test cases (describe) can be nested inside other test cases, and hooks such as 

before and beforeEach can be mixed in with different test cases on different levels. 

Nesting of describe constructions is a good idea in large test files.

Sometimes developers may want to skip a test case/suite (describe.skip() or  

it.skip()) or make them exclusive (describe.only() or describe.only()). 

Exclusivity means that only that particular test runs (the opposite of skip).

As an alternative to the BDD interface's describe, it, before, and others, Mocha 

supports more traditional TDD interfaces:

•	 suite: Analogous to describe

•	 test: Analogous to it

•	 setup: Analogous to before

•	 teardown: Analogous to after

•	 suiteSetup: Analogous to beforeEach

•	 suiteTeardown: Analogous to afterEach

Chapter 3  TDD and BDD for Node.js with Mocha



96

�TDD with the Assert
Let's write our first tests with the assert library. This library is part of the Node.js core, 

which makes it easy to access. It has minimal set of methods, but it may be enough for 

some cases, such as unit tests… and less is more in some cases, right?

Again, as in the previous project, developers can install Mocha globally or locally. 

After the Mocha installation is finished, a test file can be created in a test-example 

folder:

$ code test-example/test-assert.js

Note  code is a VS Code alias command that allows developers to open a folder 
in a code editor by executing this command in a terminal. You can use any other 
editor, such as Sublime Text 3 (subl), Vi (vi), or TextMate (mate), assuming you 
have these commands configured in your PATH variable or bash_profile.

Let’s try a simple test in test.js with the following content, to test an array method 

split(), which creates an array out of a string:

const assert = require('assert')

describe('String#split', () => {

  it('should return an array', () => {

    assert(Array.isArray('a,b,c'.split(',')))

  })

})

We can run this simple test.js, which is inside the code/ch3/test-example 

folder, to test

String.split() with just the folder name:

$ mocha test-assert

or, we can navigate inside the folder and run the test from there

$ cd test-example

$ mocha test.js

Chapter 3  TDD and BDD for Node.js with Mocha



97

The two commands above is only if you installed Mocha globally or if you expose 

the local .bin path to the PATH environment variable. If you installed Mocha locally 

(see your package.json and node_modules), then you may need to specify the path 

directly to the local installation because the local installation is not exposed in PATH 

automatically. This is the command for Linux, macOS, and other POSIX systems:

$ ./node_modules/.bin/mocha test.js

And this is the command for Windows:

$ node_modules\.bin\mocha test.js

The results of these Mocha commands are shown in Figure 3-2.

Figure 3-2.  Running to test

Chapter 3  TDD and BDD for Node.js with Mocha



98

We can add to our example another test case (it) that asserts equality of array  

values (code/ch3/test-example/test.js) using a for loop and assert.equal on 

individual array items:

const assert = require('assert')

const testArray = ['a','b','c']

const testString = 'a,b,c'

describe('String#split', () => {

  it('should return an array', () => {

    assert(Array.isArray('a,b,c'.split(',')))

  })

  it('should return the same array', () => {

    assert.equal(testArray.length,

      testString.split(',').length,

      `arrays have equal length`)

    for (let i = 0; i < testArray.length; i++) {

      assert.equal(testArray[i],

        testString.split(',')[i],

        `i element is equal`)

    }

  })

})

As you can see, some code is repeated, so we can abstract it into beforeEach and 

before constructions. A little bit of abstraction is always a good thing! (Abstraction is just 

a fancy word for cut and paste, a term that software architects like to use to justify higher 

wages.)

Here’s a new version of the test in which we abstracted away the seed data of the 

current variable. It’s in code/ch3/test-example/test-assert-v2.js:

var assert = require('assert')

var expected, current

before(() => {

  expected = ['a', 'b', 'c']

})

Chapter 3  TDD and BDD for Node.js with Mocha



99

describe('String#split', () => {

  beforeEach(() => {

    current = 'a,b,c'.split(',')

  })

  it('should return an array', () => {

    assert(Array.isArray(current))

  })

  it('should return the same array', () => {

    assert.equal(expected.length,

      current.length,

      'arrays have equal length')

    for (let i = 0; i < expected.length; i++) {

      assert.equal(expected[i],

        current[i],

        `i element is equal`)

    }

  })

})

�Chai Assert
In the previous example with test.js and assert, we used the Node.js core module 

assert. At the same time, there’s also a chai library that has assert module (and an 

expect module, and should module). Developers prefer to use chai assert over core 

assert because chai assert has more features.

To get started with chai assert, simply replace

const assert = require('assert')

with

const assert = require('chai').assert

Chapter 3  TDD and BDD for Node.js with Mocha



100

Ergo, we can modify our previous example to use chai assert, but first of all, we 

MUST INSTALL chai:

$ npm install chai@4.1.2

And then import the chai assert with following code that goes into test-example/

test.js:

const assert = require('chai').assert

Or use the code that uses destructuring:

const {assert} = require('chai')

I mentioned that chai assert has more method than the Node’s core assert. That’s 

true. And the following are just some of the methods from the chai assert library:

•	 assert(expressions, message): Throws an error if the expression 

is false

•	 assert.fail(actual, expected, [message], [operator]): 

Throws an error with values of actual, expected, and operator

•	 assert.ok(object, [message]): Throws an error when the object 

is not double equal (==) to true—a.k.a., truthy (0, and an empty string 

is false in JavaScript/Node.js)

•	 assert.notOk(object, [message]): Throws an error when the 

object is falsy, i.e., false, 0 (zero), "" (empty string), null, undefined,  

or NaN

•	 assert.equal(actual, expected, [message]): Throws an error 

when actual is not double equal (==) to expected

•	 assert.notEqual(actual, expected, [message]): Throws 

an error when actual is double equal (==)—in other words, not 

unequal (!=)—to expected

•	 .strictEqual(actual, expected, [message]): Throws an error 

when objects are not triple equal (===)

Of course there’s no need to duplicate the documentation here, so for the full chai 

assert API, refer to the official documentation (http://chaijs.com/api/assert).

Chapter 3  TDD and BDD for Node.js with Mocha

http://chaijs.com/api/assert
http://chaijs.com/api/assert)


101

Note  The chai assert (chai.assert) and the Node.js core assert (assert) 
modules are not 100% compatible, because the former has more methods. The same 
is true for chai.expect and a standalone expect.js. We will use expect from 
chai.

�BDD with Expect
Expect is one of the BDD languages. It’s very popular because its syntax allows for chaining. 

It is richer in features than core module assert. Yes, the syntax is very natural to read 

and understand… by software developers, quality assurance engineers and even program 

managers. And again, there are at least two flavors of Expect for you to use choose from:

•	 Standalone: Install as a expect.js module

•	 Chai: Install as a part of the chai library (recommended)

For the former, simply execute the following in an existing Node project (you must 

have package.json already there, which you can create with npm init -y):

$ npm install chai@4.1.2 --save-exact

Tip  While install and i are the same, --save-exact or -E will add a 
precise version of the library to package.json, and not a version with ^, which 
means install latest up to major release (first digit in semantic versioning)—a 
behavior responsible for sleepless nights trying to fix a breaking change in a newer 
version.

And, then after you install chai, import it inside a Node.js test file using:

const expect = require('chai').expect

Hey, you can use ES6 destructuring assignment as well. Check this out:

const {expect} = require('chai')

And what about the actual usage of Expect? How to write Expect assertions?  

Each assert assertion can be rewritten with Expect. The idea is to use expect() and  

pass an object we are testing to it as an argument, e.g., expect(current.length).  

Chapter 3  TDD and BDD for Node.js with Mocha



102

Then use the properties and methods by chaining them in some resemblance to the 

English language: expect(current.length).to.equal(3).

For example, the previous test can be rewritten in chai.expect BDD style using  

to.be.true, equal and to.equal:

const {expect} = require('chai')

let expected

let current

before(() => {

  expected = ['a', 'b', 'c']

})

describe('String#split', () => {

  beforeEach(() => {

    current = 'a,b,c'.split(',')

  })

  it('should return an array', () => {

    expect(Array.isArray(current)).to.be.true

  })

  it('should return the same array', () => {

    expect(expected.length).to.equal(current.length)

    for (let i = 0; i < expected.length; i++) {

      expect(expected[i]).equal(current[i])

    }

  })

})

I cover more of the expect syntax and methods later. Now, I’ll show you another 

library—standalone expect.js. For the standalone expect.js (not 100% compatible 

with chai.expect) approach, import another module called expect.js with the 

following command:

$ npm install expect.js

Chapter 3  TDD and BDD for Node.js with Mocha



103

And, replace the chai expect const {expect} = require('chai') inside a Node.js 

test file with the expect.js module:

const expect = require('expect.js')

Note  $ npm i expect.js or any other $ npm i name needs to be in 
the project’s root (topmost) folder, which must contain either the node_modules 
directory already or a package.json file (recommended because you can save 
the version number in there). For more information on module installations and the 
ways of npm, please refer to Chapter 1.

�Expect Syntax
The expect.js library is very extensive. Part of its appeal is that it has nice methods that 

mimic natural language. Often there are a few ways to write the same assertion, such 

as expect(response).to.be(true) and expect(response).equal(true). The 

following lists some of the main expect.js methods and properties:

•	 ok: Checks for truthyness

•	 true: Checks whether the object is truthy

•	 to.be, to: Chains methods as in linking two methods

•	 not: Chains with a not connotation, such as expect(false).not.

to.be(true)

•	 a/an: Checks type (works with array as well)

•	 include/contain: Checks whether an array or string contains an 

element

•	 below/above: Checks for the upper and lower limits

Note A gain, there is a slight deviation between the standalone expect.js 
module and its Chai counterpart.

Chapter 3  TDD and BDD for Node.js with Mocha



104

I bet you didn’t buy this book to read the documentation, did you? So we will save 

you time and not list every single method in the book because the documentation is 

easily available online. And hey, most likely you can get by with just a handful of them, 

such as equal and ok and true. I do. I rarely use more than several methods. But in case 

you need the whole list of methods, go to the full documentation on chai.expect, refer 

to http://chaijs.com/api/bdd. And for the standalone expect.js, see https://

github.com/LearnBoost/expect.js.

�Project: Writing the First BDD Test for Blog
The goal of this mini-project is to add a few tests for Blog (this book's primary project). I 

won't get into headless browsers and UI testing, because that’s an extensive topic in and 

of itself. But we can send a few HTTP requests and parse their responses from the app's 

REST endpoints (see Chapter 2 for a description of the Blog app).

The source code for this chapter is in the code/ch3/blog-express folder of the 

practicalnode GitHub repository (https://github.com/azat-co/practicalnode).

First, let's copy the Hello World project. It will serve as a foundation for Blog. Then, 

install Mocha in the Blog project folder, and add it to the package.json file at the 

same time with $ npm install mocha@4.0.1 --save-dev. The --save-dev flag will 

categorize this module as a development dependency (devDependencies). Modify 

this command by replacing package name and version number for expect.js (0.3.1) and 

superagent (https://npmjs.org/package/superagent) (3.8.0). The latter is a library 

to streamline the making of HTTP requests. Alternatives to superagent include the 

following:

•	 axios (https://npmjs.org/package/axios): A promise and 

async/await-based library, which works both in Node and browsers 

(recommended)

•	 node-fetch (https://npmjs.org/package/node-fetch): A port 

of a native Fetch API from ECMAScript and browsers, which works 

universally in Node and browsers

•	 request (https://npmjs.org/package/request): A versatile 

HTTP agent and one of the most downloaded and dependents upon 

npm module

Chapter 3  TDD and BDD for Node.js with Mocha

http://chaijs.com/api/bdd
https://github.com/LearnBoost/expect.js
https://github.com/LearnBoost/expect.js
https://github.com/azat-co/practicalnode
https://github.com/azat-co/practicalnode
https://npmjs.org/package/superagent
https://npmjs.org/package/superagent
https://npmjs.org/package/axios
https://npmjs.org/package/node-fetch
https://npmjs.org/package/request


105

•	 http: A core module, which clunky and very low level

•	 supertest (https://npmjs.org/package/supertest):  

A superagent-based assertions library

Here’s the updated package.json:

{

  "name": "blog-express",

  "version": "0.0.2",

  "private": true,

  "scripts": {

    "start": "node app.js",

    "test": "mocha tests"

  },

  "dependencies": {

    "express": "4.16.2",

    "pug": "2.0.0-rc.4",

    "stylus": "0.54.5"

  },

  "devDependencies": {

    "expect.js": "0.3.1",

    "mocha": "4.0.1",

    "superagent": "3.8.0"

  }

}

Now, create a test folder with $ mkdir tests and open tests/index.js in 

your editor. The test needs to start the server. We will use two methods, boot() and 

shutdown(), which are imported from the yet-to-be-created app.js. The test is 

straightforward. It makes a single GET request to a home page and checks that the 

response has status code 200 (OK):

const boot = require('../app').boot

const shutdown = require('../app').shutdown

const port = require('../app').port

const superagent = require('superagent')

const expect = require('expect.js')

Chapter 3  TDD and BDD for Node.js with Mocha

https://npmjs.org/package/supertest


106

describe('server', () => {

  before(() => {

    boot()

  })

  describe('homepage', () => {

    it('should respond to GET', (done) => {

      superagent

        .get(`http://localhost:${port}`)

        .end((error, response) => {

          expect(response.status).to.equal(200)

          done()

        })

    })

  })

  after(() => {

    shutdown()

  })

})

Now we will get to the actual meat and potatoes (or rice and tofu bacon for my 

vegetarian readers) of the Blog project: the Express server in app.js.

Remember, in the test we are using boot and shutdown. Thus, we expose those two 

methods, boot and shutdown, in app.js when the file app.js is imported by some 

other file. In our case, the importation will be done by the test, i.e., tests/index.js. 

This is to make the system more flexible. The goal is to allow the test to boot the server, 

and to be able to start the server without tests.

So, instead of just using listen() straight up to launch the server right in the  

app.js like we did before:

http.createServer(app).listen(app.get('port'), () => {

  �console.log(`Express server listening on port ${app.get('port')}`)

})

Chapter 3  TDD and BDD for Node.js with Mocha



107

Let’s refactor this into using an if/else condition with require.main === module, 

which would either export the server Express app object (false) for usage in the Mocha 

test file (tests/index.js) or boot up the server right away (true). We would move the 

listen() into the new boot() function, which is either called directly or exported to be 

called by another file:

const server = http.createServer(app)

const boot = () => {

  server.listen(app.get('port'), () => {

    �console.info(`Express server listening on port ${app.get('port')}`)

  })

}

const shutdown = () => {

  server.close()

}

if (require.main === module) {

  boot() // "node app.js" command

} else {

  console.info('Running app as a module')

  exports.boot = boot

  exports.shutdown = shutdown

  exports.port = app.get('port')

}

To launch the test, simply run $ mocha tests. The tests is a folder. The file name 

index.js is optional.

If that fails, then run a more exact POSIX command with the path:

$ ./node_modules/.bin/mocha tests

Or run this Windows command:

$ node_modules\.bin\mocha tests

If you have more than one file in the tests folder, then all of them would be run by 

the Mocha test runner. When you run the tests, the server should boot and respond to 

the home page request (/ route), as shown in Figure 3-3.

Chapter 3  TDD and BDD for Node.js with Mocha



108

So having tests boot up your server is convenient. You don’t need to keep 

remembering to boot up the server separately before running the tests. Can we make the 

test report prettier? Sure!

�Putting Configs into a Makefile
The mocha command accepts many, many, many options. It's often a good idea to have 

these options gathered in one place, which could be a Makefile. For example, we can 

have test, test-w, which tests all files in the test folder, and have separate commands 

for just the module-a.js and module-b.js files to test them separately. We can add 

Figure 3-3.  The result of running shows the number of executed tests, which is 1

Chapter 3  TDD and BDD for Node.js with Mocha



109

any extra flags/options, such as reporter, timeout time, file watching, macOS growl 

notification, and so on:

REPORTER = list

MOCHA_OPTS = --ui tdd --ignore-leaks

test:

        clear

        echo Starting test ******************************

        ./node_modules/mocha/bin/mocha \

        --reporter $(REPORTER) \

        $(MOCHA_OPTS) \

tests/*.js

        echo Ending test

        test-w:

        ./node_modules/mocha/bin/mocha \

        --reporter $(REPORTER) \

        --growl \

        --watch \

        $(MOCHA_OPTS) \

        tests/*.js

test-module-a:

        �mocha tests/module-a.js --ui tdd --reporter list --ignore-

leaks

test-module-b:

        clear

        echo Starting test ******************************

        ./node_modules/mocha/bin/mocha \

        --reporter $(REPORTER) \

        $(MOCHA_OPTS) \

        tests/module-b.js

        echo Ending test

.PHONY: test test-w test-module-a test-module-b

Chapter 3  TDD and BDD for Node.js with Mocha



110

To launch this Makefile, run $ make <mode>. For example, $ make test, where the 

test command is one of the commands in the Makefile. Other commands are test-w, 

test-module-a, and test- module-b.

Of course, developers aren’t limited only to testing in Makefiles. Anything can be 

there: building, compilation, linting, configuration and maybe even deployment! For 

more information on a Makefile please refer to “Understanding Make” at http://

www.cprogramming.com/tutorial/makefiles.html and “Using Make and Writing 

Makefiles” at http://www.cs.swarthmore.edu/~newhall/unixhelp/howto_

makefiles.html.

For our Blog app, we can keep the Makefile simple:

REPORTER = list

MOCHA_OPTS = --ui bdd –c

test:

    clear

    echo Starting test **********************************

    ./node_modules/mocha/bin/mocha \

    --reporter $(REPORTER) \

    $(MOCHA_OPTS) \

    tests/*.js

    echo Ending test

.PHONY: test

Note  In this Makefile, we point to the local Mocha in the Makefile,  
so the dependency needs to be added to package.json and installed in the 
node_modules folder using npm i or npm i mocha commands.

Now we can run tests with the $ make test command, which allows for more 

configuration compared with the simple $ mocha tests (Figure 3-4).

Chapter 3  TDD and BDD for Node.js with Mocha

http://www.cprogramming.com/tutorial/makefiles.html
http://www.cprogramming.com/tutorial/makefiles.html
http://www.cs.swarthmore.edu/~newhall/unixhelp/howto_makefiles.html
http://www.cs.swarthmore.edu/~newhall/unixhelp/howto_makefiles.html


111

Don’t forget that make test uses singular and mocha tests uses a plural word in 

the command. :-)

�Summary
In this chapter, we installed Mocha as a command-line tool and learned its options, we 

wrote simple tests with assert, the chai.expect and expect.js libraries, and we 

created the first test for the Blog app by modifying app.js to work as a module.

There’s more to testing. In Chapter 10, I will teach how to utilize the continuous 

integration service TravisCI and use GitHub to trigger continuous multiple tests in 

virtual cloud environments.

For now in the next chapter, we proceed with the essence of a web app that outputs 

HTML—template engine. We'll dive deep into Pug and Handlebars, and add pages to Blog.

Figure 3-4.  Running

Chapter 3  TDD and BDD for Node.js with Mocha



113
© Azat Mardan 2018 
A. Mardan, Practical Node.js, https://doi.org/10.1007/978-1-4842-3039-8_4

CHAPTER 4

Template Engines: Pug 
and Handlebars
A template engine is a library or a framework that uses some rules/languages to interpret 

data and render views. In the case of web applications, views are HTML pages (or parts  

of them), but they can be JSON or XML files, or GUIs in the case of desktop programs. 

For those of you familiar with the model–view–controller concept, templates belong to 

the view.

In web apps, it's beneficial to use templates because we can generate an infinite 

number of pages dynamically with a single template! Another side benefit is when we 

need to change something; we can do it in one place only.

If we go back to the diagrams in the previous chapter (traditional vs. REST  

API approaches), we can deduce that templates can be compiled into HTML either 

server-side (traditional approach) or client- side (REST API approach). No matter which 

approach we take, the syntax of the libraries themselves remains intact.

In this chapter we cover the following:

•	 Pug syntax and features

•	 Pug standalone usage

•	 Handlebars syntax

•	 Handlebars standalone usage

•	 Pug and Handlebars usage in Express.js

•	 Project: adding Pug templates to Blog



114

�Pug Syntax and Features
Pug is a Node.js brother of Haml, in the sense that it uses whitespace and indentation as 

part of its language. As with a real pugs, this Pug can either be cute and friendly or can 

chew your butt off if you don’t know how to use it. Therefore, we need to be careful to 

follow the proper syntax.

You can follow the Pug syntax examples in this section online, at the official 

web site's demo page (https://pugjs.org/api/reference.html) or by writing 

standalone Node.js scripts (examples are presented in the section “Pug Standalone 

Usage,” which appears later in this chapter).

�Tags
Any text at the beginning of a line—by default—is interpreted as an HTML tag. The main 

advantage of Pug is that this text renders both closing and opening tags for the HTML 

element, as well as the <></> symbols. Therefore, we save many keystrokes as developers 

writing in Pug! It’s very important to type as little as possible. It will allow you not only to 

avoid silly typos but also to avoid having a repetitive stress injury done to your hands.

The text following a tag and a space (e.g., tag <text>) is parsed as the inner HTML 

(i.e., content inside the element). For example, if we have the following Pug code with h1 

and p tags (elements). After the tag/element name, there’s a space, then text:

body

  div

    h1 Practical Node.js

    p The only book most people will ever need.

  div

    footer &copy; Apress

The text after the first space becomes the content of those elements. The output of 

the template above will be <h1>, <p>, and other elements with the corresponding text 

inside of them:

<body>

  <div>

    <h1> Practical Node.js </h1>

    <p> The only book most people will ever need. </p>

  </div>

Chapter 4  Template Engines: Pug and Handlebars

https://pugjs.org/api/reference.html


115

  <div>

    <footer> &copy; Apress </footer>

  </div>

</body>

The preceding code above is an HTML <body> element. How about some more 

interesting HTML elements to generate the entire web page with the <head> and other 

tags? Sure. You can do that too (eat that, React!). Here’s an example of how to define 

DOCTYPE, and element attributes such as lang (for html), type (for script), and id 

and class for div:

doctype html

html(lang="en")

  head

    �title Why JavaScript is Awesome | CodingFear: programming and 

human circumstances

    script(type='text/javascript').

      const a = 1

      �console.log(`Some JavaScript code here and the value of a is 

${a}`)

  body

    h1 Why JavaScript is Awesome

    div(id="container", class="col")

      p You are amazing

      p Get on it!

      p.

        JavaScript is fun. Almost everything

        can be written in JavaScript. It is huge.

The output will contain attributes defined with parenthesis (key=value), such 

as id, class, type and lang. The output will also have JavaScript code that will be 

executed when the page is viewed in the browsers. The output will also have text in <p>. 

A dot . after the element name or parenthesis allows to define text on a new line and to 

use multiple lines as show in the last p element.

Chapter 4  Template Engines: Pug and Handlebars



116

The # means it’s an id attribute, whereas the dot in the element means a class 

attribute. Thus, omitting the element name like we did with the #container.col will 

produce <div> with the id container and class col. See for yourself:

<!DOCTYPE html>

<html lang="en">

  <head>

    �<title>Why JavaScript is Awesome | CodingFear: programming and 

human circumstances</title>

    <script type="text/javascript">

      const a = 1

      �console.log(`Some JavaScript code here and the value of a is 

${a}`)

    </script>

  </head>

  <body>

    <h1>Why JavaScript is Awesome</h1>

    <div class="col" id="container">

      <p>You are amazing</p>

      <p>Get on it!</p>

      <p>

        JavaScript is fun. Almost everything

        can be written in JavaScript. It is huge.

      </p>

    </div>

  </body>

</html>

Check out the code bellow without the tag/element name… nothing?! Huh.  

You see, when you omit the tag name like in the #contaner.col, Pug will use div,  

so the code below:

#container.col

  p You are amazing

  p Get on it!

Chapter 4  Template Engines: Pug and Handlebars



117

becomes a <div with the id container and the class col:

<div class="col" id="container">

  <p>You are amazing</p>

  <p>Get on it!</p>

</div>

You can play with these example using the code, which is in the code/ch4/ 

pug-example/pug- method-example.js. The code uses the pug npm modules and 

its render() method. For example, this is a Node file and it generates HTML:

const pug = require('pug')

const pugTemplate = `body

  div

    h1 Practical Node.js

    p The only book most people will ever need.

  div

    footer &copy; Apress`

const htmlString = pug.render(pugTemplate, {pretty: true})

console.log(htmlString)

So far, we’ve just outputted some pre-programmed code that is not modifiable by 

the application. This is static and not much fun. Most of the time we want to have some 

dynamism in the form of variables that will allow the application itself to modify the 

output, that is HTML.

�Variables/Locals
Pug, Express and Node developers call the data that is passed to the Pug template local. 

This data is available within the template as a regular Node variable. To output the value 

of a local/variable, use =. Let’s look at some examples to make the lesson stick.

This Pug code prints values of variables title and body using the equal = symbol:

h1= title

p= body

Chapter 4  Template Engines: Pug and Handlebars



118

The variables title and body are called locals. They are the data to supply to the 

Pug template to generate HTML. The data comes in the form of an object. It must have 

properties and the properties must be the same as the names of the locals that you want 

to use, i.e., title and body:

{

  title: "Express.js Guide",

  body: "The Comprehensive Book on Express.js"

}

The HTML output generated from the Pug template and locals shows the values of 

the variables title and body:

<h1>Express.js Guide</h1>

<p>The Comprehensive Book on Express.js</p>

What about HTML element attributes such as href or class? You saw some of 

these, already but, let’s dive deeper.

�Attributes
Attributes are added by putting them into parentheses right after the tag name. They 

follow the tagName(name=value) format. In addition, multiple attributes need to be 

separated by a comma. For example, this Pug code has various attributes on div, a, and 

other elements:

div(id="content", class="main")

  �a(href="http://expressjsguide.com", title="Express.js Guide", 

target="_blank") Express.js Guide

  form(action="/login")

    button(type="submit", value="save")

  div(class="hero-unit") Lean Node.js!

The preceding Pug template code above turns into the following HTML with 

attributes rendered inside of the HTML elements:

<div class="main" id="content"><a href="http://expressjsguide.com" 

title="Express.js Guide" target="_blank">Express.js Guide</a>

Chapter 4  Template Engines: Pug and Handlebars



119

  �<form action="/login"><button type="submit" value="save"> 

</button></form>

  <div class="hero-unit">Lean Node.js!</div>

</div>

Yes, the <a> element is right on the same line as <div>. It’s a mystery to me too.

Sometimes, the value of an attribute needs to be dynamic. It’s more fun this way! In 

this case, just use the variable name without double quotes as the value of the attribute.

Another trick is to use the pipe, or |. It allows us to define text DOM node. In other words, 

the line with the pipe becomes raw text. This is useful when defining multiple lines  

of text.

An example uses attribute values from locals/variables and defines the <input> 

content text yes/no on a new line:

a(href=url, data-active=isActive)

label

  input(type="checkbox", checked=isChecked)

  | yes / no

If the template above is provided with these locals, some of which are boolean and 

url is a string:

{

  url: "/logout",

  isActive: true,

  isChecked: false

}

then they both—meaning template and locals data—produce the following HTML 

output, which doesn’t have checked (false) and has yes/no as text.

<a href="/logout" data-active="data-active"></a>

<label>

  <input type="checkbox"/> yes / no

</label>

Chapter 4  Template Engines: Pug and Handlebars



120

Note that the attribute with the value false is omitted from the HTML output. 

However, when no value is passed, true is assumed. For example, this is a Pug template 

with boolean attributes checked:

input(type='radio', checked)

input(type='radio', checked=true)

input(type='radio', checked=false)

The attributes checked will be omitted when the value is false. When the value is true 

in Pug, then the value is “checked” in HTML. This is the resulting HTML:

<input type="radio" checked="checked"/>

<input type="radio" checked="checked"/>

<input type="radio"/>

Next we will study literals.

�Literals
For convenience, we can write classes and ids right after tag names. For example, we can 

then apply lead and center classes to a paragraph, and create a div element with the 

side-bar id and pull- right class (again, the pipe signifies an inner text):

div#content

  p.lead.center

    | webapplog: where code lives

    #side-bar.pull-right

    span.contact.span4

      a(href="/contact") contact us

Note that if the tag name is omitted, div is used instead. See the <div id="side-

bar" class="pull-right"></div> in the generated HTML below. This <div> was 

created by Pug when no element name was provided, and only a an id of side-bar:

<div id="content">

  <p class="lead center">

    webapplog: where code lives

    <div id="side-bar" class="pull-right"></div>

Chapter 4  Template Engines: Pug and Handlebars



121

    <span class="contact span4">

      <a href="/contact">contact us</a>

    </span>

  </p>

</div>

Pug is all about eloquence, compactness, and convenience. <div> elements are very 

popular for layouts. Therefore, Pug defaults to rendering <div> when there’s no element 

name and there is a class or an id. Nice!

Our next feature is rendering text.

�Text
Outputting raw text is done via |. For example, this template produces one <div> with 

inner text:

div

  | Pug is a template engine.

  | �It can be used in Node.js and in the browser JavaScript.

If you move the | to the left, then the result will be one empty <div> with sibling text 

nodes.

To avoid using pipes on multiple lines, there’s a dot . syntax. Thus, if you want to 

render all nested (indented) lines as inner text, then use dot . right after the element 

name. For example, this template is analogous to the preceding code in that it produces 

one <div> with inner text of two lines:

div.

  Pug is a template engine.

  It can be used in Node.js and in the browser JavaScript.

The result in both cases is HTML with <div> and text inside:

<div>Pug is a template engine. It can be used in Node.js and in the 

browser JavaScript.</div>

The dot comes in handy for writing JavaScript that executes at run time, which is the 

topic of the next section.

Chapter 4  Template Engines: Pug and Handlebars



122

�Script and Style Blocks
Sometimes, developers want to write chunks of content for script or style tags in the 

HTML! This is possible with a dot.

For example, we can write inline front-end JavaScript like this:

script.

  console.log('Hello Pug!')

  setTimeout(function(){

    window.location.href='http://rpjs.co'

  },200))

  console.log('Good bye!')

And the HTML output will have the <script> tag with all of our code:

<script>

  console.log('Hello Pug!')

  setTimeout(function() {

  window.location.href = 'http://rpjs.co'

  }, 200))

  console.log('Good bye!')

</script>

Did you like this little trick with the dot and JavaScript? Of course! But this code is not 

executed until the page loads. In other words, it’s runtime but not compile.

�JavaScript Code
Contrary to the previous example, if we want to use any JavaScript at template 

compilation time—in other words, to write executable JavaScript code that manipulates 

the output of the Pug (i.e., HTML)— we can use the -, =, or != symbols. This may come 

in handy when we output HTML elements and inject JavaScript.

Obviously, these types of things should be done carefully to avoid cross-site scripting 

(XSS) attacks. For example, if we want to define an array and output <> symbols, we can 

use !=.

Chapter 4  Template Engines: Pug and Handlebars



123

- var arr = ['<a>','<b>','<c>']

ul

  - for (var i = 0; i< arr.length; i++)

    li

      span= i

      span!="unescaped: " + arr[i] + " vs. "

      span= "escaped: " + arr[i]

The Pug above produces the following HTML which does NOT include JavaScript but 

the result of the JavaScript code, because this JS is a compile-time JS for Pug. This is not 

run-time JS for a browser as was defined with script. earlier. The resulting HTML has 

<ul> and three <li> elements:

<ul>

  �<li><span>0</span><span>unescaped: <a> vs.  

</span><span>escaped: &lt;a&gt;</span></li>

  �<li><span>1</span><span>unescaped: <b> vs.  

</span><span>escaped: &lt;b&gt;</span></li>

  �<li><span>2</span><span>unescaped: <c> vs.  

</span><span>escaped: &lt;b&gt;</span></li>

</ul>

Tip  One of the main differences between Pug and Handlebars is that the 
former allows pretty much any JavaScript in its code, whereas the latter restricts 
programmers to only a handful of built-in and custom-registered helpers.

�Comments
When it comes to comments, we have a choice to render/output them into HTML  

or not. To render/output them into HTML, use JavaScript style //; to not render them, 

use //-. For example, here are two comments:

// content goes here

p Node.js is a non-blocking I/O for scalable apps.

//- @todo change this to a class

p(id="footer") Copyright 2014 Azat

Chapter 4  Template Engines: Pug and Handlebars



124

The Pug above with comments outputs the HTML style comments with // but hides 

them with //-. Thus, the resulting HTML has only content goes here without @todo 

change this to a class:

<!-- content goes here-->

<p>Node.js is a non-blocking I/O for scalable apps.</p>

<p id="footer">Copyright 2014 Azat</p>

Of course, views (i.e., templates) benefit greatly from an if/else condition. Let’s cover 

them next.

�Conditions (if)
Interestingly enough, in addition to the standard JavaScript code, where the if 

statement can be used by prefixing it with -, we can use an even shorter Pug alternative 

with no prefix and no parentheses. For example, this if/else works fine:

- var user = {}

- user.admin = Math.random()>0.5

if user.admin

    button(class="launch") Launch Spacecraft

else

    button(class="login") Log in

There's also unless, which is equivalent to not or !.

�Iterations (each loops)
Similar to conditions, iterators in Pug can be written simply with each. For example, this 

is code to iterate over an array of programming languages and create paragraphs for each 

of them:

- var languages = ['php', 'node', 'ruby']

div

  each value, index in languages

    p= index + ". " + value

Chapter 4  Template Engines: Pug and Handlebars



125

The HTML output with three <p> elements is as follows:

<div>

  <p>0. php</p>

  <p>1. node</p>

  <p>2. ruby</p>

</div>

The same iterative each construction works with objects as well. Developers even 

can access a key value. Take a look at this object with languages as keys and their 

importance as values:

- var languages = {'php': -1, 'node': 2, 'ruby':1}

div

  each value, key in languages

    p= key + ": " + value

The Pug above is compiled into the HTML output in which each iteration over the 

array values produces a paragraph <p> element for each language:

<div>

  <p>php: -1</p>

  <p>node: 2</p>

  <p>ruby: 1</p>

</div>

Next are filters!

�Filters
Filters are used when there are blocks of texts written in a different language. For 

example, the filter for Markdown looks like this:

p

  :markdown

    # Practical Node.js

Chapter 4  Template Engines: Pug and Handlebars



126

Note T he Markdown modules still need to be installed. The marked and 
markdown npm packages are often used for this. There’s no need for an additional 
configuration; just install them in the project's local node_modules folder.

�Interpolation
Interpolation is mixing of strings and dynamic values from variables. That’s another term 

that will make you look at least five (5) IQ points smarter. You are welcome.

In Pug, interpolation is achieved via the syntax with curly braces and a hashtag: 

#{name}, where name is the name of a variable. For example, to output title in a 

paragraph, simply use #{title} in the text, as in the following code:

- var title = "React Quickly: Painless web apps with React, JSX, 

Redux, and GraphQL"

p Read the #{title} in PDF, MOBI and EPUB

The interpolation is processed at the template compilation. Therefore, don’t use 

interpolation in executable JavaScript, that is, JS with -. For the - JS, use standard ES6 

string interpolation with ${name}.

�Case
Case allows Node developers to avoid a chain of if/else conditions. You probably used 

something similar. In other languages, case implemented with switch. Here's an 

example of the case statement in Pug:

- var coins = Math.round(Math.random()*10)

case coins

  when 0

    p You have no money

  when 1

    p You have a coin

  default

    p You have #{coins} coins!

Chapter 4  Template Engines: Pug and Handlebars



127

�Mixins
Mixins are functions that take parameters and produce some HTML. They are super cool 

because they allow you reuse boatloads of code if used correctly. The declaration syntax is 

mixin name(param, param2,...), and the usage is +name(data). For example, here I 

define row and table mixins, which I use later with real data from arrays:

mixin row(items)

  tr

    each item, index in items

      td= item

mixin table(tableData)

  table

    each row, index in tableData

      +row(row)

- var node = [{name: "express"}, {name: "hapi"}, {name: "derby"}]

+table(node)

- var js = [{name: "backbone"}, {name: "angular"}, {name: "ember"}]

+table(js)

The preceding Pug code, above when used in Express or elsewhere, produces the 

following output by “invoking” the mixins table and row just as a function would be 

invoked with arguments (bonus: developers can use table and row mixins over and 

over for other data!):

<table>

  <tr>

    <td>express</td>

  </tr>

  <tr>

    <td>hapi</td>

  </tr>

  <tr>

    <td>derby</td>

  </tr>

</table>

Chapter 4  Template Engines: Pug and Handlebars



128

<table>

  <tr>

    <td>backbone</td>

  </tr>

  <tr>

    <td>angular</td>

  </tr>

  <tr>

    <td>ember</td>

  </tr>

</table>

�Include
include is a way to split logic into a separate file for the purpose of reusing it across 

multiple files. Don’t confuse this with ES6 include. That’s JavaScript, but we are talking 

about Pug here.

This include is a top-to-bottom approach, meaning we dictate what to use in the file 

that includes another file. The file that includes is processed first (we can define locals 

there), and then the included file is processed (we can use earlier defined locals).

To include a Pug template, use include /path/filename. No need for double 

quotes " or single quotes '. I like it! For example, in a layout file you can import a header:

include ./includes/header

Notice there's no need for double or single quotes for the template name and its 

path. And it's possible to traverse up the folder tree. This footer can be in a parent folder’s 

includes folder:

include ../includes/footer

But, there's no way to use a dynamic value for the file and path (use a variable), 

because includes/partials are handled at compilation (not at runtime).

Chapter 4  Template Engines: Pug and Handlebars



129

�Extend
extend is a bottom-to-top approach (as oppose to include), in the sense that the 

included file commands which parts of the main file it wants to replace. The way it works 

is with extend filename and block blockname statements.

In file_a, which is like a layout you define blocks, define block elements with 

some default content:

block header

  p some default text

block content

  p Loading ...

block footer

  p copyright

In file_b, which is like a subview, you define what layout to use and what blocks to 

overwrite (and what not to, by omission).

For example, in this file_b file, the header and content blocks will have new 

content, but footer will stay as in file_a. Here’s the file_b example:

extend file_a

block header

  p very specific text

block content

  .main-content

The bottom line is that extend and block implement inverted inheritance pattern.

�Standalone Pug Usage
Template engines (Pug) and web frameworks (Express) go together like ketchup and 

hotdogs—but not always. Template engines are not not always used with Node.js 

frameworks like Express.js. Sometimes, we might just want to use Pug in a standalone 

manner. The use cases include generating an e-mail template, precompiling Pug before 

deployment, and debugging. In this section, we do the following:

•	 Install a Pug module

•	 Create our first Pug file

Chapter 4  Template Engines: Pug and Handlebars



130

•	 Create a Node.js program that uses the Pug file

•	 Compare pug.compile, pug.render, and pug.renderFile

To add a pug dependency to your project, or if you're starting from scratch from an 

empty project folder, do the following:

	 1.	 Create a package.json file manually or with $ npm init -y.

	 2.	 Install and add pug to package.json with $ npm i pug –save. 

See the results in Figure 4-1.

	 3.	 Create a Node file.

	 4.	 Import pug in the Node file.

	 5.	 Invoke a method from pug module in your Node file.

Figure 4-1.  Installing Pug

Chapter 4  Template Engines: Pug and Handlebars



131

Tip A dd {pretty: true} to pug.render(), as in pug.
render(pugTemplate, {pretty: true}), in order to have properly 
formatted, pretty HTML.

Let's say we have some Node.js script that sends an e-mail and we need to use a 

template to generate HTML dynamically for the e-mail. This is how it might look (file 

pug-example.pug):

.header

  h1= title

  p

.body

  p= body

.footer

  div= By

    �a(href="http://twitter.com/#{author.twitter}")= author.name

  ul

    each tag, index in tags

      li= tag

In this case, our Node.js script needs to hydrate, or populate, this template with the 

following data:

•	 title: String

•	 tags: Array

•	 body: String

•	 author: String

We can extract these variables from multiple sources (databases, file systems, user 

input, tassology, and so on). For example, in the pug-example.js file, we use hard-

coded values for title, author, tags, but pass through a command-line argument for 

body using process.argv[2]:

const pug = require('pug'),

  fs = require('fs')

Chapter 4  Template Engines: Pug and Handlebars



132

let data = {

  title: 'Practical Node.js',

  author: {

    twitter: '@azatmardan',

    name: 'Azat'

  },

  tags: ['express', 'node', 'javascript']

}

data.body = process.argv[2]

fs.readFile('pug-example.pug', 'utf-8', (error, source) => {

  let template = pug.compile(source)

  let html = template(data)

  console.log(html)

})

In this way, when we run $ node pug-example.js 'email body', we get the 

HTML output printed in the terminal as shown in Figure 4-2.

Figure 4-2.  The result of a standalone Pug rendering

Chapter 4  Template Engines: Pug and Handlebars



133

The “prettified” HTML output with proper spaces and indentation that I took from 

the terminal looks as follows:

<div class="header">

    <h1>Practical Node.js</h1>

    <p></p>

</div>

<div class="body">

    <p>email body</p>

</div>

<div class="footer">

    <div><a href="http://twitter.com/@azatmardan">Azat</a>

    </div>

    <ul>

        <li>express</li>

        <li>node</li>

        <li>javascript</li>

    </ul>

</div>

In addition to pug.compile(), the Pug API has the functions pug.render() and 

pug.renderFile(). For example, the previous file can be rewritten with  

pug.render():

fs.readFile('pug-example.pug', 'utf-8', (error, source) => {

  const html = pug.render(source, data)

  console.log(html)

})

Furthermore, with pug.renderFile(), the pug-example.js file is even more 

compact because it will do two things at the same time: read a file and render it:

pug.renderFile('pug-example.pug', data, (error, html) => {

  console.log(html)

})

Chapter 4  Template Engines: Pug and Handlebars



134

Note P ug can also be used as a command-line tool after installing it with the 
-g or --global option via npm. For more information, run pug -h or see the 
official documentation (http://pug-lang.com/command-line).

To use Pug in a browser, you can use browserify (https://github.com/

substack/node-browserify) and its pugify (https://www.npmjs.org/package/

pug-browser) middleware.

Note T o use the same Pug templates on front-end (browser) and server sides, 
I recommend jade-browser (https://www.npmjs.org/package/
jade-browser) by Storify, for which I was the maintainer for a time during my 
work there. jade-browser acts as an Express.js middleware, and exposes 
server- side templates to the browser along with helpful utility functions.

�Handlebars Syntax
The Handlebars library is another template engine. It inherits from Mustache and, for 

the most part, is compatible with Mustache's syntax. However, Handlebars adds more 

features. In other words, Handlebars is a superset of Mustache.

Unlike Pug, Handlebars by design was made so that developers can't write a lot 

of JavaScript logic inside the templates. This helps to keep templates lean and related 

strictly to the representation of the data (no business logic).

Another drastic difference between Pug and Handlebars is that the latter requires full 

HTML code (<, >, closing </> tags, and so on). For this reason it could care less about 

whitespace and indentation, which means that it’s easy to copypasta your existing HTML 

and make it Handlebars, and that developers have to type more code when writing 

templates from scratch.

�Variables
A Handlebars expression is {{, some content, followed by }}, hence the name of the 

library (see the resemblance to handlebars on a bicycle?). For example, this  

Handlebars code:

Chapter 4  Template Engines: Pug and Handlebars

http://pug-lang.com/command-line
https://github.com/substack/node-browserify
https://github.com/substack/node-browserify
http://www.npmjs.org/package/pug-browser)
http://www.npmjs.org/package/pug-browser)
http://www.npmjs.org/package/jade-browser
http://www.npmjs.org/package/jade-browser


135

<h1>{{title}}</h1>

<p>{{body}}</p>

with data that has title and body properties:

{

  title: "Express.js Guide",

  body: "The Comprehensive Book on Express.js"

}

renders the elements with values from title and body:

<h1>Express.js Guide</h1>

<p>The Comprehensive Book on Express.js</p>

�Iteration (each)
In Handlebars, each is one of the built-in helpers; it allows you to iterate through objects 

and arrays. Inside the block, we can use @key for the former (objects), and @index for 

the later (arrays). In addition, each item is referred to as this. When an item is an object 

itself, this can be omitted, and just the property name is used to reference the value of 

that property.

The following are examples of the each helper block in Handlebars:

<div>

{{#each languages}}

  <p>{{@index}}. {{this}}</p>

{{/each}}

</div>

The template above is supplied with this data that has array of strings:

{languages: ['php', 'node', 'ruby']}

and output this HTML upon compilation, which has <p> for each array element:

<div>

  <p>0. php</p>

  <p>1. node</p>

  <p>2. ruby</p>

</div>

Chapter 4  Template Engines: Pug and Handlebars



136

�Unescaped Output
By default, Handlebars escapes values. If you don't want Handlebars to escape a value, 

use triple curly braces: {{{ and }}}.

As data, let's use this object that has an array with some HTML tags (angle braces):

{

  arr: [

    '<a>a</a>',

    '<i>italic</i>',

    '<strong>bold</strong>'

  ]

}

To apply this Handlebars template to our data above (i.e., hydration) use an iterator 

each with {{{this}}} for the unescaped value of an individual array item, which is 

HTML and hence needs to be unescaped:

<ul>

    {{#each arr}}

    <li>

      <span>{{@index}}</span>

      <span>unescaped: {{{this}}} vs. </span>

      <span>escaped: {{this}}</span>

    </li>

  {{/each}}

</ul>

The hydrated template produces the following HTML by printing array indices ({{@

index}}), unescaped HTML ({{{this}}}) and escaped HTML ({{this}}):

<ul>

  <li>

    <span>0</span>

    <span>unescaped: <a>a</a> vs. </span>

    <span>escaped: &lt;a&amp;gt;a&lt;/a&gt;</span>

  </li>

Chapter 4  Template Engines: Pug and Handlebars



137

  <li>

    <span>1</span>

    <span>unescaped: <i>italic</i> vs. </span>

    <span>escaped: &lt;i&gt;italic&lt;/i&gt;</span>

  </li>

  <li>

    <span>2</span>

    <span>unescaped: <strong>bold</strong> vs. </span>

    �<span>escaped: &lt;strong&gt;bold&lt;/strong&gt; 

</span>

  </li>

</ul>

�Conditions (if)
if is another built-in helper invoked via #. For example, this Handlebars code uses an if/

else condition to check for a user.admin value (if a user is an administrator):

{{#if user.admin}}

  <button class="launch"> Launch Spacecraft</button>

{{else}}

  <button class="login"> Log in</button>

{{/if}}

The template is populated with data that will make the if/else condition true:

{

  user: {

    admin: true

  }

}

Everything turns into this HTML output, which has a launch element rendered due 

to the value of user.admin being true:

<button class="launch">Launch Spacecraft</button>

Chapter 4  Template Engines: Pug and Handlebars



138

�Unless
To inverse an if not ... (if ! ...) statement (convert negative to positive), we 

can harness the unless built-in helper block. For example, the previous code snippet 

can be rewritten with unless.

The Handlebars code that checks the truthiness of the admin flag (property user.

admin). If the value is true, then else will be applied. Notice the change in Log in and 

Launch Spacecraft. They are flipped now compared to if/else:

{{#unless user.admin}}

  <button class="login"> Log in</button>

{{else}}

  <button class="launch">Launch Spacecraft</button>

{{/unless}}

We supply our template with the data that makes the user an administrator:

{

  user: {

    admin: true

  }

}

The HTML output renders the launch button, which is available only to admins 

because this button was in else, we used unless, and the value is true.

<button class="launch">Launch Spacecraft</button>

�With
In case there's an object with nested properties, and there are a lot of them, it's possible 

to use with to pass the context.

We have this Handlebars code that is handling a user's contact and address 

information:

{{#with user}}

  <p>{{name}}</p>

  {{#with contact}}

    <span>Twitter: @{{twitter}}</span>

Chapter 4  Template Engines: Pug and Handlebars



139

  {{/with}}

  <span>Address: {{address.city}},

{{/with}}

{{user.address.state}}</span>

Then we merge the template with this data. Notice the properties' names are the 

same as in the Handlebars template, there's only one reference to the user object:

{user: {

  contact: {

    email: 'hi@node.university',

    twitter: 'azatmardan'

  },

  address: {

    city: 'San Francisco',

    state: 'California'

  },

  name: 'Azat'

}}

The snippets above, when compiled, produce HTML that prints values using the 

object name for every property:

<p>Azat</p>

<span>Twitter: @azatmardan</span>

<span>Address: San Francisco, California

</span>

�Comments
To output comments, use regular HTML <!-- and -->. To hide comments in the final 

output, use {{! and }} or {{!-- and --}}. For example, the following code below has 

two types of comments:

<!-- content goes here -->

<p>Node.js is a non-blocking I/O for scalable apps.</p>

{{! @todo change this to a class}}

{{!-- add the example on {{#if}} --}}

<p id="footer">Copyright 2019 Azat</p>

Chapter 4  Template Engines: Pug and Handlebars



140

The preceding code outputs the comments with <!-- ... --> but omits 

comments with {{! ... }} so the result is this:

<!-- content goes here -->

<p>Node.js is a non-blocking I/O for scalable apps.</p>

<p id="footer">Copyright 2019 Azat</p>

�Custom Helpers
Custom Handlebars helpers are similar to built-in helper blocks and Pug mixins. To use 

custom helpers, we need to create them as a JavaScript function and register them with 

the Handlebars instance.

For example, let’s assume we have a custom helper table which we'll register (i.e., 

define) later in the JavaScript/Node.js code, then this Handlebars template uses our 

table:

{{table node}}

Here goes the JavaScript/Node.js that registers or tells the Handlebars compiler what 

to do when it encounters the custom table function (i.e., print an HTML table out of the 

provided array):

handlebars.registerHelper('table', (data) => {

  let str = '<table>'

  for (let i = 0; i < data.length; i++ ) {

    str += '<tr>'

    for (var key in data[i]) {

      str += '<td>' + data[i][key] + '</td>'

    }

    str += '</tr>'

  }

  str += '</table>'

  return new handlebars.SafeString (str)

})

Chapter 4  Template Engines: Pug and Handlebars



141

The following is our array for the table data. It has an array of object. Each object has 

name and URL:

[

  {name: 'express', url: 'http://expressjs.com/'},

  {name: 'hapi', url: 'http://spumko.github.io/'},

  {name: 'compound', url: 'http://compoundjs.com/'},

  {name: 'derby', url: 'http://derbyjs.com/'}

]

The resulting HTML from iterating over the name and URL objects within the table 

function looks like this:

<table>

    <tr>

        <td>express</td>

        <td>http://expressjs.com/</td>

    </tr>

    <tr>

        <td>hapi</td>

        <td>http://spumko.github.io/</td>

    </tr>

    <tr>

        <td>compound</td>

        <td>http://compoundjs.com/</td>

    </tr>

    <tr>

        <td>derby</td>

        <td>http://derbyjs.com/</td>

    </tr>

</table>

Thus, helpers are good for reusing the code. Another way to reuse code is includes or 

partials.

Chapter 4  Template Engines: Pug and Handlebars



142

�Includes (Partials)
In Handlebars, includes or partials templates are interpreted by the {{> partial_

name}} expression. Partials are akin to helpers and are registered with Handlebars.

registerPartial(name, source), where name is a string and source is a Handlebars 

template code for the partial (JS/Node code, not template):

Handlebars.registerPartial('myPartial', '{{name}}')

Calling the partial is done with the following syntax (written in the Handlebars 

template, not JS/Node code):

{{> myPartial }}

For more on includes and partials, see the documentation at http://

handlebarsjs.com/partials.html.

�Standalone Handlebars Usage
Developers can install Handlebars via npm with $ npm install handlebars or  

$ npm install handlebars --save, assuming either node_modules or  

package.json is in the current working directory (see the results of a sample 

installation in Figure 4-3).

Chapter 4  Template Engines: Pug and Handlebars

http://handlebarsjs.com/partials.html
http://handlebarsjs.com/partials.html


143

Note H andlebars can be installed via npm as a command-line tool with the -g  
or --global options. For more information on how to use Handlebars in this 
mode, refer to the $ handlebar command or the official documentation 
(https://github.com/wycats/handlebars.js/#usage-1).

Here's an example of standalone Node.js Handlebars usage from  

handlebars-example.js in which we import modules, then define data object (with 

book info), and then register a few helpers and generate HTML:

const handlebars = require('handlebars')

const fs = require('fs')

const path = require('path')

Figure 4-3.  Installing Handlebars

Chapter 4  Template Engines: Pug and Handlebars

https://github.com/wycats/handlebars.js/#usage-1


144

const data = {

  title: 'practical node.js',

  author: '@azatmardan',

  tags: ['express', 'node', 'javascript']

}

data.body = process.argv[2]

const filePath = path.join(__dirname,

  'handlebars-example.html')

data.tableData = [

  {name: 'express', url: 'http://expressjs.com/'},

  {name: 'hapi', url: 'http://spumko.github.io/'},

  {name: 'compound', url: 'http://compoundjs.com/'},

  {name: 'derby', url: 'http://derbyjs.com/'}

]

fs.readFile(filePath, 'utf-8', (error, source) => {

  if (error) return console.error(error)

  // Register helper to generate table HTML from data (array)

  handlebars.registerHelper('table', (data) => {

    let str = '<table>'

    for (let i = 0; i < data.length; i++) {

      str += '<tr>'

      for (var key in data[i]) {

        str += '<td>' + data[i][key] + '</td>'

      }

      str += '</tr>'

    }

    str += '</table>'

    return new handlebars.SafeString(str)

  })

  // Register helper to create capitalize a string

  handlebars.registerHelper('custom_title', (title) => {

    let words = title.split(' ')

    for (let i = 0; i < words.length; i++) {

Chapter 4  Template Engines: Pug and Handlebars



145

      if (words[i].length > 4) {

        �words[i] = words[i][0].toUpperCase() + words[i].substr(1)

      }

    }

    title = words.join(' ')

    return title

  })

  // Compile the template and hydrate it with data to generate HTML

  const template = handlebars.compile(source)

  const html = template(data)

  console.log(html)

})

And the handlebars-example.html template file that uses  

custom_title helper has the following content that calls the helper and outputs some 

other properties:

<div class="header">

    <h1>{{custom_title title}}</h1>

</div>

<div class="body">

    <p>{{body}}</p>

</div>

<div class="footer">

    �<div><a href="http://twitter.com/{{author.twitter}}"> 

{{autor.name}}</a>

    </div>

    <ul>

      {{#each tags}}

        <li>{{this}}</li>

      {{/each}}

    </ul>

</div>

Chapter 4  Template Engines: Pug and Handlebars



146

To produce this HTML when we run $ node handlebars-example.js 'email 

body', use the following:

<div class="header">

    <h1>Practical Node.js</h1>

</div>

<div class="body">

    <p>email body</p>

</div>

<div class="footer">

    <div><a href="http://twitter.com/"></a>

    </div>

    <ul>

        <li>express</li>

        <li>node</li>

        <li>javascript</li>

    </ul>

</div>

To use Handlebars in the browser, download the library in a straightforward manner 

from the official web site (http://handlebarsjs.com) and include it in your pages. 

Alternatively, it's possible to use just the runtime version from the same web site (which 

is lighter in size) with precompiled templates. Templates can be precompiled with the 

Handlebars command-line tool.

�Pug and Handlebars Usage in Express.js
By default, Express.js uses either a template extension provided to the  

response.render (or res.render) method or the default extension set by the view 

engine setting, to invoke the require and__express methods on the template library. 

In other words, for Express.js to utilize a template engine library out of the box, that 

library needs to have the__express method.

When the template engine library doesn't provide the__express method, or a 

similar one with (path, options, callback) parameters, it's recommended that you 

use Consolidate.js (https://github.com/visionmedia/consolidate.js/).

Chapter 4  Template Engines: Pug and Handlebars

http://handlebarsjs.com
https://github.com/visionmedia/consolidate.js


147

Let’s look at a quick example of an abstraction library for templates called 

Consolidate.js. In this example, I use the template engine Swig. I picked this template 

engine because most likely you never heard of it and this makes it a good illustration for 

an abstraction library like Consolidate. So Swig comes from the consolidate module. I 

connected it to express with the app.engine('html', cons.swig) statement. See the 

full server implementation that renders Swig templates:

const express = require('express')

const cons = require('consolidate')

const path = require('path')

let app = express()

app.engine('html', cons.swig)

app.set('view engine', 'html')

app.set('views', path.join(__dirname, 'templates'))

var platforms = [

  { name: 'node' },

  { name: 'ruby' },

  { name: 'python' }

]

app.get('/', (req, res) => {

  res.render('index', {

    title: 'Consolidate This'

  })

})

app.get('/platforms', (req, res) => {

  res.render('platforms', {

    title: 'Platforms',

    platforms: platforms

  })

})

app.listen(3000, () => {

  console.log('Express server listening on port 3000')

})

Chapter 4  Template Engines: Pug and Handlebars



148

As usual, the source code is in the GitHub repository, and the snippet is in the code/

ch4/consolidate folder.

For more information on how to configure Express.js settings and use Consolidate.

js, refer to the still- up-to-date book on Express.js version 4—Pro Express.js (Apress, 

2014), which is available on all major book stores, and of course at https://amzn.

to/2tlSwNw.

�Pug and Express.js
Pug is compatible with Express.js out of the box (in fact, it's the default choice), so to use 

Pug with Express.js, you just need to install a template engine module (pug) (https://

www.npmjs.org/package/pug) and provide an extension to Express.js via the view 

engine setting.

For example, in the main Express server file we set the view engine setting as pug 

to let Express know which library to use for templates:

app.set('view engine', 'pug')

Of course, developers need to install the pug npm module into their project so the 

pug package is stored locally in node_modules. Express will use the name pug provided 

to view engine to import the pug package and also use the pug as a template files 

extension in the views folder (views is the default name).

Note I f you use the $ express <app_name> command-line tool, you can 
add the option for engine support, i.e., the –e option for EJS and –H for Hogan. 
This will add EJS or Hogan automatically to your new project. Without either of 
these options, the express-generator (versions 4.0.0–4.2.0) will use Pug.

In the route file, we can call the template—for example, views/page.pug (the 

views folder name is another Express.js default, which can be overwritten with the view 

setting):

app.get('/page', (req, res, next) => {

  //get the data dynamically

  res.render('page', data)

})

Chapter 4  Template Engines: Pug and Handlebars

https://amzn.to/2tlSwNw
https://amzn.to/2tlSwNw
http://www.npmjs.org/package/pug)
http://www.npmjs.org/package/pug)


149

If we don't specify the view engine setting, then the extension must be passed 

explicitly to res.render() as a first argument, such as:

  res.render('page.pug', data)

Next, let’s cover the Express usage for Handlebars.

�Handlebars and Express.js
Contrary to Pug, the Handlebars library from http://handlebarsjs.com doesn't come 

with the express method, but there are a few options to make Handlebars work with 

Express.js:).

•	 consolidate (https://github.com/tj/consolidate.js): A 

Swiss-army knife of Express.js template engine libraries (shown in 

one of the previous sections)

•	 hbs (https://github.com/pillarjs/hbs): Wrapper library for 

Handlebars

•	 express-handlebarss (https://github.com/ericf/express-

handlebars): A module to use Handlebars with Express

Here's how we can use the hbs approach (extension hbs). Somewhere in the 

configuration section of the main Express file (file that we launch with the $ node 

command), write the following statements:

// Imports

app.set('view engine', 'hbs')

// Middleware

Or, if another extension is preferable, such as html, we see the following:

app.set('view engine', 'html')

pp.engine('html', require('hbs').__express)

The express-handlebars approach usage is as follows:

const exphbs = require('express-handlebars')

app.engine('handlebars', exphbs({defaultLayout: 'main'}))

app.set('view engine', 'handlebars')

Good. Now we can put our knowledge to practice.

Chapter 4  Template Engines: Pug and Handlebars

http://handlebarsjs.com/
https://github.com/tj/consolidate.js
https://github.com/pillarjs/hbs
https://github.com/ericf/express-handlebars
https://github.com/ericf/express-handlebars


150

�Project: Adding Pug Templates to Blog
Lastly, we can continue with Blog. In this section we add main pages using Pug, plus we 

add a layout and some partials:

•	 layout.pug: Global app-wide template

•	 index.pug: Home page with the list of posts

•	 article.pug: Individual article page

•	 login.pug: Page with a login form

•	 post.pug: Page for adding a new article

•	 admin.pug: Page to administer articles after logging in

Because the templates in this mini-project require data, we'll skip the demo until 

Chapter 5, where we'll plug in the MongoDB database. So the source code for the Pug 

templates is exactly the same as in the code/ch5 folder of the GitHub repository azat-

co/practicalnode: https://github.com/azat-co/practicalnode. Feel free to 

copy it from there or follow the instructions to implement listed below in this section.

�layout.pug
Let's open the project where we left off in the previous chapter and add layout.pug 

with the document type statement:

doctype html

Now we can add the main tags of the page:

html

  head

The title of the each page is provided from the appTitle variable (a.k.a., local):

    title= appTitle

Chapter 4  Template Engines: Pug and Handlebars

https://github.com/azat-co/practicalnode


151

Then, in the head tag, we list all the front-end assets that we need app-wide (on each 

page):

    �script(type="text/javascript", src="js/jquery-2.0.3.min.js")

    �link(rel="stylesheet", href="/css/bootstrap-3.0.2/css/bootstrap.

min.css")

    �link(rel="stylesheet", href="/css/bootstrap-3.0.2/css/bootstrap-

theme.min.css")

    link(rel="stylesheet", href="/css/style.css")

    �script(type="text/javascript", src="/css/bootstrap-3.0.2/js/

bootstrap.min.js")

    script(type="text/javascript", src="/js/blog.js")

    �meta(name="viewport", content="width=device-width, initial-

scale=1.0")

The main content lives in body, which has the same level indentation as head:

  body

Inside the body, we write an id and some classes for the styles that we'll add later:

    #wrap

      .container

The appTitle value is printed dynamically, but the p.lead element only has text:

        h1.page-header= appTitle

        �p.lead Welcome to example from Express.js Experience by

          a(href="http://twitter.com/azat_co") @azatmardan

          |. Please enjoy.

The block sections can be overwritten by the children templates (templates that 

extend this file):

        block page

        block header

          div

Chapter 4  Template Engines: Pug and Handlebars



152

Menu is a partial (i.e., an include) that is stored in the views/includes folder. Note 

the absence of quotation marks:

            include includes/menu

In this block named alert, we can display messages for users, so let’s use special 

alerty classes on a div (the indentation is preserved to show hierarchy):

            block alert

              div.alert.alert-warning.hidden

Main content goes in this block. It is empty now because other template will define it:

        .content

          block content

Lastly, the footer block with div with the container class and with p with text and a 

link (link is wrapped in text) looks as follows:

      block footer

        footer

          .container

            p

              | Copyright &copy; 2018 | Issues? Submit to

              �a(href="https://github.com/azat-co/blog-express/

issues") GitHub

              | .

To give you a full picture as well as preserve proper indentation (which is 

PARAMOUNT in Pug), the full code of layout.pug is as follows:

doctype html

html

  head

    title= appTitle

    �script(type="text/javascript", src="js/jquery-2.0.3.min.js")

    �link(rel="stylesheet", href="/css/bootstrap-3.0.2/css/bootstrap.

min.css")

    �link(rel="stylesheet", href="/css/bootstrap-3.0.2/css/ 

bootstrap-theme.min.css")

Chapter 4  Template Engines: Pug and Handlebars



153

    link(rel="stylesheet", href="/css/style.css")

    �script(type="text/javascript", src="/css/bootstrap-3.0.2/js/

bootstrap.min.js")

    script(type="text/javascript", src="/js/blog.js")

    �meta(name="viewport", content="width=device-width, initial-

scale=1.0")

  body

    #wrap

      .container

        h1.page-header= appTitle

        �p.lead Welcome to example from Express.js Experience by

          a(href="http://twitter.com/azat_co") @azatmardan

          |. Please enjoy.

        block page

        block header

          div

            include includes/menu

        block alert

          div.alert.alert-warning.hidden

        .content

          block content

    block footer

      footer

        .container

          p

            | Copyright &copy; 2014 | Issues? Submit to

            �a(href="https://github.com/azat-co/blog-express/issues") 

GitHub

            | .

Next is the home page.

Chapter 4  Template Engines: Pug and Handlebars



154

�index.pug
Now, we can look at the home page template index.pug that extends layout.pug. 

Remember the syntax? It’s extends name:

extends layout

Because we can overwrite some blocks, we set the menu variable to index, so the 

menu include (i.e., menu.pug) can determine which tab to show as active:

block page

  - var menu = 'index'

Of course, we need to overwrite the content block. Ergo, the main content with 

the list of articles that comes from locals iterates over the blog posts (articles). Each 

article link has a title and, needless to say, a URL that is formed by the article.slug 

value. When there are no posts/articles, then we show a message that nothing has been 

published yet. The code is as follows:

block content

  if (articles.length === 0)

    | There's no published content yet.

    a(href="/login") Log in

    | to post and publish.

  else

    each article, index in articles

      div

        h2

          �a(href="/articles/#{article.slug}")= article.title

For your reference and to show the ease of comprehension in Pug’s style, the full code of 

index.pug is as follows. You can see extends and two block overwrites (of layout):

extends layout

block page

  - var menu = 'index'

block content

Chapter 4  Template Engines: Pug and Handlebars



155

  if (articles.length === 0)

    | There's no published content yet.

    a(href="/login") Log in

    | to post and publish.

  else

    each article, index in articles

      div

        h2

          �a(href="/articles/#{article.slug}")= article.title

Figure 4-4 shows how the home page looks after adding style sheets.

Figure 4-4.  The home page of Blog shows menu and the titles of the published 
articles

Phew. Next is the page for the actual blog posts/articles.

Chapter 4  Template Engines: Pug and Handlebars



156

Figure 4-5.  The article page

�article.pug
The individual article page (Figure 4-5) is relatively unsophisticated because most of the 

elements are abstracted into layout.pug. We only have extends and then overwrite the 

content block without the article title (h1 heading) and article’s text (p for paragraph).

extends layout

block content

  p

    h1= title

    p= text

Chapter 4  Template Engines: Pug and Handlebars



157

This is the awesomeness which we receive for free thanks to Twitter Bootstrap and 

h1 and p elements. You can clearly see that even despite defining only h1 and p, the 

webpage /articles/node-fundamentals has a page title menu and the footer. That’s 

due to the inheritance, extends, and layout.pug.

Did you notice that “Log in” link? Let’s implement the login page next.

�login.pug
Similarly to article.pug, the login page uses login.pug, which contains… not much! 

Only a form and a button with some minimal Twitter Bootstrap classes/markup.

So as with article.pug, we extend layout and overwrite two blocks—one for the 

active menu value and the other for the content, which is the main part of the page. This 

main part has guess what? A LOGIN FORM! This is file login.pug:

extends layout

block page

  - var menu = 'login'

block content

  .col-md-4.col-md-offset-4

    h2 Log in

    div= error

    div

      form(action="/login", method="POST")

        p

          �input.form-control(name="email", type="text", 

placeholder="hi@azat.co")

        p

          �input.form-control(name="password", type="password", 

placeholder="***")

        p

          �button.btn.btn-lg.btn-primary.btn-block(type="submit")  

Log in

Again, thanks to Twitter Bootstrap, our page looks stellar. It has a menu because of 

extends and layout.pug. Figure 4-6 shows how the login page looks.

Chapter 4  Template Engines: Pug and Handlebars



158

Figure 4-6.  The login page

But how to create a new article? Easy! By posting its title and text.

�post.pug
The post page (Figure 4-7) has another form and it also extends layout.pug. This time, 

the form contains a text area element that will become the main text of the article. In 

addition to the article text, there are title, and the URL segment (or path) to the article 

which is called slug.

extends layout

block page

  - var menu = 'post'

block content

    h2 Post an Article

    div= error

Chapter 4  Template Engines: Pug and Handlebars



159

    div.col-md-8

      form(action="/post", method="POST", role="form")

        div.form-group

          label(for="title") Title

          �input#title.form-control(name="title", type="text", 

placeholder="JavaScript is good")

        div.form-group

          label(for="slug") Slug

          �input#slug.form-control(name="slug", type="text", 

placeholder="js-good")

          �span.help-block This string will be used in the URL.

        div.form-group

          label(for="text") Text

          �textarea#text.form-control(rows="5", name="text", 

placeholder="Text")

        p

          button.btn.btn-primary(type="submit") Save

Chapter 4  Template Engines: Pug and Handlebars



160

To give you some visual of the Pug of post.pug, take a look at the page for posting 

new articles. The action attribute of <form> will allow browsers to send the data to the 

backend and then Express will take care of it by processing, and our Node code will save 

it to the database.

If a valid administrator user is logged in, then we want to show an admin interface. 

See the Admin link in the menu? Let’s implement the admin page to which this menu 

link leads to.

�admin.pug
The admin page (Figure 4-8) has a loop of articles just like the home page, but in addition 

to just showing articles, we can include a front-end script (js/admin.js) specific 

to this page. This script will do some AJAX-y calls to publish and unpublish articles. 

These functions will be available only to admins. Of course we will need an server-side 

validation on the backend later. Don’t trust only the front-end validation or authorization!

Figure 4-7.  The post page

Chapter 4  Template Engines: Pug and Handlebars



161

So the admin.pug file starts with the layout extension and has content overwrite, in 

which there’s a table of articles. In each row of the table, we use glyphicon to show a 

fancy icon for pause or play . The icons come from Twitter Bootstrap and are enabled 

via classes:

extends layout

block page

  - var menu = 'admin'

block content

  div.admin

    if (articles.length === 0 )

      p

        | Nothing to display. Add a new

        a(href="/post") article

Figure 4-8.  The admin page shows the list of published and draft articles

Chapter 4  Template Engines: Pug and Handlebars



162

        |.

    else

      table.table.table-stripped

        thead

          tr

            th(colspan="2") Actions

            th Post Title

        tbody

          each article, index in articles

            �tr(data-id=`${article._id}`, class=(!article.published)?

'unpublished':”)

              td.action

                �button.btn.btn-danger.btn-sm.remove(type="button")

                  �span.glyphicon.glyphicon-remove(title="Remove")

              td.action

                �button.btn.btn-default.btn-sm.publish(type="button")

                  span.glyphicon(class=(article.published) ? 

"glyphicon-pause" : "glyphicon-play", title=(article.published) ? 

"Unpublish" : "Publish")

              td= article.title

      script(type="text/javascript", src="js/admin.js")

Please notice that we use ES6 string template (or interpolation) to print article ids as 

attributes data- id (indentation was removed):

tr(data-id=`${article._id}`, class=(!article.published) ? 

'unpublished':”)

And a conditional (ternary) operator (https://github.com/donpark/hbs) 

 is used for classes and title attributes. Remember, it's JavaScript! (Indentation has was 

removed for better viewing.)

span.glyphicon(class=(article.published) ? "glyphicon-pause" :  

"glyphicon-play", title=(article.published) ? "Unpublish" : 

"Publish")

Chapter 4  Template Engines: Pug and Handlebars

https://github.com/donpark/hbs


163

The result is a beautiful admin page (Okay, enough with sarcasm and saying Twitter 

Bootstrap is stellar, pretty or cute. It’s not… but compared to standard HTML, which 

puts me to sleep, Twitter Bootstrap style is a HUGE improvement.) It has functionality to 

publish and unpublish articles.

�Summary
In this chapter, you learned about the Pug and Handlebars templates (variables, 

iterations, condition, partials, unescaping, and so forth), and how to use them in a 

standalone Node.js script or within Express.js. In addition, the main pages for Blog were 

created using Pug.

In the next chapter, we’ll learn how to extract the data from a database and save new 

data to it. You’ll become familiar with MongoDB. Onwards.

Chapter 4  Template Engines: Pug and Handlebars



165
© Azat Mardan 2018 
A. Mardan, Practical Node.js, https://doi.org/10.1007/978-1-4842-3039-8_5

CHAPTER 5

Persistence with 
MongoDB and Mongoskin
I really like using MongoDB with Node. Many other Node developers would agree with 

me because this database has JavaScript interface and uses JSON-like data structure. 

MongoDB belongs to a category of a NoSQL databases.

NoSQL databases (DBs), also called non-relational databases, are more horizontally 

scalable, and better suited for distributed systems than traditional SQL ones (a.k.a., 

RDMBS). NoSQL DBs built in a way that they allow data duplication and can be well 

tailored to specific queries. This process is called denormalization. In short, NoSQL 

comes to help when RDMBS can’t scale. It’s often the case that NoSQL databases deal 

routinely with larger data sizes than traditional ones.

The key distinction in implementation of apps with NoSQL DBs comes from the fact 

that NoSQL DBs are schema-less. There’s no table, just a simple store indexed by IDs. A lot 

of data types are not stored in the database itself (no more ALTER TABLE queries); they are 

moved to the application or object- relational mapping (ORM) levels—in our case, to Node.

js code. Another good reason to use NoSQL databases is because they are schema-less.  

For me, this is the best advantage of NoSQL. I can quickly prototype prototyping and iterate 

(more git pushes!). Once I am more or less done, or think I am done, I can implement 

schema and validation in Node. This workflow allows me to not waste time early in the 

project lifecycle while still having the security at a more mature stage.

MongoDB is a document store NoSQL database (as opposed to key value and wide-

column store NoSQL databases, http://nosql-database.org). It’s the most mature 

and dependable NoSQL database available thus far. I know that some people just hate 

MongoDB for its bugs but when I ask them if there’s a better alternative they can’t name 

anything. Interestingly, some traditional databases added NoSQL field type which allows 

them to rip the benefits of flexibility before available only to NoSQl databases.

http://nosql-database.org


166

In addition to efficiency, scalability, and lightning speed, MongoDB has a JavaScript 

interface! This alone is magical, because now there’s no need to switch context between 

the front end (browser JavaScript), back end (Node.js), and database (MongoDB). This is 

my favorite feature because in 90% of my projects I don’t handle that my data or traffic, 

but I used the JavaScript interface all the time.

The company behind MongoDB is an industry leader, and provides education and 

certification through its online MongoDB University (https://university.mongodb.

com). I once was invited by Mongo to interview for a Director of Software Engineering, 

but declined to continue after first few rounds. Well, that’s a topic for a different book.

To get you started with MongoDB and Node.js, I’ll show the following in this chapter:

•	 Easy and proper installation of MongoDB

•	 How to run the Mongo server

•	 Data manipulation from the Mongo console

•	 MongoDB shell in detail

•	 Minimalistic native MongoDB driver for Node.js example

•	 Main Mongoskin methods

•	 Project: Storing Blog data in MongoDB with Mongoskin

�Easy and Proper Installation of MongoDB
Next, I’ll show the MongoDB installation from the official package, as well as using 

HomeBrew for macOS users (recommended).

The following steps are better suited for macOS/Linux–based systems, but with 

some modifications they can be used for Windows systems as well, i.e., modify the 

$PATH variable, and the slashes. For more instructions for non-macOS/Linux users, go 

and check many other ways to install Mongo (http://docs.mongodb.org/manual/

installation).

I’ll continue with the installation for macOS users. The HomeBrew installation 

is recommended and is the easiest path (assuming macOS users have brew installed 

already, which was covered in Chapter 1):

$ brew install mongodb

Chapter 5  Persistence with MongoDB and Mongoskin

https://university.mongodb.com
https://university.mongodb.com
http://docs.mongodb.org/manual/installation)
http://docs.mongodb.org/manual/installation)


167

If this doesn’t work, try the manual installation. It’s basically downloading an archive 

file for MongoDB at http://www.mongodb.org/downloads and then configuring it. 

For the latest Apple laptops, such as MacBook Air, select the OS X 64-bit version. The 

owners of older Macs should browse the link http://dl.mongodb.org/dl/osx/i386. 

The owners of other laptops and OSs, select the appropriate package for the download.

Tip I f you don't know the architecture type of your processor when choosing 
a MongoDB package, type $ uname -p in the command line to find this 
information.

After the download, unpack the package into your web development folder  

or any other as long as you remember it. For example, my development folder is  

~/Documents/Code (~ means home). If you want, you could install MongoDB into 

the /usr/local/mongodb folder.

Optional: If you would like to access MongoDB commands from anywhere on your 

system, you need to add your mongodb path to the $PATH variable. For macOS, you need 

the open-system paths file, which is located at /etc/paths with:

$ sudo vi /etc/paths

Or, if you prefer VS Code and have the code shell command installed, use this VS 

Code command:

$ code /etc/paths

Then, add the following line to the /etc/paths file:

/usr/local/mongodb/bin

Create a data folder; by default, MongoDB uses /data/db. Please note this might be 

different in newer versions of MongoDB. To create the data folder, type and execute the 

following commands:

$ sudo mkdir -p /data/db

$ sudo chown `id -u` /data/db

Chapter 5  Persistence with MongoDB and Mongoskin

http://www.mongodb.org/downloads
http://dl.mongodb.org/dl/osx/i386


168

This data folder is where your local database instance will store all databases, 

documents, and so on- all data. The figure 5-1 below shows how I created my data 

folder in /data/db (root, then data then db), and changed ownership of the folder 

to my user instead of it being a root or whatever it was before. Science proved that not 

having folders owned by root, reduces the number of permission denied errors by 100%. 

Figure 5-1 shows how this looks onscreen.

Figure 5-1.  Initial setup for MongoDB: create the data directory

If you prefer to store data somewhere else rather than /data/db, then you can do it. 

Just specify your custom path using the --dbpath option to mongod (the main MongoDB 

service) when you launch your database instance (server).

If some of these steps weren’t enough, then another interpretation of the installation 

instructions for MongoDB on various OSs is available at MongoDB.org, “Install 

MongoDB on OS X” (http://docs.mongodb.org/manual/tutorial/install-

mongodb-on-os-x). Windows users can read a good walk-through article titled 

“Installing MongoDB” (http://www.tuanleaded.com/blog/2011/10/installing-

mongodb).

�How to Run the Mongo Server
To run the Mongo server (a.k.a. DB instance, service, or daemon), there’s the mongod 

command. It’s not mongodb or mongo. It’s mongod. Remember the “d”. It’s stands for 

daemon.

If you installed in manually and didn’t link the location to PATH, then go to the folder 

where you unpacked MongoDB. That location should have a bin folder in it. From that 

folder, type the following command:

$ ./bin/mongod

Chapter 5  Persistence with MongoDB and Mongoskin

http://docs.mongodb.org/manual/tutorial/install-mongodb-on-os-x
http://docs.mongodb.org/manual/tutorial/install-mongodb-on-os-x
http://www.tuanleaded.com/blog/2011/10/installing-mongodb
http://www.tuanleaded.com/blog/2011/10/installing-mongodb


169

If you are like most normal developers, and prefer to type mongod anywhere on your 

computer, I assume you exposed the MongoDB bin folder in your PATH environment 

variable. So if you added $PATH for the MongoDB location, type the following anywhere 

you like:

$ mongod

Note O h, yeah. Don’t forget to restart the terminal window after adding a new 
path to the $PATH variable (Figure 5-2). That’s just how terminal apps work. They 
might not pick up your newest PATH value until you restart them.

Figure 5-2.  Successful starting of the MongoDB server outputs “waiting for 
connections on port 27017”

There’s tons of info on the screen after mongod. If you can find something saying 

about “waiting” and “port 27017”, then you are all set. Look for a message this:

waiting for connections on port 27017

Chapter 5  Persistence with MongoDB and Mongoskin



170

That text means the MongoDB database server is running. Congrats!

By default, it’s listening at http://localhost:27017. This is the host and port for the 

scripts and applications to access MongoDB. In our Node.js code, we use 27017 for for 

the database and port 3000 for the server.

If you see anything else, then you probably have one of the two:

•	 The data or db folders are not created or were created with root 

permissions. The solution is to create them with non-root.

•	 The MongoDB folder is not exposed, and mongod cannot be found. 

The solution is to use the correct location or expose the location in 

PATH.

Please fix the issue(s) if you have any. If you are all set with the “waiting” notice, the 

let’s go and play with the database using Mongo Console.

�Data Manipulation from the Mongo Console
Akin to the Node.js REPL, MongoDB has a console/shell that acts as a client to the 

database server instance. This means that we have to keep the terminal window with the 

server open and running while using the console in a different window/tab.

From the folder where you unpacked the archive, launch the mongod service with the 

command pointing to the bin folder:

$ ./bin/mongod

Or, if you installed MongoDB globally (recommended), launch the mongod service 

with just the command without path:

$ mongod

You should be able to see information in your terminal saying “waiting for 

connections on 27017”. Now, we will launch a separate process or an application, if you 

will. It’s called the MongoDB console or shell, and it allows developers to connect to the 

database instance and perform pretty much anything they want: create new documents, 

update them, and delete. In other words, Mongo console is a client. Its benefit is that it 

comes with MongoDB and does NOT require anything fancy or complex. It works in the 

terminal, which means you can use it on almost any OS (yes, even on Windows).

Chapter 5  Persistence with MongoDB and Mongoskin



171

The name of the command is mongo. Execute this command in a new terminal 

window (important!). Again, if you didn’t expose your MongoDB to PATH, then in the 

same folder in which you have MongoDB, type the mongo command with path to this 

mongo file, which is in the bin of the MongoDB installation. Open another terminal 

window in the same folder and execute:

$ ./bin/mongo

Or, if you have mongo “globally” by exposing the MongoDB’s bin into PATH, simply 

type from any folder (you don’t have to be in the MongoDB folder or specify bin since 

you already have that path in your PATH environment variable):

$ mongo

When you successfully connect to the database instance, then you should see 

something like this. Of course, the exact version will depend on your version of the 

MongoDB shell. My Mongo shell is 2.0.6:

MongoDB shell version: 2.0.6

connecting to: test

Did you notice the cursor change? It’s now >, as shown in Figure 5-3. It mean you 

are in a different environment than bash or zsh (which I use). You cannot execute shell 

command anymore, so don’t try to use node server.js or mkdir my-awesome-pony-

project. It won’t work. But what will work is JavaScript, Node.js, and some special 

MongoDB code. For example, type and execute the following two commands to save a 

document {a: 1} (super creative, I know, thanks) and then query the collection to see 

the newly created document there:

> db.test.save( { a: 1 } )

> db.test.find()

Figure 5-3 shows that I saved my record {a:1}. Everything went well. The 

commands find() and save() do exactly what you might think they do ;-), only you need 

to prefix them with db.COLLECTION_NAME where you substitute COLLECTION_NAME for 

your own name.

Chapter 5  Persistence with MongoDB and Mongoskin



172

Note O n macOS (and most Unix systems), to close the process, use control+C. If 
you use control+Z, it puts the process to sleep (or detaches the terminal window). 
In this case, you might end up with a lock on data files and then have to use the 
“kill” command (e.g., $ killall node) or Activity Monitor and delete the 
locked files in the data folder manually. For a vanilla macOS terminal, command+. 
is an alternative to control+C.

What are some other MongoDB console commands that seasoned Node developers 

like you and I can use? We will study the most important of them next.

�MongoDB Console in Detail
MongoDB console syntax is JavaScript. That’s wonderful. The last thing we want is to 

learn a new complex language like SQL. However, MongoDB console methods are not 

without their quirks. For example, db.test.find() has a class name db, then my 

collection name test, and then a method name find(). In other words, it’s a mix of 

arbitrary (custom) and mandatory (fixed) names. That’s unusual.

Figure 5-3.  Running the MongoDB shell/console client and executing queries in 
the test collection

Chapter 5  Persistence with MongoDB and Mongoskin



173

Let’s take a look at the most useful MongoDB console (shell) commands, which I 

listed here:

•	 > help: prints a list of available commands

•	 > show dbs: prints the names of the databases on the database server 

to which the console is connected (by default, localhost:27017; but, if we 

pass params to mongo, we can connect to any remote instance)

•	 > use db_name: switches to db_name

•	 > show collections: prints a list of collections in the selected 

database

•	 > db.collection_name.find(query);: finds all items matching 

query

•	 > db.collection_name.findOne(query);: finds one item that 

matches query

•	 > db.collection_name.insert(document): adds a document to 

the collection_name collection

•	 > db.collection_name.save(document);: saves a document in 

the collection_name collection—a shorthand of upsert (no _id) or 

insert (with _id)

•	 > db.collection_name.update(query,{$set: data});: 

updates items that match query in the collection_name collection 

with data object values

•	 > db.collection_name.remove(query); removes all items from 

collection_name that match query criteria

•	 > printjson(document);: prints the variable document

It’s possible to use good old JavaScript. For example, storing a document in a variable 

is as easy as using an equal sign =. Then, printjson() is a utility method that outputs 

the value of a variable. The following code will read one document, add a field text to it, 

print and save the document:

> var a = db.messages.findOne()

> printjson(a)

> a.text = "hi"

Chapter 5  Persistence with MongoDB and Mongoskin



174

> printjson(a)

> db.messages.save(a)

save() works two ways. If you have _id, which is a unique MongoDB ID, then the 

document will be updated with whatever new properties were passed to the save() 

method. That’s the previous example in which I create a new property text and 

assigned a value of hi to it.

When there’s no _id, then MongoDB console will insert a new document and create 

a new document ID (ObjectId) in _id. That’s the very first example where we used db.

test.save({a:1}). To sum up, save() works like an upsert (update or insert).

For the purpose of saving time, the API listed here is the bare minimum to get by 

with MongoDB in this book and its projects. The real interface is richer and has more 

features. For example, update accepts options such as multi: true, and it’s not 

mentioned here. A full overview of the MongoDB interactive shell is available at http://

bit.ly/2QWCyDI.

I’m sure you all enjoyed typing those brackets and parentheses in the terminal just 

to get a typo somewhere (#sarcasm). That’s why I created MongoUI, which is a web-

based database admin interface. It allows you to view, edit, search, remove MongoDB 

documents without typing commands. Check out MongoUI at https://github.

com/azat-co/mongoui. You can install MongoUI with npm by executing npm i -g 

mongoui and then start it with mongoui. It’ll open the app in your default browser and 

connect to your local DB instance (if there’s one).

MongoUI is a web-based app which you can host on your own application. For an 

even better desktop tool than my own MongoUI, download Compass at TK. It’s built in 

Node using Electron and React.

One more useful MongoDB command (script) is mongoimport. It allows developers 

to supply a JSON file that will be imported to a database. Let’s say you are migrating a 

database or have some initial data that you want to use, but the database is empty right 

now. How do you create multiple records? You can copypasta to MongoDB console, but 

that’s not fun. Use mongoimport. Here’s an example of how to inject a data from a JSON 

file with an array of object:

$ mongoimport --db dbName --collection collectionName  

--file fileName.json --jsonArray

Chapter 5  Persistence with MongoDB and Mongoskin

http://bit.ly/2QWCyDI
http://bit.ly/2QWCyDI
https://github.com/azat-co/mongoui
https://github.com/azat-co/mongoui


175

You don’t need to do anything extra to install mongoimport. It’s already part of the 

MongoDB installation and lives in the same folder as mongod or mongo, i.e., bin. And 

JSON is not the only format that mongoimport takes. It can be CSV, or TSV as well. Isn’t it 

neat?

Connecting and working with a database directly is a superpower. You can debug or 

seed the data without the need for writing any Node code. But sooner or later, you’ll want 

to automate the work with the database. Node is great for that. To be able to work with 

MongoDB from Node, we need a driver.

�Minimalistic Native MongoDB Driver for  
Node.js Example
To illustrate the advantages of Mongoskin, I will show how to use the Node.js native driver 

for MongoDB (https://github.com/christkv/node-mongodb-native) which is 

somewhat more work than to use Mongoskin. I create a basic script that accesses the 

database.

Firstly, create package.json with npm init -y. Then, install the MongoDB native 

driver for Node.js with SE to save the exact version as a dependency:

$ npm install mongodb@2.2.33 -SE

This is an example of a good package.json file with the driver dependency listed in 

there. It’s from code/ch5/mongodb-examples. There are two more packages. You can 

ignore them for now. One of them is validating code formatting (standard) and another 

is an advanced MongoDB library (mongoskin):

{

  "name": "mongodb-examples",

  "version": "1.0.1",

  "description": "",

  "main": "mongo-native-insert.js",

  "scripts": {

    "test": "echo \"Error: no test specified\" && exit 1"

  },

Chapter 5  Persistence with MongoDB and Mongoskin

https://github.com/christkv/node-mongodb-native


176

  "keywords": [],

  "author": "Azat Mardan (http://azat.co/)",

  "license": "MIT",

  "dependencies": {

    "mongodb": "2.2.33",

    "mongoskin": "2.1.0"

  },

  "devDependencies": {

    "standard": "10.0.3"

  }

}

It’s a good learning approach to start from something small and then build skills 

gradually. For this reason let’s study a small example that tests whether we can connect 

to a local MongoDB instance from a Node.js script and run a sequence of statements 

analogous to the previous section:

	 1.	 Declare dependencies

	 2.	 Define the database host and port

	 3.	 Establish a database connection

	 4.	 Create a database document

	 5.	 Output a newly created document/object

The file name for this short script is code/ch5/mongo-native-insert.js. We’ll 

start this file with some imports. Then we will connect to the database using host and port. 

This is one of the ways to establish a connection to the MongoDB server in which the db 

variable holds a reference to the database at a specified host and port:

const mongo = require('mongodb')

const dbHost = '127.0.0.1'

const dbPort = 27017

const {Db, Server} = mongo

const db = new Db('local', new Server(dbHost, dbPort), {safe: true})

Chapter 5  Persistence with MongoDB and Mongoskin



177

Once the connection is established with db.open, we can work with the database. So 

to open a connection, type the following:

db.open((error, dbConnection) => {

    // Do something with the database here

    // console.log(util.inspect(db))

    console.log(db._state)

    db.close()

})

For example, to create a document in MongoDB, we can use the insert() method. 

Unlike Mongo console, this insert() is asynchronous which means it won’t execute 

immediately. The results will be coming later. That’s why there’s a callback. The callback 

has error as its first argument. It’s called error-first pattern. The result that is the newly 

created document is the second argument of the callback. In the console, we don’t really 

have multiple clients executing queries so in the console methods are synchronous. The 

situation is different in Node because we want to process multiple clients while we wait 

for the database to respond.

It’s important to handle the error by checking for it and then exiting with an error 

code of 1:

dbConnection

  .collection('messages')

  .insert(item, (error, document) => {

    if (error) {

      console.error(error)

      return process.exit(1)

    }

    console.info('created/inserted: ', document)

    db.close()

    process.exit(0)

  })

Here is the entire code to accomplish these five steps. The most important thing 

to observe and remember is that ENTIRE working code of insert() is inside of the 

open() callback. This is because open() is asynchronous, which in turn is because 

dbConnection becomes available with a delay and we don’t want to block the Node’s 

Chapter 5  Persistence with MongoDB and Mongoskin



178

event loop waiting for the dbConnection. The full source code of this script is in the 

mongo-native-insert.js file and included next for convenience in case you don’t have 

the GitHub open right now:

const mongo = require('mongodb')

const dbHost = '127.0.0.1'

const dbPort = 27017

const {Db, Server} = mongo

const db = new Db('local',

  new Server(dbHost, dbPort),

  {safe: true}

)

db.open((error, dbConnection) => {

  if (error) {

    console.error(error)

    return process.exit(1)

  }

  console.log('db state: ', db._state)

  const item = {

    name: 'Azat'

  }

    dbConnection

      .collection('messages')

      .insert(item, (error, document) => {

      if (error) {

        console.error(error)

        return process.exit(1)

      }

      console.info('created/inserted: ', document)

      db.close()

      process.exit(0)

      }

    )

})

Chapter 5  Persistence with MongoDB and Mongoskin



179

Now we can build a few more methods. For example, another mongo-native.js 

script looks up any object and modifies it:

	 1.	 Get one item from the message collection

	 2.	 Print it

	 3.	 Add a property text with the value hi

	 4.	 Save the item back to the message collection

After we install the library, we can include the MongoDB library in our mongo-

native.js file as well as create host and port values:

const mongo = require('mongodb')

const dbHost = '127.0.0.1'

const dbPort = 27017

const {Db, Server} = mongo

const db = new Db('local', new Server(dbHost, dbPort), {safe: true})

Next open a connection. It’s always a good practice to check for any errors and exit 

gracefully:

db.open((error, dbConnection) => {

  if (error) {

    console.error(error)

    process.exit(1)

  }

  console.log('db state: ', db._state)

Now, we can proceed to the first step mentioned earlier—getting one item from the 

message collection. The first argument to findOne() is a search or query criteria. It 

works as a logical AND, meaning the properties passed to findOne() will be matched 

against the documents in the database. The returned document will be in the callback’s 

argument. This document is in the item variable.

Chapter 5  Persistence with MongoDB and Mongoskin



180

The variable name doesn’t matter that much. What matters is the order of an 

argument in the callback function. Ergo, first argument is always an error object 
even when it’s null. The second is the result of a method. This is true for almost all 

MongoDB native driver methods but not for every Node library. Node developers need 

to read the documentation for a particular library to see what arguments are provided to 

a callback. But in the case of MongoDB native drive, error and result is the convention to 

remember and use.

  �dbConnection.collection('messages').findOne({},  

(error, item) => {

    if (error) {

      console.error(error)

      process.exit(1)

    }

The second step, print the value, is as follows:

    console.info('findOne: ', item)

As you can see, methods in the console and Node.js are not much different except 

that in Node, developers must use callbacks.

Next let’s proceed to the remaining two steps: adding a new property and saving the 

document. save() works like an upsert: if a valid _id is provided, then the documents 

will be updated; if not, then the new documents will be created:

    item.text = 'hi'

    var id = item._id.toString() �// we can store ID in a string

    console.info('before saving: ', item)

    dbConnection

      .collection('messages')

      .save(item, (error, document) => {

        if (error) {

          console.error(error)

          return process.exit(1)

        }

        console.info('save: ', document)

Chapter 5  Persistence with MongoDB and Mongoskin



181

To convert a string into the ObjectId type, use mongo.ObjectID() method. To 

double-check the saved object, we use the document ID that we saved before in a string 

format (in a variable id) with the find() method. This method returns a cursor, so we 

apply toArray() to extract the standard JavaScript array:

        dbConnection.collection('messages')

          .find({_id: new mongo.ObjectID(id)})

          .toArray((error, documents) => {

            if (error) {

              console.error(error)

              return process.exit(1)

            }

            console.info('find: ', documents)

            db.close()

            process.exit(0)

          }

        )

    })

  })

})

The full source code of this script is available in the mongo-native-insert.js  

and mongo-native.js files. If we run them with $ node mongo-native-insert and, 

respectively, $ node mongo-native, while running the mongod service, the scripts 

should output something similar to the results in Figure 5-4. There are three documents. 

The first is without the property text; the second and third documents include it.

Chapter 5  Persistence with MongoDB and Mongoskin



182

From teaching dozens of MongoDB workshops, I can be sure that the majority of 

readers will be good with the methods studied here since these methods provide all the 

CRUD functionality (create, read, update, and delete). But for more advanced developers, 

the full documentation of this library is available at http://bit.ly/2Lao9UW and on 

the MongoDB website.

�Main Mongoskin Methods
Meet Mongoskin (don’t confuse with DC’s Redskins). It provides a better API than 

the native MongoDB driver. To illustrate this, compare the following Mongoskin 

implementation with the example in prior section, which written using native MongoDB 

driver for Node.js.

As always, to install a module, run npm with install:

$ npm i mongoskin@2.1.0 -SE

Figure 5-4.  Running a simple MongoDB script with a native driver

Chapter 5  Persistence with MongoDB and Mongoskin

http://bit.ly/2Lao9UW


183

The connection to the database is a bit easier with Mongoskin. We don’t have to put 

all of our code into the open() callback. Yay! All we need is to invoke db():

const mongoskin = require('mongoskin')

const { toObjectID } = mongoskin.helper

const dbHost = '127.0.0.1'

const dbPort = 27017

const db = mongoskin.db(`mongodb://${dbHost}:${dbPort}/local`)

As you can see, the Mongoskin method to connect to the database does not require 

you to put all the rest of the code in the callback. That’s because Mongoskin buffers up 

the upcoming queries and execute them when the connection is ready. I like not having 

to put all of my Node code in one giant callback.

We can also create our own methods on collections. This might be useful when 

implementing an model-view-controller-like (MVC-like) architecture by incorporating 

app-specific logic into these custom methods. See how we can create a custom 

method findOneAndAddText() that takes some text (duh) and executes two 

MongoDB methods to first find that document and then update it in the database with 

the passed text. Custom methods are your own project-specific methods and they are 

great at reusing code.

Did you notice that there’s no fat arrow function for the custom method 

findOneAndAddText()? That’s because we need to let Mongoskin to pass the collection 

to use this inside of this method. If we use the fat arrow ()=>{}, then we can’s use 

this.findOne() inside of the custom method:

db.bind('messages').bind({

  �findOneAndAddText: function (text, fn) {  

// no fat arrow fn because we need to let bind pass the collection 

to use this on the next line... this can be replaced with 

db.messages too

    this.findOne({}, (error, document) => {

      if (error) {

        console.error(error)

        return process.exit(1)

      }

Chapter 5  Persistence with MongoDB and Mongoskin



184

      console.info('findOne: ', document)

      document.text = text

      �var id = document._id.toString() // �We can store ID in a string

      console.info('before saving: ', document)

      this.save(document, (error, count) => {

        if (error) {

          console.error(error)

          return process.exit(1)

        }

        console.info('save: ', count)

        return fn(count, id)

      })

    })

  }

})

Last, we call the custom method like any other methods such as find() or save(). 

The more we use this custom in our code the more is the benefit of the code reuse and 

this pattern. It’s important to use the toArray() method for the find() because the 

result of the query documents is more useful as an array.

db.messages.findOneAndAddText('hi', (count, id) => {

  db.messages.find({

    _id: toObjectID(id)

  }).toArray((error, documents) => {

    if (error) {

      console.error(error)

      return process.exit(1)

    }

    console.info('find: ', documents)

    db.close()

    process.exit(0)

  })

})

Chapter 5  Persistence with MongoDB and Mongoskin



185

Mongoskin is a subset of the native Node.js MongoDB driver, so most of the 

methods, as you have observed from the latter are available in the former. For example, 

find(), findOne(), update(), save(), and remove(). They are from the native 

MongoDB driver and they are available in the Mongoskin straight up. But there are more 

methods. Here is the list of the main Mongoskin–only methods:

•	 findItems(..., callback): Finds elements and returns an array 

instead of a cursor

•	 findEach(..., callback): Iterates through each found element

•	 findById(id, ..., callback): Finds by _id in a string format

•	 updateById(_id, ..., callback): Updates an element with a 

matching _id

•	 removeById(_id, ..., callback): Removes an element with a 

matching _id

Of course, there are alternatives to Mongoskin and the native MongoDB driver, 

including but not limited to:

•	 mongoose: An asynchronous JavaScript driver with optional support 

for modeling (recommended for large apps)

•	 mongolia: A lightweight MongoDB ORM/driver wrapper

•	 monk: A tiny layer that provides simple yet substantial usability 

improvements for MongoDB use within Node.js

Data validation is super important. Most of the MongoDB libraries will require 

developers to create their own validation, with Mongoose being an exception. Mongoose 

has a built-in data validation. Thus, for data validation at the Express level, these 

modules are often used:

•	 node-validator: validates data

•	 express-validator: validates data in Express.js 3/4

It is time to utilize our skills and build something interesting with MongoDB by 

enhancing our Blog project.

Chapter 5  Persistence with MongoDB and Mongoskin



186

�Project: Storing Blog Data in MongoDB 
with Mongoskin
Let’s now return to our Blog project. I’ve split this feature of storing Blog data in 

MongoDB with Mongoskin into the following three tasks:

	 1.	 Adding MongoDB seed data

	 2.	 Writing Mocha tests

	 3.	 Adding persistence

The task numero uno is to populate the database with some test data. (Numero uno 

is number one in Chinese.)

�Project: Adding MongoDB Seed Data
First of all, it’s not much fun to enter data manually each time we test or run an app. So, 

in accordance with the Agile principles, we can automate this step by creating a shell 

seed data script db/seed.sh:

mongoimport --db blog --collection users --file  

./db/users.json –jsonArray

mongoimport --db blog --collection articles --file  

./db/articles.json --jsonArray

This script uses MongoDB’s mongoimport feature, which inserts data conveniently 

into the database straight from JSON files.

The users.json file contains information about authorized users:

[{

  "email": "hi@azat.co",

  "admin": true,

  "password": "1"

}]

Chapter 5  Persistence with MongoDB and Mongoskin



187

Here’s some of the content of the articles.json file that has the seed content of 

the blog posts and testing (please use the file provided in GitHub instead of typing from 

the book):

[

  {

    "title": "Node is a movement",

    "slug": "node-movement",

    "published": true,

    �"text": "In one random deployment, it is often assumed that the 

number of scattered sensors are more than that required by the 

critical sensor density. Otherwise, complete area coverage may 

not be guaranteed in this deployment, and some coverage holes may 

exist. Besides using more sensors to improve coverage, mobile 

sensor nodes can be used to improve network coverage..."

  }, {

    "title": "Express.js Experience",

    "slug": "express-experience",

    "text": "Work in progress",

    "published": false

  }, {

    �"title": "Node.js FUNdamentals: A Concise Overview of The Main 

Concepts",

    "slug": "node-fundamentals",

    "published": true,

    �"text": "Node.js is a highly efficient and scalable nonblocking 

I/O platform that was built on top of a Google Chrome V8 engine 

and its ECMAScript. This means that most front-end JavaScript 

(another implementation of ECMAScript) objects, functions, and 

methods are available in Node.js. Please refer to JavaScript 

FUNdamentals if you need arefresher on  

JS-specific basics."

  }

]

To populate our seed data, simply run $ ./db/seed.sh from the project folder.

Chapter 5  Persistence with MongoDB and Mongoskin



188

�Project: Writing Mocha Tests
If you remember, Mocha uses describe for test suites and it for test cases. Thus, the 

test file code/ch5/blog-express/tests/index.js has this structure at a high level:

// Import/require statements

describe('server', () => {

  before(() => {

    boot()

  })

  describe('homepage', () => {

    it('should respond to GET', (done) => {

      // ...

    })

    it('should contain posts', (done) => {

      // ...

    })

  })

  describe('article page', () => {

    it('should display text or 401', (done) => {

      // ...

    })

  })

  after(() => {

    shutdown()

  })

})

Chapter 5  Persistence with MongoDB and Mongoskin



189

Let’s start the implementation with import/require statement (import not in a sense 

we are using ES6

import statement, but in a sense that require() method imports):

const boot = require('../app').boot

const shutdown = require('../app').shutdown

const port = require('../app').port

const superagent = require('superagent')

const expect = require('expect.js')

Next, we can import test data from seed files via require because it’s a JSON format:

const seedArticles = require('../db/articles.json')

Let’s add this test to the home page suite to check whether our app shows posts from 

seed data on the front page:

    it('should contain posts', (done) => {

      superagent

        .get(`http://localhost:${port}`)

        .end((error, res) => {

          expect(error).to.be(null)

          expect(res.text).to.be.ok

          seedArticles.forEach((item, index, list) => {

            if (item.published) {

              �expect(res.text).to.contain(`<h2> 

<a href="/articles/${item.slug}">${item.title}`)

            } else {

              �expect(res.text).not.to.contain(`<h2> 

<a href="/articles/${item.slug}">${item.title}`)

            }

          })

          done()

        })

    })

Chapter 5  Persistence with MongoDB and Mongoskin



190

In a new-article page suite, let’s test for presentation of the text with contains:

  describe('article page', () => {

    it('should display text or 401', (done) => {

      let n = seedArticles.length

      seedArticles.forEach((item, index, list) => {

        superagent

          �.get(`http://localhost:${port}/articles/${seed 

Articles[index].slug}`)

          .end((error, res) => {

            if (item.published) {

              expect(error).to.be(null)

              �expect(res.text).to.contain(seedArticles[index].text)

            } else {

              expect(error).to.be.ok

              expect(res.status).to.be(401)

            }

            // console.log(item.title)

            if (index + 1 === n) {

              done()

            }

          })

      })

    })

  })

To make sure that Mocha doesn’t quit earlier than superagent calls the response 

callback, we implemented a countertrick. Instead of it, you can use async. The full source 

code is in the file tests/index.js under the ch5 folder.

Running tests with either $ make test or $ mocha test should fail miserably, but 

that’s expected because we need to implement persistence and then pass data to Pug 

templates, which we wrote in the previous chapter.

Chapter 5  Persistence with MongoDB and Mongoskin



191

�Project: Adding Persistence
This example builds on the previous chapter, with Chapter 3 having the latest code 

(Chapter 4 code is in ch5). Let’s go back to our ch3 folder, and add the tests, duplicate 

them, and then start adding statements to the app.js file.

The full source code of this example is available under ch5 folder. First, we refactor 

dependencies importations to utilize Mongoskin:

const express = require('express')

const routes = require('./routes')

const http = require('http')

const path = require('path')

const mongoskin = require('mongoskin')

const dbUrl = process.env.MONGOHQ_URL || 'mongodb: 

//@localhost:27017/blog'

const db = mongoskin.db(dbUrl)

const collections = {

  articles: db.collection('articles'),

  users: db.collection('users')

}

These statements are needed for the Express.js middleware modules to enable 

logging (morgan), error handling (errorhandler), parsing of the incoming HTTP 

request bodies (body-parser), and to support clients that do not have all HTTP 

methods (method-override):

const logger = require('morgan')

const errorHandler = require('errorhandler')

const bodyParser = require('body-parser')

const methodOverride = require('method-override')

Then we create an Express.js instance and assign the title to use this title in the 

templates:

const app = express()

app.locals.appTitle = 'blog-express'

Chapter 5  Persistence with MongoDB and Mongoskin



192

Now we add a middleware that exposes Mongoskin/MongoDB collections in each 

Express.js route via the req object. It’s called a decorator pattern. You can learn more 

about the decorator pattern as well as other Node patterns in my online course Node 

Patterns: From Callbacks to Observer. The idea is to have req.collections in all other 

subsequent middleware and routes. It’s done with the following code. And don’t forget 

to call next() in the middleware; otherwise, each request will stall:

app.use((req, res, next) => {

  if (!collections.articles || !collections.users)

    return next(new Error('No collections.'))

  req.collections = collections

  return next()

})

Next, we define the Express settings. We set up port number and template engine 

configurations to tell Express what folder to use for templates (views) and what template 

engine to use to render those templates (pug):

app.set('port', process.env.PORT || 3000)

app.set('views', path.join(__dirname, 'views'))

app.set('view engine', 'pug')

Now is the time for the usual suspects functionality of most of which should be 

already familiar to you: middleware for logging of requests, parsing of JSON input, 

using Stylus for CSS and serving of static content. Node developers use the app.use() 

statements to plug these middleware modules in the Express apps. I like to remain 

disciplined and use path.join() to construct cross-platform absolute paths out of 

relative folder names so that there’s a guarantee the paths will work on Windows.

app.use(logger('dev'))

app.use(bodyParser.json())

app.use(bodyParser.urlencoded({extended: true}))

app.use(methodOverride())

app.use(require('stylus').middleware(path.join(__dirname, 'public')))

app.use(express.static(path.join(__dirname, 'public')))

Chapter 5  Persistence with MongoDB and Mongoskin

https://node.university/p/node-patterns
https://node.university/p/node-patterns


193

For development, we use the standard Express.js error handler that we imported 

earlier with require():

if (app.get('env') === 'development') {

  app.use(errorHandler('dev'))

}

The next section of the app.js file deals with the server routes. So, instead of a single 

catch-all * route in the ch3 examples, we have the following GET and POST routes (that 

mostly render HTML from Pug templates):

app.get('/', routes.index)

app.get('/login', routes.user.login)

app.post('/login', routes.user.authenticate)

app.get('/logout', routes.user.logout)

app.get('/admin', routes.article.admin)

app.get('/post', routes.article.post)

app.post('/post', routes.article.postArticle)

app.get('/articles/:slug', routes.article.show)

REST API routes are used mostly for the admin page. That’s where our fancy AJAX 

browser JavaScript will need them. They use GET, POST, PUT, and DELETE methods and 

don’t render HTML from Pug templates, but instead output JSON:

app.get('/api/articles', routes.article.list)

app.post('/api/articles', routes.article.add)

app.put('/api/articles/:id', routes.article.edit)

app.delete('/api/articles/:id', routes.article.del)

In the end, we have a 404 catch-all route. It’s a good practice to account for the cases 

when users type a wrong URL. If the request makes it to this part of the configuration 

(top to bottom order), we return the “404: Not found” status:

app.all('*', (req, res) => {

  res.status(404).send()

})

Chapter 5  Persistence with MongoDB and Mongoskin



194

The way we start the server is the same as in Chapter 3, which means we determine 

whether this file is loaded by another file. In this case, we export the server object. If not, 

then we proceed to launch the server directly with server.listen().

const server = http.createServer(app)

const boot = function () {

  server.listen(app.get('port'), function () {

    �console.info(`Express server listening on port  

${app.get('port')}`)

  })

}

const shutdown = function () {

  server.close(process.exit)

}

if (require.main === module) {

  boot()

} else {

  console.info('Running app as a module')

  exports.boot = boot

  exports.shutdown = shutdown

  exports.port = app.get('port')

}

Again, for your convenience, the full source code of app.js is under ch5/blog-

example folder.

We must add index.js, article.js, and user.js files to the routes folder, 

because we need them in app.js. The user.js file is bare bones for now (we’ll add 

authentications in Chapter 6).

The method for the GET /users route, which should return a list of existing users 

(which we’ll implement later), is as follows:

exports.list = (req, res, next) => {

  res.send('respond with a resource')

}

Chapter 5  Persistence with MongoDB and Mongoskin



195

The method for the GET /login page route that renders the login form (login.pug) 

is as follows:

exports.login = (req, res, next) => {

  res.render('login')

}

The method for the GET /logout route that eventually destroys the session and 

redirects users to the home page (to be implemented) is as follows:

exports.logout = (req, res, next) => {

  res.redirect('/')

}

The method for the POST /authenticate route that handles authentication and 

redirects to the admin page (to be implemented) is as follows:

exports.authenticate = (req, res, next) => {

  res.redirect('/admin')

}

The full code of user.js is in code/ch5/blog-example/routes. We will add 

more logic to user.js later. Now the most database action happens in the article.js 

routes.

Let’s start with the GET article page where we call findOne with the slug from the 

req.params object:

exports.show = (req, res, next) => {

  �if (!req.params.slug) return next(new Error('No article slug.'))

  req.collections.articles.findOne({slug: req.params.slug},

    (error, article) => {

      if (error) return next(error)

      if (!article.published) return res.status(401).send()

      res.render('article', article)

  })

}

Chapter 5  Persistence with MongoDB and Mongoskin



196

The GET /api/articles API route (used in the admin page), where we fetch all 

articles with the find() method and convert the results to an array before sending them 

back to the requestee:

exports.list = (req, res, next) => {

  req.collections

    .articles

    .find({})

    .toArray((error, articles) => {

      if (error) return next(error)

      res.send({articles: articles})

  })

}

The POST /api/articles API routes (used in the admin page), where the insert 

method is used to add new articles to the articles collection and to send back the 

result (with _id of a newly created item):

exports.add = (req, res, next) => {

  �if (!req.body.article) return next(new Error('No article payload.'))

  let article = req.body.article

  article.published = false

  req.collections.articles.insert(article,

    (error, articleResponse) => {

      if (error) return next(error)

      res.send(articleResponse)

  })

}

The PUT /api/articles/:id API route (used on the admin page for publishing), 

where the updateById shorthand method is used to set the article document to the 

payload of the request (req.body). (The same thing can be done with a combination of 

update and _id query.)

exports.edit = (req, res, next) => {

  �if (!req.params.id) return next(new Error('No article ID.'))

  req.collections.articles.updateById(req.params.id,

Chapter 5  Persistence with MongoDB and Mongoskin



197

    {$set: req.body.article},

    (error, count) => {

      if (error) return next(error)

      res.send({affectedCount: count})

  })

}

The DELETE /api/articles/:id API which is used on the admin page for 

removing articles in which, again, a combination of remove and _id can be used to 

achieve similar results:

exports.del = (req, res, next) => {

  �if (!req.params.id) return next(new Error('No article ID.'))

  �req.collections.articles.removeById(req.params.id, (error, count) 

=> {

    if (error) return next(error)

    res.send({affectedCount: count})

  })

}

The GET /post create a new post page. This page is a blank form and thus requires 

NO data:

exports.post = (req, res, next) => {

  if (!req.body.title) { res.render('post') }

}

Next, there’s the POST article route for the post page form (the route that actually 

handles the post addition). In this route we check for the non-empty inputs  

(req.body), construct the article object, and inject it into the database via the  

req.collections.articles object exposed to us by middleware. Lastly, we render 

HTML from the post template:

exports.postArticle = (req, res, next) => {

  �if (!req.body.title || !req.body.slug || !req.body.text) {

    �return res.render('post', {error: 'Fill title, slug and text.'})

  }

  const article = {

    title: req.body.title,

Chapter 5  Persistence with MongoDB and Mongoskin



198

    slug: req.body.slug,

    text: req.body.text,

    published: false

  }

  �req.collections.articles.insert(article, (error, articleResponse) 

=> {

    if (error) return next(error)

    res.render('post',

      �{error: 'Article was added. Publish it on Admin page.'})

  })

}

The GET /admin page route in which we fetch sorted articles ({sort: {_id:-1}}) 

and manipulate them:

exports.admin = (req, res, next) => {

  req.collections

    .articles.find({}, {sort: {_id: -1}})

    .toArray((error, articles) => {

      if (error) return next(error)

      res.render('admin', {articles: articles})

  })

}

Note I n real production apps that deal with thousands of records, programmers 
usually use pagination by fetching only a certain number of items at once  
(5, 10, 100, and so on). To do this, use the limit and skip options with the 
find method, e.g., HackHall example: https://github.com/azat-co/
hackhall/blob/master/routes/posts.js#L37.

This time we won’t duplicate the code since it’s rather long. So for the full code of 

article.js, please refer to the code/ch5/blog-example/routes.

Chapter 5  Persistence with MongoDB and Mongoskin

https://github.com/azat-co/hackhall/blob/master/routes/posts.js#L37
https://github.com/azat-co/hackhall/blob/master/routes/posts.js#L37


199

From the project section in Chapter 4, we have the .pug files under the views folder. 

Lastly, the package.json file looks as follows. Please compare your npm scripts and 

dependencies.

{

  "name": "blog-express",

  "version": "0.0.5",

  "private": true,

  "scripts": {

    "start": "node app.js",

    "seed": "sh ./seed.sh",

    "test": "make test",

    �"st": "standard app.js && standard tests/index.js && standard 

routes/*"

  },

  "dependencies": {

    "body-parser": "1.18.2",

    "cookie-parser": "1.4.3",

    "errorhandler": "1.5.0",

    "express": "4.16.2",

    "express-session": "1.15.6",

    "method-override": "2.3.10",

    "mongodb": "2.2.33",

    "mongoskin": "2.1.0",

    "morgan": "1.9.0",

    "pug": "2.0.0-rc.4",

    "serve-favicon": "2.4.5",

    "stylus": "0.54.5"

  },

  "devDependencies": {

    "standard": "10.0.3",

    "mocha": "4.0.1",

    "superagent": "3.8.0",

    "expect.js": "0.3.1"

  }

}

Chapter 5  Persistence with MongoDB and Mongoskin



200

For the admin page to function, we need to add some AJAX-iness in the form of 

the js/admin.js file under the public folder. (I don’t know why I keep calling HTTP 

requests done with the XHR object the AJAX calls, since AJAX is Asynchronous JavaScript 

And XML, and no one is using XML anymore.#shrug)

In this file, we use ajaxSetup to configure all requests because these configs will 

be used in many requests. Most importantly, withCredentials will send the cookies 

which is needed for admin authentication.

$.ajaxSetup({

  xhrFields: {withCredentials: true},

  error: function (xhr, status, error) {

    $('.alert').removeClass('hidden')

    �$('.alert').html('Status: ' + status + ', error: '  

+ error)

  }

})

The function findTr is a helper that we can use in our event handlers:

var findTr = function (event) {

  var target = event.srcElement || event.target

  var $target = $(target)

  var $tr = $target.parents('tr')

  return $tr

}

Overall, we need three event handlers to remove, publish, and unpublish an article. 

This following code snippet is for removing, and it simply sends a request to our Node.js 

API route /api/articles/:id, which we wrote a page or two ago:

var remove = function (event) {

  var $tr = findTr(event)

  var id = $tr.data('id')

  $.ajax({

    url: '/api/articles/' + id,

    type: 'DELETE',

    success: function (data, status, xhr) {

Chapter 5  Persistence with MongoDB and Mongoskin



201

      $('.alert').addClass('hidden')

      $tr.remove()

    }

  })

}

Publishing and unpublishing are coupled together, because they both send PUT to /

api/articles/:id but with different payloads (data). Then type is of course PUT. The 

data is turned into a string because that is what this method $.ajax uses. If we were to 

use a different library like axios or fetch then the actual data format and the syntax of 

the call to make the request would be different. An interesting feature is coded in the 

callback. It allows to change the icons depending on the status of a particular article 

(data.published).

var update = function (event) {

  var $tr = findTr(event)

  $tr.find('button').attr('disabled', 'disabled')

  var data = {

    published: $tr.hasClass('unpublished')

  }

  var id = $tr.attr('data-id')

  $.ajax({

    url: '/api/articles/' + id,

    type: 'PUT',

    contentType: 'application/json',

    data: JSON.stringify({article: data}),

    success: function (dataResponse, status, xhr) {

      $tr.find('button').removeAttr('disabled')

      $('.alert').addClass('hidden')

      if (data.published) {

        �$tr.removeClass('unpublished').find('.glyphicon-play').

removeClass('glyphiconplay').addClass('glyphicon-pause')

      } else {

        �$tr.addClass('unpublished').find('.glyphicon-pause').

removeClass('glyphicon-pause').addClass('glyphicon-play')

Chapter 5  Persistence with MongoDB and Mongoskin



202

      }

    }

  })

}

That’s not all. Defining functions won’t make them work when a user clicks a button. 

We need to attach event listeners. We attach event listeners in the ready callback to 

make sure that the tbody is in the DOM—otherwise, it might be not found:

$(document).ready(function () {

  var $element = $('.admin tbody')

  $element.on('click', 'button.remove', remove)

  $element.on('click', 'button', update)

})

The full source code of the front-end admin.js file is in code/ch5/blog-example/

public/js. And now is the time to run the app!

�Running the App
To run the app, simply execute $ npm start, which will execute $ node app.js,  

but if you want to seed and test it, execute $ npm run seed, which will execute $ make 

db. To run tests, use $ npm test, which executes $ make test, respectively (Figure 5-5). 

(There’s no difference between running npm script commands or the commands directly.)

Chapter 5  Persistence with MongoDB and Mongoskin



203

Figure 5-5.  The results of running Mocha tests

Oh, yeah! Don’t forget that $ mongod service must be running on the localhost 

and port 27017. The expected result is that all tests now pass (hurray!), and if users visit 

http://localhost:3000, they can see posts and even create new ones on the admin page 

(http://localhost:3000/admin) as shown in Figure 5-6.

Chapter 5  Persistence with MongoDB and Mongoskin



204

Figure 5-6.  The admin page with seed data

Of course, in real life, nobody leaves the admin page open to the public. Therefore, 

in Chapter 6 we’ll implement session-based authorization, and password and OAuth 

authentications.

�Summary
In this chapter, I taught and you’ve learned how to install MongoDB, and use its console 

and native Node.js driver, for which we wrote a small script and refactored it to see 

Mongoskin in action. We also wrote tests, seeded scripts, implemented the persistence 

layer and the front-end admin page logic for Blog.

In the next chapter, we’ll dive into misty and mysterious world of auth, and 

implement authorization and authentication for Blog.

Chapter 5  Persistence with MongoDB and Mongoskin



205
© Azat Mardan 2018 
A. Mardan, Practical Node.js, https://doi.org/10.1007/978-1-4842-3039-8_6

CHAPTER 6

Security and Auth 
in Node.js
You know that security is an important aspect of any real-world web application. This is 

especially true nowadays, because our apps donʼt function in silos anymore. What if I tell 

you that you donʼt have to spend days studying for security certifications or read sketchy 

dark-web hacker forums to implement a secure Node app? Iʼll show you a few tricks.

We can makes our apps and communications secure by using various approaches, 

such as token-based authentication and/or OAuth (http://oauth.net). We can 

leverage numerous third-party services (e.g., Google, Twitter, GitHub) or become service 

providers ourselves (e.g., provide a public API).

In this practical book, I dedicate the whole chapter to matters of authorization, 

authentication, OAuth, and best practices. Weʼll look at the following topics:

•	 Authorization with Express.js middleware

•	 Token-based authentication

•	 Session-based authentication

•	 Project: Adding e-mail and password login to Blog

•	 Node.js OAuth

•	 Project: Adding Twitter OAuth 1.0 sign-in to Blog with Everyauth 

(https://github.com/bnoguchi/everyauth)

http://oauth.net
https://github.com/bnoguchi/everyauth


206

�Authorization with Express.js Middleware
Authorization in web apps usually means restricting certain functions to privileged 

clients. These functions can either be methods, pages, or REST API endpoints.

Express.js middleware allows us to apply certain rules seamlessly to all routes, 

groups of routes (namespacing), or individual routes.

•	 All routes: app.get('*', auth)

•	 Groups of routes: app.get('/api/*', auth)

•	 Individual routes: app.get('/admin/users', auth)

For example, if we want to protect all /api/ endpoints, we utilize the following 

middleware with * :

app.all('/api/*', auth)

app.get('/api/users', users.list)

app.post('/api/users', users.create)

Interestingly enough, app.all() with a URL pattern and an * is functionally the 

same as utilizing app.use() with a URL in a sense that they both will be triggered only 

on those URLs that are matching the URL pattern:

app.use('/api', auth)

Another way of doing the same thing is to use auth middleware on each route which 

requires it:

app.get('/', home) // no Auth needed

app.get('/api/users', auth, users.list) // Auth needed

app.post('/api/users', auth, users.create) // Auth needed

In the previous examples, auth() is a function with three parameters: req, res, 

and next. For example in this middleware, you can call the OAuth service or query a 

database to get the user profile to authorize it (check for permissions) or to check for 

JWT (JSON Web Tokens) or web session to authenticate the user (check who it is). Or, 

most likely, do both!

Chapter 6  Security and Auth in Node.js



207

const auth = (req, res, next) => {

  // ...

  // �Assuming you get user profile and user.auth is true or false

  if (user.auth) return next()

  �else next(new Error('Not authorized'))  

// or res.send(401)

}

The next() part is important, because this is how Express.js proceeds to execute 

subsequent request handlers and routes (if thereʼs a match in a URL pattern). If next() 

is invoked without anything, then the normal execution of the server will proceed. That 

is Express will go to the next middleware and then to the routes that match the URL.

If next() is invoked with an error object such as next(new Error('Not 

authorized')), then Express will jump straight to the first error handler, and none of 

the subsequent middleware or routes will be executed.

�Token-Based Authentication
For applications to know which privileges a specific client has (e.g., admin), we must 

add an authentication step. In the previous example, this step went inside the auth() 

function.

The most common authentication is a cookie&session–based authentication, and 

the next section deals with this topic. However, in some cases, more REST-fulness is 

required, or cookies/sessions are not supported well (e.g., mobile). In this case, itʼs 

beneficial to authenticate each request with a token (probably using the OAuth2.0 

(http://tools.ietf.org/html/rfc6749) scheme). The token can be passed in 

a query string or in HTTP request headers. Alternatively, we can send some other 

authentication combination of information, such as e- mail/username and password, or 

API key, or API password, instead of a token.

In our example of token-based authentication, each request can submit a token  

in a query string (accessed via req.query.token). And if we have the correct  

value stored somewhere in our app (database, or in this example just a constant 

SECRET_TOKEN), we can check the incoming token against it. If the token matches our 

Chapter 6  Security and Auth in Node.js

http://tools.ietf.org/html/rfc6749)


208

records, we call next() to proceed with the request executions; if not, then we call 

next(error), which triggers Express.js error handler execution (see the upcoming 

note):

const auth = (req, res, next) => {

  if (req.query.token && token === SECRET_TOKEN) {

    // client is fine, proceed to the next route

    return next()

  } else {

    return next(new Error('Not authorized'))

      // or res.send(401)

  }

}

In a more realistic example, we use API keys and secrets to generate HMAC-SHA1 

(hash-based message authentication code—secure hash algorithm strings), and then 

compare them with the value in req.query.token.

Note  Calling next() with an error argument is analogous to throwing in the 
towel (i.e., giving up). The Express.js app enters the error mode and proceeds to 
the error handlers.

We just covered the token-based authentication, which is often used in REST APIs. 

But user-facing web apps (i.e., browser-enabled users & consumers) often use with 

cookies. We can use cookies to store and send session IDs with each request.

Cookies are similar to tokens, but require less work for us, the developers! This 

approach is the cornerstone of session-based authentication. The session-based 

method is the recommended way for basic web apps, because browsers already know 

what to do with session headers. In addition, in most platforms and frameworks, the 

session mechanism is built into the core. So, letʼs jump straight into session-based 

authentication with Node.js.

Chapter 6  Security and Auth in Node.js



209

�JSON Web Token (JWT) Authentication
Developers use JSON Web Tokens (JWT) to encrypted data, which is then stored on the 

client. JWTs have all the any information unlike regular tokens (API keys or OAuth access 

tokens), which are more like passwords. Thus, JWTs remove the need for a database to 

store user information.

In my opinion, JWT is less secure than web sessions. This is because web sessions 

store the data on the server (usually in a database) and only store a session ID on the 

client. Despite JWT using encryption, anyone can break any encryption given enough 

time and processing power.

Nevertheless, JWT is a very common technique that frontend web apps developers 

use. JWTs eliminate the need for the server-side database or a store. All info is in this 

token, which has three parts: header, payload and signature. Whereas the structure of 

JWT is the same, the encryption method can vary depending on what a developerʼs 

choice: HS256, RS512, ES384, and so on. Iʼm always paranoid about security, so the 

stronger the algorithm, the better. RS512 will be good for most of the cases circa 2020.

To implement a simple JWT login, letʼs use the jsonwebtoken library for signing 

tokens and bcrypt for hashing passwords. When a client wants to create an account, the 

system takes the password and hashes it asynchronously so as not to block the server 

from processing other requests The slower the hashing, the worse for attackers and the 

better for you. For example, this is how to get the password from the incoming request 

body and store the hash into the users array using 10 rounds of hashing, which is  

good enough:

app.post('/auth/register', (req, res) => {

    bcrypt.hash(req.body.password, 10, (error, hash)=>{

    if (error) return res.status(500).send()

    users.push({

      username: req.body.username,

      passwordHash: hash

    })

    res.status(201).send('registered')

  })

})

Chapter 6  Security and Auth in Node.js



210

Once the user record is created (which has the hash), we can log in users to exchange 

the username and password for the JWT. Theyʼll use this JWT for all other requests like a 

special key to authenticate and maybe unlock protected and restricted resources (thatʼs 

authorization because not all users will have access to all the restricted resources).

The GET route is not a protected route, but POST is a protected one, because thereʼs 

an extra auth middleware there that will check for the JWT:

app.get('/courses', (req, res) => {

    res.send(courses)

  })

app.post('/courses', auth, (req, res) => {

    courses.push({title: req.body.title})

    res.send(courses)

  })

The login route checks for the presence of this username in the users array but this can 

be a database call or a call to another API, not a simple find() method. Next, bcrypt has a 

compare() method that asynchronously compares the hash with the plain password. If they 

match ( matched == true ), then jwt.sign() will issue a signed (encrypted) token that 

has the username in it. (It can have many other fields, not just one field.)

app.post('/auth/login', (req, res) => {

    const foundUser = users.find((value, index, list) => {

      if (value.username === req.body.username) return true

      else return false

    })

    if (foundUser) {

      �bcrypt.compare(req.body.password, foundUser.passwordHash, 

(error, matched) => {

        if (!error && matched) {

          �res.status(201).json({token: jwt.sign({ username: 

foundUser.username}, SECRET)})

        } else res.status(401).send()

      })

    } else res.status(401).send()

})

Chapter 6  Security and Auth in Node.js



211

JWT uses a special value SECRET to encrypt the data. Preferably when the app goes 

to production, an environment variable or a public key will populate the SECRET value. 

However now, SECRET is just a hard-coded const string.

When you get this JWT, you can make requests to POST /courses. The auth, 

which checks for JWT, uses the jwt module and the data from the headers. I use the 

auth header name. The name of the header doesnʼt matter as long as you use the same 

name on the server and on the client. For the server, I set the header name in the auth 

middleware.

Some developers like to use Authorization, but itʼs confusing to me since weʼre 

not authorizing, but authenticating. The authorization, which controls who can do what, 

is happening in the Node middleware. Here, we are performing authentication, which 

identifies who is this.

My auth header will look like this JWT TOKEN_VALUE. Ergo, to extract the token 

value out of the header, I use a string function split(' '):

const auth = (req, res, next) => {

  �if (req.headers && req.headers.auth && req.headers.auth.split(' ')

[0] === 'JWT') {

    �jwt.verify(req.headers.auth.split(' ')[1], SECRET, (error, 

decoded) => {

      if (error) return res.status(401).send()

      req.user = decoded

      console.log('authenticated as ', decoded.username)

      next()

    })

  }

  else return res.status(401).send()

}

You can play with the full working and tested code in code/ch6/jwt-example. I like 

to use CURL, but most of my Node workshop attendees like Postman (a cross-platform 

GUI app), so in Figure 6-2 I show how to use Postman to extract the JWT (on login). And 

Figure 6-3 uses the token on POST /courses by having the token in the header auth 

after JWT with a space (JWT TOKEN_VALUE).

Chapter 6  Security and Auth in Node.js



212

We finished the implementation. Now test the JWT example with these step-by-step 

instructions in CURL, Postman or any other HTTP client:

	 1.	 GET /courses will return a list of two courses that are  

hard-coded in server.js.

	 2.	 POST /courses with JSON data {"title": "blah blah blah"}  

will return 401 Not Authorized. Now we know that this is a 

protected route, and we need to create a new user to proceed.

	 3.	 POST /auth/register with username and password will create 

a new user, as shown in Figure 6-1. Next we can log in to the server 

to get the token.

	 4.	 POST /auth/login with username and password that match the 

existing records will return JWT, as shown in Figure 6-2.

	 5.	 POST /courses with title and JWT from step 4 in the auth 

header will create a new course (response status 201), as shown in 

Figures 6-3 and 6-4.

	 6.	 GET /courses will show your new title. Verify it. No need for JWT 

for this request, but it wonʼt hurt either. Figure 6-5.

	 7.	 Celebrate and get a cup of tea with a (paleo) cookie.

Chapter 6  Security and Auth in Node.js



213

Figure 6-2.  Logging in to get JWT

Figure 6-1.  Registering a new user by sending JSON payload

Chapter 6  Security and Auth in Node.js



214

Figure 6-3.  Using JWT in the header auth

Figure 6-4.  200 status for the new course request with JWT in the header and the 
JSON payload

Chapter 6  Security and Auth in Node.js



215

Donʼt forget to select raw and application/json when registering (POST /auth/

register ) and when making other POST requests. And now that you saw my password, 

please donʼt hack my accounts (https://github.com/danielmiessler/SecLists/

pull/155).

Finally, you can uncheck the auth header that has the JWT value and try to 

make another POST /courses request, as shown in Figure 6-6. The request will fail 

miserably (401), as it should because thereʼs no JWT this time (see auth middleware in 

server.js).

Figure 6-5.  Verifying new course

Chapter 6  Security and Auth in Node.js

https://github.com/danielmiessler/SecLists/pull/155
https://github.com/danielmiessler/SecLists/pull/155


216

JWT is easy to implement. Developers donʼt need to create and maintain a shared 

database for the services. Thatʼs the main benefit. Clients get JWTs after the login 

request.

Once on the client, client code stores JWT in browser or mobile local storage or 

cookies (also in the browser). React, Vue, Elm, or Angular front-end apps send this token 

with each request. If you plan to use JWT, itʼs important to protect your secret and to pick 

a strong encryption algorithm to make it harder for attackers to hack your JWT data.

If you ask me, sessions are more secure because with sessions I store my data on the 

server instead of on the client. Letʼs talk about sessions.

�Session-Based Authentication
Session-based authentication is done via the session object in the request object 

req. A web session in general is a secure way to store information about a client so that 

subsequent requests from that same client can be identified.

Figure 6-6.  Unchecking auth header with JWT leads to 401 as expected

Chapter 6  Security and Auth in Node.js



217

In the main Express.js file, weʼll need to import ( require() ) two modules to enable 

sessions. We need to include and use cookie-parser and express-session:

	 1.	 express.cookieParser(): Allows for parsing of the client/

request cookies

	 2.	 express.session(): Exposes the res.session object in each 

request handler, and stores data in the app memory or some other 

persistent store like MongoDB or Redis

Note I n express-session version 1.5.0 and higher, there’s no need to add 
the cookie-parser middleware. In fact, it might lead to some bad behavior.  
So it’s recommended to use express-sesison by itself because it will parse 
and read cookie by itself.

Needless to say, cookie-parser and express-session must be installed via npm 

into the projectʼs node_modules folder. You can install them with:

$ npm i cookie-parser express-session -SE

In the main Express file such as app.js or server.js, import with require() and 

apply to the Express app with app.use():

const cookieParser = require('cookie-parser')

const session = require('express-session')

...

app.use(cookieParser())

app.use(session())

The rest is straightforward. We can store any data in req.session and it appears 

automagically on each request from the same client (assuming their browser supports 

cookies). Hence, the authentication consists of a route that stores some flag (true/false) 

in the session and of an authorization function in which we check for that flag (if true, 

then proceed; otherwise, exit). For example to log in, we set the property auth on the 

session to true. The req.session.auth value will persist on future requests from the 

same client.

Chapter 6  Security and Auth in Node.js



218

app.post('/login', (req, res, next) => {

  if (checkForCredentials(req)) {

  // �checkForCredentials checks for credentials passed in the 

request's payload

    req.session.auth = true

    res.redirect('/dashboard') // Private resource

  } else {

    res.status(401).send() // Not authorized

  }

})

Warning A void storing any sensitive information in cookies. The best practice 
is not to store any info in cookies manually—except session ID, which Express.
js middleware stores for us automatically—because cookies are not secure. 
Also, cookies have a size limitation that is very easy to reach and which varies by 
browser with Internet Explore having the smallest limit.

By default, Express.js uses in-memory session storage. This means that every time an 

app is restarted or crashes, the sessions are wiped out. To make sessions persistent and 

available across multiple servers, we can use a database such as Redis or MongoDB as a 

session store that will save the data on restarts and crashes of the servers.

In fact, having Redis for the session store is one of the best practices that my team 

and I used at Storify and DocuSign. Redis provided one source of truth for the session 

data among multiple servers. Our Node apps were able to scale up well because they 

were stateless. We also used Redis for caching due to its efficiency.

�Project: Adding E-mail and Password Login to Blog
To enable session-based authentication in Blog, we need to do the following:

	 1.	 Import and add the session middleware to the configuration part 

of app.js.

	 2.	 Implement the authorization middleware authorize with a 

session-based authorization so we can reuse the same code for 

many routes.

Chapter 6  Security and Auth in Node.js



219

	 3.	 Add the middleware from step 2 to protected pages and routes  

in app.js routes, e.g., app.get('/api/, authorize,  

api.index).

	 4.	 Implement an authentication route POST /login, and a logout 

route, GET /logout, in user.js.

We will start with the session middleware.

�Session Middleware
Letʼs add the automatic cookie parsing and support for session middleware in these two 

lines by putting them in the middle of configurations in app.js:

const cookieParser = require('cookie-parser')

const session = require('express-session')

// Other middleware

app.use(cookieParser('3CCC4ACD-6ED1-4844-9217-82131BDCB239'))

app.use(session({secret: '2C44774A-D649-4D44-9535-46E296EF984F'}))

// Routes

Warning Y ou should replace randomly generated values with your own ones.

session() must be preceded by cookieParser() because session depends on 

cookies to work properly. For more information about these and other Express.js/

Connect middleware, refer to Pro Express.js 4 (Apress, 2014).

Beware of another cookie middleware. Its name is cookie-session and itʼs not as 

secure as cookie-parser with express-session. This is because cookie-session 

stores all information in the cookie, not on the server. cookie-session can be used in 

some cases but I do not recommend it. The usage is to import the module and to apply it 

to the Express.js app:

const cookieSession = require('cookie-session')

app.use(cookieSession({secret: process.env.SESSION_SECRET}))

Chapter 6  Security and Auth in Node.js



220

Again, the difference is that express-session uses secure in-memory  

or Redis storage—and cookies store only for the session ID, i.e., sid—whereas cookie-

session uses browser cookies to store session information. In other words, the entire 

session is serialized into cookie-based storage, not just the session key. This approach 

should be avoided because of cookie size limitations and security concerns.

Itʼs useful to pass request authentication information to the templates. We can do 

so by adding middleware that checks the req.session.admin value for truthyness and 

adds an appropriate property to res.locals:

app.use(function(req, res, next) {

  if (req.session && req.session.admin)

    res.locals.admin = true

  next()

})

Letʼs add authorization to the Blog project.

�Authorization in Blog
Authorization is also done via middleware, but we wonʼt set it up right away with  

app.use() like we did in the snippet for res.locals. Instead, we define a function that 

checks for req.session.admin to be true, and proceeds if it is. Otherwise, the 401 Not 

Authorized error is thrown, and the response is ended.

// Authorization

const authorize = (req, res, next) => {

  if (req.session && req.session.admin)

    return next()

  else

    return res.send(401)

}

Chapter 6  Security and Auth in Node.js



221

Now we can add this middleware to certain protected endpoints (another  

name for routes). Specifically, we will protect the endpoints to see the admin page  

(GET /admin ), to create a new article (POST /post ), and to see the create new article 

page (GET /post ):

app.get('/admin', authorize, routes.article.admin)

app.get('/post', authorize, routes.article.post)

app.post('/post', authorize, routes.article.postArticle)

We add the authorize middleware to API routes as well… to all of them,  

using app.all():

app.all('/api', authorize)

app.get('/api/articles', routes.article.list)

app.post('/api/articles', routes.article.add)

app.put('/api/articles/:id', routes.article.edit)

app.delete('/api/articles/:id', routes.article.del)

The app.all('/api', authorize) statement is a more compact alternative to 

adding authorize to all /api/... routes manually. Less copy and paste and more code 

reuse, please.

I know a lot of readers like to see the entire source code. Thus, the full source code of 

the app.js file after adding session support and authorization middleware is as follows 

(under the ch6/blog-password folder):

const express = require('express')

const routes = require('./routes')

const http = require('http')

const path = require('path')

const mongoskin = require('mongoskin')

const dbUrl = process.env.MONGOHQ_URL || 'mongodb: 

//@localhost:27017/blog'

const db = mongoskin.db(dbUrl)

const collections = {

  articles: db.collection('articles'),

  users: db.collection('users')

}

Chapter 6  Security and Auth in Node.js



222

const cookieParser = require('cookie-parser')

const session = require('express-session')

const logger = require('morgan')

const errorHandler = require('errorhandler')

const bodyParser = require('body-parser')

const methodOverride = require('method-override')

const app = express()

app.locals.appTitle = 'blog-express'

// Expose collections to request handlers

app.use((req, res, next) => {

  �if (!collections.articles || !collections.users)  

return next(new Error('No collections.'))

  req.collections = collections

  return next()

})

// Express.js configurations

app.set('port', process.env.PORT || 3000)

app.set('views', path.join(__dirname, 'views'))

app.set('view engine', 'pug')

// Express.js middleware configuration

app.use(logger('dev'))

app.use(bodyParser.json())

app.use(bodyParser.urlencoded({extended: true}))

app.use(methodOverride())

app.use(require('stylus').middleware(path.join(__dirname, 'public')))

app.use(express.static(path.join(__dirname, 'public')))

app.use(cookieParser('3CCC4ACD-6ED1-4844-9217-82131BDCB239'))

app.use(session({secret: '2C44774A-D649-4D44-9535-46E296EF984F',

  resave: true,

  saveUninitialized: true}))

Chapter 6  Security and Auth in Node.js



223

// Authentication middleware

app.use((req, res, next) => {

  if (req.session && req.session.admin) {

    res.locals.admin = true

  }

  next()

})

// Authorization Middleware

const authorize = (req, res, next) => {

  if (req.session && req.session.admin)

    return next()

  else

    return res.status(401).send()

}

if (app.get('env') === 'development') {

  app.use(errorHandler())

}

// PAGES&ROUTES

app.get('/', routes.index)

app.get('/login', routes.user.login)

app.post('/login', routes.user.authenticate)

app.get('/logout', routes.user.logout)

app.get('/admin', authorize, routes.article.admin)

app.get('/post', authorize, routes.article.post)

app.post('/post', authorize, routes.article.postArticle)

app.get('/articles/:slug', routes.article.show)

// REST API ROUTES

app.all('/api', authorize)

app.get('/api/articles', routes.article.list)

app.post('/api/articles', routes.article.add)

app.put('/api/articles/:id', routes.article.edit)

app.delete('/api/articles/:id', routes.article.del)

Chapter 6  Security and Auth in Node.js



224

app.all('*', function (req, res) {

  res.status(404).send()

})

// http.createServer(app).listen(app.get('port'), function(){

  �// console.log('Express server listening on port ' + app.

get('port'));

// });

const server = http.createServer(app)

const boot = function () {

  server.listen(app.get('port'), function () {

    �console.info(`Express server listening on port ${app.get('port')}`)

  })

}

const shutdown = function () {

  server.close(process.exit)

}

if (require.main === module) {

  boot()

} else {

  console.info('Running app as a module')

  exports.boot = boot

  exports.shutdown = shutdown

  exports.port = app.get('port')

}

Now we can implement authentication (different from authorization).

�Authentication in Blog
The last step in session-based authorization is to allow users and clients to turn the  

req.session.admin switch on and off. We do this by having a login form and 

processing the POST request from that form.

For authenticating users as admins, we set the appropriate flag ( admin=true ), in 

the routes.user.authenticate in the user.js file. This is done in the POST /login 

route, which we defined in the app.js —a line that has this statement:

Chapter 6  Security and Auth in Node.js



225

app.post('/login', routes.user.authenticate)

In user.js, expose the method to the importer, i.e., the file that imports this user.js 

module:

exports.authenticate = (req, res, next) => {

The form on the login page submits data to this route. In general, a sanity check for 

the input values is always a good idea. If values are falsy (including empty values), weʼll 
render the login page again with the message error.

The return keyword ensures the rest of the code in this method isnʼt executed. If the 

values are non-empty (or otherwise truthy), then the request handler will not terminate 

yet and will proceed to the next statements:

exports.authenticate = (req, res, next) => {

  if (!req.body.email || !req.body.password)

    return res.render('login', {

      error: 'Please enter your email and password.'

    })

Thanks to the database middleware in app.js, we can access database collections in 

req.collections. In our appʼs architecture, e-mail is a unique identifier (there are no 

two accounts with the same e-mail), so we use the findOne() function to find a match 

of the e-mail and password combination (logical AND):

  req.collections.users.findOne({

    email: req.body.email,

    password: req.body.password

  }, (error, user) => {

Warning I n virtually all cases, we don’t want to store passwords as a plain text; 
we should store salts and password hashes instead. In this way, if the database 
gets compromised, passwords are not seen. For salting, use the core Node.js 
module crypto.

Chapter 6  Security and Auth in Node.js



226

findOne() returns an error object and the user result object. However, we should 

still do error processing manually:

    if (error) return next(error)

    �if (!user) return res.render('login', {error: 'Incorrect 

email&password combination.'})

If the program has made it thus far (avoiding a lot of return statements prior), we 

can authenticate the user as administrator, thus enabling the authentication and the 

auth (authorization) method:

    req.session.user = user

    req.session.admin = user.admin

    res.redirect('/admin')

  })

}

The logout route is trivial. We clear the session by calling destroy() on  

req.session:

exports.logout = (req, res, next) => {

  req.session.destroy()

  res.redirect('/')

}

The full source code of code/ch6/blog-password/routes/user.js for your 

reference is as follows:

exports.list = function (req, res) {

  res.send('respond with a resource')

}

exports.login = function (req, res, next) {

  res.render('login')

}

exports.logout = function (req, res, next) {

  req.session.destroy()

  res.redirect('/')

}

Chapter 6  Security and Auth in Node.js



227

exports.authenticate = function (req, res, next) {

  �if (!req.body.email || !req.body.password) { return res.

render('login', {error: 'Please enter your email and password.'}) }

  req.collections.users.findOne({

    email: req.body.email,

    password: req.body.password

  }, function (error, user) {

    if (error) return next(error)

    �if (!user) return res.render('login', {error: 'Incorrect 

email&password combination.'})

    req.session.user = user

    req.session.admin = user.admin

    res.redirect('/admin')

  })

}

Itʼs better to test the enhancements earlier. Everything should be ready for running 

the app.

�Running the App
Now everything should be set up properly to run Blog. In contrast, to the example in 

Chapter 5, we see protected pages only when weʼre logged in. These protected pages 

enable us to create new posts, and to publish and unpublish them. But as soon as we 

click Logout in the menu, we no longer can access the administrator page.

The executable code is under the code/ch6/blog-password folder of the 

practicalnode repository: https://github.com/azat-co/practicalnode.

�The oauth Module
The oauth module is the powerhouse of OAuth 1.0/2.0 schemes and flows for Node.js.  

Itʼs a module that generates signatures, encryptions, and HTTP headers, and makes 

requests. You can find it on npm at https://www.npmjs.org/package/oauth and on 

GitHub at https://github.com/ciaranj/node-oauth.

Chapter 6  Security and Auth in Node.js

https://github.com/azat-co/practicalnode
https://www.npmjs.org/package/oauth
https://github.com/ciaranj/node-oauth


228

We still need to initiate the OAuth flows (i.e., requests back and forth between 

consumer, provider, and our system), write the callback routes, and store information 

in sessions or databases. Refer to the service providerʼs (e.g., Facebook, Twitter, Google) 

documentation for endpoints, methods, and parameter names.

It is recommended that node-auth be used when complex integration is needed or 

when only certain pieces of OAuth are needed (e.g., header signatures are generated by 

node-auth, but the request is made by the superagent library).

To add OAuth version 0.9.15 (the latest as of this writing) to your project, simply say 

the following incantation:

$ npm install oauth@0.9.15

Once you install the oauth module, you can start implementing OAuth flows such as 

Twitter OAuth 2.0.

�Twitter OAuth 2.0 Example with Node.js OAuth
OAuth 2.0 is less complicated and, some might argue, less secure than OAuth 1.0. You 

can find plenty of blog posts, flame wars and rants on OAuth 1 vs 2 online, if you wish. Iʼll 
give you my short version here.

In essence, OAuth 2.0 doesnʼt prescribe encryption and instead relies on SSL (https) 

for encryption. On the other hand, OAuth 1 dictates the encryption.

The way OAuth 2.0 works is similar to the token-based authorization we examined 

earlier, for which we have a single token, called a bearer, that we pass along with each 

request. Think about bearer as a special kind of a password that unlocks all the treasures. 

To get that token, all we need to do is exchange our appʼs token and secret for the bearer.

Usually, this bearer can be stored for a longer time than OAuth 1.x tokens (depending 

on the rules set by a specific service provider) and can be used as a single key/password 

to open protected resources. This bearer acts as our token in the token-based auth.

The following is an OAuth 2.0 request example, which I wrote for the oauth docs:

https://github.com/ciaranj/node-oauth#oauth20. Itʼll illustrate how to 

make an OAuth 2 request to Twitter API.

First, we create an oauth2 object that has a Twitter consumer key and secret (replace 

the values with yours):

const OAuth = require('oauth')

const OAuth2 = OAuth.OAuth2

const twitterConsumerKey = 'your key'

Chapter 6  Security and Auth in Node.js

https://github.com/ciaranj/node-oauth#oauth20


229

const twitterConsumerSecret = 'your secret'

const oauth2 = new OAuth2(twitterConsumerKey,

  twitterConsumerSecret,

  'https://api.twitter.com/',

  null,

  'oauth2/token',

  null

)

Then, we request access to the token/bearer from the service provider:

oauth2.getOAuthAccessToken(

  '',

  {'grant_type': 'client_credentials'},

  function (e, access_token, refresh_token, results) {

    console.log('bearer: ', access_token)

    // Store bearer

    �// Make OAuth2 requests using this bearer to protected endpoints

  }

)

Now we can store the bearer for future use and make requests to protected endpoints 

with it.

Note T witter uses OAuth 2.0 for endpoints (resources) which don’t require users 
permissions. These endpoints use what’s called app-only authorization, because 
they are accessible on behalf of apps, not on behalf of users of apps. Not all 
endpoints are available through app-only auth, and quotas/limitations are different. 
Conversely, Twitter uses OAuth 1.0 for authorization of requests made on behalf 
of the users of the apps. To learn what endpoints use OAuth 2 and what OAuth 1, 
please refer to the official documentation at http://dev.twitter.com.

Chapter 6  Security and Auth in Node.js

http://dev.twitter.com/


230

�Everyauth
The Everyauth module allows for multiple OAuth strategies to be implemented and 

added to any Express.js app in just a few lines of code. Everyauth comes with strategies 

for most of the service providers, so thereʼs no need to search and implement service 

provider-specific endpoints, parameters names, and so forth. Also, Everyauth stores user 

objects in a session, and database storage can be enabled in a findOrCreate callback 

using a promise pattern.

Tip E veryauth has an e-mail and password strategy that can be used instead 
of the custom-built auth. More information about it can be found in the Everyauth 
documentation at the GitHub repository (https://github.com/bnoguchi/
everyauth#password-authentication).

Each one of the third-party services may be different. You can implement them all 

yourself. But Everyauth has lots of submodules that implement exactly what OAuth flow 

each third-party service need. You simply provide credentials to submodules, configure 

them, and avoid any worries in regards to the details of OAuth flow(s). Thatʼs right, you 

just plug in your app secret and client ID and boom! You are rolling, all dandy like a 

candy.

Everyauth submodules are specific implementations of authorizations. And boy, 

open source contributors wrote tons of these submodules (strategies), so developers 

donʼt have to reinvent the wheel: password (simple email and password), Facebook, 

Twitter, Google, LinkedIn, Dropbox, Tumblr, Evernote, GitHub, Instagram, Foursquare, 

Yahoo!, Justin.tv, Vimeo, Basecamp, AngelList, Dwolla, OpenStreetMap, VKontakte 

(Russian social network famous for its pirated media), Mail.ru, SoundCloud, MailChimp, 

Stripe, Salesforce, Box.net, OpenId, LDAP and Windows Azure Access Control Service, 

and the list goes on and on at http://bit.ly/2QV2dMM.

Chapter 6  Security and Auth in Node.js

https://github.com/bnoguchi/everyauth#password-authentication
https://github.com/bnoguchi/everyauth#password-authentication
https://github.com/bnoguchi/everyauth#password-authentication
http://bit.ly/2QV2dMM


231

�Project: Adding Twitter OAuth 1.0 Sign-in to Blog 
with Everyauth
A typical OAuth 1.0 flow consists of these three steps (simplified):

	 1.	 Users go to a page/route to initiate the OAuth dance. There, our 

app requests a token via GET/POST requests using the signed 

appʼs consumer key and secret. For example, /auth/twitter is 

added automatically by Everyauth.

	 2.	 The app uses the token extracted in step 1 and redirects users to 

the service provider (Twitter) and waits for the callback.

	 3.	 The service provider redirects users back to the app, which 

catches the redirect in the callback route (e.g., /auth/twitter/

callback ). Then, the app extracts the access token, the access 

token secret, and the user information from the Twitter incoming 

request body/payload.

However, because weʼre using Everyauth, we donʼt need to implement requests for 

the initiation and the callback routes!

Letʼs add a Sign in with Twitter button to our project. We need the button itself 

(image or a link), app key, and secret (obtainable at dev.twitter.com), and then we 

must augment our authorization route to allow for specific Twitter handlers to be 

administrated on Blog.

�Adding a Sign-in with a Twitter Link
By default, Everyauth uses the /auth/:service_provider_name pattern to initiate the 

three-legged OAuth 1.0 strategy. This, of course, can be customized, but to keep it short 

and simple (KISS), we can just add this link to code/ch6/blog-everyauth/views/

includes/menu.pug:

    li(class=(menu === 'login') ? 'active' : '')

      a(href='/auth/twitter') Sign in with Twitter

Chapter 6  Security and Auth in Node.js



232

The whole menu.pug has if/else ternary expressions and looks like this:

.menu

  ul.nav.nav-pills

    li(class=(menu === 'index') ? 'active' : '')

      a(href='/') Home

    if (admin)

      li(class=(menu === 'post') ? 'active' : '')

        a(href="/post") Post

      li(class=(menu === 'admin') ? 'active' : '')

        a(href="/admin") Admin

      li

        a(href="/logout") Log out

    else

      li(class=(menu === 'login')? 'active' : '')

        a(href='/login') Log in

      li

        a(href='/auth/twitter') Sign in with Twitter

�Configuring the Everyauth Twitter Strategy
To add the Everyauth module ( everyauth) to Blog, type the following in the terminal:

$ npm i everyauth@0.4.9 -SE

The configuration of the Everyauth Twitter strategy is implemented in app.js, but 

in larger apps itʼs a good idea to abstract these types of strategies into separate files. The 

most important thing to remember is that Everyauth middleware needs to precede the 

app.route call.

To procure the Twitter app consumer key and secret, we harness environmental 

variables via process.env:

const TWITTER_CONSUMER_KEY = process.env.TWITTER_CONSUMER_KEY

const TWITTER_CONSUMER_SECRET = process.env.TWITTER_CONSUMER_SECRET

Chapter 6  Security and Auth in Node.js



233

To pass these variables, we can use Makefile. In the Makefile, add these lines, 

substituting ABC and XYZ with your values:

start:

    TWITTER_CONSUMER_KEY=ABCABC \

    TWITTER_CONSUMER_SECRET=XYZXYZXYZ \

    node app.js

Also, add the start command to .PHONY:

.PHONY: test db start

As another option, we can create a bash file start.sh :

TWITTER_CONSUMER_KEY=ABCABC \

TWITTER_CONSUMER_SECRET=XYZXYZXYZ \

node app.js

Now we go back to the app.js file, in which we need to import the  

Everyauth module:

everyauth = require('everyauth')

Itʼs a good practice to run the module in debug mode the first few times:

everyauth.debug = true

Each submodule is enabled using chained commands and promises. To define the 

previously mentioned key and secret, execute the following:

everyauth.twitter

  .consumerKey(TWITTER_CONSUMER_KEY)

  .consumerSecret(TWITTER_CONSUMER_SECRET)

Then, to tell the module what to do when Twitter sends back the authorized user 

object twitterUserMetadata, type this chained method with four arguments:

  .findOrCreateUser((session,

    accessToken,

    accessTokenSecret,

    twitterUserMetadata) => {

Chapter 6  Security and Auth in Node.js



234

We can return the user object right away, but to emulate async writing to a database, 

letʼs create a promise

      const promise = this.Promise()

and use the process.nextTick call, which is analogous to setTimeout 

(callback, 0);, and acts in an asynchronous manner. In a real-world app, you might 

want to find or save the data to the database:

    process.nextTick(function(){

Change Azatʼs username to yours:

      if (twitterUserMetadata.screen_name === 'azat_co') {

Store the user object in the in-memory session, just like we did in the  

/login route:

        session.user = twitterUserMetadata

Most importantly, set admin flag to true:

        session.admin = true

      }

Everyauth expects us to fulfill the promise when itʼs ready:

      promise.fulfill(twitterUserMetadata)

    })

    return promise

    // return twitterUserMetadata

  })

After all the steps are done, instruct Everyauth where to redirect the user:

  .redirectPath('/admin')

Chapter 6  Security and Auth in Node.js



235

Everyauth is so smart that it automatically adds a /logout route, which means our 

route ( app.get('/logout', routes.user.logout); ) wonʼt be used. So we need to 

add some extra logic to the default Everyauth strategy. Otherwise, the session will always 

keep admin = true. In the handleLogout step, we clear our session by calling the exact 

same method from user.js:

everyauth.everymodule.handleLogout(routes.user.logout)

The next line tells Everyauth how to find a user object based on the user argument, 

but because we stored the whole user object in the session and we donʼt store user info 

in findOrCreate, we can just return back the same object:

everyauth.everymodule.findUserById( (user, callback) => {

  callback(user)

})

Last but not least, the line that follows enables Everyauth routes and it must go after 

cookie and session middleware, but must come before normal routes (e.g., app.get(), 

app.post() ):

app.use(everyauth.middleware())

The full source code of the code/ch6/blog-everyauth/app.js file after adding 

the Everyauth Twitter OAuth1.0 strategy is rather lengthy, so I wonʼt print it here, but you 

can find it on GitHub at the bookʼs repository.

To run the app, execute $ make start, and donʼt forget to replace the Twitter 

username, consumer key, and secret with yours. Then when you click on the “Sign in 

with Twitter” button, youʼll be redirected to Twitter to authorize this application. After 

that youʼll be redirected back to the localhost app and should see the admin page menu. 

We have been authorized by a third-party service provider!

Also, the user information is available to your app so it can be stored in the database 

for future use. If you already gave permissions, the redirect to and from Twitter might 

happen very fast. I captured the terminal output in Figure 6-7. The logs show each step 

of Everyauth process such as getting tokens and sending responses. You can customize 

each step.

Chapter 6  Security and Auth in Node.js



236

Auths are important. Good job.

�Summary
In this chapter, we learned how to implement standard e-mail and password 

authentication, and used Express.js middleware to protect sensitive pages and endpoints 

in Blog. Then, we covered OAuth 1.0 and OAuth 2.0 with Everyauth and OAuth modules, 

respectively.

Now we have a few security options for Blog. In the next chapter, weʼll explore 

Mongoose (http://mongoosejs.com), the object-relational mapping object-document 

mapping (ODM) Node.js library for MongoDB.

Figure 6-7.  Everyauth Twitter strategy with debug mode in action

Chapter 6  Security and Auth in Node.js

http://mongoosejs.com


237

The Mongoose library is a good choice for complex systems with a lot of 

interdependent business logic between entities, because it completely abstracts the 

database and provides developers with tools to operate with data only via Mongoose 

objects. The chapter will touch on the main Mongoose classes and methods, explain 

some of the more advanced concepts, and refactor persistence in Blog.

Chapter 6  Security and Auth in Node.js



239
© Azat Mardan 2018 
A. Mardan, Practical Node.js, https://doi.org/10.1007/978-1-4842-3039-8_7

CHAPTER 7

Boosting Node.js and 
MongoDB with Mongoose
I first learned about Mongoose when I worked at Storify. Mongoose is a fully developed 

object document mapping (ODM) library for Node.js and MongoDB. We used it to 

simplify business logic in our Node API apps. We had a lot of connections between 

different database documents and Mongoose models allows us to save all the related 

logic. Mongoose worked fine except for one extra complex query which I wrote using 

native driver, not Mongoose.

The disadvantage of Mongoose is that it could make certain queries slower due to a 

lot of code that Mongoose has to go through. Contrary, the advantages of using ODM are 

many and go far beyond code organization or the ease of development. Typical ODM is a 

crucial piece of modern software engineering, especially enterprise engineering.

The main benefit of Mongoose is that it abstracts everything from the database, and 

the application code interacts only with objects and their methods. ODM also allows 

specifying relationships between different types of objects and putting business logic 

(related to those objects) in the classes.

In addition, Mongoose has built-in validation and type casting that can be extended 

and customized according to needs. When used together with Express.js, Mongoose 

makes the stack truly adherent to the MVC concept.

Also, Mongoose uses a similar interface to those of Mongo shell, native MongoDB 

driver, and Mongoskin. Mongoose provides its own methods while making available 

methods from the native driver. The main Mongoose functions such as find, update, 

insert, save, remove, and so on, do what you they say they do. It’ll help us to get 

started with Mongoose faster.



240

Buckle up because in this chapter we learn at the following:

•	 Mongoose installation

•	 Connection establishment in a standalone Mongoose script

•	 Mongoose schemas

•	 Hooks for keeping code organized

•	 Custom static and instance methods

•	 Mongoose models

•	 Relationships and joins with population

•	 Nested documents

•	 Virtual fields

•	 Schema type behavior amendment

•	 Express.js + Mongoose = true MVC

The source code for this chapter is in the code/ch7/blog-express directory  

of the practical node GitHub repository (https://github.com/azat-co/

practicalnode).

�Mongoose Installation
First, we should install Mongoose with npm. Among many variations, this is one of the 

ways we can install Mongoose 4.13.0 into an empty folder:

$ npm init -y

$ npm i mongoose@4.13.0 -SE

�DB Connection in a Standalone Mongoose Script
Mongoose can be used as a standalone MongoDB library. To illustrate this, here’s a banal 

script that establishes a connection, creates a Mongoose model definition, instantiates 

the practicalNodeBook object, and then saves it to the database.

Chapter 7  Boosting Node.js and MongoDB with Mongoose

https://github.com/azat-co/practicalnode
https://github.com/azat-co/practicalnode


241

Let’s create a rather simple mongoose-example (that’s in the folder in code/ch7). 

To have access to the library, we need to include the mongoose module in our program:

const mongoose = require('mongoose')

Unlike the Node.js native MongoDB driver, which requires us to write a few lines 

of code, Mongoose can connect to the database server in one line. Mongoose requests 

are buffered, so we don’t have to wait for the established connection like we do with the 

native driver, which requires developers to put all the code in the callback of open().

To connect to DB, just call mongoose.connect() with at least the uri argument 

(first) or with optional options and callback (second and third). The uniform resource 

identifier (URI), a.k.a. a connection string, is the only required parameter. It follows a 

standard format of:

mongodb://username:password@host:port/database_name

In our example we use the default values. The host is localhost, and the port is 

27017. The database name is test while there’s no password or username:

mongoose.connect('mongodb://localhost:27017/test', {useMongoClient: 

true})

mongoose.Promise = global.Promise

The line with Promise makes Mongoose use native ES6 promise implementation. 

Developers can supply another promise implementation if they want (for example, flow 

bluebird).

For situations that are more advanced, options and callbacks can be passed to 

connect . The options object supports all properties of the native MongoDB driver 

(http://bit.ly/2QPFkul).

Note I t’s a common practice in Node.js apps (and Mongoose) to open a 
database connection once, when the program starts, and then to keep it open until 
termination. This applies to web apps and servers as well. Ergo, there’s no need to 
open and close connections.

Chapter 7  Boosting Node.js and MongoDB with Mongoose

https://www.npmjs.com/package/bluebird
http://bit.ly/2QPFkul
http://bit.ly/2QPFkul


242

This is easy so far, right? The next step is an important distinction that Mongoose 

introduces compared with Mongoskin and other lightweight MongoDB libraries. The 

step creates a model with the model() function by passing a string and a schema (more 

on schemas later). The model is usually stored in a capitalized literal:

const Book = mongoose.model('Book', { name: String })

Now the configuration phase is over, and we can create a document that represents a 

particular instance of the model Book:

const practicalNodeBook = new Book({ name: 'Practical Node.js' })

Mongoose documents come with very convenient built-in methods (http://bit.ly/ 

2QVTb23) such as validate, isNew, update, and so on. Just keep in mind that these 

methods apply to this particular document, not the entire collection or model.

The difference between documents and models is that a document is an instance 

of a model; a model is something abstract. It’s like your real MongoDB collection, but 

it is supported by a schema and is presented as a Node.js class with extra methods 

and attributes. Collections in Mongoose closely resemble collections in Mongoskin or 

the native driver. Strictly speaking, models, collections, and documents are different 

Mongoose classes.

Usually we don’t use Mongoose collections directly, and we manipulate data via 

models only. Some of the main model methods look strikingly familiar to the ones from 

Mongoskin or native MongoDB driver, such as find, insert(), save(), and so forth.

To finish our small script and make it write a document to the database, let’s use one 

of the document methods— document.save(). This method is a document methods 

that will save the document into the database. The method is asynchronous, which by 

now you know will require a callback (or a promise or an async/await function). The 

method’s callback has an error-first signature:

practicalNodeBook.save((err, results) => {

  if (err) {

    console.error(err)

    process.exit(1)

  } else {

Chapter 7  Boosting Node.js and MongoDB with Mongoose

http://bit.ly/2QVTb23
http://bit.ly/2QVTb23


243

    console.log('Saved: ', results)

    process.exit(0)

  }

})

Here is the full source code for the mongoose.js file from the code/ch7/

mongoose-example, which creates a new document with the property name:

const mongoose = require('mongoose')

mongoose.connect('mongodb://localhost:27017/test', {useMongoClient: 

true})

mongoose.Promise = global.Promise

const Book = mongoose.model('Book', { name: String })

const practicalNodeBook = new Book({ name: 'Practical Node.js' })

practicalNodeBook.save((err, results) => {

  if (err) {

    console.error(err)

    process.exit(1)

  } else {

    console.log('Saved: ', results)

    process.exit(0)

  }

})

To run this snippet, execute the $ node mongoose.js command (MongoDB server 

must be running in parallel). The results of the script should output the newly created 

object with its ObjectId, as seen in Figure 7-1.

Chapter 7  Boosting Node.js and MongoDB with Mongoose



244

So far, our schema was very basic. It had only one field name with the type String. 

Next we’ll study what other type of fields are supported.

�Mongoose Schemas
Schema is a JSON-ish class that has information about properties/field types of a 

document. It also can store information about validation and default values, and 

whether a particular property is required. Schemas can contain business logic and other 

important information. In other words, schemas serve as blueprints for documents.

Schemas include validation and enables more robust adherence to the data 

structure. This is a major benefit. For example, upon saving a document, Mongoose will 

ignore fields that are not in the schema. Or as another example, Mongoose will not save a 

document when fields required in its schema are missing from the document.

To work with Mongoose, developers use documents (it’s ODM after all), but 

Mongoose documents and models require schemas. That’s why first developers create 

schemas to define models, which they in turn use to create documents.

Figure 7-1.  Running a standalone Mongoose script that creates objects

Chapter 7  Boosting Node.js and MongoDB with Mongoose



245

Thus, before we can use models properly, we need to define their schemas, e.g., the 

book schema with the name property of string type can be defined right in the model 

as you saw before or by itself with the Schema method from mongoose. Simply invoke 

Schema with an object and save it in a variable:

const bookSchema = mongoose.Schema({

  name: String

})

Warning  Mongoose ignores those properties that aren’t defined in the model’s 
schema but allows the documents to be created, updated, or saved. On the other 
hand, any violation of a type or omission of a required field will lead to an error and 
the document NOT being saved, updated, or created.

Mongoose Schema supports various types of data. Some of these types are similar to 

JavaScript and thus Node types, but some are new. These are the Mongoose data types:

•	 String: A standard JavaScript/Node.js string (a sequence of 

characters) type

•	 Number: A standard JavaScript/Node number type up to 253 (64-bit); 

larger numbers with mongoose-long https://www.npmjs.org/

package/mongoose-long and https://github.com/aheckmann/

mongoose-long

•	 Boolean: A standard JavaScript/Node Boolean type—true or false

•	 Buffer: A Node.js binary type (images, PDFs, archives, and so on)

•	 Date: An ISODate-formatted date type, such as 

2014–12–31T12:56:26.009Z

•	 Array: A standard JavaScript/Node array type

•	 Schema.Types.ObjectId A typical, MongoDB 24-character hex 

string of a 12-byte binary number (e.g., 52dafa354bd71b30fa12c441)

•	 Schema.Types.Mixed: Any type of data (i.e., flexible free type)

Chapter 7  Boosting Node.js and MongoDB with Mongoose

http://www.npmjs.org/package/mongoose-long
http://www.npmjs.org/package/mongoose-long
https://github.com/aheckmann/mongoose-long
https://github.com/aheckmann/mongoose-long


246

Warning  Mongoose does not listen to mixed-type object changes, so call 
markModified() before saving the object to make sure changes in the mixed-
type field are persistent.

ObjectId is added automatically as a primary _id key if omitted in the insert()  

or save() methods; _id key can be used to sort documents chronologically (http://

bit.ly/2LfpcTu). They are available through Schema.Types or mongoose.Schema.

Types, e.g., Schema.Types.Mixed.

We have a great deal of flexibility in defining our document schemas—for example, 

here’s a schema with strings, dates, buffers, objects (mixed type), and ObjectIds. 

Moreover, you can set the default values right there in the schema. Default values 

simplify development because they allow to omit values. How? Default values will be 

used when no values are provided.

But that’s not all. We can define a function as a default value too. This is a dynamic 

way to set the value. Finally, using [] means the fields, value will be an array with 

each individual item of that array having the type specified in the square braces []. 

For example, contributors is an array of ObjectIds (referring to the collection of 

contributors).

const ObjectId = mongoose.Schema.Types.ObjectId

const Mixed = mongoose.Schema.Types.Mixed

const bookSchema = mongoose.Schema({

  name: String,

  created_at: Date,

  updated_at: {

    type: Date,

    default: Date.now // Current timestamp

  },

  published: Boolean,

  authorId: {

    type: ObjectId,

    required: true // Require field

  },

Chapter 7  Boosting Node.js and MongoDB with Mongoose

http://bit.ly/2LfpcTu
http://bit.ly/2LfpcTu


247

  description: {

    type: String,

    default: null

  },

  active: {

    type: Boolean,

    default: false

  },

  keywords: { // Array of strings

    type: [String],

    default: []

  },

  description: {

    body: String,

    image: Buffer // Binary or string data

  },

  version: {

    type: Number,

    default: () => { // Dynamic value

      return 1

    }

  },

  notes: Mixed,

  contributors: [ObjectId]

})

It’s possible to create and use custom types that already have the rules for the 

ubiquitous email and URL types, e.g., there’s a module mongoose-types (https://

github.com/bnoguchi/mongoose-types).

Mongoose schemas are pluggable, which means, by creating a plugin, certain 

functionality can be extended across all schemas of the application.

For better code organization and code reuse, in the schema, we can set up static and 

instance methods, apply plugins, and define hooks.

Chapter 7  Boosting Node.js and MongoDB with Mongoose

https://github.com/bnoguchi/mongoose-types
https://github.com/bnoguchi/mongoose-types
https://github.com/bnoguchi/mongoose-types


248

Tip  For validation in Node.js in addition to Mongoose and before it, consider 
using the validator.js and express-validator modules.

�Hooks for Keeping Code Organized
In a complex application with a lot of interrelated objects, we might want to execute 

certain logic before saving an object. Hooks are a good place to store such logic. For 

example, we might want to upload a PDF to the web site before saving a book document:

bookSchema.pre('save', (next) => {

  // Prepare for saving

  // Upload PDF

  return next()

})

On the other hand, before removing, we need to make sure there are no pending 

purchase orders for this book:

bookSchema.pre('remove', (next) => {

  // Prepare for removing

  return next(e) // e is an instance of Error or null

})

Developers can set up pre and post hooks on save, remove, and validate as well as on 

custom methods.

�Custom Static and Instance Methods
In addition to dozens of built-in Mongoose model methods, we can add custom ones. 

For example, to initiate a purchase, we can call the buy method on the document 

practicalNodeBook after we implement the custom instance method buy():

bookSchema.method({ // Instance methods

  buy: function (quantity, customer, callback) {

    �const bookToPurchase = this // Exact book with id, title, etc.

Chapter 7  Boosting Node.js and MongoDB with Mongoose



249

    // Create a purchase order and invoice customer

    �// Any document/instance method like save, valid, etc.  

will work on "this"

    return callback(results)

  },

  refund: function (customer, callback) {

    // Process the refund

    return callback(results)

  }

})

The custom instance methods are better to use instead of re-implementing the same 

logic over and over again.

On the other hand, there are static methods. Static methods are useful when we 

either don’t have a particular document object or we don’t need it. For example, we 

don’t need a particular book ID to run a report to get how much books have 0 inventory 

in the warehouse or to get how many books of a particular kind we have in the store:

bookSchema.static({ // Static methods for generic, not instance/

document specific logic

  getZeroInventoryReport: function(callback) {

    �// Run a query on all books and get the ones with zero inventory

    // Document/instance methods would not work on "this"

    return callback(books)

  },

  getCountOfBooksById: function(bookId, callback){

    �// Run a query and get the number of books left for a given book

    // Document/instance methods would not work on "this"

    return callback(count)

  }

})

Note H ooks and methods must be added to the schemas before compiling them 
to models—in other words, before calling the mongoose.model() method.

Chapter 7  Boosting Node.js and MongoDB with Mongoose



250

�Mongoose Models
As in many other ORMs/ODMs, in Mongoose, the cornerstone object is a model. To 

compile a schema into a model, use mongoose.model(name, schema). For example, to 

create a book model from bookSchema, use mongoose.model:

const Book = mongoose.model('Book', bookSchema)

The first parameter is just a string, which we can use later to pull an instance of this 

model. Usually, this string is the same as the object literal for the model. It’s usually 

capitalized, e.g., Book . By default, Mongoose will use the model name to tie it to a collection 

name by pluralizing it. For example, the Book model will use books collection.

Models are used to create documents (actual data). To do so, call new 

ModelName(data)—for example, this is how to create two documents for two different 

books using one Book model:

const practicalNodeBook = new Book({ name: 'Practical Node.js' })

const javascriptTheGoodPartsBook = new Book({ name: "JavaScript The 

Good Parts"})

It’s better to assign the initial value through the constructor new Book() versus 

using the document.set() method later, because Mongoose has to process fewer 

function calls and our code remains more compact and better organized. Of course, this 

is possible only if we know the values when we create the instances. ;-)

Don’t confuse static with instance model methods. If we call a method on 

practicalNodeBook, it’s an instance method; if we call it on the Book object, it’s a static 

class method.

Models have static built-in methods that are very similar to Mongoskin and native 

MongoDB methods, such as find(), create(), and update().

A list of the static Mongoose model methods (invoked on a capitalized object, e.g., 

Book) along with their meaning, follows:

•	 Model.create(data, [callback (error, doc)]): Creates a 

new Mongoose document and saves it to the database

•	 Model.remove(query, [callback(error)]): Removes 

documents from the collection that match the query; when finished, 

calls callback with error

Chapter 7  Boosting Node.js and MongoDB with Mongoose



251

•	 Model.find(query, [fields], [options], [callback(error, 

docs)]): Finds documents that match the query (as a JSON object); 

possible to select fields (http://mongoosejs.com/docs/api.

html#query_Query-select) and use options (http://bit.ly/ 

2QUNBNx)

•	 Model.update(query, update, [options], 

[callback(error, affectedCount, raw)]): Updates 

documents, similar to native update

•	 Model.populate(docs, options, [callback(error, doc)]): 

Populates documents using references to other collections; an 

alternative to another approach described in the next section

•	 Model.findOne(query, [fields], [options], 

[callback(error, doc)]): Finds the first document that matches 

the query

•	 Model.findById(id, [fields], [options], [callback(error, 

doc)]): Finds the first element for which _id equals the id argument 

(cast based on the schema)

•	 Model.findOneAndUpdate([query], [update], [options], 

[callback(error, doc)]): Finds the first document that matches 

the query (if present) and updates it, returning the document; uses 

findAndModify (http://bit.ly/2QW1zP1)

•	 Model.findOneAndRemove(query, [options], 

[callback(error, doc)]): Finds the first document that matches 

the query and removes it when returning the document

•	 Model.findByIdAndUpdate(id, [update], [options], 

[callback(error, doc)]): Similar to findOneAndUpdate using 

only the ID

•	 Model.findByIdAndRemove(id, [options], [callback(error, 

doc)]): Similar to findOneAndRemove using only the ID

Chapter 7  Boosting Node.js and MongoDB with Mongoose

http://mongoosejs.com/docs/api.html#query_Query-select
http://mongoosejs.com/docs/api.html#query_Query-select
http://mongoosejs.com/docs/api.html#query_Query-select
http://bit.ly/2QUNBNx
http://bit.ly/2QUNBNx
http://bit.ly/2QUNBNx
http://bit.ly/2QW1zP1
http://bit.ly/2QW1zP1


252

Warning N ot all the Mongoose model methods trigger hooks. Some of them 
are executed directly. For example, calling Model.remove() does not trigger 
the remove hook, because no Mongoose documents are involved (instances of 
Model that use lowercase literals, e.g., practicalNodeBook ).

The complete list of the methods is extensive; therefore, refer to the official Mongoose 

API documentation (http://mongoosejs.com/docs/api.html#model-js). The most 

used instance (document) methods are as follows:

•	 doc.model(name): Returns another Mongoose model

•	 doc.remove([callback(error, doc)]): Removes this document

•	 doc.save([callback(error, doc, affectedCount)]): Saves 

this document

•	 doc.update(doc, [options], [callback(error, 

affectedCount, raw)]): Updates the document with doc 

properties, and options parameters, and then upon completion  

fires a callback with error, number of affectedCount, and the 

database output

•	 doc.toJSON([option]): Converts a Mongoose document to JSON 

(options are listed later)

•	 doc.toObject([option]): Converts a Mongoose document to a 

plain JavaScript object (options are listed later)

•	 isModified([path]): True/false, respectively, if some parts (or the 

specific path) of the document are or are not modified

•	 markModified(path): Marks a path manually as modified, which is 

useful for mixed ( Schema.Types.Mixed ) data types because they 

don’t trigger the modified flag automatically

•	 doc.isNew: True/false, respectively, whether the document is new or 

not new

•	 doc.id: Returns the document ID

Chapter 7  Boosting Node.js and MongoDB with Mongoose

http://mongoosejs.com/docs/api.html#model-js
http://mongoosejs.com/docs/api.html#model-js
http://mongoosejs.com/docs/api.html#model-js


253

•	 doc.set(path, value, [type], [options]): Sets value at a 

path

•	 doc.validate(callback(error)): Checks validation manually 

(triggered automatically before save() )

Most often, you’ll need to get data from your document, e.g., to send back to a client 

using res.send(). But the document object will have some additional Mongoose 

properties and methods. The two methods listed above will help you to get just the data. 

They are toObject() and toJSON(). They take options, listed for toObject() and 

toJSON() are as follows:

•	 getters: True/false, calls all getters including path and virtual 

types

•	 virtuals: True/false, includes virtual getters and can override the 

getters option

•	 minimize: True/false, removes empty properties/objects (defaults to 

true)

•	 transform: Transforms the function called right before returning the 

object

That’s it for Mongoose methods for the most part. Of course, Mongoose has other 

methods for more edge case scenarios and advanced uses. You can learn about them 

by opening this Mongoose document API link: http://mongoosejs.com/docs/api.

html#document-js.

�Relationships and Joins with Population
Although, Node developers cannot query MongoDB on complex relationships (like they 

can in MySQL), they can do so in the application layer with the help of Mongoose. This 

becomes really convenient in larger applications because they tend to have complex 

relationships between documents.

To give you an example, in an e-commerce store, an order refers to its products by 

IDs. To get more than just product ID, developers need to write two queries: one to fetch 

order and another to fetch its products. Instead of making two queries developers can 

one Mongoose query. They can use Mongoose to fetch order with products fields.

Chapter 7  Boosting Node.js and MongoDB with Mongoose

http://mongoosejs.com/docs/api.html#document-js
http://mongoosejs.com/docs/api.html#document-js


254

Mongoose makes connecting two entities by their relationship easier. Mongoose 

provides a feature called population. No. This population is not about people living in a 

certain area but it somehow related. Mongoose population is about adding more data to 

your query using relationships. It allows us to fill certain parts of the document from a 

different collection.

Let’s say we have posts and users documents. Users can write posts. There are 

two approaches to implement this. We can use one collection. The users collection can 

have the posts array field. This will require a single query, but this structure is limited in 

many ways because posts cannot be indexed or accessed separately from users.

Or we can use two collections (and models). In this case, the structure is more 

flexible but requires at least two queries if we want to fetch a user and his posts.

Don’t fret. Mongoose is here to help. We can reference posts in the user schema and 

then populate the posts. In order to use populate(), we must define ref and the name 

of the model such as in the posts field of userSchema:

const mongoose = require('mongoose')

const Schema = mongoose.Schema

const userSchema = Schema({

  _id: Number,

  name: String,

  posts: [{

    type: Schema.Types.ObjectId,

    ref: 'Post'

  }]

})

The actual postSchema does not have any mentions about the user model. It just 

has some string fields:

const postSchema = Schema({

  _creator: { type: Number, ref: 'User' },

  title: String,

  text: String

})

Chapter 7  Boosting Node.js and MongoDB with Mongoose



255

The next few lines are where we create models, and then bang! We can pull posts 

data with a single query, not two as we would have done without referencing and 

without populate(). Here’s how to construct the query and then call exec() to run it:

const Post = mongoose.model('Post', postSchema)

const User = mongoose.model('User', userSchema)

User.findOne({ name: /azat/i })

  .populate('posts')

  .exec((err, user) => {

    if (err) return handleError(err) // Defined elsewhere

    �console.log('The user has % post(s)', user.posts.length)

  })

Note  ObjectId, Number, String, and Buffer are valid data types to use as 
references, meaning they will work as foreign keys in the relational DB terminology.

In the previous query, we used a regular expression (RegExp) /azat/i, which means 

“Find me all the names matching the string azat case-insensitively”. This feature is not 

exclusive to Mongoose. In fact, the native driver and its other wrappers, along with the 

mongo console, all support RegExps. The syntax is the same as in normal JavaScript/

Node.js RegExp patterns. Therefore, in a way, we perform a join query on our Post and 

User models.

Okay. It’s possible to return only a portion of populated results. For example, we can 

limit the number of posts to the first ten (10) only:

  .populate({

    path: 'posts',

    options: { limit: 10, sort: 'title' }

  })

Sometimes it’s more practical to return only certain fields instead of the full 

document. This can be done with select:

  .populate({

      path: 'posts',

      select: 'title',

Chapter 7  Boosting Node.js and MongoDB with Mongoose



256

      options: {

        limit: 10,

        sort: 'title'

      }

    })

In addition, Mongoose can filter the populated results by a query! For example, we 

can apply RegExp for “node.js” to the text (a match query property):

  .populate({

    path: 'posts',

    select: '_id title text',

    match: {text: /node\.js/i},

    options: {

      limit: 10,

      sort: '_id'

    }

  })

The query selects properties using select by the field names of _id, title, text. 

You see, queries can be as customized as you want them to be! The best practice is to 

query and populate only the required fields because this avoids potential leakage of 

sensitive information and reduces overhead on the system.

The populate method also works on multiple document queries. For example, we 

can use find instead of findOne:

User.find({}, {

    limit: 10,

    sort: { _id: -1}})

  .populate('posts')

  .exec((err, user) => {

    if (err) return handleError(err)

    �console.log('The user has % post(s)', user.posts.length)

  })

Chapter 7  Boosting Node.js and MongoDB with Mongoose



257

Tip  For custom sorting, we can add properties using name: -1 or name: 1 
patterns and can pass the resulting object to the sort option. Again, this is a 
standard MongoDB interface and is not exclusive to Mongoose.

�Nested Documents
In the previous section, we saw how to populate a query on one collection with the data 

from another collection. That’s a more traditional approach to designing your database 

in the sense that it mimics relational database design with its normal forms and strict 

atomization of data.

The document storage model in NoSQL databases is well suited to use nested 

documents. This is better when you know what queries are run most frequently. You 

can optimize your database to make it be biased to a certain query. For example, if we 

know that the most typical use case is to read user profiles, then instead of having two 

collections— posts and users —we can have a single collection ( users ), with each 

item of that collection having posts.

The decision whether to use separate collections or nested documents is more of an 

architectural question, and its answer depends on usage. For example, if posts are used 

only in the context of users (their authors)—say, on the users’ profile pages—then it’s 

best to use nested documents. However, if the blog features multiple users’ posts that 

need to be queried independently of their (posts) user context, then separate collections 

fit better.

To implement nested documents, we can use the type Schema.Types.Mixed in 

Mongoose schemas ( Schema, e.g., bookSchema or postSchema ) or we can create a new 

schema for the nested document. An example of the former approach is as follows:

const userSchema = new mongoose.Schema({

  name: String,

  posts: [mongoose.Schema.Types.Mixed]

})

// Attach methods, hooks, etc.

const User = mongoose.model('User', userSchema)

Chapter 7  Boosting Node.js and MongoDB with Mongoose



258

However, the latter approach of using a distinct new subschema is more flexible and 

powerful. Take a look at the next example in which we define two schemas and then 

one is used in an array field of another schema. This approach is better for code reuse 

because it lets you to use the nested schema elsewhere, maybe in several more schemas.

Here I nested postSchema in an array field of userSchema, because users can have 

posts, and querying by users is the most typical use case for this app:

const postSchema = new mongoose.Schema({

  title: String,

  text: String

})

// Attach methods, hooks, etc., to post schema

const userSchema = new mongoose.Schema({

  name: String,

  posts: [postSchema]

})

// Attach methods, hooks, etc., to user schema

const User = mongoose.model('User', userSchema)

To create a new user document or to save a post to an existing user when working 

with a nested posts document, treat the posts property as an array and just use the push 

method from the JavaScript/Node.js API, or use the MongoDB $push operand (http://

bit.ly/2QVBTCf).

For example, we can use MongoDB’s $push in the update() query to add a post ( 

newPost ) to a user object, which is found by a matching ID ( _id is userId ):

User.update(

  {_id: userId},

  {$push: {posts: newPost}},

  function (error, results) {

    // Handle error and check results

})

Fields can be like ghosts. Sometimes you see ’em, other times you don’t. Let’s study 

yet another Mongoose feature—virtual fields.

Chapter 7  Boosting Node.js and MongoDB with Mongoose

http://bit.ly/2QVBTCf
http://bit.ly/2QVBTCf


259

�Virtual Fields
Virtual fields (or virtuals) are fields that don’t exist in the database, but act just like 

regular fields in a Mongoose document when accessed in a document. To oversimplify, 

virtual fields are mock or fake fields that pretend to act like and be normal ones.

Virtual fields are awesome for dynamic data or creating aggregate fields. For 

example, if our system requires to have first name, last name, and the full name (which 

is just a concatenation of the first two names)—there’s no need to store the full name 

values in addition to the first and last name values! All we need to do is concatenate the 

first and last name in a full-name virtual field.

Another use case is to make the database backward compatible. That’s how I avoided 

writing and running database migrations at Storify. Every time there was a new DB 

schema, I just added a virtual to support old documents.

For example, we might have thousands of user items in a MongoDB collection, and 

we want to start collecting their locations. We have two options: run a migration script to 

add the default location (“none”) to the thousands of old user documents or use a virtual 

field and apply defaults at runtime!

To define a virtual we need to do two things:

	 1.	 Call the virtual(name) method to create a virtual type 

(Mongoose API) (http://mongoosejs.com/docs/api.

html#document-js).

	 2.	 Apply a getter function with get(fn) (Mongoose API) (http://

bit.ly/2QV1I5q).

As an example, let’s build a Gravatar link generator to pull images from Gravatar. 

(http://en.gravatar.com is a service that hosts profile images, a.k.a., avatars, to be 

used universally by various websites.)

A Gravatar URL is always an md5 hash of the user’s email: (http://en.gravatar.

com/site/implement/hash). This allows us to construct a Gravatar link for any user 

by his/her email. Therefore, we can get the virtual value (gravatarUrl) on the fly by 

hashing instead of storing the value (less overhead!).

Chapter 7  Boosting Node.js and MongoDB with Mongoose

http://mongoosejs.com/docs/api.html#document-js
http://mongoosejs.com/docs/api.html#document-js
http://bit.ly/2QV1I5q
http://bit.ly/2QV1I5q
http://en.gravatar.com/
http://en.gravatar.com/
http://en.gravatar.com/site/implement/hash
http://en.gravatar.com/site/implement/hash


260

In this example, I intentionally made the input email mixed cased and with a trailing 

space, and then applied core Node module crypto for the md5 hashing:

const crypto = require('crypto')

Identity.virtual('gravatarUrl')

  .get(function() { // Not fatty catty ()=>{}

    �if (!this.email) return null // "this" is an instance/document

    �let email = this.email // For example: email = "HI@azat.co "

    email = email.trim().toLowerCase()

    const hash = crypto

      .createHash('md5')

      .update(email)

      .digest('hex')

    �const gravatarBaseUrl = 'https://secure.gravatar.com/avatar/'

    return gravatarBaseUrl + hash

  })

Or the case mentioned earlier, getting a full name out of first and last, is 

implemented by concatenating the names into one string, as follows:

userSchema.virtual('fullName')

  .get(function() {

    // "this" is an instance/document

    return `${this.firstName} ${this.lastName}`

  })

Another example is when only a subset of the full document must be exposed and 

not the full details, as in the user model, which has tokens and passwords. Thus we omit 

fields that we want to hide by whitelisting only the fields we want to expose, such as 

username and avatar, but not token, password, or salt:

userSchema.virtual('info')

  .get(function() {

    return {

      service: this.service,

      username: this.username,

Chapter 7  Boosting Node.js and MongoDB with Mongoose



261

      name: this.name,

      date: this.date,

      url: this.url,

      avatar: this.avatar

    }

  })

We used get for the virtual. Let’s dig deeper into the getter, as well as it’s close kin 

setter.

�Schema Type Behavior Amendment
Schemas are not just static boring type definitions. Developers can add functions to 

bring the dynamism to the fields in the schema. Mongoose allows us to define/write 

getters (get), setters (set), and defaults (default) right in the Schema! Same goes for 

validate and some other useful methods.

get is invoked when a field is read, while set when the field is assigned a value. 

Developers can modify the actual value being read or assigned from/to the actual 

database document. For example, the URL field can have a set() method that enforces 

all strings into lowercase. Validate is triggered for the field validation and is typically used 

for some custom types such as emails.

Mongoose offers four methods: set(), get(), default() and validate(). They do 

what you think they do. Here are examples of defining methods and their purpose

•	 set(): To transform a string to a lower case when the value is 

assigned

•	 get(): To add a “thousands” comma to a number when the number 

is extracted/accessed

•	 default(): To generate a new ObjectId,

•	 validate(): To check for email patterns; is triggered upon save()

We can define the aforementioned four methods all right there, in the fields of the 

JSON-like Mongoose Schema on the same level as type:

Chapter 7  Boosting Node.js and MongoDB with Mongoose



262

postSchema = new mongoose.Schema({

  slug: {

    type: String,

    set: function(slug) {

      return slug.toLowerCase()

    }

  },

  numberOfLikes: {

    type: Number,

    get: function(value) {

      �return value.toString().replace(/\B(?=(\d{3})+ 

(?!\d))/g, ",")

    }

  },

  posted_at: {

    type: String,

    get: function(value) {

      if (!value) return null;

      return value.toUTCString()

    }

  },

  authorId: {

    type: ObjectId,

    default: function() {

      return new mongoose.Types.ObjectId()

    }

  },

  email: {

    type: String,

    unique: true,

    validate: [

      function(email) {

        �return (email.match(/[a-z0-9!#$%&'*+\/=?^_`{|}~-]+(?:\.

[a-z0-9!#$%&'*+\/=?^_`{|}~-]+)*@(?:[a-z0-9](?:[a-z0-9-]* 

[a-z0-9])?\.)+[a-z0-9](?:[a-z0-9-]*[a-z0-9])?/i) != null)},

      'Invalid email'

Chapter 7  Boosting Node.js and MongoDB with Mongoose



263

    ]

  }

})

If defining custom methods in the Schema definition is not an option for some 

reason (maybe our system requires us to do it dynamically), Mongoose offers another 

approach to amending Schema behavior—chained methods, which require two steps:

	 1.	 Use Schema.path(name) to get SchemaType (official docs) 

(http://bit.ly/2R0ZBNE).

	 2.	 Use SchemaType.get(fn) to set the getter method (official docs) 

(http://bit.ly/2QVDyaX).

For example, we can create a getter method for the numberOfPosts field not in the 

Schema definition, but after userSchema is created:

userSchema

  .path('numberOfPosts')

  .get(function() {

    return this.posts.length

  })

In Mongoose, path is just a fancy name for the nested field name and its parent objects. 

For example, if we have ZIP code ( zip ) as a child of contact.address, such as user.

contact.address.zip, then the contact.address.zip is a path.

�Express.js + Mongoose = True MVC
To avoid rebuilding all other components unrelated to ODM, such as templates, routes, 

and so forth, we can factor the existing Blog from the previous chapter by making it 

use Mongoose instead of Mongoskin. This requires minimal effort but produces an 

abstraction layer between MongoDB and the request handlers. As always, the fully 

functional code is available on GitHub, in the ch7 folder. (https://github.com/azat-

co/practicalnode/tree/master/ch7).

Chapter 7  Boosting Node.js and MongoDB with Mongoose

http://bit.ly/2R0ZBNE
http://bit.ly/2R0ZBNE
http://bit.ly/2QVDyaX
http://bit.ly/2QVDyaX
https://github.com/azat-co/practicalnode/tree/master/ch7
https://github.com/azat-co/practicalnode/tree/master/ch7


264

The process of refactoring starts with the creation of a new branch: mongoose.  

You can use the final solution in the GitHub repository. (https://github.com/azat-

co/blog-express/tree/mongoose). First, we need to remove Mongoskin and install 

Mongoose:

$ npm uninstall mongoskin –save

$ npm install mongoose@4.13.0 --save

package.json is amended to include mongoose and looks similar to this:

{

  "name": "blog-mongoose",

  "version": "1.0.1",

  "private": true,

  "scripts": {

    "start": "make start",

    "seed": "sh ./seed.sh",

    "test": "make test",

    �"st": "standard app.js && standard tests/index.js && standard 

routes/*"

  },

  "author": "Azat Mardan (http://azat.co/)",

  "license": "MIT",

  "dependencies": {

    "body-parser": "1.18.2",

    "cookie-parser": "1.4.3",

    "errorhandler": "1.5.0",

    "everyauth": "0.4.9",

    "express": "4.16.2",

    "express-session": "1.15.6",

    "method-override": "2.3.10",

    "mongoose": "4.13.0",

    "morgan": "1.9.0",

    "pug": "2.0.0-rc.4",

    "serve-favicon": "2.4.5",

    "stylus": "0.54.5"

  },

Chapter 7  Boosting Node.js and MongoDB with Mongoose

https://github.com/azat-co/blog-express/tree/mongoose
https://github.com/azat-co/blog-express/tree/mongoose
https://github.com/azat-co/blog-express/tree/mongoose


265

  "devDependencies": {

    "expect.js": "0.3.1",

    "mocha": "4.0.1",

    "standard": "10.0.3",

    "superagent": "3.8.0"

  }

}

Now, in the app.js file, we can remove the Mongoskin inclusion ( mongoskin =  

require('mongoskin'), ) and add a new import statement for Mongoose:

const mongoose = require('mongoose')

Mongoose uses models, but Mongoskin does not. So let’s create a folder models in 

our project folder (use bash: $ mkdir models) and include the folder with (it really 

includes index.js, which we have yet to create):

const models = require('./models')

Substitute the Mongoskin db, and articles and users db.collection() 

statements shown next:

const db = mongoskin.db(dbUrl, {safe: true})

const collections = {

  articles: db.collection('articles'),

  users: db.collection('users')

}

with just the Mongoose connection statement, leaving out the collections object 

entirely because in Mongoose we’ll be working with models not collections directly:

const db = mongoose.connect(dbUrl, {useMongoClient: true})

In the collection middleware, we remove if/else and req.collections lines inside 

the app.use():

app.use((req, res, next) => {

  �if (!collections.articles || ! collections.users)  

// <--- REMOVE

Chapter 7  Boosting Node.js and MongoDB with Mongoose



266

    �return next(new Error('No collections.'))  

�// <--- UPDATE

  req.collections = collections // <--- REMOVE

})

Then, add the if/else validation for Article and User models (coming from 

models/article.js and models/user.js ), and the models in the request with the req.

models = models statement:

app.use((req, res, next) => {

  if (!models.Article || !models.User) { // <--- ADD

    return next(new Error('No models.')) // <--- UPDATE

  }

  req.models = models // <--- ADD

  return next()

})

That’s it! The upgrade from Mongoskin to Mongoose is complete. For your reference, 

the full code of the resulting app.js is in the code/ch7/blog-mongoose/app.js.

Next, let’s implement the schemas. In the Article schema, title is required 

and it’s limited to 120 characters with validate. The published defaults to false if 

not specified upon object creation. The slug should never have spaces due to the set 

method.

To illustrate code reuse, we abstract the find method from the routes ( routes/

article.js ) into the model ( models/article.js ). This can be done with all 

database methods:

articleSchema.static({

  list: function (callback) {

    this.find({}, null, {sort: {_id: -1}}, callback)

  }

})

Then, we compile the schema and methods into a model:

module.exports = mongoose.model('Article', articleSchema)

Chapter 7  Boosting Node.js and MongoDB with Mongoose



267

The full source code of article.js with schema and a static method is as follows:

const mongoose = require('mongoose')

const articleSchema = new mongoose.Schema({

  title: {

    type: String,

    required: true,

    validate: [function (value) {

      return value.length <= 120

    }, 'Title is too long (120 max)'],

    default: 'New Post'

  },

  text: String,

  published: {

    type: Boolean,

    default: false

  },

  slug: {

    type: String,

    set: function (value) {

      return value.toLowerCase().replace(' ', '-')

    }

  }

})

articleSchema.static({

  list: function (callback) {

    this.find({}, null, {sort: {_id: -1}}, callback)

  }

})

module.exports = mongoose.model('Article', articleSchema)

Chapter 7  Boosting Node.js and MongoDB with Mongoose



268

The models/user.js file also begins with an inclusion and a schema:

const mongoose = require('mongoose')

const userSchema = new mongoose.Schema({

  email: {

    type: String,

    required: true,

    set: function (value) {

      return value.trim().toLowerCase()

    },

    validate: [

      function (email) {

        �return (email.match(/[a-z0-9!#$%&'*+\/=?^_`{|}~-]+(?:\.

[a-z0-9!#$%&'*+\/=?^_`{|}~-]+)*@(?:[a-z0-9](?:[a-z0-9-]*[a-

z0-9])?\.)+[a-z0-9](?:[a-z0-9-]*[a-z0-9])?/i) != null)

      },

      'Invalid email'

    ]

  },

  password: String,

  admin: {

    type: Boolean,

    default: false

  }

})

module.exports = mongoose.model('User', userSchema)

The email field is validated with RegExp, and is then is trimmed and forced to 

lowercase when it’s set.

To connect app.js and models, there must be a models/index.js file that simply 

acts as a layer of abstraction by importing and exporting all the models:

exports.Article = require('./article')

exports.User = require('./user')

We have models/index.js so that we don’t need to import all schemas individually 

in our app.js and other files (potentially).

Chapter 7  Boosting Node.js and MongoDB with Mongoose



269

Now we modify the routes files. The routes/article.js file now needs to switch 

to Mongoose models instead of Mongoskin collections. So, in the show method, this 

Mongoskin line goes away:

req.collections.articles.findOne({slug: req.params.slug},

  (error, article) => {

Then this Mongoose line comes in to use the Article model from req.models:

req.models.Article.findOne({slug: req.params.slug},

  (error, article) => {

The resulting show uses the Mongoose method findOne() from Article model 

and has slug presence validation before that:

exports.show = (req, res, next) => {

  �if (!req.params.slug) return next(new Error('No article slug.'))

  �req.models.Article.findOne({slug: req.params.slug}, (error, 

article) => {

    if (error) return next(error)

    �if (!article.published && !req.session.admin) return res.

status(401).send()

    res.render('article', article)

  })

}

In the list method, remove the Mongoskin code show next, since we are not 

working with collections directly anymore:

req.collections.articles.find({}).toArray((error, articles) => {

and replace it with Mongoose model code of Article.list():

req.models.Article.list((error, articles) => {

to get the request handler that resembles this:

exports.list = (req, res, next) => {

  req.models.Article.list((error, articles) => {

Chapter 7  Boosting Node.js and MongoDB with Mongoose



270

    if (error) return next(error)

    res.send({articles: articles})

  })

}

Next, in the exports.add method, find this line of Mongoskin code:

req.collections.articles.insert(

  article,

  (error, articleResponse) => {

is replaced with this Mongoose code that uses the Article model instead of a collection:

req.models.Article.create(article, (error, articleResponse) => {

The exports.edit method is trickier, and there are a few possible solutions:

	 1.	 Find a Mongoose document (e.g., findById()) and use 

document methods (e.g., update()).

	 2.	 Use the static model method findByIdAndUpdate().

In both cases, this Mongoskin piece of code goes away:

req.collections.articles.updateById(

  req.params.id,

  {$set: req.body.article},

  (error, count) => {

Although there’s update() in Mongoose as well, we’ll use another, better approach 

with save(), because save() executes all the schema logic such as pre and post hooks, 

and proper schema validation. It’s smarter than the direct update() . save() is the 

special sauce that Mongoose brings to the table, and it’s a pity not to harness its power. 

So the preceding Mongoskin snippet with updateById() is replaced by this code with 

Mongoose’s set() and save():

exports.edit = (req, res, next) => {

  �if (!req.params.id) return next(new Error('No article ID.'))

  �if (!req.body.article) return next(new Error('No article 

payload.'))

  �req.models.Article.findById(req.params.id, (error, article) => {

Chapter 7  Boosting Node.js and MongoDB with Mongoose



271

    if (error) return next(error)

    article.set(req.body.article)

    article.save((error, savedDoc) => {

      if (error) return next(error)

      res.send(savedDoc)

    })

  })

}

Just to show you a more elegant one-step approach that uses one method 

findByIdAndUpdate() (the latter from the new exports.edit implementation shown 

earlier):

req.models.Article.findByIdAndUpdate(

  req.params.id,

  {$set: req.body.article},

  (error, doc) => {

    if (error) return next(error)

    res.send(doc)

  }

)

Lastly, in the exports.del request handler, we will find the document by its ID and 

then invoke remove():

exports.del = (req, res, next) => {

  �if (!req.params.id) return next(new Error('No article ID.'))

  �req.models.Article.findById(req.params.id, (error, article) => {

    if (error) return next(error)

    �if (!article) return next(new Error('Article not found'))

    article.remove((error, doc) => {

      if (error) return next(error)

      res.send(doc)

    })

  })

Chapter 7  Boosting Node.js and MongoDB with Mongoose



272

The exports.postArticle and exports.admin functions look like these (the 

functions’ bodies are the same as when we used Mongoskin):

req.models.Article.create(article, (error, articleResponse) => {

  // ...

})

req.models.Article.list((error, articles) => {

  // ...

})

Again, that’s all we have to do to switch to Mongoose for this route. However, to make 

sure there’s nothing missing, here’s the full code of the routes/article.js file:

exports.show = (req, res, next) => {

  �if (!req.params.slug) return next(new Error('No article slug.'))

  �req.models.Article.findOne({slug: req.params.slug}, (error, 

article) => {

  if (error) return next(error)

  �if (!article.published && !req.session.admin) return res.

status(401).send()

  res.render('article', article)

  })

}

exports.list = (req, res, next) => {

  req.models.Article.list((error, articles) => {

    if (error) return next(error)

    res.send({articles: articles})

  })

}

exports.add = (req, res, next) => {

  �if (!req.body.article) return next(new Error('No article 

payload.'))

  var article = req.body.article

  article.published = false

  �req.models.Article.create(article, (error, articleResponse) => {

Chapter 7  Boosting Node.js and MongoDB with Mongoose



273

    if (error) return next(error)

    res.send(articleResponse)

  })

}

exports.edit = (req, res, next) => {

  �if (!req.params.id) return next(new Error('No article ID.'))

  �if (!req.body.article) return next(new Error('No article 

payload.'))

  �req.models.Article.findById(req.params.id, (error, article) => {

    if (error) return next(error)

    article.set(req.body.article)

    article.save((error, savedDoc) => {

      if (error) return next(error)

      res.send(savedDoc)

    })

  })

}

exports.del = (req, res, next) => {

  �if (!req.params.id) return next(new Error('No article ID.'))

  �req.models.Article.findById(req.params.id, (error, article) => {

    if (error) return next(error)

    �if (!article) return next(new Error('Article not found.'))

    article.remove((error, doc) => {

      if (error) return next(error)

      res.send(doc)

    })

  })

}

exports.post = (req, res, next) => {

  if (!req.body.title) { res.render('post') }

}

Chapter 7  Boosting Node.js and MongoDB with Mongoose



274

exports.postArticle = (req, res, next) => {

  �if (!req.body.title || !req.body.slug || !req.body.text) {

    �return res.render('post', {error: 'Fill title, slug and text.'})

  }

  var article = {

    title: req.body.title,

    slug: req.body.slug,

    text: req.body.text,

    published: false

  }

  �req.models.Article.create(article, (error, articleResponse) => {

    if (error) return next(error)

    �res.render('post', {error: 'Article was added. Publish it on 

Admin page.'})

  })

}

exports.admin = (req, res, next) => {

  req.models.Article.list((error, articles) => {

    if (error) return next(error)

    res.render('admin', {articles: articles})

  })

}

The routes/index.js file, which serves the home page, is as follows:

exports.article = require('./article')

exports.user = require('./user')

exports.index = (req, res, next) => {

  req.models.Article.find(

    {published: true},

    null,

    {sort: {_id: -1}},

    (error, articles) => {

      if (error) return next(error)

Chapter 7  Boosting Node.js and MongoDB with Mongoose



275

      res.render('index', {articles: articles})

    }

  )

}

Finally, routes/user.js has a single line (JUST ONE LINE) to change in 

authenticate . Do this! Invoke findOne() from the req.models.User model to fetch 

the user with username and password (plain). This will check the user validity:

exports.authenticate = (req, res, next) => {

  if (!req.body.email || !req.body.password) {

    �return res.render('login', {error: 'Please enter your email and 

password.'})

  }

  req.models.User.findOne({

    email: req.body.email,

    password: req.body.password

  }, function (error, user) {

    if (error) return next(error)

    �if (!user) return res.render('login', {error: 'Incorrect 

email&password combination.'})

    req.session.user = user

    req.session.admin = user.admin

    res.redirect('/admin')

  })

}

Of course, in real life you would not store plain passwords but use encrypted hash and 

salt. In other words, store salt and hash but never the plain password to prevent attackers 

stealing the plain passwords, which they can and will use on other websites. Most people 

can’t remember more than 2–3 passwords, so they keep using the same ones everywhere. 

Gosh, they should download a password manager like Keepass, Padlock, enpass or 

something similar, to store unique 50-character passwords and randomly generated 

answers to silly questions like “What was the name of your first pet?”.

Chapter 7  Boosting Node.js and MongoDB with Mongoose



276

To check if everything went well, simply run Blog as usual with $ node app and 

navigate the pages on http://localhost:3000/. In addition, we can run Mocha tests 

with $ npm test (which triggers a make command, which in turn triggers the mocha 

command).

�Summary
In this chapter, we learned what Mongoose is, how to install it, how to establish a 

connection to the database, and how to create Mongoose schemas while keeping the 

code organized with hooks and methods. We also compiled schemas into models and 

populated references automatically, and used virtual fields and custom schema type 

properties. And we refactored Blog to use Mongoose and made our app gain a true MVC 

architecture.

Next, we’ll cover how to build REST APIs with the two Node.js frameworks: Express.

js and Hapi. This is an important topic, because more and more web development 

is shifting toward heavy front-end logic and thin backend. Some systems even go as 

far as building/using free-JSON APIs or back-as-a- service services. This tendency 

allows teams to focus on what is the most important for end users— user interface and 

features—as well as what is vital for businesses: reduced iteration cycles, and lower costs 

of maintenance and development.

Another essential piece in this puzzle is test-driven practice. To explore it, we’ll cover 

Mocha, a widely used Node.js testing framework. Onward to REST APIs and TDD.

Chapter 7  Boosting Node.js and MongoDB with Mongoose



277
© Azat Mardan 2018 
A. Mardan, Practical Node.js, https://doi.org/10.1007/978-1-4842-3039-8_8

CHAPTER 8

Building Node.js REST 
API Servers with  
Express.js and Hapi
Modern-day web developers use an architecture consisting of a thick client and a a thin 

back-end layer. They use frameworks such as Backbone.js (http://backbonejs.org),  

AngularJS (https://angularjs.org), Ember.js (http://emberjs.com), and the like to 

build the thick client. On the other hand, they use REST APIs for the thin back-end layer.  

(typically represented by a representational state transfer (REST) web application 

programing interface (API) service). This architecture, dubbed thick client or single-page 

application (SPA), has become more and more popular. No surprise here. There are many 

advantages to this thick-client approach:

•	 SPA (single-page applications) are faster because they render 

elements of the webpage in the browser without the need to always 

fetch the HTML from the server.

•	 The bandwidth is smaller since most of the page layout stays the 

same once it’s loaded, thus the browser only needs the data in JSON 

format for the changing elements of the webpage.

•	 The same back-end REST API can serve multiple client apps/

consumers, with web applications being just one of them (mobile 

and public third-party apps are examples of others).

•	 There is a separation of concerns, i.e., the clients can be replaced 

without compromising the integrity of the core business logic, and 

vice versa.

http://backbonejs.org
https://angularjs.org
http://emberjs.com


278

•	 User interface / user experience (UI/UX) are inherently hard to test, 

especially with event-driven, single-page apps, and then there's an 

added complexity of cross-browser testing; but, with separation of 

business logic into the back-end REST API, that logic becomes easy to 

test in both unit and functional testing.

Therefore, the majority of new projects take the REST API and clients approach. 

Development teams may take this approach even if they have just one client for the 

time being, which is typically a web app, because they realize that otherwise, when they 

eventually add more apps, they’ll have to redo their work.

That’s why we’ve seen a rise of the back-end-as-a-service niche in which a back-

end RESTful API can be rented on a monthly or hourly basis which offloads the need 

for developing and maintenance away from developers. Examples are AWS Lambda, 

MongoLab, Firebase, and now discontinued Parse.com. Of course, we can’t always rent a 

service. Sometimes we need the control or customization, and other times we need more 

security. That’s why developers still implement their own services. With Node, to create 

a RESTful API services is as easy as stealing a vegan burrito from a San Francisco hipster 

(not that vegan burritos are any good).

To get started with Node.js REST servers, in this chapter we cover the following:

•	 RESTful API basics

•	 Project dependencies

•	 Test coverage with Mocha (http://visionmedia.github.io/

mocha) and superagent (http://visionmedia.github.io/

superagent)

•	 REST API server implementation with Express and Mongoskin 

(https://github.com/kissjs/node-mongoskin)

•	 Refactoring: Hapi.js (http://hapijs.com) REST API Server

The REST API server is able to process the creation of objects, and retrieval of objects 

and collections, and make changes to objects and remove objects. For your convenience, 

all the source code is in the ch8 folder in github.com/azat-co/practicalnode (https://

github.com/azat-co/practicalnode).

Chapter 8  Building Node.js REST API Servers with Express.js and Hapi 

http://visionmedia.github.io/mocha
http://visionmedia.github.io/mocha
http://visionmedia.github.io/superagent)
http://visionmedia.github.io/superagent)
https://github.com/kissjs/node-mongoskin
http://hapijs.com
https://github.com/azat-co/practicalnode
https://github.com/azat-co/practicalnode


279

�RESTful API Basics
RESTful API (http://bit.ly/2zqJqlJ)1 became popular because of the demand in 

distributed systems in which each transaction needs to include enough information 

about the state of the client. This standard is stateless, because no information about the 

clients’ states is stored on the server, making it possible for each request to be served by a 

different system. This make scaling systems up or down a breeze.

In a sense, the stateless servers are like loosely coupled classes in programming. 

Lots of infrastructure techniques use the best programming practices; in addition to 

loose coupling, versioning, automation, and continuous integration can all be applied to 

infrastructure to a great benefit.

Distinct characteristics of RESTful API (i.e., if API is RESTful, it usually follows these 

principles) are as follows:

•	 RESTful API has better scalability support because different 

components can be deployed independently to different servers.

•	 It replaced the Simple Object Access Protocol (SOAP) (http:// 

bit.ly/2zqJrpN)2 because of the simpler verb and noun structure.

•	 It uses HTTP methods such as GET, POST, DELETE, PUT, OPTIONS, 

and so forth.

•	 JSON is not the only option (although it is the most popular). 

Unlike SOAP, which is a protocol, the REST methodology is flexible 

in choosing formats. For example alternative formats might be 

Extensible Markup Language (XML) or comma-separated values 

formats (CSV).

Table 8-1 shows an example of a simple create, read, update, and delete (CRUD3) 

(http://bit.ly/2zrmG53) REST API for message collection.

1�https://en.wikipedia.org/wiki/Representational_state_transfer#Applied_
to_Web_services

2�http://en.wikipedia.org/wiki/SOAP
3�http://en.wikipedia.org/wiki/Create,_read,_update_and_delete

Chapter 8  Building Node.js REST API Servers with Express.js and Hapi 

http://bit.ly/2zqJqlJ
http://bit.ly/2zqJrpN
http://bit.ly/2zqJrpN
http://bit.ly/2zrmG53
https://en.wikipedia.org/wiki/Representational_state_transfer#Applied_to_Web_services
https://en.wikipedia.org/wiki/Representational_state_transfer#Applied_to_Web_services
http://en.wikipedia.org/wiki/SOAP
http://en.wikipedia.org/wiki/Create%2C_read%2C_update_and_delete


280

REST is not a protocol; it’s an architecture in the sense that it’s more flexible than 

SOAP, which we know is a protocol. Therefore, REST API URLs could look like  

/messages/list.html or /messages/list.xml, in case we want to support these 

formats.

PUT and DELETE are idempotent methods. (Idempotent is another fancy word 

that computer scientists invented to charge high tuition fees for college degrees.) An 

idempotent method basically means that if the server receives two or more similar 

requests, the end result is the same. Ergo idempotent are safe to replicate.

And GET is nullipotent (safe), while POST is not idempotent (not safe). POST might 

affect the state and cause side effects.

More information on REST API can be found at Wikipedia (http://en.wikipedia.

org/wiki/Representational_state_transfer) and in the article “A Brief 

Introduction to REST (http://www.infoq.com/articles/rest-introduction).”

In our REST API server, we perform CRUD operations and harness the Express.js 

middleware (http://expressjs.com/api.html#middleware) concept with the  

app.param() and app.use() methods. So, our app should be able to process the 

Table 8-1.  Example of the CRUD REST API structure

Method URL Meaning

GET /messages.json Return list of messages in JSON format

PUT /messages.json Update/replace all messages and return status/error 

in JSON

POST /messages.json Create new message and return its ID in JSON format

GET /messages/{id}.json Return message with ID {id} in JSON format

PUT /messages/{id}.json Update/replace message with id {id}; if {id}

message doesn't exist, create it

DELETE /messages/{id}.json Delete message with ID {id}, return status/error in 

JSON format

Chapter 8  Building Node.js REST API Servers with Express.js and Hapi 

http://en.wikipedia.org/wiki/Representational_state_transfer)
http://en.wikipedia.org/wiki/Representational_state_transfer)
http://www.infoq.com/articles/rest-introduction)
http://expressjs.com/api.html#middleware


281

following commands using the JSON format (collectionName is the name of the 

collection, typically pluralized nouns, e.g., messages, comments, users):

•	 POST /collections/{collectionName}: request to create an 

object; responds with the of newly created object ID

•	 GET /collections/{collectionName}/{id}: request with ID to 

retrieve an object

•	 GET /collections/{collectionName}/: request to retrieve any 

items from the collection (items); in our example, we’ll have this 

query options: up to 10 items and sorted by ID

•	 PUT /collections/{collectionName}/{id}: request with ID to 

update an object

•	 DELETE /collections/{collectionName}/{id}: request with ID 

to remove an object

Let’s start our project by declaring dependencies.

�Project Dependencies
To get started with our project, we need to install packages. In this chapter, we use 

Mongoskin (https://github.com/kissjs/node-mongoskin), a MongoDB library, 

which is a better alternative to the plain, good-ol’ native MongoDB driver for Node.js 

(https://github.com/mongodb/node-mongodb-native). In addition, Mongoskin 

is more lightweight than Mongoose and it is schemaless (which I personally like, but I 

know some devs might prefer to have the safety and consistency of a schema).

The second choice is the framework. We are going to use the most popular, the most 

used, the framework with the most plugins—Express.js (http://expressjs.com). 

Express.js extends the core Node.js http module (http://nodejs.org/api/http.

html) to provide more methods and features. Needless to say, I’m a huge fan of Express. 

Partially because I wrote a book on it (Pro Express.js (Apress, 2014)), which is still the 

most comprehensive book on the framework, and partially, because my team and I used 

Express at Storify, DocuSign, and Capital One to build multiple heavily trafficked apps.

The Express.js framework has boatloads of plugin modules called middleware. These 

middleware modules allow devs to pick and choose whatever functionality they need 

Chapter 8  Building Node.js REST API Servers with Express.js and Hapi 

https://github.com/kissjs/node-mongoskin
https://github.com/mongodb/node-mongodb-native
http://expressjs.com
http://nodejs.org/api/http.html)
http://nodejs.org/api/http.html)


282

without having to buy in into some large, bulky, cookie-cutter, opinionated framework. 

In a way, Express serves as a foundation for a custom-built framework that is exactly 

what a project needs, not more and not less. Some people compare the Express.js 

framework with Ruby’s Sinatra because it’s non-opinionated and configurable.

First, we need to create a ch8/rest-express folder (or download the source code):

$ mkdir rest-express

$ cd rest-express

$ npm init -y

As mentioned in the previous chapter, Node.js/npm provides multiple ways to install 

dependencies, including the following:

•	 Manually, one by one

•	 As a part of package.json

•	 By downloading and copying modules

To keep things simple, let’s just use the package.json approach. You can create the 

package.json file, or copy the dependencies section or the whole file:

{

  "name": "rest-express",

  "version": "0.2.1",

  �"description": "REST API application with Express, Mongoskin, 

MongoDB, Mocha and Superagent",

  "main": "index.js",

  "directories": {

    "test": "test"

  },

  "scripts": {

    "start": "node index.js",

    �"test": "PORT=3007 ./node_modules/.bin/mocha test -R spec"

  },

  "author": "Azat Mardan (http://azat.co/)",

  "license": "MIT",

Chapter 8  Building Node.js REST API Servers with Express.js and Hapi 



283

  "dependencies": {

    "body-parser": "1.18.2",

    "express": "4.16.2",

    "mongodb": "2.2.33",

    "mongoskin": "2.1.0",

    "morgan": "1.9.0"

  },

  "devDependencies": {

    "expect.js": "0.3.1",

    "mocha": "4.0.1",

    "standard": "10.0.3",

    "superagent": "3.8.0"

  }

}

Then, simply run this command to install modules for the application:

$ npm install

As a result, the node_modules folder should be created with the superagent, 

express, mongoskin, and expect libraries. If you change the versions specified in 

package.json to the later ones, please make sure to update the code according to the 

packages’ change logs.

�Test Coverage with Mocha and Superagent
Before the app implementation, let’s write functional tests that make HTTP requests to 

our soon-to-be- created REST API server. In a test-driven development (TDD) manner, 

let’s use these tests to build a Node.js free JSON REST API server using the Express.js 

framework and Mongoskin library for MongoDB.

In this section, we’ll walk through the writing of functional tests using the 

Mocha (http://visionmedia.github.io/mocha) and superagent (http://

visionmedia.github.io/superagent) libraries. The tests need to perform basic 

CRUD by posting HTTP requests to our server.

Chapter 8  Building Node.js REST API Servers with Express.js and Hapi 

http://visionmedia.github.io/mocha)
http://visionmedia.github.io/superagent)
http://visionmedia.github.io/superagent)


284

If you know how to use Mocha or just want to jump straight to the Express.js app 

implementation, feel free to do so. You can use CURL terminal commands for testing, too.

Assuming we already have Node.js, npm, and MongoDB installed, let’s create a new 

folder (or, if you wrote the tests, use that folder). Let’s use Mocha as a command-line 

tool, and Expect.js and superagent as local libraries. To install the Mocha CLI (if it’s not 

available via $ mocha –V), run this command from the terminal:

$ npm install -g mocha@4.0.1

Expect.js and superagent should be available already as part of the installation done 

in the previous section.

Tip I nstalling Mocha locally gives us the ability to use different versions at the 
same time. To run tests, simply point to ./node_modules/.bin/mocha.  
Use npm i mocha@4.0.1-DE to install Mocha locally.

To launch tests, use the npm test alias to mocha test (global) or ./node_

modules/.bin/mocha test (local). A better alternative is to use Makefile, as described 

in Chapter 6.

Now let’s create a test/index.js file in the same folder (ch8/rest-express), 

which will have six suites:

	 1.	 Create a new object

	 2.	 Retrieve an object by its ID

	 3.	 Retrieve the whole collection

	 4.	 Update an object by its ID

	 5.	 Check an updated object by its ID

	 6.	 Remove an object by its ID

HTTP requests are a breeze with Superagent’s chained functions, which we can put 

inside each test suite.

So, we start with dependencies and then have three Mocha statements:

const boot = require('../index.js').boot

const shutdown = require('../index.js').shutdown

const port = require('../index.js').port

Chapter 8  Building Node.js REST API Servers with Express.js and Hapi 



285

const superagent = require('superagent')

const expect = require('expect.js')

before(() => {

  boot()

})

describe('express rest api server', () => {

  // ...

})

after(() => {

  shutdown()

})

Then, we write our first test case wrapped in the test case (describe and its 

callback). The main thing happens in the request (made by superagent) callback. 

There, we put multiple assertions that are the bread and butter (or meat and veggies for 

paleo readers) of TDD. To be strictly correct, this test suite uses BDD language, but this 

difference is not essential for our project.

The idea is simple. We make a POST HTTP request to a local instance of the server 

which we required and booted right from the test file. When we send the request, we 

pass some data. This creates the new object. We can expect that there are no errors, that 

the body of a certain composition, etc. We save the newly created object ID into id to use 

it for requests in the next test cases.

describe('express rest api server', () => {

  let id

  it('post object', (done) => {

    �superagent.post(`http://localhost:${port} 

/collections/test`)

      .send({

        name: 'John',

        email: 'john@rpjs.co'

      })

      .end((e, res) => {

        expect(e).to.eql(null)

        expect(res.body.length).to.eql(1)

Chapter 8  Building Node.js REST API Servers with Express.js and Hapi 



286

        expect(res.body[0]._id.length).to.eql(24)

        id = res.body[0]._id

        done()

      })

  })

  // ...

})

As you may have noticed, we’re checking for the following:

•	 The error object should be null (eql(null)).

•	 The response body array should have one item (to.eql(1)).

•	 The first response body item should have the _id property, which is 

24 characters long, i.e., a hex string representation of the standard 

MongoDB ObjectId type.

To finish, we save the newly created object’s ID in the id global variable so we can use 

it later for retrievals, updates, and deletions. Speaking of object retrievals, we test them 

in the next test case. Notice that the superagent method has changed to get(), and the 

URL path contains the object ID. You can “uncomment” console.log to inspect the full 

HTTP response body:

  it('retrieves an object', (done) => {

    �superagent.get(`http://localhost:${port} 

/collections/test/${id}`)

      .end((e, res) => {

        expect(e).to.eql(null)

        expect(typeof res.body).to.eql('object')

        expect(res.body._id.length).to.eql(24)

        expect(res.body._id).to.eql(id)

        done()

      })

  })

The done() callback allows us to test async code. Without it, the Mocha test case 

ends abruptly, long before the slow server has time to respond.

Chapter 8  Building Node.js REST API Servers with Express.js and Hapi 



287

The next test case’s assertion is a bit more interesting because we use the map() 

function on the response results to return an array of IDs. In this array, we find our ID 

(saved in the id variable) with the contain method. The contain method is a more 

elegant alternative to native indexOf(). It works because the results, which are limited 

to 10 records, come sorted by IDs, and our object was created just moments ago.

  it('retrieves a collection', (done) => {

    �superagent.get(`http://localhost:${port} 

/collections/test`)

      .end((e, res) => {

        expect(e).to.eql(null)

        expect(res.body.length).to.be.above(0)

        �expect(res.body.map(function (item) { return item._id })).

to.contain(id)

        done()

      })

  })

When the time comes to update our object, we actually need to send some data. We 

do this by passing an object to superagent’s function. Then, we assert that the operation 

was completed with (msg=success):

  it('updates an object', (done) => {

    �superagent.put(`http://localhost:${port} 

/collections/test/${id}`)

      .send({

        name: 'Peter',

        email: 'peter@yahoo.com'

      })

      .end((e, res) => {

        expect(e).to.eql(null)

        expect(typeof res.body).to.eql('object')

        expect(res.body.msg).to.eql('success')

        done()

      })

  })

Chapter 8  Building Node.js REST API Servers with Express.js and Hapi 



288

The last two test cases, which assert retrieval of the updated object and its deletion, 

use methods similar to those used before:

  it('checks an updated object', (done) => {

    �superagent.get(`http://localhost:${port} 

/collections/test/${id}`)

      .end((e, res) => {

        expect(e).to.eql(null)

        expect(typeof res.body).to.eql('object')

        expect(res.body._id.length).to.eql(24)

        expect(res.body._id).to.eql(id)

        expect(res.body.name).to.eql('Peter')

        done()

      })

  })

  it('removes an object', (done) => {

    �superagent.del(`http://localhost:${port} 

/collections/test/${id}`)

      .end((e, res) => {

        expect(e).to.eql(null)

        expect(typeof res.body).to.eql('object')

        expect(res.body.msg).to.eql('success')

        done()

      })

  })

})

It’s important to finish the work of the server when we are done with testing:

after(() => {

  shutdown()

})

The full source code for testing is in the ch8/rest-express/test/index.js file.

To run the tests, we can use the $ mocha test command, $ mocha test/index.js,  

or $ npm test. For now, the tests should fail because we have yet to implement the 

server!

Chapter 8  Building Node.js REST API Servers with Express.js and Hapi 



289

For those of you who require multiple versions of Mocha, another alternative, which 

is better, is to run your tests using local Mocha binaries: $ ./node_modules/mocha/

bin/mocha ./test. This, of course, assumes that we have installed Mocha locally into 

node_modules.

Note  By default, Mocha doesn’t use any reporters, and the result output is 
lackluster. To receive more explanatory logs, supply the -R <name> option  
(e.g., $ mocha test -R spec or $ mocha test -R list).

�REST API Server Implementation with Express 
and Mongoskin
Create and open code/ch8/rest-express/index.js, which will be the main 

application file. First things first. Let’s import our dependencies into the application, 

that’s in index.js:

const express = require('express')

const mongoskin = require('mongoskin')

const bodyParser = require('body-parser')

const logger = require('morgan')

const http = require('http')

Express.js instantiation of an app instance follows:

const app = express()

Express middleware is a powerful and convenient feature of Express.js to organize 

and reuse code. Why write our own code if we can use a few middleware modules? 

To extract parameters and data from the requests, let’s use the bodyParser.json() 

middleware from body-parser. logger(), which is morgan npm module, is optional 

middleware that allows us to print requests. We apply them with app.use(). In addition, 

we can use port configuration and server logging middleware.

app.use(bodyParser.json())

app.use(logger())

app.set('port', process.env.PORT || 3000)

Chapter 8  Building Node.js REST API Servers with Express.js and Hapi 



290

Mongoskin makes it possible to connect to the MongoDB database in one effortless 

line of code:

const db = mongoskin.db('mongodb://@localhost:27017/test')

Note I f you wish to connect to a remote database (e.g., Compose  
(https://www.compose.com) or mLab), substitute the string with 
your username, password, host, and port values. Here is the format of 
the uniform resource identifier (URI) string (no spaces): mongodb://
[username:password@] host1[:port1][,host2[:port2],... 
[,hostN[:portN]]] [/[database][?options]].

The next statement is a helper function that converts hex strings into MongoDB 

ObjectID data types:

const id = mongoskin.helper.toObjectID

The app.param() method is another form of Express.js middleware. It basically allows 

to do something every time there is this value in the URL pattern of the request handler. 

In our case, we select a particular collection when a request pattern contains a string 

collectionName prefixed with a colon (we’ll see this when we examine routes):

app.param('collectionName', (req, res, next, collectionName) => {

  req.collection = db.collection(collectionName)

  return next()

})

I had many students at my workshop exclaim, “It’s not working”, when they were 

staring at the root localhost:3000 instead of using a path like localhost:3000/

collections/messages. To avoid such confusion, let’s include a root route with a 

message that asks users to specify a collection name in their URLs:

app.get('/', (req, res, next) => {

  �res.send('Select a collection, e.g., /collections/messages')

})

Chapter 8  Building Node.js REST API Servers with Express.js and Hapi 

https://www.compose.com


291

Now the real work begins. The GET /collections/:collectionName is your 

typical REST read operation, that is, we need to retrieve a list of items. We can sort it by 

_id and use a limit of 10 to make it a bit more interesting. Here is how we can harness 

find() using the req.collection, which was created in the app.param middleware.

app.get('/collections/:collectionName', (req, res, next) => {

  �req.collection.find({}, {limit: 10, sort: [['_id', -1]]})

    .toArray((e, results) => {

      if (e) return next(e)

      res.send(results)

    }

  )

})

So have you noticed a :collectionName string in the URL pattern parameter? This 

and the previous app.param() middleware are what give us the req.collection object, 

which points to a specified collection in our database. toArray create either an error e 

or array of items results.

Next is the object-creating endpoint POST /collections/:collectionName. It is 

slightly easier to grasp because we just pass the whole payload to the MongoDB. Again we 

use req.collection. The second argument to insert() is optional. Yeah. I know it’s not 

super secure to pass unfiltered and not-validated payloads to the database, but what can 

go wrong? (Sarcasm font.)

app.post('/collections/:collectionName', (req, res, next) => {

  // TODO: Validate req.body

  req.collection.insert(req.body, {}, (e, results) => {

    if (e) return next(e)

    res.send(results.ops)

  })

})

This approach when we create a RESTful API without schema or restrictions on 

the data structure is often called free JSON REST API, because clients can throw data 

structured in any way, and the server handles it perfectly. I found this architecture very 

Chapter 8  Building Node.js REST API Servers with Express.js and Hapi 



292

advantageous for early prototyping due to the ability to use this API for any data just 

by changing the collection name or the payload that I’m sending from my client, i.e., a 

front-end app.

Next is GET /collections/:collectionName/:id, e.g., /collections/

messages/123. For that we’ll be using a single-object retrieval function findOne(), which 

is more convenient than find(). This is because findOne() returns an object directly 

instead of a cursor, as find(). That’s good. We can drop awkward toArray(). The function 

signature for findOne() is different because now it has to take the callback.

We’re also extracting the ID from the :id part of the URL path with  

req.params.id Express.js magic because we need the ID of this particular 

document and because we can have multiple URL parameters defined in the URL 

path of the Express route.

app.get('/collections/:collectionName/:id', (req, res, next) => {

  �req.collection.findOne({_id: id(req.params.id)},  

(e, result) => {

    if (e) return next(e)

    res.send(result)

  })

})

Of course, the same functionality can be achieved with find, using  

{_id: ObjectId(req.params.id)} as the query and with toArray(), but you 

know that already.

The PUT request handler gets more interesting because update() doesn’t return 

the augmented object. Instead, it returns a count of affected objects. Also, {$set:req.

body} is a special MongoDB operator that sets values. MongoDB operators tend to start 

with a dollar sign $, like $set or $push.

The second parameter {safe:true, multi:false} is an object with options 

that tell MongoDB to wait for the execution before running the callback function and 

to process only one (the first) item. The callback to update() is processing error e, 

and if it’s null and the number of update documents is 1 (it could be 0 if the ID is not 

matching—no error e in this case), it sends back the success to the client.

Chapter 8  Building Node.js REST API Servers with Express.js and Hapi 



293

app.put('/collections/:collectionName/:id', (req, res, next) => {

  req.collection.update({_id: id(req.params.id)},

    {$set: req.body},

    {safe: true, multi: false}, (e, result) => {

      if (e) return next(e)

      �res.send((result.result.n === 1) ? {msg: 'success'} :  

{msg: 'error'})

    })

})

Lastly, we define the DELETE /collections/:collectionName/:id route to 

remove one document. The ID is coming from the req.params.id like in the other 

individual-document routes. The callback will have two arguments, with the second 

having the result property. Thus we use result.result.

In the callback of remove(), we create an if/else to output a custom JSON message 

with msg, which equals either a success string for one (1) removed document, or the 

error message for a value different from one (1). The error e is a MongoDB error like 

“cannot connect”.

app.delete('/collections/:collectionName/:id', (req, res, next) => {

  �req.collection.remove({_id: id(req.params.id)}, (e, result) => {

    if (e) return next(e)

    �res.send((result.result.n === 1) ? {msg: 'success'} :  

{msg: 'error'})

  })

})

The last few lines of the index.js file (code/ch8/rest-express/index.js) make 

our file compatible with either starting the server or exporting it to be used/started 

elsewhere, i.e., in the tests:

const server = http.createServer(app)

const boot = () => {

  server.listen(app.get('port'), () => {

    console.info(`Express server listening

      on port ${app.get('port')}`)

  })

}

Chapter 8  Building Node.js REST API Servers with Express.js and Hapi 



294

const shutdown = () => {

  server.close(process.exit)

}

if (require.main === module) {

  boot()

} else {

  console.info('Running app as a module')

  exports.boot = boot

  exports.shutdown = shutdown

  exports.port = app.get('port')

}

Just in case something is not working well, the full code of the Express.js REST API 

server is in the code/ch8/rest-express/index.js file.

Now exit your editor and run index.js file with the node command. If it’s Linux or 

macOS, you can use this command in your terminal:

$ node .

The command above with the dot (.) is the equivalent of $ node index.js. Sadly, 

if you are on Windows, then node . will not work, so you have to use the full file name.

Test your server manually or automatically. Just do it, then do it again. To test 

automatically, execute the tests with Mocha. Tests will start a new server, so you may 

want to close/terminate/kill your own server to avoid the annoying “error address in 

use” error.

$ mocha test

If you are bored of a standard Mocha result report, then a slightly cuter reporter is 

nyan (Figure 8-1).

Chapter 8  Building Node.js REST API Servers with Express.js and Hapi 



295

You can use it with -R nyan as follows:

$ mocha test -R nyan

If you really don’t like Mocha, BDD or TDD, manual testing with CURL is always 

there for you. :-) At least on POSIX (Linux, Unix, macOS), CURL is built-in and comes 

with those OSs. On Windows, you can download the CURL tool manually.

For GET CURLing, simply provide the URL, and you will get the server response 

which is the JSON of the object, as shown in Figure 8-2:

$ curl http://localhost:3000/collections/curl-test

Figure 8-1.  Who wouldn't like a library with Nyan Cat?

Chapter 8  Building Node.js REST API Servers with Express.js and Hapi 

https://curl.haxx.se/download.html


296

Note GET  requests also work in the browser because every time you open 
a URL in a browser, you make a GET request. For example, open (http://
localhost:3000/test) while your server is running.

CURLing data to make a POST request is easy (Figure 8-3). Provide -d for data. Use 

the urlencoded format with key=value&key1=value1, etc. or use a JSON file with the 

at (@) symbol: -d@testplace.json . Most likely you need to provide the header too: 

--header "Content-Type: application/json".

Figure 8-2.  A GET request made with CURL

Chapter 8  Building Node.js REST API Servers with Express.js and Hapi 



297

Here’s an example of sending name and email values with POST:

$ curl -d "name=peter&email=peter337@rpjs.co" --header "Content-Type: 

application/json" http://localhost:3000/collections/curl-test

DELETE or PUT can be made with the option --request NAME. Remember to add 

the ID in the URL, such as:

$ curl --request DELETE http://localhost:3000/collections/ 

curl-test/52f6828a23985a6565000008

For a short, nice tutorial on the main CURL commands and options, take a look at 

CURL Tutorial with Examples of Usage at http://bit.ly/2zslIWr.

Figure 8-3.  The result of sending a POST request via CURL

Chapter 8  Building Node.js REST API Servers with Express.js and Hapi 

http://bit.ly/2zslIWr


298

In this chapter, our tests are longer than the app code itself, so abandoning TDD may 

be tempting, but believe me, the good habits of TDD save you hours and hours of work 

during any serious development, when the complexity of the application on which you 

are working is high.

You might wonder why spend time on TDD in the chapter about REST APIs. The 

answer is mainly because testing saves time and testing of RESTful API is easy compared 

to testing of the frond-end app, UIs, and web pages. You see, REST APIs don’t have UIs 

in the form of web pages. APIs are intended for consumption by other programs (i.e., 

consumers or clients). Ergo, the best way to develop APIs is to utilize tests. If you think 

about tests—they are like small client apps. This ensures a smooth integration between 

APIs and clients. We test responses and their JSON structure. This is functional or 

integration testing.

However, this is not the whole story. TDD is great when it comes to refactoring. The 

next section illustrates this by refactoring project from Express.js to Hapi. And after we’re 

done, we can rest assured that by running the same tests, that the functionality isn’t 

broken or changed.

�Refactoring: Hapi REST API Server
Hapi (https://hapijs.com) is an enterprise-grade framework. It’s more complex and 

feature rich than Express.js, and it’s easier to develop in large teams. Hapi was started 

by (and used at) Walmart Labs that support Walmart’s heavily trafficked e-commerce 

website. So Hapi has been battle-tested at a YUGE scale (think releasing Node on Black 

Friday sales).

The goal of this section is to show you alternative patterns in implementing the REST 

API server in Node.js. Now, because we have Mocha tests, we can refactor our code with 

peace of mind. Here’s the package.json for this project:

{

  "name": "rest-hapi",

  "version": "0.0.1",

  �"description": "REST API application with Express, Mongoskin, 

MongoDB, Mocha and Superagent",

  "main": "index.js",

Chapter 8  Building Node.js REST API Servers with Express.js and Hapi 

https://hapijs.com
https://hapijs.com


299

  "directories": {

    "test": "test"

  },

  "scripts": {

    "start": "node index.js",

    "test": "mocha test -R spec"

  },

  "author": "Azat Mardan (http://azat.co/)",

  "license": "MIT",

  "dependencies": {

    "good": "7.3.0",

    "hapi": "16.6.2",

    "mongodb": "2.2.33",

    "mongoskin": "2.1.0"

  },

  "devDependencies": {

    "mocha": "4.0.1",

    "superagent": "3.8.0",

    "expect.js": "0.3.1"

  }

}

You can either use package.json with $ npm install or, for Hapi installation 

only, simply run $ npm install hapi@16.6.2 good@7.3.0--save from the  

ch8/rest-hapi folder. hapi is the framework’s module and good is its logger. The npm 

install command downloads the modules and unpacks them in the node_modules 

folder. Next, we need to create a hapi-app.js file and open it in the editor.

As usual, at the beginning of a Node.js program (code/ch8/rest-hapi/index.js), 

we import dependencies. Then, we define domain (localhost) and port (3000). Next we 

create the Hapi server object using new Hapi.server():

const port = process.env.PORT || 3000

const Hapi = require('hapi')

server.connection({ port: port, host: 'localhost' })

const server = new Hapi.Server()

Chapter 8  Building Node.js REST API Servers with Express.js and Hapi 



300

And we create the database connection db, just like in the Express.js example:

const mongoskin = require('mongoskin')

const db = mongoskin.db('mongodb://@localhost:27017/test', {})

const id = mongoskin.helper.toObjectID

Instead of middleware like we used in Express, in Hapi we will create a function that 

will load the database collection asynchronously based on the provided name argument, 

which is a URL param. The loadCollection() function gives us the database 

collection that is corresponding to the name value (use an enum in a real project):

const loadCollection = (name, callback) => {

  callback(db.collection(name))

}

The next part is the most distinct compared with Express.js. Developers use 

properties for methods and paths, and instead of res (or response) we use reply 

inside of the handler property. Every route is an item in the array passed to  

server.route(). The first such route is for the home page (/):

server.route([

  {

    method: 'GET',

    path: '/',

    handler: (req, reply) => {

      �reply('Select a collection, e.g., /collections/messages')

    }

  },

  // ...

])

The next item in this array passed to server.route() (that is the argument  

to the route method), is the route that returns a list of items as a response to a  

GET /collection/:collectionName request. The main logic happens in the handler 

function again, where we call the loadCollection() function, find any objects 

(find({})), and output sorted results limited to 10 items:

Chapter 8  Building Node.js REST API Servers with Express.js and Hapi 



301

  {

    method: 'GET',

    path: '/collections/{collectionName}',

    handler: (req, reply) => {

      �loadCollection(req.params.collectionName, (collection) => {

        �collection.find({}, {limit: 10, sort: [['_id', -1]]})

          .toArray((e, results) => {

            if (e) return reply(e)

            reply(results)

        })

      })

    }

  },

The third route handles the creation of new objects (POST /collections/

collectionName). Again, we use loadCollection() and then call the insert method 

with a request body (req.payload):

  {

    method: 'POST',

    path: '/collections/{collectionName}',

    handler: (req, reply) => {

      �loadCollection(req.params.collectionName, (collection) => {

        collection.insert(req.payload, {}, (e, results) => {

          if (e) return reply(e)

          reply(results.ops)

        })

      })

    }

  },

Please note that each URL parameter is enclosed in {}, unlike the :name convention 

that Express.js uses. This is in part because colon (:) is a valid URL symbol, and by using 

it as a parameter identifier we cannot use colon (:) in our URL addresses. (Although I 

don’t know why you would colon when you can use slash /.)

Chapter 8  Building Node.js REST API Servers with Express.js and Hapi 



302

The next route is responsible for getting a single record by its ID (/collection/

collectionName/id). The main logic of using the findOne() method is the same as in 

the Express.js server example:

  {

    method: 'GET',

    path: '/collections/{collectionName}/{id}',

    handler: (req, reply) => {

      �loadCollection(req.params.collectionName, (collection) => {

        �collection.findOne({_id: id(req.params.id)}, (e, result) => {

          if (e) return reply(e)

          reply(result)

        })

      })

    }

  },

This route updates documents in the database and, again, most of the logic 

in the handler remains the same, as in the Express.js example, except that we 

call loadCollection() to get the right collection based on the URL parameter 

collectionName:

  {

    method: 'PUT',

    path: '/collections/{collectionName}/{id}',

    handler: (req, reply) => {

      �loadCollection(req.params.collectionName, (collection) => {

        collection.update({_id: id(req.params.id)},

          {$set: req.payload},

          {safe: true, multi: false}, (e, result) => {

            if (e) return reply(e)

            �reply((result.result.n === 1) ? {msg: 'success'} :  

{msg: 'error'})

          })

      })

    }

  },

Chapter 8  Building Node.js REST API Servers with Express.js and Hapi 



303

The last route handles deletions. First, it gets the right collection via the URL 

parameter (collectionName). Then, it removes the object by its ID and sends back the 

message (success or error):

  {

    method: 'DELETE',

    path: '/collections/{collectionName}/{id}',

    handler: (req, reply) => {

      �loadCollection(req.params.collectionName, (collection) => {

        �collection.remove({_id: id(req.params.id)}, (e, result) => {

          if (e) return reply(e)

          �reply((result.result.n === 1) ? {msg: 'success'} :  

{msg: 'error'})

        })

      })

    }

  }

]) // for "server.route(["

The next configuration is optional. It configures server logging with good:

const options = {

  subscribers: {

    'console': ['ops', 'request', 'log', 'error']

  }

}

server.register(require('good', options, (err) => {

  if (!err) {

    �// Plugin loaded successfully, you can put console.log here

  }

}))

Chapter 8  Building Node.js REST API Servers with Express.js and Hapi 



304

The next statement of ch8/rest-hapi/index.js creates a function that starts the 

server with the server.start() method:

const boot = () => {

  server.start((err) => {

    if (err) {

      console.error(err)

      return process.exit(1)

    }

    console.log(`Server running at: ${server.info.uri}`)

  })

}

The next statement creates a function to close the process:

const shutdown = () => {

  server.stop({}, () => {

    process.exit(0)

  })

}

Lastly, we put an if/else to boot up the server straightaway when this file is run 

directly or export boot, shutdown, and port when this file is loaded as a module (with 

require()):

if (require.main === module) {

  console.info('Running app as a standalone')

  boot()

} else {

  console.info('Running app as a module')

  exports.boot = boot

  exports.shutdown = shutdown

  exports.port = port

}

Chapter 8  Building Node.js REST API Servers with Express.js and Hapi 



305

The following summarizes what we did differently while switching from Express.js to 

Hapi:

•	 Defined routes in an array

•	 Used method, path, and handler properties of the route object

•	 Used the loadCollection method instead of middleware

•	 Used {name} instead of :name for defining URL parameters

As alway, the full source code is in the GitHub repository. The file and its path is 

ch8/rest-hapi/index.js.

If we run the newly written Hapi server with $ node index.js (or $ npm start) 

and then run tests in a separate tab/window, the tests pass! If they don’t for some reason, 

then download and run the source code from the GitHub repository github.com/azat-co/ 

practicalnode (http://github.com/azat-co/practicalnode).

�Summary
The loosely coupled architecture of REST API servers and clients (mobile, web app, 

or front end) allows for better maintenance and works perfectly with TDD/BDD. In 

addition, NoSQL databases such as MongoDB are good at handling free REST APIs. We 

don’t have to define schemas, and we can throw any data at it and the data is saved!

The Express.js and Mongoskin libraries are great when you need to build a simple 

REST API server using a few lines of code. Later, if you need to expand the libraries, they 

also provide a way to configure and organize your code. If you want to learn more about 

Express.js, take a look at Pro Express.js (Apress, 2014). Also, it’s good to know that for 

more complex systems, the Hapi server framework is there for you.

In this chapter, in addition to Express.js, we used MongoDB via Mongoskin. We also 

used Mocha and Superagent to write functional tests that, potentially, save us hours in 

testing and debugging when we refactor code in the future.

Then we easily flipped Express.js for Hapi and, thanks to the tests, we are confident 

that our code works as expected. The differences between the Express and Hapi 

frameworks as we observed are in the way we defined routes and URL parameters and 

output the response.

Chapter 8  Building Node.js REST API Servers with Express.js and Hapi 

http://github.com/azat-co/practicalnode
http://github.com/azat-co/practicalnode
http://github.com/azat-co/practicalnode


307
© Azat Mardan 2018 
A. Mardan, Practical Node.js, https://doi.org/10.1007/978-1-4842-3039-8_9

CHAPTER 9

Real-Time Apps with 
WebSocket, Socket.IO, 
and DerbyJS
Real-time apps are becoming more and more widespread in financial trading, gaming, 

social media, various DevOps tools, cloud services, and of course, news. The main 

factor contributing to this trend is that technologies have become much better. They 

allow for a greater bandwidth to transmit data and for more calculations to process 

and retrieve the data.

HTML5 pioneered the new standard of real-time connections called WebSocket. The 

way it works: in browser JavaScript you get a global object called WebSocket. This object 

is a class and it has all kinds of methods for developers to implement the WebSocket 

protocol client.

The WebSocket protocol (or ws:// in the URL format) is very different from HTTP 

or HTTPS. Hence, developers need a special ws server. Just having an HTTP server 

won’t cut it. And as you know, Node.js is a highly efficient, non-blocking input/output 

platform.

Implementing WebSocket servers with Node is pure joy because Node is fast and 

because Node is also JavaScript, just like the WebSocket clients (i.e., browser JavaScript). 

Thus, Node is very well suited for the task of being a back-end pair to the browser with its 

WebSocket API.



308

To get you started with WebSocket and Node.js, we'll keep things simple stupid 

(KISS) (http://azat.co/blog/kiss) and cover the following:

•	 What is WebSocket?

•	 Native WebSocket and Node.js with the ws module example

•	 Socket.IO and Express.js example

•	 Collaborative online editor example with DerbyJS, Express.js, and 

MongoDB

�What Is WebSocket?
WebSocket is a special communication “channel” between browsers (clients) and 

servers. It's an HTML5 protocol. WebSocket's connection is constant, in contrast to 

traditional HTTP requests, which are always initiated by the client, which means there's 

no way for a server to notify the client if there are updates (except for Server-side Events).

By maintaining a duplex open connection between the client and the server, updates 

can be pushed in a timely fashion without clients needing to poll at certain intervals. 

This main factor makes WebSocket ideal for real-time apps for which data needs to be 

available on the client immediately. For more information on WebSocket, take a look 

at the extensive resource About HTML5 WebSocket (http://www.websocket.org/

aboutwebsocket.html).

There's no need to use any special libraries to use WebSocket in modern browsers. 

The following StackOverflow has a list of such browsers: What browsers support 

HTML5 WebSockets API? (http://bit.ly/2zrwH2f). For older browser support, the 

workaround includes falling back on polling.

As a side note, polling (both short and long), can also be used to emulate the real-

time responsiveness of web apps. In fact, some advanced libraries (Socket.IO) fall back 

to polling when WebSocket becomes unavailable as a result of connection issues or users 

not having the latest versions of browsers. Polling is relatively easy, and I don't cover it 

here. It can be implemented with just a setInterval() callback and an endpoint on 

the server. However, there's no true real-time communication with polling; each request 

is separate.

Chapter 9  Real-Time Apps with WebSocket, Socket.IO, and DerbyJS

http://azat.co/blog/kiss)
http://www.websocket.org/aboutwebsocket.html
http://www.websocket.org/aboutwebsocket.html
http://www.websocket.org/aboutwebsocket.html
http://bit.ly/2zrwH2f
http://bit.ly/2zrwH2f
http://bit.ly/2zrwH2f


309

�Native WebSocket and Node.js with the ws Module 
Example
Sometimes it's easier to start from the simplest thing and build things on top of it. With 

this in mind, our mini project includes building a native WebSocket implementation that 

talks with the Node.js server with the help of the ws module:

•	 Browser WebSocket implementation

•	 Node.js server with ws module implementation

Let's examine this with a quick example.

�Browser WebSocket Implementation
This is our front-end code (file ch9/basic/index.html) for Chrome version 

32.0.1700.77. We start with typical HTML tags:

<html>

  <head>

  </head>

  <body>

The main code lives in the script tag, where we instantiate an object from global 

WebSocket. When we do so, we provide the server URL. Notice the ws:// instead of a 

familiar http://. The letters ws:// stand for the WebSocket protocol:

    <script type="text/javascript">

      var ws = new WebSocket('ws://localhost:3000');

As soon as the connection is established, we send a message to the server:

      ws.onopen = function(event) {

        ws.send('front-end message: ABC');

      };

Usually, messages are sent in response to user actions, such as mouse clicks. When 

we get any message from the WebSocket location, the following handler is executed:

      ws.onmessage = function(event) {

        console.log('server message: ', event.data);

      };

Chapter 9  Real-Time Apps with WebSocket, Socket.IO, and DerbyJS



310

A good practice is to have an onerror event handler. We log the error message:

      ws.onerror = function(event) {

        console.log('server error message: ', event.data);

      };

We then close the tags and save the file:

    </script>

  </body>

</html>

To make sure you don't miss anything, here's the full source code of ch9/basic/

index.html, which is very straightforward and rather small:

<html>

  <head>

  </head>

  <body>

    <script type="text/javascript">

      var ws = new WebSocket('ws://localhost:3000');

      ws.onopen = function(event) {

        ws.send('front-end message: ABC');

      };

      ws.onerror = function(event) {

        console.log('server error message: ', event.data);

      };

      ws.onmessage = function(event) {

        console.log('server message: ', event.data);

      };

    </script>

  </body>

</html>

Chapter 9  Real-Time Apps with WebSocket, Socket.IO, and DerbyJS



311

�Node.js Server with ws Module Implementation

WebSocket.org provides an echo service for testing the browser WebSocket, but we can build 

our own small Node.js server with the help of the ws library (http://npmjs.org/ws).  

You can create package.json and install ws:

$ npm init -y

$ npm install ws@3.3.0 -SE

In the code/ch9/basic/server.js file, we import ws and initialize the server into 

the wss variable:

const WebSocketServer = require('ws').Server

const wss = new WebSocketServer({port: 3000})

Akin to the front-end code, we use an event pattern to wait for a connection. When 

the connection is ready, in the callback we send the string XYZ and attach an event 

listener on('message') to listen to incoming messages from the page:

wss.on('connection', (ws) => {

  ws.send('XYZ')

  ws.on('message', (message) => {

    console.log('received: %s', message)

  })

})

Moreover, let’s add some continuous logic that will provide current time to the 

browser using ws.send() and new Date:

wss.on('connection', (ws) => {

  ws.send('XYZ')

  setInterval(()=>{

    ws.send((new Date).toLocaleTimeString())

  }, 1000)

  ws.on('message', (message) => {

    console.log('received: %s', message)

  })

})

Chapter 9  Real-Time Apps with WebSocket, Socket.IO, and DerbyJS

http://websocket.org
http://npmjs.org/ws
http://npmjs.org/ws


312

The full code of the server code is in code/ch9/basic/server.js.

Start the Node.js server with $ node server. Then, open index.html in the 

browser and you should see this message in the JavaScript console (option + command + 

j on Macs): server message: XYZ (Figure 9-1).

Figure 9-1.  Browser outputs a message received via WebSocket

While in the terminal, the Node.js server output is received: front-end 

message: ABC, as is illustrated in Figure 9-2.

Chapter 9  Real-Time Apps with WebSocket, Socket.IO, and DerbyJS



313

Native HTML5 WebSocket is an amazing technology. However, WebSocket is a 

protocol and an evolving standard. This means that each browser implementation 

might vary. And, of course, if support for older browsers is needed, you should do your 

research and test.

In addition, often the connection may be lost and may need to be re-established. 

To handle cross- browser and backward compatibility, as well as re-opening, a lot of 

developers depend on the Socket.IO library, which we will explore in the next section.

�Socket.IO and Express.js Example
Full coverage of the Socket.IO (http://socket.io) library absolutely deserves its own 

book. Nevertheless, because it's such a popular library, and getting started with it is very 

easy with Express.js, I include in this chapter an example that covers the basics. This 

mini project illustrates duplex-channel communication between browser and server.

As in most real-time web apps, the communication between a server and a client 

happens in response either to some user actions or as a result of updates from the server. 

So, in our example, the web page renders a form field in which each character echoes 

(browser to server and back) in reverse in real time. The example harnesses Express.js 

Figure 9-2.  The server outputs the browser message received via WebSocket

Chapter 9  Real-Time Apps with WebSocket, Socket.IO, and DerbyJS

http://socket.io
http://socket.io


314

command-line tool scaffolding, Socket.IO, and Pug (see screenshots of the working app 

in Figures 9-3 and 9-4). Of course, you can just download the app from http://github.

com/azat-co/practicalnode.

To include Socket.IO, we can use $ npm install socket.io@0.9.16--save and 

repeat it for every module, or we can use package.json and $ npm install:

{

  "name": "socket-express",

  "version": "0.1.0",

  "private": true,

  "scripts": {

    "start": "node app.js"

  },

  "dependencies": {

    "body-parser": "1.18.2",

    "cookie-parser": "1.4.3",

    "debug": "3.1.0",

    "express": "4.16.2",

    "morgan": "1.9.0",

    "pug": "2.0.0-rc.4",

    "socket.io": "2.0.4"

  }

}

Socket.IO, in some way, might be considered another server, because it handles 

socket connections and not our standard HTTP requests. This is how we refactor 

autogenerated Express.js code:

const http = require('http')

const express = require('express')

const path = require('path')

const logger = require('morgan')

const bodyParser = require('body-parser')

Chapter 9  Real-Time Apps with WebSocket, Socket.IO, and DerbyJS

http://github.com/azat-co/practicalnode
http://github.com/azat-co/practicalnode


315

The standard Express.js configuration is as follows:

const routes = require('./routes/index')

const app = express()

// view engine setup

app.set('views', path.join(__dirname, 'views'))

app.set('view engine', 'pug')

app.use(logger('dev'))

app.use(bodyParser.json())

app.use(bodyParser.urlencoded({extended: true}))

app.use(express.static(path.join(__dirname, 'public')))

app.use('/', routes)

Then, the Socket.IO piece is as follows:

const server = http.createServer(app)

const io = require('socket.io').listen(server)

When the Socket server connection is established, we attach a messageChange 

event listener that implements logic that is reversing an incoming string:

io.sockets.on('connection', (socket) => {

  socket.on('messageChange', (data) => {

    console.log(data)

    �socket.emit('receive', data.message.split('').reverse().join(''))

  })

})

We finish by starting the server with listen() as we always do:

app.set('port', process.env.PORT || 3000)

server.listen(app.get('port'), () => {

  �console.log(`Express server listening on port  

${app.get('port')}`)

})

Just in case if these snippets are confusing, the full content of the Express app with 

SocketIO is in code/ch9/socket-express/app.js.

Chapter 9  Real-Time Apps with WebSocket, Socket.IO, and DerbyJS



316

A quick remark about port numbers: by default, WebSocket connections can use the 

standard ports: 80 for HTTP and 443 for HTTPS.

Last, our app needs some front-end love in index.pug. Nothing fancy—just a form 

field and some front-end JavaScript in the Pug template:

extends layout

block content

  h1= title

  p Welcome to

    span.received-message #{title}

  �input(type='text', class='message', placeholder='what is on your 

mind?', onkeyup='send(this)')

  script(src="/socket.io/socket.io.js")

  script.

    var socket = io.connect('http://localhost:3000');

    socket.on('receive', function (message) {

      console.log('received %s', message);

      �document.querySelector('.received-message').innerText = 

message;

    });

    var send = function(input) {

      console.log(input.value)

      var value = input.value;

      console.log('sending %s to server', value);

      socket.emit('messageChange', {message: value});

    }

Again, start the server and open the browser to see real-time communication. Typing 

text in the browser field logs data on the server without messing up HTTP requests and 

waiting. The approximate browser results are shown in Figure 9-3; the server logs are 

shown in Figure 9-4.

Chapter 9  Real-Time Apps with WebSocket, Socket.IO, and DerbyJS



317

Figure 9-3.  The input of !stekcoS yields Sockets!

Chapter 9  Real-Time Apps with WebSocket, Socket.IO, and DerbyJS



318

Figure 9-4.  Express.js server catching and processing input in real time

Chapter 9  Real-Time Apps with WebSocket, Socket.IO, and DerbyJS



319

For more Socket.IO examples, go to socket.io/#how-to-use (http://socket.

io/#how-to-use).

�Collaborative Online Code Editor Example with 
DerbyJS, Express.js, and MongoDB
Derby (http://derbyjs.com) is an interesting and sophisticated MVC framework 

designed to be used with Express (http://expressjs.com) as its middleware, whereas 

Express.js is a popular node framework that uses the middleware concept to enhance 

the functionality of applications. Derby also comes with the support of Racer (https://

github.com/codeparty/racer), a data synchronization engine, and a Handlebars-

like template engine (http://handlebarsjs.com), among many other features.

Meteor (http://meteor.com) and Sails.js (http://sailsjs.org) are other 

reactive (real-time) full-stack MVC Node.js frameworks comparable with DerbyJS. 

However, Meteor is more opinionated and often relies on proprietary solutions and 

packages.

The following example illustrates how easy it is to build a real-time application using 

Express.js, DerbyJS, MongoDB, and Redis.

The structure for this DerbyJS mini project is as follows:

•	 Project dependencies and package.json

•	 Server-side code

•	 DerbyJS app

•	 DerbyJS view

•	 Editor tryout

�Project Dependencies and package.json
If you haven't installed Node.js, npm, MongoDB, or Redis, you can do it now by following 

instructions in these resources:

•	 Installing Node.js via package manager (https://nodejs.org/en/

download/package-manager/)

Chapter 9  Real-Time Apps with WebSocket, Socket.IO, and DerbyJS

http://socket.io/#how-to-use
http://socket.io/#how-to-use
http://socket.io/#how-to-use
http://derbyjs.com
http://derbyjs.com
http://expressjs.com
http://expressjs.com
https://github.com/codeparty/racer
https://github.com/codeparty/racer
https://github.com/codeparty/racer
https://github.com/wycats/handlebars.js
http://handlebarsjs.com
http://meteor.com
http://meteor.com
http://sailsjs.org
http://sailsjs.org
https://nodejs.org/en/download/package-manager/
https://nodejs.org/en/download/package-manager/
https://nodejs.org/en/download/package-manager/


320

•	 Installing npm (https://www.npmjs.com/get-npm)

•	 Install MongoDB (http://bit.ly/2zrogUx)

•	 Redis Quick Start (http://redis.io/topics/quickstart)

Create a project folder, editor, and a file package.json with the following content:

{

  "name": "editor",

  "version": "0.0.1",

  "description": "Online collaborative code editor",

  "main": "index.js",

  "scripts": {

    "test": "mocha test"

  },

  "git repository": "http://github.com/azat-co/editor",

  "keywords": "editor node derby real-time",

  "author": "Azat Mardan",

  "license": "BSD",

  "dependencies": {

    "derby": "~0.5.12",

    "express": "~3.4.8",

    "livedb-mongo": "~0.3.0",

    "racer-browserchannel": "~0.1.1",

    "redis": "~0.10.0"

  }

}

This gets us the derby (DerbyJS), express (Express.js), livedb-mongo, racer-

browserchannel, and redis (Redis client) modules. DerbyJS and Express.js are for 

routing and they use corresponding frameworks (versions 0.5.12 and 3.4.8). Redis, 

racer-browserchannel, and livedb-mongo allow DerbyJS to use Redis and 

MongoDB databases.

Chapter 9  Real-Time Apps with WebSocket, Socket.IO, and DerbyJS

https://www.npmjs.com/get-npm
https://www.npmjs.com/get-npm
http://bit.ly/2zrogUx
http://bit.ly/2zrogUx
http://redis.io/topics/quickstart
http://redis.io/topics/quickstart


321

�Server-side Code
As an entry point for our application, create editor/server.js with a single line of 

code that starts a Derby server we have yet to write:

require('derby').run(__dirname + '/server.js');

Create and start adding the following lines to editor/server.js. First, import the 

dependencies:

var path = require('path'),

  express = require('express'),

  derby = require('derby'),

  racerBrowserChannel = require('racer-browserchannel'),

  liveDbMongo = require('livedb-mongo'),

Then, define the Derby app file:

  app = require(path.join(__dirname, 'app.js')),

Instantiate the Express.js app:

  expressApp = module.exports = express(),

And the Redis client:

  redis = require('redis').createClient(),

And the local MongoDB connection URI:

  mongoUrl = 'mongodb://localhost:27017/editor';

Now we create a liveDbMongo object with the connection URI and redis client 

object:

var store = derby.createStore({

  db: liveDbMongo(mongoUrl + '?auto_reconnect', {

    safe: true

  }),

  redis: redis

});

Chapter 9  Real-Time Apps with WebSocket, Socket.IO, and DerbyJS



322

Define a public folder with static content:

var publicDir = path.join(__dirname, 'public');

Then, declare Express.js middleware in chained calls:

expressApp

  .use(express.favicon())

  .use(express.compress())

It’s important to include DerbyJS-specific middleware that exposes Derby routes and 

model objects:

  .use(app.scripts(store))

  .use(racerBrowserChannel(store))

  .use(store.modelMiddleware())

  .use(app.router())

Regular Express.js router middleware follows:

  .use(expressApp.router);

It's possible to mix Express.js and DerbyJS routes in one server—the 404 catchall 

route:

expressApp.all('*', function(req, res, next) {

  return next('404: ' + req.url);

});

The full source code of server.js is as follows:

var path = require('path'),

  express = require('express'),

  derby = require('derby'),

  racerBrowserChannel = require('racer-browserchannel'),

  liveDbMongo = require('livedb-mongo'),

  app = require(path.join(__dirname, 'app.js')),

  expressApp = module.exports = express(),

  redis = require('redis').createClient(),

  mongoUrl = 'mongodb://localhost:27017/editor';

Chapter 9  Real-Time Apps with WebSocket, Socket.IO, and DerbyJS



323

var store = derby.createStore({

  db: liveDbMongo(mongoUrl + '?auto_reconnect', {

    safe: true

  }),

  redis: redis

});

var publicDir = path.join(__dirname, 'public');

expressApp

  .use(express.favicon())

  .use(express.compress())

  .use(app.scripts(store))

  .use(racerBrowserChannel(store))

  .use(store.modelMiddleware())

  .use(app.router())

  .use(expressApp.router);

  expressApp.all('*', function(req, res, next) {

  return next('404: ' + req.url);

});

�DerbyJS App
The DerbyJS app (app.js) shares code smartly between the browser and the server, 

so you can write functions and methods in one place (a Node.js file). However, parts 

of app.js code become browser JavaScript code (not just Node.js) depending on the 

DerbyJS rules. This behavior allows for better code reuse and organization, because 

you don't have to duplicate routes, the helper function, and utility methods. One of the 

places where the code from the DerbyJS app file becomes browser code only is inside 

app.ready(), which we will see later.

Declare the variable and create an app (editor/app.js):

var app;

app = require('derby').createApp(module);

Chapter 9  Real-Time Apps with WebSocket, Socket.IO, and DerbyJS



324

Declare the root route so that when a user visits it, the new snippet is created and the 

user is redirected to the /:snippetId route:

app.get('/', function(page, model, _arg, next) {

  snippetId = model.add('snippets', {

    snippetName: _arg.snippetName,

    code: 'var'

  });

  return page.redirect('/' + snippetId);

});

DerbyJS uses a route pattern similar to Express.js, but instead of response (res), we 

use page, and we get data from the model argument.

The /:snippetId route is where the editor is displayed. To support real-time 

updates to the Document Object Model (DOM), all we need to do is to call subscribe:

app.get('/:snippetId', function(page, model, param, next) {

  var snippet = model.at('snippets.'+param.snippetId);

  snippet.subscribe(function(err){

    if (err) return next(err);

    console.log (snippet.get());

    model.ref('_page.snippet', snippet);

    page.render();

  });

});

The model.at method with a parameter in a collection_name.ID pattern is akin 

to calling findById()—in other words, we get the object from the store/database.

model.ref() allows us to bind an object to the view representation. Usually in the view 

we would write {{_page.snippet}} and it would update itself reactively. However, to 

make the editor look beautiful, we use the Ace editor from Cloud9 (http://ace.c9.io). 

Ace is attached to the editor object (global browser variable).

Front-end JavaScript code in DerbyJS is written in the app.ready callback. We need 

to set Ace content from the Derby model on app start:

app.ready(function(model) {

  editor.setValue(model.get('_page.snippet.code'));

Chapter 9  Real-Time Apps with WebSocket, Socket.IO, and DerbyJS

http://ace.c9.io
http://ace.c9.io


325

Then, it listens to model changes (coming from other users) and updates the Ace 

editor with new text (front-end code):

  model.on('change', '_page.snippet.code', function(){

    �if (editor.getValue() !== model.get('_page.snippet.code')) {

      process.nextTick(function(){

        �editor.setValue(model.get('_page.snippet.code'), 1);

      })

    }

  });

process.nextTick is a function that schedules the callback (passed as a parameter 

to it) in the next event loop iteration. This trick allows us to avoid an infinite loop when 

the updated model from one user triggers a change event on the Ace editor, and that 

triggers an unnecessary update on the remote model.

The code that listens to Ace changes (e.g., new character) and updates the DerbyJS 

model:

  editor.getSession().on('change', function(e) {

    �if (editor.getValue() !== model.get('_page.snippet.code')) {

      process.nextTick(function(){

        �model.set('_page.snippet.code', editor.getValue());

      });

    }

  });

});

_page is a special DerbyJS name used for rendering/binding in the views.

For reference, the full source code of editor/app.js is as follows:

var app;

app = require('derby').createApp(module);

app.get('/', function(page, model, _arg, next) {

  snippetId = model.add('snippets', {

    snippetName: _arg.snippetName,

    code: 'var'

  });

Chapter 9  Real-Time Apps with WebSocket, Socket.IO, and DerbyJS



326

  return page.redirect('/' + snippetId);

});

app.get('/:snippetId', function(page, model, param, next) {

  var snippet = model.at('snippets.'+param.snippetId);

  snippet.subscribe(function(err){

    if (err) return next(err);

    console.log (snippet.get());

    model.ref('_page.snippet', snippet);

    page.render();

  });

});

app.ready(function(model) {

  editor.setValue(model.get('_page.snippet.code'));

  model.on('change', '_page.snippet.code', function(){

    �if (editor.getValue() !== model.get('_page.snippet.code')) {

      process.nextTick(function(){

        �editor.setValue(model.get('_page.snippet.code'), 1);

      });

    }

  });

  editor.getSession().on('change', function(e) {

    �if (editor.getValue() !== model.get('_page.snippet.code')) {

      process.nextTick(function(){

        �model.set('_page.snippet.code', editor.getValue());

      });

    }

  });

});

�DerbyJS View

The DerbyJS view (views/app.html) is quite straightforward. It contains built-in tags 

such as <Title:>, but most of the things are generated dynamically by the Ace editor 

after the page is loaded.

Chapter 9  Real-Time Apps with WebSocket, Socket.IO, and DerbyJS



327

Let's start by defining the title and head:

<Title:>

  Online Collaborative Code Editor

<Head:>

  <meta charset="UTF-8">

  �<meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1">

  <title>Editor</title>

  <style type="text/css" media="screen">

    body {

        overflow: hidden;

    }

    #editor {

        margin: 0;

        position: absolute;

        top: 0px;

        bottom: 0;

        left: 0;

        right: 0;

    }

  </style>

Then, load jQuery and Ace from content delivery networks (CDNs):

  �<script src="//cdnjs.cloudflare.com/ajax/libs/ace/1.1.01/ace.js"> 

</script>

  �<script src="//code.jquery.com/jquery-2.1.0.min.js"></script>

Apply a hidden input tag and editor element inside the body tag:

<Body:>

  �<input type="hidden" value="{_page.snippet.code}" class="code"/>

  <pre id="editor" value="{_page.snippet.code}"></pre>

Chapter 9  Real-Time Apps with WebSocket, Socket.IO, and DerbyJS



328

Initialize the Ace editor object as global (the editor variable), then set the theme 

and language (of course, JavaScript!) with setTheme() and setMode(), respectively:

<script>

    var editor = ace.edit("editor");

    editor.setTheme("ace/theme/twilight");

    editor.getSession().setMode("ace/mode/javascript");

</script>

The full source code of views/app.html is as follows:

<Title:>

  Online Collaborative Code Editor

<Head:>

  <meta charset="UTF-8">

  �<meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1">

  <title>Editor</title>

  <style type="text/css" media="screen">

    body {

        overflow: hidden;

    }

    #editor {

        margin: 0;

        position: absolute;

        top: 0px;

        bottom: 0;

        left: 0;

        right: 0;

    }

  </style>

  �<script src="//cdnjs.cloudflare.com/ajax/libs/ace/1.1.01/ace.js"> 

</script>

  �<script src="//code.jquery.com/jquery-2.1.0.min.js"></script>

<Body:>

  �<input type="hidden" value="{_page.snippet.code}" class="code"/>

  �<pre id="editor" value="{_page.snippet.code}"></pre>

Chapter 9  Real-Time Apps with WebSocket, Socket.IO, and DerbyJS



329

<script>

    var editor = ace.edit("editor");

    editor.setTheme("ace/theme/twilight");

    editor.getSession().setMode("ace/mode/javascript");

</script>

Note I t’s vital to preserve the same view name (i.e., app.html) as the DerbyJS 
app file (app.js), because this is how the framework knows what to use.

�Editor Tryout

If you followed all the previous steps, there should be app.js, index.js, server.js, 

views/app.html, and package.json files.

Let's install the modules with $ npm install. Start the databases with $ mongod 

and $ redis- server, and leave them running. Then, launch the app with $ node . 

or $ node index.

Open the first browser window at http://localhost:3000/ and it should redirect 

you to a new snippet (with ID in the URL). Open a second browser window at the same 

location and start typing (Figure 9-5). You should see the code updating in the first 

window! Congratulations! In just a few minutes, we built an app that might have taken 

programmers a few months to build back in the 2000s, when front-end JavaScript and 

AJAX-y web sites were first gaining popularity.

Chapter 9  Real-Time Apps with WebSocket, Socket.IO, and DerbyJS



330

The working project is available on GitHub at https://github.com/azat-co/

editor.

�Summary
In this chapter, we saw that there's native support for WebSocket in modern HTML5 

browsers, and we learned how to get started with Socket.IO and Express.js to harness 

the power of WebSocket in Node.js. In addition, we explored the mighty full-stack 

framework of DerbyJS in the editor example.

In the next chapter we'll move to the essential part of any real-world project, which 

is getting Node.js apps to a production-level readiness by adding extra configuration, 

monitoring, logging, and other things.

Figure 9-5.  Collaborative online code editor

Chapter 9  Real-Time Apps with WebSocket, Socket.IO, and DerbyJS

https://github.com/azat-co/editor
https://github.com/azat-co/editor


331
© Azat Mardan 2018 
A. Mardan, Practical Node.js, https://doi.org/10.1007/978-1-4842-3039-8_10

CHAPTER 10

Getting Node.js Apps 
Production Ready
Getting Node.js apps to a production-ready state is probably the most unexplored and 

skipped topic in the Node.js literature. The reason could be the lack of expertise in 

production deployments or the vast number of options and edge cases. However, getting 

apps to the production level is one of the most important topics in this entire book in my 

humble opinion.

Yes, the apps differ in structures, the frameworks they use, and the goals they try to 

achieve; however, there are a few commonalities worth knowing about—for example, 

environmental variables, multithreading, logging, and error handling. So, in this chapter, 

we cover the following topics:

•	 Environment variables

•	 Express.js in production

•	 Socket.IO in production

•	 Error handling

•	 Node.js domains for error handling

•	 Multithreading with Cluster

•	 Multithreading with Cluster2

•	 Event logging and monitoring

•	 Building tasks with Grunt

•	 Locking dependencies

•	 Git for version control and deployments

•	 Running tests in Cloud with TravisCI



332

�Environment Variables
Before deployment to the production environment, it’s good to prepare our app’s code. 

Let’s start with information that needs to be private and can’t be shared in a version 

control system. Sensitive information such as API keys, passwords, and database URIs 

are best stored in environment variables, not in the source code itself. Node.js makes it 

fairly easy to access these variables:

console.log(process.env.NODE_ENV,

  process.env.API_KEY,

  process.env.DB_PASSWORD)

Then, before the application is started, set these variables:

$ NODE_ENV=test API_KEY=XYZ DB_PASSWORD=ABC node envvar.js

Note  There’s no space between NAME and value (NAME=VALUE).

Typically, the environment variable setting is a part of the deployment or operations 

setup. In the next chapter, we deal with putting these variables on the server.

�Express.js in Production
In Express.js, use if/else statements to check for NODE_ENV values to use different levels 

of server logs. For development, we want more information, but in production, stack and 

exceptions might reveal a vulnerability, so we hide them:

const errorHandler = require('errorhandler')

if (process.env.NODE_ENV === 'development') {

  app.use(errorHandler({

    dumpExceptions: true,

    showStack: true

  }))

} else if (process.env.NODE_ENV === 'production') {

  app.use(errorHandler())

}

Chapter 10  Getting Node.js Apps Production Ready



333

You might be wondering, where this mystical and mysterious process.env.

NODE_ENV comes from. Very easy. It is an environment variable, and as with all other 

environment variables, developers can set them outside, in the shell (bash or zsh or 

other) environment. The environment variables are set with KEY=VALUE syntax or 

prefixed with export KEY=VALUE when set for the duration of the entire shell session. 

For example, to run the server in a production mode, just set an environment variable to 

production:

$ NODE_ENV=production node app.js

Notice that the env var NODE_ENV and the command node were on the same 

command and line (unless you continue the command on a new line with \). You 

must have them in one command. If you want to set the environment variable once for 

multiple commands, then export is your friend:

$ export NODE_ENV=production

$ node app.js

Note  By default, Express.js falls back to development mode as we see in 
the source code (http://bit.ly/1l7UEi6). Thus, set the NODE_ENV 
environment variable to production when in the production environment.

Let’s talk about sessions now. When using in-memory session store (the default 

choice), the data can’t be shared across different processes/servers (which we want in 

production mode). Conveniently, Express.js and Connect notify us about this as we see 

in this source code (http://bit.ly/1nnvvhf) with this message:

Warning: connect.session() MemoryStore is not

designed for a production environment, as it will leak

memory, and will not scale past a single process.

What we need here is a single source of truth—one location where all the session 

data is stored and can be accessed by multiple Node servers. This problem is solved 

easily by using a shared Redis instance as a session store. For example, for Express.js, 

execute the following:

Chapter 10  Getting Node.js Apps Production Ready

http://bit.ly/1l7UEi6
http://bit.ly/1l7UEi6
http://bit.ly/1nnvvhf
http://bit.ly/1nnvvhf


334

const session = require('express-session')

const RedisStore = require('connect-redis')(session)

app.use(session({

  store: new RedisStore(options),

  secret: '33D203B7-443B'

}))

The secret is just some random string to make hacking of the session harder. Ideally, 

you would take it from an environment variable to make it not be in the source code:

app.use(session({

  store: new RedisStore(options),

  secret: process.env.SESSION_SECRET

}))

Let me give you a more advanced example with session options that includes a 

special key and cookie domain:

const SessionStore = require('connect-redis')

const session = require('express-session')

app.use(session({

  key: process.env.SESSION_KEY',

  secret: process.env.SESSION_SECRET,

  store: new SessionStore({

    cookie: {domain: '.webapplog.com'},

    db: 1, // Redis DB

    host: 'webapplog.com'

}))

Options for connect-redis are client, host, port, ttl, db, pass, prefix, and 

url. For more information, please refer to the official connect-redis documentation 

(https://github.com/visionmedia/connect-redis).

Chapter 10  Getting Node.js Apps Production Ready

https://github.com/visionmedia/connect-redis


335

�Error Handling
As a rule of thumb, when readying your code for production, make sure to listen to all 

error events from http.Server and https.Server, i.e., always have error event 

listeners doing something like this:

server.on('error', (err) => {

  console.error(err)

  // ...

})

Then have a catchall event listener (uncaughtException) for unforeseen cases. 

This event is the last step before the app will crash, terminate the process, and burn your 

computer to ashes. Do not try to resume a normal operation when you have this event. 

Log, save work (if you have anything left), and exit like this:

process.on('uncaughtException', (err) => {

  console.error('uncaughtException: ', err.message)

  console.error(err.stack)

  process.exit(1) // 1 is for errors, 0 is okay

})

Alternatively, you can use the addListener method:

process.addListener('uncaughtException', (err) => {

  console.error('uncaughtException: ', err.message)

  console.error(err.stack);

  process.exit(1)

})

Just to give you another example, the following snippet is devised to catch uncaught 

exceptions, log them, notify development and operations (DevOps) via email/text 

messages (server.notify), and then exit:

process.addListener('uncaughtException', (err) => {

  server.statsd.increment('errors.uncaughtexception')

  �log.sub('uncaughtException').error(err.stack || err.message)

Chapter 10  Getting Node.js Apps Production Ready



336

  if (server.notify && server.set('env') === 'production') {

    server.notify.error(err)

  }

  process.exit(1)

})

You might wonder what to do in the event of these uncaught exceptions (the 

server.notify.error() method). It depends. Typically, at a minimum, we want 

them to be recorded, most likely in the logs. For this purpose, later we’ll cover a more 

advanced alternative to console.log—the Winston library (https://github.com/

winstonjs).

At a maximum, you can implement text message alerts effortlessly using the Twilio 

API (http://www.twilio.com). The following is an example in which helpers can send 

Slack or HipChat messages via their REST API and send an email containing an error 

stack:

const sendHipChatMessage = (message, callback) => {

  const fromhost = server

    .set('hostname')

    .replace('-','')

    .substr(0, 15); //truncate the string

  try {

    message = JSON.stringify(message)

  } catch(e) {}

  const data = {

    'format': 'json',

    auth_token: server.config.keys.hipchat.servers,

    room_id: server.config.keys.hipchat.serversRoomId,

    from: fromhost,

    �message: `v ${server.set('version')} message: ${message}`

  }

  request({

    url:'http://api.hipchat.com/v1/rooms/message',

    method:'POST',

Chapter 10  Getting Node.js Apps Production Ready

https://github.com/winstonjs
https://github.com/winstonjs
http://www.twilio.com


337

    qs: data}, function (e, r, body) {

      if (e) console.error(e)

      if (callback) return callback();

  })

}

server.notify = {}

server.notify.error = (e) => {

  const message = e.stack || e.message || e.name || e

  sendHipChatMessage(message)

  console.error(message)

  server.sendgrid.email({

    to: 'error@webapplog.com',

    from: server.set('hostname') + '@webapplog.com',

    �subject: `Webapp ${server.set('version')} error: "${e.name}"`,

    category: 'webapp-error',

    text: e.stack || e.message

  }, exit)

  return

}

�Multithreading with Cluster
There are a lot of opinions out there against Node.js that are rooted in the myth that 

Node.js-based systems have to be single-threaded. Although a single Node.js process 

is single-threaded, nothing could be further from the truth about the systems. And 

with the core cluster module (http://nodejs.org/api/cluster.html), we can 

spawn many Node.js processes effortlessly to handle the system’s load. These individual 

processes use the same source code, and they can listen to the same port. Typically, 

each process uses one machine’s CPU. There’s a master process that spawns all other 

processes and, in a way, controls them (it can kill, restart, and so on).

Here is a working example of an Express.js (version 4.x or 3.x) app that runs on four 

processes. At the beginning of the file, we import dependencies:

const cluster = require('cluster')

const http = require('http')

const numCPUs = require('os').cpus().length

const express = require('express')

Chapter 10  Getting Node.js Apps Production Ready

http://nodejs.org/api/cluster.html)


338

The cluster module has a property that tells us whether the process is master or 

child (master controls children). We use it to spawn four workers (the default workers 

use the same file, but devs can overwrite that with setupMaster (http://bit.

ly/2zs9Bsn)). In addition, we can attach event listeners and receive messages from 

workers (e.g., kill).

if (cluster.isMaster) {

  console.log (' Fork %s worker(s) from master', numCPUs)

  for (let i = 0; i < numCPUs; i++) {

    cluster.fork()

  }

  cluster.on('online', (worker) => {

    �console.log ('worker is running on %s pid', worker.process.pid)

  })

  cluster.on('exit', (worker, code, signal) => {

    �console.log('worker with %s is closed', worker.process.pid)

  })

}

The worker code is just an Express.js app with a twist. We would like to see that a 

request was handled by a different process. Each process has a unique ID. Let’s get the 

process ID:

} else if (cluster.isWorker) {

  const port = 3000

  �console.log(`worker (${cluster.worker.process.pid}) is now 

listening to http://localhost:${port}`)

  const app = express()

  app.get('*', (req, res) => {

    �res.send(200, `cluser ${cluster.worker.process.pid} responded \n`)

  })

  app.listen(port)

}

Chapter 10  Getting Node.js Apps Production Ready

http://bit.ly/2zs9Bsn
http://bit.ly/2zs9Bsn


339

The full source code of cluster.js can be found in practicalnode/code/ch10/

examples/cluster.js.

As usual, to start an app, run $ node cluster. There should be four (or two, 

depending on your machine’s architecture) processes, as shown in Figure 10-1.

Figure 10–1.  Starting four processes with Cluster

When we CURL with $ curl http://localhost:3000, there are different 

processes that listen to the same port and respond to us (Figure 10-2).

Chapter 10  Getting Node.js Apps Production Ready



340

�Multithreading with pm2
Achieving multithreading with pm2 is even simpler than with cluster because there’s no 

need to modify the source code. pm2 will pick up your server.js file and fork it into 

multiple processes. Each process will be listening on the same port, so your system will 

have load balanced between the processes. pm2 goes into the background because it 

works as a service. You can name each set of processes, view, restart, or stop them.

To get started with pm2, first you need to install it. You can do it globally on your 

production VM:

$ npm i -g pm2

Figure 10–2.  Server response is rendered by different processes.

Chapter 10  Getting Node.js Apps Production Ready



341

Once you have pm2, use start command with the option -i 0, which means 

automatically determine the number of CPUs and launch that many processes. Here’s an 

example of launching a multithreaded server from app.js:

$ pm2 start -i 0 app.js

Once the processes are running, get the list of them by using

$ pm2 ls

You can terminate all processes with

$ pm2 stop all

Alternatively, you can name your application which you want to scale up with --name:

$ pm2 start ./hello-world.js -i 0 --name "node-app"

and then restart or stop only that app by its name.

What’s good about pm2 is that you can use it for development too, because when you 

install pm2 with npm, you get the $ pm2-dev command. The way it works is very similar 

to $ nodemon or $ node-dev. It will monitor for any file changes in the project folder 

and restart the Node code when needed.

For Docker containers, use $ pm2-docker. It has some special features that make 

running Node inside of a container better. To get the $ pm2-docker command, simply 

install pm2 with npm globally, as was shown before.

�Event Logging and Monitoring
When things go south (e.g., memory leaks, overloads, crashes), there are two things 

software engineers can do:

	 1.	 Monitor via dashboard and health statuses (monitoring  

and REPL)

	 2.	 Analyze postmortems after the events have happened  

(Winston and Papertrail)

Chapter 10  Getting Node.js Apps Production Ready



342

�Monitoring
When going to production, software and development operations engineers need a way 

to get current status quickly. Having a dashboard or just an endpoint that spits out  

JSON-formatted properties is a good idea, including properties such as the following:

•	 memoryUsage: Memory usage information

•	 uptime: Number of seconds the Node.js process is running

•	 pid: Process ID

•	 connections: Number of connections

•	 loadavg: Load average

•	 sha: Secure Hash Algorithm (SHA) of the Git commit deploy and/or 

version tag of the deploy

Here’s an example of the Express.js route /status:

app.get('/status', (req, res) => {

  res.send({`

    pid: process.pid,`

    memory: process.memoryUsage(),`

    uptime: process.uptime()

  })

})

A more informative example with connections and other information is as follows:

const os = require('os')

const exec = require('child_process').exec

const async = require('async')

const started_at = new Date()

module.exports = (req, res, next) => {

  const server = req.app

  if(req.param('info')) {

    let connections = {}

    let swap

Chapter 10  Getting Node.js Apps Production Ready



343

    async.parallel([

      (done) => {

        exec('netstat -an | grep :80 | wc -l', (e, res) => {

          connections['80'] = parseInt(res,10)

          done()

        })

      },

      (done) => {

        exec(

          'netstat -an | grep :'

            + server.set('port')

            + ' | wc -l',

          (e, res) => {

            �connections[server.set('port')] = parseInt(res,10)

            done()

          }

        )

      },

      (done) => {

        �exec('vmstat -SM -s | grep "used swap" | sed -E "s/ 

[^0-9]*([0-9]{1,8}).*/\1/"', (e, res) => {

          swap = res

          done()

        })

      }], (e) => {

        res.send({

          status: 'up',

          version: server.get('version'),

          sha: server.et('git sha'),

          started_at: started_at,

          node: {

            version: process.version,

            �memoryUsage: Math.round(process.memoryUsage().rss / 1024 

/ 1024)+"M",

            uptime: process.uptime()

          },

Chapter 10  Getting Node.js Apps Production Ready



344

          system: {

            loadavg: os.loadavg(),

            �freeMemory: Math.round(os.freemem()/1024/1024)+"M"

          },

            env: process.env.NODE_ENV,

            hostname: os.hostname(),

            connections: connections,

            swap: swap

          })

      })

    }

    else {

      res.send({status: 'up'})

    }

 }

�REPL in Production

What can be better than poking around a live process and its context using the REPL 

tool? We can do this easily with production apps if we set up REPL as a server:

const net = require('net')

const options = {name: 'azat'}

net.createServer(function(socket) {

  repl.start(options.name + "> ", socket).context.app = app

}).listen("/tmp/repl-app-" + options.name)

Then, connect to the remote machine by using Secure Shell (SSH). Once on the 

remote machine, run:

$ telnet /tmp/repl-app-azat

You should be prompted with a more sign (>), which means you’re in the REPL.

Or, if you want to connect to the remote server right away, i.e., bypassing the SSH 

step, you can modify the code to this:

const repl = require('repl')

const net = require('net')

Chapter 10  Getting Node.js Apps Production Ready



345

const options = { name: 'azat' }

const app = {a: 1}

net.createServer(function(socket) {

  repl.start(options.name + "> ", socket).context.app = app

}).listen(3000)

Please use iptable to restrict the Internet protocol addresses (IPs) when using this 

approach. Then, straight from your local machine (where the hostname is the IP of the 

remote box), execute:

$ telnet hostname 3000

�Winston
Winston provides a way to have one interface for logging events while defining multiple 

transports, e.g., email, database, file, console, Software as a Service (SaaS), and so on. In 

other words, Winston is an abstraction layer for the server logs.

The list of transports supported by Winston includes lots of good services: Loggly 

(https://www.loggly.com), Riak, MongoDB, SimpleDB, Mail, Amazon SNS, Graylog2, 

Papertrail, Cassandra, and you can write to console and file too! (We used Papertrail at 

Storify.com to debug and it went so well that later we got acquired by a bigger company, 

and now Storify is a part of Adobe.)

It’s easy to get started with Winston. Install it into your project:

$ npm i -SE winston

In the code, implement the import and then you can log:

var winston = require('winston')

winston.log('info', 'Hello distributed log files!')

winston.info('Hello again distributed logs')

The power of Winston comes when you add transporters. To add and remove 

transporters, use the winston.add() and winston.remove() functions.

To add a file transporter, provide a file name:

winston.add(winston.transports.File, {filename: 'webapp.log'})

To remove a transporter, use:

winston.remove(winston.transports.Console)

Chapter 10  Getting Node.js Apps Production Ready

https://www.loggly.com
https://www.loggly.com
http://storify.com


346

For more information, go to the official documentation (http://bit.ly/2zs4xEm).

�Papertrail App for Logging

Papertrail (https://papertrailapp.com) is a SaaS that provides centralized storage 

and a web GUI to search and analyze logs. To use Papertrail with the Node.js app, do the 

following:

	 1.	 Write logs to a file and remote_sync (https://github.com/

papertrail/remote_syslog2) them to Papertrail

	 2.	 Send logs with winston (http://bit.ly/2zs4xEm), which is 

described earlier, and winston-papertrail (https://github.

com/kenperkins/winston-papertrail), directly to the service

�Building Tasks with Grunt
Grunt is a Node.js-based task runner. It performs compilations, minifications, linting, 

unit testing, and other important tasks for automation.

Install Grunt globally with npm:

$ npm install -g grunt-cli

Grunt uses Gruntfile.js to store its tasks. For example:

module.exports = function(grunt) {

  // Project configuration

  grunt.initConfig({

    pkg: grunt.file.readJSON('package.json'),

    uglify: {

      options: {

        �banner: '/*! <%= pkg.name %> <%= grunt.template.today 

("dd-mm-yyyy") %> */\n'

      },

Chapter 10  Getting Node.js Apps Production Ready

http://bit.ly/2zs4xEm
http://bit.ly/2zs4xEm
https://papertrailapp.com
https://papertrailapp.com
https://github.com/papertrail/remote_syslog2
https://github.com/papertrail/remote_syslog2
https://github.com/papertrail/remote_syslog2
http://bit.ly/2zs4xEm
http://bit.ly/2zs4xEm
https://github.com/kenperkins/winston-papertrail
https://github.com/kenperkins/winston-papertrail
https://github.com/kenperkins/winston-papertrail


347

      build: {

        src: 'src/<%= pkg.name %>.js',

        dest: 'build/<%= pkg.name %>.min.js'

      }

    }

  })

  // Load the plugin that provides the "uglify" task

  grunt.loadNpmTasks('grunt-contrib-uglify')

  // Default task

  grunt.registerTask('default', ['uglify'])

}

package.json should have plugins required by the grunt.loadNpmTasks() 

method. For example:

{

  "name": "grunt-example",

  "version": "0.0.1",

  "devDependencies": {

    "grunt": "~0.4.2",

    "grunt-contrib-jshint": "~0.6.3",

    "grunt-contrib-uglify": "~0.2.2",

    "grunt-contrib-coffee": "~0.10.1",

    "grunt-contrib-concat": "~0.3.0"

  }

}

Let’s move to the more complex example in which we use jshint, uglify, coffee, 

and concat plugins in the default task in Gruntfile.js.

Start by defining package.json:

module.exports = function(grunt) {

  grunt.initConfig({

    pkg: grunt.file.readJSON('package.json'),

Chapter 10  Getting Node.js Apps Production Ready



348

And then the coffee task:

    coffee: {

      compile: {

        files: {

The first parameter is the destination, and the second is source:

          �'source/<%= pkg.name %>.js': ['source/**/*.coffee']

          // Compile and concatenate into single file

        }

      }

    },

concat merges multiple files into one to reduce the number of HTTP requests:

    concat: {

      options: {

        separator: ';'

      },

This time, our target is in the build folder:

      dist: {

        src: ['source/**/*.js'],

        dest: 'build/<%= pkg.name %>.js'

      }

    },

The uglify method minifies our *.js file:

    uglify: {

      options: {

        �banner: '/*! <%= pkg.name %> <%= grunt.template.today 

("dd-mm-yyyy") %> */\n'

      },

      dist: {

        files: {

Chapter 10  Getting Node.js Apps Production Ready



349

Again, the first value is the destination; the second dynamic name is from the 

concat task:

          �'build/<%= pkg.name %>.min.js': ['<%= concat.dist.dest %>']

        }

      }

    },

jshint is a linter and shows errors if the code is not compliant:

    jshint: {

      files: ['Gruntfile.js', 'source/**/*.js'],

      options: {

        // options here to override JSHint defaults

        globals: {

          jQuery: true,

          console: true,

          module: true,

          document: true

        }

      }

    }

  })

Load the modules to make them accessible for Grunt:

grunt.loadNpmTasks('grunt-contrib-uglify')

grunt.loadNpmTasks('grunt-contrib-jshint')

grunt.loadNpmTasks('grunt-contrib-concat')

grunt.loadNpmTasks('grunt-contrib-coffee')

Lastly, define the default task as a sequence of subtasks:

  �grunt.registerTask('default', [ 'jshint', 'coffee','concat', 

'uglify'])

}

Chapter 10  Getting Node.js Apps Production Ready



350

To run the task, simply execute $ grunt or $ grunt default.

Gruntfile.js is in code/ch10/grunt-example.

The results of running $ gruntare shown in Figure 10-3.

Figure 10–3.  The results of the Grunt default task

�A Brief on Webpack
Someone might argue that a better alternative to Grunt might be Webpack. Maybe. Let’s 

see how to get started with Webpack. You need to have the webpack.config.js  

file in your project root. Luckily, this file is not of some weird format such as YML 

or JSON but of a good old Node module. So we start the webpack.config.js 

implementation with module.exports.

Chapter 10  Getting Node.js Apps Production Ready



351

At a bare minimum, you would have a starting point from which Webpack will 

unfold all the source code and its dependencies. This is entry. And you would have 

output that is the bundled and compiled file. Everything else is just extra and adds extra 

transpilers, source maps, and other features.

module.exports = {

  entry: "./jsx/app.jsx",

  output: {

    path: __dirname + '/js',

    filename: "bundle.js"

  },

  // ... More configurations

}

For example, here’s a Webpack configuration file from my new book on React.js 

called React Quickly (Manning, 2017) (http://bit.ly/1RbD6l6). In this config file, I 

point to the source file app.jsx, which is in the jsx folder. I write the resulting bundle 

file into the folder js. This bundle file is named bundle.js. It comes with source 

maps bundle.map.js because I included the devtool setting. module ensures 

that my JSX (a special language designed just for React) is converted into regular 

JavaScript. I use Babel for that via the library called babel-loader. Take a look at the 

entire config file:

module.exports = {

  entry: "./jsx/app.jsx",

  output: {

    path: __dirname + '/js',

    filename: "bundle.js"

  },

  devtool: '#sourcemap',

  stats: {

    colors: true,

    reasons: true

  },

Chapter 10  Getting Node.js Apps Production Ready

http://bit.ly/1RbD6l6


352

  module: {

    loaders: [

      {

        test: /\.jsx?$/,

        exclude: /(node_modules)/,

        loader: 'babel-loader'

      }

    ]

  }

}

The command to install Webpack locally is npm i webpack -ES (or without S if 

you are using npm v5+). Then execute the bundling/compilation with node_modules/.

bin/webpack. As with other tools, I do not recommend installing Webpack globally 

because that might lead to conflicts between versions.

So Webpack by default will look for the webpack.config.js file. Of course, you can 

name your file something other than webpack.config.js, but in this case you would 

have to tell Webpack what file to use. You can do so with the option --config, such as in 

node_modules/.bin/webpack --config my-weird-config-filename-example.

config.js.

There’s also a watch option that will rebuild the bundle file on any file change in the 

source. Just add --watch to the webpack command.

The way webpack works is by using loaders and plugins. What’s the difference? Plugins 

are more powerful, while loaders are more simplistic. For example, babel-loader is a 

loader that converts JSX into regular JavaScript. Contrary, the Hot Module Replacement 

(HMR) plugin is a plugin that enables partial updates on the Webpack server by sending 

chunks of data on WebSockets.

Speaking of HMR. It’s very cool and awesome. It can save you a lot of time. The 

idea is that you can modify your front-end app partially without losing app state. For 

example, after logging in, performing a search, and clicking a few times, you are deep 

down in your front-end application looking at a detailed view of some item. Without 

HMR, you have to perform this entire process each time you want to see a change in 

your code appear. Log in, enter search, find item, click, click, click. You get the idea. With 

HMR, you just edit code, save the file, and boom! Your app has the change (or not) at the 

exact same view. In other words, your app retains state. Hot Module Replacement is a 

wonderful feature.

Chapter 10  Getting Node.js Apps Production Ready



353

You want to use webpack dev server for HMR. This dev server is built on Express, by 

the way. For an HMR guide, see this documentation because Webpack HMR changes fast 

and by the time you read this my example may be out-of-date.

Loaders are awesome too. Example of loaders include libraries to work with CSS, 

images, and of course JavaScript. For example, css-loader will allow to use import and 

require in the Node code to import CSS code, while style-loader will inject a CSS 

style into the DOM with a <script> tag. Crazy, huh?

The bottom line is that Webpack is powerful. Use it.

�Locking Dependencies
Consider this scenario: we use Express.js that depends on, say, Pug of the latest version 

(*). Everything works until, unknown to us, Pug is updated with breaking changes. 

Express.js now uses Pug that breaks our code. No bueno.

Not-locking versions is a common convention for npm modules (as discussed in 

Chapter 12), i.e., they don’t lock the versions of their dependencies. So, as you might 

guess, this may lead to a trouble because when a dependency (or a dependency of a 

dependency) gets a breaking change, our apps won’t work.

Using ^ or * or leaving the version field in package.json blank will lead to higher 

versions of dependencies down the road when, after some time, you or someone else (or 

automated CI/CD server) executes npm install.

One solution is to commit node_modules. Why do this? Because, even if we lock 

dependency A in our package.json, most likely this module A has a wild card * or 

version range in its package.json. Therefore, our app might be exposed to unpleasant 

surprises when an update to the A module dependency breaks our system.

And don’t send me hate mail (I delete it anyway). We committed node_modules 

to Git at DocuSign and it worked fine. We slept well at night knowing that if npm goes 

down, which happened frequently, we can re-deploy at any moment. (And look how 

good and beautiful the new DocuSign web app is now: http://bit.ly/2j2rWEF.)

Committing modules to your version control system (Git, SVN) is still a good choice 

because 5, 10, or 15 years down the road, when your production application is still in use, 

npm may not be around. It’s just a startup and is still not profitable. Or npm registry may 

become corrupted—it’s just CouchDB after all. Or the library maintainers can decide to 

remove the library that you rely on from their repository. (left-pad unpublish broke 

half the web: http://bit.ly/2zqQuyN). Or the version you use might be removed.  

Chapter 10  Getting Node.js Apps Production Ready

https://webpack.js.org/concepts/hot-module-replacement
http://bit.ly/2j2rWEF
http://bit.ly/2zqQuyN
http://bit.ly/2zqQuyN
http://bit.ly/2zqQuyN


354

Or someone may put some malicious code into a dependency you’re using, or the 

Internet in your area might be down. Or npm version 16 will be incompatible with your 

code (very likely, since last few npm releases made drastic changes and broke a lot of 

good projects, such as Create React Native App which is still incompatible with npm v5 

many months after the npm 5 release). Or the aliens might cut the wire, and your npm 

i won’t reach npmjs.org. Having your own repository and not depending on npm is a 

better choice. Consider private repositories with Nexus or Artifactory as well.

There’s a significant drawback in committing modules: binaries often need to be 

rebuilt on different targets (e.g., macOS vs. Linux). So, by skipping $ npm install and 

not checking binaries, development operations engineers have to use $ npm rebuild 

on targets. Of course, the size of the module can blow up your Git repo drastically.

The same problem might be (somewhat better) mitigated by using $ npm 

shrinkwrap (http://bit.ly/2zroWti). This command creates npm-shrinkwrap.

json, which has every subdependency listed/locked at the current version. Now, magically, 

$ npm install skips package.json and uses npm-shrinkwrap.json instead!

When running Shrinkwrap, be careful to have all the project dependencies installed 

and to have only them installed (run $ npm install and $ npm prune to be sure). 

For more information about Shrinkwrap and locking versions with node_modules, 

see the article by core Node.js contributors: “Managing Node.js Dependencies with 

Shrinkwrap” at http://bit.ly/2zrHyJK.

In version of npm 5, a new file is created automatically. It’s called package-lock.json. 

It has all the dependencies with their exact versions saved. No chance for a screwup.  

The package-lock.json file could look like this:

{

  "name": "blog-mongoose",

  "version": "1.0.1",

  "lockfileVersion": 1,

  "requires": true,

  "dependencies": {

    "accepts": {

      "version": "1.3.4",

      �"resolved": "https://registry.npmjs.org/accepts/-/accepts-

1.3.4.tgz",

      "integrity": "sha1-hiRnWMfdbSGmR0/whKR0DsBesh8=",

Chapter 10  Getting Node.js Apps Production Ready

http://npmjs.org
http://bit.ly/2zroWti
http://bit.ly/2zrHyJK
http://bit.ly/2zrHyJK
http://bit.ly/2zrHyJK


355

      "requires": {

        "mime-types": "2.1.17",

        "negotiator": "0.6.1"

      }

    },

    "acorn": {

      "version": "3.3.0",

      �"resolved": "https://registry.npmjs.org/acorn/-/acorn-

3.3.0.tgz",

      "integrity": "sha1-ReN/s56No/JbruP/U2niu18iAXo="

    },

    "acorn-globals": {

      "version": "3.1.0",

      �"resolved": "https://registry.npmjs.org/acorn-globals/-/acorn-

globals-3.1.0.tgz",

      "integrity": "sha1-/YJw9x+7SZawBPqIDuXUZXOnMb8=",

      "requires": {

        "acorn": "4.0.13"

      },

When there’s package-lock.json, npm will use that file to reproduce  

node_modules. npm-shrinkwrap.json is backwards-compatible with npm v2–4 and 

it takes precedence over package-lock.json, which developers actually shouldn’t 

publish to npm if they are publishing an npm module (see Chapter 12 on publishing 

npm modules). Another difference is that package-lock.json is opt-out, since it’s the 

default in version 5, while npm-shrinkwrap.json is opt-in, since you have to execute 

an extra command to generate it ($ npm shrinkwrap). For an attempt at explanation, 

see the official docs at https://docs.npmjs.com/files/package-locks.

Are you confused when to use lock and when shrinkwrap? Here’s my rule of thumb: 

for your own apps, use package-lock.json because it’s automatic (only in npm v5) 

or npm-shrinkwrap.json to be on a safer side. Commit them to Git or just commit the 

entire node_modules. For the npm modules that you publish, don’t lock the versions 

at all.

Chapter 10  Getting Node.js Apps Production Ready

https://docs.npmjs.com/files/package-locks


356

If npm is slow or not locking your dependencies enough (as was the case with 

version 4, but version 5 is fast enough), then take a look at two other package managers: 

yarn and pnpm.

•	 yarn: Uses npm registry but often faster and more predictable due to 

lock files

•	 pnpm: Fully command-compatible-with-npm tool which uses 

symlinks and thus is blazingly fast and space efficient.

�Git for Version Control and Deployments
Git has become not only a standard version control system, but also—because of its 

distributed nature —Git has become the default transport mechanism of deployment 

because it enables you to send source code.

Platform as a service (PaaS) solutions often leverage Git for deploys, because it’s 

already a part of many development flows. Instead of “pushing” your code to GitHub or 

BitBucket, the destination becomes a PaaS-like Heroku, Azure, or Nodejitsu. Git is also 

used for continuous deployment and continuous integration (e.g., TravisCI, CircleCI).

Even when Infrastructure-as-a-Service (IaaS) solutions are used, developers can 

leverage automated systems like Chef (http://docs.opscode.com).

�Installing Git
To install Git for your OS, download a package from the official website (http://git-

scm.com/downloads). Then, follow these steps:

	 1.	 In your terminal, type these commands, substituting "John Doe" 

and johndoe@example.com with your name and email address:

$ git config --global user.name "John Doe"

$ git config --global user.email johndoe@example.com

	 2.	 To check the installation, run:

$ git version

Chapter 10  Getting Node.js Apps Production Ready

https://yarnpkg.com/en/
https://pnpm.js.org/
http://docs.opscode.com
http://docs.opscode.com
https://git-scm.com/downloads
﻿http://git-scm.com/downloads﻿
﻿http://git-scm.com/downloads﻿


357

	 3.	 You should see something like the following in your terminal 

window, as shown in Figure 10-4 (your version might vary—in our 

case, it’s 1.8.3.2):

git version 1.8.3.2

Figure 10–4.  Configuring and testing the Git installation

�Generating SSH Keys
SSH keys provide a secure connection without the need to enter a username and 

password every time. For GitHub repositories, the latter approach is used with HTTPS 

URLs (e.g., https://github.com/azat-co/rpjs.git,) and the former with SSH URLs 

(e.g., git@github.com:azat-co/rpjs.git).

To generate SSH keys for GitHub on macOS/Unix machines, do the following:

	 1.	 Check for existing SSH keys:

$ cd ~/.ssh

$ ls -lah

	 2.	 If you see some files like id_rsa (please refer to Figure 10-5 for an 

example), you can delete them or back them up into a separate 

folder by using the following commands:

$ mkdir key_backup

$ cp id_rsa* key_backup

$ rm id_rsa*

Chapter 10  Getting Node.js Apps Production Ready



358

Figure 10–5.  Generating an RSA key pair for SSH and copying the public RSA key 
to a clipboard

	 3.	 Now we can generate a new SSH key pair using the ssh-keygen 

command, assuming we are in the ~/.ssh folder:

$ ssh-keygen -t rsa -C "your_email@youremail.com"

	 4.	 Next, answer the questions. It’s better to keep the default name 

id_rsa. Then, copy the content of the id_rsa.pub file to your 

clipboard:

$ pbcopy < ~/.ssh/id_rsa.pub

Alternatively, you can open the id_rsa.pub file in the default editor:

$ open id_rsa.pub

or in TextMate:

$ mate id_rsa.pub

Chapter 10  Getting Node.js Apps Production Ready



359

Tip SSH  connections are also used to connect to IaaS remote machines.

After you have copied the public key, go to github.com (http://github.com), 

log in, go to your account settings, select “SSH key,” and add the new SSH key. Assign a 

name (e.g., the name of your computer) and paste the value of your public key.

To check whether you have an SSH connection to GitHub, type and execute the 

following command in your terminal:

$ ssh -T git@github.com

If you see something such as,

Hi your-GitHub-username! You've successfully authenticated,  

but GitHub does not provide shell access.

then everything is set up.

While connecting to GitHub for the first time, you may receive the warning 

“authenticity of host … can’t be established.” Please don’t be confused with this message; 

just proceed by answering yes, as shown in Figure 10-6.

Figure 10–6.  Testing the SSH connection to GitHub for the very first time

If, for some reason, you have a different message, please repeat steps 3 and 4 from 

the previous section on SSH Keys and/or reupload the content of your *.pub file to 

GitHub.

Chapter 10  Getting Node.js Apps Production Ready

http://github.com
http://github.com


360

Warning  Keep your id_rsa file private. Don’t share it with anybody!

More instructions are available at GitHub: Generating SSH Keys (https://help.

github.com/articles/generating-ssh-keys). Windows users might find useful the 

SSH key generator feature in PuTTY (http://www.putty.org).

In case you’ve never used Git and/or GitHub, or you’ve forgotten how to commit 

code, the next section provides a short tutorial.

�Creating a Local Git Repository
To create a GitHub repository, go to github.com (http://github.com), log in, and 

create a new repository. There will be an SSH address; copy it. In your terminal window, 

navigate to the project folder to which you would like to push GitHub. Then, do the 

following:

	 1.	 Create a local Git and .git folder in the root of the project folder:

$ git init

	 2.	 Add all the files to the repository and start tracking them:

$ git add .

	 3.	 Make the first commit:

$ git commit -m "initial commit"

�Pushing the Local Repository to GitHub
You can create a new repository on github.com via a web interface. Then, copy your 

newly created repo’s address (Git SSH URI), which looks something like git@github.

com:username/reponame. Follow the steps to add the address to your local Git:

	 1.	 Add the GitHub remote destination:

$ git remote add your-github-repo-ssh-url

Chapter 10  Getting Node.js Apps Production Ready

https://help.github.com/articles/generating-ssh-keys
https://help.github.com/articles/generating-ssh-keys
https://help.github.com/articles/generating-ssh-keys
http://www.putty.org
http://github.com
http://github.com
http://github.com


361

It might look something like this:

$ git remote add origin git@github.com:azat-co/simple-

message-board.git

	 2.	 Now everything should be set to push your local Git repository to 

the remote destination on GitHub with the following command:

$ git push origin master

	 3.	 You should be able to see your files at github.com (http://

github.com) under your account and repository.

Later, when you make changes to the file, there is no need to repeat all these steps. 

Just execute:

$ git add .

$ git commit -am "some message"

$ git push origin master

If there are no new untracked files that you want to start tracking, type the following:

$ git commit -am "some message"

$ git push origin master

To include changes from individual files, run the following:

$ git commit filename -m "some message"

$ git push origin master

To remove a file from the Git repository, execute:

$ git rm filename

For more Git commands, go to:

$ git --help

Chapter 10  Getting Node.js Apps Production Ready

http://github.com
http://github.com
http://github.com


362

Note I  advise against committing the node_modules folder to the repository 
for a project intended to be used in other applications, i.e., for a module. On 
the other hand, it’s a good practice to commit that folder along with all the 
dependencies for a standalone application, because future updates might break 
something unintentionally.

�Running Tests in Cloud with TravisCI
TravisCI is an SaaS continuous integration system that allows you to automate testing 

on each GitHub push (e.g., $ git push origin master). Alternative services include 

Codeship (https://www.codeship.io), CircleCI (https://circleci.com), and 

many others (http://bit.ly/1ipdxxt).

TravisCI is more common among open-source projects and has a similar 

configuration to other systems, i.e., a YAML file. In case of Node.js programs, it can look 

like this:

language: node_js

node_js:

  - "0.11"

  - "0.10"

In this configuration, 0.11 and 0.10 are versions of Node.js to use for testing. These 

multiple Node.js versions are tested on a separate set of virtual machines (VMs). The 

following configuration file can be copied and used (it’s recommended by TravisCI):

language: node_js

node_js:

  - "0.11"

  - "0.10"

  - "0.8"

  - "0.6"

npm’s package.json has a property scripts.test that is a string to execute 

scripts, so we can put the mocha command in it:

echo '{"scripts": {"test": "mocha test-expect.js"}}' > package.json

Chapter 10  Getting Node.js Apps Production Ready

https://www.codeship.io
https://www.codeship.io
https://circleci.com
http://bit.ly/1ipdxxt
http://bit.ly/1ipdxxt


363

The previous line yields the following package.json file:

{"scripts": {"test": "mocha test-expect.js"}}

Then, we can run $ npm test successfully.

On the other hand, we can use any other command that invokes the execution of the 

test, such as the Makefile command $ make test:

echo '{"scripts": {"test": "make test"}}' > package.json

TravisCI uses this npm instruction to run the tests.

After all the preparation is done in the form of the YAML file and the  

package.json property, the next step is to sign up for TravisCI (free for open-source 

project/public repositories on GitHub) and select the repository from the web interface 

on https://travis-ci.org.

For more information on the TravisCI configuration, follow the project in this 

chapter or see Building a Node.js project (http://bit.ly/2zrw7l7).

�TravisCI Configuration
There’s no database in our application yet, but it’s good to prepare the TravisCI 

configuration right now. To add a database to the TravisCI testing instance, use:

services:

  - mongodb

By default, TravisCI starts the MongoDB instance for us on the local host, port 27017:

language: node_js

node_js:

  - "0.11"

  - "0.10"

  - "0.8"

  - "0.6"

services:

  - mongodb

That’s it! The test build will be synced on each push to GitHub.

Chapter 10  Getting Node.js Apps Production Ready

https://travis-ci.org
http://bit.ly/2zrw7l7
http://bit.ly/2zrw7l7
http://bit.ly/2zrw7l7


364

If your tests fail even locally right now, don’t despair, because that’s the whole point 

of TDD. In the next chapter, we’ll hook up the database and write more tests for fun.

Because of the GitHub hooks to TravisCI, the test build should start automatically. 

On their completion, contributors can get email/Internet Relay Chat (IRC) notifications.

�Summary
In this chapter, we briefly touched on environment variables, went through the basics of 

Git, and generated SSH keys. We used Grunt for predeploy tasks such as concatenation, 

minification, and compilation; implemented clusters, monitoring, error handling, and 

logging; and configured TravisCI to run tests.

In the next chapter, we’ll proceed to cover the deployment of the app to PaaS 

(Heroku) and IaaS (Amazon Web Services). We’ll also show basic examples of Nginx, 

Varnish Cache and Upstart configurations.

Chapter 10  Getting Node.js Apps Production Ready



365
© Azat Mardan 2018 
A. Mardan, Practical Node.js, https://doi.org/10.1007/978-1-4842-3039-8_11

CHAPTER 11

Deploying Node.js Apps
As we approach the end of the book, there’s a vital step we have to explore: the 

deployment itself. To help you navigate between PaaS and IaaS options, and have some 

scripts you can use on your servers, we’ll learn the following topics:

•	 Deploying to Heroku (PaaS)

•	 Deploying to Amazon Web Services (AWS)

•	 Keeping Node.js apps alive with forever, Upstart, and init.d

•	 Serving static resources properly with Nginx

•	 Caching with Varnish

�Deploying to Heroku
Heroku (http://www.heroku.com) is a polyglot Agile application deployment Platform 

as a Service (PaaS). The benefits of using PaaS over other cloud solutions include the 

following:

	 1.	 It’s easy to deploy, i.e., just one Git command to deploy: $ git 

push heroku master.

	 2.	 It’s easy to scale, e.g., log in to Heroku.com and click a few options.

	 3.	 It’s easy to secure and maintain, e.g., no need to set up startup 

scripts manually.

Heroku works similarly to AWS Beanstalk, Windows Azure (http://azure.

microsoft.com/en-us), and many others in the sense that you can use Git to deploy 

applications. In other words, Heroku uses ubiquitous Git as its deployment mechanism. 

This means that after becoming familiar with Heroku and comfortable with Git, and after 

http://www.heroku.com
http://www.heroku.com
http://heroku.com
http://azure.microsoft.com/en-us
http://azure.microsoft.com/en-us)
http://azure.microsoft.com/en-us)


366

creating accounts with cloud PaaS providers, it’s fairly easy to deploy Node.js apps to 

them as well.

To get started with the process, we need to follow these steps:

	 1.	 Install Heroku Toolbelt (https://toolbelt.heroku.com)—a 

bundle that includes Git and others tools.

	 2.	 Log in to Heroku, which should upload a public SSH key file  

(e.g., id_rsa.pub) to the cloud (i.e., heroku.com).

To set up Heroku, follow these steps:

	 1.	 Sign up at http://heroku.com. Currently, they have a free 

account. To use it, select all options as minimum (0) and the 

database as shared.

	 2.	 Download Heroku Toolbelt at https://toolbelt.heroku.com. 

Toolbelt is a package of tools, i.e., libraries, that consists of Heroku, 

Git, and Foreman (https://github.com/ddollar/foreman). 

For users of older Macs, get this client (http://assets.heroku.

com/heroku-client/heroku-client.tgz) directly. If you use 

another OS, browse Heroku Client GitHub (https://github.

com/heroku/heroku).

	 3.	 After the installation is done, you should have access to the 

heroku command. To check it and log in to Heroku, type:

$ heroku login

The system asks you for Heroku credentials (username and password), and if you’ve 

already created the SSH key, it uploads it automatically to the Heroku web site, as shown 

in Figure 11-1.

Chapter 11  Deploying Node.js Apps

https://toolbelt.heroku.com
https://toolbelt.heroku.com
http://heroku.com
http://heroku.com
https://toolbelt.heroku.com
https://github.com/ddollar/foreman
http://assets.heroku.com/heroku-client/heroku-client.tgz)
http://assets.heroku.com/heroku-client/heroku-client.tgz)
https://github.com/heroku/heroku
https://github.com/heroku/heroku


367

	 4.	 If everything went well, to create a Heroku application inside your 

specific project folder, you should be able to run:

$ heroku create

Official instructions are available at Heroku: Quickstart (https://devcenter.

heroku.com/articles/quickstart) and Heroku: Node.js (https://devcenter.

heroku.com/articles/getting-started-with-nodejs).

Then, for each app we need to deploy, perform the following setup steps:

	 1.	 Create the local Git repository.

	 2.	 Initialize the Heroku app with $ heroku create (adds a Git 

remote destination to Heroku cloud).

Last, initial deployment as well as each change is deployed by (1) staging the  

commit with $ git add, (2) committing the changes to the local repository with  

$ git commit, and (3) pushing the changes to the Heroku remote $ git push 

heroku master.

On deployment, Heroku determines which stack to use (Node.js, in our case). For 

this reason, we need to provide the mandatory files package.json, which tells Heroku 

what dependencies to install; Procfile, which tells Heroku what process to start; and 

Node.js app files (e.g., server.js). The content of Procfile can be as minimalistic as 

web: node server.js.

Figure 11-1.  The response to a successful command $ heroku login command

Chapter 11  Deploying Node.js Apps

https://devcenter.heroku.com/articles/quickstart
https://devcenter.heroku.com/articles/quickstart
https://devcenter.heroku.com/articles/quickstart
https://devcenter.heroku.com/articles/getting-started-with-nodejs
https://devcenter.heroku.com/articles/getting-started-with-nodejs
https://devcenter.heroku.com/articles/getting-started-with-nodejs


368

Here is a step-by-step breakdown using Git to deploy to Heroku:

	 1.	 Create a local Git repository and .git folder if you haven’t done 

so already:

$ git init

	 2.	 Add files:

$ git add .

	 3.	 Commit files and changes:

$ git commit -m "my first commit"

	 4.	 Create the Heroku Cedar stack application (Cedar stack is a 

special technology that Heroku uses to create and run its apps) 

and add the Git remote destination with this command:

$ heroku create

If everything went well, the system should tell you that the remote 

has been added and the app has been created, and it should give 

you the app name.

	 5.	 To look up the remote type and execute (optional), do the 

following:

$ git remote show

	 6.	 Deploy the code to Heroku with:

$ git push heroku master

Terminal logs should tell you whether the deployment went 

smoothly (i.e., succeeded). If you have a different branch you’d 

like to use, you can use $ git push heroku branch_name, just 

like you would do with any other Git destination  

(e.g., GitHub).

	 7.	 To open the app in your default browser, type:

$ heroku open

Chapter 11  Deploying Node.js Apps



369

or just go to the URL of your app and type something like: 

http://yourappname-NNNN.herokuapp.com.

	 8.	 To look at the Heroku logs for this app, type:

$ heroku logs

To update the app with the new code, type the following only:

$ git add –A

$ git commit -m "commit for deploy to heroku"

$ git push heroku master

Note Y ou’ll be assigned a new application URL each time you create a new 
Heroku app with the command $ heroku create.

To propagate environment variables to the Heroku cloud, use the heroku config 

set of commands:

•	 $ heroku config: List of environment variables

•	 $ heroku config:get NAME: Value of NAME environment variable

•	 $ heroku config:set NAME=VALUE: Setting the value of NAME to 

VALUE

•	 $ heroku config:unset NAME: Removal of the environment 

variable

Note  Configuration variable data is limited to 16KB for each app.

To use the same environment variables locally, you can store them in the .env file in 

the root of your project. The format is NAME=VALUE. For example:

DB_PASSWORD=F2C9C45

API_KEY=7C311DA3126F

Chapter 11  Deploying Node.js Apps

http://yourappname-NNNN.herokuapp.com


370

Warning T here shouldn’t be any spaces between the name, equal sign, and the 
value. After the data are in .env, just use Foreman (part of Heroku Toolbelt):

$ foreman start

Tip  Don’t forget to add your .env to .gitignore to avoid sharing it in the 
version control system.

As an alternative to Foreman and the .env file, it’s possible just to set environment 

variables before starting an app:

$ DB_PASSWORD=F2C9C45 API_KEY=7C311DA3126F node server

or in your profile file (e.g., ~/.bashrc):

export DB_PASSWORD=F2C9C45

export API_KEY=7C311DA3126F

Needless to say, if you have more than one app and/or API key, then you can use 

names such as APPNAME_API_KEY.

To sync your local .env seamlessly with cloud variables, use the heroku-config 

plugin (http://bit.ly/2zqKarh). To install it, run:

$ heroku plugins:install heroku-config

To get variables from the cloud to the local file, type:

$ heroku config:pull

To overwrite cloud data with local variables, type:

$ heroku config:push

For official information on setting up environment variables in Heroku, see 

Configuration and Config Vars (https://devcenter.heroku.com/articles/

config-vars). The article might require Heroku login.

There are a multitude of add-ons for Heroku (https://addons.heroku.com).  

Each add-on is like a mini service associated with a particular Heroku app. For example, 

MongoHQ (https://addons.heroku.com/mongohq) provides the MongoDB 

Chapter 11  Deploying Node.js Apps

http://bit.ly/2zqKarh
http://bit.ly/2zqKarh
http://bit.ly/2zqKarh
https://devcenter.heroku.com/articles/config-vars
https://devcenter.heroku.com/articles/config-vars
https://devcenter.heroku.com/articles/config-vars
https://addons.heroku.com
https://addons.heroku.com
https://addons.heroku.com/mongohq
https://addons.heroku.com/mongohq


371

database, and the Postgres add-on (https://addons.heroku.com/heroku-

postgresql) does the same for the PostgreSQL database. SendGrid (https://addons.

heroku.com/sendgrid) allows sending transactional emails. In Figure 11-2, you can 

see the beginning of the long list of Heroku add-ons.

Figure 11-2.  Heroku supports a multitude of add-ons

Most of the add-ons pass information to the Node.js app (and others, such as Rails) 

via environment variables. For example, the MongoHQ URI is provided in

process.env.MONGOHQ_URL

Chapter 11  Deploying Node.js Apps

https://addons.heroku.com/heroku-postgresql
https://addons.heroku.com/heroku-postgresql
https://addons.heroku.com/heroku-postgresql
https://addons.heroku.com/sendgrid
https://addons.heroku.com/sendgrid
https://addons.heroku.com/sendgrid


372

To make our Node.js apps work locally and remotely, all we need to do is to specify 

the local URI to fall back to when the environment variable is not set:

const databaseUrl = process.env.MONGOHQ_URL || 

"mongodb://@127.0.0.1:27017/practicalnode"

The same thing goes for the server port number:

const port = process.env.PORT || 5000

app.listen(port)

Note I t’s possible to copy a database connection string (and other data) from the 
Heroku web interface. However, it’s not recommended that you do so.

Some useful Git and Heroku commands are as follows:

•	 $ git remote -v: List defined remote destinations

•	 $ git remote add NAME URL: Add a new remote destination with 

NAME and URL (usually SSH or HTTPS protocols)

•	 $ heroku start: Start the app in the cloud

•	 $ heroku info: Pull the app’s info

�Deploying to Amazon Web Services
Cloud is eating the world of computing. There are private and public clouds. AWS, probably 

the most popular choice among the public cloud offerings, falls under the IaaS category. 

The advantages of using an IaaS such as AWS over PaaS-like Heroku are as follows:

	 1.	 It’s more configurable (any services, packages, or operation systems).

	 2.	 It’s more controllable. There are no restrictions or limitations.

	 3.	 It’s cheaper to maintain. PaaS can quickly cost a fortune for high-

performance resources.

In this tutorial, we use 64-bit Amazon Linux AMI (http://aws.amazon.com/

amazon-linux-ami) with CentOS. It might be easier to use the Extra Packages for 

Enterprise Linux (EPEL) package manager to install Node.js and npm. If you don’t have 

EPEL, skip to the manual C++ build instructions.

Chapter 11  Deploying Node.js Apps

http://aws.amazon.com/amazon-linux-ami
http://aws.amazon.com/amazon-linux-ami
http://aws.amazon.com/amazon-linux-ami


373

Assuming you have your Elastic Compute Cloud (EC2) instance up and running, 

make an SSH connection into it and see if you have yum with EPEL (https://

fedoraproject.org/wiki/EPEL). To do so, just see if this command says epel:

$ yum repolist

If there’s no mentions of epel, run:

$ rpm -Uvh http://download-i2.fedoraproject.org/pub/epel/6/i386/ 

epel-release-6-8.noarch.

rpm

Then, to install both Node.js and npm, simply run this command:

$ sudo yum install nodejs npm --enablerepo=epel

This might take a while. Answer with y as the process goes on. In the end, you should 

see something like this (your results may vary):

Installed:

  nodejs.i686 0:0.10.26-1.el6           �npm.noarch 0:1.3.6-4.el6

Dependency Installed:

…

Dependency Updated:

…

Complete!

You probably know this, but just in case, to check installations, type the following:

$ node –V

$ npm –v

For more information on using yum, see Managing Software with yum (https://

www.centos.org/docs/5/html/yum) and Tips on securing your EC2 instance 

(http://aws.amazon.com/articles/1233).

So, if the previous EPEL option didn’t work for you, follow these build steps. On your 

EC2 instance, install all system updates with yum:

$ sudo yum update

Chapter 11  Deploying Node.js Apps

https://fedoraproject.org/wiki/EPEL
https://fedoraproject.org/wiki/EPEL
https://fedoraproject.org/wiki/EPEL
http://www.centos.org/docs/5/html/yum
http://www.centos.org/docs/5/html/yum
http://www.centos.org/docs/5/html/yum
http://aws.amazon.com/articles/1233
http://aws.amazon.com/articles/1233


374

Then, install the C++ compiler (again with yum):

$ sudo yum install gcc-c++ make

Do the same with openssl:

$ sudo yum install openssl-devel

Then install Git, which is needed for delivering source files to the remote machine. 

When Git is unavailable, rsync (http://ss64.com/bash/rsync.html) can be used:

$ sudo yum install git

Lastly, clone the Node repository straight from GitHub:

$ git clone git://github.com/joyent/node.git

and build Node.js:

$ cd node

$ git checkout v0.10.12

$ ./configure

$ make

$ sudo make install

Note  For a different version of Node.js, you can list them all with $ git tag -l 
and check out the one you need.

To install npm, run:

$ git clone https://github.com/isaacs/npm.git

$ cd npm

$ sudo make install

Relax and enjoy the build. The next step is to configure AWS ports/firewall settings. 

Here’s a short example of server.js, which outputs “Hello readers” and looks like this:

const http = require('http')

http.createServer((req, res) => {

  res.writeHead(200, {'Content-Type': 'text/plain'})

  console.log ('responding')

Chapter 11  Deploying Node.js Apps

http://ss64.com/bash/rsync.html)


375

  res.end(`Hello readers!

    If you see this, then your Node.js server

    is running on AWS EC2!`)

  }).listen(80, () => {

    console.log ('server is up')

})

On the EC2 instance, either configure the firewall to redirect connections (e.g., port 

to Node.js 3000, but this is too advanced for our example) or disable the firewall (okay for 

our quick demonstration and development purposes):

$ service iptables save

$ service iptables stop

$ chkconfig iptables off

In the AWS console, find your EC2 instance and apply a proper rule to allow for 

inbound traffic, as shown in Figure 11-3. For example:

Type: HTTP

Figure 11-3.  Allowing inbound HTTP traffic on port 80

The other fields fill automatically:

Protocol: TCP

Port Range: 80

Source: 0.0.0.0/0

Chapter 11  Deploying Node.js Apps



376

Or we can just allow all traffic (again, for development purposes only), as shown in 

Figure 11-4.

Figure 11-4.  Allowing all traffic for development mode only

Now, while the Node.js app is running, executing $ netstat -apn | grep 80, the 

remote machine should show the process. For example,

tcp       0      0 0.0.0.0:80            0.0.0.0:*

LISTEN     1064/node

And from your local machine, i.e., your development computer, you can either use 

the public IP or the public DNS (the Domain Name System) domain, which is found and 

copied from the AWS console under that instance’s description. For example:

$ curl XXX.XXX.XXX.XXX –v

Or, just open the browser using the public DNS.

For the proper iptables setup, please consult experienced development operations 

engineers and manuals, because this is an important security aspect and covering it 

properly is out of the scope of this book. However, here are some commands to redirect 

traffic to, say, port 3001:

$ sudo iptables -A PREROUTING -t nat -i eth0 -p tcp --dport 80 -j 

REDIRECT --to-port 8080

$ sudo iptables -t nat -A INPUT -p tcp --dport 80 -j REDIRECT --to-

ports 3001

$ sudo iptables -t nat -A OUTPUT -p tcp --dport 80 -j REDIRECT --to-

ports 3001

Chapter 11  Deploying Node.js Apps



377

You can also use commands such as the following:

$ service iptables save

$ service iptables start

$ service iptables restart

$ chkconfig iptables on

It’s worth mentioning that AWS supports many other operating systems via its AWS 

Marketplace (https://aws.amazon.com/marketplace). Although AWS EC2 is a very 

popular and affordable choice, some companies opt for special Node.js tools available in 

the SmartOS (http://smartos.org), e.g., DTrace (http://dtrace.org/blogs), built 

on top of Solaris by Joyent (http://www.joyent.com), the company that maintains 

Node.js.

�Keeping Node.js Apps Alive with forever, Upstart, 
and init.d
This section relates only to IaaS deployment—another advantage to PaaS deployments. 

The reason why we need this step is to bring the application back to life in case it 

crashes. Even if we have a master–child system, something needs to keep an eye on the 

master itself. You also need a way to stop and start processes for maintenance, upgrades, 

and so forth.

Luckily, there’s no shortage of solutions to monitor and restart our Node.js apps:

•	 forever (https://github.com/foreverjs/forever): Probably 

the easiest method because the forever module is installed via npm 

and works on almost any Unix OS. Unfortunately, if the server itself 

fails (not our Node.js server, but the big Unix server), then nothing 

resumes forever.

•	 Upstart (http://upstart.ubuntu.com): The most recommended 

option. It solves the problem of starting daemons on startups, but it 

requires writing an Upstart script and having the latest Unix OS version 

support for it. I’ll show you an Upstart script example for CentOS.

•	 init.d (http://bit.ly/2zrCq8m): An outdated analog of Upstart. 

init.d contains the last startup script options for systems that don’t 

have Upstart capabilities.

Chapter 11  Deploying Node.js Apps

https://aws.amazon.com/marketplace
https://aws.amazon.com/marketplace
https://aws.amazon.com/marketplace
http://smartos.org
http://smartos.org
http://dtrace.org/blogs
http://dtrace.org/blogs
http://www.joyent.com
http://www.joyent.com
https://github.com/foreverjs/forever
https://github.com/foreverjs/forever
http://upstart.ubuntu.com
http://upstart.ubuntu.com
http://bit.ly/2zrCq8m
http://bit.ly/2zrCq8m


378

�forever
forever is a module that allows us to start Node.js apps/servers as daemons and keeps 

them running forever. Yes, that’s right. If the node process dies for some reason, it brings 

it right back up!

forever is a very neat utility because it’s an npm module (very easy to install almost 

anywhere) and it’s very easy to use without any extra language. A simple use case is as 

follows:

$ sudo npm install forever –g

$ forever server.js

If you’re starting from another location, prefix the file name with the abosulte path, 

e.g., $ forever /var/. A more complex forever example looks like this:

$ forever start -l forever.log -o output.log -e error.log server.js

To stop the process, run:

$ forever stop server.js

To look up all the programs run by forever, run:

$ forever list

To list all available forever commands, run:

$ forever --help

Warning T he app won’t start on server reboots without extra setup/utilities.

�Upstart Scripts
“Upstart is an event-based replacement for the /sbin/init daemon that handles 

starting of tasks and services during boot…”—the Upstart website (http://upstart.

ubuntu.com). The latest CentOS (6.2+), as well as Ubuntu and Debian OSes, comes with 

Upstart. If Upstart is missing, try typing $ sudo yum install upstart to install it on 

CentOS, and try $ sudo apt-get install upstart for Ubuntu.

Chapter 11  Deploying Node.js Apps

http://upstart.ubuntu.com
http://upstart.ubuntu.com
http://upstart.ubuntu.com


379

First, we need to create the upstart script. A very basic Upstart script—to illustrate its 

structure—starts with metadata:

author       "Azat"

description  "practicalnode"

setuid       "nodeuser"

We then start the application on startup after the file system and network:

start on (local-filesystems and net-device-up IFACE=eth0)

We stop the app on server shutdown:

stop on shutdown

We instruct Upstart to restart the program when it crashes:

respawn

We log events to /var/log/upstart/webapp.log:

console log

We include environment variables:

env NODE_ENV=production

We write the command exec and the file to execute:

exec /usr/bin/node /var/practicalnode/webapp.js

Where to place the upstart script? We can save it in a file such as webapp.conf in a 

folder /etc/init:

$ cd /etc/init

$ sudo vi webapp.conf

Let me know you another Upstart script example that sets multiple env vars:

#!upstart

description "webapp.js"

author      "Azat"

env PROGRAM_NAME="node"

env FULL_PATH="/home/httpd/buto-middleman/public"

Chapter 11  Deploying Node.js Apps



380

env FILE_NAME="forever.js"

env NODE_PATH="/usr/local/bin/node"

env USERNAME="springloops"

start on runlevel [2345]

stop on shutdown

respawn

This part of the script is responsible for launching the application webapp.js (similar 

to our local $ node webapp.js command, only with absolute paths). The output is 

recorded into the webapp.log file:

script

    export HOME="/root"

    echo $$ > /var/run/webapp.pid

    �exec /usr/local/bin/node /root/webapp.js >> /var/log/webapp.log 

2>&1

end script

The following piece is not as important, but it provides us with the date in the log file:

pre-start script

    �# Date format same as (new Date()).toISOString() for consistency

    �echo "[`date -u +%Y-%m-%dT%T.%3NZ`] (sys) Starting" >> /var/log/

webapp.log

end script

The following tells what to do when we’re stopping the process:

pre-stop script

    rm /var/run/webapp.pid

    �echo "[`date -u +%Y-%m-%dT%T.%3NZ`] (sys) Stopping" >> /var/log/

webapp.log

end script

To start/stop the app, use:

$ /sbin/start myapp

$ /sbin/stop myapp

Chapter 11  Deploying Node.js Apps



381

To determine the app’s status, type and run:

$ /sbin/status myapp

Tip  With Upstart, the Node.js app restarts on an app crash and on server reboots.

The previous example was inspired by Deploy Nodejs app in Centos 6.2 (http://

bit.ly/1qwIeTJ). For more information on Upstart, see How to Write CentOS 

Initialization Scripts with Upstart (http://bit.ly/1pNFlxT) and Upstart Cookbook 

(http://bit.ly/2O6gMyI).

�init.d
If Upstart is unavailable, you can create an init.d script. init.d is a technology available 

on most Linux OSes. Usually, development operations engineers resort to init.d when 

Upstart is not available and when they need something more robust than forever. 

Without going into too much detail, Upstart is a newer alternative to init.d scripts. We 

put init.d scripts into the /etc/ folder.

For example, the following init.d script for CentOS starts, stops, and restarts the 

node process from the home/nodejs/sample/app.js file:

#!/bin/sh

#

# chkconfig: 35 99 99

# description: Node.js /home/nodejs/sample/app.js

#

. /etc/rc.d/init.d/functions

USER="nodejs"

DAEMON="/home/nodejs/.nvm/v0.4.10/bin/node"

ROOT_DIR="/home/nodejs/sample"

SERVER="$ROOT_DIR/app.js"

LOG_FILE="$ROOT_DIR/app.js.log"

LOCK_FILE="/var/lock/subsys/node-server"

Chapter 11  Deploying Node.js Apps

http://sqllyw.wordpress.com/2012/02/19/deploy-nodejs-app-in-centos-6-2
http://bit.ly/1qwIeTJ)
http://bit.ly/1qwIeTJ)
http://www.openlogic.com/wazi/bid/281586/How-to-write-CentOS-initialization-scripts-with-Upstart
http://www.openlogic.com/wazi/bid/281586/How-to-write-CentOS-initialization-scripts-with-Upstart
http://bit.ly/1pNFlxT)
http://bit.ly/2O6gMyI
http://bit.ly/2O6gMyI


382

do_start()

{

        if [ ! -f "$LOCK_FILE" ] ; then

                echo -n $"Starting $SERVER: "

                �runuser -l "$USER" -c "$DAEMON $SERVER >> $LOG_FILE 

&" && echo_success

  || echo_failure

                RETVAL=$?

                echo

                [ $RETVAL -eq 0 ] && touch $LOCK_FILE

        else

                echo "$SERVER is locked."

                RETVAL=1

        fi

}

do_stop()

{

        echo -n $"Stopping $SERVER: "

        �pid=` ps -aefw | grep "$DAEMON $SERVER" | grep -v " grep " | 

awk '{print $2}'`

        �kill -9 $pid > /dev/null 2>&1 && echo_success || echo_failure

        RETVAL=$?

        echo

        [ $RETVAL -eq 0 ] && rm -f $LOCK_FILE

}

case "$1" in

        start)

                do_start

                ;;

        stop)

                do_stop

                ;;

        restart)

Chapter 11  Deploying Node.js Apps



383

                do_stop

                do_start

                ;;

        *)

                echo "Usage: $0 {start|stop|restart}"

                RETVAL=1

esac

exit $RETVAL

For more info on init.d, see this detailed tutorial (http://bit.ly/1lDkRGi).

�Serving Static Resources Properly with Nginx
Adding static web servers is optional but recommended. Although, it’s fairly easy to 

serve static files from Node.js applications, and we can use sendFile or Express.js static 

middleware, it’s a big no-no for systems that require high performance. Let Node.js apps 

handle interactive and networking tasks only.

For serving static content, the best option is to use Nginx (http://nginx.org), 

Amazon S3 (http://aws.amazon.com/s3) or CDNs, e.g., Akamai (http://www.

akamai.com) or CloudFlare (https://www.cloudflare.com). This is because these 

technologies were specifically designed for the task. They will allow to decrease the load 

on Node.js processes and improves the efficiency of your system.

Nginx is a popular choice among development operations engineers. It’s an HTTP 

and reverse-proxy server. To install Nginx on a CentOS system (v6.4+), type and run the 

following shell command:

$ sudo yum install nginx

As a side note, for Ubuntu, you can use the apt packaging tool: $ sudo apt-get 

install nginx. For more information about apt, refer to the docs (http://bit.

ly/2OaBltC).

Chapter 11  Deploying Node.js Apps

http://bit.ly/1lDkRGi
http://bit.ly/1lDkRGi
http://nginx.org
http://nginx.org
http://aws.amazon.com/s3
http://aws.amazon.com/s3
http://www.akamai.com
http://www.akamai.com
http://www.akamai.com
https://www.cloudflare.com
https://www.cloudflare.com
http://bit.ly/2OaBltC
http://bit.ly/2OaBltC
http://bit.ly/2OaBltC


384

But, let’s continue with our CentOS example. We need to open the /etc/nginx/

conf.d/virtual.conf file for editing, e.g., using a VIM (Vi Improved) editor:

$ sudo vim /etc/nginx/conf.d/virtual.conf

Then, we must add this configuration:

server {

    location / {

        proxy_pass http://localhost:3000;

    }

    location /static/ {

        root /var/www/webapplog/public;

    }

}

The first location block acts as a proxy server and redirects all requests that are not 

/static/* to the Node.js app, which listens on port 3000. Static files are served from the 

/var/www/webapplog/public folder.

If your project uses Express.js or a framework that’s built on top of it, don’t forget to 

set the trust proxy to true by adding the following line to your server configuration:

app.set('trust proxy', true);

This little configuration enables Express.js to display true client IPs provided by 

proxy instead of proxy IPs. The IP address is taken from the X-Forwarded-For HTTP 

header of requests (see the next code snippet).

A more complex example with HTTP headers in the proxy-server directive, and file 

extensions for static resources, follows:

server {

    listen 0.0.0.0:80;

    server_name webapplog.com;

    access_log /var/log/nginx/webapp.log;

    �location ~* ^.+\.(jpg|jpeg|gif|png|ico|css|zip|tgz|gz|rar|bz2| 

pdf|txt|tar|wav|bmp|rtf|js|flv|swf|html|htm)$ {

        root /var/www/webapplog/public;

    }

Chapter 11  Deploying Node.js Apps



385

    location / {

        proxy_set_header X-Real-IP $remote_addr;

        proxy_set_header HOST $http_host;

        proxy_set_header X-NginX-Proxy true;

        proxy_pass http://127.0.0.1:3000;

        proxy_redirect off;

    }

Note R eplace 3000 with the Node.js app’s port number, webapplog.com 
with our domain name, and webapp.log with your log’s file name.

Alternatively, we can use upstream try_files (http://wiki.nginx.org/

HttpCoreModule#try_files). Then, start Nginx as a service:

$ sudo service nginx start

After Nginx is up and running, launch your Node app with forever or Upstart on the 

port number you specified in the proxy-server configurations.

To stop and restart Nginx, use:

$ sudo service nginx stop

$ sudo service nginx start

So far, we’ve used Nginx to serve static content while redirecting non-static requests 

to Node.js apps. We can take it a step further and let Nginx serve error pages and use 

multiple Node.js processes. For example, if we want to serve the 404 page from the  

404.html file, which is located in the /var/www/webapplog/public folder, we can add 

the following line inside the server directive:

error_page 404 /404.html;

location /404.html {

    internal;

    root /var/www/webapplog/public;

}

Chapter 11  Deploying Node.js Apps

http://wiki.nginx.org/HttpCoreModule#try_files
http://wiki.nginx.org/HttpCoreModule#try_files
http://wiki.nginx.org/HttpCoreModule#try_files


386

If there is a need to run multiple Node.js processes behind Nginx, we can set up 

location rules inside the server in exactly the same way we used location for dividing 

static and nonstatic content. However, in this case, both destinations are handled by 

Node.js apps. For example, we have a Node.js web app that is running on 3000, serving 

some HTML pages, and its URL path is /, whereas the Node.js API app is running on 

3001, serving JSON responses, and its URL path is /api:

server {

  listen 8080;

  server_name webapplog.com;

  location / {

    proxy_pass http://localhost:3000;

    proxy_set_header Host $host;

  }

  location /api {

    proxy_pass http://localhost:3001;

    rewrite ^/api(.*) /$1 break;

    proxy_set_header Host $host;

  }

}

In this way, we have the following trafficking:

•	 The / requests go to http://localhost:3000.

•	 The /api requests go to http://localhost:3001.

�Caching with Varnish
The last piece of the production deployment puzzle is setting up caching using Varnish 

Cache (https://www.varnish-cache.org). This step is optional for Node.js deploys, 

but, like an Nginx setup, it’s also recommended, especially for systems that expect to 

handle large loads with the minimum resources consumed.

The idea is that Varnish allows us to cache requests and serve them later from 

the cache without hitting Nginx and/or Node.js servers. This avoids the overhead of 

processing the same requests over and over again. In other words, the more identical 

requests the server has coming, the better Varnish’s optimization.

Chapter 11  Deploying Node.js Apps

https://www.varnish-cache.org
https://www.varnish-cache.org
https://www.varnish-cache.org


387

Let’s use yum again, this time to install Varnish dependencies on CentOS:

$ yum install -y gcc make automake autoconf libtool ncurses-devel 

libxslt groff pcre-devel pckgconfig libedit libedit-devel

Download the latest stable release (as of May 2014):

$ wget http://repo.varnish-cache.org/source/varnish-3.0.5.tar.gz

and build Varnish Cache with the following:

$ tar -xvpzf varnish-3.0.5.tar.gz

$ cd varnish-3.0.5

$ ./autogen.sh

$ ./configure

$ make

$ make check

$ make install

For this example, let’s make only minimal configuration adjustments. In the file  

/etc/sysconfig/varnish, type:

VARNISH_LISTEN_PORT=80

VARNISH_ADMIN_LISTEN_ADDRESS=127.0.0.1

Then, in /etc/varnish/default.vcl, type:

backend default {

  .host = "127.0.0.1";

  .port = "8080";

}

Restart the services with:

$ /etc/init.d/varnish restart

$ /etc/init.d/nginx restart

Everything should be working by now. To test it, CURL from your local (or another 

remote) machine:

$ curl -I www.varnish-cache.org

Chapter 11  Deploying Node.js Apps



388

If you see “Server: Varnish”, this means that requests go through Varnish Cache first, 

just as we intended.

�Summary
In this chapter, we covered deployment using the Git and Heroku command-line 

interfaces to deploy to PaaS. Then, we worked through examples of installing and 

building a Node.js environment on AWS EC2, running Node.js apps on AWS with 

CentOS. After that, we explored examples of forever, Upstart, and init.d to keep our apps 

running. Next, we installed and configured Nginx to serve static content, including error 

pages, and split traffic between multiple Node.js processes. Lastly, we added Varnish 

Cache to lighten the Node.js apps’ loads even more.

Chapter 11  Deploying Node.js Apps



389
© Azat Mardan 2018 
A. Mardan, Practical Node.js, https://doi.org/10.1007/978-1-4842-3039-8_12

CHAPTER 12

Modularizing Your Code 
and Publishing Node.js 
Modules to npm
Two of the key factors that attributed to the rapid growth of the Node.js module 

ecosystem are its open-source nature and robust packaging systems (with registry). As of 

mid 2014, JavaScript and Node.js had surpassed any other language/platform in number 

of packages contributed per year (source):

•	 Node.js: 6742 packages per year (26,966 packages in 4 years)

•	 Python: 1351 packages per year (29,720 packages in 22 years)

•	 Ruby: 3022 packages per year (54,385 packages in 18 years)

Recent numbers are even higher with npm having over 620,000 packages.  

That’s more than half a million! As you can see from the chart taken from  

http://modulecounts.com (Figure 12-1), Node’s npm surpassed other platforms’ 

package repositories in absolute numbers. Maven Central (Java) and Packagist (PHP) try 

to catch up but fail miserably. npm and Node are the top dogs.

http://caines.ca/blog/2013/04/13/the-node-dot-js-community-is-quietly-changing-the-face-of-open-source/
http://modulecounts.com/


390

Other factors that contribute to the Node.js’s popularity include:

•	 Ability to share code between front-end/browser and server-side 

(with projects such as browserify and ender.js)

•	 Philosophy of small (in terms of lines of code and functionality) 

functional modules vs. large, standard/core packages  

(i.e., granularity)

•	 Evolving ECMAScript standard and expressive nature, and ease of 

adoption of the JavaScript language

With this in mind, many Node.js enthusiasts find it rewarding to contribute to the 

ever-growing open- source community. When doing so, there are a few conventions to 

follow as well as concepts to understand:

•	 Recommended folder structure

•	 Required patterns

Figure 12-1.  Node’s npm is dominating by the number of modules since mid 2014.

Chapter 12  Modularizing Your Code and Publishing Node.js Modules to npm

http://browserify.org/
https://github.com/ender-js/Ender


391

•	 package.json

•	 Publishing to npm

•	 Locking versions

�Recommended Folder Structure
Here is an example of a good, structured npm module in which you have 

documentation, project manifest, starting file, and a folder for dependencies:

webapp

  /lib

  webapp.js

  index.js

  package.json

  README.md

The index.js file does the initialization, whereas lib/webapp.js has all the 

principal logic.

If you’re building a command-line tool, add the bin folder:

webapp

  /bin

  webapp-cli.js

  /lib

  webapp.js

  index.js

  package.json

  README.md

Also, for the CLI module, add the following to package.json:

...

"bin": {

    "webapp": "./bin/webapp-cli.js"

},

...

Chapter 12  Modularizing Your Code and Publishing Node.js Modules to npm



392

The webapp-cli.js file starts with the line #!/usr/bin/env node, but then has 

normal Node.js code.

It’s a good idea to add unit tests to your external module, because it increases 

confidence and the likelihood of other people using it. Some programmers go as far as 

not using a module that doesn’t have any tests! The added benefit is that tests serve as a 

poor man’s examples and documentation.

TravisCI, which we covered in previous chapters, allows free testing for open-source 

projects. Its badges, which turn from red to green, depending on the status of tests 

(failing or passing), became the de facto standard of quality and are often seen on the 

README pages of the most popular Node.js projects.

�Modularizing Patterns
Modularizing is the best practice because you can keep your application flexible and 

update different parts independently of each other. It’s totally fine to have bunch of 

modules with only a single function in each one of them. In fact, a lot of module on npm 

are just that—a single function.

There are a few common patterns for writing external modules (meant for use by 

other users, not just within your app):

•	 module.exports as a function pattern (recommended)

•	 module.exports as a class pattern (not recommended)

•	 module.exports as an object pattern

•	 exports.NAME pattern, which could be an object or a function

Here is an example of the module.exports as a function pattern:

let _privateAttribute = 'A'

let _privateMethod = () => {...}

module.exports = function (options) {

  // Arrow function can also be used depending on

  // what needs to be the value of "this"

  // Initialize module/object

  object.method = () => {...}

  return object

}

Chapter 12  Modularizing Your Code and Publishing Node.js Modules to npm



393

And here is an example of an equivalent with a function declaration, but this time we 

used named function that we exported via the global module.exports:

module.exports = webapp

function webapp (options) {

  // Initialize module/object

  object.method = () => {...}

  return object

}

Tip  For info about named function expressions vs. function declarations, refer to 
Chapter 1.

The file in which we include the module looks like this:

const webapp = require('./lib/webapp.js')

const wa = webapp({...}) // Initialization parameters

More succinctly, it looks like this:

const webapp = require('./lib/webapp.js')({...})

The real-life example of this pattern is the Express.js module (source code).

The module.exports as a class pattern uses the so-called pseudoclassical 

instantiating/inheritance pattern, which can be recognized by the use of the this and 

prototype keywords:

module.exports = function(options) {

  this._attribute = 'A'

  // ...

}

module.exports.prototype._method = function() {

  // ...

}

Chapter 12  Modularizing Your Code and Publishing Node.js Modules to npm

https://github.com/expressjs/express/blob/master/lib/express.js#L26
http://javascript.info/tutorial/psedo-classical-pattern
http://javascript.info/tutorial/psedo-classical-pattern


394

Notice the capitalized name and the new operator in the including file:

const Webapp = require('./lib/webapp.js')

const wa = new Webapp()

// ...

The example of this module.exports as a class pattern is the OAuth module  

(source code).

The module.exports as an object pattern is similar to the first pattern (functional), 

only without the constructor. It may be useful for defining constants, locales, and other 

settings:

module.exports = {

  sockets: 10,

  limit: 200,

  whitelist: [

  'azat.co',

  'webapplog.com',

  'apress.com'

  ]

}

The including file treats the object as a normal JavaScript object. For example, we 

can set maxSockets with these calls:

const webapp = require('./lib/webapp.js')

const http = require('http')

http.globalAgent.maxSockets = webapp.sockets

Note T he require method can read JSON files directly. The main difference is 
that the JSON standard has the mandatory double quotes (") for wrapping property 
names.

Chapter 12  Modularizing Your Code and Publishing Node.js Modules to npm

https://github.com/ciaranj/node-oauth/blob/master/lib/oauth.js#L9


395

The exports.NAME pattern is just a shortcut for module.exports.NAME when 

there’s no need for one constructor method. For example, we can have multiple routes 

defined this way:

exports.home = function(req, res, next) {

  res.render('index')

}

exports.profile = function(req, res, next) {

  res.render('profile', req.userInfo)

}

// ...

And we can use it in the including file the following way:

const routes = require('./lib/routes.js')

// ...

app.get('/', routes.home)

app.get('/profile', routes.profile)

// ...

�Composing package.json
Another mandatory part of an npm module is its package.json file. The easiest way to 

create a new package.json file, if you don’t have one already (most likely you do), is to 

use $ npm init. The following is an example produced by this command:

{

  "name": "webapp",

  "version": "0.0.1",

  "description": "An example Node.js app",

  "main": "index.js",

  "devDependencies": {},

  "scripts": {

    "test": "test"

  },

Chapter 12  Modularizing Your Code and Publishing Node.js Modules to npm



396

  "repository": "",

  "keywords": [

    "math",

    "mathematics",

    "simple"

  ],

  "author": "Azat <hi@azat.co>",

  "license": "BSD"

}

The most important fields are name and version. The others are optional and 

self-explanatory, by name. The full list of supported keys is located at the npm web site: 

http://bit.ly/2xIqmNK.

Warning  package.json must have double quotes around values and 
property names, unlike native JavaScript object literals.

npm scripts is an important feature that benefits all projects and more so large one. 

See that scripts property in the package.json file? Inside of it developers can define 

any commands, which act as aliases. The left part is the alias, and the right part (after the 

: colon) is the actual command:

"scripts": {

  "test": "mocha test",

  �"build": "node_modules/.bin/webpack --config webpack-dev.config.js",

  �"deploy": "aws deploy push --application-name WordPress_App --s3-

location s3://CodeDeployDemoBucket/WordPressApp.zip --source /tmp/

MyLocalDeploymentFolder/",

  "start": "node app.js",

  "dev": "node_modules/.bin/nodemon app.js"

}

To run the command, you use $ npm run NAME, e.g., $ npm run build or $ npm 

run deploy. The two names are special. The don’t need run. They are test and start.  

That is to execute test or start, simply use npm test and npm start.

Chapter 12  Modularizing Your Code and Publishing Node.js Modules to npm

http://bit.ly/2xIqmNK


397

It’s possible to call other npm scripts from the right side (the values):

"scripts": {

  "test": "mocha test",

  �"build": "node_modules/.bin/webpack --config webpack-dev.config.js",

  "prepare": "npm run build && npm test"

}

Lastly, there are post and pre hooks for each npm script. They are defined as 

pre and post prefixes to the names. For example, if I always want to build after the 

installation, I can set up postinstall:

"scripts": {

  "postinstall": "npm run build",

  �"build": "node_modules/.bin/webpack --config webpack-dev.config.js"

}

npm scripts are very powerful. Some Node developers are even abandoning their 

build tools, such as Grunt or Gulp or Webpack, and implementing their build pipelines 

with npm scripts and some low-level Node code. I sort of agree with them. Having 

to learn and depend on myriads of Grunt, Gulp, or Webpack plugins is no fun. For 

more use cases of npm scripts, start at this page: https://docs.npmjs.com/misc/

scripts.

It’s worth noting that package.json and npm do not limit their use. In other words, 

you are encouraged to add custom fields and devise new conventions for their cases.

�Publishing to npm
To publish to npm, you must have an account there. So first, you need to proceed to the 

website npmjs.org and register there. Once you do that, you will have an account, and 

you will have a username and password. The next step is to sign in on the command line. 

Do this by executing the following:

$ npm adduser

Chapter 12  Modularizing Your Code and Publishing Node.js Modules to npm

https://docs.npmjs.com/misc/scripts
https://docs.npmjs.com/misc/scripts
http://npmjs.org


398

You just need to sign in with the npm CLI once. After you do it, you are read to 

publish as many times as you wish. To publish a new module or an update to an already 

published module, simply execute the following command from the module/package 

project folder:

$ npm publish

Some useful npm commands are as follows:

•	 $ npm tag NAME@VERSION TAG: Tag a version

•	 $ npm version SEMVERSION: Increment a version to the value of 

SEMVERSION (semver) and update package.json

•	 $ npm version patch: Increment the last number in a version 

(e.g., 0.0.1 to 0.0.2) and update package.json

•	 $ npm version minor: Increment a middle version number  

(e.g., 0.0.1 to 0.1.0 or 0.0.1 to 1.0.0) and update package.json

•	 $ npm unpublish PACKAGE_NAME: Unpublish package from npm 

(take optional version with@)

•	 $ npm owner ls PACKAGE_NAME: List owners of this package

•	 $ npm owner add USER PACKAGE_NAME: Add an owner

•	 $ npm owner rm USER PACKAGE_NAME: Remove an owner

�Not-Locking Versions
The rule of thumb is that when we publish external modules, we don’t lock 

dependencies’ versions. However, when we deploy apps, we lock versions in package.

json. You can read more on why and how lock versions in projects that are applications 

(i.e., not npm modules) in Chapter 10.

Then why not lock versions in the modules? The answer is that open source is often 

a part-time gig and an afterthought for most people. It’s not like you’ll make millions and 

can spend 40 hours per week on your FOSS npm module.

Let’s say there’s a security vulnerability or something is outdated in a dependency 

of your npm module. Most likely, you’ll be patching your app that is your main full-time 

daily job, and not patching this poor little npm module. That’s why it’s a good idea to 

Chapter 12  Modularizing Your Code and Publishing Node.js Modules to npm

https://semver.org/


399

NOT lock the version but let it use a caret symbol ^, which means the patches will be 

updated in dependencies.

Yes. If someone depends on your npm module, they may get a bug when it pulls 

a newer dependency, but the tradeoff is worth it. Your module will have the latest 

dependencies automatically, without requiring your attention (the next time someone 

installs your module).

That’s the main reason why almost all popular npm modules such as Express, 

Webpack, and React do have ^ in package.json (http://bit.ly/2xNJVo7,  

http://bit.ly/2xLUF6f and http://bit.ly/2xMFSbw).

�Summary
Open source factors have contributed to the success and widespread use of the Node.

js platform. It’s relatively easy to publish a module and make a name for yourself (unlike 

other mature platforms with solid cores). We looked at the recommended patterns and 

structures, and explored a few commands to get started with publishing modules to npm.

Chapter 12  Modularizing Your Code and Publishing Node.js Modules to npm

http://bit.ly/2xNJVo7
http://bit.ly/2xLUF6f
http://bit.ly/2xMFSbw


401
© Azat Mardan 2018 
A. Mardan, Practical Node.js, https://doi.org/10.1007/978-1-4842-3039-8_13

CHAPTER 13

Node HTTP/2 Servers
It’s almost 2020, and HTTP/2 is already here. It has been here for a few years now. If you 

are not using HTTP/2, then you are losing out on big improvements. Major browsers 

already support HTTP/2. A lot of services and websites switched to HTTP/2 as early as 

2016 and more continue this trend.

HTTP/2 has some very big differences from HTTP/1 when it comes to delivering 

traffic. For example, HTTP/2 offers multiplexing and the server push of assets. If you 

are not optimizing your code for HTTP/2, then you probably have a slower app than 

you would have with HTTP/2. Lots of web- optimization practices of HTTP/1 are 

unnecessary and may even hurt with HTTP/2.

In this chapter, if you know the major features of HTTP/2, then jump straight to the 

sections on implementing an HTTP/2 server in Node and server push. If you don’t know 

its major features, you should read the following brief overview and then follow it up 

with some more reading online.

�Brief Overview of HTTP/2
The modern Internet with its TCP/IP protocol started around 1975, which is an 

astonishing 40+ years ago. For the most part of its existence, we used HTTP and its 

successor HTTP/1.1 (version 1.1) to communicate between clients and servers. Those 

served the web well, but the way developers build websites has dramatically changed. 

There are myriads of external resources, images, CSS files, and JavaScript assets. The 

number of resources is only increasing.

HTTP/2 (or just H2) is the first major upgrade to the good old HTTP protocol in over 

15 years (first HTTP is circa 1991)! It is optimized for modern websites. The performance 

is better without complicated hacks like domain sharding (having multiple domains) or 

file concatenation (having one large file instead of many small ones).



402

H2 is the new standard for the web, which started as Google’s SPDY protocol. It’s 

already being used by many popular websites and is supported by most major browsers. 

For example, I went to Yahoo’s Flickr, and it was using h2 protocol (HTTP2) already  

(back in July of 2016, as shown in Figure 13-1).

Figure 13-1.  Yahoo!’s Flickr has been using the HTTP/2 protocol for many  
years now

Chapter 13  Node HTTP/2 Servers



403

Semantically, HTTP/2 is no different from HTTP/1.1, meaning you have the same 

XML-like language in the body and also the same header fields, status codes, cookies, 

methods, URLs, etc. The stuff familiar to developers is still there in H2. But H2 offers a lot 

of the benefits, including:

•	 Multiplexing: Allows browsers to include multiple requests in a single 

TCP connection that enables browsers to request all the assets in 

parallel.

•	 Server push: Servers can push web assets (CSS, JS, images) before a 

browser knows it needs them, which speeds up page load times by 

reducing the number of requests.

•	 Stream priority: Allows browsers to specify priority of assets. For 

example, a browser can request HTML first to render it before any 

styles or JavaScript.

•	 Header compression: All HTTP/1.1 requests have to have headers 

which are typically duplicate the same info, while H2 forces all HTTP 

headers to be sent in a compressed format.

•	 De facto mandatory encryption: Although the encryption is not 

required, most major browsers implement H2 only over TLS 

(HTTPS).

While there’s some criticism of H2, it’s clearly a way forward for now (until we get 

something even better). What do you need to know about it as a web developer? Well, 

most of the optimization tricks you know have become unnecessary, and some of them 

will even hurt a website’s performance. In particular, the file concatenation. Stop doing 

that (image sprites, bundled CSS and JS), because H2 can make parallel requests and 

because each small change in your big file will invalidate cache. It’s better to have many 

small files with H2. I hope the need for build tools like Grunt, Gulp, and Webpack will 

drop because of that. They introduce additional complexity, steep learning curve, and 

dependencies to web projects.

Another thing that good developers did in the HTTP/1.1 world but that will hurt you 

in H2 is domain sharding (a trick to go over the browser limit on the number of active 

TCP connections). Okay, it might not hurt in all cases, but there’s not benefit in it in H2 

because H2 supports multiplexing. It might hurt because each domain incurs additional 

overhead. Don’t do domain sharding in HTTP2. If you have to, then resolve domains to 

Chapter 13  Node HTTP/2 Servers



404

the same IP and make sure your SSL certificates has a wildcard which makes it valid for 

the subdomainsm or have a multidomain cert.

Please educate yourself on all the HTTP/2 details and how to optimize your 

applications and content for it. The official website is a good place to start.

�SSL Key and Certificate
Before we can submerge into the HTTP/2 module code, we must do some preparation. 

You see, the HTTP/2 protocol must use an SSL connection. It’s when you see https 

in your browser URL address bar, the browser shows you a lock symbol, and you can 

inspect the secure connection certificate, which hopefully was issued by a trusted 

source.

SSL, HTTPS and HTTP/2 are more secure than HTTP/1 (http in an URL) because 

they are encrypting your traffic between the client (browser) and the server. If an attacker 

tries to hijack it, they’ll get only some gibberish.

For development purposes, you can create a self-signed certificate and the key 

instead of paying money to a trusted authority to issue a certificate for you. You will see 

a warning message in Chrome (Figure 13-2) when you use a self-signed certificate, but 

that’s okay for the development purposes.

Chapter 13  Node HTTP/2 Servers

https://http2.github.io/faq


405

Create an empty folder and a self-signed SSL certificate in it. To create a folder 

named http2 run the mkdir:

$ mkdir http2

$ cd http2

Once inside of the folder, use the openssl command to generate an RSA private  

key server.pass.key, as shown next. Never share a private key except with your 

sysadmin whom you know personally. If you don’t have openssl, then download it from 

https://www.openssl.org/ source.

$ openssl genrsa -des3 -passout pass:x -out server.pass.key 2048

Figure 13-2.  Click on ADVANCED

Chapter 13  Node HTTP/2 Servers

http://www.openssl.org/source


406

The good message would look like this:

Generating RSA private key, 2048 bit long modulus

...............................................................+++

...........+++

e is 65537 (0x10001)

Next, trade in your server.pass.key for the server.key, which will be your RSA 

key:

$ openssl rsa -passin pass:x -in server.pass.key -out server.key

You should see “writing RSA key” if everything went fine. If you don’t see this 

message, most likely you are in a wrong folder, specified a wrong path, or made a type 

(irony intended). Please repeat by copying the commands correctly.

We don’t need the server.pass.key anymore, so let’s keep things clean and 

organized. Let’s remove this file:

$ rm server.pass.key

We got the key server.key. That’s not all. What we also need is the certificate.  

We want to generate an certificate (csr) file first using the server.key:

$ openssl req -new -key server.key -out server.csr

You will need to answer some trivial questions about your location. Just put 

anything. It doesn’t matter, since this is for development only. For example, put US and 

California as country and state:

Country Name (2 letter code) [AU]:US

State or Province Name (full name) [Some-State]:California

Come up with some answers to other questions about organization, unit, email, 

and password when asked. You don’t have to provide an accurate info since this is a 

development certificate.

Finally, sign (with key server.key) the certificate (server.csr) to generate the 

server.crt, which is the file to be used in Node:

$ openssl x509 -req -sha256 -days 365 -in server.csr -signkey server.

key -out server.crt

Chapter 13  Node HTTP/2 Servers



407

The successful message will have a subject with your answers—for example, mine 

had US, CA ,and SF among them:

Signature ok

subject=/C=US/ST=CA/L=SF/O=NO\x08A/OU=NA

Getting Private key

You should have at least two files:

server.crt

server.key

Keep them secret, especially the key and especially when it’s a real production key. 

You can get rid of the csr file.

Here’s a somewhat simpler command that generates crt and key files. The command 

will bypass the csr file and answer questions automatically (the subj option):

openssl req -x509 -newkey rsa:2048 -nodes -sha256 -subj  

'/C=US/ST=CA/L=SF/O=NO\x08A/OU =NA' \

  -keyout server.key -out server.crt

�HTTP/2 Node Server
Now we’ll learn how to create an HTTP/2 server with Node.js. It’s actually very 

straightforward because the http2 interface is for the most part is compatible with http 

or https interfaces.

See for yourself. We import and define variables. Then we instantiate server with 

a special method createSecureServer(). This special method takes two arguments. 

The first argument is for the SSL encryption. We feed the contents of the two files, i.e., the 

key and signed certificate. In the second argument, we define the request handler, just as 

we would define a request handler with the http module.

const http2 = require('http2')

const fs = require('fs')

const server = http2.createSecureServer({

  key: fs.readFileSync('server.key'),

  cert: fs.readFileSync('server.crt')

}, (req, res) => {

Chapter 13  Node HTTP/2 Servers



408

  res.end('hello')

})

server.on('error', (err) => console.error(err))

server.listen(3000)

Alternatively, we can re-write our example to use stream. We would assign an event 

listener with the on() method to catch stream events. We can use respond() and 

end() on the stream object to set headers (text/html), status (200), and send back <h1>:

const http2 = require('http2')

const fs = require('fs')

const server = http2.createSecureServer({

  key: fs.readFileSync('server.key'),

  cert: fs.readFileSync('server.crt')

})

server.on('error', (err) => console.error(err))

server.on('socketError', (err) => console.error(err))

server.on('stream', (stream, headers) => {

  // stream is a Duplex

  stream.respond({

    'content-type': 'text/html',

    ':status': 200

  })

  stream.end('<h1>Hello World</h1>')

})

server.listen(3000)

To launch the HTTP/2 server, run your Node code as usual with node or nodemon or 

node-dev:

$ node server.js

If you see a message “(node:10536) ExperimentalWarning: The http2 module is 

an experimental API.” that’s totally fine. Just ignore it because it basically says that the 

methods in the http2 class might change in the future. I’m using Node version 8.9.3, 

Chapter 13  Node HTTP/2 Servers



409

which is the latest LTS version as of this writing. If you use a higher LTS version, this 

warning should not be there anymore.

On the contrary, if you are seeing “Error: Cannot find module ‘http2’”, that is a BAD 

sign. Warnings are okay to ignore (in most cases), albeit with some limitations, but errors 

won’t allow the execution at all.

You might be wondering why the http2 cannot be found? You probably have an older 

version of Node that doesn’t have the core http2 module. Your best bet is to use nvm to 

install a newer version, at least as high as my version 8.9.3. If nvm is too much of a hassle 

for you, then simply go to the Node website and use their installer. The downside of 

using the installer is that you won’t be able to switch back and forth. You will always have 

to install. With nvm, you can switch back and forth between various versions once you 

install them. There’s no need to repeat myself anymore on installations here because I 

covered a lot of different Node installations in Chapter 1.

Assuming you didn’t get an error message, open your browser (preferably Chrome) at 

https://localhost:3000. Don’t forget to use https and the correct port number 3000. 

Important! Also don’t forget to allow your browser to use the self-signed certificate. When 

you’re visiting your server, make sure to select “ADVANCED” (Figure 13-2) and click 

“Proceed to localhost (unsafe)” (Figure 13-3). You can also add localhost as an exception. 

The reason being is that browsers don’t trust self-signed certificates by default.

Chapter 13  Node HTTP/2 Servers



410

Figure 13-3.  Self-signed certificate will require to click on “Proceed to localhost 
(unsafe)”

Chapter 13  Node HTTP/2 Servers



411

As a result, you will see a glorious Hello World from the future (HTTP/2). You can 

inspect the certificate by clicking on the “Not Secure” to the left of the URL address 

https://localhost:3000. See Figure 13-4 for my example, which has NA as the 

organization name and location as US and CA.

Figure 13-4.  Inspecting “Not Secure” but totally working development self-signed 
certificate

Chapter 13  Node HTTP/2 Servers



412

Another way to check that we’ve got H2 is to use CURL. To see the server response, 

you can make CURL requests with the following command (make sure you’ve got the 

latest version 7.46 with nghttp2):

$ curl https://localhost:3000/ -vik

Here are the explains of the vik options: v is for more information, i is for showing 

headers, and k is to make CURL to be okay with the self-signed certificate.

The successful CURL output should contain lines like these ones:

 Trying 127.0.0.1...

* Connected to localhost (127.0.0.1) port 3000 (#0)

* ALPN, offering h2

* ALPN, offering http/1.1

* Cipher selection:

Figure 13-5.  Localhost request in the Network tab shows h2 as the protocol.

And of course, we can check that the request itself was done using the HTTP/2 

protocol and not the old, slow, and ugly HTTP/1 with SSL. You can easily check for the 

protocol in the Network tab of your Chrome browser, as I did in Figure 13-5.

Chapter 13  Node HTTP/2 Servers

https://simonecarletti.com/blog/2016/01/http2-curl-macosx


413

Then there’s stuff you don’t need to bother with, followed by:

* SSL connection using TLSv1.2 / ECDHE-RSA-AES128-GCM-SHA256

* ALPN, server accepted to use h2

* Server certificate:

*  subject: C=US; ST=CA; L=SF; O=NOx08A; OU=NA

* Using HTTP2, server supports multi-use

* Connection state changed (HTTP/2 confirmed)

So it’s HTTP/2. Like we didn’t know, right? And see that US and CA? That’s what I 

used with my openssl command, and that’s what’s in my certificate. Yours might be 

different.

�Node HTTP/2 Server Push
Multiplexing is good but it’s not as cool or awesome as sending assets (stylesheets, 

images, JavaScript, and other goodies) even before the browser requests or knows about 

them. Great feature.

The way server push works is by bundling multiple assets and resources into a single 

HTTP/2 call. Under the hood, the server will issue a PUSH_PROMISE. Clients (browsers 

included) can use it or not depending on whether the main HTML file needs it. If yes, it 

needs it, then client will match received push promises to make them look like a regular 

HTTP/2 GET calls. Obviously, if there’s a match, then no new calls will be made, but the 

assets already at the client will be used.

Server push is not a guarantee to improve loading time. Educate yourself and 

experiment to see the improvement in your particular case. I give you three good articles 

for more info on server push benefits:

•	 What’s the benefit of Server Push?

•	 Announcing Support for HTTP/2 Server Push

•	 Innovating with HTTP 2.0 Server Push

Now let’s see the implementation. First go the imports with require(), and then the 

key and certificate that we must provide to the createSecureServer().

const http2 = require('http2')

const fs = require('fs')

Chapter 13  Node HTTP/2 Servers

https://http2.github.io/faq/#whats-the-benefit-of-server-push
https://blog.cloudflare.com/announcing-support-for-http-2-server-push-2
https://www.igvita.com/2013/06/12/innovating-with-http-2.0-server-push


414

const server = http2.createSecureServer({

  key: fs.readFileSync('server.key'),

  cert: fs.readFileSync('server.crt')

})

server.on('error', (err) => console.error(err))

server.on('socketError', (err) => console.error(err))

Next, we copy the same stream event listener and response as we had in the previous 

example, except now we add stream.pushStream() and include <script> in the 

HTML. You might be wondering what is happening. Let me explain. The HTML is sent right 

away, but with it also goes myfakefile.js with an alert box code. The script file won’t be 

loaded or executed until the browser sees <script> in the HTML. Then the browser will be 

like “OMG. I have this file already from the push. LOL. Let me just use it. TTYL.”

server.on('stream', (stream, headers) => {

  stream.respond({

    'content-type': 'text/html',

    ':status': 200

  })

  �stream.pushStream({ ':path': '/myfakefile.js' }, (pushStream) => {

    pushStream.respond({

      'content-type': 'text/javascript',

      ':status': 200

    })

    pushStream.end(`alert('you win')`)

  })

  �stream.end('<script src="/myfakefile.js"></script> 

<h1>Hello World</h1>')

})

server.listen(3000)

The full source code is in the ch13/http2-push/server.js file. When you run this 

server and open https://localhost:3000, then the browser will show you the alert 

(Figure 13-6). And you can see in the Network tab in the Chrome DevTools the type of 

the protocol as h2 and the initiator as Push (Figure 13-7). The Network tab confirms that 

there was just one request, not two as you would normally have in HTTP/1.

Chapter 13  Node HTTP/2 Servers



415

Remember that our server was never configured to respond to a different URL, i.e., 

it wasn’t configured to send HTML for / and to send JavaScript for /myfakefile.js. In 

fact, any URL path will have the same HTML response. This proves that the alert code was 

pushed together with HTML not independently in a new request, as we would have without 

the HTTP/2 server push. The only way the browser can get its hands on the JavaScript is in 

the same response with HTML. That’s the magic of the server push. Use it knowingly.

Figure 13-6.  Localhost request in the Network tab shows h2 as the protocol

Figure 13-7.  Localhost request in the Network tab shows h2 as the protocol

Chapter 13  Node HTTP/2 Servers



416

�Summary
That’s it. As you can observe, building an HTTP/2 server with Node.js and Express.js 

is straightforward. In most cases, you won’t need to make many changes. Most likely, 

you’re already using HTTPS/SSL (if not, you should be unless your server is just for static 

assets and even then it’s easier to use SSL than to constantly explain to your users why 

your website is insecure). Then, you’d need to swap your https for http2 or some other 

HTTP/2 modules, such as spdy.

In the end, HTTP/2 offers more benefits and removes the complexity of some  

web-optimization tricks. Start reaping the rewards of H2 now by implementing it in your 

servers. Onward to a brighter future!

Chapter 13  Node HTTP/2 Servers



417
© Azat Mardan 2018 
A. Mardan, Practical Node.js, https://doi.org/10.1007/978-1-4842-3039-8_14

CHAPTER 14

Asynchronous Code 
in Node
Asynchronous code is at the heart of Node because it allows developers to build non-

blocking I/O systems that are more performant than traditional blocking system for the 

reason that non-blocking I/O systems use the waiting time and delegate by creating 

parallel executions.

Historically, Node developers were able to use only callbacks and event 

emitters (observer pattern in Node). However, in recent years, front-end developers 

and ECMAScript have pushed onto Node developers (for better or worse) a few 

asynchronous styles that allow for a different async syntax. In this chapter, we’ll cover:

•	 async module

•	 Promises

•	 Async/await functions

My favorite is async/await functions, so if you want to just jump straight to that 

section in this chapter, do so. But I will still cover the others albeit briefly to show that 

async functions are better. :)

Here’s a teaser for you. This code will continue to work even after the JSON error. In 

other words, try/catch will prevent the app from crashing:

try {

  JSON.parse('not valid json for sure')

} catch (e) {

  console.error(e)

}



418

Now what about this async code with setTimeout(), which mimicks an IO 

operation?

try {

  setTimeout(()=>JSON.parse('not valid json for sure'), 0)

} catch (e) {

  console.error('nice message you will never see')

}

Can you guess? The try/catch is useless in async code! That’s because mighty 

event loop separates the callback code in an I/O method. When that callback fires, it has 

lost all the memory of a try/catch. Argh.

The solution is to use the error argument and process it by having an if/else. That’s 

for pure callbacks. There are other approaches as well.

�async Module
A common scenarios is to run multiple tasks at once. Let’s say you are migrating a 

database and you need to insert bunch of records into a database from a JSON file. Each 

record is independent of one another, so why not send many of them at once so they run 

in parallel? It might be a good idea to do so.

Node allows us to write parallel tasks. Here’s a simple code that connects to a 

database and then uses a counter to finish up the loading:

const mongodb= require('mongodb')

const url = 'mongodb://localhost:27017'

const customers = require('./customer_data.json')

const finalCallback = (results)=>{

  console.log(results)

  process.exit(0)

}

let tasksCompleted = 0

const limit = 1000

mongodb.MongoClient.connect(url, (error, dbServer) => {

  if (error) return console.log(error)

  const db = dbServer.db('cryptoexchange')

Chapter 14  Asynchronous Code in Node



419

  for (let i=0; i<limit; i++) {

    db.collection('customers')

      .insert(customers[i], (error, results) => {

        // Just a single insertion, not 1000 of them

    })

  }

})

// Putting finalCallback() here would NOT help

But how do we know when everything is done? Often you need to continue to execute 

some other code dependent upon the completion of ALL the tasks, such as these 1,000 

MongoDB insertions. Where to put finalCallback()? You can have a counter. It’s a 

crude approach but it works (file code/ch14/async/parallel.js):

const mongodb= require('mongodb')

const url = 'mongodb://localhost:27017'

const customers = require('./customer_data.json')

const finalCallback = (results)=>{

  console.log(results)

  process.exit(0)

}

let tasksCompleted = 0

const limit = customers.length

mongodb.MongoClient.connect(url, (error, dbServer) => {

  if (error) return console.log(error)

  const db = dbServer.db('cryptoexchange')

  for (let i=0; i<limit; i++) {

    db.collection('customers')

      .insert(customers[i], (error, results) => {

        tasksCompleted++

        �if (tasksCompleted === limit) return finalCallback(`Finished 

${tasksCompleted}insertions for DB migration`)

    })

  }

})

Chapter 14  Asynchronous Code in Node



420

It’s not very elegant to have this counter and also, how do you know whether one 

or two out of the 1,000s of the tasks have failed? That’s why there’s the async library. It 

solves the problem of running and error handling of parallel tasks, but not just them. 

It also has methods for sequential, and many other types of asynchronous execution. 

Another benefit of the async module’s parallel method is that developers can pass the 

results of every individual task to the main final callback. Try that with the counter!

Here’s the same database migration script but re-written with the async module  

(file code/ch14/async-example/parallel-async.js):

const mongodb= require('mongodb')

const url = 'mongodb://localhost:27017'

const customers = require('./customer_data.json')

const async = require('async')

const finalCallback = (results)=>{

  console.log(results)

  process.exit(0)

}

let tasks = []

const limit = customers.length

mongodb.MongoClient.connect(url, (error, dbServer) => {

  if (error) return console.log(error)

  const db = dbServer.db('cryptoexchange')

  for (let i=0; i<limit; i++) {

    tasks.push((done) => {

      �db.collection('customers').insert(customers[i], (error, 

results) => {

        done(error, results)

      })

    })

  }

  async.parallel(tasks, (errors, results) => {

    if (errors) console.error(errors)

    finalCallback(results)

  })

})

Chapter 14  Asynchronous Code in Node



421

There are more methods in async than just parallel(). There are methods to 

execute tasks sequentially, with racing, with queue, with limits, with retries, and in tons 

of other ways. Almost all of them support multiple error and result objects in the final 

callback, which is a huge plus. For an up-to-date async API, see the docs at https://

caolan.github.io/async.

�Promises
Promises use then. They use catch sometimes too. That’s how you can recognize them. 

That’s how you can use them. As a Node developer, you will be using other people’s 

promises a lot. They’ll be coming from libraries such as axios or mocha.

In a rare case when you cannot find a promise-based library on npm, you will have 

to write your own promise. There’s a global Promise, which is available in all and every 

Node v8+ program. This global Promise will help you to create your own promise.

Therefore, let’s first cover how to use promises and then how to create them with 

Promise. We’ll start with usage since most of you will never need to write your own 

promises (especially when you finish this chapter and learn better syntax such as async 

functions).

To use a promise, simply define then and put some code into it:

const axios = require('axios')

axios.get('http://azat.co')

  .then((response)=>response.data)

  .then(html => console.log(html))

You can chain and pass around data as much as you want. Try to avoid using nested 

callbacks inside of then. Instead, return a value and create a new then. When you get 

tired of writing then, consider writing one or more catch statements. For example, 

using https://azat.co will lead to an error because I don’t have an SSL certificate on 

that domain:

Error: Hostname/IP doesn't match certificate's altnames: "Host: azat.

co. is not in thecert's altnames: DNS:*.github.com, DNS:github.com, 

DNS:*.github.io, DNS:github.io"

Chapter 14  Asynchronous Code in Node

https://caolan.github.io/async
https://caolan.github.io/async


422

That error came from this code:

axios.get('https://azat.co')

  .then((response)=>response.data)

  .then(html => console.log(html))

  .catch(e=>console.error(e))

The next topic is the creation of promises. Just call new Promise and use either the 

resolve or reject callbacks (yes, callbacks in promises). For example, the  

fs.readFile() is a callback-based function. It’s good and familiar. Let’s make an ugly 

promise out of that. Also, let’s parse JSON with try/catch, because why not? In a promise 

it’s okay to use try/catch.

const fs = require('fs')

function readJSON(filename, enc='utf8'){

  return new Promise(function (resolve, reject){

    fs.readFile(filename, enc, function (err, res){

      if (err) reject(err)

      else {

        try {

          resolve(JSON.parse(res))

        } catch (ex) {

          reject(ex)

        }

      }

    })

  })

}

readJSON('./package.json').then(console.log)

There are more features in Promise, such as all, race, and error handling. I will 

skip all of that because you can read about them in the docs, because async functions are 

better, and because I don’t like promises.

Chapter 14  Asynchronous Code in Node

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise


423

Now that you know how to use a promise from a library (such as axios) and create 

a promise from the ES6 standard promise, I want to show you how a basic promise 

implementation works under the hood. You will smile and be pleasantly surprised that a 

promise is nothing more that some tiny-bitty JavaScript code around callback. Promises 

are not replacement for callbacks, because you still need callbacks for promises.

All know the setTimeout() method. It works similarly to any other async method, 

such as fs.readFile() or superagent.get(). You have normal argument(s) such as 

string, number, object, and other boring static data, and you have callbacks, which are not 

normal arguments, but functions (dynamic and lively, thus more interesting). You would 

create a new async function myAsyncTimeoutFn with your own callback. So when you 

call this new function, it calls timeout with the callback, and after 1000ms, the callback is 

executed (file code/ch14/promise/basic-promise-1.js):

function myAsyncTimeoutFn(data, callback) {

  setTimeout(() => {

    callback()

  }, 1000)

}

myAsyncTimeoutFn('just a silly string argument', () => {

  console.log('Final callback is here')

})

What we can do is to re-write the custom timeout function myAsyncTimeoutFn to 

return an object that will have a special method (file code/ch14/promise/basic-

promise-2.js). This special method will set the callback. This process is called 

externalization of the callback argument. In other words, our callback won’t be passed 

as an argument to the myAsyncTimeoutFn but to a method. Let’s call this method then 

because why not.

function myAsyncTimeoutFn(data) {

  let _callback = null

  setTimeout( () => {

    if ( _callback ) callback()

  }, 1000)

Chapter 14  Asynchronous Code in Node



424

  return {

    then(cb){

      _callback = cb

    }

  }

}

myAsyncTimeoutFn('just a silly string argument').then(() => {

  console.log('Final callback is here')

})

The code above functions well because our normal setTimeout does not actually 

need _callback right now. It needs the callback only long, long, long one thousand 

milliseconds in the future. By that time, we’ve executed then, which sets the value of the 

_callback.

Some engineers knowledgeable about OOP might call the _callback value a private 

method, and they would be correct. And yes, you actually don’t need to prefix the  

_callback with the underscore (_), but that’s a good convention in Node that tells other 

Node developers (at least the good ones, like yourself, who read my books) that this 

method is private. See Chapter 1 for more syntax conventions like that.

What about errors? Error handling is important in Node, right? We cannot just ignore 

errors or throw them under the rug (never throw an error). That’s easy too, because we 

can add another argument to then. Here’s an example with the core fs module and 

error handling (file code/ch14/promise/basic-promise-2.js):

const fs = require('fs')

function readFilePromise( filename ) {

  let _callback = () => {}

  let _errorCallback = () => {}

  fs.readFile(filename, (error, buffer) => {

    if (error) _errorCallback(error)

    else _callback(buffer)

  })

Chapter 14  Asynchronous Code in Node



425

  return {

    then( cb, errCb ){

      _callback = cb

      _errorCallback = errCb

    }

  }

}

readFilePromise('package.json').then( buffer => {

  console.log( buffer.toString() )

  process.exit(0)

}, err => {

  console.error( err )

  process.exit(1)

})

The result of the code above (file code/ch14/promise/basic-promise-3.js) 

will be the content of the package.json file if you run it in my code folder code/ch14/

promise. But you probably can’t wait to see the error handling in action. Let’s introduce 

a typo into the file name that will lead to the errCb, which is _errorCallback. This is 

the code that breaks the script:

readFilePromise('package.jsan').then( buffer => {

  console.log( buffer.toString() )

  process.exit(0)

}, err => {

  console.error( err )

  process.exit(1)

})

The output is just what we wanted:

{ Error: ENOENT: no such file or directory, open 'package.jsan'

  errno: -2,

  code: 'ENOENT',

  syscall: 'open',

  path: 'package.jsan' }

Chapter 14  Asynchronous Code in Node



426

To summarize our basic promise implementation, we are not using the callback 

argument on the main function to pass the value, but we are using the callback argument 

on the then method. The callback argument value is a function that is executed later, 

just like with the regular callback pattern.

Of course standard (ES6 or ES2015) promises have more features. This was just a 

basic (naive) implementation to show you that promises are simple and mostly about 

syntax. This list has good resources on learning about promises in depth.

I hope this example has demystified promises and made them less scary… if not, then 

just use the async/await functions and you’ll be good. The next section is about them.

�Async Functions
In a nutshell, an async/await function is just a wrapper for a promise. They are very 

compatible. The advantage of the async/await function is that the syntax is smaller and 

that the async/await concept already exists in other languages such as C#.

Let’s re-write the code from the previous section with an async function. The way 

to do it is to use the word async in front of the word function or before the fat arrow 

function ()=>. Then you can use word await after that inside of the function. This 

await won’t block the entire system, but it will “pause” the current function to get the 

asynchronous results from a promise or async function.

const axios = require('axios')

const getAzatsWebsite = async () => {

  const response = await axios.get('http://azat.co')

  return response.data

}

getAzatsWebsite().then(console.log)

So async functions and promises are compatible. Developers can resolve async 

functions with then. The difference is that inside of the async function developers don’t 

need to create a mess of then statements or nested callbacks. Take a look at this neat 

Mocha example from my course Node Testing:

const axios = require('axios')

const {expect} = require('chai')

const app = require('../server.js')

const port = 3004

Chapter 14  Asynchronous Code in Node

https://promisesaplus.com/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise#See_also
https://node.university/p/node-testing


427

before(async function() {

  �await app.listen(port, ()=>{console.log('server is running')})

  console.log('code after the server is running')

})

describe('express rest api server', async () => {

  let id

  it('posts an object', async () => {

    �const {data: body} = await axios.post(`http://localhost:${port} 

/collections/test`,{ name: 'John', email: 'john@rpjs.co'})

    expect(body.length).to.eql(1)

    expect(body[0]._id.length).to.eql(24)

    id = body[0]._id

  })

  it('retrieves an object', async () => {

    �const {data: body} = await axios.get(`http://localhost:${port} 

/collections/test/${id}`)

    // console.log(body)

    expect(typeof body).to.eql('object')

    expect(body._id.length).to.eql(24)

    expect(body._id).to.eql(id)

    expect(body.name).to.eql('John')

  })

  // ...

})

I hope you appreciate the succinctness of the async in the before and it 

statements. The full source code of this Mocha test with promise and callback versions 

are on GitHub.

The gist is that async functions are more awesome when you don’t resolve them 

yourself but use them in a framework or a library. Let’s see how to use Koa, which is a 

web framework similar to Express but which uses async functions.

Chapter 14  Asynchronous Code in Node

https://github.com/azat-co/node-testing/tree/master/code/rest-test/test


428

Here’s a basic example that has a single route (called middleware, remember?)  

app.use(). It take an async function and there’s no next() callback. You simply set the 

body on the ctx (context) argument:

const Koa = require('koa')

const app = new Koa()

app.use(async ctx => {

  ctx.body = 'Hello World'

})

app.listen(3000)

What’s especially nice with this approach in Koa is that you can call other 

asynchronous methods. For example, here’s how you can make a non-blocking request 

to fetch my website azat.co and then send to the client its HTML as the response:

const Koa = require('koa')

const app = new Koa()

app.use(async ctx => {

  const response = await axios.get('http://azat.co')

  ctx.body = response.data

})

app.listen(3000)

Now let’s go back full circle to try/catch. Remember, we couldn’t use  

try/catch to handle asynchronous errors, right? Guess what. It’ll work in the  

async/await function. See this:

const axios = require('axios')

const getAzatsWebsite = async () => {

  try {

    const response = await axios.get('https://azat.co')

    return response.data

  } catch(e) {

    console.log('oooops')

  }

}

getAzatsWebsite().then(console.log)

Chapter 14  Asynchronous Code in Node



429

The code above will produce oooops because my website azat.co is hosted on http, 

not hosted on https.

And you know what else is cool when you use the async/await functions? You can 

throw errors. Take a look at this example:

const makeRequest = async () => {

  const data = await fetchData()

  const data2 = await processData(data)

  const data3 = await processData(data2)

  const data4 = await processData(data3)

  const data5 = await processData(data4)

  throw new Error("oops")

}

makeRequest()

  .catch(err => {

    �console.log(err) // outputs Error: oops at makeRequest

  })

Technically, you can throw in the promise too, since the async/await functions use 

promises inside. However, the same error in promises will have a less useful message:

Error: oops at callAPromise.then.then.then.then.then (index.js:8:13)

For more on async/await vs promise, see this post: http://bit.ly/2xPHIs3.

�Summary
Writing and understanding asynchronous code is hard. It’s not your fault if this topic 

is tough on your mind because most of the Computer Science material teaches 

synchronous code. Also, human brains just aren’t wired evolutionarily to deal with 

parallel and concurrent .

It doesn’t matter if you are new to Node or are a seasoned Node developer like I am, 

you must know how to work and read new asynchronous code with async library promises 

and the async/await function. Now you can start writing your code using some of that new 

syntax which you learned in this chapter. And if you ask me, I really like the async/await 

function syntax for its eloquence and compatibility with the widely-supported promises.

Chapter 14  Asynchronous Code in Node

http://bit.ly/2xPHIs3


431
© Azat Mardan 2018 
A. Mardan, Practical Node.js, https://doi.org/10.1007/978-1-4842-3039-8_15

CHAPTER 15

Node Microservices 
with Docker and AWS ECS
Node and microservices go together like nuts and honey, like SPF 50 and Cancun, like 

hipsters and IPA. You get the idea. Some of you might not even know exactly what the 

heck microservices are. Let me give you my brief definition.

Microservices are small services. A microservice will have just one functionality, but 

it will have everything that functionality needs.

Let’s say you have a service that is giving you an interface to a cookie machine. You 

can bake a cookie, save a template of a new cookie recipe (gluten-free!), get stats on 

cookie production, and do all the other boring but necessary stuff a service can do, such 

called CRUD, from create, read, update and delete.

To continue with this example, now your task is to break this monolithic service 

into microservices. One microservice will be baking cookies. Another microservice will 

be saving new cookie recipes for baking by the first microservice, or whatever. In other 

words, instead of a single application with one staging, one CI/CD, and one production, 

now you have several applications each with their own staging environment, CI/CD, 

production environment, and other hassles.

Why bother? Because microservices will allow you to scale different parts of your 

system up or down independently. Let’s say there’s very little need for new recipes, but 

there’s a huge demand for the orders coming from chat bots (yet another microservice). 

Good. With microservices, you can scale just the chat bot cookie-ordering microservice 

(app) and not waste your precious pennies on scaling any other services. On the other 

hand, with a monolithic app, you have to scale everything at once, which of course takes 

up more RAM, CPU, and coffee consumed.

There’s a fancy term in computer science that will make you look smart (if you work 

in enterprise) or snobbish (if you work in a startup). Nevertheless, the term describes 

the microservices philosophy nicely. It’s loose coupling, and according to many CS books 



432

and classes, if you use it you’ll get flexibility, ease of maintenance, and enough health to 

enjoy your retirement.

As with many tech concepts, microservices technology has gone through a cycle 

of overhype. It has advantages and disadvantages. Uber for example has over 2,500 

microservices, and its engineers starting to see problems because of complexity and 

other issues of managing so many separate apps. Hate them or love, the best thing is to 

know and use microservices when you see a fit. Again, Node is brilliant for microservices 

because it’s light weight, fast and because more and more developers prefer not to have 

switch of context and use JavaScript for their server-side language.

The project of creating a microservice in a container and deploying it to the cloud is 

divided into four parts:

	 1.	 Creating a local Node project, a microservice RESTful API that 

connects to MongoDB

	 2.	 Dockerizing Node project, i.e., turning a local project into a 

Docker image

	 3.	 Setting up Docker networks for multi-container setup

	 4.	 Deploying the Docker microservice image to the cloud, namely 

Amazon Web Services (AWS) Elastic Container Service (EC2)

�Installing Installations
Before doing the exercise in this chapter, make sure you have the following:

	 1.	 Docker engine

	 2.	 Amazon Web Services (AWS) account

	 3.	 AWS CLI (aws-cli)

�Installing Docker Engine
Next, you would need to get the Docker engine (daemon). If you are a macOS user like I 

am, then the easiest way to install the daemon is to just go to and download it from the 

official Docker website: https://docs.docker.com/docker-for-mac.

Chapter 15  Node Microservices with Docker and AWS ECS

https://docs.docker.com/docker-for-mac


433

And if you are not a macOS user, then you can select one of the options from this 

Docker website page: https://docs.docker.com/engine/installation.

To verify installation, run:

$ docker version

It’s good if you see something like this:

Client:

  Version:      17.03.1-ce

  API version:  1.27

  Go version:   go1.7.5

  Git commit:   c6d412e

  Built:        Tue Mar 28 00:40:02 2017

  OS/Arch:      darwin/amd64

Server:

  Version:      17.03.1-ce

  API version:  1.27 (minimum version 1.12)

  Go version:   go1.7.5

  Git commit:   c6d412e

  Built:        Fri Mar 24 00:00:50 2017

  OS/Arch:      linux/amd64

  Experimental: true

The next step is to verify that Docker can pull from Hub. Run this hello world image:

$ docker run hello-world

If you see a message like this, most likely you didn’t start Docker:

Cannot connect to the Docker daemon. Is the docker daemon running on 

this host?

Start Docker. If you used the macOS installer linked earlier, then you can utilize the 

GUI app from the menu bar. Figure 15-1 shows how running the Docker daemon looks 

on my macOS menu bar.

Chapter 15  Node Microservices with Docker and AWS ECS

https://docs.docker.com/engine/installation


434

On the contrary, if you see a message like the one below, then daemon is running 

and you are ready to work with Docker!

Unable to find image 'hello-world:latest' locally

latest: Pulling from library/hello-world

c04b14da8d14: Pull complete

Digest: sha256:0256e8a36e2070f7bf2d0b0763dbabdd67798512411de4cdcf943

1a1feb60fd9

Status: Downloaded newer image for hello-world:latest

Hello from Docker!

This message shows that your installation appears to be working 

correctly.

To generate this message, Docker took the following steps:

...

�Getting an AWS Account
You can easily get a free (trial) AWS account. You’ll need a valid email and a credit card. 

Read about the free tier at https://aws.amazon.com/free, and when you are ready, 

sign up by clicking on “CREATE A FREE ACCOUNT”.

Figure 15-1.  Docker macOS client in the menu bar needs to show “running”

Chapter 15  Node Microservices with Docker and AWS ECS

https://aws.amazon.com/free


435

Once you are in, make sure you can access EC2 dashboard. Sometimes AWS requires 

a phone call or a waiting period, but most people can get an account within 10 minutes. 

It’s not always easy to navigate your way around the AWS web console, especially if you 

are a first-time user. EC2 is just one of many, many, many AWS services. EC2 belongs to 

the Compute family or category, while there are Database, Security, Tools, Networking 

and various other categories.

Take a look at Figure 15-2 where I point to the location of the EC2 services in 

“Recently visited services”. If this is your first time using AWS console, you won’t have 

EC2 in the list of recent services. Right below “Recently visited services” is the Compute 

category that gives you the access to the EC2 dashboard.

Figure 15-2.  AWS web console has Compute and EC2, which we need for 
microservices and containers, in the top left column

Chapter 15  Node Microservices with Docker and AWS ECS



436

Using the web console is easy, but it is limited when it comes to deployment of 

Docker containers and their images to the AWS container registry. We can later deploy 

those images from this cloud registry. AWS web console is also limited in the fact that 

it’s hard or even impossible to automate the web interface, whereas it’s very easy to 

automate the command-line interface by writing a few shell scripts. AWS CLI will allow 

us to upload Docker images to the cloud. Thus, let us proceed to install the AWS CLI.

�Installing AWS CLI
Check for Python and pip with these commands:

$ phyton --version

$ pip --version

Make sure you have versions 2.6+ or 3.6+ (recommended), see here:  

https://amzn.to/2xPYZBu. You can download Python for your OS at https://www.

python.org/downloads.

You can use pip or pip3 (Python package manager) to install AWS CLI:

$ pip install awscli

Here’s the AWS CLI installation command for macOS El Capitan:

$ sudo -H pip install awscli --upgrade --ignore-installed six

There are a few other AWS CLI Installation options:

•	 Install the AWS CLI with Homebrew: For macOS

•	 Install the AWS CLI Using the Bundled Installer (Linux, macOS, or 

Unix): Just download, unzip, and execute

You might be wondering how to verify the AWS CLI installation. Run the following 

command to verify AWS CLI installation and its version (1+ is ok):

$ aws --version

Chapter 15  Node Microservices with Docker and AWS ECS

https://amzn.to/2xPYZBu
http://www.python.org/downloads
http://www.python.org/downloads
https://docs.aws.amazon.com/cli/latest/userguide/cli-install-macos.html#awscli-install-osx-homebrew﻿
https://docs.aws.amazon.com/cli/latest/userguide/awscli-install-bundle.html
https://docs.aws.amazon.com/cli/latest/userguide/awscli-install-bundle.html


437

�Dockerizing Node Microservice
Before deploying anything in the cloud, let’s build Node app Docker images locally. Then 

we will run the image as a container locally in both the development and production 

modes. When you finish this project, you will know how to dockerize a Node project and 

get yummy.

�Creating/Copying the Node Project
Firstly, you need to have the application code itself before you can containerize anything. 

Of course, you can copy the existing code from code/banking-api, but it’s better for 

learning to create the project from scratch.

That’s what we will do now. Create a new project folder somewhere on your local 

computer:

$ mkdir banking-api

$ cd banking-api

$ mkdir api

$ cd api

Create vanilla/default package.json and install required packages as regular 

dependencies with exact versions:

$ npm init -y

$ npm i express@4.15.2 errorhandler@1.5.0 express@4.15.2 

globalog@1.0.0 monk@4.0.0 pm2@2.4.6 -SE

Add the following npm scripts: the first to test and the second to run the server using 

local pm2:

    "scripts": {

      "test": "sh ./test.sh",

      �"start": "if [[ ${NODE_ENV} = production ]]; then  

./node_modules/.bin/pm2-docker start -i 0 server.js; else  

./node_modules/.bin/pm2-dev server.js; fi"

},

There are two CLI commands for pm2: pm2-docker for the container and  

pm2-dev for local development.

Chapter 15  Node Microservices with Docker and AWS ECS



438

The full relative path ./node_modules/.bin is recommended to make your 

command more robust. Local installation can be replaced with a global one with  

$ npm i -g pm2. However, global installation is an extra step outside of package.json, 

and the npm i command and doesn’t allow developers to use different versions of 

pm2 on one machine.

The source code for the Node+Express API (code/ch15/banking-api/api/

server.js) is as follows:

require('globalog')

const http = require('http')

const express = require('express')

const errorhandler = require('errorhandler')

const app = express()

const monk = require('monk')

const db = monk(process.env.DB_URI, (err)=>{

  if (err) {

    error(err)

    process.exit(1)

  }

})

const accounts = db.get('accounts')

app.use(express.static('public'))

app.use(errorhandler())

app.get('/accounts', (req, res, next)=>{

  accounts.find({ }, (err, docs) =>{

    if (err) return next(err)

    return res.send(docs)

  })

})

app.get('/accounts/:accountId/transactions', (req, res)=>{

  accounts.findOne({_id: req.params.accountId}, (err, doc) =>{

    if (err) return next(err)

Chapter 15  Node Microservices with Docker and AWS ECS



439

    return res.send(doc.transactions)

  })

})

http.createServer(app).listen(process.env.PORT, ()=>{

  log(`Listening on port ${process.env.PORT}`)

})

The key here is that we are using two environment variables: PORT and DB_URI. We 

would need to provide them in Dockerfile or in the command so the app has them set 

during running.

Let’s verify that your application works without Docker by starting MondoGB and the 

app itself:

mongod

In a new terminal, launch the server with env vars:

DB_URI=mongodb://localhost:27017/db-dev PORT=3000 npm start

Yet, in another terminal make a request to your server:

curl http://localhost:3000/accounts

The result will be []% because it’s an empty database and accounts collection. If 

you use MongoUI or mongo shell to insert a document to db-dev database and accounts 

collections, then you’ll see that document in the response. To learn about main mongo 

shell command, you can skim through Chapter 7 of my open-source book Full Stack 

JavaScript, 2nd Edition: http://bit.ly/2KUjsui.

The app is working, and now is the time to containerize it.

�Creating a Node.js Dockerfile
Go back to the banking-api folder and create an empty Dockerfile, which must be 

exactly Dockerfile, with no extension and starting with the capital letter D:

$ cd ..

$ touch Dockerfile

Chapter 15  Node Microservices with Docker and AWS ECS

http://bit.ly/2KUjsui


440

Then, write in banking-api/Dockerfile the base image name FROM node:8-

alpine that is Node v8 based on Alpine. Add CMD as shown below. Each Dockerfile 

needs statements like these two:

FROM node:8-alpine

CMD ["npm", "start"]

Alpine is a lightweight stripped-down Ubuntu which is Linux. It means Alpine is 

Linux-based. At Capital One, we used Alpine for Node microservices. It worked well. The 

Docker image size is a few megabytes vs. ~200Mb for a full Ubuntu.

The Dockerfile is not yet doing everything we need it do do. So next copy the rest 

of the Dockerfile file between FROM and CMD as shown below. We will learn shortly 

what these statements mandate Docker to do. You can copy or ignore the comments 

marked by the hash sign (#).

FROM node:8-alpine

# Some image metadata

LABEL version="1.0"

LABEL description="This is an example of a Node API server with 

connection to MongoDB.\More details at https://github.com/azat-co/

node-in-production and https://node.university"

#ARG mongodb_container_name

#ARG app_env

# Environment variables

# Add/change/overwrite with docker run --env key=value

# ENV NODE_ENV=$app_env

ENV PORT=3000

# ENV DB_URI="mongodb://${mongodb_container_name}:27017/db-${app_

env}"

# agr->env->npm start->pm2-dev or pm2-docker

# User

#USER app

# Mount Volume in docker run command

# RUN npm i -g pm2@2.4.6

Chapter 15  Node Microservices with Docker and AWS ECS



441

# Create api directory

RUN mkdir -p /usr/src/api

# From now one we are working in /usr/src/api

WORKDIR /usr/src/api

# Install api dependencies

COPY ./api/package.json.

# Run build if necessary with devDependencies then clean them up

RUN npm i --production

# Copy keys from a secret URL, e.g., S3 bucket or GitHub Gist

# Example adds an image from a remote URL

ADD "https://process.filestackapi.com/ADNupMnWyR7k 

CWRvm76Laz/resize=height:60/https://www.filepicker.io/api/file/

WYqKiG0xQQ65DBnss8nD" ./public/node-university-logo.png

# Copy API source code

COPY ./api/.

EXPOSE 3000

# The following command will use NODE_ENV to run pm2-docker or  

pm2-dev

CMD ["npm", "start"]

Firstly, we need to create an app directory in the Docker container. RUN will run any 

shell command. These next “commands” RUN and WORKDIR in your Dockerfile will tell 

Docker to create a folder and then to set up a default folder for subsequent commands:

# Create api directory

RUN mkdir -p /usr/src/api

# From now one we are working in /usr/src/api

WORKDIR /usr/src/api

COPY will get the project manifest file package.json into the container. This allows 

us to install app dependencies by executing npm i. Of course, let’s skip the development 

dependencies (devDependencies in package.json) by using --production . 

devDependencies should include tools like Webpack, Babel, JSLint and so on, unless 

you want to test and build your project in a container.

Chapter 15  Node Microservices with Docker and AWS ECS



442

# Install api dependencies

COPY ./api/package.json.

# Run build if necessary with devDependencies then clean them up

RUN npm i --production

Next, bundle app source by using COPY that takes files from the current folder on the 

host (using the dot .) and puts them into api folder in the container. Remember, the 

container folder is first, and the host is second:

# Copy API source code

COPY ./api/.

You want to open a port cause otherwise no incoming connections will ever get to 

the container (all outgoing connections are open by default).

EXPOSE 3000

Finally, you start the server with CMD which runs $ npm start. The list [] can 

contain more options or use a different command name.

CMD ["npm", "start"]

By now the Dockerfile, which is a blueprint for your Node microservice, is ready. The 

code for the microservice is ready too. It’s REST API with Express.

Next, we are going to build, run and verify the container by running it locally.

Build the image from the banking-api folder where you should have Dockerfile 

and the api folder:

$ docker build .

Ah. Don’t forget to start the Docker Engine (daemon) before building. Ideally, you’ll see 

13 steps such as shown next. These steps are statements in Dockerfile . They’re called 

layers. Docker brilliantly reuses layers for images when there are no changes to them.

$ docker build .

Sending build context to Docker daemon 23.82 MB

Step 1/13: FROM node:6-alpine

6-alpine: Pulling from library/node

Chapter 15  Node Microservices with Docker and AWS ECS



443

79650cf9cc01: Pull complete

db515f170158: Pull complete

e4c29f5994c9: Pull complete

Digest: sha256:f57cdd2969122bcb9631e02e632123235008245df8ea26fe6dde0

2f11609ec57

Status: Downloaded newer image for node:6-alpine

 ---> db1550a2d1e5

Step 2/13: LABEL version "1.0"

 ---> Running in 769ba6574e60

 ---> 63d5f68d2d01

Removing intermediate container 769ba6574e60

Step 3/13: LABEL description "This is an example of a Node API server 

with connection to MongoDB. More details at https://github.com/azat-

co/node-in-production and https://node.university"

 ---> Running in f7dcb5dd35b6

 ---> 08f1211cbfe1

 ...

Step 13/13: CMD npm start

 ---> Running in defd2b5776f0

 ---> 330df9053088

Removing intermediate container defd2b5776f0

Successfully built 330df9053088

Each step has a hash. Copy the last hash of the image, e.g., 330df9053088 in my case.

As an interim step, we can verify our image by using a host database. In other 

words, our app will be connecting to the host database from a container. This is good 

for development. In production, you’ll be using a managed database such as AWS RDS, 

Compose, mLabs, or a database in a separate (second) container.

To connect to your local MongoDB instance (which must be running), let’s grab  

your host IP:

$ ifconfig | grep inet

Look for the value that says inet . For example, inet 10.0.1.7 netmask 

0xffffff00 broadcast 10.0.1.255 means my IP is 10.0.1.7.

Chapter 15  Node Microservices with Docker and AWS ECS



444

Put the IP in the environment variable in the docker run command for the Docker 

build of the app image by substituting in the {host-ip} and {app-image-id} with 

your values:

$ docker run --rm -t --name banking-api -e NODE_ENV=development -e 

DB_URI="mongodb://{host-ip}:27017/db-prod" -v $(pwd)/api:/usr/src/api 

-p 80:3000 {app-image-id}

The command must be all on one line or two or more by lines joined by the 

backslash (\). As an example, the next command has my IP and my image ID in the 

command instead of the {} values.

$ docker run --rm -t --name banking-api -e NODE_ENV=development -e 

DB_URI="mongodb://10.0.1.7:27017/db-prod" -v $(pwd)/api:/usr/src/api 

-p 80:3000 330df9053088

This is just an example. Don’t copy my command as-is. Use your IP and image 

ID. Let me explain what each option is doing:

•	 -e passes environment variables

•	 -p maps host 80 to container 3000 (set in Dockerfile)

•	 -v mounts the local volume so you can change the files on the host 

and container app will pick up the changes automatically

Now after container is running, go ahead and verify by using curl localhost/

accounts . You should see the response coming from the container app.

You can test the volume. Modify your server.js without re-building or stopping the 

container. You can add some text, a route, or mock data to the /accounts:

app.get('/accounts', (req, res, next)=>{

  accounts.find({}, (err, docs) =>{

    if (err) return next(err)

    docs.push({a:1})

    return res.send(docs)

  })

})

Chapter 15  Node Microservices with Docker and AWS ECS



445

Hit save in your editor on your host, curl again and boom! You’ll see the change 

in the response from the app container. The change is the a:1 response instead of the 

empty response [] as before. This means that the code in the container is changing 

because of the volume and the changes in the host. See what I have here as the CURL 

request and microservice’s response:

$ curl localhost/accounts

[{"a":1}]%

To stop the container, simply run the dockea stop command with the container 

name that you specified when you executed the docker run command. Here’s the stop 

command for the banking-api name:

$ docker stop banking-api

Or get the container ID first with $ docker ps and then run $ docker stop 

{container-id}.

The bottom line is that our Dockerfile is production-ready, but we can run the 

container in dev mode (NODE_ENV=development) with volumes and a host database 

that allows us to avoid any modifications between images and/or Dockerfiles when we go 

from dev to prod.

�Use Docker Networks for Multi-container Setup
Microservices are never used alone. They need to communicate with other micro and 

normal services.

As mentioned, Dockerfile you created is ready to be deployed to the cloud without 

modifications. However, if you want to run MongoDB or any other service in a container 

(instead of a host or managed solution like mLab or Compose), then you can do it with 

Docker networks. The idea is to create a network and launch two (or more) containers 

inside of this network. Every container in a network can “talk” to each other just by name.

�Creating a Docker Network
Assuming you want to name your network banking-api-network , run this command:

$ docker network create --driver=bridge banking-api-network

Chapter 15  Node Microservices with Docker and AWS ECS



446

Verify by getting banking-api-network details or a list of all networks:

$ docker network inspect banking-api-network

$ docker network ls

You should see a table with network ID, driver (bridge or host), name, and so on,  

like this:

$ docker network ls

NETWORK ID    NAME                 DRIVER     SCOPE

e9f653fffa25  banking-api-network  bridge     local

cd768d87acb1  bridge               bridge     local

0cd7db8df819  host                 host       local

8f4db39bd202  none                 null       local

Next, launch a vanilla mongo image in banking-api-network (or whatever name 

you used for your network). The name of the container mongod-banking-api-prod-

container will become the host name to access it from our app:

$ docker run --rm -it --net=banking-api-network --name mongod-

banking-api-prod-container

mongo

Note I f you didn’t have mongo image saved locally, Docker will download it for 
you. It’ll take some time to download it but it’ll happen just once, the first time.

Leave this MongoDB container running. Open a new terminal.

�Launch App into a Network
This is my command to launch my Node app in a production mode and connect to my 

MongoDB container which is in the same network (banking-api-network):

$ docker run --rm -t --net=banking-api-network --name banking-api 

-e NODE_ENV=production-e DB_URI="mongodb://mongod-banking-api-prod-

container:27017/db-prod" -p 80:3000 330df9053088

Chapter 15  Node Microservices with Docker and AWS ECS



447

The 330df9053088 must be replaced with your app image ID from the previous 

section when you executed the docker build . command. If you forgot the app image 

ID, then run docker images and look up the ID.

This time, you’ll see pm2 in a production clustered mode. I have two (2) CPUs in my 

Docker engine settings, hence pm2-docker spawned two Node processes which both 

listen for incoming connections at 3000 (container, 80 on the host):

$ docker run --rm -t --net=banking-api-network --name banking-api 

-e NODE_ENV=production-e DB_URI="mongodb://mongod-banking-api-prod-

container:27017/db-prod" -p 80:3000 330d

f9053088

npm info it worked if it ends with ok

npm info using npm@3.10.10

npm info using node@v6.10.3

npm info lifecycle banking-api@1.0.0~prestart: banking-api@1.0.0

npm info lifecycle banking-api@1.0.0~start: banking-api@1.0.0

> banking-api@1.0.0 start /usr/src/api

> if [[ ${NODE_ENV} = production ]]; then ./node_modules/.bin/ 

pm2-docker start -i 0 server.js; else ./node_modules/.bin/pm2-dev 

server.js; fi

[STREAMING] Now streaming realtime logs for [all] processes

0|server   | Listening on port 3000

1|server   | Listening on port 3000

The command is different than in the previous section but the image is the same. 

The command does NOT have a volume and has different environment variables. 

There’s no need to use a volume since we want to bake the code into an image for 

portability.

Again, open a new terminal (or use an existing tab) and run CURL:

$ curl http://localhost/accounts

If you see []% , then all is good.

Chapter 15  Node Microservices with Docker and AWS ECS



448

Inspecting your network with $ docker network inspect banking-api-

network will show that you have two (2) running containers there:

...

    "Containers": {

        �"02ff9bb083484a0fe2abb63ec79e0a78f9cac0d31440374 

f9bb2ee8995930414": {

            "Name": "mongod-banking-api-prod-container",

            �"EndpointID": "0fa2612ebc14ed7af097f7287e0138 

02e844005fe66a979dfe6cfb1c08336080",

            "MacAddress": "02:42:ac:12:00:02",

            "IPv4Address": "172.18.0.2/16",

            "IPv6Address": ""

        },

        �"3836f4042c5d3b16a565b1f68eb5690e062e5472a09caf56 

3bc9f11efd9ab167": {

          �"Name": "banking-api",

          �"EndpointID": "d6ae871a94553dab1fcd6660185be4 

029a28c80c893ef1450df8cad20add583e",

          "MacAddress": "02:42:ac:12:00:03",

          "IPv4Address": "172.18.0.3/16",

          "IPv6Address": ""

      }

    },

...

Using a similar approach, you can launch other apps and services into the same 

network and they’ll be able to talk with each other.

Note T he older --link flag/option is deprecated. Don’t use it.  
See https://dockr.ly/2xW5jHZ.

Chapter 15  Node Microservices with Docker and AWS ECS

https://dockr.ly/2xW5jHZ


449

Let me share some of the common issues and their solutions for easy and effortless 

troubleshooting. Here’s the top list:

•	 No response: Check that the port is mapped in the $ docker run  

command with -p. It’s not enough to just have EXPOSE in 

Dockerfile. Developers need to have both.

•	 The server hasn’t updated after my code change: Make sure you mount 

a volume with -v. You don’t want to do it for production though.

•	 I cannot get my IP because your command is not working on 

my Windows, ChromeOS, Apple Watch, etc.: See http://www.

howtofindmyipaddress.com.

•	 I can’t understand networks: For more info on networks, see  

http://bit.ly/2xNJbiL.

�Node Containers in AWS with EC2 ECS
For the next topics, we will learn how to deploy Node microservices into cloud. The goal 

is to deploy two containers (API and DB) using ECR and EC2 ECS. We will achieve this 

goal with the following steps:

	 1.	 Creating an AWS Elastic Cloud Registry (ECR) to store images in 

the cloud

	 2.	 Uploading the app image to the cloud (using ECR)

	 3.	 Creating a new ECS task definition with two (2) containers to 

connect them together

	 4.	 Creating a container cluster (using ECS)

	 5.	 Creating a container service and running it in the cloud (using ECS)

When you are done, you will know how to deploy scalable production-level Node 

microservices

Chapter 15  Node Microservices with Docker and AWS ECS

http://www.howtofindmyipaddress.com/
http://www.howtofindmyipaddress.com/
http://bit.ly/2xNJbiL


450

�Creating a Registry (ECR)
Each image needs to be uploaded to a registry before we can use it to run a container. 

There is registry from Docker: https://hub.docker.com. AWS provides its own 

registry service called EC2, which stands for Elastic Container Registry (ECR). Let’s use it.

Log in to your AWS web console at https://aws.amazon.com. Navigate to us-

west-2 (or some other region, but we are using us-west-2 in this lab) and click on CE2 

Container Service under Compute, as shown in Figure 15-3.

Figure 15-3.  Selecting EC2 Container Service under Compute from the AWS  
web console

Chapter 15  Node Microservices with Docker and AWS ECS

https://hub.docker.com
https://aws.amazon.com


451

Then click on Repositories from a left menu and then on a blue button named Create 

repository. Then the new repository wizard will open. It might look similar to the one on 

my screenshot on Figure 15-4.

Figure 15-4.  Configure repository is step 1 of creating ECR that prompts for the 
container repository name

Enter the name of your repository for container images. I picked azat-main-repo  

because my name is Azat and I have great imagination. Do the same. Not in the sense 

of picking the same name, but in the sense of naming your repository with some name 

which you can easily remember later. You can see my screen in Figure 15-5. It shows the 

future repository URI right away.

Chapter 15  Node Microservices with Docker and AWS ECS



452

Click “Next step”. On Step 2, you will see bunch of commands (Figure 15-6). Write 

them down and put somewhere safe… away from a dog that can eat it.

Figure 15-5.  Example of entering the name of the ECR as azat-main-repo

Chapter 15  Node Microservices with Docker and AWS ECS



453

I have successfully created the repository, and my URI is:

161599702702.dkr.ecr.us-west-2.amazonaws.com/azat-main-repo

What is your URI? Send me a postcard.

Next, follow instructions shown to you to upload an image. You must build it before 

uploading/pushing. You’ll need AWS CLI. If you still don’t have it, then install the AWS 

CLI and Docker now. I list the commands to build and upload the image next.

Figure 15-6.  Building and pushing instructions (step 2 of creating ECR) which 
explains how to upload Docker images

Chapter 15  Node Microservices with Docker and AWS ECS



454

Command 1: Retrieve the docker login command that you can use to authenticate 

your Docker client to your registry:

$ aws ecr get-login --region us-west-2

Command 2: Run the docker login command that was returned in the previous step. 

For example,

$ docker login -u AWS -p eyJwYXlsb2FkIjoiQ1pUVnBTSHp

FNE5OSU1IdDhxeEZ3MlNrVTJGMUdBRlAxL1k4MDhRbE5lZ3JUW

...

W5VK01Ja0xQVnFSN3JpaHCJ0eXBlIjoiREFUQV9LRVkifQ==

-e none https://161599702702.dkr.ecr.us-west-2.amazonaws.com

The results will say:

Login Succeeded

Command 3: Build your Docker image using the following command. You can skip 

this step if your image is already built:

$ cd code/banking-api

$ docker build -t azat-main-repo.

You might have done this already. Skip to step 4. If not, then build the app image. 

The build command should end with a similar-looking output:

...

Step 13/13: CMD npm start

> Running in ee5f0fb12a2f

> 91e9122e9bed

Removing intermediate container ee5f0fb12a2f

Successfully built 91e9122e9bed

Command 4: After the build completes, tag your image so you can push the image to 

this repository:

$ docker tag azat-main-repo:latest 161599702702.dkr.ecr.us-west-2.

amazonaws.com/azat-main-repo:latest

Chapter 15  Node Microservices with Docker and AWS ECS



455

Output: there’s no output.

Command 5: Run the following command to push this image to your newly created 

AWS repository:

$ docker push 161599702702.dkr.ecr.us-west-2.amazonaws.com/azat-main-

repo:latest

AWS relies on the docker push command. Here’s the push output example:

The push refers to a repository [161599702702.dkr.ecr.us-west-2.

amazonaws.com/azat-main-repo]

9e5134c1ad7a: Pushed

e949bf24b1c4: Pushed

2b5c968a7072: Pushed

858e5e857851: Pushed

10e038bbd0ad: Pushed

ad2f0f4f7c5a: Pushed

ec6eb0ab894f: Pushed

e0380bb6c0bb: Pushed

9f8566ee5135: Pushed

latest: digest: sha256:6d1cd529ced84a6cff1eb5f6cffaed375717022b998e7

0b0d33c86db26a04c7

4 size: 2201

Remember the digest value (the last hash). Compare the digest with one in 

the repository when you look up your image in the web console in EC2 ➤ ECS ➤ 

Repositories ➤ azat-main-repo, as demonstrated in Figure 15-7.

Chapter 15  Node Microservices with Docker and AWS ECS



456

For more information on the steps below, visit the ECR documentation page.

The image’s in the cloud, and now is the time to set up a certain mechanism to run 

this image.

Figure 15-7.  The image uploaded to the newly created container repository is 
listed with the correct digest and timestamp

Chapter 15  Node Microservices with Docker and AWS ECS

https://docs.aws.amazon.com/AmazonECR/latest/userguide/ECR_GetStarted.html


457

�Create a New Task Definition
Tasks are like run commands in Docker CLI (docker run) but for multiple containers. 

Typical tasks define:

•	 Container images to use

•	 Volumes, if any

•	 Networks

•	 Environment variables

•	 Port mappings

Go to the Task Definitions in EC2 ECS and, as you might guess, press on the button 

which says “Create new Task Definition”, as it does in Figure 15-8.

Figure 15-8.  Creating a new task definition is easily done from the Task 
Definitions screen

Chapter 15  Node Microservices with Docker and AWS ECS



458

�Defining the Main Task Settings for the Example

Use the following settings for the task to make sure your project is running (because 

some other values might make the project nonfunctional):

•	 Two containers: banking-api (private AWS ECR) and mongodb 

(from Docker hub)

•	 Connect to mongodb via the network alias

•	 Map 80 (host) to 3000 (container) for banking-api

•	 Set env vars for NODE_ENV and DB_URI

Let’s define the first container—Node app banking-api.

�Defining the First Container: App

Start defining the first container in the task. Enter the name: banking-api-container.

Then define the image URL taken from the repository (your URL will be different), e.g.,

161599702702.dkr.ecr.us-west-2.amazonaws.com/azat-main-repo:latest

Define host 80 and container 3000 ports in port mappings. Name, image, and ports 

are shown below in Figure 15-9. The values are banking-api-container ,  

161599702702.dkr.ecr.us-west-2.amazonaws.com/azat-main-repo:latest , 

and 80:3000 respectively.

Chapter 15  Node Microservices with Docker and AWS ECS



459

Scroll down in the same modal view and add Env Variables (Figure 15-10):

DB_URI=mongodb://mongod-banking-api-prod-container:27017/db-prod

NODE_ENV=production

Add to Links, as shown in Figure 15-10, the name of the future MongoDB container 

to give this app container an access to the database container (second not defined yet 

container). We map the name of the DB container in this app container and the name 

of the DB container in ECS. The name of the DB container in this app must be the same 

Figure 15-9.  The correct API container configurations have name, image ID, and 
port values

Chapter 15  Node Microservices with Docker and AWS ECS



460

as the value used in Env Variables for DB_URI. To keep it simple, I use the same name 

mongod-banking-api-prod-container in all four places (the fourth is when I define 

the DB container shown on Figure 15-11).

mongod-banking-api-prod-container:mongod-banking-api-prod-container

Figure 15-10.  Environment variables and network settings for the API container

A picture’s worth a thousand words. Ergo, see the screengrab below on Figure 15-10 

that shows the correct values for the environment variables and the Network settings to 

link the database to the API.

That’s it for the API container. Next we will deal with the database container settings 

which we must define in the same task definition as the API container.

Chapter 15  Node Microservices with Docker and AWS ECS



461

�Defining the Second Container: Database

Analogous to the previous container (API), define the name and URL with these values 

for the DB container (Figure 15-11):

•	 Name: mongod-banking-api-prod-container

•	 Image URL: registry.hub.docker.com/library/mongo:latest

Figure 15-11.  Database container settings have name and image URL

Chapter 15  Node Microservices with Docker and AWS ECS



462

The next piece is very important because it allows API to connect to this database 

container, so pay attention closely. Scroll down to the hostname in the Network settings 

and enter Hostname as mongod-banking-api-prod-container, as shown below in 

Figure 15-12.

Figure 15-12.  Defining hostname as mongo-banking-api-prod-container for the 
database container

Chapter 15  Node Microservices with Docker and AWS ECS



463

After this hostname, we are done with the database container settings. Since you’ve 

added two containers to the task, everything is ready to create the task. Do it and you’ll 

see a screen similar to the one shown below in Figure 15-13.

Figure 15-13.  The newly created task shows two containers and their respective 
image IDs correctly

Chapter 15  Node Microservices with Docker and AWS ECS



464

Alternatively, you could specify volumes for database and/or the app at the stage of 

the task creation. But I will leave that for the next book. Send me a $5 Starbucks gift card, 

if you’re interested in this topic.

�Creating Cluster
Cluster is the place where AWS runs containers. They use configurations similar to EC2 

instances (Figure 15-14). Define the following:

•	 Cluster name: banking-api-cluster

•	 EC2 instance type: m4.large (for more info on EC2 type, see AWS Intro 

course on Node University)

•	 Number of instances: 1

•	 EBS storage: 22

•	 Key pair: None

•	 VPC: New

Chapter 15  Node Microservices with Docker and AWS ECS

https://node.university/p/aws-intro
https://node.university/p/aws-intro


465

If you are not familiar with AWS EC2, then I wrote a blog post that TK.

Figure 15-14.  “Create Cluster” page with settings not unlike settings of an EC2 
instance

Chapter 15  Node Microservices with Docker and AWS ECS



466

Launch the cluster. It might take a few minutes (Figure 15-15 and 15-16).

Figure 15-15.  Launching a cluster has three steps: cluster, IAM policy, and CF 
stack resources

Chapter 15  Node Microservices with Docker and AWS ECS



467

You’ll see the progress as shown in Figure 15-5. Under the hood, AWS uses AWS 

CloudFormation which is a declarative way to create not just single resources such as 

Virtual Private Clouds or EC2 instances but whole stacks of dozens or more of such 

resources. CloudFormation (CF) is like an aircraft carrier. I talk more about CF in my 

course: https://node.university/p/aws-intermediate.

Later, you’ll start seeing these resources as I captured in Figure 15-16. All of them will 

enable the smooth running and functioning of your containers. There are much more to 

AWS. I recommend learning CloudFormation, EC2 and VPCs. If you want to learn more 

about AWS and Node besides what’s covered in this chapter, read my free blog posts 

Figure 15-16.  Creating a cluster involves creating multiple AWS resources which are 
shown at the bottom: VPC, security group, routes, subnets, autoscaling groups, etc

Chapter 15  Node Microservices with Docker and AWS ECS

https://node.university/p/aws-intermediate
https://node.university/courses/category/Cloud


468

and tutorials and take some of my AWS courses on Node University at: https://node.

university/blog and https://node.university/courses/category/Cloud.

Finally, you’ll see that the cluster is ready (Figure 15-17) after ECS created a lot of 

EC2 resources for you, such as Internet Gateway, VPC, security group, Auto Scaling 

group, etc. That’s great because you don’t have to create them manually. The cluster is 

ready in its own VPC with a subnet 1 and 2.

Figure 15-17.  The cluster is created when resources are created

Chapter 15  Node Microservices with Docker and AWS ECS

https://node.university/courses/category/Cloud
https://node.university/courses/category/Cloud
https://node.university/blog
https://node.university/blog
https://node.university/courses/category/Cloud


469

In my example on Figure 15-17, you can see the Availability Zones (AZs) us-west-2c,  

us-west-2a and us-west-2b. (AZ is like a data center.) That’s good because in case 

something happens in one AZ, we will have the ability to launch or use another AZ.

We uploaded images, created task definition and launched the cluster. However, 

if you are thinking we were done, then you are mistaken my friend. The next step is to 

create a service because no app is running yet without the service.

�Creating the Cloud Container Service and Verifying it
The last step is to create a service that will take the task and the cluster and make the 

containers in the task run in the specified cluster. That’s an oversimplified explanation, 

because the service will do more, such as monitor health and restart containers.

Go to Create Services which is under Task Definition ➤ banking-api-task ➤ Actions 

➤ Create Service. You will see this that our ECS service is ready because it’s been 

created, as shown in my screenshot on Figure 15-18. (Amazon made a mistake by writing 

Elastic Container Service service with a double “service”.)

Chapter 15  Node Microservices with Docker and AWS ECS



470

Phew. Everything should be ready by now. The containers should be RUNNING. 

To verify it, we need to grab a public IP or public DNS. To do so, click Clusters ➤ 

banking-api-cluster (cluster name) ➤ ESC Instances (tab) and Container instance 

as illustrated in Figure 15-19, which shows the running container instance with the 

corresponding Public DNS and Public IP. We need those. Either one of them.

Figure 15-18.  ECS service banking-api-service is ready

Chapter 15  Node Microservices with Docker and AWS ECS



471

Figure 15-19.  Container instance under the cluster shows public IP and DNS name

Copy the public IP or DNS for that cluster (which is like an EC2 instance). We will 

need it for testing. First, we need a dynamic content test. That’s the Node API and 

MongoDB. To test the dynamic content (content generated by the app with the help of a 

database), open in a browser with {PUBLIC_DNS}/accounts. Most likely the response 

will be [] because the database is empty, but that’s a good response. The server is 

working and can connect to the database from a different container.

Next, we need a static content test, which is our static asset, i.e., image, inside of the 

container.

Chapter 15  Node Microservices with Docker and AWS ECS



472

To test the static content such as an png image which was downloaded from the 

Internet by Docker (ADD in Dockerfile) and baked into the container image, navigate to 

http://{PUBLIC_DNS}/node-university-logo.png. You should see the images that Docker 

downloaded via ADD. That’s the image in the image. Using ADD, you can fetch any data 

from a URL. For example, you can fetch HTTPS certificates from a private S3.

�Terminate Service and Cluster/Instances
Don’t forget to terminate your service and instances. Otherwise, you will be still paying 

dinero for running those cloud resources. (I am sure you can find a better way to spend 

the money. For example, buying some DOGECOIN.) You can terminate resources from 

the AWS web console. Do so for ECS first. Make sure you remove tasks.

�Summary
Microservices is an old concept when you think about it as decoupling and loose 

coupling. The less functionality you pack into an application, the more flexible and 

easier it will be to scale different parts of the system and to maintain it (make changes 

to it). There are certain downsides to microservices as well. Microservices proliferation 

brings all the overhead involved in monitoring, managing environments, provisioning, 

patches and deployments. Luckily, Node and containers and cloud services such 

as Docker and AWS ECS can help in reduce this complexity and management of 

microservices.

In this chapter you’ve built your own microservice that connected to another service 

(MongoDB) both locally and in the cloud. You used Docker by the way of making an 

image. What’s great about this dockerization is that your project is extremely portable. 

It’s mostly independent of OS or any other discrepancies, which often can bite a 

developer in the tail.

The next chapter is on serverless. It’ll take the abstraction in the cloud to an even 

higher level than containers and microservices, because it allows to not have any 

environments at all. Node developers just supply the code to run it in the cloud.

Chapter 15  Node Microservices with Docker and AWS ECS



473
© Azat Mardan 2018 
A. Mardan, Practical Node.js, https://doi.org/10.1007/978-1-4842-3039-8_16

CHAPTER 16

Serverless Node with 
AWS Lambda
Servers are fun until they are not. Imagine that you run a few Node services that are 

important but used sporadically. Maybe you have REST APIs to access and perform 

CRUD on tables in your noSQL DynamoDB database. You spend money on six large 

AWS EC2 instances, but you need them only infrequently. It’ll be more cost effective to 

use the serverless architecture with AWS (Amazon Web Services) Lambda then EC2.

Unlike EC2, AWS Lambda doesn’t have to run all the time. This way with Lambda, 

your company will pay only for actual use (compute) time. In other times when there’s 0 

traffic, it won’t be charged at all! Big saving.

Imagine also that your last IT Ops person is leaving to work for a hot Artificial 

Intelligence Big Data Augmented Reality ICO-funded startup. Your company can’t hire 

a replacement. Luckily, you read this book and docs, and you know that Lambda stack 

will require almost no maintenance because AWS manages its app environment. You can 

do everything yourself. The system quality might be even better than your IT Ops person 

could have achieved. AWS hires lots of good experts who will work on your Lambda 

infrastructure. All the patches, security, and scaling is taken care off by the AWS experts!

Let’s learn how to get started with Lambda by building a REST API for any database 

table, not just one. As an example, you’ll be using and working with messages, but clients 

can work with any table by sending a different query or payload. Later, you’ll be able to 

create auth and validate request and response in API Gateway (not covered in this lab). 

You are going to use three AWS services, which I will cover in this chapter:

•	 DynamoDB

•	 Lambda

•	 API Gateway



474

This chapter’s project is deployed into the cloud AWS Lambda CRUD HTTP API 

microservice to save data in AWS DynamoDB (key value store). The API Gateway is exposing 

the HTTP interface. The API code is easy to implement, but the serverless setup (AWS 

Lambda and API Gateway) is hard. This project is broken down into digestible easy subtasks:

	 1.	 Creating a DynamoDB table

	 2.	 Creating an IAM role to access DynamoDB

	 3.	 Creating an AWS Lambda resource

	 4.	 Creating an API Gateway resource

	 5.	 Testing the RESTful API microservice

	 6.	 Cleaning up

Let’s get started with the database.

�Creating a DynamoDB Table
The name of the table in these examples is messages. Feel free to modify it in the 

command options as you wish. The key name is id, and the type is string (S):

$ aws dynamodb create-table --table-name messages \

  --attribute-definitions AttributeName=id,AttributeType=S \

  --key-schema AttributeName=id,KeyType=HASH \

  �--provisioned-throughput ReadCapacityUnits=5, 

WriteCapacityUnits=5

You’ll get back the Arn identifier TableArn along with other information:

{

  "TableDescription": {

    �"TableArn": "arn:aws:dynamodb:us-west-1:161599702702: 

table/messages", ”AttributeDefinitions”: [

      {

        "AttributeName": "id",

        "AttributeType": "N"

      }

    ],

Chapter 16  Serverless Node with AWS Lambda



475

    "ProvisionedThroughput": {

      "NumberOfDecreasesToday": 0,

      "WriteCapacityUnits": 5,

      "ReadCapacityUnits": 5

    },

    "TableSizeBytes": 0,

    "TableName": "messages",

    "TableStatus": "CREATING",

    "KeySchema": [

      {

        "KeyType": "HASH",

        "AttributeName": "id"

      }

    ],

    "ItemCount": 0,

    "CreationDateTime": 1493219395.933

  }

}

You can also get this info by:

$ aws dynamodb describe-table --table-name messages

You can get the list of all tables in your selected region (which you set in aws 

configure):

$ aws dynamodb list-tables

Next on our agenda is the access role to this table.

�Creating an IAM Role to Access DynamoDB
The next step is to create an identity access management role that will allow the Lambda 

function to access the DynamoDB database. We shall start with this JSON file, which 

describes a thing called trust policy. This policy is needed for the role. Copy this code 

and save into lambda-trust- policy.json:

Chapter 16  Serverless Node with AWS Lambda



476

{

  "Version": "2012-10-17",

  "Statement": [

    {

      "Sid": "",

      "Effect": "Allow",

      "Principal": {

        "Service": [

          "lambda.amazonaws.com"

        ]

      },

      "Action": "sts:AssumeRole"

    }

  ]

}

Let’s create an IAM role so our Lambda can access DynamoDB. Create a role with a 

trust policy from a file using this AWS CLI command (you installed AWS CLI, right?):

$ aws iam create-role --role-name LambdaServiceRole --assume-role-

policy-document file://lambda-trust-policy.json

If everything went fine, then the role will be created. Compare your results with next 

one, which has the trust policy content under AssumeRolePolicyDocument in addition 

to the identifiers of the newly created role: the role ID, name, and Arn. Here’s my result. 

Yours will have different IDs. Write down the role Arn somewhere so you have it handy.

{

  "Role": {

    "AssumeRolePolicyDocument": {

      "Version": "2012-10-17",

      "Statement": [

        {

          "Action": "sts:AssumeRole",

          "Principal": {

            "Service": [

              "lambda.amazonaws.com"

            ]

          },

Chapter 16  Serverless Node with AWS Lambda



477

          "Effect": "Allow",

          "Sid": ""

        }

      ]

    },

    "RoleId": "AROAJLHUFSSSWHS5XKZOQ",

    "CreateDate": "2017-04-26T15:22:41.432Z",

    "RoleName": "LambdaServiceRole",

    "Path": "/",

    �"Arn": "arn:aws:iam::161599702702:role/LambdaServiceRole"

  }

}

Next, add the policies so the Lambda function can work with the database. In the 

following command, the role is specified by name LambdaServiceRole, which if you 

remember is the name we used to create the role in the previous command. In other 

words, we attach a special managed policy that grants our future Lambda functions 

(which will use this role) an access to DynamoDB. The name of this special policy is 

AmazonDynamoDBFullAccess. Not all services have managed policies. In some cases, 

developers will have to attach policies for read, write, etc. one by one, and these are 

called inline policies.

$ aws iam attach-role-policy --role-name LambdaServiceRole --policy-

arn arn:aws:iam::aws:policy/AmazonDynamo

DBFullAccess

No output is a good thing in this case.

Another optional managed policy, which you can use in addition to 

AmazonDynamoDBFullAccess, is AWSLambdaBasicExecutionRole.  

It has the logs (CloudWatch) write permissions:

{

  "Version": "2012-10-17",

  "Statement": [

    {

      "Effect": "Allow",

Chapter 16  Serverless Node with AWS Lambda



478

      "Action": [

        "logs:CreateLogGroup",

        "logs:CreateLogStream",

        "logs:PutLogEvents"

      ],

      "Resource": "*"

    }

  ]

}

The commands to attach more managed policies are the same—attach-role-

policy.

�Creating an AWS Lambda Resource
On a high level view, our Lambda function (file code/ch16/serverless/index.js) 

looks like this:

const doc = require('dynamodb-doc')

const dynamo = new doc.DynamoDB() // Connects to the DB in the same 

region automatically, no need for IPs or passwords

exports.handler = (event, context, callback) => {

  switch (event.httpMethod) {

    case 'DELETE':

      // Delete item

      // Call callback with ok

    case 'GET':

      // Read items

      // Call callback with items

    case 'POST':

      // Create item

      // Call callback with ok

    case 'PUT':

      // Update item

      // Call callback with ok

Chapter 16  Serverless Node with AWS Lambda



479

    default:

      // Call callback with error

  }

}

The access to the database is provided via the dynamodb-doc library, which is 

instantiated into the dynamo object. No need for IP/domain or passwords. The IAM 

and AWS will do everything and provide the access to the entire DynamoDB instance, 

which can have multiple tables per account per region. AWS has just a single DynamoDB 

“instance” per region, like US West, but there are multiple regions per account.

The Lambda function, which is in this case a request handler, is very similar to 

the Express request handler. There’s a function with three arguments: event, context, 

and callback. The request body is in the event.body. The request HTTP method is in 

event.httpMethod. It’s worth mentioning that Lambda functions could be and do 

anything— not just be request handlers. They can do some computation or work with 

data. All the operations are done with these three arguments: event, context, and 

callback.

Here’s the full code for the function. It checks HTTP methods and performs CRUD 

on DynamoDB table accordingly. The table name comes from the query string or from 

the request body.

'use strict'

console.log('Loading function')

const doc = require('dynamodb-doc')

const dynamo = new doc.DynamoDB()

// All the request info in event

// "handler" is defined on the function creation

exports.handler = (event, context, callback) => {

    // Callback to finish response

  const done = (err, res) => callback(null, {

    statusCode: err ? '400' : '200',

    body: err ? err.message : JSON.stringify(res),

    headers: {

      'Content-Type': 'application/json'

    }

  })

Chapter 16  Serverless Node with AWS Lambda



480

    �// To support mock testing, accept object not just strings

  �if (typeof event.body === 'string') { event.body = JSON.

parse(event.body) }

  switch (event.httpMethod) {

        // Table name and key are in payload

    case 'DELETE':

      dynamo.deleteItem(event.body, done)

      break

        // No payload, just a query string param

    case 'GET':

      �dynamo.scan({ TableName: event.queryString 

Parameters.TableName }, done)

      break

        // Table name and key are in payload

    case 'POST':

      dynamo.putItem(event.body, done)

      break

        // Table name and key are in payload

    case 'PUT':

      dynamo.updateItem(event.body, done)

      break

    default:

      �done(new Error(`Unsupported method "${event.httpMethod}"`))

  }

}

So either copy or type the code of the Lambda function shown prior into a file. 

Then archive it with ZIP into db-api.zip. Yes. It’s a simple archive, and that’s how we 

will deploy it, by archiving and uploading this archive file. No Git. Funny how Lambda 

packaging is so low tech, right?

Now, we can create an AWS Lambda function in the cloud from the source code, 

which is now only on your local machines. We will use the create-function command.

$ aws lambda create-function --function-name db-api \

  --runtime nodejs6.10 --role  

  arn:aws:iam::161599702702:role/LambdaServiceRole \

  --handler index.handler \

Chapter 16  Serverless Node with AWS Lambda



481

  --zip-file fileb://db-api.zip \

  --memory-size 512 \

  --timeout 10

Let unpack the command and its three main options:

•	 For the role --role, use your IAM role Arn from the IAM step.

•	 For the --zip-file, use the code for the function from the zip file you 

created earlier.

•	 For the --handler, use the name of the exported method in index.

js for AWS to import and invoke that function.

Just to clarify, --zip-file fileb://db-api.zip means upload the function from 

this file named db-api.zip, which is in the same folder in which you run the command 

create-function.

Memory size and timeout are optional. By default, they are 128 and 3 

correspondingly.

You can see that the Node version is 6.1. AWS takes care of installing and patching 

Node any other environment (Python, Java, Go, etc.).

Another important thing to notice and to know about is the function name itself, 

which is db-api. We’ll use this name a lot for connecting this function to API Gateway 

later in this chapter.

Run the create-function command with your Arn. Also, make sure Node is at 

least version 6. The function name must be db-api or other scripts in this chapter won’t 

work.

Results will look similar to this but with different IDs of course:

{

  �"CodeSha256": "bEsDGu7ZUb9td3SA/eYOPCw3GsliT3q+bZsqzcrW7Xg=",

  "FunctionName": "db-api",

  "CodeSize": 778,

  "MemorySize": 512,

  �"FunctionArn": "arn:aws:lambda:us-west-1:161599702702: 

function:db-api",

  "Version": "$LATEST",

  �"Role": "arn:aws:iam::161599702702:role/LambdaServiceRole",

  "Timeout": 10,

Chapter 16  Serverless Node with AWS Lambda



482

  "LastModified": "2017-04-26T21:20:11.408+0000",

  "Handler": "index.handler",

  "Runtime": "nodejs6.10",

  "Description": ""

}

I like to test right away. To test the function, I created this data that mocks an HTTP 

request. It’s just an object with the HTTP method set to GET and the query string with 

the table name parameter. I saved it in the db-api-test.json file so you can copy it 

from the book’s repository or from the following snippet.

{

  "httpMethod": "GET",

  "queryStringParameters": {

    "TableName": "messages"

  }

}

You can copy this object into the AWS web console, as shown in Figure 16-1, or use 

CLI like a real hacker you are.

For CLI, run from your terminal or command prompt the AWS CLI command aws 

lambda invoke with parameters to execute the function in the cloud. The parameters 

will point to the data file with the mock HTTP request using --payload file://db-

api-test.json:

$ aws lambda invoke \

  --invocation-type RequestResponse \

  --function-name db-api \

  --payload file://db-api-test.json \

  output.txt

It’s actually pretty cool to execute a function in the cloud from the command line. It 

can be useful when the function performs something heavy computational. The function 

doesn’t have to be an HTTP endpoint. It can take any data and give you the output.

The testing can be done from the AWS web console in Lambda dashboard as I 

mentioned before. Simply select the blue “Save and test” button once you’ve navigated 

to function’s detailed view and pasted the data (Figure 16-1). Disregard the template that 

says Mobile Backend. I show how I tested the GET HTTP request with a query string in 

Figure 16-1.

Chapter 16  Serverless Node with AWS Lambda



483

Figure 16-1.  Mocking an HTTP request to our AWS Lambda in the AWS web 
console

The results should be 200 (ok status) and output in the output.txt file. For example, 

I do NOT have any record yet, so my response is this:

{"statusCode":"200","body":"{\"Items\":[],\"Count\":0,\"ScannedCount\

":0}","headers":{"Content-Type":"application/json"}}

The function is working and fetching from the database. You can test other HTTP 

methods by modifying the input. For example, to test creation of an item, use POST 

method and provide the proper body, which must have TableName and Item fields, just 

Chapter 16  Serverless Node with AWS Lambda



484

like in the Node code of our function. Structure the data in body exactly how the function 

expects it.

{

  "httpMethod": "POST",

  "queryStringParameters": {

    "TableName": "messages"

  },

  "body": {

    "TableName": "messages",

    "Item":{

      "id":"1",

      "author": "Neil Armstrong",

      �"text": "That is one small step for (a) man, one giant leap for 

mankind"

    }

  }

}

Enough with the testing by the way of mocking the HTTP requests. The function is 

working, okay? It was invoked from the AWS CLI and from the AWS web console. Now 

we want to create a special URL that will trigger/invoke/execute our function every time 

there’s a request.

�Creating an API Gateway Resource
API Gateway will allow us to create a REST API resource (like a route, a UR,L or an 

endpoint). Every time someone sends a request, this resource will invoke our Lambda. 

You will need to do the following to create the REST resource/endpoint:

	 1.	 Create the REST API in API Gateway

	 2.	 Create a resource /db-api (as an example, it’s similar to  

/users, /accounts)

	 3.	 Define HTTP method(s) without auth

	 4.	 Define integration to Lambda (proxy)

Chapter 16  Serverless Node with AWS Lambda



485

	 5.	 Create deployment

	 6.	 Give permissions for an API Gateway resource and method to 

invoke Lambda

The process is not straightforward. In fact it’s prone to mistake and errors. I spend 

many hours tweaking and mastering all these API Gateway steps to automate them, 

that is, I created a magical shell script. As a result, you can use a shell script which will 

perform all the steps (recommended) or… send hours banging your head against the 

table like I did. The AWS web console can help too. It can simplify and automate some 

steps for you too if you use the right template.

The shell script is in the create-api.sh file. It has inline comments to help you 

understand what is happening. Feel free to inspect create-api.sh. For brevity and to 

avoid complicating the chapter, I won’t go over it line-by-line but I’ll show the file with 

comments.

APINAME=api-for-db-api

REGION=us-west-1

NAME=db-api # function name

API_PATH=db-api

# Create an API

aws apigateway create-rest-api --name "${APINAME}" --description  

"Api for ${NAME}" --region ${REGION}

APIID=$(aws apigateway get-rest-apis --query 

"items[?name==\`${APINAME}\`].id" --output text --region ${REGION})

echo "API ID: ${APIID}"

PARENTRESOURCEID=$(aws apigateway get-resources --rest-api-id 

${APIID} --query "items[?path=='/'].id" --output text --region 

${REGION})

echo "Parent resource ID: ${PARENTRESOURCEI}"

# Create a resource as a path, our function will handle many tables 

(resources) but you can be more specific

aws apigateway create-resource --rest-api-id ${APIID} --parent-id 

${PARENTRESOURCEID}

--path-part ${API_PATH} --region ${REGION}

RESOURCEID=$(aws apigateway get-resources --rest-api-id ${APIID} 

--query "items[?path=='/db-api'].id" --output text --region ${REGION})

echo "Resource ID for path ${API_PATH}: ${APIID}"

Chapter 16  Serverless Node with AWS Lambda



486

# Add a method like GET, POST, PUT, etc.; for CRUD we need all 

methods so just put ANY . Here you can set up auth as well

aws apigateway put-method --rest-api-id ${APIID} --resource-id 

${RESOURCEID} --http-method ANY --authorization-type NONE --no-api-

key-required --region ${REGION}

LAMBDAARN=$(aws lambda list-functions --query "Functions[?FunctionNa

me==\`${NAME}\`].FunctionArn” --output text --region ${REGION})

echo "Lambda Arn: ${LAMBDAARN}"

# Create integration

# http-method: proxy any http method, but could be only GET, POST, 

PUT, etc.

# type: proxy everything, other possible options: HTTP and AWS

# integration-http-method: must be POST for method to lambda 

integration to inkove lambda

aws apigateway put-integration --rest-api-id ${APIID} \

--resource-id ${RESOURCEID} \

--http-method ANY \

--type AWS_PROXY \

--integration-http-method POST \

--uri arn:aws:apigateway:${REGION}:lambda:path/2015-03-31/functions/

${LAMBDAARN}/invocations

aws apigateway create-deployment --rest-api-id ${APIID} --stage-name 

prod --region ${REGION}

APIARN=$(echo ${LAMBDAARN} | sed -e 's/lambda/execute-api/' -e "s/

function:${NAME}/${APIID}/")

echo "APIARN: $APIARN"

UUID=$(uuidgen)

# Add permissions to invoke function

# use uuid to make sure we don't get already exists error

# in source-arn, change to prod/GET or prod/POST where pattern is 

stage/http-method

aws lambda add-permission \

--function-name ${NAME} \

Chapter 16  Serverless Node with AWS Lambda



487

--statement-id apigateway-db-api-any-proxy-${UUID} \

--action lambda:InvokeFunction \

--principal apigateway.amazonaws.com \

--source-arn "${APIARN}/*/*/db-api"

# This is where you can control responses

aws apigateway put-method-response \

--rest-api-id ${APIID} \

--resource-id ${RESOURCEID} \

--http-method ANY \

--status-code 200 \

--response-models "{}" \

--region ${REGION}

echo "Resource URL is https://${APIID}.execute-api.${REGION}.

amazonaws.com/prod/db-api/?TableName=messages”

echo "Testing..."

curl "https://${APIID}.execute-api.${REGION}.amazonaws.com/prod/db-

api/?TableName=messages"

Run my API Gateway script to create the API endpoint and integrate it with the 

Lambda function (if you modified the region or the function name, you’ll need to change 

those values in the script as well):

$ sh create-api.sh

In the end, the script will make a GET request to check that everything is working. 

This is an example of running the automation script for the API Gateway (your IDs and 

Arns will be different):

$ sh create-api.sh

{

    "id": "sdzbvm11w6",

    "name": "api-for-db-api",

    "description": "Api for db-api",

    "createdDate": 1493242759

}

Chapter 16  Serverless Node with AWS Lambda



488

API ID: sdzbvm11w6

Parent resource ID: sdzbvm11w6

{

    "path": "/db-api",

    "pathPart": "db-api",

    "id": "yjc218",

    "parentId": "xgsraybhu2"

}

Resource ID for path db-api: sdzbvm11w6

{

    "apiKeyRequired": false,

    "httpMethod": "ANY",

    "authorizationType": "NONE"

}

Lambda Arn: arn:aws:lambda:us-west-1:161599702702:function:db-api

{

    "httpMethod": "POST",

    "passthroughBehavior": "WHEN_NO_MATCH",

    "cacheKeyParameters": [],

    "type": "AWS_PROXY",

    �"uri": "arn:aws:apigateway:us-west-1:lambda: 

path/2015-03-31/functions/arn:aws:lambda:us-west-1: 

161599702702:function:db-api/invocations",

    "cacheNamespace": "yjc218"

}

{

    "id": "k6jko6",

    "createdDate": 1493242768

}

APIARN: arn:aws:execute-api:us-west-1:161599702702:sdzbvm11w6

{

    �"Statement": "{\"Sid\":\"apigateway-db-api-any-proxy-9C30DEF8-

A85B-4EBC-BBB0-8D50E6AB33E2\",\"Resource\":\"arn:aws:lambda: 

us-west-1:161599702702:function:db-api\",\"Effect\":\"Allow\", 

Chapter 16  Serverless Node with AWS Lambda



489

\"Principal\":{\"Service\":\"apigateway.amazonaws.com\"}, 

\"Action\":[\"lambda:InvokeFunction\"],\"Condition\":{\"ArnLike\": 

{\"AWS:SourceArn\":\"arn:aws:execute-api:us-west-1: 

161599702702:sdzbvm11w6/*/*/db-api\"}}}"

}

{

    "responseModels": {},

    "statusCode": "200"

}

Resource URL is https://sdzbvm11w6.execute-api.us-west-1.amazonaws.

com/prod/db-api/?TableName=messages

Testing...

{"Items":[],"Count":0,"ScannedCount":0}%

You are all done! The resource URL is there in your terminal output. The script even 

tested the function for you if you look at the very last line (must be "Items": [] unless 

you inserted a few records in the DB already).

�Testing the RESTful API Microservice
You can manually run tests by getting the resource URL and using cURL, Postman, or 

any other HTTP client. For example, my GET looks like this (replace the URL with yours):

$ curl "https://sdzbvm11w6.execute-api.us-west-1.amazonaws.com/prod/

db-api/?TableName=messages"

But my POST has a body and header with a unique ID:

$ curl "https://sdzbvm11w6.execute-api.us-west-1.amazonaws.com/prod/

db-api/?TableName=messages" \

  -X POST \

  -H "Content-Type: application/json" \

  -d '{"TableName": "messages",

    "Item": {

      "id": "'$(uuidgen)'",

      "author": "Neil Armstrong",

Chapter 16  Serverless Node with AWS Lambda



490

      �"text": "That is one small step for (a) man, one giant leap for 

mankind"

    }

  }'

Here’s an option if you don’t want to copy paste your endpoint URL. Use env var to 

store URL and then CURL to it. Execute this once to store the env var API_URL:

APINAME=api-for-db-api

REGION=us-west-1

NAME=db-api

APIID=$(aws apigateway get-rest-apis --query "items[?name==\`${APINA

ME}\`].id" --output text --region ${REGION})

API_URL="https://${APIID}.execute-api.${REGION}.amazonaws.com/prod/

db-api/?TableName=messages"

Then run for GET as many times as you want:

$ curl $API_URL

And run the following to POST as many times as you want (thanks to uuidgen):

$ curl ${API_URL} \

  -X POST \

  -H "Content-Type: application/json" \

  -d '{"TableName": "messages",

    "Item": {

      "id": "'$(uuidgen)'",

      "author": "Neil Armstrong",

      �"text": "That is one small step for (a) man, one giant leap for 

mankind"

    }

  }'

Chapter 16  Serverless Node with AWS Lambda



491

Figure 16-2.  Verifying newly created DB records in the messages table by looking 
at the AWS web console’s DynamoDB dashboard

The new items can be observed via an HTTP interface by making another GET 

request… or in the AWS web console in DynamoDB dashboard as shown below in 

Figure 16-2:

You have yet another option to play with your newly created serverless REST API 

resource: a very popular GUI app for making HTTP requests called Postman. Here’s 

how the POST request looks like in Postman. Remember to select POST, Raw, and JSON 

(application/json):

To delete an item with the DELETE HTTP request method, the payload must have a 

Key field of that record that we want to delete. For example:

Chapter 16  Serverless Node with AWS Lambda



492

{

    "TableName": "messages",

    "Key":{

       "id":"8C968E41-E81B-4384-AA72-077EA85FFD04"

    }

}

Congratulations! You’ve built an event-driven REST API for an entire database, not 

just a single table!

Note  For auth, you can set up token-based auth on a resource and method 
in API Gateway. You can set up response and request rules in the API Gateway 
as well. Also, everything (API Gateway, Lambda, and DynamoDB) can be set up 
in CloudFormation instead of a CLI or web console (example of Lambda with 
CloudFormation: http://bit.ly/2xMBSry).

Figure 16-3.  Using Postman to validate the REST API endpoint to AWS Lambda, 
which creates a DB record

Chapter 16  Serverless Node with AWS Lambda

http://bit.ly/2xMBSry
http://bit.ly/2xMBSry
http://bit.ly/2xMBSry


493

�Cleaning Up
You can leave your function running since AWS will charge only for the usage, but 

I prefer to clean every AWS resource right away. Remove the API Gateway API with 

delete-rest-api. For example, here’s my command (for yours, replace the REST API 

ID accordingly):

$ aws apigateway delete-rest-api --rest-api-id sdzbvm11w6

Delete the function by its name using delete-function:

$ aws lambda delete-function --function-name db-api

Finally, delete the database by its name too:

$ aws dynamodb delete-table --table-name messages

I’ve taught this project over 20 times, so I know the common problems that can arise. 

This is the troubleshooting of the common issues:

•	 Internal server error: Check your JSON input. DynamoDB requires a 

special format for Table Name and ID/Key.

•	 Permissions: Check the permission for API resource and method to 

invoke Lambda. Use the test in API Gateway to debug.

•	 UnexpectedParameter: Unexpected key '0' found in 

params: Check that you are sending proper format, JSON vs. string.

•	 <AccessDeniedException><Message>Unable to determine 

service/operation name to be authorized</Message> 

</AccessDeniedException>: Make sure to use POST for 

integration-http-method as in the create-api script, because 

API Gateway integration can only use POST to trigger functions, even 

for other HTTP methods defined for this resource (like ANY).

•	 Wrong IDs: Make sure to check names and IDs if you modified the 

examples.

Chapter 16  Serverless Node with AWS Lambda



494

�Summary
Amazon Web Services offers myriads of cloud services, and most of them use and benefit 

greatly from Node. Serverless architecture is one popular use case for Node. In AWS, the 

serverless service is AWS Lambda. It uses managed and configured Node environment 

to run code (among other environments such as Python, Java, and other dinosaurs). 

The code can be HTTP request-response services (microservices) when you add API 

Gateway to Lambda. That’s what we did, but that’s not all. Lambdas can be just code for 

sending notifications, doing data crunching, and performing any other tasks.

Chapter 16  Serverless Node with AWS Lambda



495
© Azat Mardan 2018 
A. Mardan, Practical Node.js, https://doi.org/10.1007/978-1-4842-3039-8_17

CHAPTER 17

Conclusion
Lo and behold, this is the end of the book. There was a study that showed that the 

majority of programmers read zero books per year.1 So, pat yourself on the back, because 

you’re on the road to awesomeness when it comes to building Node.js web apps.

Regarding the material covered in Practical Node.js, we explored real-world aspects 

of the Node.js stack. To do this, many things were essential, and by now you should have 

an awareness of how pieces fit together. For some technologies such as Pug and REST 

API, our coverage was quite extensive. However, most of the packages are very specific 

and tailored to our apps’ goals, so those topics were given a brief introduction, with 

references for further learning. Here’s a list of topics we covered:

•	 Node.js and npm setup and development tools

•	 Web apps with Express.js

•	 TDD with Mocha

•	 Pug and Handlebars

•	 MongoDB and Mongoskin

•	 Mongoose MongoDB ORM

•	 Session, token authentication, and OAuth with Everyauth

•	 REST APIs with Express and Hapi

•	 WebSockets with ws, Socket.IO, and DerbyJS

•	 Best practices for getting apps production ready

•	 Deployment to Heroku and AWS

•	 Structuring and publishing npm modules

1�http://bit.ly/2xOm8V6

http://bit.ly/2xOm8V6


496

•	 Node HTTP/2 Servers

•	 Asynchronous Code in Node

•	 Node Microservices with Docker and AWS ECS

•	 Serverless Node with AWS Lambda

�Author Contact
If you enjoyed this reading, you might like my programming blog about software 

engineering, startups, JavaScript and Node.js: webapplog.com.

I speak at conferences and publish online courses. I am not active on Instagram or 

Snapchat but I post regularly on YouTube, Twitter, Facebook, LinkedIn and Google+. 

Follow me, the author of this book, on Twitter @azatmardan for tips and news about 

Node.js. And subscribe to me on YouTube, connect with me on LinkedIn, and friend me 

on Facebook. I posted all my social media links: http://azat.co.

�Further Learning
I wrote 18 books to date. Here’s just the short list of my other related books:

•	 React Quickly (Manning, 2017)

•	 Pro Express.js (Apress, 2014)

•	 Full Stack JavaScript, 2nd Edition (Apress, 2018)

•	 Write Your Way to Success (Apress, 2018)

•	 Using Your Web Skills to Make Money (Apress, 2018)

If you don’t have much time to read, like most of us, then check out my podcast on 

iTunes, Google Play and Stitcher. It’s called Node University. You can find the links at 

https://nodeuniversity.simplecast.fm.

Lastly, you can supplement your reading with videos and coding exercises at Node 

University: https://node.university.

Chapter 17  Conclusion

http://webapplog.com
http://azat.co
https://nodeuniversity.simplecast.fm
https://node.university


497
© Azat Mardan 2018 
A. Mardan, Practical Node.js, https://doi.org/10.1007/978-1-4842-3039-8

Index

A
addListener method, 335
Amazon Web Services (AWS)

advantages, 372
DNS, 376
EC2 instance, 373
EPEL, 372
HTTP traffic, 375–376
Node.js, 374
NPM, 372–374
server.js, 374
yum command, 373

Application programming  
interface (API), 29, 277

array objects, 29
math objects, 30
string objects, 30

Asynchronous code
async/await function, 426–429
async module, 418–421
promises

axios, 422
callback argument, 423, 426
catch statements, 421
error handling, 424
fs.readFile(), 422
myAsyncTimeoutFn function, 423
setTimeout() method, 423

Authentication, blog, 224
destroy(), 226
findOne(), 225

return keyword, 225
Authorization, 206, 220

Express.js middleware, 206–207
AWS Lambda, 473

API Gateway resource
automation script, 487–489
create-api.sh file, 485
GET request, 487

DynamoDB
create table, 474–475
IAM to access, 475–477

resource, 478
aws lambda invoke command, 482
create-function command, 480–481
dynamodb-doc library, 479
HTTP method, 479–480
HTTP request, 482–484

RESTful API microservice, 489–491
troubleshooting, 493

B
Behavior-driven  

development (BDD), 89
Blog, 218

authentication
destroy(), 226
findOne(), 225
return keyword, 225

authorization, 220–224
run app, 227
session middleware, 219–220

https://doi.org/10.1007/978-1-4842-3039-8


498

C
CloudFormation (CF), 467
Content delivery networks (CDNs), 327
Conventions

camelCase, 22
commas, 22–23
indentation, 23
naming, 22
semicolons, 21–22
whitespace, 23–24

D
DELETE method, 279–281, 293, 297
DerbyJS

app
declaration, 323–324
DOM, 324
editor/app.js code, 325
model.at method, 324
model.ref(), 324
process.nextTick function, 325

editor tryout, 329–330
package.json, 319–320
server-side code, 321–323
structure, 319
usage, 319
view, 326, 328–329

Docker engine (daemon), 432–434
Document Object Model (DOM), 324
Domain Name System (DNS), 376

E
Editor tryout, 329–330
Elastic Container Registry (ECR), 450
Encyme, 94
Environment variables, 332

Error handling
addListener method, 335
error event listeners, 335
REST API, 336–337

Event logging
Papertrail app, 346
Winston, 345–346

Everyauth module, 230
Express.js, 52

Blog app
admin page, 75
ajax() method, 75
elements, 71–72
home page, 71
REST API, 74
traditional server-side, 73

__express method, 146
Handlebars, 149
Hello World creation

app.js file, 80–81, 84
app.set(), 80
createServer method, 84
folders, setting up, 76–77
framework, 81
node app command, 86
node_modules folder, 79
npm init and  

package.json, 77–78
npm install, 79
Pug, 85
require() method, 80
res.render(), 83
VERB values, 81–82

if/else statements, 332
installation

Generator, 58–59
Generator version, 57–58
local, 59

Index



499

package.json file, 59
npm init terminal command, 59
npm install express command, 60

middleware, 206
Mongoose, 263

app.use(), 265
Article and User models, 266–268
email field, 268
exports.add method, 270
exports.edit method, 270
exports.postArticle and exports.

admin functions, 272
findByIdAndUpdate(), 271
list method, 269
models/user.js file, 268
node app, 276
package.json, 264
req.models.User model, 275
routes/article.js file, 272–275

MVC-like, 54
NODE_ENV, 333
Node.js framework, 55
Pug, 148–149
res.render method, 146
scaffolding

command-line interface, 63–64
creation, 62
Express.js app configuration, 69
middleware, 68
Pug template, 69–70
routes, 65–67
terminal command, 62

session options, 334
Swig templates, 147
tasks, 52
working principles, 56–57

Extra Packages for Enterprise  
Linux (EPEL), 372

F
forever module, 378

G
GET method, 279–281, 291–292, 296
Git

commands, 372
GitHub, 360–361
installation, 356–357
local repository creation, 360
PaaS, 356
SSH keys, 357–360

Grunt
build folder, 348
concat task, 349
default task, 349–350
grunt.loadNpmTasks(), 347
HTTP requests, 348
jshint, 347, 349
npm installation, 346
uglify method, 348

H
Handlebars

comments, 139
custom helpers, 140
each iteration, 135
expressions, 134
if condition, 137
includes/partials templates, 142
with statement, 138–139
syntax, 134
unescaped output, 136–137
unless statement, 138
usages, 142–143, 145–146

Index



500

Hapi framework
coding, 305
findOne(), 302
goal, 298
hapi-app.js file creation, 299
loadCollection(), 300
server.route(), 300
server.start(), 304
URL parameters, 303, 305

Heroku
configuration, 369
creation, 366–367
environment variables, 369–370
Git, 365, 368
heroku login command, 366–367
MongoHQ URI, 371
Paas, 365
transactional e-mails, 371
working principle, 365

Hot Module Replacement (HMR)  
plugin, 352–353

HTTP/2 server, 401
benefits, 403
De facto mandatory encryption, 403
header compression, 403
multiplexing, 403, 413
node server

ADVANCED option, 409
createSecureServer(), 407
http module, 407
launching, 408
Network tab, 412
openssl command, 413
self-signed certificate, 409–411
vik options, 412

protocol, 402
server push, 403

benefits, 413

createSecureServer(), 413
JavaScript, 415
Network tab, 414–415
stream event listener, 414

SSL key and certificate, 404–405, 407
stream priority, 403

I
Identity access management (IAM), 475
init.d script, 381–383

J
Jasmine, 93
Jest, 93
JSON, 279
JSON Web Token (JWT) authentication

header auth, 211, 214
bcrypt, 209
benefit, 216
encryption method, 209
jsonwebtoken library, 209
login route, 210
Postman, 211–216
SECRET value, 211

K
Karma, 94

L
Locking dependencies

committing modules, 353
node_modules, 353
package-lock.json, 354
package managers, 356
Shrinkwrap, 354

Locking versions, 398–399

Index



501

M
map() function, 287
Meteor, 319
Microservices

CRUD, 431
dockerizing node

Node.js Dockerfile, 439–445
project, creating/copying, 437–439

installation
AWS account, 434–436
AWS CLI, 436
Docker engine (daemon), 432–434

loose coupling, 431
multi-container setup

Docker network, 445
launching app, 446, 448–449

node containers
app, 458–460
cloud container service, 469–472
cluster, 464–469
database, 461–464
goal, 449
main task settings, 458
registry (ECR), 450–456
service and cluster/instances, 

terminate, 472
Middleware, 281
Mocha

BDD test, 104
boot method, 105
make test command, 110–111
mkdir tests, 105
mocha tests, 107
package.json file, 104–105
shutdown method, 106
tests folder, 107–108

Expect.js, BDD

chai library, 101–102
library, 103–104
syntax, 103

hooks, 94–95
installation, 90

alternate options, 93–94
BDD and TDD, 91
features and benefits, 91
nyan reporter, 93
optional parameters, 91–92

TDD assert
array method, 96–99
chai assert, 99–100

Model-view-controller-like (MVC-like) 
structure, 54

MongoDB, 165
bin folder, 169
console/shell, 170
installation

data directory, 168
HomeBrew, 166
manual, 167

mongod service, 170
mongoimport, 174
MongoUI, 174
Node.js native driver

error-first pattern, 177
library documentation, 182
mongo-native-insert.js file, 178
mongo.ObjectID(), 181
package.json file, 175
running sequence, 176

NoSQL database/non-relational 
databases, 165

shell commands, 173
storing blog data, Mongoskin

add persistence (see Persistence)
add seed data, 186–187

Index



502

admin page, 203–204
make db/make test, 202
mocha tests, 188–190
mongod service, 203
node app, 202

Mongolia, 185
Mongoose, 185

benefit of, 239
custom instance methods, 249
disadvantage, 239
functions, 239
hooks, 248
installation, 240
instance (document) methods, 252
mongoose.model(name, schema), 250
nested documents, 257–258
population

populate method, 256
posts and users models, 254–255

schemas, 244–247, 261–263
standalone Mongoose script, 240–244
static methods, 249–251
toObject() and toJSON(), 253
true MVC

app.use(), 265
Article and User models, 266, 267
email field, 268
exports.add method, 270
exports.edit method, 270
exports.postArticle and exports.

admin functions, 272
findByIdAndUpdate(), 271
list method, 269
models/user.js file, 268
node app, 276
package.json, 264

req.models.User model, 275
routes/article.js file, 272–275

virtual fields, 259–261
Mongoskin methods, 182

data validation, 185
model-view-controller-like, 183
native Node.js, 185

Monitoring
properties, 342
REPL, 344–345

Monk, 185
Multithreading

with cluster, 337–340
with pm2, 340–341

N
Native WebSocket, 309
Nginx

HTTP header, 384
installation, CentOS system, 383
proxy-server configurations, 385
URL path, 386
VIM editor, 384

Node.js
API, 29–30
arrays, 18
buffer, 13–14
callbacks, 36–37
core modules

fs, 33
http, 31–32
querystring, 32
url, 32
util, 32

debugging
console.log(), 39

MongoDB (cont.)

Index



503

debug commands, 40
Node Inspector, 40–45

__dirname vs. process.cwd, 29
file changes, 49
forever, 378
functions

define/create, 16
invocation vs. expression, 17–18
pass functions as parameters, 17

globals and reserved keywords
global scope, 25–26
modules, exporting/ 

importing, 26–27, 29
process information, 24–25

Hello World server, 37–38
IDEs and code editors, 45–46
init.d script, 381–383
installation

checking, 9–10
console (REPL), 10–11
HomeBrew/MacPorts, 4–5
multiversion systems, 8
NVM, 7–8
one-click installer, 2–3
source code, 6–7
tar file, 5
updating npm, 9
without sudo, 6

loose typing, 12
npm installation, 35
object literal notation, 14–15
prototypal inheritance, 19–20
read and write, 34
scripts, 11
streaming data, 35
upstart scripts, 378–381
utilities, 33–34
Webstorm IDE, 48

Node.js OAuth, 227
Everyauth, 230
Twitter, 228–229

Node Version Manager (NVM), 7–8
for Windows, 8

Not-locking versions, 353
NPM commands, 398

O
OAuth 1.0, 231

Everyauth Twitter strategy
configuration, 232
with debug mode, 233, 236
execution, 235
user argument, 235

sign-in with Twitter link, 231–232
Object document mapping (ODM), 239
Object relational mapping (ORM), 165
Open-source factors, 390

locking versions, 398–399
NPM commands, 398
package.json file, 395–397
patterns

class, 392–393
exports.NAME pattern, 392, 395
function, 392, 394
object, 392

recommended folder  
structure, 391–392

P, Q
Papertrail, 346
Persistence

AJAX, 200
app.use() statements, 192
decorator pattern, 192

Index



504

event handlers, 200
Express.js middleware modules, 191
find(), 196
GET admin page route, 198
mongoskin, 191
post method, 193
remove and _id, 197
req objects, 192
updateById shorthand method, 196

Platform as a Service (PaaS), 356, 365
Pnpm package manager, 356
POST method, 279–281, 291, 296–297
prototype keywords, 393
Pug, 114, 353, 495

attributes, 118–120
block blockname, 129
case statement, 126
comments, 123–124
extend filename, 129
filters, 125
if statement, 124
include, 128
interpolation, 126
iterations, 124
JavaScript code, 122–123
literals, 120
mixins functions, 127–128
script/style tags, 122
tags, 114–115
templates

admin.pug, 160–163
article.pug, 156–157
index.pug, 154–155
layout.pug, 150–153
login.pug, 157–158
post.pug, 158, 160

text, 121
usages, 129–134
variables/locals, 117–118

PUT method, 279–281, 297

R
Racer, 319
Read–eval–print  

loop (REPL), 10–11, 344–345
REST API servers, 495

approach, 277
characteristics, 279
CRUD structure, 280–281
Hapi framework  

(see Hapi framework)
HTTP methods, 279
implementation

app.param() method, 290
body-parser. logger(), 289
DELETE method, 293
find(), 291–292
GET CURLing, 295–296
POST request, 296–297
PUT request handler, 292
TDD, 298

Mocha and superagent
coding, 288
done(), 286
error checking, 286
get(), 286
HTTP requests, 284–285
map(), 287
mocha test command, 288
test/index.js file, 284
usage, 283

project dependencies, 281–283

Persistence (cont.)

Index



505

S
Scaffolding

command-line interface, 63–64
creation, 62
Express.js app configuration, 69
middleware, 68
Pug template, 69–70
routes, 65–67
terminal command, 62

Session-based authentication, 216
express.cookieParser(), 217
express.session(), 217

setMode(), 328
setTheme(), 328
Shrinkwrap, 354
Simple Object Access Protocol (SOAP), 279
Single-page application (SPA), 277
Socket.IO and Express.js

catching and processing, 318
configuration, 315
HTTP requests, 314
messageChange event listener, 315
package.json and npm install, 314
Pug template, 316
server logs, 316

Software as a Service (SaaS), 345

T
Template engines, 113

Handlebars (see Handlebars)
Pug (see Pug)

Test-Anything-Protocol (TAP), 94
Test-driven development (TDD), 89
Token-based authentication, 207–208
TravisCI

configuration, 363–364

definition, 362
make test command, 363

Trust policy, 475

U
Upstart scripts, 378
User interface / user  

experience (UI/UX), 89, 278

V
Varnish cache, 386, 388
Virtual fields, 259–261
Vows, 93

W, X
Webpack

babel-loader, 351–352
configuration, 351
css-loader, 353
HMR, 352–353
watch option, 352

WebSocket
browser implementation

HTML tags, 309
Node.js server, 311–313
onerror event handler, 310
script tag, 309

definition, 308
native, 309
polling, 308
protocol, 307, 309

Winston, 345–346

Y, Z
Yarn package manager, 356

Index


	Table of Contents
	About the Author
	Acknowledgments
	Introduction
	Chapter 1: Setting up Node.js and Other Essentials
	Installing Node.js and npm
	One-Click Installers
	Installing with HomeBrew or MacPorts
	Installing from a Tar File
	Installing Without sudo
	Installing from Source Code
	Multiversion Setup with NVM
	Multiversion Setup with NVM for Windows
	Alternative Multiversion Systems
	Updating npm
	Checking the Installation
	Node.js Console (REPL)

	Launching Node.js Scripts
	Node.js Basics and Syntax
	Loose Typing
	Buffer—Node.js Super Data Type
	Object Literal Notation
	Functions
	Define/Create a Function
	Pass Functions as Parameters
	Function Invocation vs. Expression

	Arrays
	Prototypal Nature
	Conventions
	Semicolons
	camelCase
	Naming
	Commas
	Indentation
	Whitespace

	Node.js Globals and Reserved Keywords
	Node.js Process Information
	Accessing Global Scope in Node.js
	Exporting and Importing Modules

	__dirname vs. process.cwd
	Browser Application Programming Interface Helpers
	Node.js Core Modules
	http (http://nodejs.org/api/http.html)
	util (http://nodejs.org/api/util.html)
	querystring (http://nodejs.org/api/querystring.html)
	url (http://nodejs.org/api/url.html)
	fs (http://nodejs.org/api/fs.html)

	Handy Node.js Utilities
	Reading to and Writing from the File System in Node.js
	Streaming Data in Node.js
	Installing Node.js Modules with npm
	Taming Callbacks in Node.js
	Hello World Server with HTTP Node.js Module

	Debugging Node.js Programs
	Core Node.js Debugger
	Debugging with Node Inspector

	Node.js IDEs and Code Editors
	Watching for File Changes
	Summary

	Chapter 2: Using Express.js to Create Node.js Web Apps
	What Is Express.js?
	How Express.js Works
	Express.js Installation
	Express.js Generator Version
	Express.js Generator Installation
	Local Express.js

	Express.js Scaffolding
	Express.js Command-Line Interface
	Routes in Express.js
	Middleware as the Backbone of Express.js
	Configuring an Express.js App
	Pug Is Haml for Express.js/Node.js
	Final Thoughts Scaffolding

	The Blog Project Overview
	Submitting the Data

	Express.js Hello World Example
	Setting Up Folders
	npm init and package.json
	Dependency Declaration: npm install
	The App.js File
	Meet Pug: One Template to Rule Them All
	Running the Hello World App

	Summary

	Chapter 3: TDD and BDD for Node.js with Mocha
	Installing and Understanding Mocha
	Understanding Mocha Hooks
	TDD with the Assert
	Chai Assert

	BDD with Expect
	Expect Syntax

	Project: Writing the First BDD Test for Blog
	Putting Configs into a Makefile

	Summary

	Chapter 4: Template Engines: Pug and Handlebars
	Pug Syntax and Features
	Tags
	Variables/Locals
	Attributes
	Literals
	Text
	Script and Style Blocks
	JavaScript Code
	Comments
	Conditions (if)
	Iterations (each loops)
	Filters
	Interpolation
	Case
	Mixins
	Include
	Extend

	Standalone Pug Usage
	Handlebars Syntax
	Variables
	Iteration (each)
	Unescaped Output
	Conditions (if)
	Unless
	With
	Comments
	Custom Helpers
	Includes (Partials)

	Standalone Handlebars Usage
	Pug and Handlebars Usage in Express.js
	Pug and Express.js
	Handlebars and Express.js

	Project: Adding Pug Templates to Blog
	layout.pug
	index.pug
	article.pug
	login.pug
	post.pug
	admin.pug

	Summary

	Chapter 5: Persistence with MongoDB and Mongoskin
	Easy and Proper Installation of MongoDB
	How to Run the Mongo Server
	Data Manipulation from the Mongo Console
	MongoDB Console in Detail
	Minimalistic Native MongoDB Driver for Node.js Example
	Main Mongoskin Methods
	Project: Storing Blog Data in MongoDB with Mongoskin
	Project: Adding MongoDB Seed Data
	Project: Writing Mocha Tests
	Project: Adding Persistence

	Running the App
	Summary

	Chapter 6: Security and Auth in Node.js
	Authorization with Express.js Middleware
	Token-Based Authentication
	JSON Web Token (JWT) Authentication
	Session-Based Authentication
	Project: Adding E-mail and Password Login to Blog
	Session Middleware
	Authorization in Blog
	Authentication in Blog
	Running the App

	The oauth Module
	Twitter OAuth 2.0 Example with Node.js OAuth
	Everyauth

	Project: Adding Twitter OAuth 1.0 Sign-in to Blog with Everyauth
	Adding a Sign-in with a Twitter Link
	Configuring the Everyauth Twitter Strategy

	Summary

	Chapter 7: Boosting Node.js and MongoDB with Mongoose
	Mongoose Installation
	DB Connection in a Standalone Mongoose Script
	Mongoose Schemas
	Hooks for Keeping Code Organized
	Custom Static and Instance Methods
	Mongoose Models
	Relationships and Joins with Population
	Nested Documents
	Virtual Fields
	Schema Type Behavior Amendment
	Express.js + Mongoose = True MVC
	Summary

	Chapter 8: Building Node.js REST API Servers with  Express.js and Hapi
	RESTful API Basics
	Project Dependencies
	Test Coverage with Mocha and Superagent
	REST API Server Implementation with Express and Mongoskin
	Refactoring: Hapi REST API Server
	Summary

	Chapter 9: Real-Time Apps with WebSocket, Socket.IO, and DerbyJS
	What Is WebSocket?
	Native WebSocket and Node.js with the ws Module Example
	Browser WebSocket Implementation
	Node.js Server with ws Module Implementation


	Socket.IO and Express.js Example
	Collaborative Online Code Editor Example with DerbyJS, Express.js, and MongoDB
	Project Dependencies and package.json

	Server-side Code
	DerbyJS App
	DerbyJS View
	Editor Tryout


	Summary

	Chapter 10: Getting Node.js Apps Production Ready
	Environment Variables
	Express.js in Production
	Error Handling
	Multithreading with Cluster
	Multithreading with pm2
	Event Logging and Monitoring
	Monitoring
	REPL in Production

	Winston
	Papertrail App for Logging


	Building Tasks with Grunt
	A Brief on Webpack
	Locking Dependencies
	Git for Version Control and Deployments
	Installing Git

	Generating SSH Keys
	Creating a Local Git Repository
	Pushing the Local Repository to GitHub

	Running Tests in Cloud with TravisCI
	TravisCI Configuration

	Summary

	Chapter 11: Deploying Node.js Apps
	Deploying to Heroku
	Deploying to Amazon Web Services
	Keeping Node.js Apps Alive with forever, Upstart, and init.d
	forever
	Upstart Scripts
	init.d

	Serving Static Resources Properly with Nginx
	Caching with Varnish
	Summary

	Chapter 12: Modularizing Your Code and Publishing Node.js Modules to npm
	Recommended Folder Structure
	Modularizing Patterns
	Composing package.json
	Publishing to npm
	Not-Locking Versions
	Summary

	Chapter 13: Node HTTP/2 Servers
	Brief Overview of HTTP/2
	SSL Key and Certificate
	HTTP/2 Node Server
	Node HTTP/2 Server Push
	Summary

	Chapter 14: Asynchronous Code in Node
	async Module
	Promises
	Async Functions
	Summary

	Chapter 15: Node Microservices with Docker and AWS ECS
	Installing Installations
	Installing Docker Engine
	Getting an AWS Account
	Installing AWS CLI

	Dockerizing Node Microservice
	Creating/Copying the Node Project
	Creating a Node.js Dockerfile

	Use Docker Networks for Multi-container Setup
	Creating a Docker Network
	Launch App into a Network

	Node Containers in AWS with EC2 ECS
	Creating a Registry (ECR)
	Create a New Task Definition
	Defining the Main Task Settings for the Example
	Defining the First Container: App
	Defining the Second Container: Database

	Creating Cluster
	Creating the Cloud Container Service and Verifying it
	Terminate Service and Cluster/Instances

	Summary

	Chapter 16: Serverless Node with AWS Lambda
	Creating a DynamoDB Table
	Creating an IAM Role to Access DynamoDB
	Creating an AWS Lambda Resource
	Creating an API Gateway Resource
	Testing the RESTful API Microservice
	Cleaning Up
	Summary

	Chapter 17: Conclusion
	Author Contact
	Further Learning

	Index



